WorldWideScience

Sample records for mg o2 l-1

  1. Theoretical Limiting Potentials in Mg/O2 Batteries

    DEFF Research Database (Denmark)

    Smith, Jeffrey G.; Naruse, Junichi; Hiramatsu, Hidehiko

    2016-01-01

    A rechargeable battery based on a multivalent Mg/O2 couple is an attractive chemistry due to its high theoretical energy density and potential for low cost. Nevertheless, metal-air batteries based on alkaline earth anodes have received limited attention and generally exhibit modest performance....... In addition, many fundamental aspects of this system remain poorly understood, such as the reaction mechanisms associated with discharge and charging. The present study aims to close this knowledge gap and thereby accelerate the development of Mg/O2 batteries by employing first-principles calculations...... by the presence of large thermodynamic overvoltages. In contrast, MgO2-based cells are predicted to be much more efficient: superoxide-terminated facets on MgO2 crystallites enable low overvoltages and round-trip efficiencies approaching 90%. These data suggest that the performance of Mg/O2 batteries can...

  2. Exact solutions of sl-boson system in U(2l + 1) reversible O(2l + 2) transitional region

    CERN Document Server

    Zhang Xin

    2002-01-01

    Exact eigen-energies and the corresponding wavefunctions of the interacting sl-boson system in U(2l + 1) reversible O(2l +2) transitional region are obtained by using an algebraic Bethe Ansatz with the infinite dimensional Lie algebraic technique. Numerical algorithm for solving the Bethe Ansatz equations by using mathematical package is also outlined

  3. Porous composite materials ZrO2(MgO)-MgO for osteoimplantology

    International Nuclear Information System (INIS)

    Buyakov, Ales; Litvinova, Larisa; Shupletsova, Valeria; Kulbakin, Denis; Kulkov, Sergey

    2016-01-01

    The pore structure and phase composition of ceramic composite material ZrO 2 (Mg)-MgO at different sintering temperatures were studied. The main mechanical characteristics of the material were determined and it was shown that they are close to the characteristics of natural bone tissues. It was shown that material structure has a positive effect on the pre-osteoblast cells proliferation. In-vitro studies of pre-osteoblast cells, cultivation on material surface showed a good cell adhesion, proliferation and differentiation of MMSC by osteogenic type.

  4. Synthesis and crystal structure of Mg0.5NbO2: An ion-exchange reaction with Mg2+ between trigonal [NbO2]- layers

    Science.gov (United States)

    Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro

    2013-01-01

    A new layered niobate, Mg0.5NbO2, was synthesized from LiNbO2 through a cation-exchange reaction with Mg2+ at 450-550 °C. This is the first example of a topotactic reaction with an aliovalent cation between trigonal [NbO2]- layers. It is proposed to be isostructural with LiNbO2 (space group; P63/mmc) with lattice parameters of a=2.9052(6) Å, c=10.625(15) Å. The lattice parameters and formation energy of Mg0.5NbO2 crystallized in LiNbO2 form and other layered CaNb2O4 one were calculated by density functional theory.

  5. Electron microscopy of Mg/TiO2 photocatalyst morphology for deep desulfurization of diesel

    International Nuclear Information System (INIS)

    Yin, Yee Cia; Kait, Chong Fai; Fatimah, Hayyiratul; Wilfred, Cecilia

    2015-01-01

    A series of Mg/TiO 2 photocatalysts were prepared and characterized using Field Emission Scanning Electron Microscopy (FESEM) and High-Resolution Transmission Electron Microscopy (HRTEM). The average particle sizes of the photocatalysts were ranging from 25.7 to 35.8 nm. Incorporation of Mg on TiO 2 did not lead to any surface lattice distortion to TiO 2 . HRTEM data indicated the presence of MgO and Mg(OH) 2 mixture at low Mg loading while at higher Mg loading, the presence of lamellar Mg-oxyhydroxide intermediates and Mg(OH) 2

  6. Bulk and surface properties of magnesium peroxide MgO2

    Science.gov (United States)

    Esch, Tobit R.; Bredow, Thomas

    2016-12-01

    Magnesium peroxide has been identified in Mg/air batteries as an intermediate in the oxygen reduction reaction (ORR) [1]. It is assumed that MgO2 is involved in the solid-electrolyte interphase on the cathode surface. Therefore its structure and stability play a crucial role in the performance of Mg/air batteries. In this work we present a theoretical study of the bulk and low-index surface properties of MgO2. All methods give a good account of the experimental lattice parameters for MgO2 and MgO bulk. The reaction energies, enthalpies and free energies for MgO2 formation from MgO are compared among the different DFT methods and with the local MP2 method. A pronounced dependence from the applied functional is found. At variance with a previous theoretical study but in agreement with recent experiments we find that the MgO2 formation reaction is endothermic (HSE06-D3BJ: ΔH = 51.9 kJ/mol). The stability of low-index surfaces MgO2 (001) (Es = 0.96 J/m2) and (011) (Es = 1.98 J/m2) is calculated and compared to the surface energy of MgO (001). The formation energy of neutral oxygen vacancies in the topmost layer of the MgO2 (001) surface is calculated and compared with defect formation energies for MgO (001).

  7. Intrinsic Conductivity in Magnesium-Oxygen Battery Discharge Products: MgO and MgO2

    DEFF Research Database (Denmark)

    Smith, Jeffrey G.; Naruse, Junichi; Hiramatsu, Hidehiko

    2017-01-01

    Nonaqueous magnesium–oxygen (or “Mg-air”) batteries are attractive next generation energy storage devices due to their high theoretical energy densities, projected low cost, and potential for rechargeability. Prior experiments identified magnesium oxide, MgO, and magnesium peroxide, MgO2...

  8. Fracture toughness of MgCr2O4-ZrO2 composities

    International Nuclear Information System (INIS)

    Singh, J.P.

    1985-01-01

    The effect of unstabilized ZrO 2 inclusions on the fracture surface energy of MgCr 2 O 4 was studied as a function of ZrO 2 content. It was observed that fracture surface energy increases with increasing ZrO 2 content, and reaches the maximum value of 24.5 j/m 2 at 16.5 vol% ZrO 2 . This represents an approx. = fourhold increase in the fracture surface energy of Mg 2 O 4 as a result of ZrO 2 inclusions. It is proposed that this improvement results from the energy absorbed by the microcracks formed in the MgCr 2 O 4 matrix as a result of the tetragonal → monoclinic phase transormation of ZrO 2 and the associated volume expansion

  9. Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface

    International Nuclear Information System (INIS)

    Sasani, Alireza; Baktash, Ardeshir; Mirabbaszadeh, Kavoos; Khoshnevisan, Bahram

    2016-01-01

    Highlights: • Formation energy of Mg and Mg-Nb co-doped TiO_2 anatase surface (101) is studied. • Effect of Mg defect to the TiO_2 anatase (101) surface and bond length distribution of the surface is studied and it is shown that Mg defects tend to stay far from each other. • Effect of Mg and Nb to the bond length distribution of the surface studied and it is shown that these defects tend to stay close to each other. • Effects of Mg and Mg-Nb defects on DSSCs using TiO_2 anatase hosting these defects are studied. - Abstract: In this paper, by using density functional theory, Mg and Nb-Mg co-doping of TiO_2 anatase (101) surfaces are studied. By studying the formation energy of the defects and the bond length distribution of the surface, it is shown that Mg defects tend to stay as far as possible to induce least possible lattice distortion while Nb and Mg defects stay close to each other to cause less stress to the surface. By investigating band structure of the surface and changes stemmed from the defects, potential effects of Mg and Mg-Nb co-doping of TiO_2 surface on dye-sensitized solar cells are investigated. In this study, it is shown that the Nb-Mg co-doping could increase J_S_C of the surface while slightly decreasing V_O_C compared to Mg doped surface, which might result in an increase in efficiency of the DSSCs compared to Nb or Mg doped surfaces.

  10. Synthesis and mechanical properties of stabilized zirconia ceramics: MgO-ZrO_2 and Y_2O_3-MgO- ZrO_2

    International Nuclear Information System (INIS)

    Yamagata, C.; Mello-Castanho, S.R.H.; Paschoal, J.O.A.

    2014-01-01

    Precursor MgO-ZrO_2 and Y_2O_3-MgO-ZrO_2 ceramic powders were synthesized by the method of co-precipitation and characterized by techniques such as laser diffraction, QELS (Quasi Elastic Light Scattering), XRD, BET, and SEM. Nanoscale powders with specific surface area higher than 60 m"2. g"-"1 was achieved. Sintered ceramic obtained from the synthesized powders, were characterized to mechanical tests using Vickers indentation technique. The addition of Y_2O_3 promoted an increase in hardness of the ceramics and total cubic crystalline phase stabilization. (author)

  11. Biomedical bandpass filter for fluorescence microscopy imaging based on TiO2/SiO2 and TiO2/MgF2 dielectric multilayers

    International Nuclear Information System (INIS)

    Butt, M A; Fomchenkov, S A; Verma, P; Khonina, S N; Ullah, A

    2016-01-01

    We report a design for creating a multilayer dielectric optical filters based on TiO 2 and SiO 2 /MgF 2 alternating layers. We have selected Titanium dioxide (TiO 2 ) for high refractive index (2.5), Silicon dioxide (SiO 2 ) and Magnesium fluoride (MgF 2 ) as a low refractive index layer (1.45 and 1.37) respectively. Miniaturized visible spectrometers are useful for quick and mobile characterization of biological samples. Such devices can be fabricated by using Fabry-Perot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. Distributed Bragg Reflectors (DBRs) consisting of alternating high and low refractive index material pairs are the most commonly used mirrors in FP filters, due to their high reflectivity. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer range. Therefore a bandpass filters are required to restrict wavelength outside the stopband of the FP DBRs. The proposed filter shows a high quality with average transmission of 97.4% within the passbands and the transmission outside the passband is around 4%. Special attention has been given to keep the thickness of the filters within the economic limits. It can be suggested that these filters are exceptional choice for florescence imaging and Endoscope narrow band imaging. (paper)

  12. Improved hydrogen storage properties of MgH2 catalyzed with TiO2

    Science.gov (United States)

    Jangir, Mukesh; Meena, Priyanka; Jain, I. P.

    2018-05-01

    In order to improve the hydrogenation properties of the MgH2, various concentration of rutile Titanium Oxide (TiO2) (X wt%= 5, 10, 15 wt %) is added to MgH2 by ball milling and the catalytic effect of TiO2 on hydriding/dehydriding properties of MgH2 has been investigated. Result shows that the TiO2 significantly reduced onset temperature of desorption. Onset temperature as low as 190 °C were observed for the MgH2-15 wt% TiO2 sample which is 60 °C and 160 °C lower than the as-milled and as-received MgH2. Fromm the Kissinger plot the activation energy of 15 wt% TiO2 added sample is calculated to be -75.48 KJ/mol. These results indicate that the hydrogenation properties of MgH2-TiO2 have been improved compared to the as-milled and as-received MgH2. Furthermore, XRD and XPS were performed to characterize the structural evolution upon milling and dehydrogenation.

  13. Synthesis and lithium storage properties of Zn, Co and Mg doped SnO2 Nano materials

    CSIR Research Space (South Africa)

    Palaniyandy, Nithyadharseni

    2017-09-01

    Full Text Available In this paper, we show that magnesium and cobalt doped SnO2 (Mg-SnO2 and Co-SnO2) nanostructures have profound influence on the discharge capacity and coulombic efficiency of lithium ion batteries (LIBs) employing pure SnO2 and zinc doped SnO2 (Zn-Sn...

  14. Microwave energy-assisted formation of bioactive CaO–MgO–SiO2 ...

    Indian Academy of Sciences (India)

    Ogun State, South-west, Nigeria); MgO was obtained from. Mg(NO3)2·6H2O ... 2.3 Extraction of Ca from chicken eggshells. The chicken eggshells were washed with deionized water, oven-dried at .... There is no carbon peak observed .... present in critical concentrations could be biologically active. [28]. .... Solids 354 722.

  15. Mg/O2 Battery Based on the Magnesium-Aluminum Chloride Complex (MACC) Electrolyte

    DEFF Research Database (Denmark)

    Vardar, Galin; Smith, Jeffrey G.; Thomson, Travis

    2016-01-01

    Mg/O2 cells employing a MgCl2/AlCl3/DME (MACC/DME) electrolyte are cycled and compared to cells with modified Grignard electrolytes, showing that performance of magnesium/oxygen batteries depends strongly on electrolyte composition. Discharge capacity is far greater for MACC/DME-based cells, whil...

  16. Defect Study of MgO-CaO Material Doped with CeO2

    Directory of Open Access Journals (Sweden)

    Han Zhang

    2013-01-01

    Full Text Available MgO-CaO refractories were prepared using analytical reagent chemicals of Ca(OH2 and Mg(OH2 as starting materials and CeO2 as dopant, then sintered at 1650°C for 3 h. The effect of CeO2 powders on the defect of MgO-CaO refractories was investigated. The sample characterizations were analyzed by the techniques of XRD and SEM. According to the results, with the addition of CeO2, the lattice constant of CaO increased, and the bulk density of the samples increased while apparent porosity decreased. The densification of MgO-CaO refractories was promoted obviously. In the sintering process, MgO grains grew faster than CaO, pores at the MgO-CaO grain boundaries decreased while pores in the MgO grains increased gradually, and no pores were observed in the CaO grains. The nature of the CeO2 promoting densification lies in the substitution and solution with CaO. Ce4+ approaches into CaO lattices, which enlarges the vacancy concentration of Ca2+ and accelerates the diffusion of Ca2+.

  17. Thermoluminescence of magnesium doped zirconium oxide (ZrO2:Mg) UV irradiated

    International Nuclear Information System (INIS)

    Rivera Montalvo, Teodoro; Furetta, Claudio

    2008-01-01

    Full text: The monitoring of ultraviolet radiation (UVR) different thermoluminescent (TL) materials have been used to measure UVR. UV dosimetry using thermoluminescence phenomena has been suggested in the past by several authors. This technique has an advantage over others methods due to the readout of the samples. Other advantages of these phosphors are their small size, portability, lack of any power requirements, linear response to increasing radiation dose and high sensitivity. Zirconium oxide, recently received full attention in view of their possible use as thermoluminescent dosimeter (TLD), if doped with suitable activators, in radiation dosimetry. In the present investigation thermoluminescent (TL) properties of magnesium doped zirconium oxide (ZrO 2 :Mg) under ultraviolet radiation (UVR) were studied. The ZrO 2 :Mg powder of size 30-40 nm, having mono clinical structure, exhibit a thermoluminescent glow curve with one peak centered at 180 C degrees. The TL response of ZrO 2 :Mg as a function ultraviolet radiation exhibits four maxima centered at 230, 260, 310 and 350 nmn. TL response of ZrO 2 :Mg as a function of spectral irradiance of UV Light was linear in a wide range. Fading and reusability of the phosphor were also studied. The results showed that ZrO 2 :Mg nano powder has the potential to be used as a UV dosemeter in UVR dosimetry. (author)

  18. Hydrogen production from steam reforming of ethanol over Ni/MgO-CeO_2 catalyst at low temperature

    Institute of Scientific and Technical Information of China (English)

    石秋杰; 刘承伟; 谌伟庆

    2009-01-01

    MgO,CeO2 and MgO-CeO2 with different mole ratio of Mg:Ce were prepared by solid-phase burning method.Catalysts Ni/MgO,Ni/CeO2 and Ni/MgO-CeO2 were prepared by impregnation method.The catalytic properties were evaluated in ethanol steam reforming(ESR) reaction.Specific surface areas of the supports were measured by nitrogen adsorption-desorption at 77 K,and the catalysts were characterized with X-ray diffraction(XRD),temperature programmed reduction(TPR) and thermogravimetric(TG).The results showed that well...

  19. Ti-Mg alloy powder synthesis via mechanochemical reduction of TiO 2 by elemental magnesium

    CSIR Research Space (South Africa)

    Mushove, T

    2009-04-01

    Full Text Available This paper reports the preliminary results of an investigation on the synthesis of a Ti-Mg alloy powder through mechanochemical processing of TiO 2 and Mg powders. TiO 2 was mixed with elemental Mg according to a nominal stoichiometric composition...

  20. Polar catastrophe at the MgO(100)/SnO2(110) interface

    KAUST Repository

    Albar, Arwa

    2016-11-14

    First principles calculations, based on density functional theory, are used to investigate the structural and electronic properties of the epitaxial MgO(100)/SnO2(110) interface of wide band gap insulators. Depending on the interface termination, nonmagnetic metallic and half-metallic interface states are observed. The formation of these states is explained by a polar catastrophe model for nonpolar-polar interfaces. Strong lattice distortions and buckling develop in SnO2, which influence the interface properties as the charge discontinuity is partially screened. Already a single unit cell of SnO2 is sufficient to drive the polar catastrophe scenario. © 2016 The Royal Society of Chemistry.

  1. Enhancing photocatalytic activity by using TiO2-MgO core-shell-structured nanoparticles

    International Nuclear Information System (INIS)

    Jung, Hyun Suk; Lee, Jung-Kun; Nastasi, Michael; Kim, Jeong-Ryeol; Lee, Sang-Wook; Kim, Jin Young; Park, Jong-Sung; Hong, Kug Sun; Shin, Hyunho

    2006-01-01

    Hygroscopic Mg(OH) 2 gel was topotactically decomposed on TiO 2 particle surfaces, resulting in highly nanoporous MgO-coated TiO 2 particles. The highly hygroscopic and nanoporous MgO shell absorbed more water molecules and hydroxyl groups from the environment to yield an improved photocatalytic property of the core-shell particles as compared to the uncoated TiO 2 counterpart

  2. Structural and spectral properties of MgZnO2:Sm3+ phosphor

    Science.gov (United States)

    Rajput, Preasha; Sharma, Pallavi; Biswas, Pankaj; Kamni

    2018-05-01

    The samarium doped MgZnO2 phosphor was synthesized by the low-cost combustion method. The powder X-ray diffraction (XRD) analysis confirmed the crystallinity and phase purity of the phosphor. The lattice parameters were determined by indexing the diffraction peaks. The photoluminescence (PL) study revealed that the phosphor exhibited a broad excitation band in the UV region ranging between 200 to 350 nm. The 601 nm emission was ascribed to 4G5/2 to 6H7/2 transitions of the Sm3+ ion. The optical bandgap of MgZnO2:Sm3+ was obtained to be 3.56 eV. The phosphor can be projected as a useful material in X- and gamma-ray scintillators.

  3. Enabling rechargeable non-aqueous Mg-O2 battery operations with dual redox mediators.

    Science.gov (United States)

    Dong, Qi; Yao, Xiahui; Luo, Jingru; Zhang, Xizi; Hwang, Hajin; Wang, Dunwei

    2016-12-11

    Dual redox mediators (RMs) were introduced for Mg-O 2 batteries. 1,4-Benzoquinone (BQ) facilitates the discharge with an overpotential reduction of 0.3 V. 5,10,15,20-Tetraphenyl-21H,23H-porphine cobalt(ii) (Co(ii)TPP) facilitates the recharge with an overpotential decrease of up to 0.3 V. Importantly, the two redox mediators are compatible in the same DMSO-based electrolyte.

  4. Making MgO/SiO2 Glasses By The Sol-Gel Process

    Science.gov (United States)

    Bansal, Narottam P.

    1989-01-01

    Silicon dioxide glasses containing 15 mole percent magnesium oxide prepared by sol-gel process. Not made by conventional melting because ingredients immiscible liquids. Synthesis of MgO/SiO2 glass starts with mixing of magnesium nitrate hexahydrate with silicon tetraethoxide, both in alcohol. Water added, and transparent gel forms. Subsequent processing converts gel into glass. Besides producing glasses of new composition at lower processing temperatures, sol-gel method leads to improved homogeneity and higher purity.

  5. Magnetic and transport properties of Cu1.05Cr0.89 Mg0.05O2 and Cu0.96Cr0.95 Mg0.05Mn0.04O2 films

    International Nuclear Information System (INIS)

    Xu Qingyu; Schmidt, Heidemarie; Zhou Shengqiang; Potzger, Kay; Helm, Manfred; Hochmuth, Holger; Lorenz, Michael; Meinecke, Christoph; Grundmann, Marius

    2008-01-01

    We prepared conductive, polycrystalline or amorphous Cu 1.05 Cr 0.89 Mg 0.05 O 2 films on a-plane sapphire substrates by pulsed laser deposition under different O 2 partial pressure and substrate temperature. Hall measurements were performed to study the majority carrier type in these films. Polycrystalline Cu 1.05 Cr 0.89 Mg 0.05 O 2 is n-type conducting at 290 K, while in amorphous Cu 1.05 Cr 0.89 Mg 0.05 O 2 the type of majority charge carriers changes from electrons to holes at around 270 K. Interestingly, the structure has little influence on the magnetic properties of the films. A clear antiferromagnetic to paramagnetic transition was observed in both polycrystalline and amorphous Cu 1.05 Cr 0.89 Mg 0.05 O 2 films at 25 K. Similar electrical properties to Cu 1.05 Cr 0.89 Mg 0.05 O 2 film were observed for Cu 0.96 Cr 0.95 Mg 0.05 Mn 0.04 O 2 in dependence on the structure, while only paramagnetic without antiferromagnetic ordering was observed down to 5 K. Large negative magnetoresistance of 27% at 20 K was observed at 6 T in amorphous Cu 1.05 Cr 0.89 Mg 0.05 O 2 film

  6. Ethanol-to-Butadiene Conversion over SiO2-MgO Catalysts: Synthesis-Structure-Performance Relationships

    NARCIS (Netherlands)

    Angelici, C.

    2015-01-01

    The work presented in this PhD Thesis provides new insights into the underlying reasons that make SiO2-MgO materials excellent catalysts for the ethanol-to-butadiene Lebedev process. In particular, the preparation technique of choice affects the structural properties of the resulting SiO2-MgO

  7. Integrated Mg/TiO2-ionic liquid system for deep desulfurization

    Science.gov (United States)

    Yin, Yee Cia; Kait, Chong Fai; Fatimah, Hayyiratul; Wilfred, Cecilia

    2014-10-01

    A series of Mg/TiO2 photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500°C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400°C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%.

  8. Integrated Mg/TiO2-ionic liquid system for deep desulfurization

    International Nuclear Information System (INIS)

    Yin, Yee Cia; Kait, Chong Fai; Fatimah, Hayyiratul; Wilfred, Cecilia

    2014-01-01

    A series of Mg/TiO 2 photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500°C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400°C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%

  9. Thermoluminescence of novel MgO–CeO_2 obtained by a glycine-based solution combustion method

    International Nuclear Information System (INIS)

    Barrón, Victor Ramón Orante; Ochoa, Flor María Escobar; Vázquez, Catalina Cruz; Bernal, Rodolfo

    2016-01-01

    Thermoluminescence dosimetry properties of novel MgO–CeO_2 obtained by solution combustion synthesis in a glycine-nitrate process, are presented for the very first time. X-ray diffraction indicates the presence of cubic MgO and cerianite (CeO_2) for the annealed powder samples. Dosimetry features such as linear behaviour of the dose response without saturation in the dose interval studied, as well as asymptotic behaviour of the thermoluminescent signal fading place MgO–CeO_2 phosphor as a promising material for low-dose radiation dosimetry applications. - Highlights: • Thermoluminescence (TL) dosimetry properties of novel MgO–CeO_2 are presented. • TL glow curves display stable and dosimetric components. • Dose response showed a linear trend in the dose interval studied. • TL fading decay curve showed an asymptotic behaviour. • MgO–CeO_2 is suitable for personal, environmental and medical dosimetry.

  10. Structural phase analysis and photoluminescence properties of Mg-doped TiO2 nanoparticles

    Science.gov (United States)

    Ali, T.; Ashraf, M. Anas; Ali, S. Asad; Ahmed, Ateeq; Tripathi, P.

    2018-05-01

    In this paper, we report the synthesis, characterization and photoluminescence properties of Mg-doped TiO2 nanoparticles (NPs). The samples were synthesized by sol-gel method and characterized using the standard analytical techniques such as X-ray diffraction (XRD), Transmission electron microscope (TEM), Energy dispersive X-ray spectroscopy (EDX), UV-visible and photoluminescence spectroscopy. The powder XRD spectra revealed that the synthesized samples are pure and crystalline in nature and showing tetragonal anatase phase of TiO2 NPs. UV-visible spectrum illustrates that an absorption edge shifts toward the visible region. This study may provide a new insight for making the nanomaterials which can be used in photocatalytic applications.

  11. Radiation effects of energetic thorium ions in monocrystalline Mg O and Si O2

    International Nuclear Information System (INIS)

    Abuassy, M.K.

    1995-01-01

    Radiation effects of energetic thorium ions in the energy range ∼ (100-1200) eV in both Mg O and Si O 2 single crystal have been investigated with program MARLOWE which simulate the collision cascades using the binary collision approximation. The effect of binding parameters on the radiation effects have been studied. The calculations covered the range, energy loss and Frenkel pair production. The results of MARLOWE have been compared with results of program TRIM and with the energy-partition theory of lindhard

  12. Thermally stimulated currents in ZrO2:MgO

    International Nuclear Information System (INIS)

    Muccillo, E.N.S.

    1987-01-01

    Thermally Stimulated Depolarization Current measurements between 100 K and 350 K have been performed in ZrO 2 :MgO ceramic samples to discriminate the several kinds of polarization (orientational and interfacial polarization, and extrinsic and intrinsic space charge effects) to allow for the use of the technique in the study of solid solution formation in partially stabilized zirconia. The samples were prepared by conventional ceramic processing methods. Different electrode materials have been used: colloidal graphite, silver, gold, and also insulating electrodes (e.g. mylar foils). The current spectra obtained are strongly dependent upon the electrode material showing the presence of spacial charge phenomenon in these ceramics. (Author) [pt

  13. Thermally stimulated currents in ZrO2:MgO

    International Nuclear Information System (INIS)

    Muccillo, E.N.S.

    1987-01-01

    Thermally Stimulated Depolarization Current measurements between 100 K and 350 K have been performed in ZrO 2 :MgO ceramic samples to discriminate the several Kinds of polarization (orientational and interfacial polarization, and extrinsic and intrinsic space charge effects) to allow for the use of the technique in the study of solid solution formation in partially stabilized zirconia. The samples were prepared by conventional ceramic processing methods. Different electrode materials have been used: colloidal graphite, silver, gold, and also insulating electrodes (e.g. mylar foils). The current spectra obtained are strongly dependent upon the electrode material showing the presence of spacial charge phenomenon in these ceramics. (Author) [pt

  14. Influences of Mg Doping on the Electrochemical Performance of TiO2 Nanodots Based Biosensor Electrodes

    Directory of Open Access Journals (Sweden)

    M. S. H. Al-Furjan

    2014-01-01

    Full Text Available Electrochemical biosensors are essential for health monitors to help in diagnosis and detection of diseases. Enzyme adsorptions on biosensor electrodes and direct electron transfer between them have been recognized as key factors to affect biosensor performance. TiO2 has a good protein adsorption ability and facilitates having more enzyme adsorption and better electron transfer. In this work, Mg ions are introduced into TiO2 nanodots in order to further improve electrode performance because Mg ions are considered to have good affinity with proteins or enzymes. Mg doped TiO2 nanodots on Ti substrates were prepared by spin-coating and calcining. The effects of Mg doping on the nanodots morphology and performance of the electrodes were investigated. The density and size of TiO2 nanodots were obviously changed with Mg doping. The sensitivity of 2% Mg doped TiO2 nanodots based biosensor electrode increased to 1377.64 from 897.8 µA mM−1 cm−2 and its KMapp decreases to 0.83 from 1.27 mM, implying that the enzyme achieves higher catalytic efficiency due to better affinity of the enzyme with the Mg doped TiO2. The present work could provide an alternative to improve biosensor performances.

  15. The structure of MgO-SiO2 glasses at elevated pressure.

    Science.gov (United States)

    Wilding, Martin; Guthrie, Malcolm; Kohara, Shinji; Bull, Craig L; Akola, Jaakko; Tucker, Matt G

    2012-06-06

    The magnesium silicate system is an important geophysical analogue and neutron diffraction data from glasses formed in this system may also provide an initial framework for understanding the structure-dependent properties of related liquids that are important during planetary formation. Neutron diffraction data collected in situ for a single composition (38 mol% SiO(2)) magnesium silicate glass sample shows local changes in structure as pressure is increased from ambient conditions to 8.6 GPa at ambient temperature. A method for obtaining the fully corrected, total structure factor, S(Q), has been developed that allows accurate structural characterization as this weakly scattering glass sample is compressed. The measured S(Q) data indicate changes in chemical ordering with pressure and the real-space transforms show an increase in Mg-O coordination number and a distortion of the local environment around magnesium ions. We have used reverse Monte Carlo methods to compare the high pressure and ambient pressure structures and also compare the high pressure form with a more silica-poor glass (Mg(2)SiO(4)) that represents the approach to a more dense, void-free and topologically ordered structure. The Mg-O coordination number increases with pressure and we also find that the degree of continuous connectivity of Si-O bonds increases via a collapse of interstices.

  16. Physical Characteristics and Sintering Behavior of MgO-Doped ZrO2nanoparticles

    International Nuclear Information System (INIS)

    Muccillo, E.N.S.; Tadokoro, S.K.; Muccillo, R.

    2004-01-01

    Nanosized particles of 13mol% MgO-doped ZrO 2 with a narrow distribution of pore sizes were prepared by the coprecipitation technique using optimized parameters of synthesis. Transmission electron microscopy analysis of the calcined powder reveals that the majority of the particles have grain sizes in the 10-20nm range. From nitrogen adsorption analysis an average particle size of 13nm was estimated, which is similar to the average pore size diameter (12nm). Besides the unimodal distribution of pore sizes, the linear shrinkage curve of a powder compact exhibits several inflexions indicating different rates of densification up to 1600 deg. C. After sintering at 1600 deg. C for 2h, the microstructure features of a compact are characteristics of the intermediate stage with interconnected porosity preferentially observed at grain boundaries. These results are explained as a size effect of nanoparticles of magnesia-doped zirconia during sintering

  17. MgO Nanoparticle Modified Anode for Highly Efficient SnO2-Based Planar Perovskite Solar Cells.

    Science.gov (United States)

    Ma, Junjie; Yang, Guang; Qin, Minchao; Zheng, Xiaolu; Lei, Hongwei; Chen, Cong; Chen, Zhiliang; Guo, Yaxiong; Han, Hongwei; Zhao, Xingzhong; Fang, Guojia

    2017-09-01

    Reducing the energy loss and retarding the carrier recombination at the interface are crucial to improve the performance of the perovskite solar cell (PSCs). However, little is known about the recombination mechanism at the interface of anode and SnO 2 electron transfer layer (ETL). In this work, an ultrathin wide bandgap dielectric MgO nanolayer is incorporated between SnO 2 :F (FTO) electrode and SnO 2 ETL of planar PSCs, realizing enhanced electron transporting and hole blocking properties. With the use of this electrode modifier, a power conversion efficiency of 18.23% is demonstrated, an 11% increment compared with that without MgO modifier. These improvements are attributed to the better properties of MgO-modified FTO/SnO 2 as compared to FTO/SnO 2 , such as smoother surface, less FTO surface defects due to MgO passivation, and suppressed electron-hole recombinations. Also, MgO nanolayer with lower valance band minimum level played a better role in hole blocking. When FTO is replaced with Sn-doped In 2 O 3 (ITO), a higher power conversion efficiency of 18.82% is demonstrated. As a result, the device with the MgO hole-blocking layer exhibits a remarkable improvement of all J-V parameters. This work presents a new direction to improve the performance of the PSCs based on SnO 2 ETL by transparent conductive electrode surface modification.

  18. Study of Sn and Mg doping effects on TiO2/Ge stack structure by combinatorial synthesis

    Science.gov (United States)

    Nagata, Takahiro; Suzuki, Yoshihisa; Yamashita, Yoshiyuki; Ogura, Atsushi; Chikyow, Toyohiro

    2018-04-01

    The effects of Sn and Mg doping of a TiO2 film on a Ge substrate were investigated to improve leakage current properties and Ge diffusion into the TiO2 film. For systematic analysis, dopant-composition-spread TiO2 samples with dopant concentrations of up to 20.0 at. % were fabricated by RF sputtering and a combinatorial method. X-ray photoelectron spectroscopy revealed that the instability of Mg doping of TiO2 at dopant concentrations above 10.5 at. %. Both Sn and Mg dopants reduced Ge diffusion into TiO2. Sn doping enhanced the crystallization of the rutile phase, which is a high-dielectric-constant phase, although the Mg-doped TiO2 film indicated an amorphous structure. Sn-doping indicated systematic leakage current reduction with increasing dopant concentration. Doping at Sn concentrations higher than 16.8 at. % improved the leakage properties (˜10-7 A/cm2 at -3.0 V) and capacitance-voltage properties of metal-insulator-semiconductor (MIS) operation. The Sn doping of TiO2 may be useful for interface control and as a dielectric material for Ge-based MIS capacitors.

  19. α-MnO2 Nanowires/Graphene Composites with High Electrocatalytic Activity for Mg-Air Fuel Cell

    International Nuclear Information System (INIS)

    Jiang, Min; He, Hao; Huang, Chen; Liu, Bo; Yi, Wen-Jun; Chao, Zi-Sheng

    2016-01-01

    Highlights: • α-MnO 2 NWs/graphene was synthesized and studied in Mg-air fuel cell. • The performance of α-MnO 2 NWs/graphene is close to the Pt/C. • The ORR mechanism involves a one-step, quasi-4-electron pathway. • A large area (5 cm*5 cm) cathode was prepared and tested in a full cell. - Abstract: This paper reports the preparation of α-MnO 2 NWs/graphene composites as the cathode catalyst for magnesium-air fuel cell and its excellent electrochemistry performance. The composites are synthesized by self-assembly of α-MnO 2 nan α-MnO 2 NWs/graphene was synthesized and studied in Mg-air fuel cell. α-MnO 2 NWs/graphene was synthesized and studied in Mg-air fuel cell. owires (NWs) on the surface of graphene via a simple hydrothermal method. The α-MnO 2 NWs/graphene composites showed a higher electrochemical activity than the commercial MnO 2 . The oxygen reduction peak of the α-MnO 2 NWs/graphene composites catalyst is tested in a 0.1 M KOH solution at −0.252 V, which is more positive than the commercial MnO 2 (−0.287 V). The ORR limit current density for 28% α-MnO2 NWs/graphene composite is approximately 2.74 mA/cm 2 , which is similar to that of the 20% Pt/C(2.79 mA/cm 2 ) in the same conditions. Based on the Koutecky–Levich plot, the ORR mechanism of the composite involves a one-step, quasi-4-electron pathway. In addition, magnesium-air fuel cell with α-MnO 2 NWs/graphene as catalyst possesses higher current density (140 mA/cm 2 ) and power density (96 mW/cm 2 ) compared to the commercial MnO 2 . This study proves that the cost-effective α-MnO 2 NWs/graphene with higher power generation ability make it possible for the substitute of the noble metals catalyst in the Mg-air fuel cell.

  20. Humidity Sensitivity of MgCr2O4-TiO2-LiO2 Ceramics Sensor Prepared by Sol-Gel Routes

    Directory of Open Access Journals (Sweden)

    H. Y. He

    2010-05-01

    Full Text Available 79.5MgCr2O4–19.5TiO2–Li2O porous ceramics were investigated as a humidity sensor. The sensors obtain by a cold isostatic pressing and sintering of the fine MgCr2O4 and TiO2 and LiCO3 powders. The MgCr2O4 and TiO2 powders were respectively synthesized by sol-gel methods. The effects of sintering temperature on the humidity sensitivity of sensors were studied by measuring electrical resistance in different conditions of relative humidity (R.H. at 27 °C. The results indicated that the calcining temperature obviously affected the resistance variation of the sensor in range of 11.3-84.7 % RH. The resistance variation was small at the calcining temperature of 600 oC for 2 h. With increasing calcining temperature, the resistance variation increased to 5.4×104% and 7.0×104 % at 800 oC and 1000 oC for 2 h, but decreased to 3.1×104 % at 1200 oC for 2 h respectively. The response times are 25 s and 35 s respectively for humidity adsorption and humidity desorption between 11.3 %RH and 84.7 %RH.

  1. THE THERMODYNAMIC PROPERTIES OF MELTS OF DOUBLE SYSTEM MgO – Al2O3, MgO – SiO2, MgO – CaF2, Al2O3 – SiO2, Al2O3 – CaF2, SiO2 – CaF2

    Directory of Open Access Journals (Sweden)

    В. Судавцова

    2012-04-01

    Full Text Available Methodology of prognostication of thermodynamics properties of melts is presented from the coordinatesof liquidus of diagram of the state in area of equilibria a hard component is solution, on which energies ofmixing of Gibbs are expected in the double border systems of MgO – Al2O3, MgO – SiO2, MgO – CaF2,Al2O3 – SiO2, Al2O3 - CaF2, SiO2 - CaF2. For the areas of equilibrium there is quasibinary connection(MgAl2O4, Mg2SiO4, Al6Si2O13 – a grout at calculations was used equalization of Hauffe-Wagner. Theobtained data comport with literary

  2. Structural and fluorescence properties of Ni:MgO-SiO2 particles synthesized by flame spray pyrolysis

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Ohishi, Yasutake; Tani, Takao

    2006-01-01

    Structural and fluorescence properties of flame spray-synthesized Ni 1 mol%-doped MgO-SiO 2 nano-particles (MgO:SiO 2 = 100:0, 50:50, 25:75 and 0:100 in mol%) were investigated as a first step to prepare transparent materials containing Ni:MgO for optical gain media. Polyhedral aggregates of primary particles with diameters of 8-19 nm were obtained for all compositions. The 100MgO particles were single crystalline and showed the fluorescences (centered at 1260 and 1320 nm) and lifetime (3.8 ms) similar to those of solid state-synthesized Ni:MgO polycrystalline powder under laser excitation at 976 nm, suggesting Ni ions incorporated in MgO

  3. Enhancement of the irreversibility field in bulk MgB2 by TiO2 nanoparticle addition

    DEFF Research Database (Denmark)

    Xu, G.J.; Grivel, Jean-Claude; Abrahamsen, A.B.

    2004-01-01

    MgB2 samples doped with TiO2 nanoparticles were prepared and the effect of TiO2 addition on the superconducting transition temperature (T-c), irreversibility field (H-irr) and critical current density (J(c)) were investigated. It is found that the hexagonal lattice parameters a and c decrease...... with TiO2 doping. Tc decreases gradually from 38.2 to 37.8 K as the TiO2 content increases from 0 to 15 wt%. The H-irr increases at 20 K from 4.3 to 4.9 T as the TiO2 content increases from 0 to 10 wt%, and at the same temperature J(c) increases from 450 to 4250 A/cm(2) at 4.2 T. (C) 2004 Published...

  4. Reforming of Ethanol to Produce Hydrogen over PtRuMg/ZrO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Josh Y. Z. Chiou

    2012-01-01

    Full Text Available A modified PtRu/ZrO2 catalyst with Mg is evaluated for the oxidative steam reforming of ethanol (OSRE and the steam reforming of ethanol (SRE. In order to understand the variation in the reaction mechanism on OSRE and SRE, further analysis of both fresh and used catalyst is concentrated on for TEM, TG, Raman, and TPR characterization. The results show that the OSRE reaction requires a higher temperature (∼390°C to achieve 100% ethanol conversion than the SRE reaction (∼2500°C. The distribution of CO is minor for both reactions (< 5% for OSRE, < 1% for SRE. This demonstrates that the water gas shift (WGS reaction is an important side-reaction in the reforming of ethanol to produce H2 and CO2. A comparison of the temperature of WGS (WGS shows it is lower for the SRE reaction (WGS∼250°C for SRE, ~340°C for OSRE.

  5. Improved flux pinning behaviour in bulk MgB2 achieved by nano-SiO2 addition

    International Nuclear Information System (INIS)

    Rui, X F; Zhao, Y; Xu, Y Y; Zhang, L; Sun, X F; Wang, Y Z; Zhang, H

    2004-01-01

    Bulk MgB 2 with SiO 2 nanoparticles added has been synthesized using a simple solid-state reaction route. The lattice constant in the c direction increases with additive content due to a small amount of Si being doped into the lattice of the MgB 2 ; however, T c is almost fixed at 37.2 K. The addition of SiO 2 nanoparticles also improves the J c -H and H irr -T characteristics of MgB 2 when the additive content is lower than 7%. At 20 K and 1 T, J c for the sample with 7% additive content reaches 2.5 x 10 5 A cm -2 . Microstructural analysis reveals that a high density of MgSi 2 nanoparticles (10-50 nm) exists inside the MgB 2 grains, leading to the formation of a nanocomposite superconductor

  6. Electronic structure of Rh-based CuRh0.9Mg0.1O2 oxide thermoelectrics

    Science.gov (United States)

    Vilmercati, P.; Martin, E.; Cheney, C. Parks; Bondino, F.; Magnano, E.; Parmigiani, F.; Sasagawa, T.; Mannella, N.

    2013-03-01

    The electronic structure of the Rh-based CuRh0.9Mg0.1O2 oxide thermoelectric compound has been studied with a multitechnique approach consisting of photoemission, x-ray absorption, and x-ray emission spectroscopies. The data indicate that the region of the valence band in the proximity of the Fermi level is dominated by Rh-derived states. These findings outline the importance of the electronic structure of the Rh ions for the large thermoelectric power in CuRh0.9Mg0.1O2 at high temperature.

  7. Atomic layer deposited ZrO2 nanofilm on Mg-Sr alloy for enhanced corrosion resistance and biocompatibility.

    Science.gov (United States)

    Yang, Qiuyue; Yuan, Wei; Liu, Xiangmei; Zheng, Yufeng; Cui, Zhenduo; Yang, Xianjin; Pan, Haobo; Wu, Shuilin

    2017-08-01

    The biodegradability and good mechanical property of magnesium alloys make them potential biomedical materials. However, their rapid corrosion rate in the human body's environment impairs these advantages and limits their clinical use. In this work, a compact zirconia (ZrO 2 ) nanofilm was fabricated on the surface of a magnesium-strontium (Mg-Sr) alloy by the atomic layer deposition (ALD) method, which can regulate the thickness of the film precisely and thus also control the corrosion rate. Corrosion tests reveal that the ZrO 2 film can effectively reduce the corrosion rate of Mg-Sr alloys that is closely related to the thickness of the film. The cell culture test shows that this kind of ZrO 2 film can also enhance the activity and adhesion of osteoblasts on the surfaces of Mg-Sr alloys. The significance of the current work is to develop a zirconia nanofilm on biomedical MgSr alloy with controllable thickness precisely through atomic layer deposition technique. By adjusting the thickness of nanofilm, the corrosion rate of Mg-Sr alloy can be modulated, thereafter, the degradation rate of Mg-based alloys can be controlled precisely according to actual clinical requirement. In addition, this zirconia nanofilm modified Mg-Sr alloys show excellent biocompatibility than the bare samples. Hence, this work provides a new surface strategy to control the degradation rate while improving the biocompatibility of substrates. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface

    Energy Technology Data Exchange (ETDEWEB)

    Sasani, Alireza [Department of Science, Karaj Islamic Azad University, Karaj, Alborz, P.O. Box 31485-313 (Iran, Islamic Republic of); Baktash, Ardeshir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Mirabbaszadeh, Kavoos, E-mail: mirabbas@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, P. O. Box 15875-4413 (Iran, Islamic Republic of); Khoshnevisan, Bahram [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of)

    2016-10-30

    Highlights: • Formation energy of Mg and Mg-Nb co-doped TiO{sub 2} anatase surface (101) is studied. • Effect of Mg defect to the TiO{sub 2} anatase (101) surface and bond length distribution of the surface is studied and it is shown that Mg defects tend to stay far from each other. • Effect of Mg and Nb to the bond length distribution of the surface studied and it is shown that these defects tend to stay close to each other. • Effects of Mg and Mg-Nb defects on DSSCs using TiO{sub 2} anatase hosting these defects are studied. - Abstract: In this paper, by using density functional theory, Mg and Nb-Mg co-doping of TiO{sub 2} anatase (101) surfaces are studied. By studying the formation energy of the defects and the bond length distribution of the surface, it is shown that Mg defects tend to stay as far as possible to induce least possible lattice distortion while Nb and Mg defects stay close to each other to cause less stress to the surface. By investigating band structure of the surface and changes stemmed from the defects, potential effects of Mg and Mg-Nb co-doping of TiO{sub 2} surface on dye-sensitized solar cells are investigated. In this study, it is shown that the Nb-Mg co-doping could increase J{sub SC} of the surface while slightly decreasing V{sub OC} compared to Mg doped surface, which might result in an increase in efficiency of the DSSCs compared to Nb or Mg doped surfaces.

  9. Synthesis of Y2O2S:Eu3+, Mg2+, Ti4+ hollow microspheres via homogeneous precipitation route

    Directory of Open Access Journals (Sweden)

    Peng-Fei Ai, Ying-Liang Liu, Li-Yuan Xiao, Hou-Jin Wang and Jian-Xin Meng

    2010-01-01

    Full Text Available A phosphorescent material in the form of Y2O2S:Eu3+, Mg2+, Ti4+ hollow microspheres was prepared by homogeneous precipitation using monodispersed carbon spheres as hard templates. Y2O3:Eu3+ hollow microspheres were first synthesized to serve as the precursor. Y2O2S:Eu3+, Mg2+, Ti4+ powders were obtained by calcinating the precursor in a CS2 atmosphere. The crystal structure, morphology and optical properties of the composites were characterized. X-ray diffraction measurements confirmed the purity of the Y2O2S phase. Electron microscopy observations revealed that the Y2O2S:Eu3+, Mg2+, Ti4+ particles inherited the hollow spherical shape from the precursor after being calcined in a CS2 atmosphere and that they had a diameter of 350–450 nm and a wall thickness of about 50–80 nm. After ultraviolet radiation at 265 or 325 nm for 5 min, the particles emitted strong red long-lifetime phosphorescence originating from Eu3+ ions. This phosphorescence is associated with the trapping of charge carriers by Ti4+ and Mg2+ ions.

  10. Synthesis of nanocrystalline TiB2 powder from TiO2, B2O3 and Mg ...

    Indian Academy of Sciences (India)

    gered by using: (i) a furnace or (ii) an electrical element touching the surface ... plicity, low energy consumption and good purity of the products. [12,13]. SHS method .... Similar to the TiO2Mg system, by increasing the ini- tial temperature, the ...

  11. Synthesis and Characterization Of CaMgO2 Nanoparticles Photocatalyst For the Decolorization Of Orange G Dye

    Directory of Open Access Journals (Sweden)

    Atheel Alwash

    2016-11-01

    Full Text Available A series of heterogeneous basic catalysts of CaO, MgO and CaMgO2 at different calcination temperature were synthesized via solution combustion method. Different characterization techniques have been carried out to investigate the structure of the produced catalysts i.e. X-ray diffraction (XRD, particle size analyzer, morphology by atomic force microscope (AFM and reflection using UV-VIS diffuse reflectance spectra. The particles size analyzer revealed that the mixed oxide catalysts calcined at different calcination temperature possess smaller nano size particles compared to pure CaO. Moreover, the energy band gap was calculated based on the results of diffuse reflectance spectra. The energy band gap was reduced from 4.1 to 3.6 eV for the CaMgO2 catalyst calcined at 400 and 600 °C respectively compared to pure oxide catalysts. The higher decolorization efficiency was 100% after 60 min of photocatalytic reaction for CaMgO2 calcined at 600 °C compared to CaO and MgO with catalytic activity of 58% and 27% respectively.

  12. Quantification of MgO surface excess on the SnO2 nanoparticles and relationship with nanostability and growth

    International Nuclear Information System (INIS)

    Gouvea, Douglas; Pereira, Gilberto J.; Gengembre, Leon; Steil, Marlu C.; Roussel, Pascal; Rubbens, Annick; Hidalgo, Pilar; Castro, Ricardo H.R.

    2011-01-01

    In this work, we experimentally showed that the spontaneous segregation of MgO as surface excess in MgO doped SnO 2 nanoparticles plays an important role in the system's energetics and stability. Using X-ray fluorescence in specially treated samples, we quantitatively determined the fraction of MgO forming surface excess when doping SnO 2 with several different concentrations and established a relationship between this amount and the surface energy of the nanoparticles using the Gibbs approach. We concluded that the amount of Mg ions on the surface was directly related to the nanoparticles total free energy, in a sense that the dopant will always spontaneously distribute itself to minimize it if enough diffusion is provided. Because we were dealing with nanosized particles, the effect of MgO on the surface was particularly important and has a direct effect on the equilibrium particle size (nanoparticle stability), such that the lower the surface energy is, the smaller the particle sizes are, evidencing and quantifying the thermodynamic basis of using additives to control SnO 2 nanoparticles stability.

  13. XRD investigation of the Effect of MgO Additives on ZTA-TiO2 Ceramic Composites

    Science.gov (United States)

    Azhar, Ahmad Zahirani Ahmad; Manshor, Hanisah; Ali, Afifah Mohd

    2018-01-01

    Alumina (Al2O3) based ceramics possess good mechanical properties and suitable for the application of cutting inserts. However, this monolithic ceramics suffer from lack of toughness. Hence, there are some modification were made such as the addition of yttria stabilized zirconia (YSZ) to the Al2O3 helps in increasing the toughness of the Al2O3 ceramics. Some additives such as MgO and TiO2 were used to further improve the mechanical properties of ZTA. In this study, high purity raw materials which consist of ZTA-TiO2 were mixed with different amount of MgO (0.0 - 1.0 wt %). The mixture of materials was going through wet mixing, compaction and pressureless sintering at 1600°C for one hour. The samples were characterized for phase analysis, microstructure, shrinkage rate, bulk density, Vickers hardness and fracture toughness. Based on the XRD analysis results, the secondary phase (MgAl2O4) was detected in the sample with 0.5 wt% of MgO onwards which leads to grains refinement, thus improve the density and hardness of ZTA-TiO2-MgO ceramics composites.

  14. Effect of Fe2O3 on the sintering and stabilization of ZrO2-MgO system

    International Nuclear Information System (INIS)

    Longo, E.; Paskocimas, C.A.; Ambrosecchia, J.R.; Weffort, L.C.; Baldo, J.B.; Leite, L.R.; Varela, J.A.

    1990-01-01

    Through X-ray diffraction, it was studied the influence of the iron oxide (Fe 2 O 3 ) as a mineralizer in the development of partially stabilized zirconia phases (cubic/tetragonal) within the system ZrO 2 -MgO. In the preparation of the studied compositions it was utilized a Brazilian comercial zirconia powder and different precursors for the MgO and Fe 2 O 3 additives. It was observed that the main effect of iron oxide consisted on the speed up of the solid solution formation process of Mg + 2 in the Zr +4 sub-lattice, as well as being a very effective sintering agent. (author) [pt

  15. Characterizing the residual glass in a MgO/Al2O3/SiO2/ZrO2/Y2O3 glass-ceramic

    Science.gov (United States)

    Seidel, Sabrina; Patzig, Christian; Wisniewski, Wolfgang; Gawronski, Antje; Hu, Yongfeng; Höche, Thomas; Rüssel, Christian

    2016-01-01

    The non-isochemical crystallization of glasses leads to glass-ceramics in which the chemical composition of the amorphous matrix differs from that of the parent glass. It is challenging to solely analyse the properties of these residual glassy phases because they frequently contain finely dispersed crystals. In this study, the composition of the residual glass matrix after the crystallization of a glass with the mol% composition 50.6 SiO2 · 20.7 MgO · 20.7 Al2O3 · 5.6 ZrO2 · 2.4 Y2O3 is analysed by scanning transmission electron microscopy (STEM) including energy dispersive X-ray analysis (EDXS). A batch of the residual glass with the determined composition is subsequently melted and selected properties are analysed. Furthermore, the crystallization behaviour of this residual glass is studied by X-ray diffraction, scanning electron microscopy including electron backscatter diffraction and STEM-EDXS analyses. The residual glass shows sole surface crystallization of indialite and multiple yttrium silicates while bulk nucleation does not occur. This is in contrast to the crystallization behaviour of the parent glass, in which a predominant bulk nucleation of spinel and ZrO2 is observed. The crystallization of the residual glass probably leads to different crystalline phases when it is in contact to air, rather than when it is enclosed within the microstructure of the parent glass-ceramics. PMID:27734918

  16. Synthesis and characterization of sodium cation-conducting Nax(MyL1-yO2 (M = Ni2+, Fe3+; L = Ti4+, Sb5+

    Directory of Open Access Journals (Sweden)

    Marques, F. M. B.

    2004-06-01

    Full Text Available The Na+-conducting ceramics of layered Na0.8Ni0.4Ti0.6O2, Na0.8Fe0.8Ti0.2O2, Na0.8Ni0.6Sb0.4O2 (structural type O3 and Na0.68Ni0.34Ti0.66O2 (P2 type with density higher than 91% were prepared via the standard solid-state synthesis route and characterized by the impedance spectroscopy, thermal analysis, scanning electron microscopy, structure refinement using X-ray powder diffraction data, measurements of Na+ concentration cell e.m.f., and dilatometry. The conductivity of antimonate Na0.8Ni0.6Sb0.4O2, synthesized first time, was found lower than that of isostructural Na0.8Ni0.4Ti0.6O2 due to larger ion jump distance between Na+ sites. At temperatures above 420 K, transport properties of sodium cationconducting materials are essentially independent of partial water vapor pressure. In the low-temperature range, the conductivity reversibly increases with water vapor pressure varied in the range from approximately 0 (dry air up to 0.46 atm. The sensitivity to air humidity is influenced by the ceramic microstructure, being favored by increasing boundary area. The average thermal expansion coefficients of layered materials at 300-1173 K are in the range (13.7-16.0×10-6 K-1.Se han preparado cerámicas conductoras conteniendo Na+ de composición Na0.8Ni0.4Ti0.6O2, Na0.8Fe0.8Ti0.2O2, Na0.8Ni0.6Sb0.4O2 (tipo estructural O3 y Na0.68Ni0.34Ti0.66O2 (tipo P2 con densidad mayor del 91%. Las vía de preparación fu la ruta de estandard de síntesis en estado sólido. Las composiciones se caracterizaron mediante espectroscopía de impedancia, análisis térmico, microscopía electrónica de barrido, refinamiento de la estructura usando datos de difracción de rayos X en polvo, medidas de concentración de Na+, f.e.m. de la célula y dilatometría. La conductividad del antimoniate, sintetizado por primera vez, Na0.8Ni0.6Sb0.4O2, era menor que la del compuesto isoestructural Na0.8Ni0.4Ti0.6O2 debido a la mayor distancia de salto iónico entre las posiciones de Na

  17. Preparation and characterization of PEG–Mg(CH3COO)2–CeO2 ...

    Indian Academy of Sciences (India)

    trolyte, solid-state electrochemical cell was fabricated and their discharge profiles were studied under a constant load of 100 k . ..... tion of free ions (i.e. increase of ni) because the negative charge in CeO2 ... Arrhenius relationship σ = σ0 exp ...

  18. Viscosity Measurements of SiO2-"FeO"-MgO System in Equilibrium with Metallic Fe

    Science.gov (United States)

    Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun

    2014-01-01

    The present study delivers the measurements of viscosities in the SiO2-"FeO"-MgO system in equilibrium with metallic Fe. The rotational spindle technique was used for the measurements at the temperature range of 1523 K to 1773 K (1250 °C to 1500 °C). Molybdenum crucibles and spindles were employed in all measurements. The viscosity measurements were carried out at 31 to 47 mol pct SiO2 and up to 18.8 mol pct MgO. Analysis of the quenched sample by Electron probe X-ray microanalysis after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The replacement of "FeO" by MgO was found to increase viscosity and activation energy of the SiO2-"FeO"-MgO slags. The modified Quasi-chemical Viscosity Model was further optimized in this system based on the current viscosity measurements.

  19. Effects of TiO2 addition on microwave dielectric properties of Li2MgSiO4 ceramics

    Science.gov (United States)

    Rose, Aleena; Masin, B.; Sreemoolanadhan, H.; Ashok, K.; Vijayakumar, T.

    2018-03-01

    Silicates have been widely studied for substrate applications in microwave integrated circuits owing to their low dielectric constant and low tangent loss values. Li2MgSiO4 (LMS) ceramics are synthesized through solid-state reaction route using TiO2 as an additive to the pure ceramics. Variations in dielectric properties of LMS upon TiO2 addition in different weight percentages (0.5, 1.5, 2) are studied by keeping the sintering parameters constant. Crystalline structure, phase composition, and microstructure of LMS and LMS-TiO2 ceramics were studied using x-ray diffraction spectrometer and High Resolution Scanning electron microscope. Density was measured through Archimedes method and the microwave dielectric properties were examined by Cavity perturbation technique. LMS achieved relative permittivity (ε r) of 5.73 and dielectric loss (tan δ) of 5.897 × 10‑4 at 8 GHz. In LMS-TiO2 ceramics, 0.5 wt% TiO2 added LMS showed comparatively better dielectric properties than other weight percentages where ε r = 5.67, tan δ = 7.737 × 10‑4 at 8 GHz.

  20. Fe/Ni thin films temperature investigation with MgO and SiO2 interfaces by ferromagnetic resonance

    International Nuclear Information System (INIS)

    Zyubin, A; Orlova, A; Astashonok, A; Kupriyanova, G; Nevolin, V

    2011-01-01

    In this work the temperature study of magnetic – resonance properties of the structures such as Fe/MgO/Ni, Fe/SiO2/Ni differing thickness of spacer and of method of preparation was carried out by FMR. These systems are investigated to estimate their applicability in model creation experiments for a spintronics devices research [1–4]. The special attention was given to the temperature dependence research of three layer films linewidths. The out-of-plane temperature dependences of FMR signal position and line widths have been measured for Fe/Ni samples with MgO and Si/SiO2 interfaces in static position of 0 and 90 degrees rotation angle to the external static magnetic field. The extracted magnetic parameters such as linewidths and resonance field position were studied.

  1. Study of Optical Humidity Sensing Properties of Sol-Gel Processed TiO2 and MgO Films

    Directory of Open Access Journals (Sweden)

    B. C. Yadav

    2007-04-01

    Full Text Available Paper reports a comparative study of humidity sensing properties of TiO2 and MgO films fabricated by Sol-gel technique using optical method. One sensing element of the optical humidity sensor presented here consists of rutile structured two-layered TiO2 thin film deposited on the base of an isosceles glass prism. The other sensing element consists of a film of MgO deposited by same technique on base of the prism. Light from He-Ne laser enters prism from one of refracting faces of the prism and gets reflected from the glass-film interface, before emerging out from its other isosceles face. This emergent beam is allowed to pass through an optical fiber. Light coming out from the optical fiber is measured with an optical power meter. Variations in the intensity of light caused by changes in humidity lying in the range 5%RH to 95%RH have been recorded. MgO film shows better sensitivity than TiO2 film.

  2. Photocatalytic degradation of RhB over MgFe2O4/TiO2 composite materials

    International Nuclear Information System (INIS)

    Zhang Lei; He, Yiming; Wu Ying; Wu Tinghua

    2011-01-01

    Highlights: → Novel composite MgFe 2 O 4 /TiO 2 as catalyst. → Higher activity for the photodegradation of RhB under visible light irradiation. → Calcination temperature of catalyst has effect on photocatalytic activity. → Different photocatalysis mechanism under UV and visible light irradiation. - Abstract: MgFe 2 O 4 /TiO 2 (MFO/TiO 2 ) composite photocatalysts were successfully synthesized using a mixing-annealing method. The synthesized composites exhibited significantly higher photocatalytic activity than a naked semiconductor in the photodegradation of Rhodamine B. Under UV and visible light irradiation, the optimal percentages of doped MgFe 2 O 4 (MFO) were 2 wt.% and 3 wt.%, respectively. The effects of calcination temperature on photocatalytic activity were also investigated. The origin of the high level of activity was discussed based on the results of X-ray diffraction, UV-vis diffuse reflection spectroscopy, scanning electron microscopy, transmission electron microscopy, and nitrogen physical adsorption. The enhanced activity of the catalysts was mainly attributed to the synergetic effect between the two semiconductors, the band potential of which matched suitably.

  3. Transesterification of castor oil usingMgO/SiO2 catalyst and coconutoilas co-reactant

    OpenAIRE

    Kamisah D. Pandiangan; Novesar Jamarun; Syukri Arief; Wasinton Simanjuntak

    2016-01-01

    This paper describes the transesterification of castor oil with the use of coconut oil as co-reactant and MgO/SiO2as heterogeneous base catalyst. The catalyst was preparedfrom rice husk silica and magnesium nitrate by sol-gel method, with MgO load of 20% relative to silica, and then subjected to sintering treatment at 600 oC for 6 hours. A series of experiments was carried out, indicating that the use of coconut oil as co-reactant significantly promoted the conversion of castor oil into b...

  4. Sol-Gel synthesis of MgO-SiO2 glass compositions having stable liquid-liquid immiscibility

    Science.gov (United States)

    Bansal, Narottam P.

    1987-01-01

    MgO-SiO2 glasses containing up to 15 mol % MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol % MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol % MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol %) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  5. Study of structure and antireflective properties of LaF3/HfO2/SiO2 and LaF3/HfO2/MgF2 trilayers for UV applications

    Science.gov (United States)

    Marszalek, K.; Jaglarz, J.; Sahraoui, B.; Winkowski, P.; Kanak, J.

    2015-01-01

    The aim of this paper is to study antireflective properties of the tree-layer systems LaF3/HfO2/SiO2 and LaF3/HfO2/MgF2 deposited on heated optical glass substrates. The films were evaporated by the use two deposition techniques. In first method oxide films were prepared by means of e-gun evaporation in vacuum of 5 × 10-5 mbar in the presence of oxygen. The second was used for the deposition of fluoride films. They were obtained by means of thermal source evaporation. Simulation of reflectance was performed for 1M2H1L (Quarter Wavelength Optical Thickness) film stack on an optical quartz glass with the refractive index n = 1.46. The layer thickness was optimized to achieve the lowest light scattering from glass surface covered with dioxide and fluoride films. The values of the interface roughness were determined through atomic force microscopy measurements. The essence of performed calculation was to find minimum reflectance of light in wide ultraviolet region. The spectral dispersion of the refractive index needed for calculations was determined from ellipsometric measurements using the spectroscopic ellipsometer M2000. Additionally, the total reflectance measurements in integrating sphere coupled with Perkin Elmer 900 spectrophotometer were performed. These investigations allowed to determine the influence of such film features like surface and interface roughness on light scattering.

  6. Formation of aluminum titanate with small additions of MgO and SiO2

    International Nuclear Information System (INIS)

    Guedes-Silva, Cecilia Chaves; Ferreira, Thiago dos Santos; Genova, Luis Antonio; Carvalho, Flavio Machado de Souza

    2016-01-01

    The formation of aluminum titanate was investigated by isothermal treatments of samples obtained from equimolar mixtures of alumina and titania, containing small amounts of silica and magnesia. Results of differential thermal analysis and Rietveld refinements of data collected by X-ray powder diffraction (XRPD) showed that additions of silica in amounts used in this work did not influence the formation of aluminum titanate. However, the presence of magnesia favored the formation of aluminum titanate in two steps, first one by incorporating Mg 2+ into Al 2 TiO 5 lattice during its initial formation, and the second one by accelerating the Al 2 TiO 5 formation, contributing to large quantities of this phase. MgO doped samples have also developed a more suitable microstructure for stabilizing of Al 2 TiO 5 , what make them promising for applications such as thermal barriers, internal combustion engines and support material for catalyst. (author)

  7. Microstructure and kinetics evolution in MgH2–TiO2 pellets after hydrogen cycling

    International Nuclear Information System (INIS)

    Mirabile Gattia, D.; Di Girolamo, G.; Montone, A.

    2014-01-01

    Highlights: • MgH 2 was ball milled with TiO 2 anatase phase and expanded graphite to prepare pellets. • Different pellets have been prepared at different compression load. • Pellets were repeatedly cycled under hydrogen pressure to simulate tank exercise and verify their stability. • The compression load highly affects the stability of the pellets to cycling. • Microstructural evolution of the particles due to cycling have been observed. - Abstract: The interest in Mg-based hydrides for solid state hydrogen storage is associated to their capability to reversibly absorb and desorb large amounts of hydrogen. In this work MgH 2 powder with 5 wt.% TiO 2 was ball milled for 10 h. The as-milled nanostructured powder was enriched with 5 wt.% of Expanded Natural Graphite (ENG) and then compacted in cylindrical pellets by cold pressing using different loads. Both the powder and the pellets were subjected to kinetic and thermodynamic tests using a Sievert’s type gas reaction controller, in order to study the microstructural and kinetic changes which took place during repeated H 2 absorption and desorption cycles. The pellets exhibited good kinetic performance and durability, even if the pressure of compaction revealed to be an important parameter for their mechanical stability. Scanning Electron Microscopy observations of as-prepared and cycled pellets were carried out to investigate the evolution of their microstructure. In turn the phase composition before and after cycling was analyzed by X-ray diffraction

  8. Quantitative determination of phases in ZrO2 (MgO) (Y2O3) using the Rietveld method

    International Nuclear Information System (INIS)

    Castro, Antonio Carlos de

    2007-01-01

    The key objective of this work is the crystallographic characterization of the zircon co-doped with Yttria and magnesium with the application of the Rietveld method for quantitative phase analysis of zircon polymorph (zircon monoclinic, tetragonal, and cubic). Samples of zircon polymorph were obtained from zircon doped with Yttria and magnesium at defined molar concentrations. The zircon polymorph stability during subeutetoid aging at 1350 deg C were investigated to determine ZrO 2 - MgO - Y 2 0 3 phases degradation and to define the solid solutions stability environment. ZrO 2 powders doped with 8 mol por cent of MgO and 1 mol por cent of Y 2 O 3 , and 9 mol por cent of MgO and 0 mol por cent of Y 2 O 3 have been prepared by chemical route using the co-precipitation method. These samples have been calcinate at 550 deg C, sintered at 1500 deg C and characterized by the Rietveld method using the X-ray diffraction data. The variation of the lattice parameter, changes in the phase composition and their microstructures are discussed. The application of the Rietveld method for quantitative phase analysis of zircon polymorph (zircon tetragonal and cubic) reveals no formation of tetragonal phase and indicating that the matrix is the cubic phase with low concentration of monoclinic phase.(author)

  9. Sol–gel synthesis of SnO2MgO nanoparticles and their photocatalytic activity towards methylene blue degradation

    International Nuclear Information System (INIS)

    Bayal, Nisha; Jeevanandam, P.

    2013-01-01

    Graphical abstract: - Highlights: • A simple sol–gel method for the synthesis of SnO 2MgO nanoparticles is reported. • Band gap of SnO 2 can be tuned by varying the magnesium content in SnO 2MgO. • SnO 2MgO shows good photocatalytic activity towards degradation of methylene blue. - Abstract: SnO 2MgO mixed metal oxide nanoparticles were prepared by a simple sol–gel method. The nanoparticles were characterized by power X-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The XRD results indicate the formation of mixed metal oxide nanoparticles and also a decrease of SnO 2 crystallite size in the mixed metal oxide nanoparticles with increasing magnesium oxide content. The reflectance spectroscopy results show a blue shift of the band gap of SnO 2 in the mixed metal oxide nanoparticles. The photocatalytic activity of the SnO 2MgO nanoparticles was tested using the photodegradation of aqueous methylene blue in the presence of sunlight. The results indicate that the mixed metal oxide nanoparticles possess higher efficiency for the photodegradation of methylene blue compared to pure SnO 2 nanoparticles

  10. Studies on bare and Mg-doped LiCoO2 as a cathode material for lithium ion batteries

    CSIR Research Space (South Africa)

    Reddy, MV

    2014-05-01

    Full Text Available at ScienceDirect Electrochimica Acta jo ur nal ho me p age: www.elsev ier .com/ locate /e lec tac ta Graphical Abstract Electrochimica Acta xxx (2013) xxx–xxx Studies on Bare and Mg-doped LiCoO2 as a cathode material for Lithium ion Batteries M.V. Reddy... for Lithium ion Batteries M.V. Reddy∗, Thor Wei Jie, Charl J. Jafta, Kenneth I. Ozoemena, Mkhulu K. Mathe, A. Sree Kumaran Nair, Soo Soon Peng, M. Sobri Idris, Geetha Balakrishna, Fabian I. Ezema, B.V.R. Chowdari • Layered compounds, Li...

  11. Effects of chemical synthesis parameters on the Zr O2: 8% mol Mg O solid electrolytes electric conductivity and microstructure

    International Nuclear Information System (INIS)

    Avila, D.M.; Muccillo, E.N.S.

    1996-01-01

    Electrical conductivity measurements and scanning electron microscope observations have been done in Zr O 2 - 8 mol % Mg O solid electrolytes. The main purpose was to investigate to what extent some processing variables can influence the electrical behaviour and microstructural characteristics of the sintered ceramic. Zirconia powders have been prepared under different pH and temperature of precipitation, and washing media conditions. The results show that many structural characteristics of the calcined powders are 'lost' during sintering, giving rise to ceramics with similar electrical properties, besides minor differences in the final microstructure. The washing media play the major role on both microstructural development and electrical conductivity. (author)

  12. Thickness Dependent Optical Properties of Sol-gel based MgF2 – TiO2 Thin Films

    Directory of Open Access Journals (Sweden)

    Siddarth Krishnaraja Achar

    2018-04-01

    Full Text Available MgF2 – TiO2 thin films were prepared by cost effective solgel technique onto glass substrates and optical parameters were determined by envelope technique. Thin films were characterized by optical transmission spectroscopy in the spectral range 290 – 1000 nm. The refractive index, extinction coefficient, Optical thickness and band gap dependency on thickness were evaluated. Thickness dependency of thin films showed direct allowed transition with band gap of 3.66 to 3.73 eV.

  13. Foaming Index of CaO-SiO2-FeO-MgO Slag System

    Science.gov (United States)

    Park, Youngjoo; Min, Dong Joon

    A study on the effect of FeO and MgO content on foaming index in EAF slag system was carried out. The height of the slag foam was measured by electric probe maintaining steady state in gas formation and escape. Foaming index, which is the measurement of gas capturing potential of the slag, is calculated from the foam height and gas flow rate. Viscosity and surface tension, which are the key properties for the foaming index, are calculated by Urbain's model and additive method, respectively. Dimensional analysis also performed to determine the dominancy of properties and resulted that the important factor was a ratio between viscosity and surface tension. The effect of each component on the viscosity, surface tension and foaming index of the slag is evaluated to be in strong relationship.

  14. Measured Hugoniot states of a two-element fluid, O2 + N2, near 2 Mg/m3

    International Nuclear Information System (INIS)

    Schott, G.L.

    1983-01-01

    Measured single-shock Hugoniot quantities are reported for a 1:1 atomic mixture of the elements oxygen and nitrogen in each of two liquid initial states. One of these is the inert equimolar solution O 2 + N 2 , at T approx. = 85K, v approx. = 1.06 m 3 /Mg; the other is the pure explosive compound nitric oxide, NO, at T approx. = 122K, v approx. = 0.79 m 3 /Mg. First-shock pressures are in the range 10 to 30 GPa. The two Hugoniots have common values of specific volumes and energies near 20 GPa; that is, they intersect. This permits a novel test of attainment of steady waves with equilibrium composition, such that a single equation of state may describe the shocked reactive fluid. 5 figures

  15. Preparation and spectral analysis of a new Tb3+-doped CaO-MgO-SiO2 glass ceramics

    International Nuclear Information System (INIS)

    Cheng Jinshu; Tian Peijing; Zheng Weihong; Xie Jun; Chen Zhenxia

    2009-01-01

    Tb 3+ -doped CaO-MgO-SiO 2 glass ceramics have been prepared and characterized. The structure and optical properties of the glass ceramics were studied by XRD, SEM, Raman, and fluorescence spectra. The precipitated crystalline phase in the glass ceramics was columnar CaMgSi 2 O 6 . Raman spectra showed the introduction of rare earth nearly had no influence on the sample structure. Fluorescence measurements showed that Tb 3+ ions entered into the diopside crystalline phase and induced a much stronger emission in the glass ceramics than that in the corresponding glass. With increase of Tb 3+ content and the introduction of Gd 3+ , the fluorescence intensity of the luminescent glass ceramic increased

  16. Super-microporous solid base MgO-ZrO2 composite and their application in biodiesel production

    Science.gov (United States)

    Su, Jiaojiao; Li, Yongfeng; Wang, Huigang; Yan, Xiaoliang; Pan, Dahai; Fan, Binbin; Li, Ruifeng

    2016-10-01

    The super-microporous microcrystalline MgO-ZrO2 nanomaterials (pore size 1-2 nm) was prepared successfully via a facile one-pot evaporation-induced self-assembly (EISA) method and employed in the transesterification of soybean oil and methanol. X-ray diffraction, transmission electron microscope, temperature programmed desorption of CO2, and N2 adsorption porosimetry were employed to characterize the nanocomposites. Nitrogen sorption isotherms revealed that these materials had large surface areas of more than 200 m2/g. Moreover, the sample with a Mg/Zr molar ratio of 0.5 and calcined at 400 °C showed high biodiesel yield (around 99% at 150 °C).

  17. Experience melting through the Earth's lower mantle via LH-DAC experiments on MgO-SiO2 and CaO-MgO-SiO2 systems

    Science.gov (United States)

    Baron, Marzena A.; Lord, Oliver T.; Walter, Michael J.; Trønnes, Reidar G.

    2015-04-01

    The large low shear-wave velocity provinces (LLSVPs) and ultra-low velocity zones (ULVZs) of the lowermost mantle [1] are likely characterized by distinct chemical compositions, combined with temperature anomalies. The heterogeneities may have originated by fractional crystallization of the magma ocean during the earliest history of the Earth [2,3] and/or the continued accretion at the CMB of subducted basaltic oceanic crust [4,5]. These structures and their properties control the distribution and magnitude of the heat flow at the CMB and therefore the convective dynamics and evolution of the whole Earth. To determine the properties of these structures and thus interpret the seismic results, a good understanding of the melting phase relations of relevant basaltic and peridotitic compositions are required throughout the mantle pressure range. The melting phase relations of lower mantle materials are only crudely known. Recent experiments on various natural peridotitic and basaltic compositions [6-8] have given wide ranges of solidus and liquidus temperatures at lower mantle pressures. The melting relations for MgO, MgSiO3 and compositions along the MgO-SiO2 join from ab initio theory [e.g. 9,10] is broadly consistent with a thermodynamic model for eutectic melt compositions through the lower mantle based on melting experiments in the MgO-SiO2 system at 16-26 GPa [3]. We have performed a systematic study of the melting phase relations of analogues for peridotitic mantle and subducted basaltic crust in simple binary and ternary systems that capture the major mineralogy of Earth's lower mantle, using the laser-heated diamond anvil cell (LH-DAC) technique at 25-100 GPa. We determined the eutectic melting temperatures involving the following liquidus mineral assemblages: 1. bridgmanite (bm) + periclase (pc) and bm + silica in the system MgO-SiO2 (MS), corresponding to model peridotite and basalt compositions 2. bm + pc + Ca-perovskite (cpv) and bm + silica + cpv in the

  18. Evaluation of the photocatalytic ability of a sol-gel-derived MgO-ZrO2 oxide material

    Directory of Open Access Journals (Sweden)

    Ciesielczyk Filip

    2017-02-01

    Full Text Available This paper deals with the synthesis and characterization of a novel group of potential photocatalysts, based on sol-gel-derived MgO-ZrO2 oxide material. The material was synthesized in a typical sol-gel system using organic precursors of magnesia and zirconia, ammonia as a promoter of hydrolysis and methanol as a solvent. All materials were thoroughly analyzed, including morphology and particle sizes, chemical composition, identification of characteristic functional groups, porous structure parameters and crystalline structure. The proposed methodology of synthesis resulted in obtaining pure MgO-ZrO2 oxide material with micrometric-sized particles and a relatively high surface area. The samples underwent an additional calcination process which led to the crystalline phase of zirconia being formed. The key element of the study was the evaluation of the effectiveness of decomposition of C.I. Basic Blue 9 dye. It was shown that the calcined materials exhibit both satisfactory adsorption and photocatalytic activity with respect to the decomposition of a selected model organic impurity. Total dye removal varied in the range of 50-70%, and was strongly dependent on process parameters such as quantity of photocatalyst, time of irradiation, and the addition of promoters.

  19. Effect of TiON–MgO intermediate layer on microstructure and magnetic properties of L1{sub 0} FePt–C–SiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Deng, J.Y. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore); Dong, K.F. [School of Automation, China University of Geosciences, Wuhan 430074 (China); Peng, Y.G.; Ju, G.P. [Seagate Technology, Fremont, CA 94538 (United States); Hu, J.F. [Data Storage Institute (DSI), Singapore 117608 (Singapore); Chow, G.M.; Chen, J.S. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2016-11-01

    The microstructure and magnetic properties of L1{sub 0} FePt–C–SiO{sub 2} films grown on TiON–MgO intermediate layer were studied. TiON–MgO layer was deposited by co-sputtering TiN and MgO–TiO{sub 2} targets at 380 °C. With increasing MgO–TiO{sub 2} doping concentration, the contact angle between FePt grains with intermediate layer gradually increased, and it was close to 90° when the volume percentage of MgO–TiO{sub 2} reached 30%. At this condition, a high out-of-plane coercivity of 19.1 kOe was obtained, while the opening-up of in-plane M-H loop was very narrow. Moreover, it was found that the out-of-plane coercivity can be further improved to 21.6 kOe, by slightly increasing the percentage of MgO–TiO{sub 2} to 35 vol%. - Highlights: • The effect of TiON–MgO intermediate layer was studied. • With increasing the MgO composition, the surface energy of intermediate layer increased, and the FePt/TiON–MgO interfacial energy decreased. The contact angle of FePt grains with intermediate layer increased with the MgO composition, and 90° contact angle could be achieved by optimizing the MgO composition. • Good perpendicular magnetic anisotropy was retained with large out-of-plane coercivity and narrow in-plane opening-up.

  20. Reaction rim growth in the system MgO-Al2O3-SiO2 under uniaxial stress

    Science.gov (United States)

    Götze, Lutz Christoph; Abart, Rainer; Rybacki, Erik; Keller, Lukas M.; Petrishcheva, Elena; Dresen, Georg

    2010-07-01

    We synthesize reaction rims between thermodynamically incompatible phases in the system MgO-Al2O3-SiO2 applying uniaxial load using a creep apparatus. Synthesis experiments are done in the MgO-SiO2 and in the MgO-Al2O3 subsystems at temperatures ranging from 1150 to 1350 °C imposing vertical stresses of 1.2 to 29 MPa at ambient pressure and under a constant flow of dry argon. Single crystals of synthetic and natural quartz and forsterite, synthetic periclase and synthetic corundum polycrystals are used as starting materials. We produce enstatite rims at forsterite-quartz contacts, enstatite-forsterite double rims at periclase-quartz contacts and spinel rims at periclase-corundum contacts. We find that rim growth under the “dry” conditions of our experiments is sluggish compared to what has been found previously in nominally “dry” piston cylinder experiments. We further observe that the nature of starting material, synthetic or natural, has a major influence on rim growth rates, where natural samples are more reactive than synthetic ones. At a given temperature the effect of stress variation is larger than what is anticipated from the modification of the thermodynamic driving force for reaction due to the storage of elastic strain energy in the reactant phases. We speculate that this may be due to modification of the physical properties of the polycrystals that constitute the reaction rims or by deformation under the imposed load. In our experiments rim growth is very sluggish at forsterite-quartz interfaces. Rim growth is more rapid at periclase-quartz contacts. The spinel rims that are produced at periclase-corundum interfaces show parabolic growth indicating that reaction rim growth is essentially diffusion controlled. From the analysis of time series done in the MgO-Al2O3 subsystem we derive effective diffusivities for the Al2O3 and the MgO components in a spinel polycrystal as D_{MgO} = 1.4 ± 0.2 \\cdot 10^{-15} m2/s and D_{Al_2O_3} = 3.7 ± 0

  1. Nano SiO2 and MgO Improve the Properties of Porous β-TCP Scaffolds via Advanced Manufacturing Technology

    Directory of Open Access Journals (Sweden)

    Chengde Gao

    2015-03-01

    Full Text Available Nano SiO2 and MgO particles were incorporated into β-tricalcium phosphate (β-TCP scaffolds to improve the mechanical and biological properties. The porous cylindrical β-TCP scaffolds doped with 0.5 wt % SiO2, 1.0 wt % MgO, 0.5 wt % SiO2 + 1.0 wt % MgO were fabricated via selective laser sintering respectively and undoped β-TCP scaffold was also prepared as control. The phase composition and mechanical strength of the scaffolds were evaluated. X-ray diffraction analysis indicated that the phase transformation from β-TCP to α-TCP was inhibited after the addition of MgO. The compressive strength of scaffold was improved from 3.12 ± 0.36 MPa (β-TCP to 5.74 ± 0.62 MPa (β-TCP/SiO2, 9.02 ± 0.55 MPa (β-TCP/MgO and 10.43 ± 0.28 MPa (β-TCP/SiO2/MgO, respectively. The weight loss and apatite-forming ability of the scaffolds were evaluated by soaking them in simulated body fluid. The results demonstrated that both SiO2 and MgO dopings slowed down the degradation rate and improved the bioactivity of β-TCP scaffolds. In vitro cell culture studies indicated that SiO2 and MgO dopings facilitated cell attachment and proliferation. Combined addition of SiO2 and MgO were found optimal in enhancing both the mechanical and biological properties of β-TCP scaffold.

  2. TiO2 effect on crystallization mechanism and physical properties of nano glass-ceramics of MgO-Al2O3-SiO2 glass system.

    Science.gov (United States)

    Jo, Sinae; Kang, Seunggu

    2013-05-01

    The effect of TiO2 on the degree of crystallization, thermal properties and microstructure for MgO-Al2O3-SiO2 glass-ceramics system containing 0-13 wt% TiO2 and 0-1.5 wt% B2O3 in which the cordierite is the main phase was studied. Using Kissinger and Augis-Bennett equations, the activation energy, 510 kJ/mol and Avrami constant, 1.8 were calculated showing the surface-oriented crystallization would be preferred. The alpha-cordierite phase was generated in the glass-ceramics of containing TiO2 of 0-5.6 wt%. However, for the glass-ceramics of TiO2 content above 7 wt%, an alpha-cordierite disappeared and micro-cordierite phase was formed. The glass-ceramics of no TiO2 added had spherical crystals of few tens nanometer size spread in the matrix. As TiO2 content increased up to 5.6 wt%, a lump of dendrite was formed. In the glass-ceramics containing TiO2 7-13 wt%, in which the main phase is micro-cordierite, the dendrite crystal disappeared and a few hundred nanometer sized crystal particles hold tightly each other were generated. The thermal conductivity of glass-ceramics of both a-cordierite and micro-cordierite base decreased with TiO2 contend added. The thermal conductivity of glass-ceramics of 1.5 wt% TiO2 added was 3.4 W/mK which is 36% higher than that of glass-ceramics of no TiO2 added. The sintering temperature for 1.5 wt% TiO2 glass-ceramics was 965 degrees C which could be concluded as to apply to LTCC process for LED packaging.

  3. Enhancement in dye-sensitized solar cells based on MgO-coated TiO2 electrodes by reactive DC magnetron sputtering

    International Nuclear Information System (INIS)

    Wu Sujuan; Han Hongwei; Tai Qidong; Zhang Jing; Xu Sheng; Zhou Conghua; Yang Ying; Hu Hao; Chen Bolei; Sebo, Bobby; Zhao Xingzhong

    2008-01-01

    A surface modification method was carried out by reactive DC magnetron sputtering to fabricate TiO 2 electrodes coated with insulating MgO for dye-sensitized solar cells. The MgO-coated TiO 2 electrode had been characterized by x-ray photoelectron spectroscopy (XPS), energy-dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), UV-vis spectrophotometer, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The study results revealed that the TiO 2 modification increases dye adsorption, decreases trap states and suppresses interfacial recombination. The effects of sputtering MgO for different times on the performance of DSSCs were investigated. It indicated that sputtering MgO for 3 min on TiO 2 increases all cell parameters, resulting in increasing efficiency from 6.45% to 7.57%

  4. A Novel MgO-CaO-SiO2 System for Fabricating Bone Scaffolds with Improved Overall Performance

    Directory of Open Access Journals (Sweden)

    Hang Sun

    2016-04-01

    Full Text Available Although forsterite (Mg2SiO4 possesses good biocompatibility and suitable mechanical properties, the insufficient bioactivity and degradability hinders its further application. In this study, a novel MgO-CaO-SiO2 system was developed by adding wollastonite (CaSiO3 into Mg2SiO4 to fabricate bone scaffolds via selective laser sintering (SLS. The apatite-forming ability and degradability of the scaffolds were enhanced because the degradation of CaSiO3 could form silanol groups, which could offer nucleation sites for apatite. Meanwhile, the mechanical properties of the scaffolds grew with increasing CaSiO3 to 20 wt %. It was explained that the liquid phase of CaSiO3 promoted the densification during sintering due to its low melting point. With the further increase in CaSiO3, the mechanical properties decreased due to the formation of the continuous filling phase. Furthermore, the scaffolds possessed a well-interconnected porous structure and exhibited an ability to support cell adhesion and proliferation.

  5. The influence of SiO2 Addition on 2MgO-Al2O3-3.3P2O5 Glass

    DEFF Research Database (Denmark)

    Larsen, P.H.; Poulsen, F.W.; Berg, Rolf W.

    1999-01-01

    2MgO-Al2O3-3.3P2O5 glasses with increasing amounts of SiO2 are considered for sealing applications in Solid Oxide Fuel Cells (SOFC). The change in chemical durability under SOFC anode conditions and the linear thermal expansion is measured as functions of the SiO2 concentration. Raman spectroscopy...... analysis of the glasses reveals no sign of important changes in the glass structure upon SiO2 addition. Some increase in glass durability with SiO2 concentration is reported and its cause is discussed....

  6. Effect of Mg-doping on the degradation of LiNiO2-based cathode materials by combined spectroscopic methods

    OpenAIRE

    Muto, Shunsuke; Tatsumi, Kazuyoshi; Kojima, Yuji; Oka, Hideaki; Kondo, Hiroki; Horibuchi, Kayo; Ukyo, Yoshio

    2012-01-01

    The performance of a LiNiO2-based cell has been shown to be significantly improved by Mg-doping of LiNi0.8Co0.15Al0.05O2 (Mg-doped NCA) cathode materials. In the present study, the effects of Mg-doping were examined by electrochemical impedance spectroscopy (EIS) and scanning transmission electron microscopy-electron energy loss spectroscopy. EIS analysis revealed that the activation energy of Mg-doped NCA for the charge-transfer reaction was larger than that of undoped NCA by a factor of ∼10...

  7. LOW-TEMPERATURE SINTERED (ZnMg2SiO4 MICROWAVE CERAMICS WITH TiO2 ADDITION AND CALCIUM BOROSILICATE GLASS

    Directory of Open Access Journals (Sweden)

    BO LI

    2011-03-01

    Full Text Available The low-temperature sintered (ZnMg2SiO–TiO2 microwave ceramic using CaO–B2O3–SiO2 (CBS as a sintering aid has been developed. Microwave properties of (Zn1-xMgx2SiO4 base materials via sol-gel method were highly dependent on the Mg-substituted content. Further, effects of CBS and TiO2 additives on the crystal phases, microstructures and microwave characteristics of (ZnMg2SiO4 (ZMS ceramics were investigated. The results indicated that CBS glass could lower the firing temperature of ZMS dielectrics effectively from 1170 to 950°C due to the liquid-phase effect, and significantly improve the sintering behavior and microwave properties of ZMS ceramics. Moreover, ZMS–TiO2 ceramics showed the biphasic structure and the abnormal grain growth was suppressed by the pinning effect of second phase TiO2. Proper amount of TiO2 could tune the large negative temperature coefficient of resonant frequency (tf of ZMS system to a near zero value. (Zn0.8Mg0.22SiO4 codoped with 10 wt.% TiO2 and 3 wt.% CBS sintered at 950°C exhibits the dense microstructure and excellent microwave properties: εr = 9.5, Q·f = 16 600 GHz and tf = −9.6 ppm/°C.

  8. Interface role in the enhanced photocatalytic activity of TiO2-Na0.9Mg0.45Ti3.55O8 nanoheterojunction

    Directory of Open Access Journals (Sweden)

    Ze-Qing Guo

    2017-02-01

    Full Text Available TiO2-Na0.9Mg0.45Ti3.55O8 (TiO2-NMTO nanocomposites were synthesized via a simple hydrothermal method. TiO2 nanoparticles were loaded on NMTO nanosheets with well matched lattices. The TiO2-NMTO nanoheterojunctions enjoyed high photodegradative ability for a RhB pollutant. The photoinduced electron-hole pairs were separated effectively by the TiO2-NMTO nanoheterojunctions, which were directly observed by surface potential measurements with a scanning Kelvin probe microscopy. The photogenerated electrons accumulate at interface due to the high density of interface states, and holes remain TiO2 and NMTO particles, other than they migrate from one part to another in heterojunctions by comparing the surface potentials under illumination with different wavelengths.

  9. CHARACTERIZATION OF COMMERCIALLY AVAILABLE ALKALI RESISTANT GLASS FIBER FOR CONCRETE REINFORCEMENT AND CHEMICAL DURABILITY COMPARISON WITH SrO-Mn2O3-Fe2O3-MgO-ZrO2-SiO2 (SMFMZS SYSTEM GLASSES

    Directory of Open Access Journals (Sweden)

    Göktuğ GÜNKAYA

    2012-12-01

    Full Text Available According to the relevant literature, the utilization of different kind of glass fibers in concrete introduces positive effect on the mechanical behavior, especially toughness. There are many glassfibers available to reinforce concretes. Glass fiber composition is so important because it may change the properties such as strength, elastic modulus and alkali resistance. Its most important property to be used in concrete is the alkali resistance. Some glasses of SrO–MgO–ZrO2–SiO2 (SMZS quaternary system, such as 26SrO, 20MgO, 14ZrO2, 40SiO2 (Zrn glass, have been found to be highly alkali resistant thanks to their high ZrO2 and MgO contents. Previous researches on these glasses with MnO and/or Fe2O3 partially replacing SrO have been made with the aim of improving the chemical resistance and decreasing the production cost.The main target of the present study, first of all, was to characterize commercially available alkali resistant glass fiber for concrete reinforcement and then to compare its alkali durability with those of the SrO-Mn2O3-Fe2O3-MgO-ZrO2-SiO2 (SMFMZS system glasses. For such purposes, XRF, Tg-DTA, alkali resistance tests and SEM analysis conducted with EDX were employed. According tothe alkali endurance test results it was revealed that some of the SMFMZS system glass powders are 10 times resistant to alkali environments than the commercial glass fibers used in this study.Therefore, they can be considered as alternative filling materials on the evolution of chemically resistant concrete structures.

  10. Instrument-Free and Autonomous Generation of H2O2 from Mg-ZnO/Au Hybrids for Disinfection and Organic Pollutant Degradations

    Science.gov (United States)

    Park, Seon Yeong; Jung, Yeon Wook; Hwang, Si Hyun; Jang, Gun Hyuk; Seo, Hyunseon; Kim, Yu-Chan; Ok, Myoung-Ryul

    2018-03-01

    We proposed a new hybrid system that autonomously generates H2O2 without any instrument or external energy source, such as light. Electrons formed during spontaneous degradation process of Mg were conveyed to ZnO/Au oxygen-reduction-reaction nanocatalysts, and these transferred electrons converted O2 molecules in aqueous solution into H2O2. Autonomously released H2O2 from Mg-ZnO/Au hybrids effectively killed 97% of Escherichia coli cells within 1 h. Moreover, Mg-ZnO/Au nanohybrids could gradually degrade methylene blue over time with Fe2+. We believe our approach utilizing degradable metals and catalytic metal oxides in mesoporous-film form can be a promising method in the field of environment remediation.

  11. Nano-structure formation of Fe-Pt perpendicular magnetic recording media co-deposited with MgO, Al2O3 and SiO2 additives

    International Nuclear Information System (INIS)

    Safran, G.; Suzuki, T.; Ouchi, K.; Barna, P.B.; Radnoczi, G.

    2006-01-01

    Perpendicular magnetic recording media samples were prepared by sputter deposition on sapphire with a layer sequence of MgO seed-layer/Cr under-layer/FeSi soft magnetic under-layer/MgO intermediate layer/FePt-oxide recording layer. The effects of MgO, Al 2 O 3 and SiO 2 additives on the morphology and orientation of the FePt layer were investigated by transmission electron microscopy. The samples exhibited (001) orientation of the L1 FePt phase with the mutual orientations of sapphire substrate//MgO(100)[001]//Cr(100)[11-bar0]//FeSi(100)[11-bar0]//MgO(100) [001]//FePt(001)[100]. The morphology of the FePt films varied due to the co-deposited oxides: The FePt layers were continuous and segmented by stacking faults aligned at 54 o to the surface. Films with SiO 2 addition, beside the oriented columnar FePt grains, exhibited a fraction of misoriented crystallites due to random repeated nucleation. Al 2 O 3 addition resulted in a layered structure, i.e. an initial continuous epitaxial FePt layer covered by a secondary layer of FePt-Al 2 O 3 composite. Both components (FePt and MgO) of the MgO-added samples were grown epitaxially on the MgO intermediate layer, so that a nano-composite of intercalated (001) FePt and (001) MgO was formed. The revealed microstructures and formation mechanisms may facilitate the improvement of the structural and magnetic properties of the FePt-oxide composite perpendicular magnetic recording media

  12. Degradation of selected industrial dyes using Mg-doped TiO2 polyscales under natural sun light as an alternative driving energy

    Science.gov (United States)

    Shivaraju, H. P.; Midhun, G.; Anil Kumar, K. M.; Pallavi, S.; Pallavi, N.; Behzad, Shahmoradi

    2017-11-01

    Designing photocatalytic materials with modified functionalities for the utilization of renewable energy sources as an alternative driving energy has attracted much attention in the area of sustainable wastewater treatment applications. Catalyst-assisted advanced oxidation process is an emerging treatment technology for organic pollutants and toxicants in industrial wastewater. Preparation of visible-light-responsive photocatalyst such as Mg-doped TiO2 polyscales was carried out under mild sol-gel technique. Mg-doped TiO2 polyscales were characterized by powder XRD, SEM, FTIR, and optical and photocatalytic activity techniques. The Mg-doped TiO2 showed a mixed phase of anatase and rutile with an excellent crystallinity, structural elucidations, polyscales morphology, consequent shifting of bandgap energy and adequate photocatalytic activities under visible range of light. Mg-doped TiO2 polyscales were investigated for their efficiencies in the degradation of most commonly used industrial dyes in the real-time textile wastewater. Mg-doped TiO2 polyscales showed excellent photocatalytic degradation efficiency in both model industrial dyes (65-95%) and textile wastewater (92%) under natural sunlight as an alternative and renewable driving energy.

  13. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2.

    Science.gov (United States)

    Maitra, Urmimala; House, Robert A; Somerville, James W; Tapia-Ruiz, Nuria; Lozano, Juan G; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A; Massel, Felix; Pickup, David M; Ramos, Silvia; Lu, Xingye; McNally, Daniel E; Chadwick, Alan V; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C; Roberts, Matthew R; Bruce, Peter G

    2018-03-01

    The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li + -O(2p)-Li + interactions). Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg 2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg 2+ remains in Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 , which stabilizes oxygen.

  14. Growth of multilayered polycrystalline reaction rims in the MgO-SiO2 system, part I: experiments

    Science.gov (United States)

    Gardés, E.; Wunder, B.; Wirth, R.; Heinrich, W.

    2011-01-01

    Growth of transport-controlled reaction layers between single crystals of periclase and quartz, and forsterite and quartz was investigated experimentally at 1.5 GPa, 1100°C to 1400°C, 5 min to 72 h under dry and melt-free conditions using a piston-cylinder apparatus. Starting assemblies consisting of Per | Qtz | Fo sandwiches produced polycrystalline double layers of forsterite and enstatite between periclase and quartz, and enstatite single layers between forsterite and quartz. The position of inert Pt-markers initially deposited at the interface of the reactants and inspection of mass balance confirmed that both layer-producing reactions are controlled by MgO diffusion, while SiO2 is relatively immobile. BSE and TEM imaging revealed thicknesses from 0.6 μm to 14 μm for double layers and from 0 to 6.8 μm for single layers. Both single and double layers displayed non-parabolic growth together with pronounced grain coarsening. Textural evolution and growth rates for each reaction are directly comparable. Forsterite-enstatite double layers are always wider than enstatite single layers, and the growth of enstatite in the double layer is slower than that in the single layer. In double layers, the enstatite/forsterite layer thickness ratio significantly increases with temperature, reflecting different MgO mobilities as temperature varies. Thus, thickness ratios in multilayered reaction zones may contain a record of temperature, but also that of any physico-chemical parameter that modifies the mobilities of the chemical components between the various layers. This potential is largely unexplored in geologically relevant systems, which calls for further experimental studies of multilayered reaction zones.

  15. Wide band antireflective coatings Al2O3 / HfO2 / MgF2 for UV region

    Science.gov (United States)

    Winkowski, P.; Marszałek, Konstanty W.

    2013-07-01

    Deposition technology of the three layers antireflective coatings consists of hafnium compound are presented in this paper. Oxide films were deposited by means of e-gun evaporation in vacuum of 5x10-5 mbar in presence of oxygen and fluoride films by thermal evaporation. Substrate temperature was 250°C. Coatings were deposited onto optical lenses made from quartz glass (Corning HPFS). Thickness and deposition rate were controlled by thickness measuring system Inficon XTC/2. Simulations leading to optimization of thickness and experimental results of optical measurements carried during and after deposition process were presented. Physical thickness measurements were made during deposition process and were equal to 43 nm/74 nm/51 nm for Al2O3 / HfO2 / MgF2 respectively. Optimization was carried out for ultraviolet region from 230nm to the beginning of visible region 400 nm. In this region the average reflectance of the antireflective coating was less than 0.5% in the whole range of application.

  16. Ion-irradiation-induced damage in nuclear materials: Case study of a-SiO2 and MgO

    International Nuclear Information System (INIS)

    Bachiller-Perea, Diana

    2016-01-01

    One of the most important challenges in Physics today is the development of a clean, sustainable, and efficient energy source that can satisfy the needs of the actual and future society producing the minimum impact on the environment. For this purpose, a huge international research effort is being devoted to the study of new systems of energy production; in particular, Generation IV fission reactors and nuclear fusion reactors are being developed. The materials used in these reactors will be subjected to high levels of radiation, making necessary the study of their behavior under irradiation to achieve a successful development of these new technologies. In this thesis two materials have been studied: amorphous silica (a-SiO 2 ) and magnesium oxide (MgO). Both materials are insulating oxides with applications in the nuclear energy industry. High-energy ion irradiations have been carried out at different accelerator facilities to induce the irradiation damage in these two materials; then, the mechanisms of damage have been characterized using principally Ion Beam Analysis (IBA) techniques. One of the challenges of this thesis was to develop the Ion Beam Induced Luminescence or iono-luminescence (which is not a widely known IBA technique) and to apply it to the study of the mechanisms of irradiation damage in materials, proving the power of this technique. For this purpose, the iono-luminescence of three different types of silica (containing different amounts of OH groups) has been studied in detail and used to describe the creation and evolution of point defects under irradiation. In the case of MgO, the damage produced under 1.2 MeV Au + irradiation has been characterized using Rutherford backscattering spectrometry in channeling configuration and X-ray diffraction. Finally, the iono-luminescence of MgO under different irradiation conditions has also been studied.The results obtained in this thesis help to understand the irradiation-damage processes in materials

  17. Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer

    International Nuclear Information System (INIS)

    Wang, Jing; Qin, Minchao; Tao, Hong; Ke, Weijun; Chen, Zhao; Wan, Jiawei; Qin, Pingli; Lei, Hongwei; Fang, Guojia; Xiong, Liangbin; Yu, Huaqing

    2015-01-01

    In this letter, we report perovskite solar cells with thin dense Mg-doped TiO 2 as hole-blocking layers (HBLs), which outperform cells using TiO 2 HBLs in several ways: higher open-circuit voltage (V oc ) (1.08 V), power conversion efficiency (12.28%), short-circuit current, and fill factor. These properties improvements are attributed to the better properties of Mg-modulated TiO 2 as compared to TiO 2 such as better optical transmission properties, upshifted conduction band minimum (CBM) and downshifted valence band maximum (VBM), better hole-blocking effect, and higher electron life time. The higher-lying CBM due to the modulation with wider band gap MgO and the formation of magnesium oxide and magnesium hydroxides together resulted in an increment of V oc . In addition, the Mg-modulated TiO 2 with lower VBM played a better role in the hole-blocking. The HBL with modulated band position provided better electron transport and hole blocking effects within the device

  18. In vitro cytotoxicity of SiO2 or ZnO nanoparticles with different sizes and surface charges on U373MG human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Kim JE

    2014-12-01

    Full Text Available Jung-Eun Kim,1,* Hyejin Kim,1,* Seong Soo A An,2 Eun Ho Maeng,3 Meyoung-Kon Kim,4 Yoon-Jae Song1 1Department of Life Science, 2Department of Bionano Technology, Gachon University, Seongnam-Si, South Korea; 3Korea Testing and Research Institute, Seoul, South Korea; 4Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, South Korea *These authors contributed equally to this work Abstract: Silicon dioxide (SiO2 and zinc oxide (ZnO nanoparticles are widely used in various applications, raising issues regarding the possible adverse effects of these metal oxide nanoparticles on human cells. In this study, we determined the cytotoxic effects of differently charged SiO2 and ZnO nanoparticles, with mean sizes of either 100 or 20 nm, on the U373MG human glioblastoma cell line. The overall cytotoxicity of ZnO nanoparticles against U373MG cells was significantly higher than that of SiO2 nanoparticles. Neither the size nor the surface charge of the ZnO nanoparticles affected their cytotoxicity against U373MG cells. The 20 nm SiO2 nanoparticles were more toxic than the 100 nm nanoparticles against U373MG cells, but the surface charge had little or no effect on their cytotoxicity. Both SiO2 and ZnO nanoparticles activated caspase-3 and induced DNA fragmentation in U373MG cells, suggesting the induction of apoptosis. Thus, SiO2 and ZnO nanoparticles appear to exert cytotoxic effects against U373MG cells, possibly via apoptosis. Keyword: apoptosis

  19. Effect of ZrO(2) additions on the crystallization, mechanical and biological properties of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics.

    Science.gov (United States)

    Li, H C; Wang, D G; Meng, X G; Chen, C Z

    2014-06-01

    A series of ZrO(2) doped MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics were obtained by sintering method. The crystallization behavior, phase composition, morphology and structure of glass-ceramics were characterized. The bending strength, elastic modulus, fracture toughness, micro-hardness and thermal expansion coefficient (TEC) of glass-ceramics were investigated. The in vitro bioactivity and cytotoxicity tests were used to evaluate the bioactivity and biocompatibility of glass-ceramics. The sedimentation mechanism and growth process of apatites on sample surface were discussed. The results showed that the mainly crystalline phases of glass-ceramics were Ca(5)(PO4)3F (fluorapatite) and β-CaSiO(3). (β-wollastonite). m-ZrO(2) (monoclinic zirconia) declined the crystallization temperatures of glasses. t-ZrO(2) (tetragonal zirconia) increased the crystallization temperature of Ca(5)(PO4)(3)F and declined the crystallization temperature of β-CaSiO(3). t-ZrO(2) greatly increased the fracture toughness, bending strength and micro-hardness of glass-ceramics. The nanometer apatites were induced on the surface of glass-ceramic after soaking 28 days in SBF (simulated body fluid), indicating the glass-ceramic has good bioactivity. The in vitro cytotoxicity test demonstrated the glass-ceramic has no toxicity to cell. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Effect of Al and Mg Contents on Wettability and Reactivity of Molten Zn-Al-Mg Alloys on Steel Sheets Covered with MnO and SiO2 Layers

    Science.gov (United States)

    Huh, Joo-Youl; Hwang, Min-Je; Shim, Seung-Woo; Kim, Tae-Chul; Kim, Jong-Sang

    2018-05-01

    The reactive wetting behaviors of molten Zn-Al-Mg alloys on MnO- and amorphous (a-) SiO2-covered steel sheets were investigated by the sessile drop method, as a function of the Al and Mg contents in the alloys. The sessile drop tests were carried out at 460 °C and the variation in the contact angles (θc) of alloys containing 0.2-2.5 wt% Al and 0-3.0 wt% Mg was monitored for 20 s. For all the alloys, the MnO-covered steel substrate exhibited reactive wetting whereas the a-SiO2-covered steel exhibited nonreactive, nonwetting (θc > 90°) behavior. The MnO layer was rapidly removed by Al and Mg contained in the alloys. The wetting of the MnO-covered steel sheet significantly improved upon increasing the Mg content but decreased upon increasing the Al content, indicating that the surface tension of the alloy droplet is the main factor controlling its wettability. Although the reactions of Al and Mg in molten alloys with the a-SiO2 layer were found to be sluggish, the wettability of Zn-Al-Mg alloys on the a-SiO2 layer improved upon increasing the Al and Mg contents. These results suggest that the wetting of advanced high-strength steel sheets, the surface oxide layer of which consists of a mixture of MnO and SiO2, with Zn-Al-Mg alloys could be most effectively improved by increasing the Mg content of the alloys.

  1. A simple transferable adaptive potential to study phase separation in large-scale xMgO-(1-x)SiO2 binary glasses.

    Science.gov (United States)

    Bidault, Xavier; Chaussedent, Stéphane; Blanc, Wilfried

    2015-10-21

    A simple transferable adaptive model is developed and it allows for the first time to simulate by molecular dynamics the separation of large phases in the MgO-SiO2 binary system, as experimentally observed and as predicted by the phase diagram, meaning that separated phases have various compositions. This is a real improvement over fixed-charge models, which are often limited to an interpretation involving the formation of pure clusters, or involving the modified random network model. Our adaptive model, efficient to reproduce known crystalline and glassy structures, allows us to track the formation of large amorphous Mg-rich Si-poor nanoparticles in an Mg-poor Si-rich matrix from a 0.1MgO-0.9SiO2 melt.

  2. Synthesis and optical properties of SiO2–Al2O3–MgO–K2CO3–CaO ...

    Indian Academy of Sciences (India)

    Synthesis and optical properties of SiO 2 –Al 2 O 3 –MgO–K 2 CO 3 –CaO–MgF 2 –La 2 O 3 glasses. C R GAUTA. Volume 39 Issue 3 June 2016 pp 677-682 ... Author Affiliations. C R GAUTA1. Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, India ...

  3. Influence of acid-base properties on the Lebedev ethanol-to-butadiene process catalyzed by SiO2-MgO materials

    NARCIS (Netherlands)

    Angelici, Carlo; Velthoen, Marjolein E. Z.; Weckhuysen, Bert M.; Bruijnincx, Pieter C. A.

    2015-01-01

    The Lebedev ethanol-to-butadiene process entails a complex chain of reactions that require catalysts to possess a subtle balance in the number and strength of acidic and basic sites. SiO2-MgO materials can be excellent Lebedev catalysts if properly prepared, as catalyst performance has been found to

  4. Review of Liquidus Surface and Phase Equilibria in the TiO2-SiO2-Al2O3-MgO-CaO Slag System at PO2 Applicable in Fluxed Titaniferous Magnetite Smelting

    Science.gov (United States)

    Goso, Xolisa; Nell, Johannes; Petersen, Jochen

    The current liquidus surface and phase equilibria established in air for fluxed titaniferous magnetite (titanomagnetite) slags conforming to a composition of 37.19% TiO2, 19.69% SiO2, 13.12% Al2O3, and 30.00% of various ratios of CaO+MgO were reviewed at applicable PO2 using FactSage simulation and phase composition of a real plant titanomagnetite slag. The testwork included the incorporation into FactSage of a private MgTi2O5-Al2TiO5 pseudobrookite solution model. The results of the investigation showed that the liquidus surface and Ti3+/ Ti4+ mass fraction ratio increased with decreasing the PO2, At low PO2, perovskite crystallizes as a primary phase at high CaO content. The spinel solution, i.e. (Mg)(Al,Ti)O4, generally crystallizes as the primary phase at high MgO contents, though it is replaced by MgTi2O5-Al2TiO5 solution at PO2 of 10-10 atm to 10-15 atm. An intermediate equilibrium phase diagram established at PO2 of 10-16 atm is proposed. This phase diagram does not show the observed primary phase crystallization competition, however, the phase composition of a real titanomagnetite slag produced by Evraz Highveld Steel and Vanadium Corporation in South Africa does show primary phase crystallization competition between (Mg)(Al,Ti)2O4 and MgTi2O5-Al2TiO5. Smelting involving such slags is likely conducted around the transition PO2, i.e. PO2 of about 10-16 atm. Complex modelling with MgTi2O5, Al2TiO5 and Ti3O5 end members and experiments are underway to verify and update the intermediate phase diagram.

  5. Synthesis and structural studies of Mg doped LiNi0.5Mn0.5O2 cathode materials for lithium-ion batteries

    Science.gov (United States)

    Murali, N.; Margarette, S. J.; Madhuri Sailaja, J.; Kondala Rao, V.; Himakar, P.; Kishore Babu, B.; Veeraiah, V.

    2018-02-01

    Layered Mg doped LiNi0.5Mn0.5O2 materials have been synthesized by sol-gel method. The physical properties of these materials were examined by XRD, FESEM and FT-IR studies. From XRD patterns, the phase formation of α-NaFeO2 layered structure with R\\bar 3m space group is confirmed. The surface morphology of the synthesized materials has been examined by FESEM analysis in which the average particle size is found to be about 2 - 2.5 µm. These materials show some changes in the local ion environment, as examined by FT-IR studies.

  6. Study on the water durability of zinc boro-phosphate glasses doped with MgO, Fe2O3, and TiO2

    Science.gov (United States)

    Hwang, Moon Kyung; Ryu, Bong Ki

    2016-07-01

    The water durability of zinc boro-phosphate (PZB) glasses with the composition 60P2O5-20ZnO-20B2O3- xMeO ( x = 0, 2, 4, 6 and MeO = MgO, Fe2O3, or TiO2) (mol%) was measured, and PZB glass was studied in terms of its thermal properties, density, and FTIR characteristics. The surface conditions and corrosion byproducts were analyzed using scanning electron microscopy. When MgO, Fe2O3, and TiO2 were doped into the PZB glass, Q2 was decreased and Q1 was increased in the phosphate structure, while the number of BO4 structures increased with increasing MeO content. The density of the PZB glass was increased by the addition of Fe2O3 and TiO2, while the glass transition temperature ( T g ) and dilatometric softening temperature ( T d ) were increased when additional MgO, Fe2O3, and TiO2 were added. From the weight loss analysis (95 ◦ C, 96 h), TiO2 doped glass showed the lowest weight loss (1.70 × 10 -3 g/cm2) while MgO doped glass showed the highest value (2.44 × 10 -3 g/cm2), compared with PZB glass (3.07 × 10 -3 g/cm2). These results were discussed in terms of the Me n+ ions in the glass structure, and their different coordination numbers and bonding strengths.

  7. Ex Situ and Operando Studies on the Role of Copper in Cu-Promoted SiO2-MgO Catalysts for the Lebedev Ethanol-to-Butadiene Process

    NARCIS (Netherlands)

    Angelici, Carlo|info:eu-repo/dai/nl/345731506; Meirer, Florian; van der Eerden, Ad M. J.|info:eu-repo/dai/nl/304840483; Schaink, Herrick L.; Goryachev, Andrey; Hofmann, Jan P.|info:eu-repo/dai/nl/355351110; Hensen, Emiel J. M.; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397; Bruijnincx, Pieter C. A.|info:eu-repo/dai/nl/33799529X

    2015-01-01

    Dehydrogenation promoters greatly enhance the performance of SiO2-MgO catalysts in the Lebedev process. Here, the effect of preparation method and order of addition of Cu on the structure and performance of Cu-promoted SiO2-MgO materials is detailed. Addition of Cu to MgO via incipient wetness

  8. Tracer diffusion studies of 26Mg, 30Si and 18O in single crystal forsterite (Mg2SiO4) and of 18O in single crystal SiO2

    International Nuclear Information System (INIS)

    Schachtner, R.

    1981-01-01

    Tracer diffusion coefficients of Mg, Si and O in monocrystalline forsterite were determined by Sims as a function of temperature and crystal orientation. Former results on oxygen diffusion in SiO 2 single crystals using nuclear activation methods were confirmed by Sims data. The influence of crystal defects and impurities is discussed. (TW)

  9. Electronic Structure and Bonding Situation in M2O2 (M=Be,Mg,Ca) Rhombic Clusters.

    Czech Academy of Sciences Publication Activity Database

    Li, W.-L.; Lu, J.-B.; Zhao, L.; Ponec, Robert; Cooper, D.L.; Li, J.; Frenking, G.

    Roč. 122, č. 10 ( 2018 ), s. 2816-2822 ISSN 1089-5639 Grant - others:NNSFCH(CN) 21590792; NNSFCH(CN) 21433005; NNSFCH(CN) 21703099; JPY NSF(CN) BK20170964; NTU(CN) 39837123 Institutional support: RVO:67985858 Keywords : electronic structures * M2O2n clustery * theoretical isnights Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.847, year: 2016

  10. Bidirectional electroluminescence from p-SnO2/i-MgZnO/n-ZnO heterojunction light-emitting diodes

    International Nuclear Information System (INIS)

    Yang, Yanqin; Li, Songzhan; Liu, Feng; Zhang, Nangang; Liu, Kan; Wang, Shengxiang; Fang, Guojia

    2017-01-01

    Light-emitting diodes based on p-SnO 2 /i-MgZnO/n-ZnO heterojunction have been fabricated. The material properties and the performance of heterojunction device are characterized. Current-voltage characteristics of the device show a diode-like rectifying behavior. Under forward bias, two prominent emission peaks located at 589 nm and 722 nm in the visible region and a weak ultraviolet emission are observed from p-SnO 2 /i-MgZnO/n-ZnO heterojunction device. As the device is under reverse bias, a broad visible emission band dominates the electroluminescence spectrum at a high current. Furthermore, the emission mechanism has been discussed in terms of energy band structures of the device under forward and reverse biases.

  11. Energy stored in BeO, MgO, Al2O3 and SiO2 oxides irradiated with neutrons

    International Nuclear Information System (INIS)

    Roux, Andre

    1969-01-01

    Within the field of researches on refractory oxides which may be used in structure materials in atomic pile, the objective of this research thesis has been the measurement of the energy stored in some specific oxides (BeO, MgO, Al 2 O 3 and SiO 2 ) after their irradiation in a nuclear reactor. This measurement is performed by 'healing' the irradiated substance by means of thermal treatments during which sample initial mass and morphologies are preserved. The measurement of the Wigner energy is then performed by differential enthalpy analysis. The first part reports the experimental determination of Wigner energies (measurement apparatus, method of ballistic differential enthalpy analysis, thermo-gram compensation). The second part presents the Wigner energies obtained for the sintered BeO, the sintered MgO, the sintered Al 2 O 3 , and the vitreous SiO 2 . The third part reports the result interpretation

  12. The effect of Bi2 O3 on the electrical properties of Zr O2: 3 wt% Mg O ceramic solid electrolytes

    International Nuclear Information System (INIS)

    Cosentino, I.C.

    1991-01-01

    Zr O 2 : 3 wt% Mg O ceramic solid electrolytes have been prepared to study the effect of Bi 2 O 3 addition on densification and electrical conductivity. Microstructural characterization have been done by X-ray diffractometry, scanning electron microscopy and electron microprobe analyses. Electrical conductivity measurements have been done by two probe dc technique in the 400 0 C - 700 0 C temperature range. The results show that 5 wt% Bi 2 O 3 addition improves densification: 93% TD and 98% TD specimens are obtained from zirconia stabilized by powder mixture and by coprecipitation of oxides, respectively. Moreover, electrical conductivity values are found to be two orders of magnitude higher for Zr O 2 : 3 wt% Mg O with 5% Bi 2 O 3 . (author)

  13. 197Au Moessbauer study of nano-sized gold catalysts supported on Mg(OH)2 and TiO2

    International Nuclear Information System (INIS)

    Kobayashi, Y.; Nasu, S.; Tsubota, S.; Haruta, M.

    2000-01-01

    We have studied nano-sized Au catalysts supported on Mg(OH) 2 and TiO 2 using 197 Au Moessbauer spectroscopy. 197 Au Moessbauer spectra observed for Au/Mg(OH) 2 catalysts can be decomposed into one singlet with zero isomer shift and several doublets. One of the doublets shows an isomer shift that is typical for Au I , and other doublets are due to Au III . The relative area of the Au I component shows the maximum value for a specimen calcined at 523 K, which also shows the highest catalytic activity

  14. Effect of magnesia on the degradability and bioactivity of sol-gel derived SiO2-CaO-MgO-P2O5 system glasses.

    Science.gov (United States)

    Ma, J; Chen, C Z; Wang, D G; Jiao, Y; Shi, J Z

    2010-11-01

    Mesoporous 58SiO(2)-(38-x)CaO-xMgO-4P(2)O(5) glasses (where x=0, 5, 10 and 20 mol%) have been prepared by the sol-gel synthesis route. The effects of the substitution of MgO for CaO on glass degradation and bioactivity were studied in tris-(hydroxymethyl)-aminomethane and hydrochloric acid buffer solution (Tris-HCl) and simulated body fluid (SBF), respectively. It is observed that the synthesized glasses with various MgO contents possess the similar textural properties. The studies of in vitro degradability and bioactivity show that the rate of glass degradation gradually decreases with the increase of MgO and the formation of apatite layer on glass surface is retarded. The influences of the composition upon glass properties are explained in terms of their internal structures. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Preparation of orthophosphate glasses in the MgO-CaO-SiO2-Nb2O5-P2O5 system.

    Science.gov (United States)

    Lee, Sungho; Ueda, Kyosuke; Narushima, Takayuki; Nakano, Takayoshi; Kasuga, Toshihiro

    2017-01-01

    Niobia/magnesia-containing orthophosphate invert glasses were successfully prepared in our earlier work. Orthophosphate groups in the glasses were cross-linked by tetrahedral niobia (NbO4) and magnesia. The aim of this work is to prepare calcium orthophosphate invert glasses containing magnesia and niobia, incorporating silica, and to evaluate their structures and releasing behaviors. The glasses were prepared by melt-quenching, and their structures and ion-releasing behaviors were evaluated. 31P solid-state nuclear magnetic resonance (NMR) and Raman spectroscopies showed the glasses consist of orthophosphate (PO4), orthosilicate (SiO4), and NbO4 tetrahedra. NbO4 and MgO in the glasses act as network formers. By incorporating SiO2 into the glasses, the chemical durability of the glasses was slightly improved. The glasses reheated at 800°C formed the orthophosphate crystalline phases, such as β-Ca3(PO4)2, Mg3(PO4)2 and Mg3Ca3(PO4)4 in the glasses. The chemical durability of the crystallized glasses was slightly improved. Orthosilicate groups and NbO4 in the glasses coordinated with each other to form Si-O-Nb bonds. The chemical durability of the glasses was slightly improved by addition of SiO2, since the field strength of Si is larger than that of Ca or Mg.

  16. Fusibility diagram and phase composition of special section ZrO2-MgCr2O4 in oxidative and inert atmospheres

    International Nuclear Information System (INIS)

    Sennikov, S.G.; Revzin, G.E.; Chistyakova, M.V.

    1982-01-01

    Using the differential-thermal and microroentgenospectral analyses fusibility diagram is built and phase transformations in subsolidus region of partial cross-section ZrO 2 -MgCr 2 O 4 in the air and in argon atmosphere are studied. It is established that the system studied is attributed to simple eutectics, with the eutectics composition 43 mol.%ZrO 2 and temperature 2005+-15 deg C. Mutual solubility of components is of a limited character. Using the methods of roentgenography and by thermodynamical calculations it has been shown that above 1300 K in oxidative atmosphere enrichment of samples with magnesium oxide and their composition sift to the field of elementary triangle take place

  17. Towards scalable binderless electrodes: carbon coated silicon nanofiber paper via Mg reduction of electrospun SiO2 nanofibers.

    Science.gov (United States)

    Favors, Zachary; Bay, Hamed Hosseini; Mutlu, Zafer; Ahmed, Kazi; Ionescu, Robert; Ye, Rachel; Ozkan, Mihrimah; Ozkan, Cengiz S

    2015-02-06

    The need for more energy dense and scalable Li-ion battery electrodes has become increasingly pressing with the ushering in of more powerful portable electronics and electric vehicles (EVs) requiring substantially longer range capabilities. Herein, we report on the first synthesis of nano-silicon paper electrodes synthesized via magnesiothermic reduction of electrospun SiO2 nanofiber paper produced by an in situ acid catalyzed polymerization of tetraethyl orthosilicate (TEOS) in-flight. Free-standing carbon-coated Si nanofiber binderless electrodes produce a capacity of 802 mAh g(-1) after 659 cycles with a Coulombic efficiency of 99.9%, which outperforms conventionally used slurry-prepared graphite anodes by over two times on an active material basis. Silicon nanofiber paper anodes offer a completely binder-free and Cu current collector-free approach to electrode fabrication with a silicon weight percent in excess of 80%. The absence of conductive powder additives, metallic current collectors, and polymer binders in addition to the high weight percent silicon all contribute to significantly increasing capacity at the cell level.

  18. Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Liang, J.; Srinivasan, P. Bala; Blawert, C.; Dietzel, W.

    2009-01-01

    Two types of PEO coatings were produced on AM50 magnesium alloy using pulsed DC plasma electrolytic oxidation process in an alkaline phosphate and acidic fluozirconate electrolytes, respectively. The phase composition and microstructure of these PEO coatings were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion behaviour of the coated samples was evaluated by open circuit potential (OCP) measurements, potentiodynamic polarization tests, and electrochemical impedance spectroscopy (EIS) in neutral 0.1 M NaCl solution. The results showed that PEO coating prepared from alkaline phosphate electrolyte consisted of only MgO and on the other hand the one formed in acidic fluozirconate solution was mainly composed of ZrO 2 , MgF 2 . Electrochemical corrosion tests indicated that the phase composition of PEO coating has a significant effect on the deterioration process of coated magnesium alloy in this corrosive environment. The PEO coating that was composed of only MgO suffered from localized corrosion in the 50 h exposure studies, whereas the PEO coating with ZrO 2 compounds showed a much superior stability during the corrosion tests and provided an efficient corrosion protection. The results showed that the preparation of PEO coating with higher chemical stability compounds offers an opportunity to produce layers that could provide better corrosion protection to magnesium alloys.

  19. Elucidating of the microstructure of ZrO2 ceramics with additions of 1200 deg. C heat treated ultrafine MgO powders: Aging at 1420 deg. C

    International Nuclear Information System (INIS)

    Brito-Chaparro, J.A.; Reyes-Rojas, A.; Bocanegra-Bernal, M.H.; Aguilar-Elguezabal, A.; Echeberria, J.

    2007-01-01

    The microstructure and phase transformations in the pressureless sintered composite ZrO 2 with additions of 3.11 wt% high purity and ultrafine MgO powder (9.25 mol% Mg-PSZ) heat treated at 1200 deg. C were investigated by using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction, before and after of eutectoid aging treatment at 1420 deg. C during 4 h. The phases in the as-sintered ceramics were t, c, and m, and was not evident under the experimental conditions of this work, the formation of typical disk-like shape tetragonal precipitates aligned at right angles, meanwhile the microstructure resulting in aged samples was majority monoclinic stable phase showing a banded structure which appear to be twin related. When is used MgO previously heat treated as stabilizer of ZrO 2 , strong differences in SEM microstructures compared to the shown by other investigators in very similar compositions have been found

  20. Effect of nTiO2 and nCeO2 nanoparticles on gene expression, germination, and early development in plants

    Science.gov (United States)

    Ten agronomic plant species and Arabidopsis thaliana were exposed to different concentrations of the metal oxide nanoparticles (NPs) TiO2 or CeO2 (0 - 1000 mg L-1) and monitored to examine effects on germination rate and early seedling development. Endpoints measured included ge...

  1. Glass-ceramic materials of system MgO-Al2O3-SiO2 from rice husk ash

    OpenAIRE

    Martín Hernández, María Isabel; Rincón López, Jesús María; Andreola, F.; Barbieri, L.; Bondioli, F.; Lancellotti, I.; Romero, Maximina

    2011-01-01

    This wok shows the results of a valorisation study to use rice husk ash as raw material to develop glass-ceramic materials. An original glass has been formulated in the base system MgO-Al2O3-SiO2 with addition of B2O3 and Na2O to facilitate the melting and poring processes. Glass characterization was carried out by determining its chemical composition. Sintering behaviour has been examined by Hot Stage Microscopy (HSM). Thermal stability and crystallization mechanism have been studied by Diff...

  2. Preparation and Characterization of Pu0.5Am0.5O2-x-MgO Ceramic/Ceramic Composites

    International Nuclear Information System (INIS)

    Jankowiak, A.; Jorion, F.; Donnet, L.; Maillard, C.

    2008-01-01

    This study describes the preparation and characterization of Pu 0.5 Am 0.5 O 2-x -MgO ceramic/ceramic (cercer) composites with 20 and 30 vol% of Pu 0.5 Am 0.5 O 2-x . The sintered materials demonstrated very different reduction behavior when exposed to a reducing sintering cycle. The composites were studied by combined X-ray diffraction (XRD) and oxygen-to-metal ratio measurements and exhibited various amounts of body-centered-cubic (bcc) and face-centered-cubic (fcc) phases corresponding to different reduction states of the mixed actinide oxide. The fcc phases correspond to a near stoichiometry phase while the bcc phases are attributed to most reduced phases, which demonstrate a greater similarity with the Am 2 O 3 bcc phase. The XRD results suggest a reduction of Am prior to Pu, which explains this greater similarity. In addition, the 30 vol% composite contains 65 wt% of the bcc phase while the 20 vol% composite exhibits only 29 wt%. This result can be explained by the percolation theory when applied to the oxygen diffusivity and indicates that a threshold value for Pu 0.5 Am 0.5 O 2-x content in the cercer composite exists where the reduction of the mixed oxide significantly increases. (authors)

  3. Microemulsion and Sol-Gel Synthesized ZrO2-MgO Catalysts for the Liquid-Phase Dehydration of Xylose to Furfural

    Directory of Open Access Journals (Sweden)

    Almudena Parejas

    2017-12-01

    Full Text Available Two series of catalysts were prepared by sol-gel and microemulsion synthetic procedure (SG and ME, respectively. Each series includes both pure Mg and Zr solids as well as Mg-Zr mixed solids with 25%, 50% and 75% nominal Zr content. The whole set of catalysts was characterized from thermal, structural and surface chemical points of view and subsequently applied to the liquid-phase xylose dehydration to furfural. Reactions were carried out in either a high-pressure autoclave or in an atmospheric pressure multi-reactor under a biphasic (organic/water reaction mixture. Butan-2-ol and toluene were essayed as organic solvents. Catalysts prepared by microemulsion retained part of the surfactant used in the synthetic procedure, mainly associated with the Zr part of the solid. The MgZr-SG solid presented the highest surface acidity while the Mg3Zr-SG one exhibited the highest surface basicity among mixed systems. Xylose dehydration in the high-pressure system and with toluene/water solvent mixture led to the highest furfural yield. Moreover, the yield of furfural increases with the Zr content of the catalyst. Therefore, the catalysts constituted of pure ZrO2 (especially Zr-SG are the most suitable to carry out the process under study although MgZr mixed solids could be also suitable for overall processes with additional reaction steps.

  4. Synthesis and Cell Seeding Assessment of Novel Biphasic Nano Powder in the CaO–MgO–SiO2 System for Bone Implant Application

    Directory of Open Access Journals (Sweden)

    Kazem Marzban

    2017-02-01

    Full Text Available Objective(s: CaO–MgO–SiO2 system bioceramics possess good characteristics for hard tissue engineering applications. The aim of the study was to synthesize the nano powder by using a sol-gel method and evaluate of bioactivity in the cells culture. Methods: To characterize of powder X-ray diffraction (XRD, transmission electron microscopy (TEM and to evaluate the bioactivity sample cell seeding and methylthiazol tetrazolium (MTT assay were performed. Results: X-ray diffraction (XRD analysis showed that the biphasic powder was obtained at 1300°C for 2 h by using a sol-gel method. Transmission electron microscopy (TEM image showed that powder particle size was about 45 nm. Besides, cell culture results indicated that the percentage of viability values was increased by the extension of period. Conclusions: found that the sample is cytocompatible and has cell proliferation potential in culture medium. The present study demonstrates that, the biphasic CaO–MgO–SiO2 system can be used to achieve novel bioactive materials for bone implant application.

  5. Bending strength of glass-ceramics based on 3CaO.P2O5-SiO2-MgO glass system

    International Nuclear Information System (INIS)

    Daguano, J.K.M.F.; Suzuki, P.A.; Santos, C.; Fernandes, M.H.V.; Elias, C.N.

    2009-01-01

    In this work, the Modulus of Rupture of bioactive glass-ceramic based on 3CaO.P 2 O 5 -SiO 2 -MgO system was investigated, aiming its use in bone-restorations. The mechanical property was correlated with microstructural and crystallographic features of this material. High-purity starting-powders, CaCO 3 , SiO 2 , MgO, Ca (H 2 PO 4 ).H 2 O, were used in this study. The powders were mixed in a stoichiometric ratio, using planetary ball-mill. The suspensions were dried, sieved and melted at 1600 deg C, for 4h. The casting ones were cooled quickly until annealing temperature 700 deg C, in which remained for 2h, with controlled cooling-rate until ambient temperature. Bulks of glass were heat-treated with temperatures varying between 700 deg C and 1100 deg C, for 4h, being after that, cooled at 3 deg C/min. Bioactive glass and glass-ceramic were characterized by HRXRD (high resolution X-ray diffraction), where whitlockite was main phase. The microstructure was analyzed by scanning electronic microscopy. Modulus of Rupture was determined by four-point bending testing using specimens of 1.5 x 2 x 25 mm and glasses presented strength near to 70MPa, while glass ceramics treated at 975 deg C-4h, presented bending strength of 120MPa. (author)

  6. CoO-doped MgO-Al2O3-SiO2-colored transparent glass-ceramics with high crystallinity

    Science.gov (United States)

    Tang, Wufu; Zhang, Qian; Luo, Zhiwei; Yu, Jingbo; Gao, Xianglong; Li, Yunxing; Lu, Anxian

    2018-02-01

    To obtain CoO-doped MgO-Al2O3-SiO2 (MAS)-colored transparent glass-ceramics with high crystallinity, the glass with the composition 21MgO-21Al2O3-54SiO2-4B2O3-0.2CoO (in mol %) was prepared by conventional melt quenching technique and subsequently thermal treated at several temperatures. The crystallization behavior of the glass, the precipitated crystalline phases and crystallinity were analyzed by X-ray diffraction (XRD). The microstructure of the glass-ceramics was characterized by field emission scanning electron microscopy (FSEM). The transmittance of glass-ceramic was measured by UV spectrophotometer. The results show that a large amount of α-cordierite (indianite) with nano-size was precipitated from the glass matrix after treatment at 1020 °C for 3 h. The crystallinity of the transparent glass-ceramic reached up to 97%. Meanwhile, the transmittance of the glass-ceramic was 74% at 400 nm with a complex absorption band from 450 nm to 700 nm. In addition, this colored transparent glass-ceramic possessed lower density (2.469 g/cm3), lower thermal expansion coefficient (1.822 × 10-6 /℃), higher Vickers hardness (9.1 GPa) and higher bending strength (198 MPa) than parent glass.

  7. Structure of Na2O·MO·SiO2·CaF2 (M=Mg, Ca) oxyfluoride glasses

    International Nuclear Information System (INIS)

    Cheng Jinshu; Deng Wei; Wang Mitang

    2012-01-01

    (9-x)CaO·xMgO·15Na 2 O·60SiO 2 ·16CaF 2 (x=0, 2, 4, 6, and 9) oxyfluoride glasses were prepared. Utilizing the Raman scattering technique together with 29 Si and 19 F MAS NMR, the effect of alkaline metal oxides on the Q species of glass was characterized. Raman results show that as magnesia is added at the expense of calcium oxide, the disproportional reaction Q 3 →Q 4 +Q 2 (Q n is a SiO 4 tetrahedron with n bridging oxygens) prompted due to the high ionic field strength of magnesia, magnesium oxide entered into the silicate network as tetrahedral MgO 4 , and removed other modifying ions for charge compensation. This reaction was confirmed by 29 Si MAS NMR. 19 F MAS NMR results show that fluorine exists in the form of mixed calcium sodium fluoride species in all glasses and no Si-F bonds were formed. As CaO is gradually replaced by MgO (x=6, 9), a proportion of the magnesium ions combines with fluorine to form the MgF + species. Meanwhile, some part of Na + ions complex F - in the form of F-Na(6).

  8. Phase relationships in the quasi-ternary LaO1.5–SiO2MgO system at 1773 K

    Directory of Open Access Journals (Sweden)

    Kiyoshi Kobayashi and Yoshio Sakka

    2012-01-01

    Full Text Available Phase relationships in the LaO1.5–SiO2MgO quasi-ternary system at 1773 K were investigated by powder x-ray diffraction (XRD analysis applying single- and multiple-phase Rietveld methods. Most of the formed phases satisfied the Gibbs' phase rule, except for the samples containing LaO1.5 and a liquid phase at 1773 K. The detection of segregated MgO phases was difficult in the XRD profiles of the compositional samples around the oxyapatite single phase because the MgO peaks were weak and heavily overlapped by peaks from the oxyapatite and La(OH3 phases. The solid solubility limit of MgO in oxyapatite was determined not only from the chemical composition of the oxyapatite phase, which was confirmed by XRD, but also from several phase boundary compositions among the two-phase and three-phase regions based on the Gibbs' phase rule. Formation of a liquid phase at 1773 K was observed in a wide range of compositions and considered when constructing the phase diagram.

  9. Structurally characterized 1,1,3,3-tetramethylguanidine solvated magnesium aryloxide complexes: [Mg(mu-OEt)(DBP)(H-TMG)]2, [Mg(mu-OBc)(DBP)(H-TMG)]2, [Mg(mu-TMBA)(DBP)(H-TMG)]2, [Mg(mu-DPP)(DBP)(H-TMG)]2, [Mg(BMP)2(H-TMG)2], [Mg(O-2,6-Ph2C6H3)2 (H-TMG)2].

    Science.gov (United States)

    Monegan, Jessie D; Bunge, Scott D

    2009-04-06

    The synthesis and structural characterization of several 1,1,3,3-tetramethylguanidine (H-TMG) solvated magnesium aryloxide complexes are reported. Bu(2)Mg was successfully reacted with H-TMG, HOC(6)H(3)(CMe(3))(2)-2,6 (H-DBP), and either ethanol, a carboxylic acid, or diphenyl phosphate in a 1:1 ratio to yield the corresponding [Mg(mu-L)(DBP)(H-TMG)](2) where L = OCH(2)CH(3) (OEt, 1), O(2)CC(CH(3))(3) (OBc, 2), O(2)C(C(6)H(2)-2,4,6-(CH(3))(3)) (TMBA, 3), or O(2)P(OC(6)H(5))(2) (DPP, 4). Bu(2)Mg was also reacted with two equivalents of H-TMG and HOC(6)H(3)(CMe(3))-2-(CH(3))-6 (BMP) or HO-2,6-Ph(2)C(6)H(3) to yield [Mg(BMP)(2)(H-TMG)(2)] (5) and [Mg(O-2,6-Ph(2)C(6)H(3))(2)(H-TMG)(2)] (6). Compounds 1-6 were characterized by single-crystal X-ray diffraction. Polymerization of l- and rac-lactide with 1 was found to generate polylactide (PLA). A discussion concerning the relevance of compounds 2 - 4 to the structure of Mg-activated phosphatase enzymes is also provided. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and (1)H, (13)C and (31)P NMR studies.

  10. Titanium-bearing phases in the Earth's mantle (evidence from experiments in the MgO-SiO2-TiO2 ±Al2O3 system at 10-24 GPa)

    Science.gov (United States)

    Sirotkina, Ekaterina; Bobrov, Andrey; Bindi, Luca; Irifune, Tetsuo

    2017-04-01

    Introduction Despite significant interest of experimentalists to the study of geophysically important phase equilibria in the Earth's mantle and a huge experimental database on a number of the model and multicomponent systems, incorporation of minor elements in mantle phases was mostly studied on a qualitative level. The influence of such elements on structural peculiarities of high-pressure phases is poorly investigated, although incorporation of even small portions of them may have a certain impact on the PT-parameters of phase transformations. Titanium is one of such elements with the low bulk concentrations in the Earth's mantle (0.2 wt % TiO2) [1]; however, Ti-rich lithologies may occur in the mantle as a result of oceanic crust subduction. Thus, the titanium content is 0.6 wt% in Global Oceanic Subducted Sediments (GLOSS) [2], and 1.5 wt% TiO2, in MORB [3]. In this regard, accumulation of titanium in the Earth's mantle is related to crust-mantle interaction during the subduction of crustal material at different depths of the mantle. Experimental methods At 10-24 GPa and 1600°C, we studied the full range of the starting materials in the MgSiO3 (En) - MgTiO3 (Gkl) system in increments of 10-20 mol% Gkl and 1-3 GPa, which allowed us to plot the phase PX diagram for the system MgSiO3-MgTiO3 and synthesize titanium-bearing phases with a wide compositional range. The experiments were performed using a 2000-t Kawai-type multi-anvil high-pressure apparatus at the Geodynamics Research Center, Ehime University (Japan). The quenched samples were examined by single-crystal X-ray diffractometer, and the composition of phases was analyzed using SEM-EDS. Results The main phases obtained in experiments were rutile, wadsleyite, MgSiO3-enstatite, MgTiO3-ilmenite, MgTiSi2O7 with the weberite structure type (Web), Mg(Si,Ti)O3 and MgSiO3 with perovskite-type structure. At a pressure of 13 GPa for Ti-poor bulk compositions, an association of En+Wad+Rt is replaced by the

  11. SYNGAS PRODUCTION FROM CO2-REFORMING OF CH4 OVER SOL-GEL SYNTHESIZED Ni-Co/Al2O3-MgO-ZrO2 NANOCATALYST: EFFECT OF ZrO2 PRECURSOR ON CATALYST PROPERTIES AND PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Seyed Mehdi Sajjadi

    2015-05-01

    Full Text Available Ni-Co/Al2O3-MgO-ZrO2 nanocatalyst with utilization of two different zirconia precursors, namely, zirconyl nitrate hydrate (ZNH and zirconyl nitrate solution (ZNS, was synthesized via the sol-gel method. The physiochemical properties of nanocatalysts were characterized by XRD, FESEM, EDX, BET and FTIR analyses and employed for syngas production from CO2-reforming of CH4. XRD patterns, exhibiting proper crystalline structure and homogeneous dispersion of active phase for the nanocatalyst ZNS precursor employed (NCAMZ-ZNS. FESEM and BET results of NCAMZ-ZNS presented more uniform morphology and smaller particle size and consequently higher surface areas. In addition, average particle size of NCAMZ-ZNS was 15.7 nm, which is close to the critical size for Ni-Co catalysts to avoid carbon formation. Moreover, FESEM analysis indicated both prepared samples were nanoscale. EDX analysis confirmed the existence of various elements used and also supported the statements made in the XRD and FESEM analyses regarding dispersion. Based on the excellent physiochemical properties, NCAMZ-ZNS exhibited the best reactant conversion across all of the evaluated temperatures, e.g. CH4 and CO2 conversions were 97.2 and 99% at 850 ºC, respectively. Furthermore, NCAMZ-ZNS demonstrated a stable yield with H2/CO close to unit value during the 1440 min stability test.

  12. Influence of heat treatments upon the mechanical properties and in vitro bioactivity of ZrO2-toughened MgO-CaO-SiO2-P2O5-CaF2 glass-ceramics.

    Science.gov (United States)

    Li, Huan-Cai; Wang, Dian-Gang; Meng, Xiang-Guo; Chen, Chuan-Zhong

    2014-09-01

    Zirconia-toughened MgO-CaO-SiO2-P2O5-CaF2 glass-ceramics are prepared using sintering techniques, and a series of heat treatment procedures are designed to obtain a glass-ceramic with improved properties. The crystallization behavior, phase composition, and morphology of the glass-ceramics are characterized. The bending strength, elastic modulus, fracture toughness, and microhardness of the glass-ceramics are investigated, and the effect mechanism of heat treatments upon the mechanical properties is discussed. The bioactivity of glass-ceramics is then evaluated using the in vitro simulated body fluid (SBF) soaking test, and the mechanism whereby apatite forms on the glass-ceramic surfaces in the SBF solution is discussed. The results indicate that the main crystal phase of the G-24 sample undergoing two heat treatment procedures is Ca5(PO4)3F (fluorapatite), and those of the G-2444 sample undergoing four heat treatment procedures are Ca5(PO4)3F and β-CaSiO3 (β-wollastonite). The heat treatment procedures are found to greatly influence the mechanical properties of the glass-ceramic, and an apatite layer is induced on the glass-ceramic surface after soaking in the SBF solution.

  13. Catalytic activity of bimetallic AuPd alloys supported MgO and MnO2 nanostructures and their role in selective aerobic oxidation of alcohols

    Directory of Open Access Journals (Sweden)

    Hamed Alshammari

    2017-10-01

    Full Text Available The use of metal oxides as supports for gold and palladium (Au-Pd nano alloys constitutes new horizons to improve catalysts materials for very important reactions. From the literatures, Pd-based bimetallic nanostructures have great properties and active catalytic performance. In this study, nanostructures of magnesium oxide (MgO and manganese dioxide (MnO₂ were synthesised and utilized as supports for Au-Pd nanoparticle catalysts. Gold and palladium were deposited on these supports using sol-immobilisation method. The MgO and MnO2 supported Au-Pd catalysts were evaluated for the oxidation of benzyl alcohol and 1-octanol, respectively. These catalysts were found to be more selective, active and reusable than the corresponding monometallic Au and Pd catalysts. The effect of base supports on the disproportionation reaction during the oxidation process was investigated. The results show that MgO stopped the disproportionation reaction for both aromatic and aliphatic alcohols while MnO₂ stopped it in the case of benzyl alcohol only. The outcomes of this work shed light on the selective aerobic oxidation of alcohols using bimetallic Au-Pd nanoalloys and pave the way to a complete investigation of more basic metal oxides for various aliphatic alcohols.

  14. En route to the conductivity bottleneck in p-type CuCr1-xMxO2-ySy (M = Li, Mg)

    Science.gov (United States)

    Mandal, P.; Mazumder, N.; Akhtar, A. J.; Roy, R.; Chattopadhyay, K. K.

    2017-05-01

    We extend our material design concept [P. Mandal et al. J. Phys. D: Appl. Phys. 49, 275109, (2016); N. Mazumder et al. J. Phys. Chem. Lett. 4, 3539, (2013)] further aiming to overcome the conductivity bottleneck (1 Scm-1) in p-type transparent conducting oxide (TCO). In this work, we execute the strategy of simultaneous cationic-anionic hole doping in the prototype p-TCO CuCrO2. CuCr1-xMxO2-ySy (M = Li, Mg) is prepared by solid state heating at 1150 °C. Using Rietveld analysis, the presence of Mgcr•, Licr • and SO×areconfirmed and quantified. The diffuse reflectance (DR) spectra are acquired to determine the dominant optical gap (˜ 3.5 eV) and found to be affected little upon site selective hole doping. From temperature dependence (80 - 300 K) of DC conductivity (σdc), (Licr •+SO×)dopingcan be identified to be the more plausible alternative to reach the bottleneck threshold compared to (Mgcr •+SO×) albeit of smaller σdc at 300 K.

  15. Effect of Slag Composition on the Crystallization Kinetics of Synthetic CaO-SiO2-Al2O3-MgO Slags

    Science.gov (United States)

    Esfahani, Shaghayegh; Barati, Mansoor

    2018-04-01

    The crystallization kinetics of CaO-SiO2-Al2O3-MgO (CSAM) slags was studied with the aid of single hot thermocouple technique (SHTT). Kinetic parameters such as the Avrami exponent ( n), rate coefficient ( K), and effective activation energy of crystallization ( E A ) were obtained by kinetic analysis of data obtained from in situ observation of glassy to crystalline transformation and image analysis. Also, the dependence of nucleation and growth rates of crystalline phases were quantified as a function of time, temperature, and slag basicity. Together with the observations of crystallization front, they facilitated establishing the dominant mechanisms of crystallization. In an attempt to predict crystallization rate under non-isothermal conditions, a mathematical model was developed that employs the rate data of isothermal transformation. The model was validated by reproducing an experimental continuous cooling transformation diagram purely from isothermal data.

  16. Synthesis of pigments of Fe2O3·SiO2 system, with Ca, Mg, or Co oxide additions

    Directory of Open Access Journals (Sweden)

    Tsvetan Dimitrov

    2017-03-01

    Full Text Available The present research work is based on the comparative evaluation of the Ca, Mg, and Co dopant impact on the properties of new ceramic pigments from the system Fe2O3·SiO2 obtained via classical ceramic technology. This approach enabled determination of the optimal temperature for the synthesis and the most appropriate mineralizer. The obtained specimens were submitted to systematical analysis, including X-ray Diffraction (XRD spectroscopy, Electron Paramagnetic Resonance (EPR analysis and Mössbauer spectroscopy for crystalline phase determination. The color characteristics are quantified by spectrophotometric measurements. The pigments particle size has been determined by Scanning Electron Microscopy (SEM, combined by Energy Dispersion X-ray spectroscopy (EDX. The obtained results enabled to determine the correlation between the calcination temperature and the phase compositions of the obtained pigments. In addition, some interesting magnetic properties were detected for the Co-doped composition.

  17. Modification of the temperatures of phase transformations of alumina by the insertion of MgO and ZrO2

    International Nuclear Information System (INIS)

    Rosario, D.C.C.; Gouvea, D.

    2010-01-01

    Due to the stability and diversity of alumina polymorph, it becomes a very interesting material for stability studies considering changes in surface energy. The gamma phase is metastable and extensively studied due its properties and applications in catalysis. Studies have been conducted with the purpose to changing the transformation temperature gamma-alpha, considering modification on surface energy of nanomaterials. Thereby, this study aims to understand the phase transition amorphous-gamma of alumina by inserting additives (MgO and ZrO 2 ), taking into account the effects on specific surface area and surface energy. The assessment of stability was performed by analysis of DTA, X-ray diffraction and measurements of specific surface area, showing an increase in surface area with additives concentration, followed by a decrease of surface energy, then stability of gamma phase. (author)

  18. Effect of calcium fluoride on sintering behaviour of SiO2-CaO-Na2O-MgO glass-ceramic system

    Directory of Open Access Journals (Sweden)

    Bahman Mirhadi

    2012-09-01

    Full Text Available The crystallization characteristics of glasses based on the SiO2-CaO-Na2O-MgO (SCNM system containing calcium fluoride (CaF2 have been investigated by differential thermal analysis (DTA, X-ray diffraction (XRD and scanning electron microscopy (SEM. The partial replacement of CaO by CaF2 in the studied glass-ceramics led to the development of different crystalline phase assemblages, including wollastonite and diopside using various heat-treatment processes. With the increase of CaF2 content, the crystallization temperature of the glass and the strength of the crystallization peak temperature decreases. Addition of CaF2 up to 6.0 mol%, as expected, improved the sinterability. This sample reached to maximum density by sintering at 950 °C.

  19. Wear of MgO-CaO-SiO2-P2O5-F-Based Glass Ceramics Compared to Selected Dental Ceramics

    Directory of Open Access Journals (Sweden)

    Jongee Park

    2007-01-01

    Full Text Available Wear of a glass-ceramic produced through controlled crystallization of a glass in the MgO-CaO-SiO2-P2O5-F system has been evaluated and compared to various commercial dental ceramics including IPS Empress 2, Cergo Pressable Ceramic, Cerco Ceram, and Super porcelain EX-3. Wear tests were performed in accord with the ASTM G99 for wear testing with a pin-on-disk apparatus. The friction coefficient and specific wear rate of the materials investigated were determined at a load of 10 N and at ambient laboratory conditions. Microhardness of the materials was also measured to elucidate the appropriateness of these materials for dental applications.

  20. Synthesis of pigments of Fe2O3·SiO2 system, with Ca, Mg, or Co oxide additions

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrov, T.; Kozhukharov, S.; Velinov, N.

    2017-07-01

    The present research work is based on the comparative evaluation of the Ca, Mg, and Co dopant impact on the properties of new ceramic pigments from the system Fe2O3·SiO2 obtained via classical ceramic technology. This approach enabled determination of the optimal temperature for the synthesis and the most appropriate mineralizer. The obtained specimens were submitted to systematical analysis, including X-ray Diffraction (XRD) spectroscopy, Electron Paramagnetic Resonance (EPR) analysis and Mössbauer spectroscopy for crystalline phase determination. The color characteristics are quantified by spectrophotometric measurements. The pigments particle size has been determined by Scanning Electron Microscopy (SEM), combined by Energy Dispersion X-ray spectroscopy (EDX). The obtained results enabled to determine the correlation between the calcination temperature and the phase compositions of the obtained pigments. In addition, some interesting magnetic properties were detected for the Co-doped composition. (Author)

  1. Investigation of bioactive CaO-P2O5-MgO-SiO2 ceramic composition for orthopedic applications

    Science.gov (United States)

    Kaur, Pardeep; Singh, K. J.; Sood, Henna; Arora, Daljit Singh

    2017-05-01

    Bioactive sample of the composition 41CaO-8P2O5-17MgO-34SiO2 has been prepared in the laboratory by quick alkali mediated sol-gel method. 1M ammonia solution has been used to form the gel. Bioactivity of the sample has been analyzed by soaking the samples in simulated body fluid. Degradation study has also undertaken to check the degradation behavior of the sample. MTT cytotoxic test has also been done to know the toxicity of the sample and results show that samples has good percentage of cell viability in the cell culture media. Formation of the hydroxyapatite has been confirmed by the XRD, Raman spectroscopy and FESEM-EDX study.

  2. Photoluminescence of the Mg2Al4Si5O18-Al2O3-MgAl2O4-SiO2 ceramic system containing Fe3+ and Cr3+ as impurity ions

    Science.gov (United States)

    Sosman, L. P.; López, A.; Pedro, S. S.; Papa, A. R. R.

    2018-02-01

    This work presents the results of photoluminescence, excitation and radiative decay time for a ceramic system containing Mg2Al4Si5O18-Al2O3-MgAl2O4-SiO2 with Fe3+ and Cr3+ as impurity ions. Emission data were obtained using several excitation wavelengths and the excitation data were acquired for the most intense emission bands. The optical results were analyzed according to the Tanabe-Sugano (TS) theory from which the crystalline field parameter Dq and Racah parameters B and C were obtained for the Fe3+ and Cr3+ sites. The results indicate that the Fe3+ and Cr3+ ions occupy tetrahedral and octahedral sites, respectively. The emission from Fe3+ and Cr3+ ions causes an intense and broad band ranging between 350 nm and 850 nm, showing that this material is a potential tunable radiation source at room temperature.

  3. Fast reactor irradiation effects on fracture toughness of Si_3N_4 in comparison with MgAl_2O_4 and yttria stabilized ZrO_2

    International Nuclear Information System (INIS)

    Tada, K.; Watanabe, M.; Tachi, Y.; Kurishita, H.; Nagata, S.; Shikama, T.

    2016-01-01

    Fracture toughness of silicon nitride (Si_3N_4), magnesia-alumina spinel (MgAl_2O_4) and yttria stabilized zirconia (8 mol%Y_2O_3–ZrO_2) was evaluated by the Vickers-indentation technique after the fast reactor irradiation up to 55 dpa (displacement per atom) at about 700 °C in the Joyo. The change of the fracture toughness by the irradiation was correlated with nanostructural evolution by the irradiation, which was examined by transmission electron microscopy. The observed degradation of fracture toughness in Si_3N_4 is thought to be due to the relatively high density of small-sized of the irradiation induced defects, which should be resulted from a large amount of transmutation gases of hydrogen and helium. Observed improvement of fracture toughness in MgAl_2O_4 was due to the blocking of crack propagation by the antiphase boundaries. The radiation effects affected the fracture toughness of yttria stabilized zirconia at 55 dpa, suggesting that the generated high density voids would affect the propagation of cracks. - Highlights: • Si_3N_4, MgAl_2O_4 and YSZ were neutron irradiated up to 55dpa around 700 °C in the Joyo. • They are candidate ceramics for the inert matrices of nuclear fuels in the fast reactors. • The irradiation enhanced the fracture toughness of MgAl_2O_4 and YSZ, while degraded that of Si_3N_4. • The toughness changes were correlated with radiation induced defects and transmutation gases.

  4. A study on microstructure and corrosion resistance of ZrO2-containing PEO coatings formed on AZ31 Mg alloy in phosphate-based electrolyte

    International Nuclear Information System (INIS)

    Zhuang, J.J.; Guo, Y.Q.; Xiang, N.; Xiong, Y.; Hu, Q.; Song, R.G.

    2015-01-01

    Graphical abstract: - Highlights: • PEO coatings were formed in K 2 ZrF 6 -containing electrolyte. • K 2 ZrF 6 is capable to optimize the microstructure of PEO coating. • Corrosion resistance of PEO coatings is effected by K 2 ZrF 6 concentration in the electrolyte. • Potentiodynamic polarization results are well matched with the EIS test results. • Long time immersion test confirmed the electrochemical results. - Abstract: ZrO 2 -containing ceramic coatings formed on the AZ31 Mg alloy were fabricated in an alkaline electrolyte containing sodium phosphate and potassium fluorozirconate (K 2 ZrF 6 ) by plasma electrolytic oxidation (PEO). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) techniques were used to study the phase structure and composition of the coatings. It is indicated that the coatings formed in the K 2 ZrF 6 -containing electrolyte were composed of MgO, MgF 2 and t-ZrO 2 . Morphological investigation carried out by scanning electron microscopy (SEM) and stereoscopic microscopy, revealed that the uniformity of coatings increased and roughness of coatings decreased after the addition of K 2 ZrF 6 . Electrochemical investigation was achieved by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test. The results showed that the PEO coating formed in K 2 ZrF 6 -containing electrolyte exhibited an improved corrosion resistance than that of the coating formed in K 2 ZrF 6 -free electrolyte. In addition, the polarization and EIS tests results both showed that the suitable concentration (2.5 g/l) of K 2 ZrF 6 is of significant ability to improve the corrosion resistance of coatings. However, 5 g/l and 10 g/l K 2 ZrF 6 has a negative effect on improving the corrosion resistance of PEO coatings compared with the coating formed in 2.5 g/l K 2 ZrF 6 -containing electrolyte.

  5. The heat capacity of a natural monticellite and phase equilibria in the system CaO-MgO-SiO2-CO2

    Science.gov (United States)

    Sharp, Z.D.; Essene, E.J.; Anovitz, Lawrence M.; Metz, G.W.; Westrum, E.F.; Hemingway, B.S.; Valley, J.W.

    1986-01-01

    The heat capacity of a natural monticellite (Ca1.00Mg.09Fe.91Mn.01Si0.99O3.99) measured between 9.6 and 343 K using intermittent-heating, adiabatic calorimetry yields Cp0(298) and S2980 of 123.64 ?? 0.18 and 109.44 ?? 0.16 J ?? mol-1 K-1 respectively. Extrapolation of this entropy value to end-member monticellite results in an S0298 = 108.1 ?? 0.2 J ?? mol-1 K-1. High-temperature heat-capacity data were measured between 340-1000 K with a differential scanning calorimeter. The high-temperature data were combined with the 290-350 K adiabatic values, extrapolated to 1700 K, and integrated to yield the following entropy equation for end-member monticellite (298-1700 K): ST0(J ?? mol-1 K-1) = S2980 + 164.79 In T + 15.337 ?? 10-3 T + 22.791 ?? 105 T-2 - 968.94. Phase equilibria in the CaO-MgO-SiO2 system were calculated from 973 to 1673 K and 0 to 12 kbar with these new data combined with existing data for akermanite (Ak), diopside (Di), forsterite (Fo), merwinite (Me) and wollastonite (Wo). The location of the calculated reactions involving the phases Mo and Fo is affected by their mutual solid solution. A best fit of the thermodynamically generated curves to all experiments is made when the S0298 of Me is 250.2 J ?? mol-1 K-1 less than the measured value of 253.2 J ?? mol-1 K-1. A best fit to the reversals for the solid-solid and decarbonation reactions in the CaO-MgO-SiO2-CO2 system was obtained with the ??G0298 (kJ ?? mole-1) for the phases Ak(-3667), Di(-3025), Fo(-2051), Me(-4317) and Mo(-2133). The two invariant points - Wo and -Fo for the solid-solid reactions are located at 1008 ?? 5 K and 6.3 ?? 0.1 kbar, and 1361 ?? 10 K and 10.2 ?? 0.2 kbar respectively. The location of the thermodynamically generated curves is in excellent agreement with most experimental data on decarbonation equilibria involving these phases. ?? 1986.

  6. Efeito da segregação e solubilização do MgO na morfologia de pós de ZrO2 durante a síntese pelo método Pechini Effect of MgO segregation and solubilization on the morphology of ZrO2 powders during synthesis by the Pechini's method

    Directory of Open Access Journals (Sweden)

    P. J. B. Marcos

    2004-03-01

    Full Text Available Trabalhos realizados em vários sistemas de óxidos cerâmicos têm demonstrado que a segregação dos íons durante a síntese de materiais cerâmicos pelo método Pechini tem conseqüências muito importantes tanto para a morfologia dos pós como para a sinterização. Este trabalho tem como objetivo estabelecer a influência da segregação/solubilização do MgO na morfologia e na sinterização de pós à base de ZrO2. O estudo foi realizado em pós preparados por síntese química derivada do método Pechini a 500 °C por 15 h. Observa-se que para concentrações de MgO até o limite de solubilidade no ZrO2 ocorre o crescimento de partículas e uma diminuição da área de superfície específica por causa da solubilização e do aumento do coeficiente de difusão pela geração de vacâncias de oxigênio. Contudo, após o limite de solubilidade, ocorre um aumento gradual da área de superfície específica devido à segregação dos íons na superfície dos pós e à diminuição da energia de superfície. Concentrações de MgO até 60 % molar foram utilizadas e áreas de superfície específica tão elevadas quanto 120 m²/g foram obtidas, mas as fases cristalinas formadas foram exclusivamente da zircônia solução sólida sem a presença de fases cristalinas de MgO.Studies carried out in several ceramic oxide systems have shown that segregation of ions during synthesis of ceramic materials by the Pechini's method has important morphology consequences for the powder. The aim of this paper is to establish the influence of the MgO segregation/solubilization on the morphology of ZrO2 powders. The study was performed in powders prepared by chemical synthesis derived from the Pechini's method at 500 ºC for 15 h. It is observed that MgO concentrations up to the solubility limit promote ZrO2 particle coarsening and a reduction of specific surface area by increasing the diffusion coefficient. However, MgO amounts higher than the solubility

  7. Thermoluminescent properties of Spinel-type oxides present in the Ternary system In2O3-TiO2-Mg O in air at 1350 degrees C

    International Nuclear Information System (INIS)

    Brown, F.; Hernandez P, T. C.; Alvarez M, V. E.; Cruz V, C.; Munoz, I. C.; Bernal, R.

    2015-10-01

    Full text: In the ternary system In 2 O 3 -TiO 2 -Mg O exists a solid solution Mg 2-x In 2x Ti 1-x O 4 (0≤ x ≤1) with spinel-type structure between MgIn 2 O 4 and Mg 2 TiO 4 (F. Brown et. al., 2000). In order to analyze their thermoluminescent (Tl) response, we obtained the spinel-type oxides with x= 0 (s1), 0.25 (s2), 0.5 (s3), 0.75 (s4), and 1 (s5) by a solid state reaction at 1350 degrees C in air. The X-ray patterns showed a spinel type structure for these compounds. The powders were exposed to beta particles from 90 Sr. The glow curve showed by s1 and s3 were hundreds of times more intense than s2, s4 and s5. At 50 Gy, s1 exhibits a main Tl maximum located at 200 degrees C, with two shoulders at 119 and 250 degrees C. The s3 oxide reveals a simple and wide glow curve at ≅195 degrees C with a Tl maximum located at 203 degrees C at 21.33 Gy. The peaks of the s1 and s3 oxide show a shift to lower temperatures and this increases its intensity as the irradiation dose increases. The lineal behavior observed for s1 and s3 were between 1.33-150 Gy and 10.66-341 Gy correspondingly, without evidence of saturation signal. After cycle 4, the s1 oxide has small variations in the relative sensitivity, with percentages below 1%. On the other hand, s3 reveals a relative sensitivity variation of 2.7%. Besides this, the standard deviation after ten consecutive irradiation-Tl readout cycles for s1 was 3.07 % and for s3 was 1%. The minimum detectable dose obtained were 0.5 Gy for s1 and 5.65 Gy for s3. These results suggest a possible application of Mg 1.5 InTi 0.5 O 4 in dosimetry. (Author)

  8. Water-gas shift. An examination of Pt promoted MgO and tetragonal and monoclinic ZrO2 by in situ drifts

    International Nuclear Information System (INIS)

    Chenu, Emilie; Jacobs, Gary; Crawford, Adam C.; Keogh, Robert A.; Patterson, Patricia M.; Sparks, Dennis E.; Davis, Burtron H.

    2005-01-01

    In situ DRIFTS measurements on unpromoted and Pt promoted MgO and ZrO 2 (both tetragonal and monoclinic) indicate that at high H 2 O/CO ratios, where the reaction rate has been reported to be zero order in H 2 O and first order in CO, the mechanism involved in the catalysis of water-gas shift is likely a surface formate mechanism, in agreement with Shido and Iwasawa. Pt was found to catalyze the removal of surface carbonates and to facilitate the generation of active OH groups relative to the unpromoted catalyst. Comparison with Pt/ceria revealed that the OH groups involved in the catalysis of magnesia and zirconia may be those of the bridging variety which occur at defect sites. That is, water dissociated over vacancies to produce bridging OH groups, as observed by infrared spectroscopy. The existence of such an adsorbed species is implied in the zero reaction order for water, where kinetics suggests that the surface should be saturated by an adsorbed water species. The lower extent of vacancy formation for magnesia and zirconia-based materials in comparison with ceria could explain a lower surface population of active bridging OH groups. CO was used as a probe molecule of the reduced centers, as it reacts with bridging OH groups to generate surface formates, a proposed WGS intermediate, and the decomposition of which is proposed to be the rate-limiting step. The trends in formate intensity by CO adsorption and CO conversion in WGS catalytic testing both followed the order: Pt/ceria>Pt/m-zirconia>Pt/t-zirconia>Pt/magnesia. In all cases, a normal kinetic isotope effect was observed in switching from H 2 O to D 2 O, consistent with a link between the rate-limiting step and the decomposition of surface formates, as noted previously by Shido and Iwasawa for Rh/ceria, MgO, and ZnO

  9. Thermodynamics of Boron Removal from Silicon Using CaO-MgO-Al2O3-SiO2 Slags

    Science.gov (United States)

    Jakobsson, Lars Klemet; Tangstad, Merete

    2018-04-01

    Slag refining is one of few metallurgical methods for removal of boron from silicon. It is important to know the thermodynamic properties of boron in slags to understand the refining process. The relation of the distribution coefficient of boron to the activity of silica, partial pressure of oxygen, and capacity of slags for boron oxide was investigated. The link between these parameters explains why the distribution coefficient of boron does not change much with changing slag composition. In addition, the thermodynamic properties of dilute boron oxide in CaO-MgO-Al2O3-SiO2 slags was determined. The ratio of the activity coefficient of boron oxide and silica was found to be the most important parameter for understanding changes in the distribution coefficient of boron for different slags. Finally, the relation between the activity coefficient of boron oxide and slag structure was investigated. It was found that the structure can explain how the distribution coefficient of boron changes depending on slag composition.

  10. Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO bioglass

    International Nuclear Information System (INIS)

    Saboori, A.; Rabiee, M.; Moztarzadeh, F.; Sheikhi, M.; Tahriri, M.; Karimi, M.

    2009-01-01

    In this study, the synthesis of SiO 2 -CaO-P 2 O 5 -MgO bioactive glass was performed by the sol-gel method. Sol-gel-derived bioglass material was produced both in powder and in discs form by uniaxial pressing, followed by sintering at 700 deg. C. The obtained material was evaluated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) analyses. The biocompatibility evaluation of the formed glass was assessed through in vitro cell culture [alkaline phosphatase (AP) activity of osteoblasts] experiments and immersion studies in simulated body fluid (SBF) for different time intervals while monitoring the pH changes and the concentration of calcium, phosphorus and magnesium in the SBF medium. The SEM, XRD and FTIR studies were conducted before and after soaking of the material in SBF. At first, an amorphous calcium phosphate was formed; after 7 days this surface consisted of deposited crystalline apatite. The present investigation also revealed that the sol-gel derived quaternary bioglass system has the ability to support the growth of human fetal osteoblastic cells (hFOB 1.19). Finally, this material proved to be non-toxic and compatible for the proposed work in segmental defects in the goat model in vivo

  11. Study of the productivity of MWCNT over Fe and Fe–Co catalysts supported on SiO2, Al2O3 and MgO

    Directory of Open Access Journals (Sweden)

    S.A. Shokry

    2014-06-01

    Full Text Available In the present study, multi-walled carbon nanotubes (MWCNT were prepared in good quality and quantity, MWCNT were produced using the catalytic chemical vapor deposition (CCVD technique and the carbon source was acetylene. Different catalysts were synthesized based on iron and a mixture of iron and cobalt metal supported on SiO2, Al2O3 or MgO. The effect of parameters such as iron concentration, support type, bimetallic catalyst and the method of catalyst preparation has been investigated in the production of MWCNT. The quality of as-made nanotubes was investigated by the high-resolution transmission electron microscopy (HRTEM and thermogravimetric analysis (TGA. The best yield of MWCNT was 30 times of the amount of the used catalyst. The high yield of MWCNT was gained by 40 wt.% Fe on alumina support which was prepared by the sol–gel method. TEM analysis was done for the carbon deposit, which revealed that the walls of the MWCNT were graphitized, with regular inner channel and uniform diameter. It reflected a reasonable degree of purity. The TGA showed that MWCNT was decomposed at 635 °C by a small rate indicating a high thermal stability and well crystalline formation of the produced MWCNT.

  12. A Structural Study on the Foaming Behavior of CaO-SiO2-MO (MO = MgO, FeO, or Al2O3) Ternary Slag System

    Science.gov (United States)

    Park, Youngjoo; Min, Dong Joon

    2017-12-01

    The foaming index of the CaO-SiO2-MO (MO = MgO, FeO, or Al2O3) ternary slag system with a fixed CaO/SiO2 ratio is measured to understand the effect of the ionic structure. At 1773 K (1500 °C), the foaming index of the slag increases with Al2O3 addition and decreases with MgO or FeO addition at a fixed CaO/SiO2 ratio. It is verified that the previous correlation between the foaming index and the physical properties could also be valid for the CaO-SiO2-(MgO or Al2O3) system. Raman spectroscopy for the CaO/SiO2 = 1.0 slag is applied to explain the foaming behavior from an ionic structural perspective. From the ionic structural viewpoint, the fractional change in each silicate anion unit is identified by de-convoluted Raman spectra. The Raman spectra indicate that the silicate network structure is polymerized with Al2O3 as an aluminosilicate structure; in contrast, de-polymerization occurs by MgO or FeO addition. Furthermore, the relationship between the silicate structure and the thermodynamic stability function is discussed. Since the ionic structure of the molten slag affects various physical/thermodynamic properties, the foaming behavior could be successfully interpreted from the ionic structural viewpoint.

  13. Effect of heat treatment on the properties of SiO2-CaO-MgO-P 2O 5 bioactive glasses.

    Science.gov (United States)

    Zhou, Yue; Li, Hongying; Lin, Kaili; Zhai, Wanying; Gu, Weiming; Chang, Jiang

    2012-09-01

    Since the invention of 45S5 Bioglass, researchers never stopped exploring new generation bioactive glass (BG) materials for wider applications in regenerative medicine, among which a novel SiO(2)-CaO-MgO-P(2)O(5) bioactive glass (BG20) is an excellent candidate. However, apart from their biocompatibility and bioactivity, a porous structure is also a must for a tissue engineering scaffold in successfully fixing bone defect. The porosity is the outcome of the high temperature (500-1,000 °C) treatment in the fabricating process of the bioglass scaffold. Under the high temperature, the amorphous glass material will become crystallized at certain percentage in the glass matrix, and possibly leading to consequent changes in the mechanical strength, biodegradability and bioactivity. To elucidate the effect of phase transition on the change of the properties of BG20, the experiments in this report were designed to fine-tuning the heat treating temperatures to fabricate a series of BG20 powders with different crystallization structures. X-ray diffraction revealed a positive correlation between the heating temperature and the crystallization, as well as the compressive strength of the materials. In vitro degradation and ion analysis by ICP-AES demonstrated a similar releasing behavior of different ions including Mg(2+), Ca(2+) and Si(4+), which in common is the tendency of decreasing of the ion concentration along with the increasing of the treating temperature. Cell proliferation assay using both mouse fibroblasts (NIH3T3) and bone marrow stromal cells (BMSCs) showed little toxicity of the ionic extract of the BG20 powders at all the treating temperatures, while fibroblasts demonstrated a significant promoting in the percentage of proliferation. Furthermore, reverse-transcription and polymerase chain reaction analysis on two representative marker genes for early osteogenesis and endochondral ossification, respectively, type I collagen alpha 1 and Indian Hedge-hog, showed

  14. Melts in the Deep Earth: Calculating the Densities of CaO-FeO-MgO-Al2O3-SiO2 Liquids

    Science.gov (United States)

    Thomas, C.; Guo, X.; Agee, C. B.; Asimow, P. D.; Lange, R. A.

    2012-12-01

    We present new equation of state (EOS) measurements for hedenbergite (Hd, CaFeSi2O6) and forsterite (Fo, Mg2SiO4) liquids. These liquid EOS add to the basis set in the CaO-FeO-MgO-Al2O3-SiO2 (CMASF) oxide space at elevated temperatures and pressures; other liquids include: enstatite (En, MgSiO3), anorthite (An, CaAl2Si2O8), diopside (Di, CaMgSi2O6), and fayalite (Fa, Fe2SiO4). The Hd EOS measurement was a multi-technique collaboration using 1-atm double-bob Archimedean, ultrasonic, sink/float, and shock wave techniques. Un-weighted linear fitting of the shock data in shock velocity (US)-particle velocity (up) space defines a pre-heated (1400 °C) Hugoniot US = 2.628(0.024) + 1.54(0.01)up km/s. The slope corresponds to a K' of 5.16(0.04), consistent with piston-cylinder and multi-anvil sink/float experiments. The intercept is fixed at the ultrasonic sound speed (Co) since the unconstrained intercept is within the stated error. This behavior demonstrates consistency across methods and that the liquid is relaxed during shock compression. Shock compression of pre-heated (2000°C) single crystal Fo gives an un-weighted linear Hugoniot of US = 2.674(0.188) + 1.64(0.06)up km/s. The unconstrained Co falls below estimates based on extrapolation in both temperature and composition from two published partial molar sound speed models, 3.195m/s [1] and 3.126 m/s [2]. The shock-derived Co indicates that dC/dT is negative for Fo liquid, contrary to the positive [1] and zero [2] temperature dependences derived over relatively narrow temperature intervals. CMASF liquid isentropes were calculated using five end-members (En, Fo, Fa, An, Di). For modeling crystallization of a fictive magma ocean, we examined two liquids: peridotite [3] (P=.33En+.56Fo+.07Fa+.03An+.007Di) and simplified chondrite [4] (Ch=.62En+.24Fo+.08Fa+.04An+.02Di). Each end-member is defined by a 3rd or 4th order Birch-Murnaghan isentrope, Mie-Grüneisen thermal pressure and a constant heat capacity. The volumes are

  15. Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation.

    Science.gov (United States)

    Zhang, Jing; Sun, Bo; Xiong, Xinmei; Gao, Naiyun; Song, Weihua; Du, Erdeng; Guan, Xiaohong; Zhou, Gongming

    2014-10-15

    TiO2 supported ruthenium nanoparticles, Ru/TiO2 (0.94‰ as Ru), was synthesized to catalyze permanganate oxidation for degrading emerging pollutants (EPs) with diverse organic moieties. The presence of 1.0 g L(-1) Ru/TiO2 increased the second order reaction rate constants of bisphenol A, diclofenac, acetaminophen, sulfamethoxazole, benzotriazole, carbamazepine, butylparaben, diclofenac, ciprofloxacin and aniline at mg L(-1) level (5.0 μM) by permanganate oxidation at pH 7.0 by 0.3-119 times. The second order reaction rate constants of EPs with permanganate or Ru/TiO2-catalyzed permanganate oxidation obtained at EPs concentration of mg L(-1) level (5.0 μM) underestimated those obtained at EPs concentration of μg L(-1) level (0.050 μM). Ru/TiO2-catalyzed permanganate could decompose a mixture of nine EPs at μg L(-1) level efficiently and the second order rate constant for each EP was not decreased due to the competition of other EPs. The toxicity tests revealed that Ru/TiO2-catalyzed permanganate oxidation was effective not only for elimination of EPs but also for detoxification. The removal rates of sulfamethoxazole by Ru/TiO2-catalyzed permanganate oxidation in ten successive cycles remained almost constant in ultrapure water and slightly decreased in Songhua river water since the sixth run, indicating the satisfactory stability of Ru/TiO2. Ru/TiO2-catalyzed permanganate oxidation was selective and could remove selected EPs spiked in real waters more efficiently than chlorination. Therefore, Ru/TiO2-catalyzed permanganate oxidation is promising for removing EPs with electron-rich moieties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Impact of nano and bulk ZrO2, TiO2 particles on soil nutrient contents and PGPR.

    Science.gov (United States)

    Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Manivasakan, Palanisamy; Yuvakkumar, Rathinam; Rajendran, Venkatachalam; Kannan, Narayanasamy

    2013-01-01

    Currently, nanometal oxides are used extensively in different industries such as medicine, cosmetics and food. The increased consumption of nanoparticles (NPs) leads the necessity to understand the fate of the nanoparticles in the environment. The present study focused on the ecotoxicological behaviour of bulk and nano ZrO2 (Zirconia) and TiO2 (Titania) particles on PGPR (plant growth promoting rhizobacteria), soil and its nutrient contents. The microbial susceptibility study showed that nano TiO2 had 13 +/- 0.9 mm (B. megaterium), 15 +/- 0.2 mm (P. fluorescens), 16 +/- 0.2 mm (A. vinelandii) and 12 +/- 0.3 mm (B. brevis) zones of inhibition. However, nano and bulk ZrO2 particles were non-toxic to PGPR. In addition, it was found that toxicity varied depends on the medium of reaction. The soil study showed that nano TiO2 was found to be highly toxic, whereas bulk TiO2 was less toxic towards soil bacterial populations at 1000 mg L(-1). In contrast, nano and bulk ZrO2 were found to be inert at 1000 mg L(-1). The observed zeta potential and hydrophobicity of TiO2 particles causes more toxic than ZrO2 in parallel with particle size. However, nano TiO2 decreases the microbial population as well as nutrient level of the soil but not zirconia. Our finding shows that the mechanism of toxicity depends on size, hydrophobic potential and zeta potential of the metal oxide particles. Thus, it is necessary to take safety measures during the disposal and use of such toxic nanoparticles in the soil to prevent their hazardous effects.

  17. Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material

    International Nuclear Information System (INIS)

    Wang, Dan; Huang, Yan; Huo, Zhenqing; Chen, Li

    2013-01-01

    Highlights: • Layered Li[Li 0.2 Ni 0.2−x Mn 0.6−x Mg 2x ]O 2 (2x = 0, 0.01, 0.02, 0.05) were synthetized. • Li[Li 0.2 Ni 0.2−x Mn 0.6−x Mg 2x ]O 2 exhibit enhanced electrochemical properties. • The improved performance is attributed to enhanced structure stability. -- Abstract: Mg-doped Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 as a Li-rich cathode material of lithium-ion batteries were prepared by co-precipitation method and ball-milling treatment using Mg(OH) 2 as a dopant. Scanning electron microscopy (SEM), ex situ X-ray powder diffraction (XRD), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvantatic charge/discharge were used to investigate the effect of Mg doping on structure and electrochemical performance. Compared with the bare material, Mg-doped materials exhibit better cycle stabilities and superior rate capabilities. Li[Li 0.2 Ni 0.195 Mn 0.595 Mg 0.01 ]O 2 displays a high reversible capacity of 226.5 mAh g −1 after 60 cycles at 0.1 C. The excellent cycle performance can be attributed to the improvement in structure stability, which is verified by XRD tests before and after 60 cycles. EIS results show that Mg doping decreases the charge-transfer resistance and enhances the reaction kinetics, which is considered to be the major factor for higher rate performance

  18. The lower-temperature-pressure stability of pyrope in the presence of quartz in the system MgO-Al2O3-SiO2

    Science.gov (United States)

    Cheng, N.; Jenkins, D. M.

    2017-12-01

    Pyrope (Mg3Al2Si3O12) is the dominant component in garnets from type A eclogites. Determining the lower-pressure-temperature (P-T) stability of pyrope in the presence of quartz helps put constraints on the stability of quartz-bearing eclogites and therefore the depths to which crustal rocks in high pressure/ultra-high pressure (HP/UHP) terranes can be transferred. It also defines the lower-pressure stability of the nearly pure pyrope-bearing quartzites of the Dora Maira massif of the Western Alps (Chopin, 1984, Contrib. Min. Pet.). Aside from the approximate boundary proposed by Hensen & Essene (1971, Contrib. Min. Pet.), there has been no detailed study of the lower P-T stability of pyrope + quartz. A reversed determination of the reaction 3 enstatite + 2 kyanite = 2 pyrope + 2 quartz has been done in the system MgO-Al2O3-SiO2 over the P-T range of 900-1100 °C and 1.6-2.5 GPa for durations of 24 hours. Double capsules, one using pure enstatite and the other Al-rich (10 wt% Al2O3) enstatite in the starting mixtures, were used to obtain reversals on the Al content in the orthopyroxene (Opx). Experiments were done using a ½-inch diameter piston-cylinder press and NaCl-pyrex-MgO pressure media. Run products were analyzed using powder XRD and electron microprobe. Reaction direction was readily determined from peak height changes on XRD patterns. The reaction has been bracketed at 1.65 GPa at 1100 °C with > 12 wt% Al2O3 in Opx; 2.05 GPa at 1000 °C with 10 wt% Al2O3 in Opx; and 2.4 GPa at 930 °C with 5 wt% Al2O3 in Opx. The reaction boundary is slightly curved to higher P with increasing T caused by increasing Al in Opx. The boundary observed in this study is about 100 °C or 0.4 GPa higher than previously proposed by Hensen & Essene (1971) and 70-170 °C or 0.6-0.7 GPa higher than the boundary calculated in this system using THERMOCALC ds6.22 (Holland & Powell, 2011, J. Meta. Geol.) and about 1-4 wt% higher Al2O3 contents in Opx. Higher pressure runs in the field

  19. Magnetotransport properties of c-axis oriented La0.7Sr0.3MnO3 thin films on MgO-buffered SiO2/Si substrates

    International Nuclear Information System (INIS)

    Kang, Young-Min; Ulyanov, Alexander N.; Shin, Geo-Myung; Lee, Sung-Yun; Yoo, Dae-Gil; Yoo, Sang-Im

    2009-01-01

    c-axis oriented La 0.7 Sr 0.3 MnO 3 (LSMO) films on MgO-buffered SiO 2 /Si substrates were prepared, and their texture, microstructure, and magnetotransport properties were studied and compared to epitaxial LSMO/MgO (001) and polycrystalline LSMO/SiO 2 /Si films. c-axis oriented MgO buffer layers were obtained on amorphous SiO 2 layer through rf sputter deposition at low substrate temperature and consequent postannealing processes. In situ pulsed laser deposition-grown LSMO films, deposited on the MgO layer, show strong c-axis texture, but no in-plane texture. The c-axis oriented LSMO films which are magnetically softer than LSMO/SiO 2 /Si films exhibit relatively large low field magnetoresistance (LFMR) and sharper MR drop at lower field. The large LFMR is attributed to a spin-dependent scattering of transport current at the grain boundaries

  20. Technology in L1

    DEFF Research Database (Denmark)

    Elf, Nikolaj Frydensbjerg; Hanghøj, Thorkild; Skaar, Håvard

    2015-01-01

    In recent decades, several Scandinavian research projects have had an explicit focus on how technology intervenes in L1 (or so-called Mother Tongue Education) practices in Swedish, Norwegian and Danish educational contexts, and how this may impact on understanding of the subject. There is currently......-of-school literacy practices. A final finding is the emphasis on teacher uncertainty regarding how and why to integrate technology within existing paradigms of the subject. This calls for further research on how technology may be justified in L1 practice, including various forms of teacher education....... no systematic overview of the documented possibilities and challenges related to the use of technology in L1. At the same time, there is terminological confusion in use of ‘technology’ and related concepts in L1. Finally, there is a general lack of critical reflection on the relation between technological...

  1. REMEDIATION OF TEXTILE DYES MIXTURES USING TIO2/VIS PHOTOCATALYSIS AND FENTON FE2+/H2O2

    Directory of Open Access Journals (Sweden)

    P. M. Andrade

    2015-12-01

    Full Text Available This study aimed to use the following treatment technology: TiO2 photocatalysis and Fenton reaction for the remediation of mixture of textile dyes.  For the photocatalytic treatment it was obtained a reduction in color of 80% and Chemical Oxygen Demand of 60% using for this 600 mg L-1 of TiO2, 1500  mL min-1 recirculation flow, temperature 40 oC/45 oC and pH = 6.3 for 60 minutes of treatment. By Fenton reaction it was reached color reduction at 95% and Chemical Oxygen Demand reduction at 75% employing 60 mg L-1 H2O2, 50 mg L-1 de Fe2+ and pH = 4.0 for 62 minutes of treatment.

  2. Synthesis and X-ray Crystallography of [Mg(H2O)6][AnO2(C2H5COO)3]2 (An = U, Np, or Pu).

    Science.gov (United States)

    Serezhkin, Viktor N; Grigoriev, Mikhail S; Abdulmyanov, Aleksey R; Fedoseev, Aleksandr M; Savchenkov, Anton V; Serezhkina, Larisa B

    2016-08-01

    Synthesis and X-ray crystallography of single crystals of [Mg(H2O)6][AnO2(C2H5COO)3]2, where An = U (I), Np (II), or Pu (III), are reported. Compounds I-III are isostructural and crystallize in the trigonal crystal system. The structures of I-III are built of hydrated magnesium cations [Mg(H2O)6](2+) and mononuclear [AnO2(C2H5COO)3](-) complexes, which belong to the AB(01)3 crystallochemical group of uranyl complexes (A = AnO2(2+), B(01) = C2H5COO(-)). Peculiarities of intermolecular interactions in the structures of [Mg(H2O)6][UO2(L)3]2 complexes depending on the carboxylate ion L (acetate, propionate, or n-butyrate) are investigated using the method of molecular Voronoi-Dirichlet polyhedra. Actinide contraction in the series of U(VI)-Np(VI)-Pu(VI) in compounds I-III is reflected in a decrease in the mean An═O bond lengths and in the volume and sphericity degree of Voronoi-Dirichlet polyhedra of An atoms.

  3. Materiales vitrocerámicos del sistema MgO-Al2O3-SiO2 a partir de ceniza de cáscara de arroz

    Directory of Open Access Journals (Sweden)

    Romero, M.

    2011-08-01

    Full Text Available This wok shows the results of a valorisation study to use rice husk ash as raw material to develop glass-ceramic materials. An original glass has been formulated in the base system MgO-Al2O3-SiO2 with addition of B2O3 and Na2O to facilitate the melting and poring processes. Glass characterization was carried out by determining its chemical composition. Sintering behaviour has been examined by Hot Stage Microscopy (HSM. Thermal stability and crystallization mechanism have been studied by Differential Thermal Analysis (DTA. Mineralogy analyses of the glass-ceramic materials were carried out using X-ray Diffraction (XRD. Results show that it is possible to use ash rice husk to produce glass-ceramic materials by a sintercrystallization process, with nepheline (Na2O·Al2O3 · SiO2 as major crystalline phase in the temperature interval 700-950ºC and forsterite (2MgO·SiO2 at temperatures above 950ºC.En este trabajo se muestran los resultados de un estudio de valorización de la ceniza de cáscara de arroz como materia prima en la obtención de materiales vitrocerámicos. Se ha formulado un vidrio en el sistema base MgO-Al2O3-SiO2 incorporando B2O3 y Na2O para facilitar los procesos de fusión y colado del vidrio. El vidrio se ha caracterizado mediante la determinación de su composición química. Su comportamiento frente a la sinterización se ha llevado a cabo mediante Microscopía de Calefacción (MC. La estabilidad térmica de las muestras y el mecanismo de cristalización preferente se ha estudiado mediante Análisis Térmico Diferencial (ATD. La mineralogía de los materiales vitrocerámicos se ha llevado a cabo por Difracción de rayos-X (DRX. Los resultados obtenidos muestran que es posible utilizar ceniza de cáscara de arroz para producir materiales vitrocerámicos mediante un proceso de sinterización seguido de cristalización, con nefelina (Na2O·Al2O3·2SiO2 como fase cristalina mayoritaria en el intervalo de temperatura 700º-950ºC y

  4. Combined electrocoagulation and TiO2 photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries

    International Nuclear Information System (INIS)

    Boroski, Marcela; Rodrigues, Angela Claudia; Garcia, Juliana Carla; Sampaio, Luiz Carlos; Nozaki, Jorge; Hioka, Noboru

    2009-01-01

    The treated wastewater consists of refractory materials and high organic content of hydrolyzed peptone residues from pharmaceutical factory. The combination of electrocoagulation (EC) followed by heterogeneous photocatalysis (TiO 2 ) conditions was maximized. The EC: iron cathode/anode (12.50 cm x 2.50 cm x 0.10 cm), current density 763 A m -2 , 90 min and initial pH 6.0. As EC consequence, the majority of the dissolved organic and suspended material was removed (about 91% and 86% of the turbidity and chemical oxygen demand (COD), respectively). After EC, refractory residues still remained in the effluent. The subsequent photocatalysis: UV/TiO 2 /H 2 O 2 (mercury lamps), pH 3.0, 4 h irradiation, 0.25 g L -1 TiO 2 and 10 mmol L -1 H 2 O 2 shows high levels of inorganic and organic compounds eliminations. The obtained COD values: 1753 mg L -1 for the sample from the factory, 160 mg L -1 after EC and 50 mg L -1 after EC/photocatalyzed effluents pointed out that the combined treatment stresses this water purification

  5. Decaying shock studies of phase transitions in MgO-SiO2 systems: implications for the Super-Earths' interiors

    Science.gov (United States)

    Bolis, R.; Morard, G.; Vinci, T.; Ravasio, A.; Bambrink, E.; Guarguaglini, M.; Koenig, M.; Musella, R.; Françoise, R.; Bouchet, J.; Ozaki, N.; Miyanishi, K.; Sekine, T.; Sakawa, Y.; Sano, T.; Kodama, R.; Guyot, F. J.; Benuzzi, A.

    2016-12-01

    Mantles of telluric exoplanets, so-called Earth-like and Super-Earths, are expected to be mainly composed of different type of oxides, such as periclase (MgO), enstatite (MgSiO3) and forsterite (Mg2SiO4). Determining the phase diagrams, melting curves and liquid properties of these compounds under extreme pressure (0.2-1 TPa) is crucial to model the internal dynamic of these exoplanets, as the melting of mantle components controls planetary temperature profiles [6]. Experimentally, these planetary thermodynamic states can be achieved with laser-shock compression. Here we present laser-driven decaying shock experiments on MgO, MgSiO3 and Mg2SiO4 samples performed at LULI and GEKKO laser facilities, where we focused 1.2-2.5 ns laser pulses with an intensity between 3-8 1013 W/cm2 exploring pressures between 0.2 and 1 TPa and temperature between 5000 and 30000 K. We determined the thermodynamic states using rear side optical diagnostics. We observed a single transition for MgO associated to melting (at 0.47 TPa ± 0.04 and 9863 ± 812 K) and no evidence of a liquid-liquid transition, dissociation or melting for all the other compounds in the range 150-500 Gpa and 200-800 Gpa respectively for MgSiO3 and Mg2SiO4. Some implications are presented comparing our data experimental and theoretical data found in literature [1, 2, 3, 4, 5]. In particular these results represent a key input to solve the controversy on a possible MgSiO3 liquid-liquid phase transition. Moreover we propose a revision of the phase diagram of MgO, with a lower melting line which results in a lower temperature profile for super-Earths. Finally our data evidence the presence of a poor electrically conducting liquid in the phase diagram of all the studied material, with implications for the modelling of magnetic field generation via dynamo mechanism.[1] McWilliams et al., Science 338 (2012): 1330-1333. [2] Spaulding et al., Physical Review Letters108 (2012): 065701. [3] Root et al., Physical Review

  6. ATG16L1

    DEFF Research Database (Denmark)

    Salem, Mohammad; Ammitzboell, Mette; Nys, Kris

    2015-01-01

    Genetic variations in the autophagic pathway influence genetic predispositions to Crohn disease. Autophagy, the major lysosomal pathway for degrading and recycling cytoplasmic material, constitutes an important homeostatic cellular process. Of interest, single-nucleotide polymorphisms in ATG16L1...... (autophagy-related 16-like 1 [S. cerevisiae]), a key component in the autophagic response to invading pathogens, have been associated with an increased risk of developing Crohn disease. The most common and well-studied genetic variant of ATG16L1 (rs2241880; leading to a T300A conversion) exhibits a strong...... association with risk for developing Crohn disease. The rs2241880 variant plays a crucial role in pathogen clearance, resulting in imbalanced cytokine production, and is linked to other biological processes, such as the endoplasmic reticulum stress/unfolded protein response. In this review, we focus...

  7. Effect of preparation method and CuO promotion in the conversion of ethanol into 1,3-butadiene over SiO2-MgO catalysts

    NARCIS (Netherlands)

    Angelici, Carlo; Velthoen, Marjolein E Z; Weckhuysen, Bert M.; Bruijnincx, Pieter C A

    2014-01-01

    Silica-magnesia (Si/Mg=1:1) catalysts were studied in the one-pot conversion of ethanol to butadiene. The catalyst synthesis method was found to greatly influence morphology and performance, with materials prepared through wet-kneading performing best both in terms of ethanol conversion and

  8. Spectroscopic and energy transfer studies of Er3+ ions in B2O3-TeO2-MgO-ZnO glasses

    Science.gov (United States)

    Vijayakumar, M.; Arunkumar, S.; Maheshvaran, K.; Marimuthu, K.

    2016-05-01

    Composition dependent spectroscopic behavior of Er3+ doped telluroborate glasses were prepared and the energy transfer mechanism in Er3+ ions were investigated for 1.532 µm amplification. The emission cross-section and gain coefficient for 4I13/2→4I15/2 level of Er3+ ions have been analysed through the Judd-Ofelt and McCumber theory. The excited state decay curves were measured and the effect of TeO2 on the lifetime for 4I13/2→4I15/2 level of Er3+ ions has been associated with the various energy transfer mechanism. Further the interaction between Er3+ and OH- were investigated and it was confirmed that the OH free radicals in the prepared glasses are dominant quenching center through the non-radiative relaxation that causes the quenching of 1.532 µm amplification. The non-radiative rate through the OH content were calculated and compared with the reported Er3+ doped glasses.

  9. Combined addition of nano diamond and nano SiO2, an effective method to improve the in-field critical current density of MgB2 superconductor

    International Nuclear Information System (INIS)

    Rahul, S.; Varghese, Neson; Vinod, K.; Devadas, K.M.; Thomas, Syju; Anees, P.; Chattopadhyay, M.K.; Roy, S.B.; Syamaprasad, U.

    2011-01-01

    Highlights: → Both nano diamond and nano SiO 2 caused significant modifications in the structural properties of pure MgB 2 sample. → Reduction in T C for the best codoped sample was approximately 2 K. → The best codoped sample yielded a J C , an order of magnitude more than the undoped one at 5 K and 8 T. → The enhanced flux pinning capability provided by the additives is responsible for the improved in-field J C . -- Abstract: MgB 2 bulk samples added with nano SiO 2 and/or nano diamond were prepared by powder-in-sealed-tube (PIST) method and the effects of addition on structural and superconducting properties were studied. X-ray diffraction (XRD) analysis revealed that the addition caused systematic reduction in 'a' lattice parameter due to the substitution of C atoms at B sites and the strain caused by reacted intragrain nano particles of Mg 2 Si as evinced by transmission electron microscope image. Scanning electron microscopy images showed distinct microstructural variations with SiO 2 /diamond addition. It was evident from DC magnetization measurements that the in-field critical current density [J C (H)] of doped samples did not fall drastically like the undoped sample. Among the doped samples the J C (H) of co-doped samples were significantly higher and the best co-doped sample yielded a J C , an order of magnitude more than the undoped one at 5 K and 8 T.

  10. Low temperature biosynthesis of Li2O–MgO–P2O5–TiO2 nanocrystalline glass with mesoporous structure exhibiting fast lithium ion conduction

    DEFF Research Database (Denmark)

    Du, X.Y.; He, W.; Zhang, X.D.

    2013-01-01

    We demonstrate a biomimetic synthesis methodology that allows us to create Li2O–MgO–P2O5–TiO2 nanocrystalline glass with mesoporous structure at lower temperature. We design a ‘nanocrystal-glass’ configuration to build a nanoarchitecture by means of yeast cell templates self-assembly followed by ...... nanocrystalline glass exhibits outstanding thermal stability, high conductivity and wide potential window. This approach could be applied to many other multicomponent glass–ceramics to fabricate mesoporous conducting materials for solid-state lithium batteries....

  11. Effect of phase transformation and partial crystallization on the mechanical properties of glass and glass-ceramics based on 3CaO.P_2O_5-SiO_2-MgO system

    International Nuclear Information System (INIS)

    Daguano, J.K.M.F.; Simba, B.G.; Santos, C.

    2011-01-01

    In this work, glass and glass-ceramics of the 3CaO.P_2O_5-SiO_2-MgO system were developed aiming to produce different crystallization degrees. Glasses were melted at 1600 deg C and heat treated at 700 deg C. Part of the glasses was crystallized using heat treatments at 770 deg C and 1150 deg C for 4h. The partial crystallization and phase transformations were responsible for different mechanical properties (bending strength, young modulus, fracture toughness and hardness) in each temperature. The mechanical response of the material is discussed in relation to the microstructure, crystalline phases, and porosity of the materials. (author)

  12. Formation of hydroxyapatite onto glasses of the CaO-MgO-SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives.

    Science.gov (United States)

    Agathopoulos, S; Tulyaganov, D U; Ventura, J M G; Kannan, S; Karakassides, M A; Ferreira, J M F

    2006-03-01

    New bioactive glasses with compositions based on the CaO-MgO-SiO(2) system and additives of B(2)O(3), P(2)O(5), Na(2)O, and CaF(2) were prepared. The in vitro mineralization behaviour was tested by immersion of powders or bulk glasses in simulated body fluid (SBF). Monitoring of ionic concentrations in SBF and scanning electron microscopy (SEM) observations at the surface of the glasses were conducted over immersion time. Raman and infrared (IR) spectroscopy shed light on the structural evolution occurring at the surface of the glasses that leads to formation of hydroxyapatite.

  13. Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna

    International Nuclear Information System (INIS)

    Fan Wenhong; Cui Minming; Liu Hong; Wang Chuan; Shi Zhiwei; Tan Cheng; Yang Xiuping

    2011-01-01

    The acute toxicity of engineered nanoparticles (NPs) in aquatic environments at high concentrations has been well-established. This study demonstrates that, at a concentration generally considered to be safe in the environment, nano-TiO 2 remarkably enhanced the toxicity of copper to Daphnia magna by increasing the copper bioaccumulation. Specifically, at 2 mg L -1 nano-TiO 2 , the (LC 50 ) of Cu 2+ concentration observed to kill half the population, decreased from 111 μg L -1 to 42 μg L -1 . Correspondingly, the level of metallothionein decreased from 135 μg g -1 wet weight to 99 μg g -1 wet weight at a Cu 2+ level of 100 μg L -1 . The copper was found to be adsorbed onto the nano-TiO 2 , and ingested and accumulated in the animals, thereby causing toxic injury. The nano-TiO 2 may compete for free copper ions with sulfhydryl groups, causing the inhibition of the detoxification by metallothioneins. - Research highlights: → This study demonstrates that, at a concentration generally considered to be safe in the environment, nano-TiO 2 remarkably enhanced the toxicity of copper to Daphnia magna. → The copper was found to be adsorbed onto the nano-TiO 2 , and ingested and accumulated in the Daphnia magna, thereby causing toxic injury. → The nano-TiO 2 may compete for free copper ions with sulfhydryl groups, causing the inhibition of the detoxification mechanism of metallothionein. - The nano-TiO 2 remarkably enhanced the toxicity of copper to Daphnia magna. The nano-TiO 2 may compete for free copper ions with sulfhydryl groups, causing the inhibition of the detoxification mechanism of metallothionein.

  14. The MgO-Al2O3-SiO2 system - Free energy of pyrope and Al2O3-enstatite. [in earth mantle formation

    Science.gov (United States)

    Saxena, S. K.

    1981-01-01

    The model of fictive ideal components is used to determine Gibbs free energies of formation of pyrope and Al2O3-enstatite from the experimental data on coexisting garnet and orthopyroxene and orthopyroxene and spinel in the temperature range 1200-1600 K. It is noted that Al2O3 forms an ideal solution with MgSiO3. These thermochemical data are found to be consistent with the Al2O3 isopleths that could be drawn using most recent experimental data and with the reversed experimental data on the garnet-spinel field boundary.

  15. XPS studies of Mg doped GDC (Ce0.8Gd0.2O2-δ) for IT-SOFC

    Science.gov (United States)

    Tyagi, Deepak; Rao, P. Koteswara; Wani, B. N.

    2018-04-01

    Fuel Cells have gained much attention as efficient and environment friendly device for both stationary as well as mobile applications. For intermediate temperature SOFC (IT-SOFC), ceria based electrolytes are the most promising one, due to their higher ionic conductivity at relatively lower temperatures. Gd doped ceria is reported to be having the highest ionic conductivity. In the present work, Mg is codoped along with Gd and the electronic structure of the constituents is studied by XPS. XPS confirm that the Cerium is present in +4 oxidation state only which indicates that electronic conduction can be completely avoided.

  16. UV light induced photodegradation of malachite green on TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Chen, C.C.; Lu, C.S.; Chung, Y.C.; Jan, J.L.

    2007-01-01

    The photodegradation of malachite green (MG), a cationic triphenylmethane dye, is examined both under different pH values and amounts of TiO 2 . After 15 W UV-365 nm irradiation for 4 h, ca. 99.9% of MG was degraded with addition of 0.5 g L -1 TiO 2 to solutions containing 50 mg L -1 of the MG dye. The HPLC-PDA-ESI-MS technique was used to obtain a better understanding on the mechanistic details of this TiO 2 -assisted photodegradation of the MG dye with UV irradiation. Five intermediates of the process were separated, identified, and characterized for the first time. The results indicated that the N-de-methylation degradation of MG dye took place in a stepwise manner to yield mono-, di-, tri-, and tetra-N-de-methylated MG species generated during the processes. Under acidic conditions, the results indicated that the photodegradation mechanism is favorable to cleavage of the whole conjugated chromophore structure of the MG dye. Under basic conditions, the results showed that the photodegradation mechanism is favorable to a formation of a series of N-de-methylated intermediates of the MG dye

  17. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Wang Huanhua; Wick, Robert L.; Xing Baoshan

    2009-01-01

    Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al 2 O 3 and TiO 2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC 50 ) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC 50 for ZnO NPs (2.3 mg L -1 ) and bulk ZnO was not significantly different, but significantly different between Al 2 O 3 NPs (82 mg L -1 ) and bulk Al 2 O 3 (153 mg L -1 ), and between TiO 2 NPs (80 mg L -1 ) and bulk TiO 2 (136 mg L -1 ). Oxide solubility influenced the toxicity of ZnO and Al 2 O 3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs. - ZnO, Al 2 O 3 and TiO 2 nanoparticles are more toxic than their bulk counterparts to the nematode, Caenorhabditis elegans

  18. Elastic wave velocities of iron-bearing Ringwoodite (Mg0.8Fe0.2)2SiO2 to 12GPa at room temperature

    Science.gov (United States)

    Higo, Y.; Li, B.; Inoue, T.; Irifune, T.; Libermann, R. C.

    2002-12-01

    At present, it is widely accepted that olivine is the most important mineral in the Earth's upper mantle. The elastic property changes associated with the phase transformations to its high-pressure polymorphs are very important parameters to constrain the composition of the mantle transition zone. In this study, we measured the elastic wave velocity of iron-bearing Ringwoodite (Mg0.8Fe0.2)2SiO4. The specimen was hot-pressed at 18GPa and 1273K in a 2000-ton Uniaxial Split Sphere Apparatus (ORANGE-2000: GRC at ehime university). The recovered polycrystalline specimen was characterized by x-ray diffraction, EPMA, ultrasonic techniques, and the density was determined by Archimedes' method, and found to be single-phase and fine-grained. Bench top measurements of the compressional and shear wave velocities yielded Vp=9.10 km/s and Vs=5.52 km/s. High-pressure ultrasonic measurement was carried out in a 1000-ton Uniaxial Split-Cylinder Apparatus (USCA-1000: SUNY) at pressures up to 12GPa at room temperature using ZnTe as internal pressure marker. The sample was surrounded by lead to minimize the deviatoric stress. Also in this experiment, the travel times of the Al2O3 buffer rod were used for pressure calculation. The travel times of the buffer rod under the same cell geometry have been calibrated as a function of sample pressure by the thermal equation of state of NaCl using in-situ X-ray diffraction techniques. The results of our high-pressure experiment, including the elastic moduli and their pressure dependence, effect of iron on the elastic moduli, as well as their implication for the mantle transition zone, will be presented.

  19. Solid electrolytes based on {1 − (x + y}ZrO2-(xMgO-(yCaO ternary system: Preparation, characterization, ionic conductivity, and dielectric properties

    Directory of Open Access Journals (Sweden)

    Nazli Zeeshan

    2018-01-01

    Full Text Available Different composition of composite material of zirconium dioxide co-doped with magnesium oxide [MgO(x] and calcium oxide [CaO(y] according to the general molecular formula {1 − (x + y}ZrO2-(xMgO-(yCaO were prepared by co-precipitation method and characterized by different techniques, such as XRD, FTIR, TG-DTA, and SEM. Co-doping was conducted to enhance the ionic conductivity, as mixed system show higher conductivity than the single doped one. Arrhenius plots of the conductance revealed that the co-doped composition “6Mg3Ca” has a higher conductivity with a minimum activation energy of 0.003 eV in temperature range of 50–190 °C. With increasing temperature, dielectric constant value increased; however, with increasing frequency it shows opposite trend. Co-doped composition C2 exhibit higher conductivity compared to C3, owing to the concentration of Mg content (0–6%; the conductivity decreases thereafter. Zirconium oxide was firstly used for medical purpose in orthopaedics, but currently different type of zirconia-ceramic materials has been successfully introduced into the clinic to fix the dental prostheses.

  20. Combined use of O3/H2O2 and O3/Mn2+ in flotation of dairy wastewater

    Directory of Open Access Journals (Sweden)

    Marta Cristina Silva Carvalho

    2018-05-01

    Full Text Available This work investigated the degradation of organic matter present in synthetic dairy wastewater by the combination of ozonation (ozone (O3/hydrogen peroxide (H2O2 and catalytic ozonation (ozone (O3/manganese (Mn2+ associated with dispersed air flotation process. The effect of independent factors such as O3 concentration, pH and H2O2 and Mn2+ concentration was evaluated. For the flotation/O3/H2O2 treatment, the significant variables (p ≤ 0.05 were: O3 concentration (linear and quadratic effect, H2O2 concentration linear and quadratic effect, pH values (linear and quadratic effect and interaction O3 concentration versus pH. For catalytic ozonation, it was observed that the significant variable was the linear effect of O3 concentration. According to the desirability function, it was concluded that the optimal condition for the treatment of flotation/O3/H2O2 can be obtained in acidic solution using O3 concentrations greater than 42.9 mg L-1 combined with higher concentrations of H2O2 to 1071.5 mg L-1. On other hand, at pH values higher than 9.0, the addition of O3 may be neglected when using higher concentrations than 1071.5 mg L-1 of H2O2. For flotation/ozonation catalyzed by Mn2+, it was observed that metal addition did not affect treatment, resulting in an optimum condition: 53.8 mg L-1 of O3 and pH 3.6.

  1. Cosmetic wastewater treatment using the Fenton, Photo-Fenton and H2O2/UV processes.

    Science.gov (United States)

    Marcinowski, Piotr P; Bogacki, Jan P; Naumczyk, Jeremi H

    2014-01-01

    Advanced Oxidation Processes (AOPs), such as the Fenton, photo-Fenton and H2O2/UV processes, have been investigated for the treatment of cosmetic wastewaters that were previously coagulated by FeCl3. The Photo-Fenton process at pH 3.0 with 1000/100 mg L(-1) H2O2/Fe(2+) was the most effective (74.0% Chemical Oxygen Demand (COD) removal). The Fenton process with 1200/500 mg L(-1) H2O2/Fe(2+) achieved a COD removal of 72.0%, and the H2O2/UV process achieved a COD removal of 47.0%. Spreading the H2O2 doses over time to obtain optimal conditions did not improve COD removal. The kinetics of the Fenton and photo-Fenton processes may be described by the following equation: d[COD]/dt = -a[COD] t(m) (t represents time and a and m are constants). The rate of COD removal by the H2O2/UV process may be described by a second-order reaction equation. Head Space, Solid-Phase MicroExtraction, Gas Chromatography and Mass Spectrometry (HS-SPME-GC-MS) were used to identify 48 substances in precoagulated wastewater. Among these substances, 26 were fragrances. Under optimal AOP conditions, over 99% of the identified substances were removed in 120 min.

  2. Cristalización de Cordierita en vidrios derivados del sistema cuaternario CaO-MgO-Al2O3-SiO2. Influencia de la composición del vidrio

    Directory of Open Access Journals (Sweden)

    Alarcón, J.

    1998-10-01

    Full Text Available It has been studied the calcium effect on the crystallization of cordierite for obtaining a glassceramic material into the CaOáMgOáAl2O3áSiO2 quaternary system. With this propose it has been selected six compositions into de cordierite primary field of crystallization and obtained the original glasses. The obtained samples have been analysed after a thermal treatment in three steps (glass transformation, nucleation and growth by X-ray diffraction (XRD. The composition of phases in microstructures have been analysed by scanning electron microscopy (SEM. The microstructures have been related with the crystalline phases by energy dispersive X-ray microanalysis (EDX. The amount of CaO in glasses is directly related with the anorthite crystallization, suggesting that the great amount of crystallized anorthite in relation with the low amount of CaO in the original glasses is due to the formation of one anorthite-diopside solid solution, what was tested by EDX. At growth temperature almost every samples partly crystallized, as primary or secondary cordierite phase. The anorthite microstructure was very particulated in spherulites forms of radius near to 250 nm, while the cordierite phase showed different morphologies, from almost-spherulitic crystallization nucleus ("rosettes" of μ-cordierite for direct crystallization from glass, to dense dendrites coming from μ transformation. Finally it can be found homogeneous blocks of α-cordierite with dimension of 10 x 10 μm2.Se ha estudiado el efecto del calcio en la cristalización de cordierita para la obtención de un material vitrocerámico dentro del sistema cuaternario CaO-MgO-Al2O3-SiO2. Con este objetivo se han seleccionado seis composiciones dentro del campo primario de cristalización de la cordierita y se han obtenido por fusión sus correspondientes vidrios. Se han analizado las muestras obtenidas tras un tratamiento térmico en tres etapas (transformación vítrea, nucleación y crecimiento

  3. Synthesis, bioactivity and preliminary biocompatibility studies of glasses in the system CaO-MgO-SiO2-Na2O-P2O5-CaF2.

    Science.gov (United States)

    Tulyaganov, D U; Agathopoulos, S; Valerio, P; Balamurugan, A; Saranti, A; Karakassides, M A; Ferreira, J M F

    2011-02-01

    New compositions of bioactive glasses are proposed in the CaO-MgO-SiO(2)-Na(2)O-P(2)O(5)-CaF(2) system. Mineralization tests with immersion of the investigated glasses in simulated body fluid (SBF) at 37°C showed that the glasses favour the surface formation of hydroxyapatite (HA) from the early stages of the experiments. In the case of daily renewable SBF, monetite (CaHPO(4)) formation competed with the formation of HA. The influence of structural features of the glasses on their mineralization (bioactivity) performance is discussed. Preliminary in vitro experiments with osteoblasts' cell-cultures showed that the glasses are biocompatible and there is no evidence of toxicity. Sintering and devitrification studies of glass powder compacts were also performed. Glass-ceramics with attractive properties were obtained after heat treatment of the glasses at relatively low temperatures (up to 850°C).

  4. Combined UV-C/H2O2-VUV processes for the treatment of an actual slaughterhouse wastewater.

    Science.gov (United States)

    Naderi, Kambiz Vaezzadeh; Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Abdekhodaie, Mohammad Jafar

    2017-05-04

    In this study, a three-factor, three-level Box-Behnken design with response surface methodology were used to maximize the TOC removal and minimize the H 2 O 2 residual in the effluent of the combined UV-C/H 2 O 2 -VUV system for the treatment of an actual slaughterhouse wastewater (SWW) collected from one of the meat processing plants in Ontario, Canada. The irradiation time and the initial concentrations of total organic carbon (TOC o ) and hydrogen peroxide (H 2 O 2o ) were the three predictors, as independent variables, studied in the design of experiments. The multiple response approach was used to obtain desirability response surfaces at the optimum factor settings. Subsequently, the optimum conditions to achieve the maximum percentage TOC removal of 46.19% and minimum H 2 O 2 residual of 1.05% were TOC o of 213 mg L -1 , H 2 O 2o of 450 mg L -1 , and irradiation time of 9 min. The attained optimal operating conditions were validated with a complementary test. Consequently, the TOC removal of 45.68% and H 2 O 2 residual of 1.03% were achieved experimentally, confirming the statistical model reliability. Three individual processes, VUV alone, VUV/H 2 O 2 , and UV-C/H 2 O 2 , were also evaluated to compare their performance for the treatment of the actual SWW using the optimum parameters obtained in combined UV-C/H 2 O 2 -VUV processes. Results confirmed that an adequate combination of the UV-C/H 2 O 2 -VUV processes is essential for an optimized TOC removal and H 2 O 2 residual. Finally, respirometry analyses were also performed to evaluate the biodegradability of the SWW and the BOD removal efficiency of the combined UV-C/H 2 O 2 -VUV processes.

  5. [Toxic effects of nano-TiO2 on Gymnodinium breve].

    Science.gov (United States)

    Li, Feng-Min; Zhao, Wei; Li, Yuan-Yuan; Tian, Zhi-Jia; Wang, Zhen-Yu

    2012-01-01

    In order to reveal the toxicity and mechanism of nano-TiO2 on algae, the inhibition effect, enzyme activity, oxygen free radicals of nano-TiO2 on the growth of G. breve were investigated. The results showed that G. breve was inhibited by nano-TiO2, and the 72 h-EC50 was 9.7 mg x L(-1). With the increasing concentration of nano-titanium dioxide, the activities of SOD decrease significantly (P TiO2 suspension while that was 1.1 U x mL(-1) in control after 48 h. Through the study of 20 mg x L(-1) nano-titanium dioxide on G. breve at different times, the activities of SOD and CAT, the content of MDA are consistent, which the highest values is achieved at the exposure time of 12 hours and the lowest value is found at the exposure time of 48 hours. The content of hydroxyl radical increased significantly at the exposure time of 48 hours. The activity of SOD was 0.14 U x (10(7) cell x min)(-1) in G. breve at 12 h which was ten times higher than that at 48 h.

  6. Advanced oxidation removal of hypophosphite by O3/H2O2 combined with sequential Fe(II) catalytic process.

    Science.gov (United States)

    Zhao, Zilong; Dong, Wenyi; Wang, Hongjie; Chen, Guanhan; Wang, Wei; Liu, Zekun; Gao, Yaguang; Zhou, Beili

    2017-08-01

    Elimination of hypophosphite (HP) was studied as an example of nickel plating effluents treatment by O 3 /H 2 O 2 and sequential Fe(II) catalytic oxidation process. Performance assessment performed with artificial HP solution by varying initial pH and employing various oxidation processes clearly showed that the O 3 /H 2 O 2 ─Fe(II) two-step oxidation process possessed the highest removal efficiency when operating under the same conditions. The effects of O 3 dosing, H 2 O 2 concentration, Fe(II) addition and Fe(II) feeding time on the removal efficiency of HP were further evaluated in terms of apparent kinetic rate constant. Under improved conditions (initial HP concentration of 50 mg L -1 , 75 mg L -1 O 3 , 1 mL L -1 H 2 O 2 , 150 mg L -1 Fe(II) and pH 7.0), standard discharge (<0.5 mg L -1 in China) could be achieved, and the Fe(II) feeding time was found to be the limiting factor for the evolution of apparent kinetic rate constant in the second stage. Characterization studies showed that neutralization process after oxidation treatment favored the improvement of phosphorus removal due to the formation of more metal hydroxides. Moreover, as a comparison with lab-scale Fenton approach, the O 3 /H 2 O 2 ─Fe(II) oxidation process had more competitive advantages with respect to applicable pH range, removal efficiency, sludge production as well as economic costs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Study of a Mixed Alkaline–Earth Effect on Some Properties of Glasses of the CaO-MgO-Al2O3-SiO2 System

    Directory of Open Access Journals (Sweden)

    Valle-Fuentes, J. F.

    2007-06-01

    Full Text Available In the present work, we studied a “Mixed Alkaline–Earth Effect”, i.e. the non-linear behaviour showed by the glass transition temperature as well as by the compressive strength of glasses of the CaO-MgO-Al2O3-SiO2 system, when a part of the CaO contained in them was substituted by a BaO/SrO mixture, in variable molar proportions. An important factor for the occurrence of this phenomenon was the difference in atomic weight, ionic radii and field strength of the Ba2+ and Sr2+ ions in comparison with those corresponding to the Ca2+ ion. Another factor considered was the likely occurrence of a microphase separation caused by the addition of BaO and/or SrO, together with the presence of F- and Mg2+ in the glasses. Other glass properties studied as a function of the CaO substitution level were density, glass molar volume, oxygen molar volume, packing fraction, and chemical resistance in neutral, basic and acidic aqueous media. In general, the structural reinforcement of the glass network caused by the partial substitution of CaO by a BaO/SrO mixture was accompanied by an improvement in the alkaline resistance of the materials, which were found to be suitable for applications in corrosive environments, especially in basic media. Keywords: Mixed alkaline–earth effect; CaO-MgO-Al2O3-SiO2 system; glass properties.En el presente trabajo, se estudia el comportamiento no lineal mostrado por la temperatura de transición vítrea y por la resistencia a la compresión de vidrios del sistema CaO-MgO-Al2O3-SiO2, cuando una parte del CaO contenido en los mismos es sustituido por una mezcla de BaO/SrO, en relación molar variable. Factores importantes para que se de este comportamiento son la diferencia entre pesos atómicos, radios iónicos e intensidad de campo de los iones Ba2+ y Sr2+ y los del propio ión Ca2+. Otro factor considerado ha sido la probable existencia de una separación de microfases originada por la adición de BaO y/o SrO, junto con la

  8. Magnetic ordered mesoporous Fe3O4/CeO2 composites with synergy of adsorption and Fenton catalysis

    Science.gov (United States)

    Li, Keyan; Zhao, Yongqin; Song, Chunshan; Guo, Xinwen

    2017-12-01

    Magnetic Fe3O4/CeO2 composites with highly ordered mesoporous structure and large surface area were synthesized by impregnation-calcination method, and the mesoporous CeO2 as support was synthesized via the hard template approach. The composition, morphology and physicochemical properties of the materials were characterized by XRD, SEM, TEM, XPS, Raman spectra and N2 adsorption/desorption analysis. The mesoporous Fe3O4/CeO2 composite played a dual-function role as both adsorbent and Fenton-like catalyst for removal of organic dye. The methylene blue (MB) removal efficiency of mesoporous Fe3O4/CeO2 was much higher than that of irregular porous Fe3O4/CeO2. The superior adsorption ability of mesoporous materials was attributed to the abundant oxygen vacancies on the surface of CeO2, high surface area and ordered mesoporous channels. The good oxidative degradation resulted from high Ce3+ content and the synergistic effect between Fe and Ce. The mesoporous Fe3O4/CeO2 composite presented low metal leaching (iron 0.22 mg L-1 and cerium 0.63 mg L-1), which could be ascribed to the strong metal-support interactions for dispersion and stabilization of Fe species. In addition, the composite can be easily separated from reaction solution with an external magnetic field due to its magnetic property, which is important to its practical applications.

  9. In-situ synthesis of hydrogen peroxide in a novel Zn-CNTs-O2 system

    Science.gov (United States)

    Gong, Xiao-bo; Yang, Zhao; Peng, Lin; Zhou, An-lan; Liu, Yan-lan; Liu, Yong

    2018-02-01

    A novel strategy of in-situ synthesis of hydrogen peroxide (H2O2) was formulated and evaluated. Oxygen was selectively reduced to H2O2 combined with electrochemical corrosion of zinc in the Zn-CNTs-O2 system. The ratio of zinc and CNTs, heat treatment temperature, and operational parameters such as composite dosage, initial pH, solution temperature, oxygen flow rate were systematically investigated to improve the efficiency of H2O2 generation. The Zn-CNTs composite (weight ratio of 2.5:1) prepared at 500 °C showed the maximum H2O2 accumulation concentration of 293.51 mg L-1 within 60 min at the initial pH value of 3.0, Zn-CNTs dosage of 0.4 g and oxygen flow rate of 400 mL min-1. The oxygen was reduced through two-electron pathway to hydrogen peroxide on CNTs while the zinc was oxidized in the system and the dissolved zinc ions convert to zinc hydroxide and depositing on the surface of CNTs. It was proposed that the increment of direct H2O2 production was caused by the improvement of the formed Zn/CNTs corrosion cell. This provides promising strategy for in-situ synthesis and utilization of hydrogen peroxide in the novel Zn-CNTs-O2 system, which enhances the environmental and economic attractiveness of the use of H2O2 as green oxidant for wastewater treatments.

  10. Hardness properties and microscopic investigation of crack- crystal interaction in SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F glass ceramic system.

    Science.gov (United States)

    Roy, Shibayan; Basu, Bikramjit

    2010-01-01

    In view of the potential engineering applications requiring machinability and wear resistance, the present work focuses to evaluate hardness property and to understand the damage behavior of some selected glass-ceramics having different crystal morphologies with SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F composition, using static micro-indentation tests as well as dynamic scratch tests, respectively. Vickers hardness of up to 5.5 GPa has been measured in glass-ceramics containing plate like mica crystals. Scratch tests at a high load of 50 Nin artificial saliva were carried out in order to simulate the crack-microstructure interaction during real-time abrasion wear and machining operation. The experimental observations indicate that the novel "spherulitic-dendritic shaped "crystals, similar to the plate like crystals, have the potential to hinder the scratching induced crack propagation. In particular, such potential of the 'spherulitic-dendritic' crystals become more effective due to the larger interfacial area with the glass matrix as well as the dendritic structure of each mica plate, which helps in crack deflection and crack blunting, to a larger extent.While modest damage tolerant behavior is observed in case of 'spherulitic-dendritic' crystal containing material, severe brittle fracture of plate like crystals were noted, when both were scratched at 50 N load.

  11. Effects of Al/P composition ratio on the crystallization of MgO-CaO-Al203-SiO2-P2O5 bioglass-ceramic system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shihching; Hon, Minhsiung [National Cheng-Kung Univ., Taiwan (Taiwan, Province of China)

    1993-06-01

    Effects of Al/P composition ratio on the crystallization of apatite and anorthite were investigated by differential thermal analysis ( DTA ) using series of glasses with the nominal composition of 3.0wt% MgO, 35.0wt% CaO, 41.4wt% SiO2 and 20.6wt%(Al2O3+P205). With the decrease of Al/P ratio, the activation energy for apatite crystallization is decreased and the apatite exotherm is shifted to the lower temperature. On the other hand, anorthite crystallized from the specimen surface, the activation energy for anorthite is increased with the decrease of Al/P ratio, however the exotherm is not shifted significantly. Roughly estimated values of Avrami parameters, n, which is related to the directionality of crystal growth, for apatite and anorthite have been 2 and 1 respectively. This had shown that apatite implies bulk crystallization and anorthite signifies surface crystallization. Also the SEM observations of the crystals revealed that there was one dimensional crystal growth for anorthite and spherulitic growth for apatite. 17 refs., 6 figs., 2 tabs.

  12. Determination and analysis of non-linear index profiles in electron-beam-deposited MgOAl2O3ZrO2 ternary composite thin-film optical coatings

    International Nuclear Information System (INIS)

    Sahoo, N.K.; Thakur, S.; Senthilkumar, M.; Das, N.C.

    2005-01-01

    Thickness-dependent index non-linearity in thin films has been a thought provoking as well as intriguing topic in the field of optical coatings. The characterization and analysis of such inhomogeneous index profiles pose several degrees of challenges to thin-film researchers depending upon the availability of relevant experimental and process-monitoring-related information. In the present work, a variety of novel experimental non-linear index profiles have been observed in thin films of MgOAl 2 O 3 ZrO 2 ternary composites in solid solution under various electron-beam deposition parameters. Analysis and derivation of these non-linear spectral index profiles have been carried out by an inverse-synthesis approach using a real-time optical monitoring signal and post-deposition transmittance and reflection spectra. Most of the non-linear index functions are observed to fit polynomial equations of order seven or eight very well. In this paper, the application of such a non-linear index function has also been demonstrated in designing electric-field-optimized high-damage-threshold multilayer coatings such as normal- and oblique-incidence edge filters and a broadband beam splitter for p-polarized light. Such designs can also advantageously maintain the microstructural stability of the multilayer structure due to the low stress factor of the non-linear ternary composite layers. (orig.)

  13. LEACHABILITY OF CHROME FROM MAGNESIA-CHROMITE REFRACTORY BRICKS CORRODED BY Cu/CuO- Na2O.2SiO2 SLAGS

    Directory of Open Access Journals (Sweden)

    David Medved

    2015-06-01

    Full Text Available The interactions of magnesia-chromite refractory brick with Cu-Na2O.2SiO2 and CuO-Na2O.2SiO2 melts are studied and the chemical durability of corrosion products in water is evaluated. The corrosion tests confirm intensive infiltration of the slag melts into the tested refractory bricks and formation of Cr(6+ compounds. The molten copper partially oxidizes during corrosion test by air and penetrates into bricks. Interactions among periclase (MgO and chromite (FeCr2O4 grains with the melt Na2O.2SiO2 and copper oxides makes possible to form several compounds (e.g. Cu2MgO3, CuCrO4, CaCrO4, Na2CrO4, MgCrO4. Just the marked yellow spots, which were observed on the corroded brick surface after 30 days of free storage, suggest hydration of the high-temperature corrosion products. The yellow color of spots points out to chromates as Na2CrO4 and MgCrO4, which are well soluble in water. The leaching of corroded bricks in water (batch leaching test of a ratio of S (solid : W (water = 0.1 taking up to 28 days confirmed the Cr, Na, Mg and Ca ions leach-out. The pH value of solution increased up to 9 during leaching mainly as a consequence of elevated Na+ ion concentration. The Cr ion concentration rises in the solution up to 1 mmol.l-1. The observed moderate decrease of Cr ion concentration in the solution with the length of leaching indicates super-saturation of the solution and precipitation of the products.

  14. Melting relations of model lherzolite in the system CaO-MgO-Al2O3-SiO2 at 2.4-3.4 GPa and the generation of komatiites

    Science.gov (United States)

    Gudfinnsson, Gudmundur H.; Presnall, Dean C.

    1996-12-01

    Isobarically invariant phase relations in the CaO-MgO-Al2O3-SiO2 system (CMAS) involving the lherzolite phase assemblage in equilibrium with liquid have been determined at 2.4-3.4 GPa. These phase relations form the solidus of model lherzolite in the CMAS system. Our data, which include determinations of all phase compositions, are in excellent agreement with the 3.0 and 4.0 GPa points of Milholland and Presnall [1991] and Davis and Schairer [1965], respectively. The invariant transition on the P-T solidus curve from spinel- to garnet-lherzolite at 3.0 GPa, 1575°C [Milholland and Presnall, 1991], is confirmed, but we observe that the theoretically required temperature depression on the solidus curve at this point is not experimentally detectable. Composition trends along the solidus take a sharp turn at the transition. In the spinel-lherzolite stability field, melt compositions become increasingly Fo-normative and less En-normative with increasing pressure, but become less Fo-normative and more pyroxenitic as pressure increases in the garnet-lherzolite stability field. Calculated melting reactions indicate that forsterite is in reaction relationship with the melt up to 3.0 GPa. Orthopyroxene is also in reaction relationship at pressures higher than just over 2.8 GPa and is the only phase in reaction relationship with the melt in the garnet-lherzolite stability field. Comparison of the normative compositions and the CaO/Al2O3 values of the komatiites of Gorgona Island and of the Reliance Formation in Zimbabwe with the compositions of liquids along the solidus of model lherzolite in the CMAS system indicates that the former komatiites were generated at pressures close to 3.7 GPa and the latter at close to 4.5 GPa, assuming that the melt generation occurred in the presence of the complete garnet-lherzolite assemblage.

  15. Effect of Alumina Incorporation on the Surface Mineralization and Degradation of a Bioactive Glass (CaO-MgO-SiO2-Na2O-P2O5-CaF2-Glycerol Paste

    Directory of Open Access Journals (Sweden)

    Dilshat Tulyaganov

    2017-11-01

    Full Text Available This study investigates the dissolution behavior as well as the surface biomineralization in simulated body fluid (SBF of a paste composed of glycerol (gly and a bioactive glass in the system CaO-MgO-SiO2-Na2O-P2O5-CaF2 (BG. The synthesis of the bioactive glass in an alumina crucible has been shown to significantly affect its bioactivity due to the incorporation of aluminum (ca. 1.3–1.4 wt % into the glass network. Thus, the kinetics of the hydroxyapatite (HA mineralization on the glass prepared in the alumina crucible was found to be slower than that reported for the same glass composition prepared in a Pt crucible. It is considered that the synthesis conditions lead to the incorporation of small amount of aluminum into the BG network and thus delay the HA mineralization. Interestingly, the BG-gly paste was shown to have significantly higher bioactivity than that of the as-prepared BG. Structural analysis of the paste indicate that glycerol chemically interacts with the glass surface and strongly alter the glass network architecture, thus generating a more depolymerized network, as well as an increased amount of silanol groups at the surface of the glass. In particular, BG-gly paste features early intermediate calcite precipitation during immersion in SBF, followed by hydroxyapatite formation after ca. seven days of SBF exposure; whereas the HA mineralization seems to be suppressed in BG, probably a consequence of the incorporation of aluminum into the glass network. The results obtained within the present study reveal the positive effect of using pastes based on bioactive glasses and organic carriers (here alcohols which may be of interest not only due to their advantageous visco-elastic properties, but also due to the possibility of enhancing the glass bioactivity upon surface interactions with the organic carrier.

  16. Optimization of sulfamethoxazole degradation by TiO2/hydroxyapatite composite under ultraviolet irradiation using response surface methodology

    International Nuclear Information System (INIS)

    Chun, Suk Young; Kim, Ji Tae; Chang, Soon Woong; An, Sang Woo; Lee, Si Jin

    2014-01-01

    A titanium dioxide/hydroxyapatite/ultraviolet (TiO 2 /HAP/UV-A) system was used to remove sulfamethoxazole (SMX) from water in a second-order response surface methodology (RSM) experiment with a three-level Box-Behnken design (BBD) for optimization. The effects of both the primary and secondary interaction effects of three photocatalytic reaction variables were examined: the concentration of SMX (X 1 ), dose of TiO 2 /HAP composite (X 2 ), and UV intensity (X 3 ). The UV intensity and TiO 2 /HAP dose significantly influence the SMX and total organic carbon (TOC) removal (p<0.001). However, the SMX and TOC removal are enhanced with increasing TiO 2 /HAP dose up to certain levels, and further increases in the TiO 2 /HAP dose result in adverse effects due to hydroxyl radical scavenging at higher catalyst concentrations. Complete removal of SMX was achieved upon UV-A irradiation for 180 min. Under optimal conditions, 51.2% of the TOC was removed, indicating the formation of intermediate products during SMX degradation. The optimal ratio of SMX (mg L -1 ) to TiO 2 /HAP (g L -1 ) to UV (W/L) was 5.4145 mg L -1 to 1.4351 g L -1 to 18 W for both SMX and TOC removal. By comparison with actual applications, the experimental results were found to be in good agreement with the model's predictions, with mean results for SMX and TOC removal of 99.89% and 51.01%, respectively

  17. Studies on UV/NaOCl/TiO2/Sep photocatalysed degradation of Reactive Red 195.

    Science.gov (United States)

    Karaoğlu, M Hamdi; Uğurlu, Mehmet

    2010-02-15

    The photocatalytic degradation of Reactive Red 195 (RR195) has been investigated in aqueous suspensions by using ultraviolet (UV), sodium hypochlorite (NaOCl) and TiO(2)/Sep nanoparticles together. To get the TiO(2)/Sep nanoparticle, the nanocrystalline TiO(2) anatase phase on sepiolite was obtained using a sufficient thermal treatment by gradually increasing the temperature from 300, 400 and 500 degrees C for 3h. Then, TiO(2)/Sep materials were characterized using different spectral and technical structural analyses with scanning electron microscopy (SEM) and X-ray diffraction (XRD). The influence of pH, catalyst amount, oxidant and initial dye concentration was investigated in all the experiments. Maximum colour and chemical oxygen demand (COD) removal were 99.9% and 78% respectively, at a dye concentration of 250 mg L(-1), NaOCl dosage of 50.37 mM, 0.1 g L(-1) weight of TiO(2)/Sep and pH of 5.45 in 3h. In addition, the pseudo-first order model was applied and r(2) values were noted from 0.92 to 0.99.

  18. Removal of PFOA in groundwater by Fe0 and MnO2 nanoparticles under visible light.

    Science.gov (United States)

    Liu, Jia; Weinholtz, Lindsey; Zheng, Linan; Peiravi, Meisam; Wu, Yan; Chen, Da

    2017-09-19

    The main objective of this study was to find a cost-effective, efficient and environmentally-friendly solution to remove perfluorooctanic acid (PFOA) from groundwater by using Fe 0 and MnO 2 nanoparticles. The selected method was expected to be applicable to the remediation of PFOA-contaminated groundwater. Phytotoxicity of the nanoparticle treatment was studied to demonstrate the safe application of the nanomaterials. Zero-valent Fe (100 mg L -1 ) and MnO 2 (100 mg L -1 ) nanoparticles, produced in our lab, were used to remove PFOA up to 10 mg L -1 . The test was conducted under visible light with or without addition of 0.88 mol L -1 H 2 O 2 in a pH range of 0.5-11.0 for a duration of 18 h. Using Fe nanoparticles, a higher percentage of PFOA was removed under extreme acidic environment of pH 0.5 than under the basic environment of pH 11.0, and a minimum removal rate was reached under the neutral environment. The Fe nanoparticles were more efficient than the MnO 2 nanoparticles at pH 0.5 with a removal rate of 69.7% and 89.7% without and with H 2 O 2 addition, respectively. Phytotoxicity study showed that the treatment by Fe nanoparticles under mild pH reduced the phytotoxicity of groundwater-associated PFOA to Arabidopsis thaliana. The Fe nanoparticles did not show negative effect to A. thaliana under the experimental conditions used in this study.

  19. Fe-N co-doped SiO2@TiO2 yolk-shell hollow nanospheres with enhanced visible light photocatalytic degradation

    Science.gov (United States)

    Wan, Hengcheng; Yao, Weitang; Zhu, Wenkun; Tang, Yi; Ge, Huilin; Shi, Xiaozhong; Duan, Tao

    2018-06-01

    SiO2@TiO2 yolk@shell hollow nanospheres (STNSs) is considered as an outstanding photocatalyst due to its tunable structure and composition. Based on this point, we present an unprecedentedly excellent photocatalytic property of STNSs toward tannic acid via a Fe-N co-doped strategy. Their morphologies, compositions, structure and properties are characterized. The Fe-N co-doped STNSs formed good hollow yolk@shell structure. The results show that the energy gap of the composites can be downgraded to 2.82 eV (pure TiO2 = 3.2 eV). Photocatalytic degradation of tannic acid (TA, 30 mg L-1) under visible light (380 nm TiO2 nanospheres, non-doped STNSs and N-doped STNSs, the Fe-N co-doped STNSs exhibits the highest activity, which can degrade 99.5% TA into CO2 and H2O in 80 min. The probable degradation mechanism of the composites is simultaneously proposed, the band gap of STNSs becomes narrow by co-doping Fe-N, so that the TiO2 shell can stimulate electrons under visible light exposure, generate the ions of radOH and radO2- with a strong oxidizing property. Therefore this approach works is much desired for radioactive organic wastewater photocatalytic degradation.

  20. Advanced oxidation of five contaminants in water by UV/TiO2: Reaction kinetics and byproducts identification.

    Science.gov (United States)

    Alvarez-Corena, Jose R; Bergendahl, John A; Hart, Fred L

    2016-10-01

    The extent and kinetics of degradation of 1,4 dioxane, n-nitrosodimethylamine (NDMA), tris-2-chloroethyl phosphate (TCEP), gemfibrozil, and 17β estradiol in a prepared aqueous matrix by means of UV/TiO2 (ultraviolet light/titanium dioxide) oxidation was evaluated. Degussa P25 TiO2 was employed as a photocatalyst excited by UV light in a 1 L water-jacketed batch photoreactor. The rate of degradation was modeled using a pseudo-first order rate model and the Langmuir-Hinshelwood rate model with a high correlation. Degradation rate constants were found to be maximum at pH 5.0 and 1.5 g L(-)(1) TiO2 dose. For these conditions first order rate constants, values were as follows: 0.29 min(-1) for 1,4 dioxane, 0.50 min(-1) for NDMA, 0.12 min(-1) for TCEP, 0.61 min(-1) for gemfibrozil, and 0.53 min(-1) for 17β estradiol. While for the Langmuir-Hinshelwood rate model, the following constants were found: 0.11 Lmg(-1) and 2.81 mgL(-1) min(-1) for 1,4 dioxane, 0.12 Lmg(-1) and 4.35 mgL(-1) min(-1) for NDMA, 0.06 Lmg(-1) and 1.79 mgL(-1) min(-1) for TCEP, 0.21 Lmg(-1) and 3.27 mgL(-1) min(-1) for gemfibrozil, and 0.15 Lmg(-1) and 3.43 mgL(-1) min(-1) for 17β estradiol. In addition, specific byproducts of degradation were identified using GC/MS analysis. The results obtained from the kinetics analysis showed that UV/TiO2 oxidation is a promising process for treating trace organic contaminants in water, but further research is needed to better understand how to incorporate these findings into pilot and full-scale designs. The toxicity of oxidation byproducts, and their potential for interacting with other compounds should be considered in the treatment of contaminated waters using the UV/TiO2 oxidation process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Determination of mercury and selenium in herbal medicines and hair by using a nanometer TiO2-coated quartz tube atomizer and hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Li, Shun-Xing; Zheng, Feng-Ying; Cai, Shu-Jie; Cai, Tian-Shou

    2011-01-01

    The nanometer TiO 2 particle was coated onto the inner wall of a T-shaped quartz tube atomizer (QTA) and then was used as a new atomizer (NT-QTA) for the determination of Hg and Se by hydride generation atomic absorption spectrometry (HGAAS). After coating 67.4 mg TiO 2 on a quartz tube, the analytical performance of NT-QTA-HGAAS was compared to conventional QTA-HGAAS and it was improved as follows: (a) the linear range of the calibration curves was expanded from 10.0-80.0 ng mL -1 to 5.0-150.0 ng mL -1 for Hg, and from 10.0-70.0 ng mL -1 to 5.0-100.0 ng mL -1 for Se; (b) the characteristic concentration of was decreased from 2.8 ng mL -1 /1% to 1.1 ng mL -1 /1% for Hg and from 1.2 ng mL -1 /1% to 0.8 ng mL -1 /1% for Se; and (c) the interference from the coexistence of As on the determination of Hg and Se could be eliminated. The achieved technique was applied for the determination of Hg and Se in herbal medicines and hair.

  2. Ultrasonic Spray-Coating of Large-Scale TiO2 Compact Layer for Efficient Flexible Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Peng Zhou

    2017-02-01

    Full Text Available Flexible electronics have attracted great interest in applications for the wearable devices. Flexible solar cells can be integrated into the flexible electronics as the power source for the wearable devices. In this work, an ultrasonic spray-coating method was employed to deposit TiO2 nanoparticles on polymer substrates for the fabrication of flexible perovskite solar cells (PSCs. Pre-synthesized TiO2 nanoparticles were first dispersed in ethanol to prepare the precursor solutions with different concentrations (0.5 mg/mL, 1.0 mg/mL, 2.0 mg/mL and then sprayed onto the conductive substrates to produce compact TiO2 films with different thicknesses (from 30 nm to 150 nm. The effect of the different drying processes on the quality of the compact TiO2 film was studied. In order to further improve the film quality, titanium diisopropoxide bis(acetylacetonate (TAA was added into the TiO2-ethanol solution at a mole ratio of 1.0 mol % with respect to the TiO2 content. The final prepared PSC devices showed a power conversion efficiency (PCE of 14.32% based on the indium doped tin oxide coated glass (ITO-glass substrate and 10.87% on the indium doped tin oxide coated polyethylene naphthalate (ITO-PEN flexible substrate.

  3. Co-hydrothermal synthesis of LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C nano-hybrid cathode material with enhanced electrochemical performance for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Jun; Luo, Shaohua; Chang, Longjiao; Hao, Aimin; Wang, Zhiyuan; Liu, Yanguo; Xu, Qian; Wang, Qing; Zhang, Yahui

    2017-01-01

    Highlights: • A co-hydrothermal approach to synthesize LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C composite material in water/PEG system is present. • The Mn_1_-_xMg_xPO_4 precursor is prepared by precipitation reaction. • Co-modified with Mg"2"+ doping and LiAlO_2 compositing strategies play an important role in improving the electronic conductivity and facilitating the diffusion of lithium ion. • LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C composite material exhibits a high specific discharge capacity of 151.8 mAh/g at 0.05C. - Abstract: LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C is synthesized by a co-hydrothermal method in water/PEG system using Li_2CO_3, AAO and Mn_1_-_xMg_xPO_4 as raw material. The electronic structure and micromorphology of multi-component compound LiMn_1_-_xMg_xPO_4/C (x = 0, 1/24, 1/12, 1/6) and nano-hybrid LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C cathode materials are studied by first-principles calculation and experimental research including XRD, SEM, TEM. The calculated band gap of LiMn_2_3_/_2_4Mg_1_/_2_4PO_4/C is 2.296 eV, which is lower than other percentages Mg"2"+ doping samples. Electrochemical tests exhibit LiMn_2_3_/_2_4Mg_1_/_2_4PO_4/C has better cycling performance and rate capability than other contents Mg"2"+ doping samples with the discharge capacity of 143.5 mAh/g, 141.5 mAh/g, 139.2 mAh/g and 136.3 mAh/g at 0.05C, 0.1C, 0.5C and 1C in order. After compositing and preparation of LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C composite material by co-hydrothermal route, the initial discharge capacity reaches up to 151.8 mAh/g, which suggests that co-modified with Mg"2"+ doping and LiAlO_2 compositing material can improve the electronic conductivity of LiMnPO_4/C by facilitating the lithium ion diffusion rate in the interior of the materials.

  4. Photocatalytic degradation of diuron in aqueous solution by platinized TiO2

    International Nuclear Information System (INIS)

    Katsumata, Hideyuki; Sada, Maki; Nakaoka, Yusuke; Kaneco, Satoshi; Suzuki, Tohru; Ohta, Kiyohisa

    2009-01-01

    The photocatalytic degradation of diuron, which is one of phenylurea herbicides, was carried out in the presence of platinized TiO 2 photocatalyst. Platinization was found to increase the rate of diuron degradation. When 0.2 wt.% of platinum was deposited onto the surface of TiO 2 , an initial diuron concentration of 10 mg L -1 was completely degraded after 20 min. Furthermore, the first-order rate constant for diuron degradation by Pt-TiO 2 was ca. 4 times higher than P-25 TiO 2 . In addition, the photocatalytic activity of Pt-TiO 2 was appeared under visible light. The decrease of TOC as a result of mineralization of diuron was observed during the photocatalytic process. The degree of diuron mineralization was about 97% under UV irradiation after 8 h. The formations of chloride, nitrate and ammonium ions as end-products were observed during the photocatalytic system. The decomposition of diuron gave four kinds of intermediate products. The degradation mechanism of diuron was proposed on the base of the evidence of the identified intermediates. Based on these results, the photocatalytic reaction by Pt-TiO 2 could be useful technology for the treatment of wastewater containing diuron.

  5. Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry.

    Directory of Open Access Journals (Sweden)

    Xiuchun Lin

    Full Text Available Controversial and inconsistent results on the eco-toxicity of TiO2 nanoparticles (NPs are commonly found in recorded studies and more experimental works are therefore warranted to elucidate the nanotoxicity and its underlying precise mechanisms. Toxicities of five types of TiO2 NPs with different particle sizes (10∼50 nm and crystal phases were investigated using Escherichia coli as a test organism. The effect of water chemistry on the nanotoxicity was also examined. The antibacterial effects of TiO2 NPs as revealed by dose-effect experiments decreased with increasing particle size and rutile content of the TiO2 NPs. More bacteria could survive at higher solution pH (5.0-10.0 and ionic strength (50-200 mg L(-1 NaCl as affected by the anatase TiO2 NPs. The TiO2 NPs with anatase crystal structure and smaller particle size produced higher content of intracellular reactive oxygen species and malondialdehyde, in line with their greater antibacterial effect. Transmission electron microscopic observations showed the concentration buildup of the anatase TiO2 NPs especially those with smaller particle sizes on the cell surfaces, leading to membrane damage and internalization. These research results will shed new light on the understanding of ecological effects of TiO2 NPs.

  6. Phase transitions and Al partitioning in a pyrolitic MgO-Al2O3-SiO2 composition at 16-31 GPa and 1500-2300 K

    Science.gov (United States)

    Ye, Y.; Gu, C.; Shim, S.; Prakapenka, V.; MacDowell, A.

    2013-12-01

    In order to understand strong seismic heterogeneities found in the base of the mantle transition zone, it is important to explore the effects of temperature and composition on the phase boundaries in the region. We have determined the phase boundaries near the 660-km discontinuity in an iron-free pyrolitic MgO-Al2O3-SiO2 (MAS) composition by combining in-situ synchrotron X-ray diffraction and laser-heated diamond-anvil cell at 16-31 GPa and 1500-2300 K. The pyrolitic MAS composition glass starting materials were mixed with platinum (laser coupler and internal pressure scale) and loaded into the diamond-anvil cells together with argon (pressure transmitting medium and thermal insulator). The in-situ measurements were conducted at the GSECARS sector of Advanced Photon Source and beamline 12.2.2 of Advanced Light Source. We found that the post-spinel transition (ringwoodite to perovskite+periclase) occurs at the pressure and temperature conditions expected for the 660-km discontinuity at 1800 K if the shockwave platinum pressure scale by Holmes et al. (1989) is used. At temperatures above 1900 K, ringwoodite breaks down to garnet+periclase, instead of perovskite+periclase, followed by the post-garnet transition (garnet to perovskite) at the pressure-temperature conditions expected for warm heterogeneities at 650-680 km depths (23-24 GPa and 1900-2300 K). The Clapeyron slopes of the post-spinel and post-garnet boundaries are constrained to be -2.8×0.2 and +2.4×0.3 MPa/K, respectively, indicating similar magnitude of thermal effects (with opposite signs) on the topography of the 660-km discontinuity by these phase boundaries. The dominance of the post-garnet transition above normal mantle temperatures will facilitate material exchange across the 660 discontinuity in warm mantle heterogeneities due to its positive Clapeyron slope. In our pyrolitic MAS composition, akimotoite was observed up to 2000-2300 K between 20 and 22 GPa in both fresh sample heating and reversal

  7. The Effect of H2O2 Interference in Chemical Oxygen Demand Removal During Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Afsane Chavoshani

    2016-07-01

    Full Text Available Hydrogen peroxide (H2O2 is one of the most oxidants in AOPs. By H2O2 dissociation, hydroxyl radical with a standard oxidation potential of 2.7 is produced. It is reported H2O¬ residual in AOPs has been led to interference in chemical oxygen demand (COD test and it is able to hinder biological treatment of waste water. Because of high mixed organic load of solid waste leachate, this study investigated effect of H2O2 interference in COD removal from solid waste leachate. In this study effect of parameters such as pH (3,5,7,12, H2O2 dose (0.01, 0.02, 0.03, 0.04 mol l-1, and time reaction(10,20,30,40,50,60 min evaluated on H2O2 interference in COD removal from solid waste leachate. Optimum pH and concentration were 3 and 0.02 moll-1 respectively. With increasing reaction time, COD removal was increased. The false COD obtained between 0.49mg per 1mg of H2O2. The average of COD removal by H2O2 for 60 min was 6.57%. Also reaction rate of this process was 0.0029 min-1. The presence of H2O2 leads to overestimation of COD values after reaction time because it consumes the oxidation agent. The extent of H2O2 interference in COD analysis was proportional to the remaining H2O2 concentration at the moment of sampling.

  8. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2, treatment for removal of clofibric acid from aqueous solution.

    Science.gov (United States)

    Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei

    2011-07-01

    Clofibric acid (CA), a metabolite of lipid regulators, was investigated in ultra-pure water and sewage treatment plant (STP) effluent at 10 degrees C under UV, vacuum UV (VUV), UV/H2O2 and VUV/H2O2 processes. The influences of NO3-, HCO3- and humic acid (HA) on CA photolysis in all processes were examined. The results showed that all the experimental data well fitted the pseudo-first-order kinetic model, and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated accordingly. Direct photolysis of CA through UV irradiation was the main process, compared with the indirect oxidation of CA due to the slight generation of hydroxyl radicals dissociated from water molecules under UV irradiation below 200 nm monochromatic wavelength emission. In contrast, indirect oxidation was the main CA degradation mechanism in UV/H2O2 and VUV/H2O2, and VUV/H2O2 was the most effective process for CA degradation. The addition of 20 mg L(-1) HA could significantly inhibit CA degradation, whereas, except for UV irradiation, the inhibitive effects of NO3- and HCO3- (1.0 x 10(-3) and 0.1 mol L(-1), respectively) on CA degradation were observed in all processes, and their adverse effects were more significant in UV/H2O2 and VUV/H2O2 processes, particularly at the high NO3- and HCO3- concentrations. The degradation rate decreased 1.8-4.9-fold when these processes were applied to a real STP effluent owing to the presence of complex constituents. Of the four processes, VUV/H2O2 was the most effective, and the CA removal efficiency reached over 99% after 40 min in contrast to 80 min in both the UV/H2O2 and VUV processes and 240 min in the UV process.

  9. Efficient treatment of an electroplating wastewater containing heavy metal ions, cyanide, and organics by H2O2 oxidation followed by the anodic Fenton process.

    Science.gov (United States)

    Zhao, Xu; Wang, Haidong; Chen, Fayuan; Mao, Ran; Liu, Huijuan; Qu, Jiuhui

    2013-01-01

    A real electroplating wastewater, containing heavy metals, cyanide, and organic contaminants, was treated by electrocoagulation (EC), H2O2 oxidation, H2O2 pre-oxidation followed by EC, and the anodic Fenton process and the efficacy of the processes was compared. Concentration of cyanide, Cu, Ni, Zn, and Cr was largely decreased by EC within 5 min. When the reaction time was extended, removal of residual cyanide, Cu, and Ni was limited. In H2O2 oxidation, the concentration of cyanide decreased from initial 75 to 12 mg L(-1) in 30 min. The effluents from the H2O2 oxidation were further treated by EC or anodic Fenton. In EC, the concentration of total cyanide, Ni, and Cu decreased to below 0.3, 0.5, and 1.5 mg L(-1), respectively. Removal efficiency of chemical oxygen demand by EC was less than 20.0%. By contrast, there was 73.5% reduction by the anodic Fenton process with 5 mM H2O2 at 30 min; this can be attributed to the oxidation induced by hydroxyl radicals generated by the reaction of H2O2 with the electrogenerated Fe(2+). Meanwhile, residual cyanide, Cu, and Ni can also be efficiently removed. Transformation of organic components in various processes was analyzed using UV-visible and fluorescence excitation-emission spectra.

  10. Preparation and characterization of coating sodium trisilicate (Na2O.nSiO2) at calcium carbonate (CaCO3) for blowing agent in Mg alloy foam

    Science.gov (United States)

    Erryani, Aprilia; Lestari, Franciska Pramuji; Annur, Dhyah; Kartika, Ika

    2018-05-01

    The role of blowing agent in the manufacture of porous metal alloys is very important to produce the desired pore. The thermal stability and speed of foam formation have an effect on the resulting pore structure. In porous metal alloys, uniformity of size and pore deployment are the main determinants of the resulting alloys. The coating process of calcium carbonate (CaCO3) has been done using Sodium trisilicate solution by sol-gel method. Foaming agent was pretreated by coating SiO2 passive layer on the surface of CaCO3. This coating aims to produce a more stable blowing agent so that the foaming process can produce a more uniform pore size. The microstructure of the SiO2 passive was observed using Scanning Electron Microscope (SEM) equipped by Energy Dispersive X-Ray Spectrometer (EDS) mapping. The results showed coating CaCO3 using sodium trisilicate was successfully done creating a passive layer of SiO2 on the surface of CaCO3. By the coating process, the thermal stability of coated CaCO3 increased compared to uncoated CaCO3.

  11. DT fusion neutron irradiation of BNL--LASL superconductor wires, LASL YAG, Al2O3 and Spinel, LASL-IIT MgO, YAG, Al2O3 and Spinel, and NRL GeO2 crystals, December 28, 1977

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1978-01-01

    The DT fusion neutron irradiation of eleven BNL-LAST superconductor wires, six NRL GeO 2 crystals, two YAG, two Spinel and two Al 2 O 3 crystals for LASL and four LASL high purity single crystals of MgO, YAG, Spinel and Al 2 O 3 is described. The sample position, beam-on time, and neutron dose record are given. The maximum fluence on any sample was 1.51 x 10 16 neutrons/cm 2

  12. TiO2 nanoparticles in seawater: Aggregation and interactions with the green alga Dunaliella tertiolecta.

    Science.gov (United States)

    Morelli, Elisabetta; Gabellieri, Edi; Bonomini, Alessandra; Tognotti, Danika; Grassi, Giacomo; Corsi, Ilaria

    2018-02-01

    Titanium dioxide nanoparticles (TiO 2 NPs) have been widely employed in industrial applications, thus rising concern about their impact in the aquatic environment. In this study we investigated the chemical behaviour of TiO 2 NPs in the culture medium and its effect on the green alga Dunaliella tertiolecta, in terms of growth inhibition, oxidative stress, ROS (Reactive Oxygen Species) accumulation and chlorophyll content. In addition, the influence of exopolymeric substances (EPS) excreted by the microalgae on the stability of NPs has been evaluated. The physicochemical characterization showed a high propensity of TiO 2 NPs to form micrometric-sized aggregates within 30min, large enough to partially settle to the bottom of the test vessel. Indeed, an increasing amount of TiO 2 particles settled out with time, but the presence of EPS seemed to mitigate this behaviour in the first 6h of exposure where the main effects in D. tertiolecta were observed. TiO 2 NPs did not inhibit the 72-h growth rate of D. tertiolecta, nor affected the cellular chlorophyll concentration in the range 0.01-10mgL -1 . The time-course of ROS production showed an initial transient increase of ROS in TiO 2 NP-exposed algae compared to the control, concomitant with an enhancement of catalase activity. Interestingly, intracellular ROS was a small fraction of total ROS, the highest amount being extracellular. The occurrence of cell-mediated chemical transformations of TiO 2 NPs in the external medium, related to the presence of EPS, has been evaluated. Our results showed that carbohydrates were the major component of EPS, whereas proteins of medium molecular weight (20-80kDa) were preferentially bound to TiO 2 NPs, likely influencing their biological fate. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Influencia de la síntesis y del grado de dopaje en las propiedades morfológicas, estructurales y electroquímicas de óxidos LiCo1‑xMxO2 (M = Ni, Al, Mg

    Directory of Open Access Journals (Sweden)

    Castro‑Couceiro, A.

    2004-08-01

    Full Text Available In this work we have prepared, by a sol‑gel method, LiCo1‑ xMxO2 compounds (M= Ni, Al and Mg, in order to study the doping effect in their electrochemical behaviour as cathodes in lithium‑batteries. We have studied the influence of the synthesis conditions (using various chelating agents for the formation of the gel on their morphologic, structural and electrochemical properties. We have obtained monophasic materials: LiCo1‑xNixO2 (0≤x≤0.8, LiCo1‑xMgxO2 (0≤x≤0.05, LiCo1‑xAlxO2 (0≤x≤0.3 and LiCo0.5Ni0.5‑xAlxO2 (0≤x≤0.3. In general, the samples obtained with succinic acid have better ordered lithium layers than malic samples.The capacity of the Li//LiCo1‑ xMxO2 batteries decrease upon doping. However, more stable charge‑discharge cycling performances have been obtained as compared to those displayed by the native oxides. In LiCo1‑xMgxO2, small amounts of MgO appear as secondary phases for 0.05 En este trabajo preparamos, mediante un método sol‑gel, óxidos LiCo1‑xMxO2 dopando LiCoO2 con Ni, Al y Mg, con el fin de comprobar la influencia del catión dopante y del grado de dopaje en su comportamiento electroquímico como cátodos de baterías de litio. Estudiamos la influencia de las condiciones de síntesis (utilizando diferentes agentes quelatantes para la formación del gel en las propiedades morfológicas y estructurales de los materiales obtenidos, que condicionan, a su vez, su comportamiento electroquímico. Se obtuvieron muestras monofásicas para distintos grados de dopaje: LiCo1‑xNixO2 (0≤x≤0.8, LiCo1‑xMgxO2 (0≤x≤0.05, LiCo1‑xAlxO2 (0≤x≤0.3 y LiCo0.5Ni0.5‑xAlxO2 (0≤x≤0.3. En general, se logra un mejor orden catiónico en la estructura utilizando ácido succínico como agente quelatante que utilizando ácido málico. Los estudios electroquímicos muestran que los tres dopantes (Ni, Mg y Al provocan una disminución de la capacidad de las baterías, pero contribuyen a mantener

  14. Extrap L-1 experimental stability

    International Nuclear Information System (INIS)

    Brunsell, P.; Hellblom, G.; Karlsson, P.; Mazur, S.; Nordlund, P.; Scheffel, J.

    1990-01-01

    In the Extrap scheme a Z-pinch is stabilized by imposing a strongly inhomogeneous octupole magnetic field. This field is generated by four conductor rods, each carrying equal currents I v antiparallel to the plasma current I p itself. Theoretically, interchange stability is improved by the magnetic field, as well as long-wavelength kinks due to induced currents in the plasma and in the rods. Short wavelength kinks are, as in the 1-D pinch, stabilized by FLR and viscous-resistive effects. We have performed a set of experiments in the linear Extrap L-1 device (length 40 cm, plasma radius a 2 cm, rod distance 3 cm) in order to determine optimal performance in terms of confined current (5-20 kA) and stability during the discharge length (80 μs; of the order 100 Alfven times). In this paper we summarize our results from two types of experiments; with and without external axial magnetic field. The results are compared with theory in the final paragraph. (author) 5 figs

  15. A novel combined solar pasteurizer/TiO2 continuous-flow reactor for decontamination and disinfection of drinking water.

    Science.gov (United States)

    Monteagudo, José María; Durán, Antonio; Martín, Israel San; Acevedo, Alba María

    2017-02-01

    A new combined solar plant including an annular continuous-flow compound parabolic collector (CPC) reactor and a pasteurization system was designed, built, and tested for simultaneous drinking water disinfection and chemical decontamination. The plant did not use pumps and had no electricity costs. First, water continuously flowed through the CPC reactor and then entered the pasteurizer. The temperature and water flow from the plant effluent were controlled by a thermostatic valve located at the pasteurizer outlet that opened at 80 °C. The pasteurization process was simulated by studying the effect of heat treatment on the death kinetic parameters (D and z values) of Escherichia coli K12 (CECT 4624). 99.1% bacteria photo-inactivation was reached in the TiO 2 -CPC system (0.60 mg cm -2 TiO 2 ), and chemical decontamination in terms of antipyrine degradation increased with increasing residence time in the TiO 2 -CPC system, reaching 70% degradation. The generation of hydroxyl radicals (between 100 and 400 nmol L -1 ) was a key factor in the CPC system efficiency. Total thermal bacteria inactivation was attained after pasteurization in all cases. Chemical degradation and bacterial photo-inactivation in the TiO 2 -CPC system were improved with the addition of 150 mg L -1 of H 2 O 2 , which generated approximately 2000-2300 nmol L -1 of HO ● radicals. Finally, chemical degradation and bacterial photo-inactivation kinetic modelling in the annular CPC photoreactor were evaluated. The effect of the superficial liquid velocity on the overall rate constant was also studied. Both antipyrine degradation and E. coli photo-inactivation were found to be controlled by the catalyst surface reaction rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Air Plasma-Sprayed La2Zr2O7-SrZrO3 Composite Thermal Barrier Coating Subjected to CaO-MgO-Al2O3-SiO2 (CMAS)

    Science.gov (United States)

    Cai, Lili; Ma, Wen; Ma, Bole; Guo, Feng; Chen, Weidong; Dong, Hongying; Shuang, Yingchai

    2017-08-01

    La2Zr2O7-SrZrO3 composite thermal barrier coatings (TBCs) were prepared by air plasma spray (APS). The La2Zr2O7-SrZrO3 composite TBCs covered with calcium-magnesium-aluminum-silicate (CMAS) powder, as well as the powder mixture of CMAS and spray-dried La2Zr2O7-SrZrO3 composite powder, were heat-treated at 1250 °C in air for 1, 4, 8, and 12 h. The phase constituents and microstructures of the reaction products were characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. Experimental results showed that the La2Zr2O7-SrZrO3 composite TBCs had higher CMAS resistance than 8YSZ coating. A dense new layer developed between CMAS and La2Zr2O7-SrZrO3 composite TBCs during interaction, and this new layer consisted mostly of apatite (Ca2La8(SiO4)6O2) and c-ZrO2. The newly developed layer effectively protected the La2Zr2O7-SrZrO3 composite TBCs from further CMAS attack.

  17. Solar CPC pilot plant photocatalytic degradation of bisphenol A in waters and wastewaters using suspended and supported-TiO2. Influence of photogenerated species.

    Science.gov (United States)

    Saggioro, Enrico Mendes; Oliveira, Anabela Sousa; Pavesi, Thelma; Tototzintle, Margarita Jiménez; Maldonado, Manuel Ignacio; Correia, Fábio Verissimo; Moreira, Josino Costa

    2014-11-01

    Photocatalytic degradation of bisphenol A (BPA) in waters and wastewaters in the presence of titanium dioxide (TiO2) was performed under different conditions. Suspensions of the TiO2 were used to compare the degradation efficiency of BPA (20 mg L(-1)) in batch and compound parabolic collector (CPC) reactors. A TiO2 catalyst supported on glass spheres was prepared (sol-gel method) and used in a CPC solar pilot plant for the photodegradation of BPA (100 μg L(-1)). The influence of OH·, O2 (·-), and h (+) on the BPA degradation were evaluated. The radicals OH· and O2 (·-) were proved to be the main species involved on BPA photodegradation. Total organic carbon (TOC) and carboxylic acids were determined to evaluate the BPA mineralization during the photodegradation process. Some toxicological effects of BPA and its photoproducts on Eisenia andrei earthworms were evaluated. The results show that the optimal concentration of suspended TiO2 to degrade BPA in batch or CPC reactors was 0.1 g L(-1). According to biological tests, the BPA LC50 in 24 h for E. andrei was of 1.7 × 10(-2) mg cm(-2). The photocatalytic degradation of BPA mediated by TiO2 supported on glass spheres suffered strong influence of the water matrix. On real municipal wastewater treatment plant (MWWTP) secondary effluent, 30 % of BPA remains in solution; nevertheless, the method has the enormous advantage since it eliminates the need of catalyst removal step, reducing the cost of treatment.

  18. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3).

    Science.gov (United States)

    Srithep, Sirinthip; Phattarapattamawong, Songkeart

    2017-06-01

    The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H 2 O 2 , UV/O 3 , and UV/H 2 O 2 /O 3 ) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H 2 O 2 /O 3 was the most effective process for removing HAN precursors, followed by UV/H 2 O 2 , and UV/O 3 , respectively. For 20min contact time, the UV/H 2 O 2 /O 3 , UV/H 2 O 2 , and UV/O 3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL -1 in UV/O 3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H 2 O 2 , and UV/H 2 O 2 /O 3 ), except for the UV/O 3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k' DCANFP ) by the UV/H 2 O 2 /O 3 , UV/H 2 O 2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O 3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k' DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Enhanced adsorptive and photocatalytic achievements in removal of methylene blue by incorporating tungstophosphoric acid-TiO2 into MCM-41

    International Nuclear Information System (INIS)

    Zanjanchi, M.A.; Golmojdeh, H.; Arvand, M.

    2009-01-01

    The use of titania-dispersed materials in photocatalytic processes has been proposed as an alternative to the conventional bare TiO 2 , in order to modify the surface area and activity of the catalyst. A homogeneously dispersed Keggin unit into TiO 2 was synthesized using tungstophosphoric acid (TPA) and titanium tetraisopropoxide. This compound was then loaded into MCM-41 by dispersing it in a suspension containing the mesoporous phase. Two other titanium-containing MCM-41 catalysts, Ti-MCM-41 and TiO 2 /MCM-41 were also prepared using isomorphous substitution synthesis method and impregnation method, respectively, for the sake of comparison. The prepared photocatalysts were characterized by X-ray diffraction (XRD), nitrogen physisorption (BET) and chemical analysis. The catalysts were used to study degradation of methylene blue (MB) in aqueous solution. XRD result shows a pure anatase crystalline phase for TPA-containing TiO 2 indicating that there is good molecular distribution of tungstophosphoric acid into TiO 2 structure. Supported TPA-TiO 2 into MCM-41 shows both TPA-TiO 2 and MCM-41 characteristic X-ray reflections in the high-angle and low-angle parts of the XRD patterns, respectively. The experimental results show that adsorption is a major constituent in the elimination of MB from the dye solutions by the TPA-containing materials. Exploitation of both adsorption and photocatalytic processes speeds up the removal of the dye using the TPA-TiO 2 -loaded MCM-41 photocatalyst. The elimination of MB is completed within 15 min for a 30 mg l -1 MB solution containing a catalyst dose of 100 mg/100 ml. The efficiencies of the other photocatalysts such as commercial TiO 2 , Ti-MCM-41, TiO 2 /MCM-41 and TPA-TiO 2 for adsorption and degradation of MB were also studied and compared with that of the prepared catalyst.

  20. PD-L1-specific T cells

    DEFF Research Database (Denmark)

    Ahmad, Shamaila Munir; Borch, Troels Holz; Hansen, Morten

    2016-01-01

    -specific T cells that recognize both PD-L1-expressing immune cells and malignant cells. Thus, PD-L1-specific T cells have the ability to modulate adaptive immune reactions by reacting to regulatory cells. Thus, utilization of PD-L1-derived T cell epitopes may represent an attractive vaccination strategy...... for targeting the tumor microenvironment and for boosting the clinical effects of additional anticancer immunotherapy. This review summarizes present information about PD-L1 as a T cell antigen, depicts the initial findings about the function of PD-L1-specific T cells in the adjustment of immune responses...

  1. Toxicity and trophic transfer of P25 TiO2 NPs from Dunaliella salina to Artemia salina: Effect of dietary and waterborne exposure.

    Science.gov (United States)

    Bhuvaneshwari, M; Thiagarajan, Vignesh; Nemade, Prateek; Chandrasekaran, N; Mukherjee, Amitava

    2018-01-01

    The recent increase in nanoparticle (P25 TiO 2 NPs) usage has led to concerns regarding their potential implications on environment and human health. The food chain is the central pathway for nanoparticle transfer from lower to high trophic level organisms. The current study relies on the investigation of toxicity and trophic transfer potential of TiO 2 NPs from marine algae Dunaliella salina to marine crustacean Artemia salina. Toxicity was measured in two different modes of exposure such as waterborne (exposure of TiO 2 NPs to Artemia) and dietary exposure (NP-accumulated algal cells are used to feed the Artemia). The toxicity and accumulation of TiO 2 NPs in marine algae D. salina were also studied. Artemia was found to be more sensitive to TiO 2 NPs (48h LC 50 of 4.21mgL -1 ) as compared to marine algae, D. salina (48h LC 50 of 11.35mgL -1 ). The toxicity, uptake, and accumulation of TiO 2 NPs were observed to be more in waterborne exposure as compared to dietary exposure. Waterborne exposure seemed to cause higher ROS production and antioxidant enzyme (SOD and CAT) activity as compared to dietary exposure of TiO 2 NPs in Artemia. There were no observed biomagnification (BMF) and trophic transfer from algae to Artemia through dietary exposure. Histopathological studies confirmed the morphological and internal damages in Artemia. This study reiterates the possible effects of the different modes of exposure on trophic transfer potential of TiO 2 NPs and eventually the consequences on aquatic environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Synthesis of ceramic powders of La9,56 (SiO4)6O2,34 and La9,8Si5,7MgO,3O26,4 by modified sol-gel process

    International Nuclear Information System (INIS)

    Lira, Sabrina Lopes; Paiva, Mayara Rafaela Soares; Misso, Agatha Matos; Elias, Daniel Ricco; Yamagata, Chieko

    2012-01-01

    Lanthanum silicate oxyapatite materials are promising for application as electrolyte in solid oxide fuel cells because of high ionic conductivity at temperatures between 600 deg C and 800 deg C. In this work, oxyapatites with the composition La 9,56 (SiO 4 ) 6 O 2,34 , and La 9,8 Si 5,7 Mg 0,3 O 26,4 were synthesized by using the sol-gel method, followed by precipitation. Initially, the gel of silica was synthesized from sodium silicate solution, by acid catalysis using lanthanum and magnesium chloride solution. Then, the La and Mg hydroxides were precipitated with NaOH in the gel. The powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and measurements of specific surface area. The crystalline oxyapatite phase of La 9,56 (SiO 4 ) 6 O 2,34 , and was La 9,8 Si 5,7 Mg 0,3 O 26,4 obtained by calcination at 900 deg C for 2 and 1h respectively (author)

  3. Synthetic, spectroscopic and structural studies on 4-aminobenzoate complexes of divalent alkaline earth metals: x-ray crystal structures of [[Mg(H2O)6] (4-aba)2].2H2O and [Ca(H2O)2(4-aba)2] (4-aba=4-aminobenzoate)

    International Nuclear Information System (INIS)

    Murugavel, Ramaswamy; Karambelkar, Vivek V.; Anantharaman, Ganapathi

    2000-01-01

    Reactions between MCl 2 .nH 2 O (M = Mg, Ca, Sr, and Ba) and 4-aminobenzoic acid (4-abaH) result in the formation of complexes [(Mg(H 2 O) 6 )(4-aba) 2 ) .2H 2 O (I), [Ca(4-aba) 2 (H2 O ) 2 ] (2), [Sr(4-aba) 2 (H2 O ) 2 ] (3), and [Ba(4-aba) 2 Cl] (4), respectively. The new compounds 1 and 2, as well as the previously reported 3 and 4 form an extended intra- and intermolecular hydrogen bonded network in the solid-state. The compounds have been characterized by elemental analysis, pH measurements, thermogravimetric studies, and IR, NMR, and UV-Vis spectroscopy. The solid state structures of the molecules 1 and 2 have been determined by single crystal x-ray diffraction studies. In the case of magnesium complex 1, the dipositively charged Mg cation is surrounded by six water molecules and the two 4-aminobenzoate ligands show no direct bonding to the metal ion. The calcium ion in 2 is octa-coordinated with direct coordination of the 4-aminobenzoate ligands to the metal ion. The Ca-Ca separation in the polymeric chain of 2 is 3.9047(5) A. (author)

  4. Caracterización biológica empleando células osteobláticas de vidrios del sistema SiO2. Na2O. CaO. K2O. MgO. P2O5. Modificados con Al2O3 y B2O3.

    OpenAIRE

    Noris Suarez, K.; Barrios de Arenas, I; Vasquez, M.; Baron, Y.; Atias, I.; Bermudez, J.; Morillo, C.; Olivares, Y.; Lira, J.

    2003-01-01

    Desde hace al menos cuatro décadas se han ido desarrollando materiales cerámicos que permiten reproducir funciones de los organismos vivos, entre los que se destacan los vidrios denominados bioactivos. Definidos así, por su capacidad de proporcionar una respuesta biológica específica en la interfase del material que resulta en la unión química entre el material y el tejido óseo. En el presente trabajo se evaluó la compatibilidad de cinco biovidrios del sistema SiO 2 .Na 2 O.CaO.K 2 O.MgO.P 2 ...

  5. Identification of intermediates, acute toxicity removal, and kinetics investigation to the Ametryn treatment by direct photolysis (UV254), UV254/H2O2, Fenton, and photo-Fenton processes.

    Science.gov (United States)

    de Oliveira, Dirce Martins; Cavalcante, Rodrigo Pereira; da Silva, Lucas de Melo; Sans, Carme; Esplugas, Santiago; de Oliveira, Silvio Cesar; Junior, Amilcar Machulek

    2018-02-09

    This paper reports the degradation of 10 mg L -1 Ametryn solution with different advanced oxidation processes and by ultraviolet (UV 254 ) irradiation alone with the main objective of reducing acute toxicity and increase biodegradability. The investigated factors included Fe 2+ and H 2 O 2 concentrations. The effectiveness of the UV 254 and UV 254 /H 2 O 2 processes were investigated using a low-pressure mercury UV lamp (254 nm). Photo-Fenton process was explored using a blacklight blue lamp (BLB, λ = 365 nm). The UV 254 irradiation process achieved complete degradation of Ametryn solution after 60 min. The degradation time of Ametryn was greatly improved by the addition of H 2 O 2 . It is worth pointing out that a high rate of Ametryn removal was attained even at low concentrations of H 2 O 2 . The kinetic constant of the reaction between Ametryn and HO ● for UV 254 /H 2 O 2 was 3.53 × 10 8  L mol -1  s -1 . The complete Ametryn degradation by the Fenton and photo-Fenton processes was observed following 10 min of reaction for various combinations of Fe 2+ and H 2 O 2 under investigation. Working with the highest concentration (150 mg L -1 H 2 O 2 and 10 mg L -1 Fe 2+ ), around 30 and 70% of TOC removal were reached within 120 min of treatment by Fenton and photo-Fenton processes, respectively. Although it did not obtain complete mineralization, the intermediates formed in the degradation processes were hydroxylated and did not promote acute toxicity of Vibrio fischeri. Furthermore, a substantial improvement of biodegradability was obtained for all studied processes.

  6. Σύνθεση, δομή και ιδιότητες βιοενεργών υάλων SiO2-MO (M=Ca, Mg) και SiO2-CaO-P2O5

    OpenAIRE

    Κατερινοπούλου, Αικατερίνη

    2008-01-01

    Στην παρούσα εργασία η ενασχόλησή μας αφορούσε τη σύνθεση και τον χαρακτηρισμό βιοενεργών γυαλιών. Οι συνθέσεις που πραγματοποιήθηκαν ήταν καθαρής SiO2, μικτών γυαλιών SiO2–ΜΟ (Μ=Ca, Mg) αλλά επίσης και γυαλιών σύστασης SiO2 –CaΟ–P2O5. Πραγματοποιήθηκαν παρασκευές με διάφορα ποσοστά τροποποιητών (Ca, Mg). Μετά την παρασκευή των υλικών ακολούθησε ο φυσικοχημικός χαρακτηρισμός τους με διάφορες τεχνικές όπως: προσδιορισμός ειδικής επιφάνειας και όγκου πόρων (ΒΕΤ), ηλεκτρονική μικροσκοπία σάρωση...

  7. Photon stimulated desorption investigations of positive ions of MgO, TiO2, Yb2O3, Nd2O3, H2O/Si(100), CaF2/Si and of H2O, CO and NO on Yb and Nd in the energy range 14 eV up to 800 eV

    International Nuclear Information System (INIS)

    Senf, F.

    1987-01-01

    Photon-stimulated desorption of positive ions from surfaces has been studied with synchrotron radiation in the photon energy range 14 -800 eV of the 'FLIPPER'-monochromator using a time-of-flight mass spectrometer. TiO 2 , as a prototype of a maximal valency ionic compound, shows a strong desorption of O +- in the photon energy range of the Ti 3 p → 3d- and Ti 2p → 3d-resonance as well as at the 0 1s-excitation due to intraatomic respectively intraatomic Auger decays, which is in agreement with the Knotek-Feibelman model. The desorption of F + from CaF 2 -covered silicon is found to follow the respective excitation and decay processes in Ca and F. In addition, the very large cross section for the F + desorption causes a radiation damage by photons of more than about 30 eV. The adsorbate system H 2 O/Si (100) needs a multiple electron excitation to show a significant desorption setting in only 30 eV above the 0 1s threshold. The rare earth metals Yb and Nd covered with O 2 , H 2 O, CO or NO exhibit a competitive desorption of O + partly due to intraatomic Auger decays caused by single electron excitations and partly due to multiple electron excitations. The variation of the 0 + yield with regard to the different adsorbates on Yb and Nd is unexpectedly low. A detailed investigation was concerned with thin oxidized Mg-films and differently prepared MgO-single-crystals. Here we found a very efficient desorption of O + and H + resulting from the excitation of O 1s-surface-excitons. In addition, the strong hole-hole-interaction energy of crystalline MgO appears to be responsible for a suppressed O + -signal in the energy range of the Mg 2p-excitation. (orig./BHO)

  8. CeO2-ZrO2 ceramic compounds

    International Nuclear Information System (INIS)

    Melo, F.C.L.; Cairo, C.A.C.; Devezas, T.C.; Nono, M.C.A.

    1988-01-01

    In order to study the mechanical properties of tetragonal polycrystal zirconia stabilized with ceria various powder compositions with different CeO 2 content were made. Modulus of rupture for those compounds was measured. Tetragonal retained phase was determined for samples of CeO 2 -ZrO 2 ceramics with and without superficial mechanical treatment. The experimental results allowed us to evaluate the effects of CeO 2 content and sintering temperature in the mechanical properties and tetragonal transformed phase (t→ m) in ceramics of CeO 2 -ZrO 2 systems. (author) [pt

  9. Monoclonal Antibody L1Mab-13 Detected Human PD-L1 in Lung Cancers.

    Science.gov (United States)

    Yamada, Shinji; Itai, Shunsuke; Nakamura, Takuro; Yanaka, Miyuki; Chang, Yao-Wen; Suzuki, Hiroyoshi; Kaneko, Mika K; Kato, Yukinari

    2018-04-01

    Programmed cell death ligand-1 (PD-L1) is a type I transmembrane glycoprotein expressed on antigen-presenting cells. It is also expressed in several tumor cells such as melanoma and lung cancer cells. A strong correlation has been reported between human PD-L1 (hPD-L1) expression in tumor cells and negative prognosis in cancer patients. Here, a novel anti-hPD-L1 monoclonal antibody (mAb) L 1 Mab-13 (IgG 1 , kappa) was produced using a cell-based immunization and screening (CBIS) method. We investigated hPD-L1 expression in lung cancer using flow cytometry, Western blot, and immunohistochemical analyses. L 1 Mab-13 specifically reacted hPD-L1 of hPD-L1-overexpressed Chinese hamster ovary (CHO)-K1 cells and endogenous hPD-L1 of KMST-6 (human fibroblast) in flow cytometry and Western blot. Furthermore, L 1 Mab-13 reacted with lung cancer cell lines (EBC-1, Lu65, and Lu99) in flow cytometry and stained lung cancer tissues in a membrane-staining pattern in immunohistochemical analysis. These results indicate that a novel anti-hPD-L1 mAb, L 1 Mab-13, is very useful for detecting hPD-L1 of lung cancers in flow cytometry, Western blot, and immunohistochemical analyses.

  10. FeOOH-loaded MnO2 nano-composite: An efficient emergency material for thallium pollution incident.

    Science.gov (United States)

    Chen, Meiqing; Wu, Pingxiao; Yu, Langfeng; Liu, Shuai; Ruan, Bo; Hu, Haihui; Zhu, Nengwu; Lin, Zhang

    2017-05-01

    A FeOOH-loaded MnO 2 nano-composite was developed as an emergency material for Tl(I) pollution incident. Structural characterizations showed that FeOOH successfully loaded onto MnO 2 , the nanosheet-flower structure and high surface area (191 m 2  g -1 ) of material contributed to the excellent performance for Tl(I) removal. FeOOH-loaded MnO 2 with a Fe/Mn molar ratio of 1:2 exhibited a noticeable enhanced capacity for Tl(I) removal compared to that of pure MnO 2 . The outstanding performance for Tl(I) removal involves in extremely high efficiency (achieved equilibrium and drinking water standard within 4 min) and the large maximum adsorption capacity (450 mg g -1 ). Both the control-experiment and XPS characterization proved that the removal mechanism of Tl(I) on FeOOH-loaded MnO 2 included adsorption and oxidation: the oxidation of MnO 2 played an important role for Tl(I) removal, and the adsorption of FeOOH loaded on MnO 2 enhanced Tl(I) purification at the same time. In-depth purification of Tl(I) had reach drinking water standards (0.1 μg L -1 ) at pH above 7, and there wasn't security risk produced from the dissolution of Mn 2+ and Fe 2+ . Moreover, the as-prepared material could be utilized as a recyclable adsorbent regenerated by using NaOH-NaClO binary solution. Therefore, the synthesized FeOOH-loaded MnO 2 in this study has the potential to be applied as an emergency material for thallium pollution incident. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Antibody fragments directed against different portions of the human neural cell adhesion molecule L1 act as inhibitors or activators of L1 function.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available The neural cell adhesion molecule L1 plays important roles in neuronal migration and survival, neuritogenesis and synaptogenesis. L1 has also been found in tumors of different origins, with levels of L1 expression correlating positively with the metastatic potential of tumors. To select antibodies targeting the varied functions of L1, we screened the Tomlinson library of recombinant human antibody fragments to identify antibodies binding to recombinant human L1 protein comprising the entire extracellular domain of human L1. We obtained four L1 binding single-chain variable fragment antibodies (scFvs, named I4, I6, I13, and I27 and showed by enzyme-linked immunosorbent assay (ELISA that scFvs I4 and I6 have high affinity to the immunoglobulin-like (Ig domains 1-4 of L1, while scFvs I13 and I27 bind strongly to the fibronectin type III homologous (Fn domains 1-3 of L1. Application of scFvs I4 and I6 to human SK-N-SH neuroblastoma cells reduced proliferation and transmigration of these cells. Treatment of SK-N-SH cells with scFvs I13 and I27 enhanced cell proliferation and migration, neurite outgrowth, and protected against the toxic effects of H(2O(2 by increasing the ratio of Bcl-2/Bax. In addition, scFvs I4 and I6 inhibited and scFvs I13 and I27 promoted phosphorylation of src and Erk. Our findings indicate that scFvs reacting with the immunoglobulin-like domains 1-4 inhibit L1 functions, whereas scFvs interacting with the fibronectin type III domains 1-3 trigger L1 functions of cultured neuroblastoma cells.

  12. Mixed ZnO-TiO2 Suspended Solution as an Efficient Photocatalyst for Decolonization of a Textile Dye from Waste Water

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Mooji

    2015-03-01

    Full Text Available Introduction: Textile industries produce large volume of colored dye effluents which are toxic and removal of dyes from wastewater is a significant environmental issue. Advanced oxidation process (AOPs is alternative method for the complete degradation many organic pollutants. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. Material and Methods: Mixed ZnO/TiO2 was prepared with mixing of ZnO and TiO2 (20, 40, 60, 80 % (w/w. 20 mL of dye solution (80 mgL-1 for DB71 containing the appropriate quantity of photocatalyst was magnetically stirred under UV irradiation. Photocatalytic study was carried out to evaluate the effect of UV (400 W, ZnO/TiO2 weight percent (20, 40, 60, 80 % (w/w, pH (2.3 – 9.2, irradiation time of (10 – 70 min, initial dye concentration of (10, 40, 80 mg/L and ZnO/TiO2 dosage of (0.2 – 1.6 g/L on removal of dye. Dye concentration was monitored spectrophotometrically by measuring the dye absorbance at 285 nm. Results: In comparison with TiO2 or ZnO as photocatalyst, mixed photocatalyst (ZnO/TiO2 is more efficient catalyst for degradation of dye under UV irradiation Results show that approximately 90 % of Direct Blue 71 has been eliminated after 70 minutes and optimized condition ((pH = 6.4, ZnO/TiO2 (50% w/w, 1.25 g/L. Experiments showed, the noticeable decolorization of dye solution can be done without any oxidation agent with mixed ZnO/TiO2 photocatalyst.

  13. Selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation.

    Science.gov (United States)

    Miao, Guang; Ye, Feiyan; Wu, Luoming; Ren, Xiaoling; Xiao, Jing; Li, Zhong; Wang, Haihui

    2015-12-30

    This study investigates selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation. The TiO2/SiO2 adsorbents were prepared and then characterized by N2 adsorption, X-ray diffraction and X-ray photoelectron spectroscopy. Adsorption isotherms, selectivity and kinetics of TiO2/SiO2 were measured in a UV built-in batch reactor. It was concluded that (a) with the employment of UV-irradiation, high organosulfur uptake of 5.12 mg/g was achieved on the optimized 0.3TiO2/0.7SiO2 adsorbent at low sulfur concentration of 15 ppmw-S, and its adsorption selectivity over naphthalene was up to 325.5; (b) highly dispersed TiO2 served as the photocatalytic sites for DBT oxidation, while SiO2 acted as the selective adsorption sites for the corresponding oxidized DBT using TiO2 as a promoter, the two types of active sites worked cooperatively to achieve the high adsorption selectivity of TiO2/SiO2; (c) The kinetic rate-determining step for the UV photocatalysis-assisted adsorptive desulfurization (PADS) over TiO2/SiO2 was DBT oxidation; (d) consecutive adsorption-regeneration cycles suggested that the 0.3TiO2/0.7SiO2 adsorbent can be regenerated by acetonitrile washing followed with oxidative air treatment. This work demonstrated an effective PADS approach to greatly enhance adsorption capacity and selectivity of thiophenic compounds at low concentrations for deep desulfurization under ambient conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. PODAAC-CYGNS-L1X20

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 1 (L1) dataset contains the Version 2.0 geo-located Delay Doppler Maps (DDMs) calibrated into Power Received (Watts) and Bistatic Radar Cross Section...

  15. Phobos L1 Operational Tether Experiment (PHLOTE)

    Data.gov (United States)

    National Aeronautics and Space Administration — A sensor package that “floats” just above the surface of Phobos, suspended by a tether from a small spacecraft operating at the Mars/Phobos Lagrange 1 (L1) Point...

  16. Voice and Narrative in L1 Writing

    DEFF Research Database (Denmark)

    Krogh, Ellen; Piekut, Anke

    2015-01-01

    This paper investigates issues of voice and narrative in L1 writing. Three branches of research are initial-ly discussed: research on narratives as resources for identity work, research on writer identity and voice as an essential aspect of identity, and research on Bildung in L1 writing. Subsequ...... training of voice and narratives as a resource for academic writing, and that the Bildung potential of L1 writing may be tied to this issue.......This paper investigates issues of voice and narrative in L1 writing. Three branches of research are initial-ly discussed: research on narratives as resources for identity work, research on writer identity and voice as an essential aspect of identity, and research on Bildung in L1 writing...... in lower secondary L1, she found that her previous writing strategies were not rewarded in upper secondary school. In the second empiri-cal study, two upper-secondary exam papers are investigated, with a focus on their approaches to exam genres and their use of narrative resources to address issues...

  17. A Structural Molar Volume Model for Oxide Melts Part I: Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 Melts—Binary Systems

    Science.gov (United States)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    A structural molar volume model was developed to accurately reproduce the molar volume of molten oxides. As the non-linearity of molar volume is related to the change in structure of molten oxides, the silicate tetrahedral Q-species, calculated from the modified quasichemical model with an optimized thermodynamic database, were used as basic structural units in the present model. Experimental molar volume data for unary and binary melts in the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 system were critically evaluated. The molar volumes of unary oxide components and binary Q-species, which are model parameters of the present structural model, were determined to accurately reproduce the experimental data across the entire binary composition in a wide range of temperatures. The non-linear behavior of molar volume and thermal expansivity of binary melt depending on SiO2 content are well reproduced by the present model.

  18. Photoinduced discharge of electrons stored in a TiO2-MWCNT composite to an analyte: application to the fluorometric determination of hydrogen peroxide, glucose and aflatoxin B1.

    Science.gov (United States)

    Rhouati, Amina; Nasir, Muhammad; Marty, Jean-Louis; Hayat, Akhtar

    2017-12-06

    The authors describe an analytical detection scheme based on the use of multiwalled carbon nanotubes (MWCNTs) that accept and store electrons upon contact with photo-irradiated TiO 2 nanoparticles (TiO 2 -NPs). The Fermi level equilibration with photo-irradiated TiO 2 -NPs has a storage value of 0.35 mM of electrons per 120 mg·L -1 of MWCNTs. The stored electrons can be discharged on demand upon addition of electron acceptors to the TiO 2 -NP/MWCNT composite. These findings are applied to detect the quencher hydrogen peroxide. H 2 O 2 also is produced on enzymatic action of glucose oxidase on glucose, and this enables glucose also to be quantified by using the TiO 2 -NP/MWCNT fluorescent nanoprobe. The wide scope of the method also is demonstrated by an assay for aflatoxin B1 that is making use of an FAM-labeled aptamer where the FAM fluorophore on the aptamer quenches the emission of the nanoprobe. The following analytical linear ranges and limits of detection are found: H 2 O 2 : 0.1-100 μM and 15 nM; glucose: 5-200 μM and 0.5 μM; aflatoxin: 0.1-40 ng·mL -1 and 0.02 ng·mL -1 . The method was applied to the determination of glucose in human serum. Graphical abstract The assays demonstrated in (b) and (c) are based on the fluorescence quenching ability of MWCNTs-TiO 2 . In the presence of the target (analyte), the fluorescence is restored and the target concentration is determined from the percentage of fluorescence recovery.

  19. Tracing high-pressure metamorphism in marbles: Phase relations in high-grade aluminous calcite-dolomite marbles from the Greek Rhodope massif in the system CaO-MgO-Al 2O 3-SiO 2-CO 2 and indications of prior aragonite

    Science.gov (United States)

    Proyer, A.; Mposkos, E.; Baziotis, I.; Hoinkes, G.

    2008-08-01

    Four different types of parageneses of the minerals calcite, dolomite, diopside, forsterite, spinel, amphibole (pargasite), (Ti-)clinohumite and phlogopite were observed in calcite-dolomite marbles collected in the Kimi-Complex of the Rhodope Metamorphic Province (RMP). The presence of former aragonite can be inferred from carbonate inclusions, which, in combination with an analysis of phase relations in the simplified system CaO-MgO-Al 2O 3-SiO 2-CO 2 (CMAS-CO 2) show that the mineral assemblages preserved in these marbles most likely equilibrated at the aragonite-calcite transition, slightly below the coesite stability field, at ca. 720 °C, 25 kbar and aCO 2 ~ 0.01. The thermodynamic model predicts that no matter what activity of CO 2, garnet has to be present in aluminous calcite-dolomite-marble at UHP conditions.

  20. Photocatalytic degradation of commercial phoxim over La-doped TiO2 nanoparticles in aqueous suspension.

    Science.gov (United States)

    Dai, Ke; Peng, Tianyou; Chen, Hao; Liu, Juan; Zan, Lin

    2009-03-01

    Photocatalytic degradation of commercial phoxim emulsion in aqueous suspension was investigated by using La-doped mesoporous TiO2 nanoparticles (m-TiO2) as the photocatalyst under UV irradiation. Effects of La-doping level, calcination temperature, and additional amount of the photocatalyst on the photocatalytic degradation efficiency were investigated in detail. Experimental results indicate that 20 mg L(-1) phoxim in 0.5 g L(-1) La/m-TiO2 suspension (the initial pH 4.43) can be decomposed as prolonging the irradiation time. Almost 100% phoxim was decomposed after 4 h irradiation according to the spectrophotometric analyses, whereas the mineralization rate of phoxim just reached ca. 80% as checked by ion chromatography (IC) analyses. The elimination of the organic solvent in the phoxim emulsion as well as the formation and decomposition of some degradation intermediates were observed by high-performance liquid chromatography-mass spectroscopy (HPLC-MS). On the basis of the analysis results on the photocatalytic degradation intermediates, two possible photocatalytic degradation pathways are proposed under the present experimental conditions, which reveal that both the hydrolysis and adsorption of phoxim under UV light irradiation play important roles during the photocatalytic degradation of phoxim.

  1. [Effect of Residual Hydrogen Peroxide on Hydrolysis Acidification of Sludge Pretreated by Microwave -H2O2-Alkaline Process].

    Science.gov (United States)

    Jia, Rui-lai; Liu, Ji-bao; Wei, Yuan-song; Cai, Xing

    2015-10-01

    Previous studies have found that in the hydrolysis acidification process, sludge after microwave -H2O2-alkaline (MW-H2O2-OH, pH = 10) pretreatment had an acid production lag due to the residual hydrogen peroxide. In this study, effects of residual hydrogen peroxide after MW-H2O2-OH (pH = 10 or pH = 11) pretreatment on the sludge hydrolysis acidification were investigated through batch experiments. Our results showed that catalase had a higher catalytic efficiency than manganese dioxide for hydrogen peroxide, which could completely degraded hydrogen peroxide within 10 min. During the 8 d of hydrolysis acidification time, both SCOD concentrations and the total VFAs concentrations of four groups were firstly increased and then decreased. The optimized hydrolysis times were 0.5 d for four groups, and the optimized hydrolysis acidification times were 3 d for MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group. The optimized hydrolysis acidification time for MW-H2O2-OH (pH = 11) group was 4 d. Residual hydrogen peroxide inhibited acid production for sludge after MW-H2O2-OH (pH = 10) pretreatment, resulting in a lag in acidification stage. Compared with MW-H2O2-OH ( pH = 10) pretreatment, MW-H2O2-OH (pH = 11 ) pretreatment released more SCOD by 19.29% and more organic matters, which resulted in the increase of total VFAs production significantly by 84.80% at 5 d of hydrolysis acidification time and MW-H2O2-OH (pH = 11) group could shorten the lag time slightly. Dosing catalase (100 mg x -L(-1)) after the MW-H2O2-OH (pH = 10 or pH = 11) pretreatment not only significantly shortened the lag time (0.5 d) in acidification stage, but also produced more total VFAs by 23.61% and 50.12% in the MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group, compared with MW-H2O2-OH (pH = 10) group at 3d of hydrolysis acidification time. For MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and

  2. Nano-MnO2-mediated transformation of triclosan with humic molecules present: kinetics, products, and pathways.

    Science.gov (United States)

    Sun, Kai; Li, Shunyao; Waigi, Michael Gatheru; Huang, Qingguo

    2018-05-01

    It has been shown that manganese dioxide (MnO 2 ) can mediate transformation of phenolic contaminants to form phenoxyl radical intermediates, and subsequently, these intermediates intercouple to form oligomers via covalent binding. However, the reaction kinetics and transformation mechanisms of phenolic contaminants with humic molecules present in nano-MnO 2 -mediated systems were still unclear. In this study, it was proven that nano-MnO 2 were effective in transforming triclosan under acidic conditions (pH 3.5-5.0) during manganese reduction, and the apparent pseudo first-order kinetics rate constants (k = 0.0599-1.5314 h -1 ) increased as the pH decreased. In particular, the transformation of triclosan by nano-MnO 2 was enhanced in the presence of low-concentration humic acid (1-10 mg L -1 ). The variation in the absorption of humic molecules at 275 nm supported possible covalent binding between humic molecules and triclosan in the nano-MnO 2 -mediated systems. A total of four main intermediate products were identified by high-resolution mass spectrometry (HRMS), regardless of humic molecules present in the systems or not. These products correspond to a suite of radical intercoupling reactions (dimers and trimers), ether cleavage (2,4-dichlorophenol), and oxidation to quinone-like products, triggered by electron transfer from triclosan molecules to nano-MnO 2 . A possible reaction pathway in humic acid solutions, including homo-coupling, decomposition, oxidation, and cross-coupling, was proposed. Our findings provide valuable information regarding the environmental fate and transformation mechanism of triclosan by nano-MnO 2 in complex water matrices.

  3. A novel synthesis method for TiO2 particles with magnetic Fe3O4 cores.

    Science.gov (United States)

    Dong, Qi; Zhang, Keqiang; An, Yi

    2014-01-01

    TiO2@(AC/Fe3O4) (AC is activated carbon) was prepared by using AC and Fe3O4 as joint support. The morphological features, crystal structure, and magnetism of the final product were characterized. The results indicate that TiO2 particles formed on the surface of AC and Fe3O4; the sizes of TiO2 and Fe3O4 were 0.5 and 0.7 μm respectively, and that of AC fell within a wide range. The highly crystalline cubic structures of the TiO2 particles was in accord with the standard X-ray diffractometry spectrum of magnetite and anatase. The maximum saturation magnetization of TiO2@(AC/Fe3O4) was 75 emu g(-1), which was enough to support magnetic recovery. The rate of methylene blue (MB) removal photocatalyzed by TiO2@(AC/Fe3O4) was higher by 50% than that achieved with AC/Fe3O4 photocatalysis, and similar to that achieved with TiO2@AC. The removal rate (kobs) decreased drastically from 1.77 × 10(-2) to 9.36 × 10(-3)min(-1) when the initial concentration of MB solution increased from 2.0 to 5.0 mg L(-1). The kobs value increased from 9.41 × 10(-3) to 1.34 × 10(-2)min(-1) with increasing photocatalyst dosage from 0.2 to 1.0 g, then slightly decreased to 1.33 × 10(-2)min(-1) at 2.0 g dosage.

  4. Validation of ATLAS L1 Topological Triggers

    CERN Document Server

    Praderio, Marco

    2017-01-01

    The Topological trigger (L1Topo) is a new component of the ATLAS L1 (Level-1) trigger. Its purpose is that of reducing the otherwise too high rate of data collection from the LHC by rejecting those events considered “uninteresting” (meaning that they have already been studied). This event rate reduction is achieved by applying topological requirements to the physical objects present in each event. It is very important to make sure that this trigger does not reject any “interesting” event. Therefore we need to verify its correct functioning. The goal of this summer student project is to study the response of two L1Topo algorithms (concerning ∆R and invariant mass). To do so I will compare the trigger decisions produced by the L1Topo hardware with the ones produced by the “official” L1Topo simulation. This way I will be able to identify events that could be incorrectly rejected. Simultaneously I will produce an emulation of these triggers that will help me understand the cause of disagreements bet...

  5. Tolfenamic acid degradation by direct photolysis and the UV-ABC/H2O2 process: factorial design, kinetics, identification of intermediates, and toxicity evaluation.

    Science.gov (United States)

    de Melo da Silva, Lucas; Pereira Cavalcante, Rodrigo; Fabbro Cunha, Rebeca; Gozzi, Fábio; Falcao Dantas, Renato; de Oliveira, Silvio Cesar; Machulek, Amilcar

    2016-12-15

    This study employed direct UV-ABC photolysis and the UV-ABC/H 2 O 2 process to investigate the degradation of tolfenamic acid (TA), a common anti-inflammatory drug used in both human and veterinary medicine. A 2 3 factorial design with added center point was used to evaluate the effect of three independent variables-namely, H 2 O 2 concentration ([H 2 O 2 ]), TA concentration ([TA]), and experiment time (time)-on TA degradation and H 2 O 2 photolysis during UV-ABC/H 2 O 2 treatment using a high-pressure mercury vapor lamp (photon flux of 2.6307 × 10 4 J s -1 ) as the UV irradiation source. The responses yielded similar values, revealing a linear behavior, with correlation coefficients R = 0.9968 and R adj = 0.9921 for TA degradation and R = 0.9828 and R adj = 0.9570 for H 2 O 2 photolysis. The most efficient combination of variables was [H 2 O 2 ] = 255 mg L -1 and [TA] = 25 mg L -1 , resulting in 100% TA degradation and 98.87% H 2 O 2 photolysis by 90 min of treatment. Additionally, the second-order kinetic constant of the reaction between TA and HO ● was determined using a competitive kinetic model, employing 2,4-dichlorophenoxyacetic acid (2,4D) as the reference compound. The kinetic constant was 1.9 × 10 10 M -1 s -1 in alkaline medium. TA degradation by direct photolysis generated quinone imines as by-products, responsible for the formation of a dark red "internal filter" that increased the value of acute toxicity to Artemia salina. The UV-ABC/H 2 O 2 process did not promote formation of quinone imines by 90 min of treatment and therefore did not increase acute toxicity values. Several by-products generated during TA degradation were identified and possible degradation pathways for the UV-ABC and UV-ABC/H 2 O 2 processes were proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Interactions of a La{sub O.9}Sr{sub O.1}Ga{sub O.8}Mg{sub O.2}O{sub 3-{delta}} electrolyte with Fe{sub 2}O{sub 3}, Co{sub 2}O{sub 3} and NiO anode materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Ohara, S.; Okawa, H.; Maric, R.; Fukui, T. [Japan Fine Ceramics Center, 2-4-1 Mutsuo, Atsuta-ku, 456-8587 Nagoya (Japan)

    2001-01-02

    In this study, the interactions of a Sr- and Mg-doped lanthanum gallate (LSGM with composition La{sub O.9}Sr{sub O.1}Ga{sub O.8}Mg{sub O.2}O{sub 3-{delta}}) electrolyte with Fe{sub 2}O{sub 3}, Co{sub 2}O{sub 3} and NiO as the anode starting materials were investigated. It was found that the order of reactivity of the LSGM with the three oxides was Co{sub 2}O{sub 3}>NiO>Fe{sub 2}O{sub 3}, and La-containing oxides were detected in these binary powder mixtures after firing. The anode performance was greatly influenced by the interaction. The Fe{sub 2}O{sub 3}-LSGM anode, mixed with 40 vol.% LSGM powder and sintered at 1150C, exhibited the highest initial performance in comparison with NiO-LSGM and Co{sub 2}O{sub 3}-LSGM anodes. It seems that Fe{sub 2}O{sub 3} is a possible anode starting material for a LSGM-based solid oxide fuel cell.

  7. Avaliação da degradação do diclofenaco sódico utilizando H2O2/fenton em reator eletroquímico Evaluation of the degradation of sodium diclofenac using H2O2/fenton in electrochemical reactor

    Directory of Open Access Journals (Sweden)

    Robson S. Rocha

    2009-01-01

    Full Text Available This paper describes a degradation study of the anti-inflammatory sodium diclofenac in aqueous medium using an electro-chemical flow reactor with a gas diffusion electrode as cathode. Two degradation processes were compared: by H2O2 electro-generated and H2O2 electro-generated/Fe(II. Concentration of sodium diclofenac was determined during the experiments by HPLC. The changes in chemical oxigen demand (COD were also evaluated. Under the specific reaction conditions, 350 mg L-1 of H2O2 was electro-generated and 99.2% of sodium diclofenac was degradated, with 27.4% COD reduction. At the same conditions, but using Fe(II, drug degradation was 99.4% and the COD reduction was 63.2%.

  8. Degradation of fifteen emerging contaminants at microg L(-1) initial concentrations by mild solar photo-Fenton in MWTP effluents.

    Science.gov (United States)

    Klamerth, N; Rizzo, L; Malato, S; Maldonado, Manuel I; Agüera, A; Fernández-Alba, A R

    2010-01-01

    The degradation of 15 emerging contaminants (ECs) at low concentrations in simulated and real effluent of municipal wastewater treatment plant with photo-Fenton at unchanged pH and Fe=5 mg L(-1) in a pilot-scale solar CPC reactor was studied. The degradation of those 15 compounds (Acetaminophen, Antipyrine, Atrazine, Caffeine, Carbamazepine, Diclofenac, Flumequine, Hydroxybiphenyl, Ibuprofen, Isoproturon, Ketorolac, Ofloxacin, Progesterone, Sulfamethoxazole and Triclosan), each with an initial concentration of 100 microg L(-1), was found to depend on the presence of CO(3)(2-) and HCO(3)(-) (hydroxyl radicals scavengers) and on the type of water (simulated water, simulated effluent wastewater and real effluent wastewater), but is relatively independent of pH, the type of acid used for release of hydroxyl radicals scavengers and the initial H(2)O(2) concentration used. Toxicity tests with Vibrio fisheri showed that degradation of the compounds in real effluent wastewater led to toxicity increase. (c) 2009 Elsevier Ltd. All rights reserved.

  9. Generalized L1 penalized matrix factorization

    DEFF Research Database (Denmark)

    Rasmussen, Morten Arendt

    2017-01-01

    Traditionally, chemometric models consists of parameters found by solving a least squares criterion. However, these models can suffer from overfitting, as well as being hard to interpret because of the large number of active parameters. This work proposes the use of a generalized L1 norm penalty ...

  10. Dirichlet expression for L(1, χ )

    Indian Academy of Sciences (India)

    We show that this expression with obvious modification is valid for the general primitive Dirichlet character χ. Keywords. Hurwitz zeta function; Dirichlet character; Dirichlet L-series; primitive character. 1. Introduction. In Dirichlet's famous work dealing with class number formula, the value of L(1,χ) is expressed in terms of finite ...

  11. Small Molecule Agonists of Cell Adhesion Molecule L1 Mimic L1 Functions In Vivo.

    Science.gov (United States)

    Kataria, Hardeep; Lutz, David; Chaudhary, Harshita; Schachner, Melitta; Loers, Gabriele

    2016-09-01

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery after injury, leading to severe disabilities in motor functions and pain. Peripheral nerve injury impairs motor, sensory, and autonomic functions, particularly in cases where nerve gaps are large and chronic nerve injury ensues. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration after acute injury. We screened libraries of known drugs for small molecule agonists of L1 and evaluated the effect of hit compounds in cell-based assays in vitro and in mice after femoral nerve and spinal cord injuries in vivo. We identified eight small molecule L1 agonists and showed in cell-based assays that they stimulate neuronal survival, neuronal migration, and neurite outgrowth and enhance Schwann cell proliferation and migration and myelination of neurons in an L1-dependent manner. In a femoral nerve injury mouse model, enhanced functional regeneration and remyelination after application of the L1 agonists were observed. In a spinal cord injury mouse model, L1 agonists improved recovery of motor functions, being paralleled by enhanced remyelination, neuronal survival, and monoaminergic innervation, reduced astrogliosis, and activation of microglia. Together, these findings suggest that application of small organic compounds that bind to L1 and stimulate the beneficial homophilic L1 functions may prove to be a valuable addition to treatments of nervous system injuries.

  12. Estudo da aplicação de foto-Fenton (Fe2+/H2O2 solar no pré-tratamento do chorume

    Directory of Open Access Journals (Sweden)

    Alessandro Sampaio Cavalcanti

    2014-01-01

    Full Text Available O chorume em estudo é proveniente da cidade de Cachoeira Paulista no interior do estado de São Paulo apresenta as concentrações dos parâmetros COT (368.6 mg C L-1, DQO (3552.2 mg O2 L-1 e DBO (397.4 mg O2 L-1 que mostram a baixa razão de        biodegradabilidade (DBO/DQO = 0.11. Neste contexto, os processos oxidativos avançados surgem como alternativa para o seu pré-tratamento. O objetivo desse trabalho é utilizar a fotocatálise homogênea, empregando foto-Fenton (H2O2 + Fe2+ Solar num reator aberto com volume constante do efluente (3 L para verificar a eficiência e a avaliação econômica de remoção da carga orgânica. O reator possui um suporte de madeira que está direcionado ao Equador com um ângulo de inclinação de 23º, com uma placa metálica sem pigmentação denominada branco, numa vazão constante (13 L . min-1. Ao mesmo tempo, o volume do reagente de Fe2+ (0.82 mol L-1 foi adicionado totalmente no início da reação e o H2O2 (30 %  m/ m durante 60 min do tempo total de 2 h, sendo a radiação solar medida através de um radiômetro portátil. O processo foi otimizado por um planejamento fatorial fracionado (24-1, e os fatores estudados foram: pH, intervalo da radiação solar, quantidades de H2O2 (g e Fe2+ (g. A maior redução percentual de COT (Carbono Orgânico Total foi 82.12%, com um aumento de sua biodegradabilidade para 0.41 aliado ao custo otimizado de US$ 0.188 / 3 L. Desta forma, o processo fotocatalítico proposto mostrou grande viabilidade técnico-econômico em relação à degradação da carga orgânica do chorume.

  13. Glass-ceramic materials of system MgO-Al{sub 2}O{sub 3}-SiO{sub 2} from rice husk ash; Materiales vitroceramicos del sistema MgO-Al2O3-SiO2 a partir de ceniza de cascara de arroz

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M. I.; Rincon, J. M.; Andreola, F.; Barbieri, L.; Bondioli, F.; Lancellotti, I.; Romero, M.

    2011-07-01

    This wok shows the results of a valorisation study to use rice husk ash as raw material to develop glass-ceramic materials. An original glass has been formulated in the base system MgO-Al{sub 2}O{sub 3}-SiO{sub 2} with addition of B{sub 2}O{sub 3} and Na{sub 2}O to facilitate the melting and poring processes. Glass characterization was carried out by determining its chemical composition. Sintering behaviour has been examined by Hot Stage Microscopy (HSM). Thermal stability and crystallization mechanism have been studied by Differential Thermal Analysis (DTA). Mineralogy analyses of the glass-ceramic materials were carried out using X-ray Diffraction (XRD). Results show that it is possible to use ash rice husk to produce glass-ceramic materials by a sinter crystallization process, with nepheline (Na{sub 2}O-Al{sub 2}O{sub 3}-SiO{sub 2}) as major crystalline phase in the temperature interval 700-950 degree centigrade and forsterite (2MgO-SiO{sub 2}) at temperatures above 950 degree centigrade. (Author) 15 refs.

  14. Application of UV/TiO2/H2O2 Advanced Oxidation to Remove Naphthalene from Water

    Directory of Open Access Journals (Sweden)

    Behroz Karimi

    2016-11-01

    Full Text Available Naphthalene is released into the environment by burning such organic materials as fossil fuels and wood and in industrial and vehicle exhaust emissions. Naphthalene is used in the manufacture of plastics, resins, fuels, and dyes. The aim of this study was to evaluate the performance of UV/TiO2/H2O2 process to decompose naphthalene in aqueous solutions. For this purpose, the photocatalytic degradation of naphthalene was investigated under UV light irradiation in the presence of TiO2 and H2O2 under a variety of conditions. Photodegradation efficiencies of H2O2/UV, TiO2/UV, and H2O2/TiO2/UV processes were compared in a batch reactor using the low pressure mercury lamp irradiation. The effects of operating parameters such as reaction time (min; solution pH; and initial naphthalene, TiO2, and H2O2 concentrations on photodegradation were examined. In the UV/TiO2/H2O2 system with a naphthalene concentration of 15 mg/L, naphthalene removal efficiencies of 63, 75, 80, 88, 92, 95, 96.5, and 98% were achieved, respectively, for reaction times of 5, 10, 20, 30, 40, 50, 60, 100 and 120 min. This is while removal efficienciesof 50, 59.5, 69, 80, 85, 88, 91, and 95% were obtained in the UV/TiO2 system under the same conditions. For initial pH values of 3, 4, 5, 6, 7,9, 10, and 12, naphthalene removal efficiencies of approximately 96.8, 85.5, 86, 75.5, 68.8, 57.8, and 52.5% were acheived, respectively, with the UV/TiO2/H2O2 system. Thus, it may be claiomed that, compared to either H2O2/UV or TiO2/UV process, the H2O2/TiO2/UV process yielded a far more efficient photodegradation.

  15. Zoledronate complexes. III. Two zoledronate complexes with alkaline earth metals: [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)] and [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n).

    Science.gov (United States)

    Freire, Eleonora; Vega, Daniel R; Baggio, Ricardo

    2010-06-01

    Diaquabis[dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato-kappa(2)O,O']magnesium(II), [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)], consists of isolated dimeric units built up around an inversion centre and tightly interconnected by hydrogen bonding. The Mg(II) cation resides at the symmetry centre, surrounded in a rather regular octahedral geometry by two chelating zwitterionic zoledronate(1-) [or dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonate] anions and two water molecules, in a pattern already found in a few reported isologues where the anion is bound to transition metals (Co, Zn and Ni). catena-Poly[[aquacalcium(II)]-mu(3)-[hydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato]-kappa(5)O:O,O':O',O''], [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n), consists instead of a Ca(II) cation in a general position, a zwitterionic zoledronate(2-) anion and a coordinated water molecule. The geometry around the Ca(II) atom, provided by six bisphosphonate O atoms and one water ligand, is that of a pentagonal bipyramid with the Ca(II) atom displaced by 0.19 A out of the equatorial plane. These Ca(II) coordination polyhedra are ;threaded' by the 2(1) axis so that successive polyhedra share edges of their pentagonal basal planes. This results in a strongly coupled rhomboidal Ca(2)-O(2) chain which runs along [010]. These chains are in turn linked by an apical O atom from a -PO(3) group in a neighbouring chain. This O-atom, shared between chains, generates strong covalently bonded planar arrays parallel to (100). Finally, these sheets are linked by hydrogen bonds into a three-dimensional structure. Owing to the extreme affinity of zoledronic acid for bone tissue, in general, and with calcium as one of the major constituents of bone, it is expected that this structure will be useful in modelling some of the biologically interesting processes in which the drug takes part.

  16. Properties of the ZrO2MgO/MgZrO3NiCr/NiCr triple-layer thermal barrier coating deposited by the atmospheric plasma spray process / Характеристики трехслойных термобарьерных покрытий ZrO2MgO/ MgZrO3NiCr/ NiCr, нанесенных воздушно-плазменным напылением / Svojstva troslojne termo barijerne prevlake ZrO2MgO/ MgZrO3NiCr/ NiCr deponovane atmosferskim plazma sprej procesom

    Directory of Open Access Journals (Sweden)

    Mihailo R. Mrdak

    2016-04-01

    Full Text Available This paper presents the results of the examinations of TBC - ZrO2MgO / MgZrO3NiCr / NiCr thermal barrier layers deposited by the plasma spray process at the atmospheric pressure on substrates of Al alloys. In order to obtain the structural and mechanical properties of layers, which will provide a good heat and abrasion protection of the tail elevators of aircraft J-22 when firing '.Lightning' and 'Thunder' rockets, the deposition of three powder types was performed on 0.6 mm thick Al alloy substrates. This study describes a procedure of using triple-layer TBC coatings as a good combination among many available ones, which gives a good compromise between thermal protection and resistance to abrasion for protecting aircraft tail elevators. The study is mainly based on the experimental approach. The evaluation of the mechanical properties of layers was done by the examination of microhardness by method HV0.3 and bond strength on the tensile machine. The structure of layers was examined by the method of light microscopy while the surface of ZrO2MgO ceramic layers was examined by the method of scanning electron microscopy (SEM.The thermal protection of TBC layers and resistance to abrasion were tested in the tunnel of the Military Technical Institute, Zarkovo. The obtained characteristics of the surface layers and the rocket firing simulations have proven the triple-layer system of TBC coatings reliable. / В данной статье представлены результаты испытаний термобарьерных покрытий ТБС ZrO2MgO/MgZrO3NiCr/NiCr, нанесенных воздушно-плазменным напылением при атмосферном давлении на субстраты сплавов Al. Испытания проводились с целью получения структурных и механических характеристик слоев, обеспечивающих ка

  17. L-1 constraint in Liouville gravity

    International Nuclear Information System (INIS)

    Kitazawa, Y.

    1992-01-01

    In this paper, the authors study recursion relations among the amplitudes which involve discrete states in c = 1 Liouville gravity on the sphere. The authors find that the spin J = 1/2 discrete state gives rise to the L -1 type recursion relation. Multiple point correlation functions are determined recursively from fewer point functions by this recursion relation. The authors further point out that the analogs of J = 1/2 state exist in c -1 type recursion relation

  18. Copolyimide mixed matrix membranes with oriented microporous titanosilicate JDF-L1sheet particles

    OpenAIRE

    Galve, Alejandro; Vispe, Eugenio; Téllez, Carlos; Coronas, Joaquín

    2011-01-01

    JDF-L1 is a microporous titanosilicate exhibiting a layer structure with pore size of about 3 Å. It is consequently an attractive material to separate H2-containing mixtures. This is the reason why JDF-L1, after disaggregation by means of hexadecyltrimethylammonium surfactant, has been combined with a carboxyl group containing copolyimide (6FDA-4MPD/6FDA-DABA 4:1) to produce mixed matrix membranes, which were applied to the separation of H2/CH4 and O2/N2 mixtures. Additionally, due to the she...

  19. TiO2 beads and TiO2-chitosan beads for urease immobilization

    International Nuclear Information System (INIS)

    Ispirli Doğaç, Yasemin; Deveci, İlyas; Teke, Mustafa; Mercimek, Bedrettin

    2014-01-01

    The aim of the present study is to synthesize TiO 2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO 2 beads. In the first method (A), urease enzyme was immobilized onto TiO 2 beads by adsorption and then crosslinking. In the second method (B), TiO 2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2 mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5 mg/ml for A and 1.0 mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0 mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60 °C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4–70 °C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30 °C (A), 40 °C (B) and 35 °C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65 °C. However, at this temperature free urease protected only 15% activity. - Highlights: • TiO 2 and TiO 2 -chitosan beads for urease immobilization have been prepared and characterized. • The beads used in this work are good matrices for the immobilization of urease. • The immobilized urease was shown to have good properties and stabilities (pH and thermal stability, operational stability). • The 50

  20. Formation of qualified BaHfO3 doped Y0.5Gd0.5Ba2Cu3O7-δ film on CeO2 buffered IBAD-MgO tape by self-seeding pulsed laser deposition

    Science.gov (United States)

    Liu, Linfei; Wang, Wei; Yao, Yanjie; Wu, Xiang; Lu, Saidan; Li, Yijie

    2018-05-01

    Improvement in the in-filed transport properties of REBa2Cu3O7-δ (RE = rare earth elements, REBCO) coated conductor is needed to meet the performance requirements for various practical applications, which can be accomplished by introducing artificial pinning centers (APCs), such as second phase dopant. However, with increasing dopant level the critical current density Jc at 77 K in zero applied magnetic field decreases. In this paper, in order to improve Jc we propose a seed layer technique. 5 mol% BaHfO3 (BHO) doped Y0.5Gd0.5Ba2Cu3O7-δ (YGBCO) epilayer with an inserted seed layer was grown on CeO2 buffered ion beam assisted deposition MgO (IBAD-MgO) tape by pulsed laser deposition. The effect of the conditions employed to prepare the seed layer, including tape moving speed and chemical composition, on the quality of 5 mol% BHO doped YGBCO epilayer was systematically investigated by X-ray diffraction (XRD) measurements and scanning electron microscopy (SEM) observations. It was found that all the samples with seed layer have higher Jc (77 K, self-field) than the 5 mol% BHO doped YGBCO film without seed layer. The seed layer could inhibit deterioration of the Jc at 77 K and self-filed. Especially, the self-seed layer (5 mol% BHO doped YGBCO seed layer) was more effective in improving the crystal quality, surface morphology and superconducting performance. At 4.2 K, the 5 mol% BHO doped YGBCO film with 4 nm thick self-seed layer had a very high flux pinning force density Fp of 860 GN/m3 for B//c under a 9 T field, and more importantly, the peak of the Fp curve was not observed.

  1. Comparing Acute Effects of a Nano-TiO2 Pigment on Cosmopolitan Freshwater Phototrophic Microbes Using High-Throughput Screening

    Science.gov (United States)

    Binh, Chu Thi Thanh; Peterson, Christopher G.; Tong, Tiezheng; Gray, Kimberly A.; Gaillard, Jean-François; Kelly, John J.

    2015-01-01

    Production of titanium-dioxide nanomaterials (nano-TiO2) is increasing, leading to potential risks associated with unintended release of these materials into aquatic ecosystems. We investigated the acute effects of nano-TiO2 on metabolic activity and viability of algae and cyanobacteria using high-throughput screening. The responses of three diatoms (Surirella angusta, Cocconeis placentula, Achnanthidium lanceolatum), one green alga (Scenedesmus quadricauda), and three cyanobacteria (Microcystis aeruginosa, Gloeocapsa sp., Synechococcus cedrorum) to short-term exposure (15 to 60 min) to a common nano-TiO2 pigment (PW6; average crystallite size 81.5 nm) with simulated solar illumination were assessed. Five concentrations of nano-TiO2 (0.5, 2.5, 5, 10, and 25 mg L-1) were tested and a fluorescent reporter (fluorescein diacetate) was used to assess metabolic activity. Algae were sensitive to nano-TiO2, with all showing decreased metabolic activity after 30-min exposure to the lowest tested concentration. Microscopic observation of algae revealed increased abundance of dead cells with nano-TiO2 exposure. Cyanobacteria were less sensitive to nano-TiO2 than algae, with Gloeocapsa showing no significant decrease in activity with nano-TiO2 exposure and Synechococcus showing an increase in activity. These results suggest that nanomaterial contamination has the potential to alter the distribution of phototrophic microbial taxa within freshwater ecosystems. The higher resistance of cyanobacteria could have significant implications as cyanobacteria represent a less nutritious food source for higher trophic levels and some cyanobacteria can produce toxins and contribute to harmful algal blooms. PMID:25923116

  2. Use of TiO2 photocatalyst supported on residues of polystyrene packaging and its applicability on the removal of food dyes.

    Science.gov (United States)

    Santos, Maressa Maria de Melo; Duarte, Marta Maria Menezes Bezerra; Nascimento, Graziele Elisandra do; Souza, Natalya Barbosa Guedes de; Rocha, Otidene Rossiter Sá da

    2018-01-12

    This work proposes the use of plastic residues, more specifically polystyrene packaging, to support TiO 2 , used as a photocatalyst in the degradation of erythrosine and Brilliant Blue food dyes. The scanning electron microscopy and Fourier transform infrared spectroscopy analyses exhibited the surface coating and the presence of TiO 2 in the material, respectively. The UV/H 2 O 2 /TiO 2 ((SP)supported) process was used in the preliminary study, given the high percentage of degradation, operational advantages and greater reductions in peaks related to the aromatic rings when compared to the other processes studied. For the factorial design, the highest efficiency was reached for 150 mg of TiO 2 , a H 2 O 2 concentration of 11.2 mmol L -1 and pH of 5.0. These conditions were used in the degradation kinetics, which was rapid during the first 30 min, with the concentration of dyes in the solution reaching values close to zero after 180 min. Based on the mechanism proposed, the pseudo-first order kinetic model presented the best adjustment to the experimental data. After treatment, the solution presented greater biodegradability and lower toxicity, verified by the lettuce seed germination test (Lactuca sativa). Thus, the UV/H 2 O 2 /TiO 2((SP)supported) process showed great potential in the treatment of industrial effluents contaminated by these food dyes, as well as in reusing discarded polystyrene packaging to support the photocatalyst.

  3. Heterogeneous Ag-TiO2-SiO2 composite materials as novel catalytic systems for selective epoxidation of cyclohexene by H2O2.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available TiO2-SiO2 composites were synthesized using cetyl trimethyl ammonium bromide (CTAB as the structure directing template. Self-assembly hexadecyltrimethyl- ammonium bromide TiO2-SiO2/(CTAB were soaked into silver nitrate (AgNO3 aqueous solution. The Ag-TiO2-SiO2(Ag-TS composite were prepared via a precipitation of AgBr in soaking process and its decomposition at calcination stage. Structural characterization of the materials was carried out by various techniques including X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, N2 adsorption-desorption and ultraviolet visible spectroscopy (UV-Vis. Characterization results revealed that Ag particles were incorporated into hierarchical TiO2-SiO2 without significantly affecting the structures of the supports. Further heating-treatment at 723 K was more favorable for enhancing the stability of the Ag-TS composite. The cyclohexene oxide was the major product in the epoxidation using H2O2 as the oxidant over the Ag-TS catalysts. Besides, the optimum catalytic activity and stability of Ag-TS catalysts were obtained under operational conditions of calcined at 723 K for 2 h, reaction time of 120 min, reaction temperature of 353 K, catalyst amount of 80 mg, aqueous H2O2 (30 wt.% as oxidant and chloroform as solvent. High catalytic activity with conversion rate up to 99.2% of cyclohexene oxide could be obtainable in water-bathing. The catalyst was found to be stable and could be reused three times without significant loss of catalytic activity under the optimized reaction conditions.

  4. Helical magnetic axis configuration combined with l = 1 and weak l = -1 torsatron fields

    International Nuclear Information System (INIS)

    Kikuchi, Hitoshi; Saito, Katsunori; Gesso, Hirokazu; Shiina, Shoichi

    1989-01-01

    The superposition of a relatively weak l = -1 torsatron field on a main l = 1 torsatron field leads to the improvement of the confinement properties due to the formation of a local magnetic well, which results from the local curvature of the helical magnetic axis with a larger excursion in the major radius direction. This l±1 helical magnetic axis system has a comparatively simple, compact coil structure. Here the vacuum configuration properties of l = ±1 system are described. (author)

  5. Bio diesel synthesis from pongamia pinnata oil over modified CeO2 catalysts

    International Nuclear Information System (INIS)

    Venkatesh; Sathgatta Z, M. S.; Manjunatha, S.; Thammannigowda V, V.

    2014-01-01

    This study investigates the use of CeO 2 , ZrO 2 , Mg O and CeO 2 -ZrO 2 , CeO 2 -Mg O, CeO 2 -ZrO 2 -Mg O mixed oxides as solid base catalysts for the transesterification of Pongamia pinnata oil with methanol to produce bio diesel. SO 4 2- /CeO 2 and SO 4 2- /CeO 2 -ZrO 2 were also prepared and used as solid acid catalysts for esterification of Pongamia pinnata oil (P-oil) to reduce the % of free fatty acid (FFA) in P-oil. The oxide catalysts were prepared by an incipient wetness impregnation method and characterized by techniques such as NH 3 -Tpd for surface acidity, CO 2 -Tpd for surface basicity and powder X-ray diffraction for crystallinity. The effect of nature of the catalyst, methanol to P-oil molar ratio and reaction time in esterification as well as in transesterification was investigated. The catalytic materials were reactive d and reused for five reaction cycles and the results showed that the ceria based catalysts have reasonably good reusability both in esterification and transesterification reaction. The test results also revealed that the CeO 2 -ZrO 2 modified with Mg O could have potential for use in the large scale bio diesel production. (Author)

  6. Three cases with L1 syndrome and two novel mutations in the L1CAM gene.

    Science.gov (United States)

    Marín, Rosario; Ley-Martos, Miriam; Gutiérrez, Gema; Rodríguez-Sánchez, Felicidad; Arroyo, Diego; Mora-López, Francisco

    2015-11-01

    Mutations in the L1CAM gene have been identified in the following various X-linked neurological disorders: congenital hydrocephalus; mental retardation, aphasia, shuffling gait, and adducted thumbs (MASA) syndrome; spastic paraplegia; and agenesis of the corpus callosum. These conditions are currently considered different phenotypes of a single entity known as L1 syndrome. We present three families with L1 syndrome. Sequencing of the L1CAM gene allowed the identification of the following mutations involved: a known splicing mutation (c.3531-12G>A) and two novel ones: a missense mutation (c.1754A>C; p.Asp585Ala) and a nonsense mutation (c.3478C>T; p.Gln1160Stop). The number of affected males and carrier females identified in a relatively small population suggests that L1 syndrome may be under-diagnosed. L1 syndrome should be considered in the differential diagnosis of intellectual disability or mental retardation in children, especially when other signs such as hydrocephalus or adducted thumbs are present.

  7. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production.

    Science.gov (United States)

    Li, Fengmin; Liang, Zhi; Zheng, Xiang; Zhao, Wei; Wu, Miao; Wang, Zhenyu

    2015-01-01

    Given the extensive use of nanomaterials, they may enter aquatic environments and harm the growth of algae, which are primary producers in an aquatic ecosystem. Thus, the balance of an aquatic ecosystem may be destroyed. In this study, Karenia brevis and Skeletonema costatum were exposed to nano-TiO2 (anatase, average particle size of 5-10 nm, specific surface area of 210±10 m(2) g(-1)) to assess the effects of nano-TiO2 on algae. The findings of transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX) and scanning electron microscopy (SEM) demonstrate aggregation of nano-TiO2 in the algal suspension. Nano-TiO2 was also found to be inside algal cells. The growth of the two species of algae was inhibited under nano-TiO2 exposure. The 72 h EC50 values of nano-TiO2 to K. brevis and S. costatum were 10.69 and 7.37 mg L(-1), respectively. TEM showed that the cell membrane of K. brevis was destroyed and its organelles were almost undistinguished under nano-TiO2 exposure. The malondialdehyde (MDA) contents of K. brevis and S. costatum significantly increased compared with those of the control (pTiO2 exposure was explored with the addition of inhibitors of different electron transfer chains. This study indicated that nano-TiO2 in algal suspensions inhibited the growth of K. brevis and S. costatum. This effect was attributed to oxidative stress caused by ROS production inside algal cells. The levels of anti-oxidative enzymes changed, which destroyed the balance between oxidation and anti-oxidation. Thus, algae were damaged by ROS accumulation, resulting in lipid oxidation and inhibited algae growth. The inhibitors of the electron transfer chain showed that the site of ROS production and accumulation in K. brevis cells was the chloroplast. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Contribution of L1 in EFL Teaching

    Directory of Open Access Journals (Sweden)

    Wahjuningsih Usadiati

    2009-01-01

    Full Text Available This study is conducted in a classroom action research to improve the students’ achievement in writing English sentences in Present Perfect Tense in Structure 1 lessons. The subject consisted of 20 Semester II students who took Structure I lessons in English Education Department of Palangka Raya University, Central Kalimantan, Indonesia. The data were taken from the results of pre test and post test after the action was done. The results show that in cycle 1, in which the explanations were fully in English, only 40% of the students got a good achievement; 5-7 out of 20 test items were correct. After cycle 2 was done using L1 interchangeably with English in the explanations, the students’ achievement of writing English sentences in Present Perfect Tense increased to 75%, in which 15-18 out 20 test items were correct.

  9. Metamorphic reprocessing of a serpentinized carbonate-bearing peridotite after detachment from the mantle wedge: A P-T path constrained from textures and phase diagrams in the system CaO-MgO-Al 2O 3-SiO 2-CO 2-H 2O

    Science.gov (United States)

    Mposkos, E.; Baziotis, I.; Proyer, A.

    2010-08-01

    In the central Rhodope mountains of Greece a carbonate-bearing metaperidotite lens ˜ 200 × 500 m in size crops out as part of the high- to ultrahigh-pressure metamorphic Upper Sidironero Complex ˜ 500 m SE of the Gorgona Village, north of Xanthi town. It is composed primarily of coarse grained (3-20 mm in size) olivine and orthopyroxene, medium grained clinohumite and medium to fine grained tremolite, chlorite, dolomite, magnesite, talc, antigorite and various spinel phases. Whole-rock chemistry, mineral textures and compositions, and phase diagram calculations show that the metaperidotite was subjected to a prograde HP metamorphism, isofacial with the surrounding migmatitic gneisses, metapelites and amphibolites. The prograde character of metamorphism is demonstrated by inclusions of talc, antigorite, chlorite, dolomite, magnesite and Ti-clinohumite in ferrit-chromite, olivine, and orthopyroxene, as well as of olivine in orthopyroxene, and by the typical change in composition of zoned spinel minerals from ferrit-chromite in the core to chromian spinel at the rim. The prograde path is characterized by successive growth of amphibole, Ti-clinohumite, olivine and orthopyroxene, followed by the breakdown of Ti-clinohumite to olivine + Mg-ilmenite and of chlorite to olivine + spinel, probably during exhumation. The construction of a partial petrogenetic P- T grid in the system CaO-MgO-Al 2O 3-SiO 2-CO 2-H 2O (CMASCH) for Ca-poor ultramafic bulk compositions has proven highly useful for the reconstruction of the metamorphic evolution and a P- T path, indicating that the use of univariant reactions in mixed volatile systems is highly warranted. The P- T path is clearly constrained to pressures below 1.5-1.7 GPa by the absence of clinopyroxene. These pressures are slightly lower than those recorded in the closely associated Jurassic eclogites and much lower than those recorded in the diamond-bearing gneisses 5 km to the south in the same tectonic unit. The carbonate

  10. Functionalization of Fe3O4/SiO2 with N-(2-Aminoethyl-3-aminopropyl for Sorption of [AuCl4]-

    Directory of Open Access Journals (Sweden)

    Nuryono Nuryono

    2016-08-01

    Full Text Available Synthesis of Fe3O4/SiO2 modified with N-(2-aminoethyl-3-aminopropyl group (Fe3O4/SiO2/ED via coating method and its application for adsorption-desorption of anionic gold in aqueous solution have been conducted. The synthesized product was characterized with an X-ray diffractometer (XRD, a Fourier transform infrared (FT-IR spectrophotometer and a transmission electron microscopy (TEM. Adsorption of Au(III was conducted in a batch system and the variables included pH, contact time, and initial concentration were investigated. Results showed that magnetite/silica has been successfully functionalized with N-(2-aminoethyl-3-aminopropyl in a homogeneous system. Kinetics study showed that adsorption of Au(III followed the pseudo-second order model with rate constant of 0.710 g mmol L-1min-1. Furthermore, the experimental data fitted well with the Langmuir isotherm model with the maximum adsorption capacity for Au(III of 142.9 mg g-1 and the energy of 25.0 kJ mol-1. Gold loaded on the Fe3O4/SiO2/ED could be easily desorbed with 0.2 mol L-1 HCl containing 2 wt.% of thiourea with recovery of 99.8%. Fe3O4/SiO2/ED was reusable and stable in 5 cycles of adsorption-desorption with recovery more than 90%. Fe3O4/SiO2/ED showed high selectivity towards Au(III in the multimetal system Au(III/Cu(II/Cr(VI with the coefficient selectivity for αAu-Cu of 227.5and for αAu-Cr of 12.3.

  11. UV-visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline.

    Science.gov (United States)

    Han, Changseok; Likodimos, Vlassis; Khan, Javed Ali; Nadagouda, Mallikarjuna N; Andersen, Joel; Falaras, Polycarpos; Rosales-Lombardi, Pablo; Dionysiou, Dionysios D

    2014-10-01

    Noble metal Ag-decorated, monodisperse TiO2 aggregates were successfully synthesized by an ionic strength-assisted, simple sol-gel method and were used for the photocatalytic degradation of the antibiotic oxytetracycline (OTC) under both UV and visible light (UV-visible light) irradiation. The synthesized samples were characterized by X-ray diffraction analysis (XRD); UV-vis diffuse reflectance spectroscopy; environmental scanning electron microscopy (ESEM); transmission electron microscopy (TEM); high-resolution TEM (HR-TEM); micro-Raman, energy-dispersive X-ray spectroscopy (EDS); and inductively coupled plasma optical emission spectrometry (ICP-OES). The results showed that the uniformity of TiO2 aggregates was finely tuned by the sol-gel method, and Ag was well decorated on the monodisperse TiO2 aggregates. The absorption of the samples in the visible light region increased with increasing Ag loading that was proportional to the amount of Ag precursor added in the solution over the tested concentration range. The Brunauer, Emmett, and Teller (The BET) surface area slightly decreased with increasing Ag loading on the TiO2 aggregates. Ag-decorated TiO2 samples demonstrated enhanced photocatalytic activity for the degradation of OTC under UV-visible light illumination compared to that of pure TiO2. The sample containing 1.9 wt% Ag showed the highest photocatalytic activity for the degradation of OTC under both UV-visible light and visible light illumination. During the experiments, the detected Ag leaching for the best TiO2-Ag photocatalyst was much lower than the National Secondary Drinking Water Regulation for Ag limit (0.1 mg L(-1)) issued by the US Environmental Protection Agency.

  12. Organic micropollutants (OMPs) in natural waters: Oxidation by UV/H2O2 treatment and toxicity assessment.

    Science.gov (United States)

    Rozas, Oscar; Vidal, Cristiane; Baeza, Carolina; Jardim, Wilson F; Rossner, Alfred; Mansilla, Héctor D

    2016-07-01

    Organic micropollutants (OMPs) are ubiquitous in natural waters even in places where the human activity is limited. The presence of OMPs in natural water sources for human consumption encourages the evaluation of different water purification technologies to ensure water quality. In this study, the Biobío river (Chile) was selected since the watershed includes urban settlements and economic activities (i.e. agriculture, forestry) that incorporate a variety of OMPs into the aquatic environment, such as pesticides, pharmaceuticals and personal care products. Atrazine (herbicide), caffeine (psychotropic), diclofenac (anti-inflammatory) and triclosan (antimicrobial) in Biobío river water and in different stages of a drinking and two wastewater treatment plants downstream Biobío river were determined using solid phase extraction (SPE) and liquid chromatography/tandem mass spectrometry (LC-MS/MS) and electrospray ionization (ESI). Quantification of these four compounds showed concentrations in the range of 8 ± 2 to 55 ± 10 ng L(-1) in Biobío river water, 11 ± 2 to 74 ± 21 ng L(-1) in the drinking water treatment plant, and 60 ± 10 to 15,000 ± 1300 ng L(-1) in the wastewater treatment plants. Caffeine was used as an indicator of wastewater discharges. Because conventional water treatment technologies are not designed to eliminate some emerging organic pollutants, alternative treatment processes, UV and UV/H2O2, were employed. The transformation of atrazine, carbamazepine (antiepileptic), diclofenac and triclosan was investigated at laboratory scale. Both processes were tested at different UV doses and the Biobío river water matrix effects were evaluated. Initial H2O2 concentration used was 10 mg L(-1). Results showed that, the transformation profile obtained using UV/H2O2 at UV doses up to 900 mJ cm(-2), followed the trend of diclofenac > triclosan > atrazine > carbamazepine. Furthermore acute toxicity tests with Daphnia magna were carried

  13. Degradation of the fungicide carbendazim in aqueous solutions with UV/TiO2 process: Optimization, kinetics and toxicity studies

    International Nuclear Information System (INIS)

    Saien, J.; Khezrianjoo, S.

    2008-01-01

    An attempt was made to investigate the potential of UV-photocatalytic process in the presence of TiO 2 particles for the degradation of carbendazim (C 9 H 9 N 3 O 2 ), a fungicide with a high worldwide consumption but considered as a 'priority hazard substance' by the Water Framework Directive of the European Commission (WFDEC). A circulating upflow photo-reactor was employed and the influence of catalyst concentration, pH and temperature were investigated. The results showed that degradation of this fungicide can be conducted in the both processes of only UV-irradiation and UV/TiO 2 ; however, the later provides much better results. Accordingly, a degradation of more than 90% of fungicide was achieved by applying the optimal operational conditions of 70 mg L -1 of catalyst, natural pH of 6.73 and ambient temperature of 25 deg. C after 75 min irradiation. Under these mild conditions, the initial rate of degradation can be described well by the Langmuir-Hinshelwood kinetic model. Toxicological assessments on the obtained samples were also performed by measurement of the mycelium growth inhibition of Fusarium oxysporum fungus on PDA medium. The results indicate that the kinetics of degradation and toxicity are in reasonably good agreement mainly after 45 min of irradiation; confirming the effectiveness of photocatalytic process

  14. Electrochemical oxidation of cyanide on 3D Ti-RuO2 anode using a filter-press electrolyzer.

    Science.gov (United States)

    Pérez, Tzayam; López, Rosa L; Nava, José L; Lázaro, Isabel; Velasco, Guillermo; Cruz, Roel; Rodríguez, Israel

    2017-06-01

    The novelty of this communication lies in the use of a Ti-RuO 2 anode which has not been tested for the oxidation of free cyanide in alkaline media at concentrations similar to those found in wastewater from the Merrill Crowe process (100 mg L -1 KCN and pH 11), which is typically used for the recovery of gold and silver. The anode was prepared by the Pechini method and characterized by SEM. Linear sweep voltammetries on a Ti-RuO 2 rotating disk electrode (RDE) confirmed that cyanide is oxidized at 0.45 cyanide was investigated on Ti-RuO 2 meshes fitted into a filter-press electrolyzer. Bulk electrolyzes were performed at constant potentials of 0.85 V and 0.95 V and at different mean linear flow rates ranging between 1.2 and 4.9 cm s -1 . The bulk anodic oxidation of cyanide at 0.85 V and 3.7 cm s -1 achieved a degradation of 94%, with current efficiencies of 38% and an energy consumption of 24.6 kWh m -3 . Moreover, the degradation sequence of cyanide was also examined by HPLC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Synthesis of chelating agent free-solid phase extractor (CAF-SPE) based on new SiO2/Al2O3/SnO2 ternary oxide and application for online preconcentration of Pb2+ coupled with FAAS

    International Nuclear Information System (INIS)

    Tarley, César R.T.; Scheel, Guilherme L.; Zappielo, Caroline D.; Suquila, Fabio A.C.; Ribeiro, Emerson S.

    2018-01-01

    A new online solid phase preconcentration method using the new SiO 2 /Al2O 3 /SnO 2 ternary oxide (designated as SiAlSn) as chelating agent free-solid phase extractor (CAF-SPE) coupled to flame atomic absorption spectrometry (FAAS) for Pb 2+ determination at trace levels in different kind of samples is proposed. The solid adsorbent has been characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray fluorescence spectroscopy (XRF) and textural data. The method involves the preconcentration using time-based sampling of Pb 2+ solution at pH 4.3 through 100.0 mg of packed adsorbed into a mini-column under flow rate of 4.0 mL min -1 during 5 min. The elution step was accomplished by using 1.0 mol L -1 HCl. A wide range of analytical curve (5.0-400.0 μg L -1 ), high enrichment factor (40.5), low consumption index (0.5 mL) and low limits of quantification and detection, 5.0 and 1.5 μg L -1 , respectively, were obtained with the developed method. Practical application of method was tested on water samples, chocolate powder, Ginkgo biloba and sediment (certified reference material). On the basis of the results, the SiAlSn can be considered an effective adsorbent belonging to the class of CAF-SPE for Pb 2+ determination from different matrices. (author)

  16. TiO2, SiO2 and ZrO2 Nanoparticles Synergistically Provoke Cellular Oxidative Damage in Freshwater Microalgae

    Directory of Open Access Journals (Sweden)

    Yinghan Liu

    2018-02-01

    Full Text Available Metal-based nanoparticles (NPs are the most widely used engineered nanomaterials. The individual toxicities of metal-based NPs have been plentifully studied. However, the mixture toxicity of multiple NP systems (n ≥ 3 remains much less understood. Herein, the toxicity of titanium dioxide (TiO2 nanoparticles (NPs, silicon dioxide (SiO2 NPs and zirconium dioxide (ZrO2 NPs to unicellular freshwater algae Scenedesmus obliquus was investigated individually and in binary and ternary combination. Results show that the ternary combination systems of TiO2, SiO2 and ZrO2 NPs at a mixture concentration of 1 mg/L significantly enhanced mitochondrial membrane potential and intracellular reactive oxygen species level in the algae. Moreover, the ternary NP systems remarkably increased the activity of the antioxidant defense enzymes superoxide dismutase and catalase, together with an increase in lipid peroxidation products and small molecule metabolites. Furthermore, the observation of superficial structures of S. obliquus revealed obvious oxidative damage induced by the ternary mixtures. Taken together, the ternary NP systems exerted more severe oxidative stress in the algae than the individual and the binary NP systems. Thus, our findings highlight the importance of the assessment of the synergistic toxicity of multi-nanomaterial systems.

  17. Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater.

    Science.gov (United States)

    Moreira, Nuno F F; Narciso-da-Rocha, Carlos; Polo-López, M Inmaculada; Pastrana-Martínez, Luisa M; Faria, Joaquim L; Manaia, Célia M; Fernández-Ibáñez, Pilar; Nunes, Olga C; Silva, Adrián M T

    2018-05-15

    Solar-driven advanced oxidation processes were studied in a pilot-scale photoreactor, as tertiary treatments of effluents from an urban wastewater treatment plant. Solar-H 2 O 2 , heterogeneous photocatalysis (with and/or without the addition of H 2 O 2 and employing three different photocatalysts) and the photo-Fenton process were investigated. Chemical (sulfamethoxazole, carbamazepine, and diclofenac) and biological contaminants (faecal contamination indicators, their antibiotic resistant counterparts, 16S rRNA and antibiotic resistance genes), as well as the whole bacterial community, were characterized. Heterogeneous photocatalysis using TiO 2 -P25 and assisted with H 2 O 2 (P25/H 2 O 2 ) was the most efficient process on the degradation of the chemical organic micropollutants, attaining levels below the limits of quantification in less than 4 h of treatment (corresponding to Q UV  < 40 kJ L -1 ). This performance was followed by the same process without H 2 O 2 , using TiO 2 -P25 or a composite material based on graphene oxide and TiO 2 . Regarding the biological indicators, total faecal coliforms and enterococci and their antibiotic resistant (tetracycline and ciprofloxacin) counterparts were reduced to values close, or beneath, the detection limit (1 CFU 100 mL -1 ) for all treatments employing H 2 O 2 , even upon storage of the treated wastewater for 3-days. Moreover, P25/H 2 O 2 and solar-H 2 O 2 were the most efficient processes in the reduction of the abundance (gene copy number per volume of wastewater) of the analysed genes. However, this reduction was transient for 16S rRNA, intI1 and sul1 genes, since after 3-days storage of the treated wastewater their abundance increased to values close to pre-treatment levels. Similar behaviour was observed for the genes qnrS (using TiO 2 -P25), bla CTX-M and bla TEM (using TiO 2 -P25 and TiO 2 -P25/H 2 O 2 ). Interestingly, higher proportions of sequence reads affiliated to the phylum Proteobacteria

  18. Photocatalyzed degradation of flumequine by doped TiO2 and simulated solar light

    International Nuclear Information System (INIS)

    Nieto, J.; Freer, J.; Contreras, D.; Candal, R.J.; Sileo, E.E.; Mansilla, H.D.

    2008-01-01

    Titanium dioxide was obtained in its pure form (TiO 2 ) and in the presence of urea (u-TiO 2 ) and thiourea (t-TiO 2 ) using the sol-gel technique. The obtained powders were characterized by BET surface area analysis, Infrared Spectroscopy, Diffuse Reflectance Spectroscopy and the Rietveld refinement of XRD measurements. All the prepared catalysts show high anatase content (>99%). The a and b-cell parameters of anatase increase in the order TiO 2 2 2 , while the c-parameter presents the opposite trend. Because of the interplay in cell dimensions, the cell grows thicker and shorter when prepared in the presence of urea and thiourea, respectively. The cell volume decreases in the order t-TiO 2 > u-TiO 2 > TiO 2 . The photocatalytic activities of the samples were determined on flumequine under solar-simulated irradiation. The most active catalysts were u-TiO 2 and t-TiO 2 , reaching values over 90% of flumequine degradation after 15 min irradiation, compared with values of 55% for the pure TiO 2 catalyst. Changing simultaneously the catalyst amount (t-TiO 2 ) and pH, multivariate analysis using the response surface methodology was used to determine the roughly optimal conditions for flumequine degradation. The optimized conditions found were pH below 7 and a catalyst amount of 1.6 g L -1

  19. Aplicação de processo oxidativo avançado baseado em fotocatálise heterogênea (TiO2/UVsolar para o pré-tratamento de afluente lácteo

    Directory of Open Access Journals (Sweden)

    Rodrigo Fernando Santos Salazar

    2010-02-01

    Full Text Available The aim of this work was to evaluate a pretreatment system for dairy wastewater based on an advanced oxidative process (AOP. An AOP treatment based on photocatalysis was applied to reduce the organic load in dairy effluents obtained from the dairy process, such as cream, yoghurt and pasteurized milk. Titanium dioxide was used as a semiconductor. It was finely distributed and fixed with poliuretanic ink on a flat metallic plate where the effluent was circulated on its catalytic bed fixed at a 23º angle. This AOP process was exposed to direct solar radiation. Some process factors were analyzed: pH influence (5 or 7, reaction time (120 or 180 min, TiO2 photocatalytic activity (anatase or rutile and initial organic load in the effluent (In natura or 1:1 v/v of effluent water. The best conditions for AOP process were determined through an experimental design (24-1. Process efficiency was obtained through chemical oxygen demand (COD tests. The best conditions for AOP were: reaction time of 180 min; TiO2 anatase; pH 5 and In nature effluent with percentage removed COD (%CODrem above 54.77 ± 1.66 %, representing a COD reduction from 3782.5 ± 37.6 mg.L-1 to 1710.4 ± 0.3 mg.L-1 and the reduction of total organic carbon of 983.6 ± 37.6 mg.L-1 in 606.8 ± 2.0 mg.L-1.

  20. Degradation of Pentachlorophenol in Aqueous Solution by the UV/ZrO 2 /H 2 O 2 Photocatalytic Process

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Samarghandi

    2015-12-01

    Full Text Available Pentachlorophenol (PCP, which is one of the resistant phenolic compounds, has been classified in the category of EPA’s priority pollutants due to its high toxicity and carcinogenic potential. Therefore, its removal from water and wastewater is very important. Various methods have been studied for removing the compound, among which advanced oxidation processes (AOPs have attracted much attention because of ease of application and high efficiency. Thus the aim of this study was to investigate the efficiency of the UV/ZrO2/H2O2 process, as an AOP, for PCP removal from aquatic environments. The effects of several parameters such as ultraviolet (UV exposure time, initial PCP concentration, pH, concentration of zirconium dioxide (ZrO2 nanoparticles, and H2O2 concentration were studied. Kinetics of the reaction was also detected. The concentration of the stated materials in the samples was determined using a spectrophotometer at 500 nm. The results showed that the highest efficiency (approximately 100% was reached at optimized conditions of pH 6, contact time of 30 minutes, initial PCP concentration of 20 mg/L, the nanoparticles concentration of 0.1 g/L and H2O2 concentration of 14.7 mM/L. Also, the process followed the first order kinetics reaction. The obtained results illustrated that the UV/ZrO2/H2O2 process has a high ability in removing PCP.

  1. Rendezvous missions with minimoons from L1

    Science.gov (United States)

    Chyba, M.; Haberkorn, T.; Patterson, G.

    2014-07-01

    We propose to present asteroid capture missions with the so-called minimoons. Minimoons are small asteroids that are temporarily captured objects on orbits in the Earth-Moon system. It has been suggested that, despite their small capture probability, at any time there are one or two meter diameter minimoons, and progressively greater numbers at smaller diameters. The minimoons orbits differ significantly from elliptical orbits which renders a rendezvous mission more challenging, however they offer many advantages for such missions that overcome this fact. First, they are already on geocentric orbits which results in short duration missions with low Delta-v, this translates in cost efficiency and low-risk targets. Second, beside their close proximity to Earth, an advantage is their small size since it provides us with the luxury to retrieve the entire asteroid and not only a sample of material. Accessing the interior structure of a near-Earth satellite in its morphological context is crucial to an in-depth analysis of the structure of the asteroid. Historically, 2006 RH120 is the only minimoon that has been detected but work is ongoing to determine which modifications to current observation facilities is necessary to provide detection algorithm capabilities. In the event that detection is successful, an efficient algorithm to produce a space mission to rendezvous with the detected minimoon is highly desirable to take advantage of this opportunity. This is the main focus of our work. For the design of the mission we propose the following. The spacecraft is first placed in hibernation on a Lissajoux orbit around the liberation point L1 of the Earth-Moon system. We focus on eight-shaped Lissajoux orbits to take advantage of the stability properties of their invariant manifolds for our transfers since the cost to minimize is the spacecraft fuel consumption. Once a minimoon has been detected we must choose a point on its orbit to rendezvous (in position and velocities

  2. Comparison of UVC/S2O8 2- with UVC/H2O2 in terms of efficiency and cost for the removal of micropollutants from groundwater

    DEFF Research Database (Denmark)

    Antoniou, Maria; Andersen, Henrik Rasmus

    2015-01-01

    ' concentrations were tested with atrazine alone and in the micropollutants' mixture and it was decided to use 11.8mgL(-1) S2O8(2-) and 14.9mgL(-1) H2O2 for further testing since is closer to industrial applications and to minimize the residual oxidant concentration. Changes of the matrix composition......This study compared the UVC/S2O8(2-) system with the more commonly used AOP in water industry, UVC/H2O2, and examined whether the first one can be an economically feasible alternative technology. Atrazine and 4 volatile compounds (methyl tert-butyl ether, cis-dichlorethen, 1,4-dioxane and 1......-through reactor to simulate industrial applications. Initial experiments on the activation of oxidants with a LP lamp indicated that S2O8(2-) is photolysed about 2.3times faster than H2O2 and that the applied treatment times were not sufficient to utilize the majority of the oxidant. The effect of oxidants...

  3. A fast and environment-friendly method for determination of chemical oxygen demand by using the heterogeneous Fenton-like process (H2O2/Fe(3-x)Co(x)O4 nanoparticles) as an oxidant.

    Science.gov (United States)

    Esteves, Lorena C R; Oliveira, Thaís R O; Souza, Elias C; Bomfeti, Cleide A; Gonçalves, Andrea M; Oliveira, Luiz C A; Barbosa, Fernando; Pereira, Márcio C; Rodrigues, Jairo L

    2015-04-01

    An easy, fast and environment-friendly method for COD determination in water is proposed. The procedure is based on the oxidation of organic matter by the H2O2/Fe(3-x)Co(x)O4 system. The Fe(3-x)Co(x)O4 nanoparticles activate the H2O2 molecule to produce hydroxyl radicals, which are highly reactive for oxidizing organic matter in an aqueous medium. After the oxidation step, the organic matter amounts can be quantified by comparing the quantity of H2O2 consumed. Moreover, the proposed COD method has several distinct advantages, since it does not use toxic reagents and the oxidation reaction of organic matter is conducted at room temperature and atmospheric pressure. Method detection limit is 2.0 mg L(-1) with intra- and inter-day precision lower than 1% (n=5). The calibration graph is linear in the range of 2.0-50 mg L(-1) with a sample throughput of 25 samples h(-1). Data are validated based on the analysis of six contaminated river water samples by the proposed method and by using a comparative method validated and marketed by Merck, with good agreement between the results (t test, 95%). Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The Enhancement of H2O2/UV AOPs for the Removal of Selected Organic Pollutants from Drinking Water with Hydrodynamic Cavitation.

    Science.gov (United States)

    Čehovin, Matej; Medic, Alojz; Kompare, Boris; Žgajnar Gotvajn, Andreja

    2016-12-01

    Drinking water contains organic matter that occasionally needs to be treated to assure its sufficient quality and safety for the consumers. H2O2 and UV advanced oxidation processes (H2O2/UV AOPs) were combined with hydrodynamic cavitation (HC) to assess the effects on the removal of selected organic pollutants. Water samples containing humic acid, methylene blue dye and micropollutants (metaldehyde, diatrizoic acid, iohexol) were treated first by H2O2 (dosages from 1 to 12 mg L-1) and UV (dosages from 300 to 2800 mJ cm-2) AOPs alone and later in combination with HC, generated by nozzles and orifice plates (4, 8, 18 orifices). Using HC, the removal of humic acid was enhanced by 5-15%, methylene blue by 5-20% and metaldehyde by approx. 10%. Under favouring conditions, i.e. high UV absorbance of the matrix (more than 0.050 cm-1 at a wavelength of 254 nm) and a high pollutant to oxidants ratio, HC was found to improve the hydrodynamic conditions in the photolytic reactor, to improve the subjection of the H2O2 to the UV fluence rate distribution and to enhance the removal of the tested organic pollutants, thus showing promising potential of further research in this field.

  5. Low temperature synthesis of layered NaxCoO2 and KxCoO2 from ...

    Indian Academy of Sciences (India)

    Unknown

    Layered oxides have interesting chemical and physical properties. .... composition of these crystalline phases were obtained from scanning electron microscopy ... 2.2a Cobalt estimation: About 50 mg of the compound was dissolved in 10 ml of 6 M ... images of the parent Na0⋅2CoO2 and those ion exchanged with H+, Li+ ...

  6. Clofibric acid degradation in UV254/H2O2 process: effect of temperature.

    Science.gov (United States)

    Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei

    2010-04-15

    The degradation of clofibric acid (CA) in UV(254)/H(2)O(2) process under three temperature ranges, i.e. T1 (9.0-11.5 degrees C), T2 (19.0-21.0 degrees C) and T3 (29.0-30.0 degrees C) was investigated. The effects of solution constituents including NO(3)(-) and HCO(3)(-) anions, and humic acid (HA) on CA degradation were evaluated in Milli-Q waters. CA degradation behaviors were simulated with the pseudo-first-order kinetic model and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated. The results showed that higher temperature would favor CA degradation, and CA degradation was taken place mostly by indirect oxidation through the formation of OH radicals in UV(254)/H(2)O(2) process. In addition, the effects of both NO(3)(-) and HCO(3)(-) anions at two selected concentrations (1.0x10(-3) and 0.1 mol L(-1)) and HA (20 mg L(-1)) on CA degradation were investigated. The results showed that HA had negative effect on CA degradation, and this effect was much more apparent under low temperature condition. On the other hand, the inhibitive effect on CA degradation at both lower and higher concentrations of bicarbonate was observed, and this inhibitive effect was much more apparent at higher bicarbonate concentration and lower temperature condition. While, at higher nitrate concentration the inhibitive effect on CA degradation under three temperature ranges was observed, and with the temperature increase this negative effect was apparently weakened. However, at lower nitrate concentration a slightly positive effect on CA degradation was found under T2 and T3 conditions. Moreover, when using a real wastewater treatment plant (WWTP) effluent spiked with CA over 99% of CA removal could be achieved under 30 degrees C within only 15 min compared with 40 and 80 min under 20 and 10 degrees C respectively, suggesting a significant promotion in CA degradation under higher temperature condition. Therefore, it can be concluded that temperature plays an

  7. Valence electron structure and properties of stabilized ZrO2

    Institute of Scientific and Technical Information of China (English)

    LI JinPing; HAN JieOai; MENG SongHe; ZHANG XingHong

    2008-01-01

    To reveal the properties of stabilizers in ZrO2 on nanoscopic levels,the valence elec-tron structures of four stable ZrO2 phases and c-ZrO2 were analyzed on the basis of the empirical electron theory of solids and molecules.The results showed that the hybridization levels of Zr atoms in c-ZrO2 doped with Ca and Mg dropped from B17 to B13,the hybridization levels of Zr atoms in c-ZrO2 doped with Y and Ce dropped from B17 to B15,and that the four stabilizing atoms all made the hybridization levels of O atoms drop from level 4 to level 2.The numbers of covalent electrons in the strongest covalent bond in the descending order are c-ZrO2>ZrCeO2>ZrYOZrMgO>ZrCaO.The bond energies of the strongest covalent bond and the melting points of the solid solutions in the descending order are ZrCeO2>c-ZrO2>ZrYO>ZrMgO>ZrCaO.The percent-ages of the total number of covalent electrons in the descending order arec-ZrO2>ZrYO> ZrCeO2>ZrMgO> ZrCaO.From the above analysis,it can be concluded that the stabilizing degrees of the four stabilizers in the descending order are CaO> MgO>Y2O3>CeO2.

  8. Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab.

    Science.gov (United States)

    Lee, Hyun Tae; Lee, Ju Yeon; Lim, Heejin; Lee, Sang Hyung; Moon, Yu Jeong; Pyo, Hyo Jeong; Ryu, Seong Eon; Shin, Woori; Heo, Yong-Seok

    2017-07-17

    In 2016 and 2017, monoclonal antibodies targeting PD-L1, including atezolizumab, durvalumab, and avelumab, were approved by the FDA for the treatment of multiple advanced cancers. And many other anti-PD-L1 antibodies are under clinical trials. Recently, the crystal structures of PD-L1 in complex with BMS-936559 and avelumab have been determined, revealing details of the antigen-antibody interactions. However, it is still unknown how atezolizumab and durvalumab specifically recognize PD-L1, although this is important for investigating novel binding sites on PD-L1 targeted by other therapeutic antibodies for the design and improvement of anti-PD-L1 agents. Here, we report the crystal structures of PD-L1 in complex with atezolizumab and durvalumab to elucidate the precise epitopes involved and the structural basis for PD-1/PD-L1 blockade by these antibodies. A comprehensive comparison of PD-L1 interactions with anti-PD-L1 antibodies provides a better understanding of the mechanism of PD-L1 blockade as well as new insights into the rational design of improved anti-PD-L1 therapeutics.

  9. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells.

    Science.gov (United States)

    Sim, Junyoung; An, Junyeong; Elbeshbishy, Elsayed; Ryu, Hodon; Lee, Hyung-Sool

    2015-11-01

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2O2 conversion efficiency was negligible at 0.3-12%. Current density decreased for passive O2 diffusion to the cathode, but H2O2 conversion efficiency increased by 65%. An MEC equipped with a gas diffusion cathode was operated with acetate medium and domestic wastewater, which presented relatively high H2O2 conversion efficiency from 36% to 47%, although cathode overpotential was fluctuated. Due to different current densities, the maximum H2O2 production rate was 141 mg H2O2/L-h in the MEC fed with acetate medium, but it became low at 6 mg H2O2/L-h in the MEC fed with the wastewater. Our study clearly indicates that improving anodic current density and mitigating membrane fouling would be key parameters for large-scale H2O2-MECs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Detection of high PD-L1 expression in oral cancers by a novel monoclonal antibody L1Mab-4.

    Science.gov (United States)

    Yamada, Shinji; Itai, Shunsuke; Kaneko, Mika K; Kato, Yukinari

    2018-03-01

    Programmed cell death-ligand 1 (PD-L1), which is a ligand of programmed cell death-1 (PD-1), is a type I transmembrane glycoprotein that is expressed on antigen-presenting cells and several tumor cells, including melanoma and lung cancer cells. There is a strong correlation between human PD-L1 (hPD-L1) expression on tumor cells and negative prognosis in cancer patients. In this study, we produced a novel anti-hPD-L1 monoclonal antibody (mAb), L 1 Mab-4 (IgG 2b , kappa), using cell-based immunization and screening (CBIS) method and investigated hPD-L1 expression in oral cancers. L 1 Mab-4 reacted with oral cancer cell lines (Ca9-22, HO-1-u-1, SAS, HSC-2, HSC-3, and HSC-4) in flow cytometry and stained oral cancers in a membrane-staining pattern. L 1 Mab-4 stained 106/150 (70.7%) of oral squamous cell carcinomas, indicating the very high sensitivity of L 1 Mab-4. These results indicate that L 1 Mab-4 could be useful for investigating the function of hPD-L1 in oral cancers.

  11. Detection of high PD-L1 expression in oral cancers by a novel monoclonal antibody L1Mab-4

    Directory of Open Access Journals (Sweden)

    Shinji Yamada

    2018-03-01

    Full Text Available Programmed cell death-ligand 1 (PD-L1, which is a ligand of programmed cell death-1 (PD-1, is a type I transmembrane glycoprotein that is expressed on antigen-presenting cells and several tumor cells, including melanoma and lung cancer cells. There is a strong correlation between human PD-L1 (hPD-L1 expression on tumor cells and negative prognosis in cancer patients. In this study, we produced a novel anti-hPD-L1 monoclonal antibody (mAb, L1Mab-4 (IgG2b, kappa, using cell-based immunization and screening (CBIS method and investigated hPD-L1 expression in oral cancers. L1Mab-4 reacted with oral cancer cell lines (Ca9-22, HO-1-u-1, SAS, HSC-2, HSC-3, and HSC-4 in flow cytometry and stained oral cancers in a membrane-staining pattern. L1Mab-4 stained 106/150 (70.7% of oral squamous cell carcinomas, indicating the very high sensitivity of L1Mab-4. These results indicate that L1Mab-4 could be useful for investigating the function of hPD-L1 in oral cancers. Keywords: Programmed cell death-ligand 1, Monoclonal antibody, Oral cancer

  12. Ubiquitin C-Terminal Hydrolase L1 in Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jennifer Hurst-Kennedy

    2012-01-01

    Full Text Available Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1, aka PGP9.5 is an abundant, neuronal deubiquitinating enzyme that has also been suggested to possess E3 ubiquitin-protein ligase activity and/or stabilize ubiquitin monomers in vivo. Recent evidence implicates dysregulation of UCH-L1 in the pathogenesis and progression of human cancers. Although typically only expressed in neurons, high levels of UCH-L1 have been found in many nonneuronal tumors, including breast, colorectal, and pancreatic carcinomas. UCH-L1 has also been implicated in the regulation of metastasis and cell growth during the progression of nonsmall cell lung carcinoma, colorectal cancer, and lymphoma. Together these studies suggest UCH-L1 has a potent oncogenic role and drives tumor development. Conversely, others have observed promoter methylation-mediated silencing of UCH-L1 in certain tumor subtypes, suggesting a potential tumor suppressor role for UCH-L1. In this paper, we provide an overview of the evidence supporting the involvement of UCH-L1 in tumor development and discuss the potential mechanisms of action of UCH-L1 in oncogenesis.

  13. Learners’ L1 Use in a Task-based Classroom

    DEFF Research Database (Denmark)

    Bao, Rui; Du, Xiangyun

    2015-01-01

    , but with only a very small amount oc- curring for off-task talk across tasks. L1 use mainly occurred in learners’ efforts to mediate completion of the tasks. The findings highlight the role of L1 in foreign language learning and suggest that L1 use is associated with a number of factors, such as task types......’ extensive L1 use and off-task talk. Informed by sociocultural theory, this study explored the extent to which L1s and their func- tions were used when performing tasks. The subjects were beginner-level lower-secondary school learners of Chinese. The data shows that learners have a high amount of L1 use...

  14. Post-treatment of refinery wastewater effluent using a combination of AOPs (H2O2 photolysis and catalytic wet peroxide oxidation) for possible water reuse. Comparison of low and medium pressure lamp performance.

    Science.gov (United States)

    Rueda-Márquez, J J; Levchuk, I; Salcedo, I; Acevedo-Merino, A; Manzano, M A

    2016-03-15

    The main aim of this work was to study the feasibility of multi-barrier treatment (MBT) consisting of filtration, hydrogen peroxide photolysis (H2O2/UVC) and catalytic wet peroxide oxidation (CWPO) for post-treatment of petroleum refinery effluent. Also the possibility of water reuse or safe discharge was considered. The performance of MBT using medium (MP) and low (LP) pressure lamps was compared as well as operation and maintenance (O&M) cost. Decomposition of organic compounds was followed by means of gas chromatography-mass spectrometry (GC-MS), total organic carbon (TOC) and chemical oxygen demand (COD) analysis. After filtration step (25 μm) turbidity and concentration of suspended solids decreased by 92% and 80%, respectively. During H2O2/UVC process with LP lamp at optimal conditions (H2O2:TOC ratio 8 and UVC dose received by water 5.28 WUVC s cm(-2)) removal of phenolic compounds, TOC and COD was 100%, 52.3% and 84.3%, respectively. Complete elimination of phenolic compounds, 47.6% of TOC and 91% of COD was achieved during H2O2/UVC process with MP lamp at optimal conditions (H2O2:TOC ratio 5, UVC dose received by water 6.57 WUVC s cm(-2)). In order to compare performance of H2O2/UVC treatment with different experimental set up, the UVC dose required for removal of mg L(-1) of COD was suggested as a parameter and successfully applied. The hydrophilicity of H2O2/UVC effluent significantly increased which in turn enhanced the oxidation of organic compounds during CWPO step. After H2O2/UVC treatment with LP and MP lamps residual H2O2 concentration was 160 mg L(-1) and 96.5 mg L(-1), respectively. Remaining H2O2 was fully consumed during subsequent CWPO step (6 and 3.5 min of contact time for LP and MP, respectively). Total TOC and COD removal after MBT was 94.7% and 92.2% (using LP lamp) and 89.6% and 95%, (using MP lamp), respectively. The O&M cost for MBT with LP lamp was estimated to be 0.44 € m(-3) while with MP lamp it was nearly five

  15. Modest effect on plaque progression and vasodilatory function in atherosclerosis-prone mice exposed to nanosized TiO2

    DEFF Research Database (Denmark)

    Mikkelsen, Lone; Sheykhzade, Majid; Jensen, Keld A

    2011-01-01

    of atherosclerotic plaques in aorta was assessed in mice exposed to nanosized TiO2 (0.5 mg/kg bodyweight) once a week for 4 weeks. We measured mRNA levels of Mcp-1, Mip-2, Vcam-1, Icam-1 and Vegf in lung tissue to assess pulmonary inflammation and vascular function. TiO2-induced alterations in nitric oxide (NO...... were intratracheally instilled (0.5 mg/kg bodyweight) with rutile fine TiO2 (fTiO2, 288 nm), photocatalytic 92/8 anatase/rutile TiO2 (pTiO2, 12 nm), or rutile nano TiO2 (nTiO2, 21.6 nm) at 26 and 2 hours before measurement of vasodilatory function in aorta segments mounted in myographs. The progression...

  16. Complex impedance study on nano-CeO2 coating TiO2

    International Nuclear Information System (INIS)

    Zhang Mei; Wang Honglian; Wang Xidong; Li Wenchao

    2006-01-01

    Titanium dioxide (TiO 2 ) nanoparticles and cerium dioxide (CeO 2 ) nanoparticles coated titanium dioxide (TiO 2 ) nanoparticles (CeO 2 -TiO 2 nanoparticles) have been successfully synthesized by sol-gel method. The complex impedance of the materials was investigated. The grain resistance, boundary resistance and activation energy of the nanoparticles were calculated according to Arrhenius equation. According to calculating results, the active capacity of pure TiO 2 nanoparticles has been improved because of nano-CeO 2 coating. An optimal CeO 2 content of 4.9 mol% was achieved. The high resolution electron microscopy images of CeO 2 -TiO 2 nanoparticles showed that TiO 2 nanoparticles, as a core, were covered by CeO 2 nanoparticles. The average size of CeO 2 coating TiO 2 nanoparticles was about 70 nm. Scanning electron microscopy observation indicted that CeO 2 nanoparticle coating improved the separation, insulation, and stability the CeO 2 -TiO 2 nanoparticles, which was benefit to the activity of materials

  17. Oxidation of Mixed Active Pharmaceutical Ingredients in Biologically Treated Wastewater by ClO2

    DEFF Research Database (Denmark)

    Moradas, Gerly; Fick, Jerker; Ledin, Anna

    2011-01-01

    Biologically treated wastewater containing a mixture of 53 active pharmaceutical ingredients (APIs)was treated with 0-20 mg/l chlorine dioxide (ClO2) solution. Wastewater effluents were taken from two wastewater treatment plants in Sweden, one with (low COD) and one without (high COD) extended...... removed at 5 mg/l ClO2 dose. Removal of the same APIs from the high COD effluent was observed when the ClO2 dose was increased to 1.25 mg/l and an increase in API removal only after treatment with 8 mg/l ClO2. This illustrates that treatment of wastewater effluents with chlorine dioxide has potential...

  18. Synthesis, characterization and electroanalytical application of a new SiO2/SnO2 carbon ceramic electrode

    International Nuclear Information System (INIS)

    Arguello, Jacqueline; Magosso, Herica A.; Landers, Richard; Pimentel, Vinicius L.; Gushikem, Yoshitaka

    2010-01-01

    A new SiO 2 /SnO 2 carbon ceramic composite was prepared by the sol-gel method, and its potential application in electrochemistry as a novel electrode material has been studied. The prepared xerogel was structurally and electrochemically characterized by scanning electron microscopy coupled to energy dispersive spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and cyclic voltammetry. The composite was pressed in a rigid disk-shape and used as a conductive substrate to immobilize a water-soluble organic-inorganic hybrid polymer, 3-n-propyl-4-picolinium chloride silsesquioxane. The oxidation of nitrite was studied on this polymer film coated electrode in aqueous solution using cyclic voltammetry and differential pulse voltammetry. This modified electrode exhibited a better defined voltammetric peak shifted negatively about 60 mV. The linear detection limit found for nitrite was from 1.3 x 10 -5 to 1.3 x 10 -3 mol l -1 and the detection limit was 3.3 x 10 -6 mol l -1 .

  19. Processo UV/H2O2 como pós-tratamento para remoção de cor e polimento final em efluentes têxteis

    Directory of Open Access Journals (Sweden)

    Maria Eliza Nagel-Hassemer

    2012-01-01

    Full Text Available Several problems are involved the treatment plants of textile effluents, mainly the low efficiency of color removal. This paper presents an alternative of post-treatment by UV/H2O2 process, for color removal in biologically treated textile effluents. The tests were performed in a photochemical reactor and samples were taken at different times to perform analyses. Using 250 mgH2O2.L-1, 96% removal of color was verified, indicating the dyes degradation. A reduction of 84% of aromatics compounds, 90% of TSS removal, and a further reduction of the organic fraction were observed, demonstrating that the process is effective as a post-treatment of effluents from textile industries.

  20. Catalytic mechanism of the dehydrogenation of ethylbenzene over Fe–Co/Mg(Al)O derived from hydrotalcites

    KAUST Repository

    Tope, Balkrishna B.; Balasamy, Rabindran J.; Khurshid, Alam; Atanda, Luqman A.; Yahiro, Hidenori; Shishido, Tetsuya; Takehira, Katsuomi; Al-Khattaf, Sulaiman S.

    2011-01-01

    -H+ abstraction from ethyl group on Mg2+-O2- basic sites, followed by C-O-Mg bond formation. The α-H+ abstraction by O2-(-Mg 2+) was likely followed by β-H abstraction, leading to the formations of styrene and H2. Such catalytic mechanism by the Fe 3+ acid-O2-(-Mg

  1. Preparation and characterization of PbO2–ZrO2 nanocomposite electrodes

    International Nuclear Information System (INIS)

    Yao Yingwu; Zhao Chunmei; Zhu Jin

    2012-01-01

    PbO 2 –ZrO 2 nanocomposite electrodes were prepared by the anodic codeposition in the lead nitrate plating bath containing ZrO 2 nanoparticles. The influences of the ZrO 2 nanoparticles concentration, current density, temperature and stirring rate of the plating bath on the composition of the nanocomposite electrodes were investigated. The surface morphology and the structure of the nanocomposite electrodes were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD), respectively. The experimental results show that the addition of ZrO 2 nanoparticles in the electrodeposition process of lead dioxide significantly increases the lifetime of nanocomposite electrodes. The PbO 2 –ZrO 2 nanocomposite electrodes have a service life of 141 h which is almost four times longer than that of the pure PbO 2 electrodes. The morphology of PbO 2 –ZrO 2 nanocomposite electrodes is more compact and finer than that of PbO 2 electrodes. The relative surface area of the composite electrodes is approximately 2 times that of the pure PbO 2 electrodes. The structure test shows that the addition of ZrO 2 nanoparticles into the plating bath decreases the grain size of the PbO 2 –ZrO 2 nanocomposite electrodes. The anodic polarization curves show that the oxygen evolution overpotential of PbO 2 –ZrO 2 nanocomposite electrodes is higher than PbO 2 electrodes. The pollutant anodic oxidation experiment show that the PbO 2 –ZrO 2 nanocomposite electrode exhibited the better performance for the degradation of 4-chlorophenol than PbO 2 electrode, the removal ratio of COD reached 96.2%.

  2. Attitudes held by Setswana L1-speaking university students toward ...

    African Journals Online (AJOL)

    Respondents believed that their L1 had limitations in wider society; and that it had prestige, albeit a covert one. Generally, they held favourable attitudes toward their L1. Further comprehensive research needs to be done to explore these new variables, as well as to explore their statistical significance in language attitude ...

  3. On the Link Between L1-PCA and ICA.

    Science.gov (United States)

    Martin-Clemente, Ruben; Zarzoso, Vicente

    2017-03-01

    Principal component analysis (PCA) based on L1-norm maximization is an emerging technique that has drawn growing interest in the signal processing and machine learning research communities, especially due to its robustness to outliers. The present work proves that L1-norm PCA can perform independent component analysis (ICA) under the whitening assumption. However, when the source probability distributions fulfil certain conditions, the L1-norm criterion needs to be minimized rather than maximized, which can be accomplished by simple modifications on existing optimal algorithms for L1-PCA. If the sources have symmetric distributions, we show in addition that L1-PCA is linked to kurtosis optimization. A number of numerical experiments illustrate the theoretical results and analyze the comparative performance of different algorithms for ICA via L1-PCA. Although our analysis is asymptotic in the sample size, this equivalence opens interesting new perspectives for performing ICA using optimal algorithms for L1-PCA with guaranteed global convergence while inheriting the increased robustness to outliers of the L1-norm criterion.

  4. Metabolic rate regulates L1 longevity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Inhwan Lee

    Full Text Available Animals have to cope with starvation. The molecular mechanisms by which animals survive long-term starvation, however, are not clearly understood. When they hatch without food, C. elegans arrests development at the first larval stage (L1 and survives more than two weeks. Here we show that the survival span of arrested L1s, which we call L1 longevity, is a starvation response regulated by metabolic rate during starvation. A high rate of metabolism shortens the L1 survival span, whereas a low rate of metabolism lengthens it. The longer worms are starved, the slower they grow once they are fed, suggesting that L1 arrest has metabolic costs. Furthermore, mutants of genes that regulate metabolism show altered L1 longevity. Among them, we found that AMP-dependent protein kinase (AMPK, as a key energy sensor, regulates L1 longevity by regulating this metabolic arrest. Our results suggest that L1 longevity is determined by metabolic rate and that AMPK as a master regulator of metabolism controls this arrest so that the animals survive long-term starvation.

  5. Synthesis of TiO2-doped SiO2 composite films and its applications

    Indian Academy of Sciences (India)

    Wintec

    structure of the titanium oxide species in the TiO2-doped SiO2 composite films and the photocatalytic reactiv- ity in order to ... gaku D-max γA diffractometer with graphite mono- chromized ... FT–IR absorption spectra of TiO2-doped SiO2 com-.

  6. High Photocatalytic Activity of Fe3O4-SiO2-TiO2 Functional Particles with Core-Shell Structure

    Directory of Open Access Journals (Sweden)

    Chenyang Xue

    2013-01-01

    Full Text Available This paper describes a novel method of synthesizing Fe3O4-SiO2-TiO2 functional nanoparticles with the core-shell structure. The Fe3O4 cores which were mainly superparamagnetic were synthesized through a novel carbon reduction method. The Fe3O4 cores were then modified with SiO2 and finally encapsulated with TiO2 by the sol-gel method. The results of characterizations showed that the encapsulated 700 nm Fe3O4-SiO2-TiO2 particles have a relatively uniform size distribution, an anatase TiO2 shell, and suitable magnetic properties for allowing collection in a magnetic field. These magnetic properties, large area, relative high saturation intensity, and low retentive magnetism make the particles have high dispersibility in suspension and yet enable them to be recovered well using magnetic fields. The functionality of these particles was tested by measuring the photocatalytic activity of the decolouring of methyl orange (MO and methylene blue (MB under ultraviolet light and sunlight. The results showed that the introduction of the Fe3O4-SiO2-TiO2 functional nanoparticles significantly increased the decoloration rate so that an MO solution at a concentration of 10 mg/L could be decoloured completely within 180 minutes. The particles were recovered after utilization, washing, and drying and the primary recovery ratio was 87.5%.

  7. Formation of organobromine and organoiodine compounds by engineered TiO2 nanoparticle-induced photohalogenation of dissolved organic matter in environmental waters.

    Science.gov (United States)

    Hao, Zhineng; Yin, Yongguang; Wang, Juan; Cao, Dong; Liu, Jingfu

    2018-08-01

    There are increasing concerns about the adverse effects of released engineered nanoparticles and photochemically formed organohalogen compounds (OHCs) on human health and the environment. Herein, we report that titanium dioxide nanoparticles (TiO 2 NPs) can photocatalytically halogenate dissolved organic matter (DOM) to form a large number of organobromine compounds (OBCs) and organoiodine compounds (OICs), as characterized by negative ion electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry. Compared with no OHCs produced in control samples in darkness and/or without TiO 2 NPs under sunlight irradiation, various OBCs and OICs were detected in freshwater and seawater under sunlight irradiation for 12h and 24h even in the presence of 1mgL -1 TiO 2 NPs, indicating the photocatalytic roles TiO 2 NPs played in DOM halogenation. Furthermore, TiO 2 NPs could result in the photodegradation of newly formed OHCs, as evidenced by the intensity and the number of some OHCs decreased with reaction time. In addition, many TiO 2 NP-induced OBCs contained two or three bromine atoms, and/or nitrogen and sulfur elements, belonging to lignin-like, tannin-like, unsaturated hydrocarbon and aliphatic compounds. While the OICs were primarily contained one iodine, and very few consisted of nitrogen and sulfur elements, most were lignin-like and tannin-like compounds. Finally, the OBCs in freshwater were found to be formed mainly via a substitution reaction or addition reaction and were accompanied by other reactions such as photooxidation, while the OBCs in seawater and OICs were formed primarily via substitution reactions. Given the abundance of produced OHCs and their toxicity, our findings call for further studies on the exact structure and toxicity of the formed OHCs, taking account the TiO 2 NP-induced DOM photohalogenation in aquatic environments during the evaluation of the environmental effects of engineered TiO 2 NPs. Copyright © 2018

  8. Multivalent human papillomavirus l1 DNA vaccination utilizing electroporation.

    Directory of Open Access Journals (Sweden)

    Kihyuck Kwak

    Full Text Available Naked DNA vaccines can be manufactured simply and are stable at ambient temperature, but require improved delivery technologies to boost immunogenicity. Here we explore in vivo electroporation for multivalent codon-optimized human papillomavirus (HPV L1 and L2 DNA vaccination.Balb/c mice were vaccinated three times at two week intervals with a fusion protein comprising L2 residues ∼11-88 of 8 different HPV types (11-88×8 or its DNA expression vector, DNA constructs expressing L1 only or L1+L2 of a single HPV type, or as a mixture of several high-risk HPV types and administered utilizing electroporation, i.m. injection or gene gun. Serum was collected two weeks and 3 months after the last vaccination. Sera from immunized mice were tested for in-vitro neutralization titer, and protective efficacy upon passive transfer to naive mice and vaginal HPV challenge. Heterotypic interactions between L1 proteins of HPV6, HPV16 and HPV18 in 293TT cells were tested by co-precipitation using type-specific monoclonal antibodies.Electroporation with L2 multimer DNA did not elicit detectable antibody titer, whereas DNA expressing L1 or L1+L2 induced L1-specific, type-restricted neutralizing antibodies, with titers approaching those induced by Gardasil. Co-expression of L2 neither augmented L1-specific responses nor induced L2-specific antibodies. Delivery of HPV L1 DNA via in vivo electroporation produces a stronger antibody response compared to i.m. injection or i.d. ballistic delivery via gene gun. Reduced neutralizing antibody titers were observed for certain types when vaccinating with a mixture of L1 (or L1+L2 vectors of multiple HPV types, likely resulting from heterotypic L1 interactions observed in co-immunoprecipitation studies. High titers were restored by vaccinating with individual constructs at different sites, or partially recovered by co-expression of L2, such that durable protective antibody titers were achieved for each type

  9. Do L1 Reading Achievement and L1 Print Exposure Contribute to the Prediction of L2 Proficiency?

    Science.gov (United States)

    Sparks, Richard L.; Patton, Jon; Ganschow, Leonore; Humbach, Nancy

    2012-01-01

    The study examined whether individual differences in high school first language (L1) reading achievement and print exposure would account for unique variance in second language (L2) written (word decoding, spelling, writing, reading comprehension) and oral (listening/speaking) proficiency after adjusting for the effects of early L1 literacy and…

  10. Removal of pharmaceutically active compounds from synthetic and real aqueous mixtures and simultaneous disinfection by supported TiO2/UV-A, H2O2/UV-A, and TiO2/H2O2/UV-A processes.

    Science.gov (United States)

    Bosio, Morgana; Satyro, Suéllen; Bassin, João Paulo; Saggioro, Enrico; Dezotti, Márcia

    2018-05-01

    Pharmaceutically active compounds are carried into aquatic bodies along with domestic sewage, industrial and agricultural wastewater discharges. Psychotropic drugs, which can be toxic to the biota, have been detected in natural waters in different parts of the world. Conventional water treatments, such as activated sludge, do not properly remove these recalcitrant substances, so the development of processes able to eliminate these compounds becomes very important. Advanced oxidation processes are considered clean technologies, capable of achieving high rates of organic compounds degradation, and can be an efficient alternative to conventional treatments. In this study, the degradation of alprazolam, clonazepam, diazepam, lorazepam, and carbamazepine was evaluated through TiO 2 /UV-A, H 2 O 2 /UV-A, and TiO 2 /H 2 O 2 /UV-A, using sunlight and artificial irradiation. While using TiO 2 in suspension, best results were found at [TiO 2 ] = 0.1 g L -1 . H 2 O 2 /UV-A displayed better results under acidic conditions, achieving from 60 to 80% of removal. When WWTP was used, degradation decreased around 50% for both processes, TiO 2 /UV-A and H 2 O 2 /UV-A, indicating a strong matrix effect. The combination of both processes was shown to be an adequate approach, since removal increased up to 90%. H 2 O 2 /UV-A was used for disinfecting the aqueous matrices, while mineralization was obtained by TiO 2 -photocatalysis.

  11. H2O2: A Dynamic Neuromodulator

    Science.gov (United States)

    Rice, Margaret E.

    2012-01-01

    Increasing evidence implicates hydrogen peroxide (H2O2) as an intra- and intercellular signaling molecule that can influence processes from embryonic development to cell death. Most research has focused on relatively slow signaling, on the order of minutes to days, via second messenger cascades. However, H2O2 can also mediate subsecond signaling via ion channel activation. This rapid signaling has been examined most thoroughly in the nigrostriatal dopamine (DA) pathway, which plays a key role in facilitating movement mediated by the basal ganglia. In DA neurons of the substantia nigra, endogenously generated H2O2 activates ATP-sensitive K+ (KATP) channels that inhibit DA neuron firing. In the striatum, H2O2 generated downstream from glutamatergic AMPA receptor activation in medium spiny neurons acts as a diffusible messenger that inhibits axonal DA release, also via KATP channels. The source of dynamically generated H2O2 is mitochondrial respiration; thus, H2O2 provides a novel link between activity and metabolism via KATP channels. Additional targets of H2O2 include transient receptor potential (TRP) channels. In contrast to the inhibitory effect of H2O2 acting via KATP channels, TRP channel activation is excitatory. This review describes emerging roles of H2O2 as a signaling agent in the nigrostriatal pathway and other basal ganglia neurons. PMID:21666063

  12. Rapid detection of TiO2 (E171) in table sugar using Raman spectroscopy.

    Science.gov (United States)

    Tan, Chen; Zhao, Bin; Zhang, Zhiyun; He, Lili

    2017-02-01

    The potential toxic effects of titanium dioxide (TiO 2 ) to humans remain debatable despite its broad application as a food additive. Thus, confirmation of the existence of TiO 2 particles in food matrices and subsequently quantifying them are becoming increasingly critical. This study developed a facile, rapid (E171) from food products (e.g., table sugar) by Raman spectroscopy. To detect TiO 2 particles from sugar solution, sequential centrifugation and washing procedures were effectively applied to separate and recover 97% of TiO 2 particles from the sugar solution. The peak intensity of TiO 2 sensitively responded to the concentration of TiO 2 with a limit of detection (LOD) of 0.073 mg kg -1 . In the case of sugar granules, a mapping technique was applied to directly estimate the level of TiO 2 , which can be potentially used for rapid online monitoring. The plot of averaged intensity to TiO 2 concentration in the sugar granules exhibited a good linear relationship in the wide range of 5-2000 mg kg -1 , with an LOD of 8.46 mg kg -1 . Additionally, we applied Raman spectroscopy to prove the presence of TiO 2 in sugar-coated doughnuts. This study begins to fill in the analytical gaps that exist regarding the rapid detection and quantification of TiO 2 in food, which facilitate the risk assessment of TiO 2 through food exposure.

  13. TV-L1 optical flow for vector valued images

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Roholm, Lars; Nielsen, Mads

    2011-01-01

    The variational TV-L1 framework has become one of the most popular and successful approaches for calculating optical flow. One reason for the popularity is the very appealing properties of the two terms in the energy formulation of the problem, the robust L1-norm of the data fidelity term combined...... with the total variation (TV) regular- ization that smoothes the flow, but preserve strong discontinuities such as edges. Specifically the approach of Zach et al. [1] has provided a very clean and efficient algorithm for calculating TV-L1 optical flows between grayscale images. In this paper we propose...

  14. Robotic synthesis of L-[1-11C]tyrosine

    International Nuclear Information System (INIS)

    Luurtsema, Gert; Medema, Jitze; Elsinga, P.H.; Visser, G.M.; Vaalburg, Willem

    1994-01-01

    L-[1- 11 C]tyrosine promises to become an important tracer for determination of the protein synthesis rate (PSR) in tumor tissue and brain. The commercially available Anatech RB-86 robotic system is utilized for the automation of the L-[1- 11 C]tyrosine production via the isocyanide method as reported by Bolster et al. (Eur. J. Nucl. Med. 12, 321-324, 1986). The total synthesis time, including HPLC-purification and enantiomeric separation is 60 min. With a practical yield of 20 mCi L-[1- 11 C]tyrosine at a specific activity > 1000 Ci/mmol. (author)

  15. Synergistic effects for the TiO2/RuO2/Pt photodissociation of water

    Energy Technology Data Exchange (ETDEWEB)

    Blondel, G; Harriman, A; Williams, D

    1983-07-01

    Compressed discs of naked TiO2 or TiO2 coated with a thin film of a noble metal (e.g. Pt) do not photodissociate water upon illumination with UV light, but small amounts of H2 are generated if the TiO2 has been reduced in a stream of H2 at 600 C. Discs prepared from mixtures of TiO2/RuO2 facilitate the UV photodissociation of water into H2 and O2 although the yields are very low. When a thin (about 9 nm) film of Pt is applied to the TiO2/RuO2 discs, the yields of H2 and O2 observed upon irradiation with UV light are improved drastically. 25 references.

  16. SiO2@TiO2 Coating: Synthesis, Physical Characterization and Photocatalytic Evaluation

    Directory of Open Access Journals (Sweden)

    A. Rosales

    2018-03-01

    Full Text Available Use of silicon dioxide (SiO2 and titanium dioxide (TiO2 have been widely investigated individually in coatings technology, but their combined properties promote compatibility for different innovative applications. For example, the photocatalytic properties of TiO2 coatings, when exposed to UV light, have interesting environmental applications, such as air purification, self-cleaning and antibacterial properties. However, as reported in different pilot projects, serious durability problems, associated with the adhesion between the substrate and TiO2, have been evidenced. Thus, the aim of this work is to synthesize SiO2 together with TiO2 to increase the durability of the photocatalytic coating without affecting its photocatalytic potential. Therefore, synthesis using sonochemistry, synthesis without sonochemistry, physical characterization, photocatalytic evaluation, and durability of the SiO2, SiO2@TiO2 and TiO2 coatings are presented. Results indicate that using SiO2 improved the durability of the TiO2 coating without affecting its photocatalytic properties. Thus, this novel SiO2@TiO2 coating shows potential for developing long-lasting, self-cleaning and air-purifying construction materials.

  17. Reactions UF4 - ClO2F and UF5 - ClO2F

    International Nuclear Information System (INIS)

    Benoit, Raymond; Besnard, Ginette; Hartmanshenn, Olivier; Luce, Michel; Mougin, Jacques; Pelissie, Jean

    1970-02-01

    The study of the reaction UF 4 - ClO 2 F between 0 deg. and 100 deg. C, by various techniques (micro-sublimation, isopiestic method, IR and UV spectrography, thermogravimetry and X-ray diffraction) shows that intermediate steps are possible before the production of UF 5 . The whole reaction may be schematised by two equations: (1) n UF 4 + ClO 2 F → n UF x + ClO 2 (4 4 + ClO 2 F → UF x + 1/2 Cl 2 + O 2 . The more the temperature rises, the more the second equation becomes experimentally verified. The reaction at 0 deg. C between UF 5 and ClO 2 F may be represented by: UF 5 + ClO 2 F → UF 6 ClO 2 . The reactions: UF 5 + ClO 2 F → UF 6 + ClO 2 , UF 5 + ClO 2 F → UF 6 + 1/2 Cl 2 + O 2 are verified, the first and the second at 25 deg. C., the second from 50 deg. to 150 deg. C. From the results of AGRON it is possible to predict the residual solids before complete volatilization as UF 6 . The IR spectra of ClO 2 F adsorbed on UF 4 and UF x at 60 deg. C have been compared with those of gaseous ClO 2 F and UF 6 adsorbed on UF 4 . (authors) [fr

  18. Nuclear magnetic resonance metabonomic profiling using tO2PLS

    Energy Technology Data Exchange (ETDEWEB)

    Kirwan, Gemma M., E-mail: gemma.kirwan@gmail.com [Department of Chemistry, School of Applied Sciences, RMIT University, City Campus, Vic 3001 (Australia); Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto (Japan); Hancock, Timothy [Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto (Japan); Hassell, Kathryn [Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora, Vic 3083 (Australia); Niere, Julie O. [Department of Chemistry, School of Applied Sciences, RMIT University, City Campus, Vic 3001 (Australia); Nugegoda, Dayanthi [Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora, Vic 3083 (Australia); Goto, Susumu [Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto (Japan); Adams, Michael J. [Department of Chemistry, School of Applied Sciences, RMIT University, City Campus, Vic 3001 (Australia)

    2013-06-05

    Graphical abstract: -- Highlights: •Transposition of O2PLS input matrix (tO2PLS) to analyze metabonomics data. •tO2PLS specific components describe features that separate and define sample groups. •Application of tO2PLS to a {sup 1}H NMR metabonomics study of black bream fish. -- Abstract: Blood plasma collected from adult fish (black bream, Sparidae) exposed to a dose of 5 mg kg{sup −1} 17β-estradiol underwent metabonomic profiling using nuclear magnetic resonance (NMR). An extension of the orthogonal 2 projection to latent structure (O2PLS) analysis, tO2PLS, was proposed and utilized to classify changes between the control and experimental metabolic profiles. As a bidirectional modeling tool, O2PLS examines the (variable) commonality between two different data blocks, and extracts the joint correlations as well as the unique variations present within each data block. tO2PLS is a proposed matrix transposition of O2PLS to allow for commonality between experiments (spectral profiles) to be observed, rather than between sample variables. tO2PLS analysis highlighted two potential biomarkers, trimethylamine-N-oxide (TMAO) and choline, that distinguish between control and 17β-estradiol exposed fish. This study presents an alternative way of examining spectroscopic (metabolite) data, providing a method for the visual assessment of similarities and differences between control and experimental spectral features in large data sets.

  19. Nuclear magnetic resonance metabonomic profiling using tO2PLS

    International Nuclear Information System (INIS)

    Kirwan, Gemma M.; Hancock, Timothy; Hassell, Kathryn; Niere, Julie O.; Nugegoda, Dayanthi; Goto, Susumu; Adams, Michael J.

    2013-01-01

    Graphical abstract: -- Highlights: •Transposition of O2PLS input matrix (tO2PLS) to analyze metabonomics data. •tO2PLS specific components describe features that separate and define sample groups. •Application of tO2PLS to a 1 H NMR metabonomics study of black bream fish. -- Abstract: Blood plasma collected from adult fish (black bream, Sparidae) exposed to a dose of 5 mg kg −1 17β-estradiol underwent metabonomic profiling using nuclear magnetic resonance (NMR). An extension of the orthogonal 2 projection to latent structure (O2PLS) analysis, tO2PLS, was proposed and utilized to classify changes between the control and experimental metabolic profiles. As a bidirectional modeling tool, O2PLS examines the (variable) commonality between two different data blocks, and extracts the joint correlations as well as the unique variations present within each data block. tO2PLS is a proposed matrix transposition of O2PLS to allow for commonality between experiments (spectral profiles) to be observed, rather than between sample variables. tO2PLS analysis highlighted two potential biomarkers, trimethylamine-N-oxide (TMAO) and choline, that distinguish between control and 17β-estradiol exposed fish. This study presents an alternative way of examining spectroscopic (metabolite) data, providing a method for the visual assessment of similarities and differences between control and experimental spectral features in large data sets

  20. [Catalytic Degradation of Diclofenac Sodium over the Catalyst of 3D Flower-like alpha-FeOOH Synergized with H2O2 Under Visible Light Irradiation].

    Science.gov (United States)

    Xu, Jun-ge; Li, Yun-qin; Huang, Hua-shan; Yuan, Bao-ling; Cui, Hao-jie; Fu, Ming-lai

    2015-06-01

    Three dimensional (3D) flower-like alpha-FeOOH nanomaterials were prepared by oil bath reflux method using FeSO4, urea, ethanol and water, and the products which were characterized by XRD, FT-IR and SEM techniques. The SEM images showed that the 3D flower-like samples consisted of nanorods with a length of 400-500 nm and a diameter of 40-60 nm. The catalytic performance of the samples was evaluated by catalytic degradation of diclofenac sodium using H2O2 as the oxidant under simulated visible light. The results showed that the as-prepared samples presented high efficient catalytic performances, and more than 99% of the initial diclofenac sodium (30 mg x L(-1)) was degraded in 90 min. A radical mechanism can be proposed for the catalytic degradation of diclofenac sodium solution.

  1. Simultaneous removal of carbon and nitrogen by mycelial pellets of a heterotrophic nitrifying fungus-Penicillium sp. L1.

    Science.gov (United States)

    Liu, Yuxiang; Hu, Tingting; Zhao, Jing; Lv, Yongkang; Ren, Ruipeng

    2017-02-01

    A novel heterotrophic nitrifying fungus, defined as Penicillium sp. L1, can form mycelial pellets in liquid medium in this study. The effects of inoculation method, C/N ratio, initial pH, and temperature were gradually evaluated to improve the simultaneous removal of total nitrogen (TN) and chemical oxygen demand (COD) in wastewater by Penicillium sp. L1. Results showed that compared with spore inoculation, 48 h pellet inoculum could significantly increase the pellet size (from about 1.5 mm to 3.2 mm) and improve the removal capability, particularly for COD removal (from less than 50-86.20%). The removal efficiencies of TN and COD reached 98.38% (from 136.01 mg/L to 2.20 mg/L) and 92.40% (from 10,720 mg/L to 815 mg/L) under the following conditions: C/N 36, pH 3, 30°C, and inoculation with 48 h pellets. The pellet diameter reached 4.8 mm after 4-day cultivation. In this case, Penicillium sp. L1 removed TN from 415.93 mg/L to 43.39 mg/L, as well as COD from 29,533 mg/L to 8850 mg/L. Overall, the results indicated that the pellet size was closely related to the pollutant-removal ability of Penicillium sp. L1. Furthermore, mycelial pellets (4.8 mm, dead) only adsorbed 38.08% TN (from 125.45 mg/L to 77.78 mg/L), which indicated that adsorption did not play a major role in the nitrogen-removal process. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Phosphatidylcholine induces apoptosis of 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Li Hailan

    2011-12-01

    Full Text Available Abstract Background Phosphatidylcholine (PPC formulation is used for lipolytic injection, even though its mechanism of action is not well understood. Methods The viability of 3T3-L1 pre-adipocytes and differentiated 3T3-L1 cells was measured after treatment of PPC alone, its vehicle sodium deoxycholate (SD, and a PPC formulation. Western blot analysis was performed to examine PPC-induced signaling pathways. Results PPC, SD, and PPC formulation significantly decreased 3T3-L1 cell viability in a concentration-dependent manner. PPC alone was not cytotoxic to CCD-25Sk human fibroblasts at concentrations Conclusions PPC results in apoptosis of 3T3-L1 cells.

  3. 26 CFR 1.7701(l)-1 - Conduit financing arrangements.

    Science.gov (United States)

    2010-04-01

    ... determines that such recharacterization is appropriate to prevent avoidance of any tax imposed by title 26 of...) INCOME TAX (CONTINUED) INCOME TAXES General Actuarial Valuations § 1.7701(l)-1 Conduit financing...

  4. IceBridge Atmospheric Chemistry L1B Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge Atmospheric Chemistry L1B Data set (ICHEM1B) contains measurements acquired over Antarctica using the AVOCET differential Non-Dispersive Infrared...

  5. Gold nanoparticles functionalized with a fragment of the neural cell adhesion molecule L1 stimulate L1-mediated functions

    Science.gov (United States)

    Schulz, Florian; Lutz, David; Rusche, Norman; Bastús, Neus G.; Stieben, Martin; Höltig, Michael; Grüner, Florian; Weller, Horst; Schachner, Melitta; Vossmeyer, Tobias; Loers, Gabriele

    2013-10-01

    The neural cell adhesion molecule L1 is involved in nervous system development and promotes regeneration in animal models of acute and chronic injury of the adult nervous system. To translate these conducive functions into therapeutic approaches, a 22-mer peptide that encompasses a minimal and functional L1 sequence of the third fibronectin type III domain of murine L1 was identified and conjugated to gold nanoparticles (AuNPs) to obtain constructs that interact homophilically with the extracellular domain of L1 and trigger the cognate beneficial L1-mediated functions. Covalent conjugation was achieved by reacting mixtures of two cysteine-terminated forms of this L1 peptide and thiolated poly(ethylene) glycol (PEG) ligands (~2.1 kDa) with citrate stabilized AuNPs of two different sizes (~14 and 40 nm in diameter). By varying the ratio of the L1 peptide-PEG mixtures, an optimized layer composition was achieved that resulted in the expected homophilic interaction of the AuNPs. These AuNPs were stable as tested over a time period of 30 days in artificial cerebrospinal fluid and interacted with the extracellular domain of L1 on neurons and Schwann cells, as could be shown by using cells from wild-type and L1-deficient mice. In vitro, the L1-derivatized particles promoted neurite outgrowth and survival of neurons from the central and peripheral nervous system and stimulated Schwann cell process formation and proliferation. These observations raise the hope that, in combination with other therapeutic approaches, L1 peptide-functionalized AuNPs may become a useful tool to ameliorate the deficits resulting from acute and chronic injuries of the mammalian nervous system.The neural cell adhesion molecule L1 is involved in nervous system development and promotes regeneration in animal models of acute and chronic injury of the adult nervous system. To translate these conducive functions into therapeutic approaches, a 22-mer peptide that encompasses a minimal and functional L1

  6. The Pleiotropic Role of L1CAM in Tumor Vasculature

    Directory of Open Access Journals (Sweden)

    Francesca Angiolini

    2017-01-01

    Full Text Available Angiogenesis, the formation of new vessels, is a key step in the development, invasion, and dissemination of solid tumors and, therefore, represents a viable target in the context of antitumor therapy. Indeed, antiangiogenic approaches have given promising results in preclinical models and entered the clinical practice. However, in patients, the results obtained so far with antiangiogenic drugs have not completely fulfilled expectations, especially because their effect has been transient with tumors developing resistance and evasion mechanisms. A better understanding of the mechanisms that underlie tumor vascularization and the functional regulation of cancer vessels is a prerequisite for the development of novel and alternative antiangiogenic treatments. The L1 cell adhesion molecule (L1CAM, a cell surface glycoprotein previously implicated in the development and plasticity of the nervous system, is aberrantly expressed in the vasculature of various cancer types. L1CAM plays multiple pro-angiogenic roles in the endothelial cells of tumor-associated vessels, thus emerging as a potential therapeutic target. In addition, L1CAM prevents the maturation of cancer vasculature and its inhibition promotes vessel normalization, a process that is thought to improve the therapeutic response of tumors to cytotoxic drugs. We here provide an overview on tumor angiogenesis and antiangiogenic therapies and summarize the current knowledge on the biological role of L1CAM in cancer vasculature. Finally, we highlight the clinical implications of targeting L1CAM as a novel antiangiogenic and vessel-normalizing approach.

  7. Production and characterization of TI/PbO2 electrodes by a thermal-electrochemical method

    Directory of Open Access Journals (Sweden)

    Laurindo Edison A.

    2000-01-01

    Full Text Available Looking for electrodes with a high overpotential for the oxygen evolution reaction (OER, useful for the oxidation of organic pollutants, Ti/PbO2 electrodes were prepared by a thermal-electrochemical method and their performance was compared with that of electrodeposited electrodes. The open-circuit potential for these electrodes in 0.5 mol L-1 H2SO4 presented quite stable similar values. X-ray diffraction analyses showed the thermal-electrochemical oxide to be a mixture of ort-PbO, tetr-PbO and ort-PbO2. On the other hand, the electrodes obtained by electrodeposition were in the tetr-PbO2 form. Analyses by scanning electron microscopy showed that the basic morphology of the thermal-electrochemical PbO2 is determined in the thermal step, being quite distinct from that of the electrodeposited electrodes. Polarization curves in 0.5 mol L-1 H2SO4 showed that in the case of the thermal-electrochemical PbO2 electrodes the OER was shifted to more positive potentials. However, the values of the Tafel slopes, quite high, indicate that passivating films were possibly formed on the Ti substrates, which could eventually explain the somewhat low current values for OER.

  8. Hazards of TiO2 and amorphous SiO2 nanoparticles

    NARCIS (Netherlands)

    Reijnders, L.; Kahn, H.A.; Arif, I.A.

    2012-01-01

    TiO2 and amorphous SiO2 nanoparticles have been described as ‘safe’, ‘non-toxic’ and ‘environment friendly’ in scientific literature. However, though toxicity data are far from complete, there is evidence that these nanoparticles are hazardous. TiO2 nanoparticles have been found hazardous to humans

  9. Photocatalytic decolorization of basic dye by TiO2 nanoparticle in photoreactor

    Directory of Open Access Journals (Sweden)

    Jutaporn Chanathaworn1

    2012-04-01

    Full Text Available Photocatalytic decolorization of rhodamine B (RB and malachite green (MG basic dyes in aqueous solution wasevaluated using TiO2 powder as a semiconductor photocatalyst under UV black light irradiation. A 0.5 L batch photoreactorcontaining dyeing solution was installed in a stainless steel chamber with air cooling under irradiation. The TiO2 powder wascharacterized by XRD observation and it was shown that the nanoparticles could be identified as 73 nm anatase crystals. Theeffects of operational parameters such as light intensity (0-114 W/m2, initial dye concentration (10-30 mg/L, and TiO2 powderloading (0.5-1.5 g/L on the decolorization of dye samples were examined. The photocatalytic decolorization rate depended onthe pollutant’s structure, such that the MG dye could be removed faster than the RB dye. Decolorization efficiency (% of thephotocatalytic system increased with increasing TiO2 loading and light intensity; however, it decreased with increasing initialdye concentration. A loading of 1.5 g TiO2/L, initial dye concentration of 20 mg/L, and light intensity of 114 W/m2 were foundto yield the highest removal efficiency of dye solution based on time requirement. The kinetics are of first order and dependon the TiO2 powder loading and dye structure. The research had a perfect application foreground.

  10. Physical and photoelectrochemical properties of Sb-doped SnO2 thin films deposited by chemical vapor deposition: application to chromate reduction under solar light

    Science.gov (United States)

    Outemzabet, R.; Doulache, M.; Trari, M.

    2015-05-01

    Sb-doped SnO2 thin films (Sb-SnO2) are prepared by chemical vapor deposition. The X-ray diffraction indicates a rutile phase, and the SEM analysis shows pyramidal grains whose size extends up to 200 nm. The variation of the film thickness shows that the elaboration technique needs to be optimized to give reproducible layers. The films are transparent over the visible region. The dispersion of the optical indices is evaluated by fitting the diffuse reflectance data with the Drude-Lorentz model. The refractive index ( n) and absorption coefficient ( k) depend on both the conditions of preparation and of the doping concentration and vary between 1.4 and 2.0 and 0.2 and 0.01, respectively. Tin oxide is nominally non-stoichiometric, and the conduction is dominated by thermally electrons jump with an electron mobility of 12 cm2 V-1 s-1 for Sb-SnO2 (1 %). The ( C 2- V) characteristic in aqueous electrolyte exhibits a linear behavior from which an electrons density of 4.15 × 1018 cm-3 and a flat-band potential of -0.83 V SCE are determined. The electrochemical impedance spectroscopy shows a semicircle attributed to a capacitive behavior with a low density of surface states. The center lies below the real axis with a depletion angle (12°), due to a constant phase element, i.e., a deviation from a pure capacitive behavior, presumably attributed to the roughness and porosity of the film. The straight line at low frequencies is attributed to the Warburg diffusion. The energy diagram reveals the photocatalytic feasibility of Sb-SnO2. As application, 90 % of the chromate concentration (20 mg L-1, pH ~3) disappears after 6 h of exposure to solar light.

  11. Effect of H2O2 on the in vitro growth of Mycosphaerella fijiensis Cuban isolate

    Directory of Open Access Journals (Sweden)

    María I. Oloriz

    2014-04-01

    Full Text Available Black leaf streak disease (Mycosphaerella fijiensis Morelet is the main foliar disease of bananas and plantain. One of the possible mechanisms of resistance is the hypersensitive response observed in ‘Calcutta 4’ (Musa AA that involves the formation of reactive oxygen species. In order to determine the effect of H2O2 on the in vitro growth of M. fijiensis Cuban isolate CCIBP-Pf-83, several concentrations added to a culture medium PDB were tested. After seven days of incubation the mycelial dry weight was determined. It was found that with 30 mmol l-1 H2O2 in the culture medium, mycelial growth was stimulated and with 50 up to 100 mmol l-1 it decreased. The results provide elements for understanding plantpathogen interactions in this pathosystem. Key words: black leaf streak disease, in vitro culture, ROS

  12. Valence electron structure and properties of stabilized ZrO2

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To reveal the properties of stabilizers in ZrO2 on nanoscopic levels, the valence electron structures of four stable ZrO2 phases and c-ZrO2 were analyzed on the basis of the empirical electron theory of solids and molecules. The results showed that the hybridization levels of Zr atoms in c-ZrO2 doped with Ca and Mg dropped from B17 to B13, the hybridization levels of Zr atoms in c-ZrO2 doped with Y and Ce dropped from B17 to B15, and that the four stabilizing atoms all made the hybridization levels of O atoms drop from level 4 to level 2. The numbers of covalent electrons in the strongest covalent bond in the descending order are c-ZrO2>Zr0.82Ce0.18O2> Zr0.82Y0.18O1.91>Zr0.82Mg0.18O1.82>Zr0.82Ca0.18O1.82. The bond energies of the strongest covalent bond and the melting points of the solid solutions in the descending order are Zr0.82Ce0.18O2> c-ZrO2>Zr0.82Y0.18O1.91>Zr0.82Mg0.18O1.82>Zr0.82Ca0.18O1.82. The percent-ages of the total number of covalent electrons in the descending order are c-ZrO2>Zr0.82Y0.18O1.91> Zr0.82Ce0.18O2>Zr0.82Mg0.18O1.82> Zr0.82Ca0.18O1.82. From the above analysis, it can be concluded that the stabilizing degrees of the four stabilizers in the descending order are CaO> MgO>Y2O3>CeO2.

  13. Experiment prediction for Loft Nonnuclear Experiment L1-4

    International Nuclear Information System (INIS)

    White, J.R.; Berta, V.T.; Holmstrom, H.L.O.

    1977-04-01

    A computer analysis, using the WHAM and RELAP4 computer codes, was performed to predict the LOFT system thermal-hydraulic response for Experiment L1-4 of the nonnuclear (isothermal) test series. Experiment L1-4 will simulate a 200 percent double-ended offset shear in the cold leg of a four-loop large pressurized water reactor. A core simulator will be used to provide a reactor vessel pressure drop representative of the LOFT nuclear core. Experiment L1-4 will be initiated with a nominal isothermal primary coolant temperature of 282.2 0 C, a pressurizer pressure of 15.51 MPa, and a primary coolant flow of 270.9 kg/s. In general, the predictions of saturated blowdown for Experiment Ll-4 are consistent with the expected system behavior, and predicted trends agree with results from Semiscale Test S-01-4A, which simulated the Ll-4 experiment conditions

  14. In Vitro and In Vivo Evaluation of Sol-Gel Derived TiO2 Coatings Based on a Variety of Precursors and Synthesis Conditions

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2014-01-01

    Full Text Available The effect of synthesis way of TiO2 coatings on biocompatibility of transplanted materials using an in vitro and in vivo rat model was investigated. TiO2 layers were synthesized by a nonaqueous sol-gel dip-coating method on stainless steel 316L substrates applying two different precursors and their combination. Morphology and topography of newly formed biomaterials were determined as well as chemical composition and elemental distribution of a surface samples. In vitro tests were conducted by adipose-derived mesenchymal stem cells cultured on TiO2 coatings and stainless steel without coatings to assess the bioreactivity of obtained materials. A positive biological effect of TiO2/316L/1 coatings—based on titanium(IV ethoxide—was found in both in vitro and in vivo models. The TiO2/316L/1 exhibited the highest roughness and the lowest titanium concentration in TiO2 than TiO2/316L/2—based on titanium(IV propoxide and TiO2/316L/3—based on both above-mentioned precursors. The proper fibroblast-like morphology and higher proliferation rate of cells cultured on TiO2/316L/1 were observed when compared to the other biomaterials. No inflammatory response in the bone surrounding implant covered by each of the obtained TiO2 was present. Our results showed that improvement of routinely used stainless steel 316L with TiO2/316L/1 layer can stimulate beneficial biological response.

  15. Properties of phases in HfO2-TiO2 system

    International Nuclear Information System (INIS)

    Red'ko, V.P.; Terekhovskij, P.B.; Majster, I.M.; Shevchenko, A.V.; Lopato, L.M.; Dvernyakova, A.A.

    1990-01-01

    A study was made on axial and linear coefficients of thermal expansion (CTE) of HfO 2 -TiO 2 system samples in concentration range of 25-50 mol% TiO 2 . Samples, containing 35 and 37 mol% TiO 2 , are characterized by the lowest values of linear CTE. Dispersion of the basic substances doesn't affect CTE value. Correlation with axial and linear CTE of samples in ZrO 2 -TiO 2 system was conducted. Presence of anisotropy of change of lattice parameters was supported for samples, containing 37.5 and 40 mol% TiO 2 . Polymorphous transformations for hafnium titanate were not revealed

  16. L 1 Generalized Procrustes 2D Shape Alignment

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2008-01-01

    on the orientation of the coordinate system, i.e. it is not rotationally invariant. However, by simultaneously minimizing the city block distances in a series of rotated coordinate systems we are able to approximate the circular equidistance curves of Euclidean distances with a regular polygonal equidistance curve...... to the precision needed. Using 3 coordinate systems rotated 30 degrees we get a 12 sided regular polygon, with which we achieve deviations from Euclidean distances less than 2 % over all directions. This new formulation allows for minimization in the L1-norm using LP. We demonstrate that the use of the L1-norm...

  17. Heat capacity of ThO2

    International Nuclear Information System (INIS)

    Peng Shian

    1996-01-01

    The heat capacity C p of ThO 2 can be calculated as the phonon part of C p for other actinide dioxides used as fuel in nuclear reactors. Precise determination of the phonon part of C p of actinide dioxides is helpful to find out the contributions of other factors to C p . In this paper we have, through studying the heat capacity of ThO 2 , developed a general method applicable to the study of C p of other solids. In the developed method the three type -- different experimental measurements made on a solid-heat capacity, thermal expansion and Debye Waller factor -- can be brought together for comparison. The application of this method to the study of C p of ThO 2 has enabled us to propose a better description of C p of ThO 2 than the generally accepted expression

  18. Preparation and performance of photocatalytic TiO2 immobilized on palladium-doped carbon fibers

    International Nuclear Information System (INIS)

    Zhu Yaofeng; Fu Yaqin; Ni Qingqing

    2011-01-01

    Pd-modified carbon fibers (CFs) are obtained by a facile oxidation-reduction method and then dip-coated in a sol-gel of titanium dioxide (TiO 2 ) to form supported TiO 2 /Pd-CF photocatalysts. The morphology of the Pd-modified CFs and the amount Pd deposited are characterized by field emission scanning electron microscopy and atomic absorption spectrometry, respectively. X-ray diffraction is used to investigate the crystal structures of the TiO 2 photocatalyst. Acid orange II is used as a model contaminant to evaluate the photocatalytic properties of the photocatalyst under UV irradiation. TiO 2 /Pd-CF exhibits higher catalytic activity than TiO 2 /CF towards the degradation of acid orange II. Optimum photocatalytic performance and support properties are achieved when the Pd particle loading is about 10.8 mg/g.

  19. Adsorption and Recovery of Polyphenolic Flavonoids Using TiO_2-Functionalized Mesoporous Silica Nanoparticles

    International Nuclear Information System (INIS)

    Khan, M. Arif; Wallace, William T.; Islam, Syed Z.; Nagpure, Suraj; Strzalka, Joseph

    2017-01-01

    Exploiting specific interactions with titania (TiO_2) has been proposed for the separation and recovery of a broad range of biomolecules and natural products, including therapeutic polyphenolic flavonoids which are susceptible to degradation, such as quercetin. Functionalizing mesoporous silica with TiO_2 has many potential advantages over bulk and mesoporous TiO_2 as an adsorbent for natural products, including robust synthetic approaches leading to high surface area, stable separation platforms. Here, TiO_2 surface functionalized mesoporous silica nanoparticles (MSNPs) are synthesized and characterized as a function of TiO_2 content (up to 636 mg TiO2/g). The adsorption isotherms of two polyphenolic flavonoids, quercetin and rutin, were determined (0.05-10 mg/ml in ethanol), and a 100-fold increase in the adsorption capacity was observed relative to functionalized nonporous particles with similar TiO_2 surface coverage. An optimum extent of functionalization (approximately 440 mg TiO_2/g particles) is interpreted from characterization techniques including grazing incidence x-ray scattering (GIXS), high resolution transmission electron microscopy (HRTEM) and nitrogen adsorption, which examined the interplay between the extent of TiO_2 functionalization and the accessibility of the porous structures. The recovery of flavonoids is demonstrated using ligand displacement in ethanolic citric acid solution (20% w/v), in which greater than 90% recovery can be achieved in a multistep extraction process. The radical scavenging activity (RSA) of the recovered and particle-bound quercetin as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay demonstrates greater than 80% retention of antioxidant activity by both particle-bound and recovered quercetin. In conclusion, these mesoporous titanosilicate materials can serve as a synthetic platform to isolate, recover, and potentially deliver degradation-sensitive natural products to biological systems.

  20. Application of H2O2 and H2O2/Fe0 in removal of Acid Red 18 dye from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Nazari Shahram

    2013-08-01

    Full Text Available Background & Aims of the Study: Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim of this study was to evaluate the performance of H2O2 and H2O2/Fe0 Iron in removal of dye Acid Red 18 from aqueous solutions. Materials & Methods: This study was conducted at the laboratory scale. In this study, the removal efficiency of Acid Red 18 from a synthetic solution by H2O2 and H2O2/Fe0 was investigated. As well as Effect of solution pH, dye concentration, Concentration of Nanoscale Zero-Valent Iron, H2O2 and contact time in decolorization efficiency was investigated. Results: Results show that in pH=3, Contact time of 80 minutes, dye concentration of 50 mg/l and Concentration of Nanoscale Zero-Valent Iron of 2 g/l and H2O2 concentration equal to 200 mmol/l, the removal efficiency was about 98%. Conclusions: According to the results of experiments, H2O2/Fe0 has high efficiency in removal of Acid Red 18 from aqueous solution.

  1. Electrooxidation as the anaerobic pre-treatment of fats: oleate conversion using RuO2 and IrO2 based anodes.

    Science.gov (United States)

    Gonçalves, M; Alves, M M; Correia, J P; Marques, I P

    2008-11-01

    Electrochemical treatment of oleate using RuO2 and IrO2 type dimensionally stable anodes in alkaline medium was performed to develop a feasible anaerobic pre-treatment of fatty effluents. The results showed that the pre-treated solutions over RuO2 were faster degraded by anaerobic consortium than the raw oleate solutions or the electrolysed solutions using IrO2. In batch experiments carried out with pre-treated solutions over RuO2 (100-500mg/L), no lag phases were observed before the methane production onset. On the other hand, raw oleate and pre-treated oleate over IrO2 had originated lag phases of 0-140 and 0-210h, respectively. This study demonstrated that it is advantageous to apply the electrochemical treatment carried out on the RuO2 type DSA in order to achieve a faster biodegradation of lipid-containing effluent and consequently to obtain a faster methane production.

  2. Efficient suppression of nanograss during porous anodic TiO2 nanotubes growth

    Science.gov (United States)

    Gui, Qunfang; Yu, Dongliang; Li, Dongdong; Song, Ye; Zhu, Xufei; Cao, Liu; Zhang, Shaoyu; Ma, Weihua; You, Shiyu

    2014-09-01

    When Ti foil was anodized in fluoride-containing electrolyte for a long time, undesired etching-induced "nanograss" would inevitably generate on the top of porous anodic TiO2 nanotubes (PATNTs). The nanograss will hinder the ions transport and in turn yield depressed (photo) electrochemical performance. In order to obtain nanograss-free nanotubes, a modified three-step anodization and two-layer nanostructure of PATNTs were designed to avoid the nanograss. The first layer (L1) nanotubes were obtained by the conventional two-step anodization. After washing and drying processes, the third-step anodization was carried out with the presence of L1 nanotubes. The L1 nanotubes, serving as a sacrificed layer, was etched and transformed into nanograss, while the ultralong nanotubes (L2) were maintained underneath the L1. The bi-layer nanostructure of the nanograss/nanotubes (L1/L2) was then ultrasonically rinsed in deionized water to remove the nanograss (L1 layer). Then much longer nanotubes (L2 layer) with intact nanotube mouths could be obtained. Using this novel approach, the ultralong nanotubes without nanograss can be rationally controlled by adjusting the anodizing times of two layers.

  3. The ceramic SiO2 and SiO2-TiO2 coatings on biomedical Ti6Al4VELI titanium alloy

    International Nuclear Information System (INIS)

    Surowska, B.; Walczak, M.; Bienias, J.

    2004-01-01

    The paper presents the study of intermediate SiO 2 and SiO 2 -TiO 2 sol-gel coatings and dental porcelain coatings on Ti6Al4VELI titanium alloy. Surface microstructures and wear behaviour by pin-on-disc method of the ceramic coatings were investigated. The analysis revealed: (1) a compact, homogeneous SiO 2 and SiO 2 -TiO 2 coating and (2) that intermediate coatings may provide a durable joint between metal and porcelain, and (3) that dental porcelain on SiO 2 and TiO 2 coatings shows high wear resistance. (author)

  4. Cosmetic wastewater treatment by the ZVI/H2O2 process.

    Science.gov (United States)

    Bogacki, Jan; Marcinowski, Piotr; Zapałowska, Ewa; Maksymiec, Justyna; Naumczyk, Jeremi

    2017-10-01

    The ZVI/H 2 O 2 process was applied for cosmetic wastewater treatment. Two commercial zero-valent iron (ZVI) types with different granulations were chosen: Hepure Ferrox PRB and Hepure Ferrox Target. In addition, the pH and stirring method influence on ZVI/H 2 O 2 process efficiency was studied. During the ZVI and ZVI/H 2 O 2 processes, linear Fe ions concentration increase was observed. The addition of H 2 O 2 significantly accelerated the iron dissolution process. The highest COD removal was obtained using finer ZVI (Hepure Ferrox Target) for doses of reagents ZVI/H 2 O 2 1500/1600 mg/L, in a H 2 O 2 /COD weight ratio 2:1, at pH 3.0 with stirring on a magnetic stirrer. After 120 min of the process, 84.0% COD removal (from 796 to 127 mg/L) was achieved. It was found that the efficiency of the process depends, as in the case of the Fenton process, on the ratio of the reagents (ZVI/H 2 O 2 ) and their dose in relation to the COD (H 2 O 2 /COD) but does not depend on the dose of the iron itself. Statistical analysis confirms that COD removal efficiency depends primarily on H 2 O 2 /COD ratio and ZVI granulation, but ZVI dose influence is not statistically significant. The head space, solid-phase microextraction, gas chromatography, mass spectrometry results confirm high efficiency of the ZVI/H 2 O 2 process.

  5. Comparisons between TiO2- and SiO2-flux assisted TIG welding processes.

    Science.gov (United States)

    Tseng, Kuang-Hung; Chen, Kuan-Lung

    2012-08-01

    This study investigates the effects of flux compounds on the weld shape, ferrite content, and hardness profile in the tungsten inert gas (TIG) welding of 6 mm-thick austenitic 316 L stainless steel plates, using TiO2 and SiO2 powders as the activated fluxes. The metallurgical characterizations of weld metal produced with the oxide powders were evaluated using ferritoscope, optical microscopy, and Vickers microhardness test. Under the same welding parameters, the penetration capability of TIG welding with TiO2 and SiO2 fluxes was approximately 240% and 292%, respectively. A plasma column made with SiO2 flux exhibited greater constriction than that made with TiO2 flux. In addition, an anode root made with SiO2 flux exhibited more condensation than that made with TiO2 flux. Results indicate that energy density of SiO2-flux assisted TIG welding is higher than that of TiO2-flux assisted TIG welding.

  6. Evidence from adult L1 Afrikaans L2 French

    African Journals Online (AJOL)

    results of this study show that a large number of the L2 learners had indeed acquired ... position in V2-languages (such as German) and in third position in non-V2 ... L1, allows construction types x and y but he will have no problem acquiring .... Modern Foreign Languages at Stellenbosch University at the time of testing.

  7. Discourse Connectives in L1 and L2 Argumentative Writing

    Science.gov (United States)

    Hu, Chunyu; Li, Yuanyuan

    2015-01-01

    Discourse connectives (DCs) are multi-functional devices used to connect discourse segments and fulfill interpersonal levels of discourse. This study investigates the use of selected 80 DCs within 11 categories in the argumentative essays produced by L1 and L2 university students. The analysis is based on the International Corpus Network of Asian…

  8. Relationship of O2 Photodesorption in Photooxidation of Acetone on TiO2

    International Nuclear Information System (INIS)

    Henderson, Michael A.

    2008-01-01

    Organic photooxidation on TiO2 invariably involves the coexistence of organic species with oxygen on the surface at the same time. In the case of acetone and oxygen, both species exhibit their own interesting photochemistry on TiO2, but interdependences between the two are not understood. In this study, a rutile TiO2(110) surface possessing 7% surface oxygen vacancy sites is used as a model surface to probe the relationship between O2 photodesorption and acetone photodecomposition. Temperature programmed desorption (TPD) and photon stimulated desorption (PSD) measurements indicate that coadsorbed oxygen is essential to acetone photodecomposition on this surface, however the form of oxygen (molecular and dissociative) is not known. The first steps in acetone photodecomposition on TiO2(110) involve thermal activation with oxygen to form an acetone diolate ((CH3)2COO) species followed by photochemical decomposition to adsorbed acetate (CH3COO) and an ejected CH3 radical that is detected in PSD. Depending on the surface conditions, O2 PSD is also observed during the latter process. However, the time scales for the two PSD events (CH3 and O2) are quite different, with the former occurring at ∼10 times faster than the latter. By varying the preheating conditions or performing pre-irradiation on an O2 exposed surface, it becomes clear that the two PSD events are uncorrelated. That is, the O2 species responsible for O2 PSD is not a significant participant in the photochemistry of acetone on TiO2(110) and likely originates from a minority form of O2 on the surface. The CH3 and O2 PSD events do not appear to be in competition with each other suggesting either that ample charge carriers exist under the experimental conditions employed or that different charge carriers or excitation mechanisms are involved

  9. Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization

    International Nuclear Information System (INIS)

    Xia, Bin; Chen, Bijuan; Sun, Xuemei; Qu, Keming; Ma, Feifei; Du, Meirong

    2015-01-01

    The toxicity of TiO 2 engineered nanoparticles (NPs) to the marine microalga Nitzschia closterium was investigated by examining growth inhibition, oxidative stress and uptake. The results indicated that the toxicity of TiO 2 particles to algal cells significantly increased with decreasing nominal particle size, which was evidenced by the 96 EC 50 values of 88.78, 118.80 and 179.05 mg/L for 21 nm, 60 nm and 400 nm TiO 2 particles, respectively. The growth rate was significantly inhibited when the alga was exposed to 5 mg/L TiO 2 NPs (21 nm). Measurements of antioxidant enzyme activities showed that superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities were first induced and subsequently inhibited following exposure to 5 mg/L TiO 2 NPs. The depletion of antioxidant enzymes with a concomitant increase in malondialdehyde (MDA) levels and reactive oxygen species (ROS) posed a hazard to membrane integrity. A combination of flow cytometry analysis, transmission electron microscopy and Ti content measurement indicated that TiO 2 NPs were internalized in N. closterium cells. The level of extracellular ROS, which was induced by TiO 2 NPs under visible light, was negligible when compared with the intracellular ROS level (accounting for less than 6.0% of the total ROS level). These findings suggest that elevated TiO 2 nanotoxicity in marine environments is related to increased ROS levels caused by internalization of TiO 2 NPs. - Highlights: • Inhibition of marine microalgae by TiO 2 NPs and bulk particles was evaluated. • Aggregation of TiO 2 NPs and bulk particles was observed in marine algal test medium. • TiO 2 NPs induced damage to algal cell membranes as detected by flow cytometry. • Increased TiO 2 nanotoxicity to algal cells was caused by internalization of NPs

  10. Earth's early O2 cycle suppressed by primitive continents

    Science.gov (United States)

    Smit, Matthijs A.; Mezger, Klaus

    2017-10-01

    Free oxygen began to accumulate in Earth's surface environments between 3.0 and 2.4 billion years ago. Links between oxygenation and changes in the composition of continental crust during this time are suspected, but have been difficult to demonstrate. Here we constrain the average composition of the exposed continental crust since 3.7 billion years ago by compiling records of the Cr/U ratio of terrigenous sediments. The resulting record is consistent with a predominantly mafic crust prior to 3.0 billion years ago, followed by a 500- to 700-million-year transition to a crust of modern andesitic composition. Olivine and other Mg-rich minerals in the mafic Archaean crust formed serpentine minerals upon hydration, continuously releasing O2-scavenging agents such as dihydrogen, hydrogen sulfide and methane to the environment. Temporally, the decline in mafic crust capable of such process coincides with the first accumulation of O2 in the oceans, and subsequently the atmosphere. We therefore suggest that Earth's early O2 cycle was ultimately limited by the composition of the exposed upper crust, and remained underdeveloped until modern andesitic continents emerged.

  11. Adsorption of uranyl in SiO2 porous glass

    International Nuclear Information System (INIS)

    Benedetto, F. E.; Prado, M. O.

    2013-01-01

    Vitreous SiO 2 porous matrices can be used in many applications involving the uptake of chemical species on its solid surface. In this work, vitreous silica sponges were prepared from a sodium borosilicate glass manufactured in our laboratory. The product obtained was then separated into phases with subsequent leaching of the soluble phase rich in B and Na. The resulting porous matrices have a specific surface of 35 m2/gr. Adsorption of uranyl ions onto the SiO 2 porous surface was studied to evaluate the use of this material as a filter for treatment of uranium containing water. The effects of contact time, adsorbent mass and equilibrium concentration of solution were studied. The porous adsorbent exhibits a pseudo-second-order kinetic behavior. The sponges with adsorbed uranium were thermally sealed as a way of U immobilization. Retention of uranium was confirmed during the matrix sealing by TGA. Uranium concentration before and after adsorption tests were made by means of ICP-OES. For uranium concentration of 800 ppm, 72 hours contact time and pH of 3.5, the amount of uranium adsorbed was 21.06 ± 0.02 mg U per gram of vitreous porous SiO 2 . (author)

  12. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Daochen; Zhang, Peipei; Xie, Changxiao; Zhang, Weimin; Sun, Jianzhong; Qian, Wei-Jun; Yang, Bin

    2017-02-21

    Background: Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent ability to survive in extreme environments. Results: To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC-MS analyze was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis were carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least 2-fold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis and assembly, etc. Conclusions: GC-MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the

  13. The H2O2 scavenger ebselen decreases ethanol-induced locomotor stimulation in mice.

    Science.gov (United States)

    Ledesma, Juan Carlos; Font, Laura; Aragon, Carlos M G

    2012-07-01

    In the brain, the enzyme catalase by reacting with H(2)O(2) forms Compound I (catalase-H(2)O(2) system), which is the main system of central ethanol metabolism to acetaldehyde. Previous research has demonstrated that acetaldehyde derived from central-ethanol metabolism mediates some of the psychopharmacological effects produced by ethanol. Manipulations that modulate central catalase activity or sequester acetaldehyde after ethanol administration modify the stimulant effects induced by ethanol in mice. However, the role of H(2)O(2) in the behavioral effects caused by ethanol has not been clearly addressed. The present study investigated the effects of ebselen, an H(2)O(2) scavenger, on ethanol-induced locomotion. Swiss RjOrl mice were pre-treated with ebselen (0-50mg/kg) intraperitoneally (IP) prior to administration of ethanol (0-3.75g/kg; IP). In another experiment, animals were pre-treated with ebselen (0 or 25mg/kg; IP) before caffeine (15mg/kg; IP), amphetamine (2mg/kg; IP) or cocaine (10mg/kg; IP) administration. Following these treatments, animals were placed in an open field to measure their locomotor activity. Additionally, we evaluated the effect of ebselen on the H(2)O(2)-mediated inactivation of brain catalase activity by 3-amino-1,2,4-triazole (AT). Ebselen selectively prevented ethanol-induced locomotor stimulation without altering the baseline activity or the locomotor stimulating effects caused by caffeine, amphetamine and cocaine. Ebselen reduced the ability of AT to inhibit brain catalase activity. Taken together, these data suggest that a decline in H(2)O(2) levels might result in a reduction of the ethanol locomotor-stimulating effects, indicating a possible role for H(2)O(2) in some of the psychopharmacological effects produced by ethanol. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Facile synthesized SnO2 decorated functionalized graphene modified electrode for sensitive determination of daidzein.

    Science.gov (United States)

    Fu, Yamin; Wang, Lu; Duan, Yinghao; Zou, Lina; Ye, Baoxian

    2017-06-01

    A one-step and facile method using SnCl 2 ·H 2 O as reducing agent to reduce graphene oxide (GO) was performed in the aid of poly(diallyldimethylammonium chloride) solution (PDDA). SnCl 2 ·H 2 O is not only a reducing agent for graphene oxide (GO), but also a precursor of SnO 2 . SnO 2 -PDDA-GR composite was characterized by various surface, structural and electrochemical analysis techniques, such as transmission electron microscopy (TEM), UV spectrum (UV-vis), Infrared Spectrum (IR), X-ray diffraction (XRD), Cyclic voltammograms (CV) and electrochemical impedance (EIS). The SnO 2 -PDDA-GR composite was used to constructed electrochemical sensor (SnO 2 -PDDA-GR/GCE) for the determination of daidzein. Under the optimized experimental condition, it was found that the response of peak current is linear to the concentration of daidzein in the ranges of 2.0×10 -8 -1.0×10 -6 molL -1 , and the detection limit was estimated to be 6.7×10 -9 mol L -1 (S/N=3). Furthermore, this sensor was successfully applied for the determination of daidzein in traditional Chinese medicine (pueraria lobata) and Daidzein tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Remediation of Organic and Inorganic Arsenic Contaminated Groundwater using a Nonocrystalline TiO2 Based Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Jing, C.; Meng, X; Calvache, E; Jiang, G

    2009-01-01

    A nanocrystalline TiO2-based adsorbent was evaluated for the simultaneous removal of As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in contaminated groundwater. Batch experimental results show that As adsorption followed pseudo-second order rate kinetics. The competitive adsorption was described with the charge distribution multi-site surface complexation model (CD-MUSIC). The groundwater containing an average of 329 ?g L-1 As(III), 246 ?g L-1 As(V), 151 ?g L-1 MMA, and 202 ?g L-1 DMA was continuously passed through a TiO2 filter at an empty bed contact time of 6 min for 4 months. Approximately 11 000, 14 000, and 9900 bed volumes of water had been treated before the As(III), As(V), and MMA concentration in the effluent increased to 10 ?g L-1. However, very little DMA was removed. The EXAFS results demonstrate the existence of a bidentate binuclear As(V) surface complex on spent adsorbent, indicating the oxidation of adsorbed As(III). A nanocrystalline TiO2-based adsorbent could be used for the simultaneous removal of As(V), As(III), MMA, and DMA in contaminated groundwater.

  16. Fabrication, structure, and enhanced photocatalytic properties of hierarchical CeO2 nanostructures/TiO2 nanofibers heterostructures

    International Nuclear Information System (INIS)

    Cao, Tieping; Li, Yuejun; Wang, Changhua; Wei, Liming; Shao, Changlu; Liu, Yichun

    2010-01-01

    Combining the versatility of electrospinning technique and hydrothermal growth of nanostructures enabled the fabrication of hierarchical CeO 2 /TiO 2 nanofibrous mat. The as-prepared hierarchical heterostructure consisted of CeO 2 nanostructures growing on the primary TiO 2 nanofibers. Interestingly, not only were secondary CeO 2 nanostructures successfully grown on TiO 2 nanofibers substrates, but also the CeO 2 nanostructures were uniformly distributed without aggregation on TiO 2 nanofibers. By selecting different alkaline source, CeO 2 /TiO 2 heterostructures with CeO 2 nanowalls or nanoparticles were facilely fabricated. The photocatalytic studies suggested that the CeO 2 /TiO 2 heterostructures showed enhanced photocatalytic efficiency of photodegradation of dye pollutants compared with bare TiO 2 nanofibers under UV light irradiation.

  17. Optical Properties of Malachite Green Dye Doped SiO2 Glasses: Effect of Transition Metal (Fe-I Used as a Codopant

    Directory of Open Access Journals (Sweden)

    Dulen Bora

    2014-01-01

    Full Text Available Enhanced luminescence properties of Malachite Green (MG (oxalate in Fe-MG codoped SiO2 glasses compared to its values in MG doped SiO2 glasses are reported here. The enhancement is chiefly attributed to a resonance nonradiative energy transfer between Fe and MG. The quantum yield of Malachite Green (MG, in presence of Iron, trapped in sol-gel derived SiO2 glass increases by an order of ~103 compared to that in low viscous solvent while a lifetime of 3.29 ns is reported.

  18. Enhancement of photocatalytic properties of TiO2 nanoparticles doped with CeO2 and supported on SiO2 for phenol degradation

    International Nuclear Information System (INIS)

    Hao, Chunjing; Li, Jing; Zhang, Zailei; Ji, Yongjun; Zhan, Hanhui; Xiao, Fangxing; Wang, Dan; Liu, Bin; Su, Fabing

    2015-01-01

    Highlights: • CeO 2 -TiO 2 /SiO 2 composites were prepared via a facile co-precipitation method. • Introduction of SiO 2 support increases the dispersion of CeO 2 -TiO 2 . • CeO 2 -TiO 2 /SiO 2 exhibits an enhanced photocatalytic efficiency for phenol degradation. • Ce 3+ /Ce 4+ pair coexisting in CeO 2 improves electron–hole pairs separation efficiency. - Abstract: A series of CeO 2 -TiO 2 and CeO 2 -TiO 2 /SiO 2 composites were prepared with TiCl 4 and Ce (NO 3 ) 3 ·6H 2 O as precursors via a facile co-precipitation method. The obtained samples were characterized by various techniques such as X-ray diffraction (XRD), nitrogen adsorption (N 2 -BET), Fourier transformation infrared spectrum (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–Vis spectroscopy measurements. The results indicated that TiO 2 doped with CeO 2 and supported on SiO 2 could reduce the crystallite size, inhibit the phase transformation, enhance the thermal stability, and effectively extend the spectral response from UV to visible range. When applied to the phenol photodegradation on a homemade batch reactor with an external cooling jacket, the CeO 2 -TiO 2 /SiO 2 catalysts exhibited significantly enhanced photodegradation efficiency in comparison with commercial Degussa P25 and CeO 2 -TiO 2 . The unique catalytic properties of CeO 2 -TiO 2 /SiO 2 were ascribed to improved electron–hole pairs separation efficiency and formation of more reactive oxygen species owing to the presence of Ce 3+ /Ce 4+ , as well as high dispersion of active component of CeO 2 -TiO 2 as a result of the introduction of SiO 2 support. Furthermore, the catalysts can be easily recovered from the reaction solution by centrifugation and reused for four cycles without significant loss of activity

  19. Optimization of the photoelectrocatalytic oxidation of landfill leachate using copper and nitrate co-doped TiO2 (Ti by response surface methodology.

    Directory of Open Access Journals (Sweden)

    Xiao Zhou

    Full Text Available In this paper, a statistically-based experimental design with response surface methodology (RSM was employed to examine the effects of functional conditions on the photoelectrocatalytic oxidation of landfill leachate using a Cu/N co-doped TiO2 (Ti electrode. The experimental design method was applied to response surface modeling and the optimization of the operational parameters of the photoelectro-catalytic degradation of landfill leachate using TiO2 as a photo-anode. The variables considered were the initial chemical oxygen demand (COD concentration, pH and the potential bias. Two dependent parameters were either directly measured or calculated as responses: chemical oxygen demand (COD removal and total organic carbon (TOC removal. The results of this investigation reveal that the optimum conditions are an initial pH of 10.0, 4377.98mgL-1 initial COD concentration and 25.0 V of potential bias. The model predictions and the test data were in satisfactory agreement. COD and TOC removals of 67% and 82.5%, respectively, were demonstrated. Under the optimal conditions, GC/MS showed 73 organic micro-pollutants in the raw landfill leachate which included hydrocarbons, aromatic compounds and esters. After the landfill leachate treatment processes, 38 organic micro-pollutants disappeared completely in the photoelectrocatalytic process.

  20. MoS2 quantum dots@TiO2 nanotube composites with enhanced photoexcited charge separation and high-efficiency visible-light driven photocatalysis

    Science.gov (United States)

    Zhao, Fenfen; Rong, Yuefei; Wan, Junmin; Hu, Zhiwen; Peng, Zhiqin; Wang, Bing

    2018-03-01

    MoS2 quantum dots (QDs) that are 5 nm in size were deposited on the surface of ultrathin TiO2 nanotubes (TNTs) with 5 nm wall thickness by using an improved hydrothermal method to form a MoS2 QDs@TNT visible-light photocatalyst. The ultrathin TNTs with high percentage of photocatalytic reactive facets were fabricated by the commercially available TiO2 nanoparticles (P25) through an improved hydrothermal method, and the MoS2 QDs were acquired by using a surfactant-assisted technique. The novel MoS2 QDs@TNT photocatalysts showed excellent photocatalytic activity with a decolorization rate of 92% or approximately 3.5 times more than that of pure TNTs for the high initial concentration of methylene blue solution (20 mg l-1) within 40 min under visible-light irradiation. MoS2 as the co-catalysts favored the broadening of TNTs into the visible-light absorption scope. The quantum confinement and edge effects of the MoS2 QDs and the heterojunction formed between the MoS2 QDs and TNTs efficiently extended the lifetime of photoinduced charges, impeded the recombination of photoexcited electron-hole pairs, and improved the visible-light-driven high-efficiency photocatalysis.

  1. Ruthenium nanoparticles supported on CeO2 for catalytic permanganate oxidation of butylparaben.

    Science.gov (United States)

    Zhang, Jing; Sun, Bo; Guan, Xiaohong; Wang, Hui; Bao, Hongliang; Huang, Yuying; Qiao, Junlian; Zhou, Gongming

    2013-11-19

    This study developed a heterogeneous catalytic permanganate oxidation system with ceria supported ruthenium, Ru/CeO2 (0.8‰ as Ru), as catalyst for the first time. The catalytic performance of Ru/CeO2 toward butylparaben (BP) oxidation by permanganate was strongly dependent on its dosage, pH, permanganate concentration and temperature. The presence of 1.0 g L(-1) Ru/CeO2 increased the oxidation rate of BP by permanganate at pH 4.0-8.0 by 3-96 times. The increase in Ru/CeO2 dosage led to a progressive enhancement in the oxidation rate of BP by permanganate at neutral pH. The XANES analysis revealed that (1) Ru was deposited on the surface of CeO2 as Ru(III); (2) Ru(III) was oxidized by permanganate to its higher oxidation state Ru(VI) and Ru(VII), which acted as the co-oxidants in BP oxidation; (3) Ru(VI) and Ru(VII) were reduced by BP to its initial state of Ru(III). Therefore, Ru/CeO2 acted as an electron shuttle in catalytic permanganate oxidation process. LC-MS/MS analysis implied that BP was initially attacked by permanganate or Ru(VI) and Ru(VII) at the aromatic ring, leading to the formation of various hydroxyl-substituted and ring-opening products. Ru/CeO2 could maintain its catalytic activity during the six successive runs. In conclusion, catalyzing permanganate oxidation with Ru/CeO2 is a promising technology for degrading phenolic pollutants in water treatment.

  2. Use of MnO2 and MnO2 SiO2 for sorbing of Sr-90 from liquid rad waste

    International Nuclear Information System (INIS)

    Subiarto; Las, Thamzil; Aan BH, Martin; Utomo, Cahyo Hari

    1998-01-01

    The synthesis of MnO 2 adsorbent and MnO 2 -SiO 2 composite has been done. MnO 2 synthesis is done by the reaction of KMnO 4 , Mn(NO 3 ) 2 .4H 2 O and Na 2 S 2 O 4 ( MnO 2 -A, MnO 2 -B, and MnO 2 -T ). MnO 2 . SiO 2 is made from KMnO 4 , Na 2 SiO 3 , and H 2 O 2 . The result obtained show the best Sr-90 sorption by MnO 2 -A with Kd = 2085.63 ml/g, by MnO 2 -L with Kd = 755.09 ml/g, and by MnO 2 - SiO 2 composite with Kd = 1466.51 ml/g. From this result, we can conclude that MnO 2 -SiO 2 can be expanded for Sr-90 sorption from liquid radioactive waste. (author)

  3. Algal toxicity of the alternative disinfectants performic acid (PFA), peracetic acid (PAA), chlorine dioxide (ClO2) and their by-products hydrogen peroxide (H2O2) and chlorite (ClO2-)

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Baun, Anders; Andersen, Henrik Rasmus

    2017-01-01

    Environmental effect evaluation of disinfection of combined sewer overflow events with alternative chemical disinfectants requires that the environmental toxicity of the disinfectants and the main by-products of their use are known. Many disinfectants degrade quickly in water which should......: performic acid (PFA), peracetic acid (PAA) and chlorine dioxide (ClO2) as well as two by-products of their use: hydrogen peroxide (H2O2) and chlorite. All of the five chemicals investigated showed clear toxicity to the algae with well-defined dose response curves. The EC50 values ranged from 0.16 to 2.9 mg...

  4. Instability of Hydrogenated TiO2

    Energy Technology Data Exchange (ETDEWEB)

    Nandasiri, Manjula I.; Shutthanandan, V.; Manandhar, Sandeep; Schwarz, Ashleigh M.; Oxenford, Lucas S.; Kennedy, John V.; Thevuthasan, Suntharampillai; Henderson, Michael A.

    2015-11-06

    Hydrogenated TiO2 (H-TiO2) is toted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Protons (40 keV) implanted at a ~2 atom % level within a ~120 nm wide profile of rutile TiO2(110) were situated ~300 nm below the surface. NRA revealed that this H-profile broadened preferentially toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depth (~800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile, as well as its activity toward interfacial reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  5. Safety and Activity of Anti–PD-L1 Antibody in Patients with Advanced Cancer

    Science.gov (United States)

    Brahmer, Julie R.; Tykodi, Scott S.; Chow, Laura Q.M.; Hwu, Wen-Jen; Topalian, Suzanne L.; Hwu, Patrick; Drake, Charles G.; Camacho, Luis H.; Kauh, John; Odunsi, Kunle; Pitot, Henry C.; Hamid, Omid; Bhatia, Shailender; Martins, Renato; Eaton, Keith; Chen, Shuming; Salay, Theresa M.; Alaparthy, Suresh; Grosso, Joseph F.; Korman, Alan J.; Parker, Susan M.; Agrawal, Shruti; Goldberg, Stacie M.; Pardoll, Drew M.; Gupta, Ashok; Wigginton, Jon M.

    2013-01-01

    BACKGROUND Programmed death 1 (PD-1) protein, a T-cell coinhibitory receptor, and one of its ligands, PD-L1, play a pivotal role in the ability of tumor cells to evade the host’s immune system. Blockade of interactions between PD-1 and PD-L1 enhances immune function in vitro and mediates antitumor activity in preclinical models. METHODS In this multicenter phase 1 trial, we administered intravenous anti–PD-L1 antibody (at escalating doses ranging from 0.3 to 10 mg per kilogram of body weight) to patients with selected advanced cancers. Anti–PD-L1 antibody was administered every 14 days in 6-week cycles for up to 16 cycles or until the patient had a complete response or confirmed disease progression. RESULTS As of February 24, 2012, a total of 207 patients — 75 with non–small-cell lung cancer, 55 with melanoma, 18 with colorectal cancer, 17 with renal-cell cancer, 17 with ovarian cancer, 14 with pancreatic cancer, 7 with gastric cancer, and 4 with breast cancer — had received anti–PD-L1 antibody. The median duration of therapy was 12 weeks (range, 2 to 111). Grade 3 or 4 toxic effects that investigators considered to be related to treatment occurred in 9% of patients. Among patients with a response that could be evaluated, an objective response (a complete or partial response) was observed in 9 of 52 patients with melanoma, 2 of 17 with renal-cell cancer, 5 of 49 with non–small-cell lung cancer, and 1 of 17 with ovarian cancer. Responses lasted for 1 year or more in 8 of 16 patients with at least 1 year of follow-up. CONCLUSIONS Antibody-mediated blockade of PD-L1 induced durable tumor regression (objective response rate of 6 to 17%) and prolonged stabilization of disease (rates of 12 to 41% at 24 weeks) in patients with advanced cancers, including non–small-cell lung cancer, melanoma, and renal-cell cancer. (Funded by Bristol-Myers Squibb and others; ClinicalTrials.gov number, NCT00729664.) PMID:22658128

  6. Hydrophilic CeO2 nanocubes protect pancreatic β-cell line INS-1 from H2O2-induced oxidative stress

    Science.gov (United States)

    Lyu, Guang-Ming; Wang, Yan-Jie; Huang, Xue; Zhang, Huai-Yuan; Sun, Ling-Dong; Liu, Yan-Jun; Yan, Chun-Hua

    2016-04-01

    Oxidative stress plays a key role in the occurrence and development of diabetes. With their unique redox properties, CeO2 nanoparticles (nanoceria) exhibit promising potential for the treatment of diabetes resulting from oxidative stress. Here, we develop a novel preparation of hydrophilic CeO2 nanocubes (NCs) with two different sizes (5 nm and 25 nm) via an acetate assisted hydrothermal method. Dynamic light scattering, zeta potential measurements and thermogravimetric analyses were utilized to investigate the changes in the physico-chemical characteristics of CeO2 NCs when exposed to in vitro cell culture conditions. CCK-8 assays revealed that the CeO2 NCs did not impair cell proliferation in the pancreatic β-cell line INS-1 at the highest dose of 200 μg mL-1 over the time scale of 72 h, while being able to protect INS-1 cells from H2O2-induced cytotoxicity even after protein adsorption. It is also noteworthy that nanoceria with a smaller hydrodynamic radius exhibit stronger antioxidant and anti-apoptotic effects, which is consistent with their H2O2 quenching capability in biological systems. These findings suggest that nanoceria can be used as an excellent antioxidant for controlling oxidative stress-induced pancreatic β-cell damage.Oxidative stress plays a key role in the occurrence and development of diabetes. With their unique redox properties, CeO2 nanoparticles (nanoceria) exhibit promising potential for the treatment of diabetes resulting from oxidative stress. Here, we develop a novel preparation of hydrophilic CeO2 nanocubes (NCs) with two different sizes (5 nm and 25 nm) via an acetate assisted hydrothermal method. Dynamic light scattering, zeta potential measurements and thermogravimetric analyses were utilized to investigate the changes in the physico-chemical characteristics of CeO2 NCs when exposed to in vitro cell culture conditions. CCK-8 assays revealed that the CeO2 NCs did not impair cell proliferation in the pancreatic β-cell line INS-1 at

  7. Conditions for l =1 Pomeranchuk instability in a Fermi liquid

    Science.gov (United States)

    Wu, Yi-Ming; Klein, Avraham; Chubukov, Andrey V.

    2018-04-01

    We perform a microscopic analysis of how the constraints imposed by conservation laws affect q =0 Pomeranchuk instabilities in a Fermi liquid. The conventional view is that these instabilities are determined by the static interaction between low-energy quasiparticles near the Fermi surface, in the limit of vanishing momentum transfer q . The condition for a Pomeranchuk instability is set by Flc (s )=-1 , where Flc (s ) (a Landau parameter) is a properly normalized partial component of the antisymmetrized static interaction F (k ,k +q ;p ,p -q ) in a charge (c) or spin (s) subchannel with angular momentum l . However, it is known that conservation laws for total spin and charge prevent Pomeranchuk instabilities for l =1 spin- and charge-current order parameters. Our study aims to understand whether this holds only for these special forms of l =1 order parameters or is a more generic result. To this end we perform a diagrammatic analysis of spin and charge susceptibilities for charge and spin density order parameters, as well as perturbative calculations to second order in the Hubbard U . We argue that for l =1 spin-current and charge-current order parameters, certain vertex functions, which are determined by high-energy fermions, vanish at Fl=1 c (s )=-1 , preventing a Pomeranchuk instability from taking place. For an order parameter with a generic l =1 form factor, the vertex function is not expressed in terms of Fl=1 c (s ), and a Pomeranchuk instability may occur when F1c (s )=-1 . We argue that for other values of l , a Pomeranchuk instability may occur at Flc (s )=-1 for an order parameter with any form factor.

  8. Anti-PD-L1 Treatment Induced Central Diabetes Insipidus.

    Science.gov (United States)

    Zhao, Chen; Tella, Sri Harsha; Del Rivero, Jaydira; Kommalapati, Anuhya; Ebenuwa, Ifechukwude; Gulley, James; Strauss, Julius; Brownell, Isaac

    2018-02-01

    Immune checkpoint inhibitors, including anti-programmed cell death protein 1 (PD-1), anti-programmed cell death protein ligand 1 (PD-L1), and anti-cytotoxic T-lymphocyte antigen 4 (anti-CTLA4) monoclonal antibodies, have been widely used in cancer treatment. They are known to cause immune-related adverse events (irAEs), which resemble autoimmune diseases. Anterior pituitary hypophysitis with secondary hypopituitarism is a frequently reported irAE, especially in patients receiving anti-CTLA4 treatment. In contrast, posterior pituitary involvement, such as central diabetes insipidus (DI), is relatively rare and is unreported in patients undergoing PD-1/PD-L1 blockade. We describe a case of a 73-year-old man with Merkel cell carcinoma who received the anti-PD-L1 monoclonal antibody avelumab and achieved partial response. The patient developed nocturia, polydipsia, and polyuria 3 months after starting avelumab. Further laboratory testing revealed central DI. Avelumab was held and he received desmopressin for the management of central DI. Within 6 weeks after discontinuation of avelumab, the patient's symptoms resolved and he was eventually taken off desmopressin. The patient remained off avelumab and there were no signs or symptoms of DI 2 months after the discontinuation of desmopressin. To our knowledge, this is the first report of central DI associated with anti-PD-L1 immunotherapy. The patient's endocrinopathy was successfully managed by holding treatment with the immune checkpoint inhibitor. This case highlights the importance of early screening and appropriate management of hormonal irAEs in subjects undergoing treatment with immune checkpoint inhibitors to minimize morbidity and mortality. Copyright © 2017 Endocrine Society

  9. Structure and properties of PbO2-CeO2 anodes on stainless steel

    International Nuclear Information System (INIS)

    Song, Yuehai; Wei, Gang; Xiong, Rongchun

    2007-01-01

    The lack of ideal anodes with excellent activity and stability is one of the critical problems in electrochemical oxidation for organic wastewater treatment. It is reported in this paper that the PbO 2 -CeO 2 films electrodeposited on stainless steel were used as catalytic electrodes for treating antibiotic wastewater. The PbO 2 -CeO 2 films on stainless steel were proved to be high stability, good activity and relatively low cost. Because of these properties, the films are more attractive than any other electrocatalytic materials among conventional dimensionally stable anodes (DSA). Experimental results showed that the PbO 2 -CeO 2 electrode has a service life of 1100 h in 3 M H 2 SO 4 solution under a current density of 1 A cm -2 at 35 o C, compared with 300 h for PbO 2 under the same conditions. The X-ray diffraction (XRD) patterns and SEM images indicated that the PbO 2 -CeO 2 films on stainless steel have a dense structure and the preferred crystalline orientation on the substrate surface was changed. Color and chemical oxygen demand (COD) of antibiotics wastewater were studied by electrolysis by using these electrodes as anode and stainless steel as cathode. The results indicated that the anodes have excellent activity in antibiotic wastewater treatment. The PbO 2 -CeO 2 electrodes have high chemical stability which contributed by the superstable nature of the electrode, dense microstructure, good conductivity and the improvement of bonding with the stainless steel during electrodeposition

  10. Study on adsorption of O2 on LaFe1−xMgxO3 (0 1 0) surface by density function theory calculation

    International Nuclear Information System (INIS)

    Liu, Xing; Cheng, Bin; Hu, Jifan; Qin, Hongwei

    2012-01-01

    Highlights: ► Mg-doping can change the electronic properties of LaFeO 3 (0 1 0) surface by decreasing the band gap. ► The position and content of Mg-doping can both affect the ability to adsorb O 2 . ► The strong hybridization between O 2 p and Fe d orbital is the origin of binding mechanism. - Abstract: The adsorption of O 2 on the clean and Mg doped LaFeO 3 (0 1 0) surface has been investigated using the density functional theory (DFT) method. Calculation results show that Mg-doping can change the electronic properties of LaFeO 3 (0 1 0) surface by decreasing the band gap. When Mg ions were not on the first layer of the surface, with increasing Mg content the adsorption of O 2 was enhanced. When Mg ions were on the first layer, the adsorption of O 2 was weakened with the increase of Mg content. The analysis results of the DOS indicated that the Mg ion and adsorbed O 2 had no strong hybridization, and the bonding mechanism was originated from the strong hybridization between the O p and Fe d orbital. Referring to all the calculation results, it was found that except for the increase of stability of oxygen adsorption, the Mg doping could not improve the sensitivity to O 2 .

  11. Selection of regularization parameter for l1-regularized damage detection

    Science.gov (United States)

    Hou, Rongrong; Xia, Yong; Bao, Yuequan; Zhou, Xiaoqing

    2018-06-01

    The l1 regularization technique has been developed for structural health monitoring and damage detection through employing the sparsity condition of structural damage. The regularization parameter, which controls the trade-off between data fidelity and solution size of the regularization problem, exerts a crucial effect on the solution. However, the l1 regularization problem has no closed-form solution, and the regularization parameter is usually selected by experience. This study proposes two strategies of selecting the regularization parameter for the l1-regularized damage detection problem. The first method utilizes the residual and solution norms of the optimization problem and ensures that they are both small. The other method is based on the discrepancy principle, which requires that the variance of the discrepancy between the calculated and measured responses is close to the variance of the measurement noise. The two methods are applied to a cantilever beam and a three-story frame. A range of the regularization parameter, rather than one single value, can be determined. When the regularization parameter in this range is selected, the damage can be accurately identified even for multiple damage scenarios. This range also indicates the sensitivity degree of the damage identification problem to the regularization parameter.

  12. Effects of Homogenization Scheme of TiO2 Screen-Printing Paste for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2012-01-01

    Full Text Available TiO2 porous electrodes have been fabricated for photoelectrodes in dye-sensitized solar cells (DSCs using TiO2 screen-printing paste from nanocrystalline TiO2 powder dried from the synthesized sol. We prepared the TiO2 screen-printing paste by two different methods to disperse the nanocrystalline TiO2 powder: a “ball-milling route” and a “mortal-grinding route.” The TiO2 ball-milling (TiO2-BM route gave monodisperse TiO2 nanoparticles, resulting in high photocurrent density (14.2 mA cm−2 and high photoconversion efficiency (8.27%. On the other hand, the TiO2 mortal-grinding (TiO2-MG route gave large aggregate of TiO2 nanoparticles, resulting in low photocurrent density (11.5 mA cm−2 and low photoconversion efficiency (6.43%. To analyze the photovoltaic characteristics, we measured the incident photon-to-current efficiency, light absorption spectroscopy, and electrical impedance spectroscopy of DSCs.

  13. Facile synthesis of dispersed Ag nanoparticles on chitosan-TiO2 composites as recyclable nanocatalysts for 4-nitrophenol reduction

    Science.gov (United States)

    Xiao, Gang; Zhao, Yilin; Li, Linghui; Pratt, Jonathan O.; Su, Haijia; Tan, Tianwei

    2018-04-01

    This paper presents a facile, rapid, and controllable procedure for the recovery of trace Ag+ ions and in situ assembly of well dispersed Ag nanoparticles on chitosan-TiO2 composites through bioaffinity adsorption followed by photocatalytic reduction. The prepared Ag nanoparticles are proven to be efficient and recyclable nanocatalysts for the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4. Well dispersed quasi-spherical Ag NPs are synthesized in 20 min in the designed inner-irradiated photocatalytic system under a wide range of Ag+ concentrations (50-200 mg l-1), temperatures (10 °C-25 °C) conditions, and UV or visible light irradiation. The synthesized Ag NPs can catalyze the reduction of 4-nitrophenol by NaBH4 at 100% conversion in 120 min and preserve the catalytic activity in five successive cycles. This procedure for trace Ag+ ions recovery and Ag NPs assembly has the potential to be scaled up for the mass production of recyclable Ag nanocatalysts. The present work provides a green and efficient procedure for the conversion of hazardous 4-nitrophenol to industrially important 4-aminophenol and also sheds a light on designing scaled-up procedures for treating high volumes of wastewater with dilute heavy metals to produce recyclable metallic nanocatalysts in aqueous systems.

  14. Nano-TiO2, ultrasound and sequential nano-TiO2/ultrasonic degradation of N-acetyl-para-aminophenol from aqueous solution.

    Science.gov (United States)

    Ayanda, Olushola S; Nelana, Simphiwe M; Petrik, Leslie F; Naidoo, Eliazer B

    2017-10-01

    The application of nano-TiO 2 as adsorbent combined with ultrasound for the degradation of N-acetyl-para-aminophenol (AAP) from aqueous solution was investigated. The nano-TiO 2 was characterized by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). Experimental results revealed that the adsorption of AAP by nano-TiO 2 fitted the pseudo-second-order kinetic model, the equilibrium could be explained by the Freundlich isotherm and the treatment process is exothermic. The optimum removal efficiency of AAP (128.89 mg/g (77.33%)) was achieved at pH 4 when 0.03 g of nano-TiO 2 was mixed with 50 mL of 100 mg/L AAP aqueous solution at ambient temperature, 60 min contact time, and a stirring speed of 120 rpm. Ultrasound at 20 kHz and pH 3 was favorable and it resulted in 52.61% and 57.43% removal efficiency with and without the addition of nano-TiO 2 , respectively. The degradation of AAP by ultrasound followed by nano-TiO 2 treatment resulted in approximately 99.50% removal efficiency. This study showed that a sequential ultrasound and nano-TiO 2 treatment process could be employed for the removal of AAP or other emerging water and wastewater contaminants.

  15. Enhanced Photocatalytic Activity of ZrO2-SiO2 Nanoparticles by Platinum Doping

    Directory of Open Access Journals (Sweden)

    Mohammad W. Kadi

    2013-01-01

    Full Text Available ZrO2-SiO2 mixed oxides were prepared via the sol-gel method. Photo-assisted deposition was utilized for doping the prepared mixed oxide with 0.1, 0.2, 0.3, and 0.4 wt% of Pt. XRD spectra showed that doping did not result in the incorporation of Pt within the crystal structure of the material. UV-reflectance spectrometry showed that the band gap of ZrO2-SiO2 decreased from 3.04 eV to 2.48 eV with 0.4 wt% Pt doping. The results show a specific surface area increase of 20%. Enhanced photocatalysis of Pt/ZrO2-SiO2 was successfully tested on photo degradation of cyanide under illumination of visible light. 100% conversion was achieved within 20 min with 0.3 wt% of Pt doped ZrO2-SiO2.

  16. PAC study in the HfO2-SiO2 system

    International Nuclear Information System (INIS)

    Chain, C.Y.; Damonte, L.C.; Ferrari, S.; Munoz, E.; Torres, C. Rodriguez; Pasquevich, A.F.

    2010-01-01

    A high-k HfO 2 /SiO 2 gate stack is taking the place of SiO 2 as a gate dielectric in field effect transistors. This fact makes the study of the solid-state reaction between these oxides very important. Nanostructure characterization of a high-energy ball milled and post-annealed equimolar HfO 2 and amorphous SiO 2 powder mixture has been carried out by perturbed angular correlations (PAC) technique. The study was complemented with X-ray diffraction and positron annihilation lifetime spectroscopy (PALS). The experimental results revealed that the ball milling of equimolar mixtures increases the defects concentration in hafnium oxide. No solid-state reaction occurred even after 8 h of milling. The formation of HfSiO 4 (hafnon) was observed in the milled blends annealed at high temperatures.The PAC results of the milled samples are compared with those obtained for pure m-ZrO 2 subjected to high-energy ball milling and with reported microstructure data for the system ZrO 2 -SiO 2 .

  17. Preparation and characterization of Fe–V/TiO2–SiO2 nanocatalyst ...

    Indian Academy of Sciences (India)

    Administrator

    to silica mole ratio, synthesis temperature and heating rate of calcination on the structure ... 2 wt% of zinc (all on weight percent) supported on TiO2–SiO2 with synthesis temperature of ... (TEOS) and titanium isopropoxide (TIP) have been dis-.

  18. Synthesis, Characterization and Properties of CeO2-doped TiO2 Composite Nanocrystals

    Directory of Open Access Journals (Sweden)

    Oman ZUAS

    2013-12-01

    Full Text Available Pure TiO2 and CeO2-doped TiO2 (3 % CeO2-97 %TiO2 composite nanocrystals were synthesized via co-precipitation method and characterized using TGA, XRD, FTIR, DR-UV-vis and TEM. The XRD data revealed that the phase structure of the synthesized samples was mainly in pure anatase having crystallite size in the range of 7 nm – 11 nm. Spherical shapes with moderate aggregation of the crystal particles were observed under the TEM observation. The presence of the CeO2 at TiO2 site has not only affected morphologically but also induced the electronic property of the TiO2 by lowering the band gap energy from 3.29 eV (Eg-Ti to 3.15 eV (Eg-CeTi. Performance evaluation of the synthesized samples showed that both samples have a strong adsorption capacity toward Congo red (CR dye in aqueous solution at room temperature experiment, where  the capacity of the CeTi was higher than the Ti sample. Based on DR-UV data, the synthesized samples obtained in this study may also become promising catalysts for photo-assisted removal of synthetic dye in aqueous solution. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2732

  19. Preparation of TiO2-SiO2 composite photocatalysts for environmental applications

    Czech Academy of Sciences Publication Activity Database

    Paušová, Š.; Krýsa, J.; Jirkovský, Jaromír; Prevot, V.; Mailhot, G.

    2014-01-01

    Roč. 89, č. 8 (2014), s. 1129-1135 ISSN 0268-2575 Institutional support: RVO:61388955 Keywords : photocatalysis * TiO2/SiO2 * composite Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.349, year: 2014

  20. Catalytic combustion of trichloroethylene over TiO2-SiO2 supported catalysts

    NARCIS (Netherlands)

    Kulazynski, M.; van Ommen, J.G.; Trawczynski, J.; Walendziewski, J.

    2002-01-01

    Combustion of trichloroethylene (TCE) on Cr2O3, V2O5, Pt or Pd catalysts supported on TiO2-SiO2 as a carrier has been investigated. It was found that oxide catalysts are very active but their activity quickly diminishes due to loss of the active component, especially at higher reaction temperatures

  1. Activity and Selectivity for O-2 Reduction to H2O2 on Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Verdaguer Casadevall, Arnau; Karamad, Mohammadreza

    2013-01-01

    Industrially viable electrochemical production of H2O2 requires active, selective and stable electrocatalyst materials to catalyse the oxygen reduction reaction to H2O2. On the basis of density functional theory calculations, we explain why single site catalysts such as Pd/Au show improved...

  2. Promoting effect of CeO 2 on cyclohexanol conversion over CeO 2

    Indian Academy of Sciences (India)

    Abstract. CeO2-ZnO materials were prepared by amorphous citrate process and characterized by TGA, XRD, UV-DRS and surface area measurements. TGA showed that the citrate precursors decompose in the range 350-550°C producing CeO2-containing catalytic materials. XRD and DRS results indicated the formation of ...

  3. O2(a1Δ) Quenching In The O/O2/O3 System

    Science.gov (United States)

    Azyazov, V. N.; Mikheyev, P. A.; Postell, D.; Heaven, M. C.

    2010-10-01

    The development of discharge singlet oxygen generators (DSOG's) that can operate at high pressures is required for the power scaling of the discharge oxygen iodine laser. In order to achieve efficient high-pressure DSOG operation it is important to understand the mechanisms by which singlet oxygen (O2(a1Δ)) is quenched in these devices. It has been proposed that three-body deactivation processes of the type O2(a1Δ)+O+M→2O2+M provide significant energy loss channels. To further explore these reactions the physical and reactive quenching of O2(a1Δ) in O(3P)/O2/O3/CO2/He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O2(a1Δ) quenching were followed by observing the 1268 nm fluorescence of the O2a1Δ-X3∑ transition. Fast quenching of O2(a1Δ) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  4. O2(a1Δ) Quenching In The O/O2/O3 System

    International Nuclear Information System (INIS)

    Azyazov, V. N.; Mikheyev, P. A.; Postell, D.; Heaven, M. C.

    2010-01-01

    The development of discharge singlet oxygen generators (DSOG's) that can operate at high pressures is required for the power scaling of the discharge oxygen iodine laser. In order to achieve efficient high-pressure DSOG operation it is important to understand the mechanisms by which singlet oxygen (O 2 (a 1 Δ)) is quenched in these devices. It has been proposed that three-body deactivation processes of the type O 2 (a 1 Δ)+O+M→2O 2 +M provide significant energy loss channels. To further explore these reactions the physical and reactive quenching of O 2 (a 1 Δ) in O( 3 P)/O 2 /O 3 /CO 2 /He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O 2 (a 1 Δ) quenching were followed by observing the 1268 nm fluorescence of the O 2 a 1 Δ-X 3 Σ transition. Fast quenching of O 2 (a 1 Δ) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  5. Dependence of Photocatalytic Activity of TiO2-SiO2 Nanopowders

    Directory of Open Access Journals (Sweden)

    M. Riazian

    2014-10-01

    Full Text Available Structural properties and chemical composition change the photocatalytic activity in TiO2-SiO2 nanopowder composite. The SiO2-TiO2 nanostructure is synthesized based on sol–gel method. The nanoparticles are characterized by x-ray fluorescents (XRF, x- ray diffraction (XRD, tunneling electron microscopy (TEM, field emission scanning electron microscopy (FE-SEM, UV-vis. Spectrophotometer and furrier transmission create infrared absorption (FTIR techniques. The rate constant k for the degradation of methylen blue in its aqueous solution under UV irradiation is determined as a measure of photocatalytic activity. Dependence between photocatalytic activity and SiO2 content in the composite is determined. Rate constant k is found dependent on the content of SiO2 in the composite that calcined at 900 oC. The addition of low composition SiO2 to the TiO2 matrix (lower than 45% enhances the photocatalytic activity due to thermal stability and increasing in the surface area. The effects of chemical compositions on the surface topography and the crystallization of phases are studied.

  6. Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors

    Science.gov (United States)

    Sun, Zhipeng; Firdoz, Shaik; Ying-Xuan Yap, Esther; Li, Lan; Lu, Xianmao

    2013-05-01

    We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly conductive pathway for electron transport, and efficient material utilization.We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly

  7. A comparative study of the disinfection efficacy of H2O2/ferrate and UV/H2O2/ferrate processes on inactivation of Bacillus subtilis spores by response surface methodology for modeling and optimization.

    Science.gov (United States)

    Matin, Atiyeh Rajabi; Yousefzadeh, Samira; Ahmadi, Ehsan; Mahvi, Amirhossein; Alimohammadi, Mahmood; Aslani, Hassan; Nabizadeh, Ramin

    2018-04-03

    Although chlorination can inactivate most of the microorganisms in water but protozoan parasites like C. parvum oocysts and Giardia cysts can resist against it. Therefore, many researches have been conducted to find a novel method for water disinfection. Present study evaluated the synergistic effect of H2O2 and ferrate followed by UV radiation to inactivate Bacillus subtilis spores as surrogate microorganisms. Response surface methodology(RSM) was employed for the optimization for UV/H2O2/ferrate and H2O2/ferrate processes. By using central composite design(CCD), the effect of three main parameters including time, hydrogen peroxide, and ferrate concentrations was examined on process performance. The results showed that the combination of UV, H2O2 and ferrate was the most effective disinfection process in compare with when H2O2 and ferrate were used. This study indicated that by UV/H2O2/ferrate, about 5.2 log reductions of B. subtilis spores was inactivated at 9299 mg/l of H2O2 and 0.4 mg/l of ferrate concentrations after 57 min of contact time which was the optimum condition, but H2O2/ferrate can inactivate B. subtilis spores about 4.7 logs compare to the other process. Therefore, the results of this research demonstrated that UV/H2O2 /ferrate process is a promising process for spore inactivation and water disinfection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Thermoelectric Properties in the TiO2/SnO2 System

    Science.gov (United States)

    Dynys, F.; Sayir, A.; Sehirlioglu, A.; Berger, M.

    2009-01-01

    Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO2/SnO2 system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 C. Fabricated TiO2/SnO2 nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 .V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO2-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coeffcient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.

  9. Effect of residual H2O2 from advanced oxidation processes on subsequent biological water treatment: A laboratory batch study.

    Science.gov (United States)

    Wang, Feifei; van Halem, Doris; Liu, Gang; Lekkerkerker-Teunissen, Karin; van der Hoek, Jan Peter

    2017-10-01

    H 2 O 2 residuals from advanced oxidation processes (AOPs) may have critical impacts on the microbial ecology and performance of subsequent biological treatment processes, but little is known. The objective of this study was to evaluate how H 2 O 2 residuals influence sand systems with an emphasis on dissolved organic carbon (DOC) removal, microbial activity change and bacterial community evolution. The results from laboratory batch studies showed that 0.25 mg/L H 2 O 2 lowered DOC removal by 10% while higher H 2 O 2 concentrations at 3 and 5 mg/L promoted DOC removal by 8% and 28%. A H 2 O 2 dosage of 0.25 mg/L did not impact microbial activity (as measured by ATP) while high H 2 O 2 dosages, 1, 3 and 5 mg/L, resulted in reduced microbial activity of 23%, 37% and 37% respectively. Therefore, DOC removal was promoted by the increase of H 2 O 2 dosage while microbial activity was reduced. The pyrosequencing results illustrated that bacterial communities were dominated by Proteobacteria. The presence of H 2 O 2 showed clear influence on the diversity and composition of bacterial communities, which became more diverse under 0.25 mg/L H 2 O 2 but conversely less diverse when the dosage increased to 5 mg/L H 2 O 2 . Anaerobic bacteria were found to be most sensitive to H 2 O 2 as their growth in batch reactors was limited by both 0.25 and 5 mg/L H 2 O 2 (17-88% reduction). In conclusion, special attention should be given to effects of AOPs residuals on microbial ecology before introducing AOPs as a pre-treatment to biological (sand) processes. Additionally, the guideline on the maximum allowable H 2 O 2 concentration should be properly evaluated. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Electrochemical and optical properties of CeO2-SnO2 and CeO2-SnO2:X (X = Li, C, Si films

    Directory of Open Access Journals (Sweden)

    Berton Marcos A.C.

    2001-01-01

    Full Text Available Thin solid films of CeO2-SnO2 (17 mol% Sn and CeO2-SnO2:X (X = Li, C and Si were prepared by the sol-gel route, using an aqueous-based process. The addition of Li, C and Si to the precursor solution leads to films with different electrochemical performances. The films were deposited by the dip-coating technique on ITO coated glass (Donnelly Glass at a speed of 10 cm/min and submitted to a final thermal treatment at 450 °C during 10 min in air. The electrochemical and optical properties of the films were determined from the cyclic voltammetry and chronoamperometry measurements using 0.1 M LiOH as supporting electrolyte. The ion storage capacity of the films was investigated using in situ spectroelectrochemical method and during the insertion/extraction process the films remained transparent. The powders were characterized by thermal analysis (DSC/TGA and X-ray diffraction.

  11. Lattice dynamics of ThO2

    International Nuclear Information System (INIS)

    Gupta, M.K.; Goel, Prabhatasree; Mittal, R.; Choudhury, N.; Chaplot, S.L.

    2012-01-01

    Thorium oxide finds application in nuclear industry. It is also used as a solid state electrolyte and an optical component material. ThO 2 is found in fluorite Fm3m structure. Actinide oxides are found to undergo superionic transition at elevated temperatures, when oxygen atoms start showing liquid like diffusion behaviour

  12. Enhancement of photoelectric catalytic activity of TiO2 film via Polyaniline hybridization

    International Nuclear Information System (INIS)

    Wang Yajun; Xu Jing; Zong Weizheng; Zhu Yongfa

    2011-01-01

    A Polyaniline (PANI)/TiO 2 film coated on titanium foil was successfully prepared using the sol-gel method followed by a facile chemisorption. Compared with pristine TiO 2 , the photocatalytic (PC) and photoelectrocatalytic (PEC) degradation rates of 2,4-dichlorophenol (2,4-DCP) with the PANI/TiO 2 film were enhanced by 22.2% and 57.5%, respectively. 2,4-DCP can be mineralized more effectively in the presence of PANI/TiO 2 film. The best PEC degradation efficiency of 2,4-DCP with the PANI/TiO 2 film was acquired at an external potential of 1.5 V with a layer of 1 nm thick PANI. The PANI/TiO 2 film was characterized by Raman spectra, Fourier transform infrared spectra (FT-IR), Auger electron spectroscopy (AES), and electrochemical analysis. These results indicated that there was a chemical interaction on the interface of PANI and TiO 2 . This interaction may be of significance to promote the migration efficiency of carriers and induce a synergetic effect to enhance the PC and PEC activities. - Graphical abstract: The effect of PANI content on 2,4-DCP degradation with initial concentration of 50 mg/L, external potential=1.5 V. Inset: degradation rate constants of various PANI/TiO 2 films. Highlights: → Polyaniline/TiO 2 film was prepared using the sol-gel method followed by chemisorption. → Photoelectrocatalytic degradation rate of 2,4-dichlorophenol was enhanced by 57.5%. → The modification of Polyaniline to TiO 2 film caused a rapid charge separation. → Best degradation efficiency was acquired at 1.5 V with 1 nm thick PANI.

  13. Photochemical degradation of diethyl phthalate with UV/H2O2

    International Nuclear Information System (INIS)

    Xu Bin; Gao Naiyun; Sun Xiaofeng; Xia Shengji; Rui Min; Simonnot, Marie-Odile; Causserand, Christel; Zhao Jianfu

    2007-01-01

    The decomposition of diethyl phthalate (DEP) in water using UV-H 2 O 2 process was investigated in this paper. DEP cannot be effectively removed by UV radiation and H 2 O 2 oxidation alone, while UV-H 2 O 2 combination process proved to be effective and could degrade this compound completely. With initial concentration about 1.0 mg/L, more than 98.6% of DEP can be removed at time of 60 min under intensity of UV radiation of 133.9 μW/cm 2 and H 2 O 2 dosage of 20 mg/L. The effects of applied H 2 O 2 dose, UV radiation intensity, water temperature and initial concentration of DEP on the degradation of DEP have been examined in this study. Degradation mechanisms of DEP with hydroxyl radicals oxidation also have been discussed. Removal rate of DEP was sensitive to the operational parameters. A simple kinetic model is proposed which confirms to pseudo-first order reaction. There is a linear relationship between rate constant k and UV intensity and H 2 O 2 concentration

  14. L1 French learning of L2 Spanish past tenses: L1 transfer versus aspect and interface issues

    Directory of Open Access Journals (Sweden)

    José Amenós Pons

    2017-09-01

    Full Text Available This paper examines the process of acquiring L2s that are closely related to the L1 through data on how adult French speakers learning L2 Spanish in a formal setting develop knowledge and use of past tenses in this L2. We consider the role of transfer and simplification in acquiring mental representations of the L2 grammar, specifically in the area of tense and aspect, and how learners deal with integrating grammatically encoded, lexical and discursive information, including mismatching feature combinations leading to particular inferential effects on interpretation. Data is presented on the Spanish past tenses (simple and compound past, pluperfect, imperfect and progressive forms from two tasks, an oral production filmretell and a multiple-choice interpretation task, completed by learners at A2, B1, B2 and C1 CEFR levels (N = 20-24 per level. L1 influence is progressively attenuated as proficiency increases. Difficulties were not always due to negative L1 transfer, but related also to grammar-discourse interface issues when integrating linguistic and pragmatic information in the interpretation process. This has clear implications for the teaching of closely related languages: instruction should not only focus on crosslinguistic contrasts, but also prioritize uses requiring complex interface integration, which are harder to process.

  15. The effects of interaction between Nanoanatase TiO2 and bleomycin sulfateon the lactate dehydrogenase activity in vivo

    OpenAIRE

    Roshanak Ghafarian Zirak; Akram Lotfi; Masoud Saleh Moghadam

    2016-01-01

    Although it is known that Nano TiO2 can induce various toxicities, the effects of its interaction with organic and biological molecules are still unclear. In this study, the effects of Nanoanatase TiO2 on lactate dehydrogenase (LDH) alone and in the presence of bleomycin sulfate (BLM.S), as an organic chemical, were investigated. Three doses of Nano TiO2 (10, 100, 500 mg/Kg BW) were injected into the abdominal cavity of Balb/C mice for 24 h. In addition, a particular dose of BLM.S (120 mg/...

  16. TiO2/beads as a photocatalyst for the degradation of X3B azo dye

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The feasibility of photocatalytic degradation of X3B azo dye by TiO2/beads photocatalyst was studied. The effects of parameters such as the amount of TiO2/beads, airflow, as well as the concentrations of H2O2, Fe3+, Mg2+ and Na+ on the photocatalytic degradation of X3B azo dye were also studied. The results showed that 25 mg/dm3 X3B azo dye can be photocatalytically degraded completely by 30 min illumination with a 375W medium pressure mercury lamp. Adding a small amount of H2O2 or Fe3+, the efficiencies of photocatalytic degradation of X3B azo dye were increased rapidly. The mechanisms of the reaction and the role of the additives were also investigated. After 120 hours TiO2/beads showed no significant loss of the photocatalytic activity.

  17. Photoemission study on electrical dipole at SiO_2/Si and HfO_2/SiO_2 interfaces

    International Nuclear Information System (INIS)

    Fujimura, Nobuyuki; Ohta, Akio; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2017-01-01

    Electrical dipole at SiO_2/Si and HfO_2/SiO_2 interfaces have been investigated by X-ray photoelectron spectroscopy (XPS) under monochromatized Al Kα radiation. From the analysis of the cut-off energy for secondary photoelectrons measured at each thinning step of a dielectric layer by wet-chemical etching, an abrupt potential change caused by electrical dipole at SiO_2/Si and HfO_2/SiO_2 interfaces has been clearly detected. Al-gate MOS capacitors with thermally-grown SiO_2 and a HfO_2/SiO_2 dielectric stack were fabricated to evaluate the Al work function from the flat band voltage shift of capacitance-voltage (C-V) characteristics. Comparing the results of XPS and C-V measurements, we have verified that electrical dipole formed at the interface can be directly measured by photoemission measurements. (author)

  18. Characterization of TiO2–MnO2 composite electrodes synthesized using spark plasma sintering technique

    CSIR Research Space (South Africa)

    Tshephe, TS

    2015-03-01

    Full Text Available and electrochemical stability of the resulting materials were investigated. Relative densities of 99.33% and 98.49% were obtained for 90TiO2–10MnO2 and 80TiO2–10MnO2 when ball was incorporated. The 90TiO2–10MnO2 powder mixed with balls had its Vickers hardness value...

  19. Adsorption and photodegradation of methylene blue on TiO_2-halloysite adsorbents

    International Nuclear Information System (INIS)

    Du, Yuanyuan; Zheng, Pengwu

    2014-01-01

    TiO_2-halloysite (TiO_2-HNT) composites were fabricated by depositing anatase TiO_2 on the halloysite (HNT) surfaces with calcination treatment at 100, 200, 300 and 500 .deg. C. The obtained composites were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-Ray diffraction (XRD). HNT was attached with TiO_2 particles or clusters in sizes of 10-30 nm. With the increasing of calcination temperature, the crystalline of anatase became more perfect, but the structure of HNT could be destroyed at 500 .deg. C. The adsorption and photodegradation of methylene blue (MB) by TiO_2-HNTs were investigated. The kinetic adsorption fit the pseudo second-order, and the isotherm data followed the Langmuir model. The maximum adsorption capacities of MB were in the range of 38.57 to 54.29 mg/g. TiO_2-HNTs exhibited an efficient photocatalytic activity in the decomposition of MB. For TiO_2-HNT calcined at 300 .deg. C, 81.6% MB were degraded after 4 h treatment of UV irradiation

  20. Efficient photocatalytic degradation of phenol in aqueous solution by SnO2:Sb nanoparticles

    International Nuclear Information System (INIS)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika; Bora, Tanujjal; Dutta, Joydeep

    2016-01-01

    Highlights: • Sb doped SnO 2 nanoparticles were synthesized using sol–gel process. • Photocatalytic degradation of phenol were studies using SnO 2 :Sb nanoparticles. • Under solar light phenol was degraded within 2 h. • Phenol mineralization and intermediates were investigated by using HPLC. - Abstract: Photodegradation of phenol in the presence of tin dioxide (SnO 2 ) nanoparticles under UV light irradiation is known to be an effective photocatalytic process. However, phenol degradation under solar light is less effective due to the large band gap of SnO 2 . In this study antimony (Sb) doped tin dioxide (SnO 2 ) nanoparticles were prepared at a low temperature (80 °C) by a sol–gel method and studied for its photocatalytic activity with phenol as a test contaminant. The catalytic degradation of phenol in aqueous media was studied using high performance liquid chromatography and total organic carbon measurements. The change in the concentration of phenol affects the pH of the solution due to the by-products formed during the photo-oxidation of phenol. The photoactivity of SnO 2 :Sb was found to be a maximum for 0.6 wt.% Sb doped SnO 2 nanoparticles with 10 mg L −1 phenol in water. Within 2 h of photodegradation, more than 95% of phenol could be removed under solar light irradiation.

  1. Preparation and Photocatalytic Property of TiO2/Diatomite-Based Porous Ceramics Composite Materials

    Directory of Open Access Journals (Sweden)

    Shuilin Zheng

    2012-01-01

    Full Text Available The diatomite-based porous ceramics was made by low-temperature sintering. Then the nano-TiO2/diatomite-based porous ceramics composite materials were prepared by hydrolysis deposition method with titanium tetrachloride as the precursor of TiO2 and diatomite-based porous as the supporting body of the nano-TiO2. The structure and microscopic appearance of nano-TiO2/diatomite-based porous ceramics composite materials was characterized by XRD and SEM. The photocatalytic property of the composite was investigated by the degradation of malachite green. Results showed that, after calcination at 550°C, TiO2 thin film loaded on the diatomite-based porous ceramics is anatase TiO2 and average grain size of TiO2 is about 10 nm. The degradation ratio of the composite for 5 mg/L malachite green solution reached 86.2% after irradiation for 6 h under ultraviolet.

  2. Degradation and Mineralization of Benzohydroxamic Acid by Synthesized Mesoporous La/TiO2

    Directory of Open Access Journals (Sweden)

    Xianping Luo

    2016-10-01

    Full Text Available Rare earth element La-doped TiO2 (La/TiO2 was synthesized by the sol-gel method. Benzohydroxamic acid was used as the objective pollutant to investigate the photocatalytic activity of La/TiO2. The physicochemical properties of the prepared materials were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, specific surface area and porosity, scanning electron microscopy and transmission electron microscopy. As a result, the doping of La could inhibit the crystal growth of TiO2, increase its specific surface area and expand its response to visible light, thus improving its photocatalytic activity. La/TiO2 with the doping ratio of 0.75% calcined at 500 °C, showing the highest photocatalytic activity to degrade benzohydroxamic acid under the irradiation of 300 W mercury lamp. About 94.1% of benzohydroxamic acid with the original concentration at 30 mg·L−1 was removed after 120 min in a solution of pH 4.4 with an La/TiO2 amount of 0.5 g·L−1. Furthermore, 88.5% of the total organic carbon was eliminated after 120 min irradiation. In addition, after four recycling runs, La/TiO2 still kept high photocatalytic activity on the photodegradation of benzohydroxamic acid. The interfacial charge transfer processes were also hypothesized.

  3. TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.

    Directory of Open Access Journals (Sweden)

    Ramesh Raliya

    2015-03-01

    Full Text Available TiO2 nanoparticle (NPs biosynthesis is a low cost, ecofriendly approach developed using the fungi Aspergillus flavus TFR 7. To determine whether TiO2 NPs is suitable for nutrient, we conducted a two part study; biosynthesis of TiO2 NP and evaluates their influence on mung bean. The characterized TiO2 NPs were foliar sprayed at 10 mgL−1 concentration on the leaves of 14 days old mung bean plants. A significant improvement was observed in shoot length (17.02%, root length (49.6%, root area (43%, root nodule (67.5%, chlorophyll content (46.4% and total soluble leaf protein (94% as a result of TiO2 NPs application. In the rhizosphere microbial population increased by 21.4–48.1% and activity of acid phosphatase (67.3%, alkaline phosphatase (72%, phytase (64% and dehydrogenase (108.7% enzyme was observed over control in six weeks old plants owing to application of TiO2 NPs. A possible mechanism has also been hypothesized for TiO2 NPs biosynthesis.

  4. Photocatalytic performance of pure anatase nanocrystallite TiO2 synthesized under low temperature hydrothermal conditions

    International Nuclear Information System (INIS)

    Sayilkan, Funda; Erdemoglu, Sema; Asiltuerk, Meltem; Akarsu, Murat; Sener, Sadiye; Sayilkan, Hikmet; Erdemoglu, Murat; Arpac, Ertugrul

    2006-01-01

    Photocatalytic performance of a hydrothermally synthesized pure anatase TiO 2 with 8 nm average crystallite size for decomposition of Reactive Red 141 was examined by investigating the effects of UV-light irradiation time, irradiation power, amount of TiO 2 and initial dye concentration. Change in the UV absorbance of the dye during irradiation was monitored. One wt.% TiO 2 in 30 mg/l Reactive Red 141 aqueous solution was found adequate for complete decolorization in 70 min at 770 W/m 2 irradiation power. It was realized that, compared to Degussa P-25, the synthesized nano-TiO 2 can be repeatedly used as a new catalyst. The results also proved that Reactive Red 141 is decomposed catalytically due to the pseudo first-order reaction kinetics

  5. Influence of silver on photocatalytic activity of TiO2

    International Nuclear Information System (INIS)

    Kisen, Carla Yuri; Teodoro, Vinicius; Zaghete, Maria Ap.; Perazolli, Leinig Antonio; Longo, Elson

    2016-01-01

    Full text: This work studied the influence of silver on photo activity of TiO 2 , prepared by Pechini method, in the photodegradation of Rhodamine-B. The catalysts were prepared with different percentage of silver (0.0, 0.5 and 1.0 %) and different calcination temperatures (500, 600 and 700°C), characterized by X-ray diffraction (DRX) and field emission gun - scanning electron microscopy (FEG-SEM), The powders' photo catalytic activity was defined by Rhodamine-B decolorisation test. The solution containing the dye and the catalyst, in the concentration of 0,01 mmol L -1 e 1,0 g L -1 respectively, were submitted to radiation with 9W germicidal lamp for 120 minutes. The control samples, for comparison effects, were made with TiO 2 anatase (Synth brand) and photolysis tests. In the micrographs, obtained by SEM, all the temperatures and compositions employed presented similar morphologies, it is assumed the calcination temperature rise leads to a decreased apparent porosity and the generation of particles clusters. The X-ray diffractograms indicates the calcination temperature influence in the generation of distinct TiO 2 phases during the catalysts synthesis. Regardless of the TiO 2 proportions, the only actual phase with 500°C calcination is the anatase. At 600°C, the rutile phase coexisting with the anatase phase disappears, and the rutile phase predominates. Among the catalysts, what presented greater activity was the TiO 2 with 0.5% Ag and calcination temperature of 500°C, which degraded around 100% in 60 minutes. References: [1] P. Cozolli, E. Fanizza and A. Agostiano. J. Phys.Chem. B108, 9623-9630, 2004. (author)

  6. The L1-shell ionisation of atoms by relativistic particles

    International Nuclear Information System (INIS)

    Moiseiwitsch, B.L.; Norrington, P.H.

    1979-01-01

    An expression for the L 1 -shell ionisation cross sections of atoms by high-energy particles has been derived using the relativistic plane-wave Born approximation. The incident and scattered particles are described by Dirac plane waves while Darwin hydrogenic wavefunctions are used for the atomic electrons. A comparison is made with experimental total cross sections for incident electrons in the energy range 1-2 MeV. The agreement is a considerable improvement on that obtained using the non-relativistic planewave Born approximation. (author)

  7. Study on the enhanced adsorption properties of lysozyme on polyacrylic acid modified TiO2 nano-adsorbents

    Science.gov (United States)

    Liu, Yufeng; Jin, Zu; Meng, Hao; Zhang, Xia

    2018-01-01

    The adsorption and immobilization of enzymes onto solid carriers has been focused on due to their many advantages, such as improved stability against a thermal or organic solvent and a good cycle usability. TiO2 nanoparticles is one of excellent nano-adsorbents owing to its excellent biocompatibility, non-inflammatory, and abundant surface hydroxyl groups, which are convenient to be combined with various functional groups. In this paper polyacrylic acid (PAA) modified TiO2 nanoparticles were synthesized through an in situ light-induced polymerization of acrylic acid on the surface of TiO2 nanoparticles. The structure and surface physicochemical properties of the PAA/TiO2 nanoparticles were characterized by TEM, XRD, FT-IR, Zeta potential measurements and TG-DSC. The experimental results showed that the isoelectric point of PAA/TiO2 significantly reduced to 1.82 compared with that of pure TiO2 nanoparticles (6.08). In the adsorption tests of lysozyme (Lyz), the PAA/TiO2 nanoparticles displayed enhanced adsorption activity compared with pristine TiO2. The maximum adsorption capacity of PAA/TiO2 for Lyz was 225.9 mg g-1 under the optimum conditions where the initial concentration of Lyz was 300 mg ml-1, the addition amount of PAA/TiO2 was 6.4 mg, the adsorption time was 30 min and the pH value was 7.0. The sodium dodecyl sulfate (SDS, 0.5%) presented the best efficiency (76.86%) in the removal of adsorbed Lyz, and the PAA/TiO2 nanoparticles showed excellent adsorption stability based on five cyclic adsorption-desorption tests. The fitting calculation results of the adsorption isotherm and the thermodynamics indicated the adsorption was an exothermic, entropy increasing, spontaneous and monomolecular layer adsorption process.

  8. Enhanced Activity and Durability of Nanosized Pt-SnO2/IrO2/CNTs Catalyst for Methanol Electrooxidation.

    Science.gov (United States)

    Wang, Hongjuan; Wang, Xiaohui; Zheng, Jiadao; Peng, Feng; Yu, Hao

    2015-05-01

    Pt-SnO2/IrO2/CNTs anode catalyst for direct methanol fuel cell was designed and prepared with IrO2/CNTs as support for the subsequent immobilization of Pt and SnO2 at the same time. The structure of the catalysts and their catalytic performance in methanol electrooxidation were investigated and the roles of IrO2 and SnO2 in methanol electrooxidation were discussed as well. Results show that Pt-SnO2/IrO2/CNTs catalyst exhibits the best activity and durability for methanol electrooxidation when compared with Pt/CNTs, Pt/IrO2/CNTs and Pt-SnO2/CNTs. According to the results of electrochemical tests and physicochemical characterizations, the enhancements of Pt-SnO2/IrO2/CNTs were attributed to the special properties of IrO2 and SnO2, in which IrO2 mainly increases the methanol oxidation activity and SnO2 mainly improves the CO oxidation ability and durability. Therefore, Pt-SnO2/IrO2/CNTs exhibits excellent performance for methanol oxidation with higher electrocatalytic activity (I(f) of 1054 A g(Pt(-1)) and powerful anti-poisoning ability (the onset potential for CO oxidation of 0.3 V) and outstanding durability (the sustained time t in CP of 617 s), revealing a suitable anode catalyst for DMFCs.

  9. House dust mite induces expression of intercellular adhesion molecule-1 in EoL-1 human eosinophilic leukemic cells.

    Science.gov (United States)

    Kwon, Byoung Chul; Sohn, Myung Hyun; Kim, Kyung Won; Kim, Eun Soo; Kim, Kyu-Earn; Shin, Myeong Heon

    2007-10-01

    The house dust mite (HDM) is considered to be the most common indoor allergen associated with bronchial asthma. In this study, we investigated whether crude extract of the HDM Dermatophagoides farinae could activate human eosinophilic leukemic cells (EoL-1) to induce upregulation of cell-surface adhesion molecules. When EoL-1 cells were incubated with D. farinae extract, expression of intercellular adhesion molecule-1 (ICAM-1) significantly increased on the cell surfaces compared to cells incubated with medium alone. In contrast, surface expression of CD11b and CD49d in EoL-1 cells was not affected by D. farinae extract. In addition, pretreatment of cells with NF-kappaB inhibitor (MG-132) or JNK inhibitor (SP600125) significantly inhibited ICAM-1 expression promoted by HDM extract. However, neither p38 MAP kinase inhibitor nor MEK inhibitor prevented HDM-induced ICAM-1 expression in EoL-1 cells. These results suggest that crude extract of D. farinae induces ICAM-1 expression in EoL-1 cells through signaling pathways involving both NF-kappaB and JNK.

  10. Nuclear microscopy as a tool in TiO2 nanoparticles bioaccumulation studies in aquatic species

    Science.gov (United States)

    Pinheiro, Teresa; Moita, Liliana; Silva, Luís; Mendonça, Elsa; Picado, Ana

    2013-07-01

    Engineered Titanium nanoparticles are used for a wide range of applications from coatings, sunscreen cosmetic additives to solar cells or water treatment agents. Inevitably environmental exposure can be expected and data on the ecotoxicological evaluation of nanoparticles are still scarce. The potential effects of nanoparticles of titanium dioxide (TiO2) on two model organisms, the water flea, Daphnia magna and the duckweed Lemna minor, were examined in semichronic toxicity tests. Daphnia and Lemna were exposed to TiO2 nanoparticles (average particle size value of 28 ± 11 nm (n = 42); concentration range, 1.4-25 mg/L) by dietary route and growth in medium containing the nanoparticles of TiO2, respectively. Both morphology and microdistribution of Ti in the individuals were examined by nuclear microscopy techniques. A significant amount of TiO2 was found accumulated in Daphnia exposed to nanoparticles. Nuclear microscopy imaging revealed that Ti was localized only in the digestive tract of the Daphnia, which displayed difficulty in eliminating the nanoparticles from their body. Daphnia showed higher mortality when exposed to higher concentrations of TiO2 (>10 mg/L). The exposure to TiO2 nanoparticles above 25 mg/L caused morphological alterations in Lemna. The roots became stiff and fronds colorless. The Ti mapping of cross-sections of roots and fronds showed that Ti was mainly deposited in the epidermis of the fronds and roots, with minor internalization. In summary, exposure of aquatic organisms to TiO2 nanoparticles may alter the physiology of these organisms at individual and population levels, posing risks to aquatic ecosystems.

  11. Nuclear microscopy as a tool in TiO2 nanoparticles bioaccumulation studies in aquatic species

    International Nuclear Information System (INIS)

    Pinheiro, Teresa; Moita, Liliana; Silva, Luís; Mendonça, Elsa; Picado, Ana

    2013-01-01

    Engineered Titanium nanoparticles are used for a wide range of applications from coatings, sunscreen cosmetic additives to solar cells or water treatment agents. Inevitably environmental exposure can be expected and data on the ecotoxicological evaluation of nanoparticles are still scarce. The potential effects of nanoparticles of titanium dioxide (TiO 2 ) on two model organisms, the water flea, Daphnia magna and the duckweed Lemna minor, were examined in semichronic toxicity tests. Daphnia and Lemna were exposed to TiO 2 nanoparticles (average particle size value of 28 ± 11 nm (n = 42); concentration range, 1.4–25 mg/L) by dietary route and growth in medium containing the nanoparticles of TiO 2 , respectively. Both morphology and microdistribution of Ti in the individuals were examined by nuclear microscopy techniques. A significant amount of TiO 2 was found accumulated in Daphnia exposed to nanoparticles. Nuclear microscopy imaging revealed that Ti was localized only in the digestive tract of the Daphnia, which displayed difficulty in eliminating the nanoparticles from their body. Daphnia showed higher mortality when exposed to higher concentrations of TiO 2 (>10 mg/L). The exposure to TiO 2 nanoparticles above 25 mg/L caused morphological alterations in Lemna. The roots became stiff and fronds colorless. The Ti mapping of cross-sections of roots and fronds showed that Ti was mainly deposited in the epidermis of the fronds and roots, with minor internalization. In summary, exposure of aquatic organisms to TiO 2 nanoparticles may alter the physiology of these organisms at individual and population levels, posing risks to aquatic ecosystems

  12. CeO2-stabilized tetragonal ZrO2 polycrystals (Ce-TZP ceramics)

    International Nuclear Information System (INIS)

    Andrade Nono, M.C. de.

    1990-12-01

    This work presents the development and the characterization of CeO 2 -stabilized tetragonal ZrO 2 polycrystals (Ce-TZP ceramics), since it is considered candidate material for applications as structural high performance ceramics. Sintered ceramics were fabricated from mixtures of powders containing different CeO 2 content prepared by conventional and nonconventional techniques. These powders and their resultant sintered ceramics were specified by chemical and physical characterization, compactation state and mechanical properties. The chemical characteristics were determined by chemical analysis and the physical characteristics were evaluated by phase content, particle and agglomerate size and aspect, and powder porosity. (author)

  13. A Facile, Nonreactive Hydrogen Peroxide (H2O2) Detection Method Enabled by Ion Chromatography with UV Detector.

    Science.gov (United States)

    Song, Mingrui; Wang, Junli; Chen, Baiyang; Wang, Lei

    2017-11-07

    Hydrogen peroxide (H 2 O 2 ) is ubiquitous in the natural environment, and it is now widely used for pollutant control in water and wastewater treatment processes. However, current analytical methods for H 2 O 2 inevitably require reactions between H 2 O 2 and other reactants to yield signals and are thus likely subjective to the interferences of coexisting colored, oxidative, and reductive compounds. In order to overcome these barriers, we herein for the first time propose to analyze H 2 O 2 by ion chromatography (IC) using an ultraviolet (UV) detector. The proposal is based on two principles: first, that H 2 O 2 can deprotonate to hydroperoxyl ion (HO 2 - ) when eluent pH is higher than the acid-dissociation coefficient of H 2 O 2 (pK a = 11.6); and second, that after separation from other compounds via IC column, H 2 O 2 can be quantified by a UV detector. Under favorable operating conditions, this method has successfully achieved acceptable recoveries (>91%) of H 2 O 2 dosed to ultrapure and natural waters, a calibration curve with R 2 > 0.99 for a wide range of H 2 O 2 concentrations from 0.1 to 50 mg/L and a method detection limit of 0.027 mg/L. In addition, this approach was shown to be capable of distinguishing H 2 O 2 from anions (e.g., fluoride and chloride) and organics (e.g., glycolate) and monochloramine, suggesting that it is insensitive to many neighboring compounds as long as they do not react quickly with H 2 O 2 . Hence, this study proves the combination of IC and UV detector a facile and reliable method for H 2 O 2 measurement.

  14. Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time.

    Science.gov (United States)

    Lv, Jinze; Zhu, Lizhong

    2013-01-01

    A short residence time is a key design parameter for the removal of organic pollutants in catalyst-based indoor air purification systems. In this study, we synthesized a series of TiO2 with different micropore volumes and studied their removal efficiency of indoor carbonyl pollutants at a short residence time. Our results indicated that the superior adsorption capability of TiO2 with micropores improved its performance in the photocatalytic degradation of cyclohexanone, while the photocatalytic removal of the pollutant successfully kept porous TiO2 from becoming saturated. When treated with 1 mg m(-3) cyclohexanone at a relatively humidity of 18%, the adsorption amount on microporous TiO2 was 5.4-7.9 times higher than that on P25. Removal efficiency via photocatalysis followed'the same order as the adsorption amount: TiO2-5 > TiO2-20 > TiO2-60 > TiO2-180 > P25. The advantage of microporous TiO2 over P25 became more pronounced when the residence time declined from 0.072 to 0.036 s. Moreover, as the concentration of cyclohexanone deceased from 1000 ppb to 500 ppb, removal efficiency by microporous TiO2 increased more rapidly than P25.

  15. CeO2 nanoparticles induce no changes in phenanthrene toxicity to the soil organisms Porcellionides pruinosus and Folsomia candida.

    Science.gov (United States)

    Tourinho, Paula S; Waalewijn-Kool, Pauline L; Zantkuijl, Irene; Jurkschat, Kerstin; Svendsen, Claus; Soares, Amadeu M V M; Loureiro, Susana; van Gestel, Cornelis A M

    2015-03-01

    Cerium oxide nanoparticles (CeO2 NPs) are used as diesel fuel additives to catalyze oxidation. Phenanthrene is a major component of diesel exhaust particles and one of the most common pollutants in the environment. This study aimed at determining the effect of CeO2 NPs on the toxicity of phenanthrene in Lufa 2.2 standard soil for the isopod Porcellionides pruinosus and the springtail Folsomia candida. Toxicity tests were performed in the presence of CeO2 concentrations of 10, 100 or 1000mg Ce/kg dry soil and compared with results in the absence of CeO2 NPs. CeO2 NPs had no adverse effects on isopod survival and growth or springtail survival and reproduction. For the isopods, LC50s for the effect of phenanthrene ranged from 110 to 143mg/kg dry soil, and EC50s from 17.6 to 31.6mg/kg dry soil. For the springtails, LC50s ranged between 61.5 and 88.3mg/kg dry soil and EC50s from 52.2 to 76.7mg/kg dry soil. From this study it may be concluded that CeO2 NPs have a low toxicity and do not affect toxicity of phenanthrene to isopods and springtails. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. L1 Adaptive Control for a Vertical Rotor Orientation System

    Directory of Open Access Journals (Sweden)

    Sijia Liu

    2016-08-01

    Full Text Available Bottom-fixed vertical rotating devices are widely used in industrial and civilian fields. The free upside of the rotor will cause vibration and lead to noise and damage during operation. Meanwhile, parameter uncertainties, nonlinearities and external disturbances will further deteriorate the performance of the rotor. Therefore, in this paper, we present a rotor orientation control system based on an active magnetic bearing with L 1 adaptive control to restrain the influence of the nonlinearity and uncertainty and reduce the vibration amplitude of the vertical rotor. The boundedness and stability of the adaptive system are analyzed via a theoretical derivation. The impact of the adaptive gain is discussed through simulation. An experimental rig based on dSPACE is designed to test the validity of the rotor orientation system. The experimental results show that the relative vibration amplitude of the rotor using the L 1 adaptive controller will be reduced to ∼50% of that in the initial state, which is a 10% greater reduction than can be achieved with the nonadaptive controller. The control approach in this paper is of some significance to solve the orientation control problem in a low-speed vertical rotor with uncertainties and nonlinearities.

  17. L1 track finding for a time multiplexed trigger

    Energy Technology Data Exchange (ETDEWEB)

    Cieri, D., E-mail: davide.cieri@bristol.ac.uk [University of Bristol, Bristol (United Kingdom); Rutherford Appleton Laboratory, Didcot (United Kingdom); Brooke, J.; Grimes, M. [University of Bristol, Bristol (United Kingdom); Newbold, D. [University of Bristol, Bristol (United Kingdom); Rutherford Appleton Laboratory, Didcot (United Kingdom); Harder, K.; Shepherd-Themistocleous, C.; Tomalin, I. [Rutherford Appleton Laboratory, Didcot (United Kingdom); Vichoudis, P. [CERN, Geneva (Switzerland); Reid, I. [Brunel University, London (United Kingdom); Iles, G.; Hall, G.; James, T.; Pesaresi, M.; Rose, A.; Tapper, A.; Uchida, K. [Imperial College, London (United Kingdom)

    2016-07-11

    At the HL-LHC, proton bunches will cross each other every 25 ns, producing an average of 140 pp-collisions per bunch crossing. To operate in such an environment, the CMS experiment will need a L1 hardware trigger able to identify interesting events within a latency of 12.5 μs. The future L1 trigger will make use also of data coming from the silicon tracker to control the trigger rate. The architecture that will be used in future to process tracker data is still under discussion. One interesting proposal makes use of the Time Multiplexed Trigger concept, already implemented in the CMS calorimeter trigger for the Phase I trigger upgrade. The proposed track finding algorithm is based on the Hough Transform method. The algorithm has been tested using simulated pp-collision data. Results show a very good tracking efficiency. The algorithm will be demonstrated in hardware in the coming months using the MP7, which is a μTCA board with a powerful FPGA capable of handling data rates approaching 1 Tb/s.

  18. Aspartame downregulates 3T3-L1 differentiation.

    Science.gov (United States)

    Pandurangan, Muthuraman; Park, Jeongeun; Kim, Eunjung

    2014-10-01

    Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. Since aspartame is 200 times sweeter than traditional sugar, it can give the same level of sweetness with less substance, which leads to lower-calorie food intake. There are reports that consumption of aspartame-containing products can help obese people lose weight. However, the potential role of aspartame in obesity is not clear. The present study investigated whether aspartame suppresses 3T3-L1 differentiation, by downregulating phosphorylated peroxisome proliferator-activated receptor γ (p-PPARγ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (FABP4), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1), which are critical for adipogenesis. The 3T3-L1 adipocytes were cultured and differentiated for 6 d in the absence and presence of 10 μg/ml of aspartame. Aspartame reduced lipid accumulation in differentiated adipocytes as evidenced by Oil Red O staining. qRT-PCR analysis showed that the PPARγ, FABP4, and C/EBPα mRNA expression was significantly reduced in the aspartame-treated adipocytes. Western blot analysis showed that the induction of p-PPARγ, PPARγ, SREBP1, and adipsin was markedly reduced in the aspartame-treated adipocytes. Taken together, these data suggest that aspartame may be a potent substance to alter adipocyte differentiation and control obesity.

  19. L1 Track Finding for a Time Multiplexed Trigger

    CERN Document Server

    AUTHOR|(CDS)2090481; Grimes, M.; Newbold, D.; Harder, K.; Shepherd-Themistocleous, C.; Tomalin, I.; Vichoudis, P.; Reid, I.; Iles, G.; Hall, G.; James, T.; Pesaresi, M.; Rose, A.; Tapper, A.; Uchida, K.

    2016-01-01

    At the HL-LHC, proton bunches will cross each other every 25 ns, producing an average of 140 p p-collisions per bunch crossing. To operate in such an environment, the CMS experiment will need a L1 hardware trigger able to identify interesting events within a latency of 12.5 us. The future L1 trigger will make use also of data coming from the silicon tracker to control the trigger rate. The architecture that will be used in future to process tracker data is still under discussion. One interesting proposal makes use of the Time Multiplexed Trigger concept, already implemented in the CMS calorimeter trigger for the Phase I trigger upgrade. The proposed track finding algorithm is based on the Hough Transform method. The algorithm has been tested using simulated pp-collision data. Results show a very good tracking efficiency. The algorithm will be demonstrated in hardware in the coming months using the MP7, which is a uTCA board with a powerful FPGA capable of handling data rates approaching 1 Tb/s.

  20. Photocatalytic performance of TiO2 catalysts modified by H3PW12O40, ZrO2 and CeO2

    Institute of Scientific and Technical Information of China (English)

    CAI Tiejun; LIAO Yuchao; PENG Zhenshan; LONG Yunfei; WEI Zongyuan; DENG Qian

    2009-01-01

    The binary composite photo-catalysts CeO2/TiO2, ZrO2/TiO2 and the ternary composite photo-catalysts H3PW12O40-CeO2/TiO2,H2PW12O40-ZrO2/TiO2 were prepared by sol-gel method. The catalysts were characterized by thermogravimetric-differential thermal analysis (TG-DTA), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The photocatalyfic elimination of methanol was used as model reaction to evaluate the photocatalytic activity of the composite catalysts under ultraviolet light irradiation. The effects of doped content, activation temperature, time, initial concentration of methanol and gas flow rate on the catalytic activity were investigated. The results showed that after doping a certain amount of CeO2 and ZrO2, crystaniTation process of TiO2 was restrained, particles of catalysts are smaller and more uniform. Doping ZrO2 not only significantly improved the catalytic activity, but also increased thermal stability. Doping H3PW12O40 also enhanced the catalytic activity. The catalytic activities of binary and ternary composite photocatalysts were significantly higher than tin-doped TiO2. The dynamics law of photocatalytic reaction over the binary CeO2/TiO2 and ZrO2/TiO2 catalysts has been studied. The activation energy 15.627 and 15.631 kJ/mol and pre-exponential factors 0.5176 and 0.9899 s-1 over each corresponding catalyst were obtained. This reaction accords to the first order dynamics law.

  1. Mathematical Kinetic Modelling and Representing Design Equation for a Packed Photoreactor with Immobilised TiO2-P25 Nanoparticles on Glass Beads in the Removal of C.I. Acid Orange 7

    Directory of Open Access Journals (Sweden)

    Sheidaei Behnaz

    2015-06-01

    Full Text Available In this work, a design equation was presented for a batch-recirculated photoreactor composed of a packed bed reactor (PBR with immobilised TiO2-P25 nanoparticle thin films on glass beads, and a continuous-flow stirred tank (CFST. The photoreactor was studied in order to remove C.I. Acid Orange 7 (AO7, a monoazo anionic dye from textile industry, by means of UV/TiO2 process. The effect of different operational parameters such as the initial concentration of contaminant, the volume of solution in CFST, the volumetric flow rate of liquid, and the power of light source in the removal efficiency were examined. A rate equation for the removal of AO7 is obtained by mathematical kinetic modelling. The results of reaction kinetic analysis indicate the conformity of removal kinetics with Langmuir-Hinshelwood model (kL-H = 0.74 mg L-1 min-1, Kads = 0.081 mg-1 L. The represented design equation obtained from mathematical kinetic modelling can properly predict the removal rate constant of the contaminant under different operational conditions (R2 = 0.963. Thus the calculated and experimental results are in good agreement with each other.

  2. TiO2 coated SnO2 nanosheet films for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Cai Fengshi; Yuan Zhihao; Duan Yueqing; Bie Lijian

    2011-01-01

    TiO 2 -coated SnO 2 nanosheet (TiO 2 -SnO 2 NS) films about 300 nm in thickness were fabricated on fluorine-doped tin oxide glass by a two-step process with facile solution-grown approach and subsequent hydrolysis of TiCl 4 aqueous solution. The as-prepared TiO 2 -SnO 2 NSs were characterized by scanning electron microscopy and X-ray diffraction. The performances of the dye-sensitized solar cells (DSCs) with TiO 2 -SnO 2 NSs were analyzed by current-voltage measurements and electrochemical impedance spectroscopy. Experimental results show that the introduction of TiO 2 -SnO 2 NSs can provide an efficient electron transition channel along the SnO 2 nanosheets, increase the short current density, and finally improve the conversion efficiency for the DSCs from 4.52 to 5.71%.

  3. TiO2 Deposition on AZ31 Magnesium Alloy Using Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Leon White

    2013-01-01

    Full Text Available Plasma electrolytic oxidation (PEO has been used in the past as a useful surface treatment technique to improve the anticorrosion properties of Mg alloys by forming protective layer. Coatings were prepared on AZ31 magnesium alloy in phosphate electrolyte with the addition of TiO2 nanoparticles using plasma electrolytic oxidation (PEO. This present work focuses on developing a TiO2 functional coating to create a novel electrophotocatalyst while observing the surface morphology, structure, composition, and corrosion resistance of the PEO coating. Microstructural characterization of the coating was investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM followed by image analysis and energy dispersive spectroscopy (EDX. The corrosion resistance of the PEO treated samples was evaluated with electrochemical impedance spectroscopy (EIS and DC polarization tests in 3.5 wt.% NaCl. The XRD pattern shows that the components of the oxide film include Mg from the substrate as well as MgO and Mg2TiO4 due to the TiO2 nanoparticle addition. The results show that the PEO coating with TiO2 nanoparticles did improve the corrosion resistance when compared to the AZ31 substrate alloy.

  4. Optimization of Malachite Green Removal from Water by TiO2 Nanoparticles under UV Irradiation

    Directory of Open Access Journals (Sweden)

    Yongmei Ma

    2018-06-01

    Full Text Available TiO2 nanoparticles with surface porosity were prepared by a simple and efficient method and presented for the removal of malachite green (MG, a representative organic pollutant, from aqueous solution. Photocatalytic degradation experiments were systematically conducted to investigate the influence of TiO2 dosage, pH value, and initial concentrations of MG. The kinetics of the reaction were monitored via UV spectroscopy and the kinetic process can be well predicted by the pseudo first-order model. The rate constants of the reaction kinetics were found to decrease as the initial MG concentration increased; increased via elevated pH value at a certain amount of TiO2 dosage. The maximum efficiency of photocatalytic degradation was obtained when the TiO2 dosage, pH value and initial concentrations of MG were 0.6 g/L, 8 and 10−5 mol/L (M, respectively. Results from this study provide a novel optimization and an efficient strategy for water pollutant treatment.

  5. Effective Reuse of Electroplating Rinse Wastewater by Combining PAC with H2O2/UV Process.

    Science.gov (United States)

    Yen, Hsing Yuan; Kang, Shyh-Fang; Lin, Chen Pei

    2015-04-01

    This study evaluated the performance of treating electroplating rinse wastewater by powder activated carbon (PAC) adsorption, H2O2/UV oxidation, and their combination to remove organic compounds and heavy metals. The results showed that neither the process of PAC adsorption nor H2O2/UV oxidation could reduce COD to 100 mg/L, as enforced by the Taiwan Environmental Protection Agency. On the other hand, the water sample treated by the combined approach of using PAC (5 g/L) pre-adsorption and H2O2/UV post-oxidation (UV of 64 W, H2O2 of 100 mg/L, oxidation time of 90 min), COD and DOC were reduced to 8.2 mg/L and 3.8 mg/L, respectively. Also, the combined approach reduced heavy metals to meet the effluent standards and to satisfy the in-house water reuse criteria for the electroplating factory. The reaction constant analysis indicated that the reaction proceeded much more rapidly for the combined process. Hence, it is a more efficient, economic and environmentally friendly process.

  6. Fabrication of graphene–TiO2 nanocomposite with improved ...

    Indian Academy of Sciences (India)

    carbon nanocomposite material shows high photocatalytic activity compared with the bare TiO2. However, TiO2 has a high band gap (3.2 eV) and absorb little amount of solar ... tion of titanium dioxide (TiO2)–graphene (GR) (TiO2–GR).

  7. Refractories in the Al2O3-ZrO2-SiO2 system

    International Nuclear Information System (INIS)

    Banerjee, S.P.; Bhadra, A.K.; Sircar, N.R.

    1978-01-01

    The effect of addition of ZrO 2 in different proportions in the refractories of the Al 2 O 3 -SiO 2 system was studied. The investigation was confined to two broad ranges of compositions incorporating zirconia (15-30 percent and 80-85 percent) in the Al 2 O 3 -ZrO 2 -SiO 2 system. The overall attainment of properties is dependent upon the mode of fabrication and firing, and bears a relationship with the phase assemblages and the relative proportion thereof. Of the different characteristics, the trend of dissociation of zircon has been found to be specially significant vis-a-vis the temperature of firing and thermal shock resistance. Reassociation of the dissociated products has been ascribed to bring forth improved resistance to thermal spalling. The different products developed during this investigation are considered to be very promising which find useful applications in view of the properties attained by them. (auth.)

  8. On the Stability of NaO2 in Na-O2 Batteries.

    Science.gov (United States)

    Liu, Chenjuan; Carboni, Marco; Brant, William R; Pan, Ruijun; Hedman, Jonas; Zhu, Jiefang; Gustafsson, Torbjörn; Younesi, Reza

    2018-04-25

    Na-O 2 batteries are regarded as promising candidates for energy storage. They have higher energy efficiency, rate capability, and chemical reversibility than Li-O 2 batteries; in addition, sodium is cheaper and more abundant compared to lithium. However, inconsistent observations and instability of discharge products have inhibited the understanding of the working mechanism of this technology. In this work, we have investigated a number of factors that influence the stability of the discharge products. By means of in operando powder X-ray diffraction study, the influence of oxygen, sodium anode, salt, solvent, and carbon cathode were investigated. The Na metal anode and an ether-based solvent are the main factors that lead to the instability and decomposition of NaO 2 in the cell environment. This fundamental insight brings new information on the working mechanism of Na-O 2 batteries.

  9. Polymer supported organic catalysts for O2 reduction in Li-O2 batteries

    International Nuclear Information System (INIS)

    Weng, Wei; Barile, Christopher J.; Du, Peng; Abouimrane, Ali; Assary, Rajeev S.; Gewirth, Andrew A.; Curtiss, Larry A.; Amine, Khalil

    2014-01-01

    Graphical abstract: - Abstract: A novel organic catalyst has been synthesized that contains an anthraquinone moiety supported on a polymer backbone. This oxygen reduction catalyst was successfully incorporated in the cathode of Li-O 2 batteries. The addition of the anthraquinone-based catalyst improved the cycleability of the Li-O 2 battery when cycled in a tetraethylene glycol dimethyl ether electrolyte. Computational studies coupled with a wide range of analytical techniques including differential electrochemical mass spectrometry, cyclic voltammetry, electrochemical impedence spectroscopy, and X-ray diffraction were used to interrogate the Li-O 2 battery with and without the organic catalyst present. This study suggests that organic catalysts may serve as light and inexpensive alternatives to the precious metals frequently used in Li-O 2 batteries

  10. Sorption and physical properties of Mn O2-Si O2 composite

    International Nuclear Information System (INIS)

    Labayru M, R.; Correa N, M.; Andalaft J, E.

    1992-01-01

    These results show that the addition of silica improve the sorption and mechanical properties of Mn O 2 -Si O 2 composite. This ion-exchange material has an high Sr adsorption capacity still in the presence of Cs and Al, its capacity being higher than that of commercially available products. The particle size distribution of the ground solid is homogeneous ranging from 90 to 600 μm. The largest particle size fraction is directly proportional to the amount of silica. (author)

  11. Spray deposited CeO2–TiO2 counter electrode for electrochromic ...

    Indian Academy of Sciences (India)

    Abstract. Optically passive thin films of CeO2–TiO2 mixed oxides with molar ratio of Ce/Ti of 0.05 were deposited by the spray pyrolysis technique (SPT) on a glass and fluorine-doped tin oxide (FTO)-coated glass substrates. Precur- sor solution containing cerium nitrate hexahydrate (Ce(NO3)2·6H2O) and titanium ...

  12. Ce O2-Zr O2 powder synthesis by alcohol dehydration of aqueous salt solutions

    International Nuclear Information System (INIS)

    Andrade Nono, M.C. de

    1993-01-01

    A method for the precipitation of Ce O 2 -Zr O 2 powder is reported. It involves the powder synthesis by precipitation from an aqueous of Y and Zr sulphates in ethanol and isopropanol followed by calcination. The powder characteristics and their relations with the green compaction and densification by sintering are shown and discussed. It is observed that the ethanol gives powders with the best compaction and sintering behavior. (author)

  13. Effects of titanium dioxide (TiO2 ) nanoparticles on caribbean reef-building coral (Montastraea faveolata).

    Science.gov (United States)

    Jovanović, Boris; Guzmán, Héctor M

    2014-06-01

    Increased use of manufactured titanium dioxide nanoparticles (nano-TiO2 ) is causing a rise in their concentration in the aquatic environment, including coral reef ecosystems. Caribbean mountainous star coral (Montastraea faveolata) has frequently been used as a model species to study gene expression during stress and bleaching events. Specimens of M. faveolata were collected in Panama and exposed for 17 d to nano-TiO2 suspensions (0.1 mg L(-1) and 10 mg L(-1) ). Exposure to nano-TiO2 caused significant zooxanthellae expulsion in all the colonies, without mortality. Induction of the gene for heat-shock protein 70 (HSP70) was observed during an early stage of exposure (day 2), indicating acute stress. However, there was no statistical difference in HSP70 expression on day 7 or 17, indicating possible coral acclimation and recovery from stress. No other genes were significantly upregulated. Inductively coupled plasma mass spectrometry analysis revealed that nano-TiO2 was predominantly trapped and stored within the posterior layer of the coral fragment (burrowing sponges, bacterial and fungal mats). The bioconcentration factor in the posterior layer was close to 600 after exposure to 10 mg L(-1) of nano-TiO2 for 17 d. The transient increase in HSP70, expulsion of zooxanthellae, and bioaccumulation of nano-TiO2 in the microflora of the coral colony indicate the potential of such exposure to induce stress and possibly contribute to an overall decrease in coral populations. © 2014 SETAC.

  14. The Effect of Pericellular Oxygen Levels on Proteomic Profile and Lipogenesis in 3T3-L1 Differentiated Preadipocytes Cultured on Gas-Permeable Cultureware.

    Directory of Open Access Journals (Sweden)

    Martin Weiszenstein

    Full Text Available Pericellular oxygen concentration represents an important factor in the regulation of cell functions, including cell differentiation, growth and mitochondrial energy metabolism. Hypoxia in adipose tissue has been associated with altered adipokine secretion profile and suggested as a possible factor in the development of type 2 diabetes. In vitro experiments provide an indispensable tool in metabolic research, however, physical laws of gas diffusion make prolonged exposure of adherent cells to desired pericellular O2 concentrations questionable. The aim of this study was to investigate the direct effect of various O2 levels (1%, 4% and 20% O2 on the proteomic profile and triglyceride accumulation in 3T3-L1 differentiated preadipocytes using gas-permeable cultureware. Following differentiation of cells under desired pericellular O2 concentrations, cell lysates were subjected to two-dimensional gel electrophoresis and protein visualization using Coomassie blue staining. Spots showing differential expression under hypoxia were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. All identified proteins were subjected to pathway analysis. We observed that protein expression of 26 spots was reproducibly affected by 4% and 1% O2 (17 upregulated and 9 downregulated. Pathway analysis showed that mitochondrial energy metabolism and triglyceride synthesis were significantly upregulated by hypoxia. In conclusion, this study demonstrated the direct effects of pericellular O2 levels on adipocyte energy metabolism and triglyceride synthesis, probably mediated through the reversed tricarboxylic acid cycle flux.

  15. 3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Zhai, Teng; Wang, Fuxin; Yu, Minghao; Xie, Shilei; Liang, Chaolun; Li, Cheng; Xiao, Fangming; Tang, Renheng; Wu, Qixiu; Lu, Xihong; Tong, Yexiang

    2013-07-01

    In this paper, we reported an effective and simple strategy to prepare large areal mass loading of MnO2 on porous graphene gel/Ni foam (denoted as MnO2/G-gel/NF) for supercapacitors (SCs). The MnO2/G-gel/NF (MnO2 mass: 13.6 mg cm-2) delivered a large areal capacitance of 3.18 F cm-2 (234.2 F g-1) and good rate capability. The prominent electrochemical properties of MnO2/G-gel/NF are attributed to the enhanced conductivities and improved accessible area for ions in electrolytes. Moreover, an asymmetric supercapacitor (ASC) based on MnO2/G-gel/NF (MnO2 mass: 6.1 mg cm-2) as the positive electrode and G-gel/NF as the negative electrode achieved a remarkable energy density of 0.72 mW h cm-3. Additionally, the fabricated ASC device also exhibited excellent cycling stability, with less than 1.5% decay after 10 000 cycles. The ability to effectively develop SC electrodes with high mass loading should open up new opportunities for SCs with high areal capacitance and high energy density.In this paper, we reported an effective and simple strategy to prepare large areal mass loading of MnO2 on porous graphene gel/Ni foam (denoted as MnO2/G-gel/NF) for supercapacitors (SCs). The MnO2/G-gel/NF (MnO2 mass: 13.6 mg cm-2) delivered a large areal capacitance of 3.18 F cm-2 (234.2 F g-1) and good rate capability. The prominent electrochemical properties of MnO2/G-gel/NF are attributed to the enhanced conductivities and improved accessible area for ions in electrolytes. Moreover, an asymmetric supercapacitor (ASC) based on MnO2/G-gel/NF (MnO2 mass: 6.1 mg cm-2) as the positive electrode and G-gel/NF as the negative electrode achieved a remarkable energy density of 0.72 mW h cm-3. Additionally, the fabricated ASC device also exhibited excellent cycling stability, with less than 1.5% decay after 10 000 cycles. The ability to effectively develop SC electrodes with high mass loading should open up new opportunities for SCs with high areal capacitance and high energy density. Electronic

  16. Fabrication technology and characteristics of AmO2-MgO cercer materials for transmutation

    International Nuclear Information System (INIS)

    Croixmarie, Y.; Mocellin, A.; Warin, D.

    2000-01-01

    This paper deals with the fabrication technology and the physico-chemical properties of target materials prepared for the ECRIX experiment in the French PHENIX reactor. The ECRIX target materials consist of pellets made of a ceramic-ceramic type composite in which particles of americium oxide are microdispersed in an inert matrix of magnesium oxide

  17. Effect of SiO 2-ZrO 2 supports prepared by a grafting method on hydrogen production by steam reforming of liquefied natural gas over Ni/SiO 2-ZrO 2 catalysts

    Science.gov (United States)

    Seo, Jeong Gil; Youn, Min Hye; Song, In Kyu

    SiO 2-ZrO 2 supports with various zirconium contents are prepared by grafting a zirconium precursor onto the surface of commercial Carbosil silica. Ni(20 wt.%)/SiO 2-ZrO 2 catalysts are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of SiO 2-ZrO 2 supports on the performance of the Ni(20 wt.%)/SiO 2-ZrO 2 catalysts is investigated. SiO 2-ZrO 2 prepared by a grafting method serves as an efficient support for the nickel catalyst in the steam reforming of LNG. Zirconia enhances the resistance of silica to steam significantly and increases the interaction between nickel and the support, and furthermore, prevents the growth of nickel oxide species during the calcination process through the formation of a ZrO 2-SiO 2 composite structure. The crystalline structures and catalytic activities of the Ni(20 wt.%)/SiO 2-ZrO 2 catalysts are strongly influenced by the amount of zirconium grafted. The conversion of LNG and the yield of hydrogen show volcano-shaped curves with respect to zirconium content. Among the catalysts tested, the Ni(20 wt.%)/SiO 2-ZrO 2 (Zr/Si = 0.54) sample shows the best catalytic performance in terms of both LNG conversion and hydrogen yield. The well-developed and pure tetragonal phase of ZrO 2-SiO 2 (Zr/Si = 0.54) appears to play an important role in the adsorption of steam and subsequent spillover of steam from the support to the active nickel. The small particle size of the metallic nickel in the Ni(20 wt.%)/SiO 2-ZrO 2 (Zr/Si = 0.54) catalyst is also responsible for its high performance.

  18. Enhancement of photocatalytic degradation of furfural and acetophenone in water media using nano-TiO2-SiO2 deposited on cementitious materials.

    Science.gov (United States)

    Soltan, Sahar; Jafari, Hoda; Afshar, Shahrara; Zabihi, Omid

    2016-10-01

    In the present study, silicon dioxide (SiO 2 ) nanoparticles were loaded to titanium dioxide (TiO 2 ) nano-particles by sol-gel method to make a high porosity photocatalyst nano-hybrid. These photocatalysts were synthesized using titanium tetrachloride and tetraethyl orthosilicate as titanium and silicon sources, respectively, and characterized by X-ray powder diffraction (XRD) and scanning electron microscope methods. Subsequently, the optimizations of the component and operation conditions were investigated. Then, nano-sized TiO 2 and TiO 2 -SiO 2 were supported on concrete bricks by the dip coating process. The photocatalytic activity of nano photocatalysts under UV irradiation was examined by studying the decomposition of aqueous solutions of furfural and acetophenone (10 mg/L) as model of organic pollutants to CO 2 and H 2 O at room temperature. A decrease in the concentration of these pollutants was assayed by using UV-visible absorption, gas chromatography technique, and chemical oxygen demand. The removal of these pollutants from water using the concrete-supported photocatalysts under UV irradiation was performed with a greater efficiency, which does not require an additional separation stage to recover the catalyst. Therefore, it would be applicable to use in industrial wastewater treatment at room temperature and atmospheric pressure within the optimized pH range.

  19. Solar and Heliospheric Data Requirements: Going Further Than L1

    Science.gov (United States)

    Szabo, A.

    2011-01-01

    Current operational space weather forecasting relies on solar wind observations made by the ACE spacecraft located at the L1 point providing 30-40 minutes warning time. Some use is also made of SOHO and STEREO solar imaging that potentially can give multiple days of warning time. However, our understanding of the propagation and evolution of solar wind transients is still limited resulting in a typical timing uncertainty of approximately 10 hours. In order to improve this critical understanding, a number of NASA missions are being planned. Specifically the Solar Probe Plus and Solar Orbiter missions will investigate the inner Heliospheric evolution of coronal mass ejections and the acceleration and propagation of solar energetic particles. In addition, a number of multi-spacecraft concepts have been studied that have the potential to significantly improve the accuracy of long-term space weather forecasts.

  20. l=1,2 high-beta stellarator

    International Nuclear Information System (INIS)

    Bartsch, R.R.; Cantrell, E.L.; Gribble, R.F.; Klare, K.A.; Kutac, K.J.; Miller, G.; Siemon, R.E.

    1978-01-01

    The final scyllac experiments are described. These experiments utilized a feedback-stabilized, l=1,2 high-beta stellarator configuration and like the previous feedback-stabilization experiments were carried out in a toroidal sector, rather than a complete torus. The energy confinement time, obtained from excluded flux measurements, agrees with a two-dimensional calculation of particle end loss from a straight theta pinch. Because simple end loss was dominant, the energy confinement time was independent of whether equilibrium adjustment or feedback stabilization fields were applied. The dynamical characteristics of the toroidal equilibrium were improved by elimination of the l=0 field used previously, as expected from theory. A modal rather than local feedback control algorithm was used. Although feedback clearly decreased the m=1 motion of the plasma, the experimental test of modal feedback, which is expected from theory to be superior to local feedback, is considered inconclusive because of the limitations imposed by the sector configuration

  1. Physico-chemical properties of (U,Ce)O2

    International Nuclear Information System (INIS)

    Yamada, K.; Yamanaka, S.; Katsura, M.

    1998-01-01

    The high-temperature X-ray diffraction analysis of (U,Ce)O 2 with CeO 2 contents ranging from 0 to 20 mol.% CeO 2 was performed to obtain the variation of the linear thermal expansion coefficient with the CeO 2 content. Ultrasonic pulse-echo measurements were also carried out from room temperature to 673 K to estimate the change in the mechanical properties of (U,Ce)O 2 with the CeO 2 content. The variation in the linear thermal expansion coefficient at the low CeO 2 content region is more steep than that expected from the linear thermal expansion coefficient of UO 2 and CeO 2 . The Young's and shear moduli of all (U,Ce)O 2 were found to decrease with rising temperature. This was due to the increase of the bond length accompanied by the thermal expansion. Although the lattice parameter decreased with CeO 2 content, the moduli of (U,Ce)O 2 were found to decrease with increasing CeO 2 content at room temperature. These results show that in the range from 0 to 20 mol.% of CeO 2 , as CeO 2 content increases, the bottom of the potential energy in (U,Ce)O 2 is shallower and broader. (orig.)

  2. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water.

    Science.gov (United States)

    Bourgin, Marc; Borowska, Ewa; Helbing, Jakob; Hollender, Juliane; Kaiser, Hans-Peter; Kienle, Cornelia; McArdell, Christa S; Simon, Eszter; von Gunten, Urs

    2017-10-01

    The efficiency of ozone-based processes under various conditions was studied for the treatment of a surface water (Lake Zürich water, Switzerland) spiked with 19 micropollutants (pharmaceuticals, pesticides, industrial chemical, X-ray contrast medium, sweetener) each at 1 μg L -1 . Two pilot-scale ozonation reactors (4-5 m 3  h -1 ), a 4-chamber reactor and a tubular reactor, were investigated by either conventional ozonation and/or the advanced oxidation process (AOP) O 3 /H 2 O 2 . The effects of selected operational parameters, such as ozone dose (0.5-3 mg L -1 ) and H 2 O 2 dose (O 3 :H 2 O 2  = 1:3-3:1 (mass ratio)), and selected water quality parameters, such as pH (6.5-8.5) and initial bromide concentration (15-200 μg L -1 ), on micropollutant abatement and bromate formation were investigated. Under the studied conditions, compounds with high second-order rate constants k O3 >10 4  M -1  s -1 for their reaction with ozone were well abated (>90%) even for the lowest ozone dose of 0.5 mg L -1 . Conversely, the abatement efficiency of sucralose, which only reacts with hydroxyl radicals (OH), varied between 19 and 90%. Generally, the abatement efficiency increased with higher ozone doses and higher pH and lower bromide concentrations. H 2 O 2 addition accelerated the ozone conversion to OH, which enables a faster abatement of ozone-resistant micropollutants. Interestingly, the abatement of micropollutants decreased with higher bromide concentrations during conventional ozonation due to competitive ozone-consuming reactions, except for lamotrigine, due to the suspected reaction of HOBr/OBr - with the primary amine moieties. In addition to the abatement of micropollutants, the evolution of the two main transformation products (TPs) of hydrochlorothiazide (HCTZ) and tramadol (TRA), chlorothiazide (CTZ) and tramadol N-oxide (TRA-NOX), respectively, was assessed by chemical analysis and kinetic modeling. Both selected TPs were quickly formed initially

  3. Efficient bioconversion of rice straw to ethanol with TiO2/UV pretreatment.

    Science.gov (United States)

    Kang, Hee-Kyoung; Kim, Doman

    2012-01-01

    Rice straw is a lignocellulosic biomass that constitutes a renewable organic substance and alternative source of energy; however, its structure confounds the liberation of monosaccharides. Pretreating rice straw using a TiO(2)/UV system facilitated its hydrolysis with Accellerase 1000(™), suggesting that hydroxyl radicals (OH·) from the TiO(2)/UV system could degrade lignin and carbohydrates. TiO(2)/UV pretreatment was an essential step for conversion of hemicellulose to xylose; optimal conditions for this conversion were a TiO(2) concentration of 0.1% (w/v) and an irradiation time of 2 h with a UV-C lamp at 254 nm. After enzymatic hydrolysis, the sugar yields from rice straw pretreated with these parameters were 59.8 ± 0.7% of the theoretical for glucose (339 ± 13 mg/g rice straw) and 50.3 ± 2.8% for xylose (64 ± 3 mg/g rice straw). The fermentation of enzymatic hydrolysates containing 10.5 g glucose/L and 3.2 g xylose/L with Pichia stipitis produced 3.9 g ethanol/L with a corresponding yield of 0.39 g/g rice straw. The maximum possible ethanol conversion rate is 76.47%. TiO(2)/UV pretreatment can be performed at room temperature and atmospheric pressure and demonstrates potential in large-scale production of fermentable sugars.

  4. Analysis of Ca and Mg in blood of golden hamster using NAA technique

    International Nuclear Information System (INIS)

    Aguiar, Rodrigo O.; Zamboni, Cibele B.; Medeiros, Jose A.G.

    2009-01-01

    Neutron activation analysis (NAA) technique has been used to determine simultaneously Ca and Mg concentrations in whole blood of Golden Hamster. The reference values for Ca (0.17 - 0.29 gL -1 ) and Mg (0.042 - 0.074 gL -1 ) can be used to performed biochemistry investigation using whole blood. (author)

  5. Evaluation of Pd Nanoparticle-Decorated CeO2-MWCNT Nanocomposite as an Electrocatalyst for Formic Acid Fuel Cells

    Science.gov (United States)

    Saleem, Junaid; Safdar Hossain, SK.; Al-Ahmed, Amir; Rahman, Ateequr; McKay, Gordon; Hossain, Mohammed M.

    2018-04-01

    In this work, CeO2-modified Pd/CeO2-carbon nanotube (CNT) electrocatalyst for the electro-oxidation of formic acid has been investigated. The support CNT was first modified with different amounts (5-30 wt.%) of CeO2 using a precipitation-deposition method. The electrocatalysts were developed by dispersing Pd on the CeO2-CNT supports using the borohydride reduction method. The synthesized electrocatalysts were analyzed for composition, morphology and electronic structure using x-ray diffraction (XRD), scanning electron microscopy with energy-dispersive x-ray spectroscopy (SEM/EDX), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) techniques. The formation of Pd nanoparticles on the CeO2-CNT support was confirmed using TEM. The activity of Pd/CeO2-CNT and of Pd-CNT samples upon oxidation of formic acid was evaluated by using carbon monoxide stripping voltammetry, cyclic voltammetry, and chronoamperometry. The addition of moderate amounts of cerium oxide (up to 10 wt.%) significantly improved the activity of Pd/CeO2-CNT compared to the unmodified Pd-CNT. Pd/10 wt.% CeO2-CNT showed a current density of 2 A mg-1, which is ten times higher than that of the unmodified Pd-CNT (0.2 A mg-1). Similarly, the power density obtained for Pd/10 wt.% CeO2-CNT in an air-breathing formic acid fuel cell was 6.8 mW/cm2 which is two times higher than Pd-CNT (3.2 mW/cm2), thus exhibiting the promotional effects of CeO2 to Pd/CeO2-CNT. A plausible justification for the improved catalytic performance and stability is provided in the light of the physical characterization results.

  6. TiO2 and Cu/TiO2 Thin Films Prepared by SPT

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2015-12-01

    Full Text Available Titanium oxide (TiO2 and copper (Cu doped titanium oxide (Cu/TiO2 thin films have been prepared by spray pyrolysis technique. Titanium chloride (TiCl4 and copper acetate (Cu(CH3COO2.H2O were used as source of Ti and Cu. The doping concentration of Cu was varied from 1-10 wt. %. The X-ray diffraction studies show that TiO2 thin films are tetragonal structure and Cu/TiO2 thin films implies CuO has present with monoclinic structure. The optical properties of the TiO2 thin films have been investigated as a function of Cu-doping level. The optical transmission of the thin films was found to increase from 88 % to 94 % with the addition of Cu up to 8 % and then decreases for higher percentage of Cu doping. The optical band gap (Eg for pure TiO2 thin film is found to be 3.40 eV. Due to Cu doping, the band gap is shifted to lower energies and then increases further with increasing the concentration of Cu. The refractive index of the TiO2 thin films is found to be 2.58 and the variation of refractive index is observed due to Cu doped. The room temperature resistivity of the films decreases with increasing Cu doping and is found to be 27.50 - 23.76 W·cm. It is evident from the present study that the Cu doping promoted the thin film morphology and thereby it is aspect for various applications.

  7. Polymorphisms of vitamin K-related genes (EPHX1 and VKORC1L1) and stable warfarin doses.

    Science.gov (United States)

    Chung, Jee-Eun; Lee, Kyung Eun; Chang, Byung Chul; Gwak, Hye Sun

    2018-01-30

    The aim of this study was to investigate the possible effects of EPHX1 and VKORC1L1 polymorphisms on variability of responses to warfarin. Sixteen single nucleotide polymorphisms (SNPs) in 201 patients with stable warfarin doses were analyzed including genes of VKORC1, CYP2C9, CYP4F2, GGCX, EPHX1 and VKORC1L1. Univariate analysis was conducted for the association of genotypes with stable warfarin doses. Multiple linear regression analysis was used to investigate factors that independently affected the inter-individual variability of warfarin dose requirements. The rs4072879 of VKORC1L1 (A>G) was significantly associated with stable warfarin doses; wild homozygote carriers (AA) required significantly lower stable warfarin doses than those with the variant G allele (5.02±1.56 vs. 5.96±2.01mg; p=0.001). Multivariate analysis showed that EPHX1 rs1877724 and VKORC1L1 rs4072879 accounted for 1.5% and 1.3% of the warfarin dose variability. Adding EPHX1 and VKORC1L1 SNPs to the base model including non-genetic variables (operation age, body weight and the therapy of ACEI or ARB) and genetic variables (VKORC1 rs9934438, CYP2C9 rs1057910, and CYP4F2 rs2108622) gave a number needed to genotype of 34. This study showed that polymorphisms of EPHX1 and VKORC1L1 could be determinants of stable warfarin doses. Copyright © 2017. Published by Elsevier B.V.

  8. Recovery of hexavalent chromium from water using photoactive TiO2-montmorillonite under sunlight

    Directory of Open Access Journals (Sweden)

    Ridha Djellabi

    2016-04-01

    Full Text Available Hexavalent chromium was removed from water under sunlight using a synthesized TiO2-montmorillonite (TiO2-M employing tartaric acid as a hole scavenger. Cr(VI species was then reduced to Cr(III species by electrons arising from TiO2 particles. After that, the produced Cr(III species  was transferred to montmorillonite  due to electrostatic attractions leading to  set free TiO2 particles for a further Cr(VI species reduction. Furthermore, produced Cr(III, after Cr(VI reduction, does not  penetrate into the solution. The results indicate that no dark adsorption of Cr(VI species on TiO2-M is present, however, the reduction of Cr(VI species under sunlight increased strongly as a function of tartaric acid concentration up to 60 ppm, for which the extent of reduction is maximum within 3 h. On the other hand, the reduction extent of Cr(VI species is maximum with an initial concentration of Cr(VI species lower than 30 ppm by the use of 0.2 g/L of TiO2-M. Nevertheless, the increase of the Cr(VI initial concentration led to increase the amount of Cr(VI species reduced (capacity of reduction until a Cr(VI concentration of 75 and 100 ppm, for which  it remained constant at around 221 mg/g. For comparison, the increase of Cr(VI species concentration in the case of the commercial TiO2 P25 under the same conditions exhibited its deactivation when the reduced amount decreased from 198.1 to 157.6 mg/g as the concentration increased from 75 to 100 ppm.

  9. Protein profiling as early detection biomarkers for TiO2 nanoparticle toxicity in Daphnia magna.

    Science.gov (United States)

    Sá-Pereira, Paula; Diniz, Mário S; Moita, Liliana; Pinheiro, Teresa; Mendonça, Elsa; Paixão, Susana M; Picado, Ana

    2018-05-01

    The mode of action for nanoparticle (NP) toxicity in aquatic organisms is not yet fully understood. In this work, a strategy other than toxicity testing was applied to Daphnia magna exposed to TiO 2 -NPs: the use of nuclear microscopy and the assessment of protein profile. D. magna is a keystone species broadly used as a model system in ecotoxicology. Titanium (Ti) was found in the D. magna digestive tract, mainly in the gut. The penetration of Ti into the epithelial region was greater at higher exposure levels and also observed in eggs in the brood pouch. The protein profile of individuals exposed to different concentrations showed that 2.8 and 5.6 mg/L TiO 2 -NP concentrations induced an over-expression of the majority of proteins, in particular proteins with molecular weight of ∼120, 85 and 15 kDa, while 11.2 mg/L TiO 2 -NP had an inhibitory effect on protein expression. The Matrix-assisted laser desorption ionization with tandem time of flight mass spectrometry (MALDI-TOF/TOF MS) analysis of these proteins consistently identified them as vitellogenin (Vtg)-like proteins, associated with enzymes involved in redox balance. These results indicate that Vtg-like proteins are up-regulated in D. magna exposed to TiO 2 -NPs. Vitellogenesis is associated with the reproduction system, suggesting that TiO 2 -NP exposure can impair reproduction by affecting this process. The precise mode of action of TiO 2 -NPs is still unclear and the results from this study are a first attempt to identify specific proteins as potential markers of TiO 2 -NP toxicity in D. magna, providing useful information for future research.

  10. Water Adsorption on TiO2

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Wendt, Stefan; Besenbacher, Flemming

    2010-01-01

    Scanning Tunneling Microscopy (STM) studies and Density Functional Theory (DFT) investigations of the interaction of water with the rutile TiO2 (110) surface are summarized. From high-resolution STM the following reactions have been revealed: water adsorption and diffusion in the Ti troughs, water...... dissociation in bridging oxygen vacancies, assembly of adsorbed water monomers into rapidly diffusing water dimers, and formation of water dimers by reduction of oxygen molecules. The STM results are rationalized based on DFT calculations, revealing the bonding geometries and reaction pathways of the water...

  11. Defect properties of CuCrO2: A density functional theory calculation

    International Nuclear Information System (INIS)

    Fang Zhi-Jie; Zhu Ji-Zhen; Zhou Jiang; Mo Man

    2012-01-01

    Using the first-principles methods, we study the formation energetics properties of intrinsic defects, and the charge doping properties of extrinsic defects in transparent conducting oxides CuCrO 2 . Intrinsic defects, some typical acceptor-type, and donor-type extrinsic defects in their relevant charge state are considered. By systematically calculating the formation energies and transition energy, the results of calculation show that, V Cu , O i , and O Cu are the relevant intrinsic defects in CuCrO 2 ; among these intrinsic defects, V Cu is the most efficient acceptor in CuCrO 2 . It is found that all the donor-type extrinsic defects have difficulty in inducing n-conductivity in CuCrO 2 because of their deep transition energy level. For all the acceptor-type extrinsic defects, substituting Mg for Cr is the most prominent doping acceptor with relative shallow transition energy levels in CuCrO 2 . Our calculation results are expected to be a guide for preparing promising n-type and p-type materials in CuCrO 2 . (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Sonocatalytic degradation of Reactive Yellow 39 using synthesized ZrO2 nanoparticles on biochar.

    Science.gov (United States)

    Khataee, Alireza; Kayan, Berkant; Gholami, Peyman; Kalderis, Dimitrios; Akay, Sema; Dinpazhoh, Laleh

    2017-11-01

    ZrO 2 -biochar (ZrO 2 -BC) nanocomposite was prepared by a modified sonochemical/sol-gel method. The physicochemical properties of the prepared nanocomposite were evaluated using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray fluorescence, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller model. The sonocatalytic performance of ZrO 2 -BC was investigated in sonochemical degradation of Reactive Yellow 39 (RY39). The high observed sonocatalytic activity of the ZrO 2 -BC sample could be interpreted by the mechanisms of sonoluminescence and hot spots. Parameters including ZrO 2 -BC dosage, solution pH, initial RY39 concentration and ultrasonic power were selected as the main operational parameters and their influence on RY39 degradation efficiency was examined. A 96.8% degradation efficiency was achieved with a ZrO 2 -BC dosage of 1.5g/L, pH of 6, initial RY39 concentration of 20mg/L and ultrasonic power of 300W. In the presence of OH radical scavengers, RY39 degradation was significantly inhibited, providing evidence for the key role of hydroxyl radicals in the process. The sonodegradation intermediates were identified using gas chromatography-mass spectroscopy and the possible decomposition route was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Exposure to TiO2 nanoparticles increases Staphylococcusaureusinfection of HeLa cells

    Science.gov (United States)

    Xu, Yan; Wei, Ming-Tzo; Walker, Stephen. G.; Wang, Hong Zhan; Gondon, Chris; Brink, Peter; Guterman, Shoshana; Zawacki, Emma; Applebaum, Eliana; Rafailovich, Miriam; Ou-Yang, H. Daniel; Mironava, Tatsiana

    TiO2 is one of the most common nanoparticles in industry from food additives to energy generation. Even though TiO2 is also used as an anti-bacterial agent in combination with UV, we found that, in the absence of UV, exposure of HeLa cells to TiO2 nanoparticles largely increased their risk of bacterial invasion. HeLa cells cultured with low dosage rutile and anatase TiO2 nanoparticles (0.1 mg/ml) for 24 hrs prior to exposure to bacteria had 350% and 250% respectively more bacteria infected per cell. The increase was attributed to increased LDH leakage, and changes in the mechanical response of the cell membrane. On the other hand, macrophages exposed to TiO2 particles ingested 40% fewer bacteria, further increasing the risk of infection. In combination, these two factors raise serious concerns regarding the impact of exposure to TiO2 nanoparticles on the ability of organisms to resist bacterial infection.

  14. Metabolomics analysis of TiO2 nanoparticles induced toxicological effects on rice (Oryza sativa L.).

    Science.gov (United States)

    Wu, Biying; Zhu, Lizhong; Le, X Chris

    2017-11-01

    The wide occurrence and high environmental concentration of titanium dioxide nanoparticles (nano-TiO 2 ) have raised concerns about their potential toxic effects on crops. In this study, we employed a GC-MS-based metabolomic approach to investigate the potential toxicity of nano-TiO 2 on hydroponically-cultured rice (Oryza sativa L.) after exposed to 0, 100, 250 or 500 mg/L of nano-TiO 2 for fourteen days. Results showed that the biomass of rice was significantly decreased and the antioxidant defense system was significantly disturbed after exposure to nano-TiO 2 . One hundred and five identified metabolites showed significant difference compared to the control, among which the concentrations of glucose-6-phosphate, glucose-1-phosphate, succinic and isocitric acid were increased most, while the concentrations of sucrose, isomaltulose, and glyoxylic acid were decreased most. Basic energy-generating ways including tricarboxylic acid cycle and the pentose phosphate pathway, were elevated significantly while the carbohydrate synthesis metabolism including starch and sucrose metabolism, and glyoxylate and dicarboxylate metabolism were inhibited. However, the biosynthetic formation of most of the identified fatty acids, amino acids and secondary metabolites which correlated to crop quality, were increased. The results suggest that the metabolism of rice plants is distinctly disturbed after exposure to nano-TiO 2 , and nano-TiO 2 would have a mixed effect on the yield and quality of rice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Hydrothermal synthesis spherical TiO2 and its photo-degradation property on salicylic acid

    International Nuclear Information System (INIS)

    Guo Wenlu; Liu Xiaolin; Huo Pengwei; Gao Xun; Wu Di; Lu Ziyang; Yan Yongsheng

    2012-01-01

    Anatase TiO 2 spheres have been prepared using hydrothermal synthesis. The prepared spheres were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). The TiO 2 consisted of well-defined spheres with size of 3-5 μm. The photocatalytic activity of spherical TiO 2 was determined by degradation of salicylic acid under visible light irradiation. It was revealed that the degradation rate of the spherical TiO 2 which was processed at 150 °C for 48 h could reach 81.758%. And the kinetics of photocatalytic degradation obeyed first-order kinetic, which the rate constant value was 0.01716 S -1 of the salicylic acid onto TiO 2 (temperature: 150, time: 48 h). The kinetics of adsorption followed the pseudo-second-order model and the rate constant was 1.2695 g mg -1 of the salicylic acid onto TiO 2 (temperature: 150, time: 48 h).

  16. SiO2-supported Pt particles studied by electron microscopy

    International Nuclear Information System (INIS)

    Wang, D.; Penner, S.; Su, D.S.; Rupprechter, G.; Hayek, K.; Schloegl, R.

    2003-01-01

    Regularly grown Pt particles supported by amorphous SiO 2 were heated in hydrogen at 873 K after an oxidising treatment. The morphological and structural changes were studied by electron microscopy. Platinum silicides Pt 3 Si with L1 2 (Cu 3 Au) structure, monoclinic Pt 3 Si and tetragonal Pt 12 Si 5 were identified after the treatment. The mechanisms of coalescence of the particles and the formation of irregular large particles are suggested. A topotactic structural transformation accompanied with the migration of Si from the substrate to the particles are suggested to take place during Pt 3 Si formation

  17. Conventional wet impregnation versus microwave-assisted synthesis of SnO2/CNT composites

    CSIR Research Space (South Africa)

    Motshekga, S

    2011-03-01

    Full Text Available to the one prepared by conventional procedure due to homogeneous distribution of nanoparticles. Keywords: Wet impregnation?Microwave synthesis?SnO2 nanoparticles?CNTs? Nanomaterials http://www.springerlink.com/content/7830n2261823l1tm/ ... stream_source_info Motshekga_2011_ABSTRACT ONLY.pdf.txt stream_content_type text/plain stream_size 1266 Content-Encoding ISO-8859-1 stream_name Motshekga_2011_ABSTRACT ONLY.pdf.txt Content-Type text/plain; charset=ISO-8859-1...

  18. Potentiodynamical deposition of nanostructured MnO2 film at the assist of electrodeposited SiO2 as template

    International Nuclear Information System (INIS)

    Wu, Lian-Kui; Xia, Jie; Hou, Guang-Ya; Cao, Hua-Zhen; Tang, Yi-Ping; Zheng, Guo-Qu

    2016-01-01

    Highlights: • MnO 2 -SiO 2 composite film is prepared by potentiodynamical deposition. • Hierarchical porous MnO 2 films is obtained after the etching of SiO 2 . • The obtained MnO 2 film electrode exhibit high specific capacitance. - Abstract: We report a novel silica co-electrodeposition route to prepare nanostructured MnO 2 films. Firstly, MnO 2 -SiO 2 composite film was fabricated on a stainless steel substrate by potentiodynamical deposition, i.e. cyclic deposition, and then the SiO 2 template was removed by simple immersion in concentrated alkaline solution, leading to the formation of a porous MnO 2 (po-MnO 2 ) matrix. The structure and morphology of the obtained films were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical properties of the po-MnO 2 film were evaluated by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results showed that this porous MnO 2 derived from the MnO 2 -SiO 2 composite film exhibits good electrochemical performance for potential use as a supercapacitor material.

  19. Nanostructured MnO2/exfoliated graphite composite electrode as supercapacitors

    International Nuclear Information System (INIS)

    Yang Yanjing; Liu Enhui; Li Limin; Huang Zhengzheng; Shen Haijie; Xiang Xiaoxia

    2009-01-01

    Nanostructured manganese oxides/exfoliated graphite composite (MnO 2 /EG) were synthesized via a new sol-gel route. Scanning electron microscope (SEM) was employed for surface morphology and X-ray diffraction (XRD) was used for structure characterization. Cyclic voltammetry (CV), galvanostatic charge/discharge, and the electrochemical impedance measurements were applied to investigate the electrochemical performance of the MnO 2 /EG composite electrodes. When used for electrodes of supercapacitors, the as-prepared MnO 2 /EG and the pure MnO 2 exhibited excellent capacitance characteristics in 6 mol L -1 KOH electrolyte and showed high specific capacitance values of 398 F g -1 and 326 F g -1 ,respectively, at a scan rate of 10 mV s -1 . The galvanostatic charge-discharge measurements showed approximately 0.5% loss of capacitance after 500 cycles, and charge-discharge efficiency above 99%. In addition, the synthesized nanomaterial showed a good reversibility and cycling stability.

  20. TiO2-TiO2 composite resistive humidity sensor: ethanol crosssensitivity

    International Nuclear Information System (INIS)

    Ghalamboran, Milad; Saedi, Yasin

    2016-01-01

    The fabrication method and characterization results of a TiO 2 -TiO 2 composite bead used for humidity sensing along with its negative cross-sensitivity to ethanol vapor are reported. The bead shaped resistive sample sensors are fabricated by the drop-casting of a TiO 2 slurry on two Pt wire segments. The dried bead is pre-fired at 750°C and subsequently impregnated with a Ti-based sol. The sample is ready for characterization after a thermal annealing at 600°C in air. Structurally, the bead is a composite of the micron-sized TiO 2 crystallites embedded in a matrix of nanometric TiO 2 particle aggregates. The performance of the beads as resistive humidity sensors is recorded at room temperature in standard humidity level chambers. Results evince the wide dynamic range of the sensors fabricated in the low relative humidity range. While the sensor conductance is not sensitive to ethanol vapor in dry air, in humid air, sensor's responses are negatively affected by the contaminant. (paper)

  1. Expression of PD-L1 on canine tumor cells and enhancement of IFN-γ production from tumor-infiltrating cells by PD-L1 blockade.

    Directory of Open Access Journals (Sweden)

    Naoya Maekawa

    Full Text Available Programmed death 1 (PD-1, an immunoinhibitory receptor, and programmed death ligand 1 (PD-L1, its ligand, together induce the "exhausted" status in antigen-specific lymphocytes and are thus involved in the immune evasion of tumor cells. In this study, canine PD-1 and PD-L1 were molecularly characterized, and their potential as therapeutic targets for canine tumors was discussed. The canine PD-1 and PD-L1 genes were conserved among canine breeds. Based on the sequence information obtained, the recombinant canine PD-1 and PD-L1 proteins were constructed; they were confirmed to bind each other. Antibovine PD-L1 monoclonal antibody effectively blocked the binding of recombinant PD-1 with PD-L1-expressing cells in a dose-dependent manner. Canine melanoma, mastocytoma, renal cell carcinoma, and other types of tumors examined expressed PD-L1, whereas some did not. Interestingly, anti-PD-L1 antibody treatment enhanced IFN-γ production from tumor-infiltrating cells. These results showed that the canine PD-1/PD-L1 pathway is also associated with T-cell exhaustion in canine tumors and that its blockade with antibody could be a new therapeutic strategy for canine tumors. Further investigations are needed to confirm the ability of anti-PD-L1 antibody to reactivate canine antitumor immunity in vivo, and its therapeutic potential has to be further discussed.

  2. Characterization and Comparison of Photocatalytic Activity Silver Ion doped on TiO2(TiO2/Ag+) and Silver Ion doped on Black TiO2(Black TiO2/Ag+)

    Science.gov (United States)

    Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee

    2018-03-01

    Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.

  3. Mechanism for the decrease in the FIP1L1-PDGFRalpha protein level in EoL-1 cells by histone deacetylase inhibitors.

    Science.gov (United States)

    Ishihara, Kenji; Kaneko, Motoko; Kitamura, Hajime; Takahashi, Aki; Hong, Jang Ja; Seyama, Toshio; Iida, Koji; Wada, Hiroshi; Hirasawa, Noriyasu; Ohuchi, Kazuo

    2008-01-01

    Acetylation and deacetylation of proteins occur in cells in response to various stimuli, and are reversibly catalyzed by histone acetyltransferase and histone deacetylase (HDAC), respectively. EoL-1 cells have an FIP1L1-PDGFRA fusion gene that causes transformation of eosinophilic precursor cells into leukemia cells. The HDAC inhibitors apicidin and n-butyrate suppress the proliferation of EoL-1 cells and induce differentiation into eosinophils by a decrease in the protein level of FIP1L1-PDGFRalpha without affecting the mRNA level for FIP1L1-PDGFRA. In this study, we analyzed the mechanism by which the protein level of FIP1L1-PDGFRalpha is decreased by apicidin and n-butyrate. EoL-1 cells were incubated in the presence of the HDAC inhibitors apicidin, trichostatin A or n-butyrate. The protein levels of FIP1L1-PDGFRalpha and phosphorylated eIF-2alpha were determined by Western blotting. Actinomycin D and cycloheximide were used to block RNA synthesis and protein synthesis, respectively, in the chasing experiment of the amount of FIP1L1-PDGFRalpha protein. When apicidin- and n-butyrate-treated EoL-1 cells were incubated in the presence of actinomycin D, the decrease in the protein level of FIP1L1-PDGFRalpha was significantly enhanced when compared with controls. In contrast, the protein levels were not changed by cycloheximide among these groups. Apicidin and n-butyrate induced the continuous phosphorylation of eIF-2alpha for up to 8 days. The decrease in the level of FIP1L1-PDGFRalpha protein by continuous inhibition of HDAC may be due to the decrease in the translation rate of FIP1L1-PDGFRA. Copyright 2008 S. Karger AG, Basel.

  4. Evaluation of the content of TiO2<