Sample records for mg nh3 m-2

  1. Generation of nanopores during desorption of NH3 from Mg(NH3)6Cl2

    Hummelshøj, Jens Strabo; Sørensen, Rasmus Zink; Kostova, M.Y.;


    It is shown that nanopores are formed during desorption of NH3 from Mg(NH3)6Cl2, which has been proposed as a hydrogen storage material. The system of nanopores facilitates the transport of desorbed ammonia away from the interior of large volumes of compacted storage material. DFT calculations show...... that there exists a continuous path from the initial Mg(NH3)6Cl2 material to MgCl2 that does not involve large-scale material transport. Accordingly, ammonia desorption from this system is facile....

  2. Optical sites in Eu- and Mg-codoped GaN grown by NH3-source molecular beam epitaxy

    Sekiguchi, Hiroto; Sakai, Masaru; Kamada, Takuho; Tateishi, Hiroki; Syouji, Atsushi; Wakahara, Akihiro


    Mg codoping can improve the luminescence properties of Eu-doped GaN. However, the enhanced optical sites differ depending on the fabrication method. In this study, the optical sites in Eu- and Mg-codoped GaN [GaN:(Eu, Mg)] grown by NH3-source molecular beam epitaxy (MBE) were evaluated. The optical properties of an Eu-Mg-related site grown by NH3-MBE were highly stable against thermal annealing. Although the luminescence at sites A (622.3 and 633.8 nm) and B (621.9 and 622.8 nm) was dominant under indirect excitation of Eu ions through GaN, four different optical site groups in addition to sites A and B were observed under resonant excitation. These optical sites are inconsistent with the Eu-Mg-related sites reportedly observed in GaN:(Eu, Mg) fabricated by organometallic vapor phase epitaxy, indicating that the optical site constitution strongly depends on the growth method. Furthermore, site A, with a high cross section, contributed to as much as 22% of the total photoluminescence (PL) integrated intensity for GaN:(Eu, Mg) grown by NH3-MBE, which resulted in a high PL intensity.

  3. Theoretical study on the reaction between NH3 and MgH2%NH3MgH2反应机理的密度泛函理论研究



    The reaction mechanism between NH3 and MgH2 has been investigated by a B3LYP method of density functional theory, and the geometries and harmonic vibration frequencies of reactants, intermediates, transition states and products have been calculated at the B3LYP/6-311G( d,p) level. Vibration analysis and intrinsic reaction coordinates ( IRC) calculation at the same level have been applied to validate the connection of the sta-tionary points. The results indicate that the reaction between NH3 and MgH2 has two single-channel hydrogen substitution reactions, the reaction products are Mg(NH2)2 and H2. The two released hydrogen atoms in H2 come from NH3 and MgH2 , respectively. The sticking point of the dehydrogenation is overcome to break the bond of N-H.%采用密度泛函理论B3LYP方法研究了NH3MgH2的放氢反应机理,在6-311G(d, p)基组水平上对反应物、中间体、过渡态及产物进行了全几何参数优化.频率分析和内禀反应坐标( IRC)计算证实了中间体和过渡态的正确性和相互连接关系.计算结果表明:反应分两步单通道的氢取代过程,且反应过程相类似,反应生成Mg(NH2)2和2H2.两步氢取代反应所释放的H2中两个H原子分别来源于NH3MgH2.反应脱氢的关键在于克服N—H键断裂所需能量.

  4. The effect of hyperfine interactions on ultracold molecular collisions: NH(^3Sigma^-) with Mg(^1S) in magnetic fields

    González-Martínez, Maykel L


    We investigate the effect of hyperfine interactions on ultracold molecular collisions in magnetic fields, using ^{24}Mg(^1S) + ^{14}NH(^3Sigma^-) as a prototype system. We explore the energy and magnetic field dependence of the cross sections, comparing the results with previous calculations that neglected hyperfine interactions (Phys. Rev. Lett. 103, 183201 (2009)). The main effect of hyperfine interactions for spin relaxation cross sections is that the kinetic energy release of the dominant outgoing channels does not reduce to zero at low fields. This results in reduced centrifugal suppression on the cross sections and increased inelastic cross sections at low energy and low field. We also analyze state-to-state cross sections, for various initial states, and show that hyperfine interactions introduce additional mechanisms for spin relaxation. In particular, there are hyperfine-mediated collisions to outgoing channels that are not centrifugally suppressed. However, for Mg+NH these unsuppressed channels make...

  5. Ammine magnesium borohydride complex as a new material for hydrogen storage: structure and properties of Mg(BH4)2.2NH3.

    Soloveichik, Grigorii; Her, Jae-Hyuk; Stephens, Peter W; Gao, Yan; Rijssenbeek, Job; Andrus, Matt; Zhao, J-C


    The ammonia complex of magnesium borohydride Mg(BH4)2.2NH3 (I), which contains 16.0 wt % hydrogen, is a potentially promising material for hydrogen storage. This complex was synthesized by thermal decomposition of a hexaaammine complex Mg(BH4)2.6NH3 (II), which crystallizes in the cubic space group Fm3 m with unit cell parameter a=10.82(1) A and is isostructural to Mg(NH3) 6Cl2. We solved the structure of I that crystallizes in the orthorhombic space group Pcab with unit cell parameters a=17.4872(4) A, b=9.4132(2) A, c=8.7304(2) A, and Z=8. This structure is built from individual pseudotetrahedral molecules Mg(BH4)2.2NH3 containing one bidentate BH4 group and one tridentate BH4 group that pack into a layered crystal structure mediated by N-H...H-B dihydrogen bonds. Complex I decomposes endothermically starting at 150 degrees C, with a maximum hydrogen release rate at 205 degrees C, which makes it competitive with ammonia borane BH 3NH3 as a hydrogen storage material.

  6. A randomized comparison of daunorubicin 90 mg/m2 vs 60 mg/m2 in AML induction

    Burnett, A. K.; Russell, N. H.; Hills, R. K.


    remission rate (73% vs 75%; odds ratio, 1.07 [0.83-1.39]; P = .6) or in any recognized subgroup. The 60-day mortality was increased in the 90 mg/m(2) arm (10% vs 5% (hazard ratio [HR] 1.98 [1.30-3.02]; P = .001), which resulted in no difference in overall 2-year survival (59% vs 60%; HR, 1.16 [0.95-1.43]; P...... recommended as a standard of care. However, 60 mg/m(2) is widely used and has never been directly compared with 90 mg/m(2). As part of the UK National Cancer Research Institute (NCRI) AML17 trial, 1206 adults with untreated AML or high-risk myelodysplastic syndrome, mostly younger than 60 years of age, were...... randomized to a first-induction course of chemotherapy, which delivered either 90 mg/m(2) or 60 mg/m(2) on days 1, 3, and 5 combined with cytosine arabinoside. All patients then received a second course that included daunorubicin 50 mg/m(2) on days 1, 3, and 5. There was no overall difference in complete...

  7. 利用氢氧化镁热分解氯化铵制氨气工艺的研究%Research on preparation of NH3 by using thermal decomposition of NH4 Cl and Mg ( OH ) 2

    罗弦; 曾波


    Thermodynamic calculation and analysis were made for the reaction system of preparing NH3 by using thermal decomposition of NH4 Cl and Mg ( OH) 2. Process conditions of the preparation of NH3 were investigated with reaction temperature, amount-of-substance ratio, and reaction time as the variables and with nitrogen content of solid product .chlorine yield,and NH3 yield as evaluation indexes. Results showed the chlorine yield and NH3 yield both could reach more than 90% and the decomposition of Mg( OH)2 and NH4C1 could directly produce NH3 without inletting water steam into the reactor when the reaction temperature was 375 ℃, reaction time was 50 min, and amount -of-substance ratio of Mg ( OH) 2 to NH4C1 was 1:0.75.%对利用氢氧化镁热分解氯化铵制氨气反应体系进行了热力学计算分析,以反应温度、反应物的物质的量比、反应时间为变量,以固体产物中的含氮量、氯收率以及氨气收率等为评价指标,对氢氧化镁热分解氯化铵制氨气的工艺条件进行了研究.实验结果表明,在反应温度为375℃,氢氧化镁与氯化铵的物质的量比为1∶0.75,反应时间为50 min时,氯收率和氨气收率均可达到90%以上,同时氢氧化镁分解氯化铵能够直接生成碱式氯化镁,不需向反应器中通入水蒸气.

  8. Dy$^{3+}$-activated M$_2$SiO$_4$ (M $=$ Ba, Mg, Sr)-type phosphors



    The alkaline orthosilicates of M$_2$SiO$_4$ (M $=$ Ba, Mg, Sr) activated with Dy$^{3+}$ and co-doped with Ho$^{3+}$ are prepared through conventional solid-state method, i.e., mixing and grinding of solid form precursors followedby high-temperature heat treatments of several hours in furnaces, generally under open atmosphere and investigated by X-ray diffraction (XRD) to get phase properties and photoluminescence (PL) analysis to get luminescenceproperties. The thermal behaviours of well-mixed samples were determined by differential thermal analysis (DTA)/thermogravimetry (TG). The PL spectra show that the 478 and 572nm maximum emission bands are attributed, respectively, to ${}^{4}$F$_{9/2}$ $\\to$ ${}^{6}$H$_{15/2}$ and ${}^{4}$F$_{9/2}$ $\\to$ ${}^{6}$H$_{13/2}$ transitions of Dy$^{3+}$ ions.

  9. Hydrogen Storage Properties of New Hydrogen-Rich BH3NH3-Metal Hydride (TiH2, ZrH2, MgH2, and/or CaH2) Composite Systems

    Choi, Young Joon; Xu, Yimin; Shaw, Wendy J.; Ronnebro, Ewa


    Ammonia borane (AB = NH3BH3) is one of the most attractive materials for chemical hydrogen storage due to its high hydrogen contents of 19.6 wt.%, however, impurity levels of borazine, ammonia and diborane in conjunction with foaming and exothermic hydrogen release calls for finding ways to mitigate the decomposition reactions. In this paper we present a solution by mixing AB with metal hydrides (TiH2, ZrH2, MgH2 and CaH2) which have endothermic hydrogen release in order to control the heat release and impurity levels from AB upon decomposition. The composite materials were prepared by mechanical ball milling, and their H2 release properties were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The formation of volatile products from decomposition side reactions, such as borazine (N3B3H6) was determined by mass spectrometry (MS). Sieverts type pressure-composition-temperature (PCT) gas-solid reaction instrument was adopted to observe the kinetics of the H2 release reactions of the combined systems and neat AB. In situ 11B MAS-NMR revealed a destabilized decomposition pathway. We found that by adding specific metal hydrides to AB we can eliminate the impurities and mitigate the heat release.

  10. Aquaporin 4 as a NH3 Channel

    Assentoft, Mette; Kaptan, Shreyas; Schneider, Hans-Peter


    that the ionic NH4 (+) did not permeate AQP4. Molecular dynamics simulations revealed partial pore permeation events of NH3 but not of NH4 (+) and a reduced energy barrier for NH3 permeation through AQP4 compared with that of a cholesterol-containing lipid bilayer, suggesting AQP4 as a favored transmembrane...... route for NH3 Our data propose that AQP4 belongs to the growing list of NH3-permeable water channels....

  11. VUV Luminescent Properties of M2SiO4:Re M2SiO4:Re(M=Mg,Ca,Ba;Re=Ce3+,Tb3+)%M2SiO4:Re(M=Mg,Ca,Ba;Re=Ce3+,Tb3+)的发光性能

    何大伟; 刘红利; 卢鹏志; 李鑫


    合成了系列M2SiO4∶Re(M=Mg,Ca,Ba; Re= Ce3+,Tb3+)样品,研究了样品在真空紫外区域的激发光谱和发射光谱.从激发谱可以看出:M2SiO4∶Re(M=Mg,Ca,Ba; Re= Ce3+,Tb3+)在147,172 nm有很强的吸收带.用Mg,Ca完全取代Ba2SiO4∶Tb3+中的Ba ,相对应的晶体的晶格参数逐渐增大,晶场的能量逐渐减少,其激发光谱随着碱土离子半径的增加向长波方向移动.在172 nm真空紫外光激发下,观察到M2SiO4∶Re(M=Mg,Ca,Ba; Re=Tb3+和M2SiO4∶Re(M=Mg,Ca,Ba; Re= Ce3+,Tb3+)特征发射;在真空紫外激发下,随着M2SiO4∶Re(M=Mg,Ca,Ba; Re= Ce3+,Tb3+)中Ce3+含量的增加,M2SiO4∶Re的特征发射明显减弱,并分析讨论了相关发光现象的成因.%A series of phosphor of M2SiO4∶Re(M=Mg,Ca,Ba; Re= Ce3+,Tb3+) were synthesized and studied. The excitation spectra measurement showed that M2SiO4(M=Mg,Ca,Ba) had high energy absorption in the excitation spectra centered at 147 nm and 172 nm. The excitation spectra of M2SiO4∶Tb3+ (M=Mg,Ca,Ba) consist of two broad bands: one is in the range from 130 to 200 nm and the other is from 200 to 250 nm. The former is assigned to the host absorption, the latter is attributed to the absorption of the Tb3+. Photoluminescence measurements indicated that M2SiO4∶Re (M=Mg,Ca,Ba; Re=Ce3+,Tb3+) phosphor exhibits green emission under VUV excitation. However as Ce3+ doped in the samples, the absorption band decreases evidently in VUV.

  12. Effect of melphalan 140 mg/m(2) vs 200 mg/m(2) on toxicities and outcomes in multiple myeloma patients undergoing single autologous stem cell transplantation-a single center experience.

    Katragadda, Lakshmikanth; McCullough, Lindsay M; Dai, Yunfeng; Hsu, Jack; Byrne, Michael; Hiemenz, John; May, Stratford; Cogle, Christopher R; Norkin, Maxim; Brown, Randy A; Wingard, John R; Chang, Myron; Moreb, Jan S


    Although melphalan at a dose of 140 mg/m(2) (MEL140) is an acceptable conditioning regimen for autologous stem cell transplantation (ASCT) in multiple myeloma (MM) patients, very few studies compared it to the most commonly used dose of 200 mg/m(2) (MEL200). A retrospective review of records of MM patients (2001-2010) identified 33 patients who received MEL140 and 96 patients who received MEL200. As expected, significantly higher percentage of patients in the MEL140 arm were >65 years or had cardiac ejection fraction 2 at the time of ASCT (P≤.01). There were no significant differences in incidence of treatment related mortality and morbidity. At a median follow-up of 74 months from ASCT, there were no significant differences in relapse free survival (RFS) and overall survival (OS) between the two groups. Similar proportion had myeloma status improve to ≥VGPR at 3 months post-ASCT. Usage of post-ASCT maintenance was similar. In multivariate cox proportional hazards model, only disease status of ≥VGPR at the time of ASCT significantly improved RFS (P=.024), but not OS (P=.104). In conclusion, MM patients who received MEL140 had similar long-term outcomes to MEL200 patients despite their older age and co-morbidities. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Hot NH3 Spectra for Astrophysical Applications

    Hargreaves, R J; Bernath, P F


    We present line lists for ammonia (NH$_{3}$) at high temperatures obtained by recording Fourier transform infrared emission spectra. Calibrated line lists are presented for twelve temperatures (300 -- 1300$^{\\circ}$C in 100$^{\\circ}$C intervals and 1370$^{\\circ}$C) and each line list covers the 740 -- 2100 cm$^{-1}$ range, which includes the majority of the $\

  14. NH3 Measurements for Advanced SCR Applications

    Seykens, X.; Tillaart, E. van den; Lilova, V.; Nakatani, S.


    Since the introduction of Euro IV legislation [1, 2], Selective Catalytic Reduction (SCR) technology using liquid urea injection is (one of) the primary methods for NOx reduction in many applications. Ammonia (NH3) is the reagent and key element for the SCR system and its control calibration to meet

  15. Time Resolved Measurement of Ecosystem-Atmosphere NH3 Exchange Using the Eddy Covariance Technique

    Fischer, M. L.; Littlejohn, D.


    Quantifying ammonia fluxes between the land surface and atmosphere is required for effective control of air quality, improving agricultural practices, and understanding natural ecosystem function. Ammonia (NH3) is emitted in large but uncertain amounts from animal agriculture, in lesser amounts from imperfect use of nitrogen fertilizers in crop agriculture, from catalytic converters used on automobiles and other energy related industrial processes, and exchanged between the ecosystem and atmosphere by natural ecosystem processes on vast spatial scales. To address the need for accurate, time-resolved NH3 flux measurements, we have developed an eddy covariance (EC) instrument for direct measurements of NH3 flux. EC flux measurements of NH3 were not previously possible because instruments were not sufficiently sensitive at high frequencies required to capture rapid variations in surface layer NH3 concentrations. To overcome this hurdle we combined a tunable-diode-laser (TDL) spectrometer with a fast-response NH3 sampling inlet and automated pulse-response calibration system. Laboratory tests of the inlet system demonstrate that the response to 10 ppb step in NH3 concentration is well described by a double exponential model with (1/e) times of 0.3 (85% response) and 1.5 (15% response) seconds. This response combined with a routinely measured instrument stability of ~ 0.1 ppb (on 30 minute timescales) indicates that the instrumental contribution to noise in NH3 flux measurements is ~ 0.2 umol NH3 m-2 hr-1, sufficient to stringently test models for NH3 exchange under most conditions. Recent results of field work to verify the instrument performance and observe examples of NH3 exchange will be presented.

  16. Spectroscopic Observation of Water-Mediated Deformation of the CARBOXYLATE-M2+ (M= Mg, Ca) Contact Ion Pair

    Kelleher, Patrick J.; DePalma, Joseph W.; Johnson, Mark


    The binding of alkaline earth dications to the biologically relevant carboxylate ligand has previously been studied using vibrational sum frequency generation (VSFG) spectroscopy of the air-water interface, infrared multiple photon dissociation (IRMPD) spectroscopy of clusters, and DFT methods. These results suggest the presence of both monodentate and bidentate binding motifs of the M2+ ions to the cayboxyl head groups depending on the extent of solvation. We revisit these systems using vibrational predissociation spectroscopy to measure the gas-phase vibrational spectra of the D2-tagged microhydrated [MgOAc(H2O)n=1-5]+ and [CaOAc(H2O)n=1-6]+ clusters. The spectra show that [MgOAc(H2O)n]+ switches from bidentate to monodentate binding promptly at n = 5, while [CaOAc(H2O)n]+ retains its bidentate attachment such that the sixth water molecule initiates the second solvation shell. The difference in binding behavior between these two divalent metal ions is analyzed in the context of the local acidity of the solvent water molecules and the strength of the metal-carboxylate and metal-water interactions. This cluster study provides insight into the chemical physics underlying the unique and surprising impacts of Mg2+ and Ca2+ on the chemistry mediated by sea spray aerosols. Funding for this work was provided by the NSF's Center for Aerosol Impacts on Climate and the Environment.

  17. Photostriction of CH3NH3PbBr3 Perovskite Crystals

    Wei, Tzu-Chiao


    Organic-inorganic hybrid perovskite materials exhibit a variety of physical properties. Pronounced coupling between phonon, organic cations, and the inorganic framework suggest that these materials exhibit strong light-matter interactions. The photoinduced strain of CH3 NH3 PbBr3 is investigated using high-resolution and contactless in situ Raman spectroscopy. Under illumination, the material exhibits large blue shifts in its Raman spectra that indicate significant structural deformations (i.e., photostriction). From these shifts, the photostrictive coefficient of CH3 NH3 PbBr3 is calculated as 2.08 × 10-8 m2 W-1 at room temperature under visible light illumination. The significant photostriction of CH3 NH3 PbBr3 is attributed to a combination of the photovoltaic effect and translational symmetry loss of the molecular configuration via strong translation-rotation coupling. Unlike CH3 NH3 PbI3 , it is noted that the photostriction of CH3 NH3 PbBr3 is extremely stable, demonstrating no signs of optical decay for at least 30 d. These results suggest the potential of CH3 NH3 PbBr3 for applications in next-generation optical micro-electromechanical devices.

  18. Long-term cardiac follow-up of children treated with anthracycline doses of 300 mg/m2 or less for acute lymphoblastic leukemia

    Rathe, Mathias; Carlsen, Niels Lauritz Torp; Oxhøj, Henrik;


    The cardiotoxic effect of anthracyclines has been well described for moderate to high cumulative doses (>350 mg/m(2)). However, the question of whether sub-clinical signs of cardiomyopathy may develop and progress over time in children receiving doses of...

  19. Mesoscopic CH 3 NH 3 PbI 3 /TiO 2 Heterojunction Solar Cells

    Etgar, Lioz


    We report for the first time on a hole conductor-free mesoscopic methylammonium lead iodide (CH 3NH 3PbI 3) perovskite/TiO 2 heterojunction solar cell, produced by deposition of perovskite nanoparticles from a solution of CH 3NH 3I and PbI 2 in γ-butyrolactone on a 400 nm thick film of TiO 2 (anatase) nanosheets exposing (001) facets. A gold film was evaporated on top of the CH 3NH 3PbI 3 as a back contact. Importantly, the CH 3NH 3PbI 3 nanoparticles assume here simultaneously the roles of both light harvester and hole conductor, rendering superfluous the use of an additional hole transporting material. The simple mesoscopic CH 3NH 3PbI 3/TiO 2 heterojunction solar cell shows impressive photovoltaic performance, with short-circuit photocurrent J sc= 16.1 mA/cm 2, open-circuit photovoltage V oc = 0.631 V, and a fill factor FF = 0.57, corresponding to a light to electric power conversion efficiency (PCE) of 5.5% under standard AM 1.5 solar light of 1000 W/m 2 intensity. At a lower light intensity of 100W/m 2, a PCE of 7.3% was measured. The advent of such simple solution-processed mesoscopic heterojunction solar cells paves the way to realize low-cost, high-efficiency solar cells. © 2012 American Chemical Society.

  20. On the crystal chemistry of olivine-type germanate compounds, Ca1 + xM1 - xGeO4 (M2+ = Ca, Mg, Co, Mn).

    Redhammer, Günther J; Roth, Georg; Amthauer, Georg; Lottermoser, Werner


    Germanate compounds, CaMGeO(4) with M(2+) = Ca, Mg, Co and Mn, were synthesized as single crystals by slow cooling from the melt or by flux growth techniques. All the compositions investigated exhibit Pnma symmetry at 298 K and adopt the olivine structure. The M2 site is exclusively occupied by Ca(2+), while on M1 both Ca(2+) and M(2+) cations are found. The amount of Ca(2+) on M1 increases with the size of the M1 cation, with the smallest amount in the Mg compound (0.1 atoms per formula unit) and the largest in the Mn compound (0.20 atoms per formula unit), while in Ca(2)GeO(4), also with olivine structure, both sites are completely filled with Ca(2+). When compared with those of Ca silicate olivine, the lattice parameters a and c are distinctly larger in the analogous germanate compounds, while b has essentially the same values, regardless of the tetrahedral cation, meaning that b is independent of the tetrahedral cation. Structural variations on the octahedrally coordinated M1 site are largely determined by the size of the M1 cation, the average M1-O bond lengths being identical in Ca silicate and Ca germanate olivine. Increasing the size of the M1 cation induces an increasing polyhedral distortion, expressed by the parameters bond-length distortion, octahedral angle variance and octahedral quadratic elongation. However, the Ca germanate olivine compounds generally have more regular octahedra than the analogous silicates. The octahedrally coordinated M2 site does not exhibit large variations in structural parameters as a consequence of the constant chemical composition; the same is valid for the tetrahedral site.

  1. Rotational Spectroscopy of the NH3-H2 Molecular Complex

    Surin, L. A.; Tarabukin, I. V.; Schlemmer, S.; Breier, A. A.; Giesen, T. F.; McCarthy, M. C.; van der Avoird, A.


    We report the first high resolution spectroscopic study of the NH3–H2 van der Waals molecular complex. Three different experimental techniques, a molecular beam Fourier transform microwave spectrometer, a millimeter-wave intracavity jet OROTRON spectrometer, and a submillimeter-wave jet spectrometer with multipass cell, were used to detect pure rotational transitions of NH3–H2 in the wide frequency range from 39 to 230 GHz. Two nuclear spin species, (o)-NH3–(o)-H2 and (p)-NH3–(o)-H2, have been assigned as carriers of the observed lines on the basis of accompanying rovibrational calculations performed using the ab initio intermolecular potential energy surface (PES) of Maret et al. The experimental spectra were compared with the theoretical bound state results, thus providing a critical test of the quality of the NH3–H2 PES, which is a key issue for reliable computations of the collisional excitation and de-excitation of ammonia in the dense interstellar medium.

  2. Removing Gaseous NH3 Using Biochar as an Adsorbent

    Kyoung S. Ro


    Full Text Available Ammonia is a major fugitive gas emitted from livestock operations and fertilization production. This study tested the potential of various biochars in removing gaseous ammonia via adsorption processes. Gaseous ammonia adsorption capacities of various biochars made from wood shaving and chicken litter with different thermal conditions and activation techniques were determined using laboratory adsorption column tests. Ammonia adsorption capacities of non-activated biochars ranged from 0.15 to 5.09 mg·N/g, which were comparable to that of other commercial activated carbon and natural zeolite. There were no significant differences in ammonia adsorption capacities of steam activated and non-activated biochars even if the surface areas of the steam activated biochars were about two orders of magnitude greater than that of non-activated biochars. In contrast, phosphoric acid activation greatly increased the biochar ammonia adsorption capacity. This suggests that the surface area of biochar did not readily control gaseous NH3 adsorption. Ammonia adsorption capacities were more or less linearly increased with acidic oxygen surface groups of non-activated and steam-activated biochars. Phosphoric acid bound to the acid activated biochars is suspected to contribute to the exceptionally high ammonia adsorption capacity. The sorption capacities of virgin and water-washed biochar samples were not different, suggesting the potential to regenerate spent biochar simply with water instead of energy- and capital-intensive steam. The results of this study suggest that non-activated biochars can successfully replace commercial activated carbon in removing gaseous ammonia and the removal efficiency will greatly increase if the biochars are activated with phosphoric acid.

  3. UF6 and UF4 in liquid ammonia: [UF7(NH3)]3- and [UF4(NH3)4].

    Kraus, Florian; Baer, Sebastian A


    From the reaction of uranium hexafluoride UF6 with dry liquid ammonia, the [UF7(NH3)]3- anion and the [UF4(NH3)4] molecule were isolated and identified for the first time. They are found in signal-green crystals of trisammonium monoammine heptafluorouranate(IV) ammonia (1:1; [NH4]3[UF7(NH3)].NH3) and emerald-green crystals of tetraammine tetrafluorouranium(IV) ammonia (1:1; [UF4(NH3)4].NH3). [NH4]3[UF7(NH3)].NH3 features discrete [UF7(NH3)]3- anions with a coordination geometry similar to a bicapped trigonal prism, hitherto unknown for U(IV) compounds. The emerald-green [UF4(NH3)4].NH3 contains discrete tetraammine tetrafluorouranium(IV) [UF4(NH3)4] molecules. [UF4(NH3)4].NH3 is not stable at room temperature and forms pastel-green [UF4(NH3)4] as a powder that is surprisingly stable up to 147 degrees C. The compounds are the first structurally characterized ammonia complexes of uranium fluorides.

  4. First detection of ammonia (NH3) in the upper troposphere

    Höpfner, Michael; Volkamer, Rainer; Grabowski, Udo; Grutter de la Mora, Michel; Orphal, Johannes; Stiller, Gabriele; von Clarmann, Thomas


    Ammonia (NH3) is the major alkaline trace gas in the troposphere. Neutralization of atmospheric acids, like HNO3 and H2SO4, leads to formation of ammonium nitrate and ammonium sulfate aerosols. Further, there are indications that NH3 may enhance nucleation of sulfuric acid aerosols by stabilization of sulfuric acid clusters. By far the largest source of ammonia is agricultural food production. Major global emissions are located in S-E Asia as e.g. shown by satellite nadir observations. Besides its importance with respect to air quality issues, an increase of ammonia emissions in the 21st century might lead to a significant climate radiative impact through aerosol formation. In spite of its significance, there is a lack of observational information on the global distribution of NH3 in the mid- and upper troposphere. Observational evidence, however, would be important for testing e.g. model results on the fate of ammonia from its source regions on ground to altitudes up to the tropopause. In this contribution we will show, to our knowledge, the first unequivocal detection of ammonia in the upper troposphere. This result has been achieved through analysis of infrared limb-emission observations performed with the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) instrument on board the Envisat satellite from 2002-2012. On a global scale, enhanced values of ammonia have been measured in the upper tropospheric region influenced by the Asian monsoon. We will present a quantitative analysis of the retrieved concentrations of NH3 including an error assessment and further retrieval diagnostics. The results will be discussed with respect to the variability of NH3 locally within the Asian monsoon region's upper troposphere and at different years. Further, we will show comparisons between global distributions of NH3 from published model simulations and our observational dataset from MIPAS.

  5. Urban NH3 levels and sources in a Mediterranean environment

    Reche, Cristina; Viana, Mar; Pandolfi, Marco; Alastuey, Andrés; Moreno, Teresa; Amato, Fulvio; Ripoll, Anna; Querol, Xavier


    Urban NH3 concentrations were mapped in Barcelona (Spain) by means of passive samplers (dosimeters). Average NH3 levels were 9.5 μg m-3 in summer and 4.4 μg m-3 in winter, higher than those reported in other urban background sites in Europe, this being especially notable in summer. During this season, values were significantly higher at urban background than at traffic sites, probably indicating the impact of emissions from biological sources, such as humans, sewage systems and garbage containers. Thus, the volatilization of NH3 from the aerosol phase seems to be significant enough during summer to dominate over traffic emissions. Conversely, in winter levels were higher at traffic sites, suggesting a contribution from vehicle emissions. Indeed, NH3 levels decreased by 55% with increasing distance (50 m) to the direct emissions from traffic. A significant correlation between NH3 concentrations averaged for the different districts of the city and the number of waste containers per hm2 was also obtained, highlighting the necessity for controlling and reducing the emissions from garbage collection systems. The urban topography of the Barcelona historical city centre, characterised by narrow streets with a high population density, seemed to exert a strong influence on NH3 levels, with levels reaching up to 30 μg m-3 as a consequence of limited dispersion and ventilation conditions. The impact of the sewage system emissions was also detected with an increase of levels when measuring immediately above the source, even though further studies are required to evaluate the relevance of these emissions.

  6. Metal-Borohydride-Modified Zr(BH4 )4 ⋅8 NH3 : Low-Temperature Dehydrogenation Yielding Highly Pure Hydrogen.

    Huang, Jianmei; Ouyang, Liuzhang; Gu, Qinfen; Yu, Xuebin; Zhu, Min


    Due to its high hydrogen density (14.8 wt %) and low dehydrogenation peak temperature (130 °C), Zr(BH4 )4 ⋅8 NH3 is considered to be one of the most promising hydrogen-storage materials. To further decrease its dehydrogenation temperature and suppress its ammonia release, a strategy of introducing LiBH4 and Mg(BH4 )2 was applied to this system. Zr(BH4 )4 ⋅8 NH3 -4 LiBH4 and Zr(BH4 )4 ⋅8 NH3 -2 Mg(BH4 )2 composites showed main dehydrogenation peaks centered at 81 and 106 °C as well as high hydrogen purities of 99.3 and 99.8 mol % H2 , respectively. Isothermal measurements showed that 6.6 wt % (within 60 min) and 5.5 wt % (within 360 min) of hydrogen were released at 100 °C from Zr(BH4 )4 ⋅8 NH3 -4 LiBH4 and Zr(BH4 )4 ⋅8 NH3 -2 Mg(BH4 )2 , respectively. The lower dehydrogenation temperatures and improved hydrogen purities could be attributed to the formation of the diammoniate of diborane for Zr(BH4 )4 ⋅8 NH3 -4 LiBH4 , and the partial transfer of NH3 groups from Zr(BH4 )4 ⋅8 NH3 to Mg(BH4 )2 for Zr(BH4 )4 ⋅8 NH3 -2 Mg(BH4 )2 , which result in balanced numbers of BH4 and NH3 groups and a more active H(δ+) ⋅⋅⋅(-δ) H interaction. These advanced dehydrogenation properties make these two composites promising candidates as hydrogen-storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ammonia mobility in chabazite: insight into the diffusion component of the NH3-SCR process.

    O'Malley, Alexander J; Hitchcock, Iain; Sarwar, Misbah; Silverwood, Ian P; Hindocha, Sheena; Catlow, C Richard A; York, Andrew P E; Collier, P J


    The diffusion of ammonia in commercial NH3-SCR catalyst Cu-CHA was measured and compared with H-CHA using quasielastic neutron scattering (QENS) and molecular dynamics (MD) simulations to assess the effect of counterion presence on NH3 mobility in automotive emission control relevant zeolite catalysts. QENS experiments observed jump diffusion with a jump distance of 3 Å, giving similar self-diffusion coefficient measurements for both Cu- and H-CHA samples, in the range of ca. 5-10 × 10(-10) m(2) s(-1) over the measured temperature range. Self-diffusivities calculated by MD were within a factor of 6 of those measured experimentally at each temperature. The activation energies of diffusion were also similar for both studied systems: 3.7 and 4.4 kJ mol(-1) for the H- and Cu-chabazite respectively, suggesting that counterion presence has little impact on ammonia diffusivity on the timescale of the QENS experiment. An explanation is given by the MD simulations, which showed the strong coordination of NH3 with Cu(2+) counterions in the centre of the chabazite cage, shielding other molecules from interaction with the ion, and allowing for intercage diffusion through the 8-ring windows (consistent with the experimentally observed jump length) to carry on unhindered.

  8. Separation of H2S and NH3 gases from tofu waste water-based biogas using activated carbon adsorption

    Harihastuti, Nani; Purwanto, P.; Istadi, I.


    Research on the separation of H2S and NH3 gases from tofu waste water-based biogas has been conducted to improve the content of CH4 of biogas in order to increase calorific value. Biogas from tofu waste water contained many kinds of gases such as: CH4 of 53-64%, CO2 of 36-45%, H2S of 3,724-5,880 mg/Nm3, NH3 of 0.19-70.36 mg/Nm3, and H2O of 33,800-19,770,000 mg/Nm3. In fact, CO2, H2S, NH3, and moisture are impurities that have disturbance to human and environment, so that they are necessary to be separated from biogas. Particularly, H2S and NH3 have high toxicity to people, particularly the workers in the tofu industry. Therefore, separation of H2S and NH3 from biogas to increase calorific value is the focus of this research. The method used in this research is by adsorption of H2S and NH3 gases using activated carbon as adsorbent. It also used condensation as pretreatment to remove moisture content in biogas. Biogas was flowed to adsorption column (70 cm height and 9 cm diameter containing activated carbon as much as 500 g) so that the H2S and NH3 gases were adsorbed. This research was conducted by varying flow rate and flow time of biogas. From this experiment, it was found that the optimum adsorption conditions were flow rate of 3.5 l/min and 4 hours flow time. This condition could reach 99.95% adsorption efficiency of H2S from 5,879.50 mg/Nm3 to 0.67 mg/Nm3, and 74.96% adsorption efficiency of NH3 from 2.93 mg/Nm3 to 0.73 mg/Nm3. The concentration of CH4 increased from 63.88% to 76.24% in the biogas.

  9. Cs5Sn9(OH·4NH3

    Ute Friedrich


    Full Text Available The title compound, pentacaesium nonastannide hydroxide tetraammonia, crystallized from a solution of CsSnBi in liquid ammonia. The Sn94− unit forms a monocapped quadratic antiprism. The hydroxide ion is surrounded by five caesium cations, which form a distorted quadratic pyramidal polyhedron. A three-dimensional network is formed by Cs—Sn [3.8881 (7 Å to 4.5284 (7 Å] and Cs—NH3 [3.276 (7–3.636 (7 Å] contacts.

  10. Thermodynamic Analysis and Comparison on Low Temperature CO2-NH3 Cascade Refrigeration Cycle

    查世彤; 马一太; 申江; 李敏霞


    This paper is focused on the cascade refrigeration cycle using natural refrigerant CO2-NH3. The properties of refrigerants CO2 and NH3 are introduced and analyzed.CO2 has the advantage in low stage of cascade refrigeration cycle due to its good characteristics and properties. The thermodynamic analysis results of the CO2-NH3 cascade refrigeration cycle demonstrates that the cycle has an optimum condensation temperature of low stage and also has an optimum flow rate ratio.By comparing with the R13-R22 and NH3-NH3 cascade refrigeration cycles, the mass flow rate ratio of CO2-NH3 is larger than those of R13-R22 and NH3-NH3, the theoretical COP of CO2-NH3 cascade refrigeration cycle is larger than that of the R13-R22 cascade cycle and smaller than that of the NH3-NH3 cascade cycle. But the real COP of CO2-NH3 cascade cycle will be higher than those of R13-R22 and NH3-NH3 because the specific volume of CO2 at low temperature does not change much and its dynamic viscosity is also small.

  11. Application of Cavity-ring Down Spectroscopy to Quantify NH3 Fluxes from Fertilizer Application in the Midwestern U.S.

    Caldwell, J. A.; Sibble, D.; Heuer, M.; Johnson, E.; Rood, M. J.; Koloutsou-Vakakis, S.; Myles, L.


    Ammonia (NH3) emissions from managed agriculture in the Midwestern region of the U.S. contribute to increased levels of particulate matter in the atmosphere and detrimental ecological changes. To better understand the exchange of ammonia between the atmosphere and biosphere and identify the drivers of these processes, measurements of NH3 flux were conducted over a 200 m2 fertilized maize field in Illinois. A flux-gradient system paired with a cavity-ring down spectrometer measured fluxes from pre-cultivation through senescence of the crop. The use of a custom automated exchange mechanism allowed for continuous sampling, both above-canopy and in-canopy. Results indicated diurnal cycling of NH3 with higher concentrations in the early afternoon, although the pattern was not consistent. As expected, fertilization of the field at planting produced a marked increase in NH3 emission from the field.

  12. The interaction of NH 3 with ordered Pt surfaces

    Baetzold, R. C.; Apai, G.; Shustorovich, E.


    The interaction of ammonia with ordered Pt surface was studies by means of surface core-level photoemission and tight-binding-type calculations. Clean Pt surfaces have distinguishable surface and bulk components of the 4f 7/2 core level. The 4f 7/2 surface component is shifted to lower binding energy (-0.32 eV) than the bulk on the clean (111) surface, but in the presence of ammonia the surface peak is shifted to positive binding energy (0.7 eV). This result is unexpected, since it indicates a depletion of d-electron density on Pt atoms attached to NH 3, in contrast to common assumptions of NH 3 as a net donor. Thin-film calculations show this depletion in the form of rehybridization of sp with d electrons on the Pt atom. The mixing of p z orbitals with the d band leads to a dipole moment perpendicular to the surface, which in addition to the static dipole of ammonia is also a major factor in the decrease in work function upon chemisorption.

  13. Is CH3NH3PbI3 Polar?

    G, Sharada; Mahale, Pratibha; Kore, Bhushan P; Mukherjee, Somdutta; Pavan, Mysore S; De, Chandan; Ghara, Somnath; Sundaresan, A; Pandey, Anshu; Guru Row, Tayur N; Sarma, D D


    In view of the continued controversy concerning the polar/nonpolar nature of the hybrid perovskite system, CH3NH3PbI3, we report the first investigation of a time-resolved pump-probe measurement of the second harmonic generation efficiency as well as using its more traditional form as a sensitive probe of the absence/presence of the center of inversion in the system both in its excited and ground states, respectively. Our results clearly show that SHG efficiency, if nonzero, is below the limit of detection, strongly indicative of a nonpolar or centrosymmetric structure. Our results on the same samples, based on temperature dependent single crystal X-ray diffraction and P-E loop measurements, are entirely consistent with the above conclusion of a centrosymmetric structure for this compound in all three phases, namely the high temperature cubic phase, the intermediate temperature tetragonal phase and the low temperature orthorhombic phase. It is important to note that all our experimental probes are volume averaging and performed on bulk materials, suggesting that basic material properties of CH3NH3PbI3 are consistent with a centrosymmetric, nonpolar structure.

  14. A liquid-based eutectic system: LiBH4·NH 3-nNH3BH3 with high dehydrogenation capacity at moderate temperature

    Tan, Yingbin


    A novel eutectic hydrogen storage system, LiBH4·NH 3-nNH3BH3, which exists in a liquid state at room temperature, was synthesized through a simple mixing of LiBH 4·NH3 and NH3BH3 (AB). In the temperature range of 90-110 °C, the eutectic system showed significantly improved dehydrogenation properties compared to the neat AB and LiBH 4·NH3 alone. For example, in the case of the LiBH4·NH3/AB with a mole ratio of 1:3, over 8 wt.% hydrogen could be released at 90 °C within 4 h, while only 5 wt.% hydrogen released from the neat AB at the same conditions. Through a series of experiments it has been demonstrated that the hydrogen release of the new system is resulted from an interaction of AB and the NH3 group in the LiBH4·NH3, in which LiBH4 works as a carrier of ammonia and plays a crucial role in promoting the interaction between the NH3 group and AB. The enhanced dehydrogenation of LiBH 4·NH3/AB may result from the polar liquid state reaction environments and the initially promoted formation of the diammoniate of diborane, which will facilitate the B-H⋯H-N interaction between LiBH4·NH3 and AB. Kinetics analysis revealed that the rate-controlling steps of the dehydrogenation process are three-dimensional diffusion of hydrogen at temperatures ranging from 90 to 110 °C. This journal is © The Royal Society of Chemistry.

  15. [NH3, N2O, CH4 and CO2 emissions from growing process of caged broilers].

    Zhou, Zhong-Kai; Zhu, Zhi-Ping; Dong, Hong-Min; Chen, Yong-Xing; Shang, Bin


    To obtain Ammonia and greenhouse gas (GHG) emission factors of caged broilers, ammonia (NH3), methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) emissions of broilers aged 0 d to 42 days were monitored in caged broilers production systems located in Shandong province. Gas concentrations of incoming and exhaust air streams were measured by using INNOVA 1312 multi-gas monitor with multi-channel samplers. Building ventilation rates were determined by on site FANS (Fan Assessment Numeration System) measurement systems. The NH3 emission factors showed a trend of increase at the beginning and then decreased with the broiler ages. The NH3 emission rates were 8.5 to 342.1 mg x (d x bird)(-1) and the average daily emission rate was 137.9 mg x (d x bird)(-1) [48.6 g x (d x AU)(-1)] over the 42-d period. The GHGs emission rates were 19.5-351.9 mg x (d x bird)(-1) with an average of 154.5 mg x (d x bird)(-1) [54.4 g x (d x AU)(-1)] for CH4, and 2.2- 152.9 g x (d x bird)(-10 with an average of 65.9 g x (d x bird)(-1) [23.2 kg x (d x AU)(-1)] for CO2. No emission of N2O was observed. The CH4 and CO2 emission rates increased with the increase of broilers ages. The total NH3 emission over the 42 d growing period averaged (5.65 +/- 1.02) g x (bird x life cycle)(-1). The NH3 emission contribution in different growth phase to the total emission were 33.6% in growth phase 1 (0-17 day, GP1), 36.4% in GP2 (18-27 days), and 29.9% in GP3 (28-42 days), respectively. The NH3 emission in GP2 was significantly higher than emission in GP1 and GP3. CH4 and CO2 cumulative emission rates were (6.30 +/- 0.16) g x (bird(-1) x life cycle)(-1) and (2.68 +/- 0.18) kg x (bird x life cycle)(-1), respectively. The cumulative emission rates of CH4 and CO2 in GP3 were significantly higher than emission rates in GP2 and in GP1, accounting for 50% of total emissions. The results of this study could provide the data support for mitigation of gas emission from broilers production.

  16. Emissions of NO and NH3 from a typical vegetable-land soil after the application of chemical N fertilizers in the Pearl River Delta.

    Dejun Li

    Full Text Available Cropland soil is an important source of atmospheric nitric oxide (NO and ammonia (NH3. Chinese croplands are characterized by intensive management, but limited information is available with regard to NO emissions from croplands in China and NH3 emissions in south China. In this study, a mesocosm experiment was conducted to measure NO and NH3 emissions from a typical vegetable-land soil in the Pearl River Delta following the applications of 150 kg N ha(-1 as urea, ammonium nitrate (AN and ammonium bicarbonate (ABC, respectively. Over the sampling period after fertilization (72 days for NO and 39 days for NH3, mean NO fluxes (± standard error of three replicates in the control and urea, AN and ABC fertilized mesocosms were 10.9±0.9, 73.1±2.9, 63.9±1.8 and 66.0±4.0 ng N m(-2 s(-1, respectively; mean NH3 fluxes were 8.9±0.2, 493.6±4.4, 144.8±0.1 and 684.7±8.4 ng N m(-2 s(-1, respectively. The fertilizer-induced NO emission factors for urea, AN and ABC were 2.6±0.1%, 2.2±0.1% and 2.3±0.2%, respectively. The fertilizer-induced NH3 emission factors for the three fertilizers were 10.9±0.2%, 3.1±0.1% and 15.2±0.4%, respectively. From the perspective of air quality protection, it would be better to increase the proportion of AN application due to its lower emission factors for both NO and NH3.

  17. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications.

    Umari, Paolo; Mosconi, Edoardo; De Angelis, Filippo


    Hybrid AMX3 perovskites (A = Cs, CH3NH3; M = Sn, Pb; X = halide) have revolutionized the scenario of emerging photovoltaic technologies, with very recent results demonstrating 15% efficient solar cells. The CH3NH3PbI3/MAPb(I(1-x)Cl(x))3 perovskites have dominated the field, while the similar CH3NH3SnI3 has not been exploited for photovoltaic applications. Replacement of Pb by Sn would facilitate the large uptake of perovskite-based photovoltaics. Despite the extremely fast progress, the materials electronic properties which are key to the photovoltaic performance are relatively little understood. Density Functional Theory electronic structure methods have so far delivered an unbalanced description of Pb- and Sn-based perovskites. Here we develop an effective GW method incorporating spin-orbit coupling which allows us to accurately model the electronic, optical and transport properties of CH3NH3SnI3 and CH3NH3PbI3, opening the way to new materials design. The different CH3NH3SnI3 and CH3NH3PbI3 electronic properties are discussed in light of their exploitation for solar cells, and found to be dominantly due to relativistic effects. These effects stabilize the CH3NH3PbI3 material towards oxidation, by inducing a deeper valence band edge. Relativistic effects, however, also increase the material band-gap compared to CH3NH3SnI3, due to the valence band energy downshift (~0.7 eV) being only partly compensated by the conduction band downshift (~0.2 eV).

  18. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications

    Umari, Paolo; Mosconi, Edoardo; de Angelis, Filippo


    Hybrid AMX3 perovskites (A = Cs, CH3NH3; M = Sn, Pb; X = halide) have revolutionized the scenario of emerging photovoltaic technologies, with very recent results demonstrating 15% efficient solar cells. The CH3NH3PbI3/MAPb(I1-xClx)3 perovskites have dominated the field, while the similar CH3NH3SnI3 has not been exploited for photovoltaic applications. Replacement of Pb by Sn would facilitate the large uptake of perovskite-based photovoltaics. Despite the extremely fast progress, the materials electronic properties which are key to the photovoltaic performance are relatively little understood. Density Functional Theory electronic structure methods have so far delivered an unbalanced description of Pb- and Sn-based perovskites. Here we develop an effective GW method incorporating spin-orbit coupling which allows us to accurately model the electronic, optical and transport properties of CH3NH3SnI3 and CH3NH3PbI3, opening the way to new materials design. The different CH3NH3SnI3 and CH3NH3PbI3 electronic properties are discussed in light of their exploitation for solar cells, and found to be dominantly due to relativistic effects. These effects stabilize the CH3NH3PbI3 material towards oxidation, by inducing a deeper valence band edge. Relativistic effects, however, also increase the material band-gap compared to CH3NH3SnI3, due to the valence band energy downshift (~0.7 eV) being only partly compensated by the conduction band downshift (~0.2 eV).

  19. Investigation of Structural and Electronic Properties of CH3NH3PbI3 Stabilized by Varying Concentrations of Poly(Methyl Methacrylate (PMMA

    Celline Awino


    Full Text Available Studies have shown that perovskites have a high potential of outdoing silicon based solar cells in terms of solar energy conversion, but their rate of degradation is also high. This study reports on improvement on the stability of CH3NH3PbI3 by passivating it with polymethylmethacrylate (PMMA. Structural and electronic properties of CH3NH3PbI3 stabilized by polymethylmethacrylate (PMMA were investigated by varying concentrations of PMMA in the polymer solutions. Stability tests were performed over a period of time using modulated surface photovoltage (SPV spectroscopy, X-ray diffraction (XRD, and photoluminescence (PL measurements. The XRD patterns confirm the tetragonal structure of the deposited CH3NH3PbI3 for every concentration of PMMA. Furthermore, CH3NH3PbI3 coated with 40 mg/mL of PMMA did not show any impurity phase even after storage in air for 43 days. The Tauc gap (ETauc determined on the basis of the in-phase SPV spectra was found in the range from 1.585 to 1.62 eV for the samples stored during initial days, but shifted towards lower energies as the storage time increased. This can be proposed to be due to different chemical reactions between CH3NH3PbI3/PMMA interfaces and air. PL intensity increased with increasing concentration of PMMA except for the perovskite coated with 40 mg/mL of PMMA. PL quenching in the perovskite coated with 40 mg/mL of PMMA can be interpreted as fast electron transfer towards the substrate in the sample. This study shows that, with an optimum concentration of PMMA coating on CH3NH3PbI3, the lifetime and hence stability on electrical and structural behavior of CH3NH3PbI3 is improved.

  20. Vibrations and reorientations of NH3 molecules in [Mn(NH3)6](ClO4)2 studied by infrared spectroscopy and theoretical (DFT) calculations.

    Hetmańczyk, Joanna; Hetmańczyk, Łukasz; Migdał-Mikuli, Anna; Mikuli, Edward


    The vibrational and reorientational motions of NH3 ligands and ClO4(-) anions were investigated by Fourier transform middle-infrared spectroscopy (FT-IR) in the high- and low-temperature phases of [Mn(NH3)6](ClO4)2. The temperature dependencies of full width at half maximum (FWHM) of the infrared bands at: 591 and 3385cm(-1), associated with: ρr(NH3) and νas(N-H) modes, respectively, indicate that there exist fast (correlation times τR≈10(-12)-10(-13)s) reorientational motions of NH3 ligands, with a mean values of activation energies: 7.8 and 4.5kJmol(-1), in the phase I and II, respectively. These reorientational motions of NH3 ligands are only slightly disturbed in the phase transition region and do not significantly contribute to the phase transition mechanism. Fourier transform far-infrared and middle-infrared spectra with decreasing of temperature indicated characteristic changes at the vicinity of PT at TC(c)=137.6K (on cooling), which suggested lowering of the crystal structure symmetry. Infrared spectra of [Mn(NH3)6](ClO4)2 were recorded and interpreted by comparison with respective theoretical spectra calculated using DFT method (B3LYP functional, LANL2DZ ECP basis set (on Mn atom) and 6-311+G(d,p) basis set (on H, N, Cl, O atoms) for the isolated equilibrium two models (Model 1 - separate isolated [Mn(NH3)6](2+) cation and ClO4(-) anion and Model 2 - [Mn(NH3)6(ClO4)2] complex system). Calculated optical spectra show a good agreement with the experimental infrared spectra (FT-FIR and FT-MIR) for the both models. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Investigation on thermal evaporated CH3NH3PbI3 thin films

    Youzhen Li


    Full Text Available CH3NH3I, PbI2 and CH3NH3PbI3 films were fabricated by evaporation and characterized with X-ray Photoelectron Spectroscopy (XPS and X-ray diffraction (XRD. The XPS results indicate that the PbI2 and CH3NH3PbI3 films are more uniform and stable than the CH3NH3I film. The atomic ratio of the CH3NH3I, PbI2 and CH3NH3PbI3 films are C:N:I=1.00:1.01:0.70, Pb:I= 1.00:1.91 and C: N: Pb: I = 1.29:1.07:1.00:2.94, respectively. The atomic ratio of CH3NH3PbI3 is very close to that of the ideal perovskite. Small angle x-ray diffraction results demonstrate that the as evaporated CH3NH3PbI3 film is crystalline. The valence band maximum (VBM and work function (WF of the CH3NH3PbI3 film are about 0.85eV and 4.86eV, respectively.

  2. Determination of NH3 emissions from confined areas using backward Lagrangian stochastic dispersion modelling

    Häni, Christoph; Neftel, Albrecht; Sintermann, Jörg


    Employing backward Lagrangian stochastic (bLS) dispersion modelling to infer emission strengths from confined areas using trace gas concentration measurements is a convenient way of emission estimation from field measurements (see Wilson et al., 2012 and references therein). The freely available software 'WindTrax' (, providing a graphical interface for the application of a bLS model, has spurred its utilisation in the past decade. Investigations include mainly methane (CH4) and ammonia (NH3) emissions based on experimental plots with dimensions between approximately 102 to 104 m2. Whereas for CH4 deposition processes can be neglected, NH3 has a strong affinity to any surface and is therefore efficiently deposited. Neglecting dry deposition will underestimate NH3 emissions, e.g. with a standard WindTrax approach. We extended the bLS model described in Flesch et al. (2004) by a dry deposition process using a simple, one-directional deposition velocity approach. At every contact of the model trajectories with ground level (here at the height of the roughness length Zo), deposition is modelled as: Fdep = vdep × CT raj (1) where vdep represents deposition velocity, and CTraj is the actual concentration of the specific trajectory at contact. A convenient way to model vdep is given by a resistances approach. The deposition velocity is modelled as the inverse of the sum of a series of different resistances to deposition. The aerodynamic resistance is already implicitly included in the bLS model, thus vdep is given as: v = ---1--- dep Rb + Rc (2) Rb and Rc represent resistances of different model layers between Zo and the surfaces where deposition take place. With this approach we analysed a dataset from measurements with an artificial NH3 source that consisted of 36 individual orifices mimicking a circular area source with a radius of 10 m. The use of three open-path miniDOAS (Sintermann et al., submitted to AMT) systems allowed to measure

  3. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用∗%Effects of CH3NH3I on fabricating CH3NH3PbI(3-x)Clx p erovskite solar cells

    夏祥; 刘喜哲


    Perovskite solar cell, which is prepared by using the organic-inorganic hybrid halide CH3NH3PbX3 (X = I, Cl and Br), receives widespread attention because of its solution processability and high photon-to-electron conversion effi-ciency. The highest reported photon-to-electron conversion efficiency is that using CH3NH3PbI(3−x)Clx as an absorber. It is reported that the diffusion length is greater than 1 micrometer in this mixed halide perovskite. The method most commonly used in preparing CH3NH3PbI(3−x)Clx film is the one-step pyrolysis method, which has a complex reaction mechanism. In this paper, we review the work about CH3NH3PbI(3−x)Clx perovskite, in which emphasis is put on the importance of the preparation process, and analyze the role of CH3NH3I in the one-step pyrolysis method for fabricating the CH3NH3PbI(3−x)Clxperovskite layer. Scanning electron microscope images show that CH3NH3I can improve the cov-erage and crystallinity of the perovskite layer for precursors in low CH3NH3I concentrations (CH3NH3I/PbCl2=2.0 and 2.5). For precursors in high CH3NH3I concentrations (CH3NH3I/PbCl2=2.75 and 3), this change is not obvious. X-ray photoelectron spectroscopy confirms the change of coverage, and indicates that the content of Cl in CH3NH3PbI(3−x)Clx will be less than 5% for precursors with high CH3NH3I concentrations (CH3NH3I/PbCl2 >2.5). Perovskite solar cells based on CH3NH3PbI(3−x)Clx with different Cl dopant concentrations are studied by photoelectric measurements. Pho-tocurrent density-photovoltage curves show that the performance of the devices increases with the increase of CH3NH3I concentration in precursors. And the incident-photon-to-current conversion efficiency (IPCE) measurements indicate that the devices fabricated by using precursors with high CH3NH3I concentration have a relatively high external quan-tum efficiency. These results imply that only CH3NH3PbI(3−x)Clx with very low Cl dopant concentration will be effective material for

  4. Effect of activated NH3 on SO2 removal by pulse coronadischarge plasma in flue gas


    NH3-activated electrode is placed in front of the electrode system of pulse corona discharge plasma. There are nozzles on the electrode. Positive DC high-voltage is applied on the nozzle-plate gap. NH3 is injected into the reactor through nozzles, at the same time, activated and treated. Tbese nozzles were proposed in order to make the additional gas pass through corona discharge regions near the tip of nozzles and increase the mount of radicals. The aim is to improve the De-SO2 efficiency by pulse discharge plasma in flue gas. The following topics are investigated and discussed in the paper: De-SO2 effect of single NH3-activated electrode, De-SO2 effect of activated NH3, the relationship between stoichiometric ratio of NH3 to SO2 and De-SO2 effect of activated NH3, mechanism of activated NH3 De-SO2 effect. The experimental result indicates that the De-SO2 efficiency can be increased 5 %-10 96 by activated NH3 on the original base of De-SO2 efficiency.

  5. Role of NH3 in the Electron-Induced Reactions of Adsorbed and Solid Cisplatin

    Warneke, Jonas; Rohdenburg, Markus; Zhang, Yucheng; Orzagh, Juraj; Vaz, Alfredo; Utke, Ivo; De Hosson, Jeff Th M.; van Dorp, Willem F.; Swiderek, Petra


    The electron-induced decomposition of cisplatin (cis-Pt(NH3)(2)Cl-2) was investigated to reveal if ammine (NH3) ligands have a favorable effect on the purity of deposits produced from metal-containing precursor molecules by focused electron beam induced deposition (FEBID). Scanning electron microsco

  6. Rotational spectrum of the NH3–He van der Waals complex

    Surin L.


    Full Text Available The interaction between ammonia and helium has attracted considerable interest over many years, partly because of the observation of interstellar ammonia. The rate coefficients of NH3–He scattering are an important ingredient for numerical modeling of astrochemical environments. Another, though quite different application in which the NH3–He interaction can play an important role is the doping of helium clusters with NH3 molecules to perform high-resolution spectroscopy. Such experiments are directed on the detection of non-classical response of molecular rotation in helium clusters addressing fundamental questions related to the microscopic nature of superfluidity. High-resolution spectroscopy on the NH3–He complex is an important tool for increasing our understanding of intermolecular forces between NH3 and He.

  7. Rotational spectrum of the NH3-He van der Waals complex

    Surin, L.; Schnell, M.


    The interaction between ammonia and helium has attracted considerable interest over many years, partly because of the observation of interstellar ammonia. The rate coefficients of NH3-He scattering are an important ingredient for numerical modeling of astrochemical environments. Another, though quite different application in which the NH3-He interaction can play an important role is the doping of helium clusters with NH3 molecules to perform high-resolution spectroscopy. Such experiments are directed on the detection of non-classical response of molecular rotation in helium clusters addressing fundamental questions related to the microscopic nature of superfluidity. High-resolution spectroscopy on the NH3-He complex is an important tool for increasing our understanding of intermolecular forces between NH3 and He.

  8. A comparison of overall survival with 40 and 50mg/m(2) pegylated liposomal doxorubicin treatment in patients with recurrent epithelial ovarian cancer: Propensity score-matched analysis of real-world data.

    Nakayama, Masahiko; Kobayashi, Hisanori; Takahara, Tomihiro; Nishimura, Yukiko; Fukushima, Koji; Yoshizawa, Kazutake


    In clinical practice, 40mg/m(2) of pegylated liposomal doxorubicin (PLD40) has been used as an initial dosage for treating recurrent epithelial ovarian cancer (OC) instead of the recommended dose of 50mg/m(2) (PLD50). However, no robust evidence is available to support the use of PLD40. This post-hoc study aimed to compare the efficacy and safety of initial PLD dosages in propensity score (P-score)-matched dataset. The data source was a PLD postmarketing surveillance dataset (n=2189) conducted in Japan. Eligibility criteria for the present study were as follows: recurrent OC, history of chemotherapy, and treatment with PLD monotherapy at a dosage between 35.5 and 54.4mg/m(2). Overall survival (OS) was compared between PLD50- and PLD40-treated groups using the log-rank test. Incidences of palmar-plantar erythrodysesthesia (PPE) and stomatitis were also compared between the groups. Overall, 503 matched pairs were generated using P-score analysis. The median survival time with PLD50 and PLD40 was 383 and 350days, respectively, with a hazard ratio of 1.10 (95% confidence interval, 0.98-1.26; p=0.211), although the difference was not statistically significant in the P-score-matched dataset. However, the incidence and severity of PPE and stomatitis were significantly lower with PLD40. Our study showed that the efficacy of PLD did not differ based on initial dosages, but the risk of adverse events was reduced with PLD40. Considering the balance between patient benefits and risks, our results support the use of PLD40 in clinical practice. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Synthesis and Characterization of Layered Perovskite-type Organic-inorganic Hybrids (R-NH3)2(CH3NH3)Pb2I7

    GUO Liling; SUN Zhang; ZHAO Guanghui; LI Xing; LIU Hanxing


    Layered organic-inorgamc hybrids containing bilayer perovsikte (R-NH3)2(CH3NH3)Pb2I7(where R=C12H25,C6H5C2H4) were synthesized by reactions in solution.The influences of the solvents and the reactant ratio on the structures of the products were investigated.The structures and the properties of the hybrids were characterized using X-ray diffraction (XRD) and ultraviolet and visible (UV) adsorption spectra.For comparing with the bilayer perovskite hybrids in structure and band gap magnitude,the hybrids containing monolayer perovskite (R-NH3)2PbI4 were also synthesized and characterized.The results demonstrate that the thickness of inorganic layer has obvious effect on the tunneling magnitude of the band gap but the organic part can be micro actuator of band gap.

  10. Perovskite CH3NH3PbI3 crystals and films. Synthesis and characterization

    Semenova, O. I.; Yudanova, E. S.; Yeryukov, N. A.; Zhivodkov, Y. A.; Shamirzaev, T. S.; Maximovskiy, E. A.; Gromilov, S. A.; Troitskaia, I. B.


    Synthesis of organometal halide perovskite CH3NH3PbI3 has received much attention recently because of promising photosensitive properties usable for solid state solar cell (SSSC). Here the crystals of tetragonal phase (I4/mcm, a =8.8743 Å, c =12.6708 Å) of CH3NH3PbI3 were prepared. Formation of the CH3NH3PbI3 crystals was controlled by the SEM, EDS, XRD and Raman spectroscopy. Optical characteristics of the crystals were obtained using PL spectrometry and spectral ellipsometry methods. PL spectra of orthorhombic phase of CH3NH3PbI3 crystals were recorded the first time. Taking into account the practice use, the CH3NH3PbI3 films are obtained via the sol-gel method with ;spin-on; coating of CH3NH3PbI3 sol. The films are 500 nm in thickness and exhibit an openwork structure. Such a structure is optimal for SSSC construction because it increases the surface contact area between CH3NH3PbI3 and p-conductor.

  11. Photosynthesis of Quercus suber is affected by atmospheric NH3 generated by multifunctional agrosystems.

    Pintó-Marijuan, Marta; Da Silva, Anabela Bernardes; Flexas, Jaume; Dias, Teresa; Zarrouk, Olfa; Martins-Loução, Maria Amélia; Chaves, Maria Manuela; Cruz, Cristina


    Montados are evergreen oak woodlands dominated by Quercus species, which are considered to be key to biodiversity conservation and ecosystem services. This ecosystem is often used for cattle breeding in most regions of the Iberian Peninsula, which causes plants to receive extra nitrogen as ammonia (NH(3)) through the atmosphere. The effect of this atmospheric NH(3) (NH(3atm)) on ecosystems is still under discussion. This study aimed to evaluate the effects of an NH(3atm) concentration gradient downwind of a cattle barn in a Montado area. Leaves from the selected Quercus suber L. trees along the gradient showed a clear influence of the NH(3) on δ(13)C, as a consequence of a strong limitation on the photosynthetic machinery by a reduction of both stomatal and mesophyll conductance. A detailed study of the impact of NH(3atm) on the photosynthetic performance of Q. suber trees is presented, and new mechanisms by which NH(3) affects photosynthesis at the leaf level are suggested.

  12. Towards validation of ammonia (NH3 measurements from the IASI satellite

    M. Van Damme


    Full Text Available Limited availability of ammonia (NH3 observations is currently a barrier for effective monitoring of the nitrogen cycle. It prevents a full understanding of the atmospheric processes in which this trace gas is involved and therefore impedes determining its related budgets. Since the end of 2007, the Infrared Atmospheric Sounding Interferometer (IASI satellite has been observing NH3 from space at a high spatiotemporal resolution. This valuable data set, already used by models, still needs validation. We present here a first attempt to validate IASI-NH3 measurements using existing independent ground-based and airborne data sets. The yearly distributions reveal similar patterns between ground-based and space-borne observations and highlight the scarcity of local NH3 measurements as well as their spatial heterogeneity and lack of representativity. By comparison with monthly resolved data sets in Europe, China and Africa, we show that IASI-NH3 observations are in fair agreement but that they are characterized by a smaller variation in concentrations. The use of hourly and airborne data sets to compare with IASI individual observations allows to investigate the impact of averaging as well as the representativity of independent observations for the satellite footprint. The importance of considering the latter and the added value of densely located airborne measurements at various altitudes to validate IASI-NH3 columns are discussed. Perspectives and guidelines for future validation work on NH3 satellite observations are presented.

  13. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Vigouroux, Corinne; Smale, Dan; Conway, Stephanie; Toon, Geoffrey C.; Jones, Nicholas; Nussbaumer, Eric; Warneke, Thorsten; Petri, Christof; Clarisse, Lieven; Clerbaux, Cathy; Hermans, Christian; Lutsch, Erik; Strong, Kim; Hannigan, James W.; Nakajima, Hideaki; Morino, Isamu; Herrera, Beatriz; Stremme, Wolfgang; Grutter, Michel; Schaap, Martijn; Wichink Kruit, Roy J.; Notholt, Justus; Coheur, Pierre-F.; Erisman, Jan Willem


    Global distributions of atmospheric ammonia (NH3) measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI) contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-)daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR) observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC) stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547) give a mean relative difference of -32.4 ± (56.3) %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (-50 to +100 %).

  14. Validation of NH3 satellite observations by ground-based FTIR measurements

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Shephard, Mark; Cady-Pereira, Karen; Capps, Shannon; Clarisse, Lieven; Coheur, Pierre; Erisman, Jan Willem


    Global emissions of reactive nitrogen have been increasing to an unprecedented level due to human activities and are estimated to be a factor four larger than pre-industrial levels. Concentration levels of NOx are declining, but ammonia (NH3) levels are increasing around the globe. While NH3 at its current concentrations poses significant threats to the environment and human health, relatively little is known about the total budget and global distribution. Surface observations are sparse and mainly available for north-western Europe, the United States and China and are limited by the high costs and poor temporal and spatial resolution. Since the lifetime of atmospheric NH3 is short, on the order of hours to a few days, due to efficient deposition and fast conversion to particulate matter, the existing surface measurements are not sufficient to estimate global concentrations. Advanced space-based IR-sounders such as the Tropospheric Emission Spectrometer (TES), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) enable global observations of atmospheric NH3 that help overcome some of the limitations of surface observations. However, the satellite NH3 retrievals are complex requiring extensive validation. Presently there have only been a few dedicated satellite NH3 validation campaigns performed with limited spatial, vertical or temporal coverage. Recently a retrieval methodology was developed for ground-based Fourier Transform Infrared Spectroscopy (FTIR) instruments to obtain vertical concentration profiles of NH3. Here we show the applicability of retrieved columns from nine globally distributed stations with a range of NH3 pollution levels to validate satellite NH3 products.

  15. Evaluation study of the suitability of instrumentation to measure ambient NH3 concentrations under field conditions

    Twigg, Marsailidh


    The uncertainties in emissions of ammonia (NH3) in Europe are large, partially due to the difficulty in monitoring of ambient concentrations due to its sticky nature. In the European Monitoring and Evaluation Program (EMEP) the current recommended guidelines to measure NH3 are by coated annular denuders with offline analysis. This method, however, is no longer used in most European countries and each one has taken a different strategy to monitor atmospheric ammonia due to the increase of commercial NH3 monitoring instrumentation available over the last 20 years. In June 2014, a 3 year project funded under the European Metrology Research Programme, "Metrology for Ammonia in Ambient Air" (MetNH3), started with the aim to develop metrological traceability for the measurement of NH3 in air from primary gas mixtures and instrumental standards to field application. This study presents the results from the field intercomparison (15 instruments) which was held in South East Scotland in August 2016 over an intensively managed grassland. The study compared active sampling methods to a meteorological traceable method which was developed during the project with the aim to produce a series of guidelines for ambient NH3 measurements. Preliminary results highlight both the importance of inlets and management of relative humidity in the measurement of ambient NH3 and of the requirement to carry out frequent intercomparison of NH3 instrumentation. Overall, it would be recommended from this study that a WMO-GAW world centre for NH3 would be established and support integration of standards into both routine and research measurements.

  16. Effects of M2+ (M = Ca, Sr, and Ba Addition on Crystallization and Microstructure of SiO2-MgO-Al2O3-B2O3-K2O-F Glass

    Mrinmoy Garai


    Full Text Available In understanding the effect of K+ substitution by M2+ (M = Ca, Sr, and Ba on crystallization and microstructural properties of boroaluminosilicate glass system, the SiO2-MgO-Al2O3-B2O3-MgF2-K2O-Li2O-AlPO4 glasses were prepared by single-step melt-quenching at 1500°C. Density of base glass (2.64 g·cm−3 is found to be decreased in presence of CaO and SrO. Tg is increased by 5–10°C and Td decreased by 13–20°C on addition of M2+. The variation of Tg, Td and decrease of thermal expansion (CTE from 7.55 to 6.67–6.97 (×10−6/K, at 50–500°C in substituting K+ by M2+ are attributed to the higher field-strength of Ca2+, Sr2+, and Ba2+. Opaque mica glass-ceramics were derived from the transparent boroaluminosilicate glasses by controlled heat treatment at 1050°C (duration = 4 h; and the predominant crystalline phase was identified as fluorophlogopite (KMg3AlSi3O10F2 by XRD and FTIR study. Glass-ceramic microstructure reveals that the platelike mica flake crystals predominate in presence of K2O and CaO but restructured to smaller droplet like spherical shaped mica on addition of SrO and BaO. Wide range of CTE values (9.54–13.38 × 10−6/K at 50–800°C are obtained for such glass-ceramics. Having higher CTE value after crystallization, the CaO containing SiO2-MgO-Al2O3-B2O3-MgF2-K2O-Li2O-AlPO4 glass can be useful as SOFC sealing material.

  17. Theoretical Study of Electron Transfer in Bimolecular System of NH3 and H2O


    Mulliken, NPA, MK and CHelpG population analyses have been accomplished at the level of MP2/6-31G(d,p) for the title system. The variations of four kinds of charges on NH3 with intermolecular distance infer that electron transfers from NH3 to H2O. MK and CHelpG population analyses indicate more electron transfer than Mulliken and NPA ones. The atomic charges resulted from MK and CHelpG schemes infer that electron transfers from N in NH3 to H in H2O, which confirms that this bimolecular complex possesses linear structure as H3N…HOH.

  18. Removing NH3-N from sludge pressure filtration liquid by MAP process with waste phosphoric acid as phosphorus source%以废磷酸为磷源的MAP法去除污泥压滤液中的氨氮

    钟志成; 王德汉; 邓加曦


    Using MAP process with waste phosphoric acid as phosphorus source to treat NH3-N in sludge pressure filtration liquid, the effect of reaction time, stirring mode, pH value, mass ratio of nitrogen, phosphorus and magnesium and initial NH3-N concentration on NH3-N removal and residual PO43-concentration were inves-tigated, and then, the optimal reaction condition was determined. The results of the test showed that, when the mass concentrations of NH3-N and PO43-were 700.42 and 0.33 mg/L respectively, under normal temperature, the optimal reaction condition was: the pH value was 9, n(NH4+) ﹕n(PO43-) ﹕ n(Mg2+) =1 ﹕ 1: 1, the aeration stir-ring time was 10 min. Under the above condition, the removal rate of NH3-N reached 84.9%, the mass concentra-tions of NH3-N and residual PO43-in the effluent water were 105.69 and 6.49 mg/L respectively. It could draw a conclusion that, MAP process with waste phosphoric acid as phosphorus source had a good removing performance on NH3-N and could be used for pretreatment of high concentration NH3-N wastewater.%利用废磷酸作为MAP法的磷源处理污泥压滤液厌氧出水中的NH3-N,考察了反应时间、搅拌方式、pH值、氮磷镁物质的量之比、初始NH3-N浓度对NH3-N去除效果和残余PO43-浓度的影响,并确定了最佳反应条件。试验结果表明,当原水NH3-N的质量浓度为700.42 mg/L, PO43-的质量浓度为0.33 mg/L时,常温下,最佳反应条件为pH值为9, n(NH4+)﹕n(PO43-)﹕n(Mg2+)=1﹕1﹕1,曝气搅拌反应10 min。此时, NH3-N的去除率可达84.91%,出水NH3-N的质量浓度为105.69 mg/L,残余PO43-的质量浓度为6.49 mg/L。以废磷酸作为沉淀剂磷源的MAP法,具有较好的NH3-N处理效果,可用于高浓度NH3-N废水的预处理。

  19. Use of NH3 fuel to achieve deep greenhouse gas reductions from US transportation

    Doo Won Kang


    The current study demonstrates that NH3-fueled vehicles could be a promising near-term alternative for LDV because of its significant contribution in reducing CO2 emissions compared with vehicles of carbon based fuels.

  20. A study of the adsorption of NH 3 and SO 2 on leaf surfaces

    Van Hove, L. W. A.; Adema, E. H.; Vredenberg, W. J.; Pieters, G. A.

    The adsorption of NH 3 and SO 2 on the external leaf surface of bean ( Phaseolus vulgaris L.) and poplar ( Populus euramericana L.) was studied. The adsorbed quantities increased strongly with increasing air humidity, indicating that water on the leaf surface plays a major role in the interaction of these gases with the leaf surface. On the other hand temperature in the range between 15 and 26°C had no significant influence. The adsorbed quantities of NH 3 at a specific air humidity appeared to be proportional to NH 3 concentration. This proportionality was less clear for SO 2. The affinity of SO 2 for the leaf surface was found to be approximately twice that of NH 3. A mixture of these gases in the air mutually stimulated their adsorption on the leaf. No significant desorption or uptake of these gases through the cuticle could be detected, indicating that the bulk of the adsorbed gases remains associated with the cuticle.

  1. Product energy distributions from the 193 nm photodissociation of NH 3

    Koplitz, B.; Xu, Z.; Wittig, C.


    Product energy distributions are reported for 193 nm NH 3 photodissociation. Velocity-aligned Doppler spectroscopy on the H-atom fragment reveals a "cold" kinetic energy distribution, indicating a high degree of NH 2 internal excitation. Data are compared with the trajectory calculations of Rice, Raff and Thompson for NH 3(X˜ 1A 1) dissociation, and the reaction mechanism of Ashfold, Bennett and Dixon is discussed.

  2. Porphyrin molecules boost the sensitivity of epitaxial graphene for NH3 detection

    Iezhokin, I.; den Boer, D.; Offermans, P.; Ridene, M.; Elemans, J. A. A. W.; Adriaans, G. P.; Flipse, C. F. J.


    The sensitivity of quasi-free standing epitaxial graphene for NH3 detection is strongly enhanced by chemical functionalization with cobalt porphyrins resulting in a detection limit well below 100 ppb. Hybridization between NH3 and cobalt porphyrins induces a charge transfer to graphene and results in a shift of the graphene Fermi-level as detected by Hall measurements and theoretically explained by electronic structure calculations.

  3. Molecular observations of HH34 - Does NH3 accurately trace dense molecular gas near young stars?

    Davis, C. J.; Dent, W. R. F.


    Single-dish observations in HCO(+) J = 4-3 are presented of the regions around HH34 and around HH34IRS. The former is one of the best examples of the association between Herbig-Haro shocks, optical jets, and young stellar objects. The HCO(+) and CS maps peak toward the outflow source HH34IRS and suggest the presence of a hot dense molecular core. The NH3 is confined to a peak about 4-0 arcsec east of HH34IRS and to a ridge which extends in a north-south direction and peaks about 20 arcsec south of the end of the optical jet. Thus, the NH3 observations do not trace the underlying gas density and temperature in this outflow source. Toward HH34IRS the NH3 column density is less by a factor of about 10 than toward the NH3 peak position is the HH34 region, providing evidence that the NH3 is underabundant towards the central exciting stars. This underabundance may explain the toroidal structures often seen in NH3 observations of other outflow sources.

  4. Optical monitoring of CH3NH3PbI3 thin films upon atmospheric exposure

    Ghimire, Kiran; Zhao, Dewei; Cimaroli, Alex; Ke, Weijun; Yan, Yanfa; Podraza, Nikolas J.


    CH3NH3PbI3 perovskite films of interest for photovoltaic (PV) devices have been prepared by (i) vapor deposition and (ii) solution processing. Complex dielectric function (ε  =  ε 1  +  iε 2) spectra and structural parameters of the films have been extracted using near infrared to ultraviolet spectroscopic ellipsometry. In situ real time spectroscopic ellipsometry (RTSE) over a 48 h period has been performed on vapor deposited CH3NH3PbI3 after the deposition in normal atmospheric laboratory ambient conditions. Analysis of RTSE data for vapor deposited CH3NH3PbI3 film prepared under un-optimized conditions identifies phase segregated PbI2 and CH3NH3I at the substrate/film interface and unreacted PbI2 and CH3NH3I on the film surface. This analysis also provides the time dependence of the effective thicknesses of perovskite film, unreacted components, and phase segregated layers to track CH3NH3PbI3 decomposition.

  5. Thermodynamics of Cu(Ⅱ)-NH3-NH4Cl-H2O system

    JU Shao-hua; TANG Mo-tang; YANG Sheng-hai; TANG Chao-bo


    The thermodynamics of a complex solution system, Cu(Ⅱ)-NH3-NH4Cl-H2O, was presented both theoretically and experimentally. Firstly, according to the principles of simultaneous equilibrium and aqueous electronic charge neutrality of the system, a nonlinear mathematical thermodynamic model with multi-members was set up. In this model, there were six unknowns: pH value, concentration values of free Cl-, free NH3, total concentration values of Cu2+, Cl- and NH3, four equilibrium equations and three equilibrium equations of total quantum of Cu2+, Cl- and NH3, as well as an equilibrium equation of electric charge, were involved in the model. Then after specifying the values of total concentrate of NH3 and Cl-, the model was solved precisely using MATLAB language, and the other four unknowns were obtained. According to the values obtained above, various valuable figures regarding thermodynamic relation of the system were protracted also with MATLAB, including two and three dimensions figures. These figures and data can supply the theoretic conference for optimizing the ratio of leaching reagents in copper extraction through ammonia hydrometallurgy. Finally, the solubility of CuO were measured in the system of NH3-NH4Cl-H2O. The results show that the model and the thermodynamic data obtained are reliable.

  6. In Situ Spectroscopic Studies of Proton Transport in Zeolite Catalysts for NH3-SCR

    Peirong Chen


    Full Text Available Proton transport is an elementary process in the selective catalytic reduction of nitrogen oxides by ammonia (DeNOx by NH3-SCR using metal-exchanged zeolites as catalysts. This review summarizes recent advancements in the study of proton transport in zeolite catalysts using in situ electrical impedance spectroscopy (IS under NH3-SCR reaction conditions. Different factors, such as the metal cation type, metal exchange level, zeolite framework type, or formation of intermediates, were found to influence the proton transport properties of zeolite NH3-SCR catalysts. A combination of IS with diffuse reflection infrared Fourier transformation spectroscopy in situ (in situ IS-DRIFTS allowed to achieve a molecular understanding of the proton transport processes. Several mechanistic aspects, such as the NH3-zeolite interaction, NO-zeolite interaction in the presence of adsorbed NH3, or formation of NH4+ intermediates, have been revealed. These achievements indicate that IS-based in situ methods as complementary tools for conventional techniques (e.g., in situ X-ray absorption spectroscopy are able to provide new perspectives for the understanding of NH3-SCR on zeolite catalysts.

  7. Silver separation by using Na2SO3 and NH3%用Na2SO3与NH3分银实验研究

    张小林; 李伟; 宁瑞


    This paper studies the silver separation by using Na2SO3 and NH3 out of gold dregs chlorination in the anode slime treatment process. The effects of Na 2SO3 amount, pH, time on the silver separation effects, and the effects of formaldehyde reduction temperature, pH on the reduction rate are researched. We also investigates the effects of NH3 concentration, time on silver separation results and the effects of hydrazine hydrate amount, time and temperature on silver reduction rate. The results show that separating silver of Na2SO3-reduced by using formaldehyde, when the amount of Na 2SO3 is 1.3 times of the theoretical amount, pH is 9.2, and the leaching time is 4 h, the silver recovery rate can be up to 97.39 %, while the amount of formaldehyde (formaldehyde∶Ag=1∶2.5 ), pH is 10.5, the temperature is 30~40 ℃, reacted 4 h, the silver reduction rate can be up to 96.33 %; Separating silver of NH 3-reduced by using hydrazine hydrate, when the concentration of NH3 between 8 % to 10 %,and temperature is at room temperature, the reaction time is 4 h, the silver leaching rate can be up to 96.23 %, when the amount of hydrazine hydrate is 2 times of the theoretical amount, temperature is 60 ℃, restored 0.5 h, silver reduction rate can be up to 98.1%.%介绍了阳极泥处理过程中,氯化分金渣用Na2SO3分银与NH3分银的工艺过程;研究了Na2SO3分银Na2SO3用量、pH、时间对分银效果的影响,以及甲醛还原温度、pH对银还原率的影响,以及NH3分银NH3浓度、时间对分银效果的影响,并对水合肼还原时水合肼用量、时间、温度对银还原率进行了研究.结果表明,用Na2SO3分银-甲醛还原,当Na2SO3的用量为理论量1.3倍,pH 值为9.2,浸出时间4 h时,银浸出率可达97.39%,当甲醛用量为(甲醛∶银=1∶2.5),pH值为10.5,反应4 h,温度为30~40℃时,银还原率可达96.33%;用NH3分银-水合肼还原,当NH3浓度为8%~10%,温度

  8. The international research progress of Ammonia(NH3) emissions and emissions reduction technology in farmland ecosystem

    Yang, W. Z.; Jiao, Y.


    NH3 is the important factor leading to the grey haze, and one of the main causes of environmental problems of serious ecological imbalance, such as acid rain and air quality deterioration. The fertilizer excessive application of the current farmland results NH3 emissions intensity greatly. In order to clear the farmland NH3 emissions research status and achievements, the literature of farmland NH3 emission related were retrievaled by the SCI journals and Chinese science citation database. Some factors of NH3 emission were analyzed such as soil factors, climate factors and farmland management measures. The research progress was inductived on farmland NH3 emission reduction technology. The results will help to clarify farmland NH3 emissions research progress. The theoretical guidance was provided on the future of farmland NH3 emissions research.

  9. Evaluation of a regional air-quality model with bidirectional NH3 exchange coupled to an agroecosystem modelecosystem model

    Atmospheric ammonia (NH3) is the primary atmospheric base and an important precursor for inorganic particulate matter and when deposited NH3 contributes to surface water eutrophication, soil acidification and decline in species biodiversity. Flux measurement...

  10. Dynamics and fragmentation of van der Waals and hydrogen bonded cluster cations: (NH3)n and (NH3BH3)n ionized at 10.51 eV

    Yuan, Bing; Shin, Joong-Won; Bernstein, Elliot R.


    A 118 nm laser is employed as a high energy, single photon (10.51 eV/photon) source for study of the dynamics and fragmentation of the ammonia borane (NH3BH3) cation and its cluster ions through time of flight mass spectrometry. The behavior of ammonia ion and its cluster ions is also investigated under identical conditions in order to explicate the ammonia borane results. Charge distributions, molecular orbitals, and spin densities for (NH3BH3)n and its cations are explored at both the second-order perturbation theory (MP2) and complete active space self-consistent field (CASSCF) theory levels. Initial dissociation mechanisms and potential energy surfaces for ionized NH3BH3, NH3, and their clusters are calculated at the MP2/6-311++G(d,p) level. Protonated clusters (NH3)xH+ dominate ammonia cluster mass spectra: our calculations show that formation of (NH3)n-1H+ and NH2 from the nascent (NH3)n+ has the lowest energy barrier for the system. The only common features for the (NH3)n+ and (NH3BH3)n+ mass spectra under these conditions are found to be NHy+ (y = 0,…,4) at m/z = 14-18. Molecular ions with both 11B and 10B isotopes are observed, and therefore, product ions observed for the (NH3BH3)n cluster system derive from (NH3BH3)n clusters themselves, not from the NH3 moiety of NH3BH3 alone. NH3BH2+ is the most abundant ionization product in the (NH3BH3)n+ cluster spectra: calculations support that for NH3BH3+, an H atom is lost from the BH3 moiety with an energy barrier of 0.67 eV. For (NH3BH3)2+ and (NH3BH3)3+ clusters, a Bδ+⋯Hδ-⋯δ-H⋯δ+B bond can form in the respective cluster ions, generating a lower energy, more stable ion structure. The first step in the (NH3BH3)n+ (n = 2, 3) dissociation is the breaking of the Bδ+⋯Hδ-⋯δ-H⋯δ+B moiety, leading to the subsequent release of H2 from the latter cluster ion. The overall reaction mechanisms calculated are best represented and understood employing a CASSCF natural bond orbital

  11. Advection of NH3 over a pasture field and its effect on gradient flux measurements

    M. A. Sutton


    Full Text Available Deposition of atmospheric ammonia (NH3 to semi-natural ecosystems leads to serious adverse effects, such as acidification and eutrophication. A step in quantifying such effects is the measurement of NH3 fluxes over semi-natural and agricultural land. However, measurement of NH3 fluxes over vegetation in the vicinity of strong NH3 sources is challenging, since NH3 emissions are highly heterogeneous. Indeed, under such conditions, local advection errors may alter the measured fluxes. In this study, local advection errors (ΔFz,adv were estimated over a 14 ha grassland field, which was successively cut and fertilised, as part of the GRAMINAE integrated Braunschweig experiment. The magnitude of ΔFz,adv was determined up to 810 m downwind from farm buildings emitting between 6.2 and 9.9 kg NH3 day−1. The GRAMINAE experiment provided a unique opportunity to compare two methods of estimating ΔFz,adv: one inference method based on measurements of horizontal concentration gradients, and one based on inverse dispersion modelling with a two-dimensional model. Two sources of local advection were clearly identified: the farm NH3 emissions leading to positive ΔFz,adv ("bias towards emissions" and field NH3 emissions, which led to a negative ΔFz,adv ("bias towards deposition". The local advection flux from the farm was in the range 0 to 27 ng NH3 m−2 s−1 at 610 m from the farm, whereas ΔFz,adv due to field emission was proportional to the local flux, and ranged between −209 and 13 ng NH3 m−2 s−1. The local advection flux ΔFz,adv was either positive or negative depending on the magnitude of these two contributions. The modelled and inferred advection errors agreed well. The inferred advection errors, relative to the vertical flux at 1 m height, were 52% on average, before the field was cut, and less than 2.1% when the field was fertilised. The variability of the advection errors in response to changes in micrometeorological conditions is also

  12. Estimation of global NH3 emissions from synthetic fertilizers and animal manure applied to arable lands and grasslands

    Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H.


    One of the main causes of the low efficiency in nitrogen (N) use by crops is the volatilization of ammonia (NH3) from fertilizers. Information taken from 1667 NH3 volatilization measurements documented in 148 research papers was summarized to assess the influence on NH3 volatilization of crop type,

  13. Evaluating 4 years of atmospheric ammonia (NH3) over Europe using IASI satellite observations and LOTOS-EUROS model results

    Damme, M. van; Wichink Kruit, R.J.; Schaap, M.; Clarisse, L.; Clerbaux, C.; Coheur, P.F.; Dammers, E.; Dolman, A.J.; Erisman, J.W.


    Monitoring ammonia (NH3) concentrations on a global to regional scale is a challenge. Due to the limited availability of reliable ground-based measurements, the determination of NH3 distributions generally relies on model calculations. Novel remotely sensed NH3burdens provide valuable insights to co

  14. Volatility of NH3 from internally mixed sodium succinate-NH4SO4 particles

    Wang, Na; Zhang, Yunhong


    Contributing the complicacy of atmospheric constituents, aerosol particles may undergo complicated heterogeneous reactions that have profound consequences on their hygroscopic properties and volatility. Ammonia (NH3) is a ubiquitous trace atmospheric gas in the troposphere and has negative effects on human health and climate forcing of ambient aerosols. In addition, atmospheric cycle of NH3 is complex in atmosphere, therefore it necessary to get insights to the complexity of gas-to-aerosol NH3 partitioning, which results in large uncertainties in the sources and distributions of NH3. By using in-situ Fourier transform infrared spectroscopy and attenuated total reflection (FTIR-ATR), we report here the volatility of NH3 from the laboratory generated sodium succinate with ammonium sulfate ((NH4)2SO4) at a 1:1 molar ratio as well as its effect on the hygroscopicity of the mixtures. The loss of the NH4+ peak at 1451cm-1 and the formation of peaks at 1718 and 1134 cm-1 due to C = O stretching asymmetric vibration of -COOH and ν3 (SO42-) stretching of sodium sulfate indicate that sodium succinate reacts with (NH4)2SO4, releasing NH3 and forming succinic acid and sodium sulfate on dehydration process. The formation of less hygroscopic succinic acid and volatility of NH3 in mixtures leads to a significant decrease in the total water content. To the best of our knowledge, this is the first report of the reaction between (NH4)2SO4 and dicarboxylate salts, which may represent an important particle-gas partitioning for ammonia and thus elucidate another underlying ammonia cycle in atmosphere. These results could be helpful to understand the mutual transformation process of dicarboxylic acids and dicarboxylate salts.

  15. MARVEL analysis of the measured high-resolution spectra of 14NH3

    Al Derzi, Afaf R.; Furtenbacher, Tibor; Tennyson, Jonathan; Yurchenko, Sergei N.; Császár, Attila G.


    Accurate, experimental rotational-vibrational energy levels and line positions, with associated labels and uncertainties, are reported for the ground electronic state of the symmetric-top 14NH3 molecule. All levels and lines are based on critically reviewed and validated high-resolution experimental spectra taken from 56 literature sources. The transition data are in the 0.7-17 000 cm-1 region, with a large gap between 7000 and 15 000 cm-1. The MARVEL (Measured Active Rotational-Vibrational Energy Levels) algorithm is used to determine the energy levels. Out of the 29 450 measured transitions 10 041 and 18 947 belong to ortho- and para-14NH3, respectively. A careful analysis of the related experimental spectroscopic network (SN) allows 28 530 of the measured transitions to be validated, 18 178 of these are unique, while 462 transitions belong to floating components. Despite the large number of spectroscopic measurements published over the last 80 years, the transitions determine only 30 vibrational band origins of 14NH3, 8 for ortho- and 22 for para-14NH3. The highest J value, where J stands for the rotational quantum number, for which an energy level is validated is 31. The number of experimental-quality ortho- and para-14NH3 rovibrational energy levels is 1724 and 3237, respectively. The MARVEL energy levels are checked against ones in the BYTe first-principles database, determined previously. The lists of validated lines and levels for 14NH3 are deposited in the Supporting Information to this paper. Combination of the MARVEL energy levels with first-principles absorption intensities yields a huge number of experimental-quality rovibrational lines, which should prove to be useful for the understanding of future complex high-resolution spectroscopy on 14NH3; these lines are also deposited in the Supporting Information to this paper.

  16. NASICON固体电解质NH3传感器的研制%NH3 Gas Sensor based on NASICON Solid-electrolyte

    梁喜双; 钟铁钢; 刘凤敏; 全宝富


    本文介绍了一种管式结构的固体电解质NH,传感器.该传感器是将溶胶-凝胶法制备的NASICON为导电层材料,以掺杂C的Cr2O3为辅助电极材料制得的.当工作温度在250~450℃时,器件对浓度为(50-500)x10-6的NH3表现出了良好的气敏性能,器件电动势EMF值与NH3浓度的对数表现出了很好的线性关系,在350℃时,器件的灵敏度为89 mV/decade.同时,器件表现出较快的响应恢复速度,对50×10-6的NH3的响应恢复时间分别为30s和60s,且有较好的选择性.

  17. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review.

    Krupa, S V


    At the global scale, among all N (nitrogen) species in the atmosphere and their deposition on to terrestrial vegetation and other receptors, NH3 (ammonia) is considered to be the foremost. The major sources for atmospheric NH3 are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH3 can result in visible foliar injury on vegetation. NH3 is deposited rapidly within the first 4-5 km from its source. However, NH3 is also converted in the atmosphere to fine particle NH4+ (ammonium) aerosols that are a regional scale problem. Much of our current knowledge of the effects of NH3 on higher plants is predominantly derived from studies conducted in Europe. Adverse effects on vegetation occur when the rate of foliar uptake of NH3 is greater than the rate and capacity for in vivo detoxification by the plants. Most to least sensitive plant species to NH3 are native vegetation > forests > agricultural crops. There are also a number of studies on N deposition and lichens, mosses and green algae. Direct cause and effect relationships in most of those cases (exceptions being those locations very close to point sources) are confounded by other environmental factors, particularly changes in the ambient SO2 (sulfur dioxide) concentrations. In addition to direct foliar injury, adverse effects of NH3 on higher plants include alterations in: growth and productivity, tissue content of nutrients and toxic elements, drought and frost tolerance, responses to insect pests and disease causing microorganisms (pathogens), development of beneficial root symbiotic or mycorrhizal associations and inter species competition or biodiversity. In all these cases, the joint effects of NH3 with other air pollutants such as all-pervasive O3 or increasing CO2 concentrations are poorly understood. While NH3 uptake in higher plants occurs through the shoots, NH4

  18. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction

    Yamei, Wu; Ruixia, Yang; Hanmin, Tian; Shuai, Chen


    Organic-inorganic hybrid perovskite CH3NH3PbI3 film is prepared on p-type silicon substrate using the one-step solution method to form a CH3NH3PbI3/p-Si heterojunction. The film morphology and structure are characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The photoelectric properties of the CH3NH3PbI3/p-Si heterojunction are studied by testing the current-voltage (I-V) with and without illumination and capacitance-voltage (C-V) characteristics. It turns out from the I-V curve without illumination that the CH3NH3PbI3/p-Si heterojunction has a rectifier feature with the rectification ratio over 70 at the bias of ±5 V. Also, there appears a photoelectric conversion phenomenon on this heterojunction with a short circuit current (Isc) of 0.16 μA and an open circuit voltage (Voc) of about 10 mV The high frequency C-V characteristic of the Ag/CH3NH3PbI3/p-Si heterojunction turns out to be similar to that of the metal-insulator-semiconductor (MIS) structure, and a parallel translation of the C-V curve along the forward voltage axis is found. This parallel translation means the existence of defects at the CH3NH3PbI3/p-Si interface and positive fixed charges in the CH3NH3PbI3 layer. The defects at the interface of the CH3NH3PbI3/p-Si heterojunction result in the dramatic decline of the Voc. Besides, the C-V test of CH3NH3PbI3 film shows a non-linear dielectric property and the dielectric value is about 4.64 as calculated. Project supported by the Hebei Province Natural Science Foundation of China (No. F2014202184) and the Tianjin Natural Science Foundation of China (No. 15JCZDJC37800).

  19. NH 3 soil and soil surface gas measurements in a triticale wheat field

    Neftel, A.; Blatter, A.; Gut, A.; Högger, D.; Meixner, F.; Ammann, C.; Nathaus, F. J.

    We present a new approach for a continuous determination of NH 3 concentration in the open pore space of the soil and on the soil surface. In a semi-permeable membrane of 0.5 m length a flow of 0.5 s1pm maintained. In the tube the NH 3 concentration adjusts itself to the surrounding air concentration by diffusion through the membrane. Continuous measurements have been performed in a triticale wheat field over a period of several weeks in a field experiment at Bellheim (FRG) during June and July 1995 within the frame of the European program EXAMINE (Exchange of Atmospheric Ammonia with European Ecosystems). Soil concentrations are generally below the detection limit of 0.1 μg m -3. We conclude, that the investigated soil is generally a sink for NH 3. The NH 3 concentration on the soil surface shows a diurnal variation due to a combination of physico-chemical desorption and adsorption phenomena associated with changes in wetness of the surrounding surfaces and the NH 3 concentration in the canopy.

  20. Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film.

    Wang, Wenzhen; Xu, Haitao; Cai, Jiang; Zhu, Jiabin; Ni, Chaowei; Hong, Feng; Fang, Zebo; Xu, Fuzong; Cui, Siwei; Xu, Run; Wang, Linjun; Xu, Fei; Huang, Jian


    We report a prototypical device of CH3NH3PbCl3 film ultraviolet photodetectors that were fabricated with a coplanar metal-semiconductor-metal Au interdigital electrode configuration. Pure phase CH3NH3PbCl3 films with a good crystallinity were formed by a hybrid sequential deposition process featured with inter-diffusion of PbCl2 and CH3NH3Cl upon annealing. The CH3NH3PbCl3 film photodetector exhibits a high responsivity of 7.56 A /W at 360 nm, a ultraviolet/visible rejection ratio (R360 nm/R500 nm) was about two orders of magnitude and fast response speed with a rising time of 170 μs and a decay time of 220 μs. All the above results demonstrate CH3NH3PbCl3 film photodetector as a competitive candidate in the application of visible blind UV detectors.

  1. Electric polarization of CH3NH3PbI3 and enhancement by Cl substitution

    Yan, Wen-Li; Lu, Guang-Hong; Liu, Feng

    As a prototype of organic-inorganic hybrid perovskite, CH3NH3PbI3 has attracted extensive attention recently due to its applications in high power-conversion-efficiency solar cells. In comparison with its inorganic perovskite counterparts such as CsPbI3, the organic cation CH3NH3+ is expected to play multiple important roles in distorting crystal structures and thus band structures as well as creating local electrically polarized domains to help separate charge carriers. Using first-principles method and berry phase theory, the electric polarization vectors of CH3NH3PbI3 have been calculated. The off-center displacement of Pb within the PbI6 octahedral is shown to introduce major intrinsic polarization, with additional contributions from off-center displacement of CH3NH3+ within PbI3 cage and charge polarization within the organic cation. With chlorine substitution of iodine, the electronegativity difference between halogen and Pb becomes larger, and the lattice distortion and hence the electric polarization increases, which provides a possible mechanism to further assist charge carrier separation in solar cell devices. This is consistent with enhanced photovoltaics properties of CH3NH3PbI3-xClx found in recent experiments. This work is supported by China Scholarship Council (Grant No. 201306020117) and US DOE-BES (Grant No. DE-FG02-04ER46148).

  2. Effects of NH3 on N2O Formation and Destruction in Fluidized Bed Coal Combustion

    JianWeiYuan; BoFeng; 等


    The NH3 oxidation and reduction process are experimentally and kinetically studied in this paper,It is found that NH3 has contributions not only to N2O formation,but also to N2O destruction in certain conditions.The main product of homogeneous NH3 oxidation is found to be NO rather than N2O,but some bed materials and suplhur sorbents have catalytic contributions to N2O formation from NH3 oxidation.In reduction atmosphere,NH3 can promote the KC destruction.It is deduced that the ammonia injection into fluidized bed coal combustion flue gas can decrease both NOx and N2O emissions.The ammonia injection process is kinetically simulated in this study,and the reduction.rates of NOx and N2O are found to depend on temperature,O2 concentration,initial NOx and N2O concentrations,and amount of injected ammonia.

  3. Low and room temperature photoabsorption cross sections of NH3 in the UV region

    Chen, F. Z.; Judge, D. L.; Wu, C. Y. R.; Caldwell, J.


    Using synchrotron radiation as a continuum light source, we have measured the absolute absorption cross sections of NH3 with a spectral bandwidth (FWHM) of 0.5 Å. The photoabsorption cross sections of NH3 have been measured from 1750 to 2250 Å under temperature conditions of 295, 195, and 175 K. Significant temperature effects in the absorption threshold region which are mainly due to the presence of hot band absorption are observed. The cross section value at peaks and valleys for the vibrational progressions of the (0,0) to (4,0) bands vary between -80% and +40% as the temperature of NH3 changes from 295 to 175 K. In contrast to this, the changes of cross section values, Pc,T, are found to vary less than 20% for the (v', 0) vibrational progressions with v' >= 5. The measured separations between the doublet features of the (0,0), (1,0), and (2,0) bands are found to decrease as the temperature of NH3 decreases. The shifts of peak positions of Pc,T with respect to the corresponding room temperature absorption peaks show a sudden change at v' = 3 which appears to agree with the trend observed in the homogeneous line widths of the vibrational bands of NH3 ([Vaida et al., 1987]; [Ziegler, 1985]; [Ziegler, 1986]). The unusual behavior of the line widths has been attributed to the A~ state potential surface which has a dissociation barrier.

  4. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan


    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.

  5. A Complete Survey of the Central Molecular Zone in NH3

    Nagayama, Takumi; Handa, Toshihiro; Iahak, Hayati Bebe Hajra; Sawada, Tsuyoshi; Miyaji, Takeshi; Koyama, Yasuhiro


    We present a map of the major part of the central molecular zone (CMZ) of simultaneous observations in the NH3 (J,K) = (1,1) and (2,2) lines using the Kagoshima 6-m telescope. The mapped area is -1.000 80 K contain 75% and 25% of the total NH3 flux, respectively. These temperatures indicate that the dense molecular gas in the CMZ is dominated by gas that is warmer than the majority of the dust present there. A comparison with the CO survey by Sawada et al. (2001) shows that the NH3 emitting region is surrounded by a high pressure region on the l-v plane. Although NH3 emission traces dense gas, it is not extended into a high pressure region. Therefore, the high pressure region is less dense and has to be hotter. This indicates that the molecular cloud complex in the Galactic center region has a ``core'' of dense and warm clouds which are traced by the NH3 emission, and an ``envelope'' of less dense and hotter gas clouds. Besides heating by ambipolar diffusion, the hot plasma gas emitting the X-ray emission ma...

  6. The NO + NH 3 reaction on Pt(100): steady state and oscillatory kinetics

    Lombardo, S. J.; Esch, F.; Imbihl, R.

    The NO + NH 3 reaction was investigated on a Pt(100) surface in the 10 -6 mbar range using Video-LEED, work function measurements and measurements of the product partial pressures of N 2 and H 2O. Sustained kinetic oscillations, as observed in the N 2, H 2O and work function signals, were detected between 425 and 450 K for pNO = 1.1 × 10 -6 mbar and pNH3 = 4.7 × 10 -6 mbar. The dependence of the oscillation period on temperature and on the {p NH 3/ }/{p NO} ratio was determined. In situ LEED measurements demonstrated that oscillations in the reaction rate are coupled to the 1 × 1 ⇄ hex phase transition. Isotopic exchange experiments with 15NO and 14NH 3 showed that depending on the temperature and p {NH 3/ }/{p NO} ratio, significant deviations from a random mixing of 15N and 14N on the surface occur. This is interpreted as indication for an attractive interaction between NO ad and NH xad ( x = 1-3).

  7. Measurements of NO and NH3 soil fluxes at the Savé super site in Benin, West Africa, during the DACCIWA field campaign.

    Pacifico, Federica; Delon, Claire; Jambert, Corinne; Durand, Pierre; Lohou, Fabienne; Reinares Martinez, Irene; Brilouet, Pierre-Etienne; Brosse, Fabien; Pedruzo Bagazgoitia, Xabier; Dione, Cheikh; Gabella, Omar


    , maize fields and forest, which are four typical land cover types at the Savé site. Maximum soil emissions of NO up to 25 ng m-2 s-1 and maximum NH3 deposition up to 4.5 ng m-2 s-1 were measured over bare soil. The observations show high spatial variability even for the same soil type, same day and same meteorological conditions. The influence of local environmental conditions on soil NO and NH3 fluxes, as well as the influence of remote anthropogenic emissions on ambient NOx concentrations, are discussed.

  8. Combined use of nitrification inhibitor and struvite crystallization to reduce the NH3 and N2O emissions during composting.

    Jiang, Tao; Ma, Xuguang; Tang, Qiong; Yang, Juan; Li, Guoxue; Schuchardt, Frank


    Struvite crystallization (SCP) is combined with a nitrification inhibitor (dicyandiamide, DCD) to mitigate the NH3 and N2O emission during composting. The MgO and H3PO4 were added at a rate of 15% (mole/mole) of initial nitrogen, and the DCD was added at rates of 0%, 2.5%, 5.0%, 7.5% and 10% (w/w) of initial nitrogen respectively. Results showed that the combination use of SCP and DCD was phytotoxin free. The SCP could significantly reduce NH3 losses by 45-53%, but not the DCD. The DCD significantly inhibits nitrification when the content was higher than 50mgkg(-1), and that could reduce the N2O emission by 76.1-77.6%. The DCD degraded fast during the thermophilic phase, as the nitrification will be inhibited by the high temperature and high free ammonia content in this stage, the DCD was suggested to be applied in the maturing periods by 2.5% of initial nitrogen.

  9. Emission and distribution of NH3 and NOx in China.%中国大气NH3和NOx排放的时空分布特征

    李新艳; 李恒鹏


    根据我国不同氨源的数量、燃料消费量和相应的氨与氮氧化物排放因子,计算了我国大陆地区1995~2004年历年的氨(NH3)排放量与1985~2005年历年的氮氧化物(NOx)排放量,在此基础上模拟了2006~2010年的NOx排放量,并分析了NH3和NOx排放强度的空间分布.结果表明:2004年,我国NH3排放量为12.0Tg,比1995年的10.6Tg增加了大约13.2%;2004年的NOx排放量为20.6Tg,比1995年的12.2Tg增加了大约68.9%,比1985年的6.2Tg增加了大约2.3倍.在1996年以前,我国NH3和NOx的排放量基本相当,但是此后NH3的年排放量在经历了1997~1999年的下降之后,变化比较平稳,而NOx的排放量自2000年之后呈逐年迅速增加的趋势.2004年全国NH3的排放总量中,畜禽排泄、氮肥施用、人类粪便、氮肥与合成氨生产的贡献率分别为69.2%、15.2%、13.9%和1.9%;2004年全国NOx的排放总量中,由于受到我国能源消费结构的制约,煤炭来源的NOx占到了排放总量的77.4%.NH3和NOx的排放强度都具有明显的空间差异,表现在中东部地区的排放强度明显高于西部地区,这与中东部地区人口多、能源消费量大以及畜禽养殖数量大有关.%Annual emission of ammonia and Noχ in the inland of China were calculated based on the numbers of livestock, poultry, human beings, the quantity of fertilizer application and production and fuel consumption. The temporal and spatial distribution of emission intensity of NH3 and Noχ were also analyzed. NH3 emission in China changed slowly from 10.6Tg in 1995 to 12.0Tg in 2004, while Noχ emission increased quickly from 12.2Tg in 1995 to 20.6Tg in 2004, with a mean increase rate of 68.9%. In 2004, emission from livestock, nitrogen fertilizer application, human beings and fertilizer production accounted for 69.2%, 15.2%, 13.9% and 1.9% of the total NH3 emission, respectively. Emission from coal combustion accounted for about 77.4% of the total Noχ emission

  10. Determining the storage, availability and reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction systems.

    Lezcano-Gonzalez, I; Deka, U; Arstad, B; Van Yperen-De Deyne, A; Hemelsoet, K; Waroquier, M; Van Speybroeck, V; Weckhuysen, B M; Beale, A M


    Three different types of NH3 species can be simultaneously present on Cu(2+)-exchanged CHA-type zeolites, commonly used in Ammonia Selective Catalytic Reduction (NH3-SCR) systems. These include ammonium ions (NH4(+)), formed on the Brønsted acid sites, [Cu(NH3)4](2+) complexes, resulting from NH3 coordination with the Cu(2+) Lewis sites, and NH3 adsorbed on extra-framework Al (EFAl) species, in contrast to the only two reacting NH3 species recently reported on Cu-SSZ-13 zeolite. The NH4(+) ions react very slowly in comparison to NH3 coordinated to Cu(2+) ions and are likely to contribute little to the standard NH3-SCR process, with the Brønsted groups acting primarily as NH3 storage sites. The availability/reactivity of NH4(+) ions can be however, notably improved by submitting the zeolite to repeated exchanges with Cu(2+), accompanied by a remarkable enhancement in the low temperature activity. Moreover, the presence of EFAl species could also have a positive influence on the reaction rate of the available NH4(+) ions. These results have important implications for NH3 storage and availability in Cu-Chabazite-based NH3-SCR systems.

  11. Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge

    Fateev, A.; Leipold, F.; Kusano, Y.


    An atmospheric pressure dielectric barrier discharge (DBD) in Ar/NH3 (0.1 - 10%) mixtures with a parallel plate electrode geometry was studied. The plasma was investigated by emission and absorption spectroscopy in the UV spectral range. Discharge current and voltage were measured as well. UV...... absorption spectroscopy was also employed for the detection of stable products in the exhaust gas. To clarify the different processes for ammonia decomposition, N-2(2 - 10%) was added to the plasma. Modeling of the chemical kinetics in an Ar/NH3 plasma was performed as well. The dominant stable products...... of an atmospheric pressure Ar/NH3 DBD are H-2, N-2 and N2H4. The hydrazine (N2H4) concentration in the plasma and in the exhaust gases at various ammonia concentrations and different discharge powers was measured. Thermal N2H4 decomposition into NH2 radicals may be used for NOx reduction processes....

  12. Site specific reactivity of Cu-CHA with NO, NH3 and O2

    Godiksen, Anita; Isaksen, Oliver L.; Rasmussen, Søren B.


    In-situ electron paramagnetic resonance (EPR) spectroscopy was applied to dilute copper chabazite (CHA) zeolites under gas flows relevant for the selective catalytic reduction of NO with ammonia (NH3-SCR). Under both reducing and oxidizing conditions, we observed differences in reactivity between...... of oxidation differs significantly between reaction with O2 alone and with NO+O2 together. Thus it was revealed that [Cu(NH3)2]+ complexes, which are regarded to be only weakly associated with the framework, nevertheless have different reactivity depending on the Al distribution in the proximity. The observed...... differences in reactivity of copper sites has implications for the mechanistic understanding of NH3-SCR with Cu-zeolites....

  13. A flexible and robust neural network IASI-NH3 retrieval algorithm

    Whitburn, S.; Van Damme, M.; Clarisse, L.; Bauduin, S.; Heald, C. L.; Hadji-Lazaro, J.; Hurtmans, D.; Zondlo, M. A.; Clerbaux, C.; Coheur, P.-F.


    In this paper, we describe a new flexible and robust NH3 retrieval algorithm from measurements of the Infrared Atmospheric Sounding Interferometer (IASI). The method is based on the calculation of a spectral hyperspectral range index (HRI) and subsequent conversion to NH3 columns via a neural network. It is an extension of the method presented in Van Damme et al. (2014a) who used lookup tables (LUT) for the radiance-concentration conversion. The new method inherits the advantages of the LUT-based method while providing several significant improvements. These include the following: (1) Complete temperature and humidity vertical profiles can be accounted for. (2) Third-party NH3 vertical profile information can be used. (3) Reported positive biases of LUT retrieval are reduced, and finally (4) a full measurement uncertainty characterization is provided. A running theme in this study, related to item (2), is the importance of the assumed vertical NH3 profile. We demonstrate the advantages of allowing variable profile shapes in the retrieval. As an example, we analyze how the retrievals change when all NH3 is assumed to be confined to the boundary layer. We analyze different averaging procedures in use for NH3 in the literature, introduced to cope with the variable measurement sensitivity and derive global averaged distributions for the year 2013. A comparison with a GEOS-Chem modeled global distribution is also presented, showing a general good correspondence (within ±3 × 1015 over most of the Northern Hemisphere. However, IASI finds mean columns about 1-1.5 × 1016 (˜50-60%) lower than GEOS-Chem for India and the North China plain.

  14. NH3 Volatilization from Aboveground Plants of Winter Wheat During Late Growing Stages

    WANG Zhao-hui; LI Sheng-xiu


    Ammonia volatilized from aboveground parts of winter wheat was collected with an enclosuregrowth chamber and measured from jointing to maturing stage. The results showed that ammonia releasedfrom unfertilized plants grown in high and low fertility soils remained at low rates of 2.3 and 0.9 μg NH3 40plant-1 h-1 respectively at late filling stage. However, fertilized plants rapidly increased the rates to 43.4 and52.2 μg NH3 40 plant-1 h-1 in the high and low fertility soils, respectively, at the same period. The released a-mount was different in different parts of plants. At filling stage, lower senescing stems and leaves volatilizedmore ammonia than upper parts, i.e. , ears and flag leaves that grew normally, with an average of 1.4 and0.7 μg NH3 20 plant-1 h-1 respectively, strongly suggesting that it was the senile organs that released largeamounts of ammonia. At the grain filling stage, shortage of water supply (drought stress) reduced ammoniavolatilization. The average rate of ammonia released under water stress was 0.9 μg NH3 40 plant-1 h-1 , but 1.2μg NH3 40 plant-1 h-1 with moderate water supply. Application of N together with P fertilizer resulted in ahigher ammonia volatilization than N fertilization alone at the maturing stage. The average rate released was135.3 μg NH3 40 plant-1 h-1 when 0.4 g N and 0.13 g P had been added to per kg soil, while 33.7 μg when0.4 g N added alone. Ammonia volatilization from plants was closely related with plant biomass and N up-take; P fertilization increased plant biomass and N uptake and therefore increased its release.

  15. Synthesis, structure, lattice energy and enthalpy of 2D hybrid perovskite [NH3(CH2)4NH3]CoCl4, compared to [NH3(CH2)nNH3]CoCl4, n=3-9

    Abdel-Aal, Seham K.; Abdel-Rahman, Ahmed S.


    A new organic-inorganic 2D hybrid perovskite [NH3(CH2)4NH3]CoCl4,1,4butane diammonium tetra-chlorocobaltate, has been synthesized. Blue prismatic single crystals were grown from ethanolic solution in 1:1 stoichiometric ratio (organic/inorganic) by gradual cooling to room temperature after heating at 70 °C for 1 h. The hybrid crystallizes in a triclinic phase with the centrosymetric space group P 1 bar . Its unit cell parameters are a=7.2869 (2) Å, b=8.1506 (2) Å, c=10.4127 (3) Å, α=77.2950 (12)°, β=80.0588 (11)°, γ=82.8373 (12)° and Z=2. The final R factor is 0.064. The structure consists of organic dications [NH3(CH2)4NH3]2+ which act as spacer between layers of inorganic dianions [CoCl4]2- in which CoII ions are coordinated by four Cl atoms in an isolated tetrahedral structure. The organic and inorganic layers form infinite 2D sheets which are parallel to the ac plane, stacking alternatively along the b-axis, and are connected via N-H…. Cl hydrogen bonds. The lamellar structure of the 1,4 butane diammonium tetrachlorocobaltate hybrid is typically considered as naturally self-assembled multiple quantum wells (MQW). The calculated lattice potential energy Upot (kJ/mol) and lattice enthalpy ΔHL (kJ/mol) are inversely proportional to the molecular volume Vm (nm3) of perovskite hybrid of the formula [NH3(CH2)nNH3]CoCl4, n=3-9.

  16. Quantum IR line list of NH3 and isotopologues for ISM and dwarf studies

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.; Sung, Keeyoon; Brown, Linda R.


    Ammonia (NH3) was the first polyatomic molecule observed in the ISM. Its importance in interstellar molecules is only second to CO because its rovibrational spectroscopic signature can be used very effectively at deducing the conditions of the interstellar environment such as temperature and density, and because it is found in so many different interstellar objects in a wide temperature range. However, experimental determination of NH3 IR spectra is extremely difficult due to the large-amplutide inversion vibration, and the existing HITRAN2008 database for NH3 is limited in temperature, coverage, completeness, and accuracy. With rapid progress in theoretical chemistry and computational resources, now we are able to generate a highly reliable/accurate IR line list of NH3 (and its isotopologues) for astronomical studies. Exact quantum rovibrational computations on an empirically refined potential energy surface (with nonadiabatic corrections included) have achieved accuracies of 0.02-0.05 cm-1 (for line position) and better than 85-95% (for line intensity) for both NH3 and 15NH3 spectra. The unique feature of our work is that our predictions are essentially as accurate as reproducing existing measurements, suitable for synthetic simulation of various astrophysical environments or objects. The reliabilty and accuracy of our predictions for missing bands and higher energies computed on HSL-2 (Fig. 1) have been proved by the most recent high-resolution experiments and extended up to 7000 cm-1. See Huang et al. 2008, Huang et al. 2011, & Sung et al. 2012 for more details.

  17. LPG and NH3 sensing characteristics of DC electrochemically deposited Co3O4 films

    Shelke, P. N.; Khollam, Y. B.; Gunjal, S. D.; Koinkar, P. M.; Jadkar, S. R.; Mohite, K. C.


    Present communication reports the LPG and NH3 sensing properties of Co3O4 films prepared on throughly cleaned stainless steel (SS) and copper (CU) substrates by using DC electrochemical deposition method followed by air annealing at 350°C/2 h. The resultant films are characterized by using X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The LPG and NH3 gas sensing properties of these films are measured at room temperature (RT) by using static gas sensing system at different concentrations of test gas ranging from 25 ppm to 350 ppm. The XRD and Raman spectroscopy studies clearly indicated the formation of pure cubic spinel Co3O4 in all films. The LPG and NH3 gas sensing properties of films showed (i) the increase in sensitivity factor (S.F.) with gas concentrations and (ii) more sensibility to LPG as compared to NH3 gas. In case of NH3 gas (conc. 150 ppm) and LPG gas (conc. 60 ppm) sensing, the maximum S.F. = 270 and 258 are found for the films deposited on CU substrates, respectively. For all films, the response time (3-5 min.) is found to be much higher than the recovery time (30-50 sec). For all films, the response and recovery time are found to be higher for LPG as compared to NH3 gas. Further, repeatability-reproducibility in gas sensing properties is clearly noted by analysis of data for number of cycles recorded for all films from different set of depositions.

  18. Modelling of catalytic oxidation of NH3 and reduction of NO on limestone during sulphur capture

    Kiil, Søren; Bhatia, Suresh K.; Dam-Johansen, Kim


    for the catalytic chemistry of NH3 during simultaneous sulphur capture on a Stevns Chalk particle. The reduction of NO by NH3 over CaSO4 (which is the product of the reaction between SO2, O2 and limestone) was found to be important because this reaction could explain the change in selectivity with increased solid...... conversion observed experimentally. Simulations also suggested that it may be advantageous with respect to the emission of NO to use smallinstead of big limestone particles for desulphurisation in fluidised bed combustors due to the ways different sized particles capture SO2....

  19. Ab-initio density functional theory study of a WO3 NH3-sensing mechanism

    Hu Ming; Zhang Jie; Wang Wei-Dan; Qin Yu-Xiang


    WO3 bulk and various surfaces are studied by an ab-initio density functional theory technique.The band structures and electronic density states of WO3 bulk are investigated.The surface energies of different WO3 surfaces are compared and then the(002)surface with minimum energy is computed for its NH3 sensing mechanism which explains the results in the experiments.Three adsorption sites are considered.According to the comparisons of the energy and the charge change between before and after adsorption in the optimal adsorption site O1c,the NH3 sensing mechanism is obtained.

  20. High-resolution absorption measurements of NH3 at high temperatures: 2100–5500 cm−1

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan


    High-resolution absorption spectra of NH3 in the region 2100–5500 cm−1 at 1027 °C and approximately atmospheric pressure (1045±3 mbar) are measured. An NH3 concentration of 10% in volume fraction is used in the measurements. Spectra are recorded in a high-temperature gas-flow cell using a Fourier...... Transform Infrared (FTIR) spectrometer at a nominal resolution of 0.09 cm−1. The spectra are analysed by comparison to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. 2308 lines have been assigned to 45 different bands, of which 1755 and 15 have been...

  1. High-resolution absorption measurements of NH3 at high temperatures: 500–2100cm−1

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan


    High-resolution absorption spectra of NH3 in the region 500–2100 cm -1 at temperatures up to1027 1C and approximately atmospheric pressure (1013±20 mbar) are measured. NH3 concentrations of 1000 ppm,0.5% and 1% in volume fraction were used in the measurements. Spectra are recorded in high...... temperature gas flow cells using a FourierTransform Infrared (FTIR) spectrometer at a nominal resolution of 0.09cm-1. Measurements at 22.7 °C are compared to high-resolution cross sections available from thePacific Northwest National Laboratory (PNNL). The higher temperature spectra are analysed by comparison...

  2. NH3 (10-00) in the pre-stellar core L1544

    Caselli, P.; Bizzocchi, L.; Keto, E.; Sipilä, O.; Tafalla, M.; Pagani, L.; Kristensen, L. E.; van der Tak, F. F. S.; Walmsley, C. M.; Codella, C.; Nisini, B.; Aikawa, Y.; Faure, A.; van Dishoeck, E. F.


    Pre-stellar cores represent the initial conditions in the process of star and planet formation, therefore it is important to study their physical and chemical structure. Because of their volatility, nitrogen-bearing molecules are key to study the dense and cold gas present in pre-stellar cores. The NH3 rotational transition detected with Herschel-HIFI provides a unique combination of sensitivity and spectral resolution to further investigate physical and chemical processes in pre-stellar cores. Here we present the velocity-resolved Herschel-HIFI observations of the ortho-NH3(10 - 00) line at 572 GHz and study the abundance profile of ammonia across the pre-stellar core L1544 to test current theories of its physical and chemical structure. Recently calculated collisional coefficients have been included in our non-LTE radiative transfer code to reproduce Herschel observations. A gas-grain chemical model, including spin-state chemistry and applied to the (static) physical structure of L1544 is also used to infer the abundance profile of ortho-NH3. The hyperfine structure of ortho-NH3(10 - 00) is resolved for the first time in space. All the hyperfine components are strongly self-absorbed. The profile can be reproduced if the core is contracting in quasi-equilibrium, consistent with previous work, and if the NH3 abundance is slightly rising toward the core centre, as deduced from previous interferometric observations of para-NH3(1, 1). The chemical model overestimates the NH3 abundance at radii between ≃4000 and 15 000 AU by about two orders of magnitude and underestimates the abundance toward the core centre by more than one order of magnitude. Our observations show that chemical models applied to static clouds have problems in reproducing NH3 observations. Based on observations carried out with Herschel, an ESA space observatory with science instruments provided by a European-led Principal Investigator consortium and with important participation from NASA.

  3. The M2 Channel

    Santner, Paul

    and inhibition mechanisms, drug design studies were recently able to achieve successes in finding new potent inhibitors, some of which are even able to inhibit resistant M2 variants. Effective and robust methods for measuring M2 activity on the other hand are still scarce and tactics to assess the genetic...... barrier of new inhibitors as well as resistance development non-existent. Therefore we developed a fluorescence sensor based assay that directly measures proton conduction (pHlux assay) and combined it with an already established directed evolution selection and screening system of M2 to identify possible...... resistance escape routes from drug inhibition. We thereby were hopefully able to provide a platform for the large-scale evaluation of M2 channel activity, inhibitors and resistance....

  4. The relationship between NH3 emissions from a poultry farm and soil NO and N2O fluxes from a downwind forest

    Skiba, U.; Dick, J.; Storeton-West, R.; Lopez-Fernandez, S.; Woods, C.; Tang, S.; Vandijk, N.


    Intensive livestock farms emit large concentrations of NH3, most of which is deposited very close to the source. The presence of trees enhances the deposition. Rates to downwind forests can exceed 40 kg N ha-1 y-1. The steep gradient in large NH3 concentrations of 34.3±20.4, 47.6±24.9, 21.7±16.8 µg NH3 m3 at the edge of a forest 15, 30 and 45 m downwind of the farm to near background concentrations within 270 m downwind (1.15±0.7 µg NH3 m3) provides an ideal site to study the effect of different rates of atmospheric NH3 concentrations and inferred deposition on biological and chemical processes under similar environmental conditions. We have investigated the effect of different NH3 concentrations and implied deposition rates on the flux of NO and N2O from soil in a mixed woodland downwind of a large poultry farm (160 000 birds) in Scotland, which has been operating for about 40 years. Measurements were carried out for a 6 month period, with hourly NO flux measurements, daily N2O fluxes close to the farm and monthly at all sites, and monthly cumulative wet and dry N deposition. The increased NH3 and NH4+ deposition to the woodland increased emissions of NO and N2O and soil available NH4+ and NO3- concentrations. Average NO and N2O fluxes measured 15, 25 and 45 m downwind of the farm were 111.2±41.1, 123.3±40.7, 38.3±28.8 µg NO-N m-2 h-1 and 9.9±7.5, 34.3±33.3 and 21.2±6.1 µg N2O-N m-2 h-1, respectively. At the background site 270 m downwind the N2O flux was reduced to 1.75±2.1 µg N2O-N m-2 h-1. NO emissions were significantly influenced by seasonal and daily changes in soil temperature and followed a diurnal pattern with maximum emissions approximately 3 h after noon. For N2O no consistent diurnal pattern was observed. Changes in soil moisture content had a less clear effect on the NO and N2O flux. In spite of the large NO and N2O emissions accounting for >3% of the N deposited to the woodland downwind of the farm, extrapolation to the entire British

  5. Comparative 4-E analysis of a bottoming pure NH3 and NH3-H2O mixture based power cycle for condenser waste heat recovery

    Khankari, Goutam; Karmakar, Sujit


    This paper proposes a comparative performance analysis based on 4-E (Energy, Exergy, Environment, and Economic) of a bottoming pure Ammonia (NH3) based Organic Rankine Cycle (ORC) and Ammonia-water (NH3-H2O) based Kalina Cycle System 11(KCS 11) for additional power generation through condenser waste heat recovery integrated with a conventional 500MWe Subcritical coal-fired thermal power plant. A typical high-ash Indian coal is used for the analysis. The flow-sheet computer programme `Cycle Tempo' is used to simulate both the cycles for thermodynamic performance analysis at different plant operating conditions. Thermodynamic analysis is done by varying different NH3 mass fraction in KCS11 and at different turbine inlet pressure in both ORC and KCS11. Results show that the optimum operating pressure of ORC and KCS11 with NH3 mass fraction of 0.90 are about 15 bar and 11.70 bar, respectively and more than 14 bar of operating pressure, the plant performance of ORC integrated power plant is higher than the KCS11 integrated power plant and the result is observed reverse below this pressure. The energy and exergy efficiencies of ORC cycle are higher than the KCS11 by about 0.903 % point and 16.605 % points, respectively under similar saturation vapour temperature at turbine inlet for both the cycles. Similarly, plant energy and exergy efficiencies of ORC based combined cycle power plant are increased by 0.460 % point and 0.420 % point, respectively over KCS11 based combined cycle power plant. Moreover, the reduction of CO2 emission in ORC based combined cycle is about 3.23 t/hr which is about 1.5 times higher than the KCS11 based combined cycle power plant. Exergy destruction of the evaporator in ORC decreases with increase in operating pressure due to decrease in temperature difference of heat exchanging fluids. Exergy destruction rate in the evaporator of ORC is higher than KCS11 when the operating pressure of ORC reduces below 14 bar. This happens due to variable

  6. Interaction of NH3 with Cu-SSZ-13 Catalyst: A Complementary FTIR, XANES, and XES Study.

    Giordanino, Filippo; Borfecchia, Elisa; Lomachenko, Kirill A; Lazzarini, Andrea; Agostini, Giovanni; Gallo, Erik; Soldatov, Alexander V; Beato, Pablo; Bordiga, Silvia; Lamberti, Carlo


    In the typical NH3-SCR temperature range (100-500 °C), ammonia is one of the main adsorbed species on acidic sites of Cu-SSZ-13 catalyst. Therefore, the study of adsorbed ammonia at high temperature is a key step for the understanding of its role in the NH3-SCR catalytic cycle. We employed different spectroscopic techniques to investigate the nature of the different complexes occurring upon NH3 interaction. In particular, FTIR spectroscopy revealed the formation of different NH3 species, that is, (i) NH3 bonded to copper centers, (ii) NH3 bonded to Brønsted sites, and (iii) NH4(+)·nNH3 associations. XANES and XES spectroscopy allowed us to get an insight into the geometry and electronic structure of Cu centers upon NH3 adsorption, revealing for the first time in Cu-SSZ-13 the presence of linear Cu(+) species in Ofw-Cu-NH3 or H3N-Cu-NH3 configuration.

  7. Intramolecular SN2 reaction caused by photoionization of benzene chloride-NH3 complex: direct ab initio molecular dynamics study.

    Tachikawa, Hiroto


    Ionization processes of chlorobenzene-ammonia 1:1 complex (PhCl-NH3) have been investigated by means of full dimensional direct ab initio molecular dynamics (MD) method, static ab initio calculations, and density functional theory (DFT) calculations. The static ab initio and DFT calculations of neutral PhCl-NH3 complex showed that one of the hydrogen atoms of NH3 orients toward a carbon atom in the para-position of PhCl. The dynamics calculation for ionization of PhCl-NH3 indicated that two reaction channels are competitive with each other as product channels: one is an intramolecular SN2 reaction expressed by a reaction scheme [PhCl-NH3]+-->SN2 intermediate complex-->PhNH3++Cl, and the other is ortho-NH3 addition complex (ortho complex) in which NH3 attacks the ortho-carbon of PhCl+ and the trajectory leads to a bound complex expressed by (PhCl-NH3)+. The mechanism of the ionization of PhCl-NH3 is discussed on the basis of the theoretical results.

  8. Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3

    Rothmann, Mathias Uller; Li, Wei; Zhu, Ye; Bach, Udo; Spiccia, Leone; Etheridge, Joanne; Cheng, Yi-Bing


    Organic–inorganic hybrid perovskites are exciting candidates for next-generation solar cells, with CH3NH3PbI3 being one of the most widely studied. While there have been intense efforts to fabricate and optimize photovoltaic devices using CH3NH3PbI3, critical questions remain regarding the crystal structure that governs its unique properties of the hybrid perovskite material. Here we report unambiguous evidence for crystallographic twin domains in tetragonal CH3NH3PbI3, observed using low-dose transmission electron microscopy and selected area electron diffraction. The domains are around 100–300 nm wide, which disappear/reappear above/below the tetragonal-to-cubic phase transition temperature (approximate 57 °C) in a reversible process that often ‘memorizes' the scale and orientation of the domains. Since these domains exist within the operational temperature range of solar cells, and have dimensions comparable to the thickness of typical CH3NH3PbI3 films in the solar cells, understanding the twin geometry and orientation is essential for further improving perovskite solar cells. PMID:28230064

  9. Blueshift and intramolecular tunneling of NH3 umbrella mode in 4He n clusters.

    Viel, Alexandra; Whaley, K Birgitta; Wheatley, Richard J


    We present diffusion Monte Carlo calculations of the ground and first excited vibrational states of NH(3) (4)He(n) for nblueshift of the umbrella mode frequency and a reduction of the tunneling splittings in ground and first excited vibrational states of the molecule. These basic features are found to result regardless of whether dynamical approximations or exact calculations are employed.

  10. Descriptor‐Based Analysis Applied to HCN Synthesis from NH3 and CH4

    Grabow, Lars C.; Studt, Felix; Abild‐Pedersen, Frank


    A trendy volcano: By the example of HCN synthesis from NH3 and CH4, it is demonstrated how scaling relations for intermediates and transition states provide a basis for the prediction of trends in heterogeneous catalysis (see logarithmic turnover frequency, TOF). These trends include not only the...

  11. Calculation of optimal parameters of an NH3-CO2 lidar

    Vasil'ev, BI; Mannoun, OM


    The basic parameters (range, signal-to-noise ratio, and sensitivity) of a lidar using NH3 and CO2 lasers are calculated. The principle of lidar operation is based on the differential absorption recording. Absorption spectra of all known Freons are considered in the spectral range 9-13.5 mu m and opt

  12. Chemical deactivation of Cu-SSZ-13 ammonia selective catalytic reduction (NH3-SCR) systems

    Lezcano-Gonzalez, I.; Deka, U.; van der Bij, H. E.; Paalanen, P.; Arstad, B.; Weckhuysen, B. M.; Beale, A. M.


    The chemical deactivation of Cu-SSZ-13 Ammonia Selective Catalytic Reduction (NH3-SCR) catalysts by Pt, Zn, Ca and P has been systematically investigated using a range of analytical techniques in order to study the influence on both the zeolitic framework and the active Cu2+ ions. The results obtain

  13. Measurement of the dry deposition flux of NH3 on to coniferous forest

    Duyzer, J.H.; Verhagen, H.L.M.; Weststrate, J.H.; Bosveld, F.C.


    The dry deposition flux of NH3 to coniferous forest was determined by the micrometeorological gradient method using a 36m high tower. Aerodynamic characteristics of the site were studied, using a second tower erected in the forest 100m from the first. Fluxes and gradients of heat and momentum measur

  14. DFT investigation of NH3 gas interactions on TeO2 nanostructures

    V. Nagarajan; R. Chandiramouli


    The structural, electronic and adsorption properties of NH3 on pristine, Sn and F substituted TeO2 na-nostructures were investigated using density functional theory with B3LYP/LanL2DZ basis set. The electronic properties of pristine, Sn and F incorporated TeO2 nanostructures were explained with ioni-zation potential, HOMO–LUMO gap and electron affinity. The dipole moment and point group of rutile TeO2 nanostructures were also reported. The structural stability of pristine, Sn and F substituted TeO2 nanostructures were investigated in terms of formation energy. The adsorption properties of NH3 on TeO2 were studied and the proper adsorption sites of NH3 on TeO2 materials were identified and dis-cussed with the suitable parameters such as adsorption energy, HOMO–LUMO gap, Mulliken population analysis and average energy gap variation. The results show that the substitution of fluorine in TeO2 nanostructure enhances NH3 adsorption properties in mixed gas environment.

  15. Meteorite Impact-Induced Rapid NH3 Production on Early Earth: Ab Initio Molecular Dynamics Simulation

    Shimamura, Kohei; Shimojo, Fuyuki; Nakano, Aiichiro; Tanaka, Shigenori


    NH3 is an essential molecule as a nitrogen source for prebiotic amino acid syntheses such as the Strecker reaction. Previous shock experiments demonstrated that meteorite impacts on ancient oceans would have provided a considerable amount of NH3 from atmospheric N2 and oceanic H2O through reduction by meteoritic iron. However, specific production mechanisms remain unclear, and impact velocities employed in the experiments were substantially lower than typical impact velocities of meteorites on the early Earth. Here, to investigate the issues from the atomistic viewpoint, we performed multi-scale shock technique-based ab initio molecular dynamics simulations. The results revealed a rapid production of NH3 within several picoseconds after the shock, indicating that shocks with greater impact velocities would provide further increase in the yield of NH3. Meanwhile, the picosecond-order production makes one expect that the important nitrogen source precursors of amino acids were obtained immediately after the impact. It was also observed that the reduction of N2 proceeded according to an associative mechanism, rather than a dissociative mechanism as in the Haber-Bosch process.

  16. Calculation of optimal parameters of an NH3-CO2 lidar

    Vasil'ev, BI; Mannoun, OM

    The basic parameters (range, signal-to-noise ratio, and sensitivity) of a lidar using NH3 and CO2 lasers are calculated. The principle of lidar operation is based on the differential absorption recording. Absorption spectra of all known Freons are considered in the spectral range 9-13.5 mu m and

  17. Effect of surface modification of activated carbon on its adsorption capacity for NH3

    SHAN Xiao-mei; ZHU Shu-quan; ZHANG Wen-hui


    To investigate the effects of carbon surface characteristics on NH3 adsorption, coal-based and coconut shell activated carbons were modified by treatment with oxidants. The surface properties of the carbons were characterized by low temperature nitrogen sorption, by Boehm's titrations and by XPS techniques. NH3 adsorption isotherms of the original and the modified carbons were determined. The results show that the carbons were oxidized by HNO3 and (NH4)2S2O8, and that there was an increase in oxygen containing functional groups on the surface. However, the pore-size distribution of the coal-based carbons was changed after KMnO4 treatment. It was found that the NH3 adsorption capacity of the modified carbons was enhanced and that the most pronounced enhancement results from (NH4)2S2O8 oxidation. Under our experimental conditions, the capacity is positively corrected to the number of surface functional groups containing oxygen, and to the number of micro-pores. Furthermore, an empirical model of the relationship between NH3 adsorption and multiple factors on the carbon surface was fit using a complex regression method.

  18. NH$_3$(3,3) and CH$_3$OH near Supernova Remnants: GBT and VLA Observations

    McEwen, Bridget; Sjouwerman, Loránt


    We report on Green Bank Telescope 23.87 GHz NH$_3$(3,3), emission observations in five supernova remnants interacting with molecular clouds (G1.4$-$0.1, IC443, W44, W51C, and G5.7$-$0.0). The observations show a clumpy gas density distribution, and in most cases the narrow line widths of $\\sim3-4$\\,km\\,s$^{-1}$ are suggestive of maser emission. Very Large Array observations reveal 36~GHz and/or 44~GHz CH$_3$OH, maser emission in a majority (72\\%) of the NH$_3$, peak positions towards three of these SNRs. This good positional correlation is in agreement with the high densities required for the excitation of each line. Through these observations we have shown that CH$_3$OH, and NH$_3$, maser emission can be used as indicators of high density clumps of gas shocked by supernova remnants, and provide density estimates thereof. Modeling of the optical depth of the NH$_3$(3,3) emission is compared to that of CH$_3$OH, constraining the densities of the clumps to a typical density of the order of $10^5$~cm$^{-3}$ for ...

  19. Parametrization of electron impact ionization cross sections for CO, CO2, NH3 and SO2

    Srivastava, Santosh K.; Nguyen, Hung P.


    The electron impact ionization and dissociative ionization cross section data of CO, CO2, CH4, NH3, and SO2, measured in the laboratory, were parameterized utilizing an empirical formula based on the Born approximation. For this purpose an chi squared minimization technique was employed which provided an excellent fit to the experimental data.

  20. Simultaneous removal of H2S and NH3 in biofilter inoculated with Acidithiobacillus thiooxidans TAS.

    Lee, Eun Young; Cho, Kyung-Suk; Ryu, Hee Wook


    H2S and NH3 gases are toxic, corrosive and malodorous air pollutants. Although there are numerous well-established physicochemical techniques presently available for the treatment of these gases, the growing demand for a more economical and improved process has prompted investigations into biological alternatives. In biological treatment methods, H2S is oxidized to SO4(2-) by sulfur-oxidizing bacteria, and then NH3 is removed by chemical neutralization with SO4(2-) to (NH4)2SO4. Since the accumulated (NH4)2SO4 can inhibit microbial activity, it is important to utilize an effective sulfur-oxidizing bacterium that has tolerance to high concentrations of (NH4)2SO4 for the simultaneous removal of H2S and NH3. In this study, a sulfur-oxidizing bacterium with tolerance to high concentrations of (NH4)2SO4 was isolated from activated sludge and identified as Acidithiobacillus thiooxidans TAS. A. thiooxidans TAS could display its sulfur-oxidizing activity in a medium supplemented with 60 g.l(-1) (NH4)2SO4, even though its growth and sulfur-oxidizing activity were completely inhibited in 80 g.l(-1) (NH4)2SO4. When H2S alone was supplied to a ceramic biofilter inoculated with A. thiooxidans TAS, an almost 100% H2S removal efficiency was maintained until the inlet H2S concentration was increased up to 900 microl.l(-1) and the space velocity up to 500 h(-1), at which the amount of H2S eliminated was 810 g-S.m(-3).h(-1). However, when NH3 (50-500 microl.l(-1)) was simultaneously supplied to the biofilter with H2S, the maximum amount of H2S eliminated decreased to 650 g-S.m(-3).h(-1). The inhibition of H2S removal by low NH3 concentrations (50-200 microl.l(-1)) was similar to that by high NH3 concentrations (300-500 microl.l(-1)). The critical inlet H2S load that resulted in over 99% removal was determined as 400 g-S.m(-3).h(-1) in the presence of NH3.

  1. Theoretical and experimental investigations of optical, structural and electronic properties of the lower-dimensional hybrid [NH3-(CH2)10-NH3]ZnCl4

    El Mrabet, R.; Kassou, S.; Tahiri, O.; Belaaraj, A.; Guionneau, P.


    In the current study, a combination between theoretical and experimental studies has been made for the hybrid perovskite [NH3-(CH2)10-NH3]ZnCl4. The density functional theory (DFT) was performed to investigate structural and electronic properties of the tilted compound. A local approximation (LDA) and semi-local approach (GGA) were employed. The results are obtained using, respectively, the local exchange correlation functional of Perdew-Wang 92 (PW92) and semi local functional of Perdew-Burke-Ernzerhof (PBE). The optimized cell parameters are in good agreement with the experimental results. Electronic properties have been studied through the calculation of band structures and density of state (DOS), while structural properties are investigated by geometry optimization of the cell. Fritz-Haber-Institute (FHI) pseudopotentials were employed to perform all calculations. The optical diffuse reflectance spectra was mesured and applied to deduce the refractive index ( n), the extinction coefficient ( k), the absorption coefficient (α), the real and imaginary dielectric permittivity parts (ɛr,ɛi)) and the optical band gap energy Eg. The optical band gap energy value shows good consistent with that obtained from DFT calculations and reveals the insulating behavior of the material.

  2. Nucleobases and Prebiotic Molecules in Organic Residues Produced from the Ultraviolet Photo-Irradiation of Pyrimidine in NH3 and H2O+NH3 Ices

    Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott


    Although not yet identified in the interstellar medium (ISM), N-heterocycles including nucleobases the information subunits of DNA and RNA are present in carbonaceous chondrites, which indicates that molecules of biological interest can be formed in non-terrestrial environments via abiotic pathways. Recent laboratory experiments and ab-initio calculations have already shown that the irradiation of pyrimidine in pure H2O ices leads to the formation of a suite of oxidized pyrimidine derivatives, including the nucleobase uracil. In the present work, NH3:pyrimidine and H2O:NH3:pyrimidine ice mixtures with different relative proportions were irradiated with UV photons under astrophysically relevant conditions. Liquid- and gas-chromatography analysis of the resulting organic residues has led to the detection of the nucleobases uracil and cytosine, as well as other species of prebiotic interest such as urea and small amino acids. The presence of these molecules in organic residues formed under abiotic conditions supports scenarios in which extraterrestrial organics that formed in space and were subsequently delivered to telluric planets via comets and meteorites could have contributed to the inventory of molecules that triggered the first biological reactions on their surfaces.

  3. New methods to quantify NH3 volatilization from fertilized surface soil with urea

    Ana Carolina Alves


    Full Text Available Gaseous N losses from soil are considerable, resulting mostly from ammonia volatilization linked to agricultural activities such as pasture fertilization. The use of simple and accessible measurement methods of such losses is fundamental in the evaluation of the N cycle in agricultural systems. The purpose of this study was to evaluate quantification methods of NH3 volatilization from fertilized surface soil with urea, with minimal influence on the volatilization processes. The greenhouse experiment was arranged in a completely randomized design with 13 treatments and five replications, with the following treatments: (1 Polyurethane foam (density 20 kg m-3 with phosphoric acid solution absorber (foam absorber, installed 1, 5, 10 and 20 cm above the soil surface; (2 Paper filter with sulfuric acid solution absorber (paper absorber, 1, 5, 10 and 20 cm above the soil surface; (3 Sulfuric acid solution absorber (1, 5 and 10 cm above the soil surface; (4 Semi-open static collector; (5 15N balance (control. The foam absorber placed 1 cm above the soil surface estimated the real daily rate of loss and accumulated loss of NH3N and proved efficient in capturing NH3 volatized from urea-treated soil. The estimates based on acid absorbers 1, 5 and 10 cm above the soil surface and paper absorbers 1 and 5 cm above the soil surface were only realistic for accumulated N-NH3 losses. Foam absorbers can be indicated to quantify accumulated and daily rates of NH3 volatilization losses similarly to an open static chamber, making calibration equations or correction factors unnecessary.

  4. Structural determinants of NH3 and NH4+ transport by mouse Rhbg, a renal Rh glycoprotein.

    Abdulnour-Nakhoul, Solange; Le, Trang; Rabon, Edd; Hamm, L Lee; Nakhoul, Nazih L


    Renal Rhbg is localized to the basolateral membrane of intercalated cells and is involved in NH3/NH4(+) transport. The structure of Rhbg is not yet resolved; however, a high-resolution crystal structure of AmtB, a bacterial homolog of Rh, has been determined. We aligned the sequence of Rhbg to that of AmtB and identified important sites of Rhbg that may affect transport. Our analysis positioned three conserved amino acids, histidine 183 (H183), histidine 342 (H342), and tryptophan 230 (W230), within the hydrophobic pore where they presumably serve to control NH3 transport. A fourth residue, phenylalanine 128 (F128) was positioned at the upper vestibule, presumably contributing to recruitment of NH4(+) We generated three mutations each of H183, H342, W230, and F128 and expressed them in frog oocytes. Immunolabeling showed that W230 and F128 mutants were localized to the cell membrane, whereas H183 and H342 staining was diffuse and mostly intracellular. To determine function, we compared measurements of NH3/NH4(+) and methyl amine (MA)/methyl ammonium (MA(+))-induced currents, intracellular pH, and surface pH (pHs) among oocytes expressing the mutants, Rhbg, or injected with H2O. In H183 and W230 mutants, NH4(+)-induced current and intracellular acidification were inhibited compared with that of Rhbg, and MA-induced intracellular alkalinization was completely absent. Expression of H183A or W230A mutants inhibited NH3/NH4(+)- and MA/MA(+)-induced decrease in pHs to the level observed in H2O-injected oocytes. Mutations of F128 did not significantly affect transport of NH3 or NH4(+) These data demonstrated that mutating H183 or W230 caused loss of function but not F128. H183 and H342 may affect membrane expression of the transporter.

  5. Photovoltaic properties of Cu-doped CH3NH3PbI3 with perovskite structure

    Shirahata, Yasuhiro; Oku, Takeo


    Photovoltaic properties of copper (Cu)-doped perovskite (CH3NH3PbCuxI3+x) photovoltaic devices with different Cu content were investigated. The CH3NH3PbCuxI3+x films were polycrystalline with a tetragonal system, and their lattice constants and crystallite size varied with Cu doping. Compared to conversion efficiencies of non-doped CH3NH3PbI3 photovoltaic device, those of CH3NH3PbCuxI3+x photovoltaic devises increased. The improvement of photovoltaic properties was attributed to partial substitution of Cu at the Pb sites.


    S. Sujarwata


    Full Text Available A copper phthalocyanine (CuPc thin film based gas sensor with FET structure and channel length 100 μm has been prepared by VE method and lithography technique to detect NH3, motor cycle exhaust gases and CO. CuPc material layer was deposited on SiO2 by the vacuum evaporator (VE method at room temperature and pressure of 8 x10-4 Pa. The stages of manufacturing gas sensor were Si/SiO2 substrate blenching with ethanol in an ultrasonic cleaner, source, and drain electrodes deposition on the substrate by using a vacuum evaporator, thin film deposition between the source/drain and gate deposition. The sensor response times to NH3, motorcycle exhaust gases and CO were 75 s, 135 s, and 150, respectively. The recovery times were 90 s, 150 s and 225, respectively. It is concluded that the CuPc thin film-based gas sensor with FET structure is the best sensor to detect the NH3 gas.Sensor gas berbasis film tipis copper phthalocyanine (CuPc berstruktur FET dengan panjang channel 100 μm telah dibuatdengan metode VE dan teknik lithography untuk mendeteksi NH3 gas buang kendaraan bermotor dan CO. Lapisan bahan CuPc dideposisikan pada permukaan silikon dioksida (SiO2 dengan metode vacuum evaporator (VE pada temperatur ruang dengan tekanan 8 x10-4 Pa. Tahapan pembuatan sensor gas adalah pencucian substrat Si/SiO2 dengan etanol dalam ultrasonic cleaner, deposisi elektroda source dan drain di atas substrat dengan metode vacuum evaporator, deposisi film tipis diantara source/drain dan deposisi gate. Waktu tanggap sensor terhadap NH3, gas buang kendaraan bermotor dan CO berturut-turut adalah 75 s, 135 s,dan 150 s. Waktu pemulihan berturut-turut adalah 90 s, 150 s,dan 225 s. Disimpulkan bahwa sensor gas berstruktur FET berbasis film tipis CuPc merupakan sensor paling baik untuk mendeteksi adanya gas NH3.

  7. Kevlar织物NH3等离子体表面改性研究%Study on NH3 Plasma Surface Modification of Kevlar Fabric

    周正刚; 李敏; 蒋诗才


    采用NH3等离子体对Kevlar-49 S500织物进行了表面改性,处理工艺条件为74.9Pa/113W/14.3分钟.研究结果表明改性后的Kevlar-49 S500织物增强的3234环氧树脂复合材料层间剪切强度提高了26.6%,T型剥离强度提高了22.9%;改性后的纤维表面粗糙度明显增大,与水的接触角降低;T-剥离试样断口的微观分析发现Kevlar纤维/3234环氧界面的破坏方式为纤维本体破坏.

  8. Porous Anatase TiO2 Thin Films for NH3 Vapour Sensing

    Ponnusamy, Dhivya; Madanagurusamy, Sridharan


    Anatase titanium dioxide (TiO2) thin films were deposited onto cleaned glass substrates by a direct current (DC) reactive magnetron sputtering technique for different deposition times from 10 min to 40 min, which resulted in films of different thicknesses. Characterization techniques, such as x-ray diffraction (XRD) and field emission-scanning electron microscopy (FE-SEM) were used to characterize the structural and morphological properties of the TiO2 thin films. XRD patterns showed the formation of (101) crystal anatase facets. The grain size values of the film increased with increased deposition time, and the films deposited at 40 min exhibited a porous structure. Anatase TiO2 thin films exhibited excellent sensing response, fast response and recovery time, as well as good stability and selectivity towards ammonia (NH3). The enhanced NH3 sensing behavior of anatase TiO2 films is attributed to the porous morphology and oxygen vacancies.

  9. Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers

    Gao, Yisheng; Wang, Shuai; Huang, Can; Yi, Ningbo; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai


    Hybrid lead halide perovskites have made great strides in next-generation light-harvesting and light emitting devices. Recently, they have also shown great potentials in nonlinear optical materials. Two-photon absorption and two-photon light emission have been thoroughly studied in past two years. However, the three-photon processes are rarely explored, especially for the laser emissions. Here we synthesized high quality CH3NH3PbBr3 perovskite microstructures with solution processed precipitation method and studied their optical properties. When the microstructures are pumped with intense 1240 nm lasers, we have observed clear optical limit effect and the band-to-band photoluminescence at 540 nm. By increasing the pumping density, whispering-gallery-mode based microlasers have been achieved from CH3NH3PbBr3 perovskite microplate and microrod for the first time. This work demonstrates the potentials of hybrid lead halide perovskites in nonlinear photonic devices.

  10. High-resolution absorption measurements of NH3 at high temperatures: 2100-5500 cm-1

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan; Clausen, Sønnik; Fateev, Alexander


    High-resolution absorption spectra of NH3 in the region 2100-5500 cm-1 at 1027 °C and approximately atmospheric pressure (1045±3 mbar) are measured. An NH3 concentration of 10% in volume fraction is used in the measurements. Spectra are recorded in a high-temperature gas-flow cell using a Fourier Transform Infrared (FTIR) spectrometer at a nominal resolution of 0.09 cm-1. The spectra are analysed by comparison to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. 2308 lines have been assigned to 45 different bands, of which 1755 and 15 have been assigned or observed for the first time in this work.

  11. Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers

    Gao, Yisheng; Wang, Shuai; Huang, Can; Yi, Ningbo; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai


    Hybrid lead halide perovskites have made great strides in next-generation light-harvesting and light emitting devices. Recently, they have also shown great potentials in nonlinear optical materials. Two-photon absorption and two-photon light emission have been thoroughly studied in past two years. However, the three-photon processes are rarely explored, especially for the laser emissions. Here we synthesized high quality CH3NH3PbBr3 perovskite microstructures with solution processed precipitation method and studied their optical properties. When the microstructures are pumped with intense 1240 nm lasers, we have observed clear optical limit effect and the band-to-band photoluminescence at 540 nm. By increasing the pumping density, whispering-gallery-mode based microlasers have been achieved from CH3NH3PbBr3 perovskite microplate and microrod for the first time. This work demonstrates the potentials of hybrid lead halide perovskites in nonlinear photonic devices.

  12. Electroless Ni-Co-P Coating of Cenospheres Using Ag(NH3)2+ Activator

    ZENG Ai-xiang; XIONG Wei-hao


    Electroless Ni-Co-P-coating of fly-ash cenosphere particles is demonstrated in the present investigation. The Electroless Ni-Co-P-coating process is modified by replacing the conventional sensitization and activation steps with only using activation step with Ag(NH3)2+ activator. The cenospheres are characterized by scanning electron microscope (SEM),energy dispersive spectroscopy (EDX), X-ray diffraction analysis (XRD) and X-ray photoelectron spectroscopy (XPS)during and after the coating process. Relatively uniform coating is obtained under the given coating conditions. The possible mechanism of electroless Ni-Co-P-coating of cenospheres utilizing Ag(NH3)2+ activator is suggested. The low density Ni-Co-P coated cenospheres may be utilized for manufacturing conducting polymers for EMI-shielding application and microwave absorbing materials.

  13. Electrical and optical properties of Ar/NH3 atmospheric pressure plasma jet

    Chang, Zheng-Shi; Yao, Cong-Wei; Chen, Si-Le; Zhang, Guan-Jun


    Inspired by the Penning effect, we obtain a glow-like plasma jet by mixing ammonia (NH3) into argon (Ar) gas under atmospheric pressure. The basic electrical and optical properties of an atmospheric pressure plasma jet (APPJ) are investigated. It can be seen that the discharge mode transforms from filamentary to glow-like when a little ammonia is added into the pure argon. The electrical and optical analyses contribute to the explanation of this phenomenon. The discharge mode, power, and current density are analyzed to understand the electrical behavior of the APPJ. Meanwhile, the discharge images, APPJ's length, and the components of plasma are also obtained to express its optical characteristics. Finally, we diagnose several parameters, such as gas temperature, electron temperature, and density, as well as the density number of metastable argon atoms of Ar/NH3 APPJ to help judge the usability in its applications.

  14. NH3 (10-00) in the pre-stellar core L1544

    Caselli, P.; Bizzocchi, L.; Keto, E.


    Pre-stellar cores represent the initial conditions in the process of star and planet formation, therefore it is important to study their physical and chemical structure. Because of their volatility, nitrogen-bearing molecules are key to study the dense and cold gas present in pre-stellar cores....... The NH3 rotational transition detected with Herschel-HIFI provides a unique combination of sensitivity and spectral resolution to further investigate physical and chemical processes in pre-stellar cores. Here we present the velocity-resolved Herschel-HIFI observations of the ortho-NH3(10-00) line at 572...... GHz and study the abundance profile of ammonia across the pre-stellar core L1544 to test current theories of its physical and chemical structure. Recently calculated collisional coefficients have been included in our non-LTE radiative transfer code to reproduce Herschel observations. A gas...

  15. Observation of orbiting resonances in He(3S1) + NH3 Penning ionization

    Jankunas, Justin; Jachymski, Krzysztof; Hapka, Michal; Osterwalder, Andreas


    Resonances are among the clearest quantum mechanical signatures of scattering processes. Previously, shape resonances and Feshbach resonances have been observed in inelastic and reactive collisions involving atoms or diatomic molecules. Structure in the integral cross section has been observed in a handful of elastic collisions involving polyatomic molecules. The present paper presents the observation of shape resonances in the reactive scattering of a polyatomic molecule, NH3. A merged-beam ...

  16. On the NH3 absorption depression observable at Northern low latitudes of Jupiter

    Tejfel, Victor G.; Vdovichenko, Vladimir D.; Lysenko, Peter G.; Karimov, Alibek M.; Kirienko, Galina A.; Bondarenko, Natalya N.; Kharitonova, Galina


    From February to April of 2016, we carried out a special series of spectrophotometric observations of Jupiter to study the current behavior of the ammonia absorption at the low latitudes of the Northern hemisphere, where in 2004 we have found a well-defined depression of the 787 nm NH3 absorption band intensity (V.Tejfel et al., Bull.AAS, 2005, Vol. 37, p.682). In subsequent years, an existence of this depression was annually confirmed by spectral observations, although we were noticing its variable character. During observations of 2016 we obtained more than 2,500 CCD-spectrograms, including the spectra of the central meridian, the GRS, and 12 scans of Jovian disk on different dates (70 zonal spectra in each scan). The 787 nm NH3 absorption band was extracted with using of ratios of the Jovian spectra to the Saturn's disk spectrum that was taken as a reference. The depression of absorption in this band begins almost from the equator, and its maximum occurs at the planetographic latitude of 100N then the absorption increases again approaching to the latitude of 200N. The equivalent bandwidths corresponding to these latitudes are equal to 18.7 ± 1.4 A, 14.4 ± 1.0 A and 17.8 ± 0.8A. The 645 nm NH3 absorption band also shows depletion at the low latitudes of the Northern hemisphere, but it is less pronounced. At the temperate latitudes of the Northern hemisphere this band's absorption is systematically lower than the Southern Hemisphere's ones. We will continue research in this direction, especially because recently a significant depletion of gaseous NH3 has also been found with using of the VLA with high resolution (I. de Pater et al., Science, 2016, Vol. 352, Issue 6290, p.1290-1294) at the low latitudes of the Northern hemisphere in the region of the NEB.

  17. Thermodynamic properties of ferroelectric NH3CH2COOH·H2PO3 crystal

    Zachek, I. R.; Shchur, Ya.; Levitskii, R. R.; Vdovych, A. S.


    Using a modified microscopic model of NH3CH2COOH·H2PO3 by taking into account piezoelectric coupling with strains εi, ε4, ε5 and ε6 in two-particle cluster approximation, the temperature dependence of polarization and tensor of static dielectric permittivity of mechanically clamped and free crystal, their piezoelectric characteristics, elastic constants and heat capacity are calculated.

  18. Photovoltaic performance and the energy landscape of CH3NH3PbI3.

    Zhou, Yecheng; Huang, Fuzhi; Cheng, Yi-Bing; Gray-Weale, Angus


    Photovoltaic cells with absorbing layers of certain perovskites have power conversion efficiencies up to 20%. Among these materials, CH3NH3PbI3 is widely used. Here we use density-functional theory to calculate the energies and rotational energy barriers of a methylammonium ion in the α or β phase of CH3NH3PbI3 with differently oriented neighbouring methylammonium ions. Our results suggest the methylammonium ions in CH3NH3PbI3 prefer to rotate collectively, and to be parallel to their neighbours. Changes in polarization on rotation of methylammonium ions are two to three times larger than those on relaxation of the lead ion from the centre of its coordination shell. The preferences for parallel configuration and concerted rotation, with the polarisation changes, are consistent with ferroelectricity in the material, and indicate that this polarisation is governed by methylammonium orientational correlations. We show that the field due to this polarisation is strong enough to screen the field hindering charge transport, and find this screening field in agreement with experiment. We examine two possible mechanisms for the effect of methylammonium ion rotation on photovoltaic performance. One is that rearrangement of methylammoniums promotes the creation and transport of charge carriers. Some effective masses change greatly, but changes in band structure with methylammonium rotation are not large enough to explain current-voltage hysteresis behaviour. The second possible mechanism is that polarization screens the hindering electric field, which arises from charge accumulation in the transport layers. Polarization changes on methylammonium rotation favour this second mechanism, suggesting that collective reorientation of methylammonium ions in the bulk crystal are in significant part responsible for the hysteresis and power conversion characteristics of CH3NH3PbI3 photovoltaic cells.

  19. General working principles of CH3NH3PbX3 perovskite solar cells.

    Gonzalez-Pedro, Victoria; Juarez-Perez, Emilio J; Arsyad, Waode-Sukmawati; Barea, Eva M; Fabregat-Santiago, Francisco; Mora-Sero, Ivan; Bisquert, Juan


    Organometal halide perovskite-based solar cells have recently realized large conversion efficiency over 15% showing great promise for a new large scale cost-competitive photovoltaic technology. Using impedance spectroscopy measurements we are able to separate the physical parameters of carrier transport and recombination in working devices of the two principal morphologies and compositions of perovskite solar cells, viz. compact thin films of CH3NH3PbI(3-x)Clx and CH3NH3PbI3 infiltrated on nanostructured TiO2. The results show nearly identical spectral characteristics indicating a unique photovoltaic operating mechanism that provides long diffusion lengths (1 μm). Carrier conductivity in both devices is closely matched, so that the most significant differences in performance are attributed to recombination rates. These results highlight the central role of the CH3NH3PbX3 semiconductor absorber in carrier collection and provide a new tool for improved optimization of perovskite solar cells. We report for the first time a measurement of the diffusion length in a nanostructured perovskite solar cell.

  20. Dynamics of CH3NH3PbI3 from first principles simulations

    Kachmar, Ali; Carignano, Marcelo


    We address the dynamical and optical properties of CH3NH3PbI3 using molecular dynamics simulations based on forces calculated with density functional theory. We have studied the three stable phases of CH3NH3PbI3 but most of the effort was dedicated to the intermediate tetragonal phase, which is stable at standard ambient conditions. In this case, two different system sizes have been considered, one with 8 unit cells (384 atoms) and a larger one with 27 unit cells (1296 atoms). The total simulated time reached 40 ps. Our findings reveal the interplay between the thermal energy of the system and the electronic degrees of freedom. For example, the organic molecule undergoes relatively fast rotations and the energy band gap, approximated by the LUMO-HOMO energy difference, fluctuates around the equilibrium value of ~1.5 eV with a width of 0.2 eV. The rotation of the CH3NH3 molecule is not isotropic, and more importantly, it is quite sensitive to the size of the simulation box. Our study also provides a quantitative measure for the finite size effects affecting the calculated properties and provides a contextual scenario on which to analyze the more typical density functional theory studies based on static calculations on optimal structures. The authors acknowledge the HPC resources of Texas A&M University at Qatar.

  1. NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes

    Holm, Lars M.; Jahn, Thomas Paul; Møller, Anders Laurell Blom;


    We have shown recently, in a yeast expression system, that some aquaporins are permeable to ammonia. In the present study, we expressed the mammalian aquaporins AQP8, AQQP9, AQP3, AQP1 and a plant aquaporin TIP2;1 in Xenopus oocytes to study the transport of ammonia (NH3) and ammonium (NH4+) under...... opencircuit and voltage-clamped conditions. TIP2;1 was tested as the wild-type and in a mutated version (tip2;1) in which the water permeability is intact. When AQP8-, AQP9-, AQP3- and TIP2;1-expressing oocytes were placed in a well-stirred bathing medium of low buffer capacity, NH3 permeability was evident...... from the acidification of the bathing medium; the effects observed with AQP1 and tip2;1 did not exceed that of native oocytes. AQP8, AQP9, AQP3, and TIP2;1 were permeable to larger amides, while AQP1 was not. Under voltage-clamp conditions, given sufficient NH3, AQP8, AQP9, AQP3, and TIP2;1 supported...

  2. Crystal Structure Formation of CH3NH3PbI3-xClx Perovskite

    Shiqiang Luo


    Full Text Available Inorganic-organic hydride perovskites bring the hope for fabricating low-cost and large-scale solar cells. At the beginning of the research, two open questions were raised: the hysteresis effect and the role of chloride. The presence of chloride significantly improves the crystallization and charge transfer property of the perovskite. However, though the long held debate over of the existence of chloride in the perovskite seems to have now come to a conclusion, no prior work has been carried out focusing on the role of chloride on the electronic performance and the crystallization of the perovskite. Furthermore, current reports on the crystal structure of the perovskite are rather confusing. This article analyzes the role of chloride in CH3NH3PbI3-xClx on the crystal orientation and provides a new explanation about the (110-oriented growth of CH3NH3PbI3 and CH3NH3PbI3-xClx.

  3. Theoretical Study on Dihydrogen Bonds of NH3BH3 with Several Small Molecules

    An-yong Li; Li-fang Xu; Zhou Ling


    The dihydrogen bonds B-H…H-X (X=F, Cl, Br, C, O, N) in the dimer (NH3BH3)2 and the complexes of NH3BH3 with HF, HCl, HBr, H2CO, H2O, and CHaOH were theoretically studied. The results show that formation of the dihydrogen bond leads to elongation and stretch frequency red shift of the BH and XH bonds, except that in the H2CO system, the CH bond blue shifts. For (NH3BH3)2 and the complexes of the halogenides, red shifts of the XH bonds are caused by the intermolecular hyperconjugation a(BH)→σ* (XH). For the system of H2CO, a blue shift of the CH bond is caused by a decrease of the intramolecular hyperconjugation n(O)→σ*(CH). In the other two systems, the red shift of OH bond is systems, red shifts of the BH bonds are caused by two factors: negative repolarization and negative rehybridization of the BH bond, and decrease of occupancy on σ(BH) caused by the intermolecular hyperconjugation σ(BH)→σ* (XH).

  4. Adsorption performances and refrigeration application of adsorption working pair of CaCl2-NH3

    WANG Liwei; WANG Ruzhu; WU Jingyi; WANG Kai


    The adsorption performance of CaCl2-NH3 is studied under the condition of different expansion spaces for adsorbent, andthe relationships between adsorption performance of CaCl2-NH3 and the phenomena of swelling and agglomeration during adsorption are researched. It is found that the performance stability is related to the ratio of expansion space to the volume of adsorbent ras, and the performance attenuation is serious in the case of large ras. Severe adsorption hysteresis exists in the process of adsorption and desorption at the same evaporating and condensing temperatures, which is related to the stability constant of chemical reaction. This phenomenon cannot be explained by the theory of physical adsorption. Moderate agglomeration will be beneficial to the formation of ammoniate complex; the magnitude of expansion space will affect adsorption performance. Analysis shows that the activated energy needed in the process of adsorption for the sample with ras of 2:1 is less than that for the sample with ras of 3:1.The refrigeration performance of CaCl2-NH3 is predicted from experiments. The cooling capacity of one adsorption cycle is about 945.4 kJ/kg for the adsorbent with an ras of 2:1 at the evaporating temperature of 0℃.

  5. Diagnosing shock temperature with NH$_3$ and H$_2$O profiles

    Gómez-Ruiz, A I; Viti, S; Jiménez-Serra, I; Navarra, G; Bachiller, R; Caselli, P; Fuente, A; Gusdorf, A; Lefloch, B; Lorenzani, A; Nisini, B


    In a previous study of the L1157 B1 shocked cavity, a comparison between NH$_3$(1$_0$-$0_0$) and H$_2$O(1$_{\\rm 10}$--1$_{\\rm 01}$) transitions showed a striking difference in the profiles, with H$_2$O emitting at definitely higher velocities. This behaviour was explained as a result of the high-temperature gas-phase chemistry occurring in the postshock gas in the B1 cavity of this outflow. If the differences in behaviour between ammonia and water are indeed a consequence of the high gas temperatures reached during the passage of a shock, then one should find such differences to be ubiquitous among chemically rich outflows. In order to determine whether the difference in profiles observed between NH$_3$ and H$_2$O is unique to L1157 or a common characteristic of chemically rich outflows, we have performed Herschel-HIFI observations of the NH$_3$(1$_0$-0$_0$) line at 572.5 GHz in a sample of 8 bright low-mass outflow spots already observed in the H$_2$O(1$_{\\rm 10}$--1$_{\\rm 01}$) line within the WISH KP. We d...

  6. Structure and stability in TMC-1: analysis of NH$_3$ molecular line and Herschel continuum data

    Fehér, O; Ward-Thompson, D; Kirk, J; Kraus, A; Pelkonen, V -M; Pintér, S; Zahorecz, S


    We observed high S/N, high velocity resolution NH$_3$(1,1) and (2,2) emission on an extended map in TMC-1, a filamentary cloud in a nearby quiescent star forming area. By fitting multiple hyperfine-split line profiles to the NH$_3$(1,1) spectra we derived the velocity distribution of the line components and calculated gas parameters on several positions. Herschel SPIRE continuum observations were reduced and used to calculate the physical parameters of the Planck Galactic Cold Clumps in the region. The Herschel-based column density map of TMC-1 shows a main ridge with two local maxima and a separated peak to the south-west. H$_2$-column densities and dust temperatures are in the range of 0.5-3.3 $\\times$ 10$^{22}$ cm$^{-2}$ and 10.5-12 K, respectively. NH$_3$-column densities are 2.8-14.2 $\\times$ 10$^{14}$ cm$^{-2}$ and and H$_2$-volume densities are 0.4-2.8 $\\times$ 10$^4$ cm$^{-3}$. Kinetic temperatures are typically very low with a minimum of 9 K, and a maximum of 13.7 K was found at the Class I protostar...

  7. Comparison among NH3 and GHGs emissive patterns from different housing solutions of dairy farms

    Baldini, Cecilia; Borgonovo, Federica; Gardoni, Davide; Guarino, Marcella


    Agriculture and livestock farming are known to be activities emitting relevant quantities of atmospheric pollutants. In particular, in intensive animal farming, buildings can be identified as a relevant source of ammonia and greenhouse gases. This study aimed at: i) determining the emission factors of NH3, N2O, CH4, and CO2 from different dairy farms in Italy, and ii) assessing the effects of the different floor types and manure-handling systems used, in order to minimize the impact of this important productive sector. A measurement campaign was carried out for 27 months in four naturally ventilated dairy cattle buildings with different floor types, layouts and manure management systems, representative of the most common technologies in the north of Italy. Gas emissions were measured with the ;static chamber method;: a chamber was placed above the floor farm and an infrared photoacoustic detector (IPD) was used to monitor gas accumulation over time. In the feeding alleys, emissions of NH3 were higher from solid floors than from flushing systems and perforated floors. N2O emissions were significantly different among farms but the absolute values were relatively low. CH4 and CO2 emissions were higher from perforated floors than from other types of housing solution. Regarding the cubicles, the emissions of NH3 were approximately equal from the two housing solution studied. Contrariwise, N2O, CH4 and CO2 emissions were different between the cubicles with rubber mat and those with straw where the highest values were found.

  8. Laboratory rotational ground state transitions of NH$_3$D$^+$ and CF$^+$

    Stoffels, Alexander; Schlemmer, Stephan; Brünken, Sandra


    Aims. This paper reports accurate laboratory frequencies of the rotational ground state transitions of two astronomically relevant molecular ions, NH3D+ and CF+. Methods. Spectra in the millimeter-wave band were recorded by the method of rotational state-selective attachment of He-atoms to the molecular ions stored and cooled in a cryogenic ion trap held at 4 K. The lowest rotational transition in the A state (ortho state) of NH$_3$D$^+$ ($J_K = 1_0 - 0_0$), and the two hyperfine components of the ground state transition of CF$^+$($J = 1 - 0$) were measured with a relative precision better than $10^{-7}$. Results. For both target ions the experimental transition frequencies agree with recent observations of the same lines in different astronomical environments. In the case of NH$_3$D$^+$ the high-accuracy laboratory measurements lend support to its tentative identification in the interstellar medium. For CF$^+$ the experimentally determined hyperfine splitting confirms previous quantum-chemical calculations a...

  9. Effect of organic chain length on structure, electronic composition, lattice potential energy, and optical properties of 2D hybrid perovskites [(NH3)(CH2) n (NH3)]CuCl4, n = 2-9

    Abdel-Aal, Seham K.; Kocher-Oberlehner, Gudrun; Ionov, Andrei; Mozhchil, R. N.


    Diammonium series of Cu hybrid perovskites of the formula [(NH3)(CH2) n (NH3)]CuCl4, n = 6-9 are prepared from an ethanolic solution in stoichiometric ratio 1:1 (organic/inorganic). Formation of the desired material was confirmed and characterizes by microchemical analysis, FTIR, XRD and XPS spectra. The structure consists of corner-shared octahedron [CuCl4]2- anion alternative by organic [(NH3)(CH2) n (NH3)]2+ cations. The organic and inorganic layers form infinite 2D sheet that are connected via NH···Cl hydrogen bond. The calculated lattice potential energy U pot (kJ/mol) and lattice enthalpy Δ H L (kJ/mol) are inversely proportional to the molecular volume V m (nm3) and organic chain length. Optical properties show strong absorption peak at UV-visible range. The band gap energy calculated using Kubelka-Munk equation shows the decrease of the energy gap as organic chain length increases. The introduction of bromide ion to [(NH3)(CH2) n (NH3)]CuCl2Br2 denoted 2C7CuCB hybrid has shifted the energy gap to lower values from 2.6 to 2.18 eV for 2C7CuCl (yellow) and 2C7CuCB (brown), respectively, at the same organic chain length. All elements of [(NH3)(CH2)9(NH3)]CuCl4 and [(NH3)(CH2)7(NH3)]CuCl2Br2 were found in XPS spectra, as well as valence band spectra.

  10. Confirmation of Isolated Cu2+ Ions in SSZ-13 Zeolite as Active Sites in NH3-Selective Catalytic Reduction

    Deka, U.; Juhin, A.F.; Eilertsen, E.A.; Emerich, H.; Green, M.A.; Korhonen, S.T.; Weckhuysen, B.M.; Beale, A.M.


    NH3-Selective Catalytic Reduction (NH3-SCR) is a widely used technology for NOx reduction in the emission control systems of heavy duty diesel vehicles. Copper-based ion exchanged zeolites and in particular Cu-SSZ-13 (CHA framework) catalysts show both exceptional activity and hydrothermal stability

  11. Projections of NH3 emissions from manure generated by livestock production in China to 2030 under six mitigation scenarios.

    Xu, Peng; Koloutsou-Vakakis, Sotiria; Rood, Mark J; Luan, Shengji


    China's rapid urbanization, large population, and increasing consumption of calorie-and meat-intensive diets, have resulted in China becoming the world's largest source of ammonia (NH3) emissions from livestock production. This is the first study to use provincial, condition-specific emission factors based on most recently available studies on Chinese manure management and environmental conditions. The estimated NH3 emission temporal trends and spatial patterns are interpreted in relation to government policies affecting livestock production. Scenario analysis is used to project emissions and estimate mitigation potential of NH3 emissions, to year 2030. We produce a 1km×1km gridded NH3 emission inventory for 2008 based on county-level activity data, which can help identify locations of highest NH3 emissions. The total NH3 emissions from manure generated by livestock production in 2008 were 7.3TgNH3·yr(-1) (interquartile range from 6.1 to 8.6TgNH3·yr(-1)), and the major sources were poultry (29.9%), pigs (28.4%), other cattle (27.9%), and dairy cattle (7.0%), while sheep and goats (3.6%), donkeys (1.3%), horses (1.2%), and mules (0.7%) had smaller contributions. From 1978 to 2008, annual NH3 emissions fluctuated with two peaks (1996 and 2006), and total emissions increased from 2.2 to 7.3Tg·yr(-1) increasing on average 4.4%·yr(-1). Under a business-as-usual (BAU) scenario, NH3 emissions in 2030 are expected to be 13.9TgNH3·yr(-1) (11.5-16.3TgNH3·yr(-1)). Under mitigation scenarios, the projected emissions could be reduced by 18.9-37.3% compared to 2030 BAU emissions. This study improves our understanding of NH3 emissions from livestock production, which is needed to guide stakeholders and policymakers to make well informed mitigation decisions for NH3 emissions from livestock production at the country and regional levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Rovibrational spectra of ammonia. II. Detailed analysis, comparison, and prediction of spectroscopic assignments for 14NH3, 15NH3, and 14ND3.

    Huang, Xinchuan; Schwenke, David W; Lee, Timothy J


    Several aspects of ammonia rovibrational spectra have been investigated using the new HSL-2 potential energy surface that includes an approximate correction for nonadiabatic effects. The unprecedented accuracy of rovibrational energy levels and transition energies computed using HSL-2 was demonstrated in Part I of this study. For (14)NH(3), new assignments for a few ν(3) + ν(4) band transitions and energy levels are suggested, and discrepancies between computed and HITRAN energy levels in the 2ν(4) band are analyzed (2ν(4) is the most difficult band below 5000 cm(-1)). New assignments are suggested for existing or missing 2ν(4) levels. Several new vibrational bands are identified from existing, unassigned HITRAN data, including 2ν(2) + ν(4), (ν(3) + ν(4)) -A(')∕A("), ν(1) + 2ν(2), and 2ν(2) + 2ν(4). The strong mixing between the 2ν(4) and 2ν(2) + ν(4) bands is carefully examined and found to be the source of the difficulties in the experimental modeling of 2ν(4). Discussion is presented for preliminary J = 10 results, where the overall root-mean-square error is estimated to be less than 0.039 cm(-1). The analysis of the 4ν(2) band demonstrates both the reliability and the accuracy of predictions from HSL-2. The full list of computed J = 0 band origins (with assignments) and the inversion splittings up to 7000-8000 cm(-1) above the zero-point energy are presented. J = 0-2 levels are reported for those bands below 5100 cm(-1) that are missing from the HITRAN database. For (15)NH(3), excellent agreement is found for the available ν(2) and ν(3) + ν(4)(E) transition energies, but significant deficiencies are shown for HITRAN levels and several corrections are suggested. The (15)N isotopic effects are presented for the J = 0-6 levels of 13 HITRAN bands. For (14)ND(3), we reproduce the pure rotational inversion spectra line frequencies with an accuracy similar to that for (14)NH(3). However, it is not possible to reproduce simultaneously all four

  13. Rovibrational spectra of ammonia. II. Detailed analysis, comparison, and prediction of spectroscopic assignments for 14NH3,15NH3, and 14ND3

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.


    Several aspects of ammonia rovibrational spectra have been investigated using the new HSL-2 potential energy surface that includes an approximate correction for nonadiabatic effects. The unprecedented accuracy of rovibrational energy levels and transition energies computed using HSL-2 was demonstrated in Part I of this study. For 14NH3, new assignments for a few ν3 + ν4 band transitions and energy levels are suggested, and discrepancies between computed and HITRAN energy levels in the 2ν4 band are analyzed (2ν4 is the most difficult band below 5000 cm-1). New assignments are suggested for existing or missing 2ν4 levels. Several new vibrational bands are identified from existing, unassigned HITRAN data, including 2ν2 + ν4, (ν3 + ν4) -A'/A'', ν1 + 2ν2, and 2ν2 + 2ν4. The strong mixing between the 2ν4 and 2ν2 + ν4 bands is carefully examined and found to be the source of the difficulties in the experimental modeling of 2ν4. Discussion is presented for preliminary J = 10 results, where the overall root-mean-square error is estimated to be less than 0.039 cm-1. The analysis of the 4ν2 band demonstrates both the reliability and the accuracy of predictions from HSL-2. The full list of computed J = 0 band origins (with assignments) and the inversion splittings up to 7000-8000 cm-1 above the zero-point energy are presented. J = 0-2 levels are reported for those bands below 5100 cm-1 that are missing from the HITRAN database. For 15NH3, excellent agreement is found for the available ν2 and ν3 + ν4(E) transition energies, but significant deficiencies are shown for HITRAN levels and several corrections are suggested. The 15N isotopic effects are presented for the J = 0-6 levels of 13 HITRAN bands. For 14ND3, we reproduce the pure rotational inversion spectra line frequencies with an accuracy similar to that for 14NH3. However, it is not possible to reproduce simultaneously all four pairs of inversion-split vibrational fundamentals to better than 0.05 cm-1

  14. NMR Spectroscopic Characterization of Methylcobalt(III) Compounds with Classical Ligands. Crystal Structures of [Co(NH(3))(5)(CH(3))]S(2)O(6), trans-[Co(en)(2)(NH(3))(CH(3))]S(2)O(6) (en = 1,2-Ethanediamine), and [Co(NH(3))(6)]-mer,trans-[Co(NO(2))(3)(NH(

    Kofod, Pauli; Harris, Pernille; Larsen, Sine


    magnetic resonance spectroscopy and by absorption spectroscopy. Single-crystal X-ray structure determinations at 122.0(5) K were performed on [Co(NH(3))(5)(CH(3))]S(2)O(6) (1), trans-[Co(en)(2)(NH(3))(CH(3))]S(2)O(6) (2), and [Co(NH(3))(6)]-mer,trans-[Co(NO(2))(3)(NH(3))(2)(CH(3))](2)-trans-[Co(NO(2...... to the trans ligand is 0.170 Å in the trans-[Co(en)(2)(NH(3))(CH(3))](2+) cation. The structural trans influence appears to decrease with the overall charge of the coordination compound. Estimates of the scalar one-bond cobalt-carbon coupling constants, (1)J(Co)(-)(C), in the pentacyanomethylcobalt(III) anion...

  15. Pemberian Pakan Serat Sisa Tanaman Pertanian (Jerami Kacang Tanah, Jerami Jagung, Pucuk Tebu Terhadap Evolusi pH, N-NH3 dan VFA Di dalam Rumen Sapi

    Yunasri Usman


    Full Text Available (Feeding agricultural crop residues (groundnut straw, corn straw, sugarcane straw to the pH evolution, N-NH3 and VFA in the cow rumen ABSTRACT. The goal of this study is to evaluate the condition of fermentation in the rumen of cows by administration of 3 types of feed fiber agricultural crop residues (Groundnut Straw (GS, Corn Straw (CS and Sugarcane Tops (ST. Single feeding wascarried out at 2 Holstein Friesian Crossbred (HFC cows with the age of 4-5 by fistula rumen.This study was conducted 20 days and with a 14-dayadaptation period.At the end of the adaptation period, rumen fluid was collected to measure pH, N-NH3and VFA based on feed treatment percow.Collection of rumen fluid was simultanous conducted for 24 hours at 27 time points decision.The results of the experiment showed that the level of pH for GS, CS and ST was 7.02 + 0.29; 6.54 + 0.16 and 6.54 + 0.14 respectively. The level of N-NH3 was 4.90 + 2.10 mg/100 ml of rumen fluid; 7.36 + 3.10 mg/100 ml of rumen fluid; 2.26 + 0.85 mg/100 ml of rumen fluidfor GS, CS and ST, respectively. Meanwile, the level of VFA was 57.44 + 12.75 mmol/l ml, 64.84 + 10.82 mmol/l and 44.13 + 6.66 mmol/l ml of rumen fluid, respectively.

  16. Combining anti-cancer drugs with artificial sweeteners: synthesis and anti-cancer activity of saccharinate (sac) and thiosaccharinate (tsac) complexes cis-[Pt(sac)2(NH3)2] and cis-[Pt(tsac)2(NH3)2].

    Al-Jibori, Subhi A; Al-Jibori, Ghassan H; Al-Hayaly, Lamaan J; Wagner, Christoph; Schmidt, Harry; Timur, Suna; Baris Barlas, F; Subasi, Elif; Ghosh, Shishir; Hogarth, Graeme


    The new platinum(II) complexes cis-[Pt(sac)2(NH3)2] (sac=saccharinate) and cis-[Pt(tsac)2(NH3)2] (tsac=thiosaccharinate) have been prepared, the X-ray crystal structure of cis-[Pt(sac)2(NH3)2] x H2O reveals that both saccharinate anions are N-bound in a cis-arrangement being inequivalent in both the solid-state and in solution at room temperature. Preliminary anti-cancer activity has been assessed against A549 human alveolar type-II like cell lines with the thiosaccharinate complex showing good activity.

  17. Homogeneous M2 duals

    Figueroa-O'Farrill, José


    Motivated by the search for new gravity duals to M2 branes with $N>4$ supersymmetry --- equivalently, M-theory backgrounds with Killing superalgebra $\\mathfrak{osp}(N|4)$ for $N>4$ --- we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra $\\mathfrak{so}(n) \\oplus \\mathfrak{so}(3,2)$ for $n=5,6,7$. We find that there are no new backgrounds with $n=6,7$ but we do find a number of new (to us) backgrounds with $n=5$. All backgrounds are metrically products of the form $\\operatorname{AdS}_4 \\times P^7$, with $P$ riemannian and homogeneous under the action of $\\operatorname{SO}(5)$, or $S^4 \\times Q^7$ with $Q$ lorentzian and homogeneous under the action of $\\operatorname{SO}(3,2)$. At least one of the new backgrounds is supersymmetric (albeit with only $N=2$) and we show that it can be constructed from a supersymmetric Freund--Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  18. New syntheses and structural characterization of NH3BH2Cl and (BH2NH2)3 and thermal decomposition behavior of NH3BH2Cl.

    Lingam, Hima K; Wang, Cong; Gallucci, Judith C; Chen, Xuenian; Shore, Sheldon G


    New convenient procedures for the preparation of ammonia monochloroborane (NH(3)BH(2)Cl) and cyclotriborazane [(BH(2)NH(2))(3)] are described. Crystal structures have been determined by single-crystal X-ray diffraction. Strong H···Cl···H bifurcated hydrogen bonding and weak N-H···H dihydrogen bonding are observed in the crystal structure of ammonia monochloroborane. When heated at 50 °C or under vacuum, ammonia monochloroborane decomposes to (NH(2)BHCl)(x), which was characterized by NMR, elemental analysis, and powder X-ray diffraction. Redetermination of the crystal structure of cyclotriborazane at low temperature by single-crystal X-ray diffraction analysis provides accurate hydrogen positions. Similar to ammonia borane, cyclotriborazane shows extensive dihydrogen bonding of N-H···H and B-H···H bonds with H(δ+)···H(δ-) interactions in the range of 2.00-2.34 Å.

  19. Four-Terminal Tandem Solar Cells Using CH3NH3PbBr3 by Spectrum Splitting.

    Sheng, Rui; Ho-Baillie, Anita W Y; Huang, Shujuan; Keevers, Mark; Hao, Xiaojing; Jiang, Liangcong; Cheng, Yi-Bing; Green, Martin A


    In this work, the use of a high bandgap perovskite solar cell in a spectrum splitting system is demonstrated. A remarkable energy conversion efficiency of 23.4% is achieved when a CH3NH3PbBr3 solar cell is coupled with a 22.7% efficient silicon passivated emitter rear locally diffused solar cell. Relative enhancements of >10% are demonstrated by CH3NH3PbBr3/CH3NH3PbI3 and CH3NH3PbBr3/multicrystalline-screen-printed-Si spectral splitting systems with tandem efficiencies of 13.4% and 18.8%, respectively. The former is the first demonstration of an all perovskite split spectrum system. The CH3NH3PbBr3 cell on a mesoporous structure was fabricated by the vapor-assisted method while the planar CH3NH3PbI3 cell was fabricated by the gas-assisted method. This work demonstrates the advantage of the higher voltage output from the high bandgap CH3NH3PbBr3 cell and its suitability in a tandem system.

  20. Estimation of NH3 emissions from a naturally ventilated livestock farm using local-scale atmospheric dispersion modelling

    P. Cellier


    Full Text Available Agricultural livestock represents the main source of ammonia (NH3 in Europe. In recent years, reduction policies have been applied to reduce NH3 emissions. In order to estimate the impacts of these policies, robust estimates of the emissions from the main sources, i.e. livestock farms are needed. In this paper, the NH3 emissions were estimated from a naturally ventilated livestock farm in Braunschweig, Germany during a joint field experiment of the GRAMINAE European project. An inference method was used with a Gaussian-3D plume model and with the Huang 3-D model. NH3 concentrations downwind of the source were used together with micrometeorological data to estimate the source strength over time. Mobile NH3 concentration measurements provided information on the spatial distribution of source strength. The estimated emission strength ranged between 6.4±0.18 kg NH3 d−1 (Huang 3-D model and 9.2±0.7 kg NH3 d−1 (Gaussian-3D model. These estimates were 94% and 63% of what was obtained using emission factors from the German national inventory (9.6 kg d−1 NH3. The effect of deposition was evaluated with the FIDES-2D model. This increased the emission estimate to 11.7 kg NH3 d−1, showing that deposition can explain the observed difference. The daily pattern of the source was correlated with net radiation and with the temperature inside the animal houses. The daily pattern resulted from a combination of a temperature effect on the source concentration together with an effect of variations in free and forced convection of the building ventilation rate. Further development of the plume technique is especially relevant for naturally ventilated farms, since the variable ventilation rate makes other emission measurements difficult.

  1. Formation of TiN-encapsulated copper structures in a NH3 ambient

    Li, Jian; Mayer, J. W.; Shacham-Diamand, Y.; Colgan, E. G.


    A TiN-encapsulated copper structure was made by annealing a Cu-10 at. %Ti alloy film evaporated on a SiO2/Si(100) substrate at 550 °C in a NH3 ambient. A fast heating rate (70 °C/min) to 550 °C can effectively suppress the formation of Cu3Ti and enhance the TiNx formation near the surface of the copper film. Oxygen incorporation in the TiNx layer was found by Auger depth profiling measurement. This self-encapsulated Cu structure exhibits good adhesion to SiO2 and oxidation resistance.

  2. Pressure broadening of NH3 by H2 from 15 to 40 K

    Willey, Daniel R.; Timlin, Robert E.; Deramo, Melinda; Pondillo, Peter L.; Wesolek, Danielle M.; Wig, Ryan W.


    Pressure broadening of the (J,K)=(1,1), (2,2), and (3,3) inversion transitions of NH3 was measured using normal- H2 as the broadening agent at kinetic temperatures of 15 to 40 K. Measurements were taken in a quasiequilibrium cell using the collisional cooling technique. H2 pressure broadening cross sections were compared to low-temperature He pressure broadening of the same transitions and found to be from 2.5 to 8 times larger than corresponding He cross sections. Measured normal- H2 and He cross sections were also compared to calculated J=0, para-H2 cross sections.

  3. Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3

    Náfrádi, B.; Szirmai, P.; Spina, M.; Lee, H.; Yazyev, O. V.; Arakcheeva, A.; Chernyshov, D.; Gibert, M.; Forró, L.; Horváth, E.


    The demand for ever-increasing density of information storage and speed of manipulation boosts an intense search for new magnetic materials and novel ways of controlling the magnetic bit. Here, we report the synthesis of a ferromagnetic photovoltaic CH3NH3(Mn:Pb)I3 material in which the photo-excited electrons rapidly melt the local magnetic order through the Ruderman-Kittel-Kasuya-Yosida interactions without heating up the spin system. Our finding offers an alternative, very simple and efficient way of optical spin control, and opens an avenue for applications in low-power, light controlling magnetic devices.

  4. Stereodynamics and Rovibrational Effect for H+NH3 →H2+NH2 Reaction

    LI Hao; LIU Xin-Guo; ZHANG Qing-Gang


    @@ We employ the semirigid vibrating rotor target (SVRT) model to study the influence of rotational and vibrational excitation of the reagent on reactivity for the reaction H+NH3. The excitation of the pseudo H-NH2 stretching vibration of the SVRT model gives significant enhancement of reaction probability. Detailed study of the influence of initial rotational states on reaction probability shows strong steric effect. The steric effect of polyatomic reactions, treated by the SVRT model, is more complex and richer than theoretical calculations involving linear molecular models.

  5. Room-Temperature NH3 Gas Sensor Based on Hydrothermally Grown ZnO Nanorods

    WEI Ang; WANG Zhao; PAN Liu-Hua; LI Wei-Wei; XIONG Li; DONG Xiao-Chen; HUANG Wei


    @@ A NH3 gas sensor based on a ZnO nanorod array is fabricated by hydrothermal decomposition on a Au electrode.The as-grown ZnO nanorods have uniform diameter distribution and good crystal structure,shown by scanning electron microscopy,x-ray diffraction,high resolution transmission electron microscopy and photoluminescence emission characterizations.The gas sensing results show that the ZnO nanorod-based device responds well to ammonia gas at room temperature(sensitivity S is about 8).

  6. Dispersal of dense protostellar material - NH3 hot cores and outflows in Sagittarius B2

    Vogel, S.N.; Genzel, R.; Palmer, P.


    VLA observations of Sgr B2 in six ammonia transitions have uncovered two 200-K condensations with approximately 0.2 pc diameters associated with water maser sources which are similar to the Orion hot core but are more massive. Total NH3 mass of the northern source is 1000 times higher than in the Orion hot core. The hot core emission traces dense gas around newly formed massive stars, and is produced during a relatively brief stage after the star begins to heat the surrounding medium and before the dense gas is dispersed by outflow and the emergence of an expanding H II region. 36 references.

  7. Fe-BEA Zeolite Catalysts for NH3-SCR of NOx

    Frey, Anne Mette; Mert, Selcuk; Due-Hansen, Johannes


    Iron-containing zeolites are known to be promising catalysts for the NH3-SCR reaction. Here, we will investigate the catalytic activity of iron-based BEA catalysts, which was found to exhibit improved activities compared to previously described iron-containing zeolite catalysts, such as ZSM-5...... and ZSM-12. Series of Fe-BEA zeolite catalysts were prepared using a range of different preparation methods. Furthermore, we found that an iron concentration around 3 wt% on BEA showed a small optimum in SCR activity compared to the other iron loadings studied....

  8. Fabrication of CH3NH3PbI3/PVP Composite Fibers via Electrospinning and Deposition

    Li-Min Chao


    Full Text Available In our study, one-dimensional PbI2/polyvinylpyrrolidone (PVP composition fibers have been prepared by using PbI2 and PVP as precursors dissolved in N,N-dimethylformamide via a electrospinning process. Dipping the fibers into CH3NH3I solution changed its color, indicating the formation of CH3NH3PbI3, to obtain CH3NH3PbI3/PVP composite fibers. The structure, morphology and composition of the all as-prepared fibers were characterized by using X-ray diffraction and scanning electron microscopy.

  9. Fabrication of CH3NH3PbI3/PVP Composite Fibers via Electrospinning and Deposition

    Chao, Li-Min; Tai, Ting-Yu; Chen, Yueh-Ying; Lin, Pei-Ying; Fu, Yaw-Shyan


    In our study, one-dimensional PbI2/polyvinylpyrrolidone (PVP) composition fibers have been prepared by using PbI2 and PVP as precursors dissolved in N,N-dimethylformamide via a electrospinning process. Dipping the fibers into CH3NH3I solution changed its color, indicating the formation of CH3NH3PbI3, to obtain CH3NH3PbI3/PVP composite fibers. The structure, morphology and composition of the all as-prepared fibers were characterized by using X-ray diffraction and scanning electron microscopy. PMID:28793517

  10. Modifying CH3NH3PbBr3 nanocrystals with arylamines

    Zhu, Ruimin; Liu, Heyuan; Shen, Li; Sun, Dejun; Li, Xiyou


    Chemically decorating CH3NH3PbBr3 with a group of para-substituted arylamine (R-An) was investigated, where R ranges from electron-withdrawing trifluoromethoxy(-CF3O), to hydrogen or electron-donating ethoxy (-EtO). Different ratios of R-An ammonium bromide and methylammonium bromide (MA) (R-An/MA=3/7, 4/6, 5/5, 6/4 and 7/3) were tested. XRD patterns revealed that the perovskite nanocomposite were cubic with good crystallinity. TEM and photoluminescence suggested that the perovskite nanocrystals were composed of 2D layered and 3D bulk structures. 1H NMR and TGA experiments revealed that the non-substituted aniline can readily adsorb to the surface of perovskite at any ratios between R-An and MA. But an EtOAn/MA ratio ≥1 is needed to anchor the EOAn molecules on the surface of perovskite. For the arylamine with the electron-withdrawing -CF3O group, it cannot adsorb to the surface of the perovskite at any concentrations. This result reveals that both steric hindrance and alkalinity can affect the anchoring of arylamine on the surface of CH3NH3PbBr3 perovskite. I-V curves of the perovskite nanocrystal films prepared by spin coating suggest that proper surface modification can increase the conductivity significantly.

  11. Plasma nitridation of silicon by N2 and NH3 in PECVD reactor

    Bakardjieva, V. S.; Alexieva, Z. I.; Beshkov, G. D.; Mateev, E. S.


    The effect was investigated of nitrogen and ammonia plasma treatment of monocrystalline Si wafers. The experiments were carried out in a plasma-enhanced chemical vapor deposition reactor. The wafers were subjected to N2 and NH3 plasma treatment for varying times at temperature of 380 °C. The plasma treated surfaces were studied by transmission electron microscopy with C-Pt replicas, reflection high-energy electron diffraction and Auger electron spectroscopy. The results point to the growth of an amorphous layer on the surface. The Auger electron spectroscopy depth profiles obtained by sputtering show the presence of an oxynitride layer with varying composition depending on the time of plasma treatment. The Auger electron spectroscopy analysis shows that after 60 s of treatment in N2 plasma, the nitrogen content is 8 at.%, while after 300 s it is 22 at.%, the thickness of the oxynitride nanolayer being 2.5-7.2 nm. In the case of NH3 plasma the thickness calculated from the sputtering time (from 50 s to 15 min) varies between 2 and 12 nm, and the nitrogen content, between 5 and 35 at.%.

  12. H2 assisted NH3-SCR over Ag/Al2O3 for automotive applications

    Fogel, Sebastian

    The up-coming strict emission legislation demands new and improved catalysts for diesel vehicle deNOx. The demand for low-temperature activity is especially challenging. H2-assisted NH3-SCR over Ag/Al2O3 has shown a very promising low-temperature activity and a combination of Ag/Al2O3 and Fe...... has been the preparation of monolithic catalyst bricks for the catalyst testing. A high SBET and higher Ag loading gave a high sulphur tolerance and activity. It was believed that the high SBET is needed to give a higher NH3 adsorption capacity, necessary for the SCR reaction. A higher Ag loading...... both in a sequential dual-bed layout and a dual-layer layout where the catalysts were coated on top of each other. The Ag/Al2O3 catalyst was also investigated with the aim of improving the sulphur tolerance and low-temperature activity by testing different alumina-supports. A large focus of this study...

  13. Preparation and characterization of Pd/C catalyst obtained in NH 3-mediated polyol process

    Li, Huanqiao; Sun, Gongquan; Jiang, Qian; Zhu, Mingyuan; Sun, Shiguo; Xin, Qin

    Vulcan XC-72R carbon supported Pd nanoparticles was obtained in a NH 3-mediated polyol process without any protective agent and characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM) techniques. The added NH 3 species is found to have a strong complex ability to Pd, which not only avoids the formation of Pd hydroxide precipitate resulted from Pd hydrolysis, but also restrains the further complete reduction of Pd. Temperature-programmed reduction equipped with a mass spectrometry (TPR-MS) is employed to study the reductive behavior of unreduced Pd complex in Pd/C catalyst and the results show that the post-treatment in a reductive atmosphere at higher temperature is needed to ensure the complete reduction of Pd. XRD patterns show the heat-treated Pd/C sample in a reductive atmosphere has a face centered cubic crystal structure and TEM image indicates that the dispersion of Pd nanoparticles on the carbon support is uniform and in a narrow particle size range. Thermodynamic data analysis is carried out to elucidate the possible reaction pathway for the preparation of Pd/C catalyst in this process. The obtained Pd/C catalyst shows high activity to formic acid oxidation and high selectivity to oxygen reduction reaction (ORR) with the presence of methanol.

  14. Imaging a multidimensional multichannel potential energy surface: Photodetachment of H-(NH3) and NH4-

    Hu, Qichi; Song, Hongwei; Johnson, Christopher J.; Li, Jun; Guo, Hua; Continetti, Robert E.


    Probes of the Born-Oppenheimer potential energy surfaces governing polyatomic molecules often rely on spectroscopy for the bound regions or collision experiments in the continuum. A combined spectroscopic and half-collision approach to image nuclear dynamics in a multidimensional and multichannel system is reported here. The Rydberg radical NH4 and the double Rydberg anion NH4- represent a polyatomic system for benchmarking electronic structure and nine-dimensional quantum dynamics calculations. Photodetachment of the H-(NH3) ion-dipole complex and the NH4- DRA probes different regions on the neutral NH4 PES. Photoelectron energy and angular distributions at photon energies of 1.17, 1.60, and 2.33 eV compare well with quantum dynamics. Photoelectron-photofragment coincidence experiments indicate dissociation of the nascent NH4 Rydberg radical occurs to H + NH3 with a peak kinetic energy of 0.13 eV, showing the ground state of NH4 to be unstable, decaying by tunneling-induced dissociation on a time scale beyond the present scope of multidimensional quantum dynamics.

  15. Outdoor-indoor air quality in Riyadh: SO2, NH3, and HCHO.

    Al-Rehaili, A M


    A funded research project was conducted during the period July 1992 through November 1994. The project was designed to evaluate indoor and ambient air quality in and around buildings of different types and uses in Riyadh, the capital of Saudi Arabia. Thirty intercity buildings and two outercity (background) sites were carefully selected and monitored for air quality. Ten air pollutants, together with relevant meteorological parameters, were monitored indoor and outdoor at each site continuously and simultaneously for a period of two weeks covering summer and winter seasons. This article discusses the results obtained for sulfur dioxide (SO2), ammonia (NH3) and formaldehyde (HCHO). Results of this investigation revealed that most sites had on the average exceeded the recommended standards for SO2 and NH3 both indoor and outdoor, with indoor levels being worse than outdoor during winter time. Several sites also showed high levels of HCHO, with outdoor levels being consistently higher than indoor. Statistical and frequency analyses were performed on the collected data, showing seasonal and sector by sector variability, and outdoor-indoor correlations.

  16. Exploring High-Velocity NH_3(6,6) Emission at the Center of our Galaxy

    Donovan, J L; Ho, P T P; Donovan, Jennifer L.; Herrnstein, Robeson M.; Ho, Paul T.P.


    Using the NH\\3 (6,6) transition, which samples dense ($\\sim 10^{5}$) molecular gas with an energy above ground of 412 K, we find hot gas at high velocities (--142 to --210 km s$^{-1}$) associated with the central 2 pc of the Galactic center. This material may be either infalling gas due to shocks or tidal stripping, or possibly gas swept from the nuclear region. We identify two high-velocity features, which we call the Southern Runner and the Cap, and correlate these features with others detected in various molecular observations of the Galactic center. The characteristic linewidths of the Southern Runner and Cap, 10 -- 15 \\kms, are similar to those of other hot Galactic center clouds. The estimated H$_{2}$ masses of these clouds are 4$\\times 10^{3}$ M$\\sol$ and 2$\\times 10^{3}$ M$\\sol$, consistent with the masses of the western streamer and northern ridge, NH\\3 (6,6) emission features detected within the central 10 pc at lower velocities. Three possible explanations for this emission are discussed assuming t...

  17. Carbon nanotubes loaded with vanadium oxide for reduction NO with NH3 at low temperature☆

    Shuli Bai; Shengtao Jiang; Huanying Li; Yujiang Guan


    The catalytic activity of carbon nanotubes-supported vanadium oxide (V2O5/CNTs) catalysts in the selective catalytic reduction (SCR) of NO with NH3 at low temperatures (≤250 °C) was investigated. The effects of V2O5 loading, reaction temperature, and presence of SO2 on the SCR activity were evaluated. The results show that V2O5/CNTs catalysts exhibit high activity for NO reduction with NH3 at low-temperatures. The catalysts also show very high stability in the presence of SO2. More interestingly, their activities are significantly promoted in-stead of being poisoned by SO2. The promoting effect of SO2 is distinctly associated with V2O5 loading, particularly maximized at low V2O5 loading, which indicated the role of CNTs support in this effect. The promoting effect of SO2 at low temperatures suggests that V2O5/CNTs catalysts are promising catalytic materials for low-temperature SCR reactions.

  18. Study on novel and promising NH3-SCR catalysts on glass fiber cloth for industrial applications

    Xie, Junlin; Li, Fengxiang; Hu, Hua; Qi, Kai; He, Feng; Fang, De


    MnO x , Mn/TiO2 and Fe-Mn/TiO2 catalysts were prepared by precipitation-impregnation method. The MnO x catalyst shows the highest activity for the reduction of NO with NH3 at the temperature range of 80 °C to 140 °C, and achieves more than 98% of NO conversion at 140 °C. The MnO x catalyst loaded on glass fiber cloth (GFC) was prepared by impregnation method, and the effects of preparation conditions were studied. It turns out that the catalyst particle size, loading capacity and catalyst varieties make a great difference to catalytic performance. In addition, the catalyst with aluminum sol as a binder has the higher catalytic activity but poor ability of anti-sulfur and anti-water poisoning, compared with the catalyst using silica sol binder. Further, MnO x , Mn/TiO2 and Fe-Mn/TiO2 powders were loaded onto GFC using XRD, HRTEM, TGA, SEM, BET, H2-TPR and NH3-TPD to systematically characterize the various physico-chemical properties and denitrition activity. The results indicate that the changes of active components, specific surface area, microstructure, reducibility and suface acidity of the three kinds of catalysts lead to different catalytic activities.

  19. Effects of NO2 and NH3 from road traffic on epiphytic lichens.

    Frati, L; Caprasecca, E; Santoni, S; Gaggi, C; Guttova, A; Gaudino, S; Pati, A; Rosamilia, S; Pirintsos, S A; Loppi, S


    The results of a survey aimed at investigating whether NO2 and NH3 emitted by road traffic can influence lichen diversity, lichen vitality and the accumulation of nitrogen in lichen thalli are reported. For this purpose, distance from a highway in a rural environment of central Italy was regarded as the main parameter to check this hypothesis. The results of the present survey indicated that road traffic is not a relevant source of NH3. On the other hand, NO2 concentrations, although rather low, were negatively correlated with distance from the highway according to a typical logarithmic function. No association between NO2 concentrations and the diversity of epiphytic lichens was found, probably because of the low NO2 values measured. Also bark properties were not influenced by distance from the highway. Accumulation of nitrogen, reduction in the content of chlorophyll a, chlorophyll b and total carotenoids were found in transplanted thalli of Evernia prunastri, but NO2 was not responsible for these changes, which were probably caused by applications of N-based fertilizers.

  20. 中国北方干旱-半干旱地区草地NH_3通量原位观测研究%Ammonia Volatilization in the Steppe of North China

    周志红; 李心清; 王兵; 程建中; 程红光; 杨放; 江伟; 闫慧


    NH3挥发是导致农业和畜牧业施肥中N素流失的主要途径之一。基于这一认识,人们推测NH3的释放也可能在干旱-半干旱地区天然草地氮素流失中起着重要作用。然而这方面的观测研究却十分有限。我国北方天然草地面积约150万平方千米,而且在干旱-半干旱过渡地区的草地中存在N相对于C不足的现象。认识NH3挥发在其中所起的作用对防治草地退化、保护干旱区生态环境安全具有重要意义。本文利用Thermo-Fisher公司生产的Model17iNOx-NH3分析仪和动态箱法对黄土高原西北部边缘和宁夏中东部地区,也即农牧过渡带地区在8~9月份的地-气NH3交换通量进行了观测研究,发现其通量昼夜变化存在多种类型,平均通量在-2~2g NH3/(m2.h)之间;在空间变化上,NH3的地-气交换在毛乌素沙地西侧表现为对大气NH3的净吸收,经黄土高原边缘和宁夏中东部的过渡,到宁夏南部的固原地区变化为草地NH3的净释放。这种草地NH3释放通量自北向南增加的现象主要是由于降水对土壤的湿润作用所致。干旱的环境条件使得水分超过了土壤pH和温度等众多影响因素而成为NH3挥发的主要限制因素。据此可以推测NH3挥发作用在我国北方自然草地N素流失中的作用可能较小,不可能是导致农牧交错地区土壤N素相对不足的原因。%Ammonia volatilization is the major process for the loss of N after the application of N-fertilizers to agricultural soils and pastures.It is also suggested to be true to N loss in the undisturbed grassland in the arid and semi-arid areas of the world.This belief,however,falls short of field examination.China covers about 1.5 million square kilometers of steppe in the arid and semi-arid areas in the north,of which the Agriculture-Pasture Transition Zone(APTZ) is found to be deficit in soil N relative to organic C.Understanding the role played by ammonia volatilization

  1. Sources and Impacts of Atmospheric NH3: Current Understanding and Frontiers for Modeling, Measurements, and Remote Sensing in North America

    Ammonia (NH3) contributes to widespread adverse health impacts, affects the climate forcing of ambient aerosols, and is a significant component of reactive nitrogen, deposition of which threatens many sensitive ecosystems. Historically, the scarcity of in situ measurements and th...

  2. Sources and Impacts of Atmospheric NH3: Current Understanding and Frontiers for Modeling, Measurements, and Remote Sensing in North America

    Ammonia (NH3) contributes to widespread adverse health impacts, affects the climate forcing of ambient aerosols, and is a significant component of reactive nitrogen, deposition of which threatens many sensitive ecosystems. Historically, the scarcity of in situ measurements and th...

  3. Effects of NH3 annealing on interface and electrical properties of Gd-doped HfO2/Si stack

    YANG Mengmeng; TU Hailing; DU Jun; WEI Feng; XIONG Yuhua; ZHAO Hongbin


    Effects of NH3 rapid thermal annealing (RTA) on the interface and electrical properties of Gd-doped HfO2 (GDH)/Si stack were investigated.The process of NH3 annealing could significantly affect the crystallization,stoichiometric properties of GDH film and the interface characteristic of GDH/Si system.NH3 annealing also led to the decrease of interface layer thickness.The leakage current density of Pt/GDH/p-Si MOS capacitor without RTA was 2× 10-3 A/cm2.After NH3 annealing,the leakage current density was about one order of magnitude lower (3.9×10-4 A/cm2).The effective permittivity extracted from the C-V curves was ~14.1 and ~13.1 for samples without and with RTA,respectively.

  4. Synergetic formation of secondary inorganic and organic aerosol: effect of SO2 and NH3 on particle formation and growth

    Chu, Biwu; Zhang, Xiao; Liu, Yongchun; He, Hong; Sun, Yele; Jiang, Jingkun; Li, Junhua; Hao, Jiming


    The effects of SO2 and NH3 on secondary organic aerosol formation have rarely been investigated together, while the interactive effects between inorganic and organic species under highly complex pollution conditions remain uncertain. Here we studied the effects of SO2 and NH3 on secondary aerosol formation in the photooxidation system of toluene/NOx in the presence or absence of Al2O3 seed aerosols in a 2 m3 smog chamber. The presence of SO2 increased new particle formation and particle growth significantly, regardless of whether NH3 was present. Sulfate, organic aerosol, nitrate, and ammonium were all found to increase linearly with increasing SO2 concentrations. The increases in these four species were more obvious under NH3-rich conditions, and the generation of nitrate, ammonium, and organic aerosol increased more significantly than sulfate with respect to SO2 concentration, while sulfate was the most sensitive species under NH3-poor conditions. The synergistic effects between SO2 and NH3 in the heterogeneous process contributed greatly to secondary aerosol formation. Specifically, the generation of NH4NO3 was found to be highly dependent on the surface area concentration of suspended particles, and increased most significantly with SO2 concentration among the four species under NH3-rich conditions. Meanwhile, the absorbed NH3 might provide a liquid surface layer for the absorption and subsequent reaction of SO2 and organic products and, therefore, enhance sulfate and secondary organic aerosol (SOA) formation. This effect mainly occurred in the heterogeneous process and resulted in a significantly higher growth rate of seed aerosols compared to without NH3. By applying positive matrix factorisation (PMF) analysis to the AMS data, two factors were identified for the generated SOA. One factor, assigned to less-oxidised organic aerosol and some oligomers, increased with increasing SO2 under NH3-poor conditions, mainly due to the well-known acid catalytic effect of

  5. Efficient and reproducible CH3NH3PbI(3-x)(SCN)x perovskite based planar solar cells.

    Chen, Yani; Li, Bobo; Huang, Wei; Gao, Deqing; Liang, Ziqi


    We report the addition of a small amount of Pb(SCN)2 into PbI2 in a two-step solution method. The resulting CH3NH3PbI(3-x)(SCN)x perovskite films present larger-sized crystals and fewer traps than CH3NH3PbI3. Their planar solar cells exhibit a maximum power conversion efficiency of 11.07% with remarkably high reproducibility and good stability.

  6. The Technology of Non-thermal Plasma Assisted NH3-SCR Reduce Marine Diesel Emission and Aldehydes Byproducts Formation

    Lei Jiang


    Full Text Available This study describes briefly various after-treatment technologies in marine diesel engines and application difficulties of DPF and SCR are included. An experiment has been conducted using non-thermal plasma generated by Dielectric Barrier Discharge (DBD process assisted NH3-SCR catalyst to reduce the nitrogen oxides (NOx from diesel engine exhaust. The formation mechanism of byproducts-type such as HCHO and CH3CHO in the non-thermal plasma assisted NH3-SCR hybrid system.

  7. Immobilization of enzyme and antibody on ALD-HfO2-EIS structure by NH3 plasma treatment

    Wang, I.-Shun; Lin, Yi-Ting; Huang, Chi-Hsien; Lu, Tseng-Fu; Lue, Cheng-En; Yang, Polung; Pijanswska, Dorota G.; Yang, Chia-Ming; Wang, Jer-Chyi; Yu, Jau-Song; Chang, Yu-Sun; Chou, Chien; Lai, Chao-Sung


    Thin hafnium oxide layers deposited by an atomic layer deposition system were investigated as the sensing membrane of the electrolyte-insulator-semiconductor structure. Moreover, a post-remote NH3 plasma treatment was proposed to replace the complicated silanization procedure for enzyme immobilization. Compared to conventional methods using chemical procedures, remote NH3 plasma treatment reduces the processing steps and time. The results exhibited that urea and antigen can be successfully detected, which indicated that the immobilization process is correct.

  8. Pseudohalide-induced moisture tolerance in perovskite CH3 NH3 Pb(SCN)2 I thin films.

    Jiang, Qinglong; Rebollar, Dominic; Gong, Jue; Piacentino, Elettra L; Zheng, Chong; Xu, Tao


    Two pseudohalide thiocyanate ions (SCN(-) ) have been used to replace two iodides in CH3 NH3 PbI3 , and the resulting perovskite material was used as the active material in solar cells. In accelerated stability tests, the CH3 NH3 Pb(SCN)2 I perovskite films were shown to be superior to the conventional CH3 NH3 PbI3 films as no significant degradation was observed after the film had been exposed to air with a relative humidity of 95 % for over four hours, whereas CH3 NH3 PbI3 films degraded in less than 1.5 hours. Solar cells based on CH3 NH3 Pb(SCN)2 I thin films exhibited an efficiency of 8.3 %, which is comparable to that of CH3 NH3 PbI3 based cells fabricated in the same way. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Research on the chemical adsorption precursor state of CaCl2-NH3 for adsorption refrigeration

    WANG; Liwei; WANG; Ruzhu; WU; Jingyi; WANG; Kai


    As a type of chemical adsorption working pair, the physical adsorption occurs first for CaCl2-NH3 because the effective reaction distance for van der Waals force is longer than that for chemical reaction force, and this physical adsorption state is named the precursor state of chemical adsorption. In order to get the different precursor states of CaCl2-NH3, the different distances between NH3 gas and Ca2+ are realized by the control of different phenomena of swelling and agglomeration in the process of adsorption. When the serious swelling exists while the agglomeration does not exist in the process of adsorption, experimental results show that the activated energy consumed by adsorption reaction increases for the reason of longer distance between Ca2+ and NH3, and at the same time the performance attenuation occurs in the repeated adsorption cycles. When the agglomeration occurs in the process of adsorption, the activated energy for the transition from precursor state to chemical adsorption decreases because the distance between NH3 gas and Ca2+ is shortened by the limited expansion space of adsorbent, and at the same time the performance attenuation does not occur. The adsorption refrigeration isobars are researched by the precursor state of chemical adsorption; results also show that the precursor state is a key factor for isobaric adsorption performance while the distribution of Ca2+ does not influence the permeation of NH3 gas in adsorbent.

  10. NH3, H2S, and the Radio Brightness Temperature Spectra of the Giant Planets

    Spilker, Thomas R.


    Recent radio interferometer observations of Neptune enable comparisons of the radio brightness temperature (T(sub B)) spectra of all four giant planets. This comparison reveals evidence for fundamental differences in the compositions of Uranus' and Neptune's upper tropospheres, particularly in their ammonia (NH3) and hydrogen sulfide (H2S) mixing ratios, despite those planets' outward similarities. The tropospheric abundances of these constituents yield information about their deep abundances, and ultimately about the formation of the planets from the presolar nebula (Atreya et al.). Figures 1, 2, 3, and 4 show the T(sub B) spectra of Jupiter, Saturn, Uranus, and Neptune, respectively, from 0.1 to tens of cm wavelength. The data shown are collected from many observers. Data for Jupiter, Saturn, and Uranus are those cataloged by de Pater and Massie (1985), plus the Saturn Very Large Array (VLA) data by Grossman et al. Figure 3, Uranus, shows only data acquired since 1973. Before 1973 Uranus' T(sub B) increased steadily as its pole moved into view, causing significant scatter in those data. Neptune data at greater than 1 cm, all taken at the VLA, are collected from de Pater and Richmond, de Pater et al., and Hofstadter. For a variety of reasons, such as susceptibility to source confusion, single-dish data at those wavelengths are much noisier than the more reliable VLA data and have been ignored. Single-dish data by Griffin and Orton shortward of 0.4 cm are shown, along with the Owens Valley Radio Observatory (interferometer) datum at 0.266 cm by Muhleman and Berge. Spectra of Jupiter, Saturn, and Neptune share certain gross characteristics. In each spectrum, T(sub B) at 1.3 cm is approximately 120-140 K, less than approximately 30 K different from that at 0.1 cm. All three spectra show a break in slope at or near 1.3 cm, with T(sub B) increasing fairly rapidly with wavelength longward of 1.3 cm. Visible and IR spectroscopy show that NH3, whose strong inversion

  11. 电镀废水中氨氮及COD的去除%Elimination of NH3-N and COD in Eiectroplating Wastewater

    李冰璟; 付丹; 赵伟


    电镀废水水质复杂,含有多种污染物,其中Ni+、Cu2+等重金属已得到良好的回收利用,但对有机污染物和氨氮的去除研究鲜见报道.本文采用铁碳微电解法对电镀废水进行预处理,可确保出水中残留重金属不影响后续生物反应,预氧化表面活性剂、光亮剂及其它助剂,提高了废水的可生化性;进而通过水解酸化和好氧膜生物反应器(MBR)的生物处理降低废水的COD和氨氮,由于电镀废水中硝酸盐含量较高,会抑制好氧池内氨氮的硝化作用,MBR出水回流至水解池,并在水解池进水中添加适当的碳源,可确保出水氨氮低于l5 mg/L.铁碳微电解+水解酸化+MBR工艺可有效的降低电镀废水中的氨氮和COD.%Electroplating wastewater contain heavy metals, acid, organic waste and many other contaminations. Heavy metal recycling is well developed due to the profitability of metal recycle industries such as Ni+ and Cu2+. While the study of organic pollutants in electroplating wastewater is still in the starting stage. The removal of NH3-N and COD in electroplating wastewater by hydrolytic acidification + aerobic membraine bio reactor (MBR) was investigated using iron-carbon micro-electrolysis as the pretreatment to insure the lowest heavy metal concentration and increase biodegradability of wastewater. The effluent NH3-N concentration is less than 15 mg/L after the treatment of hydrolytic acidification + MBR recycling process. Carbon resource is added according to the NH3-N concention. The iron-carbon micor-electroplating and hydrolytic acidification + MBR process remove NH3-N and COD in electroplating wastewater effectively.

  12. Enhanced performance of CH3NH3PbI3-x Cl x perovskite solar cells by CH3NH3I modification of TiO2-perovskite layer interface.

    Wang, Wen; Zhang, Zongbao; Cai, Yangyang; Chen, Jinshan; Wang, Jianming; Huang, Riyan; Lu, Xubing; Gao, Xingsen; Shui, Lingling; Wu, Sujuan; Liu, Jun-Ming


    In this work, perovskite solar cells (PSCs) with CH3NH3PbI3-x Cl x as active layer and spiro-OMeTAD as hole-transport media have been fabricated by one-step method. The methylammonium iodide (CH3NH3I) solution with different concentrations is used to modify the interface between mesoporous TiO2 (meso-TiO2) film and CH3NH3PbI3-x Cl x perovskite layer. Several techniques including X-ray diffraction, scanning electron microscopy, optical absorption, electrochemical impedance spectroscopy (EIS) and photoluminescence are used to investigate the effect of the interfacial modification. It is found that the interfacial modification by CH3NH3I enhance the crystallinity and increase the grain size of CH3NH3PbI3-x Cl x layer, and improve the surface wetting properties of perovskite precursor on meso-TiO2 film. The sunlight absorption and external quantum efficiency of PSCs in the visible region with wavelength less than 600 nm have been improved. The Nyquist plots obtained from the EIS suggest that the CH3NH3I modification can reduce the charge recombination rates. The photoluminescence measurement shows that the exciton dissociation in the modified devices is more effective than that in the control samples. The photovoltaic performance of the modified devices can be significantly improved with respect to the reference (control) devices. The CH3NH3I modified devices at the optimized concentration demonstrate the average power conversion efficiency of 12.27 % in comparison with the average efficiency of 9.68 % for the reference devices.

  13. Enhanced performance of CH3NH3PbI3- x Cl x perovskite solar cells by CH3NH3I modification of TiO2-perovskite layer interface

    Wang, Wen; Zhang, Zongbao; Cai, Yangyang; Chen, Jinshan; Wang, Jianming; Huang, Riyan; Lu, Xubing; Gao, Xingsen; Shui, Lingling; Wu, Sujuan; Liu, Jun-Ming


    In this work, perovskite solar cells (PSCs) with CH3NH3PbI3- x Cl x as active layer and spiro-OMeTAD as hole-transport media have been fabricated by one-step method. The methylammonium iodide (CH3NH3I) solution with different concentrations is used to modify the interface between mesoporous TiO2 (meso-TiO2) film and CH3NH3PbI3- x Cl x perovskite layer. Several techniques including X-ray diffraction, scanning electron microscopy, optical absorption, electrochemical impedance spectroscopy (EIS) and photoluminescence are used to investigate the effect of the interfacial modification. It is found that the interfacial modification by CH3NH3I enhance the crystallinity and increase the grain size of CH3NH3PbI3- x Cl x layer, and improve the surface wetting properties of perovskite precursor on meso-TiO2 film. The sunlight absorption and external quantum efficiency of PSCs in the visible region with wavelength less than 600 nm have been improved. The Nyquist plots obtained from the EIS suggest that the CH3NH3I modification can reduce the charge recombination rates. The photoluminescence measurement shows that the exciton dissociation in the modified devices is more effective than that in the control samples. The photovoltaic performance of the modified devices can be significantly improved with respect to the reference (control) devices. The CH3NH3I modified devices at the optimized concentration demonstrate the average power conversion efficiency of 12.27 % in comparison with the average efficiency of 9.68 % for the reference devices.

  14. Crystal structure of [UO2(NH35]NO3·NH3

    Patrick Woidy


    Full Text Available Pentaammine dioxide uranium(V nitrate ammonia (1/1, [UO2(NH35]NO3·NH3, was obtained in the form of yellow crystals from the reaction of caesium uranyl nitrate, Cs[UO2(NO33], and uranium tetrafluoride, UF4, in dry liquid ammonia. The [UO2]+ cation is coordinated by five ammine ligands. The resulting [UO2(NH35] coordination polyhedron is best described as a pentagonal bipyramid with the O atoms forming the apices. In the crystal, numerous N—H...N and N—H...O hydrogen bonds are present between the cation, anion and solvent molecules, leading to a three-dimensional network.

  15. Intense Pulsed Light Sintering of CH3NH3PbI3 Solar Cells.

    Lavery, Brandon W; Kumari, Sudesh; Konermann, Hannah; Draper, Gabriel L; Spurgeon, Joshua; Druffel, Thad


    Perovskite solar cells utilizing a two-step deposited CH3NH3PbI3 thin film were rapidly sintered using an intense pulsed light source. For the first time, a heat treatment has shown the capability of sintering methylammonium lead iodide perovskite and creating large crystal sizes approaching 1 μm without sacrificing surface coverage. Solar cells with an average efficiency of 11.5% and a champion device of 12.3% are reported. The methylammonium lead iodide perovskite was subjected to 2000 J of energy in a 2 ms pulse of light generated by a xenon lamp, resulting in temperatures significantly exceeding the degradation temperature of 150 °C. The process opens up new opportunities in the manufacturability of perovskite solar cells by eliminating the rate-limiting annealing step, and makes it possible to envision a continuous roll-to-roll process similar to the printing press used in the newspaper industry.

  16. NH3-NaSCN吸收-压缩式热泵热力学性能研究%Thermodynamic Investigation on NH3 -NaSCN Absorption -compression Heat Pumps



    Absorption - compression heat pumps were well accepted for industrial waste heat recovery. An investigation on NH3 - NaSCN absorption - compression heat pumps was carried out based on the first and second laws of thermodynamics and the effects of the heating temperature, heat source temperature and compression ratio on the performance were obtained, which provided a theoretical base for the optimization of NH3 -NaSCN absorption -compression heat pumps.%吸收-压缩式热泵在工业余热回收利用中有着非常广泛的应用前景。文章基于热力学第一和第二定律对以NH3-NaSCN为工质的吸收一压缩式热泵进行了热力计算和理论分析,得到了NH3-NaSCN吸收一压缩式热泵的热力学性能随供热温度、热源温度及压缩比的变化规律。本文的工作为优化设计NH3-NaSCN吸收-压缩式热泵提供了理论依据。


    朱磊; 胡维军


    We conduct the structural optimization and frequency calculation for one added electron cluster [ (NH3)2(H2O)4] - by the theory method of DFT/BLYP and the basis group with the dispersion function. The binding energy,vibration spectrum and dipole moment are calculated, also the binding fashion and the distribution area of electron are analysed. For the sake of contrast,the neutral cluster (NH3)2(H2O)4 by the same method is calculated, and then the relation and difference between negative and neutral clusters are investigated.%采用DFT/BLYP理论方法和添加额外弥散函数的基组6-31(3+)(1+)G**对包含一个额外电子的[(NH3)2(H2O)4]-团簇进行了结构优化和频率分析.计算了[(NH3)2(H2O)4]-的结合能,振动谱和偶极矩,对电子的束缚方式和电子分布区域也进行了分析.为了比较,还用相同方法对中性团簇(NH3)2(H2O)4进行了计算,进而研究了负电与中性团簇的联系与区别.

  18. Effects of acute NH3 air pollution on N-sensitive and N-tolerant lichen species.

    Paoli, Luca; Maslaňáková, Ivana; Grassi, Alice; Bačkor, Martin; Loppi, Stefano


    Lichens are sensitive to the presence of ammonia (NH3) in the environment. However, in order to use them as reliable indicators in biomonitoring studies, it is necessary to establish unequivocally the occurrence of certain symptoms following the exposure to NH3 in the environment. In this paper, we simulated an episode of acute air pollution due to the release of NH3. The biological effects of acute air pollution by atmospheric NH3 have been investigated using N-sensitive (Flavoparmelia caperata) and N-tolerant (Xanthoria parietina) species. Lichen samples were exposed to ecologically relevant NH3 concentrations for 8 weeks, simulating three areas of impact: a control area (2 μg/m(3)), an area of intermediate impact (2-35 μg/m(3)) and an area of high impact (10-315 μg/m(3)), with a peak of pollution reached between the fourth and fifth week. Ammonia affected both the photobiont and the mycobiont in F. caperata, while in X. parietina only the photosynthetic performance of the photobiont was altered after exposure to the highest concentration. In the photobiont of F. caperata we recorded chlorophyll degradation as indicated by OD435/415 ratio, decrease of the photosynthetic performance (as reflected by the maximum quantum yield of primary photochemistry FV/FM and the performance index PIABS); in the mycobiont, ergosterol reduction, membrane lipid peroxidation (as reflected by the increase of thiobarbituric acid reactive substances), alteration (decrease) of the secondary metabolite usnic acid. No effects were detected on caperatic acid and dehydrogenase activity. In X. parietina, the only signal determined by NH3 was the alteration of FV/FM and the performance index PIABS. The results suggest that physiological parameters in N-sensitive lichens well reflect the effects of NH3 exposure and can be applied as early indicators in monitoring studies.

  19. Latitudinal variation of upper tropospheric NH3 on Saturn derived from Cassini/CIRS far-infrared measurements

    Hurley, J.; Fletcher, L. N.; Irwin, P. G. J.; Calcutt, S. B.; Sinclair, J. A.; Merlet, C.


    Ammonia (NH3) has been detected both on Saturn and Jupiter, and although its concentration and distribution has been well-studied on Jupiter, it has proven more difficult to do so on Saturn due to higher sensitivity requirements resulting from Saturn's lower atmospheric temperatures and the dominance of Saturn's phosphine which masks the ammonia signal. Using far-infrared measurements of Saturn taken by Cassini/CIRS between February 2005 and December 2010, the latitudinal variations of upper tropospheric ammonia on Saturn are studied. Sensitivity to NH3 in the far-infrared is explored to provide estimates of temperature, para-H2 and PH3, from 2.5 cm-1 spectral resolution measurements alone, 0.5 cm-1 spectral-resolution measurements alone, and 0.5 cm-1 measurements degraded to 2.5 cm-1 spectral resolution. The estimates of NH3 from these three different datasets largely agree, although there are notable differences using the high emission angle 0.5 cm-1 data, which are asserted to result from a reduction in sensitivity at higher emission angles. For low emission angles, the 0.5 cm-1-retrieved values of NH3 can be used to reproduce the 2.5 cm-1 spectra with similar efficacy as those derived directly from the 2.5 cm-1 resolution data itself, and vice versa. Using low emission angle data, NH3 is observed to have broad peak abundances at ±25° latitude, attributed to result from condensation and/or photolytic processes. Lack of data coverage at equatorial latitudes precludes analysis of NH3 abundance at less than about 10° latitude. Noise levels are not sufficient to distinguish fine zonal features, although it seems that NH3 cannot trace the zonal belt/zone structure in the upper troposphere of Saturn.

  20. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    Markus Dietrich


    Full Text Available The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13 was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

  1. Novel Ce-W-Sb mixed oxide catalyst for selective catalytic reduction of NOx with NH3

    Liu, Jun; Li, Guo-qiang; Zhang, Yong-fa; Liu, Xiao-qing; Wang, Ying; Li, Yuan


    A novel Ce3W2SbOx catalyst prepared by the co-precipitation method have been investigated for the selective catalysis reduction (SCR) of NOx with NH3. It was found that the Ce-W-Sb oxide catalyst exhibited an excellent conversion ratio of NOx and a high tolerance to H2O and SO2 in a wide operation temperature window. The catalysts were characterized by N2-adsorption, XRD, Raman, H2-TPR, NH3-TPD, XPS and DRIFTS. The results suggest that the strong interaction between Sb, W and Ce species not only enhances the redox property of the catalyst but also increases the surface acidity, thus promoting the adsorption and activation of NH3 species, which is favorable for high NH3-SCR performance. Based on in situ DRIFTS results, it was concluded that the Langmuir-Hinshelwood (L-H) mechanism existed at the temperature of below 300 °C, while at above 300 °C the Eley-Rideal (E-R) mechanism dominate the NH3-SCR reaction over the Ce3W2SbOx catalyst. Overall, these findings indicate that Ce3W2SbOx is promising for industrial applications.

  2. Reversible flexible structural changes in multidimensional MOFs by guest molecules (I2, NH3) and thermal stimulation

    Chen, Yang; Li, Libo; Yang, Jiangfeng; Wang, Shuang; Li, Jinping


    Three metal-organic frameworks (MOFs), [Cu(INA)2], [Cu(INA)2I2] and [Cu(INA)2(H2O)2(NH3)2], were synthesized with 3D, 2D, and 0D structures, respectively. Reversible flexible structural changes of these MOFs were reported. Through high temperature (60-100 °C) stimulation of I2 or ambient temperature stimulation of NH3, [Cu(INA)2] (3D) converted to [Cu(INA)2I2] (2D) and [Cu(INA)2(H2O)2(NH3)2] (0D); as the temperature increased to 150 °C, the MOFs changed back to their original form. In this way, this 3D MOF has potential application in the capture of I2 and NH3 from polluted water and air. XRD, TGA, SEM, NH3-TPD, and the measurement of gas adsorption were used to describe the changes in processes regarding the structure, morphology, and properties.

  3. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf


    The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals. PMID:28704929

  4. Investigation on interfacial and electrical properties of Ge MOS capacitor with different NH3-plasma treatment procedure

    Liu, Xiaoyu; Xu, Jingping; Liu, Lu; Cheng, Zhixiang; Huang, Yong; Gong, Jingkang


    The effects of different NH3-plasma treatment procedures on interfacial and electrical properties of Ge MOS capacitors with stacked gate dielectric of HfTiON/TaON were investigated. The NH3-plasma treatment was performed at different steps during fabrication of the stacked gate dielectric, i.e. before or after interlayer (TaON) deposition, or after deposition of high-k dielectric (HfTiON). It was found that the excellent interface quality with an interface-state density of 4.79 × 1011 eV-1 cm-2 and low gate leakage current (3.43 × 10-5 A/cm2 at {V}{{g}}=1 {{V}}) could be achieved for the sample with NH3-plasma treatment directly on the Ge surface before TaON deposition. The involved mechanisms are attributed to the fact that the NH3-plasma can directly react with the Ge surface to form more Ge-N bonds, i.e. more GeO x Ny, which effectively blocks the inter-diffusion of elements and suppresses the formation of unstable GeO x interfacial layer, and also passivates oxygen vacancies and dangling bonds near/at the interface due to more N incorporation and decomposed H atoms from the NH3-plasma. Project supported by the National Natural Science Foundation of China (Nos. 61176100, 61274112).

  5. Evaluation of a regional air-quality model with bidirectional NH3 exchange coupled to an agroecosystem model

    J. O. Bash


    Full Text Available Atmospheric ammonia (NH3 is the primary atmospheric base and an important precursor for inorganic particulate matter and when deposited NH3 contributes to surface water eutrophication, soil acidification and decline in species biodiversity. Flux measurements indicate that the air–surface exchange of NH3 is bidirectional. However, the effects of bidirectional exchange, soil biogeochemistry and human activity are not parameterized in air quality models. The US Environmental Protection Agency's (EPA Community Multiscale Air-Quality (CMAQ model with bidirectional NH3 exchange has been coupled with the United States Department of Agriculture's (USDA Environmental Policy Integrated Climate (EPIC agroecosystem model. The coupled CMAQ-EPIC model relies on EPIC fertilization timing, rate and composition while CMAQ models the soil ammonium (NH4+ pool by conserving the ammonium mass due to fertilization, evasion, deposition, and nitrification processes. This mechanistically coupled modeling system reduced the biases and error in NHx (NH3 + NH4+ wet deposition and in ambient aerosol concentrations in an annual 2002 Continental US (CONUS domain simulation when compared to a 2002 annual simulation of CMAQ without bidirectional exchange. Fertilizer emissions estimated in CMAQ 5.0 with bidirectional exchange exhibits markedly different seasonal dynamics than the US EPA's National Emissions Inventory (NEI, with lower emissions in the spring and fall and higher emissions in July.

  6. Evaluation of a regional air-quality model with bidirectional NH3 exchange coupled to an agroecosystem model

    Bash, J. O.; Cooter, E. J.; Dennis, R. L.; Walker, J. T.; Pleim, J. E.


    Atmospheric ammonia (NH3) is the primary atmospheric base and an important precursor for inorganic particulate matter and when deposited NH3 contributes to surface water eutrophication, soil acidification and decline in species biodiversity. Flux measurements indicate that the air-surface exchange of NH3 is bidirectional. However, the effects of bidirectional exchange, soil biogeochemistry and human activity are not parameterized in air quality models. The US Environmental Protection Agency's (EPA) Community Multiscale Air-Quality (CMAQ) model with bidirectional NH3 exchange has been coupled with the United States Department of Agriculture's (USDA) Environmental Policy Integrated Climate (EPIC) agroecosystem model. The coupled CMAQ-EPIC model relies on EPIC fertilization timing, rate and composition while CMAQ models the soil ammonium (NH4+) pool by conserving the ammonium mass due to fertilization, evasion, deposition, and nitrification processes. This mechanistically coupled modeling system reduced the biases and error in NHx (NH3 + NH4+) wet deposition and in ambient aerosol concentrations in an annual 2002 Continental US (CONUS) domain simulation when compared to a 2002 annual simulation of CMAQ without bidirectional exchange. Fertilizer emissions estimated in CMAQ 5.0 with bidirectional exchange exhibits markedly different seasonal dynamics than the US EPA's National Emissions Inventory (NEI), with lower emissions in the spring and fall and higher emissions in July.

  7. On-road measurement of NH3 and N2O emissions from a Euro V heavy-duty vehicle

    Suarez-Bertoa, Ricardo; Mendoza-Villafuerte, Pablo; Bonnel, Pierre; Lilova, Velizara; Hill, Leslie; Perujo, Adolfo; Astorga, Covadonga


    The use of selective catalytic reduction systems (SCR) to abate NOx vehicular emissions brings new concerns on the emissions of the byproducts NH3 and N2O. Therefore, NH3 and N2O on-road emissions from a Euro V truck equipped with a SCR were measured in real time using a QCL-IR. Results bring to light possibility to perform this kind of real time measurements for other pollutants besides, hydrocarbons, NOx, CO and CO2. The capability to measure NH3 and N2O in a second-by-second basis will allow applying the currently agreed regulatory emissions evaluation for gaseous compounds. Average N2O emission factors calculated applying the current PEMS-based data analysis to all available windows from the tests ranged from 0.063 g/kWh to 0.139 g/kWh. Average NH3 concentrations ranged from 0.9 ppm to 5.7 ppm. Although calculated average N2O and NH3 emissions were within current limits, NOx emissions were substantially higher than Euro V limits under the studied conditions.

  8. 美国ECM重磅推出新产品快速NOx/NH3分析仪5240



  9. Synthesis of 15N-enriched urea (CO(15NH22 from 15NH3, CO, and S in a discontinuous process

    C. R. Sant Ana Filho


    Full Text Available CO(15NH22 enriched with the stable isotope 15N was synthesized based on a reaction involving CO, 15NH3, and S in the presence of CH3OH. The method differs from the industrial method; a stainless steel reactor internally lined with polytetrafluoroethylene (PTFE was used in a discontinuous process under low pressure and temperature. The yield of the synthesis was evaluated as a function of the parameters: the amount of reagents, reaction time, addition of H2S, liquid solution and reaction temperature. The results showed that under optimum conditions (1.36, 4.01, and 4.48 g of 15NH3, CO, and S, respectively, 40 ml CH3OH, 40 mg H2S, 100 ºC and 120 min of reaction 1.82 g (yield 76.5% of the compound was obtained per batch. The synthesized CO(15NH22 contained 46.2% N, 0.55% biuret, melting point of 132.55 ºC and did not exhibit isotopic fractionation. The production cost of CO(15NH22 with 90.0 at. % 15N was US$ 238.60 per gram.

  10. First-principles calculation of bulk photovoltaic effect in CH$_3$NH$_3$PbI$_3$ and CH$_3$NH$_3$PbI$_{3-x}$Cl$_{x}$

    Zheng, Fan; Takenaka, Hiroyuki; Wang, Fenggong; Koocher, Nathan Z.; Rappe, Andrew M.


    Hybrid halide perovskites exhibit nearly 20% power conversion efficiency, but the origin of their high efficiency is still unknown. Here, we compute the shift current, a dominant mechanism of bulk photovoltaic (PV) effect for ferroelectric photovoltaics, in CH$_3$NH$_3$PbI$_3$ and CH$_3$NH$_3$PbI$_{3-x}$Cl$_{x}$ from first principles. We find that these materials give approximately three times larger shift current PV response to near-IR and visible light than the prototypical ferroelectric ph...

  11. Calculation of H2O-NH3-CO2 Vapor Liquid Equilibria at High Concentration Conditions%高浓度H2O-NH3-CO2体系汽液平衡计算

    魏顺安; 张红晶


    A vapor liquid equilibrium model and its related interactive energy parameters based on UNIQUAC model for the H2O-NH3-CO2 system without solid phase at the conditions of temperature from 30℃ to 90℃,pressure from 0.1 MPa to 0.4 MPa, and the maximum NH3 mass fraction up to 0.4 are provided. This model agrees with experimental data well (average relative error < 1%) and is useful for analysis of industrial urea production.

  12. CH3NH3PbI3, A Potential Solar Cell Candidate: Structural and Spectroscopic Investigations.

    Nandi, Pronoy; Giri, Chandan; Joseph, Boby; Rath, S; Manju, U; Topwal, D


    Hybrid organic-inorganic metal halides of the type CH3NH3PbX3 have emerged as potential materials for photovoltaic applications. In this paper we discuss structural, electronic, and optical spectroscopy investigations performed on high quality single crystals of CH3NH3PbI3. Our results conclusively suggest that CH3NH3PbI3 crystallizes in centrosymmetric space group and the methylammonium moiety exhibits disordered packing at room temperature. Extracted values of the exciton binding energy, the electron-phonon coupling constant, and the schematic energy level diagram constructed from the emission broadening, Raman, and photoemission spectroscopy measurements clearly show the potential of this system in photovoltaic applications.

  13. Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry

    Alias, Mohd Sharizal


    The lack of optical constants information for hybrid perovskite of CH3NH3PbBr3 in thin films form can delay the progress of efficient LED or laser demonstration. Here, we report on the optical constants (complex refractive index and dielectric function) of CH3NH3PbBr3 perovskite thin films using spectroscopic ellipsometry. Due to the existence of voids, the refractive index of the thin films is around 8% less than the single crystals counterpart. The energy bandgap is around 2.309 eV as obtained from photoluminescence and spectrophotometry spectra, and calculated from the SE analysis. The precise measurement of optical constants will be useful in designing optical devices using CH3NH3PbBr3 thin films.

  14. Doping effect on the adsorption of NH3 molecule onto graphene quantum dot: From the physisorption to the chemisorption

    Seyed-Talebi, Seyedeh Mozhgan; Beheshtian, J.; Neek-amal, M.


    The adsorption of ammonia molecule onto a graphene hexagonal flake, aluminum (Al) and boron (B) doped graphene flakes (graphene quantum dots, GQDs) are investigated using density functional theory. We found that NH3 molecule is absorbed to the hollow site through the physisorption mechanism without altering the electronic properties of GQD. However, the adsorption energy of NH3 molecule onto the Al- and B-doped GQDs increases with respect GQD resulting chemisorption. The adsorption of NH3 onto the Al-doped and B-doped GQDs makes graphene locally buckled, i.e., B- doped and Al-doped GQDs are not planar. The adsorption mechanism onto a GQD is different than that of graphene. This study reveals important features of the edge passivation and doping effects of the adsorption mechanism of external molecules onto the graphene quantum dots.

  15. Surface-exchange of NOx and NH3 above a winter wheat field in the Yangtze Delta, China

    FANG Shuan-gxi; ZHANG Yi; MU Yu-jing


    A four-dynamic-chamber system was constructed to measure NOx and NH3 surface-exchange between a typical wheat field and the fluxes of NO2 and NH3 were negatively correlated with their ambient concentrations during the investigated period. The compensation point of NO2 between the wheat field and the atmosphere was 11.9 μg/m3. The emissions of NO-N and NH3-N from the urea applied to the wheat field were 2.3% and 0.2%, respectively, which indicated that the main pathway of N loss from the investigated winter wheat field was NO. Application of a mixture of urea and lignin increased the emissions of NO, but also greatly increased the yield of the winter wheat.

  16. Ice rink installations working with natural refrigerants; Kunst-ijsbanen met NH3 en CO2, natuurlijker kan het niet

    Berends, E. [Grenco, Den Bosch (Netherlands)


    In a growing number of countries it is not allowed anymore to use big amounts of ammonia in areas occupied by many people. So new skating halls with direct ammonia systems are not built anymore although those systems are the best solution, concerning ice quality and energy consumption. An indirect system NH3/glycol or brine uses circa 20% more energy. By using (H)CFC's instead of NH3 the energy consumption might even be higher. During the last years CO2 has proven itself not only as an excellent refrigerant but also as a very usable secondary refrigerant in stead of brines, etc. In this article the successful application of the newly developed NH3/CO2 system on an existing ice rink is described. [Dutch] Een overzicht wordt gegeven van de voordelen en de nadelen van verschillende koelmiddelen voor kunstijsbanen in Nederland (ammoniak, CO2, glycol)

  17. Shape-Evolution Control of hybrid perovskite CH3NH3PbI3 crystals via solvothermal synthesis

    Zhang, Baohua; Guo, Fuqiang; Yang, Lianhong; Jia, Xiuling; Liu, Bin; Xie, Zili; Chen, Dunjun; Lu, Hai; Zhang, Rong; Zheng, Youdou


    We systematically synthesized CH3NH3PbI3 crystals using solvothermal process, and the reaction conditions such as concentration of the precursor, temperature, time, and lead source have been comprehensively investigated to obtain shape-controlled CH3NH3PbI3 crystals. The results showed that the CH3NH3PbI3 crystals exhibit tetragonal phase and the crystals change from nanoparticles to hopper-faced cuboids. Photoluminescence spectra of the crystals obtained with different lead sources show a blue shift due to the presence of defects in the crystals, and the peak intensity is very sensitive to the lead sources. Moreover, impurities (undesirable byproducts and excess components like HI or CH3NH2) presented during crystal growth can result in hopper growth.

  18. DRIFT study of manganese/ titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3.

    Wu, Zhongbiao; Jiang, Boqiong; Liu, Yue; Wang, Haiqiang; Jin, Ruiben


    Manganese oxides and iron-manganese oxides supported on TiO2 were prepared by the sol-gel method and used for low-temperature selective catalytic reduction (SCR) of NO with NH3. Base on the previous study, Mn(0.4)/ TiO2 and Fe(0.1)-Mn(0.4)/TiO2 were then selected to carry out the in situ diffuse reflectance infrared transform spectroscopy (DRIFT) investigation for revealing the reaction mechanism. The DRIFT spectroscopy for the adsorption of NH3 indicated the presence of coordinated NH3 and NH4+ on both of the two catalysts. When NO was introduced, the coordinated NH3 on the catalyst surface was consumed rapidly, indicating these species could react with NO effectively. When NH3 was introduced into the sample preadsorbed with NO + O2, SCR reaction would not proceed on Mn(0.4)/TiO2. However, for Fe(0.1)-Mn(0.4)/ TiO2 the bands due to coordinated NH3 on Fe2O3 were formed. Simultaneously, the bidentate nitrates were transformed to monodentate nitrates and NH4+ was detected. And NO2 from the oxidation of NO on catalyst could react with NH4+ leading to the reduction of NO. Therefore, it was suggested that the SCR reaction on Fe(0.1)-Mn(0.4)/TiO2 could also take place in a different way from the reactions on Mn(0.4)/TiO2 proposed by other researchers. Furthermore, the SCR reaction steps for these two kinds of catalysts were proposed.

  19. Two-stage biofilter for effective NH3 removal from waste gases containing high concentrations of H2S.

    Chung, Ying-Chien; Ho, Kuo-Ling; Tseng, Ching-Ping


    A high H2S concentration inhibits nitrification when H2S and NH3 are simultaneously treated in a single biofilter. To improve NH3 removal from waste gases containing concentrated H2S, a two-stage biofilter was designed to solve the problem. In this study, the first biofilter, inoculated with Thiobacillus thioparus, was intended mainly to remove H2S and to reduce the effect of H2S concentration on nitrification in the second biofilter, and the second biofilter, inoculated with Nitrosomonas europaea, was to remove NH3. Extensive studies, which took into account the characteristics of gas removal, the engineering properties of the two biofilters, and biological parameters, were conducted in a 210-day operation. The results showed that an average 98% removal efficiency for H2S and a 100% removal efficiency for NH3 (empty bed retention time = 23-180 sec) were achieved after 70 days. The maximum degradation rate for NH3 was measured as 2.35 g N day(-1) kg of dry granular activated carbon(-1). Inhibition of nitrification was not found in the biofilter. This two-stage biofilter also exhibited good adaptability to shock loading and shutdown periods. Analysis of metabolic product and observation of the bacterial community revealed no obvious acidification or alkalinity phenomena. In addition, a lower moisture content (approximately 40%) for microbial survival and low pressure drop (average 24.39 mm H2O m(-1)) for system operation demonstrated that the two-stage biofilter was energy saving and economic. Thus, the two-stage biofilter is a feasible system to enhance NH3 removal in the concentrated coexistence of H2S.

  20. Hydrophobic recovery of VUV/NH3 modified polyolefin surfaces: Comparison with plasma treatments in nitrogen

    Truica-Marasescu, F.; Guimond, S.; Jedrzejowski, P.; Wertheimer, M. R.


    Film samples of two very pure polyolefins (low density polyethylene, LDPE and biaxially oriented polypropylene, BOPP) were surface-modified by two different methods, namely vacuum ultraviolet (VUV) irradiation with a Kr resonant lamp in low-pressure NH3 gas, and atmospheric pressure glow discharge (APGD) plasma treatment in pure N2 gas. Samples were then stored in air and the time-dependence of surface properties (the surface energy and chemical composition) was monitored using several complementary surface-sensitive techniques: contact angle goniometry (CAG), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). We show that the main mechanism responsible for hydrophobic recovery is the motion of polymer chains and chain segments, which governs an apparent "loss" of functional groups, within the first monolayers of the surface (∼1 nm). Finally, comparing BOPP samples modified by both techniques, we show that aging can be reduced by crosslinking near the surface, as illustrated by depth-sensing nano-indentation measurements.

  1. Quadrupole Splittings in the near-infrared spectrum of $^{14}$NH$_3$

    Twagirayezu, Sylvestre; Sears, Trevor J


    Sub-Doppler, saturation dip, spectra of lines in the $v_1 + v_3$, $v_1 + 2v_4$ and $v_3 + 2v_4$ bands of $^{14}$NH$_3$ have been measured by frequency comb-referenced diode laser absorption spectroscopy. The observed spectral line widths are dominated by transit time broadening, but show resolved or partially-resolved hyperfine splittings that are primarily determined by the $^{14}$N quadrupole coupling. Modeling of the observed line shapes based on the known hyperfine level structure of the ground state of the molecule shows that, in nearly all cases, the excited state level has hyperfine splittings similar to the same rotational level in the ground state. The data provide accurate frequencies for the line positions and easily separate lines overlapped in Doppler-limited spectra. The observed hyperfine splittings can be used to make and confirm rotational assignments and ground state combination differences obtained from the measured frequencies are comparable in accuracy to those obtained from conventional ...

  2. CH3NH3PBI3 IV Output Parameters Degradation Investigation

    M.N. Orlova


    Full Text Available Organic photovoltaics, based on hybrid inorganic organic optoelectronic perovskites, with structure alkali- metal- halide are the newest emerging technology in the third generation development. Despite tremendous efficiency records, more than 21 %, optoelectronic perovskites’ instability prevents their commercialization and mass production. Issues with degradation are caused by various types of environmental influences. The main issues with stability and power loss in devices are linked to moisture, oxygen, temperature, and light-induced structure defects. Initial measurements are taken after long term debugging with minimal aggressive exposure to environmental conditions. In this case, preliminary degradation studies begin from measurements of light-induced effects. In this work, we will present the main trends in degradation of external characteristics during common I-V measurements, in the order of parameters which were effected the least by environmental factors. This investigation was made on fixed CH3NH3PBI3 solar cells with standard 1.5 AM testing and initial efficiencies more than 8 %.

  3. The efficiency limit of CH3NH3PbI3 perovskite solar cells

    Sha, Wei E. I.; Ren, Xingang; Chen, Luzhou; Choy, Wallace C. H.


    With the consideration of photon recycling effect, the efficiency limit of methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells is predicted by a detailed balance model. To obtain convincing predictions, both AM 1.5 spectrum of Sun and experimentally measured complex refractive index of perovskite material are employed in the detailed balance model. The roles of light trapping and angular restriction in improving the maximal output power of thin-film perovskite solar cells are also clarified. The efficiency limit of perovskite cells (without the angular restriction) is about 31%, which approaches to Shockley-Queisser limit (33%) achievable by gallium arsenide (GaAs) cells. Moreover, the Shockley-Queisser limit could be reached with a 200 nm-thick perovskite solar cell, through integrating a wavelength-dependent angular-restriction design with a textured light-trapping structure. Additionally, the influence of the trap-assisted nonradiative recombination on the device efficiency is investigated. The work is fundamentally important to high-performance perovskite photovoltaics.

  4. Calculation of H2O-NH3-CO2 Vapor Liquid Equilibria at High Concentration Conditions

    魏顺安; 张红晶


    A vapor liquid equilibrium model and its related interactive energy parameters based on UNIQUAC model for the H2O-NH3-CO2 system without solid phase at the conditions of temperature from 30℃ to 90℃, pressure from 0.1 MPa to 0.4 MPa, and the maximum NH3 mass fraction up to 0.4 are provided. This model agrees with experimental data well (average relative error < 1%) and is useful for analysis of industrial urea production.

  5. Low Temperature Performance of Selective Catalytic Reduction of NO with NH3 under a Concentrated CO2 Atmosphere

    Xiang Gou; Chunfei Wu; Kai Zhang; Guoyou Xu; Meng Si; Yating Wang; Enyu Wang; Liansheng Liu; Jinxiang Wu


    Selective catalytic reduction of NOx with NH3 (NH3-SCR) has been widely investigated to reduce NOx emissions from combustion processes, which cause environmental challenges. However, most of the current work on NOx reduction has focused on using feed gas without CO2 or containing small amounts of CO2. In the future, oxy-fuel combustion will play an important role for power generation, and this process generates high concentrations of CO2 in flue gas. Therefore, studies on the SCR process unde...

  6. Evidence of amino acid precursors: C-N bond coupling in simulated interstellar CO2/NH3 ices

    Esmaili, Sasan


    Low energy secondary electrons are abundantly produced in astrophysical or planetary ices by the numerous ionizing radiation fields typically encountered in space environments and may thus play a role in the radiation processing of such ices [1]. One approach to determine their chemical effect is to irradiate nanometer thick molecular solids of simple molecular constituents, with energy selected electron beams and to monitor changes in film chemistry with the surface analytical techniques [2].Of particular interest is the formation of HCN, which is a signature of dense gases in interstellar clouds, and is ubiquitous in the ISM. Moreover, the chemistry of HCN radiolysis products such as CN- may be essential to understand of the formation of amino acids [3] and purine DNA bases. Here we present new results on the irradiation of multilayer films of CO2 and NH3 with 70 eV electrons, leading to CN bond formations. The electron stimulated desorption (ESD) yields of cations and anions are recorded as a function of electron fluence. The prompt desorption of cationic reaction/scattering products [4], is observed at low fluence (~4x1013 electrons/cm2). Detected ions include C2+, C2O2+, C2O+, CO3+, C2O3+ or CO4+ from pure CO2, and N+, NH+, NH2+, NH3+, NH4+, N2+, N2H+ from pure NH3, and NO+, NOH+ from CO2/NH3 mixtures. Most saliently, increasing signals of negative ion products desorbing during prolonged irradiation of CO2/NH3 films included C2-, C2H-, C2H2-, as well as CN-, HCN- and H2CN-. The identification of particular product ions was accomplished by using 13CO2 and 15NH3 isotopes. The chemistry induced by electrons in pure films of CO2 and NH3 and mixtures with composition ratios (3:1), (1:1), and (1:3), was also studied by X-ray photoelectron spectroscopy (XPS). Irradiation of CO2/NH3 mixed films at 22 K produces species containing the following bonds/functional groups identified by XPS: C=O, O-H, C-C, C-O, C=N and N=O. (This work has been funded by NSERC).

  7. Synthesis and Characterization of Ethylenediammonium Molybdenum Thiocomplex [-H3NCH2CH2NH3] [Mo3Si3

    WANG, Yimg; CHEN, Jie-Sheng; YUAN, Hong-Ming; SHI, 7han; YU, Shao-Fang; CHEN, Wei


    An organo-sfaced molybdenum thiocomples[H3NCH2CH2NH3] [Mo3S13]had been synthesized under hydrothermal condition and the structure of the compound was determined bysingle-crystal X-ray diffraction.The title compound crystalμ3-sulfur atom,with each Mo atom being also coordinated toome terminal disulfur ligand and two bridging disulfur ligands.The negativi charges on the inorganic cluster are balanced bythe ciprotonated ethylenediamine cations [H3NCH2CH2-NH3]2+located in the space between the clusters. N~-

  8. Effects of SbBr3 addition to CH3NH3PbI3 solar cells

    Oku, Takeo; Ohishi, Yuya; Suzuki, Atsushi


    TiO2/CH3NH3Pb1-xSbxI3-2xBr3x-based photovoltaic devices were fabricated, and effects of SbBr3 addition to CH3NH3PbI3 precursor solutions on the photovoltaic properties were investigated. The short-circuit current densities and photoconversion efficiencies were improved by adding a small amount of SbBr3 to the perovskite phase, which would be due to a doping effect of Sb or Br atoms at the Pb or I sites.


    陈砺; 谭盈科


    A study on the adsorption characteristics of the chemisorptionrefrigeration working pair using SrCl2 as adsorbent and NH3 as refrigerant was performed.The adsorption isotherms were obtained,the adsorpt i on isotherm equations were fit and the chemisorption mechanisms were discussed.T he results showed that SrCl2-NH3 is an excellent working pair in its larg e adsorption refrigeration capacity per unit weight of adsorbent and suitable fo r solar energy and low grade waste heat.%对以SrCl2为吸附剂、NH3为致冷剂所组成的化学吸附式制冷工质对的吸附性能进行了研究,得到了吸附等温线、回归出吸附等温方程并对化学吸附过程机理进行了探讨。研究结果表明,SrCl2-NH3工质对的吸附制冷量大,适宜太阳能或低品位余热驱动,是性能优良的工质对。

  10. Jet-Cooled Infrared Laser Spectroscopy in the Umbrella νb{2} Vibration Region of NH_3: Improving the Potential Energy Surface Model of the NH_3-Ar Van Der Waals Complex

    Asselin, Pierre; Jabri, Atef; Potapov, Alexey; Loreau, Jérome; van der Avoird, Ad


    Taking advantage of our sensitive laser spectrometer coupled to a pulsed slit jet, we recorded near the νb{2} vibration a series of rovibrational transitions of the NH_3-Ar van der Waals (vdW) complex. These transitions involve in the ground vibrational state several internal rotor states corresponding to the ortho{NH_3} and para{NH_3} spin modifications of the complex. They are labeled by Σ_{a}(j,k), Σ_{s}(j,k), Π_{a}(j,k) and Π_{s}(j,k) where Σ(K=0) and Π(K=1) indicate the projection K of the total rotational angular momentum J on the vdW axis, the superscripts s and a designate a symmetric or antisymmetric NH_3 inversion wave function, and j, k quantum numbers indicate the correlation between the internal-rotor state of the complex and the j, k rotational state of the free NH_3 monomer. Five bands have been identified, only one of which was partly observed before. They include transitions starting from the Σ_{a}(j=0 or j=1) state without any internal angular momentum, consequently they can be assigned from the band contour of a linear-molecule-like K=0, ΔJ=1 transition. The energies and splittings of the rovibrational levels of the νb{2}=1←0 spectrum derived from the analysis of the Π_{s}, Σ_{s}(j=1)← Σ_{a}(j=0), k=0 bands and mostly of the Σ_{s}, Π_{s} and Σ_{a}(j=1)←Σ_{a}(j=1), k=1 bands bring relevant information about the νb{2} dependence of the NH_3-Ar interaction, the rovibrational dynamics of the NH_3-Ar complex and provide a sensitive test of a recently developed 4D potential energy surface that includes explicitly its dependence on the umbrella motion. P. Asselin, Y. Berger, T. R. Huet, R. Motiyenko, L. Margulès, R. J. Hendricks, M. R. Tarbutt, S. Tokunaga, B. Darquié, PCCP 19, 4576 (2017), G. T. Fraser, A.S. Pine and W. A. Kreiner, J. Chem. Phys. 94, 7061 (1991). J. Loreau, J. Liévin, Y. Scribano and A. van der Avoird, J. Chem. Phys. 141, 224303 (2014).

  11. Theoretical studies of electrostatic Stark deceleration for subsonic NH3 molecular b eams%亚声速NH3分子束静电Stark减速的理论研究∗


    In this paper, we investigate theoretically the Stark deceleration and cooling of subsonic NH3 molecular beams based on our second-generation electrostatic Stark decelerator with 180 stages. Firstly, we calculate the Stark shifts of NH3 molecules in the|J =1, K =1⟩states and show the stable area of longitudinal phase space for different synchronous phase angles. Secondly, we study the slowing performance of NH3 molecular beams in the traditional mode, and discuss the relationships between various parameters (such as the kinetic energy loss per stage, final velocity and the slowing efficiency) and the synchronous phase angle ϕ0, as well as the dependence of final velocity on the applied voltages. It is found that a subsonic NH3 molecular beam can be decelerated from 280 to 6.7 m/s at ϕ0 = 26.08◦ when the high voltages applied on the electrodes are ±13 kV, corresponding to a removal of 99.9% kinetic energy. The translational temperature of the molecular packets in the moving frame is significantly reduced from 1.34 K to 80 mK. Finally, we study the slowing performance of NH3 molecules and the dependence of final velocity on the synchronous phase angle in an alternate operation mode. In this mode, a synchronous phase angleϕ0=0◦is chosen to bunch the molecules by using the first 15 stages. The remaining 165 stages are then used to slow a subsonic molecular beam at a certain synchronous phase angle. Our result shows that a molecular beam with a mean velocity of 280 m/s can be decelerated to 20.7 m/s at ϕ0 =65.4◦ when the voltages applied are ±6.5 kV, indicating a 99.4% kinetic energy removal, and the translational temperature of the molecular packets can be reduced from 1.34 K to 1.6 mK. By comparing the results obtained from the two operational modes, the temperature of the slowed molecular packet in the alternate mode is 50 times lower than that in the traditional mode. It is shown that our second-generation 180-stage Stark decelerator can effectively

  12. Analogues of Cis- and Transplatin with a Rich Solution Chemistry: cis-[PtCl2 (NH3 )(1-MeC-N3)] and trans-[PtI2 (NH3 )(1-MeC-N3)].

    Siebel, Sabine; Dammann, Claudia; Sanz Miguel, Pablo J; Drewello, Thomas; Kampf, Gunnar; Teubner, Natascha; Bednarski, Patrick J; Freisinger, Eva; Lippert, Bernhard


    Mono(nucleobase) complexes of the general composition cis-[PtCl2 (NH3 )L] with L=1-methylcytosine, 1-MeC (1 a) and L=1-ethyl-5-methylcytosine, as well as trans-[PtX2 (NH3 )(1-MeC)] with X=I (5 a) and X=Br (5 b) have been isolated and were characterized by X-ray crystallography. The Pt coordination occurs through the N3 atom of the cytosine in all cases. The diaqua complexes of compounds 1 a and 5 a, cis-[Pt(H2 O)2 (NH3 )(1-MeC)](2+) and trans-[Pt(H2 O)2 (NH3 )(1-MeC)](2+) , display a rich chemistry in aqueous solution, which is dominated by extensive condensation reactions leading to μ-OH- and μ-(1-MeC(-) -N3,N4)-bridged species and ready oxidation of Pt to mixed-valence state complexes as well as diplatinum(III) compounds, one of which was characterized by X-ray crystallography: h,t-[{Pt(NH3 )2 (OH)(1-MeC(-) -N3,N4)}2 ](NO3 )2 ⋅2 [NH4 ](NO3 )⋅2 H2 O. A combination of (1) H NMR spectroscopy and ESI mass spectrometry was applied to identify some of the various species present in solution and the gas phase, respectively. As it turned out, mass spectrometry did not permit an unambiguous assignment of the structures of +1 cations due to the possibilities of realizing multiple bridging patterns in isomeric species, the occurrence of different tautomers, and uncertainties regarding the Pt oxidation states. Additionally, compound 1 a was found to have selective and moderate antiproliferative activity for a human cervix cancer line (SISO) compared to six other human cancer cell lines.

  13. 固氮添加剂降低厨余垃圾堆肥中NH3和H2S排放%Nitrogen fixation additive reducing emission of NH3 and H2S during composting of kitchen waste and cornstalk

    张红玉; 李国学; 袁京; 臧冰; 杨青原


    In order to reduce odor emissions such as NH3 and H2S, this study designed experiments to investigate the effects of H3PO4+Mg(OH)2, Ca(H2PO4)2, FeCl3, andβcyclodextrin on producing and releasing NH3 and H2S during kitchen waste composting. The composting treatment without adding chemical materials was used as control. The kitchen waste consisted of 53%vegetation waste, 24%fruit wall, 19%meat, and 4%leaves. For all treatments, cornstalks as an additive using the wet weight ration of 1:5.7 were added to the kitchen waste composting. All treatments were analyzed using 60 L heat insulated composting vessels with forced aeration systems. The vessels were controlled by the C-LGX program, which enables aeration to be controlled automatically by time or inside temperature. Aeration consisted of pumping ambient air into the reactor continuously at a rate of 0.2 L/(kg·min) dry matter. The TKN and TOC were determined according to the Chinese national standard (NY 525-2002). The pH, EC, and GI were determined in water extracts (20 g of dry weight compost were extracted with 200 ml of distilled water, stirred for 1 h, and then centrifuged at 4000 rpm). pH value was measured with a pH meter, electrical conductivity (EC) was measured by a DDS-12A conductivity meter. The moisture content was determined by drying the samples at 105℃, until the weight was unvarying. The boric acid titration method was used to determine ammonia emission. The H2S content was analyzed daily using a portable biogas analyzer. Composting gas samples were extracted using a suction pump (built-in biogas analyzer, gas flow:550 mL/min), and then transferred to the inlet port of the biogas analyzer via a Teflon hose that contained a filter element (2.0μm PTFE) installed in the middle of the pipe. The measurement was taken for about 90 seconds, and the measured value of H2S was read directly from the screen. The results showed that adding nitrogen control material reduced the pH of the composting systems

  14. Light stability tests of CH3NH3PbI3 perovskite solar cells using porous carbon counter electrodes.

    Ito, Seigo; Mizuta, Gai; Kanaya, Shusaku; Kanda, Hiroyuki; Nishina, Tomoya; Nakashima, Seiji; Fujisawa, Hironori; Shimizu, Masaru; Haruyama, Yuichi; Nishino, Hitoshi


    The CH3NH3PbI3 perovskite solar cells have been fabricated using three-porous-layered electrodes as, 〈glass/F-doped tin oxide (FTO)/dense TiO2/porous TiO2-perovskite/porous ZrO2-perovskite/porous carbon-perovskite〉 for light stability tests. Without encapsulation in air, the CH3NH3PbI3 perovskite solar cells maintained 80% of photoenergy conversion efficiency from the initial value up to 100 h under light irradiation (AM 1.5, 100 mW cm(-2)). Considering the color variation of the CH3NH3PbI3 perovskite layer, the significant improvement of light stability is due to the moisture-blocking effect of the porous carbon back electrodes. The strong interaction between carbon and CH3NH3PbI3 perovskite was proposed by the measurements of X-ray photoelectron spectroscopy and X-ray diffraction of the porous carbon-perovskite layers.

  15. Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method.

    Shingange, K; Tshabalala, Z P; Ntwaeaborwa, O M; Motaung, D E; Mhlongo, G H


    ZnO nanorods synthesized using microwave-assisted approach were functionalized with gold (Au) nanoparticles. The Au coverage on the surface of the functionalized ZnO was controlled by adjusting the concentration of the Au precursor. According to X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) results, it was confirmed that Au form nanoparticles loaded on the surface of ZnO. The small Au loading level of 0.5wt% showed the highest response of 1600-100ppm of NH3 gas at room temperature (RT) whereas further increase of Au loading level resulted in poor detection of NH3. All Au loaded ZnO (Au/ZnO) based sensors exhibited very short recovery and response times compared to unloaded ZnO sensing materials. The responses of ZnO and Au/ZnO based sensors (0.5-2.5wt%) to other flammable gases, including H2, CO and CH4, were considerably less, demonstrating that Au/ZnO based sensors were highly selective to NH3 gas at room temperature. Spill over mechanism which is the main reason for the observed enhanced NH3 response with 0.5 Au loading level is explained in detail.

  16. Post-Cleaning Effect on a HfO2 Gate Stack Using a NF3/NH3 Plasma.

    Lee, Min-Seon; Oh, Hoon-Jung; Lee, Joo-Hee; Lee, In-Geun; Shin, Woo-Gon; Kim, Kyu-Dong; Park, Jin-Gu; Ko, Dae-Hong


    The effects of dry cleaning of a HfO2 gate stack using NF3 only and a NF3/NH3 gas mixture plasma were investigated. The plasma dry cleaning process was carried out after HfO2 deposition using an indirect down-flow capacitively coupled plasma (CCP) system. An analysis of the chemical composition of the HfO2 gate stacks by XPS indicated that fluorine was incorporated into the HfO2 films during the plasma dry cleaning. Significant changes in the HfO2 chemical composition were observed as a result of the NF3 dry cleaning, while they were not observed in this case of NF3/NH3 dry cleaning. TEM results showed that the interfacial layer (IL) between the HfO2 and Si thickness was increased by the plasma dry cleaning. However, in the case of NF3/NH3 dry cleaning using 150 W, the IL thickness was suppressed significantly compared to the sample that had not been dry cleaned. Its electrical properties were also improved, including the low gate leakage currents, and reduced EOT. Finally, the finding show that the IL thickness of the HfO2 gate stack can be controlled by using the novel NF3/NH3 dry cleaning process technique without any the significant changes in chemical composition and metal-oxide-semiconductor (MOS) capacitor characteristics.

  17. Selective autocatalytic reduction of NO from sintering flue gas by the hot sintered ore in the presence of NH3.

    Chen, Wangsheng; Luo, Jing; Qin, Linbo; Han, Jun


    In this paper, the selective autocatalytic reduction of NO by NH3 combined with multi-metal oxides in the hot sintered ore was studied, and the catalytic activity of the hot sintered ore was investigated as a function of temperature, NH3/NO ratio, O2 content, H2O and SO2. The experimental results indicated that the hot sintered ore, when combined with NH3, had a maximum denitration efficiency of 37.67% at 450 °C, 3000 h(-1) gas hourly space velocity (GHSV) and a NH3/NO ratio of 0.4/1. Additionally, it was found that O2 played an important role in removing NOx. However, high O2 content had a negative effect on NO reduction. H2O was found to promote the denitration efficiency in the absence of SO2, while SO2 inhibited the catalytic activity of the sintered ore. In the presence of H2O and SO2, the catalytic activity of the sintered ore was dramatically suppressed.

  18. Modeling and Multi-Objective Optimization of NOx Conversion Efficiency and NH3 Slip for a Diesel Engine

    Bo Liu


    Full Text Available The objective of the study is to present the modeling and multi-objective optimization of NOx conversion efficiency and NH3 slip in the Selective Catalytic Reduction (SCR catalytic converter for a diesel engine. A novel ensemble method based on a support vector machine (SVM and genetic algorithm (GA is proposed to establish the models for the prediction of upstream and downstream NOx emissions and NH3 slip. The data for modeling were collected from a steady-state diesel engine bench calibration test. After obtaining the two conflicting objective functions concerned in this study, the non-dominated sorting genetic algorithm (NSGA-II was implemented to solve the multi-objective optimization problem of maximizing NOx conversion efficiency while minimizing NH3 slip under certain operating points. The optimized SVM models showed great accuracy for the estimation of actual outputs with the Root Mean Squared Error (RMSE of upstream and downstream NOx emissions and NH3 slip being 44.01 × 10−6, 21.87 × 10−6 and 2.22 × 10−6, respectively. The multi-objective optimization and subsequent decisions for optimal performance have also been presented.

  19. Animal feeding strategies to abate N2O and NH3 emission from surface applied slurry to a grassland soil

    Sanz Cobeña, Alberto; Beccaccia, A.; Sánchez Martín, Laura; Blas, C. de; García Rebollar, Paloma; Estellés, F.; Andreu, Gemma; A. Marsden; Chadwick, Dave; Vallejo Garcia, Antonio


    The main objective of this study was to evaluate the effect of five different feeds, in terms of protein content, on the emissions of ammonia (NH3), nitrous oxide (N2O) and carbon dioxide (CO2) from a grassland soil fertilized with pig slurries.

  20. A Guided-Ion Beam Study of the O+(4S) + NH3 System at Hyperthermal Energies


    0+ + NH3.6 This work suggests that additional channels, leading to the formation of NH?+ (not distinguishable in the experiment) and HiO + are...a small channel and there are no coincident ions (for ND? reactions, D?0+ coincides with ND4 +, a secondary product). The HiO + cross section is

  1. The influence of H2O and CO2 on the reactivity of limestone for the oxidation of NH3

    Zijlma, G. J.; Jensen, Anker Degn; Johnsson, Jan Erik


    Although it is known that both H2O and CO2 reduce the catalytic activity of CaO, the kinetics of NO formation catalysed by CaO are often obtained without the presence of H2O or CO2. In this work, the catalytic activity for NH3 oxidation with three types of calcined limestone was tested under...... is stopped the water desorbs and the activity is restored. Addition of CO2 did not result in a decrease in the oxidation of NH3. Blocking of the active sites by adsorption of H2O is the main cause of the deactivation. A model with a Langmuir adsorption type was developed and both NO and NH3 exit...... concentrations were modelled correctly over a wide range of reaction conditions. This study shows that kinetic investigations concerning NH3 oxidation over CaO should be carried out in the presence of water. (C) 2000 Elsevier Science Ltd. All rights reserved....

  2. Colloidal Synthesis of CH3 NH3 PbBr3 Nanoplatelets with Polarized Emission through Self-Organization.

    Liu, Lige; Huang, Sheng; Pan, Longfei; Shi, Li-Jie; Zou, Bingsuo; Deng, Luogen; Zhong, Haizheng


    We report a combined experimental and theoretical study of the synthesis of CH3 NH3 PbBr3 nanoplatelets through self-organization. Shape transformation from spherical nanodots to square or rectangular nanoplatelets can be achieved by keeping the preformed colloidal nanocrystals at a high concentration (3.5 mg mL(-1) ) for 3 days, or combining the synthesis of nanodots with self-organization. The average thickness of the resulting CH3 NH3 PbBr3 nanoplatelets is similar to the size of the original nanoparticles, and we also noticed several nanoplatelets with circular or square holes, suggesting that the shape transformation experienced a self-organization process through dipole-dipole interactions along with a realignment of dipolar vectors. Additionally, the CH3 NH3 PbBr3 nanoplatelets exhibit excellent polarized emissions for stretched CH3 NH3 PbBr3 nanoplatelets embedded in a polymer composite film, showing advantageous photoluminescence properties for display backlights. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Polar Nature of (CH3NH3)3Bi2I9 Perovskite-Like Hybrids

    Kamminga, Machteld E; Stroppa, Alessandro; Picozzi, Silvia; Chislov, Mikhail; Zvereva, Irina A; Baas, Jacob; Meetsma, Auke; Blake, Graeme R; Palstra, Thomas T M


    High-quality single crystals of perovskite-like (CH3NH3)3Bi2I9 hybrids have been synthesized, using a layered-solution crystal-growth technique. The large dielectric constant is strongly affected by the polar ordering of its constituents. Progressive dipolar ordering of the methylammonium cation upo

  4. Enhanced low-temperature NH3-SCR performance of MnOx/CeO2 catalysts by optimal solvent effect

    Yao, Xiaojiang; Kong, Tingting; Chen, Li; Ding, Shimin; Yang, Fumo; Dong, Lin


    A series of MnOx/CeO2 catalysts were prepared by modulating the solvents (deionized water (DW), anhydrous ethanol (AE), acetic acid (AA), and oxalic acid (OA) solution) with the purpose of improving the low-temperature NH3-SCR performance, broadening the operating temperature window, and enhancing the H2O + SO2 resistance. The synthesized catalysts were characterized by means of N2-physisorption, XRD, EDS mapping, Raman, XPS, H2-TPR, NH3-TPD, and in situ DRIFTS technologies. Furthermore, the catalytic performance and H2O + SO2 resistance were evaluated by NH3-SCR model reaction. The obtained results indicate that MnOx/CeO2 catalyst prepared with oxalic acid solution as a solvent exhibits the best catalytic performance among these catalysts, which shows above 80% NO conversion during a wide operating temperature range of 100-250 °C and good H2O + SO2 resistance for low-temperature NH3-SCR reaction. This is related to that oxalic acid solution can promote the dispersion of MnOx and enhance the electron interaction between MnOx and CeO2, which are beneficial to improving the physicochemical property of MnOx/CeO2 catalyst, and further lead to the enhancement of catalytic performance and good H2O + SO2 resistance.

  5. Paper-like Microfibrous Nickel Catalyst for Hydrogen Production via NH3 Decomposition in Fuel Cell Applications

    Yong LU; Hong WANG; Ye LIU; Ming Yuan HE


    A sinter-locked three-dimensional network of microfibrous nickel catalyst has been fabricated based on wet layup papermaking and sintering processes and this novel approach permits the production of ~ 11 W fuel cell power H2 via NH3 decomposition with a conversion of 97% at 750 ℃ in a bed of 0.6 cm3.

  6. NH3, N2O and CH4 emissions during passively aerated composting of straw-rich pig manure

    Szanto, G.L.; Hamelers, H.V.M.; Rulkens, W.H.; Veeken, A.H.M.


    Straw-rich manure from organic pig farming systems was composted in passively aerated static piles to estimate the effect of monthly turning on organic matter degradation and NH3, N2O and CH4 emissions. Turning enhanced the rate of drying and degradation. The four-month treatment degraded 57 ± 3% of

  7. Characterization of Cu-SSZ-13 NH3 SCR catalysts: an in situ FTIR study.

    Szanyi, János; Kwak, Ja Hun; Zhu, Haiyang; Peden, Charles H F


    The adsorption of CO and NO over Cu-SSZ-13 zeolite catalysts, highly active in the selective catalytic reduction of NO(x) with NH(3), was investigated by FTIR spectroscopy, and the results obtained were compared to those collected from other Cu-ion exchanged zeolites (Y,FAU and ZSM-5). Under low CO pressures and at room temperature (295 K), CO forms monocarbonyls exclusively on the Cu(+) ions, while in the presence of gas phase CO dicarbonyls on Cu(+) and adsorbed CO on Cu(2+) centers form, as well. At low (cryogenic) sample temperatures, tricarbonyl formation on Cu(+) sites was also observed. The adsorption of NO produces IR bands that can be assigned to nitrosyls bound to both Cu(+) and Cu(2+) centers, and NO(+) species located in charge compensating cationic positions of the chabasite framework. On the reduced Cu-SSZ-13 samples the formation of N(2)O was also detected. The assignment of the adsorbed NO(x) species was aided by adsorption experiments with isotopically labeled (15)NO. The movement of Cu ions from the sterically hindered six member ring position to the more accessible cavity positions as a result of their interaction with adsorbates (NO and H(2)O) was clearly evidenced. Comparisons of the spectroscopy data obtained in the static transmission IR system to those collected in the flow-through diffuse reflectance cell points out that care must be taken when general conclusions are drawn about the adsorptive and reactive properties of metal cation centers based on a set of data collected under well defined, specific experimental conditions.

  8. Charge transport in bulk CH3NH3PbI3 perovskite

    Slonopas, Andre; Foley, Benjamin J.; Choi, Joshua J.; Gupta, Mool C.


    The variation of leakage current and polarization hysteresis properties for bulk CH3NH3PbI3 perovskite was studied as a function of temperature to understand the reported hysteresis in photocurrent and the role of ferroelectricity. The leakage current decreased by two orders of magnitude when the temperature was lowered from 350 K to 100 K. The transitions in leakage current were observed at structural phase transition temperatures. The temperature dependence study allowed the identification of current conduction mechanism based on various models for ferroelectrics and insulating materials. Our results show that the leakage current is governed by the space charge limited conduction mechanism which should be considered in addition to ion conduction and ferroelectricity when analyzing current-voltage hysteresis for thin film and bulk materials. The Mott's variable range hopping model fits well to the experimental data indicating the charge conduction is through hopping mechanism from 300 K to 160 K and possibly tunneling below 160 K. The conclusions from polarization hysteresis study are: (1) the hysteresis loop shape is highly dependent upon frequency and show non-saturating behavior, an indicative of strong non-ferroelectric contributions such as resistive component. (2) No domain switching current was observed between the temperature range of 100 K-350 K. (3) An electric field off-set was observed in polarization-electric field curves and it was dependent upon the frequency and temperature. This offset could be caused by the accumulation of vacancies at one interface, which could give rise to hysteresis in forward and reverse bias photocurrent. (4) The time dependence study of instantaneous current as the voltage was increased linearly show strong resistive contribution to hysteresis loop at temperatures above 200 K and capacitive contribution at 100 K.

  9. Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil.

    Feng, Yanfang; Sun, Haijun; Xue, Lihong; Liu, Yang; Gao, Qian; Lu, Kouping; Yang, Linzhang


    Biochar application can increase carbon sequestration and reduce greenhouse gases emissions in paddy soils. However, its influence on ammonia (NH3) volatilization is neglected. This soil column study was conducted using two biochars (wheat straw pyrolyzed at 500 °C and 700 °C) with two application rates (0.5 wt% and 3 wt%) to evaluate their impact on NH3 volatilization from rice paddy. Results showed that biochar application did not change NH3 volatilization fluxes pattern after N fertilization. Four biochar treatments recorded higher NH3 volatilization (20.50-31.88 kg N ha(-1)) compared with the control (18.65 kg N ha(-1)). Especially, two 3 wt% biochar treatments had significantly 40.8-70.9% higher NH3 volatilization than control. After the basal and first supplementary fertilization, the floodwater pH values were 7.61-7.79 and 7.51-7.76 under biochar treatments, higher than control (7.37 and 7.16, respectively). Meanwhile, after three split N fertilizations, the pH of surface soil received biochar increased by 0.19-0.45, 0.19-0.39, and 0.01-0.21 units, in comparison with the control soil. Furthermore, 3 wt% biochar treatments had higher floodwater and surface soil pH values than 0.5 wt% biochar treatments. Higher NH4(+)-N and lower NO3(-)-N concentrations of surface soil under biochar application were observed compared with control at tillering stage, whereas they were at similar level at jointing stage. The increased NH3 volatilization at 3 wt% biochar treatments is attributed to increased pH of surface floodwater and soil, and reduced nitrification processes induced by biochar application. Biochar should be applied at lower rate to rice paddy soil, considering the NH3 volatilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature.

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong


    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

  11. DNA interactions of new cytotoxic tetrafunctional dinuclear platinum complex trans,trans-[{PtCl2(NH3)}2(piperazine)].

    Brabec, Viktor; Christofis, Petros; Slámová, Martina; Kostrhunová, Hana; Nováková, Olga; Najajreh, Yousef; Gibson, Dan; Kaspárková, Jana


    A new tetrafunctional dinuclear platinum complex trans,trans-[{PtCl2(NH3)}2(piperazine)] with sterically rigid linking group was designed, synthesized and characterized. In this novel molecule, the DNA-binding features of two classes of the platinum compounds with proven antitumor activity are combined, namely trans oriented bifunctional mononuclear platinum complexes with a heterocyclic ligand and polynuclear platinum complexes. DNA-binding mode of this new complex was analyzed by various methods of molecular biology and biophysics. The complex coordinates DNA in a unique way and interstrand and intrastrand cross-links are the predominant lesions formed in DNA in cell-free media and in absence of proteins. An intriguing aspect of trans,trans-[{PtCl2(NH3)}2(piperazine)] is that, using a semi-rigid linker, interstrand cross-linking is diminished relative to other dinuclear platinum complexes with flexible linking groups and lesions that span several base pairs, such as tri- and tetrafunctional adducts, become unlikely. In addition, in contrast to the inability of trans,trans-[{PtCl2(NH3)}2(piperazine)] to cross-link two DNA duplexes, the results of the present work convincingly demonstrate that this dinuclear platinum complex forms specific DNA lesions which can efficiently cross-link proteins to DNA. The results substantiate the view that trans,trans-[{PtCl2(NH3)}2(piperazine)] or its analogues could be used as a tool for studies of DNA properties and their interactions or as a potential antitumor agent. The latter view is also corroborated by the observation that trans,trans-[{PtCl2(NH3)}2(piperazine)] is a more effective cytotoxic agent than cisplatin against human tumor ovarian cell lines.

  12. Research Progress of Ceria-Based Catalysts in the Selective Catalytic Reduction of NOx by NH3%铈基催化剂用于NH3选择性催化还原NOx的研究进展

    姚小江; 贡营涛; 李红丽; 杨复沫


    源自固定源(如燃煤电厂烟气)和移动源(如机动车尾气)排放的氮氧化物(NOx)造成了严重的大气污染,对其进行减排控制已迫在眉睫。研究表明,氨选择性催化还原(NH3-SCR)技术是消除NOx的最有效手段之一。铈基催化剂因其良好的氧化还原性能、适当的表面酸性、较高的储/释氧容量以及丰富的资源储备而被广泛用于NH3-SCR反应。探讨铈基组分在该反应中发挥的具体作用,有助于了解相关催化过程的本质,为现有催化剂的优化和新型催化剂的设计提供科学参考。基于CeO2在NH3-SCR催化剂中扮演的不同角色,本文从CeO2作为载体、铈基复合氧化物、表面负载组分(助剂和活性组分)以及特殊结构的铈基催化剂等方面系统地介绍了近年来铈基催化剂在NH3-SCR反应中的最新研究进展,并对该领域未来可能的发展方向进行了展望。%Nitrogen oxides (NOx), which are emitted from stationary sources (such as coal-fired power plant flue gases) and mobile sources (such as motor vehicle exhausts), cause serious atmospheric pol ution. As a result, it is very important to control the emissions of NOx. Some studies have suggested that NH3-selective catalytic reduction (NH3-SCR) of NOx is one of the best techniques for this purpose. Ceria-based catalysts are widely used in the NH3-SCR reaction because of their good redox ability, suitable surface acidity, high oxygen storage or release capacity, and rich resource reserves. Investigating the role of ceria component in this reaction is important to understand the nature of the related catalytic process, and provides a valuable scientific reference for the optimization of existing catalysts and the design of novel catalysts. Based on the different roles of ceria in NH3-SCR catalysts, we have performed a systematic review of the latest research progress of ceria-based catalysts in the NH3-SCR reaction for the fol owing aspects:CeO2

  13. 住友CLC模块在线优化合成13N-NH3· H2O的研究%Online optimized synthesis of 13N-NH3· H2O by Sumitomo CLC module

    鄢敏; 秦志星; 程鹏亮; 郝新忠; 刘建中; 李思进; 武志芳


    Objective To achieve some better 13N-NH3· H2O imaging by confirming the relevant parameters of Sumitomo HM-10 cyclotron and optimizing Sumitomo CLC module· Methods Sumitomo HM-10 cyclotron beam size,bombed target time and ethanol content for removing of the radicals were optimized to improve the efficiency of chemical reactions.Using cation exchange column (CM column) to absorb the target water and optimizing the purification process to make high purity 13N-NH3· H2O.Multiple absorbed purification were finished by only one CM column (about 3 times).Results After 10 mmol/Lethanol was bombarded by 30 μA beam for 11 min,27 batches of 13N-NH3· H2O were synthesized,with a yield abou 925 MBq and the radiochemical purity and chemical purity both over 99%.The myocardial perfusion imaging showed a good result when the big dog was injected by 13N-NH3· H2O.Conclusions After optimizing cyclotron reaction conditions and micro-step improving Sumitomo CLC purification module,stable yield and better imaging of 13N-NH3· H2O was obtained,which can meet the experimental or clinical requirements.%目的 确定住友HM-10回旋加速器相关参数,小步优化住友CLC模块,合成显像良好的13N-NH3· H2O.方法 优化住友HM-10回旋加速器的束流大小、轰靶时间和靶水中乙醇去自由基含量,提高化学反应效率.用阳离子交换柱(CM柱)吸附靶水和小步优化纯化流程得到高化学纯度的13N-NH3·H2O,并实现一根CM柱上多次吸附纯化(3次左右).结果 用30 μA束流轰击10 mmol/L乙醇11 min,合成13N-NH3·H2O 27批次,产量为925 MBq左右,放化纯度和化学纯度均大于99%,注射大狗后心肌灌注显像良好.结论 经过回旋加速器锂靶反应条件的优化和住友CLC纯化模块的小步改进能得到产量稳定、显像良好的13N-NH3· H2O,能够满足实验及临床要求.

  14. Molecular simulation of adsorption of NH3 and amine derivatives on FAU zeolite%NH3及胺类氮化物在八面沸石中吸附的分子模拟

    沈喜洲; 李梅青; 周涵; 刘凤立; 王刚


    The high content of basic nitrogen compounds makes the zeolites poisoned, which affects the product distribution of FCC.Adsorption behavior of basic nitrogen compounds on the catalyst surface is the premise and the key to investigate the reason of catalyst deactivation.In this paper,the adsorption of NH3 and amine derivatives which include dimethylamine and trimethylamine on FAU zeolite was simulated by Grand Canonical Monte Carlo simulation method and adsorption heats and adsorption isotherms and adsorption sites were obtained.Henry constant of NH3 on FAU zeolite was calculated at (437.15~723.15) K and the adsorption heat was obtained by fitting the Henry constant.Based on this model, the adsorption heats of dimethylamine and trimethylamine was calculated and the order of isosteric was NH3 (32.32 kJ/mol) < dimethylamine (90.76 k J/mol) <trimethylamine (108.59 kl/mol) consistent with the order of the basicity.The graph of interaction energy of the adsorbate and the zeolite showed that NH3 and amine derivatives on FAU zeolite had two adsorption sites.The order of adsorption capacity was NH3> dimethylamine> trimethylamine at 773 K under (0~100) MPa, and the isdtherms could be well fitted with Langmuir equation.%碱性氮化物的含量过高造成分子筛的失活,严重影响催化裂化的产品分布,碱性氮化物在催化剂表面的吸附行为是研究催化剂失活原因的前提和关键.本文采用巨正则蒙特卡洛(GCMC)方法研究NH3及胺类氮化物(二甲胺、三甲胺)在FAU分子筛中的吸附,获得吸附热、吸附等温线、吸附位等信息.在温度为(437.15~723.15)K下计算了NH3在FAU分子筛中的亨利常数,拟合亨利常数得到吸附热为32.27 kJ/mol,吸附热数值在文献所报道的范围内,并在此模型上计算了二甲胺和三甲胺的吸附热,吸附热大小顺序为NH3(32.32 KJ/mol)二甲胺>三甲胺,且吸附等温线能够较好的用Langumir模型拟合.在催化裂化(FCC)条件下,FAU

  15. First principle study of electronic and optical properties of molecular ion (BF4- ) substituted hybrid perovskite (CH3NH3PbI3)

    Rani, Shalu; Singh, Poorva


    Hybrid organic/inorganic perovskites have garnered significant research interest due to the extraordinary increase in energy conversion efficiency as witnessed in photovoltaic devices based on CH3NH3PbI3. An experimental report has shown that the substitution of BF4- in the perovskite CH3NH3PbI3 can lead to the high efficiency for solar cell. Employing first-principles calculations based on density functional theory, we have studied several different perovskites CH3NH3PbI3 , CH3NH3PbI2BF4, CH3NH3PbI(BF4)2, CH3NH3Pb(BF4)3 and examined their electronic structure and optical properties.

  16. Selective catalytic reduction of NOx with NH3 over a Cu-SSZ-13 catalyst prepared by a solid state ion exchange method

    Wang, Di; Gao, Feng; Peden, Charles HF; Li, Junhui; Kamasamudram, Krishna; Epling, William S.


    A novel solid state method was developed to synthesize Cu-SSZ-13 catalysts with excellent NH3-SCR performance and durable hydrothermal stability. After the solid state ion exchange (SSIE) process, the SSZ framework structure and surface area was maintained. In-situ DRIFTS and NH3-TPD experiments provide evidence that isolated Cu ions were successfully exchanged into the pores, which are the active centers for the NH3-SCR reaction.

  17. Top-Down Constraints on Air Quality Model Emissions of NH3, NOx, and SO2 using Surface, Aircraft, and Satellite Data

    Alvarado, M. J.; Lonsdale, C. R.; Winijkul, E.; Brodowski, C. M.; Cady-Pereira, K.; Henze, D. K.; Capps, S.


    Accurate modeling of the formation of ozone (O3) and fine particulate matter (PM2.5) requires accurate estimates of the emissions of precursor species such as ammonia (NH3), nitrogen oxides (NOx = NO+NO2) and sulfur dioxide (SO2). Here we present an evaluation of the 2011 EPA National Emission Inventory for NH3, NOx, and SO2 using CMAQv5.0.2 and data from the 2013 NOAA Southeast Nexus (SENEX) field campaign. Model results are compared to surface and aircraft measurements during each campaign, as well as satellite NH3 observations from the NOAA Cross-track Infrared Sounder (CrIS) and satellite observations of NO2 and SO2 from the NASA Ozone Monitoring Instrument (OMI). We also present an evaluation of the California Air Resources Board (CARB) NH3 emissions for 2012 using CMAQ and the CrIS NH3 observations. We discuss the lessons learned in using CrIS NH3 observations in the southeast US, where CMAQ predicts most of the gas-phase NH3 is very close to the surface, and contrast this with the use of CrIS NH3 observations over California. We discuss the use of two methods - a mass balance approach and an approach using the CMAQ adjoint - to optimize these emissions and evaluate the improvement in model performance for gas-phase NH3, NOx, and SO2, as well as for the formation of O3 and PM2.5.

  18. Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR

    E. Dammers


    Full Text Available Presented here is the validation of the CrIS (Cross-track Infrared Sounder fast physical NH3 retrieval (CFPR column and profile measurements using ground-based Fourier transform infrared (FTIR observations. We use the total columns and profiles from seven FTIR sites in the Network for the Detection of Atmospheric Composition Change (NDACC to validate the satellite data products. The overall FTIR and CrIS total columns have a positive correlation of r  =  0.77 (N  =  218 with very little bias (a slope of 1.02. Binning the comparisons by total column amounts, for concentrations larger than 1.0  ×  1016 molecules cm−2, i.e. ranging from moderate to polluted conditions, the relative difference is on average ∼ 0–5 % with a standard deviation of 25–50 %, which is comparable to the estimated retrieval uncertainties in both CrIS and the FTIR. For the smallest total column range (< 1.0  × 1016 molecules cm−2 where there are a large number of observations at or near the CrIS noise level (detection limit the absolute differences between CrIS and the FTIR total columns show a slight positive column bias. The CrIS and FTIR profile comparison differences are mostly within the range of the single-level retrieved profile values from estimated retrieval uncertainties, showing average differences in the range of  ∼ 20 to 40 %. The CrIS retrievals typically show good vertical sensitivity down into the boundary layer which typically peaks at  ∼ 850 hPa (∼ 1.5 km. At this level the median absolute difference is 0.87 (std  =  ±0.08 ppb, corresponding to a median relative difference of 39 % (std  =  ±2 %. Most of the absolute and relative profile comparison differences are in the range of the estimated retrieval uncertainties. At the surface, where CrIS typically has lower sensitivity, it tends to overestimate in low-concentration conditions and underestimate

  19. Characterization of Cu-SSZ-13 NH3 SCR Catalysts: an in situ FTIR Study

    Szanyi, Janos; Kwak, Ja Hun; Zhu, Haiyang; Peden, Charles HF


    The adsorption of CO and NO over Cu-SSZ-13 zeolite catalysts, highly active in the selective catalytic reduction of NOx with NH3, was investigated by FTIR spectroscopy, and the results obtained were compared to those collected from other Cu-ion exchanged zeolites (Y,FAU and ZSM-5). At low CO pressures at room temperature (295 K) CO form monocarbonyls exclusively on the Cu+ ions, while in the presence of gas phase CO dicarbonyls on Cu+ and adsorbed CO on Cu2+ centers form, as well. At low (cryogenic) sample temperatures tricarbonyl formation on Cu+ sites was also observed. The adsorption of NO produces IR bands that can be assigned to nitrosyls bound to both Cu+ and Cu2+ centers, and NO+ species located in charge compensating cationic positions of the chabasite framework. On the reduced Cu-SSZ-13 samples the formation of N2O was also detected. The assignment of the adsorbed NOx species was aided by adsorption experiments with isotopically labeled 15NO. The movement of Cu ions from the sterically hindered six member ring position to the more accessible cavity positions as a result of their interaction with adsorbates (NO and H2O) was clearly evidenced. Comparisons of the spectroscopy data obtained in the static transmission IR system to those collected in the flow-through diffuse reflectance cell points out that care must be taken when conclusions are drawn about the adsorptive and reactive properties of metal cation centers based on a set of data collected under well defined, specific experimental conditions. Financial support was provided by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. This work was performed in the Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility supported by the US DOE, Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for

  20. The C(3P) + NH3 reaction in interstellar chemistry: II. Low temperature rate constants and modeling of NH, NH2 and NH3 abundances in dense interstellar clouds

    Hickson, Kevin M; Bourgalais, Jérémy; Capron, Michael; Picard, Sebastien D Le; Goulay, Fabien; Wakelam, Valentine


    A continuous supersonic flow reactor has been used to measure rate constants for the C + NH3 reaction over the temperature range 50 to 296 K. C atoms were created by the pulsed laser photolysis of CBr4. The kinetics of the title reaction were followed directly by vacuum ultra-violet laser induced fluorescence (VUV LIF) of C loss and through H formation. The experiments show unambiguously that the reaction is rapid at 296 K, becoming faster at lower temperatures, reaching a value of 1.8 10-10 cm3 molecule-1 s-1 at 50 K. As this reaction is not currently included in astrochemical networks, its influence on interstellar nitrogen hydride abundances is tested through a dense cloud model including gas-grain interactions. In particular, the effect of the ortho-to-para ratio of H2 which plays a crucial role in interstellar NH3 synthesis is examined.

  1. Fermentation kinetics (in vitro of Leucaena leucocephala, Gliricidia sepium and Calliandra callothyrsus leaves (3 the pattern of gas production, organic matter degradation, pH, NH3 and VFA concentration; estimated CH4 and microbial biomass production

    Y Widiawati


    Full Text Available In high protein feeds, plant proteins may be shielded from degradation in the rumen by lignification of the cell wall or because of the present of plant secondary compounds e.g. tannin, which is present in most of the leguminous trees/shrubs. Thus it might have an effect on organic matter degradation and the pattern of other end product of rumen microbial fermentation (VFA, NH3, microbial cell, CH4 and total gas. The in vitro method was used to determine the organic matter degradation and the pattern of rumen fermentation end product of high protein feeds, namely Leucaena leucocephala, Gliricida sepium and Calliandra calothyrsus. The results shows that Gliricidia has the highest amount of OM degraded (505 mg; microbial cell and NH3 produced (2676 g and 1.91 mmol/100 mL than followed by Leucaena (423 mg; 2656 g; 1.61 mmol/100 mL and Calliandra (340 mg; 2644 g; 1.61 mmol/100mL, but Gliricidia produced the lowest amount of gas total and CH4 (0.192 mL and 0.07 mole per mg OM deraded then Leucaena (0.249 mL and 0.097 mole per mg OM deraded and Callliandra (0.196 mL and 0.126 mole per mg OM deraded. In conclusion, Gliricidia is more efficient in term of using the dietary energy for the animals’ production compared to the Leucaena and Calliandra.

  2. 氧化石墨烯的制备及其对NH3的敏感特性研究%Synthesis of graphene oxide and its gas sensing properties to NH3

    孙宇峰; 刘少波; 李会华; 王萍; 孟凡利; 陈翌庆


    Graphene have attracted wide attention for its unique characteristics (e. g. electronic, thermal, mechanical etc. ). Graphene oxide not only possesses the intrinsic properties of graphene but also contains many oxygen-containing functional groups such as hydroxyl, epoxy, carboxyl and carbonyl groups. Those oxygencontaining functional groups may improve the adsorbability of graphene oxide to gases which is advantageous for its gas sensing properties. In this investigation, graphene oxide was synthesized by a modified Hummer's method. The gas sensing properties of the as-prepared graphene oxide to NH3was then investigated. The results indicate that graphene oxide exhibited excellent sensitivities to NH3 with a well linearly relationship ranging from 1.5×10^-4 to 3.5×10^-4.%石墨烯独特的原子结构赋予其电学、热学、力学等方面的优异性能,在诸多领域具有广泛的应用。氧化石墨烯不仅具有石墨烯结构特点,而且具有大量的含氧官能团,增强了对气体的吸附能力,更适合应用于气敏传感器。通过改进的Hummer方法制备了片状多层氧化石墨烯,并对不同浓度的NH3进行敏感特性测试。结果表明氧化石墨烯对NH3具有良好的响应,在(1.5-3.5)×10^-4范围内呈线性关系。

  3. Spin-Forbidden Reaction Mechanism of NH3 Activated by Mo Atom in Gas Phase%Mo活化NH3的自旋禁阻反应机理

    刘玲玲; 王永成; 张力



  4. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications.

    Yamada, Yasuhiro; Nakamura, Toru; Endo, Masaru; Wakamiya, Atsushi; Kanemitsu, Yoshihiko


    Using time-resolved photoluminescence and transient absorption measurements at room temperature, we report excitation-intensity-dependent photocarrier recombination processes in thin films made from the organo-metal halide perovskite semiconductor CH3NH3PbI3 for solar-cell applications. The photocarrier dynamics are well described by a simple rate equation including single-carrier trapping and electron-hole radiative recombination. This result provides clear evidence that the free-carrier model is better than the exciton model for interpreting the optical properties of CH3NH3PbI3. The observed large two-carrier recombination rate suggests the promising potential of perovskite semiconductors for optoelectronic device applications. Our findings provide the information about the dynamical behaviors of photoexcited carriers that is needed for developing high-efficiency perovskite solar cells.

  5. The influence of the modification of acidic montmorillonites with polyacrylamide and copper deposition on SCR-NH3 catalytic performance

    Świrk Katarzyna


    Full Text Available The aim of this work was to study the influence of the modification of montmorillonites by carbonaceous and Al species as well as copper deposition. Commercial acid-treated montmorillonites, K5 and K30 (Sigma-Aldrich GmBH, were modified and used as catalysts in Selective Catalytic Reduction process of nitrogen oxides by ammonia. The characterisation was carried out by low-temperature nitrogen sorption, Fourier-transform-infrared spectroscopy and X-ray diffraction. Catalytic performance in SCR-NH3 of so-modified montmorillonites was compared under the following conditions: mass of catalyst: 200 g, flow 100 cm3/min, reaction mixture: 800 ppm NO, 800 ppm NH3, 3 % O2, and He. The modification with copper and polyacrylamide led to the increase in NO conversion. The studied catalysts showed low N2O formation.

  6. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3

    Kwak, Ja Hun; Tonkyn, Russell G.; Kim, Do Heui; Szanyi, Janos; Peden, Charles HF


    Superior activity and selectivity of a Cu ion-exchanged SSZ-13 zeolite in the selective catalytic reduction (SCR) of NOx with NH3 were observed, in comparison to Cu-beta and Cu-ZSM-5 zeolites. Cu-SSZ-13 was not only more active in the NOx SCR reaction over the entire temperature range studied (up to 550 °C), but also more selective toward nitrogen formation, resulting in significantly lower amounts of NOx by-products (i.e., NO2 and N2O) than the other two zeolites. In addition, Cu-SSZ-13 demonstrated the highest activity and N2 formation selectivity in the oxidation of NH3. The results of this study strongly suggest that Cu-SSZ-13 is a promising candidate as a catalyst for NOx SCR with great potential in after-treatment systems for either mobile or stationary sources.

  7. Mor-Dalphos-Pd (II) oxidative addition complexes and related NH3 adducts: Insights into bonding and nonbonding interactions

    de Lima Batista, Ana P.; Braga, Ataualpa A. C.


    The stabilizing effects and bonding properties of the Pd metallic center in [(κ2 -P,N-Mor-Dalphos)Pd(Ar)Cl] complexes and related NH3 adducts were investigated by density functional theory (DFT), the intrinsic bond orbital (IBO) approach and the Su-Li energy decomposition method (Su-Li EDA). The IBO analysis showed that the P atom from the P,N-Mor-Dalphos structure has stabilizing contributions in all Pd-Cl and Pd-NH3 bonds in the complexes. According to the Su-Li energy decomposition analysis, the main energy that drives the interaction between the [Mor-Dalphos-Pd(Ar)] moiety and Cl- is the electrostatic term, therefore, the electrostatic energy interaction between them might be an important factor for taking into account when designing other [Mor-Dalphos-Pd(Ar)]-Cl precatalysts.

  8. Using Low Temperature Photoluminescence Spectroscopy to Investigate CH3NH3PbI3 Hybrid Perovskite Degradation

    Khaoula Jemli


    Full Text Available Investigating the stability and evaluating the quality of the CH3NH3PbI3 perovskite structures is quite critical both to the design and fabrication of high-performance perovskite devices and to fundamental studies of the photophysics of the excitons. In particular, it is known that, under ambient conditions, CH3NH3PbI3 degrades producing some PbI2. We show here that low temperature Photoluminescence (PL spectroscopy is a powerful tool to detect PbI2 traces in hybrid perovskite layers and single crystals. Because PL spectroscopy is a signal detection method on a black background, small PbI2 traces can be detected, when other methods currently used at room temperature fail. Our study highlights the extremely high stability of the single crystals compared to the thin layers and defects and grain boundaries are thought to play an important role in the degradation mechanism.

  9. A novel catalyst of silicon cerium complex oxides for selective catalytic reduction of NO by NH_3

    徐海涛; 沈岳松; 邵成华; 林福文; 祝社民; 丘泰


    A series of CeO2/SiO2 and SixCe1-xO2 complex oxides supported on an activated Al2TiO5-TiO2-SiO2 complex phase (ATS) ceramics were prepared by step impregnation and co-impregnation methods, and characterized by N2-BET, XRD, SEM and NH3-TPD techniques. The effects of reaction temperature, CeO2/SiO2 loadings and Si/Ce molar ratio on the granular catalysts for NO selective catalytic reduction with ammonia (NH3-SCR) were studied. Results indicated that both CeO2/SiO2/ATS and CeO2/ATS catalysts showed the same ac...

  10. Sonochemical synthesis of CH3NH3PbI3 perovskite ultrafine nanocrystal sensitizers for solar energy applications.

    Bhooshan Kumar, Vijay; Gouda, Laxman; Porat, Ze'ev; Gedanken, Aharon


    The organic-inorganic hybrid perovskite CH3NH3PbI3 is becoming an interesting material in the field of energy harvesting. This material is one of the cleanest and cheapest components in solar cells which is available in ample amounts. However, most of the previous research work was done on thin film of this material. In the present work we describe the preparation of a powder containing nanoparticles of CH3NH3PbI3 using a sonochemical method. Characterization of the product was done by various methods, such as HRTEM, FTIR, PL, DLS and XRD. The particles were found to be highly crystalline (tetragonal crystal structure), polygonal in shape and having diameters of 10-40nm.

  11. Structure of cis-[Pt(NH3)(2-picoline)]2+ and DNA adduct and its bonding characteristics

    JIA; Muxin; LIU; Kai; YANG; Zuoyin; CHEN; Guangju


    Several methods including molecular mechanics, molecular dynamics, ONIOM that combines quantum chemistry with molecular mechanics and standard quantum chemistry are used to study the configuration and electron structures of an adduct of the DNA segment d(ATACATG*G*TACATA)·d(TATGTACCATGTAT) with cis-[Pt(NH3)(2-Picoline)]2+. The investigation shows that the configuration optimized by ONIOM is similar to that determined by NMR. Strong chemical bonds between Pt of the complex and two N7s of neighboring guanines in the DNA duplex and hydrogen bond between the NH3 of the complex and O6 of a nearby guanine have a large impact on the configuration of the adduct. Chemical bonds, the aforementioned hydrogen bond, and the interaction between a methyl of the complex and a methyl of the base in close proximity are critical for the complex to specifically recognize DNA.

  12. CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector

    Maculan, Giacomo


    Single crystals of hybrid perovskites have shown remarkably improved physical properties compared to their polycrystalline film counterparts, underscoring their importance in the further development of advanced semiconductor devices. Here we present a new method of sizeable CH3NH3PbCl3 single crystal growth based on retrograde solubility behavior of hybrid perovskites. We show, for the first time, the energy band structure, charge-carrier recombination and transport properties of single crystal CH3NH3PbCl3. The chloride-based perovskite crystals exhibit trap-state density, charge carriers concentration, mobility and diffusion length comparable with the best quality crystals of methylammonium lead iodide or bromide perovskites reported so far. The high quality of the crystal along with its suitable optical bandgap enabled us to design and build an efficient visible-blind UV-photodetector, demonstrating the potential of this material to be employed in optoelectronic applications.

  13. The C(3P) + NH3 reaction in interstellar chemistry: I. Investigation of the product formation channels

    Bourgalais, Jeremy; Kailasanathan, Ranjith Kumar Abhinavam; Osborn, David L; Hickson, Kevin M; Loison, Jean-Christophe; Wakelam, Valentine; Goulay, Fabien; Picard, Sébastien D Le


    The product formation channels of ground state carbon atoms, C(3P), reacting with ammonia, NH3, have been investigated using two complementary experiments and electronic structure calculations. Reaction products are detected in a gas flow tube experiment (330 K, 4 Torr) using tunable VUV photoionization coupled with time of flight mass spectrometry. Temporal profiles of the species formed and photoionization spectra are used to identify primary products of the C + NH3 reaction. In addition, H-atom formation is monitored by VUV laser induced fluorescence from room temperature to 50 K in a supersonic gas flow generated by the Laval nozzle technique. Electronic structure calculations are performed to derive intermediates, transition states and complexes formed along the reaction coordinate. The combination of photoionization and laser induced fluorescence experiments supported by theoretical calculations indicate that in the temperature and pressure range investigated, the H + H2CN production channel represents ...

  14. Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3

    Sanvito, Stefano; Motta, Carlo


    The hybrid halide perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ has enabled solar cells to reach an efficiency of about 18\\%, demonstrating a pace for improvements with no precedents in the solar energy arena. Despite such explosive progress, the microscopic origin behind the success of such material is still debated, with the role played by the organic cations in the light-harvesting process remaining unclear. Here van-der-Waals-corrected density functional theory calculations reveal that the orienta...

  15. Ultra-sensitive and selective NH3 room temperature gas sensing induced by manganese-doped titanium dioxide nanoparticles.

    Tshabalala, Zamaswazi P; Shingange, Katekani; Cummings, Franscious R; Ntwaeaborwa, Odireleng M; Mhlongo, Gugu H; Motaung, David E


    The study of the fabrication of ultra-high sensitive and selective room temperature ammonia (NH3) and nitrogen dioxide (NO2) gas sensors remains an important scientific challenge in the gas sensing field. This is motivated by their harmful impact on the human health and environment. Therefore, herein, we report for the first time on the gas sensing properties of TiO2 nanoparticles doped with various concentrations of manganese (Mn) (1.0, 1.5, 2.0, 2.5 and 3.0mol.% presented as S1, S2, S3, S4 and S5, respectively), synthesized using hydrothermal method. Structural analyses showed that both undoped and Mn-doped TiO2 crystallized in tetragonal phases. Optical studies revealed that the Mn doped TiO2 nanoparticles have enhanced UV→Vis emission with a broad shoulder at 540nm, signifying induced defects by substituting Ti(4+) ions with Mn(2+). The X-ray photoelectron spectroscopy and the electron paramagnetic resonance studies revealed the presence of Ti(3+) and singly ionized oxygen vacancies in both pure and Mn doped TiO2 nanoparticles. Additionally, a hyperfine split due to Mn(2+) ferromagnetic ordering was observed, confirming incorporation of Mn ions into the lattice sites. The sensitivity, selectivity, operating temperature, and response-recovery times were thoroughly evaluated according to the alteration in the materials electrical resistance in the presence of the target gases. Gas sensing studies showed that Mn(2+) doped on the TiO2 surface improved the NH3 sensing performance in terms of response, sensitivity and selectivity. The S1 sensing material revealed higher sensitivity of 127.39 at 20 ppm NH3 gas. The sensing mechanism towards NH3 gas is also proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The role of NH3 and hydrocarbon mixtures in GaN pseudo-halide CVD: a quantum chemical study.

    Gadzhiev, Oleg B; Sennikov, Peter G; Petrov, Alexander I; Kachel, Krzysztof; Golka, Sebastian; Gogova, Daniela; Siche, Dietmar


    The prospects of a control for a novel gallium nitride pseudo-halide vapor phase epitaxy (PHVPE) with HCN were thoroughly analyzed for hydrocarbons-NH3-Ga gas phase on the basis of quantum chemical investigation with DFT (B3LYP, B3LYP with D3 empirical correction on dispersion interaction) and ab-initio (CASSCF, coupled clusters, and multireference configuration interaction including MRCI+Q) methods. The computational screening of reactions for different hydrocarbons (CH4, C2H6, C3H8, C2H4, and C2H2) as readily available carbon precursors for HCN formation, potential chemical transport agents, and for controlled carbon doping of deposited GaN was carried out with the B3LYP method in conjunction with basis sets up to aug-cc-pVTZ. The gas phase intermediates for the reactions in the Ga-hydrocarbon systems were predicted at different theory levels. The located π-complexes Ga…C2H2 and Ga…C2H4 were studied to determine a probable catalytic activity in reactions with NH3. A limited influence of the carbon-containing atmosphere was exhibited for the carbon doping of GaN crystal in the conventional GaN chemical vapor deposition (CVD) process with hydrocarbons injected in the gas phase. Our results provide a basis for experimental studies of GaN crystal growth with C2H4 and C2H2 as auxiliary carbon reagents for the Ga-NH3 and Ga-C-NH3 CVD systems and prerequisites for reactor design to enhance and control the PHVPE process through the HCN synthesis.

  17. The effect of the gas composition on hydrogen-assisted NH3-SCR over Ag/Al2O3

    Tamm, Stefanie; Fogel, Sebastian; Gabrielsson, Pär;


    In addition to high activity in hydrocarbon-SCR, Ag/Al2O3 catalysts show excellent activity for NOx reduction for H2-assisted NH3-SCR already at 200°C. Here, we study the influence of different gas compositions on the activity of a pre-sulfated 6wt% Ag/Al2O3 catalyst for NOx reduction, and oxidat...

  18. Removal of HCl, NH3, Organic Sulphur and Tar Component from High Temperature Coal Gas%高温煤气中NH3、有机硫、HCl及焦油蒸气的同时脱除

    豆斌林; 鲁军; 申文琴; 沙兴中; 高晋生


    The experiments were designed to remove HCl, NH3, organic sulphur and coal tar component from high temperature coal gas, first separately and individually and then in combination and simultaneously by using a fixed-bed reactor. 1-methylnaphthalene was used as a tar model compound, and CS2 as organic sulphur model compound. The tests show that Ni-3 catalyst is an effective catalyst for NH3 and 1-methylnaphthalene decomposition, Ni-3 catalyst sulphurized is also effective for CS2 conversion, and the self-prepared ECl sorbent displays the highest adsorption capacity for HCl vapor. The simultaneous removal of HCl, NH3, organic sulphur and tar component was studied at the reaction temperature range from 300°C to 550°C. The maximum removal efficiencies are 100%, 100%, 79%, 88% for HCl, 1-methylnaphthalene, NH3, and CS2 respectively.%在固定床反应器中对高温煤气中NH3、有机硫化物、HCl及焦油蒸气4种污染物进行了单独和同时脱除的研究,其中选择CS2和1-甲基萘分别作为高温煤气中有机硫化物和焦油蒸气的模型化合物。研究得出,高温煤气中氨催化分解和1-甲基萘催化裂解的最佳催化剂同为Ni-3催化剂,CS2转化的最佳催化剂为硫化态的Ni-3催化剂,最好的脱氯剂为ECl。在NH3、CS2、HCl及1-甲基萘4种污染物同时存在时,将上述脱除剂组合在一起进行同时脱除实验表明:ECl脱氯剂对HCl的转化率和Ni-3催化剂对1-甲基萘的转化率均为100%,氧化态的Ni-3催化剂对NH3的转化率和硫化态的Ni-3催化剂对CS2的转化率则随温度的升高而增加,在300~550°C之间,氨的最大转化率为79%,CS2的最大转化率为88%。

  19. Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells.

    Hao, Feng; Stoumpos, Constantinos C; Guo, Peijun; Zhou, Nanjia; Marks, Tobin J; Chang, Robert P H; Kanatzidis, Mercouri G


    Organo-lead halide perovskite solar cells have gained enormous significance and have now achieved power conversion efficiencies of ∼20%. However, the potential toxicity of lead in these systems raises environmental concerns for widespread deployment. Here we investigate solvent effects on the crystallization of the lead-free methylammonium tin triiodide (CH3NH3SnI3) perovskite films in a solution growth process. Highly uniform, pinhole-free perovskite films are obtained from a dimethyl sulfoxide (DMSO) solution via a transitional SnI2·3DMSO intermediate phase. This high-quality perovskite film enables the realization of heterojunction depleted solar cells based on mesoporous TiO2 layer but in the absence of any hole-transporting material with an unprecedented photocurrent up to 21 mA cm(-2). Charge extraction and transient photovoltage decay measurements reveal high carrier densities in the CH3NH3SnI3 perovskite device which are one order of magnitude larger than CH3NH3PbI3-based devices but with comparable recombination lifetimes in both devices. The relatively high background dark carrier density of the Sn-based perovskite is responsible for the lower photovoltaic efficiency in comparison to the Pb-based analogues. These results provide important progress toward achieving improved perovskite morphology control in realizing solution-processed highly efficient lead-free perovskite solar cells.

  20. CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm.

    Ogomi, Yuhei; Morita, Atsushi; Tsukamoto, Syota; Saitho, Takahiro; Fujikawa, Naotaka; Shen, Qing; Toyoda, Taro; Yoshino, Kenji; Pandey, Shyam S; Ma, Tingli; Hayase, Shuzi


    We report photovoltaic performances of all-solid state Sn/Pb halide-based perovskite solar cells. The cell has the following composition: F-doped SnO2 layered glass/compact titania layer/porous titania layer/CH3NH3SnxPb(1-x)I3/regioregular poly(3-hexylthiophene-2,5-diyl). Sn halide perovskite itself did not show photovoltaic properties. Photovoltaic properties were observed when PbI2 was added in SnI2. The best performance was obtained by using CH3NH3Sn0.5Pb0.5I3 perovskite. 4.18% efficiency with open circuit voltage 0.42 V, fill factor 0.50, and short circuit current 20.04 mA/cm(2) are reported. The edge of the incident photon to current efficiency curve reached 1060 nm, which was 260 nm red-shifted compared with that of CH3NH3PbI3 perovskite solar cells.

  1. High sensitivity measurement of NO, NO2 and NH3 using MIR-QCL and time division multiplexing WMS technology

    Chen, Xiang; Yang, Chenguang; Hu, Mai; Xu, Zhenyu; Fan, Xueli; Wei, Min; Yao, Lu; He, Yabai; Kan, Ruifeng


    A compact system based on mid-infrared quantum cascade laser (QCL) operated in room temperature was developed for the simultaneous monitoring of NO, NO2 and NH3 in the air. Laser beams of three QCLs with central wavelength located at 1900 cm-1, 1600 cm-1, 1103.4 cm-1 were coupled to pass through the 60m long gas cell together. With the technology of time division multiplexing, wavelength modulation spectroscopy (WMS) signals of three lasers can be detected at adjacent scan process. The real-time second harmonic analysis was implemented to achieve simultaneous detection of NO, NO2 and NH3. A minimum detection limit (MDL) of 0.2ppb for NO, 0.12ppb for NO2 and 0.1ppb for NH3 with an optimum integration time around 100 seconds can be achieved for this setup. An ambient monitoring of three gasses during 5 hours was performed to inspect the local air quality.

  2. Performance of selective catalytic reduction of NO with NH3 over natural manganese ore catalysts at low temperature.

    Wang, Tao; Zhu, Chengzhu; Liu, Haibo; Xu, Yongpeng; Zou, Xuehua; Xu, Bin; Chen, Tianhu


    Natural manganese ore catalysts for selective catalytic reduction (SCR) of NO with NH3 at low temperature in the presence and absence of SO2 and H2O were systematically investigated. The physical and chemical properties of catalysts were characterized by X-ray diffraction, Brunauer-Emmett-Teller (BET) specific surface area, NH3 temperature-programmed desorption (NH3-TPD) and NO-TPD methods. The results showed that natural manganese ore from Qingyang of Anhui Province had a good low-temperature activity and N2 selectivity, and it could be a novel catalyst in terms of stability, good efficiency, good reusability and lower cost. The NO conversion exceeded 85% between 150°C and 300°C when the initial NO concentration was 1000 ppm. The activity was suppressed by adding H2O (10%) or SO2 (100 or 200 ppm), respectively, and its activity could recover while the SO2 supply is cut off. The simultaneous addition of H2O and SO2 led to the increase of about 100% in SCR activity than bare addition of SO2. The formation of the amorphous MnOx, high concentration of lattice oxygen and surface-adsorbed oxygen groups and a lot of reducible species as well as adsorption of the reactants brought about excellent SCR performance and exhibited good SO2 and H2O resistance.

  3. Preparation of highly active manganese oxides supported on functionalized MWNTs for low temperature NOx reduction with NH3

    Pourkhalil, Mahnaz; Moghaddam, Abdolsamad Zarringhalam; Rashidi, Alimorad; Towfighi, Jafar; Mortazavi, Yadollah


    Manganese oxide catalysts (MnOx) supported on functionalized multi-walled carbon nanotubes (FMWNTs) for low temperature selective catalytic reduction (LTSCR) of nitrogen oxides (NOx) with NH3 in the presence of excess O2 were prepared by the incipient wetness impregnation method. These catalysts were characterized by N2 adsorption, Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and H2-temperature programmed reduction (H2-TPR) methods. The effects of reaction temperature, MnOx loading, calcination temperature and calcination time were investigated. The presence of surface nitrate species under moderate calcination conditions may play a favorable role in the LTSCR of NOx with NH3. Under the reaction conditions of 200 °C, 1 bar, NO = NH3 = 900 ppm, O2 = 5 vol%, GHSV = 30,000 h-1 and 12 wt% MnOx, NOx conversion and N2 selectivity were 97% and 99.5%, respectively. The SCR activity was reduced in the presence of 100 ppm SO2 and 2.5 vol% H2O from 97% to 92% within 6 h at 200 °C, however such an effect was shown to be reversible by exposing the catalyst to a helium flow for 2 h at 350 °C due to thermal decomposition of ammonium sulphate salts.

  4. Effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions.

    Lv, Dong; Zhu, Tianle; Liu, Runwei; Lv, Qingzhi; Sun, Ye; Wang, Hongmei; Liu, Yu; Zhang, Fan


    The effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions were systematically investigated in a cement production line in Beijing. The results show that co-processing the sewage sludge was helpful to reduce NOx emission, which primarily depends on the NH3 amount released from the sewage sludge. Meanwhile, NOx and NH3 concentrations in the flue gas have a negative correlation, and the contribution of feeding the sewage sludge to NOx removal decreased with the increase of injection amount of ammonia water in the SNCR system. Therefore, it is suggested that the injection amount of ammonia water in SNCR system may reduce to cut down the operating costs during co-processing the sewage sludge in cement kiln. In addition, the emission of total PAHs seems to increase with the increased amount of the sewage sludge feeding to the cement kiln. However, the distributions of PAHs were barely changed, and lower molecular weight PAHs were mainly distributed in gaseous phase, accounted for the major portion of PAHs when co-processing sewage sludge in cement kiln.

  5. Low temperature selective catalytic reduction of NOx with NH3 over Mn-based catalyst: A review

    TsungYu Lee


    Full Text Available The removals of NOx by catalytic technology at low temperatures (100–300 °C for industrial flue gas treatment have received increasing attention. However, the development of low temperature catalysts for selective catalytic reduction (SCR of NOx with ammonia is still a challenge especially in the presence of SO2. The current status of using Mn-based catalysts for low temperature SCR of NOx with ammonia (NH3-SCR is reviewed. Reaction mechanisms and effects of operating factors on low temperature NH3-SCR are addressed, and the SCR efficiencies of Mn-based metal oxides with and without SO2 poisoning have also been discussed with different supports and co-metals. The key factors for enhancing low temperature NH3-SCR efficiency and SO2 resistance with Mn-based catalysts are identified to be (1 high specific surface area; (2 high surface acidity; (3 oxidation states of manganese; (4 well dispersion of manganese oxide metals; (5 more surface adsorbed oxygen; (6 more absorbed NO3− on the catalyst surface; (7 easier decomposition of ammonium sulfates. Moreover, the regenerative methods such as water washing, acid and/or alkali washing and heat treatment to the poisoned catalysts could help to recover the low temperature SCR efficiency to its initial level.

  6. Origin of High Electronic Quality in Solar Cell Absorber CH3NH3PbI3

    Yin, Wanjian; Shi, Tingting; Wei, Suhua; Yan, Yanfa

    Thin-film solar cells based on CH3NH3PbI3 halide perovskites have recently shown remarkable performance. First-principle calculations and molecular dynamic simulations show that the structure of pristine CH3NH3PbI3 is much more disordered than the inorganic archetypal thin-film semiconductor CdTe. However, the structural disorders from thermal fluctuation, point defects and grain boundaries introduce rare deep defect states within the bandgaps; therefore, the material has high electronic quality. We have further shown that this unusually high electronic quality is attributed to the unique electronic structures of halide perovskite: the strong coupling between cation lone-pair Pb s orbitals and anion p orbitals and the large atomic size of constitute cation atoms. We further found that although CH3NH3PbI3 GBs do not introduce a deep gap state, the defect level close to the VBM can still act as a shallow hole trap state. Cl and O can spontaneously segregate into GBs and passivate those defect levels and deactivate the trap state.

  7. Fiber-Amplifier-Enhanced QEPAS Sensor for Simultaneous Trace Gas Detection of NH3 and H2S

    Hongpeng Wu


    Full Text Available A selective and sensitive quartz enhanced photoacoustic spectroscopy (QEPAS sensor, employing an erbium-doped fiber amplifier (EDFA, and a distributed feedback (DFB laser operating at 1582 nm was demonstrated for simultaneous detection of ammonia (NH3 and hydrogen sulfide (H2S. Two interference-free absorption lines located at 6322.45 cm−1 and 6328.88 cm−1 for NH3 and H2S detection, respectively, were identified. The sensor was optimized in terms of current modulation depth for both of the two target gases. An electrical modulation cancellation unit was equipped to suppress the background noise caused by the stray light. An Allan-Werle variance analysis was performed to investigate the long-term performance of the fiber-amplifier-enhanced QEPAS sensor. Benefitting from the high power boosted by the EDFA, a detection sensitivity (1σ of 52 parts per billion by volume (ppbv and 17 ppbv for NH3 and H2S, respectively, were achieved with a 132 s data acquisition time at atmospheric pressure and room temperature.

  8. Effect of phosphogypsum and dicyandiamide as additives on NH3, N20 and CH4 emissions during composting.

    Luo, Yiming; Li, Guoxue; Luo, Wenhai; Schuchardt, Frank; Jiang, Tao; Xu, Degang


    A laboratory scale experiment of composting in a forced aeration system using pig manure with cornstalks was carried out to investigate the effects of both phosphogypsum and dicyandiamide (DCD, C2H4N4) as additives on gaseous emissions and compost quality. Besides a control, there were three amended treatments with different amounts of additives. The results indicated that the phosphogypsum addition at the rate of 10% of mixture dry weight decreased NH3 and CH4 emissions significantly during composting. The addition of DCD at the rate of 0.2% of mixture dry weight together with 10% of phosphogypsum further reduced the N2O emission by affecting the nitrification process. Reducing the phosphogypsum addition to 5% in the presence of 0.2% DCD moderately increased the NH3 emissions but not N2O emission. The additives increased the ammonium content and electrical conductivity significantly in the final compost. No adverse effect on organic matter degradation or the germination index of the compost was found in the amended treatments. It was recommended that phosphogypsum and DCD could be used in composting for the purpose of reducing NH3, CH4 and N2O emissions. Optimal conditions and dose of DCD additive during composting should be determined with different materials and composting systems in further study.

  9. Influence of aeration on volatile sulfur compounds (VSCs) and NH3 emissions during aerobic composting of kitchen waste.

    Zhang, Hongyu; Li, Guoxue; Gu, Jun; Wang, Guiqin; Li, Yangyang; Zhang, Difang


    This study investigates the influence of aeration on volatile sulfur compounds (VSCs) and ammonia (NH3) emissions during kitchen waste composting. Aerobic composting of kitchen waste and cornstalks was conducted at a ratio of 85:15 (wet weight basis) in 60L reactors for 30days. The gas emissions were analyzed with force aeration at rates of 0.1 (A1), 0.2 (A2) and 0.3 (A3) L (kgDMmin)(-1), respectively. Results showed that VSCs emission at the low aeration rate (A1) was more significant than that at other two rates (i.e., A2 and A3 treatment), where no considerable emission difference was observed. On the other hand, NH3 emission reduced as the aeration rate decreased. It is noteworthy that the aeration rate did not significantly affect the compost quality. These results suggest that the aeration rate of 0.2L (kgDMmin)(-1) may be applied to control VSCs and NH3 emissions during kitchen waste composting.

  10. Kinetics and mechanism of NH3 synthesis over Fe(100 and K/Fe(100 model catalysts

    A. Z. Moshfegh


    Full Text Available   In this investigation kinetics and mechanism of NH3 synthesis over Fe(100 and K/Fe(100 model catalysts have been studied. In this context, adsorption kinetics of both N2/Fe (100 and H2/Fe (100systems is initially investigated. By using statistical mechanic approach, we have determined the adsorption coefficient for N2 and H2 molecules as well as transition probability of different states of adsorption and dissociation of the reactants molecules. The effect of surface catalyst temperature on the reaction rate (TOF is studied under different reactant partial pressures. The mechanism of NH3 synthesis is suggested based on LH surface reactions model. According to the obtained results, activation energy for the reaction over Fe (100 and K/Fe(100 (for θk=0.1ML was determined 19.6 and 11.1 kcal/mole, respectively. The order of reaction on both catalysts with respect to PN2 and PH2 was unity and negative, respectively. Based on our data analysis, the NH3 synthesis obeys Temkin isotherm.

  11. NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.

    Xu, Chi; Liu, Jian; Zhao, Zhen; Yu, Fei; Cheng, Kai; Wei, Yuechang; Duan, Aijun; Jiang, Guiyuan


    Selective catalytic reduction technology using NH3 as a reducing agent (NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer (XRD), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Raman and Hydrogen temperature-programmed reduction (H2-TPR). The catalytic activities of V5CexSby/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d-d electronic transitions, which were helpful to strengthen SCR reactivity. The V5CexSby/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400°C, the V5CexSby/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210°C, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased.

  12. Application of response surface methodology (RSM) for optimisation of COD, NH3-N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR).

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Abdul Rahman, Rakmi; Hasan Kadhum, Abdul Amir


    In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively.

  13. Electronic structure of organometal halide perovskite CH3NH3BiI3 and optical absorption extending to infrared region

    Zhu, H. X.; Liu, J.-M.


    The electronic structure and optical absorption spectrum of organometal halide perovskite compound CH3NH3BiI3 as a substituting candidate of well-concerned CH3NH3PbI3 not only for environmental friendly consideration are studied using the first principles calculations. It is revealed that a Bi replacement of Pb in CH3NH3PbI3 does not change seriously the band edge structure but the bandgap becomes narrow. Consequently, CH3NH3BiI3 exhibits not only stronger visible light absorption than CH3NH3PbI3 does but more strong absorption in the infrared region, which is however absent in CH3NH3PbI3. It is suggested that CH3NH3BiI3 may be one of even more promising alternatives to CH3NH3PbI3 for spectrum-broad and highly-efficient solar cells.

  14. Influence of NH3 on secondary organic aerosols from the ozonolysis and photooxidation of α-pinene in a flow reactor

    Babar, Zaeem Bin; Park, Jun-Hyun; Lim, Ho-Jin


    This study presents detailed characterizations of a newly-developed flow reactor including (1) residence time distribution measurements, (2) relative humidity (RH) and temperature control, and (3) OH radical exposure range (i.e., atmospheric aging time). Hydroxyl (OH) radical exposures ranged from 8.20 × 1010 to 7.22 × 1011 molecules cm-3 s (0.5-4.9 d of atmospheric aging). In this study, the effects of NH3 gas on the secondary organic aerosol (SOA) formation of α-pinene by dark ozonolysis and photooxidation were investigated using the newly-developed flow reactor. For both dark α-pinene ozonolysis and photooxidation, higher SOA yields were observed in the presence of NH3 than in the absence of NH3. At RH of ∼50%, the SOA yield for ozonolysis and photooxidation in the presence of NH3 increased by 23% and 15% relative to those in the absence of NH3. Similar effects were observed at lower and higher RH conditions. Fourier transform infrared spectroscopy analysis confirmed the presence of nitrogen-containing functional groups in SOA formed in the presence of NH3. The α-pinene SOA formed in the presence of NH3 showed higher absorption and fluorescence for UV-visible radiation than those formed in the absence of NH3.

  15. Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency

    Du, Hui-Jing; Wang, Wei-Chao; Zhu, Jian-Zhuo


    The lead-free perovskite solar cells (PSCs) have drawn a great deal of research interest due to the Pb toxicity of the lead halide perovskite. CH3NH3SnI3 is a viable alternative to CH3NH3PbX3, because it has a narrower band gap of 1.3 eV and a wider visible absorption spectrum than the lead halide perovskite. The progress of fabricating tin iodide PSCs with good stability has stimulated the studies of these CH3NH3SnI3 based cells greatly. In the paper, we study the influences of various parameters on the solar cell performance through theoretical analysis and device simulation. It is found in the simulation that the solar cell performance can be improved to some extent by adjusting the doping concentration of the perovskite absorption layer and the electron affinity of the buffer and HTM, while the reduction of the defect density of the perovskite absorption layer significantly improves the cell performance. By further optimizing the parameters of the doping concentration (1.3× 1016 cm-3) and the defect density (1× 1015 cm-3) of perovskite absorption layer, and the electron affinity of buffer (4.0 eV) and HTM (2.6 eV), we finally obtain some encouraging results of the J sc of 31.59 mA/cm2, V oc of 0.92 V, FF of 79.99%, and PCE of 23.36%. The results show that the lead-free CH3NH3SnI3 PSC is a potential environmentally friendly solar cell with high efficiency. Improving the Sn2 + stability and reducing the defect density of CH3NH3SnI3 are key issues for the future research, which can be solved by improving the fabrication and encapsulation process of the cell. Project supported by the Graduate Student Education Teaching Reform Project, China (Grant No. JG201512) and the Young Teachers Research Project of Yanshan University, China (Grant No. 13LGB028).

  16. Tunable Br-doping CH3NH3PbI3-xBrx thin films for efficient planar perovskite solar cells

    Li, Nannan; Shi, Chengwu; Li, Long; Zhang, Zhengguo; Ma, Chengfeng


    In this paper, the relationship of the Br contents in precursor solutions of the CH3NH3Br/CH3NH3I mixture and in the resulting CH3NH3PbI3-xBrx thin films was systemically explored and the tunable Br-doping CH3NH3PbI3-xBrx thin films were successfully obtained by the sequential deposition methods. The influence of CH3NH3Br content in the methylammonium halide mixture solutions on the chemical composition, optical absorption, crystal phase and morphology of CH3NH3PbI3-xBrx thin films and the photovoltaic performance of the corresponding planar perovskite solar cells were investigated. The result revealed that the Br contents in CH3NH3PbI3-xBrx thin films linearly increased with the increase of Br contents in the methylammonium halide mixture solutions. The planar perovskite solar cell based on the high crystallinity and less grain boundary CH3NH3PbI3-xBrx thin films using the methylammonium halide mixture solutions with the molar ratio of CH3NH3Br/CH3NH3I = 10/90 achieved a best photoelectric conversion efficiency (PCE) of 14.88% with an open-circuit voltage (Voc) of 1.03 V, a short-circuit photocurrent density (Jsc) of 20.62 mA cm-2 and a fill factor (FF) of 0.70 and an average PCE of 14.21 ± 0.67% with Voc of 1.02 ± 0.02 V, Jsc of 20.67 ± 0.15 mA cm-2 and FF of 0.67 ± 0.05.

  17. Estimating NH3 emissions from agricultural fertilizer application in China using the bi-directional CMAQ model coupled to an agro-ecosystem model

    Fu, X.; Wang, S. X.; Ran, L. M.; Pleim, J. E.; Cooter, E.; Bash, J. O.; Benson, V.; Hao, J. M.


    Atmospheric ammonia (NH3) plays an important role in atmospheric aerosol chemistry. China is one of the largest NH3 emitting countries with the majority of NH3 emissions coming from agricultural practices, such as fertilizer application and livestock production. The current NH3 emission estimates in China are mainly based on pre-defined emission factors that lack temporal or spatial details, which are needed to accurately predict NH3 emissions. This study provides the first online estimate of NH3 emissions from agricultural fertilizer application in China, using an agricultural fertilizer modeling system which couples a regional air quality model (the Community Multi-scale Air Quality model, or CMAQ) and an agro-ecosystem model (the Environmental Policy Integrated Climate model, or EPIC). This method improves the spatial and temporal resolution of NH3 emissions from this sector. We combined the cropland area data of 14 crops from 2710 counties with the Moderate Resolution Imaging Spectroradiometer (MODIS) land use data to determine the crop distribution. The fertilizer application rates and methods for different crops were collected at provincial or agricultural region levels. The EPIC outputs of daily fertilizer application and soil characteristics were input into the CMAQ model and the hourly NH3 emissions were calculated online with CMAQ running. The estimated agricultural fertilizer NH3 emissions in this study were approximately 3 Tg in 2011. The regions with the highest modeled emission rates are located in the North China Plain. Seasonally, peak ammonia emissions occur from April to July. Compared with previous researches, this study considers an increased number of influencing factors, such as meteorological fields, soil and fertilizer application, and provides improved NH3 emissions with higher spatial and temporal resolution.

  18. Modelling study of dielectric barrier glow discharge in Ar/NH3 mixture at atmospheric pressure%大气压Ar/NH3介质阻挡辉光放电的仿真研究

    张增辉; 张冠军; 邵先军; 常正实; 彭兆裕; 许昊


    为了研究火气压下氩气(Ar)中掺杂氨气(NH3)的Ar/NH3介质阻挡辉光放电的放电机理,通过建立一‘个多粒子的自洽耦合流体模型,采用有限元方法进行数值计算,得到了气体间隙压降、介质表面电荷密度、放电电流密度随时间的周期变化波形,以及带电粒子、中性粒子与空间电场强度的时空分布.仿真计算结果表明:气体间隙的周期击穿过程主要由气隙电压控制,并受气隙两侧介质极板上积聚的表面电荷的影响.气隙间带电粒子密度和电场强度的时空分布表明本文的放电过程存在阴极位降区、负辉区、法拉第暗区、等离子体正柱区等辉光放电的典型区域,放电模式为大气压辉光放电.在Ar/NH3等离子体中,主要的正离子为NH+,其次为Ar2+,主要的负离子为NHi:NH3分解产生的主要的激发态分子为NH,NH2和N2H3,而最终的稳态产物主要是N2和H2.%In order to investigate the mechanism of dielectric barrier glow discharge in Ar/NH3 mixture at atmospheric pressure, a multiple particles self-consistent coupled fluid model is proposed. And the finite-element method is used in the numerical calculation model, so the periodically varying waveforms of gas voltage, dielectric surface charge density and discharge current density are investigated. The spatial and temporal distributions of charged and neutral particles density and space electrical field strength are also obtained. The simulation results show that the periodic breakdown process of the gas gap is controlled by the gas voltage, and affected by dielectric surface charges. The spatiotemporal distributions of charged particle density and electrical field strength show that the discharge under conditions considered in this model is a typical atmospheric pressure glow discharge, and that in the discharge process there exist an obvious cathode fall region, a negative glow region, a

  19. Synthesis, crystal structures and properties of the bis-(trimetaphosphimato)-metallates Na 4{Co[(PO 2NH) 3] 2}·12H 2O and Na 4{Ni[(PO 2NH) 3] 2}·12H 2O

    Correll, Sascha; Stock, Norbert; Schnick, Wolfgang


    Tetrasodium- bis-(trimetaphosphimato)-cobaltate(II) dodecahydrate, Na 4{Co[(PO 2NH) 3] 2}·12H 2O ( 1), and tetrasodium- bis-(trimetaphosphimato)-nickelate(II) dodecahydrate, Na 4{Ni[(PO 2NH) 3] 2}·12H 2O ( 2), were obtained by the stoichiometric reaction of an aqueous solution of Na 3(PO 2NH) 3·4H 2O with the respective metal nitrate or halide. The structures of 1 and 2 were found to be isomorphous and were solved by single-crystal X-ray methods ( 1a: C2/ c, a=888.9(1) pm, b=1901.8(2) pm, c=1711.2(2) pm, β=104.59(1)°, Z=4; 2a: C2/ c, a=894.4(1) pm, b=1890.6(1) pm, c=1723.6(1) pm, β=104.49(1)°, Z=4). At low temperature a reversible phase transition occurs and the symmetry of the structure changes from C2/ c to P2 1/ n ( 1b: P2 1/ n, a=887.1(2) pm, b=1900.1(4) pm, c=1707.2(3) pm, β=104.59(2)°, Z=4; 2b: P2 1/ n, a=890.3(1) pm, b=1890.2(2) pm, c=1713.3(2) pm, β=104.62(1)°, Z=4). The phase transition is caused by a structural ordering of Na + and H 2O at low temperature. The P 3N 3 rings of the trimetaphosphimate ions exhibit a chair conformation. The trimetaphosphimate ions act as tridentate ligands. Thus, anionic complexes {M[(PO 2NH) 3] 2} 4- (M=Co, Ni) are formed. These structural elements are interconnected in the crystal by NH⋯O and OH⋯O hydrogen bonds and by coordination to Na + forming a three-dimensional network. Upon heating, 1 and 2 loose their crystal water around 100 °C and above 400 °C new crystalline phases are formed, which have not been identified so far.

  20. [bmim]Zn2Cl5/NH3溶液的比热容和过量焓%Heat capacity and excess enthalpy of [bmim] Cl5/NH3 binary system solution

    陈伟; 梁世强; 郭永献


    测定了离子液体[bmim] Zn2Cl5在T=(323.15 ~1 173.15)K范围内的热重曲线,结果显示[bmim] Zn2Cl5在T<637.15 K时具有很高的热稳定性.通过DSC测试得到[bmim] Zn2 Cl5的比热容数据,在T=(251.15 ~383.15)K范围内可以用一个圆锥曲线很好地拟合.实验测定了[bmim] Zn2Cl5 (2)+NH3(1)二元体系溶液的摩尔过量焓,其中氨的摩尔分数x1=(0.60 ~0.95),温度值为T=288.15 K,303.15 K,318.15 K,333.15 K.采用NRTL模型对过量焓数据进行拟合,得出二元可调参数和非随机参数.过量焓数据的测量误差和最大拟合偏差分别小于4.8%和4.3%.在[bmim]Zn2 Cl5比热容和[bmim] Zn2 Cl5/NH3过量焓数据的基础上,计算了氨质量分数w1=(0~1)、温度范围T=(273.15 ~343.15)K条件下[bmim] Zn2 Cl5/NH3溶液的焓,所得焓浓图对于研究[bmim] Zn2 Cl5/NH3吸收式制冷系统性能至关重要.

  1. 小型脉冲光泵NH3分子远红外激光的Raman频谱研究%Study on Raman Spectrum of Miniature Pulsed Optically Pumped NH3 Fir Laser

    冉勇; 李太全; 秦家银


    By solving the density matrix equation of quantum system,thespectral characteristics of V2:a→sR(0,0) and V2:a→sQ(5,4) transition in a miniature pulsed optically pumped NH3 far-infrared laser was calculated by means of iteration method.Which was pumped by TEA CO2-10R(6) line.The results of theoretical calculation showed that the spikes in raman spectrum of V2:a→sR(0,0) would appear,when the operating NH3 gas pressure was higher than a certain critical value or pumping power density was lower than a certain critical value.The spikes could not appear for spectrum of a→sQ(5,4)transition.Which was caused by raman processes interaction of AC Stark splitting.%通过求解量子系统的密度矩阵方程,采用迭代法计算了在TEACO2-10R(6)泵浦下,小型脉冲光泵NH3分子远红外激光器中,NH3分子的V2:a→sR(0,0)跃迁和a→sQ(5,4)跃迁的频谱特性。理论计算结果表明,对于a→sR(0,0)跃迁,当工作气压比临界值Pc高或泵功率密度比临界值Ipoc低时,将出现Raman频谱尖峰;对于a→sQ(5,4)跃迁,不出现频谱尖峰。频谱尖峰现象的根源是ACStark分裂的双光子相互作用的结果。

  2. CH3NH3PbI3 grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition.

    Yao, Zhibo; Wang, Wenli; Shen, Heping; Zhang, Ye; Luo, Qiang; Yin, Xuewen; Dai, Xuezeng; Li, Jianbao; Lin, Hong


    Although the two-step deposition (TSD) method is widely adopted for the high performance perovskite solar cells (PSCs), the CH3NH3PbI3 perovskite crystal growth mechanism during the TSD process and the photo-generated charge recombination dynamics in the mesoporous-TiO2 (mp-TiO2)/CH3NH3PbI3/hole transporting material (HTM) system remains unexploited. Herein, we modified the concentration of PbI2 (C(PbI2)) solution to control the perovskite crystal properties, and observed an abnormal CH3NH3PbI3 grain growth phenomenon atop mesoporous TiO2 film. To illustrate this abnormal grain growth mechanism, we propose that a grain ripening process is taking place during the transformation from PbI2 to CH3NH3PbI3, and discuss the PbI2 nuclei morphology, perovskite grain growing stage, as well as Pb:I atomic ratio difference among CH3NH3PbI3 grains with different morphology. These C(PbI2)-dependent perovskite morphologies resulted in varied charge carrier transfer properties throughout the mp-TiO2/CH3NH3PbI3/HTM hybrid, as illustrated by photoluminescence measurement. Furthermore, the effect of CH3NH3PbI3 morphology on light absorption and interfacial properties is investigated and correlated with the photovoltaic performance of PSCs.

  3. Evolution of Chemical Composition, Morphology, and Photovoltaic Efficiency of CH 3 NH 3 PbI 3 Perovskite under Ambient Conditions

    Huang, Weixin


    © 2015 American Chemical Society. The surface composition and morphology of CH3NH3PbI3 perovskite films stored for several days under ambient conditions were investigated by X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffraction techniques. Chemical analysis revealed the loss of CH3NH3 + and I- species from CH3NH3PbI3 and its subsequent decomposition into lead carbonate, lead hydroxide, and lead oxide. After long-term storage under ambient conditions, morphological analysis revealed the transformation of randomly distributed defects and cracks, initially present in the densely packed crystalline structure, into relatively small grains. In contrast to PbI2 powder, CH3NH3PbI3 exhibited a different degradation trend under ambient conditions. Therefore, we propose a plausible CH3NH3PbI3 decomposition pathway that explains the changes in the chemical composition of CH3NH3PbI3 under ambient conditions. In addition, films stored under such conditions were incorporated into photovoltaic cells, and their performances were examined. The chemical changes in the decomposed films were found to cause a significant decrease in the photovoltaic efficiency of CH3NH3PbI3.

  4. NH3 in the Central 10 pc of the Galaxy I General Morphology and Kinematic Connections Between the CND and GMCs

    McGary, R S; Ho, P T P; Gary, Robeson S. Mc; Coil, Alison L.; Ho, Paul T.P.


    New VLA images of NH3 (1,1), (2,2), and (3,3) emission in the central 10 parsecs of the Galaxy trace filamentary streams of gas, several of which appear to feed the circumnuclear disk (CND). The NH3 images have a spatial resolution of 16.5''x14.5'' and have better spatial sampling than previous NH3 observations. The images show the ``southern streamer,'' ``50 km/s cloud,'' and new features including a ``western streamer'', 6 parsecs in length, and a ``northern ridge'' which connects to the CND. NH3(3,3) emission is very similar to 1.2 mm dust emission indicating that NH3 traces column density well. Ratios of the NH3(2,2) to (1,1) line intensities give an estimate of the temperature of the gas and indicate high temperatures close to the nucleus and CND. The new data cover a velocity range of 270 km/s, including all velocities observed in the CND, with a resolution of 9.8 km/s. Previous NH3 observations with higher resolution did not cover the entire range of velocities seen in the CND. The large-scale kinemati...

  5. High efficiency CH3NH3PbI3:CdS perovskite solar cells with CuInS2 as the hole transporting layer

    Chen, Chong; Zhai, Yong; Li, Fumin; Tan, Furui; Yue, Gentian; Zhang, Weifeng; Wang, Mingtai


    The CH3NH3PbI3:CdS composite films are prepared by a newly developed precursor blending solution method, which are further used to fabricate CH3NH3PbI3:CdS perovskite solar cells. Our experimental results demonstrate that the introduced CdS effectively improves the light absorption property of the ITO/CuInS2/Al2O3/CH3NH3PbI3:CdS film stack and decreases the charge recombination in the prepared solar cells due to the formation of CH3NH3PbI3/CdS bulk heterojunction. Furthermore, the formed CdS/CuInS2 heterojunction also contributes to the enhanced efficiency. As a consequence, the CH3NH3PbI3/CdS bulk heterojunction perovskite solar cells exhibit a maximum power conversion efficiency of (16.5 ± 0.2)%, which is 1.35 times the best efficiency of 12.2% of previously reported CdS/CH3NH3PbI3 bilayer solar cell. In addition, this efficiency is a 59% improvement compared with the efficiency of (10.4 ± 0.2)% for the ITO/CuInS2/Al2O3/CH3NH3PbI3/PC60BM/Ag cell without CdS.

  6. Evaluation of a regional air-quality model with bi-directional NH3 exchange coupled to an agro-ecosystem model

    J. E. Pleim


    Full Text Available Atmospheric ammonia (NH3 is the primary atmospheric base and an important precursor for inorganic particulate matter and when deposited NH3 contributes to surface water eutrophication, soil acidification and decline in species biodiversity. Flux measurements indicate that the air-surface exchange of NH3 is bi-directional. However, the effects of bi-directional exchange, soil biogeochemistry and human activity are not parameterized in air quality models. The US Environmental Protection Agency (EPA's Community Multiscale Air-Quality (CMAQ model with bi-directional NH3 exchange has been coupled with the United States Department of Agriculture (USDA's Environmental Policy Integrated Climate (EPIC agro-ecosystem model's nitrogen geochemistry algorithms. CMAQ with bi-directional NH3 exchange coupled to EPIC connects agricultural cropping management practices to emissions and atmospheric concentrations of reduced nitrogen and models the biogeochemical feedback on NH3 air-surface exchange. This coupled modeling system reduced the biases and error in NHx (NH3 + NH4+ wet deposition and in ambient aerosol concentrations in an annual 2002 Continental US (CONUS domain simulation when compared to a 2002 annual simulation of CMAQ without bi-directional exchange. Fertilizer emissions estimated in CMAQ 5.0 with bi-directional exchange exhibits markedly different seasonal dynamics than the US EPA's National Emissions Inventory (NEI, with lower emissions in the spring and fall and higher emissions in July.

  7. Atomistic Origins of Surface Defects in CH3NH3PbBr3 Perovskite and Their Electronic Structures.

    Liu, Yunxia; Palotas, Krisztian; Yuan, Xiao; Hou, Tingjun; Lin, Haiping; Li, Youyong; Lee, Shuit-Tong


    The inherent instability of CH3NH3PbX3 remains a major technical barrier for the industrial applications of perovskite materials. Recently, the most stable surface structures of CH3NH3PbX3 have been successfully characterized by using density functional theory (DFT) calculations together with the high-resolution scanning tunneling microscopy (STM) results. The two coexisting phases of the perovskite surfaces have been ascribed to the alternate orientation of the methylammonium (MA) cations. Notably, similar surface defect images (a dark depression at the sites of X atoms) have been observed on surfaces produced with various experimental methods. As such, these defects are expected to be intrinsic to the perovskite crystals and may play an important role in the structural decomposition of perovskite materials. Understanding the nature of such defects should provide some useful information toward understanding the instability of perovskite materials. Thus, we investigate the chemical identity of the surface defects systematically with first-principles density functional theory calculations and STM simulations. The calculated STM images of the Br and Br-MA vacancies are both in good agreement with the experimental measurements. In vacuum conditions, the formation energy of Br-MA is 0.43 eV less than the Br vacancy. In the presence of solvation effects, however, the formation energy of a Br vacancy becomes 0.42 eV lower than the Br-MA vacancy. In addition, at the vacancy sites, the adsorption energies of water, oxygen, and acetonitrile molecules are significantly higher than those on the pristine surfaces. This clearly demonstrated that the structural decomposition of perovskites are much easier to start from these vacancy sites than the pristine surfaces. Combining DFT calculations and STM simulations, this work reveals the chemical identities of the intrinsic defects in the CH3NH3PbX3 perovskite crystals and their effects on the stability of perovskite materials.

  8. Hydrothermal Aging Effects on Fe/SSZ-13 and Fe/Beta NH3–SCR Catalysts

    Gao, Feng; Szanyi, János; Wang, Yilin; Schwenzer, Birgit; Kollár, Márton; Peden, Charles H. F.


    Cu/SSZ-13 has been successfully commercialized as a diesel engine exhaust aftertreatment SCR catalyst in the past few years. This catalyst, however, displays undesirable NH3-SCR selectivity at elevated reaction temperature (≥ 350 C) after hydrothermal aging. Fe/zeolites, despite the fact that most of them degrade beyond tolerance after hydrothermal aging at temperatures ≥ 650 C, typically maintain good SCR selectivities. In recent years, Fe/beta has been identified as one of the more robust Fe/zeolites for use in NH3-SCR, where activity maintains even after hydrothermal aging at 750 C. Very recently, we, for the first time, synthesized and tested NH3-SCR performance for fresh and hydrothermally aged Fe/SSZ-13 catalysts. This study demonstrated that Fe/SSZ-13 is also a promising robust SCR catalyst, especially for high-temperature applications. In the present study, we compare catalytic performance between Fe/SSZ-13 and Fe/beta with similar Fe loadings and Si/Al ratios. Special attention is paid to effects from hydrothermal aging, aiming to understanding similarities and differences between these two catalysts. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  9. The Effect of Solvents on the Performance of CH3NH3PbI3 Perovskite Solar Cells

    Pao-Hsun Huang


    Full Text Available The properties of perovskite solar cells (PSCs fabricated using various solvents was studied. The devices had an indium tin oxide (ITO/poly(3,4-ethylenedioxythiophene: poly(styrenesulfonate (PEDOT:PSS/CH3NH3PbI3 (fabricated by using various solvents/fullerene (C60/bathocuproine (BCP/silver (Ag structure. The solvents used were dimethylformamide (DMF, γ-butyrolactone (GBL, dimethyl sulfoxide (DMSO, a mixture of DMSO and DMF (1:1 v/v, and a mixture of DMSO and GBL (DMSO: GBL, 1:1 v/v, respectively. The power conversion efficiency (PCE of the device fabricated using DMF is zero, which is attributed to the poor coverage of CH3NH3PbI3 film on the substrate. In addition, the PCE of the device made using GBL is only 1.74% due to the low solubility of PbI2 and CH3NH3I. In contrast, the PCE of the device fabricated using the solvents containing DMSO showed better performance. This is ascribed to the high solubilization properties and strong coordination of DMSO. As a result, a PCE of 9.77% was obtained using a mixed DMSO:GBL solvent due to the smooth surface, uniform film coverage on the substrate and the high crystallization of the perovskite structure. Finally, a mixed DMSO: DMF:GBL (5:2:3 v/v/v solvent that combined the advantages of each solvent was used to fabricate a device, leading to a further improvement of the PCE of the resulting PSC to 10.84%.

  10. Theoretical NH{_3} Spectra in 5800-7000 CM-1 Region and CO{_2} IR Intensity: Updates

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.; Sung, Keeyoon; Brown, Linda R.; Tashkun, Sergey A.


    Recently we have successfully applied the "Best Theory + High-resolution Experimental Data" strategy to NH{_3} and CO{_2}. The essential strategy is to refine a high quality, purely ab initio potential energy surface (PES) with reliable high resolution experimental data, so the IR line lists computed on the refined PES and dipole moment surface (DMS) can go beyond simple data reproduction. The goal is to make reliable predictions for higher J/K/energy rovibrational transitions with similar accuracies, i.e. 0.01-0.03 cm-1. The reliability and accuracy of data included in the refinement largely determines the quality of predictions and the ultimate merit of our work. With recent 14NH{_3} experiments in 5800 - 7000 cm-1, the effective coverage (with 0.01-0.03 cm-1 accuracy) of our NH{_3} PES has extended to this complex spectral region. Excellent agreement between current experiment analysis and our primitive HSL-3 PES refinement will be presented, and source of discrepancies will be discussed. The synergy between the experiments and theory is of great value. For CO{_2}, we have updated the theoretical IR intensity of the 12C16O{_2} line list with a more reliable DMS, then carried out very detailed comparisons with both pure experimental data and HITRAN/CDSD models. Results suggest that our line lists should be useful for the astronomical or earth-based detection of CO{_2} isotopologues. X. Huang, D.W. Schwenke, and T.J. Lee, J. Chem. Phys. 129, 214304 (2008); J. Chem. Phys. 134, 044320/044321 (2011). X. Huang, D.W. Schwenke, S.A. Tashkun, and T.J. Lee J. Chem. Phys. 136, submitted (2012).

  11. Material and optical properties of low-temperature NH3-free PECVD SiN x layers for photonic applications

    Domínguez Bucio, Thalía; Khokhar, Ali Z.; Lacava, Cosimo; Stankovic, Stevan; Mashanovich, Goran Z.; Petropoulos, Periklis; Gardes, Frederic Y.


    SiN x layers intended for photonic applications are typically fabricated using LPCVD and PECVD. These techniques rely on high-temperature processing (>400 °C) to obtain low propagation losses. An alternative version of PECVD SiN x layers deposited at temperatures below 400 °C with a recipe that does not use ammonia (NH3-free PECVD) was previously demonstrated to be a good option to fabricate strip waveguides with propagation losses   <3 dB cm-1. We have conducted a systematic investigation of the influence of the deposition parameters on the material and optical properties of NH3-free PECVD SiN x layers fabricated at 350 °C using a design of experiments methodology. In particular, this paper discusses the effect of the SiH4 flow, RF power, chamber pressure and substrate on the structure, uniformity, roughness, deposition rate, refractive index, chemical composition, bond structure and H content of NH3-free PECVD SiN x layers. The results show that the properties and the propagation losses of the studied SiN x layers depend entirely on their compositional N/Si ratio, which is in fact the only parameter that can be directly tuned using the deposition parameters along with the film uniformity and deposition rate. These observations provide the means to optimise the propagation losses of the layers for photonic applications through the deposition parameters. In fact, we have been able to fabricate SiN x waveguides with H content  <20%, good uniformity and propagation losses of 1.5 dB cm-1 at 1550 nm and   <1 dB cm-1 at 1310 nm. As a result, this study can potentially help optimise the properties of the studied SiN x layers for different applications.

  12. Promotional Effect of Ce on Iron-Based Catalysts for Selective Catalytic Reduction of NO with NH3

    Xiaobo Wang


    Full Text Available A series of Fe–Ce–Ti catalysts were prepared via co-precipitation method to investigate the effect of doping Ce into Fe–Ti catalysts for selective catalytic reduction of NO with NH3. The NO conversion over Fe–Ce–Ti catalysts was considerably improved after Ce doping compared to that of Fe–Ti catalysts. The Fe(0.2–Ce(0.4–Ti catalysts exhibited superior catalytic activity to that of Fe(0.2–Ti catalysts. The obtained catalysts were characterized by N2 adsorption (BET, X-ray diffraction (XRD, temperature programmed reduction (H2-TPR, temperature programmed desorption (NH3-TPD, Fourier transform infrared (FT-IR spectrophotometry, thermogravimetric analysis (TGA, and X-ray photoelectron spectroscopy (XPS. The data showed that the introduction of Ce results in higher surface area and better dispersion of active components on the catalyst surface and enhances the amount of surface acid sites. The interactions between Fe and Ce species were found to improve the redox ability of the catalyst, which promotes catalytic performance at low temperature. The XPS results revealed that Fe3+/Fe2+ and Ce4+/Ce3+ coexisted on the catalyst surface and that Ti was in 4+ oxidation state on catalyst surface. Ce doping increased the atomic ratio of Fe/Ti and Ce/Ti and enhanced the surface adsorbed oxygen species. In addition, Fe(0.2–Ce(0.4–Ti catalyst also showed better tolerance to H2O and SO2 and up to 92% NO conversion at 270 °C with 200 ppm SO2 added over 25 h, which suggests that it is a promising industrial catalyst for mid-low temperature NH3–selective catalytic reduction (SCR reaction.

  13. The atomic size effect on hybrid inorganic-organic perovskite CH3NH3BI3 (B = Pb, Sn) from first-principles study

    Chen, Qing-Yuan; Liu, Ming-Yang; Huang, Yang; Cao, Chao; He, Yao


    The inorganic-organic perovskite CH3NH3PbI3 is a hot research material owing to its outstanding performances as one light absorbing layer of solid-state dye-sensitized solar cells. In this study, we focused on the atomic size effect on CH3NH3BI3 (B = Sn, Pb), provided the best atomic size with which CH3NH3BI3 absorbs widest range of different wavelengths of light, by first-principles calculation. We found that the halogen I-p states are mainly composed of the valence band maximum (VBM) of CH3NH3BI3, and the cation B-p states are primarily composed of the conduction band minimum (CBM). Besides, the bandgap of CH3NH3BI3 decreases and absorptive capacities of different wavelengths of light expand when we reduced the size of the atom and changed B atom from Pb to Sn during the change of suitable range. From all of the above, it is discovered that when the atomic size is 20% less than the normal size, CH3NH3PbI3 has the best optical properties, and its light-absorption range is the widest among all sizes of CH3NH3BI3 compounds. All these results reveal that the stress and strain on CH3NH3BI3 change the atomic size which leads to alteration of bandgap and optical properties in high-efficiency solar cells among all CH3NH3BI3 compounds, namely we can enhance the efficiency of the inorganic-organic perovskite solar cells by setting up suitable pressure on the material in future.

  14. Development and uncertainty analysis of a high-resolution NH3 emissions inventory and its implications with precipitation over the Pearl River Delta region, China

    W. W. Che


    Full Text Available Detailed NH3 emission inventories are important to understand various atmospheric processes, air quality modeling study, air pollution management, and related environmental and ecological issues. A high-resolution NH3 emission inventory is developed based on the state-of-the-science techniques, the up-to-date information, and the advanced expert knowledge for the Pearl River Delta region, China. To provide model-ready emissions input, this NH3 emissions inventory is spatially allocated to 3 km × 3 km grid cells using source-based spatial surrogates with Geographical Information System (GIS technology. For NH3 emissions, 9 source categories and 45 sub-categories are identified in this region, and detailed spatial and temporal characteristics are investigated. Results show that livestock is by far the most important NH3 emission source that contributes about 61.7% of the total NH3 emissions in this region, followed by nitrogen fertilizer applications (~23.7% and non-agricultural sources (~14.6%. Uncertainty analysis reveals that the uncertainties associated with different sources vary from source to source and the magnitude of the uncertainty associated with a specific source mainly depends on the degree of accuracy of the emission factors and activity data as well as the technique used to perform the estimate. The validity of the NH3 emissions inventory is justified by the trend analysis of local rainwater compositions, especially pH values, the Ca2+ + NH4+/SO42− + NO3− ratios, and NH4+ concentrations which are directly or indirectly related to NH3 emissions. Based on the analysis, recommendations for additional work to further improve the accuracy of the NH3 emissions inventory are also discussed and proposed.

  15. Polymeric cobalt(ii) thiolato complexes - syntheses, structures and properties of [Co(SMes)2] and [Co(SPh)2NH3].

    Eichhöfer, Andreas; Buth, Gernot


    Reactions of [Co(N(SiMe3)2)2thf] with 2.1 equiv. of MesSH (Mes = C6H2-2,4,6-(CH3)3) yield dark brown crystals of the one dimensional chain compound [Co(SMes)2]. In contrast reactions of [Co(N(SiMe3)2)2thf] with 2.1 equiv. of PhSH result in the formation of a dark brown almost X-ray amorphous powder of 'Co(SPh)2'. Addition of aliquots of CH3OH to the latter reaction resulted in the almost quantitative formation of crystalline ammonia thiolato complexes either [Co(SPh)2(NH3)2] or [Co(SPh)2NH3]. Single crystal XRD reveals that [Co(SPh)2NH3] forms one-dimensional chains in the crystal via μ2-SPh bridges whereas [Co(SPh)2(NH3)2] consists at a first glance of isolated distorted tetrahedral units. Magnetic measurements suggest strong antiferromagnetic coupling for the two chain compounds [Co(SMes)2] (J = -38.6 cm(-1)) and [Co(SPh)2NH3] (J = -27.1 cm(-1)). Interestingly, also the temperature dependence of the susceptibility of tetrahedral [Co(SPh)2(NH3)2] shows an antiferromagnetic transition at around 6 K. UV-Vis-NIR spectra display d-d bands in the NIR region between 500 and 2250 nm. Thermal gravimetric analysis of [Co(SPh)2(NH3)2] and [Co(SPh)2NH3] reveals two well separated cleavage processes for NH3 and SPh2 upon heating accompanied by the stepwise formation of 'Co(SPh)2' and cobalt sulfide.

  16. Estimating the NH3:H2SO4 ratio of nucleating clusters in atmospheric conditions using quantum chemical methods

    Kurtén, T.; Torpo, L.; Sundberg, M. R.; Kerminen, V.-M.; H. Vehkamäki; Kulmala, M.


    We study the ammonia addition reactions of H2SO4·NH3 molecular clusters containing up to four ammonia and two sulfuric acid molecules using the ab initio method RI-MP2 (Resolution of Identity 2nd order Møller-Plesset perturbation theory). Together with results from previous studies, we use the computed values to estimate an upper limit for the ammonia content of small atmospheric clusters, without having to explicitly include water molecules in the quantum chemical si...

  17. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong


    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might als...

  18. Observation of Scattering Resonances in the Penning Ionization of NH$_3$ by He($^3$S$_1$) at Low Collision Energies

    Jankunas, Justin; Hapka, Michal; Osterwalder, Andreas


    A merged-beam study of the gas phase He($^3$S$_1$) + NH$_3$ Penning ionization reaction dynamics in the collision energy range 3.3 $\\mu$eV $<$ E $<$ 10 meV is presented. In this energy range the reaction rate is governed by long-range attraction. Shape resonances are observed at collision energies of 1.8 meV and 7.3 meV and are assigned to $\\ell$=15,16 and $\\ell$=20,21 partial waves, respectively. The experimental results are well reproduced by theoretical calculations with the short-range reaction probability $P_{sr}=0.035$.

  19. Promotional Effect of Ce on Iron-Based Catalysts for Selective Catalytic Reduction of NO with NH3

    Xiaobo Wang; Lei Zhang; Shiguo Wu; Weixin Zou; Shuohan Yu; Ye Shao; Lin Dong


    A series of Fe–Ce–Ti catalysts were prepared via co-precipitation method to investigate the effect of doping Ce into Fe–Ti catalysts for selective catalytic reduction of NO with NH3. The NO conversion over Fe–Ce–Ti catalysts was considerably improved after Ce doping compared to that of Fe–Ti catalysts. The Fe(0.2)–Ce(0.4)–Ti catalysts exhibited superior catalytic activity to that of Fe(0.2)–Ti catalysts. The obtained catalysts were characterized by N2 adsorption (BET), X-ray diffraction (XRD)...

  20. The catalytic effect of the NH3 base on the chemical events in the caryolene-forming carbocation cascade.

    Ortega, Daniela E; Nguyen, Quynh Nhu N; Tantillo, Dean J; Toro-Labbé, Alejandro


    Caryolene formation occur asynchronously in a concerted way through carbocationic rearrangements involving the generation of a secondary or a tertiary carbocation whether the reaction proceeds in the absence or in the presence of NH3 , respectively. Both caryolene formation mechanisms are analyzed within the general framework of the reaction force; the reaction force constant is used to gain insights into the synchronicity of the mechanisms and the reaction electronic flux helps to characterize the electronic activity taking place during the reaction. DFT calculations at the B3LYP/6-31+G(d,p) level show a clear difference in the mechanisms of the base promoted or base free caryolene formation reactions.

  1. Fe/SSZ-13 as an NH3-SCR Catalyst: A Reaction Kinetics and FTIR/Mössbauer Spectroscopic Study

    Gao, Feng; Kollar, Marton; Kukkadapu, Ravi K.; Washton, Nancy M.; Wang, Yilin; Szanyi, Janos; Peden, Charles HF


    Using a traditional aqueous solution ion-exchange method under a protecting atmosphere of N2, an Fe/SSZ-13 catalyst active in NH3-SCR was synthesized. Mössbauer and FTIR spectroscopies were used to probe the nature of the Fe sites. In the fresh sample, the majority of Fe species are extra-framework cations. The likely monomeric and dimeric ferric ions in hydrated form are [Fe(OH)2]+ and [HO-Fe-O-Fe-OH]2+, based on Mössbauer measurements. During the severe hydrothermal aging (HTA) applied in this study, a majority of cationic Fe species convert to FeAlOx and clustered FeOx species, accompanied by severe dealumination of the SSZ-13 framework. The clustered FeOx species do not give a sextet Mössbauer spectrum, indicating that these are highly disordered. However, some Fe species in cationic positions remain after aging as determined from Mössbauer measurements and CO/NO FTIR titrations. NO/NH3 oxidation reaction tests reveal that dehydrated cationic Fe are substantially more active in catalyzing oxidation reactions than the hydrated ones. For NH3-SCR, enhancement of NO oxidation under ‘dry’ conditions promotes SCR rates below ~300 • C. This is due mainly to contribution from the “fast” SCR channel. Above ~300 • C, enhancement of NH3 oxidation under ‘dry’ conditions, however, becomes detrimental to NOx conversions. The HTA sample loses much of the SCR activity below ~300 • C; however, above ~400 • C much of the activity remains. This may suggest that the FeAlOx and FeOx species become active at such elevated temperatures. Alternatively, the high-temperature activity may be maintained by the remaining extra-framework cationic species. For potential practical applications, Fe/SSZ-13 may be used as a co-catalyst for Cu/CHA as integral aftertreatment SCR catalysts on the basis of the stable high temperature activity after hydrothermal aging. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy

  2. Measurements of Line Positions and Intensities of 14NH_3 in the 1.5 μm Region

    Sung, Keeyoon; Brown, Linda R.; Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.


    In the atmosphere of outer planets, low mass brown dwarfs, and possibly extrasolar planets, ammonia (NH_3) is one of the major opacity sources particularly in the 1.5 μm region (the H-band). However, the spectroscopic information of NH_3 in the region is completely missing in the HITRAN database. NH_3 has four infrared active fundamental modes, with the well-known inversion doubling for {ν_2} band, in addition to the usual vibrational degeneracies. Its strong bands, {ν_1}, {ν_3} and 2{ν_4}, dominate the spectrum at 3 μm, while their corresponding overtone and combination bands (e.g., 2{ν_1}, 2{ν_3}, {ν_1}+{ν_3}, {ν_1}+2{ν_4} and {ν_3}+2{ν_4}) are prominent in the 1.5 μm region. As part of an effort to provide a complete set of NH_3 spectroscopic information in the 1.5 μm region, we are analyzing the laboratory spectra recorded at various temperatures (200 - 299 K) with the McMath-Pierce Fourier transform spectrometer (FTS) on Kitt Peak Observatory in Arizona. Line positions and strengths have been measured from the laboratory spectra, from which lower state energies and quantum assignments are being determined by adopting intensity ratios at two different temperatures and combination differnces. A theoretical IR linelist built upon the recent HSL-2 potential energy surface (nonadiabatic corrections included) is complementarily used for the quantum assignments. Preliminary results are presented for {ν_1}+{ν_3}, 2{ν_3}, {ν_1}+2{ν_4} and {ν_3}+{2ν_4} bands and compared with those from early work available. X. Huang, D.W. Schwenke, and T.J. Lee J. Chem. Phys. 134, (2011) 044320/044321 The research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology and the Ames Research Center under contracts with National Aeronautics and Space Administration.

  3. Nano metal-enhanced power conversion efficiency in CH3NH3PbI3 solar cells

    Yu, Jing; Zhang, Chao; Yang, Siyu; Chen, Meina; Lei, Fengcai; Man, Baoyuan


    Nano metal-enhanced power conversion efficiency (PCE) in CH3NH3PbI3 solar cells utilizing the forward scattering effect of metal nanoparticles has been researched in this paper by finite difference time domain method. Two structures are designed in the research to explore this feasibility, by adjusting the materials, sizes and surface coverages of metal nanoparticles, both of them exhibit the exciting results bringing the max PCE enhancements by 12.18% and 8.03% respectively. Especially, considering the huge handleability of the second structure, this method has large applications in further improving the performance for other perovskite solar cells.

  4. Synthesis, structural characterization, electrical properties and antioxidant activity of [p-(NH3)C6H4NH3]3P6O18·6H2O

    Fezai, Ramzi; Mezni, Ali; Kahlaoui, Messaoud; Rzaigui, Mohamed


    Single crystals of a novel organic cyclohexaphosphate, [p-(NH3)C6H4NH3]3P6O18.6H2O, have been prepared in aqueous solution. Its crystal structure can be described by a three-dimensional framework where the P6O186- rings are interconnected by hydrogen bonds to form anionic layers between which organic cations are located. Hydrogen bonding network connecting the different components is given. The thermal stability and spectroscopic properties of this material are given too. Its DC and AC electrical conductivities, modulus analysis and dielectric constants have been investigated. The AC conductivity is found to obey the universal power law. The DC electrical conductivity indicates a semiconductor behavior. The kind of the observed conduction is protonic by translocation. X-rays structural and electrical results are correlated. This compound has also been screened for its antioxidant activity, determined in vitro, using 1,1-diphenyl-2-picrylhydrazyl, reducing power, hydroxyl scavenging ability and ferrous ion chelating (FIC) methods and with ascorbic acid as reference.

  5. Macro-, Micro-, Nano- and Crystal Structures of a Homodinuclear Complex [NH3(CH2)3NH3]2{Na2[(C6H4O2)2](C6H4O2H)2}

    LU,Xiao-Ming; WEI,Chun-Xia; WANG,Zhen; YE,Chao-Hui


    A homodinuclear complex (NH3CH2CH2CH2NH3)2{Na2[(C6H4O2)2](C6H4O2H)2} (1) has been synthesized by a solution-based self-assembly route. It crystallized in monoclinic system with space group P21/c. Every sodium ion coordinates in a tetragonal prism fashion with two O atoms of a terminal chelating catecholate ligand and three O atoms from two bridging catecholate ligands. Two neighboring NaO5 tetragonal prisms are edge-shared and centrosymmetric with regard to the inversion center to form a binuclear cluster {Na2[(C6H4O2)2](C6H4OOH)2}4- anion.The complex anions were aligned parallelly by π-π interaction and linked with the protonated 1,3-propylenediamine through hydrogen bonds which were assembled into a multi-lamellar structure with channels. The crystal exhibits rectangular geometry with an interior triangle hollow structure under optical microscopy. And the scanning electron microscopy (SEM) indicates that the wall of the tubes shows multi-lamella morphologies. Further, the transmission electron microscopy (TEM) reveals that the crystal is composed of multi-lamellar nano-tubes with diameters less than 100 nm. The molecular structure of the complex was compared with that of its isomer complex 2.

  6. The influence of the relative thermal expansion and electric permittivity on phase transitions in the perovskite-type bidimensional layered NH3(CH2)3NH3CdBr4 compound

    Staśkiewicz, Beata; Staśkiewicz, Anna


    Hydrothermal method has been used to synthesized the layered hybrid compound NH3(CH2)3NH3CdBr4 of perovskite architecture. Structural, dielectric and dilatometric properties of the compound have been analyzed. Negative thermal expansion (NTE) effect in the direction perpendicular to the perovskite plane as well as an unusual phase sequence have been reported based on X-ray diffraction analysis. Electric permittivity measurements evidenced the phase transitions at Tc1=326/328 K and Tc2=368/369 K. Relative linear expansion measurements almost confirmed these temperatures of phase transitions. Anomalies of electric permittivity and expansion behavior connected with the phase transitions are detected at practically the same temperatures as those observed earlier in differential scanning calorimetry (DSC), infrared (IR), far infrared (FIR) and Raman spectroscopy studies. Mechanism of the phase transitions is explained. Relative linear expansion study was prototype to estimate critical exponent value β for continuous phase transition at Tc1. It has been inferred that there is a strong interplay between the distortion of the inorganic network, those hydrogen bonds and the intermolecular interactions of the organic component.

  7. Optical transitions in hybrid perovskite solar cells: Ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3

    Shirayama, Masaki; Kadowaki, Hideyuki; Miyadera, Tetsuhiko; Sugita, Takeshi; Tamakoshi, Masato; Kato, Masato; Fujiseki, Takemasa; Murata, Daisuke; Hara, Shota; Murakami, Takurou N.; Fujimoto, Shohei; Chikamatsu, Masayuki; FUJIWARA, HIROYUKI


    We report artifact-free CH3NH3PbI3 optical constants extracted from ultra-smooth perovskite layers without air exposure and assign all the optical transitions in the visible/ultraviolet region unambiguously based on density functional theory (DFT) analysis that assumes a simple pseudo-cubic crystal structure. From the self-consistent spectroscopic ellipsometry analysis of the ultra-smooth CH3NH3PbI3 layers, we find that the absorption coefficients of CH3NH3PbI3 (alpha = 3.8 x 10^4 cm-1 at 2.0...

  8. Monovalent Cation Doping of CH3NH3PbI3 for Efficient Perovskite Solar Cells.

    Abdi-Jalebi, Mojtaba; Dar, M Ibrahim; Sadhanala, Aditya; Senanayak, Satyaprasad P; Grätzel, Michael; Friend, Richard H


    Here, we demonstrate the incorporation of monovalent cation additives into CH3NH3PbI3 perovskite in order to adjust the optical, excitonic, and electrical properties. The possibility of doping was investigated by adding monovalent cation halides with similar ionic radii to Pb(2+), including Cu(+), Na(+), and Ag(+). A shift in the Fermi level and a remarkable decrease of sub-bandgap optical absorption, along with a lower energetic disorder in the perovskite, was achieved. An order-of-magnitude enhancement in the bulk hole mobility and a significant reduction of transport activation energy within an additive-based perovskite device was attained. The confluence of the aforementioned improved properties in the presence of these cations led to an enhancement in the photovoltaic parameters of the perovskite solar cell. An increase of 70 mV in open circuit voltage for AgI and a 2 mA/cm(2) improvement in photocurrent density for NaI- and CuBr-based solar cells were achieved compared to the pristine device. Our work paves the way for further improvements in the optoelectronic quality of CH3NH3PbI3 perovskite and subsequent devices. It highlights a new avenue for investigations on the role of dopant impurities in crystallization and controls the electronic defect density in perovskite structures.

  9. Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3.

    Agiorgousis, Michael L; Sun, Yi-Yang; Zeng, Hao; Zhang, Shengbai


    Inorganic-organic hybrid perovskites are a new family of solar cell materials, which have recently been used to make solar cells with efficiency approaching 20%. Here, we report the unique defect chemistry of the prototype material, CH3NH3PbI3, based on first-principles calculation. We found that both the Pb cations and I anions in this material exhibit strong covalency as characterized by the formation of Pb dimers and I trimers with strong covalent bonds at some of the intrinsic defects. The Pb dimers and I trimers are only stabilized in a particular charge state with significantly lowered energy, which leads to deep charge-state transition levels within the band gap, in contradiction to a recent proposal that this system has only shallow intrinsic defects. Our results show that, in order to prevent the deep-level defects from being effective recombination centers, the equilibrium carrier concentrations should be controlled so that the Fermi energy is about 0.3 eV away from the band edges. Beyond this range, according to a Shockley-Read-Hall analysis, the non-equilibrium carrier lifetime will be strongly affected by the concentration of I vacancies and the anti-site defects with I occupying a CH3NH3 site.

  10. Estimating the NH3:H2SO4ratio of nucleating clusters in atmospheric conditions using quantum chemical methods

    M. Kulmala


    Full Text Available We study the ammonia addition reactions of H2SO4·NH3 molecular clusters containing up to four ammonia and two sulfuric acid molecules using the ab initio method RI-MP2 (Resolution of Identity 2nd order Møller-Plesset perturbation theory. Together with results from previous studies, we use the computed values to estimate an upper limit for the ammonia content of small atmospheric clusters, without having to explicitly include water molecules in the quantum chemical simulations. Our results indicate that the NH3:H2SO4 mole ratio of small molecular clusters in typical atmospheric conditions is probably around 1:2. High ammonia concentrations or low temperatures may lead to the formation of ammonium bisulfate (1:1 clusters, but our results rule out the formation of ammonium sulfate clusters (2:1 anywhere in the atmosphere. A sensitivity analysis indicates that the qualitative conclusions of this study are not affected even by relatively large errors in the calculation of electronic energies or vibrational frequencies.

  11. Estimating the NH3:H2SO4 ratio of nucleating clusters in atmospheric conditions using quantum chemical methods

    Kurtén, T.; Torpo, L.; Sundberg, M. R.; Kerminen, V.-M.; Vehkamäki, H.; Kulmala, M.


    We study the ammonia addition reactions of H2SO4·NH3 molecular clusters containing up to four ammonia and two sulfuric acid molecules using the ab initio method RI-MP2 (Resolution of Identity 2nd order Møller-Plesset perturbation theory). Together with results from previous studies, we use the computed values to estimate an upper limit for the ammonia content of small atmospheric clusters, without having to explicitly include water molecules in the quantum chemical simulations. Our results indicate that the NH3:H2SO4 mole ratio of small molecular clusters in typical atmospheric conditions is probably around 1:2. High ammonia concentrations or low temperatures may lead to the formation of ammonium bisulfate (1:1) clusters, but our results rule out the formation of ammonium sulfate clusters (2:1) anywhere in the atmosphere. A sensitivity analysis indicates that the qualitative conclusions of this study are not affected even by relatively large errors in the calculation of electronic energies or vibrational frequencies.

  12. Estimating the NH3:H2SO4 ratio of nucleating clusters in atmospheric conditions using quantum chemical methods

    M. Kulmala


    Full Text Available We study the ammonia addition reactions of H2SO4·NH3 molecular clusters containing up to four ammonia and two sulfuric acid molecules using the ab initio method RI-MP2 (Resolution of Identity 2nd order Møller-Plesset perturbation theory. Together with results from previous studies, we use the computed values to estimate an upper limit for the ammonia content of small atmospheric clusters, without having to explicitly include water molecules in the quantum chemical simulations. Our results indicate that the NH3:H2SO4 mole ratio of small molecular clusters in typical atmospheric conditions is probably around 1:2. High ammonia concentrations or low temperatures may lead to the formation of ammonium bisulfate (1:1 clusters, but our results rule out the formation of ammonium sulfate clusters (2:1 anywhere in the atmosphere. A sensitivity analysis indicates that the qualitative conclusions of this study are not affected even by relatively large errors in the calculation of electronic energies or vibrational frequencies.

  13. Emissions of CH4, N2O, NH3 and odorants from pig slurry during winter and summer storage

    Petersen, Søren O; Dorno, Nadia; Lindholst, Sabine;


    eq m−3 day−1 during a 45-day winter storage, and 1.1–1.3 kg CO2 eq m−3 day−1 during a 58-day summer storage period independent of storage conditions; the GHG balance was dominated by CH4 emissions. Nitrous oxide emissions occurred only during summer storage where, apparently, emissions were related....... Pig slurry was stored with or without a straw crust, and with or without interception of precipitation, i.e., four treatments, in two randomized blocks. Emissions of total reduced S (mainly H2S) and p-cresol, but not skatole, were reduced by the straw crust. Total GHG emissions were 0.01–0.02 kg CO2......Manure storage contributes significantly to greenhouse gas (GHG), NH3 and odour emissions from intensive livestock production. A pilot-scale facility with eight 6.5-m3 slurry storage units was used to quantify emissions of CH4, N2O, NH3, and odorants from pig slurry during winter and summer storage...

  14. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells.

    Aharon, Sigalit; Gamliel, Shany; El Cohen, Bat; Etgar, Lioz


    The inorganic-organic perovskite is currently attracting a lot of attention due to its use as a light harvester in solar cells. The large absorption coefficients, high carrier mobility and good stability of organo-lead halide perovskites present good potential for their use as light harvesters in mesoscopic heterojunction solar cells. This work concentrated on a unique property of the lead halide perovskite, its function simultaneously as a light harvester and a hole conductor in the solar cell. A two-step deposition technique was used to optimize the perovskite deposition and to enhance the solar cell efficiency. It was revealed that the photovoltaic performance of the hole conductor free perovskite solar cell is strongly dependent on the depletion layer width which was created at the TiO2-CH3NH3PbI3 junction. X-ray diffraction measurements indicate that there were no changes in the crystallographic structure of the CH3NH3PbI3 perovskite over time, which supports the high stability of these hole conductor free perovskite solar cells. Furthermore, the power conversion efficiency of the best cells reached 10.85% with a fill factor of 68%, a Voc of 0.84 V, and a Jsc of 19 mA cm(-2), the highest efficiency to date of a hole conductor free perovskite solar cell.

  15. Low Temperature Performance of Selective Catalytic Reduction of NO with NH3 under a Concentrated CO2 Atmosphere

    Xiang Gou


    Full Text Available Selective catalytic reduction of NOx with NH3 (NH3-SCR has been widely investigated to reduce NOx emissions from combustion processes, which cause environmental challenges. However, most of the current work on NOx reduction has focused on using feed gas without CO2 or containing small amounts of CO2. In the future, oxy-fuel combustion will play an important role for power generation, and this process generates high concentrations of CO2 in flue gas. Therefore, studies on the SCR process under concentrated CO2 atmosphere conditions are important for future SCR deployment in oxy-fuel combustion processes. In this work, Mn- and Ce-based catalysts using activated carbon as support were used to investigate the effect of CO2 on NO conversion. A N2 atmosphere was used for comparison. Different process conditions such as temperature, SO2 concentration, H2O content in the feed gas and space velocity were studied. Under Mn-Ce/AC conditions, the results suggested that Mn metal could reduce the inhibition effect of CO2 on the NO conversion, while Ce metal increased the inhibition effect of CO2. High space velocity also resulted in a reduction of CO2 inhibition on the NO conversion, although the overall performance of SCR was greatly reduced at high space velocity. Future investigations to design novel Mn-based catalysts are suggested to enhance the SCR performance under concentrated CO2 atmosphere conditions.

  16. Low-temperature SCR of NO with NH3 over activated semi-coke composite-supported rare earth oxides

    Wang, Jinping; Yan, Zheng; Liu, Lili; Zhang, Yingyi; Zhang, Zuotai; Wang, Xidong


    The catalysts with different rare earth oxides (La, Ce, Pr and Nd) loaded onto activated semi-coke (ASC) via hydrothermal method are prepared for the selective catalytic reduction (SCR) of NO with NH3 at low temperature (150-300 °C). It is evidenced that CeO2 loaded catalysts present the best performance, and the optimum loading amount of CeO2 is about 10 wt%. Composite catalysts by doping La, Pr and Nd into CeO2 are prepared to obtain further improved catalytic properties. The SCR mechanism is investigated through various characterizations, including XRD, Raman, XPS and FT-IR, the results of which indicate that the oxygen defect plays an important role in SCR process and the doped rare earth elements effectively serve as promoters to increase the concentration of oxygen vacancies. It is also found that the oxygen vacancies in high concentration are favored for the adsorption of O2 and further oxidation of NO, which facilitates a rapid progressing of the following reduction reactions. The SCR process of NO with NH3 at low temperature over the catalysts of ASC composite-supported rare earth oxides mainly follows the Langmuir-Hinshlwood mechanism.

  17. Dynamic Growth of Pinhole-Free Conformal CH3NH3PbI3 Film for Perovskite Solar Cells.

    Li, Bo; Tian, Jianjun; Guo, Lixue; Fei, Chengbin; Shen, Ting; Qu, Xuanhui; Cao, Guozhong


    Two-step dipping is one of the popular low temperature solution methods to prepare organic-inorganic halide perovskite (CH3NH3PbI3) films for solar cells. However, pinholes in perovskite films fabricated by the static growth method (SGM) result in low power conversion efficiency (PCE) in the resulting solar cells. In this work, the static dipping process is changed into a dynamic dipping process by controlled stirring PbI2 substrates in CH3NH3I isopropanol solution. The dynamic growth method (DGM) produces more nuclei and decreases the pinholes during the nucleation and growth of perovskite crystals. The compact perovskite films with free pinholes are obtained by DGM, which present that the big perovskite particles with a size of 350 nm are surrounded by small perovskite particles with a size of 50 nm. The surface coverage of the perovskite film is up to nearly 100%. Such high quality perovskite film not only eliminated pinholes, resulting in reduced charge recombination of the solar cells, but also improves the light harvesting efficiency. As a result, the PCE of the perovskite solar cells is increased from 11% for SGM to 13% for DGM.

  18. Electrical properties and conduction mechanism of [C2H5NH3]2CuCl4 compound

    Mohamed, C. Ben; Karoui, K.; Jomni, F.; Guidara, K.; Rhaiem, A. Ben


    The [(C2H5)NH3]2CuCl4 compound was prepared and characterized by several technique: the X-ray powder diffraction confirms the purity of the synthetized compound, the differential scanning calorimetric show several phase transitions at 236 K, 330 K, 357 K and 371 K, the dialectical properties confirms the ferroelectric-paraelectric phase transition at 238 K, which is reported by V. Kapustianyk et al. (2007) [1]. The two semi-circles observed in the complex impedance identify the presence of the grain interior and grain boundary contributions to the electrical response in this material. The equivalent circuit is modeled by a combination series of two parallel RP-CPE circuits. The temperature dependence of the alternative current conductivity (σg) and direct current conductivity (σdc) confirm the observed transitions in the calorimetric study. The (AC) electrical conduction in [(C2H5)NH3]2CuCl4 was studied by two processes that can be attributed to a hopping transport mechanism: the non-overlapping small polaron tunneling (NSPT) model in phase III and the correlated barrier hopping (CBH) model in phases I, II, IV, V and VI.

  19. Optical study on intrinsic exciton states in high-quality CH3NH3PbBr3 single crystals

    Thu Ha Do, T.; Granados del Águila, A.; Cui, Chao; Xing, Jun; Ning, Zhijun; Xiong, Qihua


    Organolead halide perovskites have emerged as potential building blocks for photovoltaic and optoelectronic devices. Yet the underlying fundamental physics is not well understood. There is lack of agreement on the electronic band structures and binding energies of coupled electron-hole pairs (excitons), which drive the photophysical processes. In this work, we conducted temperature-dependent reflectance and photoluminescence experiments on high-quality CH3NH3PbBr3 single crystals. Two direct optical transitions corresponding to intrinsic free-excitons are clearly resolved, showing excellent consistence between the low-temperature (T =10 K) reflectance and photoluminescence spectra. Remarkably, the excitons have different binding energies and behave oppositely with temperature, suggesting distinctive origins. Moreover, the asymmetric photoluminescence profile is counterintuitively dominated by the high-energy exciton that is explained by a long relaxation time between levels and by the favorable generation rate of electron-hole pairs at the high-energy band. Our study opens access to the intrinsic properties of CH3NH3PbBr3 and sheds light to reconcile the large range of binding energies reported on these emergent direct band-gap semiconductors.

  20. Leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system

    WANG Rui-xiang; TANG Mo-tang; YANG Sheng-hai; ZHAGN Wen-hai; TANG Chao-bo; HE Jing; YANG Jian-guang


    The leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system was studied. The effects of ore particle size,reaction temperature and the sum concentration of ammonium ion and ammonia on the leaching efficiency of zinc were examined.The leaching kinetics of low-grade zinc oxide ore in NH3-NH4Cl-H2O system follows the kinetic law of shrinking-core model. The results show that diffusion through the inert particle pores is the leaching kinetics rate controlling step. The calculated apparent activation energy of the process is about 7.057kJ/mol. The leaching efficiency of zinc is 92.1% under the conditions of ore particle size of 69μm, holding at 80℃ for 60min, sum ammonia concentration of 7.5mol/L, the molar ratio of ammonium to ammonia being 2:1, and the ratio (g/mL) of solid to liquid being 1:10.

  1. Optoelectronic and Photovoltaic Properties of the Air-Stable Organohalide Semiconductor (CH 3 NH 3 ) 3 Bi 2 I 9

    Abulikemu, Mutalifu


    Lead halide perovskite materials have shown excellent optoelectronic as well as photovoltaic properties. However, the presence of lead and the chemical instability relegate lead halide perovskites to research applications only. Here, we investigate an emerging lead-free and air stable compound (CH3NH3)3Bi2I9 as a non-toxic potential alternative to lead halide perovskites. We have synthesized thin films, powders and millimeter-scale single crystals of (CH3NH3)3Bi2I9 and investigated their structural and optoelectronic properties. We demonstrate that the degree of crystallinity strongly affects the optoelectronic properties of the material, resulting in significantly different band gaps in polycrystalline thin films and single crystals. Surface photovoltage spectroscopy reveals outstanding photocharge generation in the visible (<700 nm), while transient absorption spectroscopy and space charge limited current measurements point to a long exciton lifetime and a high carrier mobility, respectively, similar to lead halide perovskites, pointing to the remarkable potential of this semiconductor. Photovoltaic devices fabricated using this material yield low power conversion efficiency (PCE) to date, but the PCE is expected to rise with improvements in thin film processing and device engineering.

  2. [Rb(18-crown-6][Rb([2.2.2]-cryptand]Rb2Sn9·5NH3

    Stefanie Gaertner


    Full Text Available The crystal structure of the title compound, poly[[(4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosanerubidium] [[(1,4,7,10,13,16-hexaoxacyclooctadecanerubidium]di-μ-rubidium-μ-nonastannide] pentaammonia], {[Rb(C18H36N2O6][Rb3Sn9(C12H24O6C12H24O6]·5NH3}n represents the first ammoniate of a Zintl anion together with two different chelating substances, namely 18-crown-6 and [2.2.2]-cryptand. The involvement of these large molecules in the crystal structure of [Rb(18-crown-6][Rb([2.2.2]-cryptand]Rb2Sn9·5NH3 leads to the formation of a new structural motif, namely one-dimensionally extended double strands running parallel to [100] and built by Sn94− cages and Rb+ cations. The double strands are shielded by 18-crown-6 and [2.2.2]-cryptand. The cations are additionally coordinated by ammonia molecules. One of the four independent Rb+ cations is disordered over two sets of sites in a 0.74 (2:0.26 (2 ratio.

  3. The deactivation mechanism of Cl on Ce/TiO2 catalyst for selective catalytic reduction of NO with NH3

    Yang, Ning-zhi; Guo, Rui-tang; Pan, Wei-guo; Chen, Qi-lin; Wang, Qing-shan; Lu, Chen-zi; Wang, Shu-xian


    The poisoning mechanism of Cl on Ce/TiO2 catalyst was investigated based on temperature programmed desorption (TPD) and the in situ diffuse reflectance infrared transform spectroscopy (DRIFT) studies. The results of NH3-TPD and NO-TPD indicated that the addition of Cl on Ce/TiO2 catalyst would inhibit the adsorption of NH3 species and NOx species on it. As can be seen from the results of in situ DRIFT study, the NH3-SCR reaction over Ce/TiO2 and Ce/TiO2-Cl were all followed both the Eley-Rideal mechanism and the Langmuir-Hinshelwood mechanism. And the decreased adsorption ability of NH3 species and NOx species on the surface of Ce/TiO2-Cl should be mainly responsible for its low SCR activity.

  4. Optimizing the crystallinity and acidity of H-SAPO-34 by fluoride for synthesizing Cu/SAPO-34 NH3-SCR catalyst.

    Ma, Jing; Si, Zhichun; Wu, Xiaodong; Weng, Duan; Ma, Yue


    A series of H-SAPO-34 zeolites were synthesized by a hydrothermal method in fluoride media. The as-synthesized H-SAPO-34 zeolites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 physisorption, temperature-programmed desorption of NH3 (NH3-TPD) and nuclear magnetic resonance (NMR) measurements. The results showed that a certain concentration of F(-) anions promoted the nucleation and crystallization of H-SAPO-34. The H-SAPO-34 synthesized in the fluoride media showed high crystallinity, uniform particle size distribution, large specific surface area and pore volume, and enhanced acidity. Therefore, Cu/SAPO-34 based on the fluoride-assisted zeolite showed a broadened temperature window for the selective catalytic reduction of NO by NH3 (NH3-SCR) reaction due to the enhanced acidity of the zeolite and the improved dispersion of copper species.

  5. Deactivation mechanism and feasible regeneration approaches for the used commercial NH3-SCR catalysts.

    Yu, Yanke; Meng, Xiaoran; Chen, Jinsheng; Yin, Liqian; Qiu, Tianxue; He, Chi


    The deactivation and regeneration of selective catalytic reduction catalysts which have been used for about 37,000 h in a coal power plant are studied. The formation of Al2(SO4)3, surface deposition of K, Mg and Ca are primary reasons for the deactivation of the studied Selective catalytic reduction catalysts. Other factors such as activated V valence alteration also contribute to the deactivation. Reactivation of used catalysts via environment-friendly and finance-feasibly approaches, that is, dilute acid or alkali solution washing, would be of great interest. Three regeneration pathways were studied in the present work, and dilute nitric acid or sodium hydroxide solution could remove most of the contaminants over the catalyst surface and partly recover the catalytic performance. Notably, the acid-alkali combination washing, namely, catalysts treated by dilute sodium hydroxide and nitric acid solutions orderly, was much more effective than single washing approach in recovering the activity, and NO conversion increased from 23.6% to 89.5% at 380°C. The higher removal efficiency of contaminants, the lower dissolution of activated V, and promoting the formation of polymeric vanadate should be the main reason for recovery of the activity.

  6. New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed by NH 3 titration

    Luo, Jinyong; Gao, Feng; Kamasamudram, Krishna; Currier, Neal; Peden, Charles H. F.; Yezerets, Aleksey


    In this work we investigated an unusual acidity feature of a Cu/SSZ-13 catalyst used in selective catalytic reduction of NOx with NH3 (NH3-SCR). In particular, this catalyst showed two distinct NH3 desorption peaks in NH3-TPD measurements, in contrast to single, unresolved desorption peaks observed for other Cu-exchanged zeolites conventionally used in the SCR studies, including its isostructural but chemically different analogue Cu/SAPO-34. We further observed that the intensities of the two TPD peaks, which represented the amount of stored NH3, changed in opposite directions in response to progressive mild hydrothermal aging, while the total storage capacity was preserved. We proposed an explanation for this remarkable behavior, by using model reference samples and additional characterization techniques. At least three NH3 storage sites were identified: two distinct populations of Cu sites responsible for low-temperature NH3 storage, and Brønsted acid sites responsible for high-temperature NH3 storage. Contrary to the commonly accepted mechanism that Brønsted acid site loss during hydrothermal aging is driven by dealumination, we concluded that the decline in the number of Brønsted acid sites upon mild hydrothermal aging for Cu/SSZ-13 was not due to dealumination, but rather transformation of Cu sites, i.e., gradual conversion of ZCuOH (Cu2+ singly coordinated with Zeolite) to Z2Cu (Cu2+ doubly coordinated with Zeolite). This transformation was responsible for the increased low-temperature desorption peak in NH3-TPD since each ZCuOH adsorbed ~1 NH3 molecule while each Z2Cu adsorbed ~2 NH3 molecules under the conditions used here. These findings were used in Part II of this series of studies to develop a method for quantifying hydrothermal ageing of industrial Cu/SSZ-13 SCR catalysts. Authors would like to thank Randall Jines for his help with collecting the reactor data, Nancy W. Washton for measuring the NMR data and Tamas Varga for in-situ XRD measurements

  7. Progress of Cu-zeolites catalysts for removal of NO with NH3 selective catalytic reduction technology%Cu基分子筛NH3-SCR脱硝催化剂的研究进展

    张冉冉; 李永红



  8. Recent Advances in Mechanisms and Kinetics of Low-Temperature Selective Catalytic Reduction of NOx with NH3%低温NH3-SCR反应机理及动力学研究进展

    李云涛; 钟秦



  9. A facile, solvent vapor-fumigation-induced, self-repair recrystallization of CH3NH3PbI3 films for high-performance perovskite solar cells.

    Zhu, Weidong; Yu, Tao; Li, Faming; Bao, Chunxiong; Gao, Hao; Yi, Yong; Yang, Jie; Fu, Gao; Zhou, Xiaoxin; Zou, Zhigang


    A high-quality CH3NH3PbI3 film is crucial in the manufacture of a high-performance perovskite solar cell. Here, a recrystallization process via facile fumigation with DMF vapor has been successfully introduced to self-repair of CH3NH3PbI3 films with poor coverage and low crystallinity prepared by the commonly used one-step spin-coating method. We found that the CH3NH3PbI3 films with dendritic structures can spontaneously transform to the uniform ones with full coverage and high crystallinity by adjusting the cycles of the recrystallization process. The mesostructured perovskite solar cells based on these repaired CH3NH3PbI3 films showed reproducible optimal power conversion efficiency (PCE) of 11.15% and average PCE of 10.25±0.90%, which are much better than that of devices based on the non-repaired CH3NH3PbI3 films. In addition, the hysteresis phenomenon in the current-voltage test can also be effectively alleviated due to the quality of the films being improved in the optimized devices. Our work proved that the fumigation of solvent vapor can modify metal organic perovskite films such as CH3NH3PbI3. It offers a novel and attractive way to fabricate high-performance perovskite solar cells.

  10. The influence of leaf-atmosphere NH3(g ) exchange on the isotopic composition of nitrogen in plants and the atmosphere.

    Johnson, Jennifer E; Berry, Joseph A


    The distribution of nitrogen isotopes in the biosphere has the potential to offer insights into the past, present and future of the nitrogen cycle, but it is challenging to unravel the processes controlling patterns of mixing and fractionation. We present a mathematical model describing a previously overlooked process: nitrogen isotope fractionation during leaf-atmosphere NH3(g ) exchange. The model predicts that when leaf-atmosphere exchange of NH3(g ) occurs in a closed system, the atmospheric reservoir of NH3(g ) equilibrates at a concentration equal to the ammonia compensation point and an isotopic composition 8.1‰ lighter than nitrogen in protein. In an open system, when atmospheric concentrations of NH3(g ) fall below or rise above the compensation point, protein can be isotopically enriched by net efflux of NH3(g ) or depleted by net uptake. Comparison of model output with existing measurements in the literature suggests that this process contributes to variation in the isotopic composition of nitrogen in plants as well as NH3(g ) in the atmosphere, and should be considered in future analyses of nitrogen isotope circulation. The matrix-based modelling approach that is introduced may be useful for quantifying isotope dynamics in other complex systems that can be described by first-order kinetics. © 2013 John Wiley & Sons Ltd.

  11. In situ IR studies of Co and Ce doped Mn/TiO2 catalyst for low-temperature selective catalytic reduction of NO with NH3

    Qiu, Lu; Pang, Dandan; Zhang, Changliang; Meng, Jiaojiao; Zhu, Rongshu; Ouyang, Feng


    The Mn-Co-Ce/TiO2 catalyst was prepared by wet co-impregnation method for selective catalytic reduction of NO by NH3 in the presence of oxygen. The adsorption and co-adsorption of NH3, NO and O2 on catalysts were investigated by in situ FTIR spectroscopy. The results suggested that addition of cobalt and cerium oxides increased the numbers of acid and redox sites. Especially, the cobalt oxide produced lots of Brønsted acid sites, which favor to the adsorption of coordinated NH3 through NH3 migration. Ce addition improved amide ions formation to reach best NO reduction selectivity. A mechanistic pathway over Mn-Co-Ce/TiO2 was proposed. At low-temperature SCR reaction, coordinated NH3 reacted with NO2-, and amide reacted with NO (ad) or NO (g) to form N2. NO2 was related to the formation of nitrite on Co-contained catalysts and the generation of sbnd NH2- on Ce-contained catalysts. At high temperature, the other branch reaction also occurred between the coordinated NH3 and nitrate species, resulting in N2O yield increase.

  12. Efficient hybrid mesoscopic solar cells with morphology-controlled CH3NH3PbI3-xClx derived from two-step spin coating method.

    Xu, Yuzhuan; Zhu, Lifeng; Shi, Jiangjian; Lv, Songtao; Xu, Xin; Xiao, Junyan; Dong, Juan; Wu, Huijue; Luo, Yanhong; Li, Dongmei; Meng, Qingbo


    A morphology-controlled CH3NH3PbI3-xClx film is synthesized via two-step solution deposition by spin-coating a mixture solution of CH3NH3Cl and CH3NH3I onto the TiO2/PbI2 film for the first time. It is revealed that the existence of CH3NH3Cl is supposed to result in a preferential growth along the [110] direction of perovskite, which can improve both the crystallinity and surface coverage of perovskite and reduce the pinholes. Furthermore, the formation process of CH3NH3PbI3-xClx perovskite is explored, in which intermediates containing chlorine are suggested to exist. 13.12% of power conversion efficiency has been achieved for the mesoscopic cell, higher than 12.08% of power conversion efficiency of the devices fabricated without CH3NH3Cl via the same process. The improvement mainly lies in the increasing open-circuit photovoltage which is ascribed to the reduction of reverse saturation current density.

  13. Comparison of tetrel bonds in neutral and protonated complexes of pyridineTF3 and furanTF3 (T = C, Si, and Ge) with NH3.

    Liu, Mingxiu; Li, Qingzhong; Scheiner, Steve


    Ab initio calculations have been performed for the complexes H(+)-PyTX3NH3 and H(+)-furanTF3NH3 (T = C, Si, and Ge; X = F and Cl) with focus on geometries, energies, orbital interactions, and electron densities to study the influence of protonation on the strength of tetrel bonding. The primary interaction mode between α/β-furanCF3/p-PyCF3 and NH3 changes from an FH hydrogen bond to a CN tetrel bond as a result of protonation. Importantly, the protonation has a prominent enhancing effect on the strength of tetrel bonding with an increase in binding energy from 14 to 30 kcal mol(-1). The tetrel bonding becomes stronger in the order H(+)-p-PySiF3NH3 < H(+)-m-PySiF3NH3 < H(+)-o-PySiF3NH3, showing a reverse trend from that of the neutral analogues. In addition, there is competition between the tetrel and hydrogen bonds in the protonated complexes, in which the hydrogen bond is favored in the complexes of H(+)-p-PyCF3 but the tetrel bond is preferred in the complexes of H(+)-p-PyTX3 (T = Si, Ge; X = F, Cl) and H(+)-o/m-PySiF3.

  14. B40 fullerene as a highly sensitive molecular device for NH3 detection at low bias: a first-principles study

    Lin, Bin; Dong, Huilong; Du, Chunmiao; Hou, Tingjun; Lin, Haiping; Li, Youyong


    The adsorption of small molecules (NH3, N2, H2 and CH4) on all-boron fullerene B40 is investigated by density functional theory (DFT) and the non-equilibrium Green’s function (NEGF) for its potential application in the field of single-molecular gas sensors. The high adsorption energies (-1.09 to -0.75 eV) of NH3 on different adsorption sites of the B40 surface indicate that NH3 strongly chemisorbs to B40. The charge transfer induced by the NH3 adsorption results in a modification of the density of states (DOS) of B40 near the Fermi level, and therefore changes its electronic transport properties. For all possible adsorption sites, the adsorption of NH3 exclusively leads to a decrease of the conductance of B40. Taking into consideration that the non-polar gas molecules (e.g. N2, H2 and CH4) are only physisorbed and show negligible effect on the conductance properties of B40, we would expect that B40 can be used as a single-molecular gas sensor to distinguish NH3 from non-polar gas molecules at low bias.

  15. Study on the mechanism of NH3-selective catalytic reduction over CuCexZr1-x/TiO2

    Chen, Xujuan; Sun, Xiaoliang; Gong, Cairong; Lv, Gang; Song, Chonglin


    Copper-cerium-zirconium catalysts loaded on TiO2 prepared by a wet impregnation method were investigated for NH3-selective catalytic reduction (SCR) of NOx. The reaction mechanism was proposed on the basis of results from in situ diffuse reflectance infrared transform spectroscopy (DRIFT). When NH3 is introduced, ammonia bonded to Lewis acid sites is more stable over CuCe0.25Zr0.75/TiO2 at high temperature, while Brønsted acid sites are more important than Lewis acid sites at low temperature. For the NH3+NO+O2 co-adsorption, NH3 species occupy most of activity sites on CuCe0.25Zr0.75/TiO2 catalyst, and mainly exist in the forms of NH4 + (at low temperature) and NH3 coordinated (at high temperature), playing a crucial role in the NH3-SCR process. Two different reaction routes, the L-H mechanism at low temperature ( 200°C), are presented for the SCR reaction over CuCe0.25Zr0.75/TiO2 catalyst.

  16. Mn-Cu-Ce-Fe/REY系列催化剂上NH3选择性催化还原NO性能%Selective catalytic reduction of NO with NH3 over Mn-Cu-Ce-Fe/REY catalysts

    任翠涛; 李滨; 王虹; 李翠清; 丁福臣; 宋永吉


    Mn-Cu-Fe-Ce/REY catalysts were designed with orthogonal experimental method and prepared by impregnation method. The catalytic performance of the catalysts for selective reduction of NO with NH3 was evaluated in the presence of S02 and in a fixed bed micro-reactor. The effects of Mn, Cu, Fe and Ce components on the catalytic activity were investigated. The catalysts were characterized by XRD, SEM and H2 -TPR. The results showed that the sequence of the influence of active components on catalyst activity from big to small was as follows; Cu > Fe > Ce > Mn, and the activity of the catalysts was affected by their redox properties.%采用正交实验设计和浸渍法制备Mn-Cu-Fe-Ce/REY催化剂.采用固定床微型反应器评价SO2存在下催化剂在NH3选择性催化还原NO反应中的活性,考察Mn、Cu、Fe和Ce各活性组分对催化剂活性的影响,并采用XRD、H2-TPR和SEM等手段对催化剂进行表征.结果表明,Mn、Cu、Fe和Ce各活性组分对催化剂活性影响顺序为:Cu> Fe> Ce> Mn,催化剂的氧化还原性能影响催化剂活性.

  17. The Recombination Mechanism and True Green Amplified Spontaneous Emission in CH3NH3PbBr3 Perovskite

    Priante, Davide


    True-green wavelength emitters at 555 nm are currently dominated by III-V semiconductor-based inorganic materials. Nevertheless, due to high lattice- and thermal-mismatch, the overall power efficiency in this range tends to decline for high current density showing the so-called efficiency droop in the green region (“green gap”). In order to fill the research green gap, this thesis examines the low cost solution-processability of organometal halide perovskites, which presents a unique opportunity for light-emitting devices in the green-yellow region owing to their superior photophysic properties such as high photoluminescence quantum efficiency, small capture cross section of defect states as well as optical bandgap tunability across the visible light regime. Specifically, the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material were investigated using low-temperature, power-dependent (77 K), temperature-dependent photoluminescence (PL) measurements. We noted three recombination peaks at 77K, one of which originated from bulk defect states, and other two from surface defect states. The latter were identified as bound-excitonic (BE) radiative transitions related to particle size inhomogeneity or grain size induced surface state in the sample. Both transitions led to PL spectra broadening as a result of concurrent blue- and red-shifts of these excitonic peaks. The blue-shift is most likely due to the Burstein-Moss (band filling) effect. Interestingly, the red-shift of the second excitonic peak becomes pronounced with increasing temperature leading to a true-green wavelength of 553 nm for CH3NH3PbBr3. On the other hand, red-shifted peak originates from the strong absorption in the second excitonic peak owed to the high density of surface states and carrier filling of these states due to the excitation from the first excitonic recombination. We also achieved amplified spontaneous emission around excitation threshold energy of 350 μJ/cm2

  18. Selective catalytic reduction of NOx with NH3 over iron-cerium-tungsten mixed oxide catalyst prepared by different methods

    Xiong, Zhi-bo; Liu, Jing; Zhou, Fei; Liu, Dun-yu; Lu, Wei; Jin, Jing; Ding, Shi-fa


    A series of magnetic Fe0.85Ce0.10W0.05Oz catalysts were synthesized by three different methods(Co-precipitation(Fe0.85Ce0.10W0.05Oz-CP), Hydrothermal treatment assistant critic acid sol-gel method(Fe0.85Ce0.10W0.05Oz-HT) and Microwave irradiation assistant critic acid sol-gel method(Fe0.85Ce0.10W0.05Oz-MW)), and the catalytic activity was evaluated for selective catalytic reduction of NO with NH3. The catalyst was characterized by XRD, N2 adsorption-desorption, XPS, H2-TPR and NH3-TPD. Among the tested catalysts, Fe0.85Ce0.10W0.05Oz-MW shows the highest NOx conversion over per gram in unit time with NOx conversion of 60.8% at 350 °C under a high gas hourly space velocity of 1,200,000 ml/(g h). Different from Fe0.85Ce0.10W0.05Oz-CP catalyst, there exists a large of iron oxide crystallite(γ-Fe2O3 and α-Fe2O3) scattered in Fe0.85Ce0.10W0.05Oz catalysts prepared through hydrothermal treatment or microwave irradiation assistant critic acid sol-gel method, and higher iron atomic concentration on their surface. And Fe0.85Ce0.10W0.05Oz-MW shows higher surface absorbed oxygen concentration and better dispersion compared with Fe0.85Ce0.10W0.05Oz-HT catalyst. These features were favorable for the high catalytic performance of NO reduction with NH3 over Fe0.85Ce0.10W0.05Oz-MW catalyst.

  19. Molecular simulations of adsorption and diffusion of NO and NH3 over zeolite catalysts with various structure configurations%Industrial Catalysis

    李懿; 刘宁; 张润铎; 李英霞


    基于巨正则蒙特卡洛和分子动力学,对NH3-SCR反应体系中吸附质分子( NO与NH3)在不同拓扑结构沸石分子筛( LTL、FER、LEV、BEA、MOR、FAU、CHA和MFI)上的吸附和扩散特性进行系统研究。结果表明,对于全硅分子筛而言,其分子筛的拓扑结构影响NO与NH3在分子筛上的吸附,综合吸附量及吸附作用能发现,MFI和LEV分子筛对NO具有较优的吸附特性;MFI和BEA分子筛对NH3具有较优的吸附特性。研究了Si与Al物质的量比对BEA分子筛吸附性能影响,结果表明,随着Si与Al物质的量比降低,分子筛自由体积逐渐增加,进而有助于分子筛催化剂对NO和NH3的吸附。采用分子动力学模拟计算NO与NH3在不同构型全硅分子筛上的扩散系数,发现具有三维直通道且孔径较大的分子筛催化剂有利于NO和NH3在其孔道内部的扩散,MFI虽然具备三维孔道结构,但由于存在Z型交叉通道,一定程度阻碍了反应物分子的扩散。%The adsorption and diffusion of NO and NH3 as the reactant of NH3-SCR reaction system over various kinds of zeolite catalysts( LTL,FER,LEV,BEA,MOR,FAU,CHA,MFI)were investigated by employing molecule simulation methods of Monte Carlo and Molecular Dynamics. The results indicated that the zeolitic topology greatly influenced the adsorption of NO and NH3 molecules according to the sim-ulation results of adsorption amount and adsorption energy. Accordingly,it was found that MFI and LEV were efficient for NO adsorption,and MFI and BEA were efficient for NH3 adsorption. The effects of Si/Al molar ratio on the adsorption of NO and NH3 over BEA zeolite were also studied. The study showed that the free volume of zeolite catalysts gradually increased along with the decrease of Si/Al molar ratios, which facilitated the adsorption of NO and NH3 . The molecular dynamics was further employed for the cal-culations of diffusion coefficient of NO and NH3 on all

  20. Study on NH3 and CO2 Gas Nitrocarburizing Process of Q235 Steel%Q235钢氨气加二氧化碳气体氮碳共渗工艺的研究

    黄元盛; 邹敢锋; 袁叔贵



  1. Two mixed-NH3/amine platinum (II) anticancer complexes featuring a dichloroacetate moiety in the leaving group

    Liu, Weiping; Su, Jia; Jiang, Jing; Li, Xingyao; Ye, Qingsong; Zhou, Hongyu; Chen, Jialin; Li, Yan


    Two mixed-NH3/amine platinum (II) complexes of 3-dichoroacetoxylcyclobutane-1, 1-dicarboxylate have been prepared in the present study and characterized by elemental analysis and IR, HPLC-MS and 1H, 13C-NMR. The complexes exist in equilibrium between two position isomeric forms and undergo hydrolysis reaction in aqueous solution, releasing the platinum pharmacophores and dichloroacetate which is a small-molecular cell apoptosis inducer. Both complexes were evaluated for in vitro cytotoxic profile in A549, SGC-7901 and SK-OV-3 caner cells as well as in BEAS-2B normal cells. They exhibit markedly cytoxicity toward cancer cells by selectively inducing the apoptosis of cancer cells, whereas leaving normal cells less affected. They have also the ability to overcome the resistance of SK-OV-3 cancer cells to cisplatin. Our findings offer an alternative novel way to develop platinum drugs which can both overcome the drug resistance and selectively target tumor cells.

  2. Isolates identification and characteristics of microorganisms in biotrickling filter and biofilter system treating H2S and NH3

    YU Guang-hui; XU Xiao-jun; HE Pin-jing


    A combination system of biotrickling filter (BTF) and biofilter (BF), adopting surfactant-modified clinoptilolite and surfactant-modified wood chip as the media respectively, was applied to treat H2S and NH3 simultaneously. The identification and sole carbon sources utilization patterns of isolates in the combination system were studied by Biolog system. The isolates were identified as Bacillus sphaericus, Geobacillus themoglucosidasius (55℃) and Micrococcus luteus (ATCC 9341) in BTF, and Aspergillus sydowii (Bainier & Sartory) Thom & Church in BF. Among 96 substrate classes supplied by Biolog system, the carboxylic acids and methyl esters had the highest utilization extent for the four species, followed by the amino acids and peptides. The descending sequence of carbon sources utilization capability of isolates was A. sydowii (52.6%), M. luteus (39.5%), B. sphaericus (21.6%), and G. thermoglucosidasius (17.7%).

  3. [Nano-MnO(x) catalyst for the selective catalytic reduction of NO by NH3 in low-temperature].

    Tang, Xiao-Long; Hao, Ji-Ming; Xu, Wen-Guo; Li, Jun-Hua


    Nanometer particles composed of manganese oxides (Nano-MnO(x)), which prepared by rheological phase reaction method, show superior low-temperature SCR activity for NO with NH3 in the presence of excess O2. In experiments, the NO conversion is 98.25% at 80 degrees C, and nearly 100% NO could be converted in 100 - 150 degrees C. Due to the reason of competing adsorption, H2O has a slight impact on the activity and the deactivation of SO2 is reversible. The experiments implied that the superior low-temperature catalytic activity of Nano-MnO(x) was mainly due to its high BET specific areas and poor crystallinity.

  4. Raman studies of phase transitions in ferroelectric [C2H5NH3]2ZnCl4

    Ben Mohamed, C.; Karoui, K.; Bulou, A.; Ben Rhaiem, A.


    The present paper accounted for the synthesis, differential scanning calorimetric and vibrational spectroscopy of [C2H5NH3]2ZnCl4grown at room temperature. Differential scanning calorimetric (DSC) disclosed five phase transitions at T1=231 K, T2=234 K, T3=237 K, T4=247 K and T5=312 K. The temperature dependence of the dielectric constant at different temperatures proved that this compound is ferroelectric below 238 K. Raman spectra as function temperature have been used to characterize these transitions and their nature, which indicates a change of the some peak near the transitions phase. The analysis of the wavenumber and the line width based on the order-disorder model allowed to obtain information relative to the thermal coefficient and the activation energy near the transitions phase.

  5. Fully Copper-Exchanged High-Silica LTA Zeolites as Unrivaled Hydrothermally Stable NH3 -SCR Catalysts.

    Ryu, Taekyung; Ahn, Nak Ho; Seo, Seungwan; Cho, Jung; Kim, Hyojun; Jo, Donghui; Park, Gi Tae; Kim, Pyung Soon; Kim, Chang Hwan; Bruce, Elliott L; Wright, Paul A; Nam, In-Sik; Hong, Suk Bong


    Diesel engine technology is still the most effective solution to meet tighter CO2 regulations in the mobility and transport sector. In implementation of fuel-efficient diesel engines, the poor thermal durability of lean nitrogen oxides (NOx ) aftertreatment systems remains as one major technical hurdle. Divalent copper ions when fully exchanged into high-silica LTA zeolites are demonstrated to exhibit excellent activity maintenance for NOx reduction with NH3 under vehicle simulated conditions even after hydrothermal aging at 900 °C, a critical temperature that the current commercial Cu-SSZ-13 catalyst cannot overcome owing to thermal deactivation. Detailed structural characterizations confirm the presence of Cu(2+) ions only at the center of single 6-rings that act not only as a catalytically active center, but also as a dealumination suppressor. The overall results render the copper-exchanged LTA zeolite attractive as a viable substitute for Cu-SSZ-13.

  6. CH(3)NH(3)PbI(3) perovskite / silicon tandem solar cells: characterization based optical simulations.

    Filipič, Miha; Löper, Philipp; Niesen, Bjoern; De Wolf, Stefaan; Krč, Janez; Ballif, Christophe; Topič, Marko


    In this study we analyze and discuss the optical properties of various tandem architectures: mechanically stacked (four-terminal) and monolithically integrated (two-terminal) tandem devices, consisting of a methyl ammonium lead triiodide (CH(3)NH(3)PbI(3)) perovskite top solar cell and a crystalline silicon bottom solar cell. We provide layer thickness optimization guidelines and give estimates of the maximum tandem efficiencies based on state-of-the-art sub cells. We use experimental complex refractive index spectra for all involved materials as input data for an in-house developed optical simulator CROWM. Our characterization based simulations forecast that with optimized layer thicknesses the four-terminal configuration enables efficiencies over 30%, well above the current single-junction crystalline silicon cell record of 25.6%. Efficiencies over 30% can also be achieved with a two-terminal monolithic integration of the sub-cells, combined with proper selection of layer thicknesses.

  7. High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets

    Li, Pengfei; Shivananju, B. N.; Zhang, Yupeng; Li, Shaojuan; Bao, Qiaoliang


    In this work, a high performance vertical-type photodetector based on two-dimensional (2D) CH3NH3PbI3 perovskite nanosheets was fabricated. The low trap density of the perovskite nanosheets and their short carrier diffusion distance result in a significant performance enhancement of the perovskite-based photodetector. The photoresponsivity of this vertical-type photodetector is as high as 36 mA W‑1 at visible wavelength, which is much better than traditional perovskite photodetectors (0.34 mA W‑1). Compared with traditional planar-type perovskite-based photodetectors, this vertical-type photodetector also shows the advantages of low-voltage operation and large responsivity. These results may pave the way for exploiting high performance perovskite-based photodetectors with an ingenious device design.

  8. Multiple-stage structure transformation of organic-inorganic hybrid perovskite CH3NH3PbI3

    Chen, Qiong; Kim, Hui-Seon; Liu, Yucheng; Yang, Mengjin; Yue, Naili; Ren, Gang; Zhu, Kai; Liu, Shengzhong; Park, Nam-Gyu; Zhang, Yong


    By performing spatially resolved Raman and photoluminescence spectroscopy with varying excitation wavelength, density, and data acquisition parameters, we have achieved a unified understanding towards the spectroscopy signatures of the organic-inorganic hybrid perovskite, transforming from the pristine state (CH3NH3PbI3) to fully degraded state (i.e., PbI2) for samples with varying crystalline domain size from mesoscopic scale (approximately 100 nm) to macroscopic size (cm), synthesized by three different techniques. We show that the hybrid perovskite exhibits multiple stages of structure transformation occurring either spontaneously or under light illumination, with exceptionally high sensitivity to the illumination conditions (e.g., power, illumination time and interruption pattern). We highlight four transformation stages (Stage 1 - 4, with Stage 1 being the pristine state) along a primary structure degradation path exhibiting distinctly different Raman spectroscopy features at each stage, and point out th...

  9. Hysteresis dependence on CH3NH3PbI3 deposition method in perovskite solar cells

    Fernandes, Silvia Leticia; Bregadiolli, Bruna Andressa; Véron, Anna Christina; Nüesch, Frank A.; Zaghete, Maria Aparecida; Graeff, Carlos Frederico de Oliveira


    CH3NH3PbI3 perovskite solar cells are one of the most exciting technologies in the renewable energy field, resulting in over 20% power conversion efficiency. Deep understanding of the working principle is now required to turn the high efficiency solar cells into a reliable technology. In this work we have explored the role of deposition method on the crystallinity of perovskite films and its influence on the hysteresis behavior of the current-voltage characteristics. In addition Nb2O5 was used as hole blocking layer and its influence is also discussed. We have found that hysteresis is strongly dependent on both; perovskite deposition method and Nb2O5 thickness. The ideal condition where the hysteresis is suppressed or minimized was achieved by using the sequential deposition method for the perovskite semiconductor and a hole blocking layer of 50 nm.

  10. Comparative NH 3-sensing characteristic studies of PANI/TiO II nanocomposite thin films doped with different acids

    Tai, Huiling; Jiang, Yadong; Xie, Guangzhong; Yu, Junsheng; Ying, Zhihua; Chen, Xuan


    Polyaniline/titanium dioxide (PANI/TiO II) nanocomposite thin films were synthesized by in-situ self-assembly method, which were doped with p-toluene sulphonic acid (p-TSA) and hydrochloric acid (HCl), respectively. The thin films were characterized by using UV-Vis absorption spectroscopy and scanning electron microscope (SEM), and the NH 3 gas sensitive properties of the thin films were investigated at room temperature. The results showed that the PANI/TiO II thin film doped with HCl was superior to that doped with p-TSA in terms of response-recovery characteristics. The surface morphology characterization of the thin films were performed to explain the different gas-sensing properties.

  11. Fabrication and characterization of CH3NH3(Cs)Pb(Sn)I3(Br) perovskite solar cells

    Ueoka, Naoki; Ohishi, Yuya; Shirahata, Yasuhiro; Suzuki, Atsushi; Oku, Takeo


    Perovskite-type CH3NH3(MA)PbI3-based photovoltaic devices were fabricated and characterized. Doping effects of cesium iodide (CsI), cesium bromide (CsBr) and tin bromide (SnBr2) on the photovoltaic properties and surface microstructures of the perovskite phase were investigated. Short-circuit current densities, open-circuit voltages and fill factors increased by CsI and SnBr2 addition. The surface coverage of the perovskite crystals was also improved by SnBr2 doping, which resulted in improvement of the fill factor. The cell prepared by a starting composition of MA0.95Cs0.05Pb0.95Sn0.05I2.90Br0.10 showed the best photovoltaic performance in the present work.

  12. Characterization and performance of V2Os/CeO2 for NH3-SCR of NO at low temperatures

    Caiting LI; Qun LI; Pei LU; Huafei CU11; Guangming ZENG


    A series of CeO2 supported V205 catalysts with various loadings were prepared with different calcination temperatures by the incipient impregnation. The catalysts were evaluated for low temperature selective catalytic reduction (SCR) of NO with ammonia (NH3). The effects of 02 and SO2 on catalytic activity were also studied. The catalysts were characterized by specific surface areas (SBET) and X-ray diffraction (XRD) methods. The experimental results showed that NO conversion changed significantly with the different V205 loading and calcination temperature. With the V205 loading increasing from 0 to 10wt%, NO conversion increased significantly, but decreased at higher loading. The optimum calcination temperature was 400℃. The best catalyst yielded above 80% NO conversion in the reaction temperature range of 160℃-300℃. The formation of CeVO4 on the surface of catalysts caused the decrease of redox ability.

  13. Photolysis products of CO, NH3 aND H2O and their significance to reactions on interstellar grains

    Ferris, J. P.


    With the increase in evidence that interstellar grains are the basic building blocks of comets and with the realization that comet collisions with the earth have probably occured at a much higher frequency than earlier assumed it may be presumed that interstellar dust chemistry played an important role in the early chemistry of the earth. As a part of the study of the photochemical processes taking place on interstellar grains the photolysis of mixtures of CO, NH3 and H2O was performed at 10 K, 77K and 298K. The reaction products were determined by GC/MS and HPLC analysis to be lactic acid, glycolic acid, hydroxyacetamide, urea, biuret, oxamic acid, oxamide, glyceric acid and glyceramide. Ethylene glycol and glycerol were also detected but is is not clear at present whether these are true photoproducts or contaminants. The mechanism of formation of these molecules are discussed as well as their possible significance to the origins of life.

  14. MOF-74 as an Efficient Catalyst for the Low-Temperature Selective Catalytic Reduction of NOx with NH3.

    Jiang, Haoxi; Wang, Qianyun; Wang, Huiqin; Chen, Yifei; Zhang, Minhua


    In this work, Mn-MOF-74 with hollow spherical structure and Co-MOF-74 with petal-like shape have been prepared successfully via the hydrothermal method. The catalysts were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry-mass spectrum analysis (TG-MS), N2 adsorption/desorption, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). It is found that MOF-74(Mn, Co) exhibits the capability for selective catalytic reduction (SCR) of NOx at low temperatures. Both experimental (temperature-programmed desorption, TPD) and computational methods have shown that Co-MOF-74 and Mn-MOF-74 owned high adsorption and activation abilities for NO and NH3. The catalytic activities of Mn-MOF-74 and Co-MOF-74 for low-temperature denitrification (deNOx) in the presence of NH3 were 99% at 220 °C and 70% at 210 °C, respectively. It is found that the coordinatively unsaturated metal sites (CUSs) in M-MOF-74 (M = Mn and Co) played important roles in SCR reaction. M-MOF-74 (M = Mn and Co), especially Mn-MOF-74, showed excellent catalytic performance for low-temperature SCR. In addition, in the reaction process, NO conversion on Mn-MOF-74 decreased with the introduction of H2O and SO2 and almost recovered when gas was cut off. However, for Co-MOF-74, SO2 almost has no effect on the catalytic activity. This work showed that MOF-74 could be used prospectively as deNOx catalyst.

  15. VizieR Online Data Catalog: W51 Main NH3 and CH3OH data cubes

    Goddi, C.; Ginsburg, A.; Zhang, Q.


    Observations of NH3 toward the W51 complex were conducted usi Karl G. Jansky Very Large Array (JVLA) of the National Radio Astronomy Observatory (NRAO)1 in the B configuration. By using the broadband JVLA K- and Ka-band receivers, we observed a total of five metastable inversion transitions of NH3: (J,K) = (6, 6), (7, 7), (9, 9), (10, 10), and (13, 13) at the 1cm band with frequencies ranging from ~25GHz for the (6, 6) line to ~33GHz for the (13, 13) line. Transitions were observed in pairs of independently tunable basebands during 6h tracks (two targets per track: W51 - this paper; NGC 7538 IRS1 - Paper I, Goddi et al., 2015A&A...573A.108G) on three different dates in 2012: the (6, 6) and (7, 7) lines on May 31 at K-band, the (9, 9) and (13, 13) lines on June 21, and the (10, 10) transition on August 7, both at Ka-band. Each baseband had eight sub-bands with a 4MHz bandwidth (~40km/s at 30GHz), providing a total coverage of 32MHz (~320km/s at 30GHz). Each sub-band consisted of 128 channels with a separation of 31.25kHz (~0.3km/s at 30GHz). The typical on-source integration time was about 80min. Each transition was observed with fast switching, where 80s scans on target were alternated with 40s scans on the nearby (1.2° on the sky) QSO J1924+1540 (measured flux density 0.6-0.7Jy, depending on frequency). We derived absolute flux calibration from observations of 3C 48 (Sν=0.5-0.7Jy, depending on frequency), and bandpass calibration from observations of 3C 84 (Sν=27-29Jy, depending on frequency). (2 data files).

  16. Lattice potential energy and standard molar enthalpy in the formation of 1-dodecylamine hydrobromide(1-C12H25NH3·Br)(s)

    Liu Yu-Pu; Di You-Ying; Dan Wen-Yan; He Dong-Hua; Kong Yu-Xia; Yang Wei-Wei


    This paper reports that 1-dodecylamine hydrobromide (1-C12H25NH3·Br)(s) has been synthesized using the liquid phase reaction method. The lattice potential energy of the compound 1-C12H25NH3·Br and the ionic volume and radius of the 1-C12H25NH3+ cation are obtained from the crystallographic data and other auxiliary ther-modynamic data. The constant-volume energy of combustion of 1-C12H25NH3·Br(s) is measured to be △cUm°(1-C12H25NH3·Br, s) =-(7369.03±3.28) kJ·mol-1 by means of an RBC-Ⅱ precision rotating-bomb combustion calorimeter at T=(298.15±0.001) K. The standard molar enthalpy of combustion of the compound is derived to be △cHm°(1-C12H25NH3·Br, s)=-(7384.52±3.28) kJ·mol-1 from the constant-volume energy of combustion. The standard molar enthalpy of formation of the compound is calculated to be △fHm°(1-C12H25NH3·Br, s)=-(1317.86±3.67) kJ·mol-1 from the standard molar enthalpy of combustion of the title compound and other auxiliary thermodynamic quantities through a thermochemical cycle.

  17. Effects of MnO2 Crystal Structure and Surface Property on the NH3-SCR Reaction at Low Temperature%MnO2的晶相结构和表面性质对低温NH3-SCR反应的影响

    戴韵; 李俊华; 彭悦; 唐幸福


    采用水热法合成了两种具有相同形貌但是不同物相结构的MnO2纳米棒,分别为隧道状和层状结构,考察其低温NH3选择性催化还原NOx(NH3-SCR)的性能.结果表明MnO2纳米棒的比表面积不是影响活性的主要因素,催化剂的晶相结构和表面性质对催化活性有很大影响,隧道状α-MnO2纳米棒的低温NH3-SCR活性明显高于层状δ-MnO2纳米棒.结构分析和NH3程序升温脱附(NH3-TPD)实验表明,α-MnO2纳米棒的暴露晶面(110)面存在大量的配位不饱和Mn离子,形成较多的Lewis酸性位点,而且α-MnO2较弱的Mn-O键和隧道结构都有利于NH3的吸附;而δ-MnO2纳米棒的暴露晶面(001)面上的Mn离子已达到配位饱和,所以其表面Lewis酸性位点较少.X射线光电子能谱(XPS)和热重(TG)分析表明α-MnO2纳米棒的表面更有利于NH3和NOx的活化.具有有利于吸附NH3和活化NH3和NOx的表面性质和晶型结构,是α-MnO2纳米棒活性高的主要原因.%Two manganese oxides with the same nanorod-shaped morphology but different crystal structures,tunnel and layer structures,were synthesized and investigated for selective catalytic reduction of NOx with NH3 (NH3-SCR) at low temperature.Tunneled α-MnO2 had much higher catalytic activity than layered δ-MnO2 under the same reaction conditions.Experiment results revealed that the surface area was not the main factor to affect the NH3-SCR activities over the MnO2 nanorods and that the activities were structure sensitive.Structure analysis and temperature-programmed desorption experiments of NH3 (NH3-TPD) suggested that the exposed (110) plane of α-MnO2 had many Mn cations in coordinatively unsaturated environment,while all of the Mn cations on the exposed (001) plane of δ-MnO2 were in coordinatively saturated environment.Thus,α-MnO2 possessed many more Lewis acid sites.Furthermore,α-MnO2 has weaker Mn - O bonds and an efficient tunnel structure,which are favorable characteristics for NH3

  18. Volatilização de N-NH3 na cultura de milho:: II. avaliação de fontes sólidas e fluidas em sistema de plantio direto e convencional

    W.A.R. Lara Cabezas


    Full Text Available Foram desenvolvidos dois experimentos em campo, em sistema de plantio direto (SPD sobre cobertura de aveia-preta, em latossolo vermelho-escuro, distrófico, argiloso, e em sistema de plantio convencional (SPC, após cultivo de soja, em latossolo vermelho-amarelo distrófico arenoso, no Centro de Pesquisa Novartis-Seeds e na Fazenda Stª. Teresinha, Uberlândia (MG respectivamente. O estudo objetivou avaliar as perdas por volatilização de N-NH3 da cobertura nitrogenada na cultura de milho com cerca de 100 kg ha-1 de N, de cinco fontes nitrogenadas em ambos os sistemas de plantio. As fontes nitrogenadas - sulfato de amônio, nitrato de amônio, uréia e duas soluções nitrogenadas constituídas de uréia + nitrato de amônio (uran e uréia + nitrato de amônio + sulfato de amônio (sulfuran - foram aplicadas na superfície e incorporadas no meio da entrelinha. Após a aplicação da cobertura, instalaram-se, ao acaso, três coletores do tipo semi-aberto estático, por tratamento, sendo efetuadas seis amostragens de N-NH3 volatilizado, em intervalos de quatro a cinco dias. No SPD, as perdas acumuladas de N-NH3 provenientes das fontes uréia, uran e sulfuran aplicadas na superfície foram, respectivamente, de 78,0; 37,2 e 26,9% do N aplicado. No SPC, as perdas mais significativas foram de uréia (30,7% e uran (9,7%. O nitrato de amônio e o sulfato de amônio apresentaram perdas inferiores a 15,0% do N aplicado à superfície. A correlação das perdas por volatilizacão de N-NH3 e a produtividade dos dois experimentos mostraram um ajuste linear negativo, de tal forma que no SPD houve uma queda de produção de 13,3 kg de grãos e no SPC, de 11,8 kg de grãos para cada quilograma de N volatilizado.

  19. Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH3NH3PbI3

    Shirayama, Masaki; Kadowaki, Hideyuki; Miyadera, Tetsuhiko; Sugita, Takeshi; Tamakoshi, Masato; Kato, Masato; Fujiseki, Takemasa; Murata, Daisuke; Hara, Shota; Murakami, Takurou N.; Fujimoto, Shohei; Chikamatsu, Masayuki; Fujiwara, Hiroyuki


    Light-induced photocarrier generation is an essential process in all solar cells, including organic-inorganic hybrid (CH3NH3PbI3 ) solar cells, which exhibit a high short-circuit current density (Jsc ) of approximately 20 mA /cm2 . Although the high Jsc observed in the hybrid solar cells relies on strong electron-photon interaction, the optical transitions in the perovskite material remain unclear. Here, we report artifact-free CH3NH3PbI3 optical constants extracted from ultrasmooth perovskite layers without air exposure and assign all of the optical transitions in the visible and ultraviolet region unambiguously, based on density-functional theory (DFT) analysis that assumes a simple pseudocubic crystal structure. From the self-consistent spectroscopic ellipsometry analysis of the ultrasmooth CH3NH3PbI3 layers, we find that the absorption coefficients of CH3NH3PbI3 (α =3.8 ×104 cm-1 at 2.0 eV) are comparable to those of CuInGaSe2 and CdTe, and high α values reported in earlier studies are overestimated seriously by the extensive surface roughness of CH3NH3PbI3 layers. The polarization-dependent DFT calculations show that CH3NH3 + interacts strongly with the PbI3 - cage, modifying the CH3NH3PbI3 dielectric function in the visible region rather significantly. In particular, the transition matrix element of CH3NH3PbI3 varies, depending on the position of CH3NH3 + within the Pb—I network. When the effect of CH3NH3 + on the optical transition is eliminated in the DFT calculation, the CH3NH3PbI3 dielectric function deduced from DFT shows an excellent agreement with the experimental result. As a result, distinct optical transitions observed at E0(Eg)=1.61 eV , E1=2.53 eV , and E2=3.24 eV in CH3NH3PbI3 are attributed to the direct semiconductor-type transitions at the R , M , and X points in the pseudocubic Brillouin zone, respectively. We further perform the quantum efficiency (QE) analysis for a standard hybrid-perovskite solar cell incorporating a mesoporous TiO2

  20. Defect properties of the two-dimensional (CH3NH3)2Pb(SCN)2I2 perovskite: a density-functional theory study.

    Xiao, Zewen; Meng, Weiwei; Wang, Jianbo; Yan, Yanfa


    Recently, solar cells based on 2D (CH3NH3)2Pb(SCN)2I2 perovskite have realized a power conversion efficiency of 3.23%. In this work, we study the defect properties of (CH3NH3)2Pb(SCN)2I2 through density-functional theory calculations. It is found that the lower crystal structure dimensionality of (CH3NH3)2Pb(SCN)2I2 makes the valence band maximum lower and the conduction band minimum higher as compared to its 3D CH3NH3PbI3 perovskite counterpart, resulting in relatively deeper defect transition levels. Our calculated defect formation energies suggest that if the 2D (CH3NH3)2Pb(SCN)2I2 perovskite absorbers are synthesized under Pb-poor and I-rich conditions, the dominant defects should be Pb vacancies, which create shallow levels. The resultant perovskite films are expected to exhibit p-type conductivity with a relatively long carrier lifetime.

  1. The deactivation mechanism of Pb on the Ce/TiO2 catalyst for the selective catalytic reduction of NOx with NH3: TPD and DRIFT studies.

    Wang, Shu-Xian; Guo, Rui-Tang; Pan, Wei-Guo; Li, Ming-Yuan; Sun, Peng; Liu, Shu-Ming; Liu, Shuai-Wei; Sun, Xiao; Liu, Jian


    It was well recognized that Pb had a poisoning effect on a SCR catalyst. In this study, the deactivation mechanism of Pb on the Ce/TiO2 catalyst was investigated based on the characterization results of TPD and in situ DRIFT studies. It was found that the addition of Pb on the Ce/TiO2 catalyst not only inhibited the adsorption and activation of NH3 species, but also led to the decrease of the activity of adsorbed NH3 species in the SCR reaction. The adsorption of NOx species and the oxidation of NO by O2 over the Ce/TiO2 catalyst were also suppressed by the addition of Pb, while the reactivity of adsorbed NO2 species did not decrease. Moreover, the results revealed that the NH3-SCR reaction over the Ce/TiO2 catalyst followed both the E-R and L-H mechanisms, while the NH3-SCR reaction over Ce/TiO2-Pb was mainly controlled by the L-H mechanism. The contributions of the L-H mechanism to the SCR reactions over Ce/TiO2 and Ce/TiO2-Pb decreased with increasing reaction temperature. The deactivation of Ce/TiO2-Pb was mainly attributed to the suppressed NH3 adsorption and activation, accompanied by the inhibited NO oxidation and the decrease of Brønsted acid sites.

  2. All solid-state solar cells based on CH3NH3PbI3-sensitized TiO2 nanotube arrays

    Yang, Xiuchun; Liu, Wei; Ren, Peng


    TiO2 nanotube arrays (TiO2 NTAs) were firstly used as photoanode in methylammonium lead iodide (CH3NH3PbI3) perovskite/TiO2 NTAs heterojunction solar cell, where CH3NH3PbI3 functions as both light absorber and hole conductor. The composition, structure and photoelectrochemical properties of the as-prepared samples were characterized by x-ray diffractometer (XRD), field-emission scanning electron microscope (FE-SEM), ultraviolet-visible (UV-vis) spectrophotometer and electrochemical workstation. The results indicate that the as-prepared CH3NH3PbI3 belongs to the cubic crystal system, and TiO2 NTAs sensitized by 0.3 M CH3NH3I and PbI2 exhibit the best photoelectrochemical properties with an open-circuit voltage of 0.422 V and a short-circuit current density of 173.4 μA cm-2. The EIS result shows that the extremely large resistance at CH3NH3PbI3/FTO interface contributes to the low current density of the perovskite solar cell.

  3. Effects of synthesis methods on catalytic activities of CoOx-TiO2 for low-temperature NH3-SCR of NO.

    Zhu, Li; Zeng, Yiqing; Zhang, Shule; Deng, Jinli; Zhong, Qin


    A series of cobalt doped TiO2 (Co-TiO2) and CoOx loaded TiO2 (Co/TiO2) catalysts prepared by sol-gel and impregnation methods respectively were investigated on selective catalytic reduction with NH3 (NH3-SCR) of NO. It was found that Co-TiO2 catalyst showed more preferable catalytic activity at low temperature range. From characterization results of XRD, TEM, Raman and FT-IR, Co species were proved to be doped into TiO2 lattice by replaced Ti atoms. After being characterized and analyzed by NH3-TPD, PL, XPS, EPR and DRIFTS, it was found that the better NH3-SCR activities of Co-TiO2 catalysts, compared with Co/TiO2 catalyst, were ascribed to the formation of more oxygen vacancies which further promoted the production of more superoxide ions (O2(-)). The superoxide ions were crucial for the formation of low temperature SCR reaction intermediates (NO3(-)) by reacting with adsorbed NO molecule. Therefore, these aspects were responsible for the higher low temperature NH3-SCR activity of Co-TiO2 catalysts.

  4. The mechanism of ammonium bisulfate formation and decomposition over V/WTi catalysts for NH3-selective catalytic reduction at various temperatures.

    Li, Chenxu; Shen, Meiqing; Yu, Tie; Wang, Jianqiang; Wang, Jun; Zhai, Yanping


    In this study, the mechanism of ammonium bisulfate (ABS) formation and decomposition over V/WTi for the NH3-selective catalytic reduction (SCR) at various temperatures was deeply investigated. Bridged bidentate, chelating bidentate, and tridentate sulfates bound to TiO2 were formed as dominant intermediates at 200, 250, and 300 °C, respectively. These sulfates reacted with affinitive ammonium species to form ammonium (bi)sulfate species and also covered the active sites and embedded the VOSO4 intermediates, which resulted in an inferior intrinsic NH3-SCR conversion rate at 200 °C and 250 °C. At 300 °C, trace amounts of ABS on TiO2 presented no influence on the NH3-SCR performance. The electrons deviating towards sulfates through the bond between ABS and metal oxides (WO3 and TiO2) weakened the stability of ABS and lowered its decomposition temperature, whereas the vanadia species played the opposite role due to the sulfur species existing in an electron saturation state with the formation of the VOSO4 intermediate. The presence of NO + O2 could break the bonds inside ABS and it could react with the ammonium species originating from ABS, which pulls NH3 out of the ABS formation equilibrium and accelerates its decomposition and competitively inhibits its formation. Correspondingly, the faster NH3-SCR conversion rate and higher N2 selectivity improve the ABS poisoning resistance of the V/WTi catalyst at low temperatures.

  5. Modulated CH3NH3PbI3−xBrx film for efficient perovskite solar cells exceeding 18%

    Tu, Yongguang; Wu, Jihuai; Lan, Zhang; He, Xin; Dong, Jia; Jia, Jinbiao; Guo, Panfeng; Lin, Jianming; Huang, Miaoliang; Huang, Yunfang


    The organic-inorganic lead halide perovskite layer is a crucial factor for the high performance perovskite solar cell (PSC). We introduce CH3NH3Br in the precursor solution to prepare CH3NH3PbI3−xBrx hybrid perovskite, and an uniform perovskite layer with improved crystallinity and apparent grain contour is obtained, resulting in the significant improvement of photovoltaic performance of PSCs. The effects of CH3NH3Br on the perovskite morphology, crystallinity, absorption property, charge carrier dynamics and device characteristics are discussed, and the improvement of open circuit voltage of the device depended on Br doping is confirmed. Based on above, the device based on CH3NH3PbI2.86Br0.14 exhibits a champion power conversion efficiency (PCE) of 18.02%. This study represents an efficient method for high-performance perovskite solar cell by modulating CH3NH3PbI3−xBrx film. PMID:28303938

  6. The effect of wind velocity, air temperature and humidity on NH 3 and SO 2 transfer into bean leaves ( phaseolus vulgaris L.)

    van Hove, L. W. A.; Vredenberg, W. J.; Adema, E. H.

    The influence of wind velocity, air temperature and vapour pressure deficit of the air (VPD) on NH 3 and SO 2 transfer into bean leaves ( Phaseolus vulgaris L.) was examined using a leaf chamber. The measurements suggested a transition in the properties of the leaf boundary layer at a wind velocity of 0.3-0.4 ms -1 which corresponds to a Recrit value of about 2000. At higher wind velocities the leaf boundary layer resistance ( rb) was 1.5-2 times lower than can be calculated from the theory. Nevertheless, the assessed relationships between rb and wind velocity appeared to be similar to the theoretical derived relationship for rb. The NH 3 flux and in particular the SO 2 flux into the leaf strongly increased at a VPD decline. The increase of the NH 3 flux could be attributed to an increase of the stomatal conductance ( gs). However, the increase of the SO 2 flux could only partly be explained by an increase of gs. An apparent additional uptake was also observed for the NH 3 uptake at a low temperature and VPD. The SO 2 flux was also influenced by air temperature which could be explained by a temperature effect on gs. The results suggest that calculation of the NH 3 and SO 2 flux using data of gs gives a serious understimation of the real flux of these gases into leaves at a low temperature and VPD.

  7. Attaining the Steady State of the Nitriding Potential after a Change of NH3 Atmosphere Flow Rate during the Gas Nitriding Process

    Jerzy Michalski; Jan Tacikowski; Piotr Wach; Tomasz Babul; Nabil Tarfa


    In single and multi-stage nitriding processes, each stage is characterized by the following parameters:temperature and time, type and composition of incoming atmosphere, as well as the set value of the nitriding potential. In the case of an atmosphere composed of raw ammonia and dissociated ammonia (NH3- NH3diss), the set value of the nitriding potential can be achieved by a change of the incoming atmosphere make-up, while in the case of atmospheres comprising NH3 and NH3 - N2 - by a change of the atmosphere flow rate. The time needed to reach a stabilized state, after the initiation of a change in the atmosphere gas mix can be assessed relatively easily. The problem is much more complex if we want to predict the time of reaching a new stabilized state following a change in atmosphere flow rate. The time of reaching stabilized state is, in this case, a complex function of the flow rate of the atmosphere which forces the potential change, and of temperature. This problem, in the case of the NH3 type atmosphere, is the subject of investigation in this work. Factors are discussed, affecting the rate at which stabilized state is reached by the system after the introduction of a disturbance, necessary to attain the required nitriding potential.

  8. Effect of water vapor on NH3-NO/NO2 SCR performance of fresh and aged MnOx-NbOx-CeO2 catalysts.

    Chen, Lei; Si, Zhichun; Wu, Xiaodong; Weng, Duan; Wu, Zhenwei


    A MnOx-NbOx-CeO2 catalyst for low temperature selective catalytic reduction (SCR) of NOx with NH3 was prepared by a sol-gel method, and characterized by NH3-NO/NO2 SCR catalytic activity, NO/NH3 oxidation activity, NOx/NH3 TPD, XRD, BET, H2-TPR and in-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The results indicate that the MnOx-NbOx-CeO2 catalyst shows excellent low temperature NH3-SCR activity in the temperature range of 150-300°C. Water vapor inhibits the low temperature activity of the catalyst in standard SCR due to the inhibition of NOx adsorption. As the NO2 content increases in the feed, water vapor does not affect the activity in NO2 SCR. Meanwhile, water vapor significantly enhances the N2 selectivity of the fresh and the aged catalysts due to its inhibition of the decomposition of NH4NO3 into N2O.

  9. In-situ and Real-time Monitoring of Mechanochemical Preparation of Li2Mg(NH2BH3)4 and Na2Mg(NH2BH3)4 and their Thermal Dehydrogenation.

    Biliskov, Nikola; Borgschulte, Andreas; Užarević, Krunoslav; Halasz, Ivan; Lukin, Stipe; Milošević, Sanja; Milanović, Igor; Grbović Novaković, Jasmina


    For the first time, in-situ monitoring of uninterrupted mechanochemical synthesis of two bimetallic amidoboranes,M2Mg(NH2BH3)4 (M = Li, Na), by means of Raman spectroscopy has been applied. This approach allowed real-time observation of key intermediate phases and a straightforward follow-up of the reaction course. Detailed analysis of time-dependent spectra revealed a two-step mechanism through MNH2BH3.NH3BH3 adducts as key intermediate phases which further reacted with MgH2, giving M2Mg(NH2BH3)4 as final products. The intermediates partially take a competitive pathway toward the oligomeric M(BH3NH2BH2NH2BH3) phases. The crystal structure of the novel bimetallic amidoborane Li2Mg(NH2BH3)4 was solved from high-resolution powder diffraction data and showed an analogous metal coordination as in Na2Mg(NH2BH3)4, but a significantly different crystal packing. Li2Mg(NH2BH3)4 thermally dehydrogenates releasing highly pure H2 in the amount of 7 wt% and at a lower temperature then its sodium analogue making it significantly more viable for practical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening

    Yang, Mengjin; Zhang, Taiyang; Schulz, Philip; Li, Zhen; Li, Ge; Kim, Dong Hoe; Guo, Nanjie; Berry, Joseph J.; Zhu, Kai; Zhao, Yixin


    Organometallic halide perovskite solar cells (PSCs) have shown great promise as a low-cost, high-efficiency photovoltaic technology. Structural and electro-optical properties of the perovskite absorber layer are most critical to device operation characteristics. Here we present a facile fabrication of high-efficiency PSCs based on compact, large-grain, pinhole-free CH3NH3PbI3-xBrx (MAPbI3-xBrx) thin films with high reproducibility. A simple methylammonium bromide (MABr) treatment via spin-coating with a proper MABr concentration converts MAPbI3 thin films with different initial film qualities (for example, grain size and pinholes) to high-quality MAPbI3-xBrx thin films following an Ostwald ripening process, which is strongly affected by MABr concentration and is ineffective when replacing MABr with methylammonium iodide. A higher MABr concentration enhances I-Br anion exchange reaction, yielding poorer device performance. This MABr-selective Ostwald ripening process improves cell efficiency but also enhances device stability and thus represents a simple, promising strategy for further improving PSC performance with higher reproducibility and reliability.

  11. The CU mobile Solar Occultation Flux instrument: structure functions and emission rates of NH3, NO2 and C2H6

    Kille, Natalie; Baidar, Sunil; Handley, Philip; Ortega, Ivan; Sinreich, Roman; Cooper, Owen R.; Hase, Frank; Hannigan, James W.; Pfister, Gabriele; Volkamer, Rainer


    We describe the University of Colorado mobile Solar Occultation Flux instrument (CU mobile SOF). The instrument consists of a digital mobile solar tracker that is coupled to a Fourier transform spectrometer (FTS) of 0.5 cm-1 resolution and a UV-visible spectrometer (UV-vis) of 0.55 nm resolution. The instrument is used to simultaneously measure the absorption of ammonia (NH3), ethane (C2H6) and nitrogen dioxide (NO2) along the direct solar beam from a moving laboratory. These direct-sun observations provide high photon flux and enable measurements of vertical column densities (VCDs) with geometric air mass factors, high temporal resolution of 2 s and spatial resolution of 5-19 m. It is shown that the instrument line shape (ILS) of the FTS is independent of the azimuth and elevation angle pointing of the solar tracker. Further, collocated measurements next to a high-resolution FTS at the National Center for Atmospheric Research (HR-NCAR-FTS) show that the CU mobile SOF measurements of NH3 and C2H6 are precise and accurate; the VCD error at high signal to noise ratio is 2-7 %. During the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) from 21 July to 3 September 2014 in Colorado, the CU mobile SOF instrument measured median (minimum, maximum) VCDs of 4.3 (0.5, 45) × 1016 molecules cm-2 NH3, 0.30 (0.06, 2.23) × 1016 molecules cm-2 NO2 and 3.5 (1.5, 7.7) × 1016 molecules cm-2 C2H6. All gases were detected in larger 95 % of the spectra recorded in urban, semi-polluted rural and remote rural areas of the Colorado Front Range. We calculate structure functions based on VCDs, which describe the variability of a gas column over distance, and find the largest variability for NH3. The structure functions suggest that currently available satellites resolve about 10 % of the observed NH3 and NO2 VCD variability in the study area. We further quantify the trace gas emission fluxes of NH3 and C2H6 and production rates of NO2 from concentrated animal feeding

  12. Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route

    Fang, Cheng; Zhang, Dengsong; Cai, Sixiang; Zhang, Lei; Huang, Lei; Li, Hongrui; Maitarad, Phornphimon; Shi, Liyi; Gao, Ruihua; Zhang, Jianping


    Nanoflaky MnOx on carbon nanotubes (nf-MnOx@CNTs) was in situ synthesized by a facile chemical bath deposition route for low-temperature selective catalytic reduction (SCR) of NO with NH3. This catalyst was mainly characterized by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD). The SEM, TEM, XRD results and N2 adsorption-desorption analysis indicated that the CNTs were surrounded by nanoflaky MnOx and the obtained catalyst exhibited a large surface area as well. Compared with the MnOx/CNT and MnOx/TiO2 catalysts prepared by an impregnation method, the nf-MnOx@CNTs presented better NH3-SCR activity at low temperature and a more extensive operating temperature window. The XPS results showed that a higher atomic concentration of Mn4+ and more chemisorbed oxygen species existed on the surface of CNTs for nf-MnOx@CNTs. The H2-TPR and NH3-TPD results demonstrated that the nf-MnOx@CNTs possessed stronger reducing ability, more acid sites and stronger acid strength than the other two catalysts. Based on the above mentioned favourable properties, the nf-MnOx@CNT catalyst has an excellent performance in the low-temperature SCR of NO to N2 with NH3. In addition, the nf-MnOx@CNT catalyst also presented favourable stability and H2O resistance.Nanoflaky MnOx on carbon nanotubes (nf-MnOx@CNTs) was in situ synthesized by a facile chemical bath deposition route for low-temperature selective catalytic reduction (SCR) of NO with NH3. This catalyst was mainly characterized by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature

  13. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3.

    Xie, Lijuan; Liu, Fudong; Ren, Limin; Shi, Xiaoyan; Xiao, Feng-Shou; He, Hong


    Cu-SSZ-13 samples prepared by a novel one-pot synthesis method achieved excellent NH3-SCR performance and high N2 selectivity from 150 to 550 °C after ion exchange treatments. The selected Cu3.8-SSZ-13 catalyst was highly resistant to large space velocity (800 000 h(-1)) and also maintained high NOx conversion in the presence of CO2, H2O, and C3H6 in the simulated diesel exhaust. Isolated Cu(2+) ions located in three different sites were responsible for its excellent NH3-SCR activity. Primary results suggest that the one-pot synthesized Cu-SSZ-13 catalyst is a promising candidate as an NH3-SCR catalyst for the NOx abatement from diesel vehicles.

  14. Electroluminescence from perovskite LEDs with the structure of Ag/Spiro-OMeTAD/CH3NH3PbI3/TiO2/FTO

    Wang, Minhuan; Shi, Yantao; Bian, Jiming; Dong, Qingshun; Sun, Hongjun; Liu, Hongzhu; Luo, Yingmin; Zhang, Yuzhi


    The perovskite light-emitting diodes (Pe-LEDs) with the structure of Ag/Spiro-OMeTAD/CH3NH3PbI3/TiO2/FTO were synthesized, where the CH3NH3PbI3 perovskite layer was deposited by a two-step spin-coating process. A dominant near-infrared electroluminescence (EL) at 773 nm was detected from the Pe-LEDs under forward bias at room temperature. The origin and mechanism of the EL were discussed in comparison with the photoluminescence (PL) spectra, and it was attributed to the radiative recombination of electrons and holes confined in the CH3NH3PbI3 emissive layer. Moreover, the corresponding energy band diagrams was proposed to illustrate the carrier transport mechanism in the Pe-LED device.

  15. Diffusion length of photo-generated charge carriers in layers and powders of CH3NH3PbI3 perovskite

    Dittrich, Th.; Lang, F.; Shargaieva, O.; Rappich, J.; Nickel, N. H.; Unger, E.; Rech, B.


    The diffusion or transport lengths of photo-generated charge carriers in CH3NH3PbI3 layers (thickness up to 1 μm) and powders have been directly measured with high accuracy by modulated surface photovoltage after Goodman. The values of the diffusion lengths of photo-generated charge carriers ranged from 200 nm to tenths of μm. In thin CH3NH3PbI3 layers, the transport lengths corresponded to the layer thickness whereas in thicker layers and in crystallites of CH3NH3PbI3 powders the grain size limited the diffusion length. For grains, the diffusion length of photo-generated charge carriers depended on the measurement conditions.

  16. Effects of NH3 Flow Rate During AlGaN Barrier Layer Growth on the Material Properties of AlGaN/GaN HEMT Heterostructure

    Lumbantoruan, Franky J.; Wong, Yuen-Yee; Huang, Wei-Ching; Yu, Hung-Wei; Chang, Edward-Yi


    NH3 flow rate during AlGaN barrier layer growth not only affects the growth efficiency and surface morphology as a result of parasitic reactions but also influences the concentration of carbon impurity in the AlGaN barrier. Carbon, which decomposes from metal precursors, plays a role in electron compensation for AlGaN/GaN HEMT. No 2-dimensional electron gas (2-DEG) was detected in the AlGaN/GaN structure if grown with 0.5 slm of NH3 due to the presence of higher carbon impurity (2.6 × 1019 cm-2). When the NH3 flow rate increased to 6.0 slm, the carbon impurity reduced to 2.10 × 1018 atom cm-3 and the 2 DEG electron density recovered to 9.57 × 1012 cm-2.

  17. The enhancement for SCR of NO by NH3 over the H2 or CO pretreated Ag/γ-Al2O3 catalyst.

    Yu, Lemeng; Zhong, Qin; Zhang, Shule


    H2 or CO pretreatment had been processed on the Ag/γ-Al2O3 catalyst which significantly enhanced its NH3-SCR activity. The main purpose of this study was to prove that the impacts of pretreatment on silver species caused the enhancement. XRD, UV-vis, XPS, in situ FTIR and NO-TPD results showed the relationship between pretreatment, Ag species, NOX adsorption and NOX conversion. Extra nitrates were adsorbed on the Ag clusters which were produced by the pretreatment, thereby enhancing the activity. The reactivities between NO and NH3 had been studied. The difference between CO-pretreatment and H2-pretreatment had also been discussed. Furthermore, the durability and stability of the pretreated sample were tested. Therefore, a modified Ag2O/Al2O3 catalyst for NH3-SCR was researched.

  18. Calibrated Passive Sampling--Multi-plot Field Measurements of NH3 Emissions with a Combination of Dynamic Tube Method and Passive Samplers.

    Pacholski, Andreas


    Agricultural ammonia (NH3) emissions (90% of total EU emissions) are responsible for about 45% airborne eutrophication, 31% soil acidification and 12% fine dust formation within the EU15. But NH3 emissions also mean a considerable loss of nutrients. Many studies on NH3 emission from organic and mineral fertilizer application have been performed in recent decades. Nevertheless, research related to NH3 emissions after application fertilizers is still limited in particular with respect to relationships to emissions, fertilizer type, site conditions and crop growth. Due to the variable response of crops to treatments, effects can only be validated in experimental designs including field replication for statistical testing. The dominating ammonia loss methods yielding quantitative emissions require large field areas, expensive equipment or current supply, which restricts their application in replicated field trials. This protocol describes a new methodology for the measurement of NH3 emissions on many plots linking a simple semi-quantitative measuring method used in all plots, with a quantitative method by simultaneous measurements using both methods on selected plots. As a semi-quantitative measurement method passive samplers are used. The second method is a dynamic chamber method (Dynamic Tube Method) to obtain a transfer quotient, which converts the semi-quantitative losses of the passive sampler to quantitative losses (kg nitrogen ha(-1)). The principle underlying this approach is that passive samplers placed in a homogeneous experimental field have the same NH3 absorption behavior under identical environmental conditions. Therefore, a transfer co-efficient obtained from single passive samplers can be used to scale the values of all passive samplers used in the same field trial. The method proved valid under a wide range of experimental conditions and is recommended to be used under conditions with bare soil or small canopies (<0.3 m). Results obtained from

  19. 大气中NH3的光学监测技术研究进展%Advances in Optical Monitoring Techniques on Atmospheric Ammonia

    王界; 谢品华; 司福祺; 李昂; 窦科; 徐晋; 秦敏; 吴丰成


    Ammonia, the third most important abundant nitrogen compound, is a primary alkaline gas in the atmosphere. As a neutralizer of acid pollutants, ammonia has been attracted research interest. The principle sources of NH, emission have been listed. Five Optical techniques of monitoring atmospheric NH3 currently were introduced in detail, including Photo-acoustic Spectroscopy ( PAS) , Quantum Cascade Stimulated Absorption Spectra ( QCLAS ) , Fourier Transform Infrared Spectroscopy (FTIR), Tunable Semiconductor Laser Absorption Spectrum (TDLAS) and UV Differential Optical Absorption Spectroscopy ( UV-DOAS) and at last, it revealed the advantages and disadvantages among the above 5 techniques, especially to their measurement difficulties for ammonia and application areas. The recent progresses, achievements and key results on the 5 field techniques in the past decade are also put forward.%NH3是大气中含量仅次于NO和N2的含氮化合物,也是大气中重要的碱性气体,作为酸性污染物的中和剂,NH3越来越受到人们的重视.文章介绍了大气NH3的主要农业和非农业排放来源,并详细介绍了近年来大气NH3的光谱测量技术(光声光谱技术,量子级联激光吸收光谱技术,傅里叶红外分析技术,可调谐半导体激光器吸收光谱技术以及紫外差分吸收光谱技术)及其进展,总结并分析了这些技术的技术要点、应用领域以及在最近10年对大气NH3的测量结果和研究热点.

  20. What is $\\Delta m^2_{ee}$ ?

    Parke, Stephen


    The current short baseline reactor experiments, Daya Bay and RENO (Double Chooz) have measured (or are capable of measuring) an effective $\\Delta m^2$ associated with the atmospheric oscillation scale of 0.5 km/MeV in electron anti-neutrino disappearance. In this paper, I compare and contrast the different definitions of such an effective $\\Delta m^2$ and argue that the simple, L/E independent, definition given by $\\Delta m^2_{ee} \\equiv \\cos^2 \\theta_{12} \\Delta m^2_{31}+ \\sin^2 \\theta_{12} \\Delta m^2_{32}$, i.e. "the $\

  1. Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3.

    Wang, Yun; Gould, Tim; Dobson, John F; Zhang, Haimin; Yang, Huagui; Yao, Xiangdong; Zhao, Huijun


    The organic-inorganic hybrid perovskite CH3NH3PbI3 is a novel light harvester, which can greatly improve the solar-conversion efficiency of dye-sensitized solar cells. In this article, a first-principle theoretical study is performed using local, semi-local and non-local exchange-correlation approximations to find a suitable method for this material. Our results, using the non-local optB86b + vdWDF functional, excellently agree with the experimental data. Thus, consideration of weak van der Waals interactions is demonstrated to be important for the accurate description of the properties of this type of organic-inorganic hybrid materials. Further analysis of the electronic properties reveals that I 5p electrons can be photo-excited to Pb 6p empty states. The main interaction between the organic cations and the inorganic framework is through the ionic bonding between CH3 and I ions. Furthermore, I atoms in the Pb-I framework are found to be chemically inequivalent because of their different chemical environments.

  2. High intrinsic carrier mobility and photon absorption in the perovskite CH3NH3PbI3.

    Wang, Youwei; Zhang, Yubo; Zhang, Peihong; Zhang, Wenqing


    The carrier transport and optical properties of the hybrid organic-inorganic perovskite CH3NH3PbI3 are investigated using first-principles approaches. We found that the electron and hole mobilities could reach surprisingly high values of 7-30 × 10(3) and 1.5-5.5 × 10(3) cm(2) V(-1) s(-1), respectively, and both are estimated to be much higher than the current experimental measurements. The high carrier mobility is ascribed to the intrinsically small effective masses of anti-bonding band-edge states. The above results imply that there is still space to improve the performance of related solar cells. This material also has a sharp photon absorption edge and an absorption coefficient as high as 10(5) cm(-1), both of which contribute to effective utilization of solar radiation. Although band-edge states are mainly derived from the inorganic ions of Pb and I, thermal movement of the organic base has indirect influences on the bandgap and carrier effective masses, resulting in the temperature-dependent solar cell efficiencies.

  3. Temperature-Dependent Electric Field Poling Effects in CH3NH3PbI3 Optoelectronic Devices.

    Zhang, Chuang; Sun, Dali; Liu, Xiaojie; Sheng, Chuan-Xiang; Vardeny, Zeev Valy


    Organo-lead halide perovskites show excellent optoelectronic properties; however, the unexpected inconsistency in forward-backward I-V characteristics remains a problem for fabricating solar panels. Here we have investigated the reasons behind this "hysteresis" by following the changes in photocurrent and photoluminescence under electric field poling in transverse CH3NH3PbI3-based devices from 300 to 10 K. We found that the hysteresis disappears at cryogenic temperatures, indicating the "freeze-out" of the ionic diffusion contribution. When the same device is cooled under continuous poling, the built-in electric field from ion accumulation brings significant photovoltaic effect even at 10 K. From the change of photoluminescence upon polling, we found a second dipole-related mechanism which enhances radiative recombination upon the alignment of the organic cations. The ionic origin of hysteresis was also verified by applying a magnetic field to affect the ion diffusion. These findings reveal the coexistence of ionic and dipole-related mechanisms for the hysteresis in hybrid perovskites.

  4. Whispering-gallery-mode based CH3NH3PbBr3 perovskite microrod lasers with high quality factors

    Wang, Kaiyang; Zhang, Chen; Sun, Wenzhao; Gu, Zhiyuan; Xiao, Shumin; Song, Qinghai


    Lead halide perovskite based micro- and nano- lasers have been widely studied in past two years. Due to their long carrier diffusion length and high external quantum efficiency, lead halide perovskites have been considered to have bright future in optoelectronic devices, especially in the "green gap" wavelength region. However, the quality (Q) factors of perovskite lasers are unspectacular compared to conventional microdisk lasers. The record value of full width at half maximum (FWHM) at threshold is still around 0.22 nm. Herein we synthesized solution-processed, single-crystalline CH3NH3PbBr3 perovskite microrods and studied their lasing actions. In contrast to entirely pumping a microrod on substrate, we partially excited the microrods that were hanging in the air. Consequently, single-mode or few-mode laser emissions have been successfully obtained from the whispering-gallery like diamond modes, which are confined by total internal reflection within the transverse plane. Owning to the better light confinem...

  5. Mechanism of SO2 Promotion for NO Reduction With NH3 over Activaed Carbon—Supported Vanadium Oxide Catalyst

    ZhenpingZhu; ZhenyuLiu; HongxianNiu; ShoujunLiu; TiandouHu; TaoLiu


    SO2 shows a significant promoting effect on the activity of V2O5/AC catlayst for No reduction with ammonia at low temperatrures (180-250℃).In the present study,the mechanism of the SO2 promotion was studied.It was found that the promoting effect of SO2 on the catalytic activity is due to the formation of a sulfate species on the catalyst surace.The sulfate species is linked to carbon surfaces other the vanadium or mineral surfaces.There is a synergetic role between carbon and V2O5 for the formation of surface sulfate species.A possilbe mechanism is proposed.SO2 is adsorbed and oxidized by oxygen to SO3 on the vanadium surface, and the formed SO3 shifts to the carbon surface and converts into sulfate species.The formed sulfate species acts as a new acid site,improves significantly the NH3 adsorption,and hence promotes the activity of the catalyst.During the reaction in the presence of SO2 at low temperatures,the sulfate species stays on the catalyst surface,while the ammonium ions react with NO continuously to avoid the formation and deposition of excess ammonium sulfate salts on the catalyst surface.

  6. Performance Improvement of CH3NH3PbI3 Perovskite Solar Cell by CH3SH Doping

    Hong Li


    Full Text Available Organometal halide perovskites have recently emerged as an appealing candidate in photovoltaic devices due to their excellent properties. Therefore, intense efforts have been devoted to find the ideal organics for perovskite solar cells. In response, we investigate the doping effect of CH3SH organic on the structure and related performance of a CH3NH3PbI3 perovskite solar cell, via in situ synchrotron- based grazing incidence X-ray diffraction (GIXRD, together with scanning electron microscopy (SEM. In situ GIXRD investigations clearly illustrated the transformation and modification of the perovskite structure induced by the organic dopant, which subsequently led to the enhance‐ ment of the power conversion efficiency of fabricated solar cells. Notably, nanoporous morphology and nanocrystal‐ line structures were discovered in the perovskite film by SEM; they were also confirmed by the increase in broad‐ ening peaks/features in the GIXRD measurements. Overall, our study may ultimately result in an attractive strategy for the fabrication of high performance perovskite solar cells.

  7. Comparison of the Performances of NH3-H20 and Libr-H2O Vapour Absorption Refrigeration Cycles

    Prof. Nilesh B. Totla


    Full Text Available Developments in absorption cooling technology present an opportunity to achieve significant improvements on micro-scale to buildings, cooling, heating and power systems for residential and light commercial buildings. Their resultant effects are effective, energy efficient and economical. This study therefore contributes an important knowledge and method in the development, fabrication and application of an absorption refrigerator as a better alternative to the commonly used compressor refrigerators. Two fluid gas absorption refrigerators use electric based heater installed generator and no moving parts, such as pumps and compressors, and operate at a single system pressure. In this paper the performances analysis of the NH3-H2O and possible alternative cycles as lithium bromide-water are compared in respect of the (COP and different operating conditioning. The highest COP was found as a function of the absorber, generator, condenser, and evaporating temperature. This paper compares the performance of vapour absorption refrigeration cycles that are used for refrigeration temperatures below 0°C. Since the most common vapour absorption refrigeration systems use ammonia-water solution with ammonia as the refrigerant and water as the absorbent, research has been devoted to improvement of the performance of ammonia-water absorption refrigeration systems in recent years.

  8. Mn-CeOx/Ti-PILCs for selective catalytic reduction of NO with NH3 at low temperature.

    Shen, Boxiong; Ma, Hongqing; Yao, Yan


    Titanium-pillared clays (Ti-PILCs) were obtained by different ways from TiCl4, Ti(OC3H7)4 and TiOSO4, respectively. Mn-CeO(x)/)Ti-PILCs were then prepared and their activities of selective catalytic reduction (SCR) of NO with NH3 at low-temperature were evaluated. Mn-CeO(x)/Ti-PILCs were characterized by X-ray diffraction, N2 adsorption, Fourier transform infrared spectroscopy, thermal analysis, temperature-programmed desorption of ammonia and H2-temperature-programmed reduction. It was found that Ti-pillar tend to be helpful for the enlargement of surface area, pore volume, acidity and the enhancement of thermal stability for Mn-CeO(x)/Ti-PILCs. Mn-CeO(x)/Ti-PILCs catalysts were active for the SCR of NO. Among three resultant Mn-CeO(x)/Ti-PILCs, the catalyst from TiOSO4 showed the highest activity with 98% NO conversion at 220 degrees C, it also exhibited good resistance to H2O and SO2 in flue gas. The catalyst from TiCl4 exhibited the lowest activity due to the unsuccessful pillaring process.

  9. Selective catalytic reduction of NO by NH3 on Cu-faujasite catalysts: an experimental and quantum chemical approach.

    Delahay, Gérard; Villagomez, Enrique Ayala; Ducere, Jean-Marie; Berthomieu, Dorothée; Goursot, Annick; Coq, Bernard


    The selective catalytic reduction (SCR) of NO by NH3 in the presence of O2 on Cu-faujasite (Cu-FAU) has been studied. Substitution of some Cu2+ with H+ and Na+ cations, compensating for the negative charge of the zeolite framework, forms the various CuHNa-FAU studied. The amount of Cu was held constant and the proportion of H+ and Na+ varied in the sample. The substitution of Na+ for H+ increases sharply the SCR rate by lowering the temperature of reaction by about 150 K. It is proposed that the rate increase mainly comes from an unhindered migration of Cu from hidden to active sites and a modification of the redox properties of Cu species. The former was demonstrated by diffuse reflectance IR spectroscopy of adsorbed CO. The change in redox properties was demonstrated by a faster oxidation of Cu+ to Cu2+ (rate-determining step). Quantum chemical calculations on model clusters of CuHNa-FAU indicate that the faster rate of oxidation can be explained by a higher lability of protons in the absence of Na, which can be then removed from the catalyst more easily to yield H2O during the oxidation process.

  10. Recent progress of first principles calculations in CH3NH3PbI3 perovskite solar cells.

    Yun, Sining; Zhou, Xiao; Even, Jacky; Hagfeldt, Anders


    Hybrid halide perovskite solar cells (PSCs) exceeding 22% power conversion efficiencies (PCEs) have attracted considerable global attention due to the intrinsic nature of perovskite. Although we all know about that perovskite plays a significant role in the operation of PSCs, the fundamental theories associated with perovskite have not been resolved by the exponential increase in research effort. This raises questions about whether the first-principles calculations are sufficiently addressing the underlying issues in perovskite. In this minireview, we assess the current understanding of structural and electronic properties, defects, ionic diffusion, and shift current for CH3NH3PbI3 perovskite based on the first-principles calculations, and the effect of ionic transport on the hysteresis of current-voltage curves in PSCs. The shift current connected to the possible presence of ferroelectricity is also discussed. The current state-of-the-art and some open questions regarding PSCs are also highlighted, and the benefits, challenges, and potentials of perovskite for use in PSCs are especially stressed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Influence of NH3-treating temperature on visible light photocatalytic activity of N-doped P25-Ti02

    CHEN WeiPing; WANG Yan; JIN ZhenSheng; FENG CaiXia; WU ZhiShen; ZHANG ZhiJun


    The influence of NH3-treating temperature on the visible light photocatalytic activity of N-doped P25-TiO2 as well as the relationship between the surface composition structure of TiO2 and its visible lightphotocatalytic activity were investigated. The results showed that N-doped P25-TiO2 treated at 600°C had the highest activity. The structure of P25-Ti02 was converted from anatase to rutile at 700°C. More-over,no N-doping was detected at the surface of P25-Ti02. There was no simply linear relationship be-tween the visible light photocatalytic activity and the concentration of doped nitrogen,and visible light absorption. The visible light photocatalytic activity of N-doped P25-Ti02 was mainly influenced by the synergistic action of the following factors: (i) the formation of the single-electron-trapped oxygen va-cancies (denoted as Vo); (ii) the doped nitrogen on the surface of TiO2; (iii) the anatase TiO2 structure.

  12. Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells.

    Meloni, Simone; Moehl, Thomas; Tress, Wolfgang; Franckevičius, Marius; Saliba, Michael; Lee, Yong Hui; Gao, Peng; Nazeeruddin, Mohammad Khaja; Zakeeruddin, Shaik Mohammed; Rothlisberger, Ursula; Graetzel, Michael


    CH3NH3PbX3 (MAPbX3) perovskites have attracted considerable attention as absorber materials for solar light harvesting, reaching solar to power conversion efficiencies above 20%. In spite of the rapid evolution of the efficiencies, the understanding of basic properties of these semiconductors is still ongoing. One phenomenon with so far unclear origin is the so-called hysteresis in the current-voltage characteristics of these solar cells. Here we investigate the origin of this phenomenon with a combined experimental and computational approach. Experimentally the activation energy for the hysteretic process is determined and compared with the computational results. First-principles simulations show that the timescale for MA(+) rotation excludes a MA-related ferroelectric effect as possible origin for the observed hysteresis. On the other hand, the computationally determined activation energies for halide ion (vacancy) migration are in excellent agreement with the experimentally determined values, suggesting that the migration of this species causes the observed hysteretic behaviour of these solar cells.

  13. Kinetics and Mechanisms of the Acid-base Reaction Between NH3 and HCOOH in Interstellar Ice Analogs

    Bergner, Jennifer B.; Öberg, Karin I.; Rajappan, Mahesh; Fayolle, Edith C.


    Interstellar complex organic molecules are commonly observed during star formation, and are proposed to form through radical chemistry in icy grain mantles. Reactions between ions and neutral molecules in ices may provide an alternative cold channel to complexity, as ion-neutral reactions are thought to have low or even no-energy barriers. Here we present a study of the kinetics and mechanisms of a potential ion-generating, acid-base reaction between NH3 and HCOOH to form the salt NH{}4+HCOO-. We observe salt growth at temperatures as low as 15 K, indicating that this reaction is feasible in cold environments. The kinetics of salt growth are best fit by a two-step model involving a slow “pre-reaction” step followed by a fast reaction step. The reaction energy barrier is determined to be 70 ± 30 K with a pre-exponential factor 1.4 ± 0.4 × 10-3 s-1. The pre-reaction rate varies under different experimental conditions and likely represents a combination of diffusion and orientation of reactant molecules. For a diffusion-limited case, the pre-reaction barrier is 770 ± 110 K with a pre-exponential factor of ˜7.6 × 10-3 s-1. Acid-base chemistry of common ice constituents is thus a potential cold pathway to generating ions in interstellar ices.

  14. Synthesis and Characterization of (CH3CH2CH2CH2NH3)2SnBr6

    ZHANG Zhang-Jing; GUO Guo-Cong; CAI Li-Zhen; ZHOU Guo-Wei; LIU Bing; CHEN Wen-Tong; WU A-Qing; FU Ming-Lai; HUANG Jin-Shun


    The title compound ((CH3CH2CH2CH2NH3)2SnBr6, Mr = 746.44) has been synthesized by hydrothermal technique and its crystal structure was determined by X-ray diffraction method. It crystallizes in monoclinic, space group P21/m with a = 10.633(2), b = 7.6152(15), c = 12.633(3) (A), β = 103.25(3)°, V = 995.7(4) (A)3, Z = 2, Dc = 2.490 g/cm3, F(000) = 692, μ(MoKα) = 13.309 mm-1 and T = 293(2) K. The final R = 0.0634 and wR = 0.1236 for 936 observed reflections with I > 2((I). Each tin atom in the present compound is coordinated by six bromine atoms to adopt a slightly distorted octahedral geometry. The interactions between protonated organic amine and [SnBr6]4- anions are electrostatic. The thermogravimetric analysis shows that the compound is not decomposed until 260 ℃. The optical absorption spectrum of the compound reveals the appearance of a sharp optical gap of 2.95 eV, and fluorescence study shows it displays intense blue emission in solid state.

  15. Thermal effects on CH$_3$NH$_3$PbI$_3$ perovskite from ab-initio molecular dynamics simulations

    Carignano, Marcelo A; Hutter, Jürg


    We present a molecular dynamics simulation study of CH$_3$NH$_3$PbI$_3$ based on forces calculated from density functional theory. The simulation were performed on model systems having 8 and 27 unit cells, and for a total simulation time of 40 ps in each case. Analysis of the finite size effects, in particular the mobility of the organic component, suggests that the smaller system is over correlated through the long range electrostatic interaction. In the larger system this finite size artifact is relaxed producing a more reliable description of the anisotropic rotational behavior of the methyl ammonium molecules. The thermal effects on the optical properties of the system were also analyzed. The HOMO-LUMO energy gap fluctuates around its central value with a standard deviation of approximately 0.1 eV. The projected density of states consistently place the Fermi level on the $p$ orbitals of the I atoms, and the lowest virtual state on $p$ orbitals of the Pb atoms throughout the whole simulation trajectory.

  16. Piezoelectric scattering limited mobility of hybrid organic-inorganic perovskites CH3NH3PbI3

    Lu, Ying-Bo; Kong, Xianghua; Chen, Xiaobin; Cooke, David G.; Guo, Hong


    Carrier mobility is one of the most important parameters for semiconducting materials and their use in optoelectronic devices. Here we report a systematic first principles analysis of the acoustic phonon scattering mechanism that limits the mobility of CH3NH3PbI3 (MAPbI3) perovskites. Due to the unique hybrid organic-inorganic structure, the mechanical, electronic and transport properties are dominated by the same factor, i.e. the weak interatomic bond and the easy rotation of methylammonium (MA) molecules under strain. Both factors make MAPbI3 soft. Rotation of MA molecule induces a transverse shift between Pb and I atoms, resulting in a very low deformation potential and a strong piezoelectricity in MAPbI3. Hence the carrier mobility of pristine MAPbI3 is limited by the piezoelectric scattering, which is consistent to the form of its temperature dependence. Our calculations suggest that in the pristine limit, a high mobility of about several thousand cm2 V‑1 S‑1 is expected for MAPbI3.

  17. Kinetics and mechanisms of the acid-base reaction between NH$_3$ and HCOOH in interstellar ice analogs

    Bergner, Jennifer B; Rajappan, Mahesh; Fayolle, Edith C


    Interstellar complex organic molecules (COMs) are commonly observed during star formation, and are proposed to form through radical chemistry in icy grain mantles. Reactions between ions and neutral molecules in ices may provide an alternative cold channel to complexity, as ion-neutral reactions are thought to have low or even no energy barriers. Here we present a study of a the kinetics and mechanisms of a potential ion-generating acid-base reaction between NH$_{3}$ and HCOOH to form the salt NH$_{4}^{+}$HCOO$^{-}$. We observe salt growth at temperatures as low as 15K, indicating that this reaction is feasible in cold environments. The kinetics of salt growth are best fit by a two-step model involving a slow "pre-reaction" step followed by a fast reaction step. The reaction energy barrier is determined to be 70 $\\pm$ 30K with a pre-exponential factor 1.4 $\\pm$ 0.4 x 10$^{-3}$ s$^{-1}$. The pre-reaction rate varies under different experimental conditions and likely represents a combination of diffusion and or...

  18. Multiple-Stage Structure Transformation of Organic-Inorganic Hybrid Perovskite CH3NH3PbI3

    Chen, Qiong; Liu, Henan; Kim, Hui-Seon; Liu, Yucheng; Yang, Mengjin; Yue, Naili; Ren, Gang; Zhu, Kai; Liu, Shengzhong; Park, Nam-Gyu; Zhang, Yong


    By performing spatially resolved Raman and photoluminescence spectroscopy with varying excitation wavelength, density, and data acquisition parameters, we achieve a unified understanding towards the spectroscopy signatures of the organic-inorganic hybrid perovskite, transforming from the pristine state (CH3NH3PbI3) to the fully degraded state (i.e., PbI2) for samples with varying crystalline domain size from mesoscopic scale (approximately 100 nm) to macroscopic size (centimeters), synthesized by three different techniques. We show that the hybrid perovskite exhibits multiple stages of structure transformation occurring either spontaneously or under light illumination, with exceptionally high sensitivity to the illumination conditions (e.g., power, illumination time, and interruption pattern). We highlight four transformation stages (stages I-IV, with stage I being the pristine state) along either the spontaneous or photoinduced degradation path exhibiting distinctly different Raman spectroscopy features at each stage, and point out that previously reported Raman spectra in the literature reflect highly degraded structures of either stage III or stage IV. Additional characteristic optical features of partially degraded materials under the joint action of spontaneous and photodegradation are also given. This study offers reliable benchmark results for understanding the intrinsic material properties and structure transformation of this unique category of hybrid materials, and the findings are pertinently important to a wide range of potential applications where the hybrid material is expected to function in greatly different environment and light-matter interaction conditions.

  19. High Accuracy Potential Energy Surface, Dipole Moment Surface, Rovibrational Energies and Line List Calculations for ^{14}NH_3

    Coles, Phillip; Yurchenko, Sergei N.; Polyansky, Oleg; Kyuberis, Aleksandra; Ovsyannikov, Roman I.; Zobov, Nikolay Fedorovich; Tennyson, Jonathan


    We present a new spectroscopic potential energy surface (PES) for ^{14}NH_3, produced by refining a high accuracy ab initio PES to experimental energy levels taken predominantly from MARVEL. The PES reproduces 1722 matched J=0-8 experimental energies with a root-mean-square error of 0.035 cm-1 under 6000 cm^{-1} and 0.059 under 7200 cm^{-1}. In conjunction with a new DMS calculated using multi reference configuration interaction (MRCI) and H=aug-cc-pVQZ, N=aug-cc-pWCVQZ basis sets, an infrared (IR) line list has been computed which is suitable for use up to 2000 K. The line list is used to assign experimental lines in the 7500 - 10,500 cm^{-1} region and previously unassigned lines in HITRAN in the 6000-7000 cm^{-1} region. Oleg L. Polyansky, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Lorenzo Lodi, Jonathan Tennyson, Andrey Yachmenev, Sergei N. Yurchenko, Nikolai F. Zobov, J. Mol. Spec., 327 (2016) 21-30 Afaf R. Al Derzia, Tibor Furtenbacher, Jonathan Tennyson, Sergei N. Yurchenko, Attila G. Császár, J. Quant. Spectrosc. Rad. Trans., 161 (2015) 117-130

  20. Organic-inorganic halide perovskite solar cell with CH3NH3PbI2Br as hole conductor

    Zhang, Shufang; Zhang, Chenming; Bi, Enbing; Miao, Xiaoliang; Zeng, Haibo; Han, Liyuan


    Perovskite solar cells (PSCs) have attracted enormous interest as the most remarkably growing photovoltaic devices. With the power conversion efficiencies of PSCs excessing 20%, great challenges have been focused on the issues of cost and long-term stability which are majorly related to the hole transport materials. In contrast, the PSCs without special hole conductors show great potential for commercial applications due to their cost-effective and fairly stable features. However, the inferior charge separation at the CH3NH3PbI3 (MAPbI3) and back electrode interface limits the cells for high efficiency. Our strategy is to arrange suitable energy band alignment at the interface to enhance the charge separation. We herein report a MAPbI3/MAPbI2Br cascade structured PSC with MAPbI2Br majorly acting as a hole conductor. The conversion efficiency of the PSCs is greatly improved and a high efficiency of 15.83% is achieved. This new design of using organic-inorganic halide perovskites as hole conductors provides an efficient approach for improving the performance of low-cost PSCs.

  1. Cobalt-based catalysts for the hydrolysis of NaBH4 and NH3BH3.

    Demirci, Umit B; Miele, Philippe


    Cobalt has been widely used as the main component of catalysts for the hydrolysis of sodium borohydride NaBH4 and, to a lesser extent, for the hydrolysis of ammonia borane NH3BH3. Though active in these reactions, the cobalt-based catalyst generally suffers from rapid deactivation. As emphasized in a perspective paper finalized in 2009 [Phys. Chem. Chem. Phys., 2010, 12, 14651], the nature of the catalytically active phase and the reasons for its deactivation are rather unknown. However, since 2010, significant advances have been reported. Therefore, after 4 years of fruitful research, the present perspective paper aims to (i) answer the questions asked in our previous contribution, (ii) give an overview of the new insights, and (iii) identify the nature of the catalytically active phase of cobalt. The literature of the period 2010-2013 has been exhaustively surveyed while paying attention to the characterization results and problems, the experimental conditions, and the authors' interpretations. Our main observation is that the research groups involved in the field have shown scientific curiosity and dynamism, and demonstrated ingenuity to circumvent the characterization difficulties. Thus, each group has contributed to highlight the nature of the catalytically active phase of cobalt as well as the reasons for its deactivation.

  2. Mapping the Photoresponse of CH3NH3PbI3 Hybrid Perovskite Thin Films at the Nanoscale.

    Kutes, Yasemin; Zhou, Yuanyuan; Bosse, James L; Steffes, James; Padture, Nitin P; Huey, Bryan D


    Perovskite solar cells (PSCs) based on thin films of organolead trihalide perovskites (OTPs) hold unprecedented promise for low-cost, high-efficiency photovoltaics (PVs) of the future. While PV performance parameters of PSCs, such as short circuit current, open circuit voltage, and maximum power, are always measured at the macroscopic scale, it is necessary to probe such photoresponses at the nanoscale to gain key insights into the fundamental PV mechanisms and their localized dependence on the OTP thin-film microstructure. Here we use photoconductive atomic force microscopy spectroscopy to map for the first time variations of PV performance at the nanoscale for planar PSCs based on hole-transport-layer free methylammonium lead triiodide (CH3NH3PbI3 or MAPbI3) thin films. These results reveal substantial variations in the photoresponse that correlate with thin-film microstructural features such as intragrain planar defects, grains, grain boundaries, and notably also grain-aggregates. The insights gained into such microstructure-localized PV mechanisms are essential for guiding microstructural tailoring of OTP films for improved PV performance in future PSCs.

  3. Impedance Spectroscopic Indication for Solid State Electrochemical Reaction in (CH3NH3)PbI3 Films.

    Zohar, Arava; Kedem, Nir; Levine, Igal; Zohar, Dorin; Vilan, Ayelet; Ehre, David; Hodes, Gary; Cahen, David


    Halide perovskite-based solar cells still have limited reproducibility, stability, and incomplete understanding of how they work. We track electronic processes in [CH3NH3]PbI3(Cl) ("perovskite") films in vacuo, and in N2, air, and O2, using impedance spectroscopy (IS), contact potential difference, and surface photovoltage measurements, providing direct evidence for perovskite sensitivity to the ambient environment. Two major characteristics of the perovskite IS response change with ambient environment, viz. -1- appearance of negative capacitance in vacuo or post-vacuo N2 exposure, indicating for the first time an electrochemical process in the perovskite, and -2- orders of magnitude decrease in the film resistance upon transferring the film from O2-rich ambient atmosphere to vacuum. The same change in ambient conditions also results in a 0.5 V decrease in the material work function. We suggest that facile adsorption of oxygen onto the film dedopes it from n-type toward intrinsic. These effects influence any material characterization, i.e., results may be ambient-dependent due to changes in the material's electrical properties and electrochemical reactivity, which can also affect material stability.

  4. CH3NH3PbI3 from non-iodide lead salts for perovskite solar cells via the formation of PbI2.

    Balaji, Ganapathy; Joshi, Pranav H; Abbas, Hisham A; Zhang, Liang; Kottokkaran, Ranjith; Samiee, Mehran; Noack, Max; Dalal, Vikram L


    We report the formation of CH3NH3PbI3 from more soluble, non-iodide lead salts like Pb(SCN)2 and Pb(NO3)2. When exposed to CH3NH3I vapours, the colourless lead salts turned yellow before the formation of the black perovskite. Investigation of this yellow intermediate suggests that anion exchange (converting lead salts to PbI2) precedes the perovskite formation. PCEs of 7.6% and 8.4% were achieved for the devices formed from Pb(SCN)2 and Pb(NO3)2, respectively.

  5. Fabrication and Characterization of CH3NH3PbI3−x−yBrxCly Perovskite Solar Cells

    Atsushi Suzuki; Hiroshi Okada; Takeo Oku


    Fabrication and characterization of CH3NH3PbI3−x−yBrxCly perovskite solar cells using mesoporous TiO2 as electron transporting layer and 2,2′,7,7′-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9′-spirobifluorene as a hole-transporting layer (HTL) were performed. The purpose of the present study is to investigate role of halogen doping using iodine (I), bromine (Br) and chlorine (Cl) compounds as dopant on the photovoltaic performance and microstructures of CH3NH3PbI3−x−yBrxCly perovskite solar cel...

  6. The use of NH3 to promote the production of large-diameter single-walled carbon nanotubes with a narrow (n,m) distribution.

    Zhu, Zhen; Jiang, Hua; Susi, Toma; Nasibulin, Albert G; Kauppinen, Esko I


    We demonstrate here a simple and effective (n,m)-selective growth of single-walled carbon nanotubes (SWCNTs) in an aerosol floating catalyst chemical vapor deposition (CVD) process by introducing a certain amount of ammonia (NH(3)). Chiralities of carbon nanotubes produced in the presence of 500 ppm NH(3) at 880 °C are narrowly distributed around the major semiconducting (13,12) nanotube with over 90% of SWCNTs having large chiral angles in the range 20°-30°, and nearly 50% in the range 27°-29°. The developed synthesis process enables chiral-selective growth at high temperature for structurally stable carbon nanotubes with large diameters.

  7. Lead free CH3NH3SnI3 perovskite thin-film with p-type semiconducting nature and metal-like conductivity


    Lead free CH3NH3SnI3 perovskite thin film was prepared by low temperature solution processing and characterized using current sensing atomic force microscopy (CS-AFM). Analysis of electrical, optical, and optoelectrical properties reveals unique p-type semiconducting nature and metal like conductivity of this material. CH3NH3SnI3 film also showed a strong absorption in visible and near infrared spectrum with absorption onset of 1.3 eV. X-ray Diffraction analysis and scanning electron microsco...

  8. Fabrication and characterization of perovskite-based CH3NH3Pb1-xAsxI3+xCly photovoltaic devices

    Hamatani, Tsuyoshi; Shirahata, Yasuhiro; Ohishi, Yuya; Fukaya, Misaki; Oku, Takeo


    Effects of AsI3 and NH4Cl addition to perovskite CH3NH3PbI3 precursor solutions on photovoltaic properties were investigated. TiO2/CH3NH3Pb(As)I3(Cl)-based photovoltaic devices were fabricated by a spin-coating technique, and the microstructures of the devices were investigated by X-ray diffraction and scanning electron microscopy. Current density-voltage characteristics and incident photon-to-current conversion efficiencies were improved by a small amount of As- and Cl-doping, which resulted in improvement of the efficiencies of the devices.

  9. Nanoscale structural characterization of Mg(NH3)6Cl2 during NH3 desorption

    Jacobsen, Hjalte Sylvest; Hansen, Heine Anton; Andreasen, Jens Wenzel


    Complex metal hydrides progressively display improved hydrogen storage capacity, but they are still far from fulfilling the requirements of the transport sector. Recently, indirect storage of hydrogen as ammonia in Mg(NH3)(6)Cl-2 has shown impressive capacity and reversibility. Here, we present...... an in situ nanoscale structural characterization of the thermal decomposition of Mg(NH3)(6)Cl-2 using small angle X-ray scattering (SAXS). We observe the growth of polydisperse spherical Mg(NH3)(2)Cl-2 crystallites forming a skeletal structure, the subsequent agglomeration of MgCl2 and formation...

  10. Preparation and Thermochemistrg of Crystalline Compound( n-C12 H25 NH3 ) 2 CdCl4 ( s)%晶体化合物( n-C12 H25 NH3 ) 2 CdCl4 ( s )的制备及热化学研究

    王晓兰; 王建军; 范妮; 张静; 倪俊超; 陈经涛


    The crystal compounds synthesized by the hydrothermal synthesis of (n-C12H25NH3)2 CdCl4(s);compound were calculated based on the thermochemical principle ( n-C12 H25 NH3 ) 2 CdCl4 ( s) of the lattice energy of 889. 81 kJ·mol-1 . Using isothermal solution reaction calorimeter,the standard molar enthalpy of the compound was obtained:[n-C12H25NH3)2 CdCl4,S] = - (1 836. 23 + 7. 95) kJ David mol-1.%用水热合成法合成了晶体化合物 (n-C12H25NH3)2 CdCl4(s);根据热化学原理计算了化合物(n-C12H25 NH3)2 CdCl4(s)的晶格能为889. 81 kJ·mol-1. 利用等温溶解-反应热量计,得到了该化合物的标准的摩尔焓: [(n-C12H25NH3)2 CdCl4,s] = -(1836.23 ±7.95) kJ·mol-1.

  11. Ti and Si doping as a way to increase low temperature activity of sulfated Ag/Al2O3 in H2-assisted NH3-SCR of NOx

    Doronkin, Dmitry E.; Fogel, Sebastian; Gabrielsson, Pär;


    Ag/Al2O3 catalysts modified by Si, Ti, Mg and W were studied to obtain higher NOx SCR activity and potentially also higher SO2 resistance than the pure silver-based catalyst for automotive applications. Addition of Ti or Si to the alumina support leads to a better NOx removal at low temperature i......-TPR) and temperature-programmed desorption of ammonia (NH3-TPD). The obtained results suggest a better silver dispersion and better regeneration capability in the case of Ti- and Si-modified Ag/Al2O3 catalysts........e. reduces the SCR onset temperature by about 10°C under the applied conditions. However, it does not increase the SO2 resistance. The catalysts and the supports have been characterized by BET, conventional and synchrotron XRD, X-ray absorption spectroscopy during temperature-programmed reduction (XAS...

  12. M2M massive wireless access

    Zanella, Andrea; Zorzi, Michele; Santos, André F.


    of the current cellular standards. Here, we provide insights and introduce potential solutions for the cellular radio protocol that will allow the efficient support of Machine-to-Machine (M2M) communications. The paper focuses on the massive aspect of M2M. We will introduce PHY and MAC approaches such as Coded...... and research guidelines for enabling future networks to support efficiently M2M communications....

  13. Structures and Electronic Properties of Different CH3NH3PbI3/TiO2 Interface: A First-Principles Study.

    Geng, Wei; Tong, Chuan-Jia; Liu, Jiang; Zhu, Wenjun; Lau, Woon-Ming; Liu, Li-Min


    Methylammonium lead iodide perovskite, CH3NH3PbI3, has attracted particular attention due to its fast increase in efficiency in dye sensitization TiO2 solid-state solar cells. We performed first-principles calculations to investigate several different types of CH3NH3PbI3/TiO2 interfaces. The interfacial structures between the different terminated CH3NH3PbI3 and phase TiO2 are thoroughly explored, and the calculated results suggest that the interfacial Pb atoms play important roles in the structure stability and electronic properties. A charge transfer from Pb atoms to the O atoms of TiO2 lead to the band edge alignment of Pb-p above Ti-d about 0.4 eV, suggesting a better carries separation. On the other hand, for TiO2, rutile (001) is the better candidate due to the better lattice and atoms arrangement match with CH3NH3PbI3.

  14. An ambient experimental study of phase equilibrium in the atmospheric system: Aerosol H +, NH 4+, SO 2-4, NO 3--NH 3(g), HNO 3(g)

    Tanner, Roger L.

    A major simplification in the quantitative modeling of the atmospheric impact of the major aerosol and gaseous sulfur and nitrogen compounds would result from demonstration of phase equilibrium between the gases NH 3, HNO 3 and the appropriate aerosol-phase ionic or molecular species in the ambient atmosphere. The phase diagram of the (NH 4) 2SO 4-H 2SO 4-H 2O and NH 4NO 3-H 2O systems have been recently refined by experimental measurements and preliminary calculations of the mixed nitrate-sulfate system have also been made. Experiments to test the applicability of existing phase equilibria considerations to the ambient atmosphere have been designed and conducted based on newly devised techniques for continuous determination of gaseous NH 3 with time resolution acid and aerosol nitrate with time resolution of ~ 15 min. Preliminary results suggest that during a daytime period with aerosol composition approximating a letovicite-NH 4NO 3 mixture, observed products of NH 3 (g) and HNO 3(g) concentrations agreed very well with the equilibrium constant calculated for the ammonium nitrate-NH 3(g), HNO 3(g) equilibrium. During a night-time period, the predicted ammonia concentrations, based on bulk aerosol composition data, were much lower and nitric acid concentrations much higher, respectively, than the observed values. The error sources in the measured and calculated values do not appear to account for the apparent deviations from gas-phase concentrations based on the droplet-pH controlling bisulfate-sulfate equilibrium.

  15. High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition

    Fan, Ping; Gu, Di; Liang, Guang-Xing; Luo, Jing-Ting; Chen, Ju-Long; Zheng, Zhuang-Hao; Zhang, Dong-Ping


    In this work, an alternative route to fabricating high-quality CH3NH3PbI3 thin films is proposed. Single-source physical vapour deposition (SSPVD) without a post-heat-treating process was used to prepare CH3NH3PbI3 thin films at room temperature. This new process enabled complete surface coverage and moisture stability in a non-vacuum solution. Moreover, the challenges of simultaneously controlling evaporation processes of the organic and inorganic sources via dual-source vapour evaporation and the heating process required to obtain high crystallization were avoided. Excellent composition with stoichiometry transferred from the powder material, a high level of tetragonal phase-purity, full surface coverage, well-defined grain structure, high crystallization and reproducibility were obtained. A PCE of approximately 10.90% was obtained with a device based on SSPVD CH3NH3PbI3. These initial results suggest that SSPVD is a promising method to significantly optimize perovskite CH3NH3PbI3 solar cell efficiency.

  16. Structural phase transitions and ferroelastic properties of perovskite-type layered (CH3NH3)2CdCl4

    Ran Lim, Ae; Wan Kim, Seung; Lak Joo, Yong


    Herein, we perform a structural characterization of (CH3NH3)2CdCl4 by 1H and 13C magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectrometry, discussing the geometry around CH3NH3 cations. 1H MAS NMR determined two sets of protons in hydrogen-bonded CH3NH3 groups, exhibiting large T1ρ (L) and small T1ρ (S) values corresponding to long and short C-H/N-H bonds, respectively. The spin-lattice relaxation time of 113Cd in CdCl6 octahedra is shown to exhibit an anomaly near 283 K (TC2) due to the occurrence of a phase transition that is not governed by changes in the motion of CH3NH3 groups but is accompanied by the corresponding changes for Cd in CdCl6 units. The observed domain pattern corresponds to an exchange of a- and c-axes of the orthorhombic structure, with the resulting domain orientations viewed as the main reason for the occurrence of phase transitions, and changes in CdCl6 group motion observed by 113Cd NMR.


    Catur Suci Purwati


    Full Text Available The aimed of this research is to know the influence of protection lemuru oil, palm oil, and palm oil cake to pH and NH3in the rumen of the Ongole. The material were used in this study werecomulated rumenfemale cows with average body weight of 289.33 ± 28.34 kg as many as 3 heads. Latin square experiment design was applied on 3 treatments. Fermented rice straw (FRS, basal concentrate (BC, and protected materials of Indian sardine oil (ISO, palm oil (PO, and palmkernel cake (PKC were used as a feed ingredient.  Treatments were: P1 = FRS 40% + BC 60% (BC 95% + PO 5%; P2 = FRS 40% + BC 60% (BC 95% + ISO 5% ; P3 = FRS 40% + BC 60% (BC 90% + PKC 10%. Parameters measured were pH and NH3. Latin square experiment design was applied on 3 treatments.Conclusions of this study are pH and NH3remain stable, meaning lemuru addition of fish oil, palm oil, and palm oil cake is protected not disturb the digestive process in the cow rumen fistulated onggole breedparticular. (Key word: Indian sardine oil, NH3, Palm kernel cake, Palm oil, pH, Protection

  18. Thermolysis, nonisothermal decomposition kinetics, specific heat capacity and adiabatic time-to-explosion of [Cu(NH3)4](DNANT)2 (DNANT= dinitroacetonitrile).

    Zhang, Yu; Wu, Hao; Xu, Kangzhen; Zhang, Wantao; Ren, Zhaoyu; Song, Jirong; Zhao, Fengqi


    A new energetic copper complex of dinitroacetonitrile (DNANT), [Cu(NH3)4](DNANT)2, was first synthesized through an unexpected reaction. The thermal decomposition of [Cu(NH3)4](DNANT)2 was studied with DSC and TG/DTG methods. The gas products were analyzed through a TG-FTIR-MS method. The nonisothermal kinetic equation of the exothermic process is dα/dT = 10(10.92)/β4(1 - α)[-ln(1 - α)](3/4) exp(-1.298 × 10(5)/RT). The self-accelerating decomposition temperature and critical temperature of thermal explosion are 217.9 and 221.0 °C. The specific heat capacity of [Cu(NH3)4](DNANT)2 was determined with a micro-DSC method, and the molar heat capacity is 512.6 J mol(-1) K(-1) at 25 °C. Adiabatic time-to-explosion of Cu(NH3)4(DNANT)2 was also calculated to be about 137 s.

  19. In situ supported MnO(x)-CeO(x) on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3.

    Zhang, Dengsong; Zhang, Lei; Shi, Liyi; Fang, Cheng; Li, Hongrui; Gao, Ruihua; Huang, Lei; Zhang, Jianping


    The MnO(x) and CeO(x) were in situ supported on carbon nanotubes (CNTs) by a poly(sodium 4-styrenesulfonate) assisted reflux route for the low-temperature selective catalytic reduction (SCR) of NO with NH(3). X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), H(2) temperature-programmed reduction (H(2)-TPR) and NH(3) temperature-programmed desorption (NH(3)-TPD) have been used to elucidate the structure and surface properties of the obtained catalysts. It was found that the in situ prepared catalyst exhibited the highest activity and the most extensive operating-temperature window, compared to the catalysts prepared by impregnation or mechanically mixed methods. The XRD and TEM results indicated that the manganese oxide and cerium oxide species had a good dispersion on the CNT surface. The XPS results demonstrated that the higher atomic concentration of Mn existed on the surface of CNTs and the more chemisorbed oxygen species exist. The H(2)-TPR results suggested that there was a strong interaction between the manganese oxide and cerium oxide on the surface of CNTs. The NH(3)-TPD results demonstrated that the catalysts presented a larger acid amount and stronger acid strength. In addition, the obtained catalysts exhibited much higher SO(2)-tolerance and improved the water-resistance as compared to that prepared by impregnation or mechanically mixed methods.

  20. Controlled growth of CH3NH3PbI3 films towards efficient perovskite solar cells by varied-stoichiometric intermediate adduct

    Tu, Yongguang; Wu, Jihuai; He, Xin; Guo, Panfeng; Luo, Hui; Liu, Quanzhen; Lin, Jianming; Huang, Miaoliang; Huang, Yunfang; Fan, Leqing; Lan, Zhang


    Lewis acid-base adduct approach with anti-solvent (diethyl ether) has been one of the efficient strategies to prepare high-quality perovskite films for top-performing perovskite solar cells. Conventionally, the molar ratio of CH3NH3I:PbI2:DMSO in the precursor solution is 1:1:1, however, DMSO will be volatile alongside the extraction of DMF due to its miscibility with DMF solvent during the process of anti-solvent washing, which introduces a non-stoichiometric intermediate adduct CH3NH3I·PbI2·xDMSO (x Lewis acid-base adduct approach to enhance the conversion efficiency of perovskite solar cells. More complete intermediate adduct CH3NH3I·PbI2·DMSO and wider window period of washing process ensure high-quality perovskite films and high reproducibility with raised content of DMSO. Furthermore, the devices prepared by the precursor solution of CH3NH3I:PbI2:xDMSO (x = 2.0) exhibit high reproducibility and the best efficiency of perovskite solar cells is 17.84% under one-sun illumination.

  1. Structure-Activity Relationships in NH3-SCR over Cu-SSZ-13 as Probed by Reaction Kinetics and EPR Studies

    Gao, Feng; Walter, Eric D.; Karp, Eric M.; Luo, Jin-Yong; Tonkyn, Russell G.; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles HF


    Cu-SSZ-13 catalysts with various Cu loadings were prepared via solution ion exchange. The hydrated samples were studied with Electron Paramagnetic Resonance (EPR). Cu2+ ion coordination numbers were obtained by analyzing the hyperfine structures while Cu-Cu distances were estimated from line broadening of the EPR features. By coupling EPR and temperature-programmed reduction (TPR) results, two Cu2+ ion locations were suggested. Standard and fast NH3-SCR, as well as non-selective NH3 oxidation reactions were carried out over these catalysts at high space velocities. For the SCR reaction, intra-particle diffusion limitation was found throughout the reaction temperatures investigated. Although clear structure-activity relationships cannot be derived, the reaction results allow for reactant diffusivities and Cu2+ ion locations to be estimated. The slower NH3 oxidation reaction, on the other hand, is kinetically limited at low temperatures, and, therefore, allows for a correlation between Cu2+ ion location and reaction kinetics to be made. Furthermore, the dynamic Cu2+ ion motion as a function of temperature could also be derived from the NH3 oxidation kinetics.

  2. There is no direct relationship between N-status and frost hardiness in needles of NH3-exposed Scots pine seedlings

    Clement, JMAM; Venema, JH; Van Hasselt, PR


    The effect of short-term atmospheric ammonia deposition on frost hardening of needles of three-month-old seedlings of Scots pine (Pinus sylvestris L.) was studied. Plants were frost hardened under short day and moderate temperature conditions in the laboratory during exposure to gaseous NH3 concentr

  3. Mesoscopic TiO2/CH3NH3PbI3 perovskite solar cells with new hole-transporting materials containing butadiene derivatives.

    Lv, Songtao; Han, Liying; Xiao, Junyan; Zhu, Lifeng; Shi, Jiangjian; Wei, Huiyun; Xu, Yuzhuan; Dong, Juan; Xu, Xin; Li, Dongmei; Wang, Shirong; Luo, Yanhong; Meng, Qingbo; Li, Xianggao


    Two new triphenylamine-based hole-transporting materials (HTMs) containing butadiene derivatives are employed in CH3NH3PbI3 perovskite solar cells. Up to 11.63% of power conversion efficiency (PCE) has been achieved. Advantages such as easy synthesis, low cost and relatively good cell performance exhibit a possibility for commercial applications in the future.

  4. SURFATM-NH3: a model combining the surface energy balance and bi-directional exchanges of ammonia applied at the field scale

    Personne, E.; Loubet, B.; Herrmann, B.; Mattsson, M.; Schjoerring, J. K.; Nemitz, E.; Sutton, M. A.; Cellier, P.


    A new biophysical model SURFATM-NH3, simulating the ammonia (NH3) exchange between terrestrial ecosystems and the atmosphere is presented. SURFATM-NH3 consists of two coupled models: (i) an energy budget model and (ii) a pollutant exchange model, which distinguish the soil and plant exchange processes. The model describes the exchanges in terms of adsorption to leaf cuticles and bi-directional transport through leaf stomata and soil. The results of the model are compared with the flux measurements over grassland during the GRAMINAE Integrated Experiment at Braunschweig, Germany. The dataset of GRAMINAE allows the model to be tested in various meteorological and agronomic conditions: prior to cutting, after cutting and then after the application of mineral fertilizer. The whole comparison shows close agreement between model and measurements for energy budget and ammonia fluxes. The major controls on the ground and plant emission potential are the physicochemical parameters for liquid-gas exchanges which are integrated in the compensation points for live leaves, litter and the soil surface. Modelled fluxes are highly sensitive to soil and plant surface temperatures, highlighting the importance of accurate estimates of these terms. The model suggests that the net flux depends not only on the foliar (stomatal) compensation point but also that of leaf litter. SURFATM-NH3 represents a comprehensive approach to studying pollutant exchanges and its link with plant and soil functioning. It also provides a simplified generalised approach (SVAT model) applicable for atmospheric transport models.

  5. Impact of CH3NH3PbI3-PCBM bulk heterojunction active layer on the photovoltaic performance of perovskite solar cells

    Chaudhary, Dhirendra K.; Kumar, Pankaj; Kumar, Lokendra


    We report here the impact of CH3NH3PbI3-PCBM bulk heterojunction (BHJ) active layer on the photovoltaic performance of perovskite solar cells. The solar cells were prepared in normal architecture on FTO coated glass substrates with compact TiO2 (c-TiO2) layer on FTO as electron transport layer (ETL) and poly(3-hexylthiophene) (P3HT) as hole transport layer (HTL). For comparison, a few solar cells were also prepared in planar heterojunction structure using CH3NH3PbI3 only as the active layer. The bulk heterojunction CH3NH3PbI3-PCBM active layer exhibited very large crystalline grains of 2-3 μm compared to ∼150 nm only in CH3NH3PbI3 active layer. Larger grains in bulk-heterojunction solar cells resulted in enhanced power conversion efficiency (PCE) through enhancement in all the photovoltaic parameters compared to planar heterojunction solar cells. The bulk-heterojunction solar cells exhibited ∼9.25% PCE with short circuit current density (Jsc) of ∼18.649 mA/cm2, open circuit voltage (Voc) of 0.894 V and Fill Factor (FF) of 0.554. There was ∼36.9% enhancement in the PCE of bulk-heterojunction solar cells compared to that of planar heterojunction solar cells. The larger grains are formed as a result of incorporation on PCBM in the active layer.

  6. Catalytic NH3 Synthesis using N2 /H2 at Molecular Transition Metal Complexes: Concepts for Lead Structure Determination using Computational Chemistry.

    Hölscher, Markus; Leitner, Walter


    While industrial NH3 synthesis based on the Haber-Bosch-process was invented more than a century ago, there is still no molecular catalyst available which reduces N2 in the reaction system N2 /H2 to NH3 . As the many efforts of experimentally working research groups to develop a molecular catalyst for NH3 synthesis from N2 /H2 have led to a variety of stoichiometric reductions it seems justified to undertake the attempt of systematizing the various approaches of how the N2 molecule might be reduced to NH3 with H2 at a transition metal complex. In this contribution therefore a variety of intuition-based concepts are presented with the intention to show how the problem can be approached. While no claim for completeness is made, these concepts intend to generate a working plan for future research. Beyond this, it is suggested that these concepts should be evaluated with regard to experimental feasibility by checking barrier heights of single reaction steps and also by computation of whole catalytic cycles employing density functional theory (DFT) calculations. This serves as a tool which extends the empirically driven search process and expands it by computed insights which can be used to rationalize the various challenges which must be met.


    Bottinelli, Sandrine; Boogert, A. C. Adwin; Bouwman, Jordy; Beckwith, Martha; van Dishoeck, Ewine F.; Oberg, Karin I.; Pontoppidan, Klaus M.; Linnartz, Harold; Blake, Geoffrey A.; Evans, Neal J.; Lahuis, Fred


    NH3 and CH3OH are key molecules in astrochemical networks leading to the formation of more complex N- and O-bearing molecules, such as CH3CN and CH3OCH3. Despite a number of recent studies, little is known about their abundances in the solid state. This is particularly the case for low-mass protosta

  8. Surface modification of graphite-encapsulated iron nanoparticles by RF excited Ar/NH3 gas mixture plasma and their application to Escherichia coli capture

    Viswan, Anchu; Chou, Han; Sugiura, Kuniaki; Nagatsu, Masaaki


    Graphite-encapsulated iron nanoparticles with an average diameter of 20 nm were synthesized using the DC arc discharge method. For biomedical application, the nanoparticles were functionalized with amino groups using an inductively coupled radio-frequency (RF) plasma. The Ar, NH3, and Ar/NH3 plasmas that were used for functionalization were diagnosed using optical emission spectroscopy, confirming the presence of the required elements. The best conditions for functionalization were optimized by changing various parameters. The pretreatment time with Ar plasma was varied from 0 to 12.5 min, the post-treatment time from 30 s to 3 min. The dependence of the RF power and the gas mixture ratio of Ar/NH3 on the amino group population was also analyzed. From Raman spectroscopy, x-ray photoelectron spectroscopy, and determination of absolute number of amino groups through chemical derivatization, it was found that 5 min of Ar pretreatment and 6%NH3/94%Ar plasma post-treatment for 3 min with an RF power of 80 W gives the best result of about 5  ×  104 amino groups per particle. The nanoparticles that were amino functionalized under optimized conditions and immobilized with an Escherichia coli (E.coli) antibody on their surface were incubated with E.coli bacteria to determine the efficiency of collection by direct culture assay.

  9. Lead free CH3NH3SnI3 perovskite thin-film with p-type semiconducting nature and metal-like conductivity

    Iefanova, Anastasiia; Adhikari, Nirmal; Dubey, Ashish; Khatiwada, Devendra; Qiao, Qiquan


    Lead free CH3NH3SnI3 perovskite thin film was prepared by low temperature solution processing and characterized using current sensing atomic force microscopy (CS-AFM). Analysis of electrical, optical, and optoelectrical properties reveals unique p-type semiconducting nature and metal like conductivity of this material. CH3NH3SnI3 film also showed a strong absorption in visible and near infrared spectrum with absorption onset of 1.3 eV. X-ray Diffraction analysis and scanning electron microscopy (SEM) confirmed a structure of this compound and uniform film formation. The morphology, film uniformity, light harvesting and electrical properties strongly depend on preparation method and precursor solution. CH3NH3SnI3 films prepared based on dimethylformamide (DMF) showed higher crystallinity and light harvesting capability compared to the film based on combination of dimethyl sulfoxide (DMSO) with gamma-butyrolactone (GBL). Local photocurrent mapping analysis showed that CH3NH3SnI3 can be used as an active layer and have a potential to fabricate lead free photovoltaic devices.

  10. Lead free CH3NH3SnI3 perovskite thin-film with p-type semiconducting nature and metal-like conductivity

    Anastasiia Iefanova


    Full Text Available Lead free CH3NH3SnI3 perovskite thin film was prepared by low temperature solution processing and characterized using current sensing atomic force microscopy (CS-AFM. Analysis of electrical, optical, and optoelectrical properties reveals unique p-type semiconducting nature and metal like conductivity of this material. CH3NH3SnI3 film also showed a strong absorption in visible and near infrared spectrum with absorption onset of 1.3 eV. X-ray Diffraction analysis and scanning electron microscopy (SEM confirmed a structure of this compound and uniform film formation. The morphology, film uniformity, light harvesting and electrical properties strongly depend on preparation method and precursor solution. CH3NH3SnI3 films prepared based on dimethylformamide (DMF showed higher crystallinity and light harvesting capability compared to the film based on combination of dimethyl sulfoxide (DMSO with gamma-butyrolactone (GBL. Local photocurrent mapping analysis showed that CH3NH3SnI3 can be used as an active layer and have a potential to fabricate lead free photovoltaic devices.

  11. Wagging motion of hydrogen-bonded wire in the excited-state multiple proton transfer process of 7-hydroxyquinoline·(NH3)3 cluster

    Liu, Yu-Hui; Lan, Sheng-Cheng; Li, Chun-Ran


    In this work, the dynamics of hydrogen bonds (as well as the hydrogen-bonded wire) in excited-state tautomerization of 7-hydroxyquinoline·(NH3)3 (7HQṡ(NH3)3) cluster has been investigated by using time-dependent density functional theory (TDDFT). It shows that upon an excitation, the hydrogen bond between -OH group in 7-hydroxyquinoline (7HQ) and NH3 moiety would extremely strengthened in S1 state, which could effectively facilitate the releasing of the proton from the phenolic group of 7HQ moiety to the hydrogen-bonded wire and the forming an Eigen-like cationic wire (NH⋯NH4+⋯NH) in the cluster. To fulfill the different optimal angles of NH4+ in the wire, a wagging motion of hydrogen-bonded wire would occur in excited state. Moreover, the wagging motion of the hydrogen-bonded wire would effectively promote excited-state proton transfer reaction. As the results, an excited-state multiple proton transfer (ESMPT) mechanism containing two concerted and asymmetrical processes has been proposed for the proton transfer dynamics of 7HQṡ(NH3)3 cluster.

  12. Synthesis and Characterization of the First Organically Templated Layered Cerium Phosphate Fluoride: [(CH2)2(NH3)2]0.5[CeIVF3(HPO4)

    Yu, Ranbo; Wang, Dan; Ishiwata, Shintaro; Saito, Takashi; Azuma, Masaki; Takano, Mikio; Chen, Yunfa; Li, Jinghai


    A novel organically templated layered cerium phosphate fluoride [(CH2)2(NH3)2]0.5[CeIVF3(HPO4)] has been synthesized by hydrothermal synthesis technology, and characterized by means of single-crystal X-ray diffraction...

  13. WO3/CeO2/TiO2 Catalysts for Selective Catalytic Reduction of NO(x) by NH3: Effect of the Synthesis Method.

    Michalow-Mauke, Katarzyna A; Lu, Ye; Ferri, Davide; Graule, Thomas; Kowalski, Kazimierz; Elsener, Martin; Kröcher, Oliver


    WO3/CeO2/TiO2, CeO2/TiO2 and WO3/TiO2 catalysts were prepared by wet impregnation. CeO2/TiO2 and WO3/TiO2 showed activity towards the selective catalytic reduction (SCR) of NO(x) by NH3, which was significantly improved by subsequent impregnation of CeO/TiO2 with WO3. Catalytic performance, NH3 oxidation and NH3 temperature programmed desorption of wet-impregnated WO3/CeO2/TiO2 were compared to those of a flame-made counterpart. The flame-made catalyst exhibits a peculiar arrangement of W-Ce-Ti-oxides that makes it very active for NH3-SCR. Catalysts prepared by wet impregnation with the aim to mimic the structure of the flame-made catalyst were not able to fully reproduce its activity. The differences in the catalytic performance between the investigated catalysts were related to their structural properties and the different interaction of the catalyst components.

  14. 130 °C CH3NH3I treatment temperature in vapor-assisted solution process for large grain and full-coverage perovskite thin films

    Li, Nannan; Shi, Chengwu; Zhang, Zhengguo; Wang, Yanqing; Xiao, Guannan; Wang, Ran


    In this paper, the self-made setup with excellent controllability and general applicability was developed for the preparation of perovskite thin films using vapor-assisted solution process. The CH3NH3I treatment temperature was 130 °C, 140 °C, 150 °C in vapor-assisted solution process, the grain size of the corresponding perovskite thin films was ∼600 nm, ∼400 nm, ∼200 nm, and the best photoelectric conversion efficiency of the corresponding perovskite solar cells was 12.62%, 11.72% and 11.50%, respectively. The result demonstrated that the CH3NH3I treatment temperature can be decreased from 150 °C to 130 °C and the large grain and full-coverage perovskite thin film was obtained using the self-made setup at the CH3NH3I treatment temperature of 130 °C in ambient atmosphere because the CH3NH3I treatment temperature was usually 150 °C.

  15. Surface study and sensing activity of nanotubular indium trioxide to NH3, H2S, NO2 and CO environmental pollutants

    Zamani, Mehdi


    Molecular and electronic structures of nanotubular indium trioxide were studied using B3LYP and CAM-B3LYP density functional methods. Three nanotube models including nanotubes with closed ends (CENT), one opened end (OOENT) and two opened ends (TOENT) were considered. The highest occupied molecular orbital (HOMO) of CENT is distributed over the entire nanotube; while it is distributed on the end cap of OOENT. In both CENT and OOENT, the distribution of the lowest unoccupied molecular orbital (LUMO) is on the end caps. HOMO and LUMO of TOENT are distributed on the center of nanotube. The sensing activity of OOENT to environmental pollutants was evaluated regarding the interaction of nanotube with NH3, H2S, NO2 and CO molecules. Adsorptions over different positions of OOENT are exothermic and the NH3 adsorption is thermodynamically more favorable. The selectivity of OOENT toward gaseous pollutants is investigated as NH3 > H2S > CO > NO2. Interaction of NO2 and CO over the closed end (end cap) of nanotube is preferred; while adsorption of NH3 and H2S on the opened end is more favorable.

  16. QCT and QM calculations of the Cl(2P) + NH3 reaction: influence of the reactant well on the dynamics.

    Monge-Palacios, M; Yang, M; Espinosa-García, J


    A detailed dynamics study, using both quasi-classical trajectory (QCT) and reduced-dimensional quantum mechanical (QM) calculations, was carried out to understand the reactivity and mechanism of the Cl((2)P) + NH(3)→ HCl + NH(2) gas-phase reaction, which evolves through deep wells in the entry and exit channels. The calculations were performed on an analytical potential energy surface recently developed by our group, PES-2010 [M. Monge-Palacios, C. Rangel, J. C. Corchado and J. Espinosa-Garcia, Int. J. Quantum. Chem., 2011], together with a simplified model surface, mod-PES, in which the reactant well is removed to analyze its influence. The main finding was that the QCT and QM methods show a change of the reaction probability with collision energy, suggesting a change of the atomic-level mechanism of reaction with energy. This change disappeared when the mod-PES was used, showing that the behaviour at low energies is a direct consequence of the existence of the reactant well. Analysis of the trajectories showed that different mechanisms operate depending on the collision energy. Thus, while at high energies (E(coll) > 5 kcal mol(-1)) practically all trajectories are direct, at low energies (E(coll) cross section results reinforce this change of mechanism, showing also the influence of the reactant well on this reaction. Thus, the PES-2010 surface yields a forward-backward symmetry in the scattering, while when the reactant well is removed with the mod-PES the shape is more isotropic.

  17. Ab initio based potential energy surface and kinetics study of the OH + NH3 hydrogen abstraction reaction.

    Monge-Palacios, M; Rangel, C; Espinosa-Garcia, J


    A full-dimensional analytical potential energy surface (PES) for the OH + NH3 → H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison.

  18. Microwave-assisted synthesis of the anticancer drug cisplatin, cis-[Pt(NH3)2Cl2].

    Petruzzella, Emanuele; Chirosca, Cristian V; Heidenga, Cameron S; Hoeschele, James D


    A microwave-assisted synthesis of cisplatin, cis-[Pt(NH3)2Cl2], has been developed and optimized on both a 0.2 and 0.05 millimolar scale. The optimized synthetic procedure was modeled after the Lebedinskii-Golovnya method and is suitable for incorporating the radionuclide, (195m)Pt, into cisplatin for biological studies. Highest yields (47%) and purity are obtained using a K2PtCl4 : NH4OAc : KCl molar ratio of 1 : 4 : 2 at a temperature of 100 °C. The entire synthesis and purification procedure requires approximately 80 min. At a reaction temperature of 150 °C, the trans isomer is the exclusive product, suggesting that complexes of the general form, trans-[Pt(RNH2)2Cl2], can be synthesized directly from K2PtCl4 using [RNH3]OAc (R = alkyl or aryl moieties) via a microwave process. Two novel separation procedures have been developed which efficiently remove the major impurity (1 : 1 Magnus-type salt) from the crude reaction product, yielding a product of purity comparable to that obtained by the Dhara method and suitable for biological studies. These procedures are applicable to both the micro- and macro-scale of synthesis. The question of whether this microwave-assisted synthesis of cisplatin will be a preferred method for incorporating (195m)Pt into cisplatin is yet to be determined.

  19. Insight into the CH3NH3PbI3/C interface in hole-conductor-free mesoscopic perovskite solar cells

    Li, Jiangwei; Niu, Guangda; Li, Wenzhe; Cao, Kun; Wang, Mingkui; Wang, Liduo


    Perovskite solar cells (PSCs) with hole-conductor-free mesoscopic architecture have shown superb stability and great potential in practical application. The printable carbon counter electrodes take full responsibility of extracting holes from the active CH3NH3PbI3 absorbers. However, an in depth study of the CH3NH3PbI3/C interface properties, such as the structural formation process and the effect of interfacial conditions on hole extraction, is still lacking. Herein, we present, for the first time, an insight into the spatial confinement induced CH3NH3PbI3/C interface formation by in situ photoluminescence observations during the crystallization process of CH3NH3PbI3. The derived reaction kinetics allows a quantitative description of the perovskite formation process. In addition, we found that the interfacial contact between carbon and perovskite was dominant for hole extraction efficiency and associated with the photovoltaic parameter of short circuit current density (JSC). Consequently, we conducted a solvent vapor assisted process of PbI2 diffusion to carefully control the CH3NH3PbI3/C interface with less unreacted PbI2 barrier. The improvement of interface conditions thereby contributes to a high hole extraction proved by the charge extraction resistance and PL lifetime change, resulting in the increased JSC valve.Perovskite solar cells (PSCs) with hole-conductor-free mesoscopic architecture have shown superb stability and great potential in practical application. The printable carbon counter electrodes take full responsibility of extracting holes from the active CH3NH3PbI3 absorbers. However, an in depth study of the CH3NH3PbI3/C interface properties, such as the structural formation process and the effect of interfacial conditions on hole extraction, is still lacking. Herein, we present, for the first time, an insight into the spatial confinement induced CH3NH3PbI3/C interface formation by in situ photoluminescence observations during the crystallization

  20. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil.

    Sun, Haijun; Lu, Haiying; Chu, Lei; Shao, Hongbo; Shi, Weiming


    The impacts of biochar addition on nitrogen (N) leaching, (ammonia) NH3 volatilization from coastal saline soils are not well understood. In this soil column study, the effects of wheat straw biochar application at rates of 0.5%, 1%, 2% and 4% by weight to a coastal saline soil on N leaching, NH3 volatilization, soil pH and N retention were investigated. Results showed that 0.5% and 1% biochar amendments reduce the NH4(+)-N, NO3(-)-N and total N concentrations of leachate and thereby significantly decrease their cumulative lost loads by 11.6-24.0%, 13.2-29.7%, and 14.6-26.0%, respectively, in compared with the control. The biochar-induced soil N leaching mitigation efficiency was weakened when the biochar application rates increased to 2% and 4%. However, the impact of biochar addition on cumulative NH3 volatilizations were negative and significantly 25.6-53.6% higher NH3 volatilizations in soils with 2% and 4% biochar amended than control were detected, which was mainly attributed to the averaged 0.53-0.88units higher soil pH as results of biochar addition. On average, the total N concentrations of soil were kept same with 1.01-1.06gkg(-1) under control and biochar treatments. Therefore, biochar application to the coastal saline soils with appropriate rates (i.e., 0.5% and 1% in current study) can reduce N leaching, keep soil N retention, and not increase NH3 volatilization, which was beneficial for sustainable use of saline soils.

  1. Comparison of preparation methods for ceria catalyst and the effect of surface and bulk sulfates on its activity toward NH3-SCR.

    Chang, Huazhen; Ma, Lei; Yang, Shijian; Li, Junhua; Chen, Liang; Wang, Wei; Hao, Jiming


    A series of CeO2 catalysts prepared with sulfate (S) and nitrate (N) precursors by hydrothermal (H) and precipitation (P) methods were investigated in selective catalytic reduction of NOx by NH3 (NH3-SCR). The catalytic activity of CeO2 was significantly affected by the preparation methods and the precursor type. CeO2-SH, which was prepared by hydrothermal method with cerium (IV) sulfate as a precursor, showed excellent SCR activity and high N2 selectivity in the temperature range of 230-450 °C. Based on the results obtained by temperature-programmed reduction (H2-TPR), transmission infrared spectra (IR) and thermal gravimetric analysis (TGA), the excellent performance of CeO2-SH was correlated with the surface sulfate species formed in the hydrothermal reaction. These results indicated that sulfate species bind with Ce(4+) on the CeO2-SH catalyst, and the specific sulfate species, such as Ce(SO4)2 or CeOSO4, were formed. The adsorption of NH3 was promoted by these sulfate species, and the probability of immediate oxidation of NH3 to N2O on Ce(4+) was reduced. Accordingly, the selective oxidation of NH3 was enhanced, which contributed to the high N2 selectivity in the SCR reaction. However, the location of sulfate on the CeO2-SP catalyst was different. Plenty of sulfate species were likely deposited on CeO2-SP surface, covering the active sites for NO oxidation, which resulted in poor SCR activity in the test temperature range. Moreover, the resistance to alkali metals, such as Na and K, was improved over the CeO2-SH catalyst.

  2. Hofbauer cells of M2a, M2b and M2c polarization may regulate feto-placental angiogenesis.

    Loegl, J; Hiden, U; Nussbaumer, E; Schliefsteiner, C; Cvitic, S; Lang, I; Wadsack, C; Huppertz, B; Desoye, G


    The human placenta comprises a special type of tissue macrophages, the Hofbauer cells (HBC), which exhibit M2 macrophage phenotype. Several subtypes of M2-polarized macrophages (M2a, M2b and M2c) exist in almost all tissues. Macrophage polarization depends on the way of macrophage activation and leads to the expression of specific cell surface markers and the acquisition of specific functions, including tissue remodeling and the promotion of angiogenesis. The placenta is a highly vascularized and rapidly growing organ, suggesting a role of HBC in feto-placental angiogenesis. We here aimed to characterize the specific polarization and phenotype of HBC and investigated the role of HBC in feto-placental angiogenesis. Therefore, HBC were isolated from third trimester placentas and their phenotype was determined by the presence of cell surface markers (FACS analysis) and secretion of cytokines (ELISA). HBC conditioned medium (CM) was analyzed for pro-angiogenic factors, and the effect of HBC CM on angiogenesis, proliferation and chemoattraction of isolated primary feto-placental endothelial cells (fpEC) was determined in vitro Our results revealed that isolated HBC possess an M2 polarization, with M2a, M2b and M2c characteristics. HBC secreted the pro-angiogenic molecules VEGF and FGF2. Furthermore, HBC CM stimulated the in vitro angiogenesis of fpEC. However, compared with control medium, chemoattraction of fpEC toward HBC CM was reduced. Proliferation of fpEC was not affected by HBC CM. These findings demonstrate a paracrine regulation of feto-placental angiogenesis by HBC in vitro Based on our collective results, we propose that the changes in HBC number or phenotype may affect feto-placental angiogenesis. © 2016 Society for Reproduction and Fertility.

  3. Assigning error to an M2 measurement

    Ross, T. Sean


    The ISO 11146:1999 standard has been published for 6 years and set forth the proper way to measure the M2 parameter. In spite of the strong experimental guidance given by this standard and the many commercial devices based upon ISO 11146, it is still the custom to quote M2 measurements without any reference to significant figures or error estimation. To the author's knowledge, no commercial M2 measurement device includes error estimation. There exists, perhaps, a false belief that M2 numbers are high precision and of insignificant error. This paradigm causes program managers and purchasers to over-specify a beam quality parameter and researchers not to question the accuracy and precision of their M2 measurements. This paper will examine the experimental sources of error in an M2 measurement including discretization error, CCD noise, discrete filter sets, noise equivalent aperture estimation, laser fluctuation and curve fitting error. These sources of error will be explained in their experimental context and convenient formula given to properly estimate error in a given M2 measurement. This work is the result of the author's inability to find error estimation and disclosure of methods in commercial beam quality measurement devices and building an ISO 11146 compliant, computer- automated M2 measurement device and the resulting lessons learned and concepts developed.

  4. Structure of Metal Aluminophosphates:Al9-xMxP12O48(TREN)4·yNH4·zH2O[TREN=N(CH2CH2NH3)Hm, M=Mn, Co


    Two large-pore metal-doped aluminophosphates, Mn4Al5(PO4)12[N(C2H4NH3)3]3[N(C2H4NH3)2·(C2H4NH2)](NH4)2·14H2O(Mn4-NJU) and Co4Al5(PO4)12[N(C2H4NH3)3][N(C2H4NH3)2(C2H4NH2)]3·(NH4)4·13H2O(Co4-NJU), which have the same open framework structures, were hydrothermally synthesized. The structures of these compounds consist of TO4 tetrahedra, which are linked together by corner-sharing to form an open framework with unique intersecting twelve-membered ring channels in three dimensions. The compounds crystallize in cubic space group I(-4)3m with a=1.6795(2) nm and V=4.7374(9) nm3 for Mn4-NJU, and a=1.67372(19) nm and V=4.6887(9) nm3 for Co4-NJU, respectively. Single crystal structure analyses show that the protruding O atoms of the frameworks of the compounds are linked to protonated 4-(2-aminoethyl)diethylenetriamine(TREN, C6H18N4) ions in the windows by means of hydrogen-bonding under the hydrothermal condition. It is also found that the components inside the super cages of the compounds are changeable, and the metal ions M2+(M=Mn, Co) and Al3+ disorderedly occupy the same crystallographic positions.

  5. Mixed-Halide CH3 NH3 PbI3-x Xx (X=Cl, Br, I) Perovskites: Vapor-Assisted Solution Deposition and Application as Solar Cell Absorbers.

    Sedighi, Rahime; Tajabadi, Fariba; Shahbazi, Saeed; Gholipour, Somayeh; Taghavinia, Nima


    There have been recent reports on the formation of single-halide perovskites, CH3 NH3 PbX3 (X=Cl, Br, I), by means of vapor-assisted solution processing. Herein, the successful formation of mixed-halide perovskites (CH3 NH3 PbI3-x Xx ) by means of a vapor-assisted solution method at ambient atmosphere is reported. The perovskite films are synthesized by exposing PbI2 film to CH3 NH3 X (X=I, Br, or Cl) vapor. The prepared perovskite films have uniform surfaces with good coverage, as confirmed by SEM images. The inclusion of chlorine and bromine into the structure leads to a lower temperature and shorter reaction time for optimum perovskite film formation. In the case of CH3 NH3 PbI3-x Clx , the optimum reaction temperature is reduced to 100 °C, and the resulting phases are CH3 NH3 PbI3 (with trace Cl) and CH3 NH3 PbCl3 with a ratio of about 2:1. In the case of CH3 NH3 PbI3-x Brx , single-phase CH3 NH3 PbI2 Br is formed in a considerably shorter reaction time than that of CH3 NH3 PbI3 . The mesostructured perovskite solar cells based on CH3 NH3 PbI3 films show the best optimal power conversion efficiency of 13.5 %, whereas for CH3 NH3 PbI3-x Clx and CH3 NH3 PbI3-x Brx the best recorded efficiencies are 11.6 and 10.5 %, respectively.

  6. Parallel Changes in Intracellular Water Volume and pH Induced by NH3/NH4+ Exposure in Single Neuroblastoma Cells

    Víctor M. Blanco


    Full Text Available Background: Increased blood levels of ammonia (NH3 and ammonium (NH4+, i.e. hyperammonemia, leads to cellular brain edema in humans with acute liver failure. The pathophysiology of this edema is poorly understood. This is partly due to incomplete understanding of the osmotic effects of the pair NH3/NH4+ at the cellular and molecular levels. Cell exposure to solutions containing NH3/NH4+ elicits changes in intracellular pH (pHi, which can in turn affect cell water volume (CWV by activating transport mechanisms that produce net gain or loss of solutes and water. The occurrence of CWV changes caused by NH3/NH4+ has long been suspected, but the mechanisms, magnitude and kinetics of these changes remain unknown. Methods: Using fluorescence imaging microscopy we measured, in real time, parallel changes in pHi and CWV caused by brief exposure to NH3/NH4+ of single cells (N1E-115 neuroblastoma or NG-108 neuroblastoma X glioma loaded with the fluorescent indicator BCECF. Changes in CWV were measured by exciting BCECF at its intracellular isosbestic wavelength (∼438 nm, and pHi was measured ratiometrically. Results: Brief exposure to isosmotic solutions (i.e. having the same osmolality as that of control solutions containing NH4Cl (0.5- 30 mM resulted in a rapid, dose-dependent swelling, followed by isosmotic regulatory volume decrease (iRVD. NH4Cl solutions in which either extracellular [NH3] or [NH4+] was kept constant while the other was changed by varying the pH of the solution, demonstrated that [NH3]o rather than [NH4+]o is the main determinant of the NH4Cl-induced swelling. The iRVD response was sensitive to the anion channel blocker NPPB, and partly dependent on external Ca2+. Upon removal of NH4Cl, cells shrank and displayed isosmotic regulatory volume increase (iRVI. Regulatory volume responses could not be activated by comparable CWV changes produced by anisosmotic solutions, suggesting that membrane stretch or contraction by themselves are

  7. Tachyonic Anti-M2 Branes

    Bena, Iosif; Kuperstein, Stanislav; Massai, Stefano


    We study the dynamics of anti-M2 branes in a warped Stenzel solution with M2 charges dissolved in fluxes by taking into account their full backreaction on the geometry. The resulting supergravity solution has a singular magnetic four-form flux in the near-brane region. We examine the possible resolution of this singularity via the polarization of anti-M2 branes into M5 branes, and compute the corresponding polarization potential for branes smeared on the finite-size four-sphere at the tip of the Stenzel space. We find that the potential has no minimum. We then use the potential for smeared branes to compute the one corresponding to a stack of localized anti-M2 branes, and use this potential to compute the force between two anti-M2 branes at tip of the Stenzel space. We find that this force, which is zero in the probe approximation, is in fact repulsive. This surprising result points to a tachyonic instability of anti-M2 branes in backgrounds with M2 brane charge dissolved in flux.

  8. EMRP JRP MetNH3: Towards a Consistent Metrological Infrastructure for Ammonia Measurements in Ambient Air

    Leuenberger, Daiana; Balslev-Harder, David; Braban, Christine F.; Ebert, Volker; Ferracci, Valerio; Gieseking, Bjoern; Hieta, Tuomas; Martin, Nicholas A.; Pascale, Céline; Pogány, Andrea; Tiebe, Carlo; Twigg, Marsailidh M.; Vaittinen, Olavi; van Wijk, Janneke; Wirtz, Klaus; Niederhauser, Bernhard


    Measuring ammonia in ambient air is a sensitive and priority issue due to its harmful effects on human health and ecosystems. In addition to its acidifying effect on natural waters and soils and to the additional nitrogen input to ecosystems, ammonia is an important precursor for secondary aerosol formation in the atmosphere. The European Directive 2001/81/EC on "National Emission Ceilings for Certain Atmospheric Pollutants (NEC)" regulates ammonia emissions in the member states. However, there is a lack of regulation regarding certified reference material (CRM), applicable analytical methods, measurement uncertainty, quality assurance and quality control (QC/QA) procedures as well as in the infrastructure to attain metrological traceability. As shown in a key comparison in 2007, there are even discrepancies between reference materials provided by European National Metrology Institutes (NMIs) at amount fraction levels up to three orders of magnitude higher than ambient air levels. MetNH3 (Metrology for ammonia in ambient air), a three-year project that started in June 2014 in the framework of the European Metrology Research Programme (EMRP), aims to reduce the gap between requirements set by the European emission regulations and state-of-the-art of analytical methods and reference materials. The overarching objective of the JRP is to achieve metrological traceability for ammonia measurements in ambient air from primary certified reference material CRM and instrumental standards to the field level. This requires the successful completion of the three main goals, which have been assigned to three technical work packages: To develop improved reference gas mixtures by static and dynamic gravimetric generation methods Realisation and characterisation of traceable preparative calibration standards (in pressurised cylinders as well as mobile generators) of ammonia amount fractions similar to those in ambient air based on existing methods for other reactive analytes. The

  9. NO/NH3 adsorption properties onγ-Al2O3 (110) surface during SCR process%SCR反应过程中NO/NH3在γ-Al2O3表面吸附特性

    曹蕃; 苏胜; 向军; 王鹏鹰; 胡松; 孙路石; 张安超


    采用密度泛函理论(DFT)方法研究了NO和NH3在完整和有缺陷的γ-Al2O3(110)表面吸附与SCR(选择催化还原)反应特性。研究表明,NO在完整的(110)表面的吸附作用较弱,而NH3分子的吸附作用较强,NH3分子在Al原子顶位可形成稳定吸附。反应路径研究结果表明完整的(110)表面上SCR反应的决速步为-NH2NO基团的分解,反应的最大能垒为235.75 kJ·mol-1。对于产生氧空穴的有缺陷(110)表面,NO和NH3均可稳定吸附, NH3在吸附过程中可直接裂解成NH2和H。另外,SCR反应在有缺陷(110)表面的最大能垒明显较低,说明氧空穴的存在促进了SCR脱硝反应的进行。%γ-Al2O3is an outstanding catalyst carrier and has been widely used in the SCR (selective catalytic reduction) catalyst study. The adsorption and reaction properties of NO/NH3 on the bare and defectiveγ-Al2O3 (110) surface were studied by the DFT (density functional theory) method. The corresponding microscopic parameters, such as adsorption energies, bond length, changes of net charge and PDOS (partial density of states) were calculated. NO could be adsorbed on the bare (110) surface weakly, and it was more inclined to be adsorbed on the top sites of O2c. NH3 could be adsorbed strongly on top sites of Al. The rate-determining step of SCR reaction was the-NH2NO decomposition, while the largest energy barrier reached 235.75 kJ·mol-1. For the defective (110) surface with the oxygen vacancy, NO and NH3 could be both adsorbed strongly on the surface, and NH3 could also decompose into NH2 and H directly in this situation. The largest energy barrier of SCR reaction in this situation was much lower, indicating that the presence of oxygen vacancy could promote SCR reaction proceeding.

  10. Tris(2-ethylamino)amine ( tren) as template for the elaboration of fluorides: synthesis and crystal structures of [(C 2H 4NH 3) 3NH]·[Zr 3F 16(H 2O)], [(C 2H 4NH 3) 3N] 2·[ZrF 6]·[Zr 2F 12] and [(C 2H 4NH 3) 3N]·[TaF 7]·F

    Goreshnik, E.; Leblanc, M.; Maisonneuve, V.


    Using tris(2-ethylamino)amine ( tren) as a template, three new fluorides are obtained by solvothermal synthesis: [(C 2H 4NH 3) 3NH]·[Zr 3F 16(H 2O)] ( I), [(C 2H 4NH 3) 3N] 2·[ZrF 6]·[Zr 2F 12] ( II) and [(C 2H 4NH 3) 3N]·[TaF 7]·F ( III). The structure determinations are performed by single crystal technique. The structure of I consists of infinite spiral-like [Zr 3F 16(H 2O)] 4- chains connected by tetraprotonated [ trenH 4] 4+ cations which possess a plane configuration. In II, isolated [ZrF 6] octahedra or [Zr 2F 12] dimers are linked to organic cations by a tridimensional hydrogen bond network. In III, [TaF 7] 2- monocapped trigonal prisms and "isolated" fluoride ions are connected by hydrogen bonds to template moieties. In II and III, every organic moiety is triprotonated [ trenH 3] 3+ with a "spider" configuration. In the tantalum phase, the hydrogen bond network leads to the formation of a layered structure.

  11. Evaluating ammonia (NH3) predictions in the NOAA National Air Quality Forecast Capability (NAQFC) using in-situ aircraft and satellite measurements from the CalNex2010 campaign

    Bray, Casey D.; Battye, William; Aneja, Viney P.; Tong, Daniel; Lee, Pius; Tang, Youhua; Nowak, John B.


    Atmospheric ammonia (NH3) is not only a major precursor gas for fine particulate matter (PM2.5), but it also negatively impacts the environment through eutrophication and acidification. As the need for agriculture, the largest contributing source of NH3, increases, NH3 emissions will also increase. Therefore, it is crucial to accurately predict ammonia concentrations. The objective of this study is to determine how well the U.S. National Oceanic and Atmospheric Administration (NOAA) National Air Quality Forecast Capability (NAQFC) system predicts ammonia concentrations using their Community Multiscale Air Quality (CMAQ) model (v4.6). Model predictions of atmospheric ammonia are compared against measurements taken during the NOAA California Nexus (CalNex) field campaign that took place between May and July of 2010. Additionally, the model predictions were also compared against ammonia measurements obtained from the Tropospheric Emission Spectrometer (TES) on the Aura satellite. The results of this study showed that the CMAQ model tended to under predict concentrations of NH3. When comparing the CMAQ model with the CalNex measurements, the model under predicted NH3 by a factor of 2.4 (NMB = -58%). However, the ratio of the median measured NH3 concentration to the median of the modeled NH3 concentration was 0.8. When compared with the TES measurements, the model under predicted concentrations of NH3 by a factor of 4.5 (NMB = -77%), with a ratio of the median retrieved NH3 concentration to the median of the modeled NH3 concentration of 3.1. Because the model was the least accurate over agricultural regions, it is likely that the major source of error lies within the agricultural emissions in the National Emissions Inventory. In addition to this, the lack of the use of bidirectional exchange of NH3 in the model could also contribute to the observed bias.

  12. van der Waals forces and confinement in carbon nanopores: Interaction between CH4, COOH, NH3, OH, SH and single-walled carbon nanotubes

    Weck, Philippe F.; Kim, Eunja; Wang, Yifeng


    Interactions between CH4, COOH, NH3, OH, SH and armchair (n, n) (n = 4, 7, 14) and zigzag (n, 0) (n = 7, 12, 25) single-walled carbon nanotubes (SWCNTs) have been systematically investigated within the framework of dispersion-corrected density functional theory (DFT-D2). Endohedral and exohedral molecular adsorption on SWCNT walls is energetically unfavorable or weak, despite the use of C6 /r6 pairwise London-dispersion corrections. The effects of pore size and chirality on the molecule/SWCNTs interaction were also assessed. Chemisorption of COOH, NH3, OH and SH at SWCNT edge sites was examined using a H-capped (7, 0) SWCNT fragment and its impact on electrophilic, nucleophilic and radical attacks was predicted by means of Fukui functions.

  13. Direct Observation of Long Electron-Hole Diffusion Distance beyond 1 Micrometer in CH3NH3PbI3 Perovskite Thin Film

    Li, Yu; Li, Yunlong; Wang, Wei; Bian, Zuqiang; Xiao, Lixin; Wang, Shufeng; Gong, Qihuang


    In high performance perovskite based on CH3NH3PbI3, the formerly reported short charge diffusion distance is a confliction to thick working layer in solar cell devices. We carried out a study on charge diffusion in spin-coated CH3NH3PbI3 perovskite thin film by transient fluorescent spectroscopy. A thickness-dependent fluorescent lifetime was found. This effect correlates to the defects at crystal grain boundaries. By coating the film with electron or hole transfer layer, PCBM or Spiro-OMeTAD respectively, we observed the charge transfer directly through the fluorescent decay. One-dimensional diffusion model was applied to obtain long charge diffusion distances, which is ~1.3 micron for electrons and ~5.2 micron for holes. This study gives direct support to the high performance of perovskite solar cells.

  14. Thermolysis and solid state NMR studies of NaB3H8, NH3B3H7, and NH4B3H8.

    Huang, Zhenguo; Eagles, Mitch; Porter, Spencer; Sorte, Eric G; Billet, Beau; Corey, Robert L; Conradi, Mark S; Zhao, Ji-Cheng


    In an effort to broaden the search for high-capacity hydrogen storage materials, three triborane compounds, NaB(3)H(8), NH(3)B(3)H(7), and NH(4)B(3)H(8), were studied. In addition to hydrogen, thermal decomposition also releases volatile boranes, and the relative amounts and species depend on the cations (Na(+), NH(4)(+)) and the Lewis base (NH(3)). Static-sample hydrogen NMR is used to probe molecular motion in the three solids. In each case, the line width decreases from low temperatures to room temperature in accordance with a model of isotropic or nearly isotropic reorientations. Such motions also explain a deep minimum in the relaxation time T(1). Translational diffusion never appears to be rapid on the 10(-5) s time scale of NMR.

  15. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    Priante, Davide


    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative transitions related to grain size inhomogeneity were identified. Both transitions led to PL spectra broadening as a result of concurrent blue and red shifts of these excitonic peaks. The red-shifted bound-excitonic peak dominated at high PL excitation led to a true-green wavelength of 553nm for CH3NH3PbBr3 powders that are encapsulated in polydimethylsiloxane. Amplified spontaneous emission was eventually achieved for an excitation threshold energy of approximately 350μJ/cm2. Our results provide a platform for potential extension towards a true-green light-emitting device for solid-state lighting and display applications.

  16. An HTP kinetics study of the reaction between ground-state H atoms and NH3 from 500 to 1140 K

    Marshall, Paul; Fontijn, Arthur


    The H+NH3 reaction has been investigated using the high-temperature photochemistry (HTP) technique. H(1 2S) atoms were generated by flash photolysis of NH3 and monitored by time-resolved atomic resonance fluorescence with pulse counting. The rate coefficient for 660≤T≤1140 K is given by k(T)=(5.7±2.8)×10-10 exp[(-8650±410)K/T] cm3 molecule-1 s-1, where the uncertainties represent one standard deviation based on a propagation of error treatment including systematic errors. The Arrhenius plot reveals curvature between 500 and 660 K which follows the results of quantum mechanical tunneling calculations based on transition state theory and an Eckart potential.

  17. A novel co-precipitation method for preparation of Mn--Ce/TiO2 composites for NOx reduction with NH3 at low temperature.

    Sheng, Zhongyi; Hu, Yufeng; Xue, Jianming; Wang, Xiaoming; Liao, Weiping


    Mn--Ce/TiO2 catalyst prepared by a novel co-precipitation method was used in this study for low-temperature selective catalytic reduction (SCR) of NOx with ammonia. The catalyst showed high activity and good SO2 resistance. The NO conversion on the catalyst increased to 100% when 700 ppm of SO2 flowed in, and reached 60.8% in 2.5 h. The characterized results indicated that the catalyst prepared by the new method had good dispersion of the active phase, uniform micro-size particles and large Brunauer-Emmett-Teller surface. The temperature programmed reduction and temperature programmed desorption experiments showed that the improvement in SCR activity on the Mn--Ce/TiO2 catalyst might be due to the increase of active oxygen species and the enhancement of NH3 chemisorption, both of which were conducive to NH3 activation.

  18. MnOx-CeO2 catalysts supported by Ti-Bearing Blast Furnace Slag for selective catalytic reduction of NO with NH3 at low temperature.

    Xu, Yifan; Liu, Rong; Ye, Fei; Jia, Feng; Ji, Lingchen


    A series of MnOx-CeO2 catalysts supported by Ti-bearing blast furnace slag were prepared by wet impregnation and used for low-temperature selective catalytic reduction (SCR) of NO with NH3. The slag-based catalyst exhibited high deNOx activity and wide effective temperature range. Under the condition of NO=500ppm, NH3=500ppm, O2:7-8vol% and total flow rate=1600 ml/min, the Mn-Ce/Slag catalyst exhibited a NO conversion higher than 95% in the range of 180-260 °C. The activity of Mn/Slag catalysts was greatly enhanced with the addition of CeO2. The results indicated that Ti-bearing blast furnace slag had suitable phase composition as good support of SCR catalyst.

  19. Synthesis and crystal structure of 4-fluorobenzylammonium dihydrogen phosphate, [FC6H4CH2NH3]H2PO4

    Ali Rayes


    Full Text Available The asymmetric unit of the title salt, [p-FC6H4CH2NH3]+·H2PO4−, contains one 4-fluorobenzylammonium cation and one dihydrogen phosphate anion. In the crystal, the H2PO4− anions are linked by O—H...O hydrogen bonds to build corrugated layers extending parallel to the ab plane. The FC6H4CH2NH3+ cations lie between these anionic layers to maximize the electrostatic interactions and are linked to the H2PO4− anions through N—H...O hydrogen bonds, forming a three-dimensional supramolecular network. Two hydrogen atoms belonging to the dihydrogen phosphate anion are statistically occupied due to disorder along the OH...HO direction.

  20. Effect of rutile phase on V2O5 supported over TiO2 mixed phase for the selective catalytic reduction of NO with NH3

    Zhang, Shule; Zhong, Qin; Wang, Yining


    A series of V2O5/TiO2 catalysts with different ratios of TiO2 rutile phase was prepared. Focusing on the effect of TiO2 rutile phase on V2O5/TiO2 catalyst for the selective catalytic reduction (SCR) of NO with NH3, the NO conversion for the different catalysts was investigated. The experimental results showed that a small amount of TiO2 rutile phase could improve the NO conversion significantly below 270 °C. Analysis by XRD, NH3-TPD, UV-vis, EPR and DFT calculation showed that the rutile phase of TiO2 supporter decreased the band gap, especially, the conduction band level. It improved the formation of reduced V species and superoxide ions that were important to the low-temperature SCR reaction.

  1. In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3

    Zhang, Dengsong; Zhang, Lei; Shi, Liyi; Fang, Cheng; Li, Hongrui; Gao, Ruihua; Huang, Lei; Zhang, Jianping


    The MnOx and CeOx were in situ supported on carbon nanotubes (CNTs) by a poly(sodium 4-styrenesulfonate) assisted reflux route for the low-temperature selective catalytic reduction (SCR) of NO with NH3. X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD) have been used to elucidate the structure and surface properties of the obtained catalysts. It was found that the in situ prepared catalyst exhibited the highest activity and the most extensive operating-temperature window, compared to the catalysts prepared by impregnation or mechanically mixed methods. The XRD and TEM results indicated that the manganese oxide and cerium oxide species had a good dispersion on the CNT surface. The XPS results demonstrated that the higher atomic concentration of Mn existed on the surface of CNTs and the more chemisorbed oxygen species exist. The H2-TPR results suggested that there was a strong interaction between the manganese oxide and cerium oxide on the surface of CNTs. The NH3-TPD results demonstrated that the catalysts presented a larger acid amount and stronger acid strength. In addition, the obtained catalysts exhibited much higher SO2-tolerance and improved the water-resistance as compared to that prepared by impregnation or mechanically mixed methods.The MnOx and CeOx were in situ supported on carbon nanotubes (CNTs) by a poly(sodium 4-styrenesulfonate) assisted reflux route for the low-temperature selective catalytic reduction (SCR) of NO with NH3. X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD) have been used to elucidate the structure and surface properties of the obtained catalysts. It was found that the in situ

  2. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems

    Halfaya, Yacine; Bishop, Chris; Soltani, Ali; Sundaram, Suresh; Aubry, Vincent; Voss, Paul L.; Salvestrini, Jean-Paul; Ougazzaden, Abdallah


    We report improved sensitivity to NO, NO2 and NH3 gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT) that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO2 and 15 ppm-NH3 is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time. PMID:26907298

  3. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems

    Yacine Halfaya


    Full Text Available We report improved sensitivity to NO, NO2 and NH3 gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO 2 and 15 ppm-NH 3 is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time.

  4. Photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 in the VUV region

    Xia, T. J.; Chien, T. S.; Wu, C. Y. Robert; Judge, D. L.


    Using synchrotron radiation as a continuum light source, the photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 have been measured from their respective ionization thresholds to 1060 A. The vibrational constants associated with the nu(2) totally symmetric, out-of-plane bending vibration of the ground electronic state of PH3(+) have been obtained. The cross sections and quantum yields for producing neutral products through photoexcitation of these molecules in the given spectral regions have also been determined. In the present work, autoionization processes were found to be less important than dissociation and predissociation processes in NH3, PH3, and C2H4. Several experimental techniques have been employed in order to examine the various possible systematic errors critically.

  5. Effects of Cl Addition to Sb-Doped Perovskite-Type CH3NH3PbI3 Photovoltaic Devices

    Takeo Oku


    Full Text Available The effects of SbI3, PbCl2, and NH4Cl addition to perovskite CH3NH3PbI3 precursor solutions on photovoltaic properties were investigated. TiO2/CH3NH3Pb(SbI3(Cl-based photovoltaic devices were fabricated by a spin-coating technique, and the microstructures of the devices were investigated by X-ray diffraction and scanning electron microscopy. Current density-voltage characteristics and incident photon-to-current conversion efficiencies were improved by a small amount of Sb- and Cl-doping, which resulted in improvement of the efficiencies of the devices. The structure analysis indicated formation of a homogeneous microstructure by NH4Cl addition with SbI3.

  6. Effect of Electron Transporting Layer on Bismuth-Based Lead-Free Perovskite (CH3NH3)3 Bi2I9 for Photovoltaic Applications.

    Singh, Trilok; Kulkarni, Ashish; Ikegami, Masashi; Miyasaka, Tsutomu


    Methylammonium iodo bismuthate ((CH3NH3)3Bi2I9) (MBI) perovskite is a promising alternative to rapidly progressing hybrid organic-inorganic lead perovskites because of its better stability and low toxicity compared to lead-based perovskites. Solution-processed perovskite fabricated by single-step spin-coating and subsequent heating produced polycrystalline films of hybrid perovskite (CH3NH3)3Bi2I9), whose morphology was influenced drastically by the nature of substrates. The optical measurements showed a strong absorption band around 500 nm. The devices made on anatase TiO2 mesoporous layer showed good performance with current density over 0.8 mA cm(-2) while the devices on brookite TiO2 layer and planar (free of porous layer) was inefficient. However, all the MBI devices were stable to ambient conditions for more than 10 weeks.

  7. Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3

    Jeong-Hyeok Im


    Full Text Available Perovskite CH3NH3PbI3 light absorber is deposited on the mesoporous TiO2 layer via one-step and two-step coating methods and their photovoltaic performances are compared. One-step coating using a solution containing CH3NH3I and PbI2 shows average power conversion efficiency (PCE of 7.5%, while higher average PCE of 13.9% is obtained from two-step coating method, mainly due to higher voltage and fill factor. The coverage, pore-filling, and morphology of the deposited perovskite are found to be critical in photovoltaic performance of the mesoporous TiO2 based perovskite solar cells.

  8. Investigations on the Photovoltaic Performance of CdS/CH3 NH3 PbI3 Cosensitized ZnO Solar Cells%CdS/CH3 NH3 PbI3共敏化 ZnO太阳能电池的光伏性能研究

    张培松; 陈红; 栾红梅; 陈钢; 庞振宇; 杨丽丽


    量子点敏化太阳能电池( QDSSCs)是兼具低成本和高理论转换效率的第三代太阳能电池之一。量子点与有机染料共敏化是提高其光电转换效率的有效手段之一。CH3 NH3 PbI3钙钛矿材料是新兴的有机吸光层材料。本文将其作为共敏化剂,制作CdS/CH3 NH3 PbI3共敏化ZnO纳米棒太阳能电池,并研究CH3 NH3 PbI3钙钛矿共敏化和CdS量子点沉积次数对量子点/CH3 NH3 PbI3共敏化太阳能电池光伏性能的影响。%The quantum dots sensitized solar cells ( QDSSCs) became one of the third generation solar cells due to their lower cost and higher theoretical conversion efficiency .Cosensitization with quantum dots and organic dye was one of effective methods to improve the photoelectric conversion efficiency of QDSSCs .CH3 NH3 PbI3 perovskite was a burgeoning organic light absorption material .The CdS/CH3 NH3 PbI3 cosensitized solar cells with ZnO nanorods as photoanodes were prepared ,and the influences of cosensitization of perovskite and the deposition times of CdS quantum dots on the photovoltaic performance of solar cells were investigated .

  9. NH3/CO2 Supermarket Refrigeration System with CO2 in the Cooling and Freezing Section. Technical, Energetic and Economical Issues

    Van Riessen, G. J.


    The application of the natural refrigerant CO2 in combination with NH3 has shown a large increase in industrial refrigeration over the last few years. Until April 2004, all supermarkets in the Netherlands were still working with systems using the environmentally harmful HFCs (greenhouse gases) or even HCFCs (ozone depleting substances). The advantages of a CO2 supermarket system seem to be overshadowed by fear of owners of supermarkets and installers for an unfamiliar system with higher installation costs. The natural refrigerants NH3 and CO2 are now introduced in the Dutch commercial refrigeration. The first supermarket refrigeration system in the Netherlands with only natural refrigerants has become operational in March 2004 and is located in Bunschoten. The NH3/CO2 cascade system has NH3 as primary refrigerant evaporating at -16C in two parallel cascade heat exchangers, where CO2 is condensing at -12C. One CO2 circuit is used for the cooling, which is an innovation for supermarket refrigeration. From the cascade heat exchanger, CO2 is pumped into the cooling section. In the other CO2 circuit, direct expansion and a CO2 compressor provides the freezing section with CO2 of -30C. The most experiments with CO2 in supermarkets in Europe have been restricted to the application of CO2 in the freezing section. Therefore, the application of CO2 as a phase changing secondary refrigerant in the cooling section is an interesting innovation. The technical, energetic and economical aspects of the installation are considered. The technical operation of the cascade refrigeration system in a supermarket is discussed. The energy savings are calculated and the installation and running costs evaluated. Experiences and problems during the installation and control of the installation will be discussed.

  10. Thermodynamics and technology of extracting gold from low-grade gold ore in system of NH4Cl-NH3-H2O


    According to the principles of simultaneous chemical equilibrium and electronic charge neutrality, the thermodynamics of Au-NH4Cl-NH3-H2O system was studied by using the exponential computation method and through MATLAB programming, and the solid figure of potential-c(NH4Cl)-c(NH4OH) was drawn. The results show that when the sum concentration of Au+ and Au3+ is equal to5 × 10-5 mol/L, ψ(Au+/Au) is about -0.2 V; when the sum comes up to 0.5 mol/L, the value of ψ(Au+/Au) increases to 0.2 V. In this case, ψ(O2/OH-) is as high as 0.7 V. This means that it is feasible to extract gold in this system. In addition, to predict the feasibility of reducing gold from the Au(Ⅰ)-NH4Cl-NH3-H2O system with copper or zinc powder, the solid figures of potential-c(NH4Cl)-c(NH4OH)for both systems of Cu-NH4Cl-NH3-H2O and Zn-NH4Cl-NH3-H2O were also drawn. The results indicate that both copper and zinc powders can reduce Au+ into metal gold, and zinc powder can also reduce H2O into H2, while copper powder can not. The leaching results of a cuprous gold ore show that the extraction of gold can reach 80% in this system. The preliminary results of reduction with copper and zinc powders show that with deoxygenizing, the reduction effects are relatively good.

  11. Structural characterisation of [Pt(NH 3) 4] 2[W(CN) 8][NO 3]·2H 2O donor-acceptor complex

    Sieklucka, B.; Łasocha, W.; Proniewicz, L. M.; Podgajny, R.; Schenk, H.


    The bimetallic [Pt(NH 3) 4] 2[W(CN) 8][NO 3]·2H 2O is characterised by single-crystal X-ray diffraction [S.G. P2 1/ m(11), a=8.0418(7), b=19.122(2), c=9.0812(6) Å, Z=2]. All platinum centres have the square-plane D4h geometry with average dimensions Pt(1)-N 2.042(2) and Pt(2)-N 2.037(10) Å. The octacyanotungstate anion has the square-antiprismatic D4d configuration with average dimensions W(1)-C 2.164(13), C-N 1.140(12), W(1)-N 3.303(5) Å. The structure exhibits two different mutual orientations of Pt versus W units resulting in Pt(2)-W(1), W(1) ∗ separations of 4.77(2), 4.55(2) ∗ and Pt(1)-W(1) of 6.331(8) Å. A centrosymmetric structure reveals groups of two distinct columns: the first is formed by intercalated NO 3- between parallel [Pt(1)(NH 3) 4] 2+ planes and the second consists of [W(CN) 8] 3- interlayered by, parallel to square faces of W-antiprisms, [Pt(2)(NH 3) 4] 2+. The structure is stabilised through a three-dimensional hydrogen bond network via nitrogen atoms of cyanide ligands, hydrogen atoms of NH 3 ligands, water molecules and oxygen atoms of NO 3- counteranions. The vibrational pattern and the range of ν(CN) frequencies attributable to the electronic environment of W(V) and W(IV) are consistent with the ground state Pt(II)↔W(V) charge transfer.

  12. Correlation between Cu ion migration behaviour and deNOx activity in Cu-SSZ-13 for the standard NH3-SCR reaction.

    Beale, A M; Lezcano-Gonzalez, I; Slawinksi, W A; Wragg, D S


    Here we present the results of a synchrotron-based in situ, time-resolved PXRD study during activation of two Cu-SSZ-13 catalysts under O2/He and one during standard NH3-SCR reaction conditions to obtain insight into the behaviour of Cu ions. The results obtained indicate that deNOx activity is inexorably linked with occupancy of the zeolite 6r.

  13. Site preference of NH3-adsorption on Co, Pt and CoPt surfaces: the role of charge transfer, magnetism and strain.

    Bhattacharjee, S; Gupta, K; Jung, N; Yoo, S J; Waghmare, U V; Lee, S C


    Oxidation of Co at the surface poses a major problem in the cyclable use of CoPt, a cost-effective catalyst for proton exchange membrane fuel cells. This can be alleviated by attaching a ligand selectively to Co-sites to stop its oxidation without compromising the catalytic activity. Here, we present a comparative analysis of adsorption of NH3 on the (0001) surface of Co in the HCP structure and (111) surfaces of Pt and CoPt alloy in the FCC structure, using first-principles density functional theoretical calculations. While NH3 binds more strongly with the Pt surface than with the Co surface, we find that its binding with the Co atom is stronger than that with the Pt atom on the surface of the CoPt alloy. Our analysis of the charge density and electronic structure shows how this originates from (a) the electron transfer from the minority spin d-band of Co to Pt, and (b) shift in the energy of d-bands and the magnetic moments of Co atoms on the surface of the CoPt alloy relative to those on the (0001) surface of Co. Hybridization of the d-states of Co in CoPt with pz states of N in NH3 used to stop Co oxidation also results in improving the charge transfer from Co to Pt that is relevant to the catalytic activity of CoPt. We finally present the analysis of how the interaction of NH3 with the CoPt surface can be tuned with strain.

  14. Liquid phase deposition of TiO2 nanolayer affords CH3NH3PbI3/nanocarbon solar cells with high open-circuit voltage.

    Chen, Haining; Wei, Zhanhua; Yan, Keyou; Yi, Ya; Wang, Jiannong; Yang, Shihe


    Hybrid organic/inorganic perovskite solar cells are attracting intense attention and further developments largely hinge on understanding the fundamental issues involved in the cell operation. In this paper, a liquid phase deposition (LPD) method is developed to design and grow a TiO(2) nanolayer at room temperature for carbon-based perovskite solar cells. The TiO(2) nanolayer grown on FTO glass is compact but polycrystalline consisting of tiny anatase TiO(2) nanocrystals intimately stacked together. By directly exploiting this TiO(2) nanolayer in a solar cell of TiO(2) nanolayer/CH(3)NH(3)PbI(3)/nanocarbon, we have achieved a Voc as high as 1.07 V, the highest value reported so far for hole transporter-free CH(3)NH(3)PbI(3) solar cells. This is rationalized by the slower electron injection and longer electron lifetime due to the TiO(2) nanolayer, which enhances the electron accumulation in CH(3)NH(3)PbI(3) and consequently the Voc. By employing a rutile TiO(2) nanorod (NR) array as a base structure for the LPD-TiO(2) nanolayer to support the CH(3)NH(3)PbI(3) layer, the photocurrent density is considerably increased without obviously compromising the Voc (1.01 V). As a result, the power conversion efficiency is boosted from 3.67% to 8.61%. More elaborate engineering of the TiO(2) nanolayer by LPD in conjunction with judicious interfacing with other components has the potential to achieve higher performances for this type of solar cell.

  15. Intrinsic Raman Signatures of Pristine Hybrid Perovskite CH3NH3PbI3 and its Multiple Stages of Structure Transformation

    Chen, Qiong; Liu, Henan; Kim, Hui-Seon; Liu, Yucheng; Yang, Mengjin; Yue, Naili; Ren, Gang; Zhu, Kai; Liu, Shengzhong (Frank); Park, Nam-Gyu; Zhang, Yong


    By performing spatially resolved Raman and photoluminescence spectroscopy with different illumination conditions, we have achieved a unified understanding towards the spectroscopy signatures of the organic-inorganic hybrid perovskite, transforming from the pristine state (CH3NH3PbI3 or MAPbI3) to fully degraded state (i.e., PbI2), for samples with varying crystalline domain size from mesoscopic scale to macroscopic size, synthesized by three different techniques.

  16. Influence of different supports on the physicochemical properties and denitration performance of the supported Mn-based catalysts for NH3-SCR at low temperature

    Yao, Xiaojiang; Kong, Tingting; Yu, Shuohan; Li, Lulu; Yang, Fumo; Dong, Lin


    The commonly used supports of SiO2, γ-Al2O3, TiO2, and CeO2 were synthesized, and used for preparing MnOx/SiO2, MnOx/γ-Al2O3, MnOx/TiO2, and MnOx/CeO2 catalysts with the purpose of investigating the influence of crystal structure and coordination status on the physicochemical properties and denitration performance of these supported Mn-based catalysts for low-temperature NH3-SCR. The obtained samples were characterized by XRD, Raman, BET, H2-TPR, NH3-TPD, in situ DRIFTS, NO + O2-TPD, XPS, and NH3-SCR model reaction. XRD results indicate that MnOx species can be highly dispersed on the surface of γ-Al2O3, TiO2, and CeO2, which is because that there are some octahedral and tetrahedral vacancy sites, octahedral vacancy site, and cubic vacancy site exist on the surface of defective spinel structure γ-Al2O3, anatase TiO2, and cubic fluorite-type structure CeO2, respectively. However, there is no any vacancy site on the surface of SiO2 due to its unique SiO4 tetrahedral structure, which results in the appearance of crystalline β-MnO2 on the surface of MnOx/SiO2 catalyst. Furthermore, H2-TPR results exhibit obvious different reduction behavior among these supported Mn-based catalysts, which is explained by the coordination status of Mn species. Finally, NH3-SCR model reaction results show that MnOx/γ-Al2O3 catalyst presents the best catalytic performance among these supported Mn-based catalysts due to its high dispersion, suitable reduction behavior, largest amount of acid sites, optimal NOx adsorption capacity, and abundant Mn4+ content.

  17. Mechanisms of the Formation of Adenine, Guanine, and Their Analogues in UV-Irradiated Mixed NH3:H2O Molecular Ices Containing Purine

    Bera, Partha P.; Stein, Tamar; Head-Gordon, Martin; Lee, Timothy J.


    We investigated the formation mechanisms of the nucleobases adenine and guanine and the nucleobase analogues hypoxanthine, xanthine, isoguanine, and 2,6-diaminopurine in a UV-irradiated mixed 10:1 H2O:NH3 ice seeded with precursor purine by using ab initio and density functional theory computations. Our quantum chemical investigations suggest that a multistep reaction mechanism involving purine cation, hydroxyl and amino radicals, together with water and ammonia, explains the experimentally obtained products in an independent study. The relative abundances of these products appear to largely follow from relative thermodynamic stabilities. The key role of the purine cation is likely to be the reason why purine is not functionalized in pure ammonia ice, where cations are promptly neutralized by free electrons from NH3 ionization. Amine group addition to purine is slightly favored over hydroxyl group attachment based on energetics, but hydroxyl is much more abundant due to higher abundance of H2O. The amino group is preferentially attached to the 6 position, giving 6-aminopurine, that is, adenine, while the hydroxyl group is preferentially attached to the 2 position, leading to 2-hydroxypurine. A second substitution by hydroxyl or amino group occurs at either the 6 or the 2 position depending on the first substitution. Given that H2O is far more abundant than NH3 in the experimentally studied ices (as well as based on interstellar abundances), xanthine and isoguanine are expected to be the most abundant bi-substituted photoproducts.

  18. Monitoring a Silent Phase Transition in CH3NH3PbI3 Solar Cells via Operando X-ray Diffraction

    Schelhas, Laura T.; Christians, Jeffrey A.; Berry, Joseph J.; Toney, Michael F.; Tassone, Christopher J.; Luther, Joseph M.; Stone, Kevin H.


    The relatively modest temperature of the tetragonal-to-cubic phase transition in CH3NH3PbI3 perovskite is likely to occur during real world operation of CH3NH3PbI3 solar cells. In this work, we simultaneously monitor the structural phase transition of the active layer along with solar cell performance as a function of the device operating temperature. The tetragonal to cubic phase transition is observed in the working device to occur reversibly at temperatures between 60.5 and 65.4 degrees C. In these operando measurements, no discontinuity in the device performance is observed, indicating electronic behavior that is insensitive to the structural phase transition. This decoupling of device performance from the change in long-range order across the phase transition suggests that the optoelectronic properties are primarily determined by the local structure in CH3NH3PbI3. That is, while the average crystal structure as probed by X-ray diffraction shows a transition from tetragonal to cubic, the local structure generally remains well characterized by uncorrelated, dynamic octahedral rotations that order at elevated temperatures but are unchanged locally.

  19. A feasibility analysis of replacing the standard ammonia refrigeration device with the cascade NH3/CO2 refrigeration device in the food industry

    Jankovich Dennis


    Full Text Available The thermodynamic analysis demonstrates the feasibility of replacing the standard ammonia refrigeration device with the cascade NH3/CO2 refrigeration device in the food industry. The main reason for replacement is to reduce the total amount of ammonia in spaces like deep-freezing chambers, daily chambers, working rooms and technical passageways. An ammonia-contaminated area is hazardous to human health and the safety of food products. Therefore the preferred reduced amount of ammonia is accumulated in the Central Refrigeration Engine Room, where the cascade NH3/CO2 device is installed as well. Furthermore, the analysis discusses and compares two left Carnot¢s refrigeration cycles, one for the standard ammonia device and the other for the cascade NH3/CO2 device. Both cycles are processes with two-stage compression and two-stage throttling. The thermodynamic analysis demonstrates that the selected refrigeration cycle is the most cost-effective process because it provides the best numerical values for the total refrigeration factor with respect to the observed refrigeration cycle. The chief analyzed influential parameters of the cascade device are: total refrigeration load, total reactive power, mean temperature of the heat exchanger, evaporating and condensing temperature of the low-temperature part.

  20. High-Performance CH3NH3PbI3-Inverted Planar Perovskite Solar Cells with Fill Factor Over 83% via Excess Organic/Inorganic Halide.

    Jahandar, Muhammad; Khan, Nasir; Lee, Hang Ken; Lee, Sang Kyu; Shin, Won Suk; Lee, Jong-Cheol; Song, Chang Eun; Moon, Sang-Jin


    The reduction of charge carrier recombination and intrinsic defect density in organic-inorganic halide perovskite absorber materials is a prerequisite to achieving high-performance perovskite solar cells with good efficiency and stability. Here, we fabricated inverted planar perovskite solar cells by incorporation of a small amount of excess organic/inorganic halide (methylammonium iodide (CH3NH3I; MAI), formamidinium iodide (CH(NH2)2I; FAI), and cesium iodide (CsI)) in CH3NH3PbI3 perovskite film. Larger crystalline grains and enhanced crystallinity in CH3NH3PbI3 perovskite films with excess organic/inorganic halide reduce the charge carrier recombination and defect density, leading to enhanced device efficiency (MAI+: 14.49 ± 0.30%, FAI+: 16.22 ± 0.38% and CsI+: 17.52 ± 0.56%) compared to the efficiency of a control MAPbI3 device (MAI: 12.63 ± 0.64%) and device stability. Especially, the incorporation of a small amount of excess CsI in MAPbI3 perovskite film leads to a highly reproducible fill factor of over 83%, increased open-circuit voltage (from 0.946 to 1.042 V), and short-circuit current density (from 18.43 to 20.89 mA/cm(2)).