WorldWideScience

Sample records for mg m-3 respirable

  1. Measured Hugoniot states of a two-element fluid, O2 + N2, near 2 Mg/m3

    International Nuclear Information System (INIS)

    Schott, G.L.

    1983-01-01

    Measured single-shock Hugoniot quantities are reported for a 1:1 atomic mixture of the elements oxygen and nitrogen in each of two liquid initial states. One of these is the inert equimolar solution O 2 + N 2 , at T approx. = 85K, v approx. = 1.06 m 3 /Mg; the other is the pure explosive compound nitric oxide, NO, at T approx. = 122K, v approx. = 0.79 m 3 /Mg. First-shock pressures are in the range 10 to 30 GPa. The two Hugoniots have common values of specific volumes and energies near 20 GPa; that is, they intersect. This permits a novel test of attainment of steady waves with equilibrium composition, such that a single equation of state may describe the shocked reactive fluid. 5 figures

  2. Theoretical descriptions of novel triplet germylenes M1-Ge-M2-M3 (M1 = H, Li, Na, K; M2 = Be, Mg, Ca; M3 = H, F, Cl, Br).

    Science.gov (United States)

    Kassaee, Mohamad Zaman; Ashenagar, Samaneh

    2018-02-06

    In a quest to identify new ground-state triplet germylenes, the stabilities (singlet-triplet energy differences, ΔE S-T ) of 96 singlet (s) and triplet (t) M 1 -Ge-M 2 -M 3 species were compared and contrasted at the B3LYP/6-311++G**, QCISD(T)/6-311++G**, and CCSD(T)/6-311++G** levels of theory (M 1  = H, Li, Na, K; M 2  = Be, Mg, Ca; M 3  = H, F, Cl, Br). Interestingly, F-substituent triplet germylenes (M 3  = F) appear to be more stable and linear than the corresponding Cl- or Br-substituent triplet germylenes (M 3  = Cl or Br). Triplets with M 1  = K (i.e., the K-Ge-M 2 -M 3 series) seem to be more stable than the corresponding triplets with M 1  = H, Li, or Na. This can be attributed to the higher electropositivity of potassium. Triplet species with M 3  = Cl behave similarly to those with M 3  = Br. Conversely, triplets with M 3  = H show similar stabilities and linearities to those with M 3  = F. Singlet species of formulae K-Ge-Ca-Cl and K-Ge-Ca-Br form unexpected cyclic structures. Finally, the triplet germylenes M 1 -Ge-M 2 -M 3 become more stable as the electropositivities of the α-substituents (M 1 and M 2 ) and the electronegativity of the β-substituent (M 3 ) increase.

  3. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration.

    Science.gov (United States)

    Gout, Elisabeth; Rébeillé, Fabrice; Douce, Roland; Bligny, Richard

    2014-10-28

    In animal and plant cells, the ATP/ADP ratio and/or energy charge are generally considered key parameters regulating metabolism and respiration. The major alternative issue of whether the cytosolic and mitochondrial concentrations of ADP and ATP directly mediate cell respiration remains unclear, however. In addition, because only free nucleotides are exchanged by the mitochondrial ADP/ATP carrier, whereas MgADP is the substrate of ATP synthase (EC 3.6.3.14), the cytosolic and mitochondrial Mg(2+) concentrations must be considered as well. Here we developed in vivo/in vitro techniques using (31)P-NMR spectroscopy to simultaneously measure these key components in subcellular compartments. We show that heterotrophic sycamore (Acer pseudoplatanus L.) cells incubated in various nutrient media contain low, stable cytosolic ADP and Mg(2+) concentrations, unlike ATP. ADP is mainly free in the cytosol, but complexed by Mg(2+) in the mitochondrial matrix, where [Mg(2+)] is tenfold higher. In contrast, owing to a much higher affinity for Mg(2+), ATP is mostly complexed by Mg(2+) in both compartments. Mg(2+) starvation used to alter cytosolic and mitochondrial [Mg(2+)] reversibly increases free nucleotide concentration in the cytosol and matrix, enhances ADP at the expense of ATP, decreases coupled respiration, and stops cell growth. We conclude that the cytosolic ADP concentration, and not ATP, ATP/ADP ratio, or energy charge, controls the respiration of plant cells. The Mg(2+) concentration, remarkably constant and low in the cytosol and tenfold higher in the matrix, mediates ADP/ATP exchange between the cytosol and matrix, [MgADP]-dependent mitochondrial ATP synthase activity, and cytosolic free ADP homeostasis.

  4. Respirable dust and respirable silica exposure in Ontario gold mines.

    Science.gov (United States)

    Verma, Dave K; Rajhans, Gyan S; Malik, Om P; des Tombe, Karen

    2014-01-01

    A comprehensive survey of respirable dust and respirable silica in Ontario gold mines was conducted by the Ontario Ministry of Labor during 1978-1979. The aim was to assess the feasibility of introducing gravimetric sampling to replace the assessment method which used konimeters, a device which gave results in terms of number of particles per cubic centimeter (ppcc) of air. The study involved both laboratory and field assessments. The field assessment involved measurement of airborne respirable dust and respirable silica at all eight operating gold mines of the time. This article describes the details of the field assessment. A total of 288 long-term (7-8 hr) personal respirable dust air samples were collected from seven occupational categories in eight gold mines. The respirable silica (α-quartz) was determined by x-ray diffraction method. The results show that during 1978-1979, the industry wide mean respirable dust was about 1 mg/m(3), and the mean respirable silica was 0.08 mg/m(3.)The mean% silica in respirable dust was 7.5%. The data set would be useful in future epidemiological and health studies, as well as in assessment of workers' compensation claims for occupational diseases such as silicosis, chronic obstructive pulmonary disease (COPD), and autoimmune diseases such as renal disease and rheumatoid arthritis.

  5. Occupational Exposure to Respirable Dust, Respirable Crystalline Silica and Diesel Engine Exhaust Emissions in the London Tunnelling Environment.

    Science.gov (United States)

    Galea, Karen S; Mair, Craig; Alexander, Carla; de Vocht, Frank; van Tongeren, Martie

    2016-03-01

    Personal 8-h shift exposure to respirable dust, diesel engine exhaust emissions (DEEE) (as respirable elemental carbon), and respirable crystalline silica of workers involved in constructing an underground metro railway tunnel was assessed. Black carbon (BC) concentrations were also assessed using a MicroAeth AE51. During sprayed concrete lining (SCL) activities in the tunnel, the geometric mean (GM) respirable dust exposure level was 0.91mg m(-3), with the highest exposure measured on a back-up sprayer (3.20mg m(-3)). The GM respirable crystalline silica concentration for SCL workers was 0.03mg m(-3), with the highest measurement also for the back-up sprayer (0.24mg m(-3)). During tunnel boring machine (TBM) activities, the GM respirable dust concentration was 0.54mg m(-3). The GM respirable elemental carbon concentration for all the TBM operators was 18 µg m(-3); with the highest concentration measured on a segment lifter. The BC concentrations were higher in the SCL environment in comparison to the TBM environment (daily GM 18-54 µg m(-3) versus 3-6 µg m(-3)). This small-scale monitoring campaign provides additional personal data on exposures experienced by underground tunnel construction workers. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  6. A STUDY OF FISCHER 344 RATS EXPOSED TO SILICA DUST FOR SIX MONTHS AT CONCENTRATIONS OF 0, 2, 10 OR 20 MG / M3.

    Energy Technology Data Exchange (ETDEWEB)

    KUTZMAN,R.S.

    1984-02-01

    The major objective of this study was to relate the results of a series of functional tests to the compositional and structural alterations in the rat lung induced by subchronic exposure to silica dust. Fischer-344 rats were exposed for 6 hours/day, 5 days/week for 6 months to either 0, 2, 10, or 20 mg SiO{sub 2}/m{sup 3}. The general appearance of the exposed rats was not different from that of the controls. Interestingly, female rats exposed to silica dust, at all tested concentrations, gained more weight than the controls. The lung weight and the lung-to-body weight ratio was greater in the male rats exposed to the highest concentration of silica dust.

  7. Respirator use and its impact on particulate matter exposure in aluminum manufacturing facilities.

    Science.gov (United States)

    Liu, Sa; Noth, Elizabeth; Eisen, Ellen; Cullen, Mark R; Hammond, Katharine

    2018-05-31

    Objectives As part of a large epidemiologic study of particulate health effect, this study aimed to report respirator use among total particulate matter (TPM) samples collected in a major aluminum manufacturing company from 1966‒2013 and evaluate the impact of respirator-use adjustment on exposure estimation. Methods Descriptive analyses were performed to evaluate respirator use across facilities and by facility type and job. Protection factors were applied to TPM measurements for recorded respirator use. Estimated TPM exposure for each job ‒ before and after respirator-use adjustment ‒ were compared to assess the impact of adjustment on exposure estimation. Results Respirator use was noted for 37% of 12 402 full-shift personal TPM samples. Measured TPM concentration ranged from less than detectable to 8220 mg/m3, with arithmetic mean, median and standard deviation being 10.6, 0.87 and 130 mg/m 3 , respectively. Respirators were used more often in smelting facilities (52% of TPM measurements) than in fabricating (17%) or refinery facilities (28%) (Pfacilities were subject to respirator-use adjustment, whereas it was 20% and 70% in fabricating and refinery facilities, respectively. Applying protection factors to TPM measurements significantly reduced estimated job mean TPM exposures and changed exposure categories in these facilities, with larger impact in smelting than fabricating facilities. Conclusions Respirator use varied by time, facility and job. Adjusting respirator use resulted in differential impact in smelting and fabricating facilities, which will need to be incorporated into ongoing epidemiologic studies accordingly.

  8. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    Science.gov (United States)

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  9. Assessment of respirable dust and its free silica contents in different Indian coalmines.

    Science.gov (United States)

    Mukherjee, Ashit K; Bhattacharya, Sanat K; Saiyed, Habibullah N

    2005-04-01

    Assessment of respirable dust, personal exposures of miners and free silica contents in dust were undertaken to find out the associated risk of coal workers' pneumoconiosis in 9 coal mines of Eastern India during 1988-91. Mine Research Establishment (MRE), 113A Gravimetric Dust Sampler (GDS) and personal samplers (AFC 123), Cassella, London, approved by Director General of Mines Safety (DGMS) were used respectively for monitoring of mine air dust and personal exposures of miners. Fourier Transform Infra-red (FTIR) Spectroscopy determined free silica in respirable dusts. Thermal Conditions like Wet Bulb Globe Temperature (WBGT) index, humidity and wind velocity were also recorded during monitoring. The dust levels in the face return air of both, Board & Pillar (B&P) and Long Wall (LW) mining were found above the permissible level recommended by DGMS, Govt. of India. The drilling, blasting and loading are the major dusty operations in B&P method. Exposures of driller and loader were varied between, 0.81-9.48 mg/m3 and 0.05-9.84 mg/m3 respectively in B&P mining, whereas exposures of DOSCO loader, Shearer operator and Power Support Face Worker were varied between 2.65-9.11 mg/m3, 0.22-10.00 mg/m3 and 0.12-9.32 mg/m3 respectively in LW mining. In open cast mining, compressor and driller operators are the major exposed groups. The percentage silica in respirable dusts found below 5% in all most all the workers except among query loaders and drillers of open cast mines.

  10. Determination of exposure to respirable quartz in the stone crushing units at Azendarian-West of Iran.

    Science.gov (United States)

    Bahrami, Abdul Rahman; Golbabai, Faridah; Mahjub, Hossien; Qorbani, Farshid; Aliabadi, Mohsan; Barqi, Mohamadali

    2008-08-01

    The purpose of this study is to describe the personal exposure to respirable dust and quartz and in stone crushing units located at west of Iran. A size of 40 personal samples and 40 stationary samples were obtained and analysis was done by X-ray diffraction (XRD). The results of personal sampling were shown the concentrations of respirable dust exposure level in workers of process, hopper and drivers were 1.90, 2.22, 1.41 times greater than Occupational Safety and Health Administration permissible exposure limit (OSHA PEL). The average value of total dust and respirable dust emission from stationary sources was 9.46 mg/m(3), 1.24 mg/m(3) respectively, showing that 13.8 % of total dust is respirable. The efficiency of local exhaust ventilation (LEV) to control of particles inside of industrial units was greater than 99%. It is concluded from this research the particulate generated from stone crushing activities contain a significant amount of respirable particle. The amount of free silica in stone quartz is 85 to 97 percent that emission of particles effect to health workers. LEV has important effect in the removal of silica particles in stone crushing units. The worker of hoppers still exposed to silica more than standard limits.

  11. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    , skeletal, and smooth muscle was harvested from a total of 22 subjects (53±6 yrs) and mitochondrial respiration assessed in permeabilized fibers. Complex I+II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac, skeletal, to smooth muscle (54±1; 39±4; 15......±1 pmol•s(-1)•mg (-1), prespiration rates were normalized by CS (respiration...... per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, Complex I state 2 normalized for CS activity, an index of non-phosphorylating respiration per mitochondrial content, increased progressively from cardiac, skeletal...

  12. Estimation of respirable dust exposure among coal miners in South Africa.

    Science.gov (United States)

    Naidoo, Rajen; Seixas, Noah; Robins, Thomas

    2006-06-01

    The use of retrospective occupational hygiene data for epidemiologic studies is useful in determining exposure-outcome relationships, but the potential for exposure misclassification is high. Although dust sampling in the South African coal industry has been a legal requirement for several decades, these historical data are not readily adequate for estimating past exposures. This study describes the respirable coal mine dust levels in three South African coal mines over time. Each of the participating mining operations had well-documented dust sampling information that was used to describe historical trends in dust exposure. Investigator-collected personal dust samples were taken using standardized techniques from the face, backbye (underground jobs not at the coal face), and surface from 50 miners at each mine, repeated over three sampling cycles. Job histories and exposure information was obtained from a sample of 684 current miners and 188 ex-miners. Linear models were developed to estimate the exposure levels associated with work in each mine, exposure zone, and over time using a combination of operator-collected historical data and investigator-collected samples. The estimated levels were then combined with work history information to calculate cumulative exposure metrics for the miner cohort. The mean historical and investigator-collected respirable dust levels were within international norms and South African standards. Silica content of the dust samples was also below the 5% regulatory action level. Mean respirable dust concentrations at the face, based on investigator-collected samples, were 0.9 mg/m(3), 1.3 mg/m(3), and 1.9 mg/m(3) at Mines 1, 2, and 3, respectively. The operator-collected samples showed considerable variability across exposure zones, mines, and time, with the annual means at the face ranging from 0.4 mg/m(3) to 2.9 mg/m(3). Statistically significant findings were found between operator- and investigator-collected dust samples. Model

  13. Concentrations and size distribution of inhalable and respirable dust among sugar industry workers: a pilot study in Khon Kaen, Thailand.

    Science.gov (United States)

    Sakunkoo, Pornpun; Chaiear, Naesinee; Chaikittiporn, Chalermchai; Sadhra, Steven

    2011-11-01

    There has been very limited information regarding bagasse exposure among workers in sugar industries as well as on health outcomes. The authors determined the occupational exposure of sugar industry workers in Khon Kaen to airborne bagasse dust. The size of the bagasse dust ranged from 0.08 to 9 µm with the highest size concentration of 2.1 to 4.7 µm. The most common size had a geometric mean diameter of 5.2 µm, with a mass concentration of 6.89 mg/m(3)/log µm. The highest mean values of inhalable and respirable dust were found to be 9.29 mg/m(3) from February to April in bagasse storage, 5.12 mg/m(3) from May to September, and 4.12 mg/m(3) from October to January. Inhalable dust concentrations were 0.33, 0.47, and 0.41 mg/m(3), respectively. Workers are likely to be exposed to high concentrations of bagasse dust and are at risk of respiratory diseases. Preventive measures, both in the form of engineering designs and personal protective devices, should be implemented.

  14. Exposure to respirable dust and manganese and prevalence of airways symptoms, among Swedish mild steel welders in the manufacturing industry.

    Science.gov (United States)

    Hedmer, Maria; Karlsson, Jan-Eric; Andersson, Ulla; Jacobsson, Helene; Nielsen, Jörn; Tinnerberg, Håkan

    2014-08-01

    Welding fume consists of metal fumes, e.g., manganese (Mn) and gases, e.g., ozone. Particles in the respirable dust (RD) size range dominate. Exposure to welding fume could cause short- and long-term respiratory effects. The prevalence of work-related symptoms among mild steel welders was studied, and the occupational exposure to welding fumes was quantified by repeated measurements of RD, respirable Mn, and ozone. Also the variance components were studied. A questionnaire concerning airway symptoms and occupational history was answered by 79% of a cohort of 484 welders. A group of welders (N = 108) were selected and surveyed by personal exposure measurements of RD and ozone three times during 1 year. The welders had a high frequency of work-related symptoms, e.g., stuffy nose (33%), ocular symptoms (28%), and dry cough (24%). The geometric mean exposure to RD and respirable Mn was 1.3 mg/m(3) (min-max 0.1-38.3 mg/m(3)) and 0.08 mg/m(3) (min-max <0.01-2.13 mg/m(3)), respectively. More than 50% of the Mn concentrations exceeded the Swedish occupational exposure limit (OEL). Mainly, low concentrations of ozone were measured, but 2% of the samples exceeded the OEL. Of the total variance for RD, 30 and 33% can be attributed to within-worker variability and between-company variability, respectively. Welders had a high prevalence of work-related symptom from the airways and eyes. The welders' exposure to Mn was unacceptably high. To reduce the exposure further, control measures in the welding workshops are needed. Correct use of general mechanical ventilation and local exhaust ventilation can, for example, efficiently reduce the exposure.

  15. The Chemical Composition Contrast between M3 and M13 Revisited: New Abundances for 28 Giant Stars in M3

    Science.gov (United States)

    Sneden, Christopher; Kraft, Robert P.; Guhathakurta, Puragra; Peterson, Ruth C.; Fulbright, Jon P.

    2004-04-01

    We report new chemical abundances of 23 bright red giant members of the globular cluster M3, based on high-resolution (R~45,000) spectra obtained with the Keck I telescope. The observations, which involve the use of multislits in the HIRES Keck I spectrograph, are described in detail. Combining these data with a previously reported small sample of M3 giants obtained with the Lick 3 m telescope, we compare metallicities and [X/Fe] ratios for 28 M3 giants with a 35-star sample in the similar-metallicity cluster M13, and with Galactic halo field stars having [Fe/H]=A(Si), we derive little difference in [X/Fe] ratios in the M3, M13, or halo field samples. All three groups exhibit C depletion with advancing evolutionary state beginning at the level of the red giant branch ``bump,'' but the overall depletion of about 0.7-0.9 dex seen in the clusters is larger than that associated with the field stars. The behaviors of O, Na, Mg, and Al are distinctively different among the three stellar samples. Field halo giants and subdwarfs have a positive correlation of Na with Mg, as predicted from explosive or hydrostatic carbon burning in Type II supernova sites. Both M3 and M13 show evidence of high-temperature proton-capture synthesis from the ON, NeNa, and MgAl cycles, while there is no evidence for such synthesis among halo field stars. But the degree of such extreme proton-capture synthesis in M3 is smaller than it is in M13: the M3 giants exhibit only modest deficiencies of O and corresponding enhancements of Na, less extreme overabundances of Al, fewer stars with low Mg and correspondingly high Na, and no indication that O depletions are a function of advancing evolutionary state, as has been claimed for M13. We have also considered NGC 6752, for which Mg isotopic abundances have been reported by Yong et al. Giants in NGC 6752 and M13 satisfy the same anticorrelation of O abundances with the ratio (25Mg+26Mg)/24Mg, which measures the relative contribution of rare to

  16. Respirator field performance factors

    International Nuclear Information System (INIS)

    Skaggs, B.J.; DeField, J.D.; Strandberg, S.W.; Sutcliffe, C.R.

    1985-01-01

    The Industrial Hygiene Group assisted OSHA and the NRC in measurements of respirator performance under field conditions. They reviewed problems associated with sampling aerosols within the respirator in order to determine fit factors (FFs) or field performance factor (FPF). In addition, they designed an environmental chamber study to determine the effects of temperature and humidity on a respirator wearer

  17. Level and distribution of employee exposures to total and respirable wood dust in two Canadian sawmills.

    Science.gov (United States)

    Teschke, K; Hertzman, C; Morrison, B

    1994-03-01

    Personal respirable (N = 230) and total (N = 237) dust measurements were made in two coastal British Columbia sawmills using a sampling strategy that randomly selected workers from all jobs in the mills over two seasons. Information about job title, department, season, weather conditions, location of the job relative to wood-cutting machines, and control measures also was collected at the time of sampling. Only 16 respirable wood dust samples were above the detection limit of 0.08 mg/m3; all 16 had levels industry, but most sawmill investigations report mean wood dust concentrations lower than those measured in the furniture and cabinetmaking industries, where concerns about wood dust exposures initially were raised.

  18. M3 User's Manual. Version 3.0

    International Nuclear Information System (INIS)

    Laaksoharju, Marcus; Skaarman, Erik; Gomez, Javier B.

    2009-11-01

    bedrock minerals is not reached and where biological processes seem to play a central role in the groundwater altering process. The major purpose of standard groundwater chemical codes is to describe the measured groundwater composition in terms of reactions. The constituents that cannot be described by reactions are described by mixing using one or several conservative tracer. The M3 model uses an opposite approach compared to the standard methods. In M3 the mixing processes are evaluated and calculated first. This is possible due to the use of multivariate techniques to construct an ideal mixing model of a site. Many variables employed in multivariate analysis are needed to trace and describe the complex mixing processes taking place in the groundwater. The information is used to construct an ideal mixing model of a site. The complexity of the measured groundwater data determines the configuration of this ideal mixing model. The constituents that cannot be described by mixing are described by reactions. The M3 model consists of three steps; the first step is a standard Principal Component Analysis (PCA), followed by mixing and finally mass balance calculations. In order to take as many relevant elements as possible into consideration PCA is used to summarise and simplify the groundwater information. The M3 model compares the measured groundwater composition of each sample to known well-sampled waters named reference waters by using the results of the PCA. All the measured groundwater compositions at a site are compared to these reference waters. The mixing calculations (i.e. mixing portions as a percentage of a selected reference water) determine how much of the observed groundwater composition is due to mixing from the selected reference water. The mass balance calculations (reported in terms of sinks/sources of groundwater constituents in mg/l or moles) determine how much of the measured groundwater constituents is a result from water-rock interaction. Since the

  19. Community respiration/production and bacterial activity in the upper water column of the central Arctic Ocean

    Science.gov (United States)

    Sherr, Barry F.; Sherr, Evelyn B.

    2003-04-01

    Community metabolism (respiration and production) and bacterial activity were assessed in the upper water column of the central Arctic Ocean during the SHEBA/JOIS ice camp experiment, October 1997-September 1998. In the upper 50 m, decrease in integrated dissolved oxygen (DO) stocks over a period of 124 d in mid-winter suggested a respiration rate of ˜3.3 nM O 2 h -1 and a carbon demand of ˜4.5 gC m -2. Increase in 0-50 m integrated stocks of DO during summer implied a net community production of ˜20 gC m -2. Community respiration rates were directly measured via rate of decrease in DO in whole seawater during 72-h dark incubation experiments. Incubation-based respiration rates were on average 3-fold lower during winter (11.0±10.6 nM O 2 h -1) compared to summer (35.3±24.8 nM O 2 h -1). Bacterial heterotrophic activity responded strongly, without noticeable lag, to phytoplankton growth. Rate of leucine incorporation by bacteria (a proxy for protein synthesis and cell growth) increased ˜10-fold, and the cell-specific rate of leucine incorporation ˜5-fold, from winter to summer. Rates of production of bacterial biomass in the upper 50 m were, however, low compared to other oceanic regions, averaging 0.52±0.47 ngC l -1 h -1 during winter and 5.1±3.1 ngC l -1 h -1 during summer. Total carbon demand based on respiration experiments averaged 2.4±2.3 mgC m -3 d -1 in winter and 7.8±5.5 mgC m -3 d -1 in summer. Estimated bacterial carbon demand based on bacterial productivity and an assumed 10% gross growth efficiency was much lower, averaging about 0.12±0.12 mgC m -3 d -1 in winter and 1.3±0.7 mgC m -3 d -1 in summer. Our estimates of bacterial activity during summer were an order of magnitude less than rates reported from a summer 1994 study in the central Arctic Ocean, implying significant inter-annual variability of microbial processes in this region.

  20. M3 version 3.0: Verification and validation

    International Nuclear Information System (INIS)

    Gomez, Javier B.; Laaksoharju, Marcus; Skaarman, Erik; Gurban, Ioana

    2009-01-01

    Hydrochemical evaluation is a complex type of work that is carried out by specialists. The outcome of this work is generally presented as qualitative models and process descriptions of a site. To support and help to quantify the processes in an objective way, a multivariate mathematical tool entitled M3 (Multivariate Mixing and Mass balance calculations) has been constructed. The computer code can be used to trace the origin of the groundwater, and to calculate the mixing proportions and mass balances from groundwater data. The M3 code is a groundwater response model, which means that changes in the groundwater chemistry in terms of sources and sinks are traced in relation to an ideal mixing model. The complexity of the measured groundwater data determines the configuration of the ideal mixing model. Deviations from the ideal mixing model are interpreted as being due to reactions. Assumptions concerning important mineral phases altering the groundwater or uncertainties associated with thermodynamic constants do not affect the modelling because the calculations are solely based on the measured groundwater composition. M3 uses the opposite approach to that of many standard hydrochemical models. In M3, mixing is evaluated and calculated first. The constituents that cannot be described by mixing are described by reactions. The M3 model consists of three steps: the first is a standard principal component analysis, followed by mixing and finally mass balance calculations. The measured groundwater composition can be described in terms of mixing proportions (%), while the sinks and sources of an element associated with reactions are reported in mg/L. This report contains a set of verification and validation exercises with the intention of building confidence in the use of the M3 methodology. At the same time, clear answers are given to questions related to the accuracy and the precision of the results, including the inherent uncertainties and the errors that can be made

  1. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    Directory of Open Access Journals (Sweden)

    Or Sperling

    Full Text Available Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq. cm(-3 yr(-1 on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  2. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    Science.gov (United States)

    Sperling, Or; Earles, J Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm(-3) yr(-1) on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  3. Choosing the right respirator

    International Nuclear Information System (INIS)

    Bidwell, J.

    1997-01-01

    Selecting respirators to help protect workers from airborne contaminants can be a confusing process. The consequences of selecting the incorrect respirator can be intimidating, and worker safety and health may be dramatically and irreparably affected if an inappropriate respirator is chosen. When used in the workplace, a formal respiratory protection program must be established covering the basic requirements outlined in the OSHA Respiratory Protection Standard (29 CFR 1910.134). Education and training must be properly emphasized and conducted periodically. Maintenance, cleaning, and storage programs must be established and routinely followed for reusable respirators. The process of establishing a respiratory protection program can be broken down into four basic steps: Identify respiratory hazards and concentrations; understand the contaminants effects on workers' health; select appropriate respiratory protection; and train in proper respirator use and maintenance. These four steps are the foundation for establishing a basic respirator protection program. Be sure to consult state and federal OSHA requirements to ensure that the program complies. Leading industrial respirator manufacturers should be able to assist with on-site training and education in this four-step process, in addition to helping employers train their workers and conduct respirator fit testing

  4. Chemical speciation of respirable suspended particulate matter during a major firework festival in India.

    Science.gov (United States)

    Sarkar, Sayantan; Khillare, Pandit S; Jyethi, Darpa S; Hasan, Amreen; Parween, Musarrat

    2010-12-15

    Ambient respirable particles (PM ≤ 10 μm, denoted by PM(10)) were characterized with respect to 20 elements, 16 polycyclic aromatic hydrocarbons (PAHs), elemental and organic carbon (EC and OC) during a major firework event-the "Diwali" festival in Delhi, India. The event recorded extremely high 24-h PM(10) levels (317.2-616.8 μg m(-3), 6-12 times the WHO standard) and massive loadings of Ba (16.8 μg m(-3), mean value), K (46.8 μg m(-3)), Mg (21.3 μg m(-3)), Al (38.4 μg m(-3)) and EC (40.5 μg m(-3)). Elemental concentrations as high as these have not been reported previously for any firework episode. Concentrations of Ba, K, Sr, Mg, Na, S, Al, Cl, Mn, Ca and EC were higher by factors of 264, 18, 15, 5.8, 5, 4, 3.2, 3, 2.7, 1.6 and 4.3, respectively, on Diwali as compared to background values. It was estimated that firework aerosol contributed 23-33% to ambient PM(10) on Diwali. OC levels peaked in the post-Diwali samples, perhaps owing to secondary transformation processes. Atmospheric PAHs were not sourced from fireworks; instead, they correlated well with changes in traffic patterns indicating their primary source in vehicular emissions. Overall, the pollutant cocktail generated by the Diwali fireworks could be best represented with Ba, K and Sr as tracers. It was also found that chronic exposure to Diwali pollution is likely to cause at least a 2% increase in non-carcinogenic hazard index (HI) associated with Al, Mn and Ba in the exposed population. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. The Effects of Bit Wear on Respirable Silica Dust, Noise and Productivity: A Hammer Drill Bench Study.

    Science.gov (United States)

    Carty, Paul; Cooper, Michael R; Barr, Alan; Neitzel, Richard L; Balmes, John; Rempel, David

    2017-07-01

    Hammer drills are used extensively in commercial construction for drilling into concrete for tasks including rebar installation for structural upgrades and anchor bolt installation. This drilling task can expose workers to respirable silica dust and noise. The aim of this pilot study was to evaluate the effects of bit wear on respirable silica dust, noise, and drilling productivity. Test bits were worn to three states by drilling consecutive holes to different cumulative drilling depths: 0, 780, and 1560 cm. Each state of bit wear was evaluated by three trials (nine trials total). For each trial, an automated laboratory test bench system drilled 41 holes 1.3 cm diameter, and 10 cm deep into concrete block at a rate of one hole per minute using a commercially available hammer drill and masonry bits. During each trial, dust was continuously captured by two respirable and one inhalable sampling trains and noise was sampled with a noise dosimeter. The room was thoroughly cleaned between trials. When comparing results for the sharp (0 cm) versus dull bit (1560 cm), the mean respirable silica increased from 0.41 to 0.74 mg m-3 in sampler 1 (P = 0.012) and from 0.41 to 0.89 mg m-3 in sampler 2 (P = 0.024); levels above the NIOSH recommended exposure limit of 0.05 mg m-3. Likewise, mean noise levels increased from 112.8 to 114.4 dBA (P < 0.00001). Drilling productivity declined with increasing wear from 10.16 to 7.76 mm s-1 (P < 0.00001). Increasing bit wear was associated with increasing respirable silica dust and noise and reduced drilling productivity. The levels of dust and noise produced by these experimental conditions would require dust capture, hearing protection, and possibly respiratory protection. The findings support the adoption of a bit replacement program by construction contractors. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  6. Respiration in Aquatic Insects.

    Science.gov (United States)

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  7. Workplace field testing of the pressure drop of particulate respirators using welding fumes.

    Science.gov (United States)

    Cho, Hyun-Woo; Yoon, Chung-Sik

    2012-10-01

    In a previous study, we concluded that respirator testing with a sodium chloride aerosol gave a conservative estimate of filter penetration for welding fume aerosols. A rapid increase in the pressure drop (PD) of some respirators was observed as fumes accumulated on the filters. The present study evaluated particulate respirator PD based on workplace field tests. A field PD tester was designed and validated using the TSI 8130 Automatic Filter Tester, designed in compliance with National Institute for Occupational and Safety and Health regulation 42 CFR part 84. Three models (two replaceable dual-type filters and one replaceable single-type filter) were evaluated against CO(2) gas arc welding on mild steel in confined booths in the workplace. Field tests were performed under four airborne concentrations (27.5, 15.4, 7.9, and 2.1 mg m(-3)). The mass concentration was measured by the gravimetric method, and number concentration was monitored using P-Trak (Model 8525, TSI, USA). Additionally, photos and scanning electron microscopy-energy dispersive X-ray spectroscopy were used to visualize and analyze the composition of welding fumes trapped in the filters. The field PD tester showed no significant difference compared with the TSI tester. There was no significant difference in the initial PD between laboratory and field results. The PD increased as a function of fume load on the respirator filters for all tested models. The increasing PD trend differed by models, and PD increased rapidly at high concentrations because greater amount of fumes accumulated on the filters in a given time. The increase in PD as a function of fume load on the filters showed a similar pattern as fume load varied for a particular model, but different patterns were observed for different models. Images and elemental analyses of fumes trapped on the respirator filters showed that most welding fumes were trapped within the first layer, outer web cover, and second layer, in order, while no fumes

  8. Cattle respiration facility

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Lund, Peter; Weisbjerg, Martin Riis

    2012-01-01

    In Denmark, the emission rate of methane from dairy cows has been calculated using the IPCC standard values for dairy cows in Western countries, due to the lack of national data. Therefore, four respiration chambers for dairy cows were built with the main purpose of measuring methane, but also...

  9. Respirators. Does your face fit

    Energy Technology Data Exchange (ETDEWEB)

    Caro, N M; Else, D

    1981-04-01

    The authors carried out a survey of face sizes of men and women of four different ethnic origins and carried out face-seal leakage trials on four corresponding test panels. No single respirator design is likely to fit all members of the workforce, and it may be necessary to stock respirators from more than one manufacturers.Three or four different respirators or size of respirator may be needed. However, the use of lossely-fitting respirators such as Airsteam helmets could remove the necessity for exhaustive fitting procedures.

  10. Responses of soil respiration and barley growth to modified supply of oxygen in the soil

    Directory of Open Access Journals (Sweden)

    A. SIMOJOKI

    2008-12-01

    Full Text Available Roots of dry-land plants are supplied with oxygen mainly by molecular diffusion from soil air. Roots may suffer from hypoxia if soil aeration is reduced by compaction and wetting. Although the mechanisms involved are well known, more research is needed to relate soil aeration status to plant growth. The effects of reduced oxygen supply on soil respiration and the growth of barley seedlings were studied in pot experiments with fine sand soil, where the soil air composition was varied by flushing the soil with gas streams containing 0%, 2%, 6%, 10% or 20% O2 independently of compactness (bulk density 1.4, 1.6 Mg m-3 and wetness (air space 0-5%, >5%. Plant growth decreased only at 0-2% O2 in the loose moist soil but as early as 20% O2 in the wet soil. Soil compaction impaired plant growth regardless of wetting and aeration. In the loose moist soil cropped with barley, the respiration rate (emission of CO2 did not decrease at 6% O2 but decreased clearly at 0-2% O2. The results compared fairly well with the critical oxygen concentrations calculated by a simple multicylindrical model, in which the water-film thickness around the roots was estimated using soil water retention data.

  11. The risk of pulmonary tuberculosis in underground copper miners in Zambia exposed to respirable silica: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Kingsley Ngosa

    2016-08-01

    Full Text Available Abstract Background Pulmonary tuberculosis (PTB among underground miners exposed to silica remains a global problem. Although well described in gold and coal mining, risk in other mining entities are not as well documented. This study aims to determine dust-related dose response risk for PTB among underground miners exposed to silica dust in Zambia's copper mines. Methods A cross sectional study of in-service miners (n = 357 was conducted at Occupational Health and Safety Institute (OHSI, Zambia. A systematic review of medical data over a 5-year period from assessments conducted by doctors at OHSI and statutory silica exposure data (n = 16678 from the Mine Safety Department (MSD were analysed. Lifetime cumulative exposure metrics were calculated. Multivariate logistic regression analysis was used to determine the association between PTB and lifetime exposure to silica, while adjusting for various confounders. Results The median respirable silica dust level was 0.3 mg/m3 (range 0.1–1.3. The overall prevalence of PTB was 9.5 % (n = 34. High cumulative respirable silica dust category showed a statistically significant association with PTB (OR = 6.4 (95 % CI 1. 8–23 and a significant trend of increasing disease prevalence with increasing cumulative respirable silica dust categories was observed (ptrend < 0.01. Smoking showed a statistically significant association with PTB with OR = 4.3 (95 % CI 1.9–9.9. Conclusions Our results demonstrate the association of increased risk for certified active TB with cumulative respirable dust in a dose related manner among this sample of copper miners. There is need to intensify dust control measures and incorporate anti-smoking interventions into TB prevention and control programmes in the mines.

  12. M3: Matrix Multiplication on MapReduce

    DEFF Research Database (Denmark)

    Silvestri, Francesco; Ceccarello, Matteo

    2015-01-01

    M3 is an Hadoop library for performing dense and sparse matrix multiplication in MapReduce. The library is based on multi-round algorithms exploiting the 3D decomposition of the problem.......M3 is an Hadoop library for performing dense and sparse matrix multiplication in MapReduce. The library is based on multi-round algorithms exploiting the 3D decomposition of the problem....

  13. Sources of Respired Carbon in a Northern Minnesota Ombrotrophic Spruce Bog: Preliminary 14C Results from the SPRUCE Site.

    Science.gov (United States)

    Guilderson, T. P.; McNicol, G.; Machin, A.; Hanson, P. J.; McFarlane, K. J.; Osuna, J. L.; Pett-Ridge, J.; Singleton, M. J.

    2014-12-01

    A significant uncertainty in future land-surface carbon budgets is the response of wetlands to climate change. A corollary and related question is the future net climate (radiative) forcing impact from wetlands. Active wetlands emit both CO2 and CH4 to the atmosphere. CH4 is, over a few decades, a much more potent greenhouse gas than CO2. CO2 has a longer atmospheric lifetime and a longer 'tail' to its radiative influence. Whether wetlands are a net source or sink of atmospheric carbon under future climate change will depend on ecosystem response to rising temperatures and elevated CO2. The largest uncertainty in future wetland C-budgets, and their climate forcing is the stability of the large below-ground carbon stocks, often in the form of peat, and the partitioning of CO2 and CH4 released via ecosystem respiration. In advance of a long-term experimental warming and elevated CO2 manipulation at the DOE Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) site in the Marcell Experimental Forest, we have characterized the source of respired carbon used for both the production of CO2 and CH4. Samples were collected in early June, late July, and will be collected in early September from three large (~1.1 m2, ~0.5m3) chambers from the control plot, and two of the experimental plots selected for heating (+9°C, +4.5°C). Early June fluxes from the three chambers were ~5500 mgC-m-2-d-1 and ~16 mgC-m-2-d-1 for CO2 and CH4 respectively. Radiocarbon analysis of CO2 and CH4 indicate that the source for the respired carbon is for the most part recent, with most 14C values between 30 and 40‰ - i.e., carbon that was photosynthetically fixed in the last few years. In concert with rising air and ground temperatures fluxes in late July increased to ~6500 mgC-m-2-d-1 and ~86 mgC-m-2-d-1. Although deep-heating was initiated in mid to late June we hypothesize that the July respiration signal is dominated by the regular seasonal cycle of natural warming

  14. M3D project for simulation studies of plasmas

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.; Sugiyama, L.E.

    1998-01-01

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes

  15. Respiration in spiders (Araneae).

    Science.gov (United States)

    Schmitz, Anke

    2016-05-01

    Spiders (Araneae) are unique regarding their respiratory system: they are the only animal group that breathe simultaneously with lungs and tracheae. Looking at the physiology of respiration the existence of tracheae plays an important role in spiders with a well-developed tracheal system. Other factors as sex, life time, type of prey capture and the high ability to gain energy anaerobically influence the resting and the active metabolic rate intensely. Most spiders have metabolic rates that are much lower than expected from body mass; but especially those with two pairs of lungs. Males normally have higher resting rates than females; spiders that are less evolved and possess a cribellum have lower metabolic rates than higher evolved species. Freely hunting spiders show a higher energy turnover than spiders hunting with a web. Spiders that live longer than 1 year will have lower metabolic rates than those species that die after 1 year in which development and reproduction must be completed. Lower temperatures and starvation, which most spiders can cope with, will decrease the metabolic rate as well.

  16. Dependence of Soil Respiration on Soil Temperature and Soil Moisture in Successional Forests in Southern China

    Institute of Scientific and Technical Information of China (English)

    Xu-Li Tang; Guo-Yi Zhou; Shu-Guang Liu; De-Qiang Zhang; Shi-Zhong Liu; Jiong Li; Cun-Yu Zhou

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate in the DNR forests was (9.0±4.6) Mg CO2-C/hm2 per year, ranging from (6.1±3.2) Mg CO2-C/hm2 per year in early successional forests to (10.7±4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  17. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China

    Science.gov (United States)

    Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, Ji; Zhou, C.-Y.

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (±SD) soil respiration rate in the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  18. Exploring Practical Responses of M3LC for Learning Literacy

    Science.gov (United States)

    Nasrullah; Baharman

    2018-01-01

    This study aims to explore the responses of participants toward Mathematics-Language Literacy Learning Courseware (M3LC) for learning literacy. There are five practical aspects concerned by involving 30 participants in the focus group discussion. In the beginning, participants were given some response sheet and introduced to M3LC by watching learning video of M3LC. At the end, they were asked to concern about response sheet and give comments related what they saw during the introduction session. The results show that the responses of users’ agree and strongly agree are still higher than those of users’ disagree or strongly disagree, with below 30% of responses are in the fair category. It means that the participants tend to give a positive opinion that M3LC is a useful courseware since it is qualified to satisfy 5 practical aspects, including knowledge use, knowledge construction, evaluation practice, social programming, and valuing to support literacy learning. In future, the implementation of using this courseware can be enhanced to further recognition of literacy level so that students can be well-prepared before starting learning activities in the classroom.

  19. A polarized beam for the M-3 line

    International Nuclear Information System (INIS)

    Underwood, D.; Colton, E.; Halpern, H.

    1978-01-01

    A beamline is proposed for polarized protons to be built in the M-3 line of the Meson Laboratory utilizing lambda decays. This beamline would provide a clean source of polarized protons or an enriched beam of antiprotons or polarized antiprotons

  20. The luminosity function for globular clusters, 4: M3

    International Nuclear Information System (INIS)

    Simoda, Mahiro; Fukuoka, Takashi

    1976-01-01

    The subgiant-turnoff portion (V = 17.2 - 20.0 mag) of the luminosity function for the globular cluster M3 has been determined from photometry of the stars within the annuli 3'-8' and 6'-8' for V = 17.2 - 19.0 mag and 19.0 - 20.0 mag, respectively, by using plates taken with the Kitt Peak 2.1-m reflector. Our result shows that the luminosity function for M3 has a similar steep rise in the subgiant portion as other clusters so far studied (M5, M13, and M92), in direct conflict with the result by SANDAGE (1954, 1957). A probable cause of this discrepancy is given. Comparison with theoretical luminosity functions by SIMODA and IBEN (1970) suggests that theory and observation are not inconsistent if the initial helium abundance of M3 stars is taken to be about 20 percent. It is suggested that M13 has a larger helium abundance than M3 and M92 from the intercomparison of their luminosity functions and color-magnitude diagrams. (auth.)

  1. Optimizing Concurrent M3-Transactions: A Fuzzy Constraint Satisfaction Approach

    Directory of Open Access Journals (Sweden)

    Peng LI

    2004-10-01

    Full Text Available Due to the high connectivity and great convenience, many E-commerce application systems have a high transaction volume. Consequently, the system state changes rapidly and it is likely that customers issue transactions based on out-of-date state information. Thus, the potential of transaction abortion increases greatly. To address this problem, we proposed an M3-transaction model. An M3-transaction is a generalized transaction where users can issue their preferences in a request by specifying multiple criteria and optional data resources simultaneously within one transaction. In this paper, we introduce the transaction grouping and group evaluation techniques. We consider evaluating a group of M3-transactions arrived to the system within a short duration together. The system makes optimal decisions in allocating data to transactions to achieve better customer satisfaction and lower transaction failure rate. We apply the fuzzy constraint satisfaction approach for decision-making. We also conduct experimental studies to evaluate the performance of our approach. The results show that the M3-transaction with group evaluation is more resilient to failure and yields much better performance than the traditional transaction model.

  2. Soil respiration patterns and rates at three Taiwanese forest plantations: dependence on elevation, temperature, precipitation, and litterfall.

    Science.gov (United States)

    Huang, Yu-Hsuan; Hung, Chih-Yu; Lin, I-Rhy; Kume, Tomonori; Menyailo, Oleg V; Cheng, Chih-Hsin

    2017-11-15

    Soil respiration contributes to a large quantity of carbon emissions in the forest ecosystem. In this study, the soil respiration rates at three Taiwanese forest plantations (two lowland and one mid-elevation) were investigated. We aimed to determine how soil respiration varies between lowland and mid-elevation forest plantations and identify the relative importance of biotic and abiotic factors affecting soil respiration. The results showed that the temporal patterns of soil respiration rates were mainly influenced by soil temperature and soil water content, and a combined soil temperature and soil water content model explained 54-80% of the variation. However, these two factors affected soil respiration differently. Soil temperature positively contributed to soil respiration, but a bidirectional relationship between soil respiration and soil water content was revealed. Higher soil moisture content resulted in higher soil respiration rates at the lowland plantations but led to adverse effects at the mid-elevation plantation. The annual soil respiration rates were estimated as 14.3-20.0 Mg C ha -1  year -1 at the lowland plantations and 7.0-12.2 Mg C ha -1  year -1 at the mid-elevation plantation. When assembled with the findings of previous studies, the annual soil respiration rates increased with the mean annual temperature and litterfall but decreased with elevation and the mean annual precipitation. A conceptual model of the biotic and abiotic factors affecting the spatial and temporal patterns of the soil respiration rate was developed. Three determinant factors were proposed: (i) elevation, (ii) stand characteristics, and (iii) soil temperature and soil moisture. The results indicated that changes in temperature and precipitation significantly affect soil respiration. Because of the high variability of soil respiration, more studies and data syntheses are required to accurately predict soil respiration in Taiwanese forests.

  3. Mitochondrial Respiration and Oxygen Tension.

    Science.gov (United States)

    Shaw, Daniel S; Meitha, Karlia; Considine, Michael J; Foyer, Christine H

    2017-01-01

    Measurements of respiration and oxygen tension in plant organs allow a precise understanding of mitochondrial capacity and function within the context of cellular oxygen metabolism. Here we describe methods that can be routinely used for the isolation of intact mitochondria, and the determination of respiratory electron transport, together with techniques for in vivo determination of oxygen tension and measurement of respiration by both CO 2 production and O 2 consumption that enables calculation of the respiratory quotient [CO 2 ]/[O 2 ].

  4. Respirable versus inhalable dust sampling

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    The ICRP uses a total inhalable dust figure as the basis of calculations on employee lung dose. This paper was written to look at one aspect of the Olympic Dam dust situation, namely, the inhalable versus respirable fraction of the dust cloud. The results of this study will determine whether it is possible to use respirable dust figures, as obtained during routine monitoring to help in the calculations of employee exposure to internal radioactive contaminants

  5. Interpreting, measuring, and modeling soil respiration

    Science.gov (United States)

    Michael G. Ryan; Beverly E. Law

    2005-01-01

    This paper reviews the role of soil respiration in determining ecosystem carbon balance, and the conceptual basis for measuring and modeling soil respiration. We developed it to provide background and context for this special issue on soil respiration and to synthesize the presentations and discussions at the workshop. Soil respiration is the largest component of...

  6. Soil respiration sensitivities to water and temperature in a revegetated desert

    Science.gov (United States)

    Zhang, Zhi-Shan; Dong, Xue-Jun; Xu, Bing-Xin; Chen, Yong-Le; Zhao, Yang; Gao, Yan-Hong; Hu, Yi-Gang; Huang, Lei

    2015-04-01

    Soil respiration in water-limited ecosystems is affected intricately by soil water content (SWC), temperature, and soil properties. Eight sites on sand-fixed dunes that revegetated in different years since 1950s, with several topographical positions and various biological soil crusts (BSCs) and soil properties, were selected, as well as a moving sand dune (MSD) and a reference steppe in the Tengger Desert of China. Intact soil samples of 20 cm in depth were taken and incubated randomly at 12 levels of SWC (0 to 0.4 m3 m-3) and at 9 levels of temperature (5 to 45°C) in a growth chamber; additionally, cryptogamic and microbial respirations (RM) were measured. Total soil respiration (RT, including cryptogamic, microbial, and root respiration) was measured for 2 years at the MSD and five sites of sand-fixed dunes. The relationship between RM and SWC under the optimal SWC condition (0.25 m3 m-3) is linear, as is the entire range of RT and SWC. The slope of linear function describes sensitivity of soil respiration to water (SRW) and reflects to soil water availability, which is related significantly to soil physical properties, BSCs, and soil chemical properties, in decreasing importance. Inversely, Q10 for RM is related significantly to abovementioned factors in increasing importance. However, Q10 for RT and respiration rate at 20°C are related significantly to soil texture and depth of BSCs and subsoil only. In conclusion, through affecting SRW, soil physical properties produce significant influences on soil respiration, especially for RT. This indicates that a definition of the biophysical meaning of SRW is necessary, considering the water-limited and coarse-textured soil in most desert ecosystems.

  7. A mechanical breathing simulator for respirator test

    International Nuclear Information System (INIS)

    Murata, Mikio; Ikezawa, Yoshio; Yoshida, Yoshikazu

    1976-01-01

    A mechanical breathing simulator has been developed to produce the human respiration for use in respirator test. The respirations were produced through the strokes of piston controlled by a rockerarm with adjustable fulcrum. The respiration rate was governed by motor-speed control, independent of the tidal volume achieved by adjustment of the piston stroke. By the breather, the simulated respirations for work rate 0, 208, 415, 622 and 830 kg-m/min could be produced through the typical dummy head. (auth.)

  8. Effect of organic synthetic food colours on mitochondrial respiration.

    Science.gov (United States)

    Reyes, F G; Valim, M F; Vercesi, A E

    1996-01-01

    Eleven organic synthetic dyes, currently or formerly used as food colours in Brazil, were tested to determine their effect on mitochondrial respiration in mitochondria isolated from rat liver and kidney. The compounds tested were: Erythrosine, Ponceau 4R, Allura Red, Sunset yellow, Tartrazine, Amaranth, Brilliant Blue, Blue, Fast Red E, Orange GGN and Scarlet GN. All food colours tested inhibited mitochondrial respiration (State III respiration, uncoupled) supported either by alpha-ketoglutarate or succinate. This inhibition varied largely, e.g. from 100% to 16% for Erythrosine and Tartrazine respectively, at a concentration of 0.1 mg food colour per mitochondrial protein. Both rat liver and kidney mitochondria showed similar patterns of inhibition among the food colours tested. This effect was dose related and the concentration to give 50% inhibition was determined for some of the dyes. The xanthene dye Erythrosine, which showed the strongest effect, was selected for further investigation on mitochondria in vivo.

  9. Higher Order Lagrange Finite Elements In M3D

    International Nuclear Information System (INIS)

    Chen, J.; Strauss, H.R.; Jardin, S.C.; Park, W.; Sugiyama, L.E.; Fu, G.; Breslau, J.

    2004-01-01

    The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles

  10. Impact of environmental factors and biological soil crust types on soil respiration in a desert ecosystem.

    Science.gov (United States)

    Feng, Wei; Zhang, Yuqing; Jia, Xin; Wu, Bin; Zha, Tianshan; Qin, Shugao; Wang, Ben; Shao, Chenxi; Liu, Jiabin; Fa, Keyu

    2014-01-01

    The responses of soil respiration to environmental conditions have been studied extensively in various ecosystems. However, little is known about the impacts of temperature and moisture on soils respiration under biological soil crusts. In this study, CO2 efflux from biologically-crusted soils was measured continuously with an automated chamber system in Ningxia, northwest China, from June to October 2012. The highest soil respiration was observed in lichen-crusted soil (0.93 ± 0.43 µmol m-2 s-1) and the lowest values in algae-crusted soil (0.73 ± 0.31 µmol m-2 s-1). Over the diurnal scale, soil respiration was highest in the morning whereas soil temperature was highest in the midday, which resulted in diurnal hysteresis between the two variables. In addition, the lag time between soil respiration and soil temperature was negatively correlated with the soil volumetric water content and was reduced as soil water content increased. Over the seasonal scale, daily mean nighttime soil respiration was positively correlated with soil temperature when moisture exceeded 0.075 and 0.085 m3 m-3 in lichen- and moss-crusted soil, respectively. However, moisture did not affect on soil respiration in algae-crusted soil during the study period. Daily mean nighttime soil respiration normalized by soil temperature increased with water content in lichen- and moss-crusted soil. Our results indicated that different types of biological soil crusts could affect response of soil respiration to environmental factors. There is a need to consider the spatial distribution of different types of biological soil crusts and their relative contributions to the total C budgets at the ecosystem or landscape level.

  11. Occurrence of trace elements in respirable coal dust

    International Nuclear Information System (INIS)

    Sahoo, B.N.

    1991-01-01

    Inhalation of fine particles of coal dust contributes significantly to the occurrence of the disease, pneumoconiosis, prevailing in coal mining community. It is not presently known whether only the coal dust or specific chemical compounds or synergistic effects of several compounds associated with respirable coal dust is responsible for the disease, pneumoconiosis. The present paper describes the quantitative determination of ten minor and trace elements in respirable coal dust particles by atomic absorption spectrophotometric methods. The respirable coal dust samples are collected at the mine atmosphere during drilling in coal scams by using Messrs. Casella's Hexlet apparatus specially designed and fitted with horizontal elutriator to collect the respirable coal dust fraction simulating as near as possible to the lung's retention of the coal miners. After destruction of organic matter by wet oxidation and filtering off clay and silica, Fe, Ca, Mg, Na, K, Mn, Cu, Zn, Cd, and Ni were determined directly in the resulting solution by atomic absorption spectrophotometric procedures. The results show that the trace metals are more acute in lower range of size spectrum. Correlation coefficient, enrichment factor and linear regression values and their inverse relationship between the slope and EF values suggest that, in general, the trace metals in respirable particulates are likely to be from coal derived source if their concentrations are likewise high in the coal. The trace metal analytical data of respirable particulates fitted well to the linear regressive equation. The results of the studies are of importance as it may throw some light on the respirable lung disease 'pneumoconiosis' which are predominant in coal mining community. (author). 13 refs., 6 tabs

  12. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?

    Science.gov (United States)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Trinity, Joel D; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S

    2014-08-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.

  13. [The evaluation of biological effects of exposure to respirable crystalline silica in building industry].

    Science.gov (United States)

    Pira, E; Piolatto, P G

    2012-01-01

    The building industry entails the exposure to Respirable Crystalline Silica (RCS), though there is a large variability among different sectors. The environmental values reported for the current conditions seem to be relatively low. For example the mean exposure estimated by IOM for all industrial sectors in the EU is 0.07 mg/m3. There are few studies in the building sector which show similar values. This is obviously not representative of past exposure. Moreover, the problems of sampling and analysis techniques are still at issue. The well known effect of RCS exposure is silicosis. The carcinogenicity of RCS is still under debate, especially regarding the question of whether RCS is carcinogenic "per se" or whether the risk of developing lung cancer is mediated by silicosis. Although the IARC includes RCS in the Group I (human carcinogen), the reference should be the CLP regulation, of which carcinogen definition criteria allow to state that today there are not sufficient data to classify RCS as a carcinogen and that it seems more appropriate to include RCS in different STOT.RE categories. This is valid for building industry as well as for the other industrial sectors. In Italy the recommended exposure limit is the ACGIH value of 0.025 mg/m3. At EU level it is still debated which is the best choice, based on cost/benefits evaluation, among the following limit values: 0.2, 0.1 and 0.05 respectively. The authors obviously believe that the most protective value should be adopted.

  14. Soil respiration in relation to photosynthesis of Quercus mongolica trees at elevated CO2.

    Science.gov (United States)

    Zhou, Yumei; Li, Mai-He; Cheng, Xu-Bing; Wang, Cun-Guo; Fan, A-Nan; Shi, Lian-Xuan; Wang, Xiu-Xiu; Han, Shijie

    2010-12-06

    Knowledge of soil respiration and photosynthesis under elevated CO(2) is crucial for exactly understanding and predicting the carbon balance in forest ecosystems in a rapid CO(2)-enriched world. Quercus mongolica Fischer ex Ledebour seedlings were planted in open-top chambers exposed to elevated CO(2) (EC = 500 µmol mol(-1)) and ambient CO(2) (AC = 370 µmol mol(-1)) from 2005 to 2008. Daily, seasonal and inter-annual variations in soil respiration and photosynthetic assimilation were measured during 2007 and 2008 growing seasons. EC significantly stimulated the daytime soil respiration by 24.5% (322.4 at EC vs. 259.0 mg CO(2) m(-2) hr(-1) at AC) in 2007 and 21.0% (281.2 at EC vs. 232.6 mg CO(2) m(-2) hr(-1) at AC) in 2008, and increased the daytime CO(2) assimilation by 28.8% (624.1 at EC vs. 484.6 mg CO(2) m(-2) hr(-1) at AC) across the two growing seasons. The temporal variation in soil respiration was positively correlated with the aboveground photosynthesis, soil temperature, and soil water content at both EC and AC. EC did not affect the temperature sensitivity of soil respiration. The increased daytime soil respiration at EC resulted mainly from the increased aboveground photosynthesis. The present study indicates that increases in CO(2) fixation of plants in a CO(2)-rich world will rapidly return to the atmosphere by increased soil respiration.

  15. Corrosion cracking of 03N18K1M3TYu and 02N12Kh5M3 maraging steels in chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, V.N.; Chumalo, G.V.; Vereshchagin, A.N.; Melekhov, R.K.

    1987-07-01

    The authors investigate the electrochemical behavior in 0.5% NaCl solution and 42% MgCl/sub 2/ solution and the tendency toward corrosion cracking was determined in boiling 0.5% chloride solution of the cobalt-containing maraging steels in the title. Weld specimens and specimens of the base metal of 03N18K1M3TYu steel were tested in 3% NaCl solution for resistance to corrosion cracking. Additional investigations were made of specimens of that steel with previously created fatigue cracks of the base metal and the weld specimens in 3% NaCl solutions, since that steel is a promising material for structures operating in sea water and low concentration chloride solutions.

  16. The critical boundary RSOS M(3,5) model

    Science.gov (United States)

    El Deeb, O.

    2017-12-01

    We consider the critical nonunitary minimal model M(3, 5) with integrable boundaries and analyze the patterns of zeros of the eigenvalues of the transfer matrix and then determine the spectrum of the critical theory using the thermodynamic Bethe ansatz ( TBA) equations. Solving the TBA functional equation satisfied by the transfer matrices of the associated A 4 restricted solid-on-solid Forrester-Baxter lattice model in regime III in the continuum scaling limit, we derive the integral TBA equations for all excitations in the ( r, s) = (1, 1) sector and then determine their corresponding energies. We classify the excitations in terms of ( m, n) systems.

  17. M3 User's Manual. Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus (Geopoint AB, Sollentuna (Sweden)); Skaarman, Erik (Abscondo Utveckling, Bromma (Sweden)); Gomez, Javier B. (Univ. of Zaragoza (Spain). Geochemical modelling Group); Gurban, Ioana (3D Terra (Canada))

    2006-07-15

    of the bedrock minerals is not reached and where biological processes seem to play a central role in the groundwater altering process. The major purpose of standard groundwater chemical codes is to describe the measured groundwater composition in terms of reactions. The constituents that cannot be described by reactions are described by mixing using one or several conservative tracer. The M3 model uses an opposite approach compared to the standard methods. In M3 the mixing processes are evaluated and calculated first. This is possible due to the use of multivariate techniques to construct an ideal mixing model of a site. Many variables employed in multivariate analysis are needed to trace and describe the complex mixing processes taking place in the groundwater. The information is used to construct an ideal mixing model of a site. The complexity of the measured groundwater data determines the configuration of this ideal mixing model. The constituents that cannot be described by mixing are described by reactions. The M3 model consists of three steps; the first step is a standard Principal Component Analysis (PCA), followed by mixing and finally mass balance calculations. In order to take as many relevant elements as possible into consideration PCA is used to summarise and simplify the groundwater information. The M3 model compares the measured groundwater composition of each sample to known well-sampled waters named reference waters by using the results of the PCA. All the measured groundwater compositions at a site are compared to these reference waters. The mixing calculations (i.e. mixing portions as a percentage of a selected reference water) determine how much of the observed groundwater composition is due to mixing from the selected reference water. The mass balance calculations (reported in terms of sinks/sources of groundwater constituents in mg/l or moles) determine how much of the measured groundwater constituents is a result from water-rock interaction

  18. Facepiece leakage and fitting of respirators

    International Nuclear Information System (INIS)

    White, J.M.

    1978-05-01

    The ways in which airborne contaminants can penetrate respirators and the factors which affect the fit of respirators are discussed. The fit of the respirator to the face is shown to be the most critical factor affecting the protection achieved by the user. Qualitative and quantitative fit testing techniques are described and their application to industrial respirator programs is examined. Quantitative measurement of the leakage of a respirator while worn can be used to numerically indicate the protection achieved. These numbers, often referred to as protection factors, are sometimes used as the basis for selecting suitable respirators and this practice is reviewed. (author)

  19. Supersymmetric M3-branes and G2 manifolds

    International Nuclear Information System (INIS)

    Cvetic, M.; Gibbons, G.W.; Lue, H.; Pope, C.N.

    2002-01-01

    We obtain a generalisation of the original complete Ricci-flat metric of G 2 holonomy on (R 4 xS 3 to a family with a nontrivial parameter λ. For generic λ the solution is singular, but it is regular when λ={-1,0,+1}. The case λ=0 corresponds to the original G 2 metric, and λ={-1,1} are related to this by an S 3 automorphism of the SU(2) 3 isometry group that acts on the S 3 xS 3 principal orbits. We then construct explicit supersymmetric M3-brane solutions in D=11 supergravity, where the transverse space is a deformation of this class of G 2 metrics. These are solutions of a system of first-order differential equations coming from a superpotential. We also find M3-branes in the deformed backgrounds of new G 2 holonomy metrics that include one found by A. Brandhuber, J. Gomis, S. Gubser and S. Gukov, and show that they also are supersymmetric

  20. Supersymmetric M3-branes and G2 manifolds

    Science.gov (United States)

    Cvetič, M.; Gibbons, G. W.; Lü, H.; Pope, C. N.

    2002-01-01

    We obtain a generalisation of the original complete Ricci-flat metric of G2 holonomy on R4×S 3 to a family with a nontrivial parameter λ. For generic λ the solution is singular, but it is regular when λ={-1,0,+1}. The case λ=0 corresponds to the original G2 metric, and λ={-1,1} are related to this by an S3 automorphism of the SU(2) 3 isometry group that acts on the S3× S3 principal orbits. We then construct explicit supersymmetric M3-brane solutions in D=11 supergravity, where the transverse space is a deformation of this class of G2 metrics. These are solutions of a system of first-order differential equations coming from a superpotential. We also find M3-branes in the deformed backgrounds of new G2 holonomy metrics that include one found by A. Brandhuber, J. Gomis, S. Gubser and S. Gukov, and show that they also are supersymmetric.

  1. Supersymmetric M3-branes and G{sub 2} manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Cvetic, M. E-mail: cvetic@cvetic.hep.upenn.edu; Gibbons, G.W.; Lue, H.; Pope, C.N

    2002-01-07

    We obtain a generalisation of the original complete Ricci-flat metric of G{sub 2} holonomy on R{sup 4}xS{sup 3} to a family with a nontrivial parameter {lambda}. For generic {lambda} the solution is singular, but it is regular when {lambda}={l_brace}-1,0,+1{r_brace}. The case {lambda}=0 corresponds to the original G{sub 2} metric, and {lambda}={l_brace}-1,1{r_brace} are related to this by an S{sub 3} automorphism of the SU(2){sup 3} isometry group that acts on the S{sup 3}xS{sup 3} principal orbits. We then construct explicit supersymmetric M3-brane solutions in D=11 supergravity, where the transverse space is a deformation of this class of G{sub 2} metrics. These are solutions of a system of first-order differential equations coming from a superpotential. We also find M3-branes in the deformed backgrounds of new G{sub 2} holonomy metrics that include one found by A. Brandhuber, J. Gomis, S. Gubser and S. Gukov, and show that they also are supersymmetric.

  2. General Instructions for Disposable Respirators

    Centers for Disease Control (CDC) Podcasts

    2009-04-09

    This podcast, intended for the general public, demonstrates how to put on and take off disposable respirators that are to be used in areas affected by the influenza outbreak.  Created: 4/9/2009 by CDC, National Institute for Occupational Safety and Health (NIOSH).   Date Released: 4/29/2009.

  3. Use of Facemasks and Respirators

    Centers for Disease Control (CDC) Podcasts

    2007-05-15

    This program demonstrates the differences of facemasks and respirators that are to be used in public settings during an influenza pandemic.  Created: 5/15/2007 by CDC, National Institute for Occupational Safety and Health (NIOSH).   Date Released: 5/25/2007.

  4. 78 FR 18535 - Respirator Certification Fees

    Science.gov (United States)

    2013-03-27

    ... facepiece respirators. The North American respiratory protection market generated revenues around $1,830 million in 2007, the most recent data available.\\4\\ A summary of market segmentation, by respirator type... management. Of the U.S. respirator market of products approved by NIOSH, approximately 35 percent of approval...

  5. Impact of Environmental Factors and Biological Soil Crust Types on Soil Respiration in a Desert Ecosystem

    Science.gov (United States)

    Feng, Wei; Zhang, Yuqing; Jia, Xin; Wu, Bin; Zha, Tianshan; Qin, Shugao; Wang, Ben; Shao, Chenxi; Liu, Jiabin; Fa, Keyu

    2014-01-01

    The responses of soil respiration to environmental conditions have been studied extensively in various ecosystems. However, little is known about the impacts of temperature and moisture on soils respiration under biological soil crusts. In this study, CO2 efflux from biologically-crusted soils was measured continuously with an automated chamber system in Ningxia, northwest China, from June to October 2012. The highest soil respiration was observed in lichen-crusted soil (0.93±0.43 µmol m−2 s−1) and the lowest values in algae-crusted soil (0.73±0.31 µmol m−2 s−1). Over the diurnal scale, soil respiration was highest in the morning whereas soil temperature was highest in the midday, which resulted in diurnal hysteresis between the two variables. In addition, the lag time between soil respiration and soil temperature was negatively correlated with the soil volumetric water content and was reduced as soil water content increased. Over the seasonal scale, daily mean nighttime soil respiration was positively correlated with soil temperature when moisture exceeded 0.075 and 0.085 m3 m−3 in lichen- and moss-crusted soil, respectively. However, moisture did not affect on soil respiration in algae-crusted soil during the study period. Daily mean nighttime soil respiration normalized by soil temperature increased with water content in lichen- and moss-crusted soil. Our results indicated that different types of biological soil crusts could affect response of soil respiration to environmental factors. There is a need to consider the spatial distribution of different types of biological soil crusts and their relative contributions to the total C budgets at the ecosystem or landscape level. PMID:25050837

  6. Contribution of Root Respiration to Soil Respiration in Sugarcane Plantation in Thailand

    OpenAIRE

    Wilaiwan Sornpoon; Sebastien Bonnet; Poonpipope Kasemsap; Savitri Garivait

    2013-01-01

    The understanding on the contribution of root respiration to total soil respiration is still very limited, especially for sugarcane. In this study, trenching experiments in sugarcane plantations were conducted to separate and investigate soil respiration for this crop. The measurements were performed for the whole growing period of 344 days to quantify root respiration. The obtained monitoring data showed that the respiration rate is increasing with the age of the plant, accounting for up to ...

  7. [Soil respiration characteristics in winter wheat field in North China Plain].

    Science.gov (United States)

    Chen, Shuyue; Li, Jun; Lu, Peiling; Wang, Yinghong; Yu, Qiang

    2004-09-01

    Experiments were conducted at the Yucheng Comprehensive Experimental Station of the Chinese Academy of Sciences during 2002-2003 to investigate the respiration of a pulverous sandstone soil under cultivation of winter wheat over a growth season. The effluent CO2 was collected and analyzed by the static-chamber/gas chromatography (GC) method at a frequency of once a week in spring and autumn, once two weeks in winter, twice a week for straw manure treatment, once a week for no straw manure treatment and nitrogen fertilization treatment in summer. The results indicated that diurnal variation of soil respiration rate showed a single peak in typical winter wheat farmlands in the North China Plain, and reached the highest at about 13 o'clock, and the lowest at about 4 o'clock in the early morning. In winter wheat growth season, the soil respiration rate was 31.23-606.85 mg x m(-2) x h(-1) under straw manure, 28.99-549.66 x m(-2) x h(-1) under no straw manure, 10.46-590.86 mg x m(-2) x h(-1) in N0, 16.11-349.88 mg x m(-2) x h(-1) in N100, 12.25-415.00 mg x m(-2) x h(-1) in N200, and 23.01-410.58 mg x m(-2) x h(-1) in N300, showing a similar seasonal variation tendency with soil temperature. Among all treatments, the straw manure had the most distinct soil respiration, though the soil respiration also increased slightly with increasing nitrogen fertilization. Soil respiration increased exponentially with increasing soil temperature, and the correlation of soil temperature at the depth of 5 cm was the best. This relationship was usually described with the Q10 model, which represented the sensitivity of soil respiration to temperature. Q10 was not a fixed value, which varied with the depth at which the temperature was measured and the depth of the active soil layer and soil temperature. At same time, the Q10 value decreased with increasing soil temperature. Soil water content was another important factor affecting soil respiration rate, but in this region, the relationship

  8. [Effects of antimicrobial drugs on soil microbial respiration].

    Science.gov (United States)

    Liu, Feng; Ying, Guang-Guo; Zhou, Qi-Xing; Tao, Ran; Su, Hao-Chang; Li, Xu

    2009-05-15

    The effects on soil microbial respiration of sulfonamides, tetracyclines, macrolides and so on were studied using the direct absorption method. The results show sulfamethazine, sulfamethoxazole, chlortetracycline, tetracycline, tylosin and trimethoprim inhibit soil respiration 34.33%, 34.43%, 2.71%, 3.08%, 7.13%, 38.08% respectively. Sulfamethoxazole and trimethoprim have the highest inhibition rates among all the antibiotics. In early incubation period (0-2 d), the concentrations above 10 mg x kg(-1) of sulfamethazine, sulfamethoxazole and trimethoprim remarkably decrease soil CO2 emission. The effects of these antibiotics vary with their concentrations too. Sulfamethoxazole and trimethoprim show good dose-response relationships. According to the standard of pesticide safety evaluation protocol, the six antibiotics pose a little risk to soil microbial environment.

  9. Blood cell labeling with technetium-99m, (3)

    International Nuclear Information System (INIS)

    Uchida, Tatsumi; Akizuki, Tsuyoshi; Tanaka, Tetsugoro; Yui, Tokuo; Miura, Nobuo

    1978-01-01

    Spleen scintigraphy was performed by the use of sup(99m)Tc-labeled red blood cells which were prepared with a kit (TCK-11 produced by CIS) and were damaged by heating for 15 min at 49.0 +- 0.5 0 C or damaged chemically by treating with bromomerculi hydroxy propane (BMHP) 1.5 mg/2 ml of blood. The images obtained by scanner and scintillation camera were both favorable, and the author decided that this method is applicable to clinical spleen scintigraphy. The spleen scintigraphy with sup(99m)Tc-labeled red blood cells has many merits such as it gives a less exposure dose to patients under the examination so that it makes capable of repeated examinations, it uses a less volume of blood for labeling, and the procedure is not so complicated compared with the usual methods of 51 Cr-heating or 203 Hg- (or 197 Hg-) MHP. Therefore, this method is preferable to the other usual methods. (Ueda, J.)

  10. Transport coefficients of black MQGP M3-branes

    International Nuclear Information System (INIS)

    Dhuria, Mansi; Misra, Aalok

    2015-01-01

    The Strominger-Yau-Zaslow (SYZ) mirror, in the 'delocalised limit' of Becker et al. (Nucl Phys B 702:207, 2004), of N D3-branes, M fractional D3-branes and N f flavour D7-branes wrapping a non-compact four-cycle in the presence of a black hole (BH) resulting in a non-Kahler resolved warped deformed conifold (NKRWDC) in Mia et al. (Nucl Phys B 839:187, 2010), was carried out in Dhuria and Misra (JHEP 1311:001, 2013) and resulted in black M3- branes. There are two parts in our paper. In the first we show that in the 'MQGP' limit discussed in Dhuria and Misra (JHEP 1311:001, 2013) a finite g s (and hence expected to be more relevant to QGP), finite g s M, N f , g s 2 MN f and very large g s N, and very small (g,M 2 )/(N), we have the following. (i) The uplift, if valid globally (like Dasgupta et al., Nucl Phys B 755:21, 2006) for fractional D3 branes in conifolds, asymptotically goes to M5-branes wrapping a two-cycle (homologously a (large) integer sum of two-spheres) in AdS 5 x M 6 . (ii) Assuming the deformation parameter to be larger than the resolution parameter, by estimating the five SU(3) structure torsion (τ) classes W 1,2,3,4,5 we verify that τ element of W 5 in the large-r limit, implying the NKRWDC reduces to a warped Kahler deformed conifold. (iii) The local T 3 of Dhuria and Misra (JHEP 1311:001, 2013) in the large-r limit satisfies the same conditions as the maximal T 2 -invariant special Lagrangian three-cycle of T*S 3 of Ionel and Min-OO (J Math 52(3), 2008), partly justifying use of SYZ-mirror symmetry in the ''delocalised limit'' of Becker et al. (Nucl Phys B 702:207, 2004) in Dhuria and Misra (JHEP 1311:001, 2013). In the second part of the paper, by either integrating out the angular coordinates of the non-compact four-cycle which a D7-brane wraps around, using the Ouyang embedding, in the DBI action of a D7-brane evaluated at infinite radial boundary, or by dimensionally reducing the 11-dimensional EH action to five (R 1,3 , r) dimensions and at

  11. Management effects on European cropland respiration

    DEFF Research Database (Denmark)

    Eugster, Werner; Moffat, Antje M.; Ceschia, Eric

    2010-01-01

    Increases in respiration rates following management activities in croplands are considered a relevant anthropogenic source of CO2. In this paper, we quantify the impact of management events on cropland respiration fluxes of CO2 as they occur under current climate and management conditions. Our....... This allowed us to address the question of how management activities influence ecosystem respiration. This was done by comparing respiration fluxes during 7, 14, and 28 days after the management with those observed during the matching time period before management. Median increases in respiration ranged from...... than management alone are also important at a given site. Temperature is the climatic factor that showed best correlation with site-specific respiration fluxes. Therefore, the effect of temperature changes between the time periods before and after management were taken into account for a subset of 13...

  12. Effects of respirator use on worker performance

    Energy Technology Data Exchange (ETDEWEB)

    Cardarelli, R. [Yankee Atomic Electric Co., Bolton, MA (United States)

    1995-03-01

    In 1993, EPRI funded Yankee Atomic Electric Company to examine the effects of respirator use on worker efficiency. Phase I of Yankee`s effort was to develop a study design to determine respirator effects. Given success in Phase I, a larger population will be tested to determine if a stasitically significant respirator effect on performance can be measured. This paper summarizes the 1993 EPRI/Yankee Respirator Effects of Pilot Study, and describes the study design for the 1994 EPRI/Yankee Respirator Study to be conducted at the Oyster Creek Nuclear Power Plant. Also described is a summary of respirator effect studies that have been conducted during the last ten (10) years.

  13. Respirators: Supervisors Self-Study #43442

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-20

    This course, Respirators: Supervisors Self-Study (#43442), addresses training requirements for supervisors of respirator wearers as specified by the American National Standard Institute (ANSI) Standard for Respiratory Protection, ANSI Z88.2, and as incorporated by reference in the Department of Energy (DOE) Worker Health and Safety Rule, 10 Code of Federal Regulations (CFR) 851. This course also presents the responsibilities of supervisors of respirator wearers at Los Alamos National Laboratory (LANL).

  14. Respirable dust and quartz exposure from three South African farms with sandy, sandy loam, and clay soils.

    Science.gov (United States)

    Swanepoel, Andrew J; Kromhout, Hans; Jinnah, Zubair A; Portengen, Lützen; Renton, Kevin; Gardiner, Kerry; Rees, David

    2011-07-01

    To quantify personal time-weighted average respirable dust and quartz exposure on a sandy, a sandy loam, and a clay soil farm in the Free State and North West provinces of South Africa and to ascertain whether soil type is a determinant of exposure to respirable quartz. Three farms, located in the Free State and North West provinces of South Africa, had their soil type confirmed as sandy, sandy loam, and clay; and, from these, a total of 298 respirable dust and respirable quartz measurements were collected between July 2006-November 2009 during periods of major farming operations. Values below the limit of detection (LOD) (22 μg · m(-3)) were estimated using multiple 'imputation'. Non-parametric tests were used to compare quartz exposure from the three different soil types. Exposure to respirable quartz occurred on all three farms with the highest individual concentration measured on the sandy soil farm (626 μg · m(-3)). Fifty-seven, 59, and 81% of the measurements on the sandy soil, sandy loam soil, and clay soil farm, respectively, exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 25 μg · m(-3). Twelve and 13% of respirable quartz concentrations exceeded 100 μg · m(-3) on the sandy soil and sandy loam soil farms, respectively, but none exceeded this level on the clay soil farm. The proportions of measurements >100 μg · m(-3) were not significantly different between the sandy and sandy loam soil farms ('prop.test'; P = 0.65), but both were significantly larger than for the clay soil farm ('prop.test'; P = 0.0001). The percentage of quartz in respirable dust was determined for all three farms using measurements > the limit of detection. Percentages ranged from 0.5 to 94.4% with no significant difference in the median quartz percentages across the three farms (Kruskal-Wallis test; P = 0.91). This study demonstrates that there is significant potential for over-exposure to respirable quartz in

  15. Cyclic fatigue resistance, torsional resistance, and metallurgical characteristics of M3 Rotary and M3 Pro Gold NiTi files

    Science.gov (United States)

    2018-01-01

    Objectives To evaluate the mechanical properties and metallurgical characteristics of the M3 Rotary and M3 Pro Gold files (United Dental). Materials and Methods One hundred and sixty new M3 Rotary and M3 Pro Gold files (sizes 20/0.04 and 25/0.04) were used. Torque and angle of rotation at failure (n = 20) were measured according to ISO 3630-1. Cyclic fatigue resistance was tested by measuring the number of cycles to failure in an artificial stainless steel canal (60° angle of curvature and a 5-mm radius). The metallurgical characteristics were investigated by differential scanning calorimetry. Data were analyzed using analysis of variance and the Student-Newman-Keuls test. Results Comparing the same size of the 2 different instruments, cyclic fatigue resistance was significantly higher in the M3 Pro Gold files than in the M3 Rotary files (p Rotary files showed 1 small peak on the heating curve and 1 small peak on the cooling curve. Conclusions The M3 Pro Gold files showed greater flexibility and angular rotation than the M3 Rotary files, without decrement of their torque resistance. The superior flexibility of M3 Pro Gold files can be attributed to their martensite phase. PMID:29765904

  16. [Effects of Tillage on Soil Respiration and Root Respiration Under Rain-Fed Summer Corn Field].

    Science.gov (United States)

    Lu, Xing-li; Liao, Yun-cheng

    2015-06-01

    To explore the effects of different tillage systems on soil respiration and root respiration under rain-fed condition. Based on a short-term experiment, this paper investigated soil respiration in summer corn growth season under four tillage treatments including subsoiling tillage (ST), no tillage (NT), rotary tillage (RT) and moldboard plow tillage (CT). The contribution of root respiration using root exclusion method was also discussed. The results showed that soil respiration rate presented a single peak trend under four tillage methods during the summer corn growing season, and the maximum value was recorded at the heading stage. The trends of soil respiration were as follows: heading stage > flowering stage > grain filling stage > maturity stage > jointing stage > seedling stage. The trends of soil respiration under different tillage systems were as follows: CT > ST > RT > NT. There was a significant correlation between soil respiration rate and soil temperatures (P soil respiration using exponential function equation. However, there was no significant correlation between soil respiration rate and soil moisture. Root respiration accounted for 45.13%-56.86% of the proportion of soil respiratio n with the mean value 51.72% during the summer corn growing season under different tillage systems. Therefore, root exclusion method could be used to study the contribution of crop growth to carbon emission, to compare effects of different tillage systems on the contribution of root respiration provides the bases for selecting the measures to slow down the decomposition of soil carbon.

  17. Exposure to carbon monoxide, respirable suspended particulates, and volatile organic compounds while commuting by bicycle

    International Nuclear Information System (INIS)

    Bevan, M.A.J.; Proctor, C.J.; Baker-Rogers, J.; Warren, N.D.

    1991-01-01

    A portable air sampling system has been used to assess exposures to various substances while commuting by bicycle in an urban area. The major source of pollutants in this situation is motor vehicle exhaust emissions. Carbon monoxide, measured by electrochemical detection, was found at peak concentrations in excess of 62 ppm, with mean values over 16 individual 35-mm journeys being 10.5 ppm. Respirable suspended particulates, averaged over each journey period, were found at higher concentrations (mean 130 μg m -3 ) than would be expected in indoor situations. Mean exposure to benzene (at 56 μg m -3 ) and other aromatic volatile organic compounds was also relatively high. The influence of wind conditions on exposure was found to be significant. Commuting exposures to carbon monoxide, respirable suspended particulates, and aromatic VOCs were found to be higher than exposures in a busy high street and on common parkland

  18. Soil respiration in tropical seasonal rain forest in Xishuangbanna, SW China

    Institute of Scientific and Technical Information of China (English)

    SHA; Liqing; ZHENG; Zheng; TANG; Jianwei; WANG; Yinghong

    2005-01-01

    With the static opaque chamber and gas chromatography technique, from January 2003 to January 2004 soil respiration was investigated in a tropical seasonal rain forest in Xishuangbanna, SW China. In this study three treatments were applied, each with three replicates: A (bare soil), B (soil+litter), and C (soil+litter+seedling). The results showed that soil respiration varied seasonally, low from December 2003 to February 2004, and high from June to July 2004. The annual average values of CO2 efflux from soil respiration differed among the treatments at 1% level, with the rank of C (14642 mgCO2· m-2. h-1)>B (12807 mgCO2· m-2. h-1)>A (9532 mgCO2· m-2. h-1). Diurnal variation in soil respiration was not apparent due to little diurnal temperate change in Xishuangbanna. There was a parabola relationship between soil respiration and soil moisture at 1% level. Soil respiration rates were higher when soil moisture ranged from 35% to 45%. There was an exponential relationship between soil respiration and soil temperature (at a depth of 5cm in mineral soil) at 1% level. The calculated Q1o values in this study,ranging from 2.03 to 2.36, were very near to those of tropical soil reported. The CO2 efflux in 2003was 5.34 kgCO2· m-2. a-1 from soil plus litter plus seedling, of them 3.48 kgCO2· m-2. a-1 from soil (accounting for 62.5%), 1.19 kgCO2· m-2. a-1 from litter (22.3%) and 0.67 kgCO2·m-2. a-1 from seedling (12.5%).

  19. Comparison of Respirable Mass Concentrations Measured by a Personal Dust Monitor and a Personal DataRAM to Gravimetric Measurements.

    Science.gov (United States)

    Halterman, Andrew; Sousan, Sinan; Peters, Thomas M

    2017-12-15

    In 2016, the Mine Safety and Health Administration required the use of continuous monitors to measure respirable dust in mines and better protect miner health. The Personal Dust Monitor, PDM3700, has met stringent performance criteria for this purpose. In a laboratory study, respirable mass concentrations measured with the PDM3700 and a photometer (personal DataRam, pDR-1500) were compared to those measured gravimetrically for five aerosols of varying refractive index and density (diesel exhaust fume, welding fume, coal dust, Arizona road dust (ARD), and salt [NaCl] aerosol) at target concentrations of 0.38, 0.75, and 1.5 mg m-3. For all aerosols except coal dust, strong, near-one-to-one, linear relationships were observed between mass concentrations measured with the PDM3700 and gravimetrically (diesel fume, slope = 0.99, R2 = 0.99; ARD, slope = 0.98, R2 = 0.99; and NaCl, slope = 0.95, R2 = 0.99). The slope deviated substantially from unity for coal dust (slope = 0.55; R2 = 0.99). Linear relationships were also observed between mass concentrations measured with the pDR-1500 and gravimetrically, but one-to-one behavior was not exhibited (diesel fume, slope = 0.23, R2 = 0.76; coal dust, slope = 0.54, R2 = 0.99; ARD, slope = 0.61, R2 = 0.99; NaCl, slope = 1.14, R2 = 0.98). Unlike the pDR-1500, mass concentrations measured with the PDM3700 appear independent of refractive index and density, suggesting that it could have applications in a variety of occupational settings. © The Author(s) 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  20. Phospholipase C-independent effects of 3M3FBS in murine colon.

    Science.gov (United States)

    Dwyer, Laura; Kim, Hyun Jin; Koh, Byoung Ho; Koh, Sang Don

    2010-02-25

    The muscarinic receptor subtype M(3) is coupled to Gq/11 proteins. Muscarinic receptor agonists such as carbachol stimulate these receptors that result in activation of phospholipase C (PLC) which hydrolyzes phosphatidylinositol 4,5-bisphosphate into diacylglycerol and Ins(1,4,5)P(3). This pathway leads to excitation and smooth muscle contraction. In this study the PLC agonist, 2, 4, 6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benezenesulfonamide (m-3M3FBS), was used to investigate whether direct PLC activation mimics carbachol-induced excitation. We examined the effects of m-3M3FBS and 2, 4, 6-trimethyl-N-(ortho-3-trifluoromethyl-phenyl)-benzenesulfonamide (o-3M3FBS), on murine colonic smooth muscle tissue and cells by performing conventional microelectrode recordings, isometric force measurements and patch clamp experiments. Application of m-3M3FBS decreased spontaneous contractility in murine colonic smooth muscle without affecting the resting membrane potential. Patch clamp studies revealed that delayed rectifier K(+) channels were reversibly inhibited by m-3M3FBS and o-3M3FBS. The PLC inhibitor, 1-(6-((17b-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), did not prevent this inhibition by m-3M3FBS. Both m-3M3FBS and o-3M3FBS decreased two components of delayed rectifier K(+) currents in the presence of tetraethylammonium chloride or 4-aminopyridine. Ca(2+) currents were significantly suppressed by m-3M3FBS and o-3M3FBS with a simultaneous increase in intracellular Ca(2+). Pretreatment with U73122 did not prevent the decrease in Ca(2+) currents upon m-3M3FBS application. In conclusion, both m-3M3FBS and o-3M3FBS inhibit inward and outward currents via mechanisms independent of PLC acting in an antagonistic manner. In contrast, both compounds also caused an increase in [Ca(2+)](i) in an agonistic manner. Therefore caution must be employed when interpreting their effects at the tissue and cellular level.

  1. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    Science.gov (United States)

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  2. Elemental Concentration of Inhalable and Respirable Particulate ...

    African Journals Online (AJOL)

    20537 and respirable foam for I.O.M sampler. The elemental composition (Co, Ni, Zn, Cu, Fe, Pb, Cr, Mn and Cd) were analyzed by using Atomic Absorption Spectrophotometric (AAS). The data generated were subjected to descriptive analysis. In inhalable fraction,the enrichment factor ranged from 1-73.3 while in respirable ...

  3. Respirators: APR Issuer Self Study 33461

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Laboratory

    2016-07-13

    Respirators: APR Issuer Self-Study (course 33461) is designed to introduce and familiarize employees selected as air-purifying respirator (APR) issuers at Los Alamos National Laboratory (LANL) with the responsibilities, limitations, procedures, and resources for issuing APRs at LANL. The goal is to enable these issuers to consistently provide proper, functioning APRs to authorized users

  4. On the relative roles of hydrology, salinity, temperature, and root productivity in controlling soil respiration from coastal swamps (freshwater)

    Science.gov (United States)

    Krauss, Ken W.; Whitbeck, Julie L.; Howard, Rebecca J.

    2012-01-01

    Background and aims Soil CO2 emissions can dominate gaseous carbon losses from forested wetlands (swamps), especially those positioned in coastal environments. Understanding the varied roles of hydroperiod, salinity, temperature, and root productivity on soil respiration is important in discerning how carbon balances may shift as freshwater swamps retreat inland with sea-level rise and salinity incursion, and convert to mixed communities with marsh plants. Methods We exposed soil mesocosms to combinations of permanent flooding, tide, and salinity, and tracked soil respiration over 2 1/2 growing seasons. We also related these measurements to rates from field sites along the lower Savannah River, Georgia, USA. Soil temperature and root productivity were assessed simultaneously for both experiments. Results Soil respiration from mesocosms (22.7-1678.2 mg CO2 m-2 h-1) differed significantly among treatments during four of the seven sampling intervals, where permanently flooded treatments contributed to low rates of soil respiration and tidally flooded treatments sometimes contributed to higher rates. Permanent flooding reduced the overall capacity for soil respiration as soils warmed. Salinity did reduce soil respiration at times in tidal treatments, indicating that salinity may affect the amount of CO2 respired with tide more strongly than under permanent flooding. However, soil respiration related greatest to root biomass (mesocosm) and standing root length (field); any stress reducing root productivity (incl. salinity and permanent flooding) therefore reduces soil respiration. Conclusions Overall, we hypothesized a stronger, direct role for salinity on soil respiration, and found that salinity effects were being masked by varied capacities for increases in respiration with soil warming as dictated by hydrology, and the indirect influence that salinity can have on plant productivity.

  5. Effects of Spartina alterniflora Invasion on Soil Respiration in the Yangtze River Estuary, China

    Science.gov (United States)

    Bu, Naishun; Qu, Junfeng; Li, Zhaolei; Li, Gang; Zhao, Hua; Zhao, Bin; Li, Bo; Chen, Jiakuan; Fang, Changming

    2015-01-01

    Many studies have found that plant invasion can enhance soil organic carbon (SOC) pools, by increasing net primary production (NPP) and/or decreased soil respiration. While most studies have focused on C input, little attention has been paid to plant invasion effects on soil respiration, especially in wetland ecosystems. Our study examined the effects of Spartina alterniflora invasion on soil respiration and C dynamics in the Yangtze River estuary. The estuary was originally occupied by two native plant species: Phragmites australis in the high tide zone and Scirpus mariqueter in the low tide zone. Mean soil respiration rates were 185.8 and 142.3 mg CO2 m−2 h−1 in S. alterniflora and P. australis stands in the high tide zone, and 159.7 and 112.0 mg CO2 m−2 h−1 in S. alterniflora and S. mariqueter stands in the low tide zone, respectively. Aboveground NPP (ANPP), SOC, and microbial biomass were also significantly higher in the S. alterniflora stands than in the two native plant stands. S. alterniflora invasion did not significantly change soil inorganic carbon or pH. Our results indicated that enhanced ANPP by S. alterniflora exceeded invasion-induced C loss through soil respiration. This suggests that S. alterniflora invasion into the Yangtze River estuary could strengthen the net C sink of wetlands in the context of global climate change. PMID:25799512

  6. Effects of Spartina alterniflora invasion on soil respiration in the Yangtze River estuary, China.

    Science.gov (United States)

    Bu, Naishun; Qu, Junfeng; Li, Zhaolei; Li, Gang; Zhao, Hua; Zhao, Bin; Li, Bo; Chen, Jiakuan; Fang, Changming

    2015-01-01

    Many studies have found that plant invasion can enhance soil organic carbon (SOC) pools, by increasing net primary production (NPP) and/or decreased soil respiration. While most studies have focused on C input, little attention has been paid to plant invasion effects on soil respiration, especially in wetland ecosystems. Our study examined the effects of Spartina alterniflora invasion on soil respiration and C dynamics in the Yangtze River estuary. The estuary was originally occupied by two native plant species: Phragmites australis in the high tide zone and Scirpus mariqueter in the low tide zone. Mean soil respiration rates were 185.8 and 142.3 mg CO2 m(-2) h(-1) in S. alterniflora and P. australis stands in the high tide zone, and 159.7 and 112.0 mg CO2 m(-2) h(-1) in S. alterniflora and S. mariqueter stands in the low tide zone, respectively. Aboveground NPP (ANPP), SOC, and microbial biomass were also significantly higher in the S. alterniflora stands than in the two native plant stands. S. alterniflora invasion did not significantly change soil inorganic carbon or pH. Our results indicated that enhanced ANPP by S. alterniflora exceeded invasion-induced C loss through soil respiration. This suggests that S. alterniflora invasion into the Yangtze River estuary could strengthen the net C sink of wetlands in the context of global climate change.

  7. Effects of Spartina alterniflora invasion on soil respiration in the Yangtze River estuary, China.

    Directory of Open Access Journals (Sweden)

    Naishun Bu

    Full Text Available Many studies have found that plant invasion can enhance soil organic carbon (SOC pools, by increasing net primary production (NPP and/or decreased soil respiration. While most studies have focused on C input, little attention has been paid to plant invasion effects on soil respiration, especially in wetland ecosystems. Our study examined the effects of Spartina alterniflora invasion on soil respiration and C dynamics in the Yangtze River estuary. The estuary was originally occupied by two native plant species: Phragmites australis in the high tide zone and Scirpus mariqueter in the low tide zone. Mean soil respiration rates were 185.8 and 142.3 mg CO2 m(-2 h(-1 in S. alterniflora and P. australis stands in the high tide zone, and 159.7 and 112.0 mg CO2 m(-2 h(-1 in S. alterniflora and S. mariqueter stands in the low tide zone, respectively. Aboveground NPP (ANPP, SOC, and microbial biomass were also significantly higher in the S. alterniflora stands than in the two native plant stands. S. alterniflora invasion did not significantly change soil inorganic carbon or pH. Our results indicated that enhanced ANPP by S. alterniflora exceeded invasion-induced C loss through soil respiration. This suggests that S. alterniflora invasion into the Yangtze River estuary could strengthen the net C sink of wetlands in the context of global climate change.

  8. Soil respiration dynamics in the middle taiga of Central Siberia region

    Science.gov (United States)

    Makhnykina, Anastasia; Prokushkin, Anatoly; Polosukhina, Daria

    2017-04-01

    highest soil efflux rates. The influence of soil temperature on the soil CO2 efflux showed that an increase of soil efflux was observed from 0 °C to 16 °C. The temperature of more than 16 °C led to the inhibition of soil respiration process. The investigation of relationship between soil CO2 efflux and soil moisture revealed that the moisture from 0 to 0.3 m-3m-3 resulted in an increase of soil efflux. The moisture of more than 0.3 m-3m-3 led to the inhibition of soil respiration. Our study suggested that the decline of the rainfall and increase of temperature due to climate change could significantly decrease the CO2 emission from the Siberian boreal forests.

  9. Remote compositional analysis of lunar olivine-rich lithologies with Moon Mineralogy Mapper (M3) spectra

    Science.gov (United States)

    Isaacson, P.J.; Pieters, C.M.; Besse, S.; Clark, R.N.; Head, J.W.; Klima, R.L.; Mustard, J.F.; Petro, N.E.; Staid, M.I.; Sunshine, J.M.; Taylor, L.A.; Thaisen, K.G.; Tompkins, S.

    2011-01-01

    A systematic approach for deconvolving remotely sensed lunar olivine-rich visible to near-infrared (VNIR) reflectance spectra with the Modified Gaussian Model (MGM) is evaluated with Chandrayaan-1 Moon Mineralogy Mapper (M 3) spectra. Whereas earlier studies of laboratory reflectance spectra focused only on complications due to chromite inclusions in lunar olivines, we develop a systematic approach for addressing (through continuum removal) the prominent continuum slopes common to remotely sensed reflectance spectra of planetary surfaces. We have validated our continuum removal on a suite of laboratory reflectance spectra. Suites of olivine-dominated reflectance spectra from a small crater near Mare Moscoviense, the Copernicus central peak, Aristarchus, and the crater Marius in the Marius Hills were analyzed. Spectral diversity was detected in visual evaluation of the spectra and was quantified using the MGM. The MGM-derived band positions are used to estimate the olivine's composition in a relative sense. Spectra of olivines from Moscoviense exhibit diversity in their absorption features, and this diversity suggests some variation in olivine Fe/Mg content. Olivines from Copernicus are observed to be spectrally homogeneous and thus are predicted to be more compositionally homogeneous than those at Moscoviense but are of broadly similar composition to the Moscoviense olivines. Olivines from Aristarchus and Marius exhibit clear spectral differences from those at Moscoviense and Copernicus but also exhibit features that suggest contributions from other phases. If the various precautions discussed here are weighed carefully, the methods presented here can be used to make general predictions of absolute olivine composition (Fe/Mg content). Copyright ?? 2011 by the American Geophysical Union.

  10. BOREAS TE-5 Soil Respiration Data

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. Soil respiration data were collected from 26-May-94 to 07-Sep-94 in the BOREAS NSA and SSA to compare the soil respiration rates in different forest sites using a LI-COR 6200 soil respiration chamber (model 6299). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  11. Characteristic of ambient airborne and respirable particulate around a non formal industrial area

    International Nuclear Information System (INIS)

    Muhayatun Santoso; Diah Dwiana Lestiani; Mariana Marselina; Rita Mukhtar

    2016-01-01

    Characterization of airborne particulate matter and respirable particulate in Parung Panjang district especially on surrounding non formal used batteries industrial area has been carried out to follow up the previous results with respect to high concentrations of lead detected in Serpong area. Sampling of airborne particulate matter in Parung Panjang was conducted using Gent stacked filter unit sampler, while the respirable particulate matter samples collected using personal dust sampler in Parung Panjang as a non formal Industrial area and Sukarasa village as a control, during 2011-2012. The concentration of masses were determined gravimetrically, while for elemental concentrations by X-Ray based methods. The average of mass concentration of air ambient PM 2.5 and PM 10 in Parung Panjang were 27.3 ± 13.7 and 77.5 ± 17.1 μg.m -3 , respectively. While the average concentration of respirable particulate in non formal industrial and control areas were 260 ± 233 and 82 ± 38 μg.m -3 , respectively. The percentage of average Pb concentration in PM 2.5 and PM 2.5-10 were contribute up to 45 and 10 % of the mass concentration, respectively. The maximum percentage concentration of Pb in respirable particulate in industrial and control area were 12.11 and 0.27 %, respectively. These results showed that the Pb concentrations in respirable particulate in industrial area were significantly tens times higher than in the control area. The high concentration of Pb in Parung Panjang was the main key element came from the used lead battery industry and one of pollutant source that contributed to the Pb pollution in Serpong area. (author)

  12. How much work is expended for respiration?

    Science.gov (United States)

    Johnson, A T

    1993-01-01

    The rate of work expended to move air in the respiratory system has been determined for five different airflow waveshapes, a non-linear respiratory model and five exercise levels. As expected, the rectangular waveshape was the most efficient. Model conditions were then changed one a time: (i) starting lung volume was allowed to vary, (ii) exhalation flow limitation was added, (iii) respiration was considered to be a metabolic burden determining part of the ventilation requirement and (iv) a respirator mask was added. Although there is no direct work advantage to varying initial lung volume, such volume changes appear to be dictated by the asymmetry of lung recoil pressure about the lung relaxation volume; allowing the work of respiration to become a metabolic burden clearly shows why respiratory waveforms change from rest to exercise; and, adding a respirator imposes a severe respiratory burden on the wearer engaging in moderate, heavy and very heavy exercise.

  13. M3 version 3.0: Verification and validation; Hydrochemical model of ground water at repository site

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Javier B. (Dept. of Earth Sciences, Univ. of Zaragoza, Zaragoza (Spain)); Laaksoharju, Marcus (Geopoint AB, Sollentuna (Sweden)); Skaarman, Erik (Abscondo, Bromma (Sweden)); Gurban, Ioana (3D-Terra (Canada))

    2009-01-15

    Hydrochemical evaluation is a complex type of work that is carried out by specialists. The outcome of this work is generally presented as qualitative models and process descriptions of a site. To support and help to quantify the processes in an objective way, a multivariate mathematical tool entitled M3 (Multivariate Mixing and Mass balance calculations) has been constructed. The computer code can be used to trace the origin of the groundwater, and to calculate the mixing proportions and mass balances from groundwater data. The M3 code is a groundwater response model, which means that changes in the groundwater chemistry in terms of sources and sinks are traced in relation to an ideal mixing model. The complexity of the measured groundwater data determines the configuration of the ideal mixing model. Deviations from the ideal mixing model are interpreted as being due to reactions. Assumptions concerning important mineral phases altering the groundwater or uncertainties associated with thermodynamic constants do not affect the modelling because the calculations are solely based on the measured groundwater composition. M3 uses the opposite approach to that of many standard hydrochemical models. In M3, mixing is evaluated and calculated first. The constituents that cannot be described by mixing are described by reactions. The M3 model consists of three steps: the first is a standard principal component analysis, followed by mixing and finally mass balance calculations. The measured groundwater composition can be described in terms of mixing proportions (%), while the sinks and sources of an element associated with reactions are reported in mg/L. This report contains a set of verification and validation exercises with the intention of building confidence in the use of the M3 methodology. At the same time, clear answers are given to questions related to the accuracy and the precision of the results, including the inherent uncertainties and the errors that can be made

  14. Separating rhizosphere respiration from total soil respiration in two larch plantations in northeastern China.

    Science.gov (United States)

    Jiang, Lifen; Shi, Fuchen; Li, Bo; Luo, Yiqi; Chen, Jiquan; Chen, Jiakuan

    2005-09-01

    The potential capacity of soil to sequester carbon in response to global warming is strongly regulated by the ratio of rhizosphere respiration to respiration by soil microbial decomposers, because of their different temperature sensitivities. To quantify relative contributions of rhizosphere respiration to total soil respiration as influenced by forest stand development, we conducted a trenching study in two larch (Larix gmelini (Rupr.) Rupr.) plantations, aged 17 and 31 years, in northeastern China. Four plots in each plantation were randomly selected and trenched in early May 2001. Soil surface CO2 effluxes both inside and outside the plots were measured from May 2001 to August 2002. Soil respiration (i.e., the CO2 effluxes outside the trenched plots) varied similarly in the two plantations from 0.8 micromol m(-2) s(-1) in winter to 6.0 micromol m(-2) s(-1) in summer. Rhizosphere respiration (i.e., CO2 efflux outside the trenched plots minus that inside the plots) varied from 0.2 to 2.0 micromol m(-2) s(-1) in the old forest and from 0.3 to 4.0 micromol m(-2) s(-1) in the young forest over the seasons. Rhizosphere respiration, on average, accounted for 25% of soil respiration in the old forest and 65% in the young forest. Rhizosphere and soil respiration were significantly correlated with soil temperature but not with soil water content. We conclude that the role forests play in regulating climate change may depend on their age.

  15. Relationship between oxygen concentration, respiration and filtration rate in blue mussel Mytilus edulis

    Science.gov (United States)

    Tang, Baojun; Riisgård, Hans Ulrik

    2018-03-01

    The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be rather insensitive to decreasing oxygen concentrations in the ambient water, since the diffusion rate of oxygen from water flowing through the mussel determines oxygen uptake. We tested this hypothesis by measuring the oxygen uptake in mussels exposed to various oxygen concentrations. These concentrations were established via N2-bubbling of the water in a respiration chamber with mussels fed algal cells to stimulate fully opening of the valves. It was found that mussels exposed to oxygen concentrations decreasing from 9 to 2 mg O2/L resulted in a slow but significant reduction in the respiration rate, while the filtration rate remained high and constant. Thus, a decrease of oxygen concentration by 78% only resulted in a 25% decrease in respiration rate. However, at oxygen concentrations below 2 mg O2/L M. edulis responded by gradually closing its valves, resulting in a rapid decrease of filtration rate, concurrent with a rapid reduction of respiration rate. These observations indicated that M. edulis is no longer able to maintain its normal aerobic metabolism at oxygen concentration below 2 mg O2/L, and there seems to be an energy-saving mechanism in bivalve molluscs to strongly reduce their activity when exposed to low oxygen conditions.

  16. 42 CFR 84.134 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.134... Respirators § 84.134 Respirator containers; minimum requirements. Supplied-air respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type and...

  17. 42 CFR 84.197 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.197... Cartridge Respirators § 84.197 Respirator containers; minimum requirements. Respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type and...

  18. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.174... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except..., durable container bearing markings which show the applicant's name, the type of respirator it contains...

  19. Respiration of Nitrate and Nitrite.

    Science.gov (United States)

    Cole, Jeffrey A; Richardson, David J

    2008-09-01

    Nitrate reduction to ammonia via nitrite occurs widely as an anabolic process through which bacteria, archaea, and plants can assimilate nitrate into cellular biomass. Escherichia coli and related enteric bacteria can couple the eight-electron reduction of nitrate to ammonium to growth by coupling the nitrate and nitrite reductases involved to energy-conserving respiratory electron transport systems. In global terms, the respiratory reduction of nitrate to ammonium dominates nitrate and nitrite reduction in many electron-rich environments such as anoxic marine sediments and sulfide-rich thermal vents, the human gastrointestinal tract, and the bodies of warm-blooded animals. This review reviews the regulation and enzymology of this process in E. coli and, where relevant detail is available, also in Salmonella and draws comparisons with and implications for the process in other bacteria where it is pertinent to do so. Fatty acids may be present in high levels in many of the natural environments of E. coli and Salmonella in which oxygen is limited but nitrate is available to support respiration. In E. coli, nitrate reduction in the periplasm involves the products of two seven-gene operons, napFDAGHBC, encoding the periplasmic nitrate reductase, and nrfABCDEFG, encoding the periplasmic nitrite reductase. No bacterium has yet been shown to couple a periplasmic nitrate reductase solely to the cytoplasmic nitrite reductase NirB. The cytoplasmic pathway for nitrate reduction to ammonia is restricted almost exclusively to a few groups of facultative anaerobic bacteria that encounter high concentrations of environmental nitrate.

  20. The murine gammaherpesvirus-68 chemokine-binding protein M3 inhibits experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Millward, Jason M; Holst, Peter J; Høgh-Petersen, Mette

    2010-01-01

    M3 (AdM3) directly to the CNS to evaluate the capacity of this protein to inhibit neuroinflammation using the experimental autoimmune encephalomyelitis (EAE) model. Treatment with the AdM3 vector significantly reduced the clinical severity of EAE, attenuated CNS histopathology, and reduced numbers......Chemokines are critical mediators of immune cell entry into the central nervous system (CNS), as occurs in neuroinflammatory disease such as multiple sclerosis. Chemokines are also implicated in the immune response to viral infections. Many viruses encode proteins that mimic or block chemokine...... of immune cells infiltrating the CNS. These results suggest that M3 may represent a novel therapeutic approach to neuroinflammatory disease....

  1. Soil Respiration And Respiration Partitioning In An Oak-Savannah With A History Of Fertilization

    Science.gov (United States)

    Morris, K. A.; Nair, R.; Schrumpf, M.; Migliavacca, M.

    2017-12-01

    Soil respiration is a combination of autotrophic and heterotrophic components. These components have different controls and structurally complex ecosystems such as oak-savannahs offer an opportunity to study strongly contrasting conditions (ie., soil from under trees versus open areas) in an environment with similar soil mineralogy and climatic patterns. To measure respiration coming from plant roots, fungal hyphae, and free-living microbes we established stations of soil cores comprised of three selectively permeable meshes under tree canopies and in open grassy areas of a Holm Oak (Quercus ilex) savannah in Extremadura, Spain. Large plots of this ecosystem had previously been fertilized as part of a stoichiometeric imbalance study (in 2015). Stations were installed in Dec. 2016 within four plots; control, N added, P added, and N+P added. Respiration from cores was measured in campaigns at key phenological stages with a portable Li-Cor 8100A unit. Six months after installation > 50% of soil respiration was attributable to free-living microbes. There is a persistent effect of the prior fertilization, resulting in increased soil respiration in open areas regardless of fertilizer type, while respiration from under tree canopies had a varied response. Soil under tree canopies showed distinct sensitivity to stoichiometric imbalance, meaning that addition of N or P alone either did not change respiration or decreased it slightly, while N+P stimulated respiration. We determined that respiration from free-living microbes is a major component of soil respiration even in the most active plant growing season. However, because of the lag between the time of fertilization and the time of measurement, it not possible to say whether treatment responses are due solely to nutrient status of the soil or whether changes in plant biomass and species composition also play a role. Additional work planned at the site will shed light on this uncertainty as well as the contribution of

  2. [Research progress on photosynthesis regulating and controlling soil respiration].

    Science.gov (United States)

    Jing, Yan-Li; Guan, De-Xin; Wu, Jia-Bing; Wang, An-Zhi; Yuan, Feng-Hui

    2013-01-01

    To understand the mechanisms of soil respiration and accurately estimate its magnitude are the crucial basis of evaluating global carbon balance. However, the previously built soil respiration forecast models usually neglect the physiological processes that photosynthesis supplies substrates for rhizospheric respiration, leading to the defect in evaluating the mechanisms of soil respiration. This paper summarized the research progress on the mechanisms of photosynthetic regulation and control of soil respiration, introduced the related main research methods, and discussed the existing problems and research hotspots.

  3. Indoor and ambient air concentrations of respirable particles between two hospitals in Kashan (2014-2015

    Directory of Open Access Journals (Sweden)

    Mahmoud Mohammadyan

    2017-04-01

    Full Text Available Background: The hospital environment requires special attention to provide healthful indoor air quality for protecting patients and healthcare workers against the occupational diseases. The aim of this study was to determine the concentrations of respirable particles indoor and ambient air of two hospitals in Kashan. Materials and Method: This cross-sectional study was conducted during 3 months (Marth 2014 to May 2015. Indoor and outdoor PM10 and PM2.5 concentrations were measured four times a week in the operating room, pediatric and ICU2 (Intensive Care Unit wards using a real time dust monitor at two hospitals. A total number of 480 samples (80 samples indoors and 40 outdoors from wards were collected. Results: The highest mean PM2.5 and PM10 for indoors were determined 57.61± 68.57 µg m-3 and 212.36±295.49 µg m-3, respectively. The results showed a significant relationship between PM2.5 and PM10 in the indoor and ambient air of two hospitals (P<0.05. PM2.5 and PM10 concentrations were different in all of the selected wards (P<0.05. Conclusion: The respirable particle concentrations in the indoor and ambient air in both hospitals were higher than the 24-hours WHO and US-EPA standards. Thence, utilizing sufficient and efficient air conditioning systems in hospitals can be useful in improving indoor air quality and reducing the respirable particle concentrations.

  4. Microbial abundance and diversity in water, and immune parameters of red tilapia reared in bioflocs system with different fish density (25 fish/m3, 50 fish/m3, and 100 fish/m3

    Directory of Open Access Journals (Sweden)

    Frid Agustinus

    2010-07-01

    Full Text Available ABSTRACTThe objective of this experiment was to study microbial abundance and diversity in the water, and immune parameters of red tilapia Oreochromis sp. cultured in bioflok system with different fish stocking densities. The experiment comprised of two different factors, carbon source addition (bioflocs and control, and fish stocking density (25 fish/m3, 50 fish/m3, dan 100 fish/m3, with an experimental period of 99 days. Microbial load in water was determined biweekly, whereas immune parameters represented by fish blood profile were measured on day 0, 50, and 90. There was no significant difference in total bacteria count in the water of all treatments; there was however a tendency shown by all treatments that the microbial load in water increased along with the culture period. There were 4 genera of bacteria which particularly found in bioflok system, which are Acinetobacter sp., Corynobacterium sp., Listeria sp., dan Pseudomonas sp, and are suggested to play a role in bioflok formation. The percentage of phagocytic index of fish in bioflok system was higher than that in control, and may indicate that bioflok may stimulate the fish immune system.Keywords: bioflocs, red tilapia, bacteria, blood profile. ABSTRAKPenelitian ini bertujuan untuk mengidentifikasi kelimpahan dan keragaman jenis bakteri dalam air dan parameter imunitas ikan nila Oreochromis sp. yang dipelihara dalam sistem bioflok dengan kepadatan ikan yang berbeda. Penelitian terdiri atas dua faktor perlakuan yaitu penambahan sumber carbon (bioflok dan kontrol, dan padat penebaran ikan (25 ekor/m3, 50 ekor/m3, dan 100 ekor/m3 dengan lama waktu pemeliharaan ikan selama 99 hari. Kelimpahan bakteri diukur setiap 2 minggu sekali selama masa pemeliharaan. Parameter imunitas meliputi gambaran darah diukur dengan pengambilan contoh darah yang dilakukan pada tiga ekor ikan pada hari ke 0, 50, dan 99. Kelimpahan bakteri pada semua perlakuan pada setiap titik pengamatan tidak menunjukkan

  5. Plant Respiration and Climate Change Effects

    International Nuclear Information System (INIS)

    Bruhn, D.

    2002-04-01

    Plant respiration is one of the key processes in terms of an understanding of plant growth and functioning in a future climate. Short- and long-term effects of temperature and CO 2 on plant respiration were investigated in a number of plant species. The experiments tested effects of either temperature and/or CO 2 from the level of individual respiratory enzymes, isolated mitochondria, whole-tissue, and up to the whole canopy level. The short-term effects of elevated atmospheric CO 2 on plant respiration appeared to be less than suggested so far in the literature. This was true both at the tissue level and for intact mitochondria. Respiratory enzymes can, however, be affected already at low CO 2 . These effects did not manifest itself at the tissue level, though, due to low degrees of control on the whole respiratory process exerted by the particular enzymes. Plant respiration on the other hand was affected by long-term growth at elevated atmospheric CO 2 . The findings of the reduced plant respiration at the leaf level were consistent with the literature and potential causes are discussed. Short-term effects of temperature on plant respiration were demonstrated to be dependent on the actual measurement temperature. Further, it is shown that mitochondrial leaf respiration in darkness and light differ substantially in the temperature sensitivity with the former being the far most sensitive. This has implications for modelling CO 2 exchange between vegetation and atmosphere as demonstrated here, since this has so far been neglected. Long-term effects of temperature resulted in respiratory acclimation in a number of species. Respiratory acclimation appeared not to occur to any one single type of growth temperature. The implications of this finding in combination with the timing of acclimation are discussed for modelling respiratory CO 2 release. (au)

  6. Plant Respiration and Climate Change Effects

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, D

    2002-04-01

    Plant respiration is one of the key processes in terms of an understanding of plant growth and functioning in a future climate. Short- and long-term effects of temperature and CO{sub 2} on plant respiration were investigated in a number of plant species. The experiments tested effects of either temperature and/or CO{sub 2} from the level of individual respiratory enzymes, isolated mitochondria, whole-tissue, and up to the whole canopy level. The short-term effects of elevated atmospheric CO{sub 2} on plant respiration appeared to be less than suggested so far in the literature. This was true both at the tissue level and for intact mitochondria. Respiratory enzymes can, however, be affected already at low CO{sub 2}. These effects did not manifest itself at the tissue level, though, due to low degrees of control on the whole respiratory process exerted by the particular enzymes. Plant respiration on the other hand was affected by long-term growth at elevated atmospheric CO{sub 2}. The findings of the reduced plant respiration at the leaf level were consistent with the literature and potential causes are discussed. Short-term effects of temperature on plant respiration were demonstrated to be dependent on the actual measurement temperature. Further, it is shown that mitochondrial leaf respiration in darkness and light differ substantially in the temperature sensitivity with the former being the far most sensitive. This has implications for modelling CO{sub 2} exchange between vegetation and atmosphere as demonstrated here, since this has so far been neglected. Long-term effects of temperature resulted in respiratory acclimation in a number of species. Respiratory acclimation appeared not to occur to any one single type of growth temperature. The implications of this finding in combination with the timing of acclimation are discussed for modelling respiratory CO{sub 2} release. (au)

  7. Comparative assessment of the effect of synthetic and natural fungicides on soil respiration.

    Science.gov (United States)

    Stefani, Angelo; Felício, Joanna D'Arc; de Andréa, Mara M

    2012-01-01

    As toxic pesticide residues may persist in agricultural soils and cause environmental pollution, research on natural fungicides to replace the synthetic compounds is currently increasing. The effect of the synthetic fungicide chlorothalonil and a natural potential fungicide on the soil microbial activity was evaluated here by the substrate-induced respiration by addition of glucose (SIR), as bioindicator in two soils (Eutrophic Humic Gley-GHE and Typic Eutroferric Chernosol-AVEC). The induced soil respiration parameter was followed during 28 days after soil treatment either with chlorathalonil (11 μg·g(-1)), or the methanolic fraction from Polymnia sonchifolia extraction (300 μg·g(-1)), and (14)C-glucose (4.0 mg and 5.18 Bq of (14)C-glucose g(-1)). The (14)C-CO(2) produced by the microbial respiration was trapped in NaOH (0.1 M) which was changed each two hours during the first 10 h, and 1, 3, 5, 7, 14 and 28 days after the treatments. The methanolic fraction of the plant extract inhibited (2.2%) and stimulated (1.8%) the respiration of GHE and AVEC, respectively, but the synthetic chlorothalonil caused 16.4% and 2.6% inhibition of the respiration, respectively of the GHE and AVEC soils. As the effects of the natural product were statistically small, this bioindicator indicates that the methanolic fraction of the Polymnia sonchifolia extract, which has fungicide properties, has no environmental effects.

  8. M3 muscarinic receptor interaction with phospholipase C beta3 determines its signaling efficiency

    NARCIS (Netherlands)

    Kan, W.; Adjobo-Hermans, M.J.; Burroughs, M.; Faibis, G.; Malik, S.; Tall, G.G.; Smrcka, A.V.

    2014-01-01

    Phospholipase Cbeta (PLCbeta) enzymes are activated by G protein-coupled receptors through receptor-catalyzed guanine nucleotide exchange on Galphabetagamma heterotrimers containing Gq family G proteins. Here we report evidence for a direct interaction between M3 muscarinic receptor (M3R) and

  9. Residual stress in a M3:2 PM high speed steel; effect of mechanical loading

    DEFF Research Database (Denmark)

    Højerslev, Christian; Odén, Magnus; Carstensen, Jesper V.

    2001-01-01

    X-ray lattice strains were investigated in an AISI M3:2 PM high-speed steel in the as heat treated condition and after exposure to alternating mechanical load. The volume changes during heat treatment were monitored with dilatometry. Hardened and tempered AISI M3:2 steel consists of tempered lath...

  10. Improving respiration measurements with gas exchange analyzers.

    Science.gov (United States)

    Montero, R; Ribas-Carbó, M; Del Saz, N F; El Aou-Ouad, H; Berry, J A; Flexas, J; Bota, J

    2016-12-01

    Dark respiration measurements with open-flow gas exchange analyzers are often questioned for their low accuracy as their low values often reach the precision limit of the instrument. Respiration was measured in five species, two hypostomatous (Vitis Vinifera L. and Acanthus mollis) and three amphistomatous, one with similar amount of stomata in both sides (Eucalyptus citriodora) and two with different stomata density (Brassica oleracea and Vicia faba). CO 2 differential (ΔCO 2 ) increased two-fold with no change in apparent R d , when the two leaves with higher stomatal density faced outside. These results showed a clear effect of the position of stomata on ΔCO 2 . Therefore, it can be concluded that leaf position is important to guarantee the improvement of respiration measurements increasing ΔCO 2 without affecting the respiration results by leaf or mass units. This method will help to increase the accuracy of leaf respiration measurements using gas exchange analyzers. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Simplified pressure method for respirator fit testing.

    Science.gov (United States)

    Han, D; Xu, M; Foo, S; Pilacinski, W; Willeke, K

    1991-08-01

    A simplified pressure method has been developed for fit testing air-purifying respirators. In this method, the air-purifying cartridges are replaced by a pressure-sensing attachment and a valve. While wearers hold their breath, a small pump extracts air from the respirator cavity until a steady-state pressure is reached in 1 to 2 sec. The flow rate through the face seal leak is a unique function of this pressure, which is determined once for all respirators, regardless of the respirator's cavity volume or deformation because of pliability. The contaminant concentration inside the respirator depends on the degree of dilution by the flow through the cartridges. The cartridge flow varies among different brands and is measured once for each brand. The ratio of cartridge to leakflow is a measure of fit. This flow ratio has been measured on human subjects and has been compared to fit factors determined on the same subjects by means of photometric and particle count tests. The aerosol tests gave higher values of fit.

  12. Abnormal mitochondrial respiration in failed human myocardium.

    Science.gov (United States)

    Sharov, V G; Todor, A V; Silverman, N; Goldstein, S; Sabbah, H N

    2000-12-01

    Chronic heart failure (HF) is associated with morphologic abnormalities of cardiac mitochondria including hyperplasia, reduced organelle size and compromised structural integrity. In this study, we examined whether functional abnormalities of mitochondrial respiration are also present in myocardium of patients with advanced HF. Mitochondrial respiration was examined using a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles obtained from myocardium of failed explanted human hearts due to ischemic (ICM, n=9) or idiopathic dilated (IDC, n=9) cardiomyopathy. Myocardial specimens from five normal donor hearts served as controls (CON). Basal respiratory rate, respiratory rate after addition of the substrates glutamate and malate (V(SUB)), state 3 respiration (after addition of ADP, V(ADP)) and respiration after the addition of atractyloside (V(AT)) were measured in scar-free muscle bundles obtained from the subendocardial (ENDO) and subepicardial (EPI) thirds of the left ventricular (LV) free wall, interventricular septum and right ventricular (RV) free wall. There were no differences in basal and substrate-supported respiration between CON and HF regardless of etiology. V(ADP)was significantly depressed both in ICM and IDC compared to CON in all the regions studied. The respiratory control ratio, V(ADP)/V(AT), was also significantly decreased in HF compared to CON. In both ICM and IDC, V(ADP)was significantly lower in ENDO compared to EPI. The results indicate that mitochondrial respiration is abnormal in the failing human heart. The findings support the concept of low myocardial energy production in HF via oxidative phosphorylation, an abnormality with a potentially impact on global cardiac performance. Copyright 2000 Academic Press.

  13. Ocean-scale patterns in community respiration rates along continuous transects across the Pacific Ocean.

    Science.gov (United States)

    Wilson, Jesse M; Severson, Rodney; Beman, J Michael

    2014-01-01

    Community respiration (CR) of organic material to carbon dioxide plays a fundamental role in ecosystems and ocean biogeochemical cycles, as it dictates the amount of production available to higher trophic levels and for export to the deep ocean. Yet how CR varies across large oceanographic gradients is not well-known: CR is measured infrequently and cannot be easily sensed from space. We used continuous oxygen measurements collected by autonomous gliders to quantify surface CR rates across the Pacific Ocean. CR rates were calculated from changes in apparent oxygen utilization and six different estimates of oxygen flux based on wind speed. CR showed substantial spatial variation: rates were lowest in ocean gyres (mean of 6.93 mmol m(-3) d(-1)±8.0 mmol m(-3) d(-1) standard deviation in the North Pacific Subtropical Gyre) and were more rapid and more variable near the equator (8.69 mmol m(-3) d(-1)±7.32 mmol m(-3) d(-1) between 10°N and 10°S) and near shore (e.g., 5.62 mmol m(-3) d(-1)±45.6 mmol m(-3) d(-1) between the coast of California and 124°W, and 17.0 mmol m(-3) d(-1)±13.9 mmol m(-3) d(-1) between 156°E and the Australian coast). We examined how CR varied with coincident measurements of temperature, turbidity, and chlorophyll concentrations (a proxy for phytoplankton biomass), and found that CR was weakly related to different explanatory variables across the Pacific, but more strongly related to particular variables in different biogeographical areas. Our results indicate that CR is not a simple linear function of chlorophyll or temperature, and that at the scale of the Pacific, the coupling between primary production, ocean warming, and CR is complex and variable. We suggest that this stems from substantial spatial variation in CR captured by high-resolution autonomous measurements.

  14. The M3 muscarinic receptor is required for optimal adaptive immunity to helminth and bacterial infection.

    Directory of Open Access Journals (Sweden)

    Matthew Darby

    2015-01-01

    Full Text Available Innate immunity is regulated by cholinergic signalling through nicotinic acetylcholine receptors. We show here that signalling through the M3 muscarinic acetylcholine receptor (M3R plays an important role in adaptive immunity to both Nippostrongylus brasiliensis and Salmonella enterica serovar Typhimurium, as M3R-/- mice were impaired in their ability to resolve infection with either pathogen. CD4 T cell activation and cytokine production were reduced in M3R-/- mice. Immunity to secondary infection with N. brasiliensis was severely impaired, with reduced cytokine responses in M3R-/- mice accompanied by lower numbers of mucus-producing goblet cells and alternatively activated macrophages in the lungs. Ex vivo lymphocyte stimulation of cells from intact BALB/c mice infected with N. brasiliensis and S. typhimurium with muscarinic agonists resulted in enhanced production of IL-13 and IFN-γ respectively, which was blocked by an M3R-selective antagonist. Our data therefore indicate that cholinergic signalling via the M3R is essential for optimal Th1 and Th2 adaptive immunity to infection.

  15. Neuronal M3 muscarinic acetylcholine receptors are essential for somatotroph proliferation and normal somatic growth.

    Science.gov (United States)

    Gautam, Dinesh; Jeon, Jongrye; Starost, Matthew F; Han, Sung-Jun; Hamdan, Fadi F; Cui, Yinghong; Parlow, Albert F; Gavrilova, Oksana; Szalayova, Ildiko; Mezey, Eva; Wess, Jürgen

    2009-04-14

    The molecular pathways that promote the proliferation and maintenance of pituitary somatotrophs and other cell types of the anterior pituitary gland are not well understood at present. However, such knowledge is likely to lead to the development of novel drugs useful for the treatment of various human growth disorders. Although muscarinic cholinergic pathways have been implicated in regulating somatotroph function, the physiological relevance of this effect and the localization and nature of the receptor subtypes involved in this activity remain unclear. We report the surprising observation that mutant mice that selectively lack the M(3) muscarinic acetylcholine receptor subtype in the brain (neurons and glial cells; Br-M3-KO mice) showed a dwarf phenotype associated with a pronounced hypoplasia of the anterior pituitary gland and a marked decrease in pituitary and serum growth hormone (GH) and prolactin. Remarkably, treatment of Br-M3-KO mice with CJC-1295, a synthetic GH-releasing hormone (GHRH) analog, rescued the growth deficit displayed by Br-M3-KO mice by restoring normal pituitary size and normal serum GH and IGF-1 levels. These findings, together with results from M(3) receptor/GHRH colocalization studies and hypothalamic hormone measurements, support a model in which central (hypothalamic) M(3) receptors are required for the proper function of hypothalamic GHRH neurons. Our data reveal an unexpected and critical role for central M(3) receptors in regulating longitudinal growth by promoting the proliferation of pituitary somatotroph cells.

  16. In vitro toxicology of respirable Montserrat volcanic ash.

    Science.gov (United States)

    Wilson, M R; Stone, V; Cullen, R T; Searl, A; Maynard, R L; Donaldson, K

    2000-11-01

    In July 1995 the Soufriere Hills volcano on the island of Montserrat began to erupt. Preliminary reports showed that the ash contained a substantial respirable component and a large percentage of the toxic silica polymorph, cristobalite. In this study the cytotoxicity of three respirable Montserrat volcanic ash (MVA) samples was investigated: M1 from a single explosive event, M2 accumulated ash predominantly derived from pyroclastic flows, and M3 from a single pyroclastic flow. These were compared with the relatively inert dust TiO(2) and the known toxic quartz dust, DQ12. Surface area of the particles was measured with the Brunauer, Emmet, and Teller (BET) adsorption method and cristobalite content of MVA was determined by x ray diffraction (XRD). After exposure to particles, the metabolic competence of the epithelial cell line A549 was assessed to determine cytotoxic effects. The ability of the particles to induce sheep blood erythrocyte haemolysis was used to assess surface reactivity. Treatment with either MVA, quartz, or titanium dioxide decreased A549 epithelial cell metabolic competence as measured by ability to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). On addition of mannitol, the cytotoxic effect was significantly less with M1, quartz, and TiO(2). All MVA samples induced a dose dependent increase in haemolysis, which, although less than the haemolysis induced by quartz, was significantly greater than that induced by TiO(2). Addition of mannitol and superoxide dismutase (SOD) significantly reduced the haemolytic activity only of M1, but not M2 or M3, the samples derived from predominantly pyroclastic flow events. Neither the cristobalite content nor the surface area of the MVA samples correlated with observed in vitro reactivity. A role for reactive oxygen species could only be shown in the cytotoxicity of M1, which was the only sample derived from a purely explosive event. These results suggest that in general the

  17. Estimating Canopy Dark Respiration for Crop Models

    Science.gov (United States)

    Monje Mejia, Oscar Alberto

    2014-01-01

    Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.

  18. LIMITATION OF SOIL RESPIRATION DURING DRY PERIOD

    Czech Academy of Sciences Publication Activity Database

    Pavelka, Marian; Janouš, Dalibor; Acosta, Manuel

    2003-01-01

    Roč. 16, - (2003), s. 47-52. ISBN 80-7157-297-7 R&D Projects: GA MŠk LN00A141; GA AV ČR IBS6087005 Institutional research plan: CEZ:AV0Z6087904 Keywords : moisture * Norway spruce * precipitation * respiration * soil CO2 efflux Subject RIV: EH - Ecology, Behaviour

  19. Internal current generation in respiration chambers

    Science.gov (United States)

    Saborowski, R.; Buchholz, F.

    1998-06-01

    A technical device generating a constant and directed current within a sealed respiration chamber is described. It does not involve any external pumps or tubing. This system is easy to handle, and improved the maintenance of rheotactic pelagic species like the Northern krill ( Meganyctiphanes norvegica, Crustacea) or small fishes ( Gasterosteus aculeatus) under experimental conditions.

  20. 42 CFR 84.1130 - Respirators; description.

    Science.gov (United States)

    2010-10-01

    ...; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84...., dust clouds produced in mining, quarrying, and tunneling, and in dusts produced during industrial... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying...

  1. Development of conformal respirator monitoring technology

    International Nuclear Information System (INIS)

    Shonka, J.J.; Weismann, J.J.; Logan, R.J.

    1997-04-01

    This report summarizes the results of a Small Business Innovative Research Phase II project to develop a modular, surface conforming respirator monitor to improve upon the manual survey techniques presently used by the nuclear industry. Research was performed with plastic scintillator and gas proportional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801450-40). The molds are housed in separate enclosures and hinged to create a open-quotes waffle-ironclose quotes effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors

  2. Dose Response of Endotoxin on Hepatocyte and Muscle Mitochondrial Respiration In Vitro

    Science.gov (United States)

    Brandt, Sebastian; Porta, Francesca; Jakob, Stephan M.; Takala, Jukka; Djafarzadeh, Siamak

    2015-01-01

    Introduction. Results on mitochondrial dysfunction in sepsis are controversial. We aimed to assess effects of LPS at wide dose and time ranges on hepatocytes and isolated skeletal muscle mitochondria. Methods. Human hepatocellular carcinoma cells (HepG2) were exposed to placebo or LPS (0.1, 1, and 10 μg/mL) for 4, 8, 16, and 24 hours and primary human hepatocytes to 1 μg/mL LPS or placebo (4, 8, and 16 hours). Mitochondria from porcine skeletal muscle samples were exposed to increasing doses of LPS (0.1–100 μg/mg) for 2 and 4 hours. Respiration rates of intact and permeabilized cells and isolated mitochondria were measured by high-resolution respirometry. Results. In HepG2 cells, LPS reduced mitochondrial membrane potential and cellular ATP content but did not modify basal respiration. Stimulated complex II respiration was reduced time-dependently using 1 μg/mL LPS. In primary human hepatocytes, stimulated mitochondrial complex II respiration was reduced time-dependently using 1 μg/mL LPS. In isolated porcine skeletal muscle mitochondria, stimulated respiration decreased at high doses (50 and 100 μg/mL LPS). Conclusion. LPS reduced cellular ATP content of HepG2 cells, most likely as a result of the induced decrease in membrane potential. LPS decreased cellular and isolated mitochondrial respiration in a time-dependent, dose-dependent and complex-dependent manner. PMID:25649304

  3. Characterization of the respiration-induced yeast mitochondrial permeability transition pore.

    Science.gov (United States)

    Bradshaw, Patrick C; Pfeiffer, Douglas R

    2013-12-01

    When isolated mitochondria from the yeast Saccharomyces cerevisiae oxidize respiratory substrates in the absence of phosphate and ADP, the yeast mitochondrial unselective channel, also called the yeast permeability transition pore (yPTP), opens in the inner membrane, dissipating the electrochemical gradient. ATP also induces yPTP opening. yPTP opening allows mannitol transport into isolated mitochondria of laboratory yeast strains, but mannitol is not readily permeable through the yPTP in an industrial yeast strain, Yeast Foam. The presence of oligomycin, an inhibitor of ATP synthase, allowed for respiration-induced mannitol permeability in mitochondria from this strain. Potassium (K+) had varied effects on the respiration-induced yPTP, depending on the concentration of the respiratory substrate added. At low respiratory substrate concentrations K+ inhibited respiration-induced yPTP opening, while at high substrate concentrations this effect diminished. However, at the high respiratory substrate concentrations, the presence of K+ partially prevented phosphate inhibition of yPTP opening. Phosphate was found to inhibit respiration-induced yPTP opening by binding a site on the matrix space side of the inner membrane in addition to its known inhibitory effect of donating protons to the matrix space to prevent the pH change necessary for yPTP opening. The respiration-induced yPTP was also inhibited by NAD, Mg2+, NH4 + or the oxyanion vanadate polymerized to decavanadate. The results demonstrate similar effectors of the respiration-induced yPTP as those previously described for the ATP-induced yPTP and reconcile previous strain-dependent differences in yPTP solute selectivity. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Geochemical importance of isotopic fractionation during respiration

    International Nuclear Information System (INIS)

    Schleser, G.; Foerstel, H.

    1975-01-01

    In 1935 it was found that atmospheric oxygen contained a relatively greater abundance of the 18 O isotope than did the oxygen bound in water (Dole effect). A major contribution to the fractionation of the stable oxygen isotopes should result from the respiration of microorganisms. In this respect our interest centers on the soil because nearly all organic material produced on land is decomposed within the soil. The oceans are less important because the primary productivity on land is twice the value for the oceans. In a first approach we measured the oxygen isotope fractionation during the respiration of E. coli K12 for different respiration rates. These results, accomplished with a chemostat, indicate that the fractionation factor α of the oxygen isotopes increases with the increasing respiratory activity, measured as Q/sub O 2 /. At low dilution rates or growth rates respectively of about 0.05 h -1 , the fractionation factor amounts to 1.006 increasing to 1.017 at dilution rates of about 1.0 h -1 . The results are interpreted as a kinetic mass fractionation due to the slightly different diffusion coefficients of 16 O 2 and 18 O 16 O. The respiration rates in conjunction with the corresponding fractionation data are compared with the respiration rates of typical soil microorganisms such as Azotobacter, in order to deduce fractionation data for these organisms. This is necessary to calculate a mean global fractionation factor. Understanding the Dole effect with these fractionation processes should finally give us the opportunity to calculate gas-exchange rates between the atmosphere and the oceans, on the basis of the behavior of the stable oxygen isotopes

  5. Acceptable respiratory protection program and LASL respirator research

    International Nuclear Information System (INIS)

    Skaggs, B.J.

    1979-01-01

    A short history is presented on the LASL Respiratory Protection Training Programs. Then a discussion is given on the major points of an acceptable respiratory protection program utilizing the points required by the Occupational, Safety, and Health Administration (OSHA) Regulation 29 CFR 1910.134. Contributions to respirator research are reviewed. Discussion is presented under the following section headings: program administration; respirator selection; respirator use; fitting and training; respirator maintenance; medical clearance and surveillance; special problems; program evaluation; and documentation

  6. Contribution of root to soil respiration and carbon balance in ...

    Indian Academy of Sciences (India)

    Soil respiration varied from 2.5 to 11.9 g CO2 m-2 d-1 and from 1.5 to 9.3 g CO2 m-2 d-1, and the contribution of root respiration to total soil respiration from 38% to 76% and from 25% to 72% in Communities 1 and 2, respectively. During the growing season (May–September), soil respiration, shoot biomass, live root ...

  7. The effects of operational conditions on the respiration rate of Tubificidae.

    Directory of Open Access Journals (Sweden)

    Juqing Lou

    Full Text Available Tubificidae is often used in the wastewater treatment systems to minimize the sludge production because it can be fed on the activated sludge. The process conditions have effect on the growth, reproduction, and sludge reduction efficiency of Tubificidae. The effects of the water quality, density of worms, pH, temperature and dissolved oxygen (DO concentration on the respiration rate of Tubificidae were investigated to determine the optimal conditions for the growth and metabolism of the worms and reveal the mechanisms involving the efficient sludge reduction in terms of these conditions. It was observed that the respiration rate was highest in the water discharged from an ecosystem that included symbiotic Tubificidae and microbes and was lowest in distilled water. Considering density of the worms, the highest rate was 81.72±5.12 mg O2/g(dry weight·h·L with 0.25 g (wet weight of worms in 1 L test flask. The maximum Tubificidae respiration rate was observed at a pH of 8.0±0.05, a rate that was more than twice as high as those observed at other pH values. The respiration rate increased in the temperature range of ∼8°C-22°C, whereas the rate declined in the temperature range of ∼22°C-30°C. The respiration rate of Tubificidae was very high for DO range of ∼3.5-4.5 mg/L, and the rates were relatively low for out of this DO range. The results of this study revealed the process conditions which influenced the growth, and reproduction of Tubificidae and sludge reduction at a microscopic level, which could be a theoretical basis for the cultivation and application of Tubificidae in wastewater treatment plants.

  8. Nutrients and temperature additively increase stream microbial respiration

    Science.gov (United States)

    David W. P. Manning; Amy D. Rosemond; Vladislav Gulis; Jonathan P. Benstead; John S. Kominoski

    2017-01-01

    Rising temperatures and nutrient enrichment are co‐occurring global‐change drivers that stimulate microbial respiration of detrital carbon, but nutrient effects on the temperature dependence of respiration in aquatic ecosystems remain uncertain. We measured respiration rates associated with leaf litter, wood, and fine benthic organic matter (FBOM) across...

  9. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms.

    Science.gov (United States)

    Mark A. Bradford; Brian W. Watts; Christian A. Davies

    2010-01-01

    Respiration of heterotrophic microorganisms decomposing soil organic carbon releases carbon dioxide from soils to the atmosphere. In the short term, soil microbial respiration is strongly dependent on temperature. In the long term, the response of heterotrophic soil respiration to temperature is uncertain. However, following established evolutionary tradeoffs, mass-...

  10. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84... Combination Gas Masks § 84.1134 Respirator containers; minimum requirements. (a) Except as provided in paragraph (b) of this section each respirator shall be equipped with a substantial, durable container...

  11. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used to...

  12. What controls respiration rate in stored sugarbeet roots

    Science.gov (United States)

    Although respiration is estimated to be responsible for 60 to 80% of the sucrose lost during storage, the mechanisms by which sugarbeet roots regulate their respiration rate are unknown. In plants, respiration rate is regulated by (1) available respiratory capacity, (2) cellular energy status, (3) ...

  13. Redefinition and global estimation of basal ecosystem respiration rate

    DEFF Research Database (Denmark)

    Yuan, Wenping; Luo, Yiqi; Li, Xianglan

    2011-01-01

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models sti...

  14. Quantifying soil respiration at landscape scales. Chapter 11

    Science.gov (United States)

    John B. Bradford; Michael G. Ryan

    2008-01-01

    Soil CO2, efflux, or soil respiration, represents a substantial component of carbon cycling in terrestrial ecosystems. Consequently, quantifying soil respiration over large areas and long time periods is an increasingly important goal. However, soil respiration rates vary dramatically in space and time in response to both environmental conditions...

  15. Induction by ethylene of cyanide-resistant respiration

    Energy Technology Data Exchange (ETDEWEB)

    Solomos, T.; Laties, G.G.

    1976-05-17

    Ethylene and cyanide induce an increase in respiration in a variety of plant tissues, whereas ethylene has no effect on tissues whose respiration is strongly inhibited by cyanide. It is suggested that the existence of a cyanide-insensitive electron transport path is a prerequisite for stimulation of respiration by ethylene.

  16. Uranium transport around the reactor zone at Okelobondo (Oklo). Data evaluation with M3 and HYTEC

    International Nuclear Information System (INIS)

    Gurban, I.; Laaksoharju, M.; Made, B.; Ledoux, E.

    1999-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is conducting and participating in Natural Analogue activities as part of various studies regarding the final disposal of high level nuclear waste (HLW). The aim of this study is to use the hydrogeological and hydrochemical data from Okelobondo (Oklo Natural Analogue) to compare the outcome of two independent modelling approaches (HYTEC and M3). The modelling helps to evaluate the processes associated with nuclear natural reactors such as redox, adsorption/desorption and dissolution/precipitation of the uranium and to develop more realistic codes which can be used for site investigations and data evaluation. HYTEC (1D and 2D) represents a deterministic, transport and multi-solutes reactive coupled code developed at Ecole des Mines de Paris. M3 (Multivariate Mixing and Mass balance calculations) is a mathematical-statistical concept code developed for SKB. M3 can relatively easily be used to calculate mixing portions and to identify sinks or sources of element concentrations that may exist in a geochemical system. M3 helped to address the reactions in the coupled code HYTEC. Thus, the major flow-paths and reaction paths were identified and used for transport evaluation. The reactive transport results (one-dimensional and two-dimensional simulations) are in good agreement with the statistical approach using the M3 model. M3 and HYTEC show a dissolution of the uranium layer in contact with upwardly oxidising waters. M3 and HYTEC show a gain of manganese rich minerals downstream the reactor. A comparison of the U and Mn plots for M3 deviation and HYTEC results showed an almost mirror behaviour. The U transport stops when the Mn gain increases. Thus, HYTEC and M3 modelling predict that a possible reason for not having U transport up to the surface in Okelobondo is due to an inorganic trap which may hinder the uranium transport. The two independent modelling approaches can be used to complement each other and to

  17. A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest

    Science.gov (United States)

    E.A. Davidson; A.D. Richardson; K.E. Savage; D.Y. Hollinger

    2006-01-01

    Annual budgets and fitted temperature response curves for soil respiration and ecosystem respiration provide useful information for partitioning annual carbon budgets of ecosystems, but they may not adequately reveal seasonal variation in the ratios of these two fluxes. Soil respiration (Rs) typically contributes 30-80% of...

  18. Case study of 85 m3 floating drum biogas plant under hilly conditions

    International Nuclear Information System (INIS)

    Kalia, A.K.; Singh, S.P.

    1999-01-01

    An 85 m 3 floating drum biogas plant was installed at the dairy farm of HP Agricultural University, Palampur, in 1989 to meet the energy needs of cooking food in the veterinary hostel mess and for general dairy requirements. It cost nearly Rs. 0.21 million (US dollars 6293), including the cost of an 800 m gas pipe line, and is working satisfactorily without any major problems except breakage of the central guide of its gas holder. With the feed rate of 17 q cattle dung/day, 50 m 3 and 30 m 3 biogas was obtained in the summer and winter months, respectively, during 1989-1991. The reduction of feed rate to 9 q cattle dung/day in 1992 onwards resulted in lowering the gas production of 25 m 3 and 18 m 3 in the summer and winter months, respectively. This gas was just sufficient to meet 73% (9466 MJ/month) and 53% (7019 MJ/month) of the energy needs for cooking meals in the hostel alone in the summer and winter months, respectively, during the course of the study. Considering the biogas and manure obtained from the plant, the income-cost ratios during the period 1989-1991 and 1992-1997 were found to be 1.44 and 1.15, respectively, suggesting that, though the plant was under fed relatively to the requisite feed rate (21 q cattle dung/day), the installation of this plant was an economically viable proposition. (author)

  19. Did Respiration or Photosynthesis Come First

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    The similarity of the mechanisms in photosynthetic and in oxidative phosphorylation suggests a common origin ( convers ion hypothesis). It is proposed that an early form of electron flow with oxidative phosphorylation ("prerespiration"), to terminal electron acceptors available in a reducing biosphere, was supplemented by a photocatalyst capable of a redox reaction. In this way, cyclic photophosphorylation arose. Further stages in evolution were reverse electron flow powered by ATP, to make NADH as a reductant for CO2 , and subsequently noncyclic electron flow. These processes concomitantly provided the oxidants indispensable for full development of oxidative phosphorylation, i.e. for normal respiration: sulphate, O2 and with participation of the nitrificants, nitrite and nitrate. Thus, prerespiration preceded photosynthesis, and this preceded respiration. It is also suggested that nonredox photoprocesses of the Halobacterium type are not part of the mainstream of bioenergetic evolution. They do not lead to photoprocesses with electron flow. (author)

  20. A MEMS turbine prototype for respiration harvesting

    Science.gov (United States)

    Goreke, U.; Habibiabad, S.; Azgin, K.; Beyaz, M. I.

    2015-12-01

    The design, manufacturing, and performance characterization of a MEMS-scale turbine prototype is reported. The turbine is designed for integration into a respiration harvester that can convert normal human breathing into electrical power through electromagnetic induction. The device measures 10 mm in radius, and employs 12 blades located around the turbine periphery along with ball bearings around the center. Finite element simulations showed that an average torque of 3.07 μNm is induced at 12 lpm airflow rate, which lies in normal breathing levels. The turbine and a test package were manufactured using CNC milling on PMMA. Tests were performed at respiration flow rates between 5-25 lpm. The highest rotational speed was measured to be 9.84 krpm at 25 lpm, resulting in 8.96 mbar pressure drop across the device and 370 mW actuation power.

  1. Changes in respiration rates and biomass attributes of epilithon due to extended exposure to zinc

    International Nuclear Information System (INIS)

    Colwell, F.S.

    1986-01-01

    The purpose of this research was to determine the influence of extended dosing of zinc on the carbon cycling and biomass characteristics of freshwater epilithon. Experiments were conducted in artificial streams continuously dosed with 0.00, 0.05, or 1.00 mg Zn liter -1 for 20 to 30 days during summer and fall, 1984 and 1985. Repeated measurement of epilithon structure and function included estimates of 14 C-glucose respiration, 14 C-glutamate respiration, O 2 and CO 2 flux rates, ash-free dry weight (AFDW), protein, carbohydrate, and algal pigment concentrations, and total and zinc-tolerant colony forming units. An increase in epilithic glucose respiration per unit biomass consistently occurred 5 to 10 days after dosing with 1.0 mg Zn liter -1 was started. At the same time significantly lower epilithon biomass occurred in the high dosed streams relative to controls in 3 out of 4 studies. Although algal pigment concentrations were lowest in the high dose streams at the midpoint of the studies, the chlorophyll a-to-pheophytin a ratio remained high, indicating that the minimal algal population was not senescing in situ. After 30 days, the epilithon dosed with 1.0 mg Zn liter -1 had higher AFDW, protein, and carbohydrate concentrations than the other treatments. The development of unique epilithon communities that are acclimated to prolonged zinc exposure is evident in the eventual recolonization of the artificial surfaces, glucose respiration rates that are comparable to controls, and presence of zinc-tolerant heterotrophs

  2. Modélisation de la réponse des flux de respiration d'un sol forestier selon les principales variables climatiques

    Directory of Open Access Journals (Sweden)

    Marc Aubinet

    2004-01-01

    Full Text Available Modelling of the response of forest soil respiration fluxes to the main climatic variables. The objective of this article is to model the carbon dioxide (CO2 efflux to the atmosphere due to soil respiration. First, we will synthesize the main components of soil respiration fluxes as found in the literature. Then, we will present a system of automatic measurements, which was set up in a forest stand in Vielsalm (Ardennes, Belgium. This system recorded measurements of soil efflux and of climatic variables every 30 minutes. Its spatial resolution was limited to six collars of 20 cm diameter in a two-meter diameter curve. The measurements were analyzed according to their climatic components: temperature and relative soil water content. We analyzed 2 2 , 9 2 6 cycles of soil respiration measurements, and we followed a strict procedure of data selection in order to characterize soil respiration fluxes according to the main environmental components. We modelized those soil temperature-dependent fluxes with a Q1 0 function and A r r h e n i u s ' law with temperature-adjusted activation energ y, which both gave very similar results. Our best estimation for Q1 0 is 3.86 and for A in Arrhenius ' l a w, 17,479. We then adjusted two line segments beneath and beyond 0 . 2 7 m3.m- 3 of water in the soil in order to describe the response of respiration fluxes to soil moisture content. The soil temperature at 4.5 cm could explain over 86 % of the soil respiration fluxes. Relative moisture content narrows this by 2 % .

  3. Lipid peroxidation and cytotoxicity induced by respirable volcanic ash

    Energy Technology Data Exchange (ETDEWEB)

    Cervini-Silva, Javiera, E-mail: jcervini@correo.cua.uam.mx [Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana Unidad Cuajimalpa, México City (Mexico); Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Nieto-Camacho, Antonio [Laboratorio de Pruebas Biológicas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Gomez-Vidales, Virginia [Laboratorio de Resonancia Paramagnética Electrónica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Ramirez-Apan, María Teresa [Laboratorio de Pruebas Biológicas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Palacios, Eduardo; Montoya, Ascención [Dirección de Investigación y Posgrado, Instituto Mexicano del Petróleo (Mexico); Kaufhold, Stephan [BGR Bundesansaltfür Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); and others

    2014-06-01

    Highlights: • Respirable volcanic ash induces oxidative degradation of lipids in cell membranes. • Respirable volcanic ash triggers cytotoxicity in murin monocyle/macrophage cells. • Oxidative stress is surface controlled but not restricted by surface- Fe{sup 3+}. • Surface Fe{sup 3+} acts as a stronger inductor in allophanes vs phyllosilicates or oxides. • Registered cell-viability values were as low as 68.5 ± 6.7%. - Abstract: This paper reports that the main component of respirable volcanic ash, allophane, induces lipid peroxidation (LP), the oxidative degradation of lipids in cell membranes, and cytotoxicity in murin monocyle/macrophage cells. Naturally-occurring allophane collected from New Zealand, Japan, and Ecuador was studied. The quantification of LP was conducted using the Thiobarbituric Acid Reactive Substances (TBARS) assay. The cytotoxic effect was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay. Electron-Paramagnetic Resonance (EPR) determinations of naturally-occurring allophane confirmed the incorporation in the structure and clustering of structural Fe{sup 3+}, and nucleation and growth of small-sized Fe (oxyhydr)oxide or gibbsite. LP induced by allophane varied with time, and solid concentration and composition, reaching 6.7 ± 0.2 nmol TBARS mg prot{sup −1}. LP was surface controlled but not restricted by structural or surface-bound Fe{sup 3+}, because redox processes induced by soluble components other than perferryl iron. The reactivity of Fe{sup 3+} soluble species stemming from surface-bound Fe{sup 3+} or small-sized Fe{sup 3+} refractory minerals in allophane surpassed that of structural Fe{sup 3+} located in tetrahedral or octahedral sites of phyllosilicates or bulk iron oxides. Desferrioxamine B mesylate salt (DFOB) or ethylenediaminetetraacetic acid (EDTA) inhibited LP. EDTA acted as a more effective inhibitor, explained by multiple electron transfer pathways. Registered cell

  4. Electrodialytic remediation of CCA-treated waste wood in a 2 m3 pilot plant

    DEFF Research Database (Denmark)

    Christensen, Iben Vernegren; Pedersen, Anne Juul; Ottosen, Lisbeth M.

    2006-01-01

    Waste wood that has been treated with chromated-copper-arsenate (CCA) poses a potential environmental problem due to the content of copper, chromium and arsenic. A pilot plant for electrodialytic remediation of up to 2 m3 wood has been designed and tested and the results are presented here. Sever...

  5. Data of evolutionary structure change: 1M3DI-1T60W [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available tryIDChain>1M3DI APLPM--MPVAE ...> -- EEE> ATOM 14546 CA ALA I 86 32.542 22.976 78.017 1.00...ain>1T60W EPMPMSMAPITG > EEE> IECHG-RGTCN >EEEE - EEEE.../entryIDChain> IECNGARGTCH >EEEEGGGEEEE>

  6. Foton-M3 Unmanned Russian Research Satellite- Development, Implementation and Operations

    Science.gov (United States)

    Ilyin, Eugene A.; Skidmore, Michael G.

    2008-06-01

    The Foton-M3 spacecraft launched from Baikonur Cosmodrome (Kazakhstan) on 14 September 2007 and landed 12 days later approximately 130 km south of Kustanay, Northern Kazakhstan. Following the successful National Aeronautics and Space Administration (NASA) and Institute for Biomedical Problems (IMBP) collaboration on the Russian Foton-M2 spaceflight (June 2005), IMBP invited NASA to continue and broaden its participation in four Russian biomedical studies on the Foton-M3 spaceflight. Where the Foton-M2 collaboration had been accomplished without an exchange of funds, the basis for the ongoing bilateral interaction on Foton-M3 was both a cooperative Space Act Agreement and a NASA contract with IMBP. As in Foton-M2, NASA scientists agreed to focus their efforts on research that would be complementary and would facilitate the accomplishment of the original Russian science goals. Foton-M3 hardware enhancements included NASA inserts installed in the IMBP flight hardware to provide programmable in-flight video recording for newts and geckos, drinking water for the geckos, and a preflight "shower" of Bromodeoxyuridine (BrdU) for the newts.

  7. How does warming affect carbon allocation, respiration and residence time in trees? An isotope tracer approach in a eucalypt

    Science.gov (United States)

    Pendall, E.; Drake, J. E.; Furze, M.; Barton, C. V.; Carillo, Y.; Richter, A.; Tjoelker, M. G.

    2017-12-01

    Climate warming has the potential to alter the balance between photosynthetic carbon assimilation and respiratory losses in forest trees, leading to uncertainty in predicting their future physiological functioning. In a previous experiment, warming decreased canopy CO2 assimilation (A) rates of Eucalyptus tereticornis trees, but respiration (R) rates were usually not significantly affected, due to physiological acclimation to temperature. This led to a slight increase in (R/A) and thus decrease in plant carbon use efficiency with climate warming. In contrast to carbon fluxes, the effect of warming on carbon allocation and residence time in trees has received less attention. We conducted a study to test the hypothesis that warming would decrease the allocation of C belowground owing to reduced cost of nutrient uptake. E. parramattensis trees were grown in the field in unique whole-tree chambers operated at ambient and ambient +3 °C temperature treatments (n=3 per treatment). We applied a 13CO2 pulse and followed the label in CO2 respired from leaves, roots, canopy and soil, in plant sugars, and in rhizosphere microbes over a 3-week period in conjunction with measurements of tree growth. The 9-m tall, 57 m3 whole-tree chambers were monitored for CO2 concentrations in independent canopy and below ground (root and soil) compartments; periodic monitoring of δ13C values in air in the compartments allowed us to quantify the amount of 13CO2 assimilated and respired by each tree. Warmed trees grew faster and assimilated more of the label than control trees, but the 13C allocation to canopy, root and soil respiration was not altered. However, warming appeared to reduce the residence time of carbon respired from leaves, and especially from roots and soil, indicating that autotrophic respiration has the potential to feedback to climate change. This experiment provides insights into how warming may affect the fate of assimilated carbon from the leaf to the ecosystem scale.

  8. Application of Raptor-M3G to reactor dosimetry problems on massively parallel architectures - 026

    International Nuclear Information System (INIS)

    Longoni, G.

    2010-01-01

    The solution of complex 3-D radiation transport problems requires significant resources both in terms of computation time and memory availability. Therefore, parallel algorithms and multi-processor architectures are required to solve efficiently large 3-D radiation transport problems. This paper presents the application of RAPTOR-M3G (Rapid Parallel Transport Of Radiation - Multiple 3D Geometries) to reactor dosimetry problems. RAPTOR-M3G is a newly developed parallel computer code designed to solve the discrete ordinates (SN) equations on multi-processor computer architectures. This paper presents the results for a reactor dosimetry problem using a 3-D model of a commercial 2-loop pressurized water reactor (PWR). The accuracy and performance of RAPTOR-M3G will be analyzed and the numerical results obtained from the calculation will be compared directly to measurements of the neutron field in the reactor cavity air gap. The parallel performance of RAPTOR-M3G on massively parallel architectures, where the number of computing nodes is in the order of hundreds, will be analyzed up to four hundred processors. The performance results will be presented based on two supercomputing architectures: the POPLE supercomputer operated by the Pittsburgh Supercomputing Center and the Westinghouse computer cluster. The Westinghouse computer cluster is equipped with a standard Ethernet network connection and an InfiniBand R interconnects capable of a bandwidth in excess of 20 GBit/sec. Therefore, the impact of the network architecture on RAPTOR-M3G performance will be analyzed as well. (authors)

  9. Sulfide-inhibition of mitochondrial respiration at very low oxygen concentrations.

    Science.gov (United States)

    Matallo, J; Vogt, J; McCook, O; Wachter, U; Tillmans, F; Groeger, M; Szabo, C; Georgieff, M; Radermacher, P; Calzia, E

    2014-09-15

    Our aim was to study the ability of an immortalized cell line (AMJ2-C11) to sustain aerobic cell respiration at decreasing oxygen concentrations under continuous sulfide exposure. We assumed that the rate of elimination of sulfide through the pathway linked to the mitochondrial respiratory chain and therefore operating under aerobic conditions, should decrease with limiting oxygen concentrations. Thus, sulfide's inhibition of cellular respiration would occur faster under continuous sulfide exposure when the oxygen concentration is in the very low range. The experiments were performed with an O2K-oxygraph (Oroboros Instruments) by suspending 0.5-1×10(6) cells in 2 ml of continuously stirred respiration medium at 37 °C and calculating the oxygen flux (JO2) as the negative derivative of the oxygen concentration in the medium. The cells were studied in two different metabolic states, namely under normal physiologic respiration (1) and after uncoupling of mitochondrial respiration (2). Oxygen concentration was controlled by means of a titration-injection pump, resulting in average concentration values of 0.73±0.05 μM, 3.1±0.2 μM, and 6.2±0.2 μM. Simultaneously we injected a 2 mM Na2S solution at a continuous rate of 10 μl/s in order to quantify the titration-time required to reduce the JO2 to 50% of the initial respiratory activity. Under the lowest oxygen concentration this effect was achieved after 3.5 [0.3;3.5] and 11.7 [6.2;21.2]min in the uncoupled and coupled state, respectively. This time was statistically significantly shorter when compared to the intermediate and the highest O2 concentrations tested, which yielded values of 24.6 [15.5;28.1]min (coupled) and 35.9 [27.4;59.2]min (uncoupled), as well as 42.4 [27.5;42.4]min (coupled) and 51.5 [46.4;51.7]min (uncoupled). All data are medians [25%, and 75% percentiles]. Our results confirm that the onset of inhibition of cell respiration by sulfide occurs earlier under a continuous exposure when approaching

  10. Plant species richness regulates soil respiration through changes in productivity.

    Science.gov (United States)

    Dias, André Tavares Corrêa; van Ruijven, Jasper; Berendse, Frank

    2010-07-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of diversity on soil respiration. We hypothesized that plant diversity could affect soil respiration in two ways. On the one hand, more diverse plant communities have been shown to promote plant productivity, which could increase soil respiration. On the other hand, the nutrient concentration in the biomass produced has been shown to decrease with diversity, which could counteract the production-induced increase in soil respiration. Our results clearly show that soil respiration increased with species richness. Detailed analysis revealed that this effect was not due to differences in species composition. In general, soil respiration in mixtures was higher than would be expected from the monocultures. Path analysis revealed that species richness predominantly regulates soil respiration through changes in productivity. No evidence supporting the hypothesized negative effect of lower N concentration on soil respiration was found. We conclude that shifts in productivity are the main mechanism by which changes in plant diversity may affect soil respiration.

  11. Mesozooplankton respiration and community structure in a seamount region of the eastern South Pacific

    Science.gov (United States)

    Frederick, Leissing; Escribano, Ruben; Morales, Carmen E.; Hormazabal, Samuel; Medellín-Mora, Johanna

    2018-05-01

    Seamounts in the Juan Fernandez Ridge, as well as in other seamount regions in the eastern South Pacific and in the world oceans, remain poorly studied ecosystems in terms of structure and functioning. Here, community respiration by epipelagic mesozooplankton in three seamounts of the Juan Fernandez Ridge, including the O`Higgins Seamount close to the coastal upwelling zone and two oceanic seamounts near the Juan Fernandez Archipelago ( 33°S-78°W), was assessed. Oxygen consumption by mixed assemblages was estimated using continuous measurements of dissolved oxygen concentration under controlled temperature during onboard, short-term incubations (2-4 h). Mesozooplankton composition was analyzed with a ZooScan device and expressed in terms of community normalized size spectra, and taxa and size diversity (Shannon-Wiener index). Carbon-specific community respiration rates in the upper 100 m layer were in the range of 0.3-1.9 mg O2 m-2 d-1, indicating that up to 3.1% of the mesozooplankton biomass can be respired on a daily basis. The mesozooplankton community was dominated by small-size copepods but the proportions of small copepods, large copepods, and gelatinous zooplankton (mostly salps) changed between the seamounts, in association with modifications in taxa composition, size diversity, and the slope of the size spectrum. Community respiration was significantly correlated to these community descriptors, suggesting the composition of the pelagic community has a direct impact on the total amount of respired-C. Connectivity between the coastal upwelling zone and the Juan Fernandez Ridge region mediated by mesoscale activity, interacting with the seamounts, is suggested as a most important process in controlling zooplankton community structure and in turn community metabolism.

  12. Partitioning of ecosystem respiration in a beech forest

    DEFF Research Database (Denmark)

    Brændholt, Andreas; Ibrom, Andreas; Larsen, Klaus Steenberg

    2018-01-01

    Terrestrial ecosystem respiration (Reco) represents a major component of the global carbon cycle. It consists of many sub-components, such as aboveground plant respiration and belowground root and microbial respiration, each of which may respond differently to abiotic factors, and thus to global...... of Reco in a temperate beech forest at diel, seasonal and annual time scales. Reco was measured by eddy covariance while respiration rates from soil, tree stems and isolated coarse tree roots were measured bi-hourly by an automated closed-chamber system. Soil respiration (Rsoil) was measured in intact...... plots, and heterotrophic Rsoil was measured in trenched plots. Tree stem (Rstem) and coarse root (Rroot) respiration were measured by custom made closed-chambers. We found that the contribution of Rstem to total Reco varied across the year, by only accounting for 6% of Reco during winter and 16% during...

  13. Studies of spherical tori, stellarators and anisotropic pressure with M3D

    International Nuclear Information System (INIS)

    Sugiyama, L.E.; Park, W.; Hudson, S.; Tang, X.-Z.; Strauss, H.R.; Stutman, D.

    2001-01-01

    The M3D (Multi-level 3D) project simulates plasmas using multiple levels of physics, geometry, and grid models in one code package. The M3D code has been extended to fundamentally nonaxisymmetric and small aspect ratio, R/a>or∼1, configurations. Applications include the nonlinear stability of the NSTX spherical torus and the spherical pinch, and the relaxation of stellarator equilibria. The fluid-level physics model has been extended to evolve the anisotropic pressures p jparallel and p jperpendicular for the ion and electron species. Results show that when the density evolves, other terms in addition to the neoclassical collisional parallel viscous force, such as B· ∇p e in the Ohm's law, can be strongly destabilizing for nonlinear magnetic islands. (author)

  14. 75 FR 24592 - Order Finding that the TETCO-M3 Financial Basis Contract Traded on the IntercontinentalExchange...

    Science.gov (United States)

    2010-05-05

    ... by industry participants. The TETCO M3 zone is a significant trading center for natural gas but is... transactions. \\20\\ 17 CFR part 36, Appendix A. The M3 zone is a major trading center for natural gas in the... adverse price movements. As noted above, the M3 zone is a significant trading center for natural gas in...

  15. 75 FR 24626 - Order Finding That the TETCO-M3 Financial Basis Contract Traded on the IntercontinentalExchange...

    Science.gov (United States)

    2010-05-05

    ...\\ The TMT contract prices trading activity at the M3 zone of TETCO's pipeline. The M3 zone is defined as... zone is a major trading center for natural gas in the United States and, as noted, ICE sells price... time to hedge against adverse price movements. As noted above, the M3 zone is a significant trading...

  16. Tillage Effects on Soil Properties & Respiration

    Science.gov (United States)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  17. Maintenance, endogeneous, respiration, lysis, decay and predation

    DEFF Research Database (Denmark)

    loosdrecht, Marc C. M. Van; Henze, Mogens

    1999-01-01

    mechanism is microbiologically correct. The lysis/decay model mechanism is a strongly simplified representation of reality. This paper tries to review the processes grouped under endogenous respiration in activated sludge models. Mechanisms and processes such as maintenance, lysis, internal and external...... decay, predation and death-regeneration are discussed. From recent microbial research it has become evident that cells do not die by themselves. Bacteria are however subject to predation by protozoa. Bacteria store reserve polymers that in absence of external substrate are used for growth...

  18. M3MS-16OR0401086 – Report on NEAMS Workbench Support for MOOSE Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lefebvre, Robert A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Langley, Brandon R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Thompson, Adam B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-09-23

    This report summarizes the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Workbench from Oak Ridge National Laboratory (ORNL) and the integration of the MOOSE framework. This report marks the completion of NEAMS milestone M3MS-16OR0401086. This report documents the developed infrastructure to support the MOOSE framework applications, the applications’ results, visualization status, the collaboration that facilitated this progress, and future considerations.

  19. Annealing dislocation loops in OKh16N15M3T steel implanted by helium

    International Nuclear Information System (INIS)

    Utkelbaev, B.D.; Reutov, V.F.; Zhdan, G.T.

    1993-01-01

    With the use of electron microscopy a study was made into the influence of preliminary thermomechanical treatment on the process of dislocation loop development in austenitic stainless steel type OKh16N15M3T with helium on annealing. Preliminary treatment was shown to prevent dislocation loop formation to a greater or lesser extent. Preliminary 'cold' working and thermal ageing of the material are the most effective ways to suppress radiation defect formation when annealing helium implanted steel

  20. Isolation, Identification, and Characterization of Cadmium Resistant Pseudomonas sp. M3 from Industrial Wastewater

    OpenAIRE

    Syed Zaghum Abbas; Mohd Rafatullah; Norli Ismail; Japareng Lalung

    2014-01-01

    The present study deals with the isolation, identification, and characterization of the cadmium resistant bacteria from wastewater collected from industrial area of Penang, Malaysia. The isolate was selected based on high level of the cadmium and antibiotic resistances. On the basis of morphological, biochemical characteristics, 16S rDNA gene sequencing and phylogeny analysis revealed that the strain RZCd1 was authentically identified as Pseudomonas sp. M3. The industrial isolate showed more ...

  1. Occupational exposure to respirable crystalline silica in the Iranian Mazandaran province industry workers.

    Science.gov (United States)

    Mohammadyan, Mahmoud; Rokni, Mohammad; Yosefinejad, Razieh

    2013-01-01

    This study investigated occupational exposure to silica dust of 48 workers in stone cutting, glass making, ceramic, and sand blasting plants in the north of Iran. Samples were collected from the breathing zone using a personal sampling pump and a size-selective cyclone. Sample filters and blanks were analysed using infrared spectroscopy. The mean sampling period was 4.83 h. Mean exposure of workers to crystalline silica dust in glass making, ceramic, sand blasting, and stone cutting was 0.129 mg m-3, 0.169 mg m-3, 0.313 mg m-3 and 0.318 mg m-3, respectively. As exposure at each of the workplaces is three to 12 times higher than the current national and international thresholds, these workers run a greater risk of lung cancer and mortality. Our findings call for specific ventilation design and personal protection improvements in the four plants as well as stricter enforcement of the existing regulations by the authorities.

  2. Development of an Advanced Respirator Fit Test Headform (Postprint)

    Science.gov (United States)

    2012-11-01

    N95 filtering facepiece respirators (FFRs) for pro - tection studies against viable airborne particles. A Static (i.e., non-moving, non-speaking...requiredto wear respirators to reduce their exposure to air- borne hazards.(1) The U.S. Occupational Safety and Health Administration ( OSHA ) Respiratory...13 workplace protection factors.(9,10). Inward leakage (IL) of con - taminants into a respirator facepiece has been described as a combination of

  3. Soil Respiration under Different Land Uses in Eastern China

    Science.gov (United States)

    Fan, Li-Chao; Yang, Ming-Zhen; Han, Wen-Yan

    2015-01-01

    Land-use change has a crucial influence on soil respiration, which further affects soil nutrient availability and carbon stock. We monitored soil respiration rates under different land-use types (tea gardens with three production levels, adjacent woodland, and a vegetable field) in Eastern China at weekly intervals over a year using the dynamic closed chamber method. The relationship between soil respiration and environmental factors was also evaluated. The soil respiration rate exhibited a remarkable single peak that was highest in July/August and lowest in January. The annual cumulative respiration flux increased by 25.6% and 20.9% in the tea garden with high production (HP) and the vegetable field (VF), respectively, relative to woodland (WL). However, no significant differences were observed between tea gardens with medium production (MP), low production (LP), WL, and VF. Soil respiration rates were significantly and positively correlated with organic carbon, total nitrogen, and available phosphorous content. Each site displayed a significant exponential relationship between soil respiration and soil temperature measured at 5 cm depth, which explained 84–98% of the variation in soil respiration. The model with a combination of soil temperature and moisture was better at predicting the temporal variation of soil respiration rate than the single temperature model for all sites. Q10 was 2.40, 2.00, and 1.86–1.98 for VF, WL, and tea gardens, respectively, indicating that converting WL to VF increased and converting to tea gardens decreased the sensitivity of soil respiration to temperature. The equation of the multiple linear regression showed that identical factors, including soil organic carbon (SOC), soil water content (SWC), pH, and water soluble aluminum (WSAl), drove the changes in soil respiration and Q10 after conversion of land use. Temporal variations of soil respiration were mainly controlled by soil temperature, whereas spatial variations were

  4. Performance of 500 m3 TankCell® at Kevitsa Cu-Ni-PGM concentrator

    Directory of Open Access Journals (Sweden)

    Mattsson Toni

    2016-01-01

    Full Text Available Outotec TankCell e500 flotation cell, with 500 m3 of efficient flotation volume, has been in operation since October 2014 at Kevitsa Cu-Ni-PGM concentrator as the first Cu rougher flotation cell. The 500 m3 flotation cell has proven to provide metallurgical superiority at very low specific power. On average the cell has recovered 71% of copper contained in the flotation feed. The cell has produced the concentrate with the Cu grade equal to 17% Cu. The typical specific power for the cell is around 0.4 kW/m3 (blower power not included. After the start-up of the cell the operating parameters have varied. The mixing speed have varied from 4.9 to 7.0 m/s and the superficial gas velocity from 0.3 to 1.5 cm/s. At various operating parameters the mixing, gas dispersion and metallurgical performance of the cell have been evaluated. In this paper a review of the hydrodynamic and metallurgical performance of the cell is presented. The paper focuses on the interactions of mixing intensity, bubble size and metallurgical performance in industrial application.

  5. Development, Implementation and Evaluation of an M3 Community Health Curriculum.

    Science.gov (United States)

    Beck, Barbra; Wolff, Marie; Bates, Tovah; Beverdorf, Sarah; Young, Staci; Ahmed, Syed

    2004-12-01

    This paper describes the development, implementation and evaluation of an M3 community health curriculum that responds to recent changes within the health care finance and delivery system. The new curriculum was developed based on AAMC recommendations, LCME requirements, a national review of undergraduate community health curricula, and an internal review of the integration of community health concepts in M3 clerkships. The M3 curriculum teaches: 1) the importance of being a community responsive physician; 2) SES factors that influence health; 3) cultural competency; and 4) the role of physicians as health educators. Student evaluations for the first twelve months of implementation indicate that students are most satisfied with presentations and less satisfied with required readings and a patient interview project. Most students agree that at the completion of the course they understand what it means to be a community-responsive physician, and they have developed skills to help them become more community responsive. Evaluation tools need to be developed to assess if students' behavior has changed due to course participation.

  6. Development, Implementation and Evaluation of an M3 Community Health Curriculum

    Directory of Open Access Journals (Sweden)

    Staci Young, MS

    2004-03-01

    Full Text Available Objectives: This paper describes the development, implementation and evaluation of an M3 community health curriculum that responds to recent changes within the health care finance and delivery system. Methods: The new curriculum was developed based on AAMC recommendations, LCME requirements, a national review of undergraduate community health curricula, and an internal review of the integration of community health concepts in M3 clerkships. Results: The M3 curriculum teaches: 1 the importance of being a community responsive physician; 2 SES factors that influence health; 3 cultural competency; and 4 the role of physicians as health educators. Student evaluations for the first twelve months of implementation indicate that students are most satisfied with presentations and less satisfied with required readings and a patient interview project. Discussion: Most students agree that at the completion of the course they understand what it means to be a community-responsive physician, and they have developed skills to help them become more community responsive. Evaluation tools need to be developed to assess if students’ behavior has changed due to course participation.

  7. Contribution of root respiration to soil respiration in a C3/C4 mixed ...

    Indian Academy of Sciences (India)

    Unknown

    The linear regression relationship between soil respiration and root biomass was used to determine the .... 10 days, sieved 50 g soil samples were placed in a 100 ml beaker and a 250 ..... Comparatively, the method can take multi-samples by ...

  8. ESTIMATING ROOT RESPIRATION IN SPRUCE AND BEECH: DECREASES IN SOIL RESPIRATION FOLLOWING GIRDLING

    Science.gov (United States)

    A study was undertaken to follow seasonal fluxes of CO2 from soil and to estimate the contribution of autotrophic (root + mycorrhizal) to total soil respiration (SR) in a mixed stand of European beech (Fagus sylvatica) and Norway spruce (Picea abies) near Freising, Germany. Matu...

  9. [The development of a respiration and temperature monitor].

    Science.gov (United States)

    Du, X; Wu, B; Liu, Y; He, Q; Xiao, J

    2001-12-01

    This paper introduces the design of a monitoring system to measure the respiration and temperature of a body with an 8Xc196 single-chip microcomputer. This system can measure and display the respiration wave, respiration frequency and the body temperature in real-time with a liquid crystal display (LCD) and give an alarm when the parameters are beyond the normal scope. In addition, this device can provide a 24 hours trend graph of the respiration frequency and the body temperature parameters measured. Data can also be exchanged through serial communication interfaces (RS232) between the PC and the monitor.

  10. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    DEFF Research Database (Denmark)

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic...... consortia. Despite the potentially adverse effects, only few inorganic electron acceptors potentially utilizable for anaerobic respiration have been investigated with respect to negative interactions in anaerobic digesters. In this chapter we review competitive and inhibitory interactions between anaerobic...... respiring populations and methanogenic consortia in bioreactors. Due to the few studies in anaerobic digesters, many of our discussions are based upon studies of defined cultures or natural ecosystems...

  11. Respirator studies for the ERDA Division of Safety, Standards, and Compliance. Progress report, July 1, 1974--June 30, 1975

    International Nuclear Information System (INIS)

    Douglas, D.D.; Hack, A.L.; Davis, T.O.; Shafer, C.; Moore, T.O.; Richards, C.P.; Revoir, W.H.

    1976-08-01

    Major accomplishments during FY 1975 were the initiation of a respirator research program to investigate the physiological effects of wearing a respirator under stress, assisting ERDA contractors by providing information and training concerning respirator programs, quality assurance of respirators, and respirator applications. A newsletter of respirator developments for ERDA contractor personnel was published, and a Respirator Symposium was conducted

  12. Penetration of asbestos fibers in respirator filters

    International Nuclear Information System (INIS)

    Cheng, Yung-Sung; Pearson, S.D.; Rohrbacher, K.D.; Yeh, Hsu-Chi.

    1994-01-01

    Currently, the health risks associated with asbestos have restricted its use and created a growing asbestos abatement industry with a need for respirator filters that are effective for worker protection. The main purpose of this project is to determine the influence of fiber size, electrostatic charge, and flow rate on the penetration of asbestos fibers in respirator filter cartridges. The study includes four types of filters each tested at two flow rates: the AO-R57A, a dual cartridge HEPA filter tested at 16 and 42.5 L/min; the MSA-S, a dust and mist filter tested at 16 and 42.5 L/min; the MSA-A power filter tested at 32 and 85 L/min; and the 3M-8710, a low-efficiency disposable face mask filter tested at 32 and 85 L/min. The three types of asbestos fibers used (amosite, crocidolite, and chrysotile) ranged in length from 0.04-0.5 μm and in aspect ratio (ratio of length to diameter) from 3 to 60. The fibers were used in both charged and neutralized forms. The results from amosite fibers are reported here

  13. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    Science.gov (United States)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  14. Soil respiration as affected by long-term broiler litter application to a udult in the ozark highlands.

    Science.gov (United States)

    McMullen, Richard L; Brye, Kristofor R; Gbur, Edward E

    2015-01-01

    The United States produced 8.4 billion broiler chickens () and an estimated 10.1 to 14.3 million Mg of broiler litter (BL) in 2012. Arkansas' production of 1 billion broilers in 2012 produced an estimated 1.2 to 1.7 million Mg of BL, most of which was concentrated in the Ozark Highlands region of northwest Arkansas. Increased CO release from soils associated with agricultural practices has generated concerns regarding the contribution of certain agricultural management practices to global warming. The objectives of this study were to evaluate the effects of long-term (>6 yr) BL application to a Udult on soil respiration and annual C emissions and to determine the predictability of soil respiration based on soil temperature and moisture in the Ozark Highlands region of northwest Arkansas. Soil respiration was measured routinely between May 2009 and May 2012 in response to annual BL application rates of 0, 5.6, and 11.2 Mg dry litter ha that began in 2003. Soil respiration varied ( 0.05) by BL application rate but differed ( < 0.01) among study years. Multiple regression indicated that soil respiration could be reasonably predicted using 2-cm-depth soil temperature (T) and the product of T and VWC as predictors ( = 0.52; < 0.01). Results indicate that organic amendments, such as BL, can stimulate release of CO from the soil to the atmosphere, potentially negatively affecting atmospheric greenhouse gas concentrations; thus, there may be application rates above which the benefits of organic amendments may be diminished by adverse environmental effects. Improved BL management strategies are needed to lessen the loss of CO from BL-amended soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Ocean-scale patterns in community respiration rates along continuous transects across the Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Jesse M Wilson

    Full Text Available Community respiration (CR of organic material to carbon dioxide plays a fundamental role in ecosystems and ocean biogeochemical cycles, as it dictates the amount of production available to higher trophic levels and for export to the deep ocean. Yet how CR varies across large oceanographic gradients is not well-known: CR is measured infrequently and cannot be easily sensed from space. We used continuous oxygen measurements collected by autonomous gliders to quantify surface CR rates across the Pacific Ocean. CR rates were calculated from changes in apparent oxygen utilization and six different estimates of oxygen flux based on wind speed. CR showed substantial spatial variation: rates were lowest in ocean gyres (mean of 6.93 mmol m(-3 d(-1±8.0 mmol m(-3 d(-1 standard deviation in the North Pacific Subtropical Gyre and were more rapid and more variable near the equator (8.69 mmol m(-3 d(-1±7.32 mmol m(-3 d(-1 between 10°N and 10°S and near shore (e.g., 5.62 mmol m(-3 d(-1±45.6 mmol m(-3 d(-1 between the coast of California and 124°W, and 17.0 mmol m(-3 d(-1±13.9 mmol m(-3 d(-1 between 156°E and the Australian coast. We examined how CR varied with coincident measurements of temperature, turbidity, and chlorophyll concentrations (a proxy for phytoplankton biomass, and found that CR was weakly related to different explanatory variables across the Pacific, but more strongly related to particular variables in different biogeographical areas. Our results indicate that CR is not a simple linear function of chlorophyll or temperature, and that at the scale of the Pacific, the coupling between primary production, ocean warming, and CR is complex and variable. We suggest that this stems from substantial spatial variation in CR captured by high-resolution autonomous measurements.

  16. AT on Buried LPG Tanks Over 13 m3: An Innovative and Practical Solution

    Science.gov (United States)

    Di Fratta, Crescenzo; Ferraro, Antonio; Tscheliesnig, Peter; Lackner, Gerald; Correggia, Vincenzo; Altamura, Nicola

    In Italy, since 2005, techniques based on Acoustic Emission have been introduced for testing of underground LPG tanks up to 13 m3, according to the European standard EN 12818:2004. The testing procedure for these tanks plans to install one or more pairs of sensors inside the "dome" suited for the access to the valves and fittings of the tank, directly on the accessible metal shell. This methodology is not applicable for the underground LPG buried tanks, where it is necessary to install a larger number of AE sensors, in order to cover at 100% the whole tank shell, even at very deep positions. Already in 2004, the European standard EN 12820 (Appendix C - Informative)give the possibility to use Acoustic Emission testing of LPG underground or buried tanks with a capacity exceeding 13 m3, but no technique was specified for the application. In 2008, TÜV AUSTRIA ITALIA - BLU SOLUTIONS srl - Italian company of TÜV AUSTRIA Group - has developed a technique to get access at tank shell, where tank capacity is greater than 13 m3 and its' diameter greater than 3,5 m. This methodology was fully in comply with the provisions of the European Standard EN 12819:2010, becoming an innovative solution widely appreciated and is used in Italy since this time. Currently, large companies and petrochemical plants, at the occurrence of the tank's requalification, have engaged TÜV AUSTRIA ITALIA - BLU SOLUTIONS to install such permanent predispositions, which allow access to the tank shell - test object - with diameters from 4 to 8 m. Through this access, you can install the AE sensors needed to cover at 100% the tank surface and then to perform AE test. In an economic crisis period, this technique is proving a valid and practically applicable answer, in order to reduce inspection costs and downtime by offering a technically advanced solution (AT), increasing the safety of the involved operators, protecting natural resources and the environment.

  17. Selective expression of muscarinic acetylcholine receptor subtype M3 by mouse type III taste bud cells.

    Science.gov (United States)

    Mori, Yusuke; Eguchi, Kohgaku; Yoshii, Kiyonori; Ohtubo, Yoshitaka

    2016-11-01

    Each taste bud cell (TBC) type responds to a different taste. Previously, we showed that an unidentified cell type(s) functionally expresses a muscarinic acetylcholine (ACh) receptor subtype, M3, and we suggested the ACh-dependent modification of its taste responsiveness. In this study, we found that M3 is expressed by type III TBCs, which is the only cell type that possesses synaptic contacts with taste nerve fibers in taste buds. The application of ACh to the basolateral membrane of mouse fungiform TBCs in situ increased the intracellular Ca 2+ concentration in 2.4 ± 1.4 cells per taste bud (mean ± SD, n = 14). After Ca 2+ imaging, we supravitally labeled type II cells (phospholipase C β2 [PLCβ2]-immunoreactive cells) with Lucifer yellow CH (LY), a fluorescent dye and investigated the positional relationship between ACh-responding cells and LY-labeled cells. After fixation, the TBCs were immunohistostained to investigate the positional relationships between immunohistochemically classified cells and LY-labeled cells. The overlay of the two positional relationships obtained by superimposing the LY-labeled cells showed that all of the ACh-responding cells were type III cells (synaptosomal-associated protein 25 [SNAP-25]-immunoreactive cells). The ACh responses required no added Ca 2+ in the bathing solution. The addition of 1 μM U73122, a phospholipase C inhibitor, decreased the magnitude of the ACh response, whereas that of 1 μM U73343, a negative control, had no effect. These results suggest that type III cells respond to ACh and release Ca 2+ from intracellular stores. We also discuss the underlying mechanism of the Ca 2+ response and the role of M3 in type III cells.

  18. The genetic variance of resistance in M3 lines of rice against leaf blight disease

    International Nuclear Information System (INIS)

    Mugiono

    1979-01-01

    Seeds of Pelita I/1 rice variety were irradiated with 20, 30, 40 and 50 krad of gamma rays from a 60 Co source. Plants of M 3 lines were inoculated with bacterial leaf blight, Xanthomonas oryzae (Uzeda and Ishiyama) Downson, using clipping method. The coefficient of genetic variability of resistance against leaf blight disease increased with increasing dose. Highly significant difference in the genetic variance of resistance were found between the treated samples and the control. Dose of 20 krad gave good probability for selection of plants resistant against leaf blight disease. (author)

  19. Deposition of CdTe films under microgravity: Foton M3 mission

    Energy Technology Data Exchange (ETDEWEB)

    Benz, K.W.; Croell, A. [Freiburger Materialforschungszentrum FMF, Albert-Ludwigs-Universitaet Freiburg (Germany); Zappettini, A.; Calestani, D. [CNR Parma, Instituto Materiali Speciali per Elettronica e Magnetismo IMEM, Fontani Parma (Italy); Dieguez, E. [Universidad Autonoma de Madrid (Spain). Departamento de Fisica de Materiales; Carotenuto, L.; Bassano, E. [Telespazio Napoli, Via Gianturco 31, 80146 Napoli (Italy); Fiederle, M.

    2009-10-15

    Experiments of deposition of CdTe films have been carried out under microgravity in the Russian Foton M3 mission. The influence of gravity has been studied with these experiments and compared to the results of simulations. The measured deposition rate could be confirmed by the theoretical results for lower temperatures. For higher temperatures the measured thickness of the deposited films was larger compared to the theoretical data. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Lymphocyte respiration in children with Trisomy 21

    Directory of Open Access Journals (Sweden)

    Aburawi Elhadi H

    2012-12-01

    Full Text Available Abstract Background This study measured lymphocyte mitochondrial O2 consumption (cellular respiration in children with trisomy 21. Methods Peripheral blood mononuclear cells were isolated from whole blood of trisomy 21 and control children and these cells were immediately used to measure cellular respiration rate. [O2] was determined as a function of time from the phosphorescence decay rates (1/τ of Pd (II-meso-tetra-(4-sulfonatophenyl-tetrabenzoporphyrin. In sealed vials containing lymphocytes and glucose as a respiratory substrate, [O2] declined linearly with time, confirming the zero-order kinetics of O2 conversion to H2O by cytochrome oxidase. The rate of respiration (k, in μM O2 min-1, thus, was the negative of the slope of [O2] vs. time. Cyanide inhibited O2 consumption, confirming that oxidation occurred in the mitochondrial respiratory chain. Results For control children (age = 8.8 ± 5.6 years, n = 26, the mean (± SD value of kc (in μM O2 per min per 107 cells was 1.36 ± 0.79 (coefficient of variation, Cv = 58%; median = 1.17; range = 0.60 to 3.12; -2SD = 0.61. For children with trisomy 21 (age = 7.2 ± 4.6 years, n = 26, the values of kc were 0.82 ± 0.62 (Cv = 76%; median = 0.60; range = 0.20 to 2.80, pp6.1 mU/L. Fourteen of 26 (54% children with trisomy 21 had kc values of 0.20 to 0.60 (i.e., kc positively correlated with body-mass index (BMI, R >0.302, serum creatinine (R >0.507, blood urea nitrogen (BUN, R >0.535 and albumin (R >0.446. Conclusions Children with trisomy 21 in this study have reduced lymphocyte bioenergetics. The clinical importance of this finding requires further studies.

  1. Simulation of Human Respiration with Breathing Thermal Manikin

    DEFF Research Database (Denmark)

    Bjørn, Erik

    The human respiration contains carbon dioxide, bioeffluents, and perhaps virus or bacteria. People may also indulge in activities that produce contaminants, as for example tobacco smoking. For these reasons, the human respiration remains one of the main contributors to contamination of the indoor...

  2. Interpreting diel hysteresis between soil respiration and temperature

    Science.gov (United States)

    C. Phillips; N. Nickerson; D. Risk; B.J. Bond

    2011-01-01

    Increasing use of automated soil respiration chambers in recent years has demonstrated complex diel relationships between soil respiration and temperature that are not apparent from less frequent measurements. Soil surface flux is often lagged from soil temperature by several hours, which results in semielliptical hysteresis loops when surface flux is plotted as a...

  3. Differential soil respiration responses to changing hydrologic regimes

    Science.gov (United States)

    Vincent J. Pacific; Brian L. McGlynn; Diego A. Riveros-Iregui; Howard E. Epstein; Daniel L. Welsch

    2009-01-01

    Soil respiration is tightly coupled to the hydrologic cycle (i.e., snowmelt and precipitation timing and magnitude). We examined riparian and hillslope soil respiration across a wet (2005) and a dry (2006) growing season in a subalpine catchment. When comparing the riparian zones, cumulative CO2 efflux was 33% higher, and peak efflux occurred 17 days earlier during the...

  4. Automatic patient respiration failure detection system with wireless transmission

    Science.gov (United States)

    Dimeff, J.; Pope, J. M.

    1968-01-01

    Automatic respiration failure detection system detects respiration failure in patients with a surgically implanted tracheostomy tube, and actuates an audible and/or visual alarm. The system incorporates a miniature radio transmitter so that the patient is unencumbered by wires yet can be monitored from a remote location.

  5. Soil respiration response to experimental disturbances over 3 years

    Science.gov (United States)

    Amy Concilio; Siyan Ma; Soung-Ryoul Ryu; Malcolm North; Jiquan Chen

    2006-01-01

    Soil respiration is a major pathway for carbon cycling in terrestrial ecosystems yet little is known about its response to natural and anthropogenic disturbances. This study examined soil respiration response to prescribed burning and thinning treatments in an old-growth, mixed-conifer forest on the western slope of the Sierra Nevada Mountains. Experimental treatments...

  6. Respirators: Air Purifying, Self-Study, Course 40723

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-21

    Respirators: Air Purifying Self-Study (COURSE 40723) is designed for Los Alamos National Laboratory (LANL) workers, support services subcontractors, and other LANL subcontractors who work under the LANL Respiratory Protection Program (RPP). This course also meets the air-purifying respirators (APRs) retraining requirement.

  7. Soil Respiration and Student Inquiry: A Perfect Match

    Science.gov (United States)

    Hoyt, Catherine Marie; Wallenstein, Matthew David

    2011-01-01

    This activity explores the cycling of carbon between the atmosphere (primarily as CO[subscript 2]) and biomass in plants, animals, and microscopic organisms. Students design soil respiration experiments using a protocol that resembles current practice in soil ecology. Three methods for measuring soil respiration are presented. Student-derived…

  8. Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate.

    Science.gov (United States)

    Lee, T H; Byun, I G; Kim, Y O; Hwang, I S; Park, T J

    2006-01-01

    An in situ measuring system of respiration rate was applied for monitoring biodegradation of diesel fuel in a bioventing process for bioremediation of diesel contaminated soil. Two laboratory-scale soil columns were packed with 5 kg of soil that was artificially contaminated by diesel fuel as final TPH (total petroleum hydrocarbon) concentration of 8,000 mg/kg soil. Nutrient was added to make a relative concentration of C:N:P = 100:10:1. One soil column was operated with continuous venting mode, and the other one with intermittent (6 h venting/6 h rest) venting mode. On-line O2 and CO2 gas measuring system was applied to measure O2 utilisation and CO2 production during biodegradation of diesel for 5 months. Biodegradation rate of TPH was calculated from respiration rate measured by the on-line gas measuring system. There were no apparent differences between calculated biodegradation rates from two columns with different venting modes. The variation of biodegradation rates corresponded well with trend of the remaining TPH concentrations comparing other biodegradation indicators, such as C17/pristane and C18/phytane ratio, dehydrogenase activity, and the ratio of hydrocarbon utilising bacteria to total heterotrophic bacteria. These results suggested that the on-line measuring system of respiration rate would be applied to monitoring biodegradation rate and to determine the potential applicability of bioventing process for bioremediation of oil contaminated soil.

  9. The Mediterranean Moored Multi-sensor Array (M3A: system development and initial results

    Directory of Open Access Journals (Sweden)

    K. Nittis

    Full Text Available Operational forecasting of ocean circulation and marine ecosystem fluctuations requires multi-parametric real-time measurements of physical and biochemical properties. The architecture of a system that is able to provide such measurements from the upper-thermocline layers of the Mediterranean Sea is described here. The system was developed for the needs of the Mediterranean Forecasting System and incorporates state-of-the-art sensors for optical and chemical measurements in the upper 100 m and physical measurements down to 500 m. Independent moorings that communicate via hydro-acoustic modems are hosting the sensors. The satellite data transfer and the large autonomy allow for the operation of the system in any open-ocean site. The system has been in pre-operational use in the Cretan Sea since January 2000. The results of this pilot phase indicate that multi-parametric real-time observations with the M3A system are feasible, if a consistent maintenance and re-calibration program is followed. The main limitations of the present configuration of M3A are related: (a to bio-fouling that primarily affects the turbidity and secondarily affects the other optical sensors, and (b to the limited throughput of the currently used satellite communication system.

    Key words. Atmospheric composition and structure (instruments and techniques. Oceanography: general (ocean prediction Oceanography: physical (upper ocean process

  10. Connexins and M3 Muscarinic Receptors Contribute to Heterogeneous Ca2+ Signaling in Mouse Aortic Endothelium

    Directory of Open Access Journals (Sweden)

    François-Xavier Boittin

    2013-02-01

    Full Text Available Background/Aims: Smooth muscle tone is controlled by Ca2+ signaling in the endothelial layer. Mouse endothelial cells are interconnected by gap junctions made of Connexin40 (Cx40 and Cx37, which allow the exchange of signaling molecules to coordinate their activity. Here, we investigated the role of Cx40 in the endothelial Ca2+ signaling of the mouse aorta. Methods: Ca2+ imaging was performed on intact aortic endothelium from both wild type (Cx40+/+ and Connexin40-deficient (Cx40 -/- mice. Results: Acetylcholine (ACh induced early fast and high amplitude Ca2+ transients in a fraction of endothelial cells expressing the M3 muscarinic receptors. Inhibition of intercellular communication using carbenoxolone or octanol fully blocked the propagation of ACh-induced Ca2+ transients toward adjacent cells in WT and Cx40-/- mice. As compared to WT, Cx40-/- mice displayed a reduced propagation of ACh-induced Ca2+ waves, indicating that Cx40 contributes to the spreading of Ca2+ signals. The propagation of those Ca2+ responses was not blocked by suramin, a blocker of purinergic ATP receptors, indicating that there is no paracrine effect of ATP release on the Ca2+ waves. Conclusions: Altogether our data show that Cx40 and Cx37 contribute to the propagation and amplification of the Ca2+ signaling triggered by ACh in endothelial cells expressing the M3 muscarinic receptors.

  11. Scale-up of industrial biodiesel production to 40 m3using a liquid lipase formulation

    DEFF Research Database (Denmark)

    Price, Jason; Nordblad, Mathias; Martel, Hannah H.

    2016-01-01

    In this work, we demonstrate the scale-up from an 80 L fed-batch scale to 40 m3 along with the design of a 4 m3continuous process for enzymatic biodiesel production catalysed by NS-40116 (a liquid formulation of a modified Thermomyces lanuginosus lipase). Based on the analysis of actual pilot plant...... the fed-batch and CSTR cases. Given similar operating conditions, the CSTR operation on average, has a reaction time which is 1.3 times greater than the fed-batch operation. We also showed how the process metrics can be used to quickly estimate the selling price of the enzyme. Assuming a biodiesel selling...... price of 0.6 USD/kg and a one-time use of the enzyme (0.1% (w/woil) enzyme dosage); the enzyme can then be sold for 30 USD/kg which ensures that that the enzyme cost is not more than 5% of the biodiesel revenue. This article is protected by copyright. All rights reserved...

  12. The Mediterranean Moored Multi-sensor Array (M3A: system development and initial results

    Directory of Open Access Journals (Sweden)

    K. Nittis

    2003-01-01

    Full Text Available Operational forecasting of ocean circulation and marine ecosystem fluctuations requires multi-parametric real-time measurements of physical and biochemical properties. The architecture of a system that is able to provide such measurements from the upper-thermocline layers of the Mediterranean Sea is described here. The system was developed for the needs of the Mediterranean Forecasting System and incorporates state-of-the-art sensors for optical and chemical measurements in the upper 100 m and physical measurements down to 500 m. Independent moorings that communicate via hydro-acoustic modems are hosting the sensors. The satellite data transfer and the large autonomy allow for the operation of the system in any open-ocean site. The system has been in pre-operational use in the Cretan Sea since January 2000. The results of this pilot phase indicate that multi-parametric real-time observations with the M3A system are feasible, if a consistent maintenance and re-calibration program is followed. The main limitations of the present configuration of M3A are related: (a to bio-fouling that primarily affects the turbidity and secondarily affects the other optical sensors, and (b to the limited throughput of the currently used satellite communication system. Key words. Atmospheric composition and structure (instruments and techniques. Oceanography: general (ocean prediction Oceanography: physical (upper ocean process

  13. A study of the compact nebulae VV 8 and M3-27

    International Nuclear Information System (INIS)

    Adams, T.F.

    1975-01-01

    New photometric observations of the lines and continuum in the compact nebulae VV 8 and M3-27 are presented. The data for VV 8 are very similar to those obtained by O'Dell nearly 10 years ago. Both nebulae have high electron densities and are self-absorbed in Hα. Parameters describing the physical conditions are estimated using the observed Balmer and O iii line strengths. By comparing the observations with suitable models for young planetary nebulae, the abundances of helium, oxygen, and neon are shown to be normal. The N ii lines are stronger than predicted. The continuum in M3-27 is shown to be in good agreement with theory, while the continuum in VV 8 in the visible and infrared is much brighter than predicted. The similarity between the line spectra and inferred properties of the nebulae suggests that the optical continuum in VV 8 is unrelated to the nebula, and may come from a late-type companion in a binary. Serious difficulties remain, however, concerning the absolute magnitude and color of the companion in the binary model. Some implications of Zipoy's shell star model are also examined

  14. Respirable dust measured downwind during rock dust application.

    Science.gov (United States)

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  15. A Global Database of Soil Respiration Data, Version 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides a soil respiration data database (SRDB), a near-universal compendium of published soil respiration (RS) data. Soil respiration, the...

  16. A Global Database of Soil Respiration Data, Version 2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides an updated soil respiration database (SRDB), a near-universal compendium of published soil respiration (RS) data. Soil respiration,...

  17. Characterization of a novel chitinase from a moderately halophilic bacterium, Virgibacillus marismortui strain M3-23

    OpenAIRE

    Essghaier, Badiaa; Hedi, Abdeljabbar; Bajji, Mohammed; Jijakli, Haissam; Boudabous, Abdellatif; Sadfi-Zouaoui, Najla

    2012-01-01

    A new chitinase produced by the moderately halophilic bacterium Virgibacillus marismortui strain M3- 23 was identified and characterized. Distinguishable characteristics of high activity and stability at different pH, temperatures and salinity of M3-23 chitinase are reported. Analysis of the catalytic domain sequence from the enzyme highlighted its relationship to glycosyl hydrolase family 18. Comparison of the deduced chitinase sequence from strain M3-23 to known chitinases from Bacillus spe...

  18. [Effects of management regime on soil respiration from agroecosystems].

    Science.gov (United States)

    Chen, Shu-tao; Zhu, Da-wei; Niu, Chuan-po; Zou, Jian-wen; Wang, Chao; Sun, Wen-juan

    2009-10-15

    In order to examine the effects of management regime, such as nitrogen application and plowing method, on soil respiration from farmland, the static opaque chamber-gas chromatograph method was used to measure soil CO2 fluxes in situ. The field measurement was carried out for 5 growing seasons, which were the 2002-2003 wheat, 2003 maize and soybean, 2003-2004 wheat, 2004 maize and 2004-2005 wheat seasons. Our results showed that soil respiration increased in fertilizer-applied treatments compared with no fertilizer treatment after 3 times of fertilizer application on 9 November 2002, 14 February and 26 March 2003. And the most obvious increase appeared following the third fertilizer application. No significant difference in soil respiration was found among several fertilizer application treatments. The effect of plowing depth on soil respiration was contingent on preceding cropping practice. Over the 2003-2004 wheat-growing seasons (its preceding cropping practice was rice paddy), mean soil respiration rates were not significant different (p > 0.05) between no plowing treatment and shallow plowing treatment. The shallow plowing treatment CT2 led to higher soil CO2 losses compared with no plowing treatment of NT2 in the 2004 maize-growing season, however, the significant higher (p soil respiration rates occurred with no plowing treatment of NT3 in the following 2004-2005 wheat-growing season. Intensive plowing (25 cm depth), compared with no plowing practice (NT4), increased soil respiration significantly during the 2004-2005 wheat-growing season. Regression analysis showed that the exponential function could be employed to fit the relationship between soil respiration and temperature. The exponential relationship yielded the Q10 values which were varied from 1.26 to 3.60, with a mean value of 2.08. To evaluate the effect of temperature on soil respiration, the CO2 emission fluxes were normalized for each treatment and each crop growing season. Plotting the

  19. CONSTRAINTS ON HELIUM ENHANCEMENT IN THE GLOBULAR CLUSTER M3 (NGC 5272): THE HORIZONTAL BRANCH TEST

    International Nuclear Information System (INIS)

    Catelan, M.; Valcarce, A. A. R.; Cortes, C.; Grundahl, F.; Sweigart, A. V.

    2009-01-01

    It has recently been suggested that the presence of multiple populations showing various amounts of helium enhancement is the rule, rather than the exception, among globular star clusters. An important prediction of this helium enhancement scenario is that the helium-enhanced blue horizontal branch (HB) stars should be brighter than the red HB stars which are not helium enhanced. In this Letter, we test this prediction in the case of the Galactic globular cluster M3 (NGC 5272), for which the helium-enhancement scenario predicts helium enhancements of ∼>0.02 in virtually all blue HB stars. Using high-precision Stroemgren photometry and spectroscopic gravities for blue HB stars, we find that any helium enhancement among most of the cluster's blue HB stars is very likely less than 0.01, thus ruling out the much higher helium enhancements that have been proposed in the literature.

  20. Trimble M3 1” and South Nts-362R Total Station Angle Measurement Accuracy Analysis

    Directory of Open Access Journals (Sweden)

    Oleniacz Grzegorz

    2017-03-01

    Full Text Available The main purpose of this study was to obtain information about the actual precision of angle measurements with two instruments (Trimble M3 1 "and South NTS-362R, realizable in given measurement conditions. This object is achieved by using a simplified method of testing instruments contained in the PN-ISO 17123-3 standard [1]. This is a continuation of research described in [2], carried out on the same test base, but this time in a different, less favorable field conditions. The use of the same instrument has created an opportunity to compare and analyze the measurement results. The scope of work includes the measurement and results preparation along with statistical processing of the obtained results for both instruments.

  1. Respiration testing for bioventing and biosparging remediation of petroleum contaminated soil and ground water

    International Nuclear Information System (INIS)

    Gray, A.L.; Brown, A.; Moore, B.J.; Payne, R.E.

    1996-01-01

    Respiration tests were performed to measure the effect of subsurface aeration on the biodegradation rates of petroleum hydrocarbon contamination in vadose zone soils (bioventing) and ground water (biosparging). The aerobic biodegradation of petroleum contamination is typically limited by the absence of oxygen in the soil and ground water. Therefore, the goal of these bioremediation technologies is to increase the oxygen concentration in the subsurface and thereby enhance the natural aerobic biodegradation of the organic contamination. One case study for biosparging bioremediation testing is presented. At this site atmospheric air was injected into the ground water to increase the dissolved oxygen concentration in the ground water surrounding a well, and to aerate the smear zone above the ground water table. Aeration flow rates of 3 to 8 cfm (0.09 to 0.23 m 3 /min) were sufficient to increase the dissolved oxygen concentration. Petroleum hydrocarbon biodegradation rates of 32 to 47 microg/l/hour were calculated based on measurements of dissolved oxygen concentration in ground water. The results of this test have demonstrated that biosparging enhances the biodegradation of petroleum hydrocarbons, but the results as they apply to remediation are not known. Two case studies for bioventing respiration testing are presented

  2. Status of the assessment phase of the ESA M3 mission candidate LOFT

    Science.gov (United States)

    Corral van Damme, Carlos; Ayre, Mark; Lumb, David; Short, Alexander D.; Rando, Nicola

    2012-09-01

    LOFT (Large Observatory For x-ray Timing) is one of four candidates for the M3 slot (launch in 2024, with the option of a launch in 2022) of ESAs Cosmic Vision 2015 - 2025 Plan, and as such it is currently undergoing an initial assessment phase lasting one year. The objective of the assessment phase is to provide the information required to enable the down selection process, in particular: the space segment definition for meeting the assigned science objectives; consideration of and initial definition of the implementation schedule; an estimate of the mission Cost at Completion (CaC); an evaluation of the technology readiness evaluation and risk assessment. The assessment phase is divided into two interleaved components: (i) A payload assessment study, performed by teams funded by member states, which is primarily intended for design, definition and programmatic/cost evaluation of the payload, and (ii) A system industrial study, which has essentially the same objectives for the space segment of the mission. This paper provides an overview of the status of the LOFT assessment phase, both for payload and platform. The initial focus is on the payload design status, providing the reader with an understanding of the main features of the design. Then the space segment assessment study status is presented, with an overview of the principal challenges presented by the LOFT payload and mission requirements, and a presentation of the expected solutions. Overall the mission is expected to enable cutting-edge science, is technically feasible, and should remain within the required CaC for an M3 candidate.

  3. An Extremely Lithium-rich Bright Red Giant in the Globular Cluster M3

    Science.gov (United States)

    Kraft, Robert P.; Peterson, Ruth C.; Guhathakurta, Puragra; Sneden, Christopher; Fulbright, Jon P.; Langer, G. Edward

    1999-06-01

    We have serendipitously discovered an extremely lithium-rich star on the red giant branch of the globular cluster M3 (NGC 5272). An echelle spectrum obtained with the Keck I High-Resolution Echelle Spectrograph reveals a Li I λ6707 resonance doublet of 520 mÅ equivalent width, and our analysis places the star among the most Li-rich giants known: logε(Li)~=+3.0. We determine the elemental abundances of this star, IV-101, and three other cluster members of similar luminosity and color and conclude that IV-101 has abundance ratios typical of giants in M3 and M13 that have undergone significant mixing. We discuss mechanisms by which a low-mass star may be so enriched in Li, focusing on the mixing of material processed by the hydrogen-burning shell just below the convective envelope. While such enrichment could conceivably happen only rarely, it may in fact regularly occur during giant-branch evolution but be rarely detected because of rapid subsequent Li depletion. Based on observations obtained with the Keck I Telescope of the W. M. Keck Observatory, which is operated by the California Association for Research in Astronomy (CARA), Inc., on behalf of the University of California and the California Institute of Technology. This Letter is dedicated to the memory of our beloved colleague Ed Langer, who died after a brief illness on February 16, 1999. Ed brought a unique theoretical perspective to our globular cluster abundance studies. His career truly embodied the academic ideals of inspiration in both teaching and research. He made friends wherever he traveled, and was an inspiration to students. We will miss him greatly.

  4. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    Science.gov (United States)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  5. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    Full Text Available Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2.s(-1 and clipping (2.06 μmol.m(-2.s(-1 than under grazing (1.65 μmol.m-(2.s(-1 over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP. Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content and biotic (ANPP and BNPP factors regulate soil respiration in the semiarid temperate grassland of northern China.

  6. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Science.gov (United States)

    Wang, Zhen; Ji, Lei; Hou, Xiangyang; Schellenberg, Michael P

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2).s(-1)) and clipping (2.06 μmol.m(-2).s(-1)) than under grazing (1.65 μmol.m-(2).s(-1)) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.

  7. Domestic Preparedness: Phase 2 Sarin Vapor Challenge and Corn Oil Protection Factor (PF) Testing of Commercial Powered Air Purifying Respirator (PAPR) Systems and Cartridges

    National Research Council Canada - National Science Library

    Campbell, Lee E; Lins, Ray; Pappas, Alex G

    2002-01-01

    .... Results indicate that cartridges provide complete penetration resistance against 200 mg/m3 GB challenge concentrations for 60 minutes, but that unacceptably high levels of GB vapor and corn oil...

  8. Molecular Characterization of Bacterial Respiration on Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Robert C.

    2013-04-26

    The overall aim of this project was to contribute to our fundamental understanding of proteins and biological processes under extreme environmental conditions. We sought to define the biochemical and physiological mechanisms that underlie biodegradative and other cellular processes in normal, extreme, and engineered environments. Toward that end, we sought to understand the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during respiration by bacteria on soluble iron and insoluble sulfide minerals. In accordance with these general aims, the specific aims were two-fold: To identify, separate, and characterize the extracellular biomolecules necessary for aerobic respiration on iron under strongly acidic conditions; and to elucidate the molecular principles whereby these bacteria recognize and adhere to their insoluble mineral substrates under harsh environmental conditions. The results of these studies were described in a total of nineteen manuscripts. Highlights include the following: 1. The complete genome of Acidithiobacillus ferrooxidans ATCC 23270 (type strain) was sequenced in collaboration with the DOE Joint Genome Institute; 2. Genomic and mass spectrometry-based proteomic methods were used to evaluate gene expression and in situ microbial activity in a low-complexity natural acid mine drainage microbial biofilm community. This was the first effort to successfully analyze a natural community using these techniques; 3. Detailed functional and structural studies were conducted on rusticyanin, an acid-stable electron transfer protein purified from cell-free extracts of At. ferrooxidans. The three-dimensional structure of reduced rusticyanin was determined from a combination of homonuclear proton and heteronuclear 15N- and 13C-edited NMR spectra. Concomitantly, the three-dimensional structure of oxidized rusticyanin was determined by X-ray crystallography to a resolution of 1.9 A by multiwavelength

  9. Temperature response of soil respiration largely unaltered with experimental warming

    Science.gov (United States)

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; Collins, Scott L.; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Steenberg Larsen, Klaus; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Penuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward B.; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  10. Changes in mitochondrial respiration in the human placenta over gestation.

    Science.gov (United States)

    Holland, Olivia J; Hickey, Anthony J R; Alvsaker, Anna; Moran, Stephanie; Hedges, Christopher; Chamley, Lawrence W; Perkins, Anthony V

    2017-09-01

    Placental mitochondria are subjected to micro-environmental changes throughout gestation, in particular large variations in oxygen. How placental mitochondrial respiration adapts to changing oxygen concentrations remains unexplored. Additionally, placental tissue is often studied in culture; however, the effect of culture on placental mitochondria is unclear. Placental tissue was obtained from first trimester and term (laboured and non-laboured) pregnancies, and selectively permeabilized to access mitochondria. Respirometry was used to compare respiration states and substrate use in mitochondria. Additionally, explants of placental tissue were cultured for four, 12, 24, 48, or 96 h and respiration measured. Mitochondrial respiration decreased at 11 weeks compared to earlier gestations (p = 0.05-0.001), and mitochondrial content increased at 12-13 weeks compared to 7-10 weeks (p = 0.042). In term placentae, oxidative phosphorylation (OXPHOS) through mitochondrial complex IV (p Respiration was increased (p ≤ 0.006-0.001) in laboured compared to non-laboured placenta. After four hours of culture, respiration was depressed compared to fresh tissue from the same placenta and continued to decline with time in culture. Markers of apoptosis were increased, while markers of autophagy, mitochondrial biogenesis, and mitochondrial membrane potential were decreased after four hours of culture. Respiration and mitochondrial content alter over gestation/with labour. Decreased respiration at 11 weeks and increased mitochondrial content at 12-13 weeks may relate to onset of maternal blood flow, and increased respiration as a result of labour may be an adaptation to ischaemia-reperfusion. At term, mitochondria were more susceptible to changes in respiratory function relative to first trimester when cultured in vitro, perhaps reflecting changes in metabolic demands as gestation progresses. Metabolic plasticity of placental mitochondria has relevance to placenta

  11. 75 FR 3471 - International Conference on Harmonisation; Guidance on M3(R2) Nonclinical Safety Studies for the...

    Science.gov (United States)

    2010-01-21

    ...] International Conference on Harmonisation; Guidance on M3(R2) Nonclinical Safety Studies for the Conduct of... the availability of a guidance entitled ``M3(R2) Nonclinical Safety Studies for the Conduct of Human... auspices of the International Conference on Harmonisation of Technical Requirements for Registration of...

  12. Analysis of the pool critical assembly benchmark using raptor-M3G, a parallel deterministic radiation transport code - 289

    International Nuclear Information System (INIS)

    Fischer, G.A.

    2010-01-01

    The PCA Benchmark is analyzed using RAPTOR-M3G, a parallel SN radiation transport code. A variety of mesh structures, angular quadrature sets, cross section treatments, and reactor dosimetry cross sections are presented. The results show that RAPTOR-M3G is generally suitable for PWR neutron dosimetry applications. (authors)

  13. Oxygen and carbon isotopic compositions of gases respired by humans

    International Nuclear Information System (INIS)

    Epstein, S.; Zeiri, L.

    1988-01-01

    Oxygen-isotope fractionation associated with respiration in human individuals at rest is linearly related to the fraction of the O 2 utilized in the respiration process. The slope of this relationship is affected by a history of smoking, by vigorous exercise, and by the N 2 /O 2 ratio of the inhaled gas. For patients who suffer anemia-related diseases, the slope of this relationship is directly proportional to their level of hemoglobin. These results introduce a new approach for studying the mechanisms of O 2 consumption in human respiration and how they are affected by related diseases

  14. Controls on Ecosystem and Root Respiration in an Alaskan Peatland

    Science.gov (United States)

    McConnell, N. A.; McGuire, A. D.; Harden, J. W.; Kane, E. S.; Turetsky, M. R.

    2010-12-01

    Boreal ecosystems cover 14% of the vegetated surface on earth and account for 25-30% of the world’s soil carbon (C), mainly due to large carbon stocks in deep peat and frozen soil layers. While peatlands have served as historical sinks of carbon, global climate change may trigger re-release of C to the atmosphere and may turn these ecosystems into net C sources. Rates of C release from a peatland are determined by regional climate and local biotic and abiotic factors such as vegetation cover, thaw depth, and peat thickness. Soil CO2 fluxes are driven by both autotrophic (plant) respiration and heterotrophic (microbial) respiration. Thus, changes in plant and microbial activity in the soil will impact CO2 emissions from peatlands. In this study, we explored environmental and vegetation controls on ecosystem respiration and root respiration in a variety of wetland sites. The study was conducted at the Alaskan Peatland Experiment (APEX; www.uoguelph.ca/APEX) sites in the Bonanza Creek Experimental Forest located 35 km southwest of Fairbanks Alaska. We measured ecosystem respiration, root respiration, and monitored a suite of environmental variables along a vegetation and soil moisture gradient including a black spruce stand with permafrost, a shrubby site with permafrost, a tussock grass site, and a herbaceous open rich fen. Within the rich fen, we have been conducting water table manipulations including a control, lowered, and raised water table treatment. In each of our sites, we measured total ecosystem respiration using static chambers and root respiration by harvesting roots from the uppermost 20 cm and placing them in a root cuvette to obtain a root flux. Ecosystem respiration (ER) on a μmol/m2/sec basis varied across sites. Water table was a significant predictor of ER at the lowered manipulation site and temperature was a strong predictor at the control site in the rich fen. Water table and temperature were both significant predictors of ER at the raised

  15. Herd protection effect of N95 respirators in healthcare workers.

    Science.gov (United States)

    Chen, Xin; Chughtai, Abrar Ahmad; MacIntyre, Chandini Raina

    2017-12-01

    Objective To determine if there was herd protection conferred to unprotected healthcare workers (HCWs) by N95 respirators worn by colleagues. Methods Data were analysed from a prospective cluster randomized clinical trial conducted in Beijing, China between 1 December 2008 and 15 January 2009. A minimum compliance level (MCL) of N95 respirators for prevention of clinical respiratory illness (CRI) was set based on various compliance cut-offs. The CRI rates were compared between compliant (≥MCL) and non-compliant (protection from use of N95 respirators by colleagues within a hospital ward.

  16. Estimating daytime ecosystem respiration from eddy-flux data

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Herbst, Mathias

    2011-01-01

    To understand what governs the patterns of net ecosystem exchange of CO2, an understanding of factors influencing the component fluxes, ecosystem respiration and gross primary production is needed. In the present paper, we introduce an alternative method for estimating daytime ecosystem respiration...... based on whole ecosystem fluxes from a linear regression of photosynthetic photon flux density data vs. daytime net ecosystem exchange data at forest ecosystem level. This method is based on the principles of the Kok-method applied at leaf level for estimating daytime respiration. We demonstrate...

  17. Respirator studies for the Nuclear Regulatory Commission (NRC)

    International Nuclear Information System (INIS)

    Skaggs, B.J.; Fairchild, C.I.; DeField, J.D.; Hack, A.L.

    1985-01-01

    A project of the Health, Safety and Environment Division is described. The project provides the NRC with information of respiratory protective devices and programs for their licensee personnel. The following activities were performed during FY 1983: selection of alternate test aerosols for quality assurance testing of high-efficiency particulate air respirator filters; evaluation of MAG-1 spectacles for use with positive and negative-pressure respirators; development of a Manual of Respiratory Protection in Emergencies Involving Airborne Radioactive Materials, and technical assistance to NRC licensees regarding respirator applications. 2 references, 1 figure

  18. [Changes in cell respiration of postural muscle fibers under long-term gravitational unloading after dietary succinate supplementation].

    Science.gov (United States)

    Ogneva, I V; Veselova, O M; Larina, I M

    2011-01-01

    The intensity of cell respiration of the rat m. soleus, m. gastrocnemius c.m. and tibialis anterior fibers during 35-day gravitational unloading, with the addition of succinate in the diet at a dosage rate of 50 mg per 1 kg animal weight has been investigated. The gravitational unloading was modeled by antiorthostatic hindlimb suspension. The intensity of cell respiration was estimated by polarography. It was shown that the rate of oxygen consumption by soleus and gastrocnemius fibers on endogenous and exogenous substrates and with the addition of ADP decreases after the discharge. This may be associated with the transition to the glycolytic energy path due to a decrease in the EMG-activity. At the same time, the respiration rate after the addition of exogenous substrates in soleus fibers did not increase, indicating a disturbance in the function of the NCCR-section of the respiratory chain and more pronounced changes in the structure of muscle fibers. In tibialis anterior fibers, no changes in oxygen consumption velocity were observed. The introduction of succinate to the diet of rats makes it possible to prevent the negative effects of hypokinesia, although it reduces the basal level of intensity of cell respiration.

  19. The BIOPAN experiment MARSTOX II of the FOTON M-3 mission

    Science.gov (United States)

    Rettberg, P.; Moeller, R.; Rabbow, E.; Panitz, C.; Horneck, G.; Meyer, C.; Lammer, H.; Douki, T.; Cadet, J.

    2008-09-01

    The experiment MARSTOX II on FOTON M-3 mission (September 14 - 26, 2007) was a further step in the study of the Responses of Organisms to the Martian Environment (ROME) which already started with first ground-based experiments in Mars simulation chambers and with the space experiment MARSTOX I, flown in 2005 in the ESA facility BIOPAN (Fig. 1) on FOTON M-2. The survivability of bacterial spores of B. subtilis, a well-characterized model system for highly resistant microorganisms, was investigated under the extreme environmental conditions as they exist on the surface of Mars. By use of exterrestrial UV radiation and cut-off filters the photoprotection and potential UV-phototoxicity of different minerals of the Martian soil were investigated.In MARSTOX II two further aspects were addressed (i) the influence of different concentrations of dust in the Martian atmosphere, which change the solar irradiance on the surface significantly compared to vacuum exposure under the same conditions (experiment parts 'DUST MARS' and 'DUST SPACE'), and (ii) the survivability of spores under martian atmosphere and pressure exposed to a mars-like spectral irradiance compared to vacuum exposure under the same conditions (experiment parts 'MIXED MARS' and 'MIXED SPACE') (Fig. 2 and 3). After exposure to space during the FOTON M-3 mission the sample analysis was performed at CEA in Grenoble, F, and at DLR in Cologne, D, together with parallel samples from the corresponding ground control experiment performed in the space simulation facilities at DLR. As biological endpoints in these investigations survival and UV-induced DNAphotoproducts were analysed.From the results of MARSTOX II the following conclusions can be drawn: (i) Spores mixed with martian soil analogue are protected only to a low degree against UV radiation. The protective effect of several defined layers of spores mixed with Martian soil analogue were quantified. (ii) The two investigated martian soil analogues, MRS07 (47

  20. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission

    Science.gov (United States)

    Lambreva, M.; Rea, G.; Antonacci, A.; Serafini, A.; Damasso, M.; Pastorelli, S.; Margonelli, A.; Johanningmeier, U.; Bertalan, I.; Pezzotti, G.; Giardi, M. T.

    2008-09-01

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plants- or algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stresstolerant strains. Photosystem II D1 protein sitedirected and random mutants of the unicellular green alga Chlamydomonas reinhardtii [1] were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. For this purpose some mutants modified at the level of enzymes involved in the biosynthesis of xanthophylls were included in the study [2]. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton- M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence detector, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device developed to measure the chlorophyll fluorescence and to provide a living conditions for several different algae strains (Fig.1). Twelve different C. reinhardti strains were analytically selected and two replications for each strain were brought to space

  1. Soil microbes and soil respiration of Mongolian Steppe soils under grazing stress.

    Science.gov (United States)

    Bölter, Manfred; Krümmelbein, Julia; Horn, Rainer; Möller, Rolf; Scheltz, Annette

    2012-04-01

    Soils of Northern China were analysed for their microbiological and soil physical properties with respect to different grazing stress. An important factor for this is soil compaction and related aeration due to pore size shifts. Bulk density increases significantly with increasing grazing intensity and soil carbon contents show decreasing values from top to depth. Organic carbon (LOI) concentrations decrease significantly with increasing grazing intensity. The data on LOI (2-5.8%) approximate 10-30 mg C, our data on glucose show values between 0.4-1.2 mg, i.e. approx. 4% of total carbon. Numbers and biomass of bacteria show generally a decreasing trend of those data at grazed and ungrazed sites, numbers range between 0.4 and 8.7 x10(8) g(-1) d.wt., bacterial biomass between 0.4 and 3.8 microg Cg(-1). This need to be recorded in relation to soil compaction and herewith-hampered aeration and nutrient flow. The temperature-respiration data also allow getting an idea of the Q10-values for soil respiration. The data are between 2.24 (5-15 degrees C) and 1.2 (25-35 degrees C). Our data are presented with a general review of biological properties of Mongolian Steppe soils.

  2. Respiration in heterotrophic unicellular eukaryotic organisms.

    Science.gov (United States)

    Fenchel, Tom

    2014-08-01

    Surface:volume quotient, mitochondrial volume fraction, and their distribution within cells were investigated and oxygen gradients within and outside cells were modelled. Cell surface increases allometrically with cell size. Mitochondrial volume fraction is invariant with cell size and constitutes about 10% and mitochondria are predominantly found close to the outer membrane. The results predict that for small and medium sized protozoa maximum respiration rates should be proportional to cell volume (scaling exponent ≈1) and access to intracellular O2 is not limiting except at very low ambient O2-tensions. Available data do not contradict this and some evidence supports this interpretation. Cell size is ultimately limited because an increasing fraction of the mitochondria becomes exposed to near anoxic conditions with increasing cell size. The fact that mitochondria cluster close to the cell surface and the allometric change in cell shape with increasing cell size alleviates the limitation of aerobic life at low ambient O2-tension and for large cell size. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Is a 125,000 M3 class ship always an optimum for LNG carriers 7

    International Nuclear Information System (INIS)

    Grill, A.

    1992-01-01

    When making the inventory of LNG carriers built up to the present day, one can see that ships of 125 to 130,000 m 3 may be considered as a real standard. An increase of ship's size, together with a reduction of the number of ships required on a given trade, must lead to a reduction of transportation cost. It must also be possible to obtain a better correlation between available energy during voyage and propulsion needs by adjusting boil-off rate and adapting the tanks insulation coefficient. The presentation shows the possibility to significantly reduce LNG transportation cost by an optimization of the size for future ships. The study is based on a certain number of typical trades being able to be met when taking into account future foreseeable needs for LNG. The influence of parameters such as type of containment system and number of tanks, type of propulsion, influence of size restrictions, ability to deliver a given amount of LNG per year even in case of one ship temporary out of order is also considered

  4. Natural gas. The LNG trade exceeds the 100 billions of m3 limit

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    1996 has been a particularly favourable year for the international natural gas industry with a 10% increase of the international trade. The worldwide commercialized production of natural gas (2310 billions of m 3 ) has shown a 5% increase with respect to the previous year, with a strong increase in the OECD countries (+15.5%), in particular in the North Sea. High growing rates were recorded also in Latin America (9.5%) and Middle East (8%). Natural gas production in the CIS (Community of Independent States) reached 714 Gm 3 in 1996 with 600 Gm 3 from the Russian federation. The international trade has shown a 10% increase and reached 429.3 Gm 3 . The methane tanker ship trade has shown a 10 Gm 3 increase mainly in the Asian market (Japan and South Korea). Natural gas consumption growth has been high too (+4.9%) and reached 11.6% in Europe due to the climate conditions and to an increasing electric power demand. (J.S.)

  5. Stereotactic radiotherapy for head and neck cancers with Micro-Multi-Leaf (m3)

    International Nuclear Information System (INIS)

    Nishiyama, Kinji; Koizumi, Masahiko; Nose, Takayuki; Yoshino, Kunitoshi

    2000-01-01

    Head and neck tumors are located in complicated anatomical structures comprised by critical organs. These tumors were stereotactically treated with Micro-Multi-Leaf (m3 TM ) which can make fields encompassing targets. The subjects were 3 patients with parotid tumors, 3 with maxillary sinus tumors, 2 with nasopharyngeal carcinomas, 2 with oropharyngeal carcinomas, and 1 each with ethmoid sinus, oral cavity, and nasal tumors. The subjects were immobilized with a shell and underwent CT scan of thin slices. Targets and risk organs of orbits, spinal cord, and parotid glands were marked on the CT images. Targets were defined with margins of 3 mm from clinical tumors and were irradiated through 4-7 static non-coplanar portals. Doses of fractionated stereotactic irradiation were 2.5-4 Gy daily and 15-62.5 Gy in total. Peak doses of 102-112% of isocenter dose indicated remarkable flatness of dose distribution. Doses to risk organs of eyeballs, parotid glands, and spinal cord were acceptable. (author)

  6. Late-Onset Inadvertent Bleb Formation following Pars Plana M3 Molteno Implant Tube Obstruction

    Directory of Open Access Journals (Sweden)

    Anmar M. Abdul-Rahman

    2017-01-01

    Full Text Available Purpose: To report a case of inadvertent bleb formation presenting 18 months after pars plana M3 Molteno implant tube obstruction in a patient with mixed mechanism glaucoma. Materials and Methods: An 84-year-old Caucasian male with mixed mechanism glaucoma underwent slit-lamp examination, gonioscopy, colour anterior segment photography and anterior segment optical coherence tomography (AS-OCT. Results: An inadvertent bleb developed 18 months after pars plana implant tube re-positioning with a 6/0 Vicryl tie ligature. The bleb was located in the area anterior to the implant plate; it was characterised by a thin, transparent, avascular and multi-cystic wall, with a visible stoma at the posterior edge of the bleb. The bleb was functioning as demonstrated by an intraocular pressure of 6 mm Hg at presentation and a punctate fluorescein uptake pattern of the bleb wall. The bleb over the plate of the Molteno implant was non-functioning, likely secondary to tube obstruction by vitreous in the early postoperative period. AS-OCT showed a tract from the anterior chamber commencing at an entry wound through a corneal tunnel to the posterior stoma at the base of the inadvertent bleb. Conclusions: We hypothesise that the pathophysiologic factors resulting in an inadvertent bleb are a result of a combination of apoptosis, late-onset wound dehiscence and internal gaping of a centrally placed corneal wound. In addition, aqueous hydrodynamic factors may play a role.

  7. Magnetic order in Pu2M3Si5 (M = Co, Ni)

    International Nuclear Information System (INIS)

    Bauer, E D; Tobash, P H; Mitchell, J N; Kennison, J A; Ronning, F; Scott, B L; Thompson, J D

    2011-01-01

    The physical properties including magnetic susceptibility, specific heat, and electrical resistivity of two new plutonium compounds Pu 2 M 3 Si 5 (M = Co, Ni) are reported. Pu 2 Ni 3 Si 5 crystallizes in the orthorhombic U 2 Co 3 Si 5 structure type, which can be considered a variant of the BaAl 4 tetragonal structure, while Pu 2 Co 3 Si 5 adopts the closely related monoclinic Lu 2 Co 3 Si 5 type. Magnetic order is observed in both compounds, with Pu 2 Ni 3 Si 5 ordering ferromagnetically at T C = 65 K then undergoing a transition into an antiferromagnetic state below T N = 35 K. Two successive magnetic transitions are also observed at T mag1 = 38 K and T mag2 = 5 K in Pu 2 Co 3 Si 5 . Specific heat measurements reveal that these two materials have a moderately enhanced Sommerfeld coefficient γ ∼ 100 mJ/mol Pu K 2 in the magnetic state with comparable RKKY and Kondo energy scales.

  8. Solution Structure of Enterocin HF, an Antilisterial Bacteriocin Produced by Enterococcus faecium M3K31.

    Science.gov (United States)

    Arbulu, Sara; Lohans, Christopher T; van Belkum, Marco J; Cintas, Luis M; Herranz, Carmen; Vederas, John C; Hernández, Pablo E

    2015-12-16

    The solution structure of enterocin HF (EntHF), a class IIa bacteriocin of 43 amino acids produced by Enterococcus faecium M3K31, was evaluated by CD and NMR spectroscopy. Purified EntHF was unstructured in water, but CD analysis supports that EntHF adopts an α-helical conformation when exposed to increasing concentrations of trifluoroethanol. Furthermore, NMR spectroscopy indicates that this bacteriocin adopts an antiparallel β-sheet structure in the N-terminal region (residues 1-17), followed by a well-defined central α-helix (residues 19-30) and a more disordered C-terminal end (residues 31-43). EntHF could be structurally organized into three flexible regions that might act in a coordinated manner. This is in agreement with the absence of long-range nuclear Overhauser effect signals between the β-sheet domain and the C-terminal end of the bacteriocin. The 3D structure recorded for EntHF fits emerging facts regarding target recognition and mode of action of class IIa bacteriocins.

  9. Experimental Study of Ultralight (<300 kg/m3 Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Xianjun Tan

    2014-01-01

    Full Text Available A type of ultralight (<300 kg/m3 foamed concrete (FC, which can be used as a new energy-conservation and environmental-protection building material and is particularly suitable for the thermal-insulation engineering of building external walls, was produced. The influences of different mixing amounts of fly ash, fly ash activator, WC (WC ratio, and foaming agent (FA on the compressive strength of FC were reported. The experimental study indicated that (1 the addition of fly ash reduced the strength of the FC and that the appropriate mixing amount of fly ash in this ultralight FC system should not exceed 45%; (2 with the increasing of fly ash activator, the strength of the FC sample is notably enhanced and the appropriate mixing amount of fly ash activator is 2.5%; (3 the optimized proportion of WC ratio is 0.45, and the FC that was produced according to this proportion has relatively high compressive strength; (4 by increasing the mixing amount of FA, the compressive strength of the FC notably decreases, and the optimal mixing amount of FA in this experiment is 3.5%.

  10. Development of M3C code for Monte Carlo reactor physics criticality calculations

    International Nuclear Information System (INIS)

    Kumar, Anek; Kannan, Umasankari; Krishanani, P.D.

    2015-06-01

    The development of Monte Carlo code (M3C) for reactor design entails use of continuous energy nuclear data and Monte Carlo simulations for each of the neutron interaction processes. BARC has started a concentrated effort for developing a new general geometry continuous energy Monte Carlo code for reactor physics calculation indigenously. The code development required a comprehensive understanding of the basic continuous energy cross section sets. The important features of this code are treatment of heterogeneous lattices by general geometry, use of point cross sections along with unionized energy grid approach, thermal scattering model for low energy treatment, capability of handling the microscopic fuel particles dispersed randomly. The capability of handling the randomly dispersed microscopic fuel particles which is very useful for the modeling of High-Temperature Gas-Cooled reactor fuels which are composed of thousands of microscopic fuel particle (TRISO fuel particle), randomly dispersed in a graphite matrix. The Monte Carlo code for criticality calculation is a pioneering effort and has been used to study several types of lattices including cluster geometries. The code has been verified for its accuracy against more than 60 sample problems covering a wide range from simple (like spherical) to complex geometry (like PHWR lattice). Benchmark results show that the code performs quite well for the criticality calculation of the system. In this report, the current status of the code, features of the code, some of the benchmark results for the testing of the code and input preparation etc. are discussed. (author)

  11. Discovery of a wide planetary-mass companion to the young M3 star GU PSC

    Energy Technology Data Exchange (ETDEWEB)

    Naud, Marie-Eve; Artigau, Étienne; Malo, Lison; Albert, Loïc; Doyon, René; Lafrenière, David; Gagné, Jonathan; Boucher, Anne [Département de physique and Observatoire du Mont-Mégantic, Université de Montréal, Montréal H3C 3J7 (Canada); Saumon, Didier [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Morley, Caroline V. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Allard, France; Homeier, Derek [Centre de Recherche Astrophysique de Lyon, UMR 5574 CNRS, Université de Lyon, École Normale Supérieure de Lyon, 46 Allée d' Italie, F-69364 Lyon Cedex 07 (France); Beichman, Charles A.; Gelino, Christopher R., E-mail: naud@astro.umontreal.ca [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-05-20

    We present the discovery of a comoving planetary-mass companion ∼42'' (∼2000 AU) from a young M3 star, GU Psc, a likely member of the young AB Doradus Moving Group (ABDMG). The companion was first identified via its distinctively red i – z color (>3.5) through a survey made with Gemini-S/GMOS. Follow-up Canada-France-Hawaii Telescope/WIRCam near-infrared (NIR) imaging, Gemini-N/GNIRS NIR spectroscopy and Wide-field Infrared Survey Explorer photometry indicate a spectral type of T3.5 ± 1 and reveal signs of low gravity which we attribute to youth. Keck/Adaptive Optics NIR observations did not resolve the companion as a binary. A comparison with atmosphere models indicates T {sub eff} = 1000-1100 K and log g = 4.5-5.0. Based on evolution models, this temperature corresponds to a mass of 9-13 M {sub Jup} for the age of ABDMG (70-130 Myr). The relatively well-constrained age of this companion and its very large angular separation to its host star will allow its thorough characterization and will make it a valuable comparison for planetary-mass companions that will be uncovered by forthcoming planet-finder instruments such as Gemini Planet Imager and SPHERE 9.

  12. Molecular Modeling of the M3 Acetylcholine Muscarinic Receptor and Its Binding Site

    Directory of Open Access Journals (Sweden)

    Marlet Martinez-Archundia

    2012-01-01

    Full Text Available The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template. Then, the antagonist N-methylscopolamine was docked in the model and subsequently embedded in a lipid bilayer for its refinement using molecular dynamics simulations. Two different lipid bilayer compositions were studied: one component palmitoyl-oleyl phosphatidylcholine (POPC and two-component palmitoyl-oleyl phosphatidylcholine/palmitoyl-oleyl phosphatidylserine (POPC-POPS. Analysis of the results suggested that residues F222 and T235 may contribute to the ligand-receptor recognition. Accordingly, alanine mutants at positions 222 and 235 were constructed, expressed, and their binding properties determined. The results confirmed the role of these residues in modulating the binding affinity of the ligand.

  13. Contribution of root to soil respiration and carbon balance in ...

    Indian Academy of Sciences (India)

    PRAKASH

    improves our understanding of the terrestrial carbon cycle ... considerably lower net ecosystem productivity in Community 2 than in Community 1 .... soil respiration chambers for each time were dried at 31ºC ..... Using existing management.

  14. Characterization of respirable mine dust and diesel particulate matter

    CSIR Research Space (South Africa)

    Mahlangu, Vusi J

    2015-11-01

    Full Text Available This paper presents the preliminary outcomes to develop and optimize methods to characterize DPM and respirable dust samples for the following: Crystalline compounds Common mineral analyses Particle size distribution Elemental Carbon (EC...

  15. Redefinition and global estimation of basal ecosystem respiration rate

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wenping [College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; Luo, Yiqi [Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, USA; Li, Xianglan [College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; Liu, Shuguang; Yu, Guirui [Key Laboratory of Ecosystem Network Observation and Modeling, Synthesis Research Center of Chinese Ecosystem Research Network, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; Zhou, Tao [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China; Bahn, Michael [Institute of Ecology, University of Innsbruck, Innsbruck, Austria; Black, Andy [Faculty of Land and Food Systems, University of British Columbia, Vancouver, B. C., Canada; Desai, Ankur R. [Atmospheric and Oceanic Sciences Department, Center for Climatic Research, Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, Wisconsin, USA; Cescatti, Alessandro [Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy; Marcolla, Barbara [Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach-IASMA Research and Innovation Centre, San Michele all' Adige, Italy; Jacobs, Cor [Alterra, Earth System Science-Climate Change, Wageningen University, Wageningen, Netherlands; Chen, Jiquan [Department of Earth, Ecological, and Environmental Sciences, University of Toledo, Toledo, Ohio, USA; Aurela, Mika [Climate and Global Change Research, Finnish Meteorological Institute, Helsinki, Finland; Bernhofer, Christian [Chair of Meteorology, Institute of Hydrology and Meteorology, Technische Universität Dresden, Dresden, Germany; Gielen, Bert [Department of Biology, University of Antwerp, Wilrijk, Belgium; Bohrer, Gil [Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, Ohio, USA; Cook, David R. [Climate Research Section, Environmental Science Division, Argonne National Laboratory, Argonne, Illinois, USA; Dragoni, Danilo [Department of Geography, Indiana University, Bloomington, Indiana, USA; Dunn, Allison L. [Department of Physical and Earth Sciences, Worcester State College, Worcester, Massachusetts, USA; Gianelle, Damiano [Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach-IASMA Research and Innovation Centre, San Michele all' Adige, Italy; Grünwald, Thomas [Chair of Meteorology, Institute of Hydrology and Meteorology, Technische Universität Dresden, Dresden, Germany; Ibrom, Andreas [Risø DTU National Laboratory for Sustainable Energy, Biosystems Division, Technical University of Denmark, Roskilde, Denmark; Leclerc, Monique Y. [Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA; Lindroth, Anders [Geobiosphere Science Centre, Physical Geography and Ecosystems Analysis, Lund University, Lund, Sweden; Liu, Heping [Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington, USA; Marchesini, Luca Belelli [Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy; Montagnani, Leonardo; Pita, Gabriel [Department of Mechanical Engineering, Instituto Superior Técnico, Lisbon, Portugal; Rodeghiero, Mirco [Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach-IASMA Research and Innovation Centre, San Michele all' Adige, Italy; Rodrigues, Abel [Unidade de Silvicultura e Produtos Florestais, Instituto Nacional dos Recursos Biológicos, Oeiras, Portugal; Starr, Gregory [Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA; Stoy, Paul C. [Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA

    2011-10-13

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from ~3°S to ~70°N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual

  16. Disclosure and Fit Capability of the Filtering Facepiece Respirator.

    Science.gov (United States)

    Lofgren, Don J

    2018-05-01

    The filtering facepiece air-purifying respirator is annually purchased in the tens of millions and widely used for worker protection from harmful airborne particulates. The workplace consumers of this safety product, i.e., employers, workers, and safety and health professionals, have assurances of its effectiveness through the respirator certification and disclosure requirements of the National Institute for Occupational Safety and Health. However, the certification of a critical performance requirement has been missing for the approved filtering facepiece respirator since 1995: fit capability. Without this certification, consumers continue to be at risk of purchasing a respirator model that may fit a small percentage of the intended users. This commentary updates and expands an earlier one by this author, addresses the consequences of poorly fitting certified models on the market and lack of disclosure, and calls for further action by National Institute for Occupational Safety and Health to meet the needs and expectations of the consumer.

  17. Temperature response of soil respiration largely unaltered with experimental warming

    DEFF Research Database (Denmark)

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific...... attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies......, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation...

  18. respiration and transpiration characteristics of selected fresh fruits

    African Journals Online (AJOL)

    AISA

    were higher in optimal atmospheres. The Q10 values ... High respiration rates increase tissue aging and decrease the ability of the product to repel ... Two types of containers were used for the ..... availability of oxygen around the product also.

  19. Tai Chi training reduced coupling between respiration and postural control.

    Science.gov (United States)

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2016-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (ppostural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. Copyright © 2015

  20. Carbon dioxide titration method for soil respiration measurements

    OpenAIRE

    Martín Rubio, Luis

    2017-01-01

    This thesis was commissioned by Tampere University of Applied Sciences, which was interested in studying and developing a titration measurement method for soil respiration and biodegradability. Some experiments were carried out measuring soil respiration for testing the method and others adding some biodegradable material like polylactic acid compressed material and 100% biodegradable plastic bags to test its biodegradability and the possibility to measure it via titration. The thesi...

  1. Fuzzy Control of Tidal volume, Respiration number and Pressure value

    OpenAIRE

    Hasan Guler; Fikret Ata

    2010-01-01

    In this study, control of tidal volume, respiration number and pressure value which are arrived to patient at mechanical ventilator device which is used in intensive care units were performed with fuzzy logic controller. The aim of this system is to reduce workload of aneshesiologist. By calculating tidal volume, respiration number and pressure value, the error Pe(k) between reference pressure value (Pref) and pressure of gas given ill person (Phasta) and error change rate ;#948;Pe(k) were co...

  2. Availability of endogenous peptides limits expression of an M3a-Ld major histocompatibility complex class I chimera

    Science.gov (United States)

    1994-01-01

    Taking advantage of our understanding of the peptide specificity of the major histocompatibility complex class I-b molecule M3a, we sought to determine why these molecules are poorly represented on the cell surface. To this end we constructed a chimeric molecule with the alpha 1 and alpha 2 domains of M3a and alpha 3 of Ld thereby allowing use of available monoclonal antibodies to quantify surface expression. Transfected, but not control, B10.CAS2 (H-2M3b) cells were lysed readily by M3a-restricted monoclonal cytotoxic T lymphocytes. Thus, the chimera bound, trafficked, and presented endogenous mitochondrial peptides. However, despite high levels of M3a-Ld mRNA, transfectants were negative by surface staining. This finding was consistent with inefficient trafficking to the cell surface. Incubation at 26 degrees C, thought to permit trafficking of unoccupied heavy (H) chains, resulted in detectable cell surface expression of chimeric molecules. Incubation with exogenous peptide at 26 degrees C (but not at 37 degrees C) greatly enhanced expression of M3a-Ld molecules in a dose- dependent manner, suggesting stabilization of unoccupied molecules. Stable association of beta 2-microglobulin with the chimeric H chain was observed in labeled cell lysates only in the presence of exogenous specific peptide, indicating that peptide is required for the formation of a ternary complex. These results indicate that surface expression of M3a-Ld is limited largely by the steady-state availability of endogenous peptides. Since most known M3a-binding peptides are N- formylated, native M3a may normally be expressed at high levels only during infection by intracellular bacteria. PMID:8270862

  3. Use of respirators for protection of workers against airborne radioactive materials

    International Nuclear Information System (INIS)

    Revoir, W.H.

    1990-01-01

    The various types of respirators and the requirements for an effective respirator program are outlined. The use of specific types of respirators to protect workers against inhalation of airborne radioactive materials is discussed. Problems encountered in using respirators in the nuclear industry which have resulted in worker injury and death are described

  4. Stimulation of respiration in rat thymocytes induced by ionizing radiation

    International Nuclear Information System (INIS)

    Gudz, T.I.; Pandelova, I.G.; Novgorodov, S.A.

    1994-01-01

    The effect of X irradiation on the respiration of rat thymocytes was studied. An increase in the rate of O 2 uptake was observed 1 h after cells were irradiated with doses of 6-10 Gy. The radiation-induced increase in respiration could be blocked by oligomycin, an inhibitor of mitochondrial ATP synthase, suggesting control by increased cytoplasmic ATP turnover. The stimulation of respiration was not associated with changes in the activity of mitochondrial electron transfer enzymes or permeability of the inner membrane. Several inhibitors of processes which used ATP were screened for their effects on the basal respiration rate and on the radiation response. In irradiated thymocytes, an enhancement of inhibition of respiration by ouabain, La 3+ and cycloheximide was observed. These results indicate that the radiation-induced stimulation of respiration is due to changes in ion homeostasis and protein synthesis. The effect of X irradiation was shown to be independent of the redox status of nonprotein thiols and was not associated with detectable changes in some products of lipid peroxidation. The radiation-induced decrease in activity of superoxide dismutase suggests free radical involvement in deleterious effects of radiation. 43 refs., 2 figs., 3 tabs

  5. Quantitative evaluation of the protective effect of respirators

    International Nuclear Information System (INIS)

    Murata, Mikio

    1983-01-01

    The present status and related problems of the quantitative evaluation method for respirator efficiency are generally reviewed. As the introduction, the special features of various types of respirators are summarized, and the basic concept of leakage and the protection factor are explained. As for the quantitative measurement of the protective efficiency, the features of various existing man-test methods such as NaCl aerosol man-test, DOP (dioctyl phthalate) man-test, and SF 6 gas man-test are reviewed and discussed. As the important problems associated with those man-tests, the following aspects are discussed. The measurement of the aerosol concentration within masks; the calculation method for the protection factor; the effect of beards. The examples of measuring the protection factor are also explained for the following respirator systems: half mask respirator with a high efficiency filter; full face mask respirator with a high efficiency filter; demand mode and pressure-demand mode respirators; and mound suit with suspenders. Finally, the outline of the manual of respiratory protection published by NRC in 1976 is briefly reviewed. (Aoki, K.)

  6. Targeting mitochondrial respiration as a therapeutic strategy for cervical cancer.

    Science.gov (United States)

    Tian, Shenglan; Chen, Heng; Tan, Wei

    2018-05-23

    Targeting mitochondrial respiration has been documented as an effective therapeutic strategy in cancer. However, the impact of mitochondrial respiration inhibition on cervical cancer cells are not well elucidated. Using a panel of cervical cancer cell lines, we show that an existing drug atovaquone is active against the cervical cancer cells with high profiling of mitochondrial biogenesis. Atovaquone inhibited proliferation and induced apoptosis with varying efficacy among cervical cancer cell lines regardless of HPV infection, cellular origin and their sensitivity to paclitaxel. We further demonstrated that atovaquone acts on cervical cancer cells via inhibiting mitochondrial respiration. In particular, atovaquone specifically inhibited mitochondrial complex III but not I, II or IV activity, leading to respiration inhibition and energy crisis. Importantly, we found that the different sensitivity of cervical cancer cell lines to atovaquone were due to their differential level of mitochondrial biogenesis and dependency to mitochondrial respiration. In addition, we demonstrated that the in vitro observations were translatable to in vivo cervical cancer xenograft mouse model. Our findings suggest that the mitochondrial biogenesis varies among patients with cervical cancer. Our work also suggests that atovaquone is a useful addition to cervical cancer treatment, particularly to those with high dependency on mitochondrial respiration. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Two Proximal Skin Electrodes — A Respiration Rate Body Sensor

    Directory of Open Access Journals (Sweden)

    Viktor Avbelj

    2012-10-01

    Full Text Available We propose a new body sensor for extracting the respiration rate based on the amplitude changes in the body surface potential differences between two proximal body electrodes. The sensor could be designed as a plaster-like reusable unit that can be easily fixed onto the surface of the body. It could be equipped either with a sufficiently large memory for storing the measured data or with a low-power radio system that can transmit the measured data to a gateway for further processing. We explore the influence of the sensor’s position on the quality of the extracted results using multi-channel ECG measurements and considering all the pairs of two neighboring electrodes as potential respiration-rate sensors. The analysis of the clinical measurements, which also include reference thermistor-based respiration signals, shows that the proposed approach is a viable option for monitoring the respiration frequency and for a rough classification of breathing types. The obtained results were evaluated on a wireless prototype of a respiration body sensor. We indicate the best positions for the respiration body sensor and prove that a single sensor for body surface potential difference on proximal skin electrodes can be used for combined measurements of respiratory and cardiac activities.

  8. Improvement of ballistocardiogram processing by inclusion of respiration information

    International Nuclear Information System (INIS)

    Tavakolian, Kouhyar; Vaseghi, Ali; Kaminska, Bozena

    2008-01-01

    In this paper a novel methodology for processing of a ballistocardiogram (BCG) is proposed in which the respiration signal is utilized to improve the averaging of the BCG signal and ultimately the annotation and interpretation of the signal. Previous research works filtered out the respiration signal while the novelty of the current research is that, rather than removing the respiration effect from the signal, we utilize the respiration information to improve the averaging and thus analysis and interpretation of the BCG signal in diagnosis of cardiac malfunctions. This methodology is based on our investigation that BCG cycles corresponding to the inspiration and expiration phases of the respiration cycle are different in morphology. BCG cycles corresponding to the expiration phase of respiration have been proved to be more closely related to each other when compared to cycles corresponding to inspiration, and therefore expiration cycles are better candidates to be selected for the calculation of the averaged BCG signal. The new BCG average calculated based on this methodology is then considered as the representative and a template of the BCG signal for further processing. This template can be considered as the output of a clinical BCG instrument with higher reliability and accuracy compared to the previous processing methods

  9. Effect of different seawater Mg

    NARCIS (Netherlands)

    Mewes, A.; Langer, G.; de Nooijer, L.J.; Bijma, J.; Reichart, G.J.

    2014-01-01

    Magnesium, incorporated in foraminiferal calcite (Mg/CaCC), is used intensively to reconstruct past seawater temperatures but, in addition to temperature, the Mg/CaCC of foraminiferal tests also depends on the ratio of Mg and Ca in seawater (Mg/CaSW). The physiological mechanisms responsible for

  10. Level of helium enhancement among M3's horizontal branch stars

    Science.gov (United States)

    Valcarce, A. A. R.; Catelan, M.; Alonso-García, J.; Contreras Ramos, R.; Alves, S.

    2016-05-01

    Context. The color and luminosity distribution of horizontal branch (HB) stars in globular clusters (GCs) are sensitive probes of the original helium abundances of those clusters. In this sense, recently the distributions of HB stars in GC color-magnitude diagrams (CMDs) have been extensively used as indicators of possible variations in the helium content Y among the different generations of stars within individual GCs. However, recent analyses based on visual and near-ultraviolet (UV) CMDs have provided conflicting results. Aims: To clarify the situation, we address the optimum ranges of applicability (in terms of the Teff range covered by the HB stars) for visual and near-UV CMDs, as far as application of this "HB Y test" goes. Methods: We considered both Strömgren and Hubble Space Telescope (HST) bandpasses. In particular, we focus on the F336W filter of the HST, but also discuss several bluer UV bandpasses, such as F160BW, F255W, and F300W. Using the Princeton-Goddard-PUC (PGPUC) code, we computed a large set of zero-age HB (ZAHB) loci and HB evolutionary models for masses ranging from MHB = 0.582 to 0.800 M⊙, assuming an initial helium abundance Y = 0.246, 0.256, and 0.266, with a global metallicity Z = 0.001. The results of these calculations were compared against the observations of M3 (NGC 5272), with special attention on the y vs. (b - y) and F336W vs. (F336W-F555W) CMDs. Results: Our results indicate that, from an evolutionary perspective, the distributions of HB stars in the y vs. (b - y) plane can be a reliable indicator of the He content in cool blue HB (BHB) stars, particularly when a differential comparison between blue and red HB stars is carried out in the range Teff ≲ 8300 K. Conversely, we demonstrate that CMDs using the F336W filter have a much less straightforward interpretation at the cool end of the BHB because the distributions of HB stars in the F336W vs. (F336W-F555W) plane, for instance, are affected by a triple degeneracy effect. In

  11. A quasi-particle description of the M(3,p) models

    International Nuclear Information System (INIS)

    Jacob, P.; Mathieu, P.

    2006-01-01

    The M(3,p) minimal models are reconsidered from the point of view of the extended algebra whose generators are the energy-momentum tensor and the primary field φ 2,1 of dimension (p-2)/4. Within this framework, we provide a quasi-particle description of these models, in which all states are expressed solely in terms of the φ 2,1 -modes. More precisely, we show that all the states can be written in terms of φ 2,1 -type highest-weight states and their φ 2,1 -descendants. We further demonstrate that the conformal dimension of these highest-weight states can be calculated from the φ 2,1 commutation relations, the highest-weight conditions and associativity. For the simplest models (p=5,7), the full spectrum is explicitly reconstructed along these lines. For p odd, the commutation relations between the φ 2,1 modes take the form of infinite sums, i.e., of generalized commutation relations akin to parafermionic models. In that case, an unexpected operator, generalizing the Witten index, is unraveled in the OPE of φ 2,1 with itself. A quasi-particle basis formulated in terms of the sole φ 2,1 modes is studied for all allowed values of p. We argue that it is governed by jagged-type partitions further subject a difference 2 condition at distance 2. We demonstrate the correctness of this basis by constructing its generating function, from which the proper fermionic expression of the combination of the Virasoro irreducible characters χ 1,s and χ 1,p-s (for 1=

  12. MAGNETIC AND DYNAMICAL PHOTOSPHERIC DISTURBANCES OBSERVED DURING AN M3.2 SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Kuckein, C. [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482, Potsdam (Germany); Collados, M.; Sainz, R. Manso, E-mail: ckuckein@aip.de [Instituto de Astrofísica de Canarias (IAC), Vía Láctea s/n, E-38205, La Laguna, Tenerife (Spain)

    2015-02-01

    This Letter reports on a set of full-Stokes spectropolarimetric observations in the near-infrared He i 10830 Å spectral region covering the pre-flare, flare, and post-flare phases of an M3.2 class solar flare. The flare originated on 2013 May 17 and belonged to active region NOAA 11748. We detected strong He i 10830 Å emission in the flare. The red component of the He i triplet peaks at an intensity ratio to the continuum of about 1.86. During the flare, He i Stokes V is substantially larger and appears reversed compared to the usually larger Si i Stokes V profile. The photospheric Si i inversions of the four Stokes profiles reveal the following: (1) the magnetic field strength in the photosphere decreases or is even absent during the flare phase, as compared to the pre-flare phase. However, this decrease is not permanent. After the flare, the magnetic field recovers its pre-flare configuration in a short time (i.e., 30 minutes after the flare). (2) In the photosphere, the line of sight velocities show a regular granular up- and downflow pattern before the flare erupts. During the flare, upflows (blueshifts) dominate the area where the flare is produced. Evaporation rates of ∼10{sup −3} and ∼10{sup −4} g cm{sup −2} s{sup −1} have been derived in the deep and high photosphere, respectively, capable of increasing the chromospheric density by a factor of two in about 400 s.

  13. Simulation of VANAM M3 test using MELCOR 1.8.3

    International Nuclear Information System (INIS)

    Cho, Sung Won; Kim, Hee Dong

    1996-07-01

    A standard problem is defined as a comparison between experimental and analytical results in the field of reactor safety research. The detailed comparison of the data permits conclusions for the reliability and precision of computer simulations of postulated accidents and contributions to the development and improvement of reactor safety computer codes. Following a suggestion of the Federal Republic of Germany, the OECD-CSNI agreed to offer the experiment VANAM M3 at the Battelle Model Containment (BMC), an experiment on thermohydraulics and aerosol behavior in a containment, as International Standard Problem No. 37 (ISP 37). The general objectives of the ISP 37 are to analyse the thermohydraulics of a containment atmosphere and the distribution and settlement of aerosol after a high pressure path with depressurization by pressurizer relief valve discharge. Steam condensation at the aerosol particles(condensation in volume) is enhanced by the hygroscopic properties of the aerosol materials, even in case of limited steam supply. The originally small, low-density NaOH particles are converted to solution droplets by steam condensation, the increasing droplet mass significantly enhancing aerosol depletion by gravity settlement. As a result, higher depletion rate have been obtained for the NaOH aerosol than for the SnO 2 aerosol in M2. The MELCOR code, version 1.8.3, has been used for the simulation of this experiment, and the results are compared with the results of other calculations at GRS. The objectives of this report are to contribute to the efficient use of MELCOR code and understanding of the aerosol behavior. 12 tabs., 19 figs., 11 refs. (Author)

  14. Clinical course of esophageal cancer with invasion of the m3 and sm1 after EMR

    International Nuclear Information System (INIS)

    Arima, Miwako; Tada, Masahiro; Arima, Hideaki

    2007-01-01

    We examined the incidence of local recurrence and multiple cancers, the diagnostic accuracy of lymph-node metastasis and nodal recurrence, and treatment regimens in 46 patients (50 lesions) who underwent endoscopic mucosal resection (EMR) for m3·sm1 esophageal cancer. Local recurrence occurred in 4 lesions (8.0%) and was most often associated with multiple spotty iodine-unstained areas in the esophagus or with cancer of the abdominal esophagus without hiatal hernia. Multiple cancers were diagnosed in 13 patients (28%), all of whom were treated by EMR. Local control of primary and multiple lesions was achieved in all patients. Of the 46 patients, 4 (8.7%) were found to have lymph-node metastasis or nodal recurrence. As of this date, no patients have died of their disease, but it is difficult to identify patients with lymph-node metastasis in advance, so close follow-up is mandatory. Effective follow-up programs should include a set of diagnostic studies, id est (i.e.), conventional endoscopy, endoscopic ultrasonography (EUS), CT and neck and abdominal ultrasonography, performed at 6-month intervals. EUS is essential for early diagnosis. Patients treated by EMR alone should be followed up intensively for 1 year and 6 months. Patients who additionally receive chemoradiotherapy have a risk of late recurrence and should therefore be followed up for at least 4 years. Our experience indicates that lymph-node metastases tend to grow rapidly once they reach a size detectable in diagnostic imaging studies. If suspicious-looking lymph nodes are detected in diagnostic imaging studies, the interval between follow-up studies should be shortened to 3 to 4 months to facilitate early diagnosis. Changes in lymph nodes should be assessed over time. (author)

  15. Modelling of NSTX hot vertical displacement events using M 3 D -C 1

    Science.gov (United States)

    Pfefferlé, D.; Ferraro, N.; Jardin, S. C.; Krebs, I.; Bhattacharjee, A.

    2018-05-01

    The main results of an intense vertical displacement event (VDE) modelling activity using the implicit 3D extended MHD code M3D-C1 are presented. A pair of nonlinear 3D simulations are performed using realistic transport coefficients based on the reconstruction of a so-called NSTX frozen VDE where the feedback control was purposely switched off to trigger a vertical instability. The vertical drift phase is solved assuming axisymmetry until the plasma contacts the first wall, at which point the intricate evolution of the plasma, decaying to large extent in force-balance with induced halo/wall currents, is carefully resolved via 3D nonlinear simulations. The faster 2D nonlinear runs allow to assess the sensitivity of the simulations to parameter changes. In the limit of perfectly conducting wall, the expected linear relation between vertical growth rate and wall resistivity is recovered. For intermediate wall resistivities, the halo region contributes to slowing the plasma down, and the characteristic VDE time depends on the choice of halo temperature. The evolution of the current quench and the onset of 3D halo/eddy currents are diagnosed in detail. The 3D simulations highlight a rich structure of toroidal modes, penetrating inwards from edge to core and cascading from high-n to low-n mode numbers. The break-up of flux-surfaces results in a progressive stochastisation of field-lines precipitating the thermalisation of the plasma with the wall. The plasma current then decays rapidly, inducing large currents in the halo region and the wall. Analysis of normal currents flowing in and out of the divertor plate reveals rich time-varying patterns.

  16. Design aspects of 50 m3/d prototype mobile desalination unit

    International Nuclear Information System (INIS)

    Bhattacharyya, K.P.; Srivastava, V.K.; Tewari, P.K.

    2004-01-01

    Supply of fresh water on sustainable basis to all inhabitants is the national responsibility. As a part of national programme to improve quality of life in our society, Desalination Division, BARC has undertaken a project on construction of barge mounted mobile desalination unit of capacity 50 m 3 /d under the domain of health care. The plant is capable of producing safe drinking water at any site and condition where potable water is limited from water sources as lakes and dams, spring, river, bores, estuaries, and open sea. The unit is also capable of purifying nuclear, biological and chemical contaminated water source namely arsenic, fluoride and nitrate. However, the main objective of this prototype mobile unit is to derive potable water from sea water. The barge mounted desalination plant could be useful to the people on shore, in areas like Rann of Kutch or coastal areas which had been affected by natural calamities like floods or severe drought; in small islands like Lakshadeep and Andaman and Nicobar. This type of mobile unit could also be useful for constructional purposes of plants located adjoining to the shore. The plant encompasses state of art reverse osmosis (RO) technology with membrane based ultrafiltration (UF) pretreatment system along with built-in back wash provision and remineralisation. The system is designed for heavy duty tasks in order to withstand frequent relocation from site to site and in skid patterns for portable transportation via road upon requirement. The conceptual design of the plant is over. The design and constructional aspects of the mobile plant are elaborated in this paper. (author)

  17. Partitioning of Respiration in an Animal-Algal Symbiosis: Implications for Different Aerobic Capacity Between Symbiodinium spp.

    Directory of Open Access Journals (Sweden)

    Thomas David Hawkins

    2016-04-01

    Full Text Available Cnidarian-dinoflagellate symbioses are ecologically important and the subject of much investigation. However, our understanding of critical aspects of symbiosis physiology, such as the partitioning of total respiration between the host and symbiont, remains incomplete. Specifically, we know little about how the relationship between host and symbiont respiration varies between different holobionts (host-symbiont combinations. We applied molecular and biochemical techniques to investigate aerobic respiratory capacity in naturally symbiotic Exaiptasia pallida sea anemones, alongside animals infected with either homologous ITS2-type A4 Symbiodinium or a heterologous isolate of Symbiodinium minutum (ITS2-type B1. In naturally symbiotic anemones, host, symbiont, and total holobiont mitochondrial citrate synthase (CS enzyme activity, but not host mitochondrial copy number, were reliable predictors of holobiont respiration. There was a positive association between symbiont density and host CS specific activity (mg protein-1, and a negative correlation between host- and symbiont CS specific activities. Notably, partitioning of total CS activity between host and symbiont in this natural E. pallida population was significantly different to the host/symbiont biomass ratio. In re-infected anemones, we found significant between-holobiont differences in the CS specific activity of the algal symbionts. Furthermore, the relationship between the partitioning of total CS activity and the host/symbiont biomass ratio differed between holobionts. These data have broad implications for our understanding of cnidarian-algal symbiosis. Specifically, the long-held assumption of equivalency between symbiont/host biomass and respiration ratios can result in significant overestimation of symbiont respiration and potentially erroneous conclusions regarding the percentage of carbon translocated to the host. The interspecific variability in symbiont aerobic capacity provides

  18. Components of Soil Respiration and its Monthly Dynamics in Rubber Plantation Ecosystems

    OpenAIRE

    Zhixiang Wu; Limin Guan; Bangqian Chen; Chuan Yang; Guoyu Lan; Guishui Xie; Zhaode Zhou

    2014-01-01

    Aim: Our objective was to quantify four components and study effect factors of soil respiration in rubber plantation ecosystems. Providing the basic data support for the establishment of the trade of rubber plantation ecosystem carbon source/sink. Methods: We used Li-6400 (IRGA, Li-COR) to quantitate four components of soil respiration in rubber plantation ecosystems at different ages. Soil respiration can be separated as four components: heterotrophic respiration (Rh), Respiration of roots (...

  19. Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates

    OpenAIRE

    Fendt, Sarah-Maria; Sauer, Uwe

    2010-01-01

    Abstract Background Depending on the carbon source, Saccharomyces cerevisiae displays various degrees of respiration. These range from complete respiration as in the case of ethanol, to almost complete fermentation, and thus very low degrees of respiration on glucose. While many key regulators are known for these extreme cases, we focus here on regulators that are relevant at intermediate levels of respiration. Results We address this question by linking the functional degree of respiration t...

  20. Peculiarities of lens and tail regeneration detected in newts after spaceflight aboard Foton M3

    Science.gov (United States)

    Grigoryan, Eleonora N.; Almeida, Eduardo; Poplinskaya, Valentina; Novikova, Julia; Domaratskaya, Elena; Aleinikova, Karina; Souza, Kenneth; Skidmore, Mike; Grigoryan, Eleonora N.

    In September 2007 the joint, 12 day long experiment was carried out aboard Russian satellite Foton M3. The goal of the experiment was to study eye lens, tail and forelimb toe regeneration in adult 16 newts (Pl. waltl.) operated 10 days before taking-off. In spaceflight and synchronous ground control we used video recording, temperature and irradiation control, as well as constant availability of thymidine analog BrdU for its absorption via animals' skin. New techniques allowed us to analyze animals' behavior in hyperand microgravity periods of time, to take proper account of spaceflight factors, and measure accumulated pools of DNA-synthesizing cells in regenerating tissues. All tissue specimens obtained from animals were isolated in the day of landing and then prepared for morphological, immunochemical and molecular investigations. Synchronous control was shifted for two days and reproduced flight conditions except changes of gravity influence. As a result in flown animals as compared with synchronous ground control we found lens regeneration of 0.5-1 stage speeded up and an increased BrdU+ (S-phase) cell number in eye cornea, growth zone, limbus and newly forming lens. These features of regeneration were accompanied by an increase of FGF2 expression in eye growth zone and heat shock protein (HSP90) induction purely in retinal macroglial cells of regenerating eyes. Toe regeneration rate was equal and achieved the stage of accomplished healing of amputation area in both groups - "flown" and control animals. We found no essential differences in tail regeneration rate and tail regenerate sizes in the newts exposed to space and on ground. In both groups tail regeneration reached the stage IV-V when tail length and square were around 4.4 mm and 15.5 mm2, correspondingly. However we did observe remarkable changes of tail regenerate form and some of pigmentation. Computer morphometrical analysis showed that only in ground control animals the evident dorso

  1. Inhibitors of the mitochondrial cytochrome b-c1 complex inhibit the cyanide-insensitive respiration of Trypanosoma brucei.

    Science.gov (United States)

    Turrens, J F; Bickar, D; Lehninger, A L

    1986-06-01

    The cyanide-insensitive respiration of bloodstream trypomastigote forms of Trypanosoma brucei (75 +/- 8 nmol O2 min-1(mg protein)-1) is completely inhibited by the mitochondrial ubiquinone-like inhibitors 2-hydroxy-3-undecyl-1,4-naphthoquinone (UHNQ) and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT). The Ki values for UHDBT (30 nM) and UHNQ (2 microM) are much lower than the reported Ki for salicylhydroxamic acid (SHAM) (5 microM), a widely used inhibitor of the cyanide-insensitive oxidase. UHNQ also stimulated the glycerol-3-phosphate-dependent reduction of phenazine methosulfate, demonstrating that the site of UHNQ inhibition is on the terminal oxidase of the cyanide-insensitive respiration of T. brucei. These results suggest that a ubiquinone-like compound may act as an electron carrier between the two enzymatic components of the cyanide-insensitive glycerol-3-phosphate oxidase.

  2. [Temperature sensitivity of wheat plant respiration and soil respiration influenced by increased UV-B radiation from elongation to flowering periods].

    Science.gov (United States)

    Chen, Shu-Tao; Hu, Zheng-Hua; Li, Han-Mao; Ji, Yu-Hong; Yang, Yan-Ping

    2009-05-15

    Field experiment was carried out in the spring of 2008 in order to investigate the effects of increased UV-B radiation on the temperature sensitivity of wheat plant respiration and soil respiration from elongation to flowering periods. Static chamber-gas chromatography method was used to measure ecosystem respiration and soil respiration under 20% UV-B radiation increase and control. Environmental factors such as temperature and moisture were also measured. Results indicated that supplemental UV-B radiation inhibited the ecosystem respiration and soil respiration from wheat elongation to flowering periods, and the inhibition effect was more obvious for soil respiration than for ecosystem respiration. Ecosystem respiration rates, on daily average, were 9%, 9%, 3%, 16% and 30% higher for control than for UV-B treatment forthe five measurement days, while soil respiration rates were 99%, 93%, 106%, 38% and 10% higher for control than for UV-B treatment. The Q10s (temperature sensitivity coefficients) for plant respiration under control and UV-B treatments were 1.79 and 1.59, respectively, while the Q10s for soil respiration were 1.38 and 1.76, respectively. The Q10s for ecosystem respiration were 1.65 and 1.63 under CK and UV-B treatments, respectively. Supplemental UV-B radiation caused a lower Q10 for plant respiration and a higher Q10 for soil respiration, although no significant effect of supplemental UV-B radiation on the Q10 for ecosystem respiration was found.

  3. [Second-hand smoke exposure in hospitality venues in Barcelona: measurement of respirable particles].

    Science.gov (United States)

    Villarroel, Nazmy; López, María José; Sánchez-Martínez, Francesca; Fernández, Esteve; Nebot, Manel

    2011-01-01

    To quantify the concentration of respirable particles equal to or smaller than 2.5μm (PM(2.5)) as a marker of second-hand smoke (SHS) exposure in a sample of hospitality venues in Barcelona 2 years after the Spanish smoking law came into effect. We performed a cross-sectional descriptive study from October to December 2007. The study population consisted of 40 hospitality venues in Barcelona selected by a random route sampling, with representation of the different types of smoking regulation included in the law (smoking allowed, smoking ban and venues with smoking areas). SHS levels were quantified by measuring PM(2.5) concentrations, which were measured using a laser photometer (Side Pack AM 510 Personal Aerosol Monitor). The measurements were carried out for 5 minutes outside the venue and for 30 minutes inside the venue. In addition, observational variables related to the characteristics of the venue and signs of tobacco consumption were recorded. The concentration of PM(2.5) in venues where smoking was still allowed was five times higher than that in venues where smoking was banned (182μg/m(3) and 34μg/m(3), respectively) and exceeded the concentration established by the US Environmental Protection Agency (EPA) as harmful (35μg/m(3)). However, in venues where smoking was banned, the concentration was lower than the EPA standard and there were no significant differences with the outdoor PM(2.5) concentration. Two years after the introduction of the Spanish smoking law, SHS exposure in venues where smoking was allowed was q still very high, representing a significant health risk for hospitality workers. Copyright © 2010 SESPAS. Published by Elsevier Espana. All rights reserved.

  4. Calcium-regulation of mitochondrial respiration maintains ATP homeostasis and requires ARALAR/AGC1-malate aspartate shuttle in intact cortical neurons.

    Science.gov (United States)

    Llorente-Folch, Irene; Rueda, Carlos B; Amigo, Ignacio; del Arco, Araceli; Saheki, Takeyori; Pardo, Beatriz; Satrústegui, Jorgina

    2013-08-28

    Neuronal respiration is controlled by ATP demand and Ca2+ but the roles played by each are unknown, as any Ca2+ signal also impacts on ATP demand. Ca2+ can control mitochondrial function through Ca2+-regulated mitochondrial carriers, the aspartate-glutamate and ATP-Mg/Pi carriers, ARALAR/AGC1 and SCaMC-3, respectively, or in the matrix after Ca2+ transport through the Ca2+ uniporter. We have studied the role of Ca2+ signaling in the regulation of mitochondrial respiration in intact mouse cortical neurons in basal conditions and in response to increased workload caused by increases in [Na+]cyt (veratridine, high-K+ depolarization) and/or [Ca2+]cyt (carbachol). Respiration in nonstimulated neurons on 2.5-5 mm glucose depends on ARALAR-malate aspartate shuttle (MAS), with a 46% drop in aralar KO neurons. All stimulation conditions induced increased OCR (oxygen consumption rate) in the presence of Ca2+, which was prevented by BAPTA-AM loading (to preserve the workload), or in Ca2+-free medium (which also lowers cell workload). SCaMC-3 limits respiration only in response to high workloads and robust Ca2+ signals. In every condition tested Ca2+ activation of ARALAR-MAS was required to fully stimulate coupled respiration by promoting pyruvate entry into mitochondria. In aralar KO neurons, respiration was stimulated by veratridine, but not by KCl or carbachol, indicating that the Ca2+ uniporter pathway played a role in the first, but not in the second condition, even though KCl caused an increase in [Ca2+]mit. The results suggest a requirement for ARALAR-MAS in priming pyruvate entry in mitochondria as a step needed to activate respiration by Ca2+ in response to moderate workloads.

  5. Seasonality of temperate forest photosynthesis and daytime respiration.

    Science.gov (United States)

    Wehr, R; Munger, J W; McManus, J B; Nelson, D D; Zahniser, M S; Davidson, E A; Wofsy, S C; Saleska, S R

    2016-06-30

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

  6. Creating the Chemistry in Cellular Respiration Concept Inventory (CCRCI)

    Science.gov (United States)

    Forshee, Jay Lance, II

    Students at our institution report cellular respiration to be the most difficult concept they encounter in undergraduate biology, but why students find this difficult is unknown. Students may find cellular respiration difficult because there is a large amount of steps, or because there are persistent, long-lasting misconceptions and misunderstandings surrounding their knowledge of chemistry, which affect their performance on cellular respiration assessments. Most studies of cellular respiration focus on student macro understanding of the process related to breathing, and matter and energy. To date, no studies identify which chemistry concepts are most relevant to students' development of an understanding of the process of cellular respiration or have developed an assessment to measure student understanding of them. Following the Delphi method, the researchers conducted expert interviews with faculty members from four-year, masters-, and PhD-granting institutions who teach undergraduate general biology, and are experts in their respective fields of biology. From these interviews, researchers identified twelve chemistry concepts important to understanding cellular respiration and using surveys, these twelve concepts were refined into five (electron transfer, energy transfer, thermodynamics (law/conservation), chemical reactions, and gradients). The researchers then interviewed undergraduate introductory biology students at a large Midwestern university to identify their knowledge and misconceptions of the chemistry concepts that the faculty had identified previously as important. The CCRCI was developed using the five important chemistry concepts underlying cellular respiration. The final version of the CCRCI was administered to n=160 introductory biology students during the spring 2017 semester. Reliability of the CCRCI was evaluated using Cronbach's alpha (=.7) and split-half reliability (=.769), and validity of the instrument was assessed through content validity

  7. [Soil basal respiration and enzyme activities in the root-layer soil of tea bushes in a red soil].

    Science.gov (United States)

    Yu, Shen; He, Zhenli; Zhang, Rongguang; Chen, Guochao; Huang, Changyong

    2003-02-01

    Soil basal respiration potential, metabolic quotient (qCO2), and activities of urease, invertase and acid phosphomonoesterase were investigated in the root-layer of 10-, 40-, and 90-yr-old tea bushes grown on the same type of red soil. The soil daily basal respiration potential ranged from 36.23 to 58.52 mg.kg-1.d-1, and the potentials in the root-layer of 40- or 90-yr-old were greater than that of 10-yr old tea bushes. The daily qCO2, ranging from 0.30 to 0.68, was in the reverse trend. The activities of test three enzymes changed differently with tea bushes' age. Urease activity in the root-layer of all age tea bushes ranged from 41.48 to 47.72 mg.kg-1.h-1 and slightly decreased with tea bushes' age. Invertase activity was 189.29-363.40 mg.kg-1.h-1 and decreased with tea bushes' age, but its activity in the root-layer of 10-year old tea bushes was significantly greater than that in the root-layer soil of 40- or 90-year old tea bushes. Acid phosphomonoesterase activity (444.22-828.32 mg.kg-1.h-1) increased significantly with tea bushes' age. Soil basal respiration potential, qCO2 and activities of 3 soil enzymes were closely related to soil pH, soil organic carbon, total nitrogen and C/N ratio, total soluble phenol, and microbial biomass carbon, respectively.

  8. Relations between soil respiration, humus quali­ty and ca­tion exchange capacity in selected subtypes of chernozem in South Moravia region

    Directory of Open Access Journals (Sweden)

    Jiřina Foukalová

    2008-01-01

    Full Text Available Soil organic matter (SOM undergoes short and long-term transformation in the soil. Microorganisms through their enzymes are able to mineralize organic carbon while the rate of this process is different. Biological test though referred to one of the main diagnostic methods for evaluating soil qualit­y/health. The aim of our work was to determine basal respiration, total carbon content, fractio­nal composition of humus and basic parameters of soil colloidal complex in selected subtypes of chernozem in South Moravia region. Basal respiration was measured using Vaisala GMT220 apparatus. Total carbon content was determined by oxidimetric titration and basic parameters of soil colloidal according to Mehlich. Results showed that production of carbon dioxide varied from 0.09 to 0.27 mg CO2/100g/h. Linear correlation between basal respiration and humification degree was found. Humus content varied from 2.15% to 4.6%. No correlation between quantity of humus and basal respiration was observed. Higher values of basal respiration were connected with higher quality of HS. Significant linear correlation between total carbon content (TOC and cation exchange capacity (CEC was found.

  9. The Effect of Exposure to Respirable Dust on Blood Parameters of Workers in a Tile and Ceramic Industryin, Yazd

    Directory of Open Access Journals (Sweden)

    Behnoosh Sanei

    2017-12-01

    0.05-82.84 mg/m3 has been followed by elevated WBC. As a significant number of people work in tile and ceramic industry and are exposed to high levels of pollutants and are also susceptible to different diseases, change to improve the work and preventive measures are essential.

  10. Automatic respiration tracking for radiotherapy using optical 3D camera

    Science.gov (United States)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New

  11. SAP is required for the development of innate phenotype in H2-M3-restricted CD8+ T cells1

    Science.gov (United States)

    Bediako, Yaw; Bian, Yao; Zhang, Hong; Cho, Hoonsik; Stein, Paul L.; Wang, Chyung-Ru

    2012-01-01

    H2-M3-restricted T cells have a pre-activated surface phenotype, rapidly expand and produce cytokines upon stimulation and as such, are classified as innate T cells. Unlike most innate T cells, M3-restricted T cells also express CD8αβ co-receptors and a diverse TCR repertoire: hallmarks of conventional MHC Ia-restricted CD8+ T cells. Although iNKT cells are also innate lymphocytes, they are selected exclusively on hematopoietic cells (HC), while M3-restricted T cells can be selected on either hematopoietic or thymic epithelial cells (TEC). Moreover, their phenotypes differ depending on what cells mediate their selection. Though there is a clear correlation between selection on HC and development of innate phenotype, the underlying mechanism remains unclear. SAP is required for the development of iNKT cells and mediates signals from SLAM receptors that are exclusively expressed on HC. Based on their dual selection pathway, M3-restricted T cells present a unique model for studying the development of innate T cell phenotype. Using both polyclonal and transgenic mouse models we demonstrate that while M3-restricted T cells are capable of developing in the absence of SAP, SAP is required for HC-mediated selection, development of pre-activated phenotype and heightened effector functions of M3-restricted T cells. These findings are significant because they directly demonstrate the need for SAP in HC-mediated acquisition of innate T cell phenotype and suggest that due to their SAP-dependent HC-mediated selection, M3-restricted T cells develop a pre-activated phenotype and an intrinsic ability to proliferate faster upon stimulation, allowing for an important role in the early response to infection. PMID:23041566

  12. Bundvands respiration i Kattegat og Bælthavet

    DEFF Research Database (Denmark)

    Hansen, Jørgen L. S.; Bendtsen, Jørgen

    Der findes generelt meget få direkte målinger af den pelagiske respiration, og det har ikke været muligt at finde repræsentative målinger af den pelagiske respiration for de åbne danske farvande. Her præsenteres et sæsonstudie af bundvandets respiration fra 5 stationer i et transekt gående fra det....... Temperaturfølsomheden af respirationsraten udtrykt som en Q10 var 3,01 ± 1.07 for alle forsøg og uafhængigt af om prøverne blev kølet eller opvarmet under inkubationerne. Den labile pulje af organisk stof blev bestemt og de observerede respirations rater svarede til specifikke kulstof omsætningsrater på mellem 0...... målbar reduktion i det partikulære materiale under inkubationerne, tyder overraskende på,at opløst organisk materiale (DOM) er den vigtigste kulstofkilde for bundvandet respiration....

  13. Glycolysis-respiration relationships in a neuroblastoma cell line.

    Science.gov (United States)

    Swerdlow, Russell H; E, Lezi; Aires, Daniel; Lu, Jianghua

    2013-04-01

    Although some reciprocal glycolysis-respiration relationships are well recognized, the relationship between reduced glycolysis flux and mitochondrial respiration has not been critically characterized. We concomitantly measured the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of SH-SY5Y neuroblastoma cells under free and restricted glycolysis flux conditions. Under conditions of fixed energy demand ECAR and OCR values showed a reciprocal relationship. In addition to observing an expected Crabtree effect in which increasing glucose availability raised the ECAR and reduced the OCR, a novel reciprocal relationship was documented in which reducing the ECAR via glucose deprivation or glycolysis inhibition increased the OCR. Substituting galactose for glucose, which reduces net glycolysis ATP yield without blocking glycolysis flux, similarly reduced the ECAR and increased the OCR. We further determined how reduced ECAR conditions affect proteins that associate with energy sensing and energy response pathways. ERK phosphorylation, SIRT1, and HIF1a decreased while AKT, p38, and AMPK phosphorylation increased. These data document a novel intracellular glycolysis-respiration effect in which restricting glycolysis flux increases mitochondrial respiration. Since this effect can be used to manipulate cell bioenergetic infrastructures, this particular glycolysis-respiration effect can practically inform the development of new mitochondrial medicine approaches. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. M3 version 3.0: Concepts, methods, and mathematical formulation

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Javier B. [Univ. of Zaragoza (Spain). Dept. of Earth Sciences; Laaksoharju, Marcus [Geopoint AB, Sollentuna (Sweden); Skaarman, Erik [Abscondo, Bromma (Sweden); Gurban, Ioana [3D-Terra, Montreal, PQ (Canada)

    2006-07-15

    Hydrochemical evaluation is a complex type of work, carried out by specialists. The outcome of this work is generally presented as qualitative models and process descriptions of a site. To support and help quantify the processes in an objective way, a multivariate mathematical tool named M (Multivariate Mixing and Mass balance calculations) has been constructed. The computer code can be used to trace the origin of the groundwater and calculate the mixing portions and mass balances even from ambiguous groundwater data. The groundwater composition used traditionally to describe the reactions taking place in the bedrock can now be used to trace the present and past groundwater flow with increased accuracy. The M code is a groundwater response model, which means that the changes in the groundwater chemistry in terms of sources and sinks are traced in relation to an ideal mixing model. The complexity of the measured groundwater data determines the configuration of the ideal mixing model. Deviations or similarities with the ideal mixing model are interpreted as being due to mixing or reactions. Assumptions concerning important mineral phases altering the groundwater or uncertainties associated with thermodynamic constants do not affect the modelling because the calculations are solely based on the measured groundwater composition. M uses the opposite approach to that of many standard hydrochemical models. In M mixing is evaluated and calculated first. The constituents that cannot be described by mixing are described by reactions. The M model consists of three steps: the first is a standard principal component analysis, followed by mixing and finally mass balance calculations. The measured groundwater composition can be described in terms of mixing portions in % and the sink/sources of an element associated with reactions are reported in mg/l.

  15. M3 version 3.0: Concepts, methods, and mathematical formulation

    International Nuclear Information System (INIS)

    Gomez, Javier B.; Skaarman, Erik; Gurban, Ioana

    2006-07-01

    Hydrochemical evaluation is a complex type of work, carried out by specialists. The outcome of this work is generally presented as qualitative models and process descriptions of a site. To support and help quantify the processes in an objective way, a multivariate mathematical tool named M (Multivariate Mixing and Mass balance calculations) has been constructed. The computer code can be used to trace the origin of the groundwater and calculate the mixing portions and mass balances even from ambiguous groundwater data. The groundwater composition used traditionally to describe the reactions taking place in the bedrock can now be used to trace the present and past groundwater flow with increased accuracy. The M code is a groundwater response model, which means that the changes in the groundwater chemistry in terms of sources and sinks are traced in relation to an ideal mixing model. The complexity of the measured groundwater data determines the configuration of the ideal mixing model. Deviations or similarities with the ideal mixing model are interpreted as being due to mixing or reactions. Assumptions concerning important mineral phases altering the groundwater or uncertainties associated with thermodynamic constants do not affect the modelling because the calculations are solely based on the measured groundwater composition. M uses the opposite approach to that of many standard hydrochemical models. In M mixing is evaluated and calculated first. The constituents that cannot be described by mixing are described by reactions. The M model consists of three steps: the first is a standard principal component analysis, followed by mixing and finally mass balance calculations. The measured groundwater composition can be described in terms of mixing portions in % and the sink/sources of an element associated with reactions are reported in mg/l

  16. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth.

    Science.gov (United States)

    Tang, Jianwu; Luyssaert, Sebastiaan; Richardson, Andrew D; Kutsch, Werner; Janssens, Ivan A

    2014-06-17

    The traditional view of forest dynamics originated by Kira and Shidei [Kira T, Shidei T (1967) Jap J Ecol 17:70-87] and Odum [Odum EP (1969) Science 164(3877):262-270] suggests a decline in net primary productivity (NPP) in aging forests due to stabilized gross primary productivity (GPP) and continuously increased autotrophic respiration (Ra). The validity of these trends in GPP and Ra is, however, very difficult to test because of the lack of long-term ecosystem-scale field observations of both GPP and Ra. Ryan and colleagues [Ryan MG, Binkley D, Fownes JH (1997) Ad Ecol Res 27:213-262] have proposed an alternative hypothesis drawn from site-specific results that aboveground respiration and belowground allocation decreased in aging forests. Here, we analyzed data from a recently assembled global database of carbon fluxes and show that the classical view of the mechanisms underlying the age-driven decline in forest NPP is incorrect and thus support Ryan's alternative hypothesis. Our results substantiate the age-driven decline in NPP, but in contrast to the traditional view, both GPP and Ra decline in aging boreal and temperate forests. We find that the decline in NPP in aging forests is primarily driven by GPP, which decreases more rapidly with increasing age than Ra does, but the ratio of NPP/GPP remains approximately constant within a biome. Our analytical models describing forest succession suggest that dynamic forest ecosystem models that follow the traditional paradigm need to be revisited.

  17. [State of mitochondrial respiration and calcium capacity in livers of rats with different resistance to hypoxia after injections of L-arginine].

    Science.gov (United States)

    Kurhaliuk, N M

    2001-01-01

    In experiments on rats with different resistance to hypoxia are investigated processes of mitochondrial respiration, oxidative phosphorylation and calcium capacity in liver under precursor nitric oxide L-arginine (600 mg/kg) and blockator nitric oxide synthase L-NNA (35 mg/kg) injections. We are used next substrates of oxidation: 0.35 mM succinate, 1 mM alpha-ketoglutarate, 1 mM alpha-ketoglutarate and 2 mM malonic acid. Increasing of ADP-stimulation respiration states under exogenous L-arginine injection, decreasing efficacy of respiration processes (respiration control on Chance and ADP/O) under such substrates oxidation, testify to oxide energy support decreasing and reversing nitric oxide inhibit in such conditions. This will be used as mechanism cell regulation succinate dehydrogenase activity. It has shown that L-arginine injection increase calcium mitochondrial capacity low resistance to hypoxia rats using substrates of oxidation succinate and alpha-ketoglutarate to control meanings of high resistance rats. Effects of nitric oxide precursor influence on this processes limit NO-synthase inhibitor L-NNA.

  18. Amazing structure of respirasome: unveiling the secrets of cell respiration.

    Science.gov (United States)

    Guo, Runyu; Gu, Jinke; Wu, Meng; Yang, Maojun

    2016-12-01

    Respirasome, a huge molecular machine that carries out cellular respiration, has gained growing attention since its discovery, because respiration is the most indispensable biological process in almost all living creatures. The concept of respirasome has renewed our understanding of the respiratory chain organization, and most recently, the structure of respirasome solved by Yang's group from Tsinghua University (Gu et al. Nature 237(7622):639-643, 2016) firstly presented the detailed interactions within this huge molecular machine, and provided important information for drug design and screening. However, the study of cellular respiration went through a long history. Here, we briefly showed the detoured history of respiratory chain investigation, and then described the amazing structure of respirasome.

  19. The Path of Carbon in Photosynthesis VII. Respiration and Photosynthesis

    Science.gov (United States)

    Benson, A. A.; Calvin, M.

    1949-07-21

    The relationship of respiration to photosynthesis in barley seedling leaves and the algae, Chlorella and Scenedesmus, has been investigated using radioactive carbon dioxide and the techniques of paper chromatography and radioautography. The plants are allowed to photosynthesize normally for thirty seconds in c{sup 14}O{sub 2} after which they are allowed to respire in air or helium in the light or dark. Respiration of photosynthetic intermediates as evidenced by the appearance of labeled glutomic, isocitric, fumaric and succinic acids is slower in the light than in the dark. Labeled glycolic acid is observed in barley and algae. It disappears rapidly in the dark and is maintained and increased in quantity in the light in C0{sub 2}-free air.

  20. The effect of facial expressions on respirators contact pressures.

    Science.gov (United States)

    Cai, Mang; Shen, Shengnan; Li, Hui

    2017-08-01

    This study investigated the effect of four typical facial expressions (calmness, happiness, sadness and surprise) on contact characteristics between an N95 filtering facepiece respirator and a headform. The respirator model comprised two layers (an inner layer and an outer layer) and a nose clip. The headform model was comprised of a skin layer, a fatty tissue layer embedded with eight muscles, and a skull layer. Four typical facial expressions were generated by the coordinated contraction of four facial muscles. After that, the distribution of the contact pressure on the headform, as well as the contact area, were calculated. Results demonstrated that the nasal clip could help make the respirator move closer to the nose bridge while causing facial discomfort. Moreover, contact areas varied with different facial expressions, and facial expressions significantly altered contact pressures at different key areas, which may result in leakage.

  1. Quasicrystal-reinforced Mg alloys.

    Science.gov (United States)

    Kyun Kim, Young; Tae Kim, Won; Hyang Kim, Do

    2014-04-01

    The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg-Zn-Y and Mg-Zn-Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α -Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/matrix interface. The presence of an additional secondary solidification phase can further enhance formability and mechanical properties. In Mg-Zn-Y alloys, the co-presence of I and Ca 2 Mg 6 Zn 3 phases by addition of Ca can significantly enhance formability, while in Mg-Zn-Al alloys, the co-presence of the I-phase and Mg 2 Sn phase leads to the enhancement of mechanical properties. Dynamic and static recrystallization are significantly accelerated by addition of Ca in Mg-Zn-Y alloy, resulting in much smaller grain size and more random texture. The high strength of Mg-Zn-Al-Sn alloys is attributed to the presence of finely distributed Mg 2 Sn and I-phase particles embedded in the α -Mg matrix.

  2. Muscarinic Acetylcholine Receptor M3 Mutation Causes Urinary Bladder Disease and a Prune-Belly-like Syndrome.

    Science.gov (United States)

    Weber, Stefanie; Thiele, Holger; Mir, Sevgi; Toliat, Mohammad Reza; Sozeri, Betül; Reutter, Heiko; Draaken, Markus; Ludwig, Michael; Altmüller, Janine; Frommolt, Peter; Stuart, Helen M; Ranjzad, Parisa; Hanley, Neil A; Jennings, Rachel; Newman, William G; Wilcox, Duncan T; Thiel, Uwe; Schlingmann, Karl Peter; Beetz, Rolf; Hoyer, Peter F; Konrad, Martin; Schaefer, Franz; Nürnberg, Peter; Woolf, Adrian S

    2011-11-11

    Urinary bladder malformations associated with bladder outlet obstruction are a frequent cause of progressive renal failure in children. We here describe a muscarinic acetylcholine receptor M3 (CHRM3) (1q41-q44) homozygous frameshift mutation in familial congenital bladder malformation associated with a prune-belly-like syndrome, defining an isolated gene defect underlying this sometimes devastating disease. CHRM3 encodes the M3 muscarinic acetylcholine receptor, which we show is present in developing renal epithelia and bladder muscle. These observations may imply that M3 has a role beyond its known contribution to detrusor contractions. This Mendelian disease caused by a muscarinic acetylcholine receptor mutation strikingly phenocopies Chrm3 null mutant mice. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Interaction of xenone difluoride with the fluorocomplexes of lanthanides and rubidium of the Rb3M3F6 composition

    International Nuclear Information System (INIS)

    Goryachenkov, S.A.; Fadeeva, N.E.; Kiselev, Yu.M.; Martynenko, L.I.; Spitsyn, V.I.

    1984-01-01

    The possibility of preparing rubidium fluorocomplexes of tetravalent lanthanides of the Rb 3 M 4 F 7 composition from Rb 3 M 3 F 6 (M 3 =Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb) with XeF 2 has been studied. By the DTA method it is shown that Ce and Pr salts are fluorinated respectively at approximately 100 and approximately 235 deg C with a noticeable exoeffect. Tb and Dy salts fluorination proceeds with considerable kinetic difficulties. The fluorination products composition, Rb 3 M 4 F 7 (M 4 =Ce, Pr, Tb, Dy) is confirmed by the methods of chemical, IR-spectroscopic and X-ray phase analyses. XeF 2 interaction with Rb 3 M 3 F 6 salts of other lanthanides up to 400 deg C has not been observed

  4. Measurement of lung tumor motion using respiration-correlated CT

    International Nuclear Information System (INIS)

    Mageras, Gig S.; Pevsner, Alex; Yorke, Ellen D.; Rosenzweig, Kenneth E.; Ford, Eric C.; Hertanto, Agung; Larson, Steven M.; Lovelock, D. Michael; Erdi, Yusuf E.; Nehmeh, Sadek A.; Humm, John L.; Ling, C. Clifton

    2004-01-01

    Purpose: We investigate the characteristics of lung tumor motion measured with respiration-correlated computed tomography (RCCT) and examine the method's applicability to radiotherapy planning and treatment. Methods and materials: Six patients treated for non-small-cell lung carcinoma received a helical single-slice computed tomography (CT) scan with a slow couch movement (1 mm/s), while simultaneously respiration is recorded with an external position-sensitive monitor. Another 6 patients receive a 4-slice CT scan in a cine mode, in which sequential images are acquired for a complete respiratory cycle at each couch position while respiration is recorded. The images are retrospectively resorted into different respiration phases as measured with the external monitor (4-slice data) or patient surface displacement observed in the images (single-slice data). The gross tumor volume (GTV) in lung is delineated at one phase and serves as a visual guide for delineation at other phases. Interfractional GTV variation is estimated by scaling diaphragm position variations measured in gated radiographs at treatment with the ratio of GTV:diaphragm displacement observed in the RCCT data. Results: Seven out of 12 patients show GTV displacement with respiration of more than 1 cm, primarily in the superior-inferior (SI) direction; 2 patients show anterior-posterior displacement of more than 1 cm. In all cases, extremes in GTV position in the SI direction are consistent with externally measured extremes in respiration. Three patients show evidence of hysteresis in GTV motion, in which the tumor trajectory is displaced 0.2 to 0.5 cm anteriorly during expiration relative to inspiration. Significant (>1 cm) expansion of the GTV in the SI direction with respiration is observed in 1 patient. Estimated intrafractional GTV motion for gated treatment at end expiration is 0.6 cm or less in all cases; however; interfraction variation estimates (systematic plus random) are more than 1 cm in 3

  5. Personal exposure versus monitoring station data for respirable particles

    Energy Technology Data Exchange (ETDEWEB)

    Sega, K; Fugas, M

    1982-01-01

    Personal exposure to respirable particles of 12 subjects working at the same location, but living in various parts of Zagreb, was monitored for 7 consecutive days and compared with simultaneously obtained data from the outdoor network station nearest to subject's home. Although personal exposure is related to the outdoor pollution, other sources play a considerable role. Indoor exposure takes, on the average, more than 80% of the total time. The ratio between average personal exposure and respirable particle levels in the outdoor air decreases with the increased outdoor concentration (r = -0.93), indicating that this relationship might serve as a basis for a rough estimate of possible personal exposure.

  6. Light-enhanced oxygen respiration in benthic phototrophic communities

    DEFF Research Database (Denmark)

    Epping, EHG; Jørgensen, BB

    1996-01-01

    Two microelectrode studies demonstrate the effect of Light intensity and photosynthesis on areal oxygen respiration in a hypersaline mat at Guerrero Negro, Mexico, and in an intertidal sediment at Texel, The Netherlands. The hypersaline mat was studied in the laboratory at light intensities of 0...... the day at prevailing light intensities. A 1-dimensional diffusion-reaction model was used to estimate gross photosynthesis and oxygen respiration per volume of sediment, as well as the euphotic depth and the sediment-water interface concentration of oxygen. Areal gross photosynthesis ranged from 9...

  7. Determination of respirable-sized crystalline silica in different ambient environments in the United Kingdom with a mobile high flow rate sampler utilising porous foams to achieve the required particle size selection

    Science.gov (United States)

    Stacey, Peter; Thorpe, Andrew; Roberts, Paul; Butler, Owen

    2018-06-01

    Inhalation of respirable crystalline silica (RCS) can cause diseases including silicosis and cancer. Levels of RCS close to an emission source are measured but little is known about the wider ambient exposure from industry emissions or natural sources. The aim of this work is to report the RCS concentrations obtained from a variety of ambient environments using a new mobile respirable (PM4) sampler. A mobile battery powered high flow rate (52 L min-1) sampler was developed and evaluated for particulate aerosol sampling employing foams to select the respirable particle size fraction. Sampling was conducted in the United Kingdom at site boundaries surrounding seven urban construction and demolition and five sand quarry sites. These are compared with data from twelve urban aerosol samples and from repeat measurements from a base line study at a single rural site. The 50% particle size penetration (d50) through the foam was 4.3 μm. Over 85% of predict bias values were with ±10% of the respirable convention, which is based on a log normal curve. Results for RCS from all construction and quarry activities are generally low with a 95 th percentile of 11 μg m-3. Eighty percent of results were less than the health benchmark value of 3 μg m-3 used in some states in America for ambient concentrations. The power cutting of brick and the largest demolition activities gave the highest construction levels. Measured urban background RCS levels were typically below 0.3 μg m-3 and the median RCS level, at a rural background location, was 0.02 μg m-3. These reported ambient RCS concentrations may provide useful baseline values to assess the wider impact of fugitive, RCS containing, dust emissions into the wider environment.

  8. Comparative study of AISI M3:2 high speed steel produced through different techniques of manufacturing; Estudo comparativo de acos rapidos AISI M3:2 produzidos por diferentes processos de fabricacao

    Energy Technology Data Exchange (ETDEWEB)

    Araujo Filho, Oscar Olimpio de

    2006-07-01

    In this work AISI M3:2 high speed steels obtained through different techniques of manufacturing, submitted to the same heat treatment procedure were evaluated by measuring their mechanical properties of transverse rupture strength and hardness. Sinter 23 obtained by hot isostatic pressing (HIP), VWM3C obtained by the conventional route and a M3:2 high speed steel obtained by cold compaction of water atomized powders and vacuum sintered with and without the addition of a small quantity of carbon were evaluated after the same heat treatment procedure. The vacuum sintered M3:2 high speed steel can be an alternative to the more expensive high speed steel produced by hot isostatic pressing and with similar properties presented by the conventional one. The characterization of the vacuum sintered M3:2 high speed steel was performed by measuring the densities of the green compacts and after the sintering cycle. The sintering produced an acceptable microstructure and densities near to the theoretical. The transverse rupture strength was evaluated by means of three point bending tests and the hardness by means of Rockwell C and Vickers tests. The technique of scanning electronic microscopy (SEM) was used to evaluate the microstructure and to establish a relation with the property of transverse rupture strength. The structure was determined by means of X-ray diffraction (XRD) patterns and the retained austenite was detected to all the conditions of heat treatment. The main contribution of this work is to establish a relation between the microstructure and the mechanical property of transverse rupture strength and to evaluate the AISI M3:2 vacuum sintered high speed steel as an alternative to the similar commercial high speed steels. (author)

  9. Function of external respiration in patients after kidney transplantation under conditions of immunosuppressive therapy.

    Directory of Open Access Journals (Sweden)

    O. V. Kuryata

    2018-04-01

    Full Text Available The aim of our study was to evaluate the changes in the parameters of the function of external respiration in patients after kidney transplantation due to chronic kidney disease and to assess the relationship between the level of cyclosporin A and tacrolimus in the blood with FVD indices. The study included 37 patients after kidney transplantation. The first group included 27 patients who received cyclosporine at an average dose of 225 [175-350] mg/day under the immunosuppressive therapy regimen, the second group included 10 patients who received tacrolimus at an average dose of 8.25 [5.0-9.0] mg/day. A significant difference (p˂0.05 between the indicators of the VCmax (78 [71-90]% and 76.5 [72-78]%, FVC (93 [85-99]% and 95 [91-98]%, PEF (82 [64-94]% and 80 [69-84]%, MEF25-75 (75 [66-112]% and 82.5 [67-90]% was found in patients of the first and second groups relative to the FVD of the comparison group: VCmax (102.5 [98-113]%, FVC (107.5 [105.5-124]%, PEF (99.5 [95-102.5]%, MEF25-75 (98.5 [97.5-101.5]%. In both groups, a statistically significant negative correlation between the indicators of the VCmax, FVC and the level of cyclosporin A (R=-0.69, p<0.0001 and R=-0.4, p<0.037 in the blood in the first group and FVC and tacrolimus (R=-0.72, p<0.018 in the second group was found. A moderate decrease in the VCmax values in patients after kidney transplantation requires monitoring of the function of external respiration and managing such patients by nephrologists together with specialists in the pulmonological profile.

  10. Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code

    Science.gov (United States)

    Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.

  11. Measurement of K-conversion coefficient of the M3 transition in sup 112 In sup m

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, K.R.; Sastry, D.L.; Reddy, K.V. (Andhra Univ., Visakhapatnam (India). Labs. for Nuclear Research); Chintalapudi, S.N. (Variable Energy Cyclotron Centre, Calcutta (India))

    1991-11-01

    The K-conversion coefficient of the 155 keV (M3) isomeric transition in the decay of {sup 112}In was measured using the normalized peak to gamma method. The {alpha}{sub K} value is found to be 4.82{+-}0.29 in agreement with the theoretical value of 5.12. (author).

  12. Improved the microstructures and properties of M3:2 high-speed steel by spray forming and niobium alloying

    Energy Technology Data Exchange (ETDEWEB)

    Lu, L. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing 100083 (China); Hou, L.G., E-mail: lghou@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing 100083 (China); Zhang, J.X.; Wang, H.B.; Cui, H.; Huang, J.F. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing 100083 (China); Zhang, Y.A. [State Key Laboratory of Non-Ferrous Metals and Process, General Research Institute for Non-Ferrous Metals, Beijing 100088 (China); Zhang, J.S. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing 100083 (China)

    2016-07-15

    The microstructures and properties of spray formed (SF) high-speed steels (HSSs) with or without niobium (Nb) addition were studied. Particular emphasis was placed on the effect of Nb on the solidification microstructures, decomposition of M{sub 2}C carbides, thermal stability and mechanical properties. The results show that spray forming can refine the cell size of eutectic carbides due to the rapid cooling effect during atomization. With Nb addition, further refinement of the eutectic carbides and primary austenite grains are obtained. Moreover, the Nb addition can accelerate the decomposition of M{sub 2}C carbides and increase the thermal stability of high-speed steel, and also can improve the hardness and bending strength with slightly decrease the impact toughness. The high-speed steel made by spray forming and Nb alloying can give a better tool performance compared with powder metallurgy M3:2 and commercial AISI M2 high-speed steels. - Highlights: • Spray forming can effectively refine the microstructure of M3:2 steel. • Niobium accelerates the decomposition of M{sub 2}C carbides. • Niobium increases the hardness and bending strength of spray formed M3:2 steel. • Spray-formed niobium-containing M3:2 steel has the best tool performance.

  13. Some preliminary studies on plants and pollutant levels along Pindi Bhattian-Faisalabad motorway (m-3) (Pakistan)

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, K F; Maqbool, S; Ashraf, I; Ahmad, S S; Ansari, Y.M., E-mail: kezmh@yahoo.com

    2011-10-15

    The roadside verges of M-3 were surveyed to investigate their floristic composition and the levels of heavy metals in their soils. For this purpose, the floristic data from 102 quadrats, each 1 x 2 m in size were collected and their associated soils were analyzed for total lead, cadmium, copper, manganese, iron and zinc. These quadrats were distributed on three zones (border, verge, and fence) within the M-3 verges. Fifty eight plant species were recorded. By considering their frequency and abundance values, Cynodon dactylon, Anagallis arvensis, Imperata cylindrica, Trifolium alexandrianum and Sonchus oleracea were the most frequent and abundant species of M-3. The mean concentrations of total Cu, Cd, Zn, Mn, Pb and Fe, 1.8 mu gg/sup 1-/, 43.4 mu gg/sup 1-/ , 336.1 mu gg/sup 1-/, 43.2 mu gg/sup 1-/ and 683.1 mu gg/sup 1-/ respectively. By in the roadside soils of M-3 were 14.0 mu gg/sup 1-/ comparing these values with their standard toxic levels, these soils can be considered as non-contaminated. (author)

  14. Some preliminary studies on plants and pollutant levels along Pindi Bhattian-Faisalabad motorway (m-3) (Pakistan)

    International Nuclear Information System (INIS)

    Akbar, K.F.; Maqbool, S.; Ashraf, I.; Ahmad, S.S.; Ansari, Y.M.

    2011-01-01

    The roadside verges of M-3 were surveyed to investigate their floristic composition and the levels of heavy metals in their soils. For this purpose, the floristic data from 102 quadrats, each 1 x 2 m in size were collected and their associated soils were analyzed for total lead, cadmium, copper, manganese, iron and zinc. These quadrats were distributed on three zones (border, verge, and fence) within the M-3 verges. Fifty eight plant species were recorded. By considering their frequency and abundance values, Cynodon dactylon, Anagallis arvensis, Imperata cylindrica, Trifolium alexandrianum and Sonchus oleracea were the most frequent and abundant species of M-3. The mean concentrations of total Cu, Cd, Zn, Mn, Pb and Fe, 1.8 mu gg/sup 1-/, 43.4 mu gg/sup 1-/ , 336.1 mu gg/sup 1-/, 43.2 mu gg/sup 1-/ and 683.1 mu gg/sup 1-/ respectively. By in the roadside soils of M-3 were 14.0 mu gg/sup 1-/ comparing these values with their standard toxic levels, these soils can be considered as non-contaminated. (author)

  15. Assessing SOC labile fractions through respiration test, density-size fractionation and thermal analysis - A comparison of methods

    Science.gov (United States)

    Soucemarianadin, Laure; Cécillon, Lauric; Chenu, Claire; Baudin, François; Nicolas, Manuel; Savignac, Florence; Barré, Pierre

    2017-04-01

    ) were only weakly positively correlated (Spearman's ρ = 0.26, n = 93). Similarly, soil respiration had only a weak negative correlation (Spearman's ρ = -0.24, n = 93; ρ = -0.33, n = 222) with the RE6 parameter T50 CH pyrolysis. This parameter, previously used as an indicator of labile SOC (Gregorich et al., 2015), represents the temperature at which 50% of the OM was pyrolyzed to effluents (mainly hydrocarbons) during the pyrolysis phase of RE6. Conversely, POC content (% of total SOC) showed a higher negative correlation with T50 CH pyrolysis (ρ = -0.66, n = 93; ρ = -0.65, n = 103) and was positively and negatively correlated to the hydrogen index, HI (mg HC/g TOC; ρ = 0.56/0.53) and the oxygen index, OI (mg CO2/g TOC; ρ = -0.63/-0.62) respectively. Our results showed that RE6 results are consistent with respiration and fractionation results: SOC with higher respiration rate and higher POC content burns at a lower temperature. RE6 thermal analysis could therefore be viewed as a useful fast and cost effective alternative to more time-consuming methods used in SOM fractions determination. Barré, P. et al. Biogeochemistry 2016, 1-12, 130. Gregorich, E.G. et al. Soil Biol. Biochem. 2015, 182-191, 91.

  16. Respirable dust meter locates super polluters in traffic

    NARCIS (Netherlands)

    Schmidt-Ott's, A.; Kurniawan, A.; Schrauwers, A.

    2006-01-01

    The Netherlands is having trouble with the EU standards for respirable dust (PM 10). The Dutch Council of State recently blocked a number of residential development projects because local conditions failed to meet the PM 10 standard. Research by the Nano Structured Materials group at TU Delft shows

  17. Controls on winter ecosystem respiration in temperate and boreal ecosystems

    Science.gov (United States)

    T. Wang; P. Ciais; S.L. Piao; C. Ottle; P. Brender; F. Maignan; A. Arain; A. Cescatti; D. Gianelle; C. Gough; L Gu; P. Lafleur; T. Laurila; B. Marcolla; H. Margolis; L. Montagnani; E. Moors; N. Saigusa; T. Vesala; G. Wohlfahrt; C. Koven; A. Black; E. Dellwik; A. Don; D. Hollinger; A. Knohl; R. Monson; J. Munger; A. Suyker; A. Varlagin; S. Verma

    2011-01-01

    Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal...

  18. Plant species richness regulates soil respiration through changes in productivity.

    NARCIS (Netherlands)

    Tavares Correa Dias, A.; van Ruijven, J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  19. Divergent apparent temperature sensitivity of terrestrial ecosystem respiration

    Czech Academy of Sciences Publication Activity Database

    Song, B.; Niu, S.; Luo, R.; Chen, J.; Yu, G.; Olejnik, Janusz; Wohlfahrt, G.; Kiely, G.; Noormels, A.; Montagnani, L.; Cescatti, A.; Magliulo, V.; Law, B. E.; Lund, M.; Varlagin, A.; Raschi, A.; Peichl, M.; Nilsson, M.; Merbold, L.

    2014-01-01

    Roč. 7, č. 5 (2014), s. 419-428 ISSN 1752-9921 Institutional support: RVO:67179843 Keywords : activation energy * ecosystem respiration * index of water availability * gross primary productivity Subject RIV: EH - Ecology, Behaviour Impact factor: 2.646, year: 2014

  20. 75 FR 29699 - Total Inward Leakage Requirements for Respirators

    Science.gov (United States)

    2010-05-27

    ... or other half-mask respirator inward leakage measurement, and offer any additional comments on the..., facsimile (412) 386-4089, e-mail [email protected] . SUPPLEMENTARY INFORMATION: I. Background The Department of... order to conduct tests and prepare responses. On April 20, 2010, NIOSH responded by reopening the docket...

  1. Soil respiration in Mexico: Advances and future directions

    Directory of Open Access Journals (Sweden)

    Alejandro Cueva

    2016-07-01

    Full Text Available Soil respiration (RS is a CO2 efflux from the soil to the atmosphere defined as the sum of autotrophic (respiration by roots and mycorrhizae, and heterotrophic (respiration of microorganisms that decompose fractions of organic matter and of soil fauna respiration. Globally, RS is considered to be the second largest flux of C to the atmosphere. From published literature it is clear that its main controls are soil temperature, soil moisture, photosynthesis, organic matter inputs and soil biota composition. Despite its relevance in C cycle science, there have been only twenty eight studies in Mexico in the last decade where direct measurement of gas exchange was conducted in the field. These studies were held mostly in agricultural and forest ecosystems, in Central and Southern Mexico where mild subtropical conditions prevail. However, arid, semi-arid, tropical and wetland ecosystems may have an important role in Mexico’s CO2 emissions because of their extent and extensive land use changes. From the twenty eight studies, only two provided continuous measurements of RS with high temporal resolution, highlighting the need for long-term studies to evaluate the complex biophysical controls of this flux and associated processes over different ecological succession stages. We conclude that Mexico represents an important opportunity to understand its complex dynamics, in national and global context, as ecosystems in the country cover a wide range of climatic conditions. This is particularly important because deforestation and degradation of Mexican ecosystems is rapidly increasing along with expected changes in climate.

  2. Understanding Cellular Respiration in Terms of Matter & Energy within Ecosystems

    Science.gov (United States)

    White, Joshua S.; Maskiewicz, April C.

    2014-01-01

    Using a design-based research approach, we developed a data-rich problem (DRP) set to improve student understanding of cellular respiration at the ecosystem level. The problem tasks engage students in data analysis to develop biological explanations. Several of the tasks and their implementation are described. Quantitative results suggest that…

  3. Estimating autotrophic respiration in streams using daily metabolism data

    Science.gov (United States)

    Knowing the fraction of gross primary production (GPP) that is immediately respired by autotrophs and their closely associated heterotrophs (ARf) is necessary to understand the trophic base and carbon spiraling in streams. We show a means to estimate ARf from daily metabolism da...

  4. Divergent apparent temperature sensitivity of terrestrial ecosystem respiration

    Science.gov (United States)

    Bing Song; Shuli Niu; Ruise Luo; Yiqi Luo; Jiquan Chen; Guirui Yu; Janusz Olejnik; Georg Wohlfahrt; Gerard Kiely; Ako Noormets; Leonardo Montagnani; Alessandro Cescatti; Vincenzo Magliulo; Beverly Elizabeth Law; Magnus Lund; Andrej Varlagin; Antonio Raschi; Matthias Peichl; Mats B. Nilsson; Lutz Merbold

    2014-01-01

    Recent studies revealed convergent temperature sensitivity of ecosystem respiration (Re) within aquatic ecosystems and between terrestrial and aquatic ecosystems. We do not know yet whether various terrestrial ecosystems have consistent or divergent temperature sensitivity. Here, we synthesized 163 eddy covariance flux sites across the world and...

  5. Temperature response of soil respiration largely unaltered with experimental warming

    NARCIS (Netherlands)

    Carey, J.C.; Tang, J.; Templer, P.H.; Kroeger, K.D.; Crowther, T.W.; Burton, A.J.; Dukes, J.S.; Emmett, B.; Frey, S.D.; Heskel, M.A.; Jiang, L.; Machmuller, M.B.; Mohan, J.; Panetta, A.M.; Reich, P.B.; Reinsch, S.; Wang, X.; Allison, S.D.; Bamminger, C.; Bridgham, S.; Collins, S.L.; de Dato, G.; Eddy, W.C.; Enquist, B.J.; Estiarte, M.; Harte, J.; Henderson, A.; Johnson, B.R.; Larsen, K.S.; Luo, Y.; Marhan, S.; Melillo, J.M.; Peñuelas, J.; Pfeifer-Meister, L.; Poll, C.; Rastetter, E.; Reinmann, A.B.; Reynolds, L.L.; Schmidt, I.K.; Shaver, G.R.; Strong, A.L.; Suseela, V.; Tietema, A.

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific

  6. Plant species richness regulates soil respiration through changes in productivity

    NARCIS (Netherlands)

    Dias, A.A.; Ruijven, van J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  7. Tillage and manure effect on soil microbial biomass and respiration ...

    African Journals Online (AJOL)

    The objective of this study was to determine the influence of both tillage and liquid pig manure application on soil microbial biomass, enzyme activities and microbial respiration in a meadow soil. The results obtained did not show any significant effect of tillage and manure on microbial biomass carbon (C) and nitrogen (N) ...

  8. Connecting Photosynthesis and Cellular Respiration: Preservice Teachers' Conceptions

    Science.gov (United States)

    Brown, Mary H.; Schwartz, Renee S.

    2009-01-01

    The biological processes of photosynthesis and plant cellular respiration include multiple biochemical steps, occur simultaneously within plant cells, and share common molecular components. Yet, learners often compartmentalize functions and specialization of cell organelles relevant to these two processes, without considering the interconnections…

  9. Pulmonary inflammation and crystalline silica in respirable coal ...

    Indian Academy of Sciences (India)

    Unknown

    This study demonstrates dose-response relationships between respirable crystalline silica in coal mine dust and pulmonary inflammation, antioxidant production, and radiographic small opacities. [Kuempel E D, Attfield M D, Vallyathan V, Lapp N L, Hale J M, Smith R J and Castranova V 2003 Pulmonary inflammation and ...

  10. Quantitative change of EEG and respiration signals during mindfulness meditation

    Science.gov (United States)

    2014-01-01

    Background This study investigates measures of mindfulness meditation (MM) as a mental practice, in which a resting but alert state of mind is maintained. A population of older people with high stress level participated in this study, while electroencephalographic (EEG) and respiration signals were recorded during a MM intervention. The physiological signals during meditation and control conditions were analyzed with signal processing. Methods EEG and respiration data were collected and analyzed on 34 novice meditators after a 6-week meditation intervention. Collected data were analyzed with spectral analysis, phase analysis and classification to evaluate an objective marker for meditation. Results Different frequency bands showed differences in meditation and control conditions. Furthermore, we established a classifier using EEG and respiration signals with a higher accuracy (85%) at discriminating between meditation and control conditions than a classifier using the EEG signal only (78%). Conclusion Support vector machine (SVM) classifier with EEG and respiration feature vector is a viable objective marker for meditation ability. This classifier should be able to quantify different levels of meditation depth and meditation experience in future studies. PMID:24939519

  11. ECG-derived respiration methods: adapted ICA and PCA.

    Science.gov (United States)

    Tiinanen, Suvi; Noponen, Kai; Tulppo, Mikko; Kiviniemi, Antti; Seppänen, Tapio

    2015-05-01

    Respiration is an important signal in early diagnostics, prediction, and treatment of several diseases. Moreover, a growing trend toward ambulatory measurements outside laboratory environments encourages developing indirect measurement methods such as ECG derived respiration (EDR). Recently, decomposition techniques like principal component analysis (PCA), and its nonlinear version, kernel PCA (KPCA), have been used to derive a surrogate respiration signal from single-channel ECG. In this paper, we propose an adapted independent component analysis (AICA) algorithm to obtain EDR signal, and extend the normal linear PCA technique based on the best principal component (PC) selection (APCA, adapted PCA) to improve its performance further. We also demonstrate that the usage of smoothing spline resampling and bandpass-filtering improve the performance of all EDR methods. Compared with other recent EDR methods using correlation coefficient and magnitude squared coherence, the proposed AICA and APCA yield a statistically significant improvement with correlations 0.84, 0.82, 0.76 and coherences 0.90, 0.91, 0.85 between reference respiration and AICA, APCA and KPCA, respectively. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Ecophysiology and environmental distribution of organohalide-respiring bacteria

    NARCIS (Netherlands)

    Lu, Y.

    2016-01-01

    Organohalide-respiring bacteria (OHRB) are able to breathe natural and anthropogenically produced organohalides persistent in a broad range of oxygen-depleted environments. Therefore, these microorganisms are of high interest for organohalide-contaminated site bioremediation and natural halogen

  13. 30 CFR 71.100 - Respirable dust standard.

    Science.gov (United States)

    2010-07-01

    ... concentration of respirable dust in the mine atmosphere during each shift to which each miner in the active... shall be measured with an approved sampling device and expressed in terms of an equivalent concentration determined in accordance with § 71.206 (Approved sampling devices; equivalent concentrations). ...

  14. Diatoms respire nitrate to survive dark and anoxic conditions

    DEFF Research Database (Denmark)

    Kamp, Anja; de Beer, Dirk; Nitsch, Jana L.

    2011-01-01

    +, indicating dissimilatory nitrate reduction to ammo- nium (DNRA). DNRA is an anaerobic respiration process that is known mainly from prokaryotic organisms, and here shown as dis- similatory nitrate reduction pathway used by a eukaryotic photo- troph. Similar to large sulfur bacteria and benthic foraminifera...

  15. Hydrological controls on heterotrophic soil respiration across an agricultural landscape

    Science.gov (United States)

    Water availability is an important determinant of variation in soil respiration, but a consistent relationship between soil water and the relative flux rate of carbon dioxide across different soil types remains elusive. Using large undisturbed soil columns (N = 12), we evaluated soil water controls...

  16. Gap filling strategies and error in estimating annual soil respiration

    Science.gov (United States)

    Soil respiration (Rsoil) is one of the largest CO2 fluxes in the global carbon (C) cycle. Estimation of annual Rsoil requires extrapolation of survey measurements or gap-filling of automated records to produce a complete time series. While many gap-filling methodologies have been employed, there is ...

  17. Meetings: Issues and recent advances in soil respiration

    Science.gov (United States)

    K.A. Hibbard; B.E. Law

    2004-01-01

    The terrestrial carbon cycle is intriniscally tied to climate, hydrology, nutrient cycles, and the production of biomass through photosynthesis. Over two-thirds of terrestrial carbon is stored below ground in soils, and a significant amount of atmospheric CO2 is processed by soils every year. Thus, soil respiration is a key process that underlies...

  18. Mitochondrial respiration scavenges extramitochondrial superoxide anion via a nonenzymatic mechanism.

    OpenAIRE

    Guidot, D M; Repine, J E; Kitlowski, A D; Flores, S C; Nelson, S K; Wright, R M; McCord, J M

    1995-01-01

    We determined that mitochondrial respiration reduced cytosolic oxidant stress in vivo and scavenged extramitochondrial superoxide anion (O2-.) in vitro. First, Saccharomyces cerevisiae deficient in both the cytosolic antioxidant cupro-zinc superoxide dismutase (Cu,Zn-SOD) and electron transport (Rho0 state) grew poorly (P 0.05) in all yeast. Seco...

  19. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Directory of Open Access Journals (Sweden)

    Shohei Sakuda

    2014-03-01

    Full Text Available Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control.

  20. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Science.gov (United States)

    Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi

    2014-01-01

    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936

  1. Impact of some selected insecticides application on soil microbial respiration.

    Science.gov (United States)

    Latif, M A; Razzaque, M A; Rahman, M M

    2008-08-15

    The aim of present study was to investigate the impact of selected insecticides used for controlling brinjal shoot and fruit borer on soil microorganisms and to find out the insecticides or nontoxic to soil microorganism the impact of nine selected insecticides on soil microbial respiration was studied in the laboratory. After injection of different insecticides solutions, the soil was incubated in the laboratory at room temperature for 32 days. The amount of CO2 evolved due to soil microbial respiration was determined at 2, 4, 8, 16, 24 and 32 days of incubation. Flubendiamide, nimbicidine, lambda-cyhalothrin, abamectin and thiodicarb had stimulatory effect on microbial respiration during the initial period of incubation. Chlorpyriphos, cartap and carbosulfan had inhibitory effect on microbial respiration and cypermethrin had no remarkable effect during the early stage of incubation. The negative effect of chlorpyriphos, cartap and carbosulfan was temporary, which was disappeared after 4 days of insecticides application. No effect of the selected insecticides on soil microorganisms was observed after 24 or 32 days of incubation.

  2. Comparative study of AISI M3:2 high speed steel produced through different techniques of manufacturing

    International Nuclear Information System (INIS)

    Araujo Filho, Oscar Olimpio de

    2006-01-01

    In this work AISI M3:2 high speed steels obtained through different techniques of manufacturing, submitted to the same heat treatment procedure were evaluated by measuring their mechanical properties of transverse rupture strength and hardness. Sinter 23 obtained by hot isostatic pressing (HIP), VWM3C obtained by the conventional route and a M3:2 high speed steel obtained by cold compaction of water atomized powders and vacuum sintered with and without the addition of a small quantity of carbon were evaluated after the same heat treatment procedure. The vacuum sintered M3:2 high speed steel can be an alternative to the more expensive high speed steel produced by hot isostatic pressing and with similar properties presented by the conventional one. The characterization of the vacuum sintered M3:2 high speed steel was performed by measuring the densities of the green compacts and after the sintering cycle. The sintering produced an acceptable microstructure and densities near to the theoretical. The transverse rupture strength was evaluated by means of three point bending tests and the hardness by means of Rockwell C and Vickers tests. The technique of scanning electronic microscopy (SEM) was used to evaluate the microstructure and to establish a relation with the property of transverse rupture strength. The structure was determined by means of X-ray diffraction (XRD) patterns and the retained austenite was detected to all the conditions of heat treatment. The main contribution of this work is to establish a relation between the microstructure and the mechanical property of transverse rupture strength and to evaluate the AISI M3:2 vacuum sintered high speed steel as an alternative to the similar commercial high speed steels. (author)

  3. The RESPIRE trials: Two phase III, randomized, multicentre, placebo-controlled trials of Ciprofloxacin Dry Powder for Inhalation (Ciprofloxacin DPI) in non-cystic fibrosis bronchiectasis.

    Science.gov (United States)

    Aksamit, Timothy; Bandel, Tiemo-Joerg; Criollo, Margarita; De Soyza, Anthony; Elborn, J Stuart; Operschall, Elisabeth; Polverino, Eva; Roth, Katrin; Winthrop, Kevin L; Wilson, Robert

    2017-07-01

    The primary goals of long-term disease management in non-cystic fibrosis bronchiectasis (NCFB) are to reduce the number of exacerbations, and improve quality of life. However, currently no therapies are licensed for this. Ciprofloxacin Dry Powder for Inhalation (Ciprofloxacin DPI) has potential to be the first long-term intermittent therapy approved to reduce exacerbations in NCFB patients. The RESPIRE programme consists of two international phase III prospective, parallel-group, randomized, double-blinded, multicentre, placebo-controlled trials of the same design. Adult patients with idiopathic or post-infectious NCFB, a history of ≥2 exacerbations in the previous 12months, and positive sputum culture for one of seven pre-specified pathogens, undergo stratified randomization 2:1 to receive twice-daily Ciprofloxacin DPI 32.5mg or placebo using a pocket-sized inhaler in one of two regimens: 28days on/off treatment or 14days on/off treatment. The treatment period is 48weeks plus an 8-week follow-up after the last dose. The primary efficacy endpoints are time to first exacerbation after treatment initiation and frequency of exacerbations using a stringent definition of exacerbation. Secondary endpoints, including frequency of events using different exacerbation definitions, microbiology, quality of life and lung function will also be evaluated. The RESPIRE trials will determine the efficacy and safety of Ciprofloxacin DPI. The strict entry criteria and stratified randomization, the inclusion of two treatment regimens and a stringent definition of exacerbation should clarify the patient population best positioned to benefit from long-term inhaled antibiotic therapy. Additionally RESPIRE will increase understanding of NCFB treatment and could lead to an important new therapy for sufferers. The RESPIRE trials are registered in ClinicalTrials.gov, ID number NCT01764841 (RESPIRE 1; date of registration January 8, 2013) and NCT02106832 (RESPIRE 2; date of registration

  4. Identifying sources of respirable quartz and silica dust in underground coal mines in southern West Virginia, western Virginia, and eastern Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Schatzel, Steven J. [National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory, 626 Cochrans Mill Road, PO Box 18070, Pittsburgh, PA 15236 (United States)

    2009-04-01

    Prior research has suggested that the source of respirable silica dust in underground coal mines is typically the immediate top or bottom lithology adjacent to the mined seam, not mineral matter bound within the mined coal bed. Geochemical analyses were applied in an effort to identify the specific source rock of respirable quartz dust in coal mines. The analyses also demonstrate the compositional changes that take place in the generation of the respirable dust fraction from parent rock material. All six mine sites were mining coal with relatively low mineral matter content, although two mines were operating in the Fire Clay coal bed which contains a persistent tonstein. Interpretations of Ca, Mg, Mn, Na, and K concentrations strongly suggest that the top strata above the mined seam is the primary source of mineral dust produced during mining. One site indicates a mixed or bottom source, possibly due to site specific conditions. Respirable dust compositional analyses suggest a direct relationship between the quantity of mineral Si and the quantity of quartz Si. A similar relationship was not found in either the top or bottom rocks adjacent to the mined seam. An apparent loss of elemental Al was noted in the respirable dust fraction when compared to potential parent rock sources. Elemental Al is present in top and bottom rock strata within illite, kaolinite, feldspar, and chlorite. A possible explanation for loss of Al in the respirable dust samples is the removal of clays and possibly chlorite minerals. It is expected that removal of this portion of the Al bearing mineral matter occurs during rock abrasion and dust transport prior to dust capture on the samplers. (author)

  5. Evaluation of respiration-correlated digital tomosynthesis in lung.

    Science.gov (United States)

    Santoro, Joseph; Kriminski, Sergey; Lovelock, D Michael; Rosenzweig, Kenneth; Mostafavi, Hassan; Amols, Howard I; Mageras, Gig S

    2010-03-01

    Digital tomosynthesis (DTS) with a linear accelerator-mounted imaging system provides a means of reconstructing tomographic images from radiographic projections over a limited gantry arc, thus requiring only a few seconds to acquire. Its application in the thorax, however, often results in blurred images from respiration-induced motion. This work evaluates the feasibility of respiration-correlated (RC) DTS for soft-tissue visualization and patient positioning. Image data acquired with a gantry-mounted kilovoltage imaging system while recording respiration were retrospectively analyzed from patients receiving radiotherapy for non-small-cell lung carcinoma. Projection images spanning an approximately 30 degrees gantry arc were sorted into four respiration phase bins prior to DTS reconstruction, which uses a backprojection, followed by a procedure to suppress structures above and below the reconstruction plane of interest. The DTS images were reconstructed in planes at different depths through the patient and normal to a user-selected angle close to the center of the arc. The localization accuracy of RC-DTS was assessed via a comparison with CBCT. Evaluation of RC-DTS in eight tumors shows visible reduction in image blur caused by the respiratory motion. It also allows the visualization of tumor motion extent. The best image quality is achieved at the end-exhalation phase of the respiratory motion. Comparison of RC-DTS with respiration-correlated cone-beam CT in determining tumor position, motion extent and displacement between treatment sessions shows agreement in most cases within 2-3 mm, comparable in magnitude to the intraobserver repeatability of the measurement. These results suggest the method's applicability for soft-tissue image guidance in lung, but must be confirmed with further studies in larger numbers of patients.

  6. Redefinition and global estimation of basal ecosystem respiration rate

    Science.gov (United States)

    Yuan, W.; Luo, Y.; Li, X.; Liu, S.; Yu, G.; Zhou, T.; Bahn, M.; Black, A.; Desai, A.R.; Cescatti, A.; Marcolla, B.; Jacobs, C.; Chen, J.; Aurela, M.; Bernhofer, C.; Gielen, B.; Bohrer, G.; Cook, D.R.; Dragoni, D.; Dunn, A.L.; Gianelle, D.; Grnwald, T.; Ibrom, A.; Leclerc, M.Y.; Lindroth, A.; Liu, H.; Marchesini, L.B.; Montagnani, L.; Pita, G.; Rodeghiero, M.; Rodrigues, A.; Starr, G.; Stoy, Paul C.

    2011-01-01

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from ∼3°S to ∼70°N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual temperature can be considered as BR in empirical models. A strong correlation was found between the mean annual ER and mean annual gross primary production (GPP). Consequently, GPP, which is typically more accurately modeled, can be used to estimate BR. A light use efficiency GPP model (i.e., EC-LUE) was applied to estimate global GPP, BR and ER with input data from MERRA (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate resolution Imaging Spectroradiometer). The global ER was 103 Pg C yr −1, with the highest respiration rate over tropical forests and the lowest value in dry and high-latitude areas.

  7. Respirator studies for the National Institute for Occupational Safety and Health. Progress report, July 1, 1974--June 30, 1975

    International Nuclear Information System (INIS)

    Douglas, D.D.; Revoir, W.; Lowry, P.L.

    1976-08-01

    Respirator studies carried out in FY 1975 for the National Institute for Occupational Safety and Health were concentrated in two major areas: (1) the development of respirator test equipment and methods to improve the means of evaluating the performance of respirators, (2) the testing of respirators to obtain quantitative data to permit recommendations to be made to upgrade respirator performance criteria. Major accomplishments included obtaining man-test results on several different respirators using an anthropometrically selected test panel, determination of respirator exhalation valve leakages under static and dynamic conditions, and determination of the effects of respirator strap tension on facepiece leakage

  8. Modeling respiration from snags and coarse woody debris before and after an invasive gypsy moth disturbance

    Science.gov (United States)

    Heidi J. Renninger; Nicholas Carlo; Kenneth L. Clark; Karina V.R. Schäfer

    2014-01-01

    Although snags and coarse woody debris are a small component of ecosystem respiration, disturbances can significantly increase the mass and respiration from these carbon (C) pools. The objectives of this study were to (1) measure respiration rates of snags and coarse woody debris throughout the year in a forest previously defoliated by gypsy moths, (2) develop models...

  9. Foliar and ecosystem respiration in an old-growth tropical rain forest

    Science.gov (United States)

    Molly A. Cavaleri; Steven F. Oberbauer; Michael G. Ryan

    2008-01-01

    Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI).A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (...

  10. 77 FR 59667 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Respirable...

    Science.gov (United States)

    2012-09-28

    ... operator to protect miners from exposure to excessive dust levels. The respirable coal mine dust sampling... for OMB Review; Comment Request; Respirable Coal Mine Dust Sampling ACTION: Notice. SUMMARY: The... information collection request (ICR) titled, ``Respirable Coal Mine Dust Sampling,'' to the Office of...

  11. Phenophases alter the soil respiration-temperature relationship in an oak-dominated forest

    Science.gov (United States)

    Jared L. DeForest; Askoo Noormets; Steve G. McNulty; Ge Sun; Gwen Teeney; Jiquan Chen

    2006-01-01

    Soil respiration (SR) represents a major component of forest ecosystem respiration and is influenced seasonally by environmental factors such as temperature, soil moisture, root respiration, and litter fall. Changes in these environmental factors correspond with shifts in plant phenology. In this study, we examined the relationship between canopy phenophases @re-growth...

  12. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship

    Science.gov (United States)

    Quan Zhang; Richard P. Phillips; Stefano Manzoni; Russell L. Scott; A. Christopher Oishi; Adrien Finzi; Edoardo Daly; Rodrigo Vargas; Kimberly A. Novick

    2018-01-01

    In nearly all large-scale terrestrial ecosystem models, soil respiration is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable across sites and there is often a pronounced hysteresis in the soil respiration-temperature relationship over the course of the growing season. This...

  13. Soil respiration fluxes in a temperate mixed forest: seasonality and temperature sensitivities differ among microbial and root-rhizosphere respiration.

    Science.gov (United States)

    Ruehr, Nadine K; Buchmann, Nina

    2010-02-01

    Although soil respiration, a major CO(2) flux in terrestrial ecosystems, is known to be highly variable with time, the response of its component fluxes to temperature and phenology is less clear. Therefore, we partitioned soil respiration (SR) into microbial (MR) and root-rhizosphere respiration (RR) using small root exclusion treatments in a mixed mountain forest in Switzerland. In addition, fine root respiration (FRR) was determined with measurements of excised roots. RR and FRR were strongly related to each other (R(2) = 0.92, n = 7), with RR contributing about 46% and FRR about 32% to total SR. RR rates increased more strongly with temperature (Q(10) = 3.2) than MR rates (Q(10) = 2.3). Since the contribution of RR to SR was found to be higher during growing (50%) than during dormant periods (40%), we separated the 2-year data set into phenophases. During the growing period of 2007, the temperature sensitivity of RR (Q(10) = 2.5, R(2) = 0.62) was similar to that of MR (Q(10) = 2.2, R(2) = 0.57). However, during the dormant period of 2006/2007, RR was not related to soil temperature (R(2) = 0.44, n.s.), in contrast to MR (Q(10) = 7.2; R(2) = 0.92). To better understand the influence of plant activity on root respiration, we related RR and FRR rates to photosynthetic active radiation (both R(2) = 0.67, n = 7, P = 0.025), suggesting increased root respiration rates during times with high photosynthesis. During foliage green-up in spring 2008, i.e., from bud break to full leaf expansion, RR increased by a factor of 5, while soil temperature increased only by about 5 degrees C, leading to an extraordinary high Q(10) of 10.6; meanwhile, the contribution of RR to SR increased from 29 to 47%. This clearly shows that root respiration and its apparent temperature sensitivity highly depend on plant phenology and thus on canopy assimilation and carbon allocation belowground.

  14. Global spatiotemporal distribution of soil respiration modeled using a global database

    Science.gov (United States)

    Hashimoto, S.; Carvalhais, N.; Ito, A.; Migliavacca, M.; Nishina, K.; Reichstein, M.

    2015-07-01

    The flux of carbon dioxide from the soil to the atmosphere (soil respiration) is one of the major fluxes in the global carbon cycle. At present, the accumulated field observation data cover a wide range of geographical locations and climate conditions. However, there are still large uncertainties in the magnitude and spatiotemporal variation of global soil respiration. Using a global soil respiration data set, we developed a climate-driven model of soil respiration by modifying and updating Raich's model, and the global spatiotemporal distribution of soil respiration was examined using this model. The model was applied at a spatial resolution of 0.5°and a monthly time step. Soil respiration was divided into the heterotrophic and autotrophic components of respiration using an empirical model. The estimated mean annual global soil respiration was 91 Pg C yr-1 (between 1965 and 2012; Monte Carlo 95 % confidence interval: 87-95 Pg C yr-1) and increased at the rate of 0.09 Pg C yr-2. The contribution of soil respiration from boreal regions to the total increase in global soil respiration was on the same order of magnitude as that of tropical and temperate regions, despite a lower absolute magnitude of soil respiration in boreal regions. The estimated annual global heterotrophic respiration and global autotrophic respiration were 51 and 40 Pg C yr-1, respectively. The global soil respiration responded to the increase in air temperature at the rate of 3.3 Pg C yr-1 °C-1, and Q10 = 1.4. Our study scaled up observed soil respiration values from field measurements to estimate global soil respiration and provide a data-oriented estimate of global soil respiration. The estimates are based on a semi-empirical model parameterized with over one thousand data points. Our analysis indicates that the climate controls on soil respiration may translate into an increasing trend in global soil respiration and our analysis emphasizes the relevance of the soil carbon flux from soil to

  15. Soil water regulates the control of photosynthesis on diel hysteresis between soil respiration and temperature in a desert shrubland

    Science.gov (United States)

    Wang, Ben; Zha, Tian Shan; Jia, Xin; Gong, Jin Nan; Bourque, Charles; Feng, Wei; Tian, Yun; Wu, Bin; Qing Zhang, Yu; Peltola, Heli

    2017-09-01

    Explanations for the occurrence of hysteresis (asynchronicity) between diel soil respiration (Rs) and soil temperature (Ts) have evoked both biological and physical mechanisms. The specifics of these explanations, however, tend to vary with the particular ecosystem or biome being investigated. So far, the relative degree of control of biological and physical processes on hysteresis is not clear for drylands. This study examined the seasonal variation in diel hysteresis and its biological control in a desert-shrub ecosystem in northwest (NW) China. The study was based on continuous measurements of Rs, air temperature (Ta), temperature at the soil surface and below (Tsurf and Ts), volumetric soil water content (SWC), and photosynthesis in a dominant desert shrub (i.e., Artemisia ordosica) over an entire year in 2013. Trends in diel Rs were observed to vary with SWC over the growing season (April to October). Diel variations in Rs were more closely associated with variations in Tsurf than with photosynthesis as SWC increased, leading to Rs being in phase with Tsurf, particularly when SWC > 0.08 m3 m-3 (ratio of SWC to soil porosity = 0.26). However, as SWC decreased below 0.08 m3 m-3, diel variations in Rs were more closely related to variations in photosynthesis, leading to pronounced hysteresis between Rs and Tsurf. Incorporating photosynthesis into a Q10-function eliminated 84.2 % of the observed hysteresis, increasing the overall descriptive capability of the function. Our findings highlight a high degree of control by photosynthesis and SWC in regulating seasonal variation in diel hysteresis between Rs and temperature.

  16. Does Short-term Litter Input Manipulation Affect Soil Respiration and the Carbon-isotopic Signature of Soil Respired CO2

    Science.gov (United States)

    Cheng, X.; Wu, J.

    2016-12-01

    Global change greatly alters the quality and quantity of plant litter inputs to soils, and further impacts soil organic matter (SOM) dynamics and soil respiration. However, the process-based understanding of how soil respiration may change with future shift in litter input is not fully understood. The Detritus Input and Removal Treatment (DIRT) experiment was conducted in coniferous forest (Platycladus orientalis (Linn.) Franco) ecosystem of central China to investigate the impact of above- and belowground litter input on soil respiration and the carbon-isotopic signature of soil respired CO2. Short-term (1-2 years) litter input manipulation significantly affected soil respiration, based on annual flux values, soil respiration was 31.9%, 20.5% and 37.2% lower in no litter (NL), no root (NR) and no input (NRNL), respectively, compared to control (CK). Whereas double litter (DL) treatment increased soil respiration by 9.1% compared to CK. The recalcitrance index of carbon (RIC) and the relative abundance of fungi increased under litter removal or root exclusion treatment (NL, NR and NRNL) compared to CK. Basal soil respiration was positively related to liable C and microbial biomass and negatively related to RIC and fungi to bacteria (F: B) ratio. The carbon-isotopic signature of soil respired CO2 enriched under litter removal and no input treatment, and slightly depleted under litter addition treatment compared to CK. Our results suggest that short-term litter input manipulation can affect the soil respiration by altering substrate availability and microbial community structure, and also impact the carbon-isotopic signature of soil respired CO2 possibly duo to change in the component of soil respiration and soil microclimate.

  17. M3BA: A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring.

    Science.gov (United States)

    von Luhmann, Alexander; Wabnitz, Heidrun; Sander, Tilmann; Muller, Klaus-Robert

    2017-06-01

    For the further development of the fields of telemedicine, neurotechnology, and brain-computer interfaces, advances in hybrid multimodal signal acquisition and processing technology are invaluable. Currently, there are no commonly available hybrid devices combining bioelectrical and biooptical neurophysiological measurements [here electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS)]. Our objective was to design such an instrument in a miniaturized, customizable, and wireless form. We present here the design and evaluation of a mobile, modular, multimodal biosignal acquisition architecture (M3BA) based on a high-performance analog front-end optimized for biopotential acquisition, a microcontroller, and our openNIRS technology. The designed M3BA modules are very small configurable high-precision and low-noise modules (EEG input referred noise @ 500 SPS 1.39 μV pp , NIRS noise equivalent power NEP 750 nm = 5.92 pW pp , and NEP 850 nm = 4.77 pW pp ) with full input linearity, Bluetooth, 3-D accelerometer, and low power consumption. They support flexible user-specified biopotential reference setups and wireless body area/sensor network scenarios. Performance characterization and in-vivo experiments confirmed functionality and quality of the designed architecture. Telemedicine and assistive neurotechnology scenarios will increasingly include wearable multimodal sensors in the future. The M3BA architecture can significantly facilitate future designs for research in these and other fields that rely on customized mobile hybrid biosignal modal biosignal acquisition architecture (M3BA), multimodal, near-infrared spectroscopy (NIRS), wireless body area network (WBAN), wireless body sensor network (WBSN).

  18. Technical aspects of coupling a 6300 m3/day MSF-RO desalination plant to a PHWR nuclear power plant

    International Nuclear Information System (INIS)

    Verma, R.K.

    1998-01-01

    Presently, eight pressurised Heavy Water Reactors (PHWRs) each of 235 MWe capacity are operational in India. Four more units of similar capacity are expected to be commissioned soon. Work on two units each of 500 MWe capacity is also initiated. Extensive engineering development work has also been carried out in India, both on the MSF process and the membrane process. Based on the experience obtained from the presently operating 425 m 3 /d MSF plant and from the R and D work on the RO process, a 6300 m 3 /d MSF-RO plant (4500 m 3 /d MSF and 1800 m 3 /d RO) has been designed and the work for setting up this plant is undertaken. The steam for the heating duty in the brine heater as well as the steam for the evacuation purpose for the MSF plant is proposed to be obtained from the nuclear plant steam cycle. Sea water feed for the MSF plant as well as for the RO plant will be derived from the sea water discharge system of the nuclear power plant. Provision is made for supply of electrical power also from the power plant. The details of the heating steam supply circuit starting from the steam tapping point on the nuclear plant side to the MSF plant brine heater inlet and the arrangement for the return of condensate to the nuclear plant has been described with component requirement and various technical considerations. All the liquid streams and the steam supplied from the nuclear plant to the desalination plant as well as the product water will be monitored to ensure that there is no radioactive contamination. (author)

  19. Electrochemical properties of mixed conducting (La,M)(CoFe) oxide perovskites (M=3DSr, Ca, and Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Bates, J.L. [and others

    1996-04-01

    Electrical properties and oxygen permeation properties of solid mixed-conducting electrolytes (La,M)(CoFe) oxide perovskites (M=3DSr, Ca, and Ba) have been characterized. These materials are potentially useful as passive membranes to separate high purity oxygen from air and as the cathode in a fuel cell. Dilatometric linear expansion measurements were performed as a function of temperature and oxygen partial pressure to evaluate the stability.

  20. Conformal Gauge Mediation and Light Gravitino of Mass m3/2 < O(10) eV

    International Nuclear Information System (INIS)

    Ibe, M.; SLAC; Nakayama, Y.; Yanagida, T.T.

    2008-01-01

    We discuss a class of gauge mediated supersymmetry breaking models with conformal invariance above the messenger mass scale (conformal gauge mediation). The spectrum of the supersymmetric particles including the gravitino is uniquely determined by the messenger mass. When the conformal fixed point is strongly interacting, it predicts a light gravitino of mass m 3/2 < O(10) eV, which is attractive since such a light gravitino causes no problem in cosmology

  1. Soil Respiration of Three Mangrove Forests on Sanibel Island, Florida

    Science.gov (United States)

    Cartwright, F.; Bovard, B. D.

    2011-12-01

    Carbon cycling studies conducted in mangrove forests have typically focused on aboveground processes. Our understanding of carbon storage in these systems is therefore limited by the lack information on belowground processes such as fine root production and soil respiration. To our knowledge there exist no studies investigating temporal patterns in and environmental controls on soil respiration in multiple types of mangrove ecosystems concurrently. This study is part of a larger study on carbon storage in three mangrove forests on Sanibel Island, Florida. Here we report on eight months of soil respiration data within these forests that will ultimately be incorporated into an annual carbon budget for each habitat type. Soil respiration was monitored in the following three mangrove habitat types: a fringe mangrove forest dominated by Rhizophora mangle, a basin mangrove forest dominated by Avicennia germinans, and a higher elevation forest comprised of a mix of Avicennia germinans and Laguncularia racemosa, and non-woody salt marsh species. Beginning in June of 2010, we measured soil emissions of carbon dioxide at 5 random locations within three-100 m2 plots within each habitat type. Sampling was performed at monthly intervals and conducted over the course of three days. For each day, one plot from each habitat type was measured. In addition to soil respiration, soil temperature, salinity and gravimetric moisture content were also measured. Our data indicate the Black mangrove forest, dominated by Avicennia germinans, experiences the highest rates of soil respiration with a mean rate of 4.61 ± 0.60 μmol CO2 m-2 s-1. The mixed mangrove and salt marsh habitat has the lowest soil carbon emission rates with a mean of 2.78 ± 0.40 μmol CO2 m-2 s-1. Soil carbon effluxes appear to peak in the early part of the wet season around May to June and are lower and relatively constant the remainder of the year. Our data also suggest there are important but brief periods where

  2. Tropical rainforest carbon sink declines during El Niño as a result of reduced photosynthesis and increased respiration rates.

    Science.gov (United States)

    Cavaleri, Molly A; Coble, Adam P; Ryan, Michael G; Bauerle, William L; Loescher, Henry W; Oberbauer, Steven F

    2017-10-01

    Changes in tropical forest carbon sink strength during El Niño Southern Oscillation (ENSO) events can indicate future behavior under climate change. Previous studies revealed ˜6 Mg C ha -1  yr -1 lower net ecosystem production (NEP) during ENSO year 1998 compared with non-ENSO year 2000 in a Costa Rican tropical rainforest. We explored environmental drivers of this change and examined the contributions of ecosystem respiration (RE) and gross primary production (GPP) to this weakened carbon sink. For 1998-2000, we estimated RE using chamber-based respiration measurements, and we estimated GPP in two ways: using (1) the canopy process model MAESTRA, and (2) combined eddy covariance and chamber respiration data. MAESTRA-estimated GPP did not statistically differ from GPP estimated using approach 2, but was ˜ 28% greater than published GPP estimates for the same site and years using eddy covariance data only. A 7% increase in RE (primarily increased soil respiration) and a 10% reduction in GPP contributed equally to the difference in NEP between ENSO year 1998 and non-ENSO year 2000. A warming and drying climate for tropical forests may yield a weakened carbon sink from both decreased GPP and increased RE. Understanding physiological acclimation will be critical for the large carbon stores in these ecosystems. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Myasthenia Gravis (MG): Medical Management

    Science.gov (United States)

    ... take effect, prior to surgery or for myasthenic crisis. However, some people receive regular plasmapheresis or IVIg as a supplement to immunosuppressant drugs. Pregnancy In rare cases, pregnancy appears to trigger the onset of MG. ...

  4. Respiration, microbial biomass and soil phosphatase activity in two agroecosystems and one forest in Turrialba, Costa Rica

    Directory of Open Access Journals (Sweden)

    Wuellins Durango

    2015-06-01

    Full Text Available In order to evaluate some microbiological and biochemical characteristics, a comparative study was carried out, as related to 3 different land uses in Ultisols located in Grano de Oro, Turrialba, Costa Rica. Three soil management systems were selected (two agroecosystems, coffee and coffee-banana and forest. In each farm, 4 composite soil samples were collected, on which microbial biomass and respiration, and phosphatase enzyme activity analysis were performed. The microbial biomass in forest was statistically higher (423 mg C kg-1 compared to those in agroecosystems coffee and coffee-banana (77 and 111 mg C kg-1 respectively. Microbial respiration did not show differences due to land management (580, 560 and 570 μg CO2 g-1.day-1 in coffee, coffee-banana and forest systems, respectively. It was also determined that the enzyme phosphatase activity in forest soils was statistically higher (4432 μg p-NP g-1.h-1. The data suggest that soil conditions in the forest favor greater microbial activity and phosphatase biomass, as compared to agricultural systems.

  5. Aquatic respiration rate measurements at low oxygen concentrations.

    Directory of Open Access Journals (Sweden)

    Moritz Holtappels

    Full Text Available Despite its huge ecological importance, microbial oxygen respiration in pelagic waters is little studied, primarily due to methodological difficulties. Respiration measurements are challenging because of the required high resolution of oxygen concentration measurements. Recent improvements in oxygen sensing techniques bear great potential to overcome these limitations. Here we compare 3 different methods to measure oxygen consumption rates at low oxygen concentrations, utilizing amperometric Clark type sensors (STOX, optical sensors (optodes, and mass spectrometry in combination with (18-18O2 labeling. Oxygen concentrations and consumption rates agreed well between the different methods when applied in the same experimental setting. Oxygen consumption rates between 30 and 400 nmol L(-1 h(-1 were measured with high precision and relative standard errors of less than 3%. Rate detection limits in the range of 1 nmol L(-1 h(-1 were suitable for rate determinations in open ocean water and were lowest at the lowest applied O2 concentration.

  6. SOME METHODIC ASPECTS OF VOCAL RESPIRATION WITHIN ACADEMIC SINGING TEACHING

    Directory of Open Access Journals (Sweden)

    AGA LUDMILA

    2015-12-01

    Full Text Available This article presents the author’s reflections on the methodical problems of vocal respiration treated by Ludmila Aga as one of the essential elements of vocal technique. Based on her own rich experience as opera soloist and vocal teacher, the author reviews some theoretical principles which treat this problem. Besides, L. Aga proposes some helpful exercises for developing vocal respiration abilities. The article combines data from physiology, history and the theory of performing arts, methods of singing. Having an applied character, this work might be helpful for the singing teachers from the colleges and higher instituti­ons of music proile, as well as for the students of the Academic Singing Department.

  7. Oxidative stress negatively affects human sperm mitochondrial respiration.

    Science.gov (United States)

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Effects of long-term microgravitation exposure on cell respiration of the rat musculus soleus fibers.

    Science.gov (United States)

    Veselova, O M; Ogneva, I V; Larina, I M

    2011-07-01

    Cell respiration of the m. soleus fibers was studied in Wistar rats treated with succinic acid and exposed to microgravitation for 35 days. The results indicated that respiration rates during utilization of endogenous and exogenous substrates and the maximum respiration rate decreased in animals subjected to microgravitation without succinate treatment. The respiration rate during utilization of exogenous substrate did not increase in comparison with that on endogenous substrates. Succinic acid prevented the decrease in respiration rate on endogenous substrates and the maximum respiration rate. On the other hand, the respiration rate on exogenous substrates was reduced in vivarium control rats receiving succinate in comparison with intact control group. That could indicate changed efficiency of complex I of the respiratory chain due to reciprocal regulation of the tricarbonic acid cycle.

  9. Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells.

    Science.gov (United States)

    Sullivan, Lucas B; Gui, Dan Y; Hosios, Aaron M; Bush, Lauren N; Freinkman, Elizaveta; Vander Heiden, Matthew G

    2015-07-30

    Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Effects of bioirrigation of non-biting midges (Diptera: Chironomidae) on lake sediment respiration

    Science.gov (United States)

    Baranov, Viktor; Lewandowski, Jörg; Romeijn, Paul; Singer, Gabriel; Krause, Stefan

    2016-06-01

    Bioirrigation or the transport of fluids into the sediment matrix due to the activities of organisms such as bloodworms (larvae of Diptera, Chironomidae), has substantial impacts on sediment respiration in lakes. However, previous quantifications of bioirrigation impacts of Chironomidae have been limited by technical challenges such as the difficulty to separate faunal and bacterial respiration. This paper describes a novel method based on the bioreactive tracer resazurin for measuring respiration in-situ in non-sealed systems with constant oxygen supply. Applying this new method in microcosm experiments revealed that bioirrigation enhanced sediment respiration by up to 2.5 times. The new method is yielding lower oxygen consumption than previously reported, as it is only sensitive to aerobic heterotrophous respiration and not to other processes causing oxygen decrease. Hence it decouples the quantification of respiration of animals and inorganic oxygen consumption from microbe respiration in sediment.

  11. Respiration shutoff in Escherichia coli after far-uv irradiation

    International Nuclear Information System (INIS)

    Swenson, P.A.; Norton, I.L.

    1984-01-01

    Damage to DNA of Escherichia coli by uv, ionizing radiation and chemicals causes a number of responses that require the recA + and lexA + gene products. The responses include error prone repair (as indicated by mutagenesis), filamentation and induction of prophage lambda. Another important rec/lex response, shutoff of respiration, which occurs 60 min after exposure to uv, is studied. Objective is to understand the genetic and biochemical bases of the shutoff process and its control

  12. Quantitative respirator man-testing at Rocky Flats

    International Nuclear Information System (INIS)

    Leigh, J.D.

    The dioctyl phthalate quantitative respirator man-testing method used at Rocky Flats is outlined. Using this method, 93 persons trained to use self contained breathing equipment were tested with eight respiratory protective devices. Test results obtained with the seven devices using high efficiency particulate filters are compared to the results obtained with the self contained breathing equipment. Also comparison is made for these results to test results for 1667 other employees

  13. Matching sampler penetration curves to definitions of respirable fraction

    International Nuclear Information System (INIS)

    Mercer, T.T.

    1977-01-01

    A formal definition of 'respirable fraction' (the probability that a particle of a given size will deposit in the alveolar regions of the lung if inhaled) is useful only if there is a method of sorting out airborne contamination approximately in accordance with the definition. The matching of the definitions adopted by different organizations to the penetration curves of various types of sample is discussed. (author)

  14. Short Communication: HIV Patient Systemic Mitochondrial Respiration Improves with Exercise.

    Science.gov (United States)

    Kocher, Morgan; McDermott, Mindy; Lindsey, Rachel; Shikuma, Cecilia M; Gerschenson, Mariana; Chow, Dominic C; Kohorn, Lindsay B; Hetzler, Ronald K; Kimura, Iris F

    2017-10-01

    In HIV-infected individuals, impaired mitochondrial function may contribute to cardiometabolic disease as well as to fatigue and frailty. Aerobic exercise improves total body energy reserves; however, its impact at the cellular level is unknown. We assessed alterations in cellular bioenergetics in peripheral blood mononuclear cells (PBMC) before and after a 12-week aerobic exercise study in sedentary HIV-infected subjects on stable antiretroviral therapy who successfully completed a 12-week aerobic exercise program. In this prospective study, participants underwent supervised 20-40 min of light aerobic exercise (walking or jogging) performed three times per week for 12 weeks, gradually increasing to maintain an intensity of 50%-80% of heart rate reserve. Maximal aerobic capacity (VO 2MAX ) was assessed by a graded exercise test on a cycle ergometer before and after completion of the study. PBMC from compliant subjects (attended at least 70% of exercise sessions) were assessed for mitochondrial respiration using the Seahorse XF24 Bio-Analyzer. Seven of 24 enrolled subjects were compliant with the exercise regimen. In these individuals, a significant increase (p = .04) in VO 2MAX over 12 weeks was found with a median increase of 14%. During the same interval, a 2.45-fold increase in PBMC mitochondrial respiratory capacity (p = .04), a 5.65-fold increase in spare respiratory capacity (p = .01), and a 3.15-fold (p = .04) increase in nonmitochondrial respiration was observed. Aerobic exercise improves respiration at the cellular level. The diagnostic and prognostic value of such improved cellular respiration in the setting of chronic HIV warrants further investigation.

  15. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Science.gov (United States)

    C. Phillips; L.A. Kluber; J.P. Martin; B.A. Caldwell; B.J. Bond

    2012-01-01

    Distinct aggregations of fungal hyphae and rhizomorphs, or “mats”, formed by some genera of ectomycorrhizal (EcM) fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in western Oregon to investigate whether there was...

  16. VALORISATION TENDENCIES (POSTAVANGARDE IN RESPIRATION OF FLOWERS BY IULIAN GOGU

    Directory of Open Access Journals (Sweden)

    BARBAS VALERIA

    2017-12-01

    Full Text Available „Respiration of flowers”, signed by Iulian Gogu, is a representative creation of the ‘90s, an example of the modernization of chamber music in the Republic of Moldova, in terms of the compositional and interpretative aspects, which reflects the process of assimilation and valorisation of West European sound practices: avant-garde experiments, new aesthetics of musical material and contemporary musical language – acquiring new tendencies and compositional techniques, musical graphics, and various instrumental timbre experimentations.

  17. Independent Evaluation of The Lepestok Filtering Facepiece Respirator

    International Nuclear Information System (INIS)

    Hoover, Mark D; Vargo, George J

    2001-01-01

    The purpose of this study was to determine the protection factor of the Lepestok-200 filtering facepiece respirator by conducting a standard quantitative fit test on a panel of 25 representative adults (14 males and 11 females) using the TSI Incorporated PortaCount PlusTM quantitative fit-testing system. Each subject was tested four times. In the total of 100 tests, 95% of the overall fit factors were greater than 3, more than 80% of the overall fit factors were greater than 14, approximately 50% were greater than 86, and 20% were greater than 200. The pass-fail performance of the respirator was similar for each of the six exercises in the test series: (1) normal breathing, (2) deep breathing, (3) moving the head side to side, (4) moving the head up and down, (5) reading a passage of text out loud, and (6) normal breathing, indicating that the respirator performs equally well for each type of exercise. A significant and sustained improvement in fit factor was observed after the initial test, indicating that the subjects benefited from the knowledge gained in the first of the four quantitative fit tests. In the 75 tests conducted after the initial test for each individual, 95% of the overall fit factors were greater than 6, more than 80% of the overall fit factors were greater than 23, and 50% were greater than 116, and 20% were greater than 200. Thus, the initial learning experienced doubled the fit factor for subsequent tests. In addition, there is an indication that the Lepestok-200 may perform better on wearers with wider faces than on individuals with narrower faces. The results of this study demonstrate the effectiveness of the Lepestok-200 respirator and reinforce the general conclusion that quantitative fit-testing can make an important contribution to ensuring that proper protection factors are achieved for workers

  18. Quantitative respirator man-testing at Rocky Flats

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, J. D.

    1978-01-01

    The dioctyl phthalate quantitative respirator man-testing method used at Rocky Flats is outlined. Using this method, 93 persons trained to use self contained breathing equipment were tested with eight respiratory protective devices. Test results obtained with the seven devices using high efficiency particulate filters are compared to the results obtained with the self contained breathing equipment. Also comparison is made for these results to test results for 1667 other employees.

  19. Linear programming model can explain respiration of fermentation products

    Science.gov (United States)

    Möller, Philip; Liu, Xiaochen; Schuster, Stefan

    2018-01-01

    Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy source into lactate even in the presence of sufficient oxygen, which is an inefficient way to generate ATP. This effect also occurs in striated muscle cells, activated lymphocytes and microglia, endothelial cells and several mammalian cell types, a phenomenon termed the “Warburg effect”. The effect is paradoxical at first glance because the ATP production rate of aerobic glycolysis is much slower than that of respiration and the energy demands are better to be met by pure oxidative phosphorylation. We tackle this question by building a minimal model including three combined reactions. The new aspect in extension to earlier models is that we take into account the possible uptake and oxidation of the fermentation products. We examine the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which the objective is to maximize the ATP production rate under different combinations of constraints on enzymes. Depending on the cost of reactions and limitation of the substrates, this leads to pure respiration, pure fermentation, and a mixture of respiration and fermentation. The model predicts that fermentation products are only oxidized when glucose is scarce or its uptake is severely limited. PMID:29415045

  20. Oxygen dependence of respiration in rat spinotrapezius muscle in situ

    OpenAIRE

    Golub, Aleksander S.; Pittman, Roland N.

    2012-01-01

    The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po2 [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po...

  1. Partitioning autotrophic and heterotrophic respiration at Howland Forest

    Science.gov (United States)

    Carbone, Mariah; Hollinger, Dave; Davidson, Eric; Savage, Kathleen; Hughes, Holly

    2015-04-01

    Terrestrial ecosystem respiration is the combined flux of CO2 to the atmosphere from above- and below-ground, plant (autotrophic) and microbial (heterotrophic) sources. Flux measurements alone (e.g., from eddy covariance towers or soil chambers) cannot distinguish the contributions from these sources, which may change seasonally and respond differently to temperature and moisture. The development of improved process-based models that can predict how plants and microbes respond to changing environmental conditions (on seasonal, interannual, or decadal timescales) requires data from field observations and experiments to distinguish among these respiration sources. We tested the viability of partitioning of soil and ecosystem respiration into autotrophic and heterotrophic components with different approaches at the Howland Forest in central Maine, USA. These include an experimental manipulation using the classic root trenching approach and targeted ∆14CO2 measurements. For the isotopic measurements, we used a two-end member mass balance approach to determine the fraction of soil respiration from autotrophic and heterotrophic sources. When summed over the course of the growing season, the trenched chamber flux (heterotrophic) accounted for 53 ± 2% of the total control chamber flux. Over the four different 14C sampling periods, the heterotrophic component ranged from 35-55% and the autotrophic component ranges 45-65% of the total flux. Next steps will include assessing the value of the flux partitioning for constraining a simple ecosystem model using a model-data fusion approach to reduce uncertainties in estimates of NPP and simulation of future soil C stocks and fluxes.

  2. Linear programming model can explain respiration of fermentation products.

    Science.gov (United States)

    Möller, Philip; Liu, Xiaochen; Schuster, Stefan; Boley, Daniel

    2018-01-01

    Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy source into lactate even in the presence of sufficient oxygen, which is an inefficient way to generate ATP. This effect also occurs in striated muscle cells, activated lymphocytes and microglia, endothelial cells and several mammalian cell types, a phenomenon termed the "Warburg effect". The effect is paradoxical at first glance because the ATP production rate of aerobic glycolysis is much slower than that of respiration and the energy demands are better to be met by pure oxidative phosphorylation. We tackle this question by building a minimal model including three combined reactions. The new aspect in extension to earlier models is that we take into account the possible uptake and oxidation of the fermentation products. We examine the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which the objective is to maximize the ATP production rate under different combinations of constraints on enzymes. Depending on the cost of reactions and limitation of the substrates, this leads to pure respiration, pure fermentation, and a mixture of respiration and fermentation. The model predicts that fermentation products are only oxidized when glucose is scarce or its uptake is severely limited.

  3. Visible light alters yeast metabolic rhythms by inhibiting respiration

    OpenAIRE

    Robertson, James Brian; Davis, Chris R.; Johnson, Carl Hirschie

    2013-01-01

    In some organisms, respiration fluctuates cyclically, and these rhythms can be a sensitive gauge of metabolism. Constant or pulsatile exposure of yeast to visible wavelengths of light significantly alters and/or initiates these respiratory oscillations, revealing a further dimension of the challenges to yeast living in natural environments. Our results also have implications for the use of light as research tools—e.g., for excitation of fluorescence microscopically—even in organisms such as y...

  4. Influence of vestibular activation on respiration in humans

    Science.gov (United States)

    Monahan, Kevin D.; Sharpe, Melissa K.; Drury, Daniel; Ertl, Andrew C.; Ray, Chester A.

    2002-01-01

    The purpose of this study was to determine the effects of the semicircular canals and otolith organs on respiration in humans. On the basis of animal studies, we hypothesized that vestibular activation would elicit a vestibulorespiratory reflex. To test this hypothesis, respiratory measures, arterial blood pressure, and heart rate were measured during engagement of semicircular canals and/or otolith organs. Dynamic upright pitch and roll (15 cycles/min), which activate the otolith organs and semicircular canals, increased respiratory rate (Delta2 +/- 1 and Delta3 +/- 1 breaths/min, respectively; P < 0.05). Dynamic yaw and lateral pitch (15 cycles/min), which activate the semicircular canals, increased respiration similarly (Delta3 +/- 1 and Delta2 +/- 1, respectively; P < 0.05). Dynamic chair rotation (15 cycles/min), which mimics dynamic yaw but eliminates neck muscle afferent, increased respiration (Delta3 +/- 1; P < 0.05) comparable to dynamic yaw (15 cycles/min). Increases in respiratory rate were graded as greater responses occurred during upright (Delta5 +/- 2 breaths/min) and lateral pitch (Delta4 +/- 1) and roll (Delta5 +/- 1) performed at 30 cycles/min. Increases in breathing frequency resulted in increases in minute ventilation during most interventions. Static head-down rotation, which activates otolith organs, did not alter respiratory rate (Delta1 +/- 1 breaths/min). Collectively, these data indicate that semicircular canals, but not otolith organs or neck muscle afferents, mediate increased ventilation in humans and support the concept that vestibular activation alters respiration in humans.

  5. The importance of in vitro diagnostics in respiration allergy

    International Nuclear Information System (INIS)

    Wever, A.M.J.

    1987-01-01

    Out of the 4 types of allergic reactions, in respiration allergy the anaphylactic reaction caused by IgE antibodies is the most important. Determination of IgE with radioimmunoassay: the radio-allergo-sorbent test (Rast) and the Phadiatop (pharmacie-differential atopy test) was investigated in 248 patients with pulmonal complaints. Phadiatop can be used as a screening test and for a better application of the specific Rast-diagnostic. 1 table

  6. Plant growth and respiration re-visited: maintenance respiration defined – it is an emergent property of, not a separate process within, the system – and why the respiration : photosynthesis ratio is conservative

    Science.gov (United States)

    Thornley, John H. M.

    2011-01-01

    Background and Aims Plant growth and respiration still has unresolved issues, examined here using a model. The aims of this work are to compare the model's predictions with McCree's observation-based respiration equation which led to the ‘growth respiration/maintenance respiration paradigm’ (GMRP) – this is required to give the model credibility; to clarify the nature of maintenance respiration (MR) using a model which does not represent MR explicitly; and to examine algebraic and numerical predictions for the respiration:photosynthesis ratio. Methods A two-state variable growth model is constructed, with structure and substrate, applicable on plant to ecosystem scales. Four processes are represented: photosynthesis, growth with growth respiration (GR), senescence giving a flux towards litter, and a recycling of some of this flux. There are four significant parameters: growth efficiency, rate constants for substrate utilization and structure senescence, and fraction of structure returned to the substrate pool. Key Results The model can simulate McCree's data on respiration, providing an alternative interpretation to the GMRP. The model's parameters are related to parameters used in this paradigm. MR is defined and calculated in terms of the model's parameters in two ways: first during exponential growth at zero growth rate; and secondly at equilibrium. The approaches concur. The equilibrium respiration:photosynthesis ratio has the value of 0·4, depending only on growth efficiency and recycling fraction. Conclusions McCree's equation is an approximation that the model can describe; it is mistaken to interpret his second coefficient as a maintenance requirement. An MR rate is defined and extracted algebraically from the model. MR as a specific process is not required and may be replaced with an approach from which an MR rate emerges. The model suggests that the respiration:photosynthesis ratio is conservative because it depends on two parameters only whose

  7. Betaine is a positive regulator of mitochondrial respiration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Icksoo, E-mail: icksoolee@dankook.ac.kr

    2015-01-09

    Highlights: • Betaine enhances cytochrome c oxidase activity and mitochondrial respiration. • Betaine increases mitochondrial membrane potential and cellular energy levels. • Betaine’s anti-tumorigenic effect might be due to a reversal of the Warburg effect. - Abstract: Betaine protects cells from environmental stress and serves as a methyl donor in several biochemical pathways. It reduces cardiovascular disease risk and protects liver cells from alcoholic liver damage and nonalcoholic steatohepatitis. Its pretreatment can rescue cells exposed to toxins such as rotenone, chloroform, and LiCl. Furthermore, it has been suggested that betaine can suppress cancer cell growth in vivo and in vitro. Mitochondrial electron transport chain (ETC) complexes generate the mitochondrial membrane potential, which is essential to produce cellular energy, ATP. Reduced mitochondrial respiration and energy status have been found in many human pathological conditions including aging, cancer, and neurodegenerative disease. In this study we investigated whether betaine directly targets mitochondria. We show that betaine treatment leads to an upregulation of mitochondrial respiration and cytochrome c oxidase activity in H2.35 cells, the proposed rate limiting enzyme of ETC in vivo. Following treatment, the mitochondrial membrane potential was increased and cellular energy levels were elevated. We propose that the anti-proliferative effects of betaine on cancer cells might be due to enhanced mitochondrial function contributing to a reversal of the Warburg effect.

  8. Miniaturized test system for soil respiration induced by volatile pollutants

    International Nuclear Information System (INIS)

    Kaufmann, Karin; Chapman, Stephen J.; Campbell, Colin D.; Harms, Hauke; Hoehener, Patrick

    2006-01-01

    A miniaturized method based on 96-well microtitre plates was developed and used to study respiration in pristine and contaminated soils following addition of volatile substrates. Small soil samples were exposed to fuel components, which were volatilized from spatially separate reservoirs of 2,2,4,4,6,8,8-heptamethylnonane (HMN) as an organic carrier. Respiration was determined as CO 2 production by means of a pH-indicator and bicarbonate-containing agar, or as 14 CO 2 evolution from 14 C-labelled substrates. Substrate concentrations inducing maximum microbial activity or inhibition were determined and CO 2 production profiles examined by multivariate analysis. When high concentrations of fuel components were applied, distinction of hydrocarbon exposed soils from unexposed soil was achieved within 6 h of incubation. With low concentrations, adequate distinction was achieved after 24 h, probably as a result of community adaptation. Nutrient limitation was identified with the 14 C method for toluene, and the optimal N and P amendment determined. Further potential applications of this rapid and inexpensive method are outlined. - A new method to study soil respiration is used when volatile organic contaminants are added

  9. Coordinate regulation of cytochrome and alternative pathway respiration in tobacco.

    Science.gov (United States)

    Vanlerberghe, G C; McIntosh, L

    1992-12-01

    In suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow), inhibition of the cytochrome pathway of respiration with antimycin A induced a large increase in the capacity of the alternative pathway over a period of approximately 12 h, as confirmed in both whole cells and isolated mitochondria. The increase in alternative pathway capacity required de novo RNA and protein synthesis and correlated closely with the increase of a 35-kD alternative oxidase protein. When the cytochrome pathway of intact cells was inhibited by antimycin A, respiration proceeded exclusively through the alternative pathway, reached rates significantly higher than before antimycin A addition, and was not stimulated by p-trifluoromethoxycarbonylcyanide (FCCP). When inhibition of the cytochrome pathway was relieved, alternative pathway capacity and the level of the 35-kD alternative oxidase protein declined. Respiration rate also declined and could once again be stimulated by FCCP. These observations show that the capacities of the mitochondrial electron transport pathways can be regulated in a coordinate fashion.

  10. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    Science.gov (United States)

    McConnaughey, Ted A.; Burdett, Jim; Whelan, Joseph F.; Paull, Charles K.

    1997-02-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO 2/O 2 ratios appear to be the major controlling variable. Atmospheric CO 2/O 2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO 2 in the course of obtaining 0 2. Tissue CO 2 therefore, does not isotopically equilibrate with environmental CO 2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO 2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO 2 uptake is several times faster than respiratory CO 2 release. Photosynthesis, therefore, affects skeletal δ13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects.

  11. [The knowledge of animal respiration as a combustion phenomenon].

    Science.gov (United States)

    de Micheli, Alfredo

    2014-01-01

    The different stages leading to knowledge of the phenomenon of animal breathing are going from some writings in Corpus Hippocraticum to Aristoteles' and Galen's works, who considered the heart as the source of the animal heat. Later, Miguel Servet suggested that the inspired air can achieve other functions besides cooling the blood. After that, different explications of the animal heat were raised. About 1770, due to progress of knowledge in the chemistry field, first Mayow and later Black began to consider the animal respiration as a combustion. The important treatise Méthode de nomenclature chimique, published by Guyton de Morveau et al. in 1787 and soon after the Traité élémentaire de chimie de Lavoisier (1789) provided a solid support to Lavoisier's thought. This way on arrived to consider analogous the respiration and combustion phenomena. Studies on the animal respiration phenomenon continued in xix century and in the following century it was possible to apply thermodynamic principles to biology: "generalized thermodynamics". Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  12. A New Compendium of Soil Respiration Data for Africa

    Directory of Open Access Journals (Sweden)

    Terence Epule Epule

    2015-04-01

    Full Text Available The objective of this paper is to present to the scientific community a new dataset derived from existing literature on soil respiration in Africa. The data has thus been obtained by searching for records in peer review papers and grey literature. The main search engines used are: Scientific Citation Index (SCI database, ISI Science web and Google scholar. This data description paper has greatly advanced the number of data points on soil respiration in Africa from 4 in 2010 to 62 in 2014. The new data points are culled from 47 peer review publications and grey literature reports. The data lends its self to a lot of possible analytical methods such as correlation analysis, multiple linear regressions, artificial neural network analysis and process base modeling. The overall conclusion that can be drawn here is that this paper has greatly advanced the availability of soil respiration data in Africa by presenting all the available records that before now were only reported in different studies.

  13. Pulmo uterinus: a history of ideas on fetal respiration.

    Science.gov (United States)

    Obladen, Michael

    2017-05-24

    Theories about fetal respiration began in antiquity. Aristotle characterized pneuma as warm air, but also as the enabler of vital functions and instrument of the soul. In Galen's system of physiology, the vital spirit was carried by the umbilical arteries, the nutrients by the umbilical vein from the placenta to the fetus. In 1569 Aranzio postulated that the maternal and fetal vasculatures are distinct. From 1670 to 1690, a century before the discovery of oxygen, researchers understood that during respiration some form of exchange with the air must occur, naming the substance biolychnium, phlogiston, sal-nitro, or nitro-aerial particles. An analogy of placental and pulmonary gas exchange was described in 1674 by Mayow. In 1779, Lavoisier understood the discovery of oxygen, discarded the phlogiston theory, and based respiration physiology on gas exchange. With the invention of the spectroscope, it became possible to measure hemoglobin oxygenation, and in 1876 Zweifel proved fetal oxygen uptake. Major progress in understanding fetal gas exchange was achieved in the 20th century by the physiologists Barcroft in Cambridge and Dawes in Oxford.

  14. Cisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Santhipriya Inapurapu

    2017-01-01

    Full Text Available Objective(s: To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes in cytosol/mitochondrial compartments, reactive oxygen species production and respiratory control ratio. Results: Wild-type yeast grown on glycerol exhibited heightened sensitivity to cisplatin than yeast grown on glucose. Cisplatin (100 μM, although significantly reduced the growth of wild- type cells, only slightly altered the growth rate of Rho0 cells. Cisplatin treatment decreased both pHcyt and pHmit to a similar extent without affecting the pH difference. Cisplatin dose-dependently increased the oxidative stress in wild-type, but not in respiration-deficient Rho0 strain. Cisplatin decreased the respiratory control ratio. Conclusion: These results suggest that cisplatin toxicity is influenced by the respiratory capacity of the cells and the intracellular oxidative burden. Although cisplatin per se slightly decreased the respiration of yeast cells grown in glucose, it did not disturb the mitochondrial chemiosmotic gradient.

  15. Separation of soil respiration: a site-specific comparison of partition methods

    Science.gov (United States)

    Comeau, Louis-Pierre; Lai, Derrick Y. F.; Jinglan Cui, Jane; Farmer, Jenny

    2018-06-01

    Without accurate data on soil heterotrophic respiration (Rh), assessments of soil carbon (C) sequestration rate and C balance are challenging to produce. Accordingly, it is essential to determine the contribution of the different sources of the total soil CO2 efflux (Rs) in different ecosystems, but to date, there are still many uncertainties and unknowns regarding the soil respiration partitioning procedures currently available. This study compared the suitability and relative accuracy of five different Rs partitioning methods in a subtropical forest: (1) regression between root biomass and CO2 efflux, (2) lab incubations with minimally disturbed soil microcosm cores, (3) root exclusion bags with hand-sorted roots, (4) root exclusion bags with intact soil blocks and (5) soil δ13C-CO2 natural abundance. The relationship between Rh and soil moisture and temperature was also investigated. A qualitative evaluation table of the partition methods with five performance parameters was produced. The Rs was measured weekly from 3 February to 19 April 2017 and found to average 6.1 ± 0.3 Mg C ha-1 yr-1. During this period, the Rh measured with the in situ mesh bags with intact soil blocks and hand-sorted roots was estimated to contribute 49 ± 7 and 79 ± 3 % of Rs, respectively. The Rh percentages estimated with the root biomass regression, microcosm incubation and δ13C-CO2 natural abundance were 54 ± 41, 8-17 and 61 ± 39 %, respectively. Overall, no systematically superior or inferior Rs partition method was found. The paper discusses the strengths and weaknesses of each technique with the conclusion that combining two or more methods optimizes Rh assessment reliability.

  16. Mesozooplankton production, grazing and respiration in the Bay of Bengal: Implications for net heterotrophy

    Science.gov (United States)

    Fernandes, Veronica; Ramaiah, N.

    2016-03-01

    Mesozooplankton samples were collected from the mixed layer along a central (along 88°E) and a western transect in the Bay of Bengal during four seasons covered between 2001 and 2006 in order to investigate spatio-temporal variability in their biomass. At these stations, grazing and respiration rates were measured from live zooplankton hauled in from the surface during December 2005. Akin to the mesozooplankton "paradox" in the central and eastern Arabian Sea, biomass in the mixed layer was more or less invariant in the central and western Bay of Bengal, even as the chl a showed marginal temporal variation. By empirical equation, the mesozooplankton production rate calculated to be 70-246 mg C m- 2 d- 1 is on par with the Arabian Sea. Contrary to the conventional belief, mesozooplankton grazing impact was up to 83% on primary production (PP). Low PP coupled with very high zooplankton production (70% of PP) along with abundant bacterial production (50% of the PP; Ramaiah et al., 2009) is likely to render the Bay of Bengal net heterotrophic, especially during the spring intermonsoon. Greater estimates of fecal pellet-carbon egestion by mesozooplankton compared to the average particulate organic carbon flux in sediment traps, implies that much of the matter is recycled by heterotrophic communities in the mixed layer facilitating nutrient regeneration for phytoplankton growth. We also calculated that over a third of the primary production is channelized for basin-wide zooplankton respiration that accounts for 52 Mt C annually. In the current scenario of global warming, if low (primary) productive warm pools like the Bay of Bengal continue to be net heterotrophic, negative implications like enhanced emission of CO2 to the atmosphere, increased particulate flux to the deeper waters and greater utilization of dissolved oxygen resulting in expansion of the existing oxygen minimum zone are imminent.

  17. Bolt study - behaviour of bolts in drop accident scenarios of the Nirex 3m3 Box ILW package

    International Nuclear Information System (INIS)

    Turner, G.; Tso, C.F.

    2004-01-01

    The mission of Nirex is to provide the UK with safe, environmentally sound and publicly acceptable options for the long-term management of radioactive materials. One of the key tasks is to ensure that waste is packaged by waste producers in a form which is suitable for safe storage, transport, handling and potential disposal. In pursuit of this key requirement, Nirex has developed specifications to set the standard for the design and performance of waste packages, and has developed standard containers for the packaging of intermediate level (ILW) and some low level waste (LLW) - one of these is the 3m 3 Box for immobilised operational and decommissioning ILW. The dimension envelope of this package is 1716 mm x 1716 mm in plan with 430 mm corner radii, 1226 mm tall. The maximum loaded weight is 12 tonnes. A generic design of this container has been developed, which is a welded structure manufactured from austenitic stainless steel (EN 10088-2 steel number 1.4404). The lid is connected to the body by 28 stainless steel bolts. An extensive study was carried out to develop a robust FE model of the bolts. The specific focus of this work was to use improved bolt modelling to optimize the design of the 3m 3 Box, although this work could be applied to other bolted containers. This paper presents a summary of the findings from the study as follows: 1. Development of a FE bolt model for application in a 3m 3 Box model. 2. Development and execution of a bolt testing programme which included tensile and shear tests on a total of 88 bolts, representing four grades of stainless steel materials, three thread sizes, and two geometries at three strain rates. 3. Benchmarking of the FE bolt model that can be used with confidence in simulating waste package behaviour in drop scenarios

  18. Effects of thermal and fast neutrons and of ENU on generations M3 and M4 of Lens culinaris (medicus)

    International Nuclear Information System (INIS)

    Uhlik, J.; Urban, J.

    1976-01-01

    Plants in which the selection of the most fertile plants had not been made in the preceding generations showed a significantly lower emergence rate in the M3 and M4 generation after an ethyl nitroso urea (ENU) application, in comparison with material treated with neutrons. In the evaluation of the plants obtained after an exposure to the most effective doses in the induction of chlorophyll mutants, significant differences of the average values in relation to the control were found in the M3 generation in the number of seeds per plant after the application of both neutron radiations and ENU. In addition, after the application of thermal neutrons and ENU a significant difference was found in the average values of plant weight. A difference in the overall range of variability in relation to the control was found in plant weight after the application of neutrons and ENU, and in seed weight after the application of ENU and fast neutrons. The differences between the treated plants and controls in the M4 generation plants with fusarium disease were insignificant. The evaluation of the progenies exposed to various doses of the highest mutation effectiveness showed in the M3 generation significant differences (in relation to the control) in the mean values of plant height, seed weight, plant weight, seed proportion in plants, in the bottom-pod insertion level, and in the number of pods set. Despite a considerable attack by fusarium disease, the greatest number of plants having more seeds than 50 was selected in the M4 generation of the material exposed to the dose of 8 fast neutrons (0.95% of plants) while in the control the proportion of highly fertile plants was only 0.05%. The widest range of overall variability in the characteristics under study was found after irradiation with thermal neutrons. From this viewpoint they can be recommended for wide practical utilization. (author)

  19. [Dynamic changes in soil respiration components and their regulating factors in the Moso bamboo plantation in subtropical China].

    Science.gov (United States)

    Yang, Wen-jia; Li, Yong-fu; Jiang, Pei-kun; Zhou, Guo-mo; Liu, Juan

    2015-10-01

    Dynamic changes (from April 2013 to March 2014) in soil respiration components were investigated by Li-8100 in the Moso bamboo plantation in Lin' an City, Zhejiang Province. Results showed that the average annual values for the soil total respiration rate, heterotrophic respiration rate, and autotrophic respiration rate in the Moso bamboo plantation were 2.93, 1.92 and 1.01 imol CO2 . m-2 . s-1, respectively. The soil respiration rate and its components exhibited strongly a seasonal dynamic pattern. The maximum appeared in July 2013, and the minimum appeared in January 2014. The annual cumulative CO2 emissions through soil respiration, heterotrophic respiration, and autotrophic respiration were 37.25, 24.61 and 12.64 t CO2 . hm-2 . a-1, respectively. The soil respiration and its components showed a close relation with soil temperature of 5 cm depth, and the corresponding Q10, values at 5 cm depth were 2.05, 1.95 and 2.34, respectively. Both the soil respiration and heterotrophic respiration were correlated to soil water soluble organic C (WSOC) content, but no significant relationship between autotrophic respiration and WSOC was observed. There were no significant relationships between soil respiration components and soil moisture content or microbial biomass C. The seasonal changes in soil respiration components in the Moso bamboo plantation were predominantly controlled by the soil temperature, and the soil WSOC content was an important environmental factor controlling total soil respiration and soil heterotrophic respiration.

  20. Organic fuels for respiration in tropical river systems

    Science.gov (United States)

    Ward, N.; Keil, R. G.; Richey, J. E.; Krusche, A. V.; Medeiros, P. M.

    2011-12-01

    Watershed-derived organic matter is thought to provide anywhere from 30-90% of the organic matter in rivers (e.g. Hernes et al 2008; Spencer et al 2010). The most abundant biochemicals on land are cellulose, hemicelluloses, and lignin. Combined, they represent as much as 80% of the biomass in a typical forest and as much as 60% of the biomass in a typical field (natural or crop)(Bose et al 2009; Bridgeman et al., 2007; Hu and Zu 2006; Martens et al 2004). They are often assumed to be refractory and hard to degrade, but this assumption is at odds with virtually all observations: soils and marine sediments are not accumulating vast amounts of these compounds (Hedges and Oades, 1997), and degradation experiments suggest that cellulose, hemicelluloses and lignin are reactive and likely to be important fuels for respiration (Benner, 1991; Haddad et al, 1992; Dittmar et al, 2001; Otto and Simpson, 2006). During several trips to the lower Amazon River, incubation experiments were performed in which the biological degradation of lignin phenols was observed in order to assess the contribution of microbial respiration of terrestrially-derived macromolecules to gross respiration and CO2 gas evasion rates. Both particulate and dissolved lignin concentrations decreased by ~40% after being incubated in the dark for 5-7 days, indicating a turnover time of the entire lignin pool of 12-18 days. These results shift the paradigm that lignocellulose derived OM is highly recalcitrant, and indicate that microbial respiration of lignocellulose may play a larger role in total respiration rates/CO2 outgassing than previously thought. A simple mass balance calculation was done to test whether microbial degradation alone could explain the lignin data observed in the field. First, a theoretical particulate lignin concentration for Macapa was calculated based on the observed data at Obidos. The measured rate of particulate lignin degradation was multiplied by the transit time of water from

  1. Experimental validation of GASDECOM for High Heating Value Processed Gas mixtures (58 MJ/m3) by specialized shock tube

    International Nuclear Information System (INIS)

    Botros, K.K.; Geerligs, J.; Carlson, L.; Reed, M.

    2013-01-01

    One of the fundamental requirements of the design of pipelines is the control of propagating ductile fracture, in which the Battelle two-curve method still forms the basis of the analytical framework used throughout the industry. The GASDECOM (GAS DECOMpression) tool is typically used for calculating decompression wave speed, which is one of these two curves. It uses the BWRS (Benedict–Webb–Rubin–Starling) equation of state to idealize the decompression process as isentropic and one-dimensional. While this equation of state was developed and validated against a quite restricted range of gas compositions, GASDECOM continues to perform relatively well for compositions slightly outside the original range of BWRS. The present research was focused on examining the performance of GASDECOM for mixture compositions up to a High (gross) Heating Value (HHV) of 58 MJ/m 3 . Four tests were conducted using a specialized high pressure shock tube (42 m long, I.D. = 38.1 mm) to experimentally determine the decompression wave speeds and compare them to the predictions by GASDECOM. Two tests were conducted on a gas mixture of HHV = 52 MJ/m 3 and the other two on even richer gas mixture of HHV = 58 MJ/m 3 , all were from nominal initial pressures of 15 MPa and initial temperatures of 40 °C. The results from these tests show that decompression wave speeds are consistent with predictions of GASDECOM for gases of HHV typical of the previously validated range of BWRS. Predictions of the saturation pressure represented by the plateau pressure in the decompression wave speed curve were also in good agreement with measurements despite the fact that they occurred close to the critical point of the respective mixture compositions. -- Highlights: • Performance of GASDECOM for mixture up to HHV of 58 MJ/m3 was examined. • Experiments were conducted using a specialized high pressure shock. • Results show that decompression speeds are consistent with predictions of GASDECOM.

  2. Respirator studies for the Nuclear Regulatory Commission. Protection factors for supplied-air respirators. Progress report, October 1, 1976--September 30, 1977

    International Nuclear Information System (INIS)

    Hack, A.; Bradley, O.D.; Trujillo, A.

    1977-12-01

    This report describes the work performed during FY 1977 for the Nuclear Regulatory Commission. The Protection Factors (efficiency) provided by 25 NIOSH approved supplied-air respirators were determined while the devices were worn by a panel of anthropometrically selected test subjects. The major recommendation was that demand-type respirators should neither be used nor approved

  3. Contribution of bacterial respiration to plankton respiration from 50°N to 44°S in the Atlantic Ocean

    Science.gov (United States)

    García-Martín, E. E.; Aranguren-Gassis, M.; Hartmann, M.; Zubkov, M. V.; Serret, P.

    2017-11-01

    Marine bacteria play an important role in the global cycling of carbon and therefore in climate regulation. However, the paucity of direct measurements means that our understanding of the magnitude and variability of bacterial respiration in the ocean is poor. Estimations of respiration in the 0.2-0.8 μm size-fraction (considered as bacterial respiration), total plankton community respiration, and the contribution of bacterial respiration to total plankton community respiration were made along two latitudinal transects in the Atlantic Ocean (ca. 50°N-44°S) during 2010 and 2011. Two different methodologies were used: determination of changes in dissolved O2 concentration after standard 24 h dark bottle incubations, and measurements of in vivo reduction of 2-(ρ-iodophenyl)-3-(ρ-nitrophenyl)-5phenyl tetrazolium salt (INT). There was an overall significant correlation (r = 0.44, p community respiration estimated by both methods. Depth-integrated community respiration varied as much as threefold between regions. Maximum rates occurred in waters of the western European shelf and Patagonian shelf, and minimum rates in the North and South oligotrophic gyres. Depth-integrated bacterial respiration followed the same pattern as community respiration. There was a significantly higher cell-specific bacterial respiration in the northern subtropical gyre than in the southern subtropical gyre which suggests that bacterial carbon turnover is faster in the northern gyre. The relationships between plankton respiration and physicochemical and biological variables were different in different years. In general, INTT was correlated to both chlorophyll-a and bacterial abundance, while INT0.2-0.8 was only correlated with bacterial abundance. However, in 2010 INTT and INT0.2-0.8 were also correlated with temperature and primary production while in 2011 they were correlated with nitrate + nitrite concentration. The bacterial contribution to depth integrated community respiration was

  4. Effectiveness of dust control methods for crystalline silica and respirable suspended particulate matter exposure during manual concrete surface grinding.

    Science.gov (United States)

    Akbar-Khanzadeh, Farhang; Milz, Sheryl A; Wagner, Cynthia D; Bisesi, Michael S; Ames, April L; Khuder, Sadik; Susi, Pam; Akbar-Khanzadeh, Mahboubeh

    2010-12-01

    Concrete grinding exposes workers to unacceptable levels of crystalline silica dust, known to cause diseases such as silicosis and possibly lung cancer. This study examined the influence of major factors of exposure and effectiveness of existing dust control methods by simulating field concrete grinding in an enclosed workplace laboratory. Air was monitored during 201 concrete grinding sessions while using a variety of grinders, accessories, and existing dust control methods, including general ventilation (GV), local exhaust ventilation (LEV), and wet grinding. Task-specific geometric mean (GM) of respirable crystalline silica dust concentrations (mg/m³ for LEV:HEPA-, LEV:Shop-vac-, wet-, and uncontrolled-grinding, while GV was off/on, were 0.17/0.09, 0.57/0.13, 1.11/0.44, and 23.1/6.80, respectively. Silica dust concentrations (mg/m³ using 100-125 mm (4-5 inch) and 180 mm (7 inch) grinding cups were 0.53/0.22 and 2.43/0.56, respectively. GM concentrations of silica dust were significantly lower for (1) GV on (66.0%) vs. off, and (2) LEV:HEPA- (99.0%), LEV:Shop-vac- (98.1%) or wet- (94.4%) vs. uncontrolled-grinding. Task-specific GM of respirable suspended particulate matter (RSP) concentrations (mg/m³ for LEV:HEPA-, LEV:Shop-vac-, wet-, and uncontrolled grinding, while GV was off/on, were 1.58/0.63, 7.20/1.15, 9.52/4.13, and 152/47.8, respectively. GM concentrations of RSP using 100-125 mm and 180 mm grinding cups were 4.78/1.62 and 22.2/5.06, respectively. GM concentrations of RSP were significantly lower for (1) GV on (70.2%) vs. off, and (2) LEV:HEPA- (98.9%), LEV:Shop-vac- (96.9%) or wet- (92.6%) vs. uncontrolled grinding. Silica dust and RSP were not significantly affected by (1) orientation of grinding surfaces (vertical vs. inclined); (2) water flow rates for wet grinding; (3) length of task-specific sampling time; or, (4) among cup sizes of 100, 115 or 125 mm. No combination of factors or control methods reduced an 8-hr exposure level to below the

  5. Global variability in leaf respiration in relation to climate and leaf traits

    Science.gov (United States)

    Atkin, Owen K.

    2015-04-01

    Leaf respiration plays a vital role in regulating ecosystem functioning and the Earth's climate. Because of this, it is imperative that that Earth-system, climate and ecosystem-level models be able to accurately predict variations in rates of leaf respiration. In the field of photosynthesis research, the F/vC/B model has enabled modellers to accurately predict variations in photosynthesis through time and space. By contrast, we lack an equivalent biochemical model to predict variations in leaf respiration. Consequently, we need to rely on phenomenological approaches to model variations in respiration across the Earth's surface. Such approaches require that we develop a thorough understanding of how rates of respiration vary among species and whether global environmental gradients play a role in determining variations in leaf respiration. Dealing with these issues requires that data sets be assembled on rates of leaf respiration in biomes across the Earth's surface. In this talk, I will use a newly-assembled global database on leaf respiration and associated traits (including photosynthesis) to highlight variation in leaf respiration (and the balance between respiration and photosynthesis) across global gradients in growth temperature and aridity.

  6. Effects of simulated warming on soil respiration to XiaoPo lake

    Science.gov (United States)

    Zhao, Shuangkai; Chen, Kelong; Wu, Chengyong; Mao, Yahui

    2018-02-01

    The main flux of carbon cycling in terrestrial and atmospheric ecosystems is soil respiration, and soil respiration is one of the main ways of soil carbon output. This is of great significance to explore the dynamic changes of soil respiration rate and its effect on temperature rise, and the correlation between environmental factors and soil respiration. In this study, we used the open soil carbon flux measurement system (LI-8100, LI-COR, NE) in the experimental area of the XiaoPo Lake wetland in the Qinghai Lake Basin, and the Kobresia (Rs) were measured, and the soil respiration was simulated by simulated temperature (OTC) and natural state. The results showed that the temperature of 5 cm soil was 1.37 °C higher than that of the control during the experiment, and the effect of warming was obvious. The respiration rate of soil under warming and natural conditions showed obvious diurnal variation and monthly variation. The effect of warming on soil respiration rate was promoted and the effect of precipitation on soil respiration rate was inhibited. Further studies have shown that the relationship between soil respiration and 5 cm soil temperature under the control and warming treatments can be described by the exponential equation, and the correlation analysis between the two plots shows a very significant exponential relationship (p main influencing factor of soil respiration in this region.

  7. An accurate calibration method for high pressure vibrating tube densimeters in the density interval (700 to 1600) kg . m-3

    International Nuclear Information System (INIS)

    Sanmamed, Yolanda A.; Dopazo-Paz, Ana; Gonzalez-Salgado, Diego; Troncoso, Jacobo; Romani, Luis

    2009-01-01

    A calibration procedure of vibrating tube densimeters for density measurement of liquids in the intervals (700 to 1600) kg . m -3 , (283.15 to 323.15) K, and (0.1 to 60) MPa is presented. It is based on the modelization of the vibrating tube as a thick-tube clamped at one end (cantilever) whose stress and thermal behaviour follows the ideas proposed in the Forced Path Mechanical Calibration model (FPMC). Model parameters are determined using two calibration fluids with densities certified at atmospheric pressure (dodecane and tetracholoroethylene) and a third one with densities known as a function of pressure (water). It is applied to the Anton Paar 512P densimeter, obtaining density measurements with an expanded uncertainty less than 0.2 kg . m -3 in the working intervals. This accuracy comes from the combination of several factors: densimeter behaves linearly in the working density interval, densities of both calibration fluids cover that interval and they have a very low uncertainty, and the mechanical behaviour of the tube is well characterized by the considered model. The main application of this method is the precise measurement of high density fluids for which most of the calibration procedures are inaccurate.

  8. Synthesis of 99mTc-oxybutynin for M3-receptor-mediated imaging of urinary bladder

    International Nuclear Information System (INIS)

    Moustapha, M.E.; Benha University, Benha; Motaleb, M.A.; Ibrahim, I.T.

    2011-01-01

    Radiolabeling of oxybutynin, a muscarinic acetylcholine (mACh) receptor antagonist agent with 99m Tc is of considerable interest for imaging of urinary bladder. This study is aimed to optimize radiolabeling yield of oxybutynin with 99m Tc using SnCl 2 x 2H 2 O as a reducing agent with respect to factors that affect the reaction conditions such as oxybutynin amount, stannous chloride amount, reaction time and pH of the reaction mixture. In vitro stability of the radiolabeled complex was checked and it was found to be stable for up to 8 h. 99m Tc-oxybutynin was injected via subcutaneous and intravenous administration routes into normal Sprague-Dawley rats. Biodistribution studies have revealed that 99m Tc-oxybutynin exhibits high affinity and specificity for the muscarinic M 3 subtype located on the smooth muscle of urinary bladder relative to the M 1 and M 2 subtypes of the G protein coupled receptor (GPCR) superfamily. In vivo uptake of subcutaneous 99m Tc-oxybutynin in urinary bladder was 19.6 ± 0.42% ID at 0.5 h, whereas in intravenous administration route the accumulation in the urinary bladder was found to be 9.4 ± 0.31% ID at 0.5 h post injection. Administration of cold oxybutynin effectively blocked urinary bladder uptake and further confirms the high specificity of this complex for the M 3 receptor. (author)

  9. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada.

    Science.gov (United States)

    Tang, Jianwu; Qi, Ye; Xu, Ming; Misson, Laurent; Goldstein, Allen H

    2005-01-01

    Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water continuously in a young ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) plantation in the Sierra Nevada Mountains in California from June 1998 to May 2000 (before a thinning that removed 30% of the biomass), and from May to December 2001 (after thinning). Thinning increased the spatial homogeneity of soil temperature and respiration. We conducted a multivariate analysis with two independent variables of soil temperature and water and a categorical variable representing the thinning event to simulate soil respiration and assess the effect of thinning. Thinning did not change the sensitivity of soil respiration to temperature or to water, but decreased total soil respiration by 13% at a given temperature and water content. This decrease in soil respiration was likely associated with the decrease in root density after thinning. With a model driven by continuous soil temperature and water time series, we estimated that total soil respiration was 948, 949 and 831 g C m(-2) year(-1) in the years 1999, 2000 and 2001, respectively. Although thinning reduced soil respiration at a given temperature and water content, because of natural climate variability and the thinning effect on soil temperature and water, actual cumulative soil respiration showed no clear trend following thinning. We conclude that the effect of forest thinning on soil respiration is the combined result of a decrease in root respiration, an increase in soil organic matter, and changes in soil temperature and water due to both thinning and interannual climate variability.

  10. Spatial and temporal shifts in gross primary productivity, respiration, and nutrient concentrations in urban streams impacted by wastewater treatment plant effluent

    Science.gov (United States)

    Ledford, S. H.; Toran, L.

    2017-12-01

    Impacts of wastewater treatment plant effluent on nutrient retention and stream productivity are highly varied. The working theory has been that large pulses of nutrients from plants may hinder in-stream nutrient retention. We evaluated nitrate, total dissolved phosphorus, and dissolved oxygen in Wissahickon Creek, an urban third-order stream in Montgomery and Philadelphia counties, PA, that receives effluent from four wastewater treatment plants. Wastewater treatment plant effluent had nitrate concentrations of 15-30 mg N/L and total dissolved phosphorus of 0.3 to 1.8 mg/L. Seasonal longitudinal water quality samples showed nitrate concentrations were highest in the fall, peaking at 22 mg N/L, due to low baseflow, but total dissolved phosphorous concentrations were highest in the spring, reaching 0.6 mg/L. Diurnal dissolved oxygen patterns above and below one of the treatment plants provided estimates of gross primary productivity (GPP) and ecosystem respiration (ER). A site 1 km below effluent discharge had higher GPP in April (80 g O2 m-2 d-1) than the site above the plant (28 g O2 m-2 d-1). The pulse in productivity did not continue downstream, as the site 3 km below the plant had GPP of only 12 g O2 m-2 d-1. Productivity fell in June to 1-2 g O2 m-2 d-1 and the differences in productivity above and below plants were minimal. Ecosystem respiration followed a similar pattern in April, increasing from -17 g O2 m-2 d-1 above the plant to -47 g O2 m-2 d-1 1 km below the plant, then decreasing to -8 g O2 m-2 d-1 3 km below the plant. Respiration dropped to -3 g O2 m-2 d-1 above the plant in June but only fell to -9 to -10 g O2 m-2 d-1 at the two downstream sites. These findings indicate that large nutrient pulses from wastewater treatment plants spur productivity and respiration, but that these increases may be strongly seasonally dependent. Examining in-stream productivity and respiration is critical in wastewater impacted streams to understanding the seasonal and

  11. The alternative oxidase mediated respiration contributes to growth, resistance to hyperosmotic media and accumulation of secondary metabolites in three species

    OpenAIRE

    Sitaramam, V.; Pachapurkar, Shilpa; Gokhale, Trupti

    2008-01-01

    Plant respiration, similar to respiration in animal mitochondria, exhibits both osmosensitive and insensitive components with the clear distinction that the insensitive respiration in plants is quantitatively better described as ‘less’ sensitive rather than ‘insensitive’. Salicylic hydroxamic acid (SHAM)-sensitive respiration was compared with the respiration sensitive to other inhibitors in rice, yeast and Dunaliella salina. The influence of SHAM was largely in the osmotically less sensitive...

  12. Effect of biochar produced at different pyrolysis temperature on the soil respiration of abandoned mine soil

    Science.gov (United States)

    Kim, Yong Seong; Kim, Juhee; Hwang, Wonjae; Hyun, Seunghun

    2015-04-01

    infrared gas sensor, and these data were sent to a data logger. During the measuring periods, the cumulative CO2 emission were similar between the control (516.8 mg-CO2 kg-1-soil) and BC4 5% mixture (519.3 mg-CO2 kg-1-soil), while BC7 5% mixture was significantly decreased (356.1 mg-CO2 kg-1-soil) compared to other treatment and control. Because the degradation rate of biochar generally increased with decreasing pyrolysis temperature, this result suggest that the soil respiration rates of biochar amended soils are affected by physico-chemical properties of biochar during early incubation periods (about 1 weeks), For example, surface properties of used biochars, which are related to adsorption of soil organic matter and CO2, have different properties with pyrolysis temperature such as specific surface area (BC4=5.08 m2g-1; BC7=260.75 m2 g-1, respectively), average pore diameter (BC4=4,673 nm; BC7=2,606 nm, respectively), and functional groups of biochar surface. However, there was not clear evidence of biochar-mine soil interaction process, because of the short observation periods. Future work should focus on the adsorption of CO2 and soil organic matter of biochar and soil-biochar interaction with long time periods and various biological test.

  13. Concurrency Control in the Problem of Automatic Substitution of the Dataflow Network Agent on Smart-M3 Platform and in the Internet of Things

    Directory of Open Access Journals (Sweden)

    S. I. Balandin

    2012-01-01

    Full Text Available The paper describes implementation of dataflow networks based on Smart-M3 platform for use cases related to the Internet of Things. The mechanism for automatic substitution of computational agents created on top of Smart-M3 platform is described. The paper reviews concurrency issues of the developed solution regarding Smart-M3 platform, as well as in the broader context of the Internet of Things.

  14. M3 receptor is involved in the effect of penehyclidine hydrochloride reduced endothelial injury in LPS-stimulated human pulmonary microvascular endothelial cell.

    Science.gov (United States)

    Yuan, Qinghong; Xiao, Fei; Liu, Qiangsheng; Zheng, Fei; Shen, Shiwen; He, Qianwen; Chen, Kai; Wang, Yanlin; Zhang, Zongze; Zhan, Jia

    2018-02-01

    LPS has been recently shown to induce muscarinic acetylcholine 3 receptor (M 3 receptor) expression and penehyclidine hydrochloride (PHC) is an anticholinergic drug which could block the expression of M 3 receptor. PHC has been demonstrated to perform protective effect on cell injury. This study is to investigate whether the effect of PHC on microvascular endothelial injury is related to its inhibition of M 3 receptor or not. HPMVECs were treated with specific M 3 receptor shRNA or PBS, and randomly divided into LPS group (A group), LPS+PHC group (B group), LPS + M 3 shRNA group (C group) and LPS + PHC + M 3 shRNA group (D group). Cells were collected at 60 min after LPS treatment to measure levels of LDH, endothelial permeability, TNF-α and IL-6 levels, NF-κB p65 activation, I-κB protein expression, p38MAPK, and ERK1/2 activations as well as M 3 mRNA expression. PHC could decrease LDH levels, cell permeability, TNF-α and IL-6 levels, p38 MAPK, ERK1/2, NF-κB p65 activations and M 3 mRNA expressions compared with LPS group. When M 3 receptor was silence, the changes of these indices were much more obvious. These findings suggest that M 3 receptor plays an important role in LPS-induced pulmonary microvascular endothelial injury, which is regulated through NF-κB p65 and MAPK activation. And knockout of M 3 receptor could attenuate LPS-induced pulmonary microvascular endothelial injury. Regulative effects of PHC on pulmonary microvascular permeability and NF-κB p65 as well as MAPK activations are including but not limited to inhibition of M 3 receptor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies

    Science.gov (United States)

    Kramer, G.Y.; Besse, S.; Dhingra, D.; Nettles, J.; Klima, R.; Garrick-Bethell, I.; Clark, Roger N.; Combe, J.-P.; Head, J. W.; Taylor, L.A.; Pieters, C.M.; Boardman, J.; McCord, T.B.

    2011-01-01

    We examined the lunar swirls using data from the Moon Mineralogy Mapper (M3). The improved spectral and spatial resolution of M3 over previous spectral imaging data facilitates distinction of subtle spectral differences, and provides new information about the nature of these enigmatic features. We characterized spectral features of the swirls, interswirl regions (dark lanes), and surrounding terrain for each of three focus regions: Reiner Gamma, Gerasimovich, and Mare Ingenii. We used Principle Component Analysis to identify spectrally distinct surfaces at each focus region, and characterize the spectral features that distinguish them. We compared spectra from small, recent impact craters with the mature soils into which they penetrated to examine differences in maturation trends on- and off-swirl. Fresh, on-swirl crater spectra are higher albedo, exhibit a wider range in albedos and have well-preserved mafic absorption features compared with fresh off-swirl craters. Albedoand mafic absorptions are still evident in undisturbed, on-swirl surface soils, suggesting the maturation process is retarded. The spectral continuum is more concave compared with off-swirl spectra; a result of the limited spectral reddening being mostly constrained to wavelengths less than ∼1500 nm. Off-swirl spectra show very little reddening or change in continuum shape across the entire M3 spectral range. Off-swirl spectra are dark, have attenuated absorption features, and the narrow range in off-swirl albedos suggests off-swirl regions mature rapidly. Spectral parameter maps depicting the relative OH surface abundance for each of our three swirl focus regions were created using the depth of the hydroxyl absorption feature at 2.82 μm. For each of the studied regions, the 2.82 μm absorption feature is significantly weaker on-swirl than off-swirl, indicating the swirls are depleted in OH relative to their surroundings. The spectral characteristics of the swirls and adjacent terrains

  16. Inhibition of mitochondrial respiration by the anticancer agent 2-methoxyestradiol

    International Nuclear Information System (INIS)

    Hagen, Thilo; D'Amico, Gabriela; Quintero, Marisol; Palacios-Callender, Miriam; Hollis, Veronica; Lam, Francis; Moncada, Salvador

    2004-01-01

    2-Methoxyestradiol (2ME2), a naturally occurring metabolite of estradiol, is known to have antiproliferative, antiangiogenic, and proapoptotic activity. Mechanistically, 2ME2 has been shown to downregulate hypoxia-inducible factor 1α (HIF1α) and to induce apoptosis in tumour cells by generating reactive oxygen species (ROS). In this study we report that 2ME2 inhibits mitochondrial respiration in both intact cells and submitochondrial particles, and that this effect is due to inhibition of complex I of the mitochondrial electron transport chain (ETC). The prevention by 2ME2 of hypoxia-induced stabilisation of HIF1α in HEK293 cells was found not to be due to an effect on HIF1α synthesis but rather to an effect on protein degradation. This is in agreement with our recent observation using other inhibitors of mitochondrial respiration which bring about rapid degradation of HIF1α in hypoxia due to increased availability of oxygen and reactivation of prolyl hydroxylases. The concentrations of 2ME2 that inhibited complex I also induced the generation of ROS. 2ME2 did not, however, cause generation of ROS in 143B rho - cells, which lack a functional mitochondrial ETC. We conclude that inhibition of mitochondrial respiration explains, at least in part, the effect of 2ME2 on hypoxia-dependent HIF1α stabilisation and cellular ROS production. Since these actions of 2ME2 occur at higher concentrations than those known to inhibit cell proliferation, it remains to be established whether they contribute to its therapeutic effect

  17. Oxygen dependence of respiration in rat spinotrapezius muscle in situ

    Science.gov (United States)

    Pittman, Roland N.

    2012-01-01

    The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po2 [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po2 dependence of oxygen consumption, V̇o2, proportional to the rate of Po2 decrease. Fitting equations obtained from a model of heterogeneous intracellular Po2 were applied to recover the parameters describing respiration in muscle fibers, with a predicted sigmoidal shape for the dependence of V̇o2 on Po2. This curve consists of two regions connected by the point for critical Po2 of the cell (i.e., Po2 at the sarcolemma when the center of the cell becomes anoxic). The critical Po2 was below the Po2 for half-maximal respiratory rate (P50) for the cells. In six muscles at rest, the rate of oxygen consumption was 139 ± 6 nl O2/cm3·s and mitochondrial P50 was k = 10.5 ± 0.8 mmHg. The range of Po2 values inside the muscle fibers was found to be 4–5 mmHg at the critical Po2. The oxygen dependence of respiration can be studied in thin muscles under different experimental conditions. In resting muscle, the critical Po2 was substantially lower than the interstitial Po2 of 53 ± 2 mmHg, a finding that indicates that V̇o2 under this circumstance is independent of oxygen supply and is discordant with the conventional hypothesis of metabolic regulation of the oxygen supply to tissue. PMID:22523254

  18. Anaerobic respiration of Escherichia coli in the mouse intestine.

    Science.gov (United States)

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in

  19. Mass-specific respiration of mesozooplankton and its role in the maintenance of an oxygen-deficient ecological barrier (BEDOX) in the upwelling zone off Chile upon presence of a shallow oxygen minimum zone

    Science.gov (United States)

    Donoso, Katty; Escribano, Ruben

    2014-01-01

    A shallow oxygen minimum zone (OMZ) in the coastal upwelling zone off Chile may vertically confine most zooplankton to a narrow (oxygen consumption of the mesozooplankton community obtained in Bay of Mejillones, northern Chile (23°S) in May 2010, December 2010 and August 2011. Mass-specific respiration rates were in the range of 8.2-24.5 μmol O2 mg dry mass- 1 day- 1, at an average temperature of 12 °C. Estimates of the mesozooplankton biomass in the water column indicated that its aerobic respiration may remove daily a maximum of about 20% of oxygen available at the base of the oxycline. Since previous work indicates that zooplankton aggregate near the base of the oxycline, the impact of aerobic respiration on oxygen content might be even stronger at this depth. Mesozooplankton respiration, along with community respiration by microorganisms near the base of the oxycline and a strongly stratified condition (limiting vertical flux of O2), are suggested as being critical factors causing and maintaining a persistent subsurface oxygen-deficient ecological barrier (BEDOX) in the upwelling zone. This BEDOX layer can have a major role in affecting and regulating zooplankton distribution and their dynamics in the highly productive coastal upwelling zone of the Humboldt Current System.

  20. Novel method for detection of Sleep Apnoea using respiration signals

    DEFF Research Database (Denmark)

    Nielsen, Kristine Carmes; Kempfner, Lykke; Sørensen, Helge Bjarup Dissing

    2014-01-01

    desaturations > 3%, extracted from the thorax and abdomen respiration effort belts, and the oxyhemoglobin saturation (SaO2), fed to an Elastic Net classifier and validated according to American Academy of Sleep Medicine (AASM) using the patients' AHI value. The method was applied to 109 patient recordings......Polysomnography (PSG) studies are considered the “gold standard” for the diagnosis of Sleep Apnoea (SA). Identifying cessations of breathing from long-lasting PSG recordings manually is a labour-intensive and time-consuming task for sleep specialist, associated with inter-scorer variability...

  1. Elements in the canine distemper virus M 3' UTR contribute to control of replication efficiency and virulence.

    Directory of Open Access Journals (Sweden)

    Danielle E Anderson

    Full Text Available Canine distemper virus (CDV is a negative-sense, single-stranded RNA virus within the genus Morbillivirus and the family Paramyxoviridae. The Morbillivirus genome is composed of six transcriptional units that are separated by untranslated regions (UTRs, which are relatively uniform in length, with the exception of the UTR between the matrix (M and fusion (F genes. This UTR is at least three times longer and in the case of CDV also highly variable. Exchange of the M-F region between different CDV strains did not affect virulence or disease phenotype, demonstrating that this region is functionally interchangeable. Viruses carrying the deletions in the M 3' UTR replicated more efficiently, which correlated with a reduction of virulence, suggesting that overall length as well as specific sequence motifs distributed throughout the region contribute to virulence.

  2. Photo-fermentative hydrogen production in a 4m3 baffled reactor: Effects of hydraulic retention time.

    Science.gov (United States)

    Zhang, Quanguo; Lu, Chaoyang; Lee, Duu-Jong; Lee, Yu-Jen; Zhang, Zhiping; Zhou, Xuehua; Hu, Jianjun; Wang, Yi; Jiang, Danping; He, Chao; Zhang, Tian

    2017-09-01

    A 4m 3 pilot-scale baffled continuous-flow photoreactor with four sequential chambers (#1-#4) was established and tested to evaluate its photo-fermentative hydrogen production from wastewater that contains (10g/L glucose using a functional consortium at 30°C, under light with an intensity of 3000±200lux with a hydraulic retention time (HRT) of 24-72h. The hydrogen production rate and the broth characteristics varied significantly in the flow direction. The hydrogen production rate was highest in chamber #1, and lower in chambers #2-#4 at an HRT of 72h, while the peak production rate shifted to the latter chambers as the HRT was shortened. The overall H 2 production rate increased as HRT decreased, but was not consistent with the predictions that were based on the complete-mixing assumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of preliminary neutron irradiation on helium blistering of 0Kh16N15M3B steel

    International Nuclear Information System (INIS)

    Chernov, I.I.; Kalin, B.A.; Skorov, D.M.; Shishkin, G.N.; Ivanov, M.V.

    1982-01-01

    The method of electron microscopy has been applied to investigate the effect of preliminary neutron irradiation on the OKh16N15M3B steel blistering under irradiation by 20 keV helium ions with (1-10)x10 21 ion/m 2 doses at the temperature below 373 K. It is shown that neutron irradiation shifts critical doses of blister formation and intense scaling towards higher doses. But after the incubation period the erosion of steel preliminary neutron irradiated grows with the increase of helium ion dose above 7x10 21 ion/m 2 . Short-term heating of neutron irradiated samples during 15 min at 1173 K does not practically affect the beginning of intense scaling of the surface

  4. PERANCANGAN MODEL AIR ALIRAN SILANG (CROSS FLOW TURBINE DENGAN HEAD 2 m DAN DEBIT 0,03 m3/s

    Directory of Open Access Journals (Sweden)

    Ridwan Ridwan

    2017-01-01

    Full Text Available Pembangkit listrik tenaga mikrohidro merupakan pembangkit listrik skala kecil yang menggunakan air sebagai penggeraknya dan penggerak mula adalah turbin. Sistem pembangkit ini sangat tepat digunakan di pedesaan karena sistem ini mudah dibuat, menghasilkan daya listrik yang cukup besar dan biaya pembuatan yang lebih relatif murah. Atas dasar diatas maka perlu dirancang suatu turbin yang mendukung sistem pembangkit ini, diantaranya adalah Turbin Aliran Silang. Untuk merancang sebuah turbin air agar tidak terjadi kesalahan dalam perancangan (seperti hal-nya biaya pembuatannya maka dilakukan perancangan prototipenya. Sebuah prototipe Turbin Aliran Silang dirancang dalam kegiatan tugas akhir ini dengan debit (Q = 0,03  m3/s, head (H = 2 m dengan efisiensi 0,80. Spesifikasi teknik utama dari hasil perancangan turbin adalah diameter runner (D = 0,195 m dengan putaran turbin 281,39 rpm daya keluaran efektif sebesar 470,4 W.

  5. Effects of minimal processing on the respiration rate and quality of rambutan cv. ‘Rong-Rien’

    Directory of Open Access Journals (Sweden)

    Buncha Ooraikul

    2008-04-01

    Full Text Available Respiration rate at 4oC and minimal processing of rambutan cv. ‘Rong-Rien’ were investigated. Rambutan was harvested from Amphur Ban Na San, Surat Thani Province, at the stage when its skin was turning into a combination of red, green and yellow. After harvesting, the fruits were size-graded to 27-30 fruits/kg, hydrocooled to 14oC, packed with ice in Styrofoam boxes and transported to the laboratory at Prince of Songkla University within 6 h. The respiration rate of fresh rambutan fruits was monitored. For minimal processing, the fruits were soaked in warm solution (55oC of 100 ppm sodium hypochlorite for one min and immediately cooled in cold water until their internal temperature reached 14oC. The minimal process included peeling, with and without coring. The peeled and peeled and cored rambutan samples were immersed in a solution of 0.5% citric acid + 0.5% CaCl2 at 4oC for 2 min. The average respiration rates (within 6 h at 4oC of whole fruit, peeled, and peeled and cored rambutan samples were measured and found to be 122, 134 and 143 mg CO2/kg/h, respectively. These findings indicated that a preparation style as peeled rambutan without coring, nylon/LLDPE bag, storage temperature of 4.0±1oC, were suitably applied for processed rambutans. To obtain a longer extended shelf life (>12 days of minimally processed peeled rambutans, further study on food additives, including acidulants and preservative used and gas composition in modified atmosphere packaging (MAP is needed.

  6. Altered trafficking and unfolded protein response induction as a result of M3 muscarinic receptor impaired N-glycosylation.

    Science.gov (United States)

    Romero-Fernandez, Wilber; Borroto-Escuela, Dasiel O; Alea, Mileidys Perez; Garcia-Mesa, Yoelvis; Garriga, Pere

    2011-12-01

    The human M(3) muscarinic acetylcholine receptor is present in both the central and peripheral nervous system, and it is involved in the pathophysiology of several neurodegenerative and autoimmune diseases. We suggested a possible N-glycosylation map for the M(3) muscarinic receptor expressed in COS-7 cells. Here, we examined the role that N-linked glycans play in the folding and in the cell surface trafficking of this receptor. The five potential asparagine-linked glycosylation sites in the muscarinic receptor were mutated and transiently expressed in COS-7 cells. The elimination of N-glycan attachment sites did not affect the cellular expression levels of the receptor. However, proper receptor localization to the plasma membrane was affected as suggested by reduced [(3)H]-N-methylscopolamine binding. Confocal microscopy confirmed this observation and showed that the nonglycosylated receptor was primarily localized in the intracellular compartments. The mutant variant showed an increase in phosphorylation of the α-subunit of eukaryote initiation factor 2, and other well-known endoplasmic reticulum stress markers of the unfolded protein response pathway, which further supports the proposal of the improper intracellular accumulation of the nonglycosylated receptor. The receptor devoid of glycans showed more susceptibility to events that culminate in apoptosis reducing cell viability. Our findings suggest up-regulation of pro-apoptotic Bax protein, down-regulation of anti-apoptotic Bcl-2, and cleavage of caspase-3 effectors. Collectively, our data provide experimental evidence of the critical role that N-glycan chains play in determining muscarinic receptor distribution, localization, as well as cell integrity. © The Author 2011. Published by Oxford University Press. All rights reserved.

  7. Neutron Fluence Evaluation of Reactor Internal Structure Using 3D Transport Calculation Code, RAPTOR-M3G

    International Nuclear Information System (INIS)

    Maeng, YoungJae; Lim, MiJoung; Kim, KyungSik; Cho, YoungKi; Yoo, ChoonSung; Kim, ByoungChul

    2015-01-01

    Age-related degradation mechanisms are including the irradiation-assisted stress corrosion cracking(IASCC), void swelling, stress relaxation, fatigue, and etc. A lot of Baffle Former Bolts(BFBs) was installed at the former plate ends between baffle and barrel structure. These would undergo severe experiences, which are high temperature and pressure, bypass water flow and neutron exposure and have some radioactive limitation in inspecting their integrity. The objectives of this paper is to evaluate fast neutron fluence(n/cm 2 , E>1.0MeV) for PWR internals using 3D transport calculation code, RAPTOR-M3G, and to figure out a strategy to manage the effects of aging in PWR internals. One of age-related degradation mechanisms, IASCC, which is affected by fast neutron exposure rate, has been currently issued for PWR internals and has 2 x 10 21 (n/cm 2 ) of the threshold value by MRP-175. Because a lot of BFBs was installed around the internal components, closer inspections are required. As part of an aging management for Kori unit 2, 3D transport calculation code, RAPTOR-M3G, was applied for determining fast neutron fluence at baffle, barrel and former plates regions. As a result, the fast neutron fluence exceeds the screening or threshold values of IASCC in all of baffle, barrel and former plate region. And the most significant region is the baffle because it is located closest to the core. In addition, some regions including former plate tend to be more damaged because of less moderate ability than water. In conclusion, Ice's has been progressed for PWR internals of Kori unit 2. Several regions of internal components were damaged by fast neutron exposure and increase in size as time goes by

  8. Insulin resistance in HIV-infected youth is associated with decreased mitochondrial respiration.

    Science.gov (United States)

    Takemoto, Jody K; Miller, Tracie L; Wang, Jiajia; Jacobson, Denise L; Geffner, Mitchell E; Van Dyke, Russell B; Gerschenson, Mariana

    2017-01-02

    To identify relationships between insulin resistance (IR) and mitochondrial respiration in perinatally HIV-infected youth. Case-control study. Mitochondrial respiration was assessed in perinatally HIV-infected youth in Tanner stages 2-5, 25 youth with IR (IR+) and 50 without IR (IR-) who were enrolled in the Pediatric HIV/AIDS Cohort Study. IR was defined as a homeostatic model of assessment for IR value at least 4.0. A novel, high-throughput oximetry method was used to evaluate cellular respiration in peripheral blood mononuclear cells. Unadjusted and adjusted differences in mitochondrial respiration markers between IR+ and IR- were evaluated, as were correlations between mitochondrial respiration markers and biochemical measurements. IR+ and IR- youth were similar on age, sex, and race/ethnicity. Mean age was 16.5 and 15.6 years in IR+ and IR-, respectively. The IR+ group had significantly higher mean BMI and metabolic analytes (fasting glucose, insulin, cholesterol, triglycerides, and venous lactate and pyruvate) compared with the IR-. Mitochondrial respiration markers were, on average, lower in the IR+ compared with IR-, including basal respiration (417.5 vs. 597.5 pmol, P = 0.074), ATP production (11 513 vs. 15 202 pmol, P = 0.078), proton leak (584.6 vs. 790.0 pmol, P = 0.033), maximal respiration (1815 vs. 2399 pmol, P = 0.025), and spare respiration capacity (1162 vs. 2017 pmol, P = 0.032). Nonmitochondrial respiration did not differ by IR status. The results did not change when adjusted for age. HIV-infected youth with IR have lower mitochondrial respiration markers when compared to youth without IR. Disordered mitochondrial respiration may be a potential mechanism for IR in this population.

  9. The effect of respiration buffer composition on mitochondrial metabolism and function

    OpenAIRE

    Wollenman, Lucas C.; Vander Ploeg, Matthew R.; Miller, Mackinzie L.; Zhang, Yizhu; Bazil, Jason N.

    2017-01-01

    Functional studies on isolated mitochondria critically rely on the right choice of respiration buffer. Differences in buffer composition can lead to dramatically different respiration rates leading to difficulties in comparing prior studies. The ideal buffer facilities high ADP-stimulated respiratory rates and minimizes substrate transport effects so that the ability to distinguish between various treatments and conditions is maximal. In this study, we analyzed a variety of respiration buffer...

  10. Effect of fluorine and of beta-indolacetic acid on the respiration of root tissue

    Energy Technology Data Exchange (ETDEWEB)

    Pilet, P E

    1964-01-01

    The auxin, beta-indolacetic acid, (BIAA) inhibited the elongation of Lens culinaris roots at all concentrations. At high concentrations fluoride had an inhibitor effect, but it had a stimulatory effect on root growth at low concentrations. BIAA mildly stimulated respiration at low concentrations and inhibited oxygen absorption at high concentrations. At concentrations stimulating respiration fluoride was found to reduce these stimulating effects caused by BIAA. Therefore, fluoride and BIAA acted as antagonists in their effect on respiration.

  11. Glycolysis Is Dynamic and Relates Closely to Respiration Rate in Stored Sugarbeet Roots

    Directory of Open Access Journals (Sweden)

    Clarice A. Megguer

    2017-05-01

    Full Text Available Although respiration is the principal cause of the loss of sucrose in postharvest sugarbeet (Beta vulgaris L., the internal mechanisms that control root respiration rate are unknown. Available evidence, however, indicates that respiration rate is likely to be controlled by the availability of respiratory substrates, and glycolysis has a central role in generating these substrates. To determine glycolytic changes that occur in sugarbeet roots after harvest and to elucidate relationships between glycolysis and respiration, sugarbeet roots were stored for up to 60 days, during which activities of glycolytic enzymes and concentrations of glycolytic substrates, intermediates, cofactors, and products were determined. Respiration rate was also determined, and relationships between respiration rate and glycolytic enzymes and metabolites were evaluated. Glycolysis was highly variable during storage, with 10 of 14 glycolytic activities and 14 of 17 glycolytic metabolites significantly altered during storage. Changes in glycolytic enzyme activities and metabolites occurred throughout the 60 day storage period, but were greatest in the first 4 days after harvest. Positive relationships between changes in glycolytic enzyme activities and root respiration rate were abundant, with 10 of 14 enzyme activities elevated when root respiration was elevated and 9 glycolytic activities static during periods of unchanging respiration rate. Major roles for pyruvate kinase and phosphofructokinase in the regulation of postharvest sugarbeet root glycolysis were indicated based on changes in enzymatic activities and concentrations of their substrates and products. Additionally, a strong positive relationship between respiration rate and pyruvate kinase activity was found indicating that downstream TCA cycle enzymes were unlikely to regulate or restrict root respiration in a major way. Overall, these results establish that glycolysis is not static during sugarbeet root

  12. Cheyne-Stokes respiration in patients with congestive heart failure: causes and consequences

    OpenAIRE

    Lorenzi-Filho,Geraldo; Genta,Pedro R; Figueiredo,Adelaide C.; Inoue,Daniel

    2005-01-01

    Cheyne-Stokes respiration is a form of periodic breathing in which central apneas and hypopneas alternate with periods of hyperventilation, producing a waxing and waning pattern of tidal volume. This review focuses on the causes and consequences of Cheyne-Stokes respiration in patients with congestive heart failure, in whom the prevalence is strikingly high and ranges from 30% to 50%. Several factors have been implicated in the genesis of Cheyne-Stokes respiration, including low cardiac outpu...

  13. Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates

    Directory of Open Access Journals (Sweden)

    Fendt Sarah-Maria

    2010-02-01

    Full Text Available Abstract Background Depending on the carbon source, Saccharomyces cerevisiae displays various degrees of respiration. These range from complete respiration as in the case of ethanol, to almost complete fermentation, and thus very low degrees of respiration on glucose. While many key regulators are known for these extreme cases, we focus here on regulators that are relevant at intermediate levels of respiration. Results We address this question by linking the functional degree of respiration to transcriptional regulation via enzyme abundances. Specifically, we investigated aerobic batch cultures with the differently repressive carbon sources glucose, mannose, galactose and pyruvate. Based on 13C flux analysis, we found that the respiratory contribution to cellular energy production was largely absent on glucose and mannose, intermediate on galactose and highest on pyruvate. In vivo abundances of 40 respiratory enzymes were quantified by GFP-fusions under each condition. During growth on the partly and fully respired substrates galactose and pyruvate, several TCA cycle and respiratory chain enzymes were significantly up-regulated. From these enzyme levels and the known regulatory network structure, we determined the probability for a given transcription factor to cause the coordinated expression changes. The most probable transcription factors to regulate the different degrees of respiration were Gcr1p, Cat8p, the Rtg-proteins and the Hap-complex. For the latter three ones we confirmed their importance for respiration by quantifying the degree of respiration and biomass yields in the corresponding deletion strains. Conclusions Cat8p is required for wild-type like respiration, independent of its known activation of gluconeogenic genes. The Rtg-proteins and the Hap-complex are essential for wild-type like respiration under partially respiratory conditions. Under fully respiratory conditions, the Hap-complex, but not the Rtg-proteins are essential

  14. Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates.

    Science.gov (United States)

    Fendt, Sarah-Maria; Sauer, Uwe

    2010-02-18

    Depending on the carbon source, Saccharomyces cerevisiae displays various degrees of respiration. These range from complete respiration as in the case of ethanol, to almost complete fermentation, and thus very low degrees of respiration on glucose. While many key regulators are known for these extreme cases, we focus here on regulators that are relevant at intermediate levels of respiration. We address this question by linking the functional degree of respiration to transcriptional regulation via enzyme abundances. Specifically, we investigated aerobic batch cultures with the differently repressive carbon sources glucose, mannose, galactose and pyruvate. Based on 13C flux analysis, we found that the respiratory contribution to cellular energy production was largely absent on glucose and mannose, intermediate on galactose and highest on pyruvate. In vivo abundances of 40 respiratory enzymes were quantified by GFP-fusions under each condition. During growth on the partly and fully respired substrates galactose and pyruvate, several TCA cycle and respiratory chain enzymes were significantly up-regulated. From these enzyme levels and the known regulatory network structure, we determined the probability for a given transcription factor to cause the coordinated expression changes. The most probable transcription factors to regulate the different degrees of respiration were Gcr1p, Cat8p, the Rtg-proteins and the Hap-complex. For the latter three ones we confirmed their importance for respiration by quantifying the degree of respiration and biomass yields in the corresponding deletion strains. Cat8p is required for wild-type like respiration, independent of its known activation of gluconeogenic genes. The Rtg-proteins and the Hap-complex are essential for wild-type like respiration under partially respiratory conditions. Under fully respiratory conditions, the Hap-complex, but not the Rtg-proteins are essential for respiration.

  15. Divergent Effects of Nitrogen Addition on Soil Respiration in a Semiarid Grassland

    OpenAIRE

    Cheng Zhu; Yiping Ma; Honghui Wu; Tao Sun; Kimberly J. La Pierre; Zewei Sun; Qiang Yu

    2016-01-01

    Nitrogen (N) deposition has been steadily increasing for decades, with consequences for soil respiration. However, we have a limited understanding of how soil respiration responds to N availability. Here, we investigated the soil respiration responses to low and high levels of N addition (0.4?mol N m?2 yr?1 vs 1.6?mol N m?2 yr?1) over a two-year period in a semiarid Leymus chinensis grassland in Inner Mongolia, China. Our results show that low-level N addition increased soil respiration, plan...

  16. Respiration and the watershed of spinal CSF flow in humans.

    Science.gov (United States)

    Dreha-Kulaczewski, Steffi; Konopka, Mareen; Joseph, Arun A; Kollmeier, Jost; Merboldt, Klaus-Dietmar; Ludwig, Hans-Christoph; Gärtner, Jutta; Frahm, Jens

    2018-04-04

    The dynamics of human CSF in brain and upper spinal canal are regulated by inspiration and connected to the venous system through associated pressure changes. Upward CSF flow into the head during inspiration counterbalances venous flow out of the brain. Here, we investigated CSF motion along the spinal canal by real-time phase-contrast flow MRI at high spatial and temporal resolution. Results reveal a watershed of spinal CSF dynamics which divides flow behavior at about the level of the heart. While forced inspiration prompts upward surge of CSF flow volumes in the entire spinal canal, ensuing expiration leads to pronounced downward CSF flow, but only in the lower canal. The resulting pattern of net flow volumes during forced respiration yields upward CSF motion in the upper and downward flow in the lower spinal canal. These observations most likely reflect closely coupled CSF and venous systems as both large caval veins and their anastomosing vertebral plexus react to respiration-induced pressure changes.

  17. Cheyne-stokes respiration in patients with heart failure.

    Science.gov (United States)

    AlDabal, Laila; BaHammam, Ahmed S

    2010-01-01

    Cheyne-Stokes respiration (CSR) is a form of central sleep-disordered breathing (SDB) in which there are cyclical fluctuations in breathing that lead to periods of central apneas/hypopnea, which alternate with periods of hyperpnea. The crescendo-decrescendo pattern of respiration in CSR is a compensation for the changing levels of blood oxygen and carbon dioxide. Severe congestive heart failure seems to be the most important risk factor for the development of CSR. A number of pathophysiologic changes, such as sleep disruption, arousals, hypoxemia-reoxygenation, hypercapnia/hypocapnia, and changes in intrathoracic pressure have harmful effects on the cardiovascular system, and the presence of CSR is associated with increased mortality and morbidity in subjects with variable degrees of heart failure. The management of CSR involves optimal control of underlying heart failure, oxygen therapy, and positive airway pressure support. In this review, we initially define and describe the epidemiology of central sleep apnea (CSA) and CSR, its pathogenesis, clinical presentation, diagnostic methods, and then discuss the recent developments in the management in patients with heart failure.

  18. Spinal cord motion. Influence of respiration and cardiac cycle

    Energy Technology Data Exchange (ETDEWEB)

    Winklhofer, S. [RWTH Aachen University Hospital (Germany). Dept. of Neuroradiology; University Hospital Zurich (Switzerland). Inst. of Diagnostic and Interventional Radiology; Schoth, F. [RWTH Aachen University Hospital (Germany). Dept. of Diagnostic Radiology; Stolzmann, P. [University Hospital Zurich (Switzerland). Inst. of Diagnostic and Interventional Radiology; Krings, T. [Toronto Western Hospital, ON (Canada). Div. of Neuroradiology; Mull, M.; Wiesmann, M. [RWTH Aachen University Hospital (Germany). Dept. of Neuroradiology; Stracke, C.P. [RWTH Aachen University Hospital (Germany). Dept. of Neuroradiology; Alfried-Krupp-Hospital, Essen (Germany). Dept. of Neuroradiology

    2014-11-15

    To assess physiological spinal cord motion during the cardiac cycle compared with the influence of respiration based on magnetic resonance imaging (MRI) measurements. Anterior-posterior spinal cord motion within the spinal canal was assessed in 16 healthy volunteers (median age, 25 years) by cardiac-triggered and cardiac-gated gradient echo pulse sequence MRI. Image acquisition was performed during breath-holding, normal breathing, and forced breathing. Normal spinal cord motion values were computed using descriptive statistics. Breathing-dependent differences were assessed using the Wilcoxon signed-rank test and compared with the cardiac-based cord motion. A normal value table was set up for the spinal cord motion of each vertebral cervico-thoracic-lumbar segment. Significant differences in cord motion were found between cardiac-based motion while breath-holding and the two breathing modalities (P < 0.01 each). Spinal cord motion was found to be highest during forced breathing, with a maximum in the lower cervical spinal segments (C5; mean, 2.1 mm ± 1.17). Image acquisition during breath-holding revealed the lowest motion. MRI permits the demonstration and evaluation of cardiac and respiration-dependent spinal cord motion within the spinal canal from the cervical to lumbar segments. Breathing conditions have a considerably greater impact than cardiac activity on spinal cord motion.

  19. Exposure to respirable crystalline silica in South African farm workers

    International Nuclear Information System (INIS)

    Swanepoel, Andrew; Rees, David; Renton, Kevin; Kromhout, Hans

    2009-01-01

    Although listed in some publications as an activity associated with silica (quartz) exposure, agriculture is not widely recognized as an industry with a potential for silica associated diseases. Because so many people work in agriculture; and because silica exposure and silicosis are associated with serious diseases such as tuberculosis (TB), particular in those immunological compromised by the Human immunodeficiency virus (HIV), silica exposure in agriculture is potentially very important. But in South Africa (SA) very little is known about silica exposure in this industry. The objectives of this project are: (a) to measure inhalable and respirable dust and its quartz content on two typical sandy soil farms in the Free State province of SA for all major tasks done on the farms; and (b) to characterise the mineralogy soil type of these farms. Two typical farms in the sandy soil region of the Free State province were studied. The potential health effects faced by these farm workers from exposure to respirable crystalline silica are discussed.

  20. Respirable quartz hazard associated with coal mine roof bolter dust

    International Nuclear Information System (INIS)

    Joy, G.J.; Beck, T.W.; Listak, J.M.

    2010-01-01

    Pneumoconiosis has been reported to be increasing among underground coal miners in the Southern Appalachian Region. The National Institute for Occupational Safety and Health conducted a study to examine the particle size distribution and quartz content of dust generated by the installation of roof bolts in mines. Forty-six bulk samples of roof bolting machine pre-cleaner cyclone dump dust and collector box dust were collected from 26 underground coal mines. Real-time and integrated airborne respirable dust concentrations were measured on 3 mining sections in 2 mines. The real-time airborne dust concentrations profiles were examined to identify any concentration changes that might be associated with pre-cleaner cyclone dust discharge events. The study showed that bolter dust is a potential inhalation hazard due to the fraction of dust less than 10 μm in size, and the quartz content of the dust. The pre-cleaner cyclone dust was significantly larger than the collector box dust, indicating that the pre-cleaner functioned properly in removing the larger dust size fraction from the airstream. However, the pre-cleaner dust still contained a substantial amount of respirable dust. It was concluded that in order to maintain the effectiveness of a roof bolter dust collector, periodic removal of dust is required. Appropriate work procedures and equipment are necessary to minimize exposure during this cleaning task. 13 refs., 3 tabs., 2 figs.

  1. Spinal cord motion. Influence of respiration and cardiac cycle

    International Nuclear Information System (INIS)

    Winklhofer, S.; University Hospital Zurich; Schoth, F.; Stolzmann, P.; Krings, T.; Mull, M.; Wiesmann, M.; Stracke, C.P.; Alfried-Krupp-Hospital, Essen

    2014-01-01

    To assess physiological spinal cord motion during the cardiac cycle compared with the influence of respiration based on magnetic resonance imaging (MRI) measurements. Anterior-posterior spinal cord motion within the spinal canal was assessed in 16 healthy volunteers (median age, 25 years) by cardiac-triggered and cardiac-gated gradient echo pulse sequence MRI. Image acquisition was performed during breath-holding, normal breathing, and forced breathing. Normal spinal cord motion values were computed using descriptive statistics. Breathing-dependent differences were assessed using the Wilcoxon signed-rank test and compared with the cardiac-based cord motion. A normal value table was set up for the spinal cord motion of each vertebral cervico-thoracic-lumbar segment. Significant differences in cord motion were found between cardiac-based motion while breath-holding and the two breathing modalities (P < 0.01 each). Spinal cord motion was found to be highest during forced breathing, with a maximum in the lower cervical spinal segments (C5; mean, 2.1 mm ± 1.17). Image acquisition during breath-holding revealed the lowest motion. MRI permits the demonstration and evaluation of cardiac and respiration-dependent spinal cord motion within the spinal canal from the cervical to lumbar segments. Breathing conditions have a considerably greater impact than cardiac activity on spinal cord motion.

  2. Assessment of respirable dust exposures in an opencast coal mine.

    Science.gov (United States)

    Onder, M; Yigit, E

    2009-05-01

    All major opencast mining activities produce dust. The major operations that produce dust are drilling, blasting, loading, unloading, and transporting. Dust not only deteriorates the environmental air quality in and around the mining site but also creates serious health hazards. Therefore, assessment of dust levels that arise from various opencast mining operations is required to prevent and minimize the health risks. To achieve this objective, an opencast coal mining area was selected to generate site-specific emission data and collect respirable dust measurement samples. The study covered various mining activities in different locations including overburden loading, stock yard, coal loading, drilling, and coal handling plant. The dust levels were examined to assess miners' exposure to respirable dust in each of the opencast mining areas from 1994 to 2005. The data obtained from the dust measurement studies were evaluated by using analysis of variance (ANOVA) and the Tukey-Kramer procedure. The analyses were performed by using Minitab 14 statistical software. It was concluded that, drilling operations produce higher dust concentration levels and thus, drill operators may have higher incidence of respiratory disorders related to exposure to dust in their work environment.

  3. Heterotrophic soil respiration in forestry-drained peatlands

    International Nuclear Information System (INIS)

    Minkkinen, K.; Shurpali, N. J.; Alm, J.; Penttilae, T.

    2007-01-01

    Heterotrophic soil respiration (CO 2 efflux from the decomposition of peat and root litter) in three forestry-drained peatlands with different site types and with a large climatic gradient from the hemi-boreal (central Estonia) to south (southern Finland) and north boreal (northern Finland) conditions was studied. Instantaneous fluxes varied between 0 and 1.3 g CO 2 -C m -2 h -1 , and annual fluxes between 248 and 515 g CO 2 -C m -2 a -1 . Variation in the annual fluxes among site types was studied only in the south-boreal site where we found a clear increase from nutrient-poor to nutrient-rich site types. More than half of the within-site variation was temporal and explained by soil surface (-5 cm) temperature (T5). The response of soil respiration to T5 varied between the sites; the most northerly site had the highest response to T5 and the most southerly the lowest. This trend further resulted in increased annual fluxes towards north. This unexpected result is hypothesised to be related to differences in site factors like substrate quality, nutrient status and hydrology but also to temperature acclimation, i.e., adaptation of decomposer populations to different climates. (orig.)

  4. Dynamic characteristics of soil respiration in Yellow River Delta wetlands, China

    Science.gov (United States)

    Wang, Xiao; Luo, Xianxiang; Jia, Hongli; Zheng, Hao

    2018-02-01

    The stable soil carbon (C) pool in coastal wetlands, referred to as "blue C", which has been extensively damaged by climate change and soil degradation, is of importance to maintain global C cycle. Therefore, to investigate the dynamic characteristics of soil respiration rate and evaluate C budgets in coastal wetlands are urgently. In this study, the diurnal and seasonal variation of soil respiration rate in the reed wetland land (RL) and the bare wetland land (BL) was measured in situ with the dynamic gas-infrared CO2 method in four seasons, and the factors impacted on the dynamic characteristics of soil respiration were investigated. The results showed that the diurnal variation of soil respiration rate consistently presented a "U" curve pattern in April, July, and September, with the maximum values at 12:00 a.m. and the minimum values at 6:00 a.m. In the same season, the diurnal soil respiration rate in RL was significantly greater than those in BL (P respiration rate was 0.14, 0.42, and 0.39 μmol m-2 s-1 in RL, 0.05, 0.22, 0.13, and 0.01 μmol m-2 s-1 in BL, respectively. Soil surface temperature was the primary factor that influenced soil respiration, which was confirmed by the exponential positive correlation between the soil respiration rate and soil surface temperature in BL and RL (P respiration, confirming by the significantly negative correlation between soil respiration rate and the content of soluble salt. These results will be useful for understanding the mechanisms underlying soil respiration and elevating C sequestration potential in the coastal wetlands.

  5. Diel hysteresis between soil respiration and soil temperature in a biological soil crust covered desert ecosystem.

    Science.gov (United States)

    Guan, Chao; Li, Xinrong; Zhang, Peng; Chen, Yongle

    2018-01-01

    Soil respiration induced by biological soil crusts (BSCs) is an important process in the carbon (C) cycle in arid and semi-arid ecosystems, where vascular plants are restricted by the harsh environment, particularly the limited soil moisture. However, the interaction between temperature and soil respiration remains uncertain because of the number of factors that control soil respiration, including temperature and soil moisture, especially in BSC-dominated areas. In this study, the soil respiration in moss-dominated crusts and lichen-dominated crusts was continuously measured using an automated soil respiration system over a one-year period from November 2015 to October 2016 in the Shapotou region of the Tengger Desert, northern China. The results indicated that over daily cycles, the half-hourly soil respiration rates in both types of BSC-covered areas were commonly related to the soil temperature. The observed diel hysteresis between the half-hourly soil respiration rates and soil temperature in the BSC-covered areas was limited by nonlinearity loops with semielliptical shapes, and soil temperature often peaked later than the half-hourly soil respiration rates in the BSC-covered areas. The average lag times between the half-hourly soil respiration rates and soil temperature for both types of BSC-covered areas were two hours over the diel cycles, and they were negatively and linearly related to the volumetric soil water content. Our results highlight the diel hysteresis phenomenon that occurs between soil respiration rates and soil temperatures in BSC-covered areas and the negative response of this phenomenon to soil moisture, which may influence total C budget evaluations. Therefore, the interactive effects of soil temperature and moisture on soil respiration in BSC-covered areas should be considered in global carbon cycle models of desert ecosystems.

  6. Mixed-power scaling of whole-plant respiration from seedlings to giant trees.

    Science.gov (United States)

    Mori, Shigeta; Yamaji, Keiko; Ishida, Atsushi; Prokushkin, Stanislav G; Masyagina, Oxana V; Hagihara, Akio; Hoque, A T M Rafiqul; Suwa, Rempei; Osawa, Akira; Nishizono, Tomohiro; Ueda, Tatsushiro; Kinjo, Masaru; Miyagi, Tsuyoshi; Kajimoto, Takuya; Koike, Takayoshi; Matsuura, Yojiro; Toma, Takeshi; Zyryanova, Olga A; Abaimov, Anatoly P; Awaya, Yoshio; Araki, Masatake G; Kawasaki, Tatsuro; Chiba, Yukihiro; Umari, Marjnah

    2010-01-26

    The scaling of respiratory metabolism with body mass is one of the most pervasive phenomena in biology. Using a single allometric equation to characterize empirical scaling relationships and to evaluate alternative hypotheses about mechanisms has been controversial. We developed a method to directly measure respiration of 271 whole plants, spanning nine orders of magnitude in body mass, from small seedlings to large trees, and from tropical to boreal ecosystems. Our measurements include the roots, which have often been ignored. Rather than a single power-law relationship, our data are fit by a biphasic, mixed-power function. The allometric exponent varies continuously from 1 in the smallest plants to 3/4 in larger saplings and trees. Therefore, our findings support the recent findings of Reich et al. [Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size, and nitrogen in plants. Nature 439:457-461] and West, Brown, and Enquist [West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122 -126.]. The transition from linear to 3/4-power scaling may indicate fundamental physical and physiological constraints on the allocation of plant biomass between photosynthetic and nonphotosynthetic organs over the course of ontogenetic plant growth.

  7. Study of gamma-ray induced variability on F1M1-F3M3 distant tomato hybrids

    International Nuclear Information System (INIS)

    Siromeatnicov, Iulia; Cotenco, Eugenia; Ciobanu, Renata

    2013-01-01

    The outcome of the evaluation of the gamma radiation's action, the growth and development tomato plant has shown that the coefficient of variation of plant height character is on the rise with increasing doses of gamma radiation. The hybrid combination F 1 M 1 (L.hpriz.1998) irradiated with dose 150 Gy variant presented superior value a towards scrutiny for plant height of the characters, number of flowers and fruits per bunch, number of fruits per plant and fruit mass of. The character F 2 M 2 generation plant height registered diminished value compared to F 1 M 1 generation. The highest value was recorded at the hybrid combination F 2 M 2 L.hpriz.1998 200 Gy treated dose. The evaluation research has highlighted that at the doses 100 Gy, 150 Gy, 200 Gy, have confirmed an increase in characters of reproductive system: the number of flowers and fruits per bunch, number of fruits per plant, fruit mass and reduction of the characters waist and height of placing of the first inflorescences plant. Similar aspects with some differences as low as hybrid combination Lhpi1998 in relation to the radiation doses used under study were confirmed in the case F 3 M 3 . (authors)

  8. Microscopic calculation of sub-barrier fusion cross section and barrier distribution using M3Y-type forces

    International Nuclear Information System (INIS)

    Ismail, M.; Ramadan, Kh.A.

    2000-01-01

    The heavy-ion (HI) potential between spherical and deformed nuclei is derived using an M3Y-type nucleon-nucleon (NN) interaction. The calculation of the exchange part of the HI potential was improved by using a finite-range NN exchange force instead of the zero-range pseudo-potential which is usually used in deriving the potential between deformed nuclei. We consider an 154 Sm- 16 O nuclear pair as an example to show the effect of finite range on the nucleus-nucleus potential for different deformation parameters and at different orientation angles of the deformed target nucleus. We calculated the fusion cross section and the barrier distribution in the WKB approximation and studied their dependence on the orientation and deformation of the target nucleus. The variations found due to improving the exchange part enhance the fusion cross section below the Coulomb barrier by a factor of about four. It has been found that both the cross section and the barrier distribution are very sensitive to the deformation parameters at energies below the Coulomb barrier. (author)

  9. Microscopic calculation of sub-barrier fusion cross section and barrier distribution using M3Y-type forces

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, M.; Ramadan, Kh.A. [Physics Department, Faculty of Science, Cairo University, Giza (Egypt)

    2000-10-01

    The heavy-ion (HI) potential between spherical and deformed nuclei is derived using an M3Y-type nucleon-nucleon (NN) interaction. The calculation of the exchange part of the HI potential was improved by using a finite-range NN exchange force instead of the zero-range pseudo-potential which is usually used in deriving the potential between deformed nuclei. We consider an {sup 154}Sm-{sup 16}O nuclear pair as an example to show the effect of finite range on the nucleus-nucleus potential for different deformation parameters and at different orientation angles of the deformed target nucleus. We calculated the fusion cross section and the barrier distribution in the WKB approximation and studied their dependence on the orientation and deformation of the target nucleus. The variations found due to improving the exchange part enhance the fusion cross section below the Coulomb barrier by a factor of about four. It has been found that both the cross section and the barrier distribution are very sensitive to the deformation parameters at energies below the Coulomb barrier. (author)

  10. International standard problem ISP37: VANAM M3 - A Multi compartment aerosol depletion test with hygroscopic aerosol material: comparison report

    International Nuclear Information System (INIS)

    Firnhaber, M.; Kanzleiter, T.F.; Schwarz, S.; Weber, G.

    1996-12-01

    This paper presents the results and assessment of the 'open' ISP37, which deals with the containment thermal-hydraulics and aerosol behavior during an unmitigated severe LWR accident with core melt-down and steam and aerosol release into the containment. Representatives of 22 organizations participated to the ISP37 using the codes CONTAIN, FIPLOC, MELCOR, RALOC, FUMO, MACRES, REMOVAL etc. The containment and aerosol behavior experiment VANAM M3 was selected as experimental comparison basis. The main phenomena investigated are the thermal behavior of a multi-compartment containment, e.g. pressure, temperature and the distribution and depletion of a soluble aerosol. The ISP37 has demonstrated that the codes used could calculate the thermal-hydraulic containment behavior in general with sufficient accuracy. But with respect to the needs of aerosol behavior analysis the accuracies, both analytical and experimental as well, for specific thermal-hydraulic variables should be improved. Although large progress has been made in the simulation of aerosol behavior in multi-compartment geometries the calculated local aerosol concentrations scatter widely. However, the aerosol source term to the environment is overestimated in general. The largest uncertainty concerning the aerosol results is caused by a limited number of thermal hydraulic variables like relative humidity, volume condensation rate and atmospheric flow rate. In some codes also a solubility model is missing

  11. The WA105-3x1x1 m3 dual phase LAr-TPC demonstrator

    CERN Document Server

    Murphy, Sebastien

    2016-11-15

    The dual phase Liquid Argon Time Projection Chamber (LAr TPC) is the state-of-art technology for neutrino detection thanks to its superb 3D tracking and calorimetry performance. Its main feature is the charge amplification in gas argon which provides excellent signal-to-noise ratio. Electrons produced in the liquid argon are extracted in the gas phase. Here, a readout plane based on Large Electron Multiplier detectors provides amplification of the charges before its collection onto an anode with strip readout. The charge amplification enables constructing fully homoge- nous giant LAr-TPCs with tuneable gain, excellent charge imaging performance and increased sensitivity to low energy events. Following a staged approach the WA105 collaboration is con- structing a dual phase LAr-TPC with an active volume of 3x1x1m3 that will soon be tested with cosmic rays. Its construction and operation aims to test scalable solutions for the crucial aspects of this technology: ultra high argon purity in non-evacuable tank, la...

  12. Tests of shielding effectiveness of Kevlar and Nextel onboard the International Space Station and the Foton-M3 capsule.

    Science.gov (United States)

    Pugliese, M; Bengin, V; Casolino, M; Roca, V; Zanini, A; Durante, M

    2010-08-01

    Radiation assessment and protection in space is the first step in planning future missions to the Moon and Mars, where mission and number of space travelers will increase and the protection of the geomagnetic shielding against the cosmic radiation will be absent. In this framework, the shielding effectiveness of two flexible materials, Kevlar and Nextel, were tested, which are largely used in the construction of spacecrafts. Accelerator-based tests clearly demonstrated that Kevlar is an excellent shield for heavy ions, close to polyethylene, whereas Nextel shows poor shielding characteristics. Measurements on flight performed onboard of the International Space Station and of the Foton-M3 capsule have been carried out with special attention to the neutron component; shielded and unshielded detectors (thermoluminescence dosemeters, bubble detectors) were exposed to a real radiation environment to test the shielding properties of the materials under study. The results indicate no significant effects of shielding, suggesting that thin shields in low-Earth Orbit have little effect on absorbed dose.

  13. Total and respirable dust exposures among carpenters and demolition workers during indoor work in Denmark

    DEFF Research Database (Denmark)

    Kirkeskov, Lilli; Hanskov, Dorte Jessing Agerby; Brauer, Charlotte

    2016-01-01

    BACKGROUND: Within the construction industry the risk of lung disorders depends on the specific professions probably due to variations in the levels of dust exposure, and with dust levels depending on the work task and job function. We do not know the extent of exposure in the different professions...... was 3.90 (95 % confidence interval 1.13-13.5) mg/m(3). Dust exposure varied depending on work task for both professions. The dustiest work occurred during demolition, especially when it was done manually. Only few workers used personal respiratory protection and only while performing the dustiest work...... or the variation between the different work tasks. The purpose of this study was therefore to assess if there were differences in dust exposure between carpenters and demolition workers who were expected to have low and high dust exposure, respectively. METHODS: Through interviews of key persons...

  14. Thoracic and respirable particle definitions for human health risk assessment.

    Science.gov (United States)

    Brown, James S; Gordon, Terry; Price, Owen; Asgharian, Bahman

    2013-04-10

    Particle size-selective sampling refers to the collection of particles of varying sizes that potentially reach and adversely affect specific regions of the respiratory tract. Thoracic and respirable fractions are defined as the fraction of inhaled particles capable of passing beyond the larynx and ciliated airways, respectively, during inhalation. In an attempt to afford greater protection to exposed individuals, current size-selective sampling criteria overestimate the population means of particle penetration into regions of the lower respiratory tract. The purpose of our analyses was to provide estimates of the thoracic and respirable fractions for adults and children during typical activities with both nasal and oral inhalation, that may be used in the design of experimental studies and interpretation of health effects evidence. We estimated the fraction of inhaled particles (0.5-20 μm aerodynamic diameter) penetrating beyond the larynx (based on experimental data) and ciliated airways (based on a mathematical model) for an adult male, adult female, and a 10 yr old child during typical daily activities and breathing patterns. Our estimates show less penetration of coarse particulate matter into the thoracic and gas exchange regions of the respiratory tract than current size-selective criteria. Of the parameters we evaluated, particle penetration into the lower respiratory tract was most dependent on route of breathing. For typical activity levels and breathing habits, we estimated a 50% cut-size for the thoracic fraction at an aerodynamic diameter of around 3 μm in adults and 5 μm in children, whereas current ambient and occupational criteria suggest a 50% cut-size of 10 μm. By design, current size-selective sample criteria overestimate the mass of particles generally expected to penetrate into the lower respiratory tract to provide protection for individuals who may breathe orally. We provide estimates of thoracic and respirable fractions for a variety of

  15. Accuracy of acoustic respiration rate monitoring in pediatric patients.

    Science.gov (United States)

    Patino, Mario; Redford, Daniel T; Quigley, Thomas W; Mahmoud, Mohamed; Kurth, C Dean; Szmuk, Peter

    2013-12-01

    Rainbow acoustic monitoring (RRa) utilizes acoustic technology to continuously and noninvasively determine respiratory rate from an adhesive sensor located on the neck. We sought to validate the accuracy of RRa, by comparing it to capnography, impedance pneumography, and to a reference method of counting breaths in postsurgical children. Continuous respiration rate data were recorded from RRa and capnography. In a subset of patients, intermittent respiration rate from thoracic impedance pneumography was also recorded. The reference method, counted respiratory rate by the retrospective analysis of the RRa, and capnographic waveforms while listening to recorded breath sounds were used to compare respiration rate of both capnography and RRa. Bias, precision, and limits of agreement of RRa compared with capnography and RRa and capnography compared with the reference method were calculated. Tolerance and reliability to the acoustic sensor and nasal cannula were also assessed. Thirty-nine of 40 patients (97.5%) demonstrated good tolerance of the acoustic sensor, whereas 25 of 40 patients (62.5%) demonstrated good tolerance of the nasal cannula. Intermittent thoracic impedance produced erroneous respiratory rates (>50 b·min(-1) from the other methods) on 47% of occasions. The bias ± SD and limits of agreement were -0.30 ± 3.5 b·min(-1) and -7.3 to 6.6 b·min(-1) for RRa compared with capnography; -0.1 ± 2.5 b·min(-1) and -5.0 to 5.0 b·min(-1) for RRa compared with the reference method; and 0.2 ± 3.4 b·min(-1) and -6.8 to 6.7 b·min(-1) for capnography compared with the reference method. When compared to nasal capnography, RRa showed good agreement and similar accuracy and precision but was better tolerated in postsurgical pediatric patients. © 2013 John Wiley & Sons Ltd.

  16. Effect of environmental variables and stand structure on ecosystem respiration components in a Mediterranean beech forest

    Czech Academy of Sciences Publication Activity Database

    Guidolotti, G.; Rey, A.; D'Andrea, E.; Matteucci, G.; De Angelis, Paolo

    2013-01-01

    Roč. 33, č. 9 (2013), s. 960-972 ISSN 0829-318X Institutional support: RVO:67179843 Keywords : ecosystem respiration * Fagus sylvatica * leaf respiration * soil CO2 efflux * stem CO2 efflux * total non-structural carbohydrates Subject RIV: EH - Ecology, Behaviour Impact factor: 3.405, year: 2013

  17. Exposure to respirable dust and crystalline silica in bricklaying education at Dutch vocational training centers.

    NARCIS (Netherlands)

    Huizer, D.; Spee, T.; Lumens, M.E.G.L.; Kromhout, H.

    2010-01-01

    BACKGROUND: Construction workers are educated at vocational training centers before they begin their working lives. Future bricklayers and their instructors are exposed to respirable dust and possibly to hazardous respirable crystalline silica from trial mortar. METHODS: Thirty-six personal air

  18. Responses of switchgrass soil respiration and its components to precipitation gradient in a mescocosm study

    Science.gov (United States)

    The objectives of this study were to investigate the effects of the precipitation changes on soil, microbial and root respirations of switchgrass soils, and the relationships between soil respiration and plant growth, soil moisture and temperature. A mesocosm experiment was conducted with five prec...

  19. Comparing ecosystem and soil respiration: Review and key challenges of tower-based and soil mesurements

    Science.gov (United States)

    The net ecosystem exchange (NEE) is the difference between ecosystem CO2 assimilation and CO2 losses to the atmosphere. Ecosystem respiration (Reco), the efflux of CO2 from the ecosystem to the atmosphere, includes the soil-to-atmosphere carbon flux (i.e., soil respiration; Rsoil) and aboveground pl...

  20. Video-based respiration monitoring with automatic region of interest detection

    NARCIS (Netherlands)

    Janssen, R.J.M.; Wang, Wenjin; Moço, A.; de Haan, G.

    2016-01-01

    Vital signs monitoring is ubiquitous in clinical environments and emerging in home-based healthcare applications. Still, since current monitoring methods require uncomfortable sensors, respiration rate remains the least measured vital sign. In this paper, we propose a video-based respiration

  1. Soil respiration is not limited by reductions in microbial biomass during long-term soil incubations

    Science.gov (United States)

    Declining rates of soil respiration are reliably observed during long-term laboratory incubations, but the cause is uncertain. We explored different controls on soil respiration during long-term soil incubations. Following a 707 day incubation (30 C) of soils from cultivated and forested plots at Ke...

  2. Case Study: The Mystery of the Seven Deaths--A Case Study in Cellular Respiration

    Science.gov (United States)

    Gazdik, Michaela

    2014-01-01

    Cellular respiration, the central component of cellular metabolism, can be a difficult concept for many students to fully understand. In this interrupted, problem-based case study, students explore the purpose of cellular respiration as they play the role of medical examiner, analyzing autopsy evidence to determine the mysterious cause of death…

  3. Dynamics of enhanced mitochondrial respiration in female compared with male rat cerebral arteries.

    Science.gov (United States)

    Rutkai, Ibolya; Dutta, Somhrita; Katakam, Prasad V; Busija, David W

    2015-11-01

    Mitochondrial respiration has never been directly examined in intact cerebral arteries. We tested the hypothesis that mitochondrial energetics of large cerebral arteries ex vivo are sex dependent. The Seahorse XFe24 analyzer was used to examine mitochondrial respiration in isolated cerebral arteries from adult male and female Sprague-Dawley rats. We examined the role of nitric oxide (NO) on mitochondrial respiration under basal conditions, using N(ω)-nitro-l-arginine methyl ester, and following pharmacological challenge using diazoxide (DZ), and also determined levels of mitochondrial and nonmitochondrial proteins using Western blot, and vascular diameter responses to DZ. The components of mitochondrial respiration including basal respiration, ATP production, proton leak, maximal respiration, and spare respiratory capacity were elevated in females compared with males, but increased in both male and female arteries in the presence of the NOS inhibitor. Although acute DZ treatment had little effect on mitochondrial respiration of male arteries, it decreased the respiration in female arteries. Levels of mitochondrial proteins in Complexes I-V and the voltage-dependent anion channel protein were elevated in female compared with male cerebral arteries. The DZ-induced vasodilation was greater in females than in males. Our findings show that substantial sex differences in mitochondrial respiratory dynamics exist in large cerebral arteries and may provide the mechanistic basis for observations that the female cerebral vasculature is more adaptable after injury. Copyright © 2015 the American Physiological Society.

  4. Estimation of microbial respiration rates in groundwater by geochemical modeling constrained with stable isotopes

    International Nuclear Information System (INIS)

    Murphy, E.M.

    1998-01-01

    Changes in geochemistry and stable isotopes along a well-established groundwater flow path were used to estimate in situ microbial respiration rates in the Middendorf aquifer in the southeastern United States. Respiration rates were determined for individual terminal electron acceptors including O 2 , MnO 2 , Fe 3+ , and SO 4 2- . The extent of biotic reactions were constrained by the fractionation of stable isotopes of carbon and sulfur. Sulfur isotopes and the presence of sulfur-oxidizing microorganisms indicated that sulfate is produced through the oxidation of reduced sulfur species in the aquifer and not by the dissolution of gypsum, as previously reported. The respiration rates varied along the flow path as the groundwater transitioned between primarily oxic to anoxic conditions. Iron-reducing microorganisms were the largest contributors to the oxidation of organic matter along the portion of the groundwater flow path investigated in this study. The transition zone between oxic and anoxic groundwater contained a wide range of terminal electron acceptors and showed the greatest diversity and numbers of culturable microorganisms and the highest respiration rates. A comparison of respiration rates measured from core samples and pumped groundwater suggests that variability in respiration rates may often reflect the measurement scales, both in the sample volume and the time-frame over which the respiration measurement is averaged. Chemical heterogeneity may create a wide range of respiration rates when the scale of the observation is below the scale of the heterogeneity

  5. Effect of fire disturbances on soil respiration of Larix gmelinii Rupr ...

    African Journals Online (AJOL)

    The Da Xing'an Mountain is a key distribution area for Chinese boreal forests and is a fire-prone area. Frequent forest fires have influenced on the regional carbon cycle enormously, especially for the influence of soil respiration. Thus, understanding post-fire soil respiration is important in the study of the global carbon ...

  6. Design of climate respiration chambers, adjustable to the metabolic mass of subjects

    NARCIS (Netherlands)

    Heetkamp, M.J.W.; Alferink, S.J.J.; Zandstra, T.; Hendriks, P.; Brand, van den H.; Gerrits, W.J.J.

    2015-01-01

    Open-circuit respiration chambers can be used to measure gas exchange and to calculate heat production (Q) of humans and animals. When studying short-term changes in Q, the size of the respiration chamber in relation to the subject of study is a point of concern. The washout time of a chamber,

  7. Effect of test exercises and mask donning on measured respirator fit.

    Science.gov (United States)

    Crutchfield, C D; Fairbank, E O; Greenstein, S L

    1999-12-01

    Quantitative respirator fit test protocols are typically defined by a series of fit test exercises. A rationale for the protocols that have been developed is generally not available. There also is little information available that describes the effect or effectiveness of the fit test exercises currently specified in respiratory protection standards. This study was designed to assess the relative impact of fit test exercises and mask donning on respirator fit as measured by a controlled negative pressure and an ambient aerosol fit test system. Multiple donnings of two different sizes of identical respirator models by each of 14 test subjects showed that donning affects respirator fit to a greater degree than fit test exercises. Currently specified fit test protocols emphasize test exercises, and the determination of fit is based on a single mask donning. A rationale for a modified fit test protocol based on fewer, more targeted test exercises and multiple mask donnings is presented. The modified protocol identified inadequately fitting respirators as effectively as the currently specified Occupational Safety and Health Administration (OSHA) quantitative fit test protocol. The controlled negative pressure system measured significantly (p < 0.0001) more respirator leakage than the ambient aerosol fit test system. The bend over fit test exercise was found to be predictive of poor respirator fit by both fit test systems. For the better fitting respirators, only the talking exercise generated aerosol fit factors that were significantly lower (p < 0.0001) than corresponding donning fit factors.

  8. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship

    Science.gov (United States)

    In nearly all large-scale models, CO2 efflux from soil (i.e., soil respiration) is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable at the local scale, and there is often a pronounced hysteresis in the soil resp...

  9. Soil CO2 concentration does not affect growth or root respiration in bean or citrus

    NARCIS (Netherlands)

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.

    1997-01-01

    Contrasting effects of soil CO2 concentration on root respiration rates during short-term CO2 exposure, and on plant growth during long-term CO2 exposure, have been reported, Here we examine the effects of both short-and long-term exposure to soil CO2 on the root respiration of intact plants and on

  10. Lung function interpolation by analysis of means of neural-network-supported respiration sounds

    NARCIS (Netherlands)

    Oud, M

    Respiration sounds of individual asthmatic patients were analysed in the scope of the development of a method for computerised recognition of the degree of airways obstruction. Respiration sounds were recorded during laboratory sessions of allergen provoked airways obstruction, during several stages

  11. Analysis of the radioactive aerosols sampled with Lepestok respirators during work in the Chernobyl' NPP region

    International Nuclear Information System (INIS)

    Borisova, L.I.; Polevov, V.N.; Borisov, N.B.; Basmanov, P.I.

    1989-01-01

    Aerosols sampled with Lepestok type respirators in the Chernobyl' NPP region following the accident were analysed by gamma-spectroscopic and optical-radiographic methods and nuclide ratio of the aerosol sediment after respirators usage were determined. Parameters of the sampled gamma-active aerosol particles were obtained. ref. 1; tabs. 3

  12. 10 CFR Appendix A to Part 20 - Assigned Protection Factors for Respirators a

    Science.gov (United States)

    2010-01-01

    ... internal dose due to inhalation may, in addition, present external exposure hazards at higher... 10 Energy 1 2010-01-01 2010-01-01 false Assigned Protection Factors for Respirators a A Appendix A..., App. A Appendix A to Part 20—Assigned Protection Factors for Respirators a Operating mode Assigned...

  13. Soil Respiration at Dominant Patch Types within a Managed Northern Wisconsin Landscape

    Science.gov (United States)

    Eug& #233; nie Euskirchen; Jiquan Chen; Eric J. Gustafson; Siyan Ma; Siyan Ma

    2003-01-01

    Soil respiration (SR), a substantial component of the forest carbon budget, has been studied extensively at the ecosystem, regional, continental, and global scales, but little progress has been made toward understanding SR over managed forest landscapes. Soil respiration is often influenced by soil temperature (Ts), soil moisture (Ms...

  14. Evaluation of 14C abundance in soil respiration using accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Koarashi, Jun; Iida, Takao; Moriizumi, Jun; Asano, Tomohiro

    2004-01-01

    To clarify the behavior of 14 C in terrestrial ecosystems, 14 C abundance in soil respiration was evaluated in an urban forest with a new method involving a closed chamber technique and 14 C measurement by accelerator mass spectrometry (AMS). Soil respiration had a higher Δ 14 C than the contemporary atmosphere. This indicates that a significant portion of soil respiration is derived from the decomposition of soil organic matter enriched in 14 C by atmospheric nuclear weapons tests, with a notable time lag between atmospheric 14 C addition and re-emission from soil. On the other hand, δ 14 C in soil respiration demonstrated that 14 C abundance ratio itself in soil-respired CO 2 is not always high compared with that in atmospheric CO 2 because of the isotope fractionation during plant photosynthesis and microbial decomposition of soil organic matter. The Δ 14 C in soil respiration was slightly lower in August than in March, suggesting a relatively high contribution of plant root respiration and decomposition of newly accumulated and/or 14 C-depleted soil organic matter to the total soil respiration in August

  15. Calibrating soil respiration measures with a dynamic flux apparatus using artificial soil media of varying porosity

    Science.gov (United States)

    John R. Butnor; Kurt H. Johnsen

    2004-01-01

    Measurement of soil respiration to quantify ecosystem carbon cyclingrequires absolute, not relative, estimates of soil CO2 efflux. We describe a novel, automated efflux apparatus that can be used to test the accuracy of chamber-based soil respiration measurements by generating known CO2 fluxes. Artificial soil is supported...

  16. Soil respiration and net N mineralization along a climate gradient in Maine

    Science.gov (United States)

    Jeffery A. Simmons; Ivan J. Fernandez; Russell D. Briggs

    1996-01-01

    Our objective was to determine the influence of temperature and moisture on soil respiration and net N mineralization in northeastern forests. The study consisted of sixteen deciduous stands located along a regional climate gradient within Maine. A significant portion of the variance in net N mineralization (41 percent) and respiration (33 percent) was predicted by...

  17. Screening and identification of respiration deficiency mutants of yeasts (Saccharomyces Cerevisiae) induced by heavy ion irradiation

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei; Zhang Hong

    2006-01-01

    A screen of respiration deficiency mutants of Saccharomyces Cerevisiae induced by 5.19 MeV/u 22 Ne 5- ion irradiation is studied. Some respiration deficiency mutants, which are white colony phenotype in the selective culture of TTC medium, are obtained. The mutants are effectively identified by means of a new and simplified restriction analysis method. (authors)

  18. 30 CFR 71.301 - Respirable dust control plan; approval by District Manager and posting.

    Science.gov (United States)

    2010-07-01

    ... District Manager and posting. 71.301 Section 71.301 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... plan; approval by District Manager and posting. (a) The District Manager will approve respirable dust control plans on a mine-by-mine basis. When approving respirable dust control plans, the District Manager...

  19. Changing M3G/M6G ratios and pharmacodynamics in a cancer patient during long-term morphine treatment

    DEFF Research Database (Denmark)

    Andersen, Gertrud; Christrup, Lona Louring; Sjøgren, Per

    2002-01-01

    A cancer patient receiving long-term oral sustained-release morphine treatment and periodically presenting with unusually high plasma M3G/M6G ratios is described. We found the patient's formation of M6G more unstable and perhaps delayed compared to the formation of M3G. There is no apparent...... explanation for this phenomenon and the high M3G/M6G ratios had no implications for the patient's pain experience or side effects from the morphine treatment....

  20. [Analysis of epitopes and function of anti-M3 muscarinic acetylcholine receptor antibodies in patients with Sjögren's syndrome].

    Science.gov (United States)

    Tsuboi, Hiroto; Matsuo, Naomi; Iizuka, Mana; Nakamura, Yumi; Matsumoto, Isao; Sumida, Takayuki

    2010-01-01

    Sjögren's syndrome (SS) is an autoimmune disease that affects exocrine glands including salivary and lacrimal glands. It is characterized by lymphocytic infiltration into exocrine glands, leading to dry mouth and eyes. A number of auto-antibodies, such as anti-SS-A and SS-B antibodies, are detected in patients with SS. However, no SS-specific pathologic auto-antibodies have yet been found in this condition. M3 muscarinic acetylcholine receptor (M3R) plays a crucial role in the secretion of saliva from salivary glands. It is reported that some patients with SS carried inhibitory auto-antibodies against M3R. To clarify the epitopes and function of anti-M3R antibodies in SS, we examined antibodies to the extracellular domains (N terminal region, the first, second, and third extracellular loop) of M3R by ELISA using synthesized peptide antigens encoding these domains in 42 SS and 42 healthy controls (HC). Titers and positivity of anti-M3R antibodies to every extracellular domain of M3R were significantly higher in SS than in HC. For functional analysis, human salivary gland (HSG) cells were pre-cultured with IgG from anti-M3R antibodies positive SS, negative SS, and HC. HSG cells were stimulated with cevimeline hydrochloride and intracellular calcium concentration ([Ca(2+)](i)) was measured. IgG from anti-M3R antibodies to the second loop positive SS inhibited the increase of [Ca(2+)](i), but IgG from antibodies to the N terminal or the first loop positive SS enhanced it, while IgG from antibodies to the third loop positive SS showed no effect on [Ca(2+)](i) as well as IgG from anti-M3R antibodies negative SS and HC. These findings indicated the presence of several B cell epitopes on M3R in SS and effect of anti-M3R antibodies on the salivary secretion might differ with these epitopes.

  1. Stimulation of mitochondrial respiration induced by laser irradiation in the presence of rhodamine dyes

    International Nuclear Information System (INIS)

    Krasnikov, B.F.; Zorov, D.B.

    1996-01-01

    The effect of micromolar concentration of rhodamine 123 (methylrhodamine) and ethyl and amyl esters of unsubstituted rhodamine on oxygen consumption by rat liver mitochondria was studied under irradiation by an argon laser (488 and 514 nm). Irradiation of mitochondria in the presence of rhodamine stimulates their respiration. Light-induced stimulation of respiration is not inhibited by free radical scavenger ionol and by inhibitor of the permeability transition pore cyclosporine A. Stimulation of respiration by moderate doses of radiation is reversed in the dark. Increase in radiation dose resulted in only partial reversal of stimulated respiration in the dark. Rhodamine efficacy in stimulation of mitochondrial respiration depends on its structure (amyl > ethyl > methylrhodamine). 22 refs.; 4 figs

  2. Influence of forced respiration on nonlinear dynamics in heart rate variability

    DEFF Research Database (Denmark)

    Kanters, J K; Højgaard, M V; Agner, E

    1997-01-01

    Although it is doubtful whether the normal sinus rhythm can be described as low-dimensional chaos, there is evidence for inherent nonlinear dynamics and determinism in time series of consecutive R-R intervals. However, the physiological origin for these nonlinearities is unknown. The aim...... with a metronome set to 12 min(-1). Nonlinear dynamics were measured as the correlation dimension and the nonlinear prediction error. Complexity expressed as correlation dimension was unchanged from normal respiration, 9.1 +/- 0.5, compared with forced respiration, 9.3 +/- 0.6. Also, nonlinear determinism...... expressed as the nonlinear prediction error did not differ between spontaneous respiration, 32.3 +/- 3.4 ms, and forced respiration, 31.9 +/- 5.7. It is concluded that the origin of the nonlinear dynamics in heart rate variability is not a nonlinear input from the respiration into the cardiovascular...

  3. Oxygen respiration rates of benthic foraminifera as measured with oxygen microsensors

    DEFF Research Database (Denmark)

    Geslin, E.; Risgaard-Petersen, N.; Lombard, Fabien

    2011-01-01

    of the foraminiferal specimens. The results show a wide range of oxygen respiration rates for the different species (from 0.09 to 5.27 nl cell−1 h−1) and a clear correlation with foraminiferal biovolume showed by the power law relationship: R = 3.98 10−3 BioVol0.88 where the oxygen respiration rate (R) is expressed......Oxygen respiration rates of benthic foraminifera are still badly known, mainly because they are difficult to measure. Oxygen respiration rates of seventeen species of benthic foraminifera were measured using microelectrodes and calculated on the basis of the oxygen fluxes measured in the vicinity...... groups (nematodes, copepods, ostracods, ciliates and flagellates) suggests that benthic foraminifera have a lower oxygen respiration rates per unit biovolume. The total contribution of benthic foraminifera to the aerobic mineralisation of organic matter is estimated for the studied areas. The results...

  4. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    Science.gov (United States)

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  5. Relationship between central sleep apnea and Cheyne-Stokes Respiration.

    Science.gov (United States)

    Flinta, Irena; Ponikowski, Piotr

    2016-03-01

    Central sleep apnea (CSA) in patients with heart failure (HF) occurs frequently and shows a serious influence on prognosis in this population. The key elements in the pathophysiology of CSA are respiratory instability with chronic hyperventilation, changes of arterial carbon dioxide pressure (pCO2) and elongated circulation time. The main manifestation of CSA in patients with HF is Cheyne-Stokes Respiration (CSR). The initial treatment is the optimization of HF therapy. However, many other options of the therapeutic management have been studied, particularly those based on positive airway pressure methods. In patients with heart failure we often can observe the overlap of CSA and CSR; we will discuss the differences between these forms of breathing disorders during sleep. We will also discuss when CSA and CSR occur independently of each other and the importance of CSR occurring during the daytime in context of CSA during the nighttime. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. State of the art in monitoring respirable mine aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Volkwein, J.C.; Mischler, S.E.; Thimons, E.D.; Timko, R.J.; Kissell, F.N.

    2005-07-01

    The Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH) has been developing several new tools to help miners monitor respirable coal dust, silica, and diesel particulate matter. This paper discusses three main topics. First, the latest results of the person wearable dust monitor (PDM), developed by Rupprecht and Patashnick under CDC contract. The PDM was tested side by side with conventional samplers at a number of US coal mines and results indicated that the PDM was comparable to conventional samplers. Second, improvements to the Dust Dosimeter monitoring technique that includes a new pump with built in pressure transducer and algorithm to convert differential pressure to dust concentration have shown good precision. Third, advances in the use of the detector tube technique to monitor tailpipe diesel emissions and ambient diesel particulate matter show that strong correlations exist between differential pressure measurement and elemental carbon in the samplers. 3 figs.

  7. The external respiration and gas exchange in space missions

    Science.gov (United States)

    Baranov, V. M.; Tikhonov, M. A.; Kotov, A. N.

    Literature data and results of our own studies into an effect of micro- and macro-gravity on an external respiration function of man are presented. It is found that in cosmonauts following the 7-366 day space missions there is an enhanced tendency associated with an increased flight duration toward a decrease in the lung volume and breathing mechanics parameters: forced vital capacity of the lungs (FVC) by 5-25 percent, peak inspiratory and expiratory (air) flows (PIF, PEF) by 5-40 percent. A decrease in FVC appears to be explained by a new balance of elastic forces of the lungs, chest and abdomen occuring in microgravity as well as by an increased blood filling and pulmonary hydration. A decline of PIF and PEF is probalbly resulted from antigravitational deconditioning of the respiratory muscles with which a postflight decreased physical performance can in part be associated. The ventilation/perfusion ratios during orthostasis and +G Z and +G X accelerations are estimated. The biophysical nature of developing the absorption atelectases on a combined exposure to accelerations and 100% oxygen breathing is confirmed. A hypothesis that hypervolemia and pulmonary congestion can increase the tendency toward the development of atelectases in space in particular during pure oxygen breathing is suggested. Respiratory physiology problem area which is of interest for space medicine is defined. It is well known that due to present-day technologic progress and accomplishments in applied physiology including applied respiration physiology there currently exist sophisticated technical facilities in operation maintaining the life and professional working capacity of a man in various natural environments: on Earth, under water and in space. By the way, the biomedical involvement in developing and constructing such facilities has enabled an accumulation of a great body of information from experimental studies and full-scale trails to examine the effects of the changed environments

  8. Gravimetric Measurements of Filtering Facepiece Respirators Challenged With Diesel Exhaust.

    Science.gov (United States)

    Satish, Swathi; Swanson, Jacob J; Xiao, Kai; Viner, Andrew S; Kittelson, David B; Pui, David Y H

    2017-07-01

    Elevated concentrations of diesel exhaust have been linked to adverse health effects. Filtering facepiece respirators (FFRs) are widely used as a form of respiratory protection against diesel particulate matter (DPM) in occupational settings. Previous results (Penconek A, Drążyk P, Moskal A. (2013) Penetration of diesel exhaust particles through commercially available dust half masks. Ann Occup Hyg; 57: 360-73.) have suggested that common FFRs are less efficient than would be expected for this purpose based on their certification approvals. The objective of this study was to measure the penetration of DPM through NIOSH-certified R95 and P95 electret respirators to verify this result. Gravimetric-based penetration measurements conducted using polytetrafluoroethylene (PTFE) and polypropylene (PP) filters were compared with penetration measurements made with a Scanning Mobility Particle Sizer (SMPS, TSI Inc.), which measures the particle size distribution. Gravimetric measurements using PP filters were variable compared to SMPS measurements and biased high due to adsorption of gas phase organic material. Relatively inert PTFE filters adsorbed less gas phase organic material resulting in measurements that were more accurate. To attempt to correct for artifacts associated with adsorption of gas phase organic material, primary and secondary filters were used in series upstream and downstream of the FFR. Correcting for adsorption by subtracting the secondary mass from the primary mass improved the result for both PTFE and PP filters but this correction is subject to 'equilibrium' conditions that depend on sampling time and the concentration of particles and gas phase hydrocarbons. Overall, the results demonstrate that the use of filters to determine filtration efficiency of FFRs challenged with diesel exhaust produces erroneous results due to the presence of gas phase hydrocarbons in diesel exhaust and the tendency of filters to adsorb organic material. Published by

  9. Glycolysis and mitochondrial respiration in mouse LDHC-null sperm.

    Science.gov (United States)

    Odet, Fanny; Gabel, Scott; London, Robert E; Goldberg, Erwin; Eddy, Edward M

    2013-04-01

    We demonstrated previously that a knockout (KO) of the lactate dehydrogenase type C (Ldhc) gene disrupted male fertility and caused a considerable reduction in sperm glucose consumption, ATP production, and motility. While that study used mice with a mixed genetic background, the present study used C57BL/6 (B6) and 129S6 (129) Ldhc KO mice. We found that B6 KO males were subfertile and 129 KO males were infertile. Sperm from 129 wild-type (WT) mice have a lower glycolytic rate than sperm from B6 WT mice, resulting in a greater reduction in ATP production in 129 KO sperm than in B6 KO sperm. The lower glycolytic rate in 129 sperm offered a novel opportunity to examine the role of mitochondrial respiration in sperm ATP production and motility. We observed that in media containing a mitochondrial substrate (pyruvate or lactate) as the sole energy source, ATP levels and progressive motility in 129 KO sperm were similar to those in 129 WT sperm. However, when glucose was added, lactate was unable to maintain ATP levels or progressive motility in 129 KO sperm. The rate of respiration (ZO2) was high when 129 KO or WT sperm were incubated with lactate alone, but addition of glucose caused a reduction in ZO2. These results indicate that in the absence of glucose, 129 sperm can produce ATP via oxidative phosphorylation, but in the presence of glucose, oxidative phosphorylation is suppressed and the sperm utilize aerobic glycolysis, a phenomenon known as the Crabtree effect.

  10. Combustion of stratified hydrogen-air mixtures in the 10.7 m3 Combustion Test Facility cylinder

    International Nuclear Information System (INIS)

    Whitehouse, D.R.; Greig, D.R.; Koroll, G.W.

    1996-01-01

    This paper presents preliminary results from hydrogen concentration gradient combustion experiments in a 10.7 m 3 cylinder. These gradients, also referred to as stratified mixtures, were formed from dry mixtures of hydrogen and air at atmospheric temperature. Combustion pressures, burn fractions and flame speeds in concentration gradients were compared with combustion of well-mixed gases containing equivalent amounts of hydrogen. The studied variables included the quantity of hydrogen in the vessel, the steepness of the concentration gradient, the igniter location, and the initial concentration of hydrogen at the bottom of the vessel. Gradients of hydrogen and air with average concentrations of hydrogen below the downward propagation limit produced significantly greater combustion pressures when ignited at the top of the vessel than well-mixed gases with the same quantity of hydrogen. This was the result of considerably higher burn fractions in the gradients than in the well-mixed gas tests. Above the downward propagation limit, gradients of hydrogen ignited at the top of the vessel produced nearly the same combustion pressures as under well-mixed conditions; both gradients and well-mixed gases had high burn fractions. Much higher flame speeds were observed in the gradients than the well-mixed gases. Gradients and well-mixed gases containing up to 14% hydrogen ignited at the bottom of the vessel produced nearly the same combustion pressures. Above 14% hydrogen, gradients produced lower combustion pressures than well-mixed gases having the same quantity of hydrogen. This can be attributed to lower burn fractions of fuel from the gradients compared with well-mixed gases with similar quantities of hydrogen. When ignited at the bottom of the vessel, 90% of a gradient's gases remained unburned until several seconds after ignition. The remaining gases were then consumed at a very fast rate. (orig.)

  11. VizieR Online Data Catalog: M-3.8+0.9 molecular cloud 3mm datacubes (Riquelme+ 2018)

    Science.gov (United States)

    Riquelme, D.; Amo-Baladron, A.; Martin-Pintado, J.; Mauersberger, R.; Martin, S.; Burton, M.; Cunningham, M.; Jones, P.; Menten, K. M.; Bronfman, L.; Guesten, R.

    2018-01-01

    We mapped the M-3.8+0.9 molecular cloud placed at the footpoints of a giant molecular loop, in 3-mm range molecular lines using Mopra telescope, and the 13CO (2-1) line at 1 mm using the 12-m Atacama Pathfinder EXperiment (APEX) telescope. The Mopra observations were performed during September 2008 and August 2009. We used the digital mode filter bank MOPS in broadband mode, covering 8GHz of bandwidth simultaneously in four 2.2GHz sub-bands, each of them with 8192 channel spaced by 0.27MHz. Two polarizations were measured simultaneously. We produce one data cube per detected molecule. The final spatial resolution of the data cubes is between 49 arcsec and 51 arcsec at 115 and 86GHz respectively. The size of the pixel is 15 arcsec. The spectral resolution of the data is 269.5kHz (0.94-0.78km/s). The data is presented in T*a (K). The APEX observations were carried out on 24 June, and 1, 2, and 3 July 2014 under the APEX project code M-093.F-008-2014 using the APEX-1 (SHIFI) receiver and the eXtended bandwidth Fast Fourier Transform Spectrometer (XFFTS) backend. The data were regridded in equatorial coordinates and then converted to Galactic coordinates for comparison with the Mopra data using standard CLASS routines. The pixel size is 13.8 arcsec. The spatial resolution is 30.1 arcsec and the spectral resolution is 299.8kHz (1.03km/s). The data is presented in Tmb (K). (2 data files).

  12. Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness.

    Science.gov (United States)

    Yu, Emma P K; Reinhold, Johannes; Yu, Haixiang; Starks, Lakshi; Uryga, Anna K; Foote, Kirsty; Finigan, Alison; Figg, Nichola; Pung, Yuh-Fen; Logan, Angela; Murphy, Michael P; Bennett, Martin

    2017-12-01

    Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis. Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE -/- ) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE -/- mice overexpressing the mitochondrial helicase Twinkle (Tw + /ApoE -/- ). Tw + /ApoE -/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw + /ApoE -/- mice had decreased necrotic core and increased fibrous cap areas, and Tw + /ApoE -/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis. Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in

  13. Boreal and temperate trees show strong acclimation of respiration to warming.

    Science.gov (United States)

    Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A

    2016-03-31

    Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.

  14. Effect of Simvastatin, Coenzyme Q10, Resveratrol, Acetylcysteine and Acetylcarnitine on Mitochondrial Respiration.

    Science.gov (United States)

    Fišar, Z; Hroudová, J; Singh, N; Kopřivová, A; Macečková, D

    2016-01-01

    Some therapeutic and/or adverse effects of drugs may be related to their effects on mitochondrial function. The effects of simvastatin, resveratrol, coenzyme Q10, acetylcysteine, and acetylcarnitine on Complex I-, Complex II-, or Complex IV-linked respiratory rate were determined in isolated brain mitochondria. The protective effects of these biologically active compounds on the calcium-induced decrease of the respiratory rate were also studied. We observed a significant inhibitory effect of simvastatin on mitochondrial respiration (IC50 = 24.0 μM for Complex I-linked respiration, IC50 = 31.3 μM for Complex II-linked respiration, and IC50 = 42.9 μM for Complex IV-linked respiration); the inhibitory effect of resveratrol was found at very high concentrations (IC50 = 162 μM for Complex I-linked respiration, IC50 = 564 μM for Complex II-linked respiration, and IC50 = 1454 μM for Complex IV-linked respiration). Concentrations required for effective simvastatin- or resveratrol-induced inhibition of mitochondrial respiration were found much higher than concentrations achieved under standard dosing of these drugs. Acetylcysteine and acetylcarnitine did not affect the oxygen consumption rate of mitochondria. Coenzyme Q10 induced an increase of Complex I-linked respiration. The increase of free calcium ions induced partial inhibition of the Complex I+II-linked mitochondrial respiration, and all tested drugs counteracted this inhibition. None of the tested drugs showed mitochondrial toxicity (characterized by respiratory rate inhibition) at drug concentrations achieved at therapeutic drug intake. Resveratrol, simvastatin, and acetylcarnitine had the greatest neuroprotective potential (characterized by protective effects against calcium-induced reduction of the respiratory rate).

  15. Pore-scale investigation on the response of heterotrophic respiration to moisture conditions in heterogeneous soils

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhifeng; Liu, Chongxuan; Todd-Brown, Katherine E.; Liu, Yuanyuan; Bond-Lamberty, Ben; Bailey, Vanessa L.

    2016-11-15

    The relationship between microbial respiration rate and soil moisture content is an important property for understanding and predicting soil organic carbon degradation, CO2 production and emission, and their subsequent effects on climate change. This paper reports a pore-scale modeling study to investigate the response of heterotrophic respiration to moisture conditions in soils and to evaluate various factors that affect this response. X-ray computed tomography was used to derive soil pore structures, which were then used for pore-scale model investigation. The pore-scale results were then averaged to calculate the effective respiration rates as a function of water content in soils. The calculated effective respiration rate first increases and then decreases with increasing soil water content, showing a maximum respiration rate at water saturation degree of 0.75 that is consistent with field and laboratory observations. The relationship between the respiration rate and moisture content is affected by various factors, including pore-scale organic carbon bioavailability, the rate of oxygen delivery, soil pore structure and physical heterogeneity, soil clay content, and microbial drought resistivity. Simulations also illustrates that a larger fraction of CO2 produced from microbial respiration can be accumulated inside soil cores under higher saturation conditions, implying that CO2 flux measured on the top of soil cores may underestimate or overestimate true soil respiration rates under dynamic moisture conditions. Overall, this study provides mechanistic insights into the soil respiration response to the change in moisture conditions, and reveals a complex relationship between heterotrophic microbial respiration rate and moisture content in soils that is affected by various hydrological, geochemical, and biophysical factors.

  16. Influence of temperature and organic matter content on soil respiration in a deciduous oak forest

    Directory of Open Access Journals (Sweden)

    Zsolt Kotroczó

    2014-12-01

    Full Text Available The increasing temperature enhances soil respiration differently depend on different conditions (soil moisture, soil organic matter, the activity of soil microbes. It is an essential factor to predicting the effect of climate change on soil respiration. In a temperate deciduous forest (North-Hungary we added or removal aboveground and belowground litter to determine total soil respiration. We investigated the relationship between total soil CO2 efflux, soil moisture and soil temperature. Soil CO2 efflux was measured at each plot using chamber based soil respiration measurements. We determined the temperature sensitivity of soil respiration. The effect of doubled litter was less than the effect of removal. We found that temperature was more influential in the control of soil respiration than soil moisture in litter removal treatments, particularly in the wetter root exclusion treatments (NR and NI (R2: 0.49-0.61. Soil moisture (R2: 0.18-0.24 and temperature (R2: 0.18-0.20 influenced soil respiration similarly in treatments, where soil was drier (Control, Double Litter, Double Wood. A significantly greater increase in temperature induced higher soil respiration were significantly higher (2-2.5-fold in root exclusion treatments, where soil was wetter throughout the year, than in control and litter addition treatments. The highest bacterial and fungal count was at the DL treatment but the differences is not significant compared to the Control. The bacterial number at the No Litter, No Root, No Input treatment was significantly lower at the Control. Similar phenomenon can be observed at the fungal too, but the differences are not significant. The results of soil respiration suggest that the soil aridity can reduce soil respiration increases with the temperature increase. Soil bacterial and fungal count results show the higher organic matter content and soil surface cover litter favors the activity.

  17. The evaluation and quantification of respirable coal and silica dust concentrations: a task-based approach.

    Science.gov (United States)

    Grové, T; Van Dyk, T; Franken, A; Du Plessis, J

    2014-01-01

    Silicosis and coal worker's pneumoconiosis are serious occupational respiratory diseases associated with the coal mining industry and the inhalation of respirable dusts containing crystalline silica. The purpose of this study (funded by the Mine Health and Safety Council of South Africa) was to evaluate the individual contributions of underground coal mining tasks to the respirable dust and respirable silica dust concentrations in an underground section by sampling the respirable dust concentrations at the intake and return of each task. The identified tasks were continuous miner (CM) cutting, construction, transfer of coal, tipping, and roof bolting. The respirable dust-generating hierarchy of the tasks from highest to lowest was: transfer of coal > CM right cutting > CM left cutting > CM face cutting > construction > roof bolting > tipping; and for respirable silica dust: CM left cutting > construction > transfer of coal > CM right cutting. Personal exposure levels were determined by sampling the exposures of workers performing tasks in the section. Respirable dust concentrations and low concentrations of respirable silica dust were found at the intake air side of the section, indicating that air entering the section is already contaminated. The hierarchy for personal respirable dust exposures was as follows, from highest to lowest: CM operator > cable handler > miner > roof bolt operator > shuttle car operator, and for respirable silica dust: shuttle car operator > CM operator > cable handler > roof bolt operator > miner. Dust control methods to lower exposures should include revision of the position of workers with regard to the task performed, positioning of the tasks with regard to the CM cutting, and proper use of the line curtains to direct ventilation appropriately. The correct use of respiratory protection should also be encouraged.

  18. Shrub encroachment alters sensitivity of soil respiration to temperature and moisture

    Science.gov (United States)

    Cable, Jessica M.; Barron-Gafford, Greg A.; Ogle, Kiona; Pavao-Zuckerman, Mitchell; Scott, Russell L.; Williams, David G.; Huxman, Travis E.

    2012-03-01

    A greater abundance of shrubs in semiarid grasslands affects the spatial patterns of soil temperature, moisture, and litter, resulting in fertile islands with potentially enhanced soil metabolic activity. The goal of this study was to quantify the microsite specificity of soil respiration in a semiarid riparian ecosystem experiencing shrub encroachment. We quantified the response of soil respiration to different microsite conditions created by big mesquite shrubs (near the trunk and the canopy edge), medium-sized mesquite, sacaton bunchgrasses, and open spaces. We hypothesized that soil respiration would be more temperature sensitive and less moisture sensitive and have a greater magnitude in shrub microsites compared with grass and open microsites. Field and incubation soil respiration data were simultaneously analyzed in a Bayesian framework to quantify the microsite-specific temperature and moisture sensitivities and magnitude of respiration. The analysis showed that shrub expansion increases the heterogeneity of respiration. Respiration has greater temperature sensitivity near the shrub canopy edge, and respiration rates are higher overall under big mesquite compared with those of the other microsites. Respiration in the microsites beneath medium-sized mesquites does not behave like a downscaled version of big mesquite microsites. The grass microsites show more similarity to big mesquite microsites than medium-sized shrubs. This study shows there can be a great deal of fine-scale spatial heterogeneity that accompanies shifts in vegetation structure. Such complexity presents a challenge in scaling soil respiration fluxes to the landscape for systems experiencing shrub encroachment, but quantifying this complexity is significantly important in determining overall ecosystem metabolic behavior.

  19. Respirator studies for the ERDA Division of Safety, Standards, and Compliance, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Davis, T.O.; Raven, P.B.; Shafer, C.L.; Linnebur, A.C.; Bustos, J.M.; Wheat, L.D.; Douglas, D.D.

    1977-03-01

    Results of a study to determine what effect wearing a respirator has on worker performance, and which physiological parameters an industrial physician should consider when examining an employee who will be wearing a respirator while working are presented

  20. Continuous daylight in the high-Arctic summer supports high plankton respiration rates compared to those supported in the dark

    KAUST Repository

    Mesa, Elena; Delgado-Huertas, Antonio; Carrillo-de-Albornoz, Paloma; Garcí a-Corral, Lara S.; Sanz-Martí n, Marina; Wassmann, Paul; Reigstad, Marit; Sejr, Mikael; Dalsgaard, Tage; Duarte, Carlos M.

    2017-01-01

    Plankton respiration rate is a major component of global CO2 production and is forecasted to increase rapidly in the Arctic with warming. Yet, existing assessments in the Arctic evaluated plankton respiration in the dark. Evidence that plankton

  1. 78 FR 54432 - Development of Inward Leakage Standards for Half-Mask Air-Purifying Particulate Respirators

    Science.gov (United States)

    2013-09-04

    ... Respirators. Procedure No. RCT-APR-STP-0068. Available at http://www.cdc.gov/niosh/docket/archive/pdfs/NIOSH... currently market quarter-mask respirators? If you are a purchaser, do you currently use quarter-mask...

  2. Soil respiration patterns and rates at three Taiwanese forest plantations: dependence on elevation, temperature, precipitation, and litterfall

    OpenAIRE

    Huang, Yu-Hsuan; Hung, Chih-Yu; Lin, I-Rhy; Kume, Tomonori; Menyailo, Oleg V.; Cheng, Chih-Hsin

    2017-01-01

    Background Soil respiration contributes to a large quantity of carbon emissions in the forest ecosystem. In this study, the soil respiration rates at three Taiwanese forest plantations (two lowland and one mid-elevation) were investigated. We aimed to determine how soil respiration varies between lowland and mid-elevation forest plantations and identify the relative importance of biotic and abiotic factors affecting soil respiration. Results The results showed that the temporal patterns of so...

  3. Recent development in thermally activated desalination methods: achieving an energy efficiency less than 2.5 kWhelec/m3

    KAUST Repository

    Shahzad, Muhammad Wakil; Thu, Kyaw; Ng, Kim Choon; WonGee, Chun

    2015-01-01

    Water-Energy-Environment nexus is a crucial consideration when designing seawater desalination processes, particularly for the water-stressed countries where the annual water availability is less than 250 m3 per capita. Despite the thermodynamics

  4. Unique Footprint in the scl1.3 Locus Affects Adhesion and Biofilm Formation of the Invasive M3-Type Group A Streptococcus.

    Science.gov (United States)

    Bachert, Beth A; Choi, Soo J; LaSala, Paul R; Harper, Tiffany I; McNitt, Dudley H; Boehm, Dylan T; Caswell, Clayton C; Ciborowski, Pawel; Keene, Douglas R; Flores, Anthony R; Musser, James M; Squeglia, Flavia; Marasco, Daniela; Berisio, Rita; Lukomski, Slawomir

    2016-01-01

    The streptococcal collagen-like proteins 1 and 2 (Scl1 and Scl2) are major surface adhesins that are ubiquitous among group A Streptococcus (GAS). Invasive M3-type strains, however, have evolved two unique conserved features in the scl1 locus: (i) an IS1548 element insertion in the scl1 promoter region and (ii) a nonsense mutation within the scl1 coding sequence. The scl1 transcript is drastically reduced in M3-type GAS, contrasting with a high transcription level of scl1 allele in invasive M1-type GAS. This leads to a lack of Scl1 expression in M3 strains. In contrast, while scl2 transcription and Scl2 production are elevated in M3 strains, M1 GAS lack Scl2 surface expression. M3-type strains were shown to have reduced biofilm formation on inanimate surfaces coated with cellular fibronectin and laminin, and in human skin equivalents. Repair of the nonsense mutation and restoration of Scl1 expression on M3-GAS cells, restores biofilm formation on cellular fibronectin and laminin coatings. Inactivation of scl1 in biofilm-capable M28 and M41 strains results in larger skin lesions in a mouse model, indicating that lack of Scl1 adhesin promotes bacterial spread over localized infection. These studies suggest the uniquely evolved scl1 locus in the M3-type strains, which prevents surface expression of the major Scl1 adhesin, contributed to the emergence of the invasive M3-type strains. Furthermore these studies provide insight into the molecular mechanisms mediating colonization, biofilm formation, and pathogenesis of group A streptococci.

  5. Unique footprint in the scl1.3 locus affects adhesion and biofilm formation of the invasive M3-type group A Streptococcus

    Directory of Open Access Journals (Sweden)

    Beth Alexandra Bachert

    2016-08-01

    Full Text Available The streptococcal collagen-like proteins 1 and 2 (Scl1 and Scl2 are major surface adhesins that are ubiquitous among group A Streptococcus (GAS. Invasive M3-type strains, however, have evolved two unique conserved features in the scl1 locus: (i an IS1548 element insertion in the scl1 promoter region and (ii a nonsense mutation within the scl1 coding sequence. The scl1 transcript is drastically reduced in M3-type GAS, contrasting with a high transcription level of scl1 allele in invasive M1-type GAS. This leads to a lack of Scl1 expression in M3 strains. In contrast, while scl2 transcription and Scl2 production are elevated in M3 strains, M1 GAS lack Scl2 surface expression. M3-type strains were shown to have reduced biofilm formation on inanimate surfaces coated with cellular fibronectin and laminin, and in human skin equivalents. Repair of the nonsense mutation and restoration of Scl1 expression on M3-GAS cells, restores biofilm formation on cellular fibronectin and laminin coatings. Inactivation of scl1 in biofilm-capable M28 and M41 strains results in larger skin lesions in a mouse model, indicating that lack of Scl1 adhesin promotes bacterial spread over localized infection. These studies suggest the uniquely evolved scl1 locus in the M3-type strains, which prevents surface expression of the major Scl1 adhesin, contributed to the emergence of the invasive M3-type strains. Furthermore these studies provide insight into the molecular mechanisms mediating colonization, biofilm formation, and pathogenesis of group A streptococci.

  6. Validity of the M-3Y force equivalent G-matrix element for the calculations of nuclear structure in the s-d shell

    International Nuclear Information System (INIS)

    Song Hong-qiu; Wang Zixing; Cai Yanhuang; Huang Weizhi

    1987-01-01

    The matrix elements of the M-3Y force are adopted as the equivalent G-matrix elements and the folded diagram method is used to calculate the spectra of 18 O and 18 F. The results show that the matrix elements of the M-3Y force as the equivalent G-matrix elements are suitable for microscopic calculations of the nuclei in the s-d shell

  7. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission and ground irradiation experiment

    Science.gov (United States)

    Lambreva, Maya; Rea, Giuseppina; Antonacci, Amina; Serafini, Agnese; Damasso, Mario; Margonelli, Andrea; Johanningmeier, Udo; Bertalan, Ivo; Pezzotti, Gianni; Giardi, Maria Teresa

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plantsor algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stress-tolerant strains. Site-directed and random mutants of the unicellular green alga Chlamydomonas reinhardtii of Photosystem II D1 protein were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. Metabolite profiling by quantitative HPLC methods revealed the organisms and the stress conditions capable to accumulate the highest pigment levels. In order to develop a project for a rationale metabolic engineering of algal secondary metabolites overproduction, we are performing expression analyses on the carotenoid biosynthetic pathway under physiological and mimicked space conditions. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton-M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence biosensor, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device

  8. Complex terrain alters temperature and moisture limitations of forest soil respiration across a semiarid to subalpine gradient

    Science.gov (United States)

    Berryman, Erin Michele; Barnard, H.R.; Adams, H.R.; Burns, M.A.; Gallo, E.; Brooks, P.D.

    2015-01-01

    Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. We quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important for dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.

  9. 42 CFR 84.1151 - DOP filter test; respirators designed as respiratory protection against dusts, fumes, and mists...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false DOP filter test; respirators designed as... filter test; respirators designed as respiratory protection against dusts, fumes, and mists having an air...) All single air-purifying respirator filter units will be tested in an atmosphere concentration of 100...

  10. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type C supplied-air respirator, demand and pressure demand class; minimum requirements. 84.149 Section 84.149 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT... OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.149 Type C supplied-air respirator...

  11. Biophysical controls on soil respiration in the dominant patch types of an old-growth, mixed-conifer forest

    Science.gov (United States)

    Siyan Ma; Jiquan Chen; John R. Butnor; Malcolm North; Eugénie S. Euskirchen; Brian Oakley

    2005-01-01

    Little is known about biophysical controls on soil respiration in California's Sierra Nevada old-growth, mixed-conifer forests. Using portable and automated soil respiration sampling units, we measured soil respiration rate (SRR) in three dominant patch types: closed canopy (CC), ceanothus-dominated patches (CECO), and open canopy (OC). SRR varied significantly...

  12. Preparation and Hydrogen Storage Properties of Mg-Rich Mg-Ni Ultrafine Particles

    Directory of Open Access Journals (Sweden)

    Jianxin Zou

    2012-01-01

    Full Text Available In the present work, Mg-rich Mg-Ni ultrafine powders were prepared through an arc plasma method. The phase components, microstructure, and hydrogen storage properties of the powders were carefully investigated. It is found that Mg2Ni and MgNi2 could be obtained directly from the vapor state reactions between Mg and Ni, depending on the local vapor content in the reaction chamber. A nanostructured MgH2 + Mg2NiH4 hydrogen storage composite could be generated after hydrogenation of the Mg-Ni ultrafine powders. After dehydrogenation, MgH2 and Mg2NiH4 decomposed into nanograined Mg and Mg2Ni, respectively. Thermogravimetry/differential scanning calorimetry (TG/DSC analyses showed that Mg2NiH4 phase may play a catalytic role in the dehydriding process of the hydrogenated Mg ultrafine particles.

  13. Convergence in the temperature response of leaf respiration across biomes and plant functional types.

    Science.gov (United States)

    Heskel, Mary A; O'Sullivan, Odhran S; Reich, Peter B; Tjoelker, Mark G; Weerasinghe, Lasantha K; Penillard, Aurore; Egerton, John J G; Creek, Danielle; Bloomfield, Keith J; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R; Martinez-de la Torre, Alberto; Griffin, Kevin L; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H; Atkin, Owen K

    2016-04-05

    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.

  14. Delayed ultraviolet light-induced cessation of respiration by inadequate aeration of Escherichia coli

    International Nuclear Information System (INIS)

    Joshi, J.G.; Swenson, P.A.; Schenley, R.L.

    1977-01-01

    Inadequately aerated Escherichia coli B/r cultures did not shut their respiration off 60 min after ultraviolet light (52 J/m 2 at 254 nm) as they did when well supplied with oxygen. Since cessation of respiration is associated with cell death, the result suggested that oxygen toxicity by superoxide radicals generated by cell metabolism might be responsible for cell death. The specific activity of superoxide dismutase, which scavenges O 2 - radicals, increased twofold after 90 min of adequate aeration, but the specific activity of catalase remained constant. Respiration and viability of irradiated cells were affected not at all by the presence of superoxide dismutase and only slightly by the presence of catalase. Metal ions such as Mn 2+ and Fe 2+ , inducers of superoxide dismutase, had no effect on respiration and viability. When irradiated cells were incubated under N 2 for 90 min, the respiration, growth, and viability time-course responses were the same as for cells not exposed to anaerobiosis. We conclude that superoxide anions generated at the time of irradiation play no part in cessation of respiration and cell death and that inadequate aeration or anaerobiosis delays the ultraviolet light-induced synthesis of proteins responsible for the irreversible cessation of respiration

  15. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Directory of Open Access Journals (Sweden)

    Liming Lai

    Full Text Available The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2 absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2 emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  16. Respiration Gates Sensory Input Responses in the Mitral Cell Layer of the Olfactory Bulb

    Science.gov (United States)

    Short, Shaina M.; Morse, Thomas M.; McTavish, Thomas S.; Shepherd, Gordon M.; Verhagen, Justus V.

    2016-01-01

    Respiration plays an essential role in odor processing. Even in the absence of odors, oscillating excitatory and inhibitory activity in the olfactory bulb synchronizes with respiration, commonly resulting in a burst of action potentials in mammalian mitral/tufted cells (MTCs) during the transition from inhalation to exhalation. This excitation is followed by inhibition that quiets MTC activity in both the glomerular and granule cell layers. Odor processing is hypothesized to be modulated by and may even rely on respiration-mediated activity, yet exactly how respiration influences sensory processing by MTCs is still not well understood. By using optogenetics to stimulate discrete sensory inputs in vivo, it was possible to temporally vary the stimulus to occur at unique phases of each respiration. Single unit recordings obtained from the mitral cell layer were used to map spatiotemporal patterns of glomerular evoked responses that were unique to stimulations occurring during periods of inhalation or exhalation. Sensory evoked activity in MTCs was gated to periods outside phasic respiratory mediated firing, causing net shifts in MTC activity across the cycle. In contrast, odor evoked inhibitory responses appear to be permitted throughout the respiratory cycle. Computational models were used to further explore mechanisms of inhibition that can be activated by respiratory activity and influence MTC responses. In silico results indicate that both periglomerular and granule cell inhibition can be activated by respiration to internally gate sensory responses in the olfactory bulb. Both the respiration rate and strength of lateral connectivity influenced inhibitory mechanisms that gate sensory evoked responses. PMID:28005923

  17. The role of p38 in mitochondrial respiration in male and female mice.

    Science.gov (United States)

    Ju, Xiaohua; Wen, Yi; Metzger, Daniel; Jung, Marianna

    2013-06-07

    p38 is a mitogen-activated protein kinase and mediates cell growth, cell differentiation, and synaptic plasticity. The aim of this study is to determine the extent to which p38 plays a role in maintaining mitochondrial respiration in male and female mice under a normal condition. To achieve this aim, we have generated transgenic mice that lack p38 in cerebellar Purkinje neurons by crossing Pcp2 (Purkinje cell protein 2)-Cre mice with p38(loxP/loxP) mice. Mitochondria from cerebellum were then isolated from the transgenic and wild-type mice to measure mitochondrial respiration using XF24 respirometer. The mRNA and protein expression of cytochrome c oxidase (COX) in cerebellum were also measured using RT-PCR and immunoblot methods. Separately, HT22 cells were used to determine the involvement of 17β-estradiol (E2) and COX in mitochondrial respiration. The genetic knockout of p38 in Purkinje neurons suppressed the mitochondrial respiration only in male mice and increased COX expression only in female mice. The inhibition of COX by sodium azide (SA) sharply suppressed mitochondrial respiration of HT22 cells in a manner that was protected by E2. These data suggest that p38 is required for the mitochondrial respiration of male mice. When p38 is below a normal level, females may maintain mitochondrial respiration through COX up-regulation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Measurement and Modeling of Respiration Rate of Tomato (Cultivar Roma) for Modified Atmosphere Storage.

    Science.gov (United States)

    Kandasamy, Palani; Moitra, Ranabir; Mukherjee, Souti

    2015-01-01

    Experiments were conducted to determine the respiration rate of tomato at 10, 20 and 30 °C using closed respiration system. Oxygen depletion and carbon dioxide accumulation in the system containing tomato was monitored. Respiration rate was found to decrease with increasing CO2 and decreasing O2 concentration. Michaelis-Menten type model based on enzyme kinetics was evaluated using experimental data generated for predicting the respiration rate. The model parameters that obtained from the respiration rate at different O2 and CO2 concentration levels were used to fit the model against the storage temperatures. The fitting was fair (R2 = 0.923 to 0.970) when the respiration rate was expressed as O2 concentation. Since inhibition constant for CO2 concentration tended towards negetive, the model was modified as a function of O2 concentration only. The modified model was fitted to the experimental data and showed good agreement (R2 = 0.998) with experimentally estimated respiration rate.

  19. Classification of soil respiration in areas of sugarcane renewal using decision tree

    Directory of Open Access Journals (Sweden)

    Camila Viana Vieira Farhate

    Full Text Available ABSTRACT: The use of data mining is a promising alternative to predict soil respiration from correlated variables. Our objective was to build a model using variable selection and decision tree induction to predict different levels of soil respiration, taking into account physical, chemical and microbiological variables of soil as well as precipitation in renewal of sugarcane areas. The original dataset was composed of 19 variables (18 independent variables and one dependent (or response variable. The variable-target refers to soil respiration as the target classification. Due to a large number of variables, a procedure for variable selection was conducted to remove those with low correlation with the variable-target. For that purpose, four approaches of variable selection were evaluated: no variable selection, correlation-based feature selection (CFS, chisquare method (χ2 and Wrapper. To classify soil respiration, we used the decision tree induction technique available in the Weka software package. Our results showed that data mining techniques allow the development of a model for soil respiration classification with accuracy of 81 %, resulting in a knowledge base composed of 27 rules for prediction of soil respiration. In particular, the wrapper method for variable selection identified a subset of only five variables out of 18 available in the original dataset, and they had the following order of influence in determining soil respiration: soil temperature > precipitation > macroporosity > soil moisture > potential acidity.

  20. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Science.gov (United States)

    Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M

    2012-01-01

    The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2) absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2) emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.