WorldWideScience

Sample records for mg kg-1 mn

  1. Reversal of rocuronium-induced (1.2 mg kg-1) profound neuromuscular block by accidental high dose of sugammadex (40 mg kg-1).

    NARCIS (Netherlands)

    Molina, A.L.; Boer, H.D. de; Klimek, M.; Heeringa, M.; Klein, J.

    2007-01-01

    Sugammadex is the first selective relaxant binding agent and reverses rocuronium-induced neuromuscular block. A case is reported in which a patient accidentally received a high dose of sugammadex (40 mg kg-1) to reverse a rocuronium-induced (1.2 mg kg-1) profound neuromuscular block. A fast and

  2. Sugammadex 4.0 mg kg-1 reversal of deep rocuronium-induced neuromuscular blockade

    DEFF Research Database (Denmark)

    Yu, Buwei; Wang, Xiangrui; Hansen, Søren Helbo

    2014-01-01

    Objective: Maintenance of deep Neuro Muscular Blockade (NMB) until the end of surgery may be beneficial in some surgical procedures. The selective relaxant binding agent sugammadex rapidly reverses deep levels of rocuronium-induced NMB. The purpose of this study was to evaluate the efficacy...... and safety of sugammadex 4.0 mg kg-1 for reversal of deep rocuronium-induced NMB in Chinese and Caucasian patients. Methods: This was an open-label, multicenter, prospective Phase III efficacy study in adult American Society of Anesthesiologists Class 1-3 patients scheduled for surgery under general...... anesthesia and requiring deep NMB. All patients received intravenous propofol and opioids for induction and maintenance of anesthesia, and a single intubation dose of rocuronium 0.6 mg/kg, with maintenance doses of 0.1-0.2 mg/kg as required. Sugammadex 4.0 mg/kg was administered after the last dose...

  3. Efficacy, safety and pharmacokinetics of sugammadex 4 mg kg-1 for reversal of deep neuromuscular blockade in patients with severe renal impairment

    NARCIS (Netherlands)

    Panhuizen, I. F.; Gold, S. J. A.; Buerkle, C.; Snoeck, M. M. J.; Harper, N. J. N.; Kaspers, M. J. G. H.; van den Heuvel, M. W.; Hollmann, M. W.

    2015-01-01

    This study evaluated efficacy and safety of sugammadex 4 mg kg(-1) for deep neuromuscular blockade (NMB) reversal in patients with severe renal impairment (creatinine clearance [CLCR] <30 ml min(-1)) vs those with normal renal function (CLCR ≥80 ml min(-1)). Sugammadex 4 mg kg(-1) was administered

  4. Efficacy, safety and pharmacokinetics of sugammadex 4 mg kg-1 for reversal of deep neuromuscular blockade in patients with severe renal impairment.

    Science.gov (United States)

    Panhuizen, I F; Gold, S J A; Buerkle, C; Snoeck, M M J; Harper, N J N; Kaspers, M J G H; van den Heuvel, M W; Hollmann, M W

    2015-05-01

    This study evaluated efficacy and safety of sugammadex 4 mg kg(-1) for deep neuromuscular blockade (NMB) reversal in patients with severe renal impairment (creatinine clearance [CLCR] Sugammadex 4 mg kg(-1) was administered at 1-2 post-tetanic counts for reversal of rocuronium NMB. Primary efficacy variable was time from sugammadex to recovery to train-of-four (T4/T1) ratio 0.9. Equivalence between groups was demonstrated if two-sided 95% CI for difference in recovery times was within -1 to +1 min interval. Pharmacokinetics of rocuronium and overall safety were assessed. The intent-to-treat group comprised 67 patients (renal n=35; control n=32). Median (95% CI) time from sugammadex to recovery to T4/T1 ratio 0.9 was 3.1 (2.4-4.6) and 1.9 (1.6-2.8) min for renal patients vs controls. Estimated median (95% CI) difference between groups was 1.3 (0.6-2.4) min; thus equivalence bounds were not met. One control patient experienced acceleromyography-determined NMB recurrence, possibly as a result of premature sugammadex (4 mg kg(-1)) administration, with no clinical evidence of NMB recurrence observed. Rocuronium, encapsulated by Sugammadex, was detectable in plasma at day 7 in 6 patients. Bioanalytical data for sugammadex were collected but could not be used for pharmacokinetics. Sugammadex 4 mg kg(-1) provided rapid reversal of deep rocuronium-induced NMB in renal and control patients. However, considering the prolonged sugammadex-rocuronium complex exposure in patients with severe renal impairment, current safety experience is insufficient to support recommended use of sugammadex in this population. NCT00702715. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Postoperative impairment of motor function at train-of-four ratio ≥0.9 cannot be improved by sugammadex (1 mg kg-1).

    Science.gov (United States)

    Baumüller, E; Schaller, S J; Chiquito Lama, Y; Frick, C G; Bauhofer, T; Eikermann, M; Fink, H; Blobner, M

    2015-05-01

    A train-of-four ratio (TOFR) ≥0.9 measured by quantitative neuromuscular monitoring is accepted as an indication of sufficient neuromuscular recovery for extubation, even though many postsynaptic acetylcholine receptors may still be inhibited. We investigated whether antagonism with sugammadex after spontaneous recovery to TOFR≥0.9 further improves muscle function or subjective well-being. Following recovery to TOFR≥0.9 and emergence from anaesthesia, 300 patients randomly received either sugammadex 1.0 mg kg(-1) or placebo. Fine motor function (Purdue Pegboard Test) and maximal voluntary grip strength were measured before and after surgery (before and after test drug administration). At discharge from the postanaesthesia care unit, well-being was assessed with numerical analogue scales and the Quality-of-Recovery Score 40 (QoR-40). Patients' fine motor function [6 (sd 4) vs 15 (3) pegs (30 s)(-1), Psugammadex or placebo, motor function was significantly improved in both groups but did not reach the preoperative level. There was no difference between groups at any time. Global well-being was unaffected (QoR-40: placebo, 174 vs 185; sugammadex, 175 vs 186, P>0.05). Antagonizing rocuronium at TOF≥0.9 with sugammadex 1.0 mg kg(-) (1) did not improve patients' motor function or well-being when compared with placebo. Our data support the view that TOFR≥0.9 measured by electromyography signifies sufficient recovery of neuromuscular function. The trial is registered at ClinicalTrials.gov (NCT01101139). © The Author 2014. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Thermal behaviour of Cu-Mg-Mn and Ni-Mg-Mn layered double hydroxides and characterization of formed oxides

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Grygar, Tomáš; Dorničák, V.; Rojka, T.; Bezdička, Petr; Jirátová, Květa

    2005-01-01

    Roč. 28, 1-4 (2005), s. 121-136 ISSN 0169-1317 Institutional research plan: CEZ:AV0Z40320502 Keywords : Cu-Mg-Mn basic carbonates * Ni-Mg-Mn hydrotalcite Subject RIV: CA - Inorganic Chemistry Impact factor: 1.324, year: 2005

  7. Evaluation of the levels of Br, Cl, K, Mg, Mn and V in Perna perna Mussels (Linnaeus, 1758: Mollusca, Bivalvia) collected in coast of Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Seo, Daniele; Vasconcellos, Marina B.A.; Saiki, Mitiki; Catharino, Marilia G.M.; Moreira, Edson G.; Sousa, Eduinetty C.P.M. de

    2013-01-01

    In this study the content of Br, Cl, K, Mg, Mn and V was evaluated in samples of Perna perna mussels collected in coastal regions of Sao Paulo (Ponta de Itaipu and Palmas Island, in Santos) subjected to anthropogenic contamination, to compare these values with those of mussels from reference site of Cocanha Beach (in Caraguatatuba). The mussels were collected seasonally from September 2008 to July 2009. They were cleaned, ground, homogenized, lyophilized and then analyzed by Instrumental Neutron Activation Analysis (INAA). The INAA procedure consisted in the irradiation of the samples and synthetic elemental standards for 8 and 10 s, under a thermal neutron flux of 6.6 x 10 12 n cm -2 s -1 in the IEA-R1 nuclear research reactor. For quality control of analytical results, certified reference materials NIST 1566b Oyster Tissue and NIST 2876 Mussel Tissue were analyzed and their results indicated good accuracy. The ranges of concentrations (dry basis) of the elements obtained in mussels collected for the four seasons of the year were: 173.80 to 358.99 mg kg -1 for Br; 45658 ± 1811 to 109166 ± 824 mg kg -1 for Cl; 7043 ± 856 to 12506 ± 675 mg kg -1 for K; 2774 ± 211 to 5691 ± 717 mg kg -1 for Mg; 7.01 ± 0.30 to 29.74 ± 3.32 mg kg -1 for Mn and 0.77 ± 0.02 to 3.43 ± 0.28 mg kg -1 for V. The seasonal and spatial variations of these element concentrations were in this study. (author)

  8. Fate of half-metallicity near interfaces: The case of NiMnSb/MgO and NiMnSi/MgO

    KAUST Repository

    Zhang, Ruijing

    2014-08-27

    The electronic and magnetic properties of the interfaces between the half-metallic Heusler alloys NiMnSb, NiMnSi, and MgO have been investigated using first-principles density-functional calculations with projector augmented wave potentials generated in the generalized gradient approximation. In the case of the NiMnSb/MgO (100) interface, the half-metallicity is lost, whereas the MnSb/MgO contact in the NiMnSb/MgO (100) interface maintains a substantial degree of spin polarization at the Fermi level (∼60%). Remarkably, the NiMnSi/MgO (111) interface shows 100% spin polarization at the Fermi level, despite considerable distortions at the interface, as well as rather short Si/O bonds after full structural optimization. This behavior markedly distinguishes NiMnSi/MgO (111) from the corresponding NiMnSb/CdS and NiMnSb/InP interfaces. © 2014 American Chemical Society.

  9. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al-5Mg-Mn Alloys Solidified Under Near-Rapid Cooling.

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-29

    Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (Al-5Mg-Mn alloy with low Fe content (Al₆(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al₆(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al-5Mg-Mn alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.

  10. Heavy Metals (Mg, Mn, Ni and Sn contamination in Soil Samples of Ahvaz II Industrial Estate of Iran in 2013

    Directory of Open Access Journals (Sweden)

    Soheil l Sobhanardakani

    2016-04-01

    Full Text Available Background & Aims of the Study: Due to the rapid industrial development in Khuzestan province of Iran during recent years, this study was performed to analyze the variation of metals concentrations (Mg, Mn, Ni, and Sn in soil samples of Ahvaz II Industrial estate during the spring season of 2013. Materials & Methods: In this experimental study, 27 topsoil samples were collected from nine stations. The intensity of the soil contamination was evaluated, using a contamination factor (Cf and geo-accumulation index (I-geo. Results:  The mean soil concentrations (in mg kg-1 (dry weight were in ranged within 870-1144 (Mg, 188-300 (Mn, 93-199 (Ni and 9-15 (Sn. The data indicated that the I-geo value for all metals falls in class ‘1’. Also the Cf value for Mg and Mn falls in class ‘0’, the Cf value for Sn falls in class ‘1’ and the Cf value for Ni falls in the classes of ‘1’ and ‘2’. The result of the Pearson correlation showed that there were significant positive associations between all metals. Conclusions: According to the results which were achieved by a cluster analysis, there were significant positive associations among all metals based on Pearson correlation coefficient, especially between Ni and Sn; also both of them with Mn. Because the Ni originates from oil sources it can be resulted that Mn and Sn originate from oil sources, too. Therefore, industrial activities and exploitation of oil reservoirs are the main cause of pollution in that area. Also, it can be concluded that, with increasing the distance from the source of pollution, the accumulation of contaminants in the soil samples decreased.

  11. The Enhancement of Mg Corrosion Resistance by Alloying Mn and Laser-Melting

    Directory of Open Access Journals (Sweden)

    Youwen Yang

    2016-03-01

    Full Text Available Mg has been considered a promising biomaterial for bone implants. However, the poor corrosion resistance has become its main undesirable property. In this study, both alloying Mn and laser-melting were applied to enhance the Mg corrosion resistance. The corrosion resistance, mechanical properties, and microstructure of rapid laser-melted Mg-xMn (x = 0–3 wt % alloys were investigated. The alloys were composed of dendrite grains, and the grains size decreased with increasing Mn. Moreover, Mn could dissolve and induce the crystal lattice distortion of the Mg matrix during the solidification process. Mn ranging from 0–2 wt % dissolved completely due to rapid laser solidification. As Mn contents further increased up to 3 wt %, a small amount of Mn was left undissolved. The compressive strength of Mg-Mn alloys increased first (up to 2 wt % and then decreased with increasing Mn, while the hardness increased continuously. The refinement of grains and the increase in corrosion potential both made contributions to the enhancement of Mg corrosion resistance.

  12. Origin of the 20-electron structure of Mg3 MnH7 : Density functional calculations

    Science.gov (United States)

    Gupta, M.; Singh, D. J.; Gupta, R.

    2005-03-01

    The electronic structure and stability of the 20-electron complex hydride, Mg3MnH7 is studied using density functional calculations. The heat of formation is larger in magnitude than that of MgH2 . The deviation from the 18-electron rule is explained by the predominantly ionic character of the band structure and a large crystal-field splitting of the Mn d bands. In particular, each H provides one deep band accomodating two electrons, while the Mn t2g bands hold an additional six electrons per formula unit.

  13. Structural, optical and magnetic characterizations of Mn-doped MgO nanoparticles

    International Nuclear Information System (INIS)

    Azzaza, S.; El-Hilo, M.; Narayanan, S.; Judith Vijaya, J.; Mamouni, N.; Benyoussef, A.; El Kenz, A.; Bououdina, M.

    2014-01-01

    Structural, optical and room temperature magnetic properties of Mn-doped MgO nanoparticles with Mn fractions (5–50 at.%), were investigated. The as-prepared pure MgO, with grain size of about 15 nm, exhibits two magnetization components, one is diamagnetic and another is superparamagnetic. After removing the diamagnetic contribution, the magnetization curve exhibits superparamagnetic behavior which may be attributed to vacancy defects. As the Mn content increases, the lattice parameter decreases, the ferromagnetism appears and the emission bands were considerably blue shifted. First principle electronic structure calculations reveal the decrease of both the gap and the Curie temperature with increasing Mn concentration. The obtained results suggest that both Mn doping and oxygen vacancies play an important role in the development of room temperature ferromagnetism. - Graphical abstract: The measured room temperature magnetization curve for the Mn doped MgO with 5 at.%, 10 at.% and 20 at.%. - Highlights: • Combination of experimental and calculation methods. • Decrease of both the gap and the Curie temperature with increasing Mn content. • Ferromagnetism in MgO originate from interactions between defects

  14. Experimental investigation and thermodynamic calculation of the Fe-Mg-Mn and Fe-Mg-Ni systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peisheng; Zhao, Jingrui; Xu, Honghui; Liu, Shuhong; Ouyang, Hongwu [Central South Univ., Hunan (China). State Key Lab. of Powder Metallurgy; Du, Yong [Central South Univ., Hunan (China). State Key Lab. of Powder Metallurgy; Harbin Institute of Technology (China). State Key Lab. of Advanced Welding Production Technology; Gang, Tie; Fen, Jicai [Harbin Institute of Technology (China). State Key Lab. of Advanced Welding Production Technology; Zhang, Lijun [Central South Univ., Hunan (China). State Key Lab. of Powder Metallurgy; Bochum Univ. (Germany). ICAMS Inst.; He, Cuiyun [Guangxi Univ. (China). College of Physical Science and Technology

    2011-01-15

    Based on the thermodynamic calculations extrapolated from the corresponding binary sub-systems, four decisive alloys in the Fe-Mg-Mn system and three in the Fe-Mg-Ni system were selected and prepared using a powder metallurgy method to measure the isothermal sections at 500 C in both systems. The prepared samples were annealed at 500 C, and then subjected to X-ray diffraction, optical microscopy, scanning electron microscopy with energy-dispersive X-ray spectrometry as well as electron probe microanalysis. Taking into account the presently obtained experimental data and the experimental data available in the literature, thermodynamic modeling was performed for the above systems. It was found that a direct extrapolation from the corresponding three binary systems can well reproduce all the experimental data in the Fe-Mg-Mn system, while two thermodynamic parameters are needed in the Fe-Mg-Ni system to fit all the experimental data. The liquidus projections and reaction schemes for the Fe-Mg-Mn and Fe-Mg-Ni systems are also presented. (orig.)

  15. Microstructure and in vitro degradation performance of Mg-Zn-Mn alloys for biomedical application.

    Science.gov (United States)

    Rosalbino, F; De Negri, S; Scavino, G; Saccone, A

    2013-03-01

    Manganese and zinc were selected as alloying elements to develop a Mg-based ternary alloy for biomedical applications, taking into account the good biocompatibility of these metals. The microstructures of Mg-Zn-Mn alloys containing 0.5 or 1.0 mass% of manganese and 1.0 or 1.5 mass% of zinc were investigated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. Their corrosion properties were assessed by means of potentiodynamic polarization and electrochemical impedance spectroscopy measurements performed in Ringer's physiological solution that simulates bodily fluids. All tested samples are two-phase alloys formed by a Mg-based matrix, consisting of a Mg-Zn-Mn solid solution, and a Mg-Zn binary phase. The electrochemical results show an improvement of the corrosion behavior of the investigated alloys with increasing Zn and Mn content. This is attributed to the formation of a partially protective Mg(OH)(2) surface film whose protective capabilities are increased by the alloying elements. The reduced influence of the Mg-Zn intermetallic compound on the corrosion rate of Mg-Zn-Mn alloys in the presence of a partially protective surface layer can be ascribed to an increasing resistance between the Mg-Zn-Mn solid solution and the second phase, thereby decreasing the effective driving force for microgalvanic corrosion. Owing to its highest corrosion protective ability, the Mg-1.5Zn-1Mn alloy is a promising candidate for the development of degradable implants, such as screws, plates, and rods. Copyright © 2012 Wiley Periodicals, Inc.

  16. Thermodynamic properties of multiferroic Mg doped YbMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sattibabu, Bhumireddi, E-mail: bsb.satti@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Bhatnagar, A.K., E-mail: anilb42@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); School of Physics, University of Hyderabad, Hyderabad 500046 (India); Samatham, S. Shanmukharao; Singh, D. [Low Temperature Laboratory, UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, M.P. (India); Rayaprol, S. [UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC Campus, Mumbai 400085 (India); Das, D. [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Siruguri, V. [UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC Campus, Mumbai 400085 (India); Ganesan, V. [Low Temperature Laboratory, UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, M.P. (India)

    2015-09-25

    Highlights: • Specific heat data shows that T{sub N} increases for Mg doped YbMnO{sub 3} from 83 K to 86 K. • Yb{sub 1−x}Mg{sub x}MnO{sub 3} (x = 0.0 and 0.05) shows multiple magnetic transitions. • RCP are found to be 26.1 J/mol and 27.2 J/mol for YbMnO{sub 3} and Yb{sub 0.95}Mg{sub 0.05}MnO{sub 3}. - Abstract: Calorimetric studies of polycrystalline samples Yb{sub 1−x}Mg{sub x}MnO{sub 3} with x = 0.0 and 0.05 are reported. It is revealed that the Mg doping raises the antiferromagnetic ordering temperature, T{sub N,} from 83 K for x = 0.0 to 86 K for x = 0.05. A ferromagnetic ordering is also observed around 3 K. The broad feature in the specific heat data just above ferromagnetic ordering, is attributed to the Schottky anomaly. The estimated effective molecular fields from the Schottky analysis are H{sub mf} = 3.0 and 3.5 T for YbMnO{sub 3} and Yb{sub 0.95}Mg{sub 0.05}MnO{sub 3}, respectively. High temperature shift of Schottky anomaly with Mg doping indicates increase in effective molecular field of Mn at the Yb 4b site. The data supports that the idea that although molecular field is mainly responsible for the Schottky anomaly in Yb{sub 1−x}Mg{sub x}MnO{sub 3} and Mn{sup 3+} spin ordering also affects it. Magnetic part of the specific heat is obtained by subtracting the lattice contribution estimated using two Debye temperatures. The magnetic entropy change (ΔS{sub mag}) for pure and doped samples are 2.0 J mol{sup −1} K{sup −1} and 2.1 J mol{sup −1} K{sup −1} respectively, while the relative cooling power (RCP) calculate 26.1 J/mol, 27.2 J/mol for a field change of 10 T.

  17. Development and characterization of Mn2+-doped MgO nanoparticles by solution combustion synthesis

    Science.gov (United States)

    Basha, Md. Hussain; Gopal, N. O.; Rao, J. L.; Nagabhushana, H.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2015-06-01

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å3. SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn2+ ions with S=I=5/2.The observed g value and the hyperfine value reveal the ionic bonding between Mn2+ and its surroundings.

  18. Development and characterization of Mn2+-doped MgO nanoparticles by solution combustion synthesis

    International Nuclear Information System (INIS)

    Basha, Md. Hussain; Gopal, N. O.; Rao, J. L.; Nagabhushana, H.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2015-01-01

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å 3 . SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn 2+ ions with S=I=5/2.The observed g value and the hyperfine value reveal the ionic bonding between Mn 2+ and its surroundings

  19. Low cycle fatigue behavior of die cast Mg-Al-Mn-Ce magnesium alloy

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2013-11-01

    Full Text Available Fatigue failure is a main failure mode for magnesium and other alloys. It is beneficial for fatigue design and fatigue life improvement to investigate the low cycle fatigue behavior of magnesium alloys. In order to investigate the low cycle fatigue behavior of die cast Mg-Al-Mn-Ce magnesium alloy, the strain controlled fatigue experiments were performed at room temperature and fatigue fracture surfaces of specimens were observed with scanning election microscopy for the alloys under die-cast and aged states. Cyclic stress response curves, strain amplitude versus reversals to failure curve, total strain amplitude versus fatigue life curves and cyclic stress-strain curves of Mg-Al-Mn-Ce alloys were analyzed. The results show that the Mg-Al-Mn-Ce alloys under die-cast (F and aged (T5 states exhibit cyclic strain hardening under the applied total strain amplitudes, and aging treatment could greatly increase the cyclic stress amplitudes of die cast Mg-Al-Mn-Ce alloys. The relationships between the plastic strain amplitude, the elastic strain amplitude and reversals to failure of Mg-Al-Mn-Ce magnesium alloy under different treatment states could be described by Coffin-Manson and Basquin equations, respectively. Observations on the fatigue fracture surface of specimens reveal that the fatigue cracks initiate on the surface of specimens and propagate transgranularly.

  20. Evolution of Mg-5Al-0.4Mn microstructure after rare earth elements addition

    Directory of Open Access Journals (Sweden)

    A. Żydek

    2011-04-01

    Full Text Available Mg-5Al-0.4Mn-xRE (x = 0, 1, 2, 3 wt.% magnesium alloys were prepared successfully by casting method. The microstructure wasinvestigated by light microscopy. The influence of rare earth (RE elements on the area fraction of eutectic was analysed. The obtainedresults revealed that the as-cast Mg-5Al-0.4Mn alloy consist of α - Mg matrix and eutectic α + γ (where γ is Mg17Al12. However, whilerare earth elements were added to the Mg-Al type alloy, Al11RE3 precipitates were formed. The amount of the Al11RE3 precipitatesincreased with increasing addition of RE, but the amount of γ - Mg17Al12 decreased.

  1. Photoluminescence study in solid solutions of CdMgMnTe semimagnetic semiconductors

    International Nuclear Information System (INIS)

    Kusraev, Yu.G.; Averkieva, G.K.

    1993-01-01

    Luminescence and resonant Raman scattering in quaternary solid solutions of CdMgMnTe semimagnetic semiconductors are investigated. It is shown that the intensity and position of the luminescence band, conditioned by the 4 T 1 --> 6 A 1 optical transitions in the Mn d-shell, depend on the local crystal environment. Temperature variations of the photoluminescence spectra are interpreted on the base of a model of electron excitation energy transport from Mn 2+ to different recombination centers. In the resonant Raman scattering spectrum were observed three longitudinal vibrational modes with energies near to phonon energies of corresponding binary compounds

  2. Total Diet Study. Mg and Mn content estimation of a Market Basket of Sao Paulo state (Brazil) by Instrumental Neutron Activation

    International Nuclear Information System (INIS)

    Roseane Pagliaro Avegliano; Vera Akiko Maihara

    2014-01-01

    Total Diet Studies (TDS) have been carried out to estimate dietary intakes of the essential and toxic elements for a large-scale population over a specific period of time. In this study, the TDS was based on the evaluation of food representing a Market Basket (MB), which reflected the dietary habits of the Sao Paulo State population, corresponding to 72 % of the average food consumption for the state of Sao Paulo. In the present Total Diet Study, magnesium and manganese concentrations were determined in 30 of the most consumed food groups of a MB of Sao Paulo State, Brazil. Instrumental Neutron Activation Analysis (INAA) has been successfully used on a regularly basis in several areas of nutrition and foodstuffs. Element concentrations were determined by INAA in freeze-dried samples and ranged in mg kg -1 . Mg 41.4 (fats)-5287 (coffee) and Mn 0.12 (prime grade beef)-32.9 (coffee). The average daily Mg and Mn intake was calculated by multiplying the concentration of each element in each table-ready food group by the respective weight (g day -1 ) of the food group in the MB and adding the products from all food groups. The results of daily dietary intakes in this study were: Mg 174.8 and Mn 1.34 mg day -1 . Theses values were lower than the adequate intake (AI) proposed by the Food and Nutrition Board of the Institute of Medicine (USA National Academy) for adults. The low levels of Mg and Mn intakes presented in this TDS are probably due to the fact that MB of this study represented only 72 % of the weight of the most consumed household foods of Sao Paulo State. (author)

  3. TL and OSL properties of Mn2+-doped MgGa2O4 phosphor

    Science.gov (United States)

    Luchechko, A.; Zhydachevskyy, Ya; Maraba, D.; Bulur, E.; Ubizskii, S.; Kravets, O.

    2018-04-01

    The oxide MgGa2O4 spinel ceramics doped with Mn2+ ions was synthesized by a solid-state reaction at 1200 °C in air. The activator concentration was equal 0.05 mol% of MnO. Phase purity of the synthesized samples was analyzed by X-ray diffraction technique. This spinel ceramics show efficient green emission in the range from 470 to 550 nm with a maximum at about 505 nm under UV or X-ray excitations, which is due to Mn2+ ions. MgGa2O4: Mn2+ exhibits intense thermoluminescence (TL) and optically stimulated luminescence (OSL) after influence of ionizing radiation. Are complex nature of the TL glow curves is associated with a significant number of structural defects that are responsible for the formation of shallow and deep electron traps. In this work, time-resolved OSL characteristics of the samples exposed to beta particles are reported for the first time. A light from green LED was used for optical stimulation. Obtained TL and OSL results suggest MgGa2O4:Mn2+ as perspective material for further research and possible application in radiation dosimetry.

  4. Ferromagnetism and transport in Mn and Mg co-implanted GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Kulbachinskii, V A [Moscow State University, Low Temperature Physics Department, 119992, GSP-2, Moscow (Russian Federation); Gurin, P V [Moscow State University, Low Temperature Physics Department, 119992, GSP-2, Moscow (Russian Federation); Danilov, Yu A [Physico-Technical Research Institute, University of Nizhny Novgorod, 603950, Nizhny Novgorod (Russian Federation); Malysheva, E I [Physico-Technical Research Institute, University of Nizhny Novgorod, 603950, Nizhny Novgorod (Russian Federation); Horikoshi, Y [School of science and engineering, Waseda university, 3-4-1, Okubo, Tokyo 169-8555 (Japan); Onomitsu, K [School of science and engineering, Waseda university, 3-4-1, Okubo, Tokyo 169-8555 (Japan)

    2007-03-15

    We investigated the influence of Mn and Mg co-implantation accompanied by rapid thermal annealing on magnetic and galvanomagnetic properties of p-GaAs. We characterized the samples with SQUID magnetometry and magnetotransport measurements in the temperature interval 4.2 KMn{sub x}As solid solution on galvanomagnetic properties of holes. Above this temperature, ferromagnetism survives due to the MnAs and Ga{sub 1-x}Mn{sub x} clusters. The magnetoresistance changes from colossal negative to enhanced positive with increasing temperature near T = 35 K.

  5. Emission spectra of phosphor MgSO4 doped with Dy and Mn

    International Nuclear Information System (INIS)

    Zhang Chunxiang; Chen Lixin; Tang Qiang; Luo Daling; Qiu Zhiren

    2001-01-01

    Emission spectra of phosphor MgSO 4 doped with Dy and Dy/Mn were measured with an optical multichannel analyzer and a linear heating system whose temperature was controlled by a microcomputer. The emission spectrum bands at 480 nm and 580 nm of phosphor MgSO 4 doped with Dy were observed in the three dimensional (3D) glow curves. Compared with the 3D spectrum of CaSO 4 :Dy and the spectrum bands of MgSO 4 :Dy shows the same wavelengths which resulted from the quantum transitions among the energy levels of Dy 3 '+ ions. The intensities of the glow peaks in both spectrum bands (480 nm and 580 nm) of phosphor MgSO 4 doped with Dy/Mn were dramatically reduced except the 380 degree C glow peak

  6. Optical features of C, N, Mn implanted MgO films

    International Nuclear Information System (INIS)

    Dorosinets, V.A.; Dobrinets, I.A.; Wieck, A.

    2013-01-01

    Optical absorption and Raman spectra investigations of C/ N/ Mn implanted MgO films have been investigated. The spectra reveal a surface modification and a dependence of the defect formation mechanism on the ion type and the annealing regime. (authors)

  7. Synthesis, structure, magnetic, electrical and electrochemical properties of Al, Cu and Mg doped MnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, Ahmed M., E-mail: ahmedh242@yahoo.com [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Abuzeid, Hanaa M. [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Narayanan, N. [Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Ehrenberg, Helmut [Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Materials Science, Technische Universitaet Darmstadt, Petersenstr. 23, D-64287 Darmstadt (Germany); Julien, C.M. [Universite Pierre et Marie Curie, Physicochimie des Electrolytes, Colloides et Sciences Analytiques (PECSA), 4 place Jussieu, 75005 Paris (France)

    2011-10-17

    Highlights: {yields} Al, Mg and Cu doped MnO{sub 2} as cathode in Li-ion batteries. {yields} Pure phase MnO{sub 2} for virgin and doped MnO{sub 2} were obtained. {yields} Doping elements improve the electrical conductivity of MnO{sub 2}. {yields} Electrochemical behaviour of MnO{sub 2} improved after doping by Al, Mg and Cu. - Abstract: Pure and doped manganese dioxides were prepared by wet-chemical method using fumaric acid and potassium permanganate as raw materials. X-ray diffraction patterns show that pure and Al, Cu and Mg doped manganese dioxides (d-MnO{sub 2}) crystallized in the cryptomelane-MnO{sub 2} structure. Thermal analysis show that, with the assistance of potassium ions inside the 2 x 2 tunnel, the presence of Al, Cu and Mg doping elements increases the thermal stability of d-MnO{sub 2}. The electrical conductivity of d-MnO{sub 2} increases in comparison with pure MnO{sub 2}, while Al-doped MnO{sub 2} exhibits the lower resistivity. As shown in the magnetic measurements, the value of the experimental effective magnetic moment of Mn ions decreases with introduction of dopants, which is attributed to the presence of a mixed valency of high-spin state Mn{sup 4+}/Mn{sup 3+}. Doped MnO{sub 2} materials show good capacity retention in comparison with virgin MnO{sub 2}. Al-doped MnO{sub 2} shows the best electrochemical results in terms of capacity retention and recharge efficiency.

  8. Grain refining mechanism of Al-containing Mg alloys with the addition of Mn-Al alloys

    International Nuclear Information System (INIS)

    Qin, Gaowu W.; Ren Yuping; Huang Wei; Li Song; Pei Wenli

    2010-01-01

    Graphical abstract: Display Omitted Research highlights: The ε-AlMn phase acts as the heterogeneous nucleus of α-Mg phase during the solidification of the AZ31 Mg alloy, not the γ-Al 8 Mn 5 phase. The grain refinement effect is very clear with the addition of only 0.5 wt% Mn-28Al alloy (pure ε-AlMn). The grain refinement does not deteriorate up to the holding time of 60 min at 740 o C. - Abstract: The effect of manganese on grain refinement of Al-containing AZ31 Mg alloy has been investigated by designing a series of Mn-Al alloys composed of either pure ε-AlMn, γ 2 -Al 8 Mn 5 or both of them using optical microscopy and X-ray diffraction. It is experimentally clarified that the grain refinement of the AZ31 Mg alloy is due to the existence of the ε-AlMn phase in the Mn-Al alloys, not the γ 2 -Al 8 Mn 5 phase. The grain size of AZ31 Mg alloy is about 91 μm without any addition of Mn-Al alloys, but remarkably decreases to ∼55 μm with the addition of either Mn-34 wt% Al or Mn-28 wt% Al. With a minor addition of 0.5 wt% Mn-28Al alloy, the grain size of AZ31 alloy decreases to ∼53 μm, and the Mn-28Al alloy can be active as grain refiner for holding time up to 60 min for the melt AZ31 alloy at 750 o C.

  9. Grain refining mechanism of Al-containing Mg alloys with the addition of Mn-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Gaowu W., E-mail: qingw@smm.neu.edu.c [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Wenhu Road 3-11, Heping District, Shenyang 110004, Liaoning Province (China); Ren Yuping; Huang Wei; Li Song; Pei Wenli [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Wenhu Road 3-11, Heping District, Shenyang 110004, Liaoning Province (China)

    2010-10-08

    Graphical abstract: Display Omitted Research highlights: The {epsilon}-AlMn phase acts as the heterogeneous nucleus of {alpha}-Mg phase during the solidification of the AZ31 Mg alloy, not the {gamma}-Al{sub 8}Mn{sub 5} phase. The grain refinement effect is very clear with the addition of only 0.5 wt% Mn-28Al alloy (pure {epsilon}-AlMn). The grain refinement does not deteriorate up to the holding time of 60 min at 740 {sup o}C. - Abstract: The effect of manganese on grain refinement of Al-containing AZ31 Mg alloy has been investigated by designing a series of Mn-Al alloys composed of either pure {epsilon}-AlMn, {gamma}{sub 2}-Al{sub 8}Mn{sub 5} or both of them using optical microscopy and X-ray diffraction. It is experimentally clarified that the grain refinement of the AZ31 Mg alloy is due to the existence of the {epsilon}-AlMn phase in the Mn-Al alloys, not the {gamma}{sub 2}-Al{sub 8}Mn{sub 5} phase. The grain size of AZ31 Mg alloy is about 91 {mu}m without any addition of Mn-Al alloys, but remarkably decreases to {approx}55 {mu}m with the addition of either Mn-34 wt% Al or Mn-28 wt% Al. With a minor addition of 0.5 wt% Mn-28Al alloy, the grain size of AZ31 alloy decreases to {approx}53 {mu}m, and the Mn-28Al alloy can be active as grain refiner for holding time up to 60 min for the melt AZ31 alloy at 750 {sup o}C.

  10. Producing a particle-reinforced AlCuMgMn alloy by means of mechanical alloying; Herstellung einer partikelverstaerkten AlCuMgMn-Legierung durch mechanisches Legieren

    Energy Technology Data Exchange (ETDEWEB)

    Nestler, D.; Wielage, B. [TU Chemnitz, Institut fuer Werkstoffwissenschaft und Werkstofftechnik (Germany); Siebeck, S.

    2012-07-15

    High-energy ball milling (HEM) with subsequent consolidation is a suitable method to produce particle-reinforced aluminium materials. The task of HEM is to distribute the reinforcement particles as homogeneously as possible. A further application of HEM is mechanical alloying (MA). This paper deals with the combination of both applications. Pure metallic powders (Al, Cu, Mg, Mn) were milled together with SiC particles up to 10 h. The composition of the metallic powder corresponds to that of the alloy AA2017 (3.9% Cu, 0.7% Mg, 0.6% Mn). In previous experiments [1], this alloy was used in the form of atomized powder. The changes in microstructure during the formation of the composite powder have been studied by light microscopy, SEM, EDXS and XRD. The results show that the production of composite powders in a single step is possible. This not only allows the economical production of such powders, but also facilitates the use of alloy compositions that are not producible via the melting route, or only producible with difficulty via the melting route. It's possible to produce tailor-made-alloys. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Structural and magnetic properties of Mg doped YbMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sattibabu, Bhumireddi, E-mail: bsb.satti@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Bhatnagar, Anil K., E-mail: anilb42@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); School of Physics, University of Hyderabad, Hyderabad 500046 (India); Rayaprol, Sudhindra [UGC-DAE CSR, Mumbai Centre, R-5 Shed, BARC, Mumbai 400085 (India); Mohan, Dasari; Das, Dibakar; Sundararaman, Mahadevan [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Siruguri, Vasudeva [UGC-DAE CSR, Mumbai Centre, R-5 Shed, BARC, Mumbai 400085 (India)

    2014-09-01

    We have studied the effect of Mg doping on structure and magnetism of multiferroic YbMnO{sub 3}. Room temperature neutron diffraction studies were carried out on polycrystalline Yb{sub 1−x}Mg{sub x}MnO{sub 3} (x=0.00 and 0.05) samples to determine phase formation as well as cation distribution and structural properties such as bond length and bond angles. The structural analysis shows that with Mg substitution, there is a marginal change in a and c parameters of the hexagonal unit cell, c/a ratio remains constant for x=0 and 0.05 samples. Due to changes in bond angle and bond lengths on substituting Mg, there is a slight decrease in the distortion of MnO{sub 5} polyhedra. Magnetic measurements show that the Néel temperature (T{sub N}) increases marginally from 85 K for x=0.00 to 89 K for x=0.05 sample.

  12. Joining of Cu-Mg-Mn Aluminum Alloy with Linear Friction Welding

    OpenAIRE

    A. Medvedev; V. Bychkov; A. Selivanov; Yu. J. Ershova; B. Bolshakov; I.V. Alexаndrov; F. F. Musin

    2014-01-01

    Al-Cu-Mg-Mn alloy samples were joined together with linear friction welding in two conditions, as is, without pretreatment, and after etching the welding interface. The effect of the welding interface condition was evaluated based on microstructure analysis, microhardness and tensile testing at room temperature. Also, the temperature distribution during welding was estimated with an analytical one-dimensional heat conduction model of the welding process and welding process data

  13. Influence of Iron in AlSi10MgMn Alloy

    Directory of Open Access Journals (Sweden)

    Žihalová M.

    2014-12-01

    Full Text Available Presence of iron in Al-Si cast alloys is common problem mainly in secondary (recycled aluminium alloys. Better understanding of iron influence in this kind of alloys can lead to reduction of final castings cost. Presented article deals with examination of detrimental iron effect in AlSi10MgMn cast alloy. Microstructural analysis and ultimate tensile strength testing were used to consider influence of iron to microstructure and mechanical properties of selected alloy.

  14. The role of Si and Ca on new wrought Mg-Zn-Mn based alloy

    International Nuclear Information System (INIS)

    Ben-Hamu, G.; Eliezer, D.; Shin, K.S.

    2007-01-01

    The development of new wrought magnesium alloys for automotive industry has increased in recent years due to their high potential as structural materials for low density and high strength/weight ratio demands. However, the poor mechanical properties of the magnesium alloys have led to search a new kind of magnesium alloys for better strength and ductility. Magnesium alloys show strong susceptibility to localized corrosion in chlorides solutions due to their inhomogeneous microstructure. The existence of intermetallics in the microstructure of magnesium alloys might represent initiation sites for localized corrosion. This is due to the formation of galvanic couples between the intermetallics and the surrounding matrix. The main objective of this research is to investigate the corrosion behavior of new magnesium alloys; Mg-Zn-Mn-Si-Ca (ZSMX) alloys. The ZSM6X1 + YCa alloys were prepared by using hot extrusion method. AC and DC polarization tests were carried out on the extruded rods, which contain different amounts of silicon or calcium. The potential difference in air between different phases and the matrix was examined using scanning Kelvin probe force microscopy (SKPFM). The phases present in the alloys have been identified by optical microscopy and scanning electron microscopy/energy dispersive X-ray spectroscopy. Four different phases were found, i.e. intermetallics containing Si-Mn, Mg-Si, Mg-Zn and Mg-Si-Ca phase. All phases exhibited higher potential differences relative to magnesium matrix indicating a cathodic behavior. The potential difference revealed significant dependence on the chemical composition of the phases. Based on the results obtained from the scanning Kelvin probe force microscopy, the cathodic phases are effective sites for the initiation of localized corrosion in Mg-Zn-Mn-Si-Ca alloys

  15. Interaction in the NaIn(MoO4)2 - AMoO4 (A = Mg, Mn) systems

    International Nuclear Information System (INIS)

    Kotova, I.Yu.; Kozhevnikova, N.M.

    2001-01-01

    The results of investigation into NaIn(MoO 4 ) 2 - AMoO 4 (A = Mg, Mn) quasibinary cross-sections by means of X-ray diffraction and differential thermal analysis are presented. Conducted researches revealed that compounds NaMg 3 In(MoO 4 ) and NaMn 3 In(MoO 4 ) melting incongruently at 990 Deg C and 940 Deg C accordingly were formed in the NaIn(MoO 4 ) - AMoO 4 (A = Mg, Mn) systems. The data of initiation of X-ray diffraction pattern of NaMg 3 In(MoO 4 ) 5 are presented. The temperature dependences of conductivity, dielectric permeability and tangent of dielectric losses indicative on ionic-electronic nature conductivity are determined. Activation energy of conductivity in the Mg - Mn row changes moderately - from 9.91 till 5.71 eV [ru

  16. Ferromagnetic Peierls insulator state in A Mg4Mn6O15(A =K ,Rb ,Cs )

    Science.gov (United States)

    Yamaguchi, T.; Sugimoto, K.; Ohta, Y.; Tanaka, Y.; Sato, H.

    2018-04-01

    Using the density-functional-theory-based electronic structure calculations, we study the electronic state of recently discovered mixed-valent manganese oxides A Mg4Mn6O15(A =K ,Rb ,Cs ) , which are fully spin-polarized ferromagnetic insulators with a cubic crystal structure. We show that the system may be described as a three-dimensional arrangement of the one-dimensional chains of a 2 p orbital of O and a 3 d orbital of Mn running along the three axes of the cubic lattice. We thereby argue that in the ground state the chains are fully spin polarized due to the double-exchange mechanism and are distorted by the Peierls mechanism to make the system insulating.

  17. Effect of Copper on Corrosion of Forged AlSi1MgMn Automotive Suspension Components

    Science.gov (United States)

    Koktas, Serhan; Gokcil, Emre; Akdi, Seracettin; Birol, Yucel

    2017-09-01

    Recently, modifications in the alloy composition and the manufacturing process cycle were proposed to achieve a more uniform structure with no evidence of coarse grains across the section of the AlSi1MgMn alloys. Cu was added to the AlSi1MgMn alloy to improve its age hardening capacity without a separate solution heat treatment. However, Cu addition degrades the corrosion resistance of this alloy due to the formation of Al-Cu precipitates along the grain boundaries that are cathodic with respect to the aluminum matrix and thus encourage intergranular corrosion. The present work was undertaken to identify the impact of Cu addition on the corrosion properties of AlSi1MgMn alloys with different Cu contents. A series of AlSi1MgMn alloys with 0.06-0.89 wt.% Cu were tested in order to identify an optimum level of Cu addition.

  18. Microstructural evolution during friction stir welding of AlSi1MgMn alloy

    Directory of Open Access Journals (Sweden)

    M. Janjić

    2012-01-01

    Full Text Available This paper provides the research of the infl uence of geometric and kinematic parameters on the microstructure and mechanical properties of welded joint of aluminum alloy AlSi1MgMn (6082-T6 obtained through the Friction Stir Welding (FSW process. The experiment parameters were welding speed, rotation speed, angle of pin slope, pin diameter and shoulder diameter. On the obtained welded workpieces the dynamic testing on the impact toughness, and determination of microstructural zones were carried out.

  19. Determination of Na, Cl, Ca, Mg, Mn and K in milk samples by activation analysis

    International Nuclear Information System (INIS)

    Kira, Carmen S.; Maihara, Vera A.

    2000-01-01

    In the present work cow milk samples distributed for Sao Paulo government institutions, by means of the 'Viva leite' programme, have been monitored. The concentrations of Ca, Cl, K, Mg, Mn and Na were determined in five milk samples and in three different kinds of commercial powder milk, by instrumental neutron activation. For quality control, the reference materials NIST whole milk powder and non fat milk powder were analysed. The results obtained are in the range of the concentrations mentioned in the literature for these elements. (author)

  20. Bio-corrosion characterization of Mg-Zn-X (X = Ca, Mn, Si) alloys for biomedical applications.

    Science.gov (United States)

    Rosalbino, F; De Negri, S; Saccone, A; Angelini, E; Delfino, S

    2010-04-01

    The successful applications of magnesium-based alloys as biodegradable orthopedic implants are mainly inhibited due to their high degradation rates in physiological environment. This study examines the bio-corrosion behaviour of Mg-2Zn-0.2X (X = Ca, Mn, Si) alloys in Ringer's physiological solution that simulates bodily fluids, and compares it with that of AZ91 magnesium alloy. Potentiodynamic polarization and electrochemical impedance spectroscopy results showed a better corrosion behaviour of AZ91 alloy with respect to Mg-2Zn-0.2Ca and Mg-2Zn-0.2Si alloys. On the contrary, enhanced corrosion resistance was observed for Mg-2Zn-0.2Mn alloy compared to the AZ91 one: Mg-2Zn-0.2Mn alloy exhibited a four-fold increase in the polarization resistance than AZ91 alloy after 168 h exposure to the Ringer's physiological solution. The improved corrosion behaviour of the Mg-2Zn-0.2Mn alloy with respect to the AZ91 one can be ascribed to enhanced protective properties of the Mg(OH)(2) surface layer. The present study suggests the Mg-2Zn-0.2Mn alloy as a promising candidate for its applications in degradable orthopedic implants, and is worthwhile to further investigate the in vivo corrosion behaviour as well as assessed the mechanical properties of this alloy.

  1. [Emission spectrum temperature sensitivity of Mg4FGeO6 : mn induced by laser].

    Science.gov (United States)

    Wang, Sheng; Liu, Jing-Ru; Shao, Jun; Hu, Zhi-Yun; Tao, Bo; Huang, Mei-Sheng

    2013-08-01

    In order to develop a new sort of thermally sensitive phosphor coating, the emission spectrum thermally sensitivity of Mg4FGeO6 : Mn induced by laser was studied. The spectrum measurement system with heating function was set up, and the emission spectrum of Mg4FGeO6 : Mn at various temperatures were measured. Absorption spectrum was measured, and the mechanism of formation of the structure of double peak was analyzed with the perturbation theory of crystal lattice. The group of peaks around 630 nm is represented by the transitions 4F"2 to 4A2, whereas the group of peaks around 660 nm is due to the transitions 4F'2 to 4A2. The occupancy of both excited states 4F'2 and 4F"2 is in thermal equilibrium. Thus increasing temperature causes the intensity of the emission in the group around 630 nm to increase at the expense of the emission intensity of the group around 660 nm. The various spectral regions in emission differ with temperature, which could be used to support the intensity-ratio measurement method. The intensity-ratio change curve as a function of temperature was fitted, which shows that the range of temperature measurement is between room temperature and 800 K.

  2. Determination of the Cl, Mg, Mn and Na, in samples of Tradescantia pallida

    International Nuclear Information System (INIS)

    Rossi, Joao Guilherme G.A.; Saiki, Mitiko

    2009-01-01

    The growing number of industries and automotive vehicles are causing the increase of the air pollution. Less expensive methodologies are been studying for the evaluation of these pollution levels. This work evaluates the concentrations of Cl, Mg, Mn and Na, present in the leaves of Tradescantia pallida viewing validation of the specie for use in the bio monitoring of the air pollution. Those leaves were collected and analysed using the short irradiation of the neutron activation analysis technique. The certified reference material INCT-MPH-2 Mixed Polish Herbs were analysed for the quality control of the results and presented very good accuracy, with relative errors less than 4.2 %, and good precision less than 8.7 %. The element concentrations (in μg g -1 ) obtained in the T. pallida samples analysed showed variation from 2324 to 33897 for Cl, from 3602 to 14450 for Mg, from 132 to 314 for Mn, and 21 to 615 for Na. Values obtained in the analyses of Tradescantia present great variability in the element concentrations. The short irradiation showed to be appropriated for determination of the elements studied in the bio monitoring of air pollution

  3. The Mechanism of Solid State Joining THA with AlMg3Mn Alloy

    Directory of Open Access Journals (Sweden)

    Kaczorowski M.

    2014-06-01

    Full Text Available The results of experimental study of solid state joining of tungsten heavy alloy (THA with AlMg3Mn alloy are presented. The aim of these investigations was to study the mechanism of joining two extremely different materials used for military applications. The continuous rotary friction welding method was used in the experiment. The parameters of friction welding process i.e. friction load and friction time in whole studies were changed in the range 10 to 30kN and 0,5 to 10s respectively while forging load and time were constant and equals 50kN and 5s. The results presented here concerns only a small part whole studies which were described elsewhere. These are focused on the mechanism of joining which can be adhesive or diffusion controlled. The experiment included macro- and microstructure observations which were supplemented with SEM investigations. The goal of the last one was to reveal the character of fracture surface after tensile test and to looking for anticipated diffusion of aluminum into THA matrix. The results showed that joining of THA with AlMg2Mn alloy has mainly adhesive character, although the diffusion cannot be excluded.

  4. α-MnO2 Nanowires/Graphene Composites with High Electrocatalytic Activity for Mg-Air Fuel Cell

    International Nuclear Information System (INIS)

    Jiang, Min; He, Hao; Huang, Chen; Liu, Bo; Yi, Wen-Jun; Chao, Zi-Sheng

    2016-01-01

    Highlights: • α-MnO 2 NWs/graphene was synthesized and studied in Mg-air fuel cell. • The performance of α-MnO 2 NWs/graphene is close to the Pt/C. • The ORR mechanism involves a one-step, quasi-4-electron pathway. • A large area (5 cm*5 cm) cathode was prepared and tested in a full cell. - Abstract: This paper reports the preparation of α-MnO 2 NWs/graphene composites as the cathode catalyst for magnesium-air fuel cell and its excellent electrochemistry performance. The composites are synthesized by self-assembly of α-MnO 2 nan α-MnO 2 NWs/graphene was synthesized and studied in Mg-air fuel cell. α-MnO 2 NWs/graphene was synthesized and studied in Mg-air fuel cell. owires (NWs) on the surface of graphene via a simple hydrothermal method. The α-MnO 2 NWs/graphene composites showed a higher electrochemical activity than the commercial MnO 2 . The oxygen reduction peak of the α-MnO 2 NWs/graphene composites catalyst is tested in a 0.1 M KOH solution at −0.252 V, which is more positive than the commercial MnO 2 (−0.287 V). The ORR limit current density for 28% α-MnO2 NWs/graphene composite is approximately 2.74 mA/cm 2 , which is similar to that of the 20% Pt/C(2.79 mA/cm 2 ) in the same conditions. Based on the Koutecky–Levich plot, the ORR mechanism of the composite involves a one-step, quasi-4-electron pathway. In addition, magnesium-air fuel cell with α-MnO 2 NWs/graphene as catalyst possesses higher current density (140 mA/cm 2 ) and power density (96 mW/cm 2 ) compared to the commercial MnO 2 . This study proves that the cost-effective α-MnO 2 NWs/graphene with higher power generation ability make it possible for the substitute of the noble metals catalyst in the Mg-air fuel cell.

  5. Strong sp-d exchange coupling in ZnMnTe/ZnMgTe core/shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wojnar, Piotr; Janik, Elzbieta; Szymura, Malgorzata; Zaleszczyk, Wojciech; Kret, Slawomir; Klopotowski, Lukasz; Wojciechowski, Tomasz; Baczewski, Lech T.; Wiater, Maciej; Karczewski, Grzegorz; Wojtowicz, Tomasz; Kossut, Jacek [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Suffczynski, Jan; Papierska, Joanna [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland)

    2014-07-15

    In this work, our recent progress in the growth and optical studies of telluride nanowire heterostructures containing a small molar fraction of magnetic Mn-ions of only a few percent is overviewed. ZnMnTe/ZnMgTe core/shell nanowires (NWs) are grown by molecular beam epitaxy by employing the vapor-liquid-solid growth mechanism assisted with gold catalyst. The structures are studied by means of photoluminescence and microphotoluminescence in an external magnetic field. In the first step, however, an activation of the near band edge emission from ZnTe and ZnMnTe nanowires is described, which is achieved by coating the nanowires with shells made of ZnMgTe. The role of these shells is to passivate Zn(Mn)Te surface states. The incorporation of Mn ions into the crystalline lattice of ZnMnTe nanowires is manifested as a considerable blue shift of near band edge emission with increasing Mn concentration inside the nanowire cores, which reflects directly the increase of their energy gap. In an external magnetic field the near band edge emission exhibits a giant spectral redshift accompanied by an increase of the circular polarization of the emitted light. Both effect are fingerprints of giant Zeeman splitting of the band edges due to sp-d exchange interaction between the band carriers and magnetic Mn-ions. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Effect of Mn on microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloy

    Directory of Open Access Journals (Sweden)

    Zhao Zhihao

    2012-11-01

    Full Text Available In order to improve the performances of the Al-Mg-Si-Cu-Cr-V alloy, various amounts of Mn (0-0.9wt.% were added. The effect of this Mn on the microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloys in different states, especially after hot extrution and solid solution treatment, was systematically studied using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS, and mechanical tests at room temperature. The results show that 0.2wt.% Mn can both refine the as-cast microstructure of the alloy and strengthen the extrusion+T6 state alloy without damaging the plasticity badly due to the formation of Al15(FeMn3Si2 and Al15Mn3Si2 dispersoids. Compared with the extrusion+T6 state alloy without Mn addition, the ultimate tensile strength and yield strength of the alloy with 0.2wt.% Mn addition are increased from 416.9 MPa to 431.4 MPa, 360.8 MPa to 372 MPa, respectively. The elongation of the extrusion+T6 state alloy does not show obvious change when the Mn addition is less than 0.5wt.%, and for the alloy with 0.2wt.% Mn addition its elongation is still as high as 15.6%. However, when over 0.7wt.% Mn is added to the alloy, some coarse, stable and refractory AlVMn and Al(VMnSi phases form. These coarse phases can reduce the effect of Mn on the inhibition of re-crystallization; and they retain the angular morphology permanently after the subsequent deformation process and heat treatment. This damages the mechanical properties of the alloy.

  7. Electrochemical properties of the ball-milled LaMg10NiMn alloy with Ni powders

    International Nuclear Information System (INIS)

    Wang Yi; Wang Xin; Gao Xueping; Shen Panwen

    2008-01-01

    The electrochemical characteristics of the ball-milled LaMg 10 NiMn alloys with Ni powders were investigated. It was found that the ball-milled LaMg 10 NiMn + 150 wt.% Ni composite exhibited higher first discharge capacity and better cycle performance. By means of the analysis of electrochemical impedance spectra (EIS), it was shown that the existence of manganese in LaMg 10 NiMn alloy increased the electrocatalytic activity due to its catalytic effect, and destabilized metal hydrides, and so reduced the hydrogen diffusion resistance. These contributed to the higher discharge capacity of the ball-milled LaMg 10 NiMn-Ni composite. According to the analytical results of X-ray diffraction (XRD), EIS and steady-state polarization (SSP) experiments, the inhibition of metal corrosion is not the main reason for the better cycle performance. The main reason is that the electrochemical reaction resistance of the ball-milled LaMg 10 NiMn-Ni composite is always lower than that of the ball-milled LaMg 10 Ni 2 -Ni composite because the former one contains manganese, which is a catalyst for the electrode reaction

  8. Large enhancement of Blocking temperature by control of interfacial structures in Pt/NiFe/IrMn/MgO/Pt multilayers

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2015-09-01

    Full Text Available The Blocking temperature (TB of Pt/NiFe/IrMn/MgO/Pt multilayers was greatly enhanced from far below room temperature (RT to above RT by inserting 1 nm thick Mg layer at IrMn/MgO interface. Furthermore, the exchange bias field (Heb was increased as well by the control of interfacial structures. The evidence for a significant fraction of Mn-O bonding at IrMn/MgO interface without Mg insertion layer was provided by X-ray photoelectron spectroscopy. The bonding between Mn and O can decrease the antiferromagnetism of IrMn film, leading to lower value of TB in Pt/NiFe/IrMn/MgO/Pt multilayers. Ultrathin Mg film inserted at IrMn/MgO interface acting as an oxygen sinking layer can suppress the oxidation reactions between Mn and O and reduce the formation of Mn-O bonding greatly. The oxidation suppression results in the recovery of the antiferromagnetism of IrMn film, which can enhance TB and Heb. Furthermore, the high resolution transmission electron microscopy demonstrates that the Mg insertion layer can efficiently promote a high-quality MgO (200 texture. This study will enhance the understanding of physics in antiferromagnet-based spintronic devices.

  9. Enhanced luminescence in SrMgAl(x)O(17±δ):yMn4+ composite phosphors.

    Science.gov (United States)

    Cao, Renping; Sharafudeen, Kaniyarakkal N; Qiu, Jianrong

    2014-01-03

    Red-emitting SrMgAlxO17±δ:yMn(4+) composite phosphors (x=10-100; y=0.05-4.0 mol%) are synthesized by solid-state reaction method in air. Addition of Al2O3 leads to the formation of two concomitant phases, i.e., SrMgAl10O17 and Al2O3 phases in the composite phosphor. Red emission from Mn(4+) ions in the composite phosphors is greatly enhanced due to multiple scattering and absorption of excitation light between SrMgAl10O17 and Al2O3 phases. SrMgAlxO17±δ:yMn(4+) composite phosphors would be a promising candidate as red phosphor in the application of a 397 nm near UV-based W-LED. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Development and characterization of Mn{sup 2+}-doped MgO nanoparticles by solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Basha, Md. Hussain; Gopal, N. O., E-mail: nogopal@yahoo.com [Department of Physics, Vikrama Simhapuri University Post Graduate Center, Kavali-524201 (India); Rao, J. L. [Department of physics, Sri Venkateswara University, Tirupati-517502 (India); Nagabhushana, H. [Prof. C.N.R. Rao Centre for Nano Research, Tumkur University, Tumkur-572103 (India); Nagabhushana, B. M. [Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore - 560054 (India); Chakradhar, R. P. S. [CSIR- National Aerospace Laboratories, Bangalore -560017 (India)

    2015-06-24

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å{sup 3}. SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn{sup 2+} ions with S=I=5/2.The observed g value and the hyperfine value reveal the ionic bonding between Mn{sup 2+} and its surroundings.

  11. Effect of minor Er and Zr on microstructure and mechanical properties of Al-Mg-Mn alloy (5083) welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Dongxia, Yang, E-mail: yangdongxia116@emails.bjut.edu.cn [Department of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Xiaoyan, Li; Dingyong, He; Hui, Huang [Department of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2013-01-20

    Samples of Al-Mg-Mn and Al-Mg-Mn-Er-Zr alloys were welded using the method of laser welding. The influence of Er and Zr on microstructure, microhardness and mechanical properties of the Al-Mg-Mn alloy welded joints were investigated. It has been found that addition of Er and Zr refines the grain size in the fusion zone, due to the formation of primary Al{sub 3}Zr and Al{sub 3}Er. Fine equiaxed grains are dominated near the fusion boundary of the Al-Mg-Mn-Er-Zr alloy joint, which is contrary with the columnar crystal in the Al-Mg-Mn alloy joint. Microhardness of the center of the fusion zone rises from 74HV{sub 0.1} to 84HV{sub 0.1} owing to the grain refinement by Er and Zr. The tensile test result shows that the ultimate tensile strength and yield strength are improved by adding Er and Zr. The main reason for this is related to grain refining strengthening.

  12. Effect of CeLa addition on the microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy

    International Nuclear Information System (INIS)

    Du, Jiandi; Ding, Dongyan; Xu, Zhou; Zhang, Junchao; Zhang, Wenlong; Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua; Chen, Renzong; Huang, Yuanwei; Tang, Jinsong

    2017-01-01

    Development of high strength lithium battery shell alloy is highly desired for new energy automobile industry. The microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy with different CeLa additions were investigated through optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rietveld refinement and tensile testing. Experimental results indicate that Al 8 Cu 4 Ce and Al 6 Cu 6 La phases formed due to CeLa addition. Addition of 0.25 wt.% CeLa could promote the formation of denser precipitation of Al 20 Cu 2 Mn 3 and Al 6 (Mn, Fe) phases, which improved the mechanical properties of the alloy at room temperature. However, up to 0.50 wt.% CeLa addition could promote the formation of coarse Al 8 Cu 4 Ce phase, Al 6 Cu 6 La phase and Al 6 (Mn, Fe) phase, which resulted in weakened mechanical properties. - Highlights: •Al-Cu-Mn-Mg-Fe alloys with different CeLa addition were fabricated through casting and rolling. •Al 8 Cu 4 Ce and Al 6 Cu 6 La phases formed after CeLa addition. •Addition of 0.25 wt.% CeLa promoted formation of denser precipitates of Al 20 Cu 2 Mn 3 and Al 6 (Mn, Fe). •Mechanical properties of the alloy was improved after 0.25 wt.% CeLa addition.

  13. Microstructure and mechanical properties of Al-Cu-Mg-Mn-Zr alloy with trace amounts of Ag

    International Nuclear Information System (INIS)

    Liu Xiaoyan; Pan Qinglin; Lu Congge; He Yunbin; Li Wenbin; Liang Wenjie

    2009-01-01

    The microstructure and mechanical properties of Al-Cu-Mg-(Ag)-Mn-Zr alloys were studied by means of tensile testing, optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that small additions of Ag to Al-Cu-Mg-Mn-Zr alloy can accelerate the hardening effect of the aged alloy and reduce the time to peak-aged. The mechanical properties can be improved both at room temperature and at elevated temperatures, which is attributed to the fine and uniform plate-like Ω precipitates. Meanwhile the ductility of the studied alloys remains at relatively high level. The major strengthening phases of the Ag-free alloy are θ' and less S', while that of Al-Cu-Mg-Mn-Zr alloy containing trace amounts of Ag are Ω and less θ'.

  14. Catalytic Combustion of Low Concentration Methane over Catalysts Prepared from Co/Mg-Mn Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Hongfeng Liu

    2014-01-01

    Full Text Available A series of Co/Mg-Mn mixed oxides were synthesized through thermal decomposition of layered double hydroxides (LDHs precursors. The resulted catalysts were then subjected for catalytic combustion of methane. Experimental results revealed that the Co4.5Mg1.5Mn2LDO catalyst possessed the best performance with the T90=485°C. After being analyzed via XRD, BET-BJH, SEM, H2-TPR, and XPS techniques, it was observed that the addition of cobalt had significantly improved the redox ability of the catalysts whilst certain amount of magnesium was essential to guarantee the catalytic activity. The presence of Mg was helpful to enhance the oxygen mobility and, meanwhile, improved the dispersion of Co and Mn oxides, preventing the surface area loss after calcination.

  15. Evaluation of the levels of Br, Cl, K, Mg, Mn and V in Perna perna mussels (Linnaeus, 1758: Mollusca Bivalvia) collected in the coast of Sao Paulo state, Brazil

    International Nuclear Information System (INIS)

    Seo, Daniele

    2012-01-01

    were cleaned, crushed, homogenized and dried by lyophilization for further analysis by INAA. The INAA procedure consisted of irradiating aliquots of the samples obtained in powder form in polyethylene envelopes in the nuclear research reactor IEA - R1 of IPEN / CNEN - SP together with synthetic standards of elements. The irradiation time in the reactor was 8 to 10 s under the thermal neutron flux of 6.6 x 1012 n cm-2 s-1. The concentrations of the elements were calculated using the comparative method. The INAA procedure was validated with respect to accuracy and precision, through the analysis of certified reference materials NIST SRM 1566b Oyster Tissue and NIST SRM 2876 Mussel Tissue. The results of these certified reference materials indicated good quality of results with respect to precision and accuracy. The ranges of concentrations (dry basis weight) of the elements obtained in mussels collected in Santos and Praia da Cocanha for the four seasons of the year were: 173.80 to 358.99 mg kg-1 for Br; 45658 ± 1811 to 109166 ± 824 mg kg -1 for Cl; 7043 ± 856 to 12506 ± 675 mg kg -1 for K; 2774 ± 211 to 5691 ± 717 mg kg -1 for Mg; 7.01 ± 0.30 to 29.74 ± 3.32 mg kg -1 for Mn and 0.77 ± 0.02 to 3.43 ± 0.28 mg kg -1 for V. The seasonal and spatial variations of the concentrations of these elements were studied and the values compared to the literature. From the results obtained it can be concluded that the species of Perna perna mussels, can be used as biomonitors of marine contamination. (author)

  16. Effects of homogenization on microstructures and properties of a new type Al-Mg-Mn-Zr-Ti-Er alloy

    International Nuclear Information System (INIS)

    He, L.Z.; Li, X.H.; Liu, X.T.; Wang, X.J.; Zhang, H.T.; Cui, J.Z.

    2010-01-01

    Research highlights: These new type alloys are very potential for increased use in aerospace and automobile industries. However, most of published reports have focused on the effects of Cu, Sc, Zr, Ag, rare metals and Si additions, Portevin-LeChatelier effect, corrosion properties, friction stir welding and superplasticity in 5000-series aluminum alloy, few investigated on Er and stepped homogenization on the precipitation of dispersoids in Al-Mg-Mn alloy. The purpose of this work was to study the effects of Er and homogenization treatment on mechanical properties and microstructural evolution in new type Al-Mg-Mn-Er alloy. - Abstract: Microstructural evolutions and mechanical properties of Al-Mg-Mn-Zr-Ti-Er alloy after homogenization were investigated in detail by optical microscope (OM), scanning electronic microscope (SEM), transmission electronic microscope (TEM), energy dispersive spectrum (EDS) and tensile test. A maximum tensile strength is obtained when the alloy homogenized at 510 deg. C for 16 h. With increasing preheating temperature (200-400 deg. C), the strength of the alloy finial homogenized at 490 deg. C for 16 h increases. When the preheating temperature is ≥300 deg. C, the strengths of the two-step homogenized alloys are higher than those of the single homogenized alloys. The preheating stage plays an important role in the microstructures and properties of the final homogenized alloy. Many fine (Mn,Fe)Al 6 precipitates when the preheating temperature is 400 deg. C. ErAl 3 phase cannot be observed during preheating stage. Plenty of fine (Mn,Fe)Al 6 and ErAl 3 precipitate in finial homogenized alloy when the preheating temperature is ≥300 deg. C. The Al-Mg-Mn-Zr-Ti-Er alloy is effectively strengthened by substructure and dispersoids of (Mn,Fe)Al 6 and ErAl 3 .

  17. Fabrication of Mg-X-O (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn) barriers for magnetic tunnel junctions

    Science.gov (United States)

    Yakushiji, K.; Kitagawa, E.; Ochiai, T.; Kubota, H.; Shimomura, N.; Ito, J.; Yoda, H.; Yuasa, S.

    2018-05-01

    We fabricated magnetic tunnel junctions with a 3d-transition material(X)-doped MgO (Mg-X-O) barrier, and evaluated the effect of the doping on magnetoresistance (MR) and microstructure. Among the variations of X (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn), X = Fe and Mn showed a high MR ratio of more than 100%, even at a low resistance-area product of 3 Ωμm2. The microstructure analysis revealed that (001) textured orientation formed for X = Fe and Mn despite substantial doping (about 10 at%). The elemental mappings indicated that Fe atoms in the Mg-Fe-O barrier were segregated at the interfaces, while Mn atoms were evenly involved in the Mg-Mn-O barrier. This suggests that MgO has high adaptability for Fe and Mn dopants in terms of high MR ratio.

  18. Microstructures, mechanical and corrosion properties and biocompatibility of as extruded Mg-Mn-Zn-Nd alloys for biomedical applications.

    Science.gov (United States)

    Zhou, Ying-Long; Li, Yuncang; Luo, Dong-Mei; Ding, Yunfei; Hodgson, Peter

    2015-04-01

    Extruded Mg-1Mn-2Zn-xNd alloys (x=0.5, 1.0, 1.5 mass %) have been developed for their potential use as biomaterials. The extrusion on the alloys was performed at temperature of 623K with an extrusion ratio of 14.7 under an average extrusion speed of 4mm/s. The microstructure, mechanical property, corrosion behavior and biocompatibility of the extruded Mg-Mn-Zn-Nd alloys have been investigated in this study. The microstructure was examined using X-ray diffraction analysis and optical microscopy. The mechanical properties were determined from uniaxial tensile and compressive tests. The corrosion behavior was investigated using electrochemical measurement. The biocompatibility was evaluated using osteoblast-like SaOS2 cells. The experimental results indicate that all extruded Mg-1Mn-2Zn-xNd alloys are composed of both α phase of Mg and a compound of Mg7Zn3 with very fine microstructures, and show good ductility and much higher mechanical strength than that of cast pure Mg and natural bone. The tensile strength and elongation of the extruded alloys increase with an increase in neodymium content. Their compressive strength does not change significantly with an increase in neodymium content. The extruded alloys show good biocompatibility and much higher corrosion resistance than that of cast pure Mg. The extruded Mg-1Mn-2Zn-1.0Nd alloy shows a great potential for biomedical applications due to the combination of enhanced mechanical properties, high corrosion resistance and good biocompatibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Influence of elemental diffusion on low temperature formation of MgH2 in TiMn1.3T0.2-Mg (T = 3d-transition elements)

    International Nuclear Information System (INIS)

    Yamamoto, K.; Tanioka, S.; Tsushio, Y.; Shimizu, T.; Morishita, T.; Orimo, S.; Fujii, H.

    1996-01-01

    In order to examine the influence of the elemental diffusion from the host compound into the Mg region on low temperature formation of MgH 2 , we have investigated the hydriding properties and the microstructures of the composite materials TiMn 1.3 T 0.2 -Mg (T = V, Cr, Mn, Fe, Co, Ni and Cu). MgH 2 is formed at 353 K in all composite materials. Of all the substitutions, the amount of MgH 2 is the largest in the case of the Cu substitution, which originates from the existence of the Mg-Mg 2 Cu eutectic formed by Cu diffusion from the host compound TiMn 1.3 Cu 0.2 into the Mg region during the liquid phase sintering. In addition, the hydrogen capacity of TiMn 1.3 Cu 0.2 -Mg (that is TiMn 1.3 Cu 0.1 -(Mg+Mg 2 Cu) after the sintering) easily saturates in comparison with TiMn 1.5 -(Mg+Mg 2 Cu) without Cu diffusion. It is concluded that Cu diffusion promotes the mobility of hydrogen atoms at the complex interface between the host compound and the Mg region. (orig.)

  20. Enhanced moments in bcc Co{sub 1−x}Mn{sub x} on MgO(001)

    Energy Technology Data Exchange (ETDEWEB)

    Snow, R.J.; Bhatkar, H. [Department of Physics, Montana State University, Bozeman, MT 59715 (United States); N' Diaye, A.T.; Arenholz, E. [Advanced Light Source, Lawrence Berkeley Nat. Labs, Berkeley, CA 94720 (United States); Idzerda, Y.U., E-mail: Idzerda@montana.edu [Department of Physics, Montana State University, Bozeman, MT 59715 (United States)

    2016-12-01

    A 40% enhancement of the Co magnetic moment has been found for thin films of bcc Co{sub 1−x}Mn{sub x} grown by molecular beam epitaxy on a 2 nm bcc Fe buffer layer on MgO(001). Although the bcc phase cannot be stabilized in the bulk, we confirm that it is stable as an epitaxial film in the composition range x=0–0.7. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism, we show that the Co moment is a maximum of 2.38 μ{sub B} at x=0.24, while the net Mn moment remains roughly constant until x=0.24, then drops steadily. Mn is found to align parallel with Co for all ferromagnetic concentrations, up to x=0.7, where the total moment of the film abruptly collapses to zero, most likely due to the onset of the observed structural instability. - Highlights: • Stabilization of bcc Co{sub 1−x}Mn{sub x} films in the composition range of x=0 to 0.7. • Enhancement of Co moment by 40% from pure bcc Co. • Parallel alignment of Mn moment and Co moment. • Measured the elemental moment of Co and Mn as a function of composition.

  1. Effect of CeLa addition on the microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jiandi [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ding, Dongyan, E-mail: dyding@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Xu, Zhou; Zhang, Junchao; Zhang, Wenlong [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua [Huafon NLM Al Co., Ltd, Shanghai 201506 (China); Chen, Renzong; Huang, Yuanwei; Tang, Jinsong [Shanghai Huafon Materials Technology Institute, Shanghai 201203 (China)

    2017-01-15

    Development of high strength lithium battery shell alloy is highly desired for new energy automobile industry. The microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy with different CeLa additions were investigated through optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rietveld refinement and tensile testing. Experimental results indicate that Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed due to CeLa addition. Addition of 0.25 wt.% CeLa could promote the formation of denser precipitation of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe) phases, which improved the mechanical properties of the alloy at room temperature. However, up to 0.50 wt.% CeLa addition could promote the formation of coarse Al{sub 8}Cu{sub 4}Ce phase, Al{sub 6}Cu{sub 6}La phase and Al{sub 6}(Mn, Fe) phase, which resulted in weakened mechanical properties. - Highlights: •Al-Cu-Mn-Mg-Fe alloys with different CeLa addition were fabricated through casting and rolling. •Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed after CeLa addition. •Addition of 0.25 wt.% CeLa promoted formation of denser precipitates of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe). •Mechanical properties of the alloy was improved after 0.25 wt.% CeLa addition.

  2. Effect of Y on the bio-corrosion behavior of extruded Mg-Zn-Mn alloy in Hank's solution

    International Nuclear Information System (INIS)

    He Weiwei; Zhang Erlin; Yang Ke

    2010-01-01

    The bio-corrosion properties of Mg-Zn-Mn alloys with and without Y in Hank's solution at 37 deg. C were investigated by using electrochemical test and electrochemical impedance spectra (EIS). The results of open circuit potential (OCP) and polarization tests indicated that Y could reduce the cathodic current density. A passivative stage appeared in the Tafel curve of the Y containing magnesium alloy, indicating that a passivative film was formed on the surface of the Y containing magnesium alloy. EIS results showed that the Y containing alloy had higher charge transfer resistance and film resistance, but lower double layer capacity than the alloy without the Y element. The surface reaction product identification by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) showed that the surface corrosion products were hydroxide and phosphate (Mg 3 Ca 3 (PO 4 ) 4 ) for Mg-Zn-Mn alloy and phosphate (MgNaPO 4 ) for the Y containing Mg-Zn-Mn alloys. The XPS results also showed that a Y 2 O 3 protective film was formed on the surface of the Y containing magnesium alloy which contributed mainly to the low cathodic current density and the high resistance.

  3. Effect of Cr and Mn addition and heat treatment on AlSi3Mg casting alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tocci, Marialaura, E-mail: m.tocci@unibs.it [Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia (Italy); Donnini, Riccardo, E-mail: riccardo.donnini@cnr.it [National Research Council of Italy (CNR), Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Via R. Cozzi 53, 20125 Milan (Italy); Angella, Giuliano, E-mail: giuliano.angella@cnr.it [National Research Council of Italy (CNR), Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Via R. Cozzi 53, 20125 Milan (Italy); Pola, Annalisa, E-mail: annalisa.pola@unibs.it [Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia (Italy)

    2017-01-15

    In the present paper the effect of heat treatment on an AlSi3Mg alloy with and without Cr and Mn addition was investigated. Beside the well-known modification of the morphology of Fe-containing intermetallics, it was found that Cr and Mn allowed the formation of dispersoids in the aluminium matrix after solution heat treatment at 545 °C, as shown by scanning transmission electron microscope observations. These particles were responsible of the enhanced Vickers microhardness of the aluminium matrix in comparison with the base alloy after solution treatment and quenching, according to dispersion hardening mechanism. The presence of these particles was not affected by ageing treatment, which instead allowed the precipitation of β-Mg{sub 2}Si, as shown by the elaboration of differential scanning calorimeter curves. The formation of dispersoids and the study of their effect on mechanical properties can represent an interesting development for applications at high temperatures of casting alloys due to their thermal stability compared to other strengthening phases as β-Mg{sub 2}Si. - Highlights: •Cr and Mn successfully modified the morphology of Fe-containing intermetallics. •Cr- and Mn-dispersoids formed in the aluminium matrix during solution treatment. •Dispersion hardening was detected after solution treatment for Cr-containing alloy. •The dispersion hardening effect was maintained after ageing treatment.

  4. Hydrothermal synthesis and corrosion behavior of the protective coating on Mg-2Zn-Mn-Ca-Ce alloy

    Directory of Open Access Journals (Sweden)

    Dan Song

    2016-12-01

    Full Text Available Protective coatings were synthesized on the Mg-2Zn-Mn-Ca-Ce Mg alloy through the hydrothermal method with de-ionized water as the reagent. The coatings were composed of Mg hydroxide, generally uniform and compact. Hydrogen evolution tests and electrochemical tests in the Hanks’ solution demonstrated that the Mg(OH2 coatings effectively decreased the bio-degradation rate of the Mg alloy substrate. Microstructure observation showed that the coating formation on the secondary phases was more difficult than that on the α-Mg matrix, which led to micro cracks and pores on the secondary phases after drying. Over synthesizing time, the coating layer on secondary phases gradually becomes more compact and uniform. Meanwhile, owing to the thicker and more compact coatings, the corrosion resistance and protective efficiency were significantly improved with longer synthesizing time as well.

  5. Strength properties and structure of a submicrocrystalline Al-Mg-Mn alloy under shock compression

    Science.gov (United States)

    Petrova, A. N.; Brodova, I. G.; Razorenov, S. V.

    2017-06-01

    The results of studying the strength of a submicrocrystalline aluminum A5083 alloy (chemical composition was 4.4Mg-0.6Mn-0.11Si-0.23Fe-0.03Cr-0.02Cu-0.06Ti wt % and Al base) under shockwave compression are presented. The submicrocrystalline structure of the alloy was produced in the process of dynamic channel-angular pressing at a strain rate of 104 s-1. The average size of crystallites in the alloy was 180-460 nm. Hugoniot elastic limit σHEL, dynamic yield stress σy, and the spall strength σSP of the submicrocrystalline alloy were determined based on the free-surface velocity profiles of samples during shock compression. It has been established that upon shock compression, the σHEL and σy of the submicrocrystalline alloy are higher than those of the coarse-grained alloy and σsp does not depend on the grain size. The maximum value of σHEL reached for the submicrocrystalline alloy is 0.66 GPa, which is greater than that in the coarse-crystalline alloy by 78%. The dynamic yield stress is σy = 0.31 GPa, which is higher than that of the coarse-crystalline alloy by 63%. The spall strength is σsp = 1.49 GPa. The evolution of the submicrocrystalline structure of the alloy during shock compression was studied. It has been established that a mixed nonequilibrium grain-subgrain structure with a fragment size of about 400 nm is retained after shock compression, and the dislocation density and the hardness of the alloy are increased.

  6. Thermodynamic description of the Al-Cu-Mg-Mn-Si quinary system and its application to solidification simulation

    International Nuclear Information System (INIS)

    Chang, Keke; Liu, Shuhong; Zhao, Dongdong; Du, Yong; Zhou, Liangcai; Chen, Li

    2011-01-01

    By means of the first-principles calculations, the enthalpy of formation for the quaternary phase in the Al-Cu-Mg-Si system was computed. A set of self-consistent thermodynamic parameters for the Al-Cu-Mg-Si and Al-Cu-Mn-Si systems was then obtained using CALPHAD approach taking into account the reliable experimental data and the first-principles calculations. The thermodynamic database for the Al-Cu-Mg-Mn-Si system was developed based on the constituent binary, ternary, and quaternary systems. Comprehensive comparisons between the calculated and measured phase diagrams and invariant reactions showed that the experimental information was satisfactorily accounted for by the present thermodynamic description. The obtained database was used to describe the solidification behavior of Al alloys B319.1 (90.2Al-6Si-3.5Cu-0.3Mg, in wt.%) and B319.1 + xMn (x = 0.5-2, in wt.%) under Gulliver-Scheil non-equilibrium condition. The reliability of the present thermodynamic database was also verified by the good agreement between calculation and experiment for Gulliver-Scheil non-equilibrium solidification.

  7. Nanosized spinel oxide catalysts for CO-oxidation prepared via CoMnMgAl quaternary hydrotalcite route

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtar, M., E-mail: mmoustafa@kau.edu.s [Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah, P.O. Box 80203 (Saudi Arabia); Basahel, S.N.; Al-Angary, Y.O. [Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah, P.O. Box 80203 (Saudi Arabia)

    2010-03-18

    Catalytic activity of the Co-Mn-Mg-Al mixed oxide spinel catalysts was examined in CO oxidation by O{sub 2}. The prepared catalysts were characterized by chemical analysis (ICP), infrared spectroscopy (FTIR), thermal analysis (TG, DTG), powder X-ray diffraction (XRD), surface area measurements, and scanning electron microscopy (SEM).The calcined hydrotalcite-like precursor was composed of spinel-like Co-Mn-Mg-Al mixed oxide as the only XRD crystalline phases. The nanosized spinel oxide catalysts produced by calcination of hydrotalcites showed higher S{sub BET} than CoMn-hydrotalcite samples as calcination led to dehydroxylation and carbonate decomposition of anions in interlayer spaces. All the catalysts showed 100% CO conversion at high temperature even those calcined at 800 {sup o}C. A catalyst with Co/Mn = 4 and calcined at 500 {sup o}C showed 100% CO conversion at 160 {sup o}C. Moreover, this catalyst exhibited quite good durability without deactivation in 60 h stability test.

  8. Circadian rhythm in concentrations of Mg, K, Ca and Mn in Japanese morning glory during flowering process

    International Nuclear Information System (INIS)

    Ikeue, Natsuko; Tanoi, Keitaro; Furukawa, Jun; Yokota, Harumi; Okuni, Yoko; Nakanishi, Tomoko M.

    2001-01-01

    Concentrations of 4 trace elements, Mg, K, Ca and Mn, in each tissues of Japanese morning glory were analyzed during the flower development. To determine the element amount, neutron activation analysis with gamma-ray spectroscopy was performed. In this study, we focused on the movement of the trace elements especially with short-day treatment. Each element showed its specific distribution in the parts of a plant. The concentration of each element was changed rhythmically within a day. It was noted that, in the apical bud, concentrations of Mg, Ca and Mn were decreased from 5 h (2 h before light was on) to 7 h and increased again after 9 h. (author)

  9. Circadian rhythm in concentrations of Mg, K, Ca and Mn in Japanese morning glory during flowering process

    Energy Technology Data Exchange (ETDEWEB)

    Ikeue, Natsuko; Tanoi, Keitaro; Furukawa, Jun; Yokota, Harumi; Okuni, Yoko; Nakanishi, Tomoko M. [Tokyo Univ. (Japan). Graduate School of Agricultural and Life Sciences

    2001-06-01

    Concentrations of 4 trace elements, Mg, K, Ca and Mn, in each tissues of Japanese morning glory were analyzed during the flower development. To determine the element amount, neutron activation analysis with gamma-ray spectroscopy was performed. In this study, we focused on the movement of the trace elements especially with short-day treatment. Each element showed its specific distribution in the parts of a plant. The concentration of each element was changed rhythmically within a day. It was noted that, in the apical bud, concentrations of Mg, Ca and Mn were decreased from 5 h (2 h before light was on) to 7 h and increased again after 9 h. (author)

  10. Discharge capacity and microstructures of La Mg Pr Al Mn Co Ni alloys for nickel-metal hydride batteries

    International Nuclear Information System (INIS)

    Casini, J.C.S.; Galdino, G.S.; Ferreira, E.A.; Takiishi, H.; Faria, R.N.

    2010-01-01

    La 0.7-x Mg x Pr 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 (x = 0.0, 0.3 and 0.7) alloys have been investigated aiming the production of negative electrodes for nickel-metal hydride batteries. The alloys employed in this work were used in the as cast state. The results showed that the substitution of magnesium by lanthanum increased the discharge capacity of the Ni-MH batteries. A battery produced with the La 0.4 Mg 0.3 Pr 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy shown a high discharge capacity (380mAh/g) also good stability compared to other alloys. The electrode materials were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). (author)

  11. Microstructure, mechanical properties and bio-corrosion properties of Mg-Zn-Mn-Ca alloy for biomedical application

    International Nuclear Information System (INIS)

    Zhang Erlin; Yang Lei

    2008-01-01

    Microstructure, mechanical properties and bio-corrosion properties of as-cast Mg-Zn-Mn-Ca alloys were investigated for biomedical application in detail by optical microscopy, scanning electronic microscopy (SEM), mechanical properties testing and electrochemical measurement. SEM and optical microscopy observation indicated that the grain size of the as-cast alloys significantly decreased with the increasing of Ca content up to 0.5 wt.%. Further increasing of Ca content did not refine the grain more. The phase constitute was mainly controlled by the atomic ratio of Zn to Ca. When the ratio was more than 1.0-1.2, the alloy was mainly composed of primary Mg and lamellar eutectic (α-Mg + Ca 2 Mg 6 Zn 3 ), while the alloy was composed of primary Mg and divorced eutectic (α-Mg + Mg 2 Ca + Ca 2 Mg 6 Zn 3 ) when the atomic ratio was less than 1.0-1.2. The yield strength of the as-cast alloy increased but the elongation and the tensile strength increased first and then decreased with the increasing of Ca content. It was thought that Mg 2 Ca phase deteriorated the tensile strength and ductility. Electrochemical measurements indicated that Mg 2 Ca phase improved the corrosion resistance of the as-cast alloy

  12. Mechanical Properties and Microstructure of TIG and FSW Joints of a New Al-Mg-Mn-Sc-Zr Alloy

    Science.gov (United States)

    Xu, Guofu; Qian, Jian; Xiao, Dan; Deng, Ying; Lu, Liying; Yin, Zhimin

    2016-04-01

    A new Al-5.8%Mg-0.4%Mn-0.25%Sc-0.10%Zr (wt.%) alloy was successfully welded by tungsten inert gas (TIG) and friction stir welding (FSW) techniques, respectively. The mechanical properties and microstructure of the welded joints were investigated by microhardness measurements, tensile tests, and microscopy methods. The results show that the ultimate tensile strength, yield strength, and elongation to failure are 358, 234 MPa, and 27.6% for TIG welded joint, and 376, 245 MPa and 31.9% for FSW joint, respectively, showing high strength and superior ductility. The TIG welded joint fails in the heat-affected zone and the fracture of FSW joint is located in stirred zone. Al-Mg-Mn-Sc-Zr alloy is characterized by lots of dislocation tangles and secondary coherent Al3(Sc,Zr) particles. The superior mechanical properties of the TIG and FSW joints are mainly derived from the Orowan strengthening and grain boundary strengthening caused by secondary coherent Al3(Sc,Zr) nano-particles (20-40 nm). For new Al-Mg-Mn-Sc-Zr alloy, the positive effect from secondary Al3(Sc, Zr) particles in the base metal can be better preserved in FSW joint than in TIG welded joint.

  13. Optical properties of Ni2+ and radiation defects in MgF sub 2 and MnF sub 2

    Science.gov (United States)

    Feuerhelm, L. N.

    1980-03-01

    The radiation defects in pure MgF2 were made by observating the polarized absorption, luminescence, and excitation spectra in electron-irradiated MgF2. Additionally, studies of the absorption, emission, excitation, and temperature dependence of the lifetimes of transitions in nickel-doped MgF2 and MnF2 were accomplished, as well as the observation of radiation effects on these crystals. The absorption band at about 320 nm in irradiated MgF2 is identified to be due to the F2(D2b) center, and to have an emission at about 450 nm. Analysis of the temperature dependence of this band indicates a dominant phonon mode of 255 cm(-1) for the excited state. The F2(C1) center is identified with an absorption of about 360 nm and an emission of 410 nm. An absorption peak at 300 nm, for which no corresponding emission was found, is tentatively identified to be the F3-center, and to have a dominant phonon mode of 255 cm(-1). The temperature dependence of the lifetimes of transitions in nickel-doped MgF2 is analyzed by the quantum mechanical single configuration coordinate model of Struck and Fonger, and a complete configuration coordinate model is made for this crystal. Similar studies are made in MnF2:Ni.

  14. Validation of FNAA method for testing the elements of Mn, Cr and Mg on the Gajahwong river sediment sample

    International Nuclear Information System (INIS)

    Wisjachudin Faisal; Elin Nuraini

    2010-01-01

    Validation of elements of Mn, Cr and Mg by using FNAA method has been performed. NBS SRM 8704 (Bufallo River Sediment), was used as the standard reference material, with the neutrons generator operating condition at the optimum voltage of 110 kV. Energy and channel number of calibration lines obtained with the standard equation as y = 1.034 x + 151.21. From the analysis of SRM, the results show that only Mg can be analyzed, because Cr and Mn are located at the same peak point (interferences), so that they can not be analyzed. From the analysis for Mg element (SRM), the precision and the accuration obtained are 95.53 % and 94.88%, while the average price of expanded uncertainty for the various locations is 0.233 ± 0.012. Mg content analysis result at various locations along the river Gajahwong ranging from 85.41 – 103.55 ppm. When compared with previous studies showing the elements content of Fe, Al and Si is much higher than Mg content. (author)

  15. Deformation behavior of commercial Mg-Al-Zn-Mn type alloys under a hydrostatic extrusion process at elevated temperatures

    International Nuclear Information System (INIS)

    Yoon, Duk Jae; Lee, Sang Mok; Lim, Seong Joo; Kim, Eung Zu

    2010-01-01

    This paper presents the deformation behavior of commercial Mg-Al-Zn-Mn type alloys during hydrostatic extrusion process at elevated temperatures. In the current study commercial Mg-Al-Zn-Mn type alloys with different Al contents were subjected to hydrostatic extrusion process at a range of temperatures and at ram speeds of 4.5, 10 and 17 mm/sec. Under the hydrostatic condition at 518K, the alloy with Al contents of 2.9 wt% was successfully extruded at all applied speeds. The alloys with Al content of 5.89 and 7.86 wt% were successful up to 10mm/sec, and finally extrusion of alloy with Al content 8.46wt% was successful only at 4.5 mm/sec. These results show that the deformation limit in the Mg alloys in terms of extrusion speed greatly extended to higher value in the proximity of lower Al content. It is presumed that deformation becomes harder as Al content increases because of strengthening mechanism by solute drag to increase of supersaturated Mg 17 Al 12 precipitates. Also, microstructures of cast and extruded Mg alloys were compared. Defect-wide microstructure of cast alloy completely evolved into dense and homogeneous microstructure with equiaxed grains

  16. Effects on proliferation and cell cycle of irradiated KG-1 cells stimulated by CM-CSF

    International Nuclear Information System (INIS)

    Guo Dehuang; Dong Bo; Wen Gengyun; Luo Qingliang; Mao Bingzhi

    2000-01-01

    In order to explore the variety of cell proliferation and cell cycle after exposure to ionizing radiation, the responses of irradiated KG-1 cells of the human myeloid leukemia stimulated by GM-CSF, the most common used cytokine in clinic, were investigated. The results showed that GM-CSF enhance KG-1 cells proliferation, reduce G0/G1 block, increase S phase and G2/M phase. The stimulation effects of the GM-CSF are more effective in irradiated group than in control group

  17. Luminescence property and emission enhancement of YbAlO3:Mn4+ red phosphor by Mg2+ or Li+ ions

    Science.gov (United States)

    Cao, Renping; Luo, Wenjie; Xu, Haidong; Luo, Zhiyang; Hu, Qianglin; Fu, Ting; Peng, Dedong

    2016-03-01

    YbAlO3:Mn4+, YbAlO3:Mn4+, Li+, and YbAlO3:Mn4+, Mg2+ phosphors are synthesized by high temperature solid-state reaction method in air. Their crystal structures and luminescence properties are investigated. Photoluminescence excitation (PLE) spectrum monitored at 677 nm contains broad PLE band with three PLE peaks located at ∼318, 395, and 470 nm within the range 220-600 nm. Emission spectra with excitation 318 and 470 nm exhibit three emission band peaks located at ∼645, 677, and 700 nm in the range of 610-800 nm and their corresponding chromaticity coordinates are about (x = 0.6942, y = 0.3057). The possible luminous mechanism of Mn4+ ion is analyzed by the simple energy level diagram of Mn4+ ion. The optimum Mn4+-doped concentration in YbAlO3:Mn4+ phosphor is about 0.4 mol% and the luminescence lifetime of YbAlO3:0.4%Mn4+ phosphor is ∼0.59 ms. Emission intensity of YbAlO3:0.4%Mn4+ phosphor can be enhanced ∼6 times after Mg2+ ion is co-doped and it is ∼2 times when Li+ ion is co-doped. The content in the paper is useful to research new Mn4+-doped luminescence materials and improve luminescence property of other Mn4+-doped phosphors.

  18. Effect of Mg addition on LaMnO3 ceramic system

    Directory of Open Access Journals (Sweden)

    García Iván Supelano

    2018-01-01

    Full Text Available In the present work we report the synthesis of La1−xMgxMnO3 (with x = 0.10, 0.25, and 0.50 polycrystalline samples based on LaMnO3 (LMO antiferromagnetic with low Neel temperature and insulating behavior. Structure was analyzed by Rietveld fitting of XRD patterns at room temperature by FullProf software, these show that La1−xMgxMnO3 (x = 0.10, 0.25, 0.50 samples crystallize in the space group R-3c. Magnetic and electrical measurements exhibits ferromagnetic and semiconductor like behavior. A decreases of TC is observed when x doping value increases.

  19. A comparative study of metabolism and concentration factors of Fe, Cu, Zn, Mn, Co and Mg in Carcinus maenas and Cancer irroratus ovaries during ovogenesis

    International Nuclear Information System (INIS)

    Martin, J.-L.M.

    1975-01-01

    Fe, Cu, Zn, Mn, Co, and Mg were analysed in the ovary of Carcinus maenas and Cancer irroratus during ovogenesis. In both ovaries, the relatives rates, expressed as parts per millions as a ratio of wet and dry weight, are the following: Mg>Zn>Fe>Cu>Mn>Co, while in the hemolymph of Cancer irroratus these relative rates are the following: Mg>Cu>Zn>Fe>Mn>Co. Compared to concentrations of these metals in sea water, Mg expected, all metals in the ovary of Cancer irroratus have a concentration factor upper than 1. Compared to the concentration of metals in the hemolymph is, for Fe, Mn, and Co, the concentration factor upper than 1, and for Cu, Zn and Mg, the concentration factor lower than 1. A study of correlations was done between the concentrations of metals considered in pairs, and between the concentrations of metals and the parameters: water content and gonad index [fr

  20. Strongly coupled rotational band in Mg>33mn>

    Energy Technology Data Exchange (ETDEWEB)

    Richard, A. L.; Crawford, H. L.; Fallon, P.; Macchiavelli, A. O.; Bader, V. M.; Bazin, D.; Bowry, M.; Campbell, C. M.; Carpenter, M. P.; Clark, R. M.; Cromaz, M.; Gade, A.; Ideguchi, E.; Iwasaki, H.; Jones, M. D.; Langer, C.; Lee, I. Y.; Loelius, C.; Lunderberg, E.; Morse, C.; Rissanen, J.; Salathe, M.; Smalley, D.; Stroberg, S. R.; Weisshaar, D.; Whitmore, K.; Wiens, A.; Williams, S. J.; Wimmer, K.; Yamamato, T.

    2017-07-01

    The “Island of Inversion” at N~20 for the neon, sodium, and magnesium isotopes has long been an area of interest both experimentally and theoretically due to the subtle competition between 0p-0h and np-nh configurations leading to deformed shapes. However, the presence of rotational band structures, which are fingerprints of deformed shapes, have only recently been observed in this region. In this work, we report on a measurement of the low-lying level structure of 33Mg populated by a two-stage projectile fragmentation reaction and studied with GRETINA. The experimental level energies, ground state magnetic moment, intrinsic quadrupole moment, and γ-ray intensities show good agreement with the strong-coupling limit of a rotational model.

  1. Strongly coupled rotational band in Mg>33mn>

    Energy Technology Data Exchange (ETDEWEB)

    Richard, A. L. [Ohio Univ., Athens, OH (United States). Inst. for Nuclear and Particle Physics; Crawford, H. L. [Ohio Univ., Athens, OH (United States). Inst. for Nuclear and Particle Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Fallon, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Macchiavelli, A. O. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Bader, V. M. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Bazin, D. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.; Bowry, M. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Campbell, C. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Carpenter, M. P. [Argonne National Lab. (ANL), Argonne, IL (United States). Physics Div.; Clark, R. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Cromaz, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Gade, A. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Ideguchi, E. [Osaka Univ. (Japan). RCNP; Iwasaki, H. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Jones, M. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Langer, C. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Lee, I. Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Loelius, C. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Lunderberg, E. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Morse, C. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Rissanen, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Salathe, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Smalley, D. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Stroberg, S. R. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Weisshaar, D. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Whitmore, K. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Wiens, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Williams, S. J. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Wimmer, K. [Univ. of Tokyo (Japan). Dept. of Physics; Yamamato, T. [Osaka Univ. (Japan). RCNP

    2017-07-01

    The “island of inversion” at N≈20 for the neon, sodium, and magnesium isotopes has long been an area of interest both experimentally and theoretically due to the subtle competition between 0p-0h and np-nh configurations leading to deformed shapes. However, the presence of rotational band structures, which are fingerprints of deformed shapes, have only recently been observed in this region. In this work, we report on a measurement of the low-lying level structure of Mg33 populated by a two-stage projectile fragmentation reaction and studied with the Gamma Ray Energy Tracking In-Beam Nuclear Array (GRETINA). The experimental level energies, ground-state magnetic moment, intrinsic quadrupole moment, and γ-ray intensities show good agreement with the strong-coupling limit of a rotational model.

  2. Magnetic properties of Mg12O12 nanocage doped with transition metal atoms (Mn, Fe, Co and Ni): DFT study

    Science.gov (United States)

    Javan, Masoud Bezi

    2015-07-01

    Binding energy of the Mg12O12 nanocage doped with transition metals (TM=Mn, Fe, Co and Ni) in endohedrally, exohedrally and substitutionally forms were studied using density functional theory with the generalized gradient approximation exchange-correlation functional along 6 different paths inside and outside of the Mg12O12 nanocage. The most stable structures were determined with full geometry optimization near the minimum of the binding energy curves of all the examined paths inside and outside of the Mg12O12 nanocage. The results reveal that for all stable structures, the Ni atom has a larger binding energy than the other TM atoms. It is also found that for all complexes additional peaks contributed by TM-3d, 4s and 4p states appear in the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) gap of the host MgO cluster. The mid-gap states are mainly due to the hybridization between TM-3d, 4s and 4p orbitals and the cage π orbitals. The magnetic moment of the endohedrally doped TM atoms in the Mg12O12 are preserved to some extent due to the interaction between the TM and Mg12O12 nanocage, in contrast to the completely quenched magnetic moment of the Fe and Ni atoms in the Mg11(TM)O12 complexes. Furthermore, charge population analysis shows that charge transfer occurs from TM atom to the cage for endohedrally and substitutionally doping.

  3. Evaluation of the levels of Br, Cl, K, Mg, Mn and V in Perna perna mussels (Linnaeus, 1758: Mollusca Bivalvia) collected in the coast of Sao Paulo state, Brazil; Avaliacao dos teores de Br, Cl, K, Mg, Mn e V em mexilhoes Perna perna (Linnaeus, 1758: Mollusca Bivalvia) coletados no litoral do estado de Sao Paulo, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Daniele

    2012-07-01

    was performed in all seasons of the year, beginning in spring 2008 and ending in winter 2009. The samples were cleaned, crushed, homogenized and dried by lyophilization for further analysis by INAA. The INAA procedure consisted of irradiating aliquots of the samples obtained in powder form in polyethylene envelopes in the nuclear research reactor IEA - R1 of IPEN / CNEN - SP together with synthetic standards of elements. The irradiation time in the reactor was 8 to 10 s under the thermal neutron flux of 6.6 x 1012 n cm-2 s-1. The concentrations of the elements were calculated using the comparative method. The INAA procedure was validated with respect to accuracy and precision, through the analysis of certified reference materials NIST SRM 1566b Oyster Tissue and NIST SRM 2876 Mussel Tissue. The results of these certified reference materials indicated good quality of results with respect to precision and accuracy. The ranges of concentrations (dry basis weight) of the elements obtained in mussels collected in Santos and Praia da Cocanha for the four seasons of the year were: 173.80 to 358.99 mg kg-1 for Br; 45658 {+-} 1811 to 109166 {+-} 824 mg kg{sup -1} for Cl; 7043 {+-} 856 to 12506 {+-} 675 mg kg{sup -1} for K; 2774 {+-} 211 to 5691 {+-} 717 mg kg{sup -1} for Mg; 7.01 {+-} 0.30 to 29.74 {+-} 3.32 mg kg{sup -1} for Mn and 0.77 {+-} 0.02 to 3.43 {+-} 0.28 mg kg{sup -1} for V. The seasonal and spatial variations of the concentrations of these elements were studied and the values compared to the literature. From the results obtained it can be concluded that the species of Perna perna mussels, can be used as biomonitors of marine contamination. (author)

  4. Evaluation of the levels of Br, Cl, K, Mg, Mn and V in Perna perna mussels (Linnaeus, 1758: Mollusca Bivalvia) collected in the coast of Sao Paulo state, Brazil; Avaliacao dos teores de Br, Cl, K, Mg, Mn e V em mexilhoes Perna perna (Linnaeus, 1758: Mollusca Bivalvia) coletados no litoral do estado de Sao Paulo, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Daniele

    2012-07-01

    seasons of the year, beginning in spring 2008 and ending in winter 2009. The samples were cleaned, crushed, homogenized and dried by lyophilization for further analysis by INAA. The INAA procedure consisted of irradiating aliquots of the samples obtained in powder form in polyethylene envelopes in the nuclear research reactor IEA - R1 of IPEN / CNEN - SP together with synthetic standards of elements. The irradiation time in the reactor was 8 to 10 s under the thermal neutron flux of 6.6 x 1012 n cm-2 s-1. The concentrations of the elements were calculated using the comparative method. The INAA procedure was validated with respect to accuracy and precision, through the analysis of certified reference materials NIST SRM 1566b Oyster Tissue and NIST SRM 2876 Mussel Tissue. The results of these certified reference materials indicated good quality of results with respect to precision and accuracy. The ranges of concentrations (dry basis weight) of the elements obtained in mussels collected in Santos and Praia da Cocanha for the four seasons of the year were: 173.80 to 358.99 mg kg-1 for Br; 45658 {+-} 1811 to 109166 {+-} 824 mg kg{sup -1} for Cl; 7043 {+-} 856 to 12506 {+-} 675 mg kg{sup -1} for K; 2774 {+-} 211 to 5691 {+-} 717 mg kg{sup -1} for Mg; 7.01 {+-} 0.30 to 29.74 {+-} 3.32 mg kg{sup -1} for Mn and 0.77 {+-} 0.02 to 3.43 {+-} 0.28 mg kg{sup -1} for V. The seasonal and spatial variations of the concentrations of these elements were studied and the values compared to the literature. From the results obtained it can be concluded that the species of Perna perna mussels, can be used as biomonitors of marine contamination. (author)

  5. Optical absorption spectra and g factor of MgO: Mn2+explored by ab initio and semi empirical methods

    Science.gov (United States)

    Andreici Eftimie, E.-L.; Avram, C. N.; Brik, M. G.; Avram, N. M.

    2018-02-01

    In this paper we present a methodology for calculations of the optical absorption spectra, ligand field parameters and g factor for the Mn2+ (3d5) ions doped in MgO host crystal. The proposed technique combines two methods: the ab initio multireference (MR) and the semi empirical ligand field (LF) in the framework of the exchange charge model (ECM) respectively. Both methods of calculations are applied to the [MnO6]10-cluster embedded in an extended point charge field of host matrix ligands based on Gellé-Lepetit procedure. The first step of such investigations was the full optimization of the cubic structure of perfect MgO crystal, followed by the structural optimization of the doped of MgO:Mn2+ system, using periodic density functional theory (DFT). The ab initio MR wave functions approaches, such as complete active space self-consistent field (CASSCF), N-electron valence second order perturbation theory (NEVPT2) and spectroscopy oriented configuration interaction (SORCI), are used for the calculations. The scalar relativistic effects have also been taken into account through the second order Douglas-Kroll-Hess (DKH2) procedure. Ab initio ligand field theory (AILFT) allows to extract all LF parameters and spin-orbit coupling constant from such calculations. In addition, the ECM of ligand field theory (LFT) has been used for modelling theoptical absorption spectra. The perturbation theory (PT) was employed for the g factor calculation in the semi empirical LFT. The results of each of the aforementioned types of calculations are discussed and the comparisons between the results obtained and the experimental results show a reasonable agreement, which justifies this new methodology based on the simultaneous use of both methods. This study establishes fundamental principles for the further modelling of larger embedded cluster models of doped metal oxides.

  6. Improving the Elevated-Temperature Properties by Two-Step Heat Treatments in Al-Mn-Mg 3004 Alloys

    Science.gov (United States)

    Liu, K.; Ma, H.; Chen, X. Grant

    2018-05-01

    In the present work, two-step heat treatments with preheating at different temperatures (175 °C, 250 °C, and 330 °C) as the first step followed by the peak precipitation treatment (375 °C/48 h) as the second step were performed in Al-Mn-Mg 3004 alloys to study their effects on the formation of dispersoids and the evolution of the elevated-temperature strength and creep resistance. During the two-step heat treatments, the microhardness is gradually increased with increasing time to a plateau after 24 hours when first treated at 250 °C and 330 °C, while there is a minor decrease with time when first treated at 175 °C. Results show that both the yield strength (YS) and creep resistance at 300 °C reach the peak values after the two-step treatment of 250 °C/24 h + 375 °C/48 h. The formation of dispersoids is greatly related to the type and size of pre-existing Mg2Si precipitated during the preheating treatments. It was found that coarse rodlike β ' -Mg2Si strongly promotes the nucleation of dispersoids, while fine needle like β ″-Mg2Si has less influence. Under optimized two-step heat treatment and modified alloying elements, the YS at 300 °C can reach as high as 97 MPa with the minimum creep rate of 2.2 × 10-9 s-1 at 300 °C in Al-Mn-Mg 3004 alloys, enabling them as one of the most promising candidates in lightweight aluminum alloys for elevated-temperature applications.

  7. Effect of Si, Mn, Sn on Tensile and Corrosion Properties of Mg-4Zn-0.5Ca Alloys for Biodegradable Implant Materials

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dae Hyun; Nam, Ji Hoon; Lee, Byeong Woo; Park, Ji Yong; Shin, Hyun Jung; Park, Ik Min [Pusan National University, Busan (Korea, Republic of)

    2015-03-15

    Effect of elements Si, Mn, Sn on tensile and corrosion properties of Mg-4Zn-0.5Ca alloys were investigated. The results of tensile properties show that the yield strength, ultimate tensile strength and elongation of Mg-4Zn-0.5Ca alloy increased significantly with the addition of 0.6 wt% Mn. This is considered the grain refinement effect due to addition of Mn. However addition of 0.6 wt% Si decreased yield strength, ultimate tensile strength and elongation. The bio-corrosion behavior of Mg-4Zn-0.5Ca-X alloys were investigated using immersion tests and potentiodynamic polarization test in Hank's solution. Immersion test showed that corrosion rate of Mg-4Zn-0.5Ca-0.6Mn alloy was the lowest rate and addition of 1.0 wt% Sn accelerated corrosion rate due to micro-galvanic effect in α-Mg/CaMgSn phases interface. And corrosion potential (E{sub c}orr) of Mg-4Zn-0.5Ca-0.6Mn alloy was the most noble among Mg-4Zn-0.5Ca-X alloys.

  8. Ionizing radiation effects on the KG1A primitive hematopoietic cell line

    International Nuclear Information System (INIS)

    Clave, Emmanuel; Carosella, Edgardo D.; Gluckman, Eliane; Dubray, Bernard; Socie, Gerard

    1996-01-01

    Purpose: Better understanding of radiation-induced effects on the hematopoietic system is important in both the context of therapeutic intervention and accidental exposure. However, direct study of these effects on the hematopoietic stem cell pool is hampered by the small number of accessible cells. We, thus, studied radiation-induced effects on the KG1a stem cell line. Methods and Materials: We confirmed and extended the immunophenotype of KG1a with monoclonal antibodies, established a radiation survival curve, and quantified mRNAs by Northern blotting 30 min after 1, 2, and 3 Gy of ionizing radiation (IR) and followed for up to 48 h after a 3 Gy dose. Cell cycle status and apoptosis were assessed by fluorescent-activated cell sorter (FACS) analysis, cell morphology, and DNA fragmentation. Results: KG1a was found to be CD34+, CD7+, Thy1 low, CD38 low, lineage negative (neg), C-KITneg and HLA-DRneg, a phenotype consistent with a primitive hematopoietic origin. This immunophenotype was not altered by x-ray irradiation. The D 0 value was 1.75 Gy. We showed a time-dependent variation of c-jun mRNA expression with an early and transient dose-dependent induction followed by a second increase at 24 and 48 h: a biphasic dose-dependent variation of bcl-2 expression 30 min after irradiation with a reduction of mRNA level at 1 Gy, and a normalization at higher doses and stable levels of mRNA for c-fos, c-myc, G-CSF, GM-CSF, IL-6, TNF-α, TGF-β, and MIP-1α genes. Cell cycle analysis showed the absence of G1/S phase arrest, a point consistent with the absence of detection of P53 mRNA by Northern blot analysis. The dose-dependent G2/M phase arrest was not followed by significant apoptotic cell death. Conclusion: Taken together, this data indicates that radiation-induced cell death of KG1a, a cell line that has a relatively high D 0 value, does not seem to be the result of the apoptotic pathway but occurs subsequent to a G2/M phase arrest

  9. Discharge capacity and microstructures of La Mg Pr Al Mn Co Ni alloys for nickel-metal hydride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Casini, J.C.S.; Galdino, G.S.; Ferreira, E.A.; Takiishi, H.; Faria, R.N., E-mail: jcasini@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (DM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Dept. de Metalurgia

    2010-07-01

    La{sub 0.7-x}Mg{sub x}Pr{sub 0.3}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} (x = 0.0, 0.3 and 0.7) alloys have been investigated aiming the production of negative electrodes for nickel-metal hydride batteries. The alloys employed in this work were used in the as cast state. The results showed that the substitution of magnesium by lanthanum increased the discharge capacity of the Ni-MH batteries. A battery produced with the La{sub 0.4}Mg{sub 0.3}Pr{sub 0.3}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} alloy shown a high discharge capacity (380mAh/g) also good stability compared to other alloys. The electrode materials were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). (author)

  10. Effects of microstructure transformation on mechanical properties, corrosion behaviors of Mg-Zn-Mn-Ca alloys in simulated body fluid.

    Science.gov (United States)

    Zhang, Yuan; Li, Jianxing; Li, Jingyuan

    2018-04-01

    Magnesium and its alloys have unique advantages to act as resorbable bone fixation materials, due to their moderate mechanical properties and biocompatibility, which are similar to those of human tissue. However, early resorption and insufficient mechanical strength are the main problems that hinder their application. Herein, the effects of microstructure transformation on the mechanical properties and corrosion performance of Mg-Zn-Mn-Ca were investigated with electrochemical and immersion measurements at 37 °C in a simulated body fluid (SBF). The results showed that the number density of Ca 2 Mg 6 Zn 3 /Mg 2 Ca precipitates was remarkably reduced and grain sizes were gradually increased as the temperature increased. The alloy that received the 420 °C/24 h treatment demonstrated the best mechanical properties and lowest corrosion rate (5.94 mm/a) as well as presented a compact and denser film than the others. The improvement in mechanical properties could be explained by the eutectic compounds and phases (Mg 2 Ca/Ca 2 Mg 6 Zn 3 ) gradually dissolving into a matrix, which caused severely lattice distortion and facilitated structural re-arrangement of the increased Ca solute. Moreover, the difference in potential between the precipitates and the matrix is the main essence for micro-galvanic corrosion formation as well as accelerated the dissolution activity and current exchange density at the Mg/electrolyte interface. As a result, the best Mg alloys corrosion resistance must be matched with a moderate grain size and phase volume fractions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8), a cation solid solution in a bimetallic borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Cerny, Radovan, E-mail: radovan.cerny@unige.ch [Laboratory of Crystallography, University of Geneva, 1211 Geneva (Switzerland); Penin, Nicolas [Laboratory of Crystallography, University of Geneva, 1211 Geneva (Switzerland); CNRS, Universite de Bordeaux 1, ICMCB, 87 Avenue du Docteur Albert Schweitzer, F-33608 Pessac Cedex (France); D' Anna, Vincenza; Hagemann, Hans [Department of Physical Chemistry, University of Geneva, 1211 Geneva (Switzerland); Durand, Etienne [CNRS, Universite de Bordeaux 1, ICMCB, 87 Avenue du Docteur Albert Schweitzer, F-33608 Pessac Cedex (France); Ruzicka, Jakub [Charles University, Faculty of Science, Department of Inorganic Chemistry, Hlavova 2030, 128 40, Prague 2 (Czech Republic)

    2011-08-15

    Highlights: {yields} The magnesium and manganese borohydrides form a solid solution Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8) which conserves the trigonal structure of Mn{sub (}(BH{sub 4}){sub 2}. {yields} Coexistence of both trigonal and hexagonal borohydrides occurs within nominal composition ranging from x{sub Mg} = 0.8-0.9. {yields} The decomposition temperature of trigonal Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8) does not vary significantly with magnesium content (433-453 K). {yields} The desorbed gas contains mostly hydrogen and 3-7.5 mol.% of diborane B{sub 2}H{sub 6}. - Abstract: A solid solution of magnesium and manganese borohydrides was studied by in situ synchrotron radiation X-ray powder diffraction and infrared spectroscopy. A combination of thermogravimetry, mass and infrared spectroscopy, and atomic emission spectroscopy were applied to clarify the thermal gas desorption of pure Mn(BH{sub 4}){sub 2} and a solid solution of composition Mg{sub 0.5}Mn{sub 0.5}(BH{sub 4}){sub 2}. Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8) conserves the trigonal structure of Mn(BH{sub 4}){sub 2} at room temperature. Manganese is dissolved in the hexagonal structure of {alpha}-Mg(BH{sub 4}){sub 2}, with the upper solubility limit not exceeding 10 mol.% at room temperature. There exists a two-phase region of trigonal and hexagonal borohydrides within the compositional range x = 0.8-0.9 at room temperature. Infrared spectra show splitting of various vibrational modes, indicating the presence of two cations in the trigonal Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} solid solutions, as well as the appearance of a second phase, hexagonal {alpha}-Mg(BH{sub 4}){sub 2}, at higher magnesium contents. All vibrational frequencies are shifted to higher values with increasing magnesium content. The decomposition temperature of the trigonal Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8) does not vary significantly as a function of the magnesium

  12. Elemental moment variation of bcc Fe{sub x}Mn{sub 1−x} on MgO(001)

    Energy Technology Data Exchange (ETDEWEB)

    Bhatkar, H.; Snow, R.J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Arenholz, E. [Advanced Light Source, Lawrence Berkeley National Laboratories, Berkeley, CA 94720 (United States); Idzerda, Y.U., E-mail: idzerda@montana.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2017-02-01

    We report the growth, structural characterization, and electronic structure evolution of epitaxially grown bcc Fe{sub x}Mn{sub 1−x} on MgO(001). It is observed that the 20 nm thick Fe{sub x}Mn{sub 1−x} alloy films remained bcc from 0.65≤x≤1, much beyond the bulk stability range of 0.88≤x≤1. X-ray absorption spectroscopy and X-ray magnetic circular dichroism show that both the Fe and Mn L{sub 3} binding energies slightly increase with Mn incorporation and that the elemental moment of Fe in the 20 nm crystalline bcc alloy film remain nearly constant, then shows a dramatic collapse near x~0.84. The Mn MCD intensity is found to be small at all compositions that exhibit ferromagnetism - Highlights: • Bcc Fe{sub x}Mn{sub 1−x} films were stabilized beyond bulk range by epitaxial growth on MgO. • XMCD shows negligible moment in Mn regardless of composition. • Fe moment stays constant until 84% Mn concentration. • Magnetic moment suddenly collapses before any structural change seen in RHEED.

  13. Simultaneous stabilization/solidification of Mn2+ and NH4+-N from electrolytic manganese residue using MgO and different phosphate resource.

    Science.gov (United States)

    Shu, Jiancheng; Wu, Haiping; Liu, Renlong; Liu, Zuohua; Li, Bing; Chen, Mengjun; Tao, Changyuan

    2018-02-01

    This study examined simultaneous stabilization and solidification (S/S) of Mn 2+ and NH 4 + -N from electrolytic manganese residue (EMR) using MgO and different phosphate resource. The characteristics of EMR NH 4 + -N and Mn 2+ S/S behavior, S/S mechanisms, leaching test and economic analysis, were investigated. The results show that the S/S efficiency of Mn 2+ and NH 4 + -N could reach 91.58% and 99.98%, respectively, and the pH value is 8.75 when the molar ratio of Mg:P is 3:1 and the dose of PM (MgO and Na 3 PO 4 ·12H 2 O) is 8wt%. In this process, Mn 2+ could mainly be stabilized in the forms of Mn(H 2 PO 4 ) 2 ·2H 2 O, Mn 3 (PO 4 ) 2 ·3H 2 O, Mn(OH) 2 , and MnOOH, and NH 4 + -N in the form of NH 4 MgPO 4 ·6H 2 O. Economic evaluation indicates that using PM process has a lower cost than HPM and HOM process for the S/S of Mn 2+ and NH 4 + -N from EMR at the same stabilization agent dose. Leaching test values of all the measured metals are within the permitted level for the GB8978-1996 test suggested when the dose of PM, HPM and HOM is 8wt%. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The effect of disorder on electronic and magnetic properties of quaternary Heusler alloy CoFeMnSi with LiMgPbSb-type structure

    International Nuclear Information System (INIS)

    Feng, Yu; Chen, Hong; Yuan, Hongkuan; Zhou, Ying; Chen, Xiaorui

    2015-01-01

    Thin films based on Heusler alloy often lost their theoretical predicted ultra-high spin polarization owing to the appearance of disorder. Using the first-principles calculations within density functional theory (DFT), we investigate the effect of disorder including antisite and swap on electronic and magnetic properties of quaternary Heusler alloy CoFeMnSi with LiMgPbSb-type structure. Twelve kinds of antisites and six kinds of swap disorders are proposed and studied comprehensively. In our calculations, Co(Fe)-, Mn(Fe)-, Si(Mn)-antisite and Co–Fe swap disorders are most favorable due to their lowest formation energies. Moreover, the positive binding energies of Co–Fe, Co–Si, Fe–Si and Mn–Si swap disorders with respect to their corresponding antisite disorders indicate that these complex swap disorders are more stable compared with their corresponding isolated antisite disorders. The investigations on density of states (DOS) show that the spin down energy gap of disordered structures suffers contraction and their DOS entirely move towards lower zone. Besides, the 100% spin polarization is maintained in all structures with antisite and swap disorders except for those with Co(Mn)-, Co(Si)-antisite and Co–Mn, Co–Si swap disorders. Therefore, the half-metallicity of quaternary Heusler alloy CoFeMnSi is quite robust against interfering effects such as Si(Mn), Co(Fe) and Co–Fe disorders most possibly formed in the growth. - Highlights: • CoFeMnSi with LiMgPbSb-type structure is found to be a half-metallic ferromagnet. • Si(Mn), Co(Fe), Mn(Fe) antisites and Co–Fe swap disorders are most likely to form. • The half-metallicity of CoFeMnSi is robust against the most possible disorders. • The magnetic moments of the most possible disorders follow the Pauli-Slater rule

  15. Effect of Al and Mg Contents on Wettability and Reactivity of Molten Zn-Al-Mg Alloys on Steel Sheets Covered with MnO and SiO2 Layers

    Science.gov (United States)

    Huh, Joo-Youl; Hwang, Min-Je; Shim, Seung-Woo; Kim, Tae-Chul; Kim, Jong-Sang

    2018-05-01

    The reactive wetting behaviors of molten Zn-Al-Mg alloys on MnO- and amorphous (a-) SiO2-covered steel sheets were investigated by the sessile drop method, as a function of the Al and Mg contents in the alloys. The sessile drop tests were carried out at 460 °C and the variation in the contact angles (θc) of alloys containing 0.2-2.5 wt% Al and 0-3.0 wt% Mg was monitored for 20 s. For all the alloys, the MnO-covered steel substrate exhibited reactive wetting whereas the a-SiO2-covered steel exhibited nonreactive, nonwetting (θc > 90°) behavior. The MnO layer was rapidly removed by Al and Mg contained in the alloys. The wetting of the MnO-covered steel sheet significantly improved upon increasing the Mg content but decreased upon increasing the Al content, indicating that the surface tension of the alloy droplet is the main factor controlling its wettability. Although the reactions of Al and Mg in molten alloys with the a-SiO2 layer were found to be sluggish, the wettability of Zn-Al-Mg alloys on the a-SiO2 layer improved upon increasing the Al and Mg contents. These results suggest that the wetting of advanced high-strength steel sheets, the surface oxide layer of which consists of a mixture of MnO and SiO2, with Zn-Al-Mg alloys could be most effectively improved by increasing the Mg content of the alloys.

  16. Synthesis and electrochemical study of Mg{sub 1.5}MnO{sub 3}: A defect spinel cathode for rechargeable magnesium battery

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Partha [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Jampani, Prashanth H., E-mail: pjampani@pitt.edu [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Hong, DaeHo [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Gattu, Bharat [Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Poston, James A.; Manivannan, Ayyakkannu [US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Datta, Moni Kanchan [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); School of Dental Medicine, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2015-12-15

    Graphical abstract: Mg{sub 1.5}MnO{sub 3}, a defect oxide spinel derived by the Pechini route, was tested as cathode for rechargeable magnesium battery. TEM and XRD analyses of Mg{sub 1.5}MnO{sub 3} shows the formation of ∼100 nm sized nano particles in the cubic defect spinel structure (space group: Fd3m; unit cell: 0.833294 nm). Cyclic voltammetry illustrates a reversible reaction occurring between 0.3 and 1.5 V versus magnesium. Galvanostatic cycling of the Mg{sub 1.5}MnO{sub 3} cathode exhibits a low capacity of ∼12.4 mAh/g up to 20 cycle with ∼99.9% Coulombic efficiency when cycled at a current rate of ∼C/27. XPS (X-ray photoelectron spectroscopy) surface probe of magnesiated/de-magnesiated electrodes confirm a change in the redox center of Mn-ions during intercalation/de-intercalation of Mg-ion from the Mg{sub 1.5}MnO{sub 3} electrode. The low capacity of Mg{sub 1.5}MnO{sub 3} electrode mainly stem from the kinetic limitation of Mg-ion removal from the defect oxide spinel as the electrochemical impedance spectroscopy results of electrodes after 1st and 2nd cycle show that charge transfer resistance, R{sub e}, increases post charge state whereas interfacial resistance, R{sub i}, increases after discharge state, respectively. - Highlights: • Pechini process yields 100 nm sized particles of the defect cubic spinel Mg{sub 1.5}MnO{sub 3}. • Stable capacity of ∼12.4 mAh/g obtained at C/27 rate and 99.9% Coulombic efficiency. • XPS shows change in valence state of Mn{sup 3+}/Mn{sup 4+} center with cycling. • Low capacity stems from increase in charge-transfer and interfacial resistances with cycling. - Abstract: Mg{sub 1.5}MnO{sub 3}, a defect oxide spinel (space group: Fd3m; unit cell: 0.833294 nm) of particle size ∼100 nm derived by the Pechini route was tested as a cathode for rechargeable magnesium battery. Cyclic voltammetry illustrates a reversible reaction occurring in the 0.3–2.0 V potential window versus magnesium. The spinel however

  17. The Influence of Cu Addition on Dispersoid Formation and Mechanical Properties of Al-Mn-Mg 3004 Alloy

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2018-03-01

    Full Text Available The effect of Cu addition on dispersoid precipitation, mechanical properties and creep resistance was investigated in an Al-Mn-Mg 3004 alloy. The addition of Cu promoted dispersoid precipitation by increasing the number density and decreasing the size of dispersoids. Metastable β′-Mg2Si and Q-AlCuMgSi precipitates were observed during the heating process and both could provide favorable nucleation sites for dispersoid precipitation. The addition of Cu improved the thermal stability of dispersoids during a long-term thermal holding at 350 °C for 500 h. Results of mechanical testing show that the addition of Cu remarkably improved the hardness at room temperature, as well as the yield strength and creep resistance at 300 °C, which was mainly attributed to dispersoid strengthening and Cu solid solution strengthening. The yield strength contribution at 300 °C was quantitatively evaluated based on the dispersoid, solid solution and matrix contributions. It was confirmed that dispersoid strengthening is the main strengthening mechanism in the experimental alloys.

  18. Influence of silver addition on the microstructure and mechanical properties of squeeze cast Mg-6Al-1Sn-0.3Mn-0.3Ti

    International Nuclear Information System (INIS)

    Acikgoez, Sehzat; Sevik, Hueseyin; Kurnaz, S.Can

    2011-01-01

    Graphical abstract: Highlights: → X-ray diffractometry reveals that the main phases are α-Mg, α-Ti, β-Mg 17 Al 12 and Al 8 Mn 5 in the base alloy. → With addition of silver, Al 81 Mn 19 phase was found. → The mechanical properties of the base alloy are improved with addition of silver. → The fracture surface of base alloy shows relatively deeper and more amount of dimples than that of alloys containing silver. - Abstract: In this study, the effect of silver (0, 0.2, 0.5, and 1 wt.%) on the microstructure and mechanical properties of a magnesium-based alloy (Mg-Al 6 wt.%-Sn 1 wt.%-Mn 0.3 wt.%-Ti 0.3 wt.%) were investigated. The alloys were produced under a controlled atmosphere by a squeeze-casting process. X-ray diffractometry revealed that the main phases are α-Mg, α-Ti, β-Mg 17 Al 12 and Al 8 Mn 5 in the all of alloys. In addition to, Al 81 Mn 19 phase was found with Ag additive. Besides, the amount of β-Mg 17 Al 12 phase was decreased with increasing the amount of Ag. The strength of the base alloy was increased by solid solution mechanism and decreasing the amount of β-Mg 17 Al 12 phase with addition of Ag. Furthermore, existence of Al 81 Mn 19 phase can be acted an important role in the increase on the mechanical properties of the alloys.

  19. Determination of Cl, K, Mg, Mn, Na and V in Brazilian red wine by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Daniele, Anna Paula; Maihara, Vera Akiko, E-mail: annapaula@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Several studies have been carried out for determining essential elements in foodstuffs due to important nutritional role in human body functions. Such information is crucial to any intervention in the diet of a population, thus becoming representative in the public health field. Trace elements are good indicators of wine’s origin and their concentrations can be used as criteria to ensure authenticity, quality and show that the tolerance limits established by law were respected throughout the production process. Although Brazilian wine industry is among the 15 largest in the world, analytical studies on the content of organic and inorganic compounds in wine are still small compared to other major producers. This study aimed to evaluate the elemental concentration of Cl, K, Mg, Mn, Na and V in seven national red wine samples acquired in the markets of Sao Paulo city. The analytical method applied was INAA. Concentrations of the elements in wine samples showed high variation among samples. (author)

  20. Mechanical properties of the Mg-14Ti-1Al-0.9Mn (%Wt) synthesized by physical vapour

    International Nuclear Information System (INIS)

    Garces, G.; Cristina, M. C.; Torralba, M.; Adeva, P.

    2001-01-01

    The mechanical properties of the alloy Mg-14% Ti-1% Al-0.9 Mn obtained by PVD techniques have been evaluated up to 300 degree centigree. The alloy presents a columnar grain microstructure, typical of the zone 2 of the structure zone model of MD, where surface diffusion takes place. The alloy tested in compression at room temperature presented a high yield stress, 360 MPa. This resistance to the plastic deformation is principally due to a solid solution hardening and small grain size. The yield stress decrease with the compression temperature. However, the alloy showed low fracture resistance, especially at room temperature. The presence of pores at the grain boundaries, results in the crack formation, running fast along the grain boundary. (Author) 13 refs

  1. Radiative recombination of free and bound excitons in CdMnTe/CdMgTe quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Gubarev, S.I. [Rossijskaya Akademiya Nauk, Chernogolovka (Russian Federation). Inst. Fiziki Tverdogo Tela; Kulakovskii, V.D. [Rossijskaya Akademiya Nauk, Chernogolovka (Russian Federation). Inst. Fiziki Tverdogo Tela; Tyazhlov, M.G. [Rossijskaya Akademiya Nauk, Chernogolovka (Russian Federation). Inst. Fiziki Tverdogo Tela; Yakovlev, D.R. [Wuerzburg Univ. (Germany). Physikalisches Inst.; Waag, A. [Wuerzburg Univ. (Germany). Physikalisches Inst.; Landwehr, G. [Wuerzburg Univ. (Germany). Physikalisches Inst.

    1995-06-01

    The exchange induced dissociation of bound excitons (BE) has been studied in CdMnTe/CdMgTe quantum wells (QWs). It was found that value of the dissociation critical field does not depend on the field direction with respect to QW axis. This indicates that BE states in investigated structure are connected with excitons bound to neutral donors (D{sub 0}X states). The dependence of the critical field on the QW width has nonmonotonic character: the dissociation occurs at first in 60 A, then in 45 A, and at the end in 100 A QW. Such a behavior can be explained by transformation of bound exciton complex from quasi-3D to quasi-2D state with following increase of Coulomb correlations in confined exciton system. (orig.).

  2. The effect of welding process and shielding atmosphere on the AlMg4.5Mn weld metal properties

    Energy Technology Data Exchange (ETDEWEB)

    Prokic Cvetkovic, Radica; Popovic, Olivera [Belgrade Univ. (Serbia). Faculty of Mechanical Engineering; Burzic, Meri; Jovicic, Radomir [Belgrade Univ. (Serbia). Innovation Center; Kastelec Macura, Sandra [Technikum Taurunum, Zemun (Serbia); Buyukyildirim, Galip [IWE, Istanbul (Turkey)

    2013-01-15

    In this paper, the AlMg4.5Mn alloy has been welded using tungsten inert gas (TIG) and metal inert gas (MIG) processes with different gas shielding atmospheres. Tensile strength, hardness, impact and fracture toughness, fatigue crack growth parameters ({Delta}K{sub th}, da/dN), as well as microstructure were determined. By comparing results for different gas mixtures, the main conclusion for TIG welding was that increased helium content has an important effect on toughness and fatigue crack growth parameters, whereas its effect on other mechanical properties is not significant. On the other hand, in the case of MIG welding, adding helium does not affect mechanical properties, except the fatigue crack growth rate. It was also established that adding nitrogen (TIG welding) and oxygen (MIG welding) reduces toughness and increases crack growth rate, so their use in shielding mixtures is not recommended. (orig.)

  3. Determination of Cl, K, Mg, Mn, Na and V in Brazilian red wine by neutron activation analysis

    International Nuclear Information System (INIS)

    Daniele, Anna Paula; Maihara, Vera Akiko

    2015-01-01

    Several studies have been carried out for determining essential elements in foodstuffs due to important nutritional role in human body functions. Such information is crucial to any intervention in the diet of a population, thus becoming representative in the public health field. Trace elements are good indicators of wine’s origin and their concentrations can be used as criteria to ensure authenticity, quality and show that the tolerance limits established by law were respected throughout the production process. Although Brazilian wine industry is among the 15 largest in the world, analytical studies on the content of organic and inorganic compounds in wine are still small compared to other major producers. This study aimed to evaluate the elemental concentration of Cl, K, Mg, Mn, Na and V in seven national red wine samples acquired in the markets of Sao Paulo city. The analytical method applied was INAA. Concentrations of the elements in wine samples showed high variation among samples. (author)

  4. Numerical analysis of residual stress of Al-Mg-Mn-Sc-Zr alloy subjected to surface strengthening by shot peening

    Directory of Open Access Journals (Sweden)

    Mariusz Stegliński

    2015-03-01

    Full Text Available In this paper, we presented the results of the analysis of the stresses in the Al-Mg5%-Mn1,5%-Sc0,8%-Zr0,4% alloy after shot peening process using solver ANSYSANSYSANSYS LS-Dyna. The computational model illustrates the phenomena occurring as a result of plastic deformation caused by hitting a steel ball on the surface of the analyzed aluminium alloy. We analyzed two input variables: diameter and speed of a ball. The resulting normal stress distribution centred exposes the minimum compressive stress at a position located at a depth point of Belayev 0.125 mm with a value of σ = –345 MPa. Variable parameter shows the correlation of the boundary conditions of minimum stress increase with increasing ball’s diameter and its speed. Selected points of numerical analysis were verified with experimental results.[b]Keywords[/b]: materials science, numerical analysis, metal forming, shot peening, aluminium

  5. Microstructural and mechanical property characterization of Er modified Al-Mg-Mn alloy Tungsten Inert Gas welds

    International Nuclear Information System (INIS)

    Yang, Dongxia; Li, Xiaoyan; He, Dingyong; Nie, Zuoren; Huang, Hui

    2012-01-01

    Highlights: → The microstructural characterization of TIG welded Al-Mg-Mn-Zr-Er alloy is studied. → A typical equaixed zone (EQZ) with finer grains is observed in the weld metal at the fusion boundary. → The dissolution of non-primary Al 3 Er particles in Al matrix is one reason of the weakness of TIG welded joint. →The relationship between mechanical properties and microstructure of welded joints is evaluated. →Reasons for joint softening are given from work-hardening, precipitation strengthening and solution strengthening. -- Abstract: Samples of Al-Mg-Mn-Zr-Er alloys have been welded using the method of TIG welding. Microstructures characterization was performed by optical microscopy (OM), energy dispersive X-ray (EDX) and transmission electron microscopy (TEM), respectively. In addition, tensile and hardness test was conducted. The relationship between mechanical properties and microstructure of welded joints is evaluated. Results indicate that the ultimate tensile strength of the joints is 72% of that of the base metal. The base metal consists of a typical rolled structure, and the fusion zone (FZ) is mainly made up of dendrite grains. A characteristic equiaxed zone (EQZ) is obtained at the fusion boundary between the base metal and fusion zone. Fine dispersion of coherent Al 3 Er precipitates was found in the base metal, however, the quantity of these particles dropped significantly in the fusion zone. The hardness test results indicate that the microhardness in the fusion zone is lower than that of the base metal, due to the as-cast structure in this region. Based on the present work, it is concluded that TIG welding is the suitable welding procedure for joining this new type Er-containing aluminum alloy.

  6. Non radiative decay of Mn2+ emission in LnMB5O10:Bi,Mn (M = Mg,Cd,Zn)

    International Nuclear Information System (INIS)

    Jagannathan, R.; Rao, R.P.; Kutty, T.R.N.

    1990-01-01

    The family of lanthanide magnesium pentaborates with Tb(3+) and Eu(3+) as activators are efficient phosphor materials, Mn(2+) emission in these hosts in a subject of intensive investigation owing to its inexpensiveness. The energy transfer process from various sensitizers such as Bi(3+), Ce(3+), and Sb(3+) to Mn(2+) in these hosts have been studied in detail. The non radiative decay of Mn 2+ emission in these hosts is detailed in this paper

  7. Grain refining effect of magnetic field on Mg2Ni0.8Mn0.2 hydrogen storage alloys during rapid quenching

    International Nuclear Information System (INIS)

    Jiang, Chenxi; Wang, Haiyan; Chen, Xiangrong; Tang, Yougen; Lu, Zhouguang; Wang, Yazhi; Liu, Zuming

    2013-01-01

    The effect of static magnetic field treatment for synthesis of Mg 2 Ni 0.8 Mn 0.2 alloys during rapid quenching was investigated in this paper. X-ray diffraction (XRD) and scanning electron microscope (SEM) results show that the transversal static magnetic field can effectively refine the grain size, producing nanocrystalline inside. This distinct phenomenon is probably attributed to the Lorentz force suppressing the crystallization of the hydrogen storage alloys and the thermoelectric effect. Mainly due to the grain refinement, the discharge capacity of Mg 2 Ni 0.8 Mn 0.2 alloy is raised from 79 to about 200 mA h g −1 . It is confirmed that Mg 2 Ni 0.8 Mn 0.2 alloy by magnetic field assisted approach possesses enhanced electrochemical kinetics and relatively high corrosion resistance against the alkaline solution, thus resulting in higher electrochemical properties

  8. Simplified sample treatment for the determination of total concentrations and chemical fractionation forms of Ca, Fe, Mg and Mn in soluble coffees.

    Science.gov (United States)

    Pohl, Pawel; Stelmach, Ewelina; Szymczycha-Madeja, Anna

    2014-11-15

    A simpler, and faster than wet digestion, sample treatment was proposed prior to determination of total concentrations for selected macro- (Ca, Mg) and microelements (Fe, Mn) in soluble coffees by flame atomic absorption spectrometry. Samples were dissolved in water and acidified with HNO3. Precision was in the range 1-4% and accuracy was better than 2.5%. The method was used in analysis of 18 soluble coffees available on the Polish market. Chemical fractionation patterns for Ca, Fe, Mg and Mn in soluble coffees, as consumed, using a two-column solid-phase extraction method, determined Ca, Mg and Mn were present predominantly as cations (80-93% of total content). This suggests these elements are likely to be highly bioaccessible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The effect of MgO doping on the structure, magnetic and magnetotransport properties of La0.8Sr0.2MnO3 composite

    International Nuclear Information System (INIS)

    Aezami, A.; Eshraghi, M.; Kameli, P.; Salamati, H.

    2007-01-01

    Full text: The recent observation of anomalously Colossal Magnetoresistance (CMR) in the La 1-x A x MnO 3 (A = Sr, Ca, Ba or vacancies) system, has spurred renewed interest in studying these doped perovskite manganites. The properties of these materials are explained by double exchange theory of Zener and electron lattice interaction. However, the intrinsic CMR effect in the perovskite manganites is found on a magnetic field scale of several teslas and a narrow temperature range. It was found that, the presence of grain boundaries in polycrystalline samples leads to a large Low Field Magnetoresistance (LFMR) effect over a wide temperature range below the Curie temperature Tc. To achieve LFMR, different properties are considered. One of them is mixing of these CMR materials with secondary insulator phases. In this work, La 0.8 Sr 0.2 MnO 3 (LSMO) was selected as matrix material and MgO as a dopant. The La 0.8 Sr 0.2 MnO 3/x MgO samples with x= 0, 1, 2, 3, 5 and 7.5 Wt.% were prepared by Solid State Reaction method. Studies show that most part of the MgO goes into the perovskite lattice and Mg substituted Mn in LSMO and remainder segregates as a separate phase at the grain boundaries. Results also show that the value of MR decreases for all the doping levels. It seems that, due to the almost same ionic radii of Mg2+ and Mn2+, and at the higher sintering temperature, Mg2+ mostly replaced Mn3+ and weakens double exchange interaction. This speculation has been confirmed by XRD, SEM, susceptibility, resistivity and magnetoresistance analysis and measurements. (authors)

  10. Contraction Twinning Dominated Tensile Deformation and Subsequent Fracture in Extruded Mg-1Mn (Wt Pct) at Ambient Temperature

    Science.gov (United States)

    Chakkedath, A.; Maiti, T.; Bohlen, J.; Yi, S.; Letzig, D.; Eisenlohr, P.; Boehlert, C. J.

    2018-03-01

    Due to their excellent strength-to-weight ratio, Mg alloys are attractive for applications where weight savings are critical. However, the limited cold formability of wrought Mg alloys severely restricts their widespread usage. In order to study the role that deformation twinning might play in limiting the elongation-to-failure ({ɛ} f ), in-situ tensile tests along the extrusion axis of Mg-1Mn (wt pct) were performed at 323 K, 423 K, and 523 K. The alloy exhibited a strong basal texture such that most of the grains experienced compression along their -axis during deformation. At 323 K, fracture occurred at about 10 pct strain. Although basal, prismatic, and pyramidal slip activity was observed along with extension twinning, contraction twinning significantly influenced the deformation, and such twins evolved into {10{\\bar{1}} 1}-{10{\\bar{1}} 2} double twins. Crystal plasticity simulation showed localized shear deformation within the contraction twins and double twins due to the enhanced activity of basal slip in the reoriented twin volume. Due to this, the twin-matrix interface was identified to be a potential crack initiation site. Thus, contraction twins were considered to have led to the failure of the material at a relatively low strain, suggesting that this deformation mode is detrimental to the cold formability of Mg and its alloys. With increasing temperature, there was a significant decrease in the activity of contraction twinning as well as extension twinning, along with a decrease in the tensile strength and an increase in the {ɛ} f value. A combination of basal, prismatic, and pyramidal slips accounted for a large percentage of the observed deformation activity at 423 K and 523 K. The lack of contraction twinning was explained by the expected decrease in the critical resolved shear stress values for pyramidal slip, and the improved {ɛ} f values at elevated temperatures were attributed to the vanishing activity of contraction twinning.

  11. Contraction Twinning Dominated Tensile Deformation and Subsequent Fracture in Extruded Mg-1Mn (Wt Pct) at Ambient Temperature

    Science.gov (United States)

    Chakkedath, A.; Maiti, T.; Bohlen, J.; Yi, S.; Letzig, D.; Eisenlohr, P.; Boehlert, C. J.

    2018-06-01

    Due to their excellent strength-to-weight ratio, Mg alloys are attractive for applications where weight savings are critical. However, the limited cold formability of wrought Mg alloys severely restricts their widespread usage. In order to study the role that deformation twinning might play in limiting the elongation-to-failure ({ɛ} _{ {f}}), in-situ tensile tests along the extrusion axis of Mg-1Mn (wt pct) were performed at 323 K, 423 K, and 523 K. The alloy exhibited a strong basal texture such that most of the grains experienced compression along their -axis during deformation. At 323 K, fracture occurred at about 10 pct strain. Although basal, prismatic, and pyramidal slip activity was observed along with extension twinning, contraction twinning significantly influenced the deformation, and such twins evolved into {10{\\bar{1}}1}-{10{\\bar{1}}2} double twins. Crystal plasticity simulation showed localized shear deformation within the contraction twins and double twins due to the enhanced activity of basal slip in the reoriented twin volume. Due to this, the twin-matrix interface was identified to be a potential crack initiation site. Thus, contraction twins were considered to have led to the failure of the material at a relatively low strain, suggesting that this deformation mode is detrimental to the cold formability of Mg and its alloys. With increasing temperature, there was a significant decrease in the activity of contraction twinning as well as extension twinning, along with a decrease in the tensile strength and an increase in the {ɛ} _{ {f}} value. A combination of basal, prismatic, and pyramidal slips accounted for a large percentage of the observed deformation activity at 423 K and 523 K. The lack of contraction twinning was explained by the expected decrease in the critical resolved shear stress values for pyramidal slip, and the improved {ɛ} _{ {f}} values at elevated temperatures were attributed to the vanishing activity of contraction twinning.

  12. Synergetic effects of Sc and Zr microalloying and heat treatment on mechanical properties and exfoliation corrosion behavior of Al-Mg-Mn alloys

    International Nuclear Information System (INIS)

    Peng, Yongyi; Li, Shu; Deng, Ying; Zhou, Hua; Xu, Guofu; Yin, Zhimin

    2016-01-01

    Mechanical properties, exfoliation corrosion behavior and microstructure of Al-5.98Mg-0.47Mn and Al-6.01Mg-0.45Mn-0.25Sc-0.10Zr (wt%) alloy sheets under various homogenizing and annealing processes were investigated comparatively by tensile tests, electrochemical measurements, X-ray diffraction technique and microscopy methods. The as-cast alloys mainly consist of Fe and Mn enriched impurity phases, Mg and Mn enriched non-equilibrium aluminides and Mg 3 Al 2 phases. During homogenization treatment, solvable intermetallics firstly precipitate and then dissolve into matrix. The optimized homogenization processes for removing micro-segregation and obtaining maximum precipitation strengthening of secondary Al 3 (Sc, Zr) particles are 440 °C×8 h and 300 °C×8 h, respectively. Sc and Zr additions can make the yield strength of Al-Mg-Mn alloy increase by 21 MPa (6.9%), 120 MPa (61.2%) and 127 MPa (68.3%), when annealed at 270 °C, 300 °C and 330 °C, respectively, indicating that Orowan precipitation strengthening caused by secondary Al 3 (Sc, Zr) nano-particles is much greater than grain boundary strengthening from primary Al 3 (Sc, Zr) micro-particles. Increasing homogenization and annealing degrees and adding Sc and Zr all can decrease corrosion current density and improve exfoliation corrosion resistance. The exfoliation corrosion behavior is dominant by anodic dissolution occurring at the interface between intermetallics and α(Al) matrix. After homogenizing at 440 °C for 8 h and annealing at 300 °C for 1 h, yield strength, ultimate strength, elongation to failure and exfoliation corrosion rank are 196 MPa, 360 MPa, 20.2% and PA (slight pitting corrosion) in Al-Mg-Mn alloy, and reach to 316 MPa, 440 MPa, 17.0% and PA in Al-Mg-Mn-Sc-Zr alloy, respectively, revealing that high strength, high ductility and admirable corrosion resistance of Al-Mg-Mn alloys can be achieved by the synergetic effects of Sc and Zr microalloying and heat treatment.

  13. Comparative kinetic studies of Mn2+-activated and fructose-1,6-P-modified Mg2+-activated pyruvate kinase from Concholepas concholepas.

    Science.gov (United States)

    Carvajal, N; González, R; Morán, A; Oyarce, A M

    1985-01-01

    Initial velocity and product inhibition studies of Mn2+-activated and FDP-modified Mg2+-activated pyruvate kinase from Concholepas concholepas, were performed. Evidence is presented to show that the Mn2+-enzyme catalyzes an ordered sequential mechanism, with ADP being the first substrate and pyruvate the last product. The results presented are consistent with a random combination of reactants with the FDP-modified Mg2+-activated enzyme and the formation of the dead-end complexes enzyme ADP-ATP and enzyme-PEP-ATP.

  14. Regularities in structure formation of magnesium-yttrium alloy of Mg-Y-Mn-Cd system in relation to temperature and hot working rate

    International Nuclear Information System (INIS)

    Ovechkin, B.I.; Miklina, N.V.; Blokhin, N.N.; Sorokin, A.F.

    1981-01-01

    Problems of the structure formation of magnesium-yttrium alloy of Mg-G-Mn-Cd system with 7.8 % G in a wide range of temperature-rate parameters of hot working are studied. On the basis of X-ray analysis results ascertained with metallographic and electron microscopic investigations, a diagram of structural states after hot working of Mg-G-Mn-Cd system alloy has been plotted. A change in grain size in relation to temperature-rate conditions of hot working

  15. Synergistic effects of composition and heat treatment on microstructure and properties of vacuum die cast Al-Si-Mg-Mn alloys

    Directory of Open Access Journals (Sweden)

    Jun-jie Xu

    2018-03-01

    Full Text Available The purpose of this study was to prepare high-quality Al-Si-Mg-Mn alloy with a good combination of strength and ductility employing the vacuum-assisted high-pressure die cast process. An orthogonal study of heat treatments was conducted to design an optimized T6 heat treatment process for both Al-10%Si-0.3%Mg-Mn and Al-11%Si-0.6%Mg-Mn alloys. The results demonstrate that no obvious blisters and warpage were observed in these two alloys with solid solution treatment. After the optimal T6 heat treatment of 530°C×3h + 165°C×6h, Al-11%Si-0.6%Mg-Mn alloy has better mechanical properties, of which tensile strength, yield strength and elongation reached 377.3 MPa, 307.8 MPa and 9%, respectively. The improvement of mechanical properties can be attributed to the high density of needle-like β″(Mg5Si6 precipitation after aging treatment and the fine and spherical eutectic Si particles uniformly distributed in the α-Al matrix.

  16. Hydrogen storage properties of LaMgNi3.6M0.4 (M = Ni, Co, Mn, Cu, Al) alloys

    International Nuclear Information System (INIS)

    Yang, Tai; Zhai, Tingting; Yuan, Zeming; Bu, Wengang; Xu, Sheng; Zhang, Yanghuan

    2014-01-01

    Highlights: • La–Mg–Ni system AB 2 -type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi 3.6 M 0.4 (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi 4 and the secondary phase LaNi 5 . However, the secondary phase of the Al substitution alloy changes into LaAlNi 4 . The lattice parameters and cell volumes of the LaMgNi 4 phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi 4 phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi 4 phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between hydriding and dehydriding

  17. Synthesis and photoluminescence of Eu3+ and Mn2+ doped double phosphates KMLa(PO4)2 (M = Zn, Mg)

    International Nuclear Information System (INIS)

    Pan Yuexiao; Zhang Qinyuan; Jiang Zhonghong

    2006-01-01

    Two compounds, KMgLa(PO 4 ) 2 and KZnLa(PO 4 ) 2 doped with Eu 3+ and Mn 2+ ions, have been synthesized by a conventional solid-state method at 850 deg. C. Structures of KMgLa(PO 4 ) 2 and KZnLa(PO 4 ) 2 have been investigated and confirmed by X-ray diffraction and photoluminescence spectra. The results indicate that the compounds have remained the monoclinic structure of LaPO 4 with space group of C s when (K + , Mg 2+ ) or (K + , Zn 2+ ) could substitute half of the La 3+ ions. Under an ultraviolet source, KMgLa(PO 4 ) 2 :Mn 2+ has shown a bright red phosphorescent color, while KZnLa(PO 4 ) 2 :Mn 2+ has shown an orange-red emission which is assigned to the electronic transition of 4 T 1 ( 4 G)- 6 A 1 ( 6 S) of Mn 2+ in strong crystal field

  18. Brain regional distributions of the minor and trace elements, Na, Mg, Cl, K, Mn, Zn, Rb and Br, in young and aged mice

    International Nuclear Information System (INIS)

    Amano, R.; Oishi, S.; Ishie, M.; Kimura, M.

    2001-01-01

    Brain regional cerebral concentrations of minor and trace elements, Na, Mg, Cl, K, Mn, Zn, Rb and Br were determined in young and aged mice, by instrumental neutron activation analysis for small amounts of regional (corpus striatum, cerebellum, cerebral cortex, hippocampus, midbrain, pons and medulla olfactory bulb) samples. Significant age-related differences were found for Mn concentration in all brain regions: The Mn concentration of the young brain was higher than those of aged brain, in addition, Zn was distributed heterogeneously, and highly concentrated in cerebral cortex and hippocampus regions in both young and aged mice. These results suggest that, in the aged brain, Mn is required less than in the young brain, on the other hand, Zn is required equally in both young and aged brains. (author)

  19. (Zn, Mg)2GeO4:Mn2+ submicrorods as promising green phosphors for field emission displays: hydrothermal synthesis and luminescence properties.

    Science.gov (United States)

    Shang, Mengmeng; Li, Guogang; Yang, Dongmei; Kang, Xiaojiao; Peng, Chong; Cheng, Ziyong; Lin, Jun

    2011-10-07

    (Zn(1-x-y)Mg(y))(2)GeO(4): xMn(2+) (y = 0-0.30; x = 0-0.035) phosphors with uniform submicrorod morphology were synthesized through a facile hydrothermal process. X-Ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL), and cathodoluminescence (CL) spectroscopy were utilized to characterize the samples. SEM and TEM images indicate that Zn(2)GeO(4):Mn(2+) samples consist of submicrorods with lengths around 1-2 μm and diameters around 200-250 nm, respectively. The possible formation mechanism for Zn(2)GeO(4) submicrorods has been presented. PL and CL spectroscopic characterizations show that pure Zn(2)GeO(4) sample shows a blue emission due to defects, while Zn(2)GeO(4):Mn(2+) phosphors exhibit a green emission corresponding to the characteristic transition of Mn(2+) ((4)T(1)→(6)A(1)) under the excitation of UV and low-voltage electron beam. Compared with Zn(2)GeO(4):Mn(2+) sample prepared by solid-state reaction, Zn(2)GeO(4):Mn(2+) phosphors obtained by hydrothermal process followed by high temperature annealing show better luminescence properties. In addition, codoping Mg(2+) ions into the lattice to substitute for Zn(2+) ions can enhance both the PL and CL intensity of Zn(2)GeO(4):Mn(2+) phosphors. Furthermore, Zn(2)GeO(4):Mn(2+) phosphors exhibit more saturated green emission than the commercial FEDs phosphor ZnO:Zn, and it is expected that these phosphors are promising for application in field-emission displays.

  20. Seasonal variation of major elements (Ca, Mg) and trace metals (Fe, Cu, Zn, Mn) and cultured mussel Perna viridis L. and seawater in the Dona Paula Bay, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Rivonker, C.U.; Parulekar, A.H.

    The major elements and trace metals were analysed from nussel tissue and the seawater taken from three depths (0, 5 and 9 meters) from the culture site. Range of variation in Ca, Mg, Fe, Cu, Zn and Mn were 226-399; 708-1329; 0.005-0.084; BDL-0...

  1. Effect of Drying Conditions on the Catalytic Performance, Structure, and Reaction Rates over the Fe-Co-Mn/MgO Catalyst for Production of Light Olefins

    Directory of Open Access Journals (Sweden)

    Majid Abdouss

    2018-01-01

    How to Cite: Abdouss, M., Arsalanfar, M., Mirzaei, N., Zamani, Y. (2018. Effect of Drying Conditions on the Catalytic Performance, Structure, and Reaction Rates over the Fe-Co-Mn/MgO Catalyst for Production of Light Olefins. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 97-112 (doi:10.9767/bcrec.13.1.1222.97-112

  2. Effect of Homogenization on Microstructure Characteristics, Corrosion and Biocompatibility of Mg-Zn-Mn-xCa Alloys

    Science.gov (United States)

    Li, Jingyuan; Lai, Huiying; Xu, Yuzhao

    2018-01-01

    The corrosion behaviors of Mg-2Zn-0.2Mn-xCa (denoted as MZM-xCa alloys) in homogenization state have been investigated by immersion test and electrochemical techniques in a simulated physiological condition. The microstructure features were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA), and the corrosion mechanism was illustrated using atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and confocal laser scanning microscopy (CLSM). The electrochemical and immersion test verify the MZM-0.38% Ca owns the best corrosion performance with the corrosion rate of 6.27 mm/year. Furthermore, the film layer of MZM-0.38% Ca is more compact and denser than that of others. This improvement could be associated with the combined effects of the suitable content of Zn/Ca dissolving into the α-Mg matrix and the modification of Ca-containing compounds by heat-treatment. However, the morphologies were transformed from uniform corrosion to localized pitting corrosion with Ca further addition. It could be explained that the excessive Ca addition can strengthen the nucleation driving force for the second phase formation, and the large volumes fraction of micro-galvanic present interface sites accelerate the nucleation driving force for corrosion propagation. In addition, in vitro biocompatibility tests also show the MZM-0.38% Ca was safe to bone mesenchymal stem cells (BMSCs) and was promising to be utilized as implant materials. PMID:29389894

  3. Effect of Homogenization on Microstructure Characteristics, Corrosion and Biocompatibility of Mg-Zn-Mn-xCa Alloys

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2018-02-01

    Full Text Available The corrosion behaviors of Mg-2Zn-0.2Mn-xCa (denoted as MZM-xCa alloys in homogenization state have been investigated by immersion test and electrochemical techniques in a simulated physiological condition. The microstructure features were characterized using scanning electron microscopy (SEM, X-ray diffraction (XRD, transmission electron microscopy (TEM and electron probe microanalysis (EPMA, and the corrosion mechanism was illustrated using atomic force microscope (AFM, X-ray photoelectron spectroscopy (XPS and confocal laser scanning microscopy (CLSM. The electrochemical and immersion test verify the MZM-0.38% Ca owns the best corrosion performance with the corrosion rate of 6.27 mm/year. Furthermore, the film layer of MZM-0.38% Ca is more compact and denser than that of others. This improvement could be associated with the combined effects of the suitable content of Zn/Ca dissolving into the α-Mg matrix and the modification of Ca-containing compounds by heat-treatment. However, the morphologies were transformed from uniform corrosion to localized pitting corrosion with Ca further addition. It could be explained that the excessive Ca addition can strengthen the nucleation driving force for the second phase formation, and the large volumes fraction of micro-galvanic present interface sites accelerate the nucleation driving force for corrosion propagation. In addition, in vitro biocompatibility tests also show the MZM-0.38% Ca was safe to bone mesenchymal stem cells (BMSCs and was promising to be utilized as implant materials.

  4. Radioactivity of β / γ and the Content of Ca, Fe, Mn, Mg, Na on the Spring of Ponorogo East Java Lime Area

    International Nuclear Information System (INIS)

    Sutjipto

    2002-01-01

    Radioactivity of β / γ and the content of Ca, Fe, Mn, Mg, Na on the source of Ponorogo East-Java lime area has been studied. This research was carried out to know radioactivity of β / γ and the content of Ca, Fe, Mn, Mg, Na on the spring of different three places were Ngebel-lake source, Ngembak source and Gonggang source. Samples taken, preparation and analysis based on the procedures of environmental radioactivity analysis and water sampling guidelines. The instrument used for the analysis radioactivity were low level β counter modified P3TM-BATAN Yogyakarta with detector GM and spectrometer γ with detector Ge(Li). Radioactivity of β (gross) from the source of different three places (β ≤ 1 Bq/L) are lower than the value of PPRI No. 20/1990. Radioactivity of γ comes from the natural radionuclides of Tl-208 and K-40 are lower than 1 Bq/L for the different of three places, respectively. The metals concentration of Ngebel-lake source were Ca ≤ 14.34 ppm; Fe ≤ 0.04 ppm; Mn ≤ 0.02 ppm; Mg ≤ 6.75 ppm; Na ≤ 14.63 ppm, Ngembak source were Ca ≤ 11.6 ppm; Fe ≤ 0.04 ppm; Mn ≤ 0.02 ppm; Mg ≤ 11.13 ppm; Na ≤ 16.75 ppm and Gonggang source were Ca ≤ 13.78 ppm; Fe ≤ 0.26 ppm; Mn ≤ 0.02 ppm; Mg ≤ 6.13 ppm; Na ≤ 15.00 ppm. The water of Ngebel-lake source, Ngembak source and Gonggang source can be classified as B category water based on radioactivity and the content of the metals concentration in its. (author)

  5. Metallic elements (Ca, Hg, Fe, K, Mg, Mn, Na, Zn) in the fruiting bodies of Boletus badius.

    Science.gov (United States)

    Kojta, Anna K; Falandysz, Jerzy

    2016-06-01

    The aim of this study was to investigate and compare the levels of eight metallic elements in the fruiting bodies of Bay Bolete (Boletus badius; current name Imleria badia) collected from ten sites in Poland to understand better the value of this popular mushroom as an organic food. Bay Bolete fruiting bodies were collected from the forest area near the towns and villages of Kętrzyn, Poniatowa, Bydgoszcz, Pelplin, Włocławek, Żuromin, Chełmno, Ełk and Wilków communities, as well as in the Augustów Primeval Forest. Elements such as Ca, Fe, K, Mg, Mn, Na and Zn were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-OES), and mercury by cold vapor atomic absorption spectrometry (CV-AAS). This made it possible to assess the nutritional value of the mushroom, as well as possible toxicological risks associated with its consumption. The results were subjected to statistical analysis (Kruskal-Wallis test, cluster analysis, principal component analysis). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Moment mapping of body-centered-cubic Fe{sub x}Mn{sub 1−x} alloy films on MgO(001)

    Energy Technology Data Exchange (ETDEWEB)

    Idzerda, Y. U., E-mail: idzerda@physics.montana.edu; Bhatkar, H. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Arenholz, E. [Advanced Light Source, Lawrence Berkeley National Laboratories, Berkeley, California 59717 (United States)

    2015-05-07

    The alloy composition and elemental magnetic moments of bcc single crystal films of compositionally graded Fe{sub x}Mn{sub 1−x} films (20 nm thick films with 0.8 ≤ x ≤ 0.9) grown on MgO(001) are spatially mapped using X-ray absorption spectroscopy and magnetic circular dichroism. Electron diffraction measurements on single composition samples confirmed that the structure of Fe{sub x}Mn{sub 1−x} films remained epitaxial and in the bcc phase from 0.65 ≤ x ≤ 1, but rotated 45° with respect to the MgO(001) surface net. This is beyond the bulk bcc stability limit of x = 0.88. The Fe moment is found to gradually reduce with increasing Mn content with a very abrupt decline at x = 0.85, a slightly higher composition than observed in the bulk. Surprisingly, the Mn exhibits a very small net moment (<0.1 μ{sub B}) at all compositions, suggesting a complex Mn spin structure.

  7. Photoluminescence properties of color-tunable SrMgAl10O17:Eu2+,Mn2+ phosphors for UV LEDs

    International Nuclear Information System (INIS)

    Ju Guifang; Hu Yihua; Chen Li; Wang Xiaojuan

    2012-01-01

    Aluminate phosphors SrMgAl 10 O 17 codoped with Eu 2+ and Mn 2+ ions were prepared by solid-state reaction. The phase structure and photoluminescence properties of the as-prepared phosphors were characterized by powder X-ray diffraction, photoluminescence excitation and emission spectra. Upon excitation of UV light, two broad emission bands centered at 470 and 515 nm were observed, and they were assigned to Eu 2+ and Mn 2+ emissions, respectively. The emission color of the phosphors can be tuned from blue to cyan and finally to green by adjusting the concentration ratios of Eu 2+ and Mn 2+ . Effective energy transfer occurs from Eu 2+ to Mn 2+ in the host due to the spectral overlap between the emission band of Eu 2+ and the excitation bands of Mn 2+ . The energy transfer mechanism was demonstrated to be electric dipole–quadrupole interaction. The energy transfer efficiency and critical distance were also calculated. The phosphors exhibit strong absorption in near UV spectral region and therefore they are potentially useful as UV-convertible phosphors for white LEDs. - Highlights: ► The strong absorption of phosphors matches well with the emission band of UV LED. ► The energy transfer from Eu 2+ to Mn 2+ in SrMgAl 10 O 17 was investigated in detail. ► The emission color can be tuned by adjusting the content of Eu 2+ and Mn 2+ . ► Two methods were employed to calculate the critical distance of energy transfer.

  8. Nanocrystalline spinel ferrite (MFe2O4, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route

    International Nuclear Information System (INIS)

    Phumying, Santi; Labuayai, Sarawuth; Swatsitang, Ekaphan; Amornkitbamrung, Vittaya; Maensiri, Santi

    2013-01-01

    Graphical abstract: This figure shows the specific magnetization curves of the as-prepared MFe 2 O 4 (M = Ni, Co, Mn, Mg, Zn) powders obtained from room temperature VSM measurement. These curves are typical for a soft magnetic material and indicate hysteresis ferromagnetism in the field ranges of ±500 Oe, ±1000 Oe, and ±2000 Oe for the CoFe 2 O 4 , MgFe 2 O 4 and MnFe 2 O 4 respectively, whereas the samples of NiFe 2 O 4 and ZnFe 2 O 4 show a superparamagnetic behavior. Highlights: ► Nanocrystalline MFe 2 O 4 powders were synthesized by a novel hydrothermal method. ► Metal acetylacetonates and aloe vera plant-extracted solution are used. ► This biosynthetic route is very simple and provides high-yield oxide nanomaterials. ► XRD and TEM results indicate that the prepared samples have only spinel structure. ► The maximum M s of 68.9 emu/g at 10 kOe were observed for the samples of MnFe 2 O 4 . - Abstract: Nanocrystalline spinel ferrite MFe 2 O 4 (M = Ni, Co, Mn, Mg, Zn) powders were synthesized by a novel hydrothermal method using Fe(acac) 3 , M(acac) 3 (M = Ni, Co, Mn, Mg, Zn) and aloe vera plant extracted solution. The X-ray diffraction and selected-area electron diffraction results indicate that the synthesized nanocrystalline have only spinel structure without the presence of other phase impurities. The crystal structure and morphology of the spinel ferrite powders, as revealed by TEM, show that the NiFe 2 O 4 and CoFe 2 O 4 samples contain nanoparticles, whereas the MnFe 2 O 4 and MgFe 2 O 4 samples consist of many nanoplatelets and nanoparticles. Interestingly, the ZnFe 2 O 4 sample contains plate-like structure of networked nanocrystalline particles. Room temperature magnetization results show a ferromagnetic behavior of the CoFe 2 O 4 , MnFe 2 O 4 and MgFe 2 O 4 samples, whereas the samples of NiFe 2 O 4 and ZnFe 2 O 4 exhibit a superparamagnetic behavior

  9. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2.

    Science.gov (United States)

    Maitra, Urmimala; House, Robert A; Somerville, James W; Tapia-Ruiz, Nuria; Lozano, Juan G; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A; Massel, Felix; Pickup, David M; Ramos, Silvia; Lu, Xingye; McNally, Daniel E; Chadwick, Alan V; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C; Roberts, Matthew R; Bruce, Peter G

    2018-03-01

    The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li + -O(2p)-Li + interactions). Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg 2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg 2+ remains in Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 , which stabilizes oxygen.

  10. The influence of some additives to the highly carbohydrate diet on the distribution of Al, Ca, Mg, Mn and Na in teeth enamel and bones of experimental animals

    International Nuclear Information System (INIS)

    Bakyrdzhiev, P.

    1985-01-01

    An instrument neutron activation analysis had been used for the investigation of diets with different salt and permanent basic composition. The diets with MgCl 2 and methylene blue additives were used. Three groups of animals Wistar, Hamster and S. Dawley with different genetic reactivity had been fed on adlibidum for 45 days. After killing the animals the teeth enamel, mandibula and tibia had been sampled and content of Al, Mg, Mn, Na and Cl 2 was determined by means of INAA. The samples were irradiated for 1 min in the rabbit system of the experimental reactor IRT-2000. Two measurements were carried out - after a cooling time of 1 min for the determination of Al, Ca, Cl 2 , Mg, and after 2 h cooling time - for Na and Mn. The precision of the analysis was between 4 and 12%

  11. Oxygen Storage Capacity and Oxygen Mobility of Co-Mn-Mg-Al Mixed Oxides and Their Relation in the VOC Oxidation Reaction

    Directory of Open Access Journals (Sweden)

    María Haidy Castaño

    2015-05-01

    Full Text Available Co-Mn-Mg-Al oxides were synthesized using auto-combustion and co-precipitation techniques. Constant ratios were maintained with (Co + Mn + Mg/Al equal to 3.0, (Co + Mn/Mg equal to 1.0 and Co/Mn equal to 0.5. The chemical and structural composition, redox properties, oxygen storage capacity and oxygen mobility were analyzed using X-ray fluorescence (XRF, X-ray diffraction (XRD, Raman spectroscopy, scanning electron microscopy (SEM, temperature-programmed reduction of hydrogen (H2-TPR, oxygen storage capacity (OSC, oxygen storage complete capacity (OSCC and isotopic exchange, respectively. The catalytic behavior of the oxides was evaluated in the total oxidation of a mixture of 250 ppm toluene and 250 ppm 2-propanol. The synthesis methodology affected the crystallite size, redox properties, OSC and oxide oxygen mobility, which determined the catalytic behavior. The co-precipitation method got the most active oxide in the oxidation of the volatile organic compound (VOC mixture because of the improved mobility of oxygen and ability to favor redox processes in the material structure.

  12. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd

    OpenAIRE

    Duguid, J.; Bloomfield, V.A.; Benevides, J.; Thomas Jr, G.J.

    1993-01-01

    Interactions of divalent metal cations (Mg2+, Ca2+, Ba2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) with DNA have been investigated by laser Raman spectroscopy. Both genomic calf-thymus DNA (> 23 kilobase pairs) and mononucleosomal fragments (160 base pairs) were employed as targets of metal interaction in solutions containing 5 weight-% DNA and metal:phosphate molar ratios of 0.6:1. Raman difference spectra reveal that transition metal cations (Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) ind...

  13. The magnetic Curie temperature and exchange coupling between cations in tetragonal spinel oxide Mn{sub 2.5}M{sub 0.5}O{sub 4} (M = Co, Ni, Mn, Cr, and Mg) films

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, K.; Cheng, C. W.; Chern, G. [Physics Department and SPIN Research Center, National Chung Cheng University, Chia-Yi, Taiwan, 621 (China)

    2012-04-01

    Mn{sub 3}O{sub 4} is a Jahn-Taller tetragonal ferrite that has a relatively low Curie temperature (T{sub c}) of {approx}43 K due to weak coupling between the canting spins. In this study, we fabricated a series of 100-nm-thick Mn{sub 2.5}M{sub 0.5}O{sub 4} (M = Co, Ni, Mn, Cr, and Mg) films via oxygen-plasma-assisted molecular beam epitaxy and measured the structural and magnetic properties of these films. These films show single phase quality, and the c-axis lattice parameter of pure Mn{sub 3}O{sub 4} is 0.944 nm, with a c/a ratio {approx}1.16, consistent with the bulk values. The replacement of Mn by M (M = Co, Ni, Cr, and Mg) changes the lattice parameters, and the c/a ratio varies between 1.16 and 1.06 depending upon the cation distribution of the films. The magnetic Curie temperatures of these films also vary in the range of 25-66 K in that Ni and Co enhance the T{sub c} whereas Mg reduces the T{sub c} (Cr shows no effect on the T{sub c}). These changes to the T{sub c} are related to both the element electronic state and the cation distributions in these compounds. As a non-collinear spin configuration can induce electrical polarization, the present study provides a systematic way to enhance the magnetic transition temperature in tetragonal spinel ferrites.

  14. Photoluminescence properties of whitlockite-type Ca{sub 9}MgK(PO{sub 4}){sub 7}:Eu{sup 2+},Mn{sup 2+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ning, E-mail: guoning@usst.edu.cn [Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093 (China); Li, Shuo; Chen, Jishen; Li, Jing; Zhao, Yuefeng; Wang, Lu; Jia, Chengzheng; Ouyang, Ruizhuo [Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093 (China); Lü, Wei [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2016-11-15

    Novel single-phased Eu{sup 2+}/Mn{sup 2+}-coactivated whitlockite-type Ca{sub 9}MgK(PO{sub 4}){sub 7} phosphors which can emit white light upon UV light excitation, are prepared by the solid-state method, and their luminescence properties are systematically investigated via a combination of X-ray powder diffraction and spectroscopy measurements. For Eu{sup 2+}–Mn{sup 2+} codoped samples, an efficient energy transfer process can takes place and its mechanism is a resonant type via a dipole-quadrupole interaction which can be elucidated by DexterГ—Віs theoretical model. Following the principle of energy transfer, myriad luminescence colors with a large gamut from blue to purplish red and across white zone in a line in the chromaticity diagram of the CIE can be obtained by simply adjusting the concentration ratio of Eu{sup 2+} to Mn{sup 2+}. Photoluminescence spectra reveal that the white color emission is originated from the combination of two emission bands of Eu{sup 2+} and Mn{sup 2+} ions. Additionally, their CIE chromaticity coordinates and correlated color temperatures (CCT) have been calculated and discussed in detail. The luminescence suggest that whitlockite-type phosphor, Ca{sub 9}MgK(PO{sub 4}){sub 7}, co-activated with europium and manganese, is a promising single-phased white-emitting candidate for use in ultraviolet-chip-based white LEDs.

  15. Hydrogen storage properties of LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tai [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhai, Tingting; Yuan, Zeming; Bu, Wengang [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Xu, Sheng [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhang, Yanghuan, E-mail: zhangyh59@sina.com [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China)

    2014-12-25

    Highlights: • La–Mg–Ni system AB{sub 2}-type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi{sub 4} and the secondary phase LaNi{sub 5}. However, the secondary phase of the Al substitution alloy changes into LaAlNi{sub 4}. The lattice parameters and cell volumes of the LaMgNi{sub 4} phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi{sub 4} phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi{sub 4} phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between

  16. The A1 to L10 transformation in FePt films with ternary alloying additions of Mg, V, Mn, and B

    International Nuclear Information System (INIS)

    Wang, B.; Barmak, K.; Klemmer, T. J.

    2011-01-01

    The impact of ternary additions of Mg, V, Mn, and B on the A1 [face centered cubic (fcc)] to L1 0 phase transformation has been studied. The films were cosputter deposited from elemental targets at room temperature and annealed after deposition. The films had Mg additions in the range ∼0-2.6 at.%, V additions in the range 0.7-12.2 at.%, Mn additions in the range 2.2-16.3 at.%, and B additions in the range 1.2-12.9 at.%. For all four ternary alloy systems, annealing resulted in the formation of no other phases than the L1 0 phase. Ternary additions of C than the binary FePt films with the same Pt content.

  17. Analysis of (Ba,Ca,Sr)3MgSi2O8:Eu2+, Mn2+ phosphors for application in solid state lighting

    International Nuclear Information System (INIS)

    Han, J.K.; Piqutte, A.; Hannah, M.E.; Hirata, G.A.; Talbot, J.B.; Mishra, K.C.; McKittrick, J.

    2014-01-01

    The luminescence properties of Eu 2+ and Mn 2+ co-activated (Ba,Ca,Sr) 3 MgSi 2 O 8 phosphors prepared by combustion synthesis were studied. Eu 2+ -activated (Ba,Ca,Sr) 3 MgSi 2 O 8 has a broad blue emission band centered at 450–485 nm and Eu 2+ –Mn 2+ -activated (Ba,Ca,Sr) 3 MgSi 2 O 8 exhibits a red emission around 620–703 nm, depending on the relative concentrations of Ba, Ca and Sr. The particle size of Eu 2+ and Mn 2+ co-activated (Ba,Ca) 3 MgSi 2 O 8 ranges from 300 nm to 1 μm depending on the metal ion and are agglomerated due to post-synthesis, high temperature annealing. The green emission of Ba 3 MgSi 2 O 8 originates from secondary phases (Ba 2 SiO 4 and BaMgSiO 4 ) confirmed by emission spectra and X-ray diffraction patterns. The secondary phases of Ba 3 MgSi 2 O 8 are removed by the addition of Sr. The quantum efficiencies range from 45% to 70% under 400 nm excitation and the lifetime of red emission of Ba 3 MgSi 2 O 8 decreases significantly with increasing temperature, which is 54% at 400 K of that at 80 K compared to that of blue emission (90% at 400 K of that at 80 K). -- highlights: • (Ba,Ca,Sr) 3 MgSi 2 O 8 :Eu 2+ , Mn 2+ phosphors were prepared by a combustion synthesis method. • The emission spectra consist of broad blue-emission band and red-emission band. • The quantum efficiencies range between 45% and 70%, depending on the relative concentrations of Ba, Ca and Sr. • The secondary phases were eliminated by additions of Sr. • Lifetime of the red-emission decreases with increasing temperature, suggesting that these phosphors are not useful for solid state lighting applications

  18. Attestation in self-propagating combustion approach of spinel AFe_2O_4 (A = Co, Mg and Mn) complexes bearing mixed oxidation states: Magnetostructural properties

    International Nuclear Information System (INIS)

    Bennet, J.; Tholkappiyan, R.; Vishista, K.; Jaya, N. Victor; Hamed, Fathalla

    2016-01-01

    Highlights: • Spinel type ferrite compounds AFe_2O_4 (A = Co, Mg and Mn) have been successfully prepared by self-propagating combustion method using glycine as fuel. • To investigate and confirms the presence of phases in the synthesized ferrite nanoparticles by XRD and FTIR analysis. • The formation of mixed oxidation state of cobalt (Co"2"+ and Co"3"+), iron (Fe"2"+ and Fe"3"+) and manganese (Mn"2"+ and Mn"3"+) ions were studied and confirmed from XPS analysis. • The magnetic properties of the synthesized ferrites were studied by VSM measurement. - Abstract: Spinel type nano-sized ferrite compounds AFe_2O_4 (A = Co, Mg and Mn) have been successfully prepared by self-propagating combustion method using glycine as fuel at 400 °C under air atmosphere for 4 h. The crystal structure, chemical composition, morphology and magnetic properties of the synthesized samples were characterized by X−ray diffraction, Fourier transform infrared spectroscopy, X−ray photoelectron spectroscopy, Energy dispersive X−ray, Scanning and Transmission electron microscopy and vibrating sample magnetometer. The chemical reaction and role of fuel on the nanoparticles formation were discussed. The XRD pattern of the synthesized samples shows the formation of pure phase with average crystallite size of 97, 57 and 98 nm from Scherrer formula and 86, 54 and 87 nm from Williamson and Hall (W–H) formula respectively. FTIR absorption spectra revealed that the presence of strong absorption peaks near 400–600 cm"−"1 corresponds to tetrahedral and octahedral complex of spinel ferrites. The relative concentrations of electronic states of elements such as cobalt (Co"2"+ and Co"3"+), iron (Fe"2"+ and Fe"3"+) and manganese (Mn"2"+ and Mn"3"+) oxidation states were studied from XPS and it is found that 55% of Fe ions are in Fe"2"+ state and the remaining is in Fe"3"+ state and thus the cationic distribution of Fe ions occurred in both tetrahedral and octahedral sites. SEM analysis

  19. Catalytic activity of bimetallic AuPd alloys supported MgO and MnO2 nanostructures and their role in selective aerobic oxidation of alcohols

    Directory of Open Access Journals (Sweden)

    Hamed Alshammari

    2017-10-01

    Full Text Available The use of metal oxides as supports for gold and palladium (Au-Pd nano alloys constitutes new horizons to improve catalysts materials for very important reactions. From the literatures, Pd-based bimetallic nanostructures have great properties and active catalytic performance. In this study, nanostructures of magnesium oxide (MgO and manganese dioxide (MnO₂ were synthesised and utilized as supports for Au-Pd nanoparticle catalysts. Gold and palladium were deposited on these supports using sol-immobilisation method. The MgO and MnO2 supported Au-Pd catalysts were evaluated for the oxidation of benzyl alcohol and 1-octanol, respectively. These catalysts were found to be more selective, active and reusable than the corresponding monometallic Au and Pd catalysts. The effect of base supports on the disproportionation reaction during the oxidation process was investigated. The results show that MgO stopped the disproportionation reaction for both aromatic and aliphatic alcohols while MnO₂ stopped it in the case of benzyl alcohol only. The outcomes of this work shed light on the selective aerobic oxidation of alcohols using bimetallic Au-Pd nanoalloys and pave the way to a complete investigation of more basic metal oxides for various aliphatic alcohols.

  20. Enhanced persistent red luminescence in Mn2+-doped (Mg,Zn)GeO3 by electron trap and conduction band engineering

    Science.gov (United States)

    Katayama, Yumiko; Kayumi, Tomohiro; Ueda, Jumpei; Tanabe, Setsuhisa

    2018-05-01

    The effect of Zn substitution on the persistent luminescence properties of MgGeO3:Mn2+-Ln3+ (Ln = Eu and Yb) red phosphors was investigated. The intensity of the persistent luminescence of the Eu3+ co-doped phosphors increased with increasing Zn content, whereas that of the Yb3+ co-doped samples decreased. For both series of lanthanide co-doped samples, the thermoluminescence (TL) glow peak shifted to the lower temperature side with increasing Zn content. These persistent luminescence properties were well explained in terms of lowering of the bottom of the conduction band relative to the ground state of the divalent lanthanide ions. Especially, in Eu3+ co-doped system, TL peak shifted from 520 K to 318 K by 50% Zn substitution. The persistent radiance of the (Mg0.5 Zn0.5)GeO3: Mn2+-Eu3+ sample at 1 h after ceasing UV light was 46 times stronger than that of MgGeO3:Mn2+-Eu3+, and 11 times stronger than that of ZnGa2O4: Cr3+ standard deep red persistent phosphor.

  1. The effect of age on Br, Ca, Cl, K, Mg, Mn, and Na mass fraction in pediatric and young adult prostate glands investigated by neutron activation analysis

    International Nuclear Information System (INIS)

    Zaichick, Vladimir; Zaichick, Sofia

    2013-01-01

    The effect of age on chemical element mass fractions in intact prostate of 50 apparently healthy 0–30 year old males was investigated by neutron activation analysis with high resolution spectrometry of short-lived radionuclides. Mean values (M±SΕΜ) for mass fraction (mg kg −1 , dry mass basis) of chemical elements before the time of puberty and in the period of puberty and post-puberty were: Br 46.0±6.7, Ca 1151±140, Cl 14572±700, K 10147±700, Mg 771±131, Mn 2.13±0.25, Na 9880±659 and Br 29.0±4.6, Ca 2049±364, Cl 11518±1121, K 13029±542, Mg 1186±134, Mn 1.74±0.16, Na 9887±716, respectively. A tendency of age-related increase in Ca, K, and Mg mass fraction and of age-related decrease in Br mass fraction was observed in period of life from 0 to 30 years. This new data indicates that of the elements studied, only the Ca, K, and Mg mass fraction in prostate tissue is an androgen-dependent parameter

  2. Temperature dependent luminescence and energy transfer properties of Na2SrMg(PO4)2:Eu2+, Mn2+ phosphors.

    Science.gov (United States)

    Geng, Dongling; Shang, Mengmeng; Zhang, Yang; Lian, Hongzhou; Lin, Jun

    2013-11-21

    Eu(2+) singly and Eu(2+)/Mn(2+) co-doped Na2SrMg(PO4)2 (NSMP) phosphors have been prepared via a high-temperature solid-state reaction process. Upon UV excitation of 260-360 nm, the NSMP:xEu(2+) phosphors exhibit a violet band located at 399 nm and a blue band centered at 445 nm, which originate from Eu(2+) ions occupying two different crystallographic sites: Eu(2+)(I) and Eu(2+)(II), respectively. Excitation wavelengths longer than 380 nm can selectively excite Eu(2+)(II) to emit blue light. Energy transfer processes in the Eu(2+)(I)-Eu(2+)(II) and Eu(2+)-Mn(2+) pairs have been observed and investigated by luminescence spectra and decay curves. The emission color of as-prepared samples can be tuned by changing the relative concentrations of Eu(2+) and Mn(2+) ions and adjusting the excitation wavelength. Under UV excitation of 323 nm, the absolute quantum yield of NSMP:0.005Eu(2+) is 91%, which is higher than most of the other Eu(2+)-doped phosphors reported previously. The temperature dependent luminescence properties and decay curves (4.3-450 K) of NSMP:Eu(2+) and NSMP:Eu(2+), Mn(2+) phosphors have been studied in detail. Thermal quenching of Eu(2+) has been observed while the emission band of Mn(2+) shows a blue-shift and an abnormal increase of intensity with increasing temperature. The unusual thermal quenching behavior indicates that the NSMP compound can serve as a good lattice host for Mn(2+) ions which can be used as a red-emitting phosphor. Additionally, the lifetimes for Eu(2+)(I) and Eu(2+)(II) increase with increasing temperatures.

  3. Evaluation of the levels of Br, Cl, K, Mg, Mn and V in Perna perna Mussels (Linnaeus, 1758: Mollusca, Bivalvia) collected in coast of Sao Paulo, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Daniele; Vasconcellos, Marina B.A.; Saiki, Mitiki; Catharino, Marilia G.M.; Moreira, Edson G., E-mail: danyseo@uol.com.br, E-mail: mbvascon@ipen.br, E-mail: mitiko@ipen.br, E-mail: mgcatharino@uol.com.br, E-mail: emoreira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Sousa, Eduinetty C.P.M. de, E-mail: edvinett@usp.br [Universidade de Sao Paulo (IO/USP), Sao Paulo, SP (Brazil). Instituto Oceanografico. Laboratorio de Ecotoxicologia Marinha e Microfitobentos

    2013-07-01

    In this study the content of Br, Cl, K, Mg, Mn and V was evaluated in samples of Perna perna mussels collected in coastal regions of Sao Paulo (Ponta de Itaipu and Palmas Island, in Santos) subjected to anthropogenic contamination, to compare these values with those of mussels from reference site of Cocanha Beach (in Caraguatatuba). The mussels were collected seasonally from September 2008 to July 2009. They were cleaned, ground, homogenized, lyophilized and then analyzed by Instrumental Neutron Activation Analysis (INAA). The INAA procedure consisted in the irradiation of the samples and synthetic elemental standards for 8 and 10 s, under a thermal neutron flux of 6.6 x 10{sup 12} n cm{sup -2} s{sup -1} in the IEA-R1 nuclear research reactor. For quality control of analytical results, certified reference materials NIST 1566b Oyster Tissue and NIST 2876 Mussel Tissue were analyzed and their results indicated good accuracy. The ranges of concentrations (dry basis) of the elements obtained in mussels collected for the four seasons of the year were: 173.80 to 358.99 mg kg{sup -1} for Br; 45658 ± 1811 to 109166 ± 824 mg kg{sup -1} for Cl; 7043 ± 856 to 12506 ± 675 mg kg{sup -1} for K; 2774 ± 211 to 5691 ± 717 mg kg{sup -1} for Mg; 7.01 ± 0.30 to 29.74 ± 3.32 mg kg{sup -1} for Mn and 0.77 ± 0.02 to 3.43 ± 0.28 mg kg{sup -1} for V. The seasonal and spatial variations of these element concentrations were in this study. (author)

  4. Seasonal Trends and Inter-Individual Heterogeneity: A multi-species record of Mg, Sr, Ba, & Mn in Planktic Foraminifera from the Modern Cariaco Basin

    Science.gov (United States)

    Davis, C. V.; Thunell, R.; Astor, Y. M.

    2017-12-01

    The trace element to calcium ratios (TE/Ca) of planktic foraminifera shells are a valuable tool for paleoceanographic reconstructions, and represent a combination of environmental, ecological and biological signals. We present here a three-year record (2010-2013) of TE/Ca (Mg, Sr, Ba, Mn) from four species of foraminifera (Orbulina universa, Globigerina ruber, Globigerinella siphonifera, and Globorotalia menardii) collected by plankton tow in the modern Cariaco basin. Each tow is paired with in situ measurements of water column properties, allowing a direct comparison between shell geochemistry and calcification environment. A combination of Laser Ablation and solution ICP-MS analyses are used to document seasonality, primarily due to the alternating influence of wind-driven coastal upwelling and riverine inputs, in shell TE/Ca. Individual shell data further allows for the quantification of trace element heterogeneity among individual shells within single tows. All TE/Ca ratios vary temporally and show inter-individual variability within single tows. The spread in TE/Ca differs between element and species, with Mg/Ca ratios being the most variable. Despite this, Mg/Ca still tracks temperature changes in G. ruber, O. universa, and G. menardii, with G. ruber most closely reproducing sea surface temperature. Some species show chamber-to-chamber differences in trace element ratios, with G. ruber Mg/Ca and Ba/Ca decreasing in younger chambers (but not other elements) and Mg/Ca, Mn/Ca and Ba/Ca decreasing in younger chambers in G. siphonifera. We find the original Mn/Ca to be variable both temporally and between species, with G. menardii in some samples having extremely high ratios (100 μmol/mol). Assessing seasonal trends and environmental drivers of TE/Ca variability and quantifying the extent of inter-individual heterogeneity in these species will inform the use of their shells as geochemical proxies.

  5. Magnetic and transport properties of Cu1.05Cr0.89 Mg0.05O2 and Cu0.96Cr0.95 Mg0.05Mn0.04O2 films

    International Nuclear Information System (INIS)

    Xu Qingyu; Schmidt, Heidemarie; Zhou Shengqiang; Potzger, Kay; Helm, Manfred; Hochmuth, Holger; Lorenz, Michael; Meinecke, Christoph; Grundmann, Marius

    2008-01-01

    We prepared conductive, polycrystalline or amorphous Cu 1.05 Cr 0.89 Mg 0.05 O 2 films on a-plane sapphire substrates by pulsed laser deposition under different O 2 partial pressure and substrate temperature. Hall measurements were performed to study the majority carrier type in these films. Polycrystalline Cu 1.05 Cr 0.89 Mg 0.05 O 2 is n-type conducting at 290 K, while in amorphous Cu 1.05 Cr 0.89 Mg 0.05 O 2 the type of majority charge carriers changes from electrons to holes at around 270 K. Interestingly, the structure has little influence on the magnetic properties of the films. A clear antiferromagnetic to paramagnetic transition was observed in both polycrystalline and amorphous Cu 1.05 Cr 0.89 Mg 0.05 O 2 films at 25 K. Similar electrical properties to Cu 1.05 Cr 0.89 Mg 0.05 O 2 film were observed for Cu 0.96 Cr 0.95 Mg 0.05 Mn 0.04 O 2 in dependence on the structure, while only paramagnetic without antiferromagnetic ordering was observed down to 5 K. Large negative magnetoresistance of 27% at 20 K was observed at 6 T in amorphous Cu 1.05 Cr 0.89 Mg 0.05 O 2 film

  6. Influence of Pr in the microstructure and electrical properties in LaPrMgAlMnCoNi based alloys for using for Ni-MH batteries

    International Nuclear Information System (INIS)

    Galdino, Gabriel Souza

    2011-01-01

    The La 0.7-x Pr x Mg 0.3 Al 0.3 Mn- 0.4 Co 0.5 Ni 3.8 (x= 0 a 0.7) as-cast alloys to apply in negative electrodes for nickel-metal hydride batteries (Ni-MH). The characterizations of the alloys were realized by: scanning electron microscope (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction techniques. A study of hydrogen absorption capacity of the alloys realized. The hydrogenation of the material was performed in two processes: the low pressure (0.2 MPa of hydrogen and temperature of the 773 K) and high pressure (1 MPa of hydrogen and temperature of the 298 K). It was observed that with increasing Pr content occurred a decrease the hydrogen absorption capacity. The capacity of discharge of the batteries was determined utilizing an analyzer digital computerized composed of four channels. It was observed decreases of the discharge capacity of the batteries when increase praseodymium content in La 0.7- x Pr x Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni-3 .8 (x= 0 a 0.3) alloys. The highest discharge capacity (386 mAhg -1 ) and stability cyclic were obtained to La 0.2 Pr 0.5 Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy. This capacity can be related to the higher proportion of phase LaMg 2 Ni 9 in the alloy with the addition of 0.5 at.% Pr. (author)

  7. Characterization of natural microporous metal-oxides: the case of todorokite ([Mn2+,Ca,Mg]Mn4+3O7.H2O)

    International Nuclear Information System (INIS)

    Godelitsas, A.; Misaelides, P; Katranas, T.; Klewe-Nebenius, H.; Triantafyllidis, C.; Pavlidou, E.; Anousis, I.

    1998-01-01

    Todorokite is a naturally occurring hydrous Mn-oxide exhibiting a complicated chemical composition. It shows a referred unusual crystal structure characterized by the presence of micropores (tunnels) with a free aperture of 0.69 x 0.69 nm and therefore exceptional physicochemical properties. In order to define the compositional and structural characteristics of the mineral and especially its physicochemical properties. For this purpose a number of characterization techniques were used including XRD, SEM-EDS, XRF, AAS, FT-IR, XPS, TPD, Z-potential measurements and TG/TDA combined with micro-porosimetry. The obtained results were compared to relevant ones concerning other natural microporous materials (e.g. clays, zeolites, micas) and were used to predict potential applications of the material.(author)

  8. Neutron activation analysis of Ca, Cl, K, Mg, Mn, Na, P, and Sr contents in the crowns of human permanent teeth

    International Nuclear Information System (INIS)

    Zaichick, V.

    2009-01-01

    The effect of age and gender on chemical element contents in intact crowns of permanent teeth of 84 apparently healthy 15-55 year old women (n 38) and men (n = 46) was investigated. Mass fractions of Ca, Cl, K, Mg, Mn, Na, P, and Sr in crowns were determined by instrumental neutron activation analysis using short-lived radionuclides. Mean values (M ± SEL) for female and male combined were (on dry weight basis): 350 ± 5 g/kg, 2920± 150 mg/kg, 839 ± 80 mg/kg, 4880 ± 240 mg/kg, 3.20 ± 0.30 mg/kg, 6240 ± 140 mg/kg, 181 ± 4 g/kg, and 293 ± 24 mg/kg respectively. A statistically significant decrease of Sr (P ≤ 0.01) and increase of Na (P ≤ 0.01) content in the tooth crowns with age was found for women. Sex-related comparison did not show any differences. (author)

  9. Fabrication of fully epitaxial magnetic tunnel junctions with a Co2MnSi thin film and a MgO tunnel barrier

    International Nuclear Information System (INIS)

    Kijima, H.; Ishikawa, T.; Marukame, T.; Matsuda, K.-I.; Uemura, T.; Yamamoto, M.

    2007-01-01

    Fully epitaxial magnetic tunnel junctions (MTJs) were fabricated with a Co-based full-Heusler alloy Co 2 MnSi (CMS) thin film having the ordered L2 1 structure as a lower electrode, a MgO tunnel barrier, and a Co 50 Fe 50 upper electrode. Reflection high-energy electron diffraction patterns observed in situ for each layer in the MTJ layer structure during fabrication clearly indicated that all layers of the CMS lower electrode, MgO tunnel barrier, and Co 50 Fe 50 upper electrode grew epitaxially. The microfabricated fully epitaxial CMS/MgO/Co 50 Fe 50 MTJs demonstrated relatively high tunnel magnetoresistance ratios of 90% at room temperature and 192% at 4.2 K

  10. Microstructure and mechanical properties of Mg-Al-Mn-Ca alloy sheet produced by twin roll casting and sequential warm rolling

    International Nuclear Information System (INIS)

    Wang Yinong; Kang, Suk Bong; Cho, Jaehyung

    2011-01-01

    Research highlights: → This work, taking AM30 + 0.2Ca alloy as experimental material, will provide some new information as follows: one is microstructural difference between twin roll cast and ingot cast AM31-0.2Ca alloy. The other is the comparison of tensile properties after warm rolling and annealing. Suggesting the possibility of the development of wrought magnesium alloy sheets by strip casting. - Abstract: Microstructural evolution and mechanical properties of twin roll cast (TRC) Mg-3.3 wt.%Al-0.8 wt.%Mn-0.2 wt.%Ca (AM31 + 0.2Ca) alloy strip during warm rolling and subsequent annealing were investigated in this paper. The as-TRC alloy strip shows columnar dendrites in surface and equiaxed dendrites in center regions, as well as finely dispersed primary Al 8 Mn 5 particles on interdendritic boundaries which result in the beneficial effect on microstructural refinement of strip casting. The warm rolled sheets show intensively deformed band or shear band structures, as well as finely and homogeneously dispersed Al-Mn particles. No evident dynamic recrystallization (DRX) takes place during warm rolling process, which is more likely attributed to the finely dispersed particle and high solid solution of Al and Mn atoms in α-Mg matrix. After annealing at 350 deg. C for 1 h, the warm rolled TRC sheets show fine equiaxed grains around 7.8 μm in average size. It has been shown that the present TRC alloy sheet has superior tensile strength and comparative elongation compared to commercial ingot cast (IC) one, suggesting the possibility of the development of wrought magnesium alloy sheets by twin roll strip casting processing. The microstructural evolution during warm rolling and subsequent annealing as well as the resulting tensile properties were analyzed and discussed.

  11. [Experimental study on aging effect of Angelica sinensis polysaccharides combined with cytarabine on human leukemia KG1alpha cell lines].

    Science.gov (United States)

    Xu, Chun-Yan; Geng, Shan; Liu, Jun; Zhu, Jia-Hong; Zhang, Xian-Ping; Jiang, Rong; Wang, Ya-Ping

    2014-04-01

    The latest findings of our laboratory showed that Angelica sinensis polysaccharide (ASP) showed a definite effect in regulating the aging of hematopoietic stem cells. Leukemia is a type of malignant hematopoietic tumor in hematopoietic stem cells. There have been no relevant reports about ASP's effect in regulating the aging of leukemia cells. In this study, human acute myeloid leukemia (AML) KG1alpha cell lines in logarithmic growth phase were taken as the study object, and were divided into the ASP group, the cytarabine (Ara-C) group, the ASP + Ara-C group and the control group. The groups were respectively treated with different concentration of ASP, Ara-C and ASP + Ara-C for different periods, with the aim to study the effect of ASP combined with Ara-C in regulating the aging of human acute myeloid leukemia KG1alpha cell lines and its relevant mechanism. The results showed that ASP, Ara-C and ASP + Ara-C could obviously inhibit KG1alpha cell proliferation in vitro, block the cells in G0/G1 phase. The cells showed the aging morphological feature. The percentage of positive stained aging cells was dramatically increased, and could significantly up-regulate the expression of aging-related proteins P16 and RB, which were more obvious in the ASP + Ara-C group. In conclusion, the aging mechanism of KG1alpha cell induced by ASP and Ara-C may be related to the regulation of the expression of aging-related proteins, suggesting that the combined administration of ASP and anticancer drugs plays a better role in the treatment of leukemia .

  12. Electrochemical hydrogen storage behaviour of as-cast and as-spun RE-Mg-Ni-Mn-based alloys applied to Ni-MH battery

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanghuan; Hou, Zhonghui; Hu, Feng [Inner Mongolia University of Science and Technology, Baotou (China). Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources; Central Iron and Steel Research Institute, Beijing (China). Dept. of Functional Material Research; Cai, Ying [Inner Mongolia University of Science and Technology, Baotou (China). Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources; Qi, Yan; Zhao, Dongliang [Central Iron and Steel Research Institute, Beijing (China). Dept. of Functional Material Research

    2016-09-15

    La-Mg-Ni-Mn-based AB{sub 2}-type La{sub 1-x}Ce{sub x}MgNi{sub 3.5}Mn{sub 0.5} (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt spinning. X-ray diffraction and scanning electron microscopy revealed that the experimental alloys consisted of a major phase LaMgNi{sub 4} and a secondary phase LaNi{sub 5}. The Ce substitution for La and melt spinning refined the grains of the alloys clearly. Electrochemical tests showed that the as-cast and as-spun alloys exhibited excellent activation capability. With the increase in the spinning rate and Ce content, the discharge capacities of the alloys initially increased and then decreased, whereas their cycle stabilities always increased. Moreover, the electrochemical kinetics of the alloys initially increased and then decreased with the growth of Ce content and spinning rate. The major reason leading to the capacity degradation of the alloy electrodes was determined to be the pulverisation of the alloy particles and the corrosion and oxidation of the alloy surface.

  13. ⁵³Mn-⁵³Cr and ²⁶Al-²⁶Mg ages of a feldspathic lithology in polymict ureilites

    Energy Technology Data Exchange (ETDEWEB)

    Goodrich, Cyrena Anne [Planetary Science Institute. Tucson, AZ (United States); Hutcheon, Ian D. [Glenn T. Seaborg Institute. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kita, Noriko T. [Dept. of Geoscience. Univ. of Wisconsin, Madison, WI (United States); Huss, Gary R. [NASA Marshall Space Flight Center (MSFC), Huntsville, AL (United States); Cohen, Barbara Anne [Hawaii Institute of Geophysics and Planetology. Univ. of Hawaii, Honolulu, HI (United States); Keil, Klaus

    2010-07-01

    We report 53Mn–53Cr and 26Al–26Mg isotopic data, obtained by in-situ SIMS analysis, for feldspathic clasts in polymict ureilites DaG 319 and DaG 165. The analyzed clasts belong to the “albitic lithology,” the most abundant population of indigenous feldspathic materials in polymict ureilites, and are highly fractionated igneous assemblages of albitic plagioclase, Fe-rich pyroxenes, phosphates, ilmenite, silica, and Fe(Mn, K, P, Ti)-enriched glass. Glass in DaG 165 clast 19 has extremely high and variable 55Mn/52Cr ratios (500–58,000) and shows correlated 53Cr excesses up to ~ 1500‰, clearly indicating the presence of live 53Mn at the time of formation. The slope of the well-correlated isochron defined by glass and pyroxenes from this clast corresponds to (53Mn/55Mn) = (2.84 ± 0.10) × 10-6 (2σ). Data for less 55Mn/52Cr-enriched glasses from DaG 319 clast B1, as well as phosphates from several other clasts, are consistent with this isochron. The 53Mn/55Mn ratio obtained from the isochron implies that these clasts are 0.70 ± 0.18 Ma younger than the D'Orbigny angrite, corresponding to the absolute age of 4563.72 ± 0.22 Ma. Plagioclase in DaG 319 clast B1 has a fairly constant 27Al/24Mg ratio of ~ 900 and shows resolvable 26Mg excesses of ~ 2‰. The slope of the isochron defined by pyroxene and plagioclase in this clast is (3.0 ± 1.1) × 10-7 (2σ), corresponding to a time difference of 5.4 (-0.3/+0.5) Ma after CAI (assuming the canonical initial 26Al/27Al ratio of 5 × 10-5) and an age 0.5 (-0.3/+0.5) Ma younger than D'Orbigny. Its absolute age (relative to D'Orbigny) is 4563.9 (+ 0.4/-0.5) Ma, in agreement with the 53Mn–53Cr age from clast 19. These data provide the first

  14. Interference-free determination of sub ng kg-1 levels of long-lived 93Zr in the presence of high concentrations (μg kg-1) of 93Mo and 93Nb using ICP-MS/MS.

    Science.gov (United States)

    Petrov, Panayot; Russell, Ben; Douglas, David N; Goenaga-Infante, Heidi

    2018-01-01

    Long-lived high abundance radionuclides are of increasing interest with regard to decommissioning of nuclear sites and longer term nuclear waste storage and disposal. In many cases, no routine technique is available for their measurement in nuclear waste and low-level (ng kg -1 ) environmental samples. Recent advances in ICP-MS technology offer attractive features for the selective and sensitive determination of a wide range of long-lived radionuclides. In this work, inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS)-based methodology, suitable for accurate routine determinations of 93 Zr at very low (ng kg -1 ) levels in the presence of high levels (μg kg -1 ) of the isobaric interferents 93 Nb and 93 Mo (often present in nuclear waste samples), is reported for the first time. Additionally, a novel and systematic strategy for method development based on the use of non-radioactive isotopes is proposed. It relies on gas-phase chemical reactions for different molecular ion formation to achieve isobaric interference removal. Using cell gas mixtures of NH 3 /He/H 2 or H 2 /O 2 , and suitable mass shifts, the signal from the 93 Nb and 93 Mo isobaric interferences on 93 Zr were suppressed by up to 5 orders of magnitude. The achieved limit of detection for 93 Zr was 1.3 × 10 -5  Bq g -1 (equivalent to 0.14 ng kg -1 ). The sample analysis time is 2 min, which represents a significant improvement in terms of sample throughput, compared to liquid scintillation counting methods. The method described here can be used for routine measurements of 93 Zr at environmentally relevant levels. It can also be combined with radiometric techniques for use towards the standardisation of 93 Zr measurements. Graphical abstract Interference-free determination of 93 Zr in the presence of high concentrations of isobaric 93 Mo and 93 Nb by ICP-MS/MS.

  15. Synthesis and structural studies of Mg doped LiNi0.5Mn0.5O2 cathode materials for lithium-ion batteries

    Science.gov (United States)

    Murali, N.; Margarette, S. J.; Madhuri Sailaja, J.; Kondala Rao, V.; Himakar, P.; Kishore Babu, B.; Veeraiah, V.

    2018-02-01

    Layered Mg doped LiNi0.5Mn0.5O2 materials have been synthesized by sol-gel method. The physical properties of these materials were examined by XRD, FESEM and FT-IR studies. From XRD patterns, the phase formation of α-NaFeO2 layered structure with R\\bar 3m space group is confirmed. The surface morphology of the synthesized materials has been examined by FESEM analysis in which the average particle size is found to be about 2 - 2.5 µm. These materials show some changes in the local ion environment, as examined by FT-IR studies.

  16. Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A: Mn, Zn, Mg and Co) ceramics

    International Nuclear Information System (INIS)

    Ramarao, S.D.; Murthy, V.R.K.

    2013-01-01

    Graphical abstract: -- The effects of substituting different cations (Mn, Zn, Mg and Co) at the A-site of AZrNb 2 O 8 compounds on structural parameters such as packing fraction and B-site octahedral distortion were studied using X-ray powder diffraction in conjunction with Rietveld refinement. Variations in the dielectric constant (ε r ) were explained by the ionic polarizability of the compositions. The quality factor (Q × f) and temperature coefficient of resonant frequency (τ f ) were correlated with the packing fraction and B-site octahedral distortions (δ) in these compositions, respectively

  17. Determinação direta de Ca, Mg, Mn e Zn em amostras de leite de búfala da Ilha de Marajó por espectrometria de absorção atômica com chama (FAAS Direct determination of Ca, Mg, Mn and Zn in buffalo milk of the Marajó Island by FAAS

    Directory of Open Access Journals (Sweden)

    João B. Pereira Junior

    2009-01-01

    Full Text Available This work proposes an analytical procedure for direct determination of calcium, magnesium, manganese and zinc in buffalo milk by flame atomic absorption spectrometry (FAAS. Samples were diluted with a solution containing 10% (v/v of water-soluble tertiary amines (CFA-C at pH 8. For comparison, buffalo milk samples were digested with HNO3 and H2O2. According to a paired t-test, the results obtained in the determination of Ca, Mg, Mn and Zn in digested samples and in 10% (v/v CFA-C medium were in agreement at a 95% confidence level. The developed procedure is simple, rapid, decrease the possibility of contamination and can be applied for the routine determination of Ca, Mg, Mn and Zn in buffalo milk samples without any difficulty caused by matrix constituents, such as fat content, and particle size distribution in the milk emulsion.

  18. Influence of SaOS-2 cells on corrosion behavior of cast Mg-2.0Zn0.98Mn magnesium alloy.

    Science.gov (United States)

    Witecka, Agnieszka; Yamamoto, Akiko; Święszkowski, Wojciech

    2017-02-01

    In this research, the effect of the presence of living cells (SaOS-2) on in vitro degradation of Mg-2.0Zn-0.98Mn (ZM21) magnesium alloy was examined by two methods simple immersion/cell culture tests and electrochemical measurements (electrochemical impedance spectroscopy and potentiodynamic polarization) under cell culture conditions. In immersion/cell culture tests, when SaOS-2 cells were cultured on ZM21 samples, pH of cell culture medium decreased, therefore weight loss and Mg 2+ ion release from the samples increased. Electrochemical measurements revealed the presence of living cells increased corrosion rate (I corr ) and decreased polarization resistance (R p ) after 48h of incubation. This acceleration of ZM21 corrosion can mainly be attributed to the decrease of medium pH due to cellular metabolic activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Microstructure and Mechanical Properties of Al-5Mg-0.8Mn Alloys with Various Contents of Fe and Si Cast under Near-Rapid Cooling

    Directory of Open Access Journals (Sweden)

    Yulin Liu

    2017-10-01

    Full Text Available Al-5Mg-0.8Mn alloys (AA5083 with various iron and silicon contents were cast under near-rapid cooling and rolled into sheets. The aim was to study the feasibility of minimizing the deteriorating level of the harmful Fe-rich phases on the mechanical properties through refining the intermetallics by significantly increasing the casting rate. The results showed that the size and density of the intermetallic particles that remained in the hot bands and the cold rolled sheets increased as the contents of iron and silicon in the alloys were increased. However, the increment of the particle sizes was limited due to the significant refinement of the intermetallics formed during casting under near-rapid cooling. The mechanical properties of the alloys reduced as the contents of iron and silicon in the alloys increased. However, the decrement of tensile strengths and ductility was quite small. Therefore, higher contents of iron and silicon could be used in the Al-5Mg-0.8Mn alloy (AA5083 alloy when the material is cast under near-rapid cooling, such as in the continuous strip casting process.

  20. Investigation on the Effect of Sub-Zero Treatment on Micro-Hardness and Microstructure of GTAW Welded Al-Si-Mg-Mn Alloy

    Science.gov (United States)

    Devanathan, R.; Yuvarajan, D.; Christopher Selvam, D.; Venkatamuni, T.

    2018-02-01

    In this work, the effect of sub-zero treatment on the mechanical properties of an Al-Si-Mg-Mn alloy welded by GTAW (gas tungsten arc welding) leads to significant softening in the welded region. The latter is due to melting and resolidification in the welded region, which have resulted in decomposition of the strengthening precipitates. The experiments were performed on GTAW welded plates of 6 mm thickness by varying the heat inputs, namely, of 370, 317.1, 277.5, 246.4, and 222 J/mm, and sub-zero treatment time periods. The Sub-Zero treatment was performed at-45°C using dry ice; hardness and microstructure investigations were performed in the welded region of the Al‒Si-Mg-Mn alloy that was studied in two different conditions, namely, as-welded and in that formed after post weld sub-zero treatment with artificial aging. It was found that the post weld Sub-Zero treatment followed by artificial aging had led to realization of significantly higher hardness values in the welded region due to the recurrence of the precipitation sequence.

  1. Quantitative analysis of sodium di-uranate for Al, Ca, Fe, Mg, Mn, Na by flame-atomic absorption spectrometric method

    International Nuclear Information System (INIS)

    Jat, J.R.; Balaji Rao, Y.; Subba Rao, Y.

    2015-01-01

    Nuclear Fuel Complex (NFC) receives Sodium Di-Uranate (SDU) from Uranium Corporation of India Limited (UCIL) for producing sinterable UO 2 pellets for manufacturing fuel sub assemblies. Several impurities present in ore find their way into SDU during its conversion. Stringent specification have been laid down by the reactor designs for achieving the optimum performance of the fuel and several impurity element like Al, Ca, Fe, Mg, Mn, Na among others affects severely performance of UO 2 fuel. Most of the impurity including the above mentioned elements are generally analysed by ICP-OES method. However, determination of Al, Ca, Fe, Mg, Mn and Na by ICP-OES requires lot of dilution as they are present at high levels in SDU. Apart from introducing dilution error, dilution process is very tedious and time consuming work and not a preferred choice in an industrial lab like control lab where large analytical load exists and time bound analysis is a requirement. To avoid these difficulties a simple and reliable Flame Atomic absorption spectrometric technique has been developed for regular analysis. Present method involves dissolution of SDU sample in Conc. HNO 3 and after the complete dissolution the sample solution has been evaporated to near dryness on a hot plate. Subsequently sample solution has been brought into 4N HNO 3 medium

  2. The regulation effect of STAT 5 signaling pathway on the cell cycle progression of irradiated KG-1 cells

    International Nuclear Information System (INIS)

    Guo Dehuang; Dong Bo; Luo Qingliang; Wen Gengyun; Mao Bingzhi

    2000-01-01

    The author investigated the role of the JAK/STAT signaling pathway regulating cell cycle progression in the irradiated KG-1 cells. By permanent transfecting the cells with DN-STAT 5 cDNA to block the JAK/STAT signaling pathway and then transient transfecting with cyclin D 1 or cyclin B 1 cDNA, the effects of cyclin D 1 protein and cyclin B 1 protein on the cell cycle progression were examined. Results showed that after irradiation with 8Gy 60 Co rays, the irradiated KG-1 cells transfected with only DN-STAT 5 cDNA can not recover form the G 1 arrest, even though GM-CSF was added. Meanwhile, the cells transfected with both the DN-STAT 5 cDNA and cyclin D 1 cDNA or cyclin B 1 cDNA can recover from the G 1 arrest or the G 2 arrest to a great extent. Thus, it was proved indirectly that the JAK/STAT signaling pathway activated by GM-CSF regulated the cell cycle progression through cyclin D 1 and cyclin B 1 protein

  3. An evaluation of phase separated, self-assembled LaMnO3-MgO nanocomposite films directly on IBAD-MgO as buffer layers for flux pinning enhancements in YBa2YCu3O7-& coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Ozgur [ORNL; Aytug, Tolga [ORNL; Paranthaman, Mariappan Parans [ORNL; Leonard, Keith J [ORNL; Lupini, Andrew R [ORNL; Pennycook, Stephen J [ORNL; Meyer III, Harry M [ORNL; Kim, Kyunghoon [ORNL; Qiu, Xiaofeng [ORNL; Cook, Sylvester W [ORNL; Thompson, James R [ORNL; Christen, David K [ORNL; Goyal, Amit [ORNL; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Xiong, X. [SuperPower Incorporated, Schenectady, New York

    2010-01-01

    Technological applications of high temperature superconductors (HTS) require high critical current density, Jc, under operation at high magnetic field strengths. This requires effective flux pinning by introducing artificial defects through creative processing. In this work, we evaluated the feasibility of mixed-phase LaMnO3:MgO (LMO:MgO) films as a potential cap buffer layer for the epitaxial growth and enhanced performance of YBa2Cu3O7-d (YBCO) films. Such composite films were sputter deposited directly on IBAD-MgO templates (with no additional homo-epitaxial MgO layer) and revealed the formation of two phase-separated, but at the same time vertically aligned, self-assembled composite nanostructures that extend throughout the entire thickness of the film. The YBCO coatings deposited on these nanostructured cap layers showed correlated c-axis pinning and improved in-field Jc performance compared to those of YBCO films fabricated on standard LMO buffers. Microstructural characterization revealed additional extended disorder in the YBCO matrix. The present results demonstrate the feasibility of novel and potentially practical approaches in the pursuit of more efficient, economical, and high performance superconducting devices.

  4. Order parameters and magnetocrystalline anisotropy of off-stoichiometric D0{sub 22} Mn{sub 2.36}Ga epitaxial films grown on MgO (001) and SrTiO{sub 3} (001)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hwachol; Sukegawa, Hiroaki, E-mail: sukegawa.hiroaki@nims.go.jp; Mitani, Seiji; Hono, Kazuhiro [National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan)

    2015-07-21

    We study the relationship between long range order parameters and the magnetocrystalline anisotropy of off-stoichiometric D0{sub 22} Mn{sub 2.36}Ga (MnGa) epitaxial films grown on MgO (001) and SrTiO{sub 3} (STO) (001) single crystalline substrates. MnGa films deposited on MgO (001) show rather large irregular variation in magnetization with increasing substrate temperature in spite of the improved long range order of total atomic sites. The specific site long range order of Mn-I site characterized in the [101] orientation revealed the fluctuation of the occupation fraction of two Mn atomic sites with elevated substrate temperature, which appears more relevant to the observed magnetization change than the long range order of the total atomic sites. In case of MnGa films grown on the lattice-matched STO (001), high long range order of the total atomic sites in spite of the existence of secondary phase represents that the lattice mismatch plays a crucial role in determining the atomic arrangement of Mn and Ga atoms in the off-stoichiometric compositional case of MnGa.

  5. Synthetic nanocomposite MgH2/5 wt. % TiMn2 powders for solid-hydrogen storage tank integrated with PEM fuel cell.

    Science.gov (United States)

    El-Eskandarany, M Sherif; Shaban, Ehab; Aldakheel, Fahad; Alkandary, Abdullah; Behbehani, Montaha; Al-Saidi, M

    2017-10-16

    Storing hydrogen gas into cylinders under high pressure of 350 bar is not safe and still needs many intensive studies dedic ated for tank's manufacturing. Liquid hydrogen faces also severe practical difficulties due to its very low density, leading to larger fuel tanks three times larger than traditional gasoline tank. Moreover, converting hydrogen gas into liquid phase is not an economic process since it consumes high energy needed to cool down the gas temperature to -252.8 °C. One practical solution is storing hydrogen gas in metal lattice such as Mg powder and its nanocomposites in the form of MgH 2 . There are two major issues should be solved first. One related to MgH 2 in which its inherent poor hydrogenation/dehydrogenation kinetics and high thermal stability must be improved. Secondly, related to providing a safe tank. Here we have succeeded to prepare a new binary system of MgH 2 /5 wt. % TiMn 2 nanocomposite powder that show excellent hydrogenation/dehydrogenation behavior at relatively low temperature (250 °C) with long cycle-life-time (1400 h). Moreover, a simple hydrogen storage tank filled with our synthetic nanocomposite powders was designed and tested in electrical charging a battery of a cell phone device at 180 °C through a commercial fuel cell.

  6. Influence of Mn on the tensile properties of SSM-HPDC Al-Cu-Mg-Ag alloy A201

    CSIR Research Space (South Africa)

    Müller, H

    2011-03-01

    Full Text Available A201 aluminium alloy is a high strength casting alloy with a nominal composition of Al-4.6Cu-0.3Mg-0.6Ag. It is strengthened by the O(Al2Cu) phase and the ’(Al2Cu) phase during heat treatment. Further strengthening of this alloy system can...

  7. A first-principle investigation of spin-gapless semiconductivity, half-metallicity, and fully-compensated ferrimagnetism property in Mn{sub 2}ZnMg inverse Heusler compound

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaotian [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China); Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Cheng, Zhenxiang, E-mail: cheng@uow.edu.au [Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Khenata, Rabah [Laboratoire de Physique Quantique, de la Matière et de la Modélisation Mathématique (LPQ3M), Université de Mascara, Mascara 29000 (Algeria); Rozale, Habib [Condensed Matter and Sustainable Development Laboratory, Physics Department, University of Sidi-Bel-Abbès, 22000 Sidi-Bel-Abbès (Algeria); Wang, Jianli [Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Wang, Liying; Guo, Ruikang [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China); Liu, Guodong, E-mail: gdliu1978@126.com [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2017-02-01

    Recently, spin-gapless semiconductors (SGSs) and half-metallic materials (HMMs) have received considerable interest in the fields of materials sciences and solid-state physics because they can provide a high degree of spin polarization in electron transport. The results on band structure calculations reveal that the metallic fully-compensated ferrimagnet (M-FCF) Mn{sub 2}ZnMg becomes half-metallic fully-compensated ferrimagnet (HM-FCF), fully-compensated ferrimagnetic semiconductor (FCF-S) and fully-compensated ferrimagnetic spin-gapless semiconductor (FCF-SGS) if the uniform strain applied. However, the metallic fully-compensated ferrimagnetism property of the Mn{sub 2}ZnMg is robust to the tetragonalization. The structure stability based on the calculations of the cohesion energy and the formation energy of this compound has been tested. Furthermore, a magnetic state transition from antiferromagentic (AFM) state to non-magnetic (NM) state can be observed at the lattice constant of 5.20 Å. - Highlights: • Mn{sub 2}ZnMg is a M-FCF at its equilibrium lattice constant. • We study the effect of uniform strain on the physical nature transition of Mn{sub 2}ZnMg. • The M-FCF property of the Mn{sub 2}ZnMg is robust to the tetragonalization. • A magnetic phase transition occurs at 5.20 Å.

  8. Magnetic properties of Mg{sub 12}O{sub 12} nanocage doped with transition metal atoms (Mn, Fe, Co and Ni): DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Javan, Masoud Bezi, E-mail: javan.masood@gmail.com

    2015-07-01

    Binding energy of the Mg{sub 12}O{sub 12} nanocage doped with transition metals (TM=Mn, Fe, Co and Ni) in endohedrally, exohedrally and substitutionally forms were studied using density functional theory with the generalized gradient approximation exchange-correlation functional along 6 different paths inside and outside of the Mg{sub 12}O{sub 12} nanocage. The most stable structures were determined with full geometry optimization near the minimum of the binding energy curves of all the examined paths inside and outside of the Mg{sub 12}O{sub 12} nanocage. The results reveal that for all stable structures, the Ni atom has a larger binding energy than the other TM atoms. It is also found that for all complexes additional peaks contributed by TM-3d, 4s and 4p states appear in the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) gap of the host MgO cluster. The mid-gap states are mainly due to the hybridization between TM-3d, 4s and 4p orbitals and the cage π orbitals. The magnetic moment of the endohedrally doped TM atoms in the Mg{sub 12}O{sub 12} are preserved to some extent due to the interaction between the TM and Mg{sub 12}O{sub 12} nanocage, in contrast to the completely quenched magnetic moment of the Fe and Ni atoms in the Mg{sub 11}(TM)O{sub 12} complexes. Furthermore, charge population analysis shows that charge transfer occurs from TM atom to the cage for endohedrally and substitutionally doping. - Highlights: • Binding energy of the Mg{sub 12}O{sub 12} nanocage doped with transition metals was studied. • The most stable structures were determined near the minimum of the binding energy. • The encapsulated Ni atom has a larger binding energy than the other TM atoms. • Magnetic moment of the endohedrally doped TM atoms in the Mg{sub 12}O{sub 12} are preserved.

  9. Synthesis and X-ray examination of ternary molybdates, KAIn(MoO4)3 (A - Mg, Mn)

    International Nuclear Information System (INIS)

    Smirnyagina, N.N.; Khazheeva, Z.I.; Kozhevnikova, N.M.; Alekseev, F.P.; Mokhosoev, M.V.

    1985-01-01

    The interaction in ternary salt systems K 2 MoO 4 -AMoO 4 -In 2 (MoO 4 ) 3 is studied in the 200-1000 deg temperature range. The triangulation is performed. The formation of new ternary molybdates of the KAIn(MoO 4 ) 3 composition is established. They are investigated with the methods of differential thermal analysis and roentgenography. It is found that KMgIn(MoO 4 ) 3 and KMnIn(MoO 4 ) 3 compounds are isostructural and crystallize in monoclinic crystal system. Elementary cell parameters for KMgIn((MoO 4 ) 3 are a=9.753(7); b=9.282(6); c=13.583(9) A; β=94.1(1) deg; for KMnIn(MoO 4 ) 3 - a=9.80(2); b=9.28(1); c=13.64(2) A; β=94.7(1) A; cells of such dimensions contain four formula units of the above composition. Crystal densities calculated for KMgIn(MoO 4 ) 3 and KMnIn(MnO 4 ) 3 are 3.56 and 3.69 g/cm 3 , respectively

  10. Uptake of soil P, Al, Fe, Mn, Mg and Ca by Italian rye grass (Lolium multiflorum Lam. induced by synthetic chelating agent

    Directory of Open Access Journals (Sweden)

    Helinä Hartikainen

    1981-05-01

    Full Text Available The effect of a synthetic chelating compound on the dry matter yield and the uptake of soil P, Al, Fe, Mn, Mg and Ca by Italian rye grass was studied in a pot experiment with three mineral soil samples irrigated with water or 0.001 M Na2-EDTA(dinatrium salt of ethylenediaminetetraacetic acid solution. The Na2-EDTA treatment seemed not to affect the quantity of the dry matter yields, but it affected markedly their chemical composition. Increased contents of P, Al and Fe were found in all the harvests. In two soil samples the P supply was improved by 35—45 %. The accumulation of Al, Fe and Mn induced by Na2-EDTA tended to be the more effective the greater the stability constant for the corresponding metal-EDTA chelate was. Thus, the iron uptake increased most intensively, i.e. by 217—458 %, and that of aluminium by 33—120 %. On the basis of the first two harvests the manganese absorption by the rye grass seemed to decrease probably due to the enormous accumulation of iron. The results also suggested that the addition of Na2-EDTA to the soil was not able essentially to affect the magnesium and calcium supply to the plants.

  11. Monte Carlo and Ab-initio calculation of TM (Ti, V, Cr, Mn, Fe, Co, Ni) doped MgH{sub 2} hydride: GGA and SIC approximation

    Energy Technology Data Exchange (ETDEWEB)

    Salmani, E., E-mail: elmehdisalmani@gmail.com [LMPHE (URAC12), Faculty of Sciences, Mohammed V University in Rabat (Morocco); Laghrissi, A.; Lamouri, R. [LMPHE (URAC12), Faculty of Sciences, Mohammed V University in Rabat (Morocco); Benchafia, E. [Department of Materials Science and Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Ez-Zahraouy, H. [LMPHE (URAC12), Faculty of Sciences, Mohammed V University in Rabat (Morocco); Benyoussef, A. [Institute for Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2017-02-15

    MgH{sub 2}: TM (TM: V, Cr, Mn, Fe, Co, Ni) based dilute magnetic semiconductors (DMS) are investigated using first principle calculations. Our results show that the ferromagnetic state is stable when TM introduces magnetic moments as well as intrinsic carriers in TM: Co, V, Cr, Ti; Mg{sub 0.95}TM{sub 0.05}H{sub 2}. Some of the DMS Ferro magnets under study exhibit a half-metallic behavior, which make them suitable for spintronic applications. The double exchange is shown to be the underlying mechanism responsible for the magnetism of such materials. The exchange interactions obtained from first principle calculations and used in a classical Ising model by a Monte Carlo approach resulted in ferromagnetic states with Curie temperatures within the ambient conditions. - Highlights: • The half-metallic aspect was proven to take place for Ti, Cr, Co and Ni. • The TM impurities are shown to introduce the magnetic moment that makes MgH{sub 2} good candidates for spintronic applications.

  12. Effects of minor Zr and Sr on as-cast microstructure and mechanical properties of Mg-3Ce-1.2Mn-0.9Sc (wt.%) magnesium alloy

    International Nuclear Information System (INIS)

    Pan Fusheng; Yang Mingbo; Shen Jia; Wu Lu

    2011-01-01

    Research highlights: → Minor Zr and/or Sr additions can effectively refine the grains of the Mg-3Ce-1.2Mn-0.9Sc alloy. → Minor Zr and/or Sr additions can improve the tensile properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. → Minor Zr and/or Sr additions can improve the creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. - Abstract: The effects of minor Zr and Sr on the as-cast microstructure and mechanical properties of the Mg-3Ce-1.2Mn-0.9Sc (wt.%) alloy were investigated by using optical and electron microscopies, differential scanning calorimetry (DSC) analysis, and tensile and creep tests. The results indicate that adding minor Zr and/or Sr to the Mg-3Ce-1.2Mn-0.9Sc alloy does not cause an obvious change in the morphology and distribution of the Mg 12 Ce phase. However, the grains of the Zr and/or Sr-containing alloys are effectively refined. Among the Zr and/or Sr-containing alloys, the grains of the alloy with the addition of 0.5 wt.%Zr + 0.1 wt.%Sr are the finest, followed by the alloys with the additions of 0.5 wt.%Zr and 0.1 wt.%Sr, respectively. In addition, small additions of Zr and/or Sr can improve the tensile and creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. Among the Zr and/or Sr-containing alloys, the alloy with the addition of 0.5 wt.%Zr + 0.1 wt.%Sr obtains the optimum tensile and creep properties.

  13. Texture and structure contribution to low-temperature plasticity enhancement of Mg-Al-Zn-Mn Alloy MA2-1hp after ECAP and annealing

    Science.gov (United States)

    Serebryany, V. N.; D'yakonov, G. S.; Kopylov, V. I.; Salishchev, G. A.; Dobatkin, S. V.

    2013-05-01

    Equal channel angular pressing (ECAP) in magnesium alloys due to severe plastic shear deformations provides both grain refinement and the slope of the initial basal texture at 40°-50° to the pressing direction. These changes in microstructure and texture contribute to the improvement of low-temperature plasticity of the alloys. Quantitative texture X-ray diffraction analysis and diffraction of backscattered electrons are used to study the main textural and structural factors responsible for enhanced low-temperature plasticity based on the example of magnesium alloy MA2-1hp of the Mg-Al-Zn-Mn system. The possible mechanisms of deformation that lead to this positive effect are discussed.

  14. Effect of phosphate additives on the microstructure, bioactivity, and degradability of microarc oxidation coatings on Mg-Zn-Ca-Mn alloy.

    Science.gov (United States)

    Dou, Jinhe; You, Qiongya; Gu, Guochao; Chen, Chuanzhong; Zhang, Xihua

    2016-09-20

    Calcium phosphate coatings were prepared on the surface of self-designed Mg-Zn-Ca-Mn alloy using microarc oxidization technology. To characterize the microstructures, cross-section morphologies, and compositions of the coatings, the authors used scanning electron microscopy equipped with an energy-disperse spectrometer, x-ray diffraction, and Fourier transform infrared spectroscopy. Potentiodynamic polarization in the simulated body fluid (SBF) was used to evaluate the corrosion behaviors of the samples. An SBF immersion test was used to evaluate the coating bioactivity and degradability. After the immersion tests, some bonelike apatite formed on the coating surfaces indicate that bioactivity of the coatings is excellent. The coating prepared in electrolyte containing (NaPO3)6 had slower degradation rate after immersion test for 21 days.

  15. Infrared spectroscopic investigation of M(H2PO4)2x2H2O (M=Mg, Mn, Cd) dehydration products

    International Nuclear Information System (INIS)

    Pechkovskij, V.V.; Dzyuba, E.D.; Mel'nikova, R.Ya.; Salonets, G.I.; Kovalishina, V.I.; Malashonok, I.E.

    1982-01-01

    Using the method of IR spectroscopy the composition of products separated at different stages of M(H 2 PO 4 ) 2 x2H 2 O dehydration, where M=Mg, Mn, Cd, has been investigated. It is shown that cation influence is expressed in strengthening of bond of proton-containing groups in the structure of initial compounds from magnesium to cadmium. A supposition is made that the difference in bond character of the groups more evidently expressed for partially dehydrated products of the composition M(H 2 PO 4 ) 2 , conditions a possibility of dehydration in two directions- with the formation of intermediate phase MH 2 P 2 O 7 or with separation of three phosphoric acid

  16. Thermal activation energies and peak temperatures in thermoluminescence of LiF (Mg, Ti) and CaF2:Mn at low temperatures

    International Nuclear Information System (INIS)

    Jain, V.K.; Jahan, M.S.

    1987-01-01

    Low temperature thermoluminescence (TL) of LiF (TLD-100) and CaF 2 :Mn is studied. The TLD-100 is dosimetry grade LiF manufactured by Harshaw-Filtrol Partnership. It is believed that it contains about 200 ppm Mg and 7 ppm Ti as impurities. In each case the glow curve shows several peaks. Some of these peaks are quite strong and develop with dose. Others are weak. Kinetic parameters are calculated for the former using the initial rise method and Chen's modified formula. The two sets of values are found to be different. Some authors have suggested empirical formulae connecting peak temperature, T m , and activation energy, E. The empirical relations are tried for the values of E calculated, as well as those available in literature (for T m above room temperature). It is found that a fairly reasonable relation existed between E and T m . (author)

  17. Buffer layer dependence of magnetoresistance effects in Co2Fe0.4Mn0.6Si/MgO/Co50Fe50 tunnel junctions

    Science.gov (United States)

    Sun, Mingling; Kubota, Takahide; Takahashi, Shigeki; Kawato, Yoshiaki; Sonobe, Yoshiaki; Takanashi, Koki

    2018-05-01

    Buffer layer dependence of tunnel magnetoresistance (TMR) effects was investigated in Co2Fe0.4Mn0.6Si (CFMS)/MgO/Co50Fe50 magnetic tunnel junctions (MTJs). Pd, Ru and Cr were selected for the buffer layer materials, and MTJs with three different CFMS thicknesses (30, 5, and 0.8 nm) were fabricated. A maximum TMR ratio of 136% was observed in the Ru buffer layer sample with a 30-nm-thick CFMS layer. TMR ratios drastically degraded for the CFMS thickness of 0.8 nm, and the values were 26% for Cr buffer layer and less than 1% for Pd and Ru buffer layers. From the annealing temperature dependence of the TMR ratios, amounts of interdiffusion and effects from the lattice mismatch were discussed.

  18. Rapid synthesis of spherical-shaped green-emitting MgGa2O4:Mn2+ phosphor via spray pyrolysis

    International Nuclear Information System (INIS)

    Choi, Sungho; Kim, Kyoungun; Moon, Young-Min; Park, Byung-Yoon; Jung, Ha-Kyun

    2010-01-01

    Simple, one-step synthesis of spherical-shaped powder phosphors with aqueous precursors via a spray pyrolysis method is reported. Green-emitting MgGa 2 O 4 :Mn 2+ phosphor with a controlled shape was successfully obtained by spraying under a reductive atmosphere (N 2 + H 2 carrier gas) without high-temperature post-heat treatment. In addition, the corresponding powder phosphors were well dispersed and showed a clean surface morphology compared to an existing cumbersome process using high-temperature post-annealing. The new method may help to prevent surface residual non-radiative defect sites. The result of highly luminescent and spherical morphology, non-aggregated powder phosphor by this procedure holds promise for a cost-effective and rapid synthesis process for conventional inorganic phosphors.

  19. Spectroscopic investigation of new water soluble Mn(II)(2) and Mg(II)(2) complexes for the substrate binding models of xylose/glucose isomerases.

    Science.gov (United States)

    Patra, Ayan; Bera, Manindranath

    2014-01-30

    In methanol, the reaction of stoichiometric amounts of Mn(OAc)(2)·4H(2)O and the ligand H(3)hpnbpda [H(3)hpnbpda=N,N'-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N'-diacetic acid] in the presence of NaOH, afforded a new water soluble dinuclear manganese(II) complex, [Mn2(hpnbpda)(μ-OAc)] (1). Similarly, the reaction of Mg(OAc)(2)·4H(2)O and the ligand H3hpnbpda in the presence of NaOH, in methanol, yielded a new water soluble dinuclear magnesium(II) complex, [Mg2(hpnbpda)(μ-OAc)(H2O)2] (2). DFT calculations have been performed for the structural optimization of complexes 1 and 2. The DFT optimized structure of complex 1 shows that two manganese(II) centers are in a distorted square pyramidal geometry, whereas the DFT optimized structure of complex 2 reveals that two magnesium(II) centers adopt a six-coordinate distorted octahedral geometry. To understand the mode of substrate binding and the mechanistic details of the active site metals in xylose/glucose isomerases (XGI), we have investigated the binding interactions of biologically important monosaccharides d-glucose and d-xylose with complexes 1 and 2, in aqueous alkaline solution by a combined approach of FTIR, UV-vis, fluorescence, and (13)C NMR spectroscopic techniques. Fluorescence spectra show the binding-induced gradual decrease in emission of complexes 1 and 2 accompanied by a significant blue shift upon increasing the concentration of sugar substrates. The binding modes of d-glucose and d-xylose with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in (13)C NMR spectra for C1 and C2 carbon atoms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Influence of phase composition on microstructure and properties of Mg-5Al-0.4Mn-xRE (x = 0, 3 and 5 wt.%) alloys

    International Nuclear Information System (INIS)

    Braszczyńska-Malik, K.N.; Grzybowska, A.

    2016-01-01

    The microstructure and mechanical properties investigations of two AME503 and AME505 experimental alloys in as-cast conditions were presented. The investigated materials were fabricated on the basis of the AM50 commercial magnesium alloy with 3 and 5 wt.% cerium rich mischmetal. In the as-cast condition, both experimental alloys were mainly composed of α-Mg, Al_1_1RE_3 and Al_1_0RE_2Mn_7 intermetallic phases. Additionally, due to non-equilibrium solidification conditions, a small amount of α + γ divorced eutectic and Al_2RE intermetallic phase were revealed. The obtained results also show a significant influence of rare earth elements on Brinell hardness, tensile and compression properties at ambient temperature and especially on creep properties at 473 K. Improved alloy properties with a rise in rare earth elements mass fraction results from an increase in Al_1_1RE_3 phase volume fraction and suppression of α + γ eutectic volume fraction in the alloy microstructure. Additionally, the influence of rare earth elements on the dendrite arm space value was discussed. The presented results also proved the thermal stability of the intermetallic phases during creep testing. - Highlights: • Two different Mg-5Al-0.4Mn alloys containing 3 and 5 wt.% of rare earth elements were fabricated. • Addition of rare earth elements leads to a reduction of dendrite arm spaces. • Mechanical properties depend on the phase composition of the alloys. • The increase of the rare earth elements content causes rise of the creep resistance.

  1. Investigation of structural, morphological and electromagnetic properties of Mg0.25Mn0.25Zn0.5-xSrxFe2O4 ferrites

    Science.gov (United States)

    Rahaman, Md. D.; Nusrat, Tania; Maleque, Rumana; Hossain, A. K. M. Akther

    2018-04-01

    Polycrystalline Mg0.25Mn0.25Zn0.5-xSrxFe2O4 (0 ≤ x ≤ 0.20) ferrites were synthesized using the solid state reaction sintering at 1373 K and 1473 K for 4 h. The XRD patterns revealed the formation of single phase cubic spinel with Sr2FeO4 and SrFe12O19 as impurity phases. The decrement in the lattice parameter for Sr2+ substituted samples is attributed to the difference in ionic radii of cations. The crystallite size decreases with increase in Sr2+ content. Low frequency dielectric dispersion is attributed due to the Maxwell-Wagner interfacial polarization. The appearance of the peak in dielectric loss spectrum for x = 0.15 and 0.20 at 1373 K and x = 0.20 at 1473 K suggests the presence of relaxing dipoles. The loss peak shifts towards lower frequency side with Sr2+ content at 1373 K which is due to the strengthening of dipole-dipole interactions. The complex impedance spectra clearly revealed that the both grain and grain boundary effects on the electrical properties. A complex electric modulus spectrum indicates that a non-Debye type of conductivity relaxation exists. The saturation magnetization and remanence gradually decreases with Sr2+ substitution which may be due to the existence of non-magnetic phase in the space between the magnetic particles and the substitution of Zn2+ cation in Mg0.25Mn0.25Zn0.5Fe2O4 ferrite lattice by Sr2+ content. The permeability decreases significantly while the cut-off frequency increases with the Sr2+ content at 1373 K and decreases at 1473 K, obeying the Snoek's law. The decrease in permeability with Sr2+ content is attributed due to the decrease in magnetization because non-magnetic ions weaken the inter-site exchange interaction.

  2. CALPHAD simulation of the Mg–(Mn, Zr)–Fe system and experimental comparison with as-cast alloy microstructures as relevant to impurity driven corrosion of Mg-alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gandel, D.S., E-mail: darren.gandel@monash.edu [CAST Cooperative Research Centre (Australia); Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia); Easton, M.A. [CAST Cooperative Research Centre (Australia); Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia); Gibson, M.A. [CAST Cooperative Research Centre (Australia); CSIRO Process Science and Engineering, Clayton, VIC 3168 (Australia); Birbilis, N. [CAST Cooperative Research Centre (Australia); Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2014-02-14

    Four Mg alloys with variations in the ratio of Mn, Zr and Fe additions were cast and their microstructures analysed via electron microscopy. Thermodynamic calculations of the expected phases using PANDAT were evaluated with actual as-cast microstructures. Some of the as-cast alloys did appear to form phases similar to those anticipated from the PANDAT calculations. Furthermore, there was a new Mn–Fe particle interaction observed that was not predicted, but which is posited to be responsible for the increase in corrosion resistance among Mn containing Mg alloys with Fe impurities. The experimental work herein has been shown to be invaluable in the understanding of this practically important system with sparingly soluble Fe and its potential influence on the corrosion of Mg alloys. - Highlights: • Alloy microstructure of the Mg-(Mn,Zr, Fe) system was analysed and reported. • CALPHAD analysis was used in conjunction with traditional SEM analysis techniques in this study. • A proposed Mn–Fe interaction within Mg has been observed for the first time. • Experimental validation of calculated phases is required to understand the effect of Mn and Zr on Mg.

  3. Improving solid-state hydriding and dehydriding properties of the LiBH{sub 4} plus MgH{sub 2} system with the addition of Mn and V dopants

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Kyle; Wan, Xuefei; Shaw, Leon L. [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 97 North Eagleville Road, U-3136, Storrs, CT 06269 (United States)

    2010-11-01

    The hydriding process of the 2LiH + MgB{sub 2} mixture is controlled by outward diffusion of Mg and inward diffusion of Li and H within MgB{sub 2} crystals to form LiBH{sub 4}. This study explores the feasibility of using transition metal dopants, such as Mn and V, to enhance the diffusion rate and thus the hydriding kinetics. It is found that Mn can indeed enhance the hydriding kinetics of the 2LiH + MgB{sub 2} mixture, while V does not. The major factor in enhancing the diffusion rate and thus the hydriding kinetics is related to the dopant's ability to induce the lattice distortion of MgB{sub 2} crystals. This study demonstrates that the kinetics of the diffusion controlled solid-state hydriding process can be improved by doping if the dopant is properly selected. (author)

  4. Efeitos da suplementação de fitase sobre a disponibilidade aparente de Mg, Ca, Zn, Cu, Mn e Fe em alimentos vegetais para a tilápia-do-nilo Effects of phytase supplementation on apparent availability of Mg, Ca, Zn, Cu, Mn, and Fe of plant feedstuffs for nile tilapia

    Directory of Open Access Journals (Sweden)

    Giovani Sampaio Gonçalves

    2005-12-01

    Full Text Available Cem juvenis de tilápia-do-nilo (Oreochromis niloticus; PV = 100.0 ± 5.0 g foram distribuídos em 10 tanques-rede com o objetivo de avaliar o efeito da suplementação da enzima fitase (0, 1.000 e 2.000 UFA/kg sobre a disponibilidade de minerais em alguns alimentos energéticos (milho, milho extrusado, farelo de trigo, farelo de arroz e farelo de sorgo e protéicos (farelo de soja extrusado, farelo de soja, farelo de girassol, farelo de algodão e glúten de milho utilizados na alimentação de tilápia-do-nilo (Oreochromis niloticus. Para determinação dos coeficientes de disponibilidade aparente (CDA do cálcio (Ca, magnésio (Mg, zinco (Zn, cobre (Cu, ferro (Fe e manganês (Mn, foram confeccionadas 31 rações, marcadas com 0,10% de óxido de crômio III uma referência (ração purificada e 30 contendo os dez alimentos e os diferentes níveis de suplementação da enzima fitase. O CDA dos nutrientes foi calculado com base no teor de crômio da ração e das fezes. A fitase aumenta, nos vegetais, a disponibilidade do Mg, Cu, Zn e Mn, os quais apresentam tendência diferenciada, em razão do seu valor biológico e do nível de suplementação de enzima.One hundred Nile tilapia juveniles (Oreochromis niloticus; BW= 100.0 ± 5.0 g were assigned to 10 experimental cages to evaluate the effects of phytase supplementation (0, 1,000, and 2,000 FTU/kg on calcium (Ca, magnesium (Mg, zinc (Zn, copper (Cu, iron (Fe and manganese (Mn availability of ten feedstuffs: five energetic (corn, extruded corn, wheat meal, rice meal and low-tannin sorghum and five protein (extruded soybean, soybean meal, sunflower meal, cottonseed meal and corn gluten meal. As reference, an albumin and gelatin-based diet [with 0.10 % chromic oxide (III as external marker] was fed to the juveniles. Thirty-one diets (one reference and 30 based on all feedstuffs and increasing levels of phytase were formulated to determine the coefficients of apparent availability of minerals (Mg

  5. Study and application of neutron activation analysis and related methods for determination of content of Na, K, Cu, Co, Mn, Ca, Mg, Fe, P and Zn in a lot of speciality fruits of Vietnam (banana, orange, longan, dragon and mango)

    International Nuclear Information System (INIS)

    Nguyen Van Minh; Le Thi Ngoc Trinh; Le Thai Dung; Ta Thi Tuyet Nhung; Nguyen Dang Khoa; Nguyen Tien Dat; Nguyen Thi Hong Tham; Cao Dong Vu

    2007-01-01

    To study the content of trace elements Na, K, Cu, Co, Mn, Ca, Mg, Fe, P and Zn in the speciality fruits is necessary and very important. We collected the studying samples in four Cities such as: Dalat, NhaTrang, HoChiMinh and BinhDuong. The studying samples are: Banana, Orange, Longan, Dragon and Mango. These samples were dried in the Deepfreezer at -40 o C. We analyzed Na, K, Cu, Co, Mn, Ca, Mg, Fe and Zn by neutron activation analysis (INAA, RNAA) and after irradiation measured total β for P. The studying results were shown in the tables. (author)

  6. Study and application of neutron activation analysis and related methods for determination of content of Na, K, Cu, Co, Mn, Ca, Mg, Fe, P and Zn in a lot of speciality fruits of Vietnam (banana, orange, longan, dragon and mango)

    Energy Technology Data Exchange (ETDEWEB)

    Minh, Nguyen Van; Ngoc Trinh, Le Thi; Dung, Le Thai; Tuyet Nhung, Ta Thi; Khoa, Nguyen Dang; Dat, Nguyen Tien; Hong Tham, Nguyen Thi; Vu, Cao Dong [Center for Analytical Techniques, Nuclear Research Institute, Dalat (Viet Nam)

    2007-12-15

    To study the content of trace elements Na, K, Cu, Co, Mn, Ca, Mg, Fe, P and Zn in the speciality fruits is necessary and very important. We collected the studying samples in four Cities such as: Dalat, NhaTrang, HoChiMinh and BinhDuong. The studying samples are: Banana, Orange, Longan, Dragon and Mango. These samples were dried in the Deepfreezer at -40{sup o}C. We analyzed Na, K, Cu, Co, Mn, Ca, Mg, Fe and Zn by neutron activation analysis (INAA, RNAA) and after irradiation measured total {beta} for P. The studying results were shown in the tables. (author)

  7. Magnetization of correlated electron systems. MnSi thin films, CrB2 single crystals and two-dimensional electron systems in MgZnO/ZnO

    International Nuclear Information System (INIS)

    Brasse, Matthias

    2014-01-01

    Torque magnetometry at low temperature is performed to investigate the magnetic properties of MnSi thin films, of a CrB 2 single crystal and of a two-dimensional electron system (2DESs) formed at the interface of MgZnO/ZnO. The magnetic anisotropy and phase diagram of MnSi as well as information on the electronic structure of CrB 2 are obtained. The MgZnO/ZnO 2DESs exhibits the de Haas-van Alphen effect and non-equilibrium currents which are analyzed in order to determine ground state properties and excited states, respectively.

  8. Microstructure and Mechanical Properties of the As-Cast and As-Homogenized Mg-Zn-Sn-Mn-Ca Alloy Fabricated by Semicontinuous Casting.

    Science.gov (United States)

    Lu, Xing; Zhao, Guoqun; Zhou, Jixue; Zhang, Cunsheng; Yu, Junquan

    2018-04-29

    In this paper, a new type of low-cost Mg-3.36Zn-1.06Sn-0.33Mn-0.27Ca (wt %) alloy ingot with a diameter of 130 mm and a length of 4800 mm was fabricated by semicontinuous casting. The microstructure and mechanical properties at different areas of the ingot were investigated. The microstructure and mechanical properties of the alloy under different one-step and two-step homogenization conditions were studied. For the as-cast alloy, the average grain size and the second phase size decrease from the center to the surface of the ingot, while the area fraction of the second phase increases gradually. At one-half of the radius of the ingot, the alloy presents the optimum comprehensive mechanical properties along the axial direction, which is attributed to the combined effect of relatively small grain size, low second-phase fraction, and uniform microstructure. For the as-homogenized alloy, the optimum two-step homogenization process parameters were determined as 340 °C × 10 h + 520 °C × 16 h. After the optimum homogenization, the proper size and morphology of CaMgSn phase are conducive to improve the microstructure uniformity and the mechanical properties of the alloy. Besides, the yield strength of the alloy is reduced by 20.7% and the elongation is increased by 56.3%, which is more favorable for the subsequent hot deformation processing.

  9. Microstructure and Mechanical Properties of the As-Cast and As-Homogenized Mg-Zn-Sn-Mn-Ca Alloy Fabricated by Semicontinuous Casting

    Science.gov (United States)

    Lu, Xing; Zhao, Guoqun; Zhou, Jixue; Zhang, Cunsheng; Yu, Junquan

    2018-01-01

    In this paper, a new type of low-cost Mg-3.36Zn-1.06Sn-0.33Mn-0.27Ca (wt %) alloy ingot with a diameter of 130 mm and a length of 4800 mm was fabricated by semicontinuous casting. The microstructure and mechanical properties at different areas of the ingot were investigated. The microstructure and mechanical properties of the alloy under different one-step and two-step homogenization conditions were studied. For the as-cast alloy, the average grain size and the second phase size decrease from the center to the surface of the ingot, while the area fraction of the second phase increases gradually. At one-half of the radius of the ingot, the alloy presents the optimum comprehensive mechanical properties along the axial direction, which is attributed to the combined effect of relatively small grain size, low second-phase fraction, and uniform microstructure. For the as-homogenized alloy, the optimum two-step homogenization process parameters were determined as 340 °C × 10 h + 520 °C × 16 h. After the optimum homogenization, the proper size and morphology of CaMgSn phase are conducive to improve the microstructure uniformity and the mechanical properties of the alloy. Besides, the yield strength of the alloy is reduced by 20.7% and the elongation is increased by 56.3%, which is more favorable for the subsequent hot deformation processing. PMID:29710818

  10. Instrumental neutron-activation analysis applications in the age dynamics assessment of Ca, Cl, K, Mg. Mn, Na, P, and Sr contents in the human cortical bone

    International Nuclear Information System (INIS)

    Zaichick, V.

    2003-01-01

    Full text: Senile osteoporosis and particularly osteoporosis among postmenopausal women represents an urgent problem of modern medicine. One of the main osteoporosis symptoms is a decrease in both bone mineral density and subsequent bone strength. The upper extremity of the femur in humans is a particularly vulnerable section of the skeleton, being subject to fracture and necrosis and to destruction of its cartilage. Iliac crest biopsies are commonly taken clinically on patients. It is known that the control of the mineral component providing bone strength is a good indicator to detect bone diseases like osteoporosis. Despite this, changes of chemical element contents occurring with age in the femoral head and the iliac crest of female and male separately have been little studied, but in iliac cortical bone have not been studied at all. The effect of age and sex on chemical element contents in intact cortical bone of femoral neck and iliac crest of 81 relatively healthy 15-55 years old women (n=36) and men (n=45) was investigated. All subjects had died suddenly and bone samples were obtained at necropsy from the right side of bodies within twenty-four hours after death. A tool made of titanium and plastic was used to clear samples from soft tissues and blood and to cut cortical part of bone. The IAEA and NIST reference materials (H-5 animal bone and SRM1486 bone meal) were used to estimate the precision and accuracy of results. Contents of Ca, Cl, K, Mg> Mn, Na, P, and Sr in intact bone samples were determined by instrumental neutron activation analysis using short-lived radionuclides. Our means data for each element of reference materials were within the certified 95 % confidence interval, and indicate an acceptable accuracy of the obtained results. No age- and sex-related differences in the cortical femoral neck composition were detected. Mean values (M±S.E.M.) of Ca, Cl, K, Mg, Mn, Na, P, and Sr mass fractions (on dry weight basis) for female and male all

  11. Determination of exposure rates from natural background radiation in Khartoum using LiF:Mg,Cu,P (GR-200) and CaSo4: Mn TLD chips

    International Nuclear Information System (INIS)

    Suliman, I.I.; Khangi, F.A.; Shaddad, I.A.; Suliman, I.A.; El Amin, O.I.

    2002-01-01

    The exposure rates from natural background radiation - including terrestrial gamma radiation and the ionizing component of cosmic rays - were measured for the first time in the city of khartoum using two types of TLD materials: LiF:Mg,Cu,P (GR-200) and CaSo 4 :Mn TLD chips. Measurements were performed at two sites simultaneously, one site was selected on land in the vicinity of the Sudan Atomic Energy Commission, for the purposes of the measurement of the total exposure rate outdoors, while the other site was located on a buoy anchored in the Blue Nile, and was selected to measure the exposure rate due to the ionizing component of cosmic rays. The investigations were conducted for periods of between 5 and 28 days. Calibration was performed on a selected number of dosimeters to determine the exposure rates at each site. The exposure rates from the ionizing component of cosmic rays in Khartoum were found to be respectively 33 nGy.h -1 and 30 nGy.h -1 , in the measurements performed within the scope of this work using GR-200 and CaSo 4 :Mn dosimeters, while the total values for exposure on land were found to be 45 nGy.h -1 and 42 nGy.h -1 respectively. These values compare reasonably well with other national averages reported in the UNSCEAR publication. The comparison of the results for the two dosimetric materials demonstrates both the sensitivity and suitability of GR-200 for the purposes of environmental monitoring (orig.)

  12. Growth kinetics of cellular precipitation in a Mg-8.5Al-0.5Zn-0.2Mn (wt.%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Piedras, Edgar [Instituto Politecnico Nacional-ESIQIE-DIMM-ESFM, Apartado Postal 118-430, Admon. GAM, Mexico, D.F. 07051 (Mexico); Esquivel-Gonzalez, Ramon [Universidad del Valle de Mexico, Depto. Ingenierias, Paseo de las Aves 1, Col. San Mateo Nopala, Lomas Verdes, Naucalpan de Juarez, Edo. Mex. 53220 (Mexico); Lopez-Hirata, Victor M.; Saucedo-Munoz, M.L.; Paniagua-Mercado, Ana M. [Instituto Politecnico Nacional-ESIQIE-DIMM-ESFM, Apartado Postal 118-430, Admon. GAM, Mexico, D.F. 07051 (Mexico); Dorantes-Rosales, Hector J., E-mail: hectordorantes@yahoo.com [Instituto Politecnico Nacional-ESIQIE-DIMM-ESFM, Apartado Postal 118-430, Admon. GAM, Mexico, D.F. 07051 (Mexico)

    2010-11-15

    Research highlights: {yields} The growth kinetics of lamellar spacing follows the behavior predicted by Turnbull theory. {yields} The growth kinetics of cellular precipitation is a process controlled by grain boundary diffusion. {yields} The presence of two types of morphology for cellular precipitation depends on the aging temperature. {yields} The highest hardness peak is associated to a fine continuous precipitation at the lowest temperature. {yields} The lowest hardness is attributed to the fast coarsening process of both precipitations. - Abstract: Microstructural evolution and growth kinetics were studied in an isothermally aged Mg-8.5Al-0.5Zn-0.2Mn (wt.%) alloy by means of X-ray diffraction, scanning electron microscopy, Vickers hardness measurements and transmission electron microscopy. Specimens were solution-treated and then aged at 373, 473 and 573 K for different time period. The characterization results indicated the presence of both continuous and discontinuous precipitations of the Mg{sub 17}Al{sub 12}-{gamma} phase in a Mg-rich matrix. The discontinuous or cellular precipitation was present with a lamellar structure, and the growth kinetics was evaluated using the Johnson-Mehl-Avrami-Kolmogorov equation analysis, which gives a time exponent close to 1. This value confirms that cellular precipitation takes place on the saturation sites corresponding to grain boundaries. In addition, the activation energy for cellular precipitation was determined to be about 64.6 kJ mol{sup -1}. This also indicates a grain boundary diffusion process. The variation of cellular spacing with temperature follows the behavior expected by Turnbull theory. The highest hardness peak corresponded to the lowest aging temperature and it is associated with a fine continuous precipitation; while the lowest hardness peak was detected at the highest aging temperature and it is attributed to the rapid coarsening process of both precipitations.

  13. Growth kinetics of cellular precipitation in a Mg-8.5Al-0.5Zn-0.2Mn (wt.%) alloy

    International Nuclear Information System (INIS)

    Contreras-Piedras, Edgar; Esquivel-Gonzalez, Ramon; Lopez-Hirata, Victor M.; Saucedo-Munoz, M.L.; Paniagua-Mercado, Ana M.; Dorantes-Rosales, Hector J.

    2010-01-01

    Research highlights: → The growth kinetics of lamellar spacing follows the behavior predicted by Turnbull theory. → The growth kinetics of cellular precipitation is a process controlled by grain boundary diffusion. → The presence of two types of morphology for cellular precipitation depends on the aging temperature. → The highest hardness peak is associated to a fine continuous precipitation at the lowest temperature. → The lowest hardness is attributed to the fast coarsening process of both precipitations. - Abstract: Microstructural evolution and growth kinetics were studied in an isothermally aged Mg-8.5Al-0.5Zn-0.2Mn (wt.%) alloy by means of X-ray diffraction, scanning electron microscopy, Vickers hardness measurements and transmission electron microscopy. Specimens were solution-treated and then aged at 373, 473 and 573 K for different time period. The characterization results indicated the presence of both continuous and discontinuous precipitations of the Mg 17 Al 12 -γ phase in a Mg-rich matrix. The discontinuous or cellular precipitation was present with a lamellar structure, and the growth kinetics was evaluated using the Johnson-Mehl-Avrami-Kolmogorov equation analysis, which gives a time exponent close to 1. This value confirms that cellular precipitation takes place on the saturation sites corresponding to grain boundaries. In addition, the activation energy for cellular precipitation was determined to be about 64.6 kJ mol -1 . This also indicates a grain boundary diffusion process. The variation of cellular spacing with temperature follows the behavior expected by Turnbull theory. The highest hardness peak corresponded to the lowest aging temperature and it is associated with a fine continuous precipitation; while the lowest hardness peak was detected at the highest aging temperature and it is attributed to the rapid coarsening process of both precipitations.

  14. Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material

    International Nuclear Information System (INIS)

    Wang, Dan; Huang, Yan; Huo, Zhenqing; Chen, Li

    2013-01-01

    Highlights: • Layered Li[Li 0.2 Ni 0.2−x Mn 0.6−x Mg 2x ]O 2 (2x = 0, 0.01, 0.02, 0.05) were synthetized. • Li[Li 0.2 Ni 0.2−x Mn 0.6−x Mg 2x ]O 2 exhibit enhanced electrochemical properties. • The improved performance is attributed to enhanced structure stability. -- Abstract: Mg-doped Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 as a Li-rich cathode material of lithium-ion batteries were prepared by co-precipitation method and ball-milling treatment using Mg(OH) 2 as a dopant. Scanning electron microscopy (SEM), ex situ X-ray powder diffraction (XRD), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvantatic charge/discharge were used to investigate the effect of Mg doping on structure and electrochemical performance. Compared with the bare material, Mg-doped materials exhibit better cycle stabilities and superior rate capabilities. Li[Li 0.2 Ni 0.195 Mn 0.595 Mg 0.01 ]O 2 displays a high reversible capacity of 226.5 mAh g −1 after 60 cycles at 0.1 C. The excellent cycle performance can be attributed to the improvement in structure stability, which is verified by XRD tests before and after 60 cycles. EIS results show that Mg doping decreases the charge-transfer resistance and enhances the reaction kinetics, which is considered to be the major factor for higher rate performance

  15. Phenomenological-based kinetics modelling of dehydrogenation of ethylbenzene to styrene over a Mg 3 Fe 0.25 Mn 0.25 Al 0.5 hydrotalcite catalyst

    KAUST Repository

    Hossain, Mohammad M.; Atanda, Luqman; Al-Khattaf, Sulaiman

    2012-01-01

    This communication reports a mechanism-based kinetics modelling for the dehydrogenation of ethylbenzene to styrene (ST) using Mg3Fe0.25Mn0.25Al0.5 catalyst. Physicochemical characterisation of the catalyst indicates that the presence of basic sites

  16. Structural characterization of Mg{sub 3}MnH{sub {approx}}{sub 6}--a new high-pressure phase synthesized in a multi-anvil cell at 6 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, Helen; Roennebro, Ewa; Kyoi, Daisuke; Sakai, Tetsuo; Noreus, Dag

    2003-08-25

    With modern X-ray diffraction refinement methods it was shown to be possible to identify a new Mg{sub 3}MnH{sub {approx}}{sub 6} phase from a minute sample volume in spite of poor crystallinity and coexisting impurity phases. The new hydride was synthesized at 6 GPa in a high-pressure multi-anvil cell at 873 K. A monoclinic unit cell was found with a=8.827(2), b=4.657(2), c=4.676(2) A and {beta}=105.74(2) deg., space group P2{sub 1}/m (no. 11), Z=2, V=184.99 A{sup 3}. Manganese is surrounded by a distorted cube of magnesium with average Mn-Mg distances of 2.78(2) A. The cubes share edges in the b and c directions of the unit cell but are separated by a distance of {approx}3.6 A along a, forming a layered structure. The hydrogen positions were not possible to determine, as only a small sample amount could be prepared. If the metal atom structure of the title compound is compared to the already known Mg{sub 3}MnH{sub 7} it can be concluded that Mg{sub 3}MnH{sub {approx}}{sub 6} also consists of manganese hydrido complexes counterbalanced by magnesium ions, but with a different alignment of the magnesium cubes.

  17. Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors

    Science.gov (United States)

    Sun, Zhipeng; Firdoz, Shaik; Ying-Xuan Yap, Esther; Li, Lan; Lu, Xianmao

    2013-05-01

    We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly conductive pathway for electron transport, and efficient material utilization.We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly

  18. Influence of Mg{sup 2+} doping on the structure and electrochemical performances of layered LiNi{sub 0.6}Co{sub 0.2-x}Mn{sub 0.2}Mg{sub x}O{sub 2} cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenjun; Wang, Zhixing, E-mail: zxwang.csu@hotmail.com; Guo, Huajun; Li, Xinhai

    2016-06-25

    Introducing the Mg ion into host lattice is applied to improving the electrochemical performance of LiNi{sub 0.6}Co{sub 0.2}Mn{sub 0.2}O{sub 2}. The effect of Mg substitution for Co on the structure, morphology, electrochemical properties and Li{sup +} diffusion coefficients are investigated in details. Rietveld refinement results reveal that Mg is incorporated into the bulk lattice, which results in reduced cation mixing and expand c-lattice parameter. All Mg-doped sample exhibit better cycle and rate performances, although the Mg substitution for Co led to decreasing a part of capacity. The Li diffusion coefficients obtained by galvanostatic intermittent titration technique (GITT) are increased with increases of Mg content. - Highlights: • Mg-doped sample exhibits better electrochemical performance. • The change of crystal structure by Mg doping are studied. • The Mg doping improves the lithium ion diffusion coefficient.

  19. First principles study of structural, electronic, magnetic and elastic properties of Mg{sub 0.75}TM{sub 0.25}S (TM=Mn, Fe, Co, Ni)

    Energy Technology Data Exchange (ETDEWEB)

    Gous, M.H., E-mail: gousph@hotmail.fr; Meddour, A., E-mail: a_meddour@yahoo.fr; Bourouis, Ch., E-mail: bourouisse_ch@yahoo.fr

    2017-01-15

    The objective of this work is to predict the structural, electronic, magnetic and elastic properties of Mg{sub 1−x}TM{sub x}S (TM=Mn, Fe, Co and Ni) compound in the zinc blende Ferromagnetic phase using first principal approach. The structural and elastic properties are performed using the generalized gradient approximation proposed by Wu and Cohen(WC-GGA). However, the electronic and magnetic properties have been performed using modified Becke-Johnson potential combined with the LDA correlation (mBJLDA). The results show that all compounds Mg{sub 1−x}Mn{sub x}S, Mg{sub 1−x}Fe{sub x}S and Mg{sub 1−x}Ni{sub x}S exhibit a half-metallic ferromagnetic character with 100% spin-polarization at the Fermi level, except Mg{sub 1−x}Co{sub x}S is a metal. For each compounds study here, the total magnetic momentum is an integer equal to magnetic moments of TM atom in their free space charge value. Due to the p–d hybridization, there is a small local magnetic moment on the Mg and S sites; whereas, the local magnetic moments of TM atom reduce from their free space charge value. In addition, we investigate the mechanical behavior of MgS and Mg{sub 1−x}TM{sub x}S; all compounds studied here are mechanically stable and exhibit a strong anisotropic behavior. - Highlights: • Our results could be a prediction for coming works. • According to our results of electronic properties: Mg{sub 0.75}Co{sub 0.25}S is metal. Mg{sub 0.75}Mn{sub 0.25}S, Mg{sub 0.75}Fe{sub 0.25}S and Mg{sub 0.75}Ni{sub 0.25}S exhibit half-metallic ferromagnetic behavior with 100% spin polarization at Fermi level. • We found that MgS and Mg{sub 0.75}TM{sub 0.25}S (TM=Mn, Fe, Co and Ni) compounds are mechanically stable, ductile materials and have an anisotropic Young's Modulus. • It is likely that these materials have a high Curie temperature.

  20. Influence of sulfate ion concentration and pH on the corrosion of Mg-Al-Zn-Mn (GA9 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Sudarshana Shetty

    2015-09-01

    Full Text Available The corrosion behavior of Mg-Al-Zn-Mn (GA9 alloy in sodium sulfate solutions was studied over a range of concentrations and solution temperatures at different pH conditions by electrochemical techniques like Tafel extrapolation and electrochemical impedance spectroscopy (EIS. The studies were carried out in solutions with sodium sulfate concentrations 0.1M, 0.5M, 1M, 1.5M and 2M; and at five different temperatures of 30, 35, 40, 45 and 50 °C in a pH range of 3–12. As per the experimental data, the corrosion rate of the alloy increased with the increase in temperature, and also with the increase in concentration of sodium sulfate in the medium. It was observed that the rate of corrosion decreased with the increase in pH. The activation parameters like activation energy, enthalpy of activation and entropy of activation for the corrosion process were calculated. The surface morphology of the alloy was examined before and after corrosion using scanning electron microscopy (SEM.

  1. The influence of laser alloying on the structure and mechanical properties of AlMg5Si2Mn surface layers

    Science.gov (United States)

    Pakieła, W.; Tański, T.; Brytan, Z.; Labisz, K.

    2016-04-01

    The goal of this paper was focused on investigation of microstructure and properties of surface layer produced during laser surface treatment of aluminium alloy by high-power fibre laser. The performed laser treatment involves remelting and feeding of Inconel 625 powder into the aluminium surface. As a base metal was used aluminium alloy AlMg5Si2Mn. The Inconel powder was injected into the melt pool and delivered by a vacuum feeder at a constant rate of 4.5 g/min. The size of Inconel alloying powder was in the range 60-130 µm. In order to remelt the aluminium alloy surface, the fibre laser of 3 kW laser beam power has been used. The linear laser scan rate of the beam was set 0.5 m/min. Based on performed investigations, it was possible to obtain the layer consisting of heat-affected zone, transition zone and remelted zone, without cracks and defects having much higher hardness value compared to the non-alloyed material.

  2. Direct transformation of calcium sulfite to {alpha}-calcium sulfate hemihydrate in a concentrated Ca-Mg-Mn chloride solution under atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baohong Guan; Hailu Fu; Jie Yu; Guangming Jiang; Bao Kong; Zhongbiao Wu [Zhejiang University, Hangzhou (China). Department of Environmental Engineering

    2011-01-15

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber sludge have been generated by coal burning power plants. Utilization of the sulfite-rich sludge for preparing {alpha}-calcium sulfate hemihydrate ({alpha}-HH), an important kind of cementitious material, is of particular interest to electric utilities and environmental preservation. In the experiment, calcium sulfite hemihydrate was directly transformed to {alpha}-HH without the occurrence of calcium sulfate dihydrate (DH). The transformation was performed in a concentrated CaCl{sub 2} solution containing Mg{sup 2+} and Mn{sup 2+} at 95{sup o}C, atmospheric pressure and low pH. The oxidation of calcium sulfite and the subsequent crystallization of {alpha}-HH constitute the whole conversion, during which the oxidation turns out to be the rate controlling step. Solid solution comprised of calcium sulfite hemihydrate and calcium sulfate was found to coexist with {alpha}-HH in the suspension. Calcium sulfate increases and calcium sulfite decreases spontaneously until the solid solution disappears. Thus, it is a potential alternative to utilize sulfite-rich FGD scrubber sludge for the direct preparation of {alpha}-HH. 36 refs., 10 figs., 1 tab.

  3. Influence of biodegradable polymer coatings on corrosion, cytocompatibility and cell functionality of Mg-2.0Zn-0.98Mn magnesium alloy.

    Science.gov (United States)

    Witecka, Agnieszka; Yamamoto, Akiko; Idaszek, Joanna; Chlanda, Adrian; Święszkowski, Wojciech

    2016-08-01

    Four kinds of biodegradable polymers were employed to prepare bioresorbable coatings on Mg-2.0Zn-0.98Mn (ZM21) alloy to understand the relationship between polymer characteristics, protective effects on substrate corrosion, cytocompatibility and cell functionality. Poly-l-lactide (PLLA), poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) or poly(lactic-co-glycolic) acid (PLGA) was spin-coated on ZM21, obtaining a smooth, non-porous coating less than 0.5μm in thickness. Polymer coating characterization, a degradation study, and biocompatibility evaluations were performed. After 4 w of immersion into cell culture medium, degradation of PLGA and PLLA coatings were confirmed by ATR-FTIR observation. The coatings of PLLA, PHB and PHBV, which have lower water permeability and slower degradation than PLGA, provide better suppression of initial ZM21 degradation and faster promotion of human osteosarcoma cell growth and differentiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Accumulation of Heavy Metals in Ricinus communis L. from Mn Contaminated Area

    Directory of Open Access Journals (Sweden)

    YI Xin-yu

    2014-02-01

    Full Text Available Xiangbi No. 1 and Zibi No. 7 were planted in the Mn contaminated soils to explore its potential of ecological remediation and ener-gy utilization in the areas of Mn contaminated site. The major nutrient elements and the concentrations of heavy metals(Mn, Pb, Zn, Cu and Cr in different parts(root, branch and leaf and topsoil samples were detected after entering into the period of reproductive growth.The results showed that the average content of Mn was as high as 7 884.96 mg·kg-1,which exceeded 6.5 times of national soil environmental quality standard(level 2.The mean level of Mn in tissues of Xiangbi No. 1 was found to be in the sequence of root>leaf>branch,whereas,the mean level of Mn in different parts of Zibi No. 7 was found to be in the order of leaf>fruit>branchroot respectively. The average concentration of Mn in the leaf reached the peak value(765.43 mg·kg-1,which was higher than Xiangbi No.1 about 79.53%.The leaf/root ratios of Pb, Cu, Cr contents in Zibi No. 7 were higher than those of Xiangbi No. 1 samples.The accumulation and translocation in plants was affect-ed by different heavy metal elements in soils.The results demonstrated that Zibi No. 7 had a better uptake and translocation capacity of Mn,Pb,Cu and Cr, meanwhile,plants of two species had differences in accumulation and translocation ability and were proved to possess good Mn-tolerance ability for remediation of heavy metal contaminated soils.

  5. EPR and optical properties of Eu{sup 2+} and Mn{sup 2+} co-doped MgSrAl{sub 10}O{sub 17} blue–green light emitting powder phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N. [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Singh, Vijay, E-mail: vijayjiin2006@yahoo.com [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Sivaramaiah, G. [Department of Physics, Government College (M), Kadapa 516 004 (India); Rao, J.L. [Department of Physics, Sri Venkateswara University, Tirupati 517 502 (India); Singh, Pramod K. [Materials Research Laboratory, Sharda University, Greater Noida 201 310 (India); Pathak, M.S. [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Dhoble, S.J. [Department of Physics, RTM Nagpur University, Nagpur 440 033 (India); Mohapatra, M. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2016-10-15

    Strong blue–green light emitting MgSrAl{sub 10}O{sub 17}:Eu{sup 2+},Mn{sup 2+} phosphor was synthesized by a low-temperature initiated, self-propagating and gas producing combustion process in a very short time (<5 min). Structural characterization of the luminescent material was studied with X-ray diffraction analysis and energy-dispersive X-ray analysis. The absorption spectrum exhibits bands due to Eu{sup 2+} and Mn{sup 3+} ions. The excitation spectrum shows a peak at 337 nm. Upon excitation at 337 nm, the emission spectrum exhibits an intense band centered at 462 nm due to transitions from the 4f{sup 6}5d{sup 1} to the 4f{sup 7} configuration of the Eu{sup 2+} ions, whereas sharp peak at 513 nm attributed to {sup 4}T{sub 1}→{sup 6}A{sub 1} transition of Mn{sup 2+} ions. The X-band EPR spectra of MgSrAl{sub 10}O{sub 17}:Eu{sup 2+},Mn{sup 2+} showed the presence of Eu{sup 2+} and Mn{sup 2+} ions.

  6. Nanocrystalline spinel ferrite (MFe{sub 2}O{sub 4}, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Phumying, Santi; Labuayai, Sarawuth; Swatsitang, Ekaphan; Amornkitbamrung, Vittaya [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand); Maensiri, Santi, E-mail: santimaensiri@gmail.com [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand)

    2013-06-01

    Graphical abstract: This figure shows the specific magnetization curves of the as-prepared MFe{sub 2}O{sub 4} (M = Ni, Co, Mn, Mg, Zn) powders obtained from room temperature VSM measurement. These curves are typical for a soft magnetic material and indicate hysteresis ferromagnetism in the field ranges of ±500 Oe, ±1000 Oe, and ±2000 Oe for the CoFe{sub 2}O{sub 4}, MgFe{sub 2}O{sub 4} and MnFe{sub 2}O{sub 4} respectively, whereas the samples of NiFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} show a superparamagnetic behavior. Highlights: ► Nanocrystalline MFe{sub 2}O{sub 4} powders were synthesized by a novel hydrothermal method. ► Metal acetylacetonates and aloe vera plant-extracted solution are used. ► This biosynthetic route is very simple and provides high-yield oxide nanomaterials. ► XRD and TEM results indicate that the prepared samples have only spinel structure. ► The maximum M{sub s} of 68.9 emu/g at 10 kOe were observed for the samples of MnFe{sub 2}O{sub 4}. - Abstract: Nanocrystalline spinel ferrite MFe{sub 2}O{sub 4} (M = Ni, Co, Mn, Mg, Zn) powders were synthesized by a novel hydrothermal method using Fe(acac){sub 3}, M(acac){sub 3} (M = Ni, Co, Mn, Mg, Zn) and aloe vera plant extracted solution. The X-ray diffraction and selected-area electron diffraction results indicate that the synthesized nanocrystalline have only spinel structure without the presence of other phase impurities. The crystal structure and morphology of the spinel ferrite powders, as revealed by TEM, show that the NiFe{sub 2}O{sub 4} and CoFe{sub 2}O{sub 4} samples contain nanoparticles, whereas the MnFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4} samples consist of many nanoplatelets and nanoparticles. Interestingly, the ZnFe{sub 2}O{sub 4} sample contains plate-like structure of networked nanocrystalline particles. Room temperature magnetization results show a ferromagnetic behavior of the CoFe{sub 2}O{sub 4}, MnFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4} samples, whereas the

  7. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+.

    OpenAIRE

    Duguid, J G; Bloomfield, V A; Benevides, J M; Thomas, G J

    1995-01-01

    Differential scanning calorimetry, laser Raman spectroscopy, optical densitometry, and pH potentiometry have been used to investigate DNA melting profiles in the presence of the chloride salts of Ba2+, Sr2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+. Metal-DNA interactions have been observed for the molar ratio [M2+]/[PO2-] = 0.6 in aqueous solutions containing 5% by weight of 160 bp mononucleosomal calf thymus DNA. All of the alkaline earth metals, plus Mn2+, elevate the melting temperature of ...

  8. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd.

    Science.gov (United States)

    Duguid, J; Bloomfield, V A; Benevides, J; Thomas, G J

    1993-11-01

    Interactions of divalent metal cations (Mg2+, Ca2+, Ba2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) with DNA have been investigated by laser Raman spectroscopy. Both genomic calf-thymus DNA (> 23 kilobase pairs) and mononucleosomal fragments (160 base pairs) were employed as targets of metal interaction in solutions containing 5 weight-% DNA and metal:phosphate molar ratios of 0.6:1. Raman difference spectra reveal that transition metal cations (Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) induce the greatest structural changes in B-DNA. The Raman (vibrational) band differences are extensive and indicate partial disordering of the B-form backbone, reduction in base stacking, reduction in base pairing, and specific metal interaction with acceptor sites on the purine (N7) and pyrimidine (N3) rings. Many of the observed spectral changes parallel those accompanying thermal denaturation of B-DNA and suggest that the metals link the bases of denatured DNA. While exocyclic carbonyls of dT, dG, and dC may stabilize metal ligation, correlation plots show that perturbations of the carbonyls are mainly a consequence of metal-induced denaturation of the double helix. Transition metal interactions with the DNA phosphates are weak in comparison to interactions with the bases, except in the case of Cu2+, which strongly perturbs both base and phosphate group vibrations. On the other hand, the Raman signature of B-DNA is largely unperturbed by Mg2+, Ca2+, Sr2+, and Ba2+, suggesting much weaker interactions of the alkaline earth metals with both base and phosphate sites. A notable exception is a moderate perturbation by alkaline earths of purine N7 sites in 160-base pair DNA, with Ca2+ causing the greatest effect. Correlation plots demonstrate a strong interrelationship between perturbations of Raman bands assigned to ring vibrations of the bases and those of bands assigned to exocyclic carbonyls and backbone phosphodiester groups. However, strong correlations do not occur between

  9. The structure of the local interstellar medium. VI. New Mg II, Fe II, and Mn II observations toward stars within 100 pc

    International Nuclear Information System (INIS)

    Malamut, Craig; Redfield, Seth; Linsky, Jeffrey L.; Wood, Brian E.; Ayres, Thomas R.

    2014-01-01

    We analyze high-resolution spectra obtained with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope toward 34 nearby stars (≤100 pc) to record Mg II, Fe II, and Mn II absorption due to the local interstellar medium (LISM). Observations span the entire sky, probing previously unobserved regions of the LISM. The heavy ions studied in this survey produce narrow absorption features that facilitate the identification of multiple interstellar components. We detected one to six individual absorption components along any given sight line, and the number of absorbers roughly correlates with the pathlength. This high-resolution near-ultraviolet (NUV) spectroscopic survey was specifically designed for sight lines with existing far-UV (FUV) observations. The FUV spectra include many intrinsically broad absorption lines (i.e., of low atomic mass ions) and are often observed at medium resolution. The LISM NUV narrow-line absorption component structure presented here can be used to more accurately interpret the archival FUV observations. As an example of this synergy, we present a new analysis of the temperature and turbulence along the line of sight toward ε Ind. The new observations of LISM velocity structure are also critical in the interpretation of astrospheric absorption derived from fitting the saturated H I Lyα profile. As an example, we reanalyze the spectrum of λ And and find that this star likely does have an astrosphere. Two stars in the sample that have circumstellar disks (49 Cet and HD141569) show evidence for absorption due to disk gas. Finally, the substantially increased number of sight lines is used to test and refine the three-dimensional kinematic model of the LISM and search for previously unidentified clouds within the Local Bubble. We find that every prediction made by the Redfield and Linsky kinematic model of the LISM is confirmed by an observed component in the new lines of sight.

  10. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    International Nuclear Information System (INIS)

    Fuchs, Dominik; Daniel, Volker; Sadeghi, Mahmoud; Opelz, Gerhard; Naujokat, Cord

    2010-01-01

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity of P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.

  11. The effect of high charging rates activation on the specific discharge capacity and efficiency of a negative electrode based on a LaMgAlMnCoNi alloy

    International Nuclear Information System (INIS)

    Ferreira, E.A.; Zarpelon, L.M.C.; Casini, J.C.S.; Takiishi, H.; Faria, R.N.

    2009-01-01

    A nickel-metal hydride (Ni-MH) rechargeable battery has been prepared using a La 0.7 Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy as the negative electrode. The maximum discharge capacity of the La 0.7 Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy has been determined (350 mAh/g). Using a high starting charging rate (2857 mAg -1 ) an efficiency of 49% has been achieved in the 4 th cycle. The alloy and powders have been characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD). (author)

  12. Analysis of (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8}:Eu{sup 2+}, Mn{sup 2+} phosphors for application in solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.K. [University of California, San Diego, Materials Science and Engineering Program, La Jolla, CA 92093 (United States); Piqutte, A.; Hannah, M.E. [OSRAM SYLVANIA Central Research, 71 Cherry Hill Drive Beverly, MA 01915 (United States); Hirata, G.A. [Centro de Nanociencias y Nanotecnolgía, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada Apdo, Ensenada MX CP 22860 (Mexico); Talbot, J.B. [University of California, San Diego, Materials Science and Engineering Program, La Jolla, CA 92093 (United States); University of California, San Diego, Department of Nanoengineering, La Jolla, CA 92093 (United States); Mishra, K.C. [OSRAM SYLVANIA Central Research, 71 Cherry Hill Drive Beverly, MA 01915 (United States); McKittrick, J., E-mail: jmckittrick@ucsd.edu [University of California, San Diego, Materials Science and Engineering Program, La Jolla, CA 92093 (United States); University of California, San Diego, Department of Mechanical and Aerospace Engineering, La Jolla, CA 92093 (United States)

    2014-04-15

    The luminescence properties of Eu{sup 2+} and Mn{sup 2+} co-activated (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8} phosphors prepared by combustion synthesis were studied. Eu{sup 2+}-activated (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8} has a broad blue emission band centered at 450–485 nm and Eu{sup 2+}–Mn{sup 2+}-activated (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8} exhibits a red emission around 620–703 nm, depending on the relative concentrations of Ba, Ca and Sr. The particle size of Eu{sup 2+} and Mn{sup 2+} co-activated (Ba,Ca){sub 3}MgSi{sub 2}O{sub 8} ranges from 300 nm to 1 μm depending on the metal ion and are agglomerated due to post-synthesis, high temperature annealing. The green emission of Ba{sub 3}MgSi{sub 2}O{sub 8} originates from secondary phases (Ba{sub 2}SiO{sub 4} and BaMgSiO{sub 4}) confirmed by emission spectra and X-ray diffraction patterns. The secondary phases of Ba{sub 3}MgSi{sub 2}O{sub 8} are removed by the addition of Sr. The quantum efficiencies range from 45% to 70% under 400 nm excitation and the lifetime of red emission of Ba{sub 3}MgSi{sub 2}O{sub 8} decreases significantly with increasing temperature, which is 54% at 400 K of that at 80 K compared to that of blue emission (90% at 400 K of that at 80 K). -- highlights: • (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8}:Eu{sup 2+}, Mn{sup 2+} phosphors were prepared by a combustion synthesis method. • The emission spectra consist of broad blue-emission band and red-emission band. • The quantum efficiencies range between 45% and 70%, depending on the relative concentrations of Ba, Ca and Sr. • The secondary phases were eliminated by additions of Sr. • Lifetime of the red-emission decreases with increasing temperature, suggesting that these phosphors are not useful for solid state lighting applications.

  13. Attestation in self-propagating combustion approach of spinel AFe{sub 2}O{sub 4} (A = Co, Mg and Mn) complexes bearing mixed oxidation states: Magnetostructural properties

    Energy Technology Data Exchange (ETDEWEB)

    Bennet, J., E-mail: b.eenneett@gmail.com [Department of Physics, College of Engineering, Guindy, Anna University, Sardar Patel Road, Chennai,600025 (India); Tholkappiyan, R. [Department of Physics, College of Engineering, Guindy, Anna University, Sardar Patel Road, Chennai,600025 (India); Department of Physics, College of Science, UAE University, Al Ain 15551 (United Arab Emirates); Vishista, K.; Jaya, N. Victor [Department of Physics, College of Engineering, Guindy, Anna University, Sardar Patel Road, Chennai,600025 (India); Hamed, Fathalla [Department of Physics, College of Science, UAE University, Al Ain 15551 (United Arab Emirates)

    2016-10-15

    Highlights: • Spinel type ferrite compounds AFe{sub 2}O{sub 4} (A = Co, Mg and Mn) have been successfully prepared by self-propagating combustion method using glycine as fuel. • To investigate and confirms the presence of phases in the synthesized ferrite nanoparticles by XRD and FTIR analysis. • The formation of mixed oxidation state of cobalt (Co{sup 2+} and Co{sup 3+}), iron (Fe{sup 2+} and Fe{sup 3+}) and manganese (Mn{sup 2+} and Mn{sup 3+}) ions were studied and confirmed from XPS analysis. • The magnetic properties of the synthesized ferrites were studied by VSM measurement. - Abstract: Spinel type nano-sized ferrite compounds AFe{sub 2}O{sub 4} (A = Co, Mg and Mn) have been successfully prepared by self-propagating combustion method using glycine as fuel at 400 °C under air atmosphere for 4 h. The crystal structure, chemical composition, morphology and magnetic properties of the synthesized samples were characterized by X−ray diffraction, Fourier transform infrared spectroscopy, X−ray photoelectron spectroscopy, Energy dispersive X−ray, Scanning and Transmission electron microscopy and vibrating sample magnetometer. The chemical reaction and role of fuel on the nanoparticles formation were discussed. The XRD pattern of the synthesized samples shows the formation of pure phase with average crystallite size of 97, 57 and 98 nm from Scherrer formula and 86, 54 and 87 nm from Williamson and Hall (W–H) formula respectively. FTIR absorption spectra revealed that the presence of strong absorption peaks near 400–600 cm{sup −1} corresponds to tetrahedral and octahedral complex of spinel ferrites. The relative concentrations of electronic states of elements such as cobalt (Co{sup 2+} and Co{sup 3+}), iron (Fe{sup 2+} and Fe{sup 3+}) and manganese (Mn{sup 2+} and Mn{sup 3+}) oxidation states were studied from XPS and it is found that 55% of Fe ions are in Fe{sup 2+} state and the remaining is in Fe{sup 3+} state and thus the cationic distribution

  14. Effect of annealing treatment on structure and electrochemical performance of quenched MmNi4.2Co0.3Mn0.4Al0.3Mg0.03 hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhou Zenglin; Song Yueqing; Cui Shun; Huang Changgeng; Qian Wenlian; Lin Chenguang; Zhang Yongjian; Lin Yulin

    2010-01-01

    MmNi 4.2 Co 0.3 Mn 0.4 Al 0.3 Mg 0.03 hydrogen storage alloy was prepared by single-roll rapid quenching followed by different annealing treatments for 8 h at 1133 K, 1173 K, 1213 K, and 1253 K, respectively. Alloy structure, phase composition, pressure-composition-temperature (PCT) properties, and electrochemical performance of different annealed alloys have been investigated by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), energy dispersion spectrometer (EDS), automatic Sieverts-type apparatus, and electrochemical experiments. Electrochemical experiments indicate that the annealing treatment at 1213 K extends cycle life from 193 cycles to 358 cycles, increases the maximum discharge capacity, and slightly decreases the activation behavior. Alloy structure analyses show that the improvement in cycle life is attributed to the formation of a single CaCu 5 -type structure or the relief of an Mg-containing AlMnNi 2 -type second phase. Pressure composition isotherms results illustrate that both the hydrogen absorption capability and the dehydriding equilibrium pressure go up with increased annealing temperature. For its good performance/cost ratio, the Mg-added low-Co alloy annealed at 1213 K would be a promising substitution for MmNi 4.05 Co 0.45 Mn 0.4 Al 0.3 alloy product.

  15. Enhancement of Mechanical Properties of Extruded Mg-9Al-1Zn-1MM-0.7CaO-0.3Mn Alloy Through Pre-aging Treatment

    Science.gov (United States)

    Jeong, Seok Hoan; Kim, Yong Joo; Kong, Kyung Ho; Cho, Tae Hee; Kim, Young Kyun; Lim, Hyun Kyu; Kim, Won Tae; Kim, Do Hyang

    2018-03-01

    The effect of pre-aging treatment before extrusion has been investigated in Mg-9.0Al-1.0Zn-1MM-0.7CaO-0.3Mn alloy. The as-cast microstructure consists of α-Mg dendrite with secondary solidification phase particles, (Mg, Al)2Ca, β-Mg17Al12 and Al11RE3 at the inter-dendritic region. After extrusion, β-Mg17Al12 precipitates are present, but higher density and more homogeneous distribution in pre-aged alloy. In addition, μm-scale banded bulk β-Mg17Al12 particles are generated during extrusion. Al11RE3 particles are broken into small particles, and are aligned along the extrusion direction. (Mg, Al)2Ca particles are only slightly elongated along the extrusion direction, providing stronger particle stimulated nucleation (PSN) effect by severe deformation during extrusion. The mechanical properties can be significantly enhanced by introducing pre-aging treatment, i.e. β-Mg17Al12 precipitates provide grain refining and strengthening effects and (Mg, Al)2Ca particles provide PSN effect.

  16. Tunable-color luminescence via energy transfer in NaCa13/18Mg5/18PO4:A (A = Eu2+/Tb3+/Mn2+, Dy3+) phosphors for solid state lighting.

    Science.gov (United States)

    Li, Kai; Fan, Jian; Mi, Xiaoyun; Zhang, Yang; Lian, Hongzhou; Shang, Mengmeng; Lin, Jun

    2014-11-17

    A series of NaCa13/18Mg5/18PO4(NCMPO):A (A = Eu(2+)/Tb(3+)/Mn(2+), Dy(3+)) phosphors have been prepared by the high-temperature solid-state reaction method. The X-ray diffraction (XRD) and Rietveld refinement, X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), cathodoluminescence (CL), decay lifetimes, and PL quantum yields (QYs) were utilized to characterize the phosphors. The pure crystalline phase of as-prepared samples has been demonstrated via XRD measurement and Rietveld refinements. XPS reveals that the Eu(2+)/Tb(3+)/Mn(2+) can be efficiently doped into the crystal lattice. NCMPO:Eu(2+)/Tb(3+)/Mn(2+) phosphors can be effectively excited under UV radiation, which show tunable color from purple-blue to red including white emission based on energy transfer from Eu(2+) to Tb(3+)/Mn(2+) ions. Under low-voltage electron beam bombardment, the NCMPO:A (A = Eu(2+)/Tb(3+)/Mn(2+), Dy(3+)) display their, respectively, characteristic emissions with different colors, and the CL spectrum of NCMPO:0.04Tb(3+) has the comparable intensity to the ZnO:Zn commercial product. In addition, the calculated CIE coordinate of NCMPO:0.04Tb(3+) (0.252, 0.432) is more saturated than it (0.195, 0.417). These results reveal that NCMPO:A (A = Eu(2+)/Tb(3+)/Mn(2+), Dy(3+)) may be potential candidate phosphors for WLEDs and FEDs.

  17. Structural, magnetic and Moessbauer spectral studies of aluminum substituted Mg-Mn-Ni ferrites (Mg{sub 0.2}Mn{sub 0.5}Ni{sub 0.3}Al{sub y}Fe{sub 2-y}O{sub 4})

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Satish, E-mail: satishapurva@gmail.com [Department of Physics, Govt. P.G. College, Solan-173212 (India); Chand, Jagdish [Department of Physics, Govt. P.G. College, Solan-173212 (India); Batoo, Khalid Mujasam [King Abdullah Institute of Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Singh, M. [Department of Physics, Himachal Pradesh University, Summer-Hill, Shimla-171005 (India)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Single phase nanocrystalline Al{sup 3+} ions doped Mg-Mn-Ni ferrite have been synthesized by citrate precursor method. Black-Right-Pointing-Pointer Particle size decreases as non-magnetic Al content increases. Black-Right-Pointing-Pointer The presence of doublets in the Moessbauer spectra can be attributed to superparamagnetic relaxation. - Abstract: Nanocrystalline Al{sup 3+} ions doped Mg{sub 0.2}Mn{sub 0.5}Ni{sub 0.3}Al{sub y}Fe{sub 2-y}O{sub 4} compositions, where y = 0.0, 0.05 and 0.10 have been synthesized by citrate precursor method. Crystal structure and magnetic properties have been investigated at 300 K by means of X-ray diffraction, transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and Moessbauer spectra measurements. XRD study reveals that particle size decreases from 102.25 nm to 41.65 nm. A decrease in lattice constant and saturation magnetization was attributed to smaller ionic radius of Al{sup 3+} ions and weakening of super exchange interaction. Experimental and X-ray density decrease with increasing aluminum concentration. Though Moessbauer spectra of y = 0.0 exhibit normal Zeeman split sextets, spectra of samples for y = 0.05 and 0.10 are characterized by simultaneous presence of a central paramagnetic doublet. Dependence of Moessbauer parameters such as isomer shift, quadrupole splitting, linewidth and hyperfine magnetic field on Al{sup 3+} ions concentration have been discussed. Initial permeability '{mu}{sub i}', saturation magnetization (4 {pi}M{sub S}), retentivity (M{sub R}), Bohr magneton number (n{sub B}{sup N}), magneto crystalline anisotropy constant (K{sub 1}) and magnetic loss decreases while coercivity (H{sub C}) increases with increasing substitution of Al{sup 3+} ions. Magnetic loss has very low value in the range of 10{sup -3} which is two orders of magnitude less than samples prepared by conventional method.

  18. Mild hydrothermal crystal growth of new uranium(IV) fluorides, Na3.13Mg1.43U6F30 and Na2.50Mn1.75U6F30: Structures, optical and magnetic properties

    Science.gov (United States)

    Yeon, Jeongho; Smith, Mark D.; Tapp, Joshua; Möller, Angela; zur Loye, Hans-Conrad

    2016-04-01

    Two new uranium(IV) fluorides, Na3.13Mg1.43U6F30 (1) and Na2.50Mn1.75U6F30 (2), were synthesized through an in situ mild hydrothermal route, and were structurally characterized by single crystal X-ray diffraction. The compounds exhibit complex crystal structures composed of corner- or edge-shared UF9 and MF6 (M=Mg, Mn) polyhedra, forming hexagonal channels in the three-dimensional framework, in which ordered or disordered divalent metal and sodium atoms reside. The large hexagonal voids contain the nearly regular M(II)F6 octahedra and sodium ions, whereas the small hexagonal cavities include M(II) and sodium ions on a mixed-occupied site. Magnetic susceptibility measurements yielded effective magnetic moments of 8.36 and 11.6 μB for 1 and 2, respectively, confirming the presence and oxidation states of U(IV) and Mn(II). The large negative Weiss constants indicate the spin gap between a triplet and a singlet state in the U(IV). Magnetization data as a function of applied fields revealed that 2 exhibits paramagnetic behavior due to the nonmagnetic singlet ground state of U(IV) at low temperature. UV-vis diffuse reflectance and X-ray photoelectron spectroscopy data were also analyzed.

  19. Corrosion behaviors of Zn/Al-Mn alloy composite coatings deposited on magnesium alloy AZ31B (Mg-Al-Zn)

    International Nuclear Information System (INIS)

    Zhang Jifu; Zhang Wei; Yan Chuanwei; Du Keqin; Wang Fuhui

    2009-01-01

    After being pre-plated a zinc layer, an amorphous Al-Mn alloy coating was applied onto the surface of AZ31B magnesium alloy with a bath of molten salts. Then the corrosion performance of the coated magnesium alloy was examined in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the single Zn layer was active in the test solution with a high corrosion rate while the Al-Mn alloy coating could effectively protect AZ31B magnesium alloy from corrosion in the solution. The high corrosion resistance of Al-Mn alloy coating was ascribed to an intact and stable passive film formed on the coating. The performances of the passive film on Al-Mn alloy were further investigated by Mott-Schottky curve and X-ray photoelectron spectroscopy (XPS) analysis. It was confirmed that the passive film exhibited n-type semiconducting behavior in 3.5% NaCl solution with a carrier density two orders of magnitude less than that formed on pure aluminum electrode. The XPS analysis indicated that the passive film was mainly composed of AlO(OH) after immersion for long time and the content of Mn was negligible in the outer part of the passive film. Based on the EIS measurement, electronic structure and composition analysis of the passive film, a double-layer structure, with a compact inner oxide and a porous outer layer, of the film was proposed for understanding the corrosion process of passive film, with which the experimental observations might be satisfactorily interpreted.

  20. Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics

    OpenAIRE

    Yan, Yongke; Cho, Kyung-Hoon; Priya, Shashank

    2012-01-01

    In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3) O-3-0.25PbZrO(3)-0.35PbTiO(3) (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 degrees C) and Curie temperature (T-C of 234 degrees C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol.% BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling f...

  1. Ion microprobe assessment of the heterogeneity of Mg/Ca, Sr/Ca and Mn/Ca ratios in Pecten maximus and Mytilus edulis (bivalvia shell calcite precipitated at constant temperature

    Directory of Open Access Journals (Sweden)

    P. S. Freitas

    2009-07-01

    Full Text Available Small-scale heterogeneity of biogenic carbonate elemental composition can be a significant source of error in the accurate use of element/Ca ratios as geochemical proxies. In this study ion microprobe (SIMS profiles showed significant small-scale variability of Mg/Ca, Sr/Ca and Mn/Ca ratios in new shell calcite of the marine bivalves Pecten maximus and Mytilus edulis that was precipitated during a constant-temperature culturing experiment. Elevated Mg/Ca, Sr/Ca and Mn/Ca ratios were found to be associated with the deposition of elaborate shell features, i.e. a shell surface stria in P. maximus and surface shell disturbance marks in both species, the latter a common occurrence in bivalve shells. In both species the observed small-scale elemental heterogeneity most likely was not controlled by variable transport of ions to the extra-pallial fluid, but by factors such as the influence of shell organic content and/or crystal size and orientation, the latter reflecting conditions at the shell crystal-solution interface. In the mid and innermost regions of the P. maximus shell the lack of significant small-scale variation of Mg/Ca ratios, which is consistent with growth at constant temperature, suggest a potential application as a palaeotemperature proxy. Cross-growth band element/Ca ratio profiles in the interior of bivalve shells may provide more promising palaeo-environmental tools than sampling from the outer region of bivalve shells.

  2. Effect of Pulse Laser Welding Parameters and Filler Metal on Microstructure and Mechanical Properties of Al-4.7Mg-0.32Mn-0.21Sc-0.1Zr Alloy

    Directory of Open Access Journals (Sweden)

    Irina Loginova

    2017-12-01

    Full Text Available The effect of pulse laser welding parameters and filler metal on microstructure and mechanical properties of the new heat-treatable, wieldable, cryogenic Al-4.7Mg-0.32Mn-0.21Sc-0.1Zr alloy were investigated. The optimum parameters of pulsed laser welding were found. They were 330–340 V in voltage, 0.2–0.25 mm in pulse overlap with 12 ms duration, and 2 mm/s speed and ramp-down pulse shape. Pulsed laser welding without and with Al-5Mg filler metal led to the formation of duplex (columnar and fine grains as-cast structures with hot cracks and gas porosity as defects in the weld zone. Using Al-5Ti-1B filler metal for welding led to the formation of the fine grain structure with an average grain size of 4 ± 0.2 µm and without any weld defects. The average concentration of Mg is 2.8%; Mn, 0.2%; Zr, 0.1%; Sc, 0.15%; and Ti, 2.1% were formed in the weld. The ultimate tensile strength (UTS of the welded alloy with AlTiB was 260 MPa, which was equal to the base metal in the as-cast condition. The UTS was increased by 60 MPa after annealing at 370 °C for 6 h that was 85% of UTS of the base alloy.

  3. Hydrogen storage and microstructure investigations of La0.7-xMg0.3PrxAl0.3Mn0.4Co0.5Ni3.8 alloys

    International Nuclear Information System (INIS)

    Galdino, G.S.; Casini, J.C.S.; Ferreira, E.A.; Faria, R.N.; Takiishi, H.

    2010-01-01

    The effects of substitution of Pr for La in the hydrogen storage capacity and microstructures of La 0.7-x Pr x Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 (x=0, 0.1, 0.3, 0.5, 0.7) alloys electrodes have been studied. X-ray diffraction (XRD), scanning electron microscopy, energy dispersive spectrometry (EDS) and electrical tests were carried out in a the alloys and electrodes. Cycles of charge and discharge have also been carried out in the Ni/MH (Metal hydride) batteries based on the alloys negative electrodes. (author)

  4. Los elementos traza (Mg, Sr, Ha, Fe, Mn) en carbonatos: ambiente genético del Karst del techo de la unidad intermedia de la Cuenca neógena de Madrid.

    OpenAIRE

    Cañaveras Jiménez, Juan Carlos; Ordóñez Delgado, Salvador; Hoyos Gómez, Manuel; Calvo Sorando, José Pedro

    1992-01-01

    Este trabajo trata de caracterizar geoquímicamente el karst del techo de la U. Intermedia del Mioceno en las partes centrales de la Cuenca de Madrid. Para ello se han estudiado una serie de elementos traza (Mg, Sr, Na, Fe y Mn) mediante fluorescencia de rayos X. En base a este estudio se han distinguido dos tipos de procesos: De reemplazamiento y/o recristalización, que implican la litificación y homogeneización química de un sedimento calcítico-dolomítico; y procesos de precipitación química...

  5. Magnetic soft mode behaviour investigated via multi-spin flip Raman spectroscopy on near surface Cd{sub 1-x}Mn{sub x}Te/Cd{sub 1-y}Mg{sub y}Te quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Kehl, Christian

    2011-03-28

    The main motivation for this thesis was the experimental confirmation of the theoretically predicted magnetic soft mode and the analysis of its dependence on the hole-concentration and external B-field, as well as its disappearance with increasing sample temperature. For that purpose, CdMnTe/CdMgTe QWs (Mn: 0.6%, 1.0%) positioned close to the sample surface (13-19 nm) were investigated in an in-plane applied external magnetic field (up to 4.5 T in Voigt-geometry) via a two-colour experiment i.e. using two light sources. This allows the spin excitation of Mn-ions by simultaneously tuning the hole-concentration towards the ferromagnetic phase transition by photo-generated carriers. Thus, one tuneable laser is responsible for resonant below-barrier excitation as a probe for Multi-SF Raman scattering. The other laser excites photo-generated carriers from above barrier (2.41 eV) for tuning the hole concentration in the QW. Positioning the QW close to the sample surface causes a surface-induced p-doping of the QW (intrinsic hole concentration in the QW) and enables the active tuning of the hole concentration by photo-generated carriers due to different tunnelling behaviour of electrons and holes from the QW to the surface. The Mn-g-factor was decreased by quasi-continuously increasing the above-barrier illumination, while the below-barrier excitation was kept at a constant low power. This results in a Mn-g-factor reduction starting from its atomic value g=2.01 to lowest evaluated Mn-g-factor in this thesis g=1.77. This is a magnetic softening of 12%. Apart from the general magnetic soft mode behaviour at low temperatures, one of the main experimental results in this thesis is the confirmation of the theoretical prediction that the magnetic soft mode behaviour in the external B-field does not only depend on the carrier concentration but also on the B-field strength itself. An additional aspect is the temperature dependence of the magnetic soft mode. The Mn

  6. High-Pressure Phase Relations and Crystal Structures of Postspinel Phases in MgV2O4, FeV2O4, and MnCr2O4: Crystal Chemistry of AB2O4 Postspinel Compounds.

    Science.gov (United States)

    Ishii, Takayuki; Sakai, Tsubasa; Kojitani, Hiroshi; Mori, Daisuke; Inaguma, Yoshiyuki; Matsushita, Yoshitaka; Yamaura, Kazunari; Akaogi, Masaki

    2018-06-04

    We have investigated high-pressure, high-temperature phase transitions of spinel (Sp)-type MgV 2 O 4 , FeV 2 O 4 , and MnCr 2 O 4 . At 1200-1800 °C, MgV 2 O 4 Sp decomposes at 4-7 GPa into a phase assemblage of MgO periclase + corundum (Cor)-type V 2 O 3 , and they react at 10-15 GPa to form a phase with a calcium titanite (CT)-type structure. FeV 2 O 4 Sp transforms to CT-type FeV 2 O 4 at 12 GPa via decomposition phases of FeO wüstite + Cor-type V 2 O 3 . MnCr 2 O 4 Sp directly transforms to the calcium ferrite (CF)-structured phase at 10 GPa and 1000-1400 °C. Rietveld refinements of CT-type MgV 2 O 4 and FeV 2 O 4 and CF-type MnCr 2 O 4 confirm that both the CT- and CF-type structures have frameworks formed by double chains of edge-shared B 3+ O 6 octahedra (B 3+ = V 3+ and Cr 3+ ) running parallel to one of orthorhombic cell axes. A relatively large A 2+ cation (A 2+ = Mg 2+ , Fe 2+ , and Mn 2+ ) occupies a tunnel-shaped space formed by corner-sharing of four double chains. Effective coordination numbers calculated from eight neighboring oxygen-A 2+ cation distances of CT-type MgV 2 O 4 and FeV 2 O 4 and CF-type MnCr 2 O 4 are 5.50, 5.16, and 7.52, respectively. This implies that the CT- and CF-type structures practically have trigonal prism (six-coordinated) and bicapped trigonal prism (eight-coordinated) sites for the A 2+ cations, respectively. A relationship between cation sizes of VIII A 2+ and VI B 3+ and crystal structures (CF- and CT-types) of A 2+ B 2 3+ O 4 is discussed using the above new data and available previous data of the postspinel phases. We found that CF-type A 2+ B 2 3+ O 4 crystallize in wide ionic radius ranges of 0.9-1.4 Å for VIII A 2+ and 0.55-1.1 Å for VI B 3+ , whereas CT-type phases crystallize in very narrow ionic radius ranges of ∼0.9 Å for VIII A 2+ and 0.6-0.65 Å for VI B 3+ . This would be attributed to the fact that the tunnel space of CT-type structure is geometrically less flexible due to the smaller coordination

  7. CHARACTERIZATION OF COMMERCIALLY AVAILABLE ALKALI RESISTANT GLASS FIBER FOR CONCRETE REINFORCEMENT AND CHEMICAL DURABILITY COMPARISON WITH SrO-Mn2O3-Fe2O3-MgO-ZrO2-SiO2 (SMFMZS SYSTEM GLASSES

    Directory of Open Access Journals (Sweden)

    Göktuğ GÜNKAYA

    2012-12-01

    Full Text Available According to the relevant literature, the utilization of different kind of glass fibers in concrete introduces positive effect on the mechanical behavior, especially toughness. There are many glassfibers available to reinforce concretes. Glass fiber composition is so important because it may change the properties such as strength, elastic modulus and alkali resistance. Its most important property to be used in concrete is the alkali resistance. Some glasses of SrO–MgO–ZrO2–SiO2 (SMZS quaternary system, such as 26SrO, 20MgO, 14ZrO2, 40SiO2 (Zrn glass, have been found to be highly alkali resistant thanks to their high ZrO2 and MgO contents. Previous researches on these glasses with MnO and/or Fe2O3 partially replacing SrO have been made with the aim of improving the chemical resistance and decreasing the production cost.The main target of the present study, first of all, was to characterize commercially available alkali resistant glass fiber for concrete reinforcement and then to compare its alkali durability with those of the SrO-Mn2O3-Fe2O3-MgO-ZrO2-SiO2 (SMFMZS system glasses. For such purposes, XRF, Tg-DTA, alkali resistance tests and SEM analysis conducted with EDX were employed. According tothe alkali endurance test results it was revealed that some of the SMFMZS system glass powders are 10 times resistant to alkali environments than the commercial glass fibers used in this study.Therefore, they can be considered as alternative filling materials on the evolution of chemically resistant concrete structures.

  8. Magnetic and Moessbauer study of Mg{sub 0.9}Mn{sub 0.1}Cr{sub x}Fe{sub 2-x}O{sub 4} ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Widatallah, H.; Gismelseed, A.; Bouziane, K.; Yousif, A.; Al Rawas, A.; Al-Omari, I.; Sellai, A. [Sultan Qaboos University, Department of Physics, College of Science (Oman)

    2006-02-15

    The ferrites Mg{sub 0.9}Mn{sub 0.1}Cr{sub x}Fe{sub 2-x}O{sub 4} (0x0.9) were prepared using the conventional double sintering method. The XRD showed that the samples maintain a single spinel cubic phase. The Moessbauer measurements were carried out at room and liquid nitrogen temperatures. From the area ratios of the A and B sites, it was found that the Fe cation population of the A and B sites decreases in proportion to Cr concentration. The contact hyperfine fields at the A and B sites were found to decrease with increasing Cr contents. This was found to be in approximate agreement with the results of magnetization measurement. The distributions of Mg and Mn cations versus Cr concentration were also determined using the Moessbauer and magnetization results. The Curie temperatures were determined and found to agree with the reported values. As the Cr contents increases the relative magnetization, was found to increase at low temperatures and decreases at higher temperatures.

  9. INFLUENCE OF THE HOMOGENIZATION TEMPERATURE ON THE MICROSTRUCTURE AND PROPERTIES OF AlSi10CuNiMgMn ALLOY

    Directory of Open Access Journals (Sweden)

    Jaromir Cais

    2017-03-01

    Full Text Available The article examines the impact of changes in homogenization temperature in the hardening process on the microstructure of aluminum alloys. Samples where the research was conducted were cast from AlSi10CuNiMn alloy produced by gravity casting technology in metal mold. Subsequently, the castings were subjected to a heat treatment. In an experiment with changing temperature and staying time in the process of homogenization. The microstructure of the alloy was investigated by methods of light and electron microscopy. Examination of the microstructure has focused on changing the morphology of separated particles of eutectic silicon and intermetallic phases. Analysis of intermetallic phases was supplemented by an analysis of the chemical composition - EDS analysis. Effect of heat treatment on the properties investigated alloy was further complemented by Vickers microhardness. Investigated alloy is the result of longtime research conducted at Faculty of Production Technology and Management.

  10. Magnetotransport properties of c-axis oriented La0.7Sr0.3MnO3 thin films on MgO-buffered SiO2/Si substrates

    International Nuclear Information System (INIS)

    Kang, Young-Min; Ulyanov, Alexander N.; Shin, Geo-Myung; Lee, Sung-Yun; Yoo, Dae-Gil; Yoo, Sang-Im

    2009-01-01

    c-axis oriented La 0.7 Sr 0.3 MnO 3 (LSMO) films on MgO-buffered SiO 2 /Si substrates were prepared, and their texture, microstructure, and magnetotransport properties were studied and compared to epitaxial LSMO/MgO (001) and polycrystalline LSMO/SiO 2 /Si films. c-axis oriented MgO buffer layers were obtained on amorphous SiO 2 layer through rf sputter deposition at low substrate temperature and consequent postannealing processes. In situ pulsed laser deposition-grown LSMO films, deposited on the MgO layer, show strong c-axis texture, but no in-plane texture. The c-axis oriented LSMO films which are magnetically softer than LSMO/SiO 2 /Si films exhibit relatively large low field magnetoresistance (LFMR) and sharper MR drop at lower field. The large LFMR is attributed to a spin-dependent scattering of transport current at the grain boundaries

  11. Magnetization and ESR studies of La{sub 0.67}(Ca{sub 1−x}Mg{sub x}){sub 0.33}MnO{sub 3} systems

    Energy Technology Data Exchange (ETDEWEB)

    Sendil Kumar, A., E-mail: sendilphy@gmail.com [School of Physics, University of Hyderabad, Hyderabad, Telangana, 500 046 (India); Ravinder Reddy, K [School of Engineering Sciences & Technology, University of Hyderabad, Hyderabad, Telangana, 500 046 (India); Bhatnagar, Anil K. [School of Physics, University of Hyderabad, Hyderabad, Telangana, 500 046 (India); School of Engineering Sciences & Technology, University of Hyderabad, Hyderabad, Telangana, 500 046 (India)

    2015-08-05

    Highlights: • Mg substitution reduces the ferromagnetic strength. • Inhomogeneous broadening is due to phase separation. • Griffiths phase existence is probed. - Abstract: Magnetization studies and line shape analysis on Electron Spin Resonance (ESR) spectra of La{sub 0.67}(Ca{sub 1−x}Mg{sub x}){sub 0.33}MnO{sub 3} are carried out. In paramagnetic phase well above T{sub c}, the ESR spectra are single Lorentzian but below and near T{sup ∗}{sub ΔHPP}, (T{sup ∗}{sub ΔHPP} is temperature at which line width is minimum) inhomogeneous broadening with asymmetry in the signal is observed due to phase separation. The resonance field below T{sup ∗}{sub ΔHPP} decreases with decreasing temperature. Above T{sub c} the intensity of the ESR spectra obeys the thermally activated model (Arrhenius behavior). Substitution of Mg weakens the ferromagnetic interaction and evolution of change in lineshape near T{sub c} is an evidence of Griffiths phase (coexistence of paramagnetic and ferromagnetic) in Mg doped LCMO system.

  12. Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics

    Science.gov (United States)

    Yan, Yongke; Cho, Kyung-Hoon; Priya, Shashank

    2012-03-01

    In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3)O3-0.25PbZrO3-0.35PbTiO3 (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 °C) and Curie temperature (TC of 234 °C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol. % BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling factor (k31) of T-5BT ceramic started to degrade from 75 °C while the random counterpart showed a very stable tendency up to 180 °C. This degradation was associated with the "interface region" formed in the vicinity of BT template. MnO2 doped PMN-PZT ceramics textured with 3 vol. % BT and subsequently poled at 140 °C (T-3BT140) exhibited very stable and high k31 (>0.53) in a wide temperature range from room temperature to 130 °C through reduction in the interface region volume. Further, the T-3BT140 ceramic exhibited excellent hard and soft combinatory piezoelectric properties of d33 = 720 pC/N, k31 = 0.53, Qm = 403, tan δ = 0.3% which are very promising for high power and magnetoelectric applications.

  13. Synthesis and characterization of nanosized Mg{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 4} ferrites by both sol-gel and thermal decomposition methods

    Energy Technology Data Exchange (ETDEWEB)

    De-León-Prado, Laura Elena, E-mail: laura.elena.prado@gmail.com [Cinvestav-Unidad Saltillo, Av. Industria Metalúrgica #1062, Parque Industrial Saltillo-Ramos Arizpe, CP 25900, Ramos Arizpe, Coahuila, México (Mexico); Cortés-Hernández, Dora Alicia; Almanza-Robles, José Manuel; Escobedo-Bocardo, José Concepción; Sánchez, Javier; Reyes-Rdz, Pamela Yajaira; Jasso-Terán, Rosario Argentina [Cinvestav-Unidad Saltillo, Av. Industria Metalúrgica #1062, Parque Industrial Saltillo-Ramos Arizpe, CP 25900, Ramos Arizpe, Coahuila, México (Mexico); Hurtado-López, Gilberto Francisco [Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, CP 25294, Saltillo, Coahuila, México (Mexico)

    2017-04-01

    This work reports the synthesis of Mg{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 4} (x=0–1) nanoparticles by both sol-gel and thermal decomposition methods. In order to determine the effect of synthesis conditions on the crystal structure and magnetic properties of the ferrites, the synthesis was carried out varying some parameters, including composition. By both methods it was possible to obtain ferrites having a single crystalline phase with cubic inverse spinel structure and a behavior near to that of superparamagnetic materials. Saturation magnetization values were higher for materials synthesized by sol-gel. Furthermore, in both cases particles have a spherical-like morphology and nanometric sizes (11–15 nm). Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia. - Highlights: • Mg–Mn ferrites were synthesized by sol-gel and thermal decomposition methods. • Materials showed a single cubic inverse spinel crystalline structure. • Ferrites have a soft ferrimagnetic behavior close to superparamagnetic materials.

  14. New insights into microstructural evolution of epitaxial Ni-Mn-Ga films on MgO (1 0 0) substrate by high-resolution X-ray diffraction and orientation imaging investigations

    Science.gov (United States)

    Sharma, Amit; Mohan, Sangeneni; Suwas, Satyam

    2018-04-01

    In this work, a detailed investigation has been performed on hetero-epitaxial growth and microstructural evolution in highly oriented Ni-Mn-Ga (1 0 0) films grown on MgO (1 0 0) substrate using high-resolution X-ray diffraction and orientation imaging microscopy. Mosaicity of the films has been analysed in terms of tilt angle, twist angle, lateral and vertical coherence length and threading dislocation densities by performing rocking curve measurements and reciprocal space mapping. Density of edge dislocations is found to be an order of magnitude higher than the density of screw dislocations, irrespective of film thickness. X-ray pole figure measurements have revealed an orientation relationship of ? || (1 0 0)MgO; ? || [0 0 1]MgO between the film and substrate. Microstructure predicted by X-ray diffraction is in agreement with that obtained from electron microscopy and atomic force microscopy. The evolution of microstructure in the film with increasing thickness has been explained vis-à-vis dislocation generation and growth mechanisms. Orientation imaging microscopy observations indicate evolutionary growth of film by overgrowth mechanism. Decrease in coercivity with film thickness has been explained as an interplay between stress field developed due to crystal defects and magnetic domain pinning due to surface roughness.

  15. Protonation thermodynamics of some aminophenol derivatives in NaCl(aq) (0 ≤ I ≤3 mol . kg-1) at T = 298.15 K

    International Nuclear Information System (INIS)

    Bretti, Clemente; De Stefano, Concetta; Foti, Claudia; Sammartano, Silvio; Vianelli, Giuseppina

    2012-01-01

    Highlights: → Protonation thermodynamics of four aminophenol derivatives were determined. → Dependence on ionic strength was analysed by using different models. → Neutral species activity coefficient was determined by distribution measurements. → Acid-base behaviour of this ligand class was modelled. - Abstract: The acid-base properties of four aminophenol derivatives, namely m-aminophenol (L1), 4-amino-2-hydroxytoluene (L2), 2-amino-5-ethylphenol (L3) and 5-amino-4-chloro-o-cresol (L4), are studied by potentiometric and titration calorimetric measurements in NaCl (aq) (0 ≤ I ≤ 3 mol . kg -1 ) at T = 298.15 K. The dependence of the protonation constants on ionic strength is modelled by the Debye-Hueckel, SIT (Specific ion Interaction Theory) and Pitzer equations. Therefore, the values of protonation constants at infinite dilution and the relative interaction coefficients are calculated. The dependence of protonation enthalpies on ionic strength is also determined. Distribution (2-methyl-1-propanol/aqueous solution) measurements allowed us to determine the Setschenow coefficients and the activity coefficients of neutral species. Experimental results show that these compounds behave in a very similar way, and common class parameters are reported, in particular for the dependence on ionic strength of both protonation constants and protonation enthalpies.

  16. Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1-x:(MgO)x nanocomposite films.

    Science.gov (United States)

    Moshnyaga, V; Damaschke, B; Shapoval, O; Belenchuk, A; Faupel, J; Lebedev, O I; Verbeeck, J; van Tendeloo, G; Mücksch, M; Tsurkan, V; Tidecks, R; Samwer, K

    2003-04-01

    'Colossal magnetoresistance' in perovskite manganites such as La0.7Ca0.3MnO3 (LCMO), is caused by the interplay of ferro-paramagnetic, metal-insulator and structural phase transitions. Moreover, different electronic phases can coexist on a very fine scale resulting in percolative electron transport. Here we report on (LCMO)1-x:(MgO)x (0 strain. The largest colossal magnetoresistance of 10(5)% was observed at the percolation threshold in the conductivity at xc 0.3, which is coupled to a structural phase transition from orthorhombic (0 < x < or 0.1) to rhombohedral R3c structure (0.33 < or = x < or = 0.8). An increase of the Curie temperature for the Rc phase was observed. These results may provide a general method for controlling the magnetotransport properties of manganite-based composite films by appropriate choice of the second phase.

  17. Co-hydrothermal synthesis of LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}·LiAlO{sub 2}/C nano-hybrid cathode material with enhanced electrochemical performance for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [School of Metallurgy, Northeastern University, Shenyang, 110004 (China); Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, 066004 (China); Luo, Shaohua, E-mail: tianyanglsh@163.com [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004 (China); Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, 066004 (China); School of Materials Science and Engineering, Northeastern University, Shenyang, 110004 (China); Chang, Longjiao [School of New Energy, Bohai University, Jinzhou, 121013 (China); Hao, Aimin; Wang, Zhiyuan; Liu, Yanguo [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004 (China); Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, 066004 (China); School of Materials Science and Engineering, Northeastern University, Shenyang, 110004 (China); Xu, Qian [School of Materials Science and Engineering, Shanghai University, Shanghai, 200072 (China); Wang, Qing; Zhang, Yahui [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004 (China); Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, 066004 (China); School of Materials Science and Engineering, Northeastern University, Shenyang, 110004 (China)

    2017-02-01

    Highlights: • A co-hydrothermal approach to synthesize LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}·LiAlO{sub 2}/C composite material in water/PEG system is present. • The Mn{sub 1-x}Mg{sub x}PO{sub 4} precursor is prepared by precipitation reaction. • Co-modified with Mg{sup 2+} doping and LiAlO{sub 2} compositing strategies play an important role in improving the electronic conductivity and facilitating the diffusion of lithium ion. • LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}·LiAlO{sub 2}/C composite material exhibits a high specific discharge capacity of 151.8 mAh/g at 0.05C. - Abstract: LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}·LiAlO{sub 2}/C is synthesized by a co-hydrothermal method in water/PEG system using Li{sub 2}CO{sub 3}, AAO and Mn{sub 1-x}Mg{sub x}PO{sub 4} as raw material. The electronic structure and micromorphology of multi-component compound LiMn{sub 1-x}Mg{sub x}PO{sub 4}/C (x = 0, 1/24, 1/12, 1/6) and nano-hybrid LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}·LiAlO{sub 2}/C cathode materials are studied by first-principles calculation and experimental research including XRD, SEM, TEM. The calculated band gap of LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}/C is 2.296 eV, which is lower than other percentages Mg{sup 2+} doping samples. Electrochemical tests exhibit LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}/C has better cycling performance and rate capability than other contents Mg{sup 2+} doping samples with the discharge capacity of 143.5 mAh/g, 141.5 mAh/g, 139.2 mAh/g and 136.3 mAh/g at 0.05C, 0.1C, 0.5C and 1C in order. After compositing and preparation of LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}·LiAlO{sub 2}/C composite material by co-hydrothermal route, the initial discharge capacity reaches up to 151.8 mAh/g, which suggests that co-modified with Mg{sup 2+} doping and LiAlO{sub 2} compositing material can improve the electronic conductivity of LiMnPO{sub 4}/C by facilitating the lithium ion diffusion rate in the interior of the materials.

  18. Co-hydrothermal synthesis of LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C nano-hybrid cathode material with enhanced electrochemical performance for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Jun; Luo, Shaohua; Chang, Longjiao; Hao, Aimin; Wang, Zhiyuan; Liu, Yanguo; Xu, Qian; Wang, Qing; Zhang, Yahui

    2017-01-01

    Highlights: • A co-hydrothermal approach to synthesize LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C composite material in water/PEG system is present. • The Mn_1_-_xMg_xPO_4 precursor is prepared by precipitation reaction. • Co-modified with Mg"2"+ doping and LiAlO_2 compositing strategies play an important role in improving the electronic conductivity and facilitating the diffusion of lithium ion. • LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C composite material exhibits a high specific discharge capacity of 151.8 mAh/g at 0.05C. - Abstract: LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C is synthesized by a co-hydrothermal method in water/PEG system using Li_2CO_3, AAO and Mn_1_-_xMg_xPO_4 as raw material. The electronic structure and micromorphology of multi-component compound LiMn_1_-_xMg_xPO_4/C (x = 0, 1/24, 1/12, 1/6) and nano-hybrid LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C cathode materials are studied by first-principles calculation and experimental research including XRD, SEM, TEM. The calculated band gap of LiMn_2_3_/_2_4Mg_1_/_2_4PO_4/C is 2.296 eV, which is lower than other percentages Mg"2"+ doping samples. Electrochemical tests exhibit LiMn_2_3_/_2_4Mg_1_/_2_4PO_4/C has better cycling performance and rate capability than other contents Mg"2"+ doping samples with the discharge capacity of 143.5 mAh/g, 141.5 mAh/g, 139.2 mAh/g and 136.3 mAh/g at 0.05C, 0.1C, 0.5C and 1C in order. After compositing and preparation of LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C composite material by co-hydrothermal route, the initial discharge capacity reaches up to 151.8 mAh/g, which suggests that co-modified with Mg"2"+ doping and LiAlO_2 compositing material can improve the electronic conductivity of LiMnPO_4/C by facilitating the lithium ion diffusion rate in the interior of the materials.

  19. DNA-assisted assembly of carbon nanotubes and MnO2 nanospheres as electrodes for high-performance asymmetric supercapacitors.

    Science.gov (United States)

    Guo, Chun Xian; Chitre, Amey Anil; Lu, Xianmao

    2014-03-14

    A DNA-assisted assembly approach is developed to fabricate a capacitor-type electrode material, DNA-functionalized carbon nanotubes (CNTs@DNA), and a battery-type electrode material, DNA@CNTs-bridged MnO2 spheres (CNTs@DNA-MnO2), for asymmetric supercapacitors. An energy density of 11.6 W h kg(-1) is achieved at a power density of 185.5 W kg(-1) with a high MnO2 mass loading of 4.2 mg cm(-2). It is found that DNA assembly plays a critical role in the enhanced supercapacitor performance. This is because while DNA molecules functionalize carbon nanotubes (CNTs) via π-π stacking, their hydrophilic sugar-phosphate backbones also promote the dispersion of CNTs. The resultant CNTs@DNA chains can link multiple MnO2 spheres to form a networked architecture that facilitates charge transfer and effective MnO2 utilization. The improved performance of the asymmetric supercapacitors indicates that DNA-assisted assembly offers a promising approach to the fabrication of high-performance energy storage devices.

  20. Cooled optically stimulated luminescence in CaF2:Mn

    International Nuclear Information System (INIS)

    Miller, S.D.; Endres, G.W.R.; McDonald, J.C.; Swinth, K.L.

    1988-01-01

    A new optically stimulated luminescence technique has been developed for the readout of CaF 2 :Mn thermoluminescent material. Minimum detectable gamma exposures may potentially be measured at 10 nC.kg -1 using the 254 nm line of a mercury lamp. Additional studies were done on CaF 2 :Mn using 351 nm excimer laser stimulation. (author)

  1. Flux pinning enhancements in YBa2Cu3O7-8 superconductors through phase separated, self-assembled LaMnO3-MgO nanocomposite films.

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Ozgur [ORNL; Aytug, Tolga [ORNL; Paranthaman, Mariappan Parans [ORNL; Leonard, Keith J [ORNL; Pennycook, Stephen J [ORNL; Kim, Kyunghoon [ORNL; Cook, Sylvester W [ORNL; Thompson, James R [ORNL; Christen, David K [ORNL; Goyal, Amit [ORNL; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Lupini, Andrew R [ORNL; Meyer, Hendrik [ORNL; Qiu, Xiaofeng [ORNL; Xiong, X. [SuperPower Incorporated, Schenectady, New York

    2011-01-01

    Technological applications of high temperature superconductors (HTS) require high critical current density, Jc, under operation at high magnetic field strengths. This requires effective flux pinning by introducing artificial defects through creative processing. In this work, we generated correlated disorder for strong vortex pinning in the YBa2Cu3O7- (YBCO) films by replacing the standard LaMnO3 (LMO) cap buffer layers in ion beam assisted deposited MgO templates with LMO:MgO composite films. Such films revealed formation of two phase-separated, but at the same time vertically aligned, self-assembled composite nanostructures that extend throughout the entire thickness of the film. Measurements of magnetic-field orientation-dependent Jc of YBCO coatings deposited on these nanostructured cap layers showed correlated c-axis pinning and improved in-field Jc performance compared to those of YBCO films deposited on standard LMO buffers. The present results demonstrate feasibility of novel and potentially practical approaches in the pursuit of more efficient, economical, and high performance superconducting devices.

  2. Incommensurate phases in the improper ferroelastic MgGeF sub 6 centre dot 6H sub 2 O:Mn sup 2 sup + studied by means of EPR

    CERN Document Server

    Skrylnik, P G

    2002-01-01

    The results of an EPR study of the inhomogeneous phases existing in the temperature interval T sub C = 311.0 +- 0.3 K < T < T sub i sub 1 = 403 +- 0.3 K in improper ferroelastic crystals of MgGeF sub 6 centre dot 6H sub 2 O:Mn sup 2 sup + are presented. On the basis of the analysis of the temperature and angle dependences of the experimental parameters and numerical calculations, the conclusion has been drawn that at T sub i sub 1 the crystals considered undergo a transition to a structurally modulated phase and the order parameter of this transition may be the angle of the Mg[H sub 2 O] sub 6 sup 2 sup + octahedra rotation around the crystal C sub 3 -axis. From T sub i sub 1 to T sub C the modes of the modulated phase follow according to a completely classical scenario for incommensurate crystals: the origin of the incommensurate structure with plane-wave modulation at T sub i sub 1 , the appearance of structural phase solitons below T sub i sub 2 = 380 +- 0.3 K and decrease of the soliton density to v...

  3. Measurement of thermal conductance of La0.7Sr0.3MnO3 thin films deposited on SrTiO3 and MgO substrates

    Science.gov (United States)

    Aryan, A.; Guillet, B.; Routoure, J. M.; Fur, C.; Langlois, P.; Méchin, L.

    2015-01-01

    We present measurements of the thermal conductance of thin-film-on-substrate structures that could serve as thin film uncooled bolometers. Studied samples were 75 nm thick epitaxial La0.7Sr0.3MnO3 thin films deposited on SrTiO3 (0 0 1) and MgO (0 0 1) substrates patterned in square geometries of areas ranging from 50 μm × 50 μm to 200 μm × 200 μm. The model allows estimating thermal boundary conductance values at the interface between film and substrate of 0.28 ± 0.08 × 106 W K-1 m-2 for LSMO/STO (0 0 1) and 5.8 ± 3.0 × 106 W K-1 m-2 for LSMO/MgO (0 0 1) from measurements performed in the static regime. Analytical expressions of thermal conductance and thermal capacitance versus modulation frequency are compared to measurements of the elevation temperature due to absorbed incoming optical power. The overall good agreement found between measurements and model finally provides the possibility to calculate the bolometric response of thin film bolometers, thus predicting their frequency response for various geometries.

  4. Phenomenological-based kinetics modelling of dehydrogenation of ethylbenzene to styrene over a Mg 3 Fe 0.25 Mn 0.25 Al 0.5 hydrotalcite catalyst

    KAUST Repository

    Hossain, Mohammad M.

    2012-05-18

    This communication reports a mechanism-based kinetics modelling for the dehydrogenation of ethylbenzene to styrene (ST) using Mg3Fe0.25Mn0.25Al0.5 catalyst. Physicochemical characterisation of the catalyst indicates that the presence of basic sites Mg2+O2- on the catalysts along with Fe3+ is responsible for the catalytic activity. The kinetics experiments are developed using a CREC Fluidised Riser Simulator. Based on the experimental observations and the possible mechanism of the various elementary steps, Langmuir-Hinshelwood type kinetics model are developed. To take into account of the possible catalyst deactivation a reactant conversion-based deactivation function is also introduced into the model. Parameters are estimated by fitting of the experimental data implemented in MATLAB. Results show that one site type Langmuir-Hinshelwood model appropriately describes the experimental data, with adequate statistical fitting indicators and also satisfied the thermodynamic restraints. The estimated heat of adsorptions of EB (64kJ/mole) is comparable to the values available in the literature. The activation energy for the formation of ST (85.5kJ/mole) found to be significantly lower than that of the cracking product benzene (136.6kJ/mole). These results are highly desirable in order to achieve high selectivity of the desired product ST. © 2012 Canadian Society for Chemical Engineering.

  5. The hydrolysis and precipitation of Pd(II) in 0.6 mol kg-1 NaCl: A potentiometric, spectrophotometric, and EXAFS study

    International Nuclear Information System (INIS)

    Boily, Jean-Francois F.; Seward, Terry M.; Charnock, John M.

    2007-01-01

    The hydrolysis of palladium was investigated in 0.6 mol kg -1 NaCl at 298.2 K. Potentiometric titrations of solutions at various total concentrations of palladium(II) revealed that dilute (millimolar) conditions can be used to monitor the proton release due to hydrolysis reactions up to 2 protons per palladium(II) as long as the equilibration time is kept small. Spectrophotometric titrations were used to corroborate the homogeneous changes in speciation for the PdCl 3 OH 2- species and to extract its correlative molar absorption coefficients in the 210-320 nm range. The molar absorption coefficients are similar to those of PdCl42- but exhibit a broader distribution of excitation energies resulting from the blue shift of the dominant charge transfer bands due to the presence of OH-. The longer-term potentiometric titrations systematically yielded, on the other hand, precipitates which matured over a period of 6 weeks and resulted in a more extensive release of protons to the solution. Precipitation experiments at six different total palladium(II) concentrations in the 3-11 pH range showed the dominant precipitating phase as Pd(OH)1.72Cl0.28. The coordination environment of Pd in this solid was investigated by extended X-ray absorption fine structure spectroscopy (EXAFS) and yielded an average 1.75 O and 0.25 Cl per Pd atoms with a Pd-O distance of 2.0 (angstrom) and Pd-Cl of 2.1 (angstrom). Finally, the precipitation experiments showed the final products to be of larger solubility than a literature Pd(OH)2 solubility study in which the KCl media induced a solid phase transformation to Pd(OH)1.72Cl0.28. Polynuclear complexes Pdq(OH)r2q-r with q=r=[3,9] explain the combined precipitation and hydrolysis data and may represent subsets of [Pd(OH)2]n and/or [Pd(OH)1.72Cl0.28]n chains coiled into nanometer-sized spheroids previously described in the literature

  6. Diagnose nutricional de cafeeiros da região do Alto Jequitinhonha (MG: normas dris e faixas críticas de nutrientes Nutritional diagnosis of coffee plantations in the Upper Jequitinhonha Valley, Minas Gerais State, Brazil: dris norms and critical nutrient ranges

    Directory of Open Access Journals (Sweden)

    Múcio Mágno de Melo Farnezi

    2009-08-01

    Full Text Available As normas do Sistema Integrado de Diagnose e Recomendação (DRIS ainda não foram estabelecidas para a cultura do café do Alto Jequitinhonha, MG, o que impede que o DRIS seja aplicado nos cafeeiros da região. A diagnose foliar, mediante o uso do DRIS e de faixas críticas de referência, destaca-se entre as ferramentas potenciais que permitem usar eficientemente os fertilizantes. Desse modo, este trabalho objetiva estabelecer as normas DRIS, bem como estimar os valores das faixas críticas dos nutrientes de referência para a diagnose nutricional de cafeeiros da região do Alto Jequitinhonha, por meio do DRIS. Determinaram-se os teores foliares de N, P, K, Ca, Mg, S, B, Cu, Fe, Mn e Zn em 52 lavouras cafeeiras, em duas safras (2005 e 2006. Foram selecionadas, para estabelecer as normas DRIS, 23 lavouras em cada safra com produtividade maior e igual a 30 sacas de grãos de café por hectare. As faixas críticas obtidas do DRIS, determinando-se a frequência com que o teor de cada nutriente das lavouras nas duas safras foi deficiente, adequado ou excessivo em relação aos padrões mencionados e teores considerados adequados pela literatura. As normas DRIS foram estabelecidas para cafeeiros da região do Alto Jequitinhonha e utilizadas para propor faixas críticas adequadas. Para isso, foram estabelecidos os valores para N (2,25-2,79 dag kg-1, P (0,18-0,22 dag kg-1, K (1,72-2,10 dag kg-1, Ca (1,26-1,51 dag kg-1, Mg (0,29-0,35 dag kg-1, S (0,13-0,32 dag kg-1, B (83,8-96,3 mg kg-1, Cu (5,7-9,3 mg kg-1, Fe (67,5-116,2 mg kg-1, Mn (219-422 mg kg-1 e Zn (17,4-30,0 mg kg-1, e faixas críticas adequadas para diagnose nutricional de cafeeiros da região do Alto Jequitinhonha, no Estado de Minas Gerais. Os cafezais da região em desequilíbrio apresentaram deficiência em P, K, S, B, Cu, Mn e Zn e excesso de Ca, Mg e Fe.In the Diagnosis and Recommendation Integrated System (DRIS, norms for coffee in the Upper Jequitinhonha Valley, Minas Gerais, Brazil

  7. Effect of Pre-Aging Conditions on Bake-Hardening Response of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn Alloy Sheets

    International Nuclear Information System (INIS)

    Lee, Kwang-jin; Woo, Kee-do

    2011-01-01

    Pre-aging heat treatment after solution heat treatment (SHT) of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn alloy sheets for auto-bodies was carried out to investigate the effect of pre-aging and its conditions on the bake-hardening response. Mechanical properties were evaluated by a tensile and Vickers hardness test. Microstructural observation was also performed using a transmission electron microscope (TEM). It was revealed that pre-aging treatments play a great role in the bake-hardening response. In addition, it was found that the sphere-shaped nanosized clusters that can directly transit to the needle-shaped β” phase during the paint-bake process, not being dissolved into the matrix, are formed at 343 K. The result, reveals that the dominant factor of the bake-hardening response is the pre-aging temperature rather than the pre-aging time.

  8. Coupling of electric charge and magnetic field via electronic phase separation in (La,Pr,Ca)MnO3/Pb(Mg1/3Nb2/3)O3-PbTiO3 multiferroic heterostructures

    Science.gov (United States)

    Zheng, Ming; Wang, Wei

    2016-04-01

    The electric-field-tunable non-volatile resistivity and ferromagnetism switching in the (La0.5Pr0.5)0.67Ca0.33MnO3 films grown on (111)-oriented 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 ferroelectric single-crystal substrates have been investigated. By combining the 180° ferroelectric domain switching and in situ X-ray diffraction and resistivity measurements, we identify that this voltage control of order parameters stems from the domain switching-induced accumulation/depletion of charge carriers at the interface rather than induced lattice strain effect. In particular, the polarization-induced charge effect (i.e., ferroelectric field effect) is strongly dependent on the magnetic field. This, together with the charge-modulated magnetoresistance and magnetization, reveals the strong correlation between the electric charge and the magnetic field. Further, we found that this coupling is essentially driven by the electronic phase separation, the relative strength of which could be determined by recording charge-tunability of resistivity [ (Δρ/ρ)c h arg e ] under various magnetic fields. These findings present a potential strategy for elucidating essential physics of perovskite manganites and delivering prototype electronic devices for non-volatile information storage.

  9. Luminescence properties and energy transfer of site-sensitive Ca(6-x-y)Mg(x-z)(PO(4))(4):Eu(y)(2+),Mn(z)(2+) phosphors and their application to near-UV LED-based white LEDs.

    Science.gov (United States)

    Kwon, Ki Hyuk; Im, Won Bin; Jang, Ho Seong; Yoo, Hyoung Sun; Jeon, Duk Young

    2009-12-21

    On the basis of the structural information that the host material has excellent charge stabilization, blue-emitting Ca(6-x-y)Mg(x)(PO(4))(4):Eu(y)(2+) (CMP:Eu(2+)) phosphors were synthesized and systematically optimized, and their photoluminescence (PL) properties were evaluated. Depending upon the amount of Mg added, the emission efficiency of the phosphors could be enhanced. The substitution of Eu(2+) affected their maximum wavelength (lambda(max)) and thermal stability because the substitution site of Eu(2+) could be varied. To obtain single-phase two-color-emitting phosphors, we incorporated Mn(2+) into CMP:Eu(2+) phosphors. Weak red emission resulting from the forbidden transition of Mn(2+) could be enhanced by the energy transfer from Eu(2+) to Mn(2+) that occurs because of the spectral overlap between the photoluminescence excitation (PLE) spectrum of Mn(2+) and the PL spectrum of Eu(2+). The energy transfer process was confirmed by the luminescence spectra, energy transfer efficiency, and decay curve of the phosphors. Finally, the optimized Ca(6-x-y)Mg(x-z)(PO(4))(4):Eu(y)(2+),Mn(z)(2+) (CMP:Eu(2+),Mn(2+)) phosphors were applied with green emitting Ca(2)MgSi(2)O(7):Eu(2+) (CMS:Eu(2+)) phosphors to ultraviolet (UV) light emitting diode (LED)-pumped white LEDs. The CMS:Eu(2+)-mixed CMP:Eu(2+), Mn(2+)-based white LEDs showed an excellent color rendering index (CRI) of 98 because of the broader emission band and more stable color coordinates than those of commercial Y(3)Al(5)O(12):Ce(3+) (YAG:Ce(3+))-based white LEDs under a forward bias current of 20 mA. The fabricated white LEDs showed very bright natural white light that had the color coordinate of (0.3288, 0.3401), and thus CMP:Eu(2+),Mn(2+) could be regarded as a good candidate for UV LED-based white LEDs.

  10. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+.

    Science.gov (United States)

    Duguid, J G; Bloomfield, V A; Benevides, J M; Thomas, G J

    1995-12-01

    Differential scanning calorimetry, laser Raman spectroscopy, optical densitometry, and pH potentiometry have been used to investigate DNA melting profiles in the presence of the chloride salts of Ba2+, Sr2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+. Metal-DNA interactions have been observed for the molar ratio [M2+]/[PO2-] = 0.6 in aqueous solutions containing 5% by weight of 160 bp mononucleosomal calf thymus DNA. All of the alkaline earth metals, plus Mn2+, elevate the melting temperature of DNA (Tm > 75.5 degrees C), whereas the transition metals Co2+, Ni2+, and Cd2+ lower Tm. Calorimetric (delta Hcal) and van't Hoff (delta HVH) enthalpies of melting range from 6.2-8.7 kcal/mol bp and 75.6-188.6 kcal/mol cooperative unit, respectively, and entropies from 17.5 to 24.7 cal/K mol bp. The average number of base pairs in a cooperative melting unit () varied from 11.3 to 28.1. No dichotomy was observed between alkaline earth and transition DNA-metal complexes for any of the thermodynamic parameters other than their effects on Tm. These results complement Raman difference spectra, which reveal decreases in backbone order, base unstacking, distortion of glycosyl torsion angles, and rupture of hydrogen bonds, which occur after thermal denaturation. Raman difference spectroscopy shows that transition metals interact with the N7 atom of guanine in duplex DNA. A broader range of interaction sites with single-stranded DNA includes ionic phosphates, the N1 and N7 atoms of purines, and the N3 atom of pyrimidines. For alkaline earth metals, very little interaction was observed with duplex DNA, whereas spectra of single-stranded complexes are very similar to those of melted DNA without metal. However, difference spectra reveal some metal-specific perturbations at 1092 cm-1 (nPO2-), 1258 cm-1 (dC, dA), and 1668 cm-1 (nC==O, dNH2 dT, dG, dC). Increased spectral intensity could also be observed near 1335 cm-1 (dA, dG) for CaDNA. Optical densitometry, employed to detect DNA

  11. Enhanced elevated-temperature performance of LiAl_xSi_0_._0_5Mg_0_._0_5Mn_1_._9_0_-_xO_4 (0≤x≤0.08) cathode materials for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhao, Hongyuan; Liu, Shanshan; Wang, Zhenwei; Cai, Yu; Tan, Ming; Liu, Xingquan

    2016-01-01

    In order to significantly enhance the elevated-temperature performance of LiSi_0_._0_5Mg_0_._0_5Mn_1_._9_0O_4, the LiAl_xSi_0_._0_5Mg_0_._0_5Mn_1_._9_0_-_xO_4 (0 ≤ x ≤ 0.08) samples were firstly prepared via sol-gel technique. All the obtained samples showed the intrinsic spinel structure without any other detectable impurity phases. Among these samples, the LiAl_0_._0_5Si_0_._0_5Mg_0_._0_5Mn_1_._8_5O_4 sample was found to be optimal possessing regular crystal morphology with clean surfaces and presented much better elevated-temperature cycling stability and rate capability. When carried out at 55 °C, the LiAl_0_._0_5Si_0_._0_5Mg_0_._0_5Mn_1_._8_5O_4 sample exhibited the initial discharge capacity of 123.6 mAh g"−"1 at 0.5C between 3.20 and 4.35 V. After 100 cycles, the discharge capacity could still reach up to 115.9 mAh g"−"1 with capacity retention of 93.8%, which was much higher than that of LiSi_0_._0_5Mg_0_._0_5Mn_1_._9_0O_4. At the higher discharge rate of 10C, a high discharge capacity of 82.5 mAh g"−"1 could be obtained with capacity retention of 95.6% after 50 cycles at 55 °C. By contrast, the LiSi_0_._0_5Mg_0_._0_5Mn_1_._9_0O_4 sample only exhibited 43.7 mAh g"−"1 with lower capacity retention of 61.8%. These results indicate that the introduction of appropriate amount of aluminium ions in the magnesium and silicon co-doped spinel can make up for the shortage of co-doping with magnesium and silicon ions in term of the elevated-temperature performance.

  12. Electrochemical hydrogen-storage properties of La{sub 0.78}Mg{sub 0.22}Ni{sub 2.67}Mn{sub 0.11}Al{sub 0.11}Co{sub 0.52}-M1Ni{sub 3.5}Co{sub 0.6}Mn{sub 0.4}Al{sub 0.}-5 composites

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hongxia, E-mail: hhxhunan@126.com [Key Lab of New Processing Technology for Nonferrous Metals and Materials Ministry of Education, Guilin University of Technology, Guilin (China); Li, Guohui [Guangxi Scientific Experiment Center of Mining, Metallurgy and Environment, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin (China); Zhuang, Shuxin [School of Material Science and engineering, Xiamen University of Technology, Xiamen (China)

    2013-07-15

    For improving the electrochemical properties of nonstoichiometric AB{sub 3} -type La{sub 0.7}8Mg{sub 0.22}Ni{sub 2.67}Mn{sub 0.11}Al{sub 0.11}Co{sub 0.52} alloy as negative electrode of Ni-MH battery, its related composites La{sub 0.78}Mg{sub 0.22}Ni{sub 2.67}Mn{sub 0.11}Al{sub 0.11}Co{sub 0.52}-x wt.% M1Ni{sub 3.5}Co{sub 0.6}Mn{sub 0.4}Al{sub 0.5} (x = 0, 10, 20, 30) were prepared. Analysis by X-ray diffractometry (XRD) revealed that the composites consist mainly of LaNi{sub 5} and La{sub 2}Ni{sub 7} phases. Despite the small decrease in the maximum discharge capacity, the cycle performance was significantly enhanced. Linear polarization (LP), anodic polarization (AP) and potential step discharge experiments revealed that the electrochemical kinetics increases first and then decreases with increasing x. (author)

  13. Effect of Ni substitution on the structural and transport properties of Ni{sub x}Mn{sub 0.8-x}Mg{sub 0.2}Fe{sub 2}O{sub 4}; 0.0 {<=} x {<=} 0.40 ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.A., E-mail: moala1947@yahoo.com [Materials Science Lab (1), Physics Dept., Faculty of Science, Cairo Univ., Giza (Egypt); Bishay, Samiha T. [Phys. Dept., Faculty of Girls for Art, Science and Education, Ain Shams Univ., Cairo (Egypt); El-dek, S.I.; Omar, G. [Materials Science Lab (1), Physics Dept., Faculty of Science, Cairo Univ., Giza (Egypt)

    2011-01-21

    Research highlights: We aimed to merge the advantages of both Ni and Mn ferrites and to profit from the existence of Mg in small constant ratio to assure the large magnetization of the ferrite under investigation. To achieve such goals one have to investigate the effect of Ni substitution on the structural and electrical properties of Mn-Mg ferrite of the chemical formula Ni{sub x}Mn{sub 0.8-x}Mg{sub 0.2}Fe{sub 2}O{sub 4}; 0 {<=} x {<=} 0.40 prepared by conventional ceramic technique. - Abstract: Ni{sub x}Mn{sub 0.8-x}Mg{sub 0.2}Fe{sub 2}O{sub 4}; 0.0{<=} x {<=}0.40 was prepared by standard ceramic technique, presintering was carried out at 900 deg. C and final sintering at 1200 deg. C with heating/cooling rate 4 deg. C/min. X-ray diffraction analyses assured the formation of the samples in a single phase spinel cubic structure. The calculated crystal size was obtained in the range of 75-130 nm. A slight increase in the theoretical density and decrease in the porosity was obtained with increasing the nickel content. This result was discussed based on the difference in the atomic masses between Ni (58.71) and Mn (54.938). IR spectral analyses show four bands of the spinel ferrite for all the samples. The conductivity and dielectric loss factor give nearly continuous decrease with increasing Ni-content. This was discussed as the result of the significant role of the multivalent cations, such as iron, nickel, manganese, in the conduction mechanism. Anomalous behavior was obtained for the sample with x = 0.20 as highest dielectric constant, highest dielectric loss and highest conductivity. This anomalous behavior was explained due to the existence of two divalent cations on B-sites with the same ratio, namely, Mg{sup 2+} and Ni{sup 2+}.

  14. Mild hydrothermal crystal growth of new uranium(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30}: Structures, optical and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yeon, Jeongho; Smith, Mark D. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States); Tapp, Joshua; Möller, Angela [Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Loye, Hans-Conrad zur, E-mail: zurloye@mailbox.sc.edu [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States)

    2016-04-15

    Two new uranium(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} (1) and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30} (2), were synthesized through an in situ mild hydrothermal route, and were structurally characterized by single crystal X-ray diffraction. The compounds exhibit complex crystal structures composed of corner- or edge-shared UF{sub 9} and MF{sub 6} (M=Mg, Mn) polyhedra, forming hexagonal channels in the three-dimensional framework, in which ordered or disordered divalent metal and sodium atoms reside. The large hexagonal voids contain the nearly regular M(II)F{sub 6} octahedra and sodium ions, whereas the small hexagonal cavities include M(II) and sodium ions on a mixed-occupied site. Magnetic susceptibility measurements yielded effective magnetic moments of 8.36 and 11.6 µ{sub B} for 1 and 2, respectively, confirming the presence and oxidation states of U(IV) and Mn(II). The large negative Weiss constants indicate the spin gap between a triplet and a singlet state in the U(IV). Magnetization data as a function of applied fields revealed that 2 exhibits paramagnetic behavior due to the nonmagnetic singlet ground state of U(IV) at low temperature. UV–vis diffuse reflectance and X-ray photoelectron spectroscopy data were also analyzed. - Graphical abstract: Two new quaternary U(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30}, were crystallized via an in situ reduction step of U(VI) to U(IV) under mild hydrothermal conditions. The compounds show complex crystal structures based on the 3-D building block of U{sub 6}F{sub 30}. Magnetic property measurements revealed that the U(IV) exhibits a nonmagnetic singlet ground state at low temperature with a spin gap. - Highlights: • Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30} have been synthesized and characterized. • The U(IV) fluorides exhibit complex three-dimensional crystal structures. • The

  15. Remediation of a historically Pb contaminated soil using a model natural Mn oxide waste.

    Science.gov (United States)

    McCann, Clare M; Gray, Neil D; Tourney, Janette; Davenport, Russell J; Wade, Matthew; Finlay, Nina; Hudson-Edwards, Karen A; Johnson, Karen L

    2015-11-01

    A natural Mn oxide (NMO) waste was assessed as an in situ remediation amendment for Pb contaminated sites. The viability of this was investigated using a 10 month lysimeter trial, wherein a historically Pb contaminated soil was amended with a 10% by weight model NMO. The model NMO was found to have a large Pb adsorption capacity (qmax 346±14 mg g(-1)). However, due to the heterogeneous nature of the Pb contamination in the soils (3650.54-9299.79 mg kg(-1)), no treatment related difference in Pb via geochemistry could be detected. To overcome difficulties in traditional geochemical techniques due to pollutant heterogeneity we present a new method for unequivocally proving metal sorption to in situ remediation amendments. The method combines two spectroscopic techniques; namely electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS). Using this we showed Pb immobilisation on NMO, which were Pb free prior to their addition to the soils. Amendment of the soil with exogenous Mn oxide had no effect on microbial functioning, nor did it perturb the composition of the dominant phyla. We conclude that NMOs show excellent potential as remediation amendments. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Preparation and electrical properties of Mn{sub 1.05−y}Co{sub 1.95−x−z−w}Ni{sub x}Mg{sub y}Al{sub z}Fe{sub w}O{sub 4} NTC ceramic derived from microemulsion method

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Junbo [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Qing, E-mail: zhaoq@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); Gao, Bo [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chang, Aimin, E-mail: changam@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); Zhang, Bo; Ma, Renjun [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-04-05

    Highlights: • The NTC thermister nano-powders Mn{sub 1.05−y}Co{sub 1.95−x−z−w}Ni{sub x}Mg{sub y}Al{sub z}Fe{sub w}O{sub 4} were prepared by microemulsion method. • The metal ions were subsided after twice sediment reaction. • The specimens show good electrical properties by doping some nontransition metals. -- Abstract: The NTC thermistor nano-powders of Mn{sub 1.05−y}Co{sub 1.95−x−z−w}Ni{sub x}Mg{sub y}Al{sub z}Fe{sub w}O{sub 4} were prepared by microemulsion method. Scanning electron microscope (SEM) image showed that the particles were well distributed. The mean particle-size was 72 nm. The structure of the precursor was investigated with Fourier infrared spectrometer (FI). The compositions of the powder and the as-sintered ceramic were evaluated by Energy Disperse Spectroscopy (EDS). X-ray diffraction (XRD) result indicated that the sintered samples were in the spinel structure. The room temperature resistivity ρ{sub 25}, material constant B{sub 25/85} and activation energies of the NTC thermistor are in the range of 1173–19,059 Ω cm, 3169–3771 k, 0.2672–0.3136 eV. The room temperature resistivity and B{sub 25/85} constant were found to increase with Al{sub 2}O{sub 3} content. The Mn{sub 0.9}Co{sub 1.2}Ni{sub 0.21}Mg{sub 0.15}Al{sub 0.09}Fe{sub 0.45}(A2) and Mn{sub 0.9}Co{sub 1.2}Ni{sub 0.27}Mg{sub 0.15}Al{sub 0.03}Fe{sub 0.45}(A3) specimens both showed a 200 °C resistance drift (ΔR/R) within 10% after aging at 910 °C for 600 h.

  17. Multilevel Resistance Switching Memory in La2/3Ba1/3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (011) Heterostructure by Combined Straintronics-Spintronics.

    Science.gov (United States)

    Zhou, Weiping; Xiong, Yuanqiang; Zhang, Zhengming; Wang, Dunhui; Tan, Weishi; Cao, Qingqi; Qian, Zhenghong; Du, Youwei

    2016-03-02

    We demonstrate a memory device with multifield switchable multilevel states at room temperature based on the integration of straintronics and spintronics in a La2/3Ba1/3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) (011) heterostructure. By precisely controlling the electric field applied on the PMN-PT substrate, multiple nonvolatile resistance states can be generated in La2/3Ba1/3MnO3 films, which can be ascribed to the strain-modulated metal-insulator transition and phase separation of Manganite. Furthermore, because of the strong coupling between spin and charge degrees of freedom, the resistance of the La2/3Ba1/3MnO3 film can be readily modulated by magnetic field over a broad temperature range. Therefore, by combining electroresistance and magnetoresistance effects, multilevel resistance states with excellent retention and endurance properties can be achieved at room temperature with the coactions of electric and magnetic fields. The incorporation of ferroelastic strain and magnetic and resistive properties in memory cells suggests a promising approach for multistate, high-density, and low-power consumption electronic memory devices.

  18. Phase-Separated, Epitaxial, Nanostructured LaMnO3+MgO Composite Cap Layer Films for Propagation of Pinning Defects in YBa2Cu3O7-x Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wee, Sung Hun [ORNL; Shin, Junsoo [ORNL; Cantoni, Claudia [ORNL; Meyer III, Harry M [ORNL; Cook, Sylvester W [ORNL; Zuev, Yuri L [ORNL; Specht, Eliot D [ORNL; Xiong, Xuming [ORNL; Paranthaman, Mariappan Parans [ORNL; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Goyal, Amit [ORNL

    2009-01-01

    Nanostructural modulation in the cap layer used in coated conductors can be a potential source for nucleating microstructural defects into the superconducting layer for improving the flux-pinning. We report on the successful fabrication of phase separated, epitaxial, nanostructured films comprised of LaMnO{sub 3} (LMO) and MgO via pulsed laser deposition (PLD) on biaxially-textured MgO metallic templates with a LMO buffer layer. Scanning Auger compositional mapping and transmission electron microscopy cross sectional images confirm the nanoscale, spatial modulation corresponding to the nanostructured phase separation in the film. YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films (0.8 {micro}m thick) grown using PLD on such phase separated, nanostructured cap layers show reduced field dependence of the critical current density with an ? value of -0.38 (in J{sub c}-H{sup -{alpha}}).

  19. Part II. Large scale applications of Ni{sub x}Mn{sub 0.8-x}Mg{sub 0.2}Fe{sub 2}O{sub 4}; 0.1 {<=} x {<=} 0.35 using laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.A., E-mail: moala1947@yahoo.com [Materials Science. Lab (1), Physics Department, Faculty of Science, Cairo University, Giza (Egypt); Bishay, Samiha T. [Department of Physics, Faculty of Girls for Art, Science and Education, Ain Shams University, Cairo (Egypt); El-dek, S.I.; Omar, G. [Materials Science. Lab (1), Physics Department, Faculty of Science, Cairo University, Giza (Egypt)

    2011-07-28

    Highlights: >X-ray diffractograms of Ni{sub x}Mn{sub 0.8-x}Mg{sub 0.2}Fe{sub 2}O{sub 4} samples before and after laser irradiation are characteristic of cubic spinel structure with better crystallinity after irradiation. > The crystal size of the ferrite increases after laser irradiation. > The main conduction mechanism in the investigated system is the correlated barrier hopping and it is the same before and laser irradiation. > The conductivity decreases after laser irradiation. - Abstract: Ni{sub x}Mn{sub 0.8-x}Mg{sub 0.2}Fe{sub 2}O{sub 4}; 0.1 {<=} x {<=} 0.35 was prepared by standard ceramic technique at sintering temperature 1200 deg. C using heating / cooling rate 4 deg. C/min. The samples were irradiated by Nd YAG pulsed laser with energy of the pulse 250 mJ. X-ray diffractograms reveal cubic spinel structure for all the samples before and after laser irradiation. After laser irradiation, better crystallinity was obtained in a form of an increase in the calculated crystal size. This increase was discussed as due to the change in the valence of some ions like Fe{sup 3+}, Ni{sup 2+} and Mn{sup 2+}. The conductivity of all the investigated samples decreases after laser irradiation and becomes temperature independent for a wider range than that before irradiation. This was ascribed to electron rearrangement after laser irradiation. Accordingly, these ferrites are recommended to be useful in electronic devices.

  20. Synthesis and properties of A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) materials for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Anderson, E-mail: anderson_dias@iceb.ufop.br [Departamento de Quimica, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, ICEB II, Sala 67, Ouro Preto-MG, 35400-000 (Brazil); Cunha, Lumena; Vieira, Andiara C. [Departamento de Quimica, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, ICEB II, Sala 67, Ouro Preto-MG, 35400-000 (Brazil)

    2011-09-15

    Highlights: {yields} A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) materials were synthesized. {yields} Chemical synthesis produced different levels of crystallinity and ordering degree. {yields} Structural investigation by Raman scattering revealed a complex band structure. {yields} A strong correlation between band structure and ionic radius was determined. -- Abstract: Double layered hydroxide materials of composition A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) were synthesized by chemical precipitation at 60 {sup o}C. Different levels of crystallinity and ordering degree were observed depending upon the chemical environment or the combination between divalent and trivalent cations. The results from high-resolution transmission electron microscopy revealed that nanostructured layered samples were obtained with interplanar spacing compatible with previous literature. Raman scattering was employed to investigate the complex band structure observed, particularly the lattice vibrations at lower frequencies, which is intimately correlated to the cationic radius of both divalent and trivalent ions. The results showed that strongly coordinated water and chloride ions besides highly structured hydroxide layers have a direct influence on the stability of the hydrotalcites. It was observed that transition and decomposition temperatures varied largely for different chemical compositions.

  1. The suitability of the simplified method of the analysis of coffee infusions on the content of Ca, Cu, Fe, Mg, Mn and Zn and the study of the effect of preparation conditions on the leachability of elements into the coffee brew.

    Science.gov (United States)

    Stelmach, Ewelina; Pohl, Pawel; Szymczycha-Madeja, Anna

    2013-12-01

    A fast and straightforward method of the analysis of coffee infusions was developed for measurements of total concentrations of Ca, Cu, Fe, Mg, Mn and Zn by flame atomic absorption spectrometry. Its validity was proved by the analysis of spiked samples; recoveries of added metals were found to be within 98-104% while the precision was better than 4%. The method devised was used for the analysis of re-distilled water infusions of six popular ground coffees available in the Polish market. Using the mud coffee preparation it was established that percentages of metals leached in these conditions varied a lot among analysed coffees, especially for Ca (14-42%), Mg (6-25%) and Zn (1-24%). For remaining metals, the highest extractabilities were assessed for Mn (30-52%) while the lowest for Fe (4-16%) and Cu (2-12%). In addition, it was found that the water type and the coffee brewing preparation method influence the concentration of studied metals in coffee infusions the most. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. New procedure of quantitative mapping of Ti and Al released from dental implant and Mg, Ca, Fe, Zn, Cu, Mn as physiological elements in oral mucosa by LA-ICP-MS.

    Science.gov (United States)

    Sajnóg, Adam; Hanć, Anetta; Koczorowski, Ryszard; Barałkiewicz, Danuta

    2017-12-01

    A new procedure for determination of elements derived from titanium implants and physiological elements in soft tissues by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is presented. The analytical procedure was developed which involved preparation of in-house matrix matched solid standards with analyte addition based on certified reference material (CRM) MODAS-4 Cormorant Tissue. Addition of gelatin, serving as a binding agent, essentially improved physical properties of standards. Performance of the analytical method was assayed and validated by calculating parameters like precision, detection limits, trueness and recovery of analyte addition using additional CRM - ERM-BB184 Bovine Muscle. Analyte addition was additionally confirmed by microwave digestion of solid standards and analysis by solution nebulization ICP-MS. The detection limits are in range 1.8μgg -1 to 450μgg -1 for Mn and Ca respectively. The precision values range from 7.3% to 42% for Al and Zn respectively. The estimated recoveries of analyte addition line within scope of 83%-153% for Mn and Cu respectively. Oral mucosa samples taken from patients treated with titanium dental implants were examined using developed analytical method. Standards and tissue samples were cryocut into 30µm thin sections. LA-ICP-MS allowed to obtain two-dimensional maps of distribution of elements in tested samples which revealed high content of Ti and Al derived from implants. Photographs from optical microscope displayed numerous particles with µm size in oral mucosa samples which suggests that they are residues from implantation procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. New structural family of ternary molybdates NaA3R(MoO4)5, where A is Mg, Mn, Co or Ni and R is Al, In, Cr or Fe

    International Nuclear Information System (INIS)

    Kozhevnikova, N.M.; Kotova, I.Yu

    1998-01-01

    Ternary NaA 3 R(MoO 4 ) 5 molybdates belonging to a new structural family are produced by crystallization from melted solution and by solid-phase synthesis method. NaMg 3 In(MoO 4 ) 5 , NaNi 3 Al(MoO 4 ) 5 and NaCo 3 Al(MoO 4 ) 5 single crystals are grown. Crystallographic and thermal characteristics of NaA 3 R(MoO 4 ) 5 are determined. Structural similarities in MgMoO 4 , NaIn(MoO 4 ) 2 , Na 2 Mg(MoO 4 ) 6 and NaA 3 R(MoO 4 ) 5 series are revealed [ru

  4. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements.

    Science.gov (United States)

    Zárubová, Pavla; Hejcman, Michal; Vondráčková, Stanislava; Mrnka, Libor; Száková, Jiřina; Tlustoš, Pavel

    2015-12-01

    Fast-growing clones of Salix and Populus have been studied for remediation of soils contaminated by risk elements (RE) using short-rotation coppice plantations. Our aim was to assess biomass yield and distributions of elements in wood and bark of highly productive willow (S1--[Salix schwerinii × Salix viminalis] × S. viminalis, S2--Salix × smithiana clone S-218) and poplar (P1--Populus maximowiczii × Populus nigra, P2--P. nigra) clones with respect to aging. The field experiment was established in April 2008 on moderately Cd-, Pb- and Zn- contaminated soil. Shoots were harvested after four seasons (February 2012) and separated into annual classes of wood and bark. All tested clones grew on contaminated soils, with highest biomass production and lowest mortality exhibited by P1 and S2. Concentrations of elements, with exception of Ca and Pb, decreased with age and were higher in bark than in wood. The Salix clones were characterised by higher removal of Cd, Mn and Zn compared to the Populus clones. Despite generally higher RE content in young shoots, partly due to lower wood/bark ratios and higher RE concentrations in bark, the overall removal of RE was higher in older wood classes due to higher biomass yield. Thus, longer rotations seem to be more effective when phytoextraction strategy is considered. Of the four selected clones, S1 exhibited the best removal of Cd and Zn and is a good candidate for phytoextraction.

  5. Hydrogen storage and microstructure investigations of La{sub 0.7-x}Mg{sub 0.3}Pr{sub x}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Galdino, G.S.; Casini, J.C.S.; Ferreira, E.A.; Faria, R.N.; Takiishi, H., E-mail: agsgaldino@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (DM/IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Dept. de Metalurgia

    2010-07-01

    The effects of substitution of Pr for La in the hydrogen storage capacity and microstructures of La{sub 0.7-x}Pr{sub x}Mg{sub 0.3}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} (x=0, 0.1, 0.3, 0.5, 0.7) alloys electrodes have been studied. X-ray diffraction (XRD), scanning electron microscopy, energy dispersive spectrometry (EDS) and electrical tests were carried out in a the alloys and electrodes. Cycles of charge and discharge have also been carried out in the Ni/MH (Metal hydride) batteries based on the alloys negative electrodes. (author)

  6. Viscosity of aqueous Ni(NO3)2 solutions at temperatures from (297 to 475) K and at pressures up to 30 MPa and concentration between (0.050 and 2.246) mol . kg-1

    International Nuclear Information System (INIS)

    Abdulagatov, I.M.; Zeinalova, A.B.; Azizov, N.D.

    2006-01-01

    Viscosity of nine aqueous Ni(NO 3 ) 2 solutions (0.050, 0.153, 0.218, 0.288, 0.608, 0.951, 1.368, 1.824, and 2.246) mol . kg -1 was measured in the temperature range from (297 to 475) K and at pressures (0.1, 10, 20, and 30) MPa. The measurements were carried out with a capillary flow technique. The total experimental uncertainty of viscosity, pressure, temperature, and composition measurements were estimated to be less than 1.6%, 0.05%, 15 mK, and 0.02%, respectively. All experimental and derived results are compared with experimental and calculated values reported in the literature. Extrapolation of the solution viscosity measurements to zero concentration (pure water values) for the given temperature and pressure are in excellent agreement (average absolute deviation, AAD = 0.13%) with the values of pure water viscosity from IAPWS formulation [J. Kestin, J.V. Sengers, B. Kamgar-Parsi, J.M.H. Levelt Sengers, J. Phys. Chem. Ref. Data 13 (1984) 175-189]. The viscosity data for the solutions as a function of concentration have been interpreted in terms of the extended Jones-Dole equation for strong electrolytes. The values of viscosity A-, B-, and D-coefficients of the extended Jones-Dole equation for the relative viscosity (η/η ) of aqueous Ni(NO 3 ) 2 solutions as a function of temperature are studied. The derived values of the viscosity A- and B-coefficients were compared with the results predicted by Falkenhagen-Dole theory (limiting law) of electrolyte solutions and the values calculated with the ionic B-coefficient data. The measured values of viscosity for the solutions were also used to calculate the effective rigid molar volumes in the extended Einstein relation for the relative viscosity (η/η )

  7. A hybrid of MnO2 nanowires and MWCNTs as cathode of excellent rate capability for supercapacitors

    Science.gov (United States)

    Tang, W.; Hou, Y. Y.; Wang, X. J.; Bai, Y.; Zhu, Y. S.; Sun, H.; Yue, Y. B.; Wu, Y. P.; Zhu, K.; Holze, R.

    2012-01-01

    A hybrid of MnO2-nanowires and MWCNTs to be used as cathode in a supercapacitor with good electrochemical performance was prepared by a facile hydrothermal method. In this hybrid the α-MnO2 nanowires are well entangled with MWCNTs. The MWCNTs provide a network for fast electron transport whereas MnO2 nanowires show a fast redox response. Since gain/loss of both electrons and ions can be realized very rapidly at the same time, the hybrid has an excellent rate capability and delivers an energy density of 17.8 Wh kg-1 at 400 W kg-1, which is maintained almost constant even at 3340 W kg-1 in 0.5 M Li2SO4 aqueous electrolyte. The cycling behavior is very good even in the presence of oxygen. The data present great promise for the hybrid as a practical cathode material for aqueous supercapacitor.

  8. Bimetallic Co-Mn Perovskite Fluorides as Highly-Stable Electrode Materials for Supercapacitors.

    Science.gov (United States)

    Shi, Wei; Ding, Rui; Li, Xudong; Xu, Qilei; Ying, Danfeng; Huang, Yongfa; Liu, Enhui

    2017-11-02

    Bimetallic Co-Mn perovskite fluorides (KCo x Mn 1-x F 3 , denoted as K-Co-Mn-F) with various Co/Mn ratios (1:0, 12:1, 6:1, 3:1, 1:1, 1:3, 0:1) were prepared through a one-pot solvothermal strategy and further used as electrode materials for supercapacitors. The optimal K-Co-Mn-F candidate (Co/Mn=6:1) showed a size range of 0.1-1 μm and uniform elemental distribution; exhibiting small changes in XRD peaks and XPS binding energy in comparison to the bare K-Co-F and K-Mn-F, due to the structural/electronic effects. Owing to the stronger synergistic effect of Co/Mn redox species, the K-Co-Mn-F (Co/Mn=6:1) electrode exhibited superior specific capacity and rate behavior (113-100 C g -1 at 1-16 Ag -1 ) together with excellent cycling stability (118 % for 5000 cycles at 8 Ag -1 ), and the activated carbon (AC)//K-Co-Mn-F (Co/Mn=6:1) asymmetric capacitor showed superior energy and power densities (8.0-2.4 Wh kg -1 at 0.14-8.7 kW kg -1 ) along with high cycling stability (90 % for 10 000 cycles at 5 Ag -1 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Study of some Mg-based ferrites as humidity sensors

    International Nuclear Information System (INIS)

    Rezlescu, N; Rezlescu, E; Doroftei, C; Popa, P D

    2005-01-01

    The micostructure and humidity sensitivity of MgFe 2 O 4 + CaO, Mg 0.5 Cu 0.5 Fe 1.8 Ga 0.2 O 4 , Mg 0.5 Zn 0.5 Fe 2 O 4 + KCl and MgMn 0.2 Fe 1.8 O 4 ferrites were investigated. We have found that the humidity sensitivity largely depends on composition, crystallite size, surface area and porosity. The best results concerning humidity sensitivity were obtained for MgMn 0.2 Fe 1.8 O 4 ferrite

  10. Effect of Preparation Method on Phase Formation Process and Structural and Magnetic Properties of Mn2.5Ge Samples

    Directory of Open Access Journals (Sweden)

    R. Sobhani

    2016-12-01

    Full Text Available In this paper, the phase formation process of Mn2.5Ge samples, prepared by mechanical alloying of Mn and Ge metal powders and annealing, has been studied. Results showed that in the milled samples the stable phase is Mn11Ge8 compound with orthorhombic structure and Pnam space group. The value of saturation magnetization increases by increasing milling time from 0.2 up to 1.95 (Am2Kg-1. The remanece of the samples increases by increasing the milling time while the coercivity decreases. Annealing of 15-hour milled sample results in disappearance of Mn and Ge and the formation of new phases of Mn3Ge, Mn5Ge2, Mn5Ge3 and Mn2.3Ge. Mn3Ge is the main phase with Do22 tetragonal structure and I4/mmm space group which is stable and dominant. The enhancement of saturation magnetization in the annealed sample is related to the formation of three new magnetic phases and the increase of coercivity is due to the presence of Mn3Ge compound with tetragonal structure. Studies were replicated on samples made by arc melting method to compare the results and to investigate the effect of the preparation method on phase formation and structural and magnetic properties of the materials. In these samples the saturation value was in range of 0.2 up to 1.95 (Am2Kg-1 depending on preparation methods. Rietveld refinement shows that Mn2.3Ge sample prepared from arc melted under 620oC anealing is single phase. Magnetic analysis of this sample show a saturation magnetization of 5.252(Am2Kg-1 and 0.005 T coercive field.

  11. Variations of Ni, Cr and Mn Concentration in Soils Formed Along a Toposequence of Ultrabasic Rocks in Western Mashhad

    Directory of Open Access Journals (Sweden)

    S. Akbari

    2016-02-01

    Full Text Available Introduction: Parent materials as one of the main soil formation factors have a great impact on the concentration of heavy metals in the soil. Heavy metals are released to the soil during weathering and pedogenic processes. Ultrabasic rocks are known as the potential natural source of heavy metals, especially Ni, Cr and Mn in the soil. Average concentrations of Ni and Cr in the soils are 84 and 34 mg kg-1, respectively; while, in soil derived from ultrabasic parent material, the concentration of these elements may reach up to 100000 mg kg-1. Binaloud zone in northeastern composed of different geological materials. There is a narrow band of ophiolitic rocks in this zone that located along Mashhad city. The geochemical behavior of ultrabsic rocks and the associated soil have been frequently studied mostly in humid regions. But, there are a few research works done in arid environments. The objective of this study was to investigate the physical and chemical properties and concentrations of Ni, Cr and Mn in soils formed along a toposequence of ultrabasic rocks in western Mashhad. Materials and Methods: The study area is located in the hilly land landscape of Binaloud zone in the Western part of Mashhad. Mean annual precipitation and temperature is 260 mm and 13.7 oC, respectively. Soil temperature and moisture regimes are thermic and aridic boarder on mesic, respectively. Studied soils developed on hornblendite rocks that are ultrabasic rocks with SiO2 less than 45% and contain ferromagnesian minerals. A toposequence was selected and, three soil profiles on shoulder, backslope and footslope geomorphic positions were described acoording to key to soil taxonmy 2014 and the soil horizons were sampled. Air-dried samples were passed through 2 mm sieve and were used for laboratory analysis. Pseudo-total concentrations of Ni, Cr and Mn were extracted by aqua regia digestion procedure. Free iron oxides (Fed and amorphous iron oxides (Feo were extracted by

  12. Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors.

    Science.gov (United States)

    Zhu, Jixin; Shi, Wenhui; Xiao, Ni; Rui, Xianhong; Tan, Huiteng; Lu, Xuehong; Hng, Huey Hoon; Ma, Jan; Yan, Qingyu

    2012-05-01

    1D hierarchical tubular MnO(2) nanostructures have been prepared through a facile hydrothermal method using carbon nanofibres (CNFs) as sacrificial template. The morphology of MnO(2) nanostructures can be adjusted by changing the reaction time or annealing process. Polycrystalline MnO(2) nanotubes are formed with a short reaction time (e.g., 10 min) while hierarchical tubular MnO(2) nanostructures composed of assembled nanosheets are obtained at longer reaction times (>45 min). The polycrystalline MnO(2) nanotubes can be further converted to porous nanobelts and sponge-like nanowires by annealing in air. Among all the types of MnO(2) nanostructures prepared, tubular MnO(2) nanostructures composed of assembled nanosheets show optimized charge storage performance when tested as supercapacitor electrodes, for example, delivering an power density of 13.33 kW·kg(-1) and a energy density of 21.1 Wh·kg(-1) with a long cycling life over 3000 cycles, which is mainly related to their features of large specific surface area and optimized charge transfer pathway.

  13. One-step synthesis of graphene nanoribbon-MnO₂ hybrids and their all-solid-state asymmetric supercapacitors.

    Science.gov (United States)

    Liu, Mingkai; Tjiu, Weng Weei; Pan, Jisheng; Zhang, Chao; Gao, Wei; Liu, Tianxi

    2014-04-21

    Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO₂) of graphene nanoribbons (GNR) and MnO₂ nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO₂ nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO₂ hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the desirable porous structure, excellent electrical conductivity, as well as high rate capability and specific capacitances of both the GNR and GNR-MnO₂ hybrid, the optimized GNR//GNR-MnO₂ asymmetric supercapacitor can be cycled reversibly in an enlarged potential window of 0-2.0 V. In addition, the fabricated GNR//GNR-MnO₂ asymmetric supercapacitor exhibits a significantly enhanced maximum energy density of 29.4 W h kg(-1) (at a power density of 12.1 kW kg(-1)), compared with that of the symmetric cells based on GNR-MnO₂ hybrids or GNR sheets. This greatly enhanced energy storage ability and high rate capability can be attributed to the homogeneous dispersion and excellent pseudocapacitive performance of MnO₂ nanoparticles and the high electrical conductivity of the GNRs.

  14. Martensitic transformation and magnetic properties of manganese-rich Ni-Mn-In and Ni-Mn-Sn Heusler alloys

    International Nuclear Information System (INIS)

    Krenke, T.

    2007-01-01

    15.5 , and Ni 50 Mn 35 In 15 show remarkable magnetocaloric properties. The entropy change ΔS, which is determined by the sign of θM(T)/θT, is positive in all cases. The absolute values of ΔS reach up to +23 JK -1 kg -1 (Ni 50 Mn 35 In 15 ) at room temperature, which are, up to now, the largest values ever obtained in Heusler type alloys. This means that these alloys exhibit an inverse magnetocaloric effect, whereby the samples cool by adiabatic application of an external magnetic field. (orig.)

  15. A Structural Molar Volume Model for Oxide Melts Part I: Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 Melts—Binary Systems

    Science.gov (United States)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    A structural molar volume model was developed to accurately reproduce the molar volume of molten oxides. As the non-linearity of molar volume is related to the change in structure of molten oxides, the silicate tetrahedral Q-species, calculated from the modified quasichemical model with an optimized thermodynamic database, were used as basic structural units in the present model. Experimental molar volume data for unary and binary melts in the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 system were critically evaluated. The molar volumes of unary oxide components and binary Q-species, which are model parameters of the present structural model, were determined to accurately reproduce the experimental data across the entire binary composition in a wide range of temperatures. The non-linear behavior of molar volume and thermal expansivity of binary melt depending on SiO2 content are well reproduced by the present model.

  16. Electric-Field-Tunable Ferroelastic Control of Nonvolatile Resistivity and Ferromagnetic Switching in Multiferroic La0.67Ca0.33MnO3/[PbMg1/3Nb2/3O3] 0.7[PbTiO3]0.3 Heterostructures

    Science.gov (United States)

    Zheng, Ming; Zheng, Ren-Kui

    2016-04-01

    The electric-field-modulated nonvolatile resistivity and magnetization switching in elastically coupled La0.67Ca0.33MnO3 films grown on (111)-oriented 0.7 Pb (Mg1 /3Nb2 /3)O3-0.3 PbTiO3 substrates is achieved through the ferroelastic effect. By taking advantage of the 180° ferroelectric and non-180° ferroelastic domain switching, we identify that such changes in order parameters stem from domain-switching-induced strain rather than accumulation or depletion of charge carriers at the interface. Specifically, the strong correlation between the ferroelastic strain and the magnetic field is manifested not only by the strain-tunable magnetoresistance effect but also by the magnetically manipulated strain effect, which is essentially driven by the electronic phase separation. These findings present a potential strategy for elucidating the essential physics of the ferroelastic-strain effect and delivering prototype devices for energy-efficient and nonvolatile information storage.

  17. Manganese oxide octahedral molecular sieves as insertion electrodes for rechargeable Mg batteries

    KAUST Repository

    Rasul, Shahid; Suzuki, Shinya; Yamaguchi, Shu; Miyayama, Masaru

    2013-01-01

    Magnesium has been inserted electrochemically into manganese oxide octahedral molecular sieves (OMS-5 MnO2) at room temperature. Discharge/charge profiles show that a large amount of Mg, i.e., 0.37 Mg/Mn can be inserted electrochemically using 1 M Mg(ClO4)2/AN electrolyte when OMS-5 is prepared in presence of acetylene black. X-ray diffraction analysis and discharge/charge profiles verify that a solid state solution reaction takes place upon Mg insertion into the host lattice with concurrent reduction of Mn4+ to Mn2+. However, upon each reduction of Mn by Mg insertion and resultant dissolution into electrolyte, decrease in the active compound occurs consequently. A low intrinsic electronic conductivity of OMS-5 was suggested to play a vital role in Mg insertion into the host. © 2013 Elsevier Ltd.

  18. Manganese oxide octahedral molecular sieves as insertion electrodes for rechargeable Mg batteries

    KAUST Repository

    Rasul, Shahid

    2013-11-01

    Magnesium has been inserted electrochemically into manganese oxide octahedral molecular sieves (OMS-5 MnO2) at room temperature. Discharge/charge profiles show that a large amount of Mg, i.e., 0.37 Mg/Mn can be inserted electrochemically using 1 M Mg(ClO4)2/AN electrolyte when OMS-5 is prepared in presence of acetylene black. X-ray diffraction analysis and discharge/charge profiles verify that a solid state solution reaction takes place upon Mg insertion into the host lattice with concurrent reduction of Mn4+ to Mn2+. However, upon each reduction of Mn by Mg insertion and resultant dissolution into electrolyte, decrease in the active compound occurs consequently. A low intrinsic electronic conductivity of OMS-5 was suggested to play a vital role in Mg insertion into the host. © 2013 Elsevier Ltd.

  19. Isothermal sections of Eu(Ca, Zr, Ba)-Mn-Al ternary phase diagrams at 770 K

    International Nuclear Information System (INIS)

    Manyako, N.B.; Yanson, T.I.; Zarechnyuk, O.S.

    1988-01-01

    Isothermal cross sections of Eu(Ca, Sr, Ba)-Mn-Al state diagrams at 770 K are plotted by means of X-ray structural analysis. EuMn 2.3-3.6 Al 9.7-8.4 (ThMn 12 structure type) and Eu 2 Mn 5 Al 12 (eigenstructure type) two compound are found within Eu-Mn-Al system. Existance of CaMn 0.16- 0 .32 Al 1.84-1.68 compound (MgNi 2 structure type) is proved and CaMn 3.2-2.1 Al 8.8-9.9 compound (ThMn 12 type partially ordered structure) is found within Ca-Mn-Al system. Ternary compounds are not formed within Sr(Ba)-Mn-Al systems. Regions of stratification, occurring within Eu(Ca, Sr, Ba)-Mn systems, penetrate in ternary system

  20. {3+}$ substituted MgCuMn ferrites synthesized by microwave ...

    Indian Academy of Sciences (India)

    Author Affiliations. T RAMESH1 S R MURTHY2. Department of Physics, BVRIT Hyderabad College of Engineering for Women, Hyderabad 500 090, India; Department of Physics, Osmania University, Hyderabad 500 007, India ...

  1. Asymmetric carbon nanotube-MnO2 two-ply yarn supercapacitors for wearable electronics

    Science.gov (United States)

    Su, Fenghua; Miao, Menghe

    2014-04-01

    Strong and flexible two-ply carbon nanotube yarn supercapacitors are electrical double layer capacitors that possess relatively low energy storage capacity. Pseudocapacitance metal oxides such as MnO2 are well known for their high electrochemical performance and can be coated on carbon nanotube yarns to significantly improve the performance of two-ply carbon nanotube yarn supercapacitors. We produced a high performance asymmetric two-ply yarn supercapacitor from as-spun CNT yarn and CNT@MnO2 composite yarn in aqueous electrolyte. The as-spun CNT yarn serves as negative electrode and the CNT@MnO2 composite yarn as positive electrode. This asymmetric architecture allows the operating potential window to be extended from 1.0 to 2.0 V and results in much higher energy and power densities than the reference symmetric two-ply yarn supercapacitors, reaching 42.0 Wh kg-1 at a lower power density of 483.7 W kg-1, and 28.02 Wh kg-1 at a higher power density of 19 250 W kg-1. The asymmetric supercapacitor can sustain cyclic charge-discharge and repeated folding/unfolding actions without suffering significant deterioration of specific capacitance. The combination of high strength, flexibility and electrochemical performance makes the asymmetric two-ply yarn supercapacitor a suitable power source for flexible electronic devices for applications that require high durability and wearer comfort.

  2. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors.

    Science.gov (United States)

    Wu, Zhong-Shuai; Ren, Wencai; Wang, Da-Wei; Li, Feng; Liu, Bilu; Cheng, Hui-Ming

    2010-10-26

    In order to achieve high energy and power densities, we developed a high-voltage asymmetric electrochemical capacitor (EC) based on graphene as negative electrode and a MnO(2) nanowire/graphene composite (MGC) as positive electrode in a neutral aqueous Na(2)SO(4) solution as electrolyte. MGC was prepared by solution-phase assembly of graphene sheets and α-MnO(2) nanowires. Such aqueous electrolyte-based asymmetric ECs can be cycled reversibly in the high-voltage region of 0-2.0 V and exhibit a superior energy density of 30.4 Wh kg(-1), which is much higher than those of symmetric ECs based on graphene//graphene (2.8 Wh kg(-1)) and MGC//MGC (5.2 Wh kg(-1)). Moreover, they present a high power density (5000 W kg(-1) at 7.0 Wh kg(-1)) and acceptable cycling performance of ∼79% retention after 1000 cycles. These findings open up the possibility of graphene-based composites for applications in safe aqueous electrolyte-based high-voltage asymmetric ECs with high energy and power densities.

  3. Comparative study on nanostructured MnO2/carbon composites synthesized by spontaneous reduction for supercapacitor application

    KAUST Repository

    Lin, Yen-Po

    2011-10-01

    MnO2 has been deposited onto two types of carbon (C) substrates, including a non-porous multi-wall carbon nano-tube (CNT) and a porous carbon black (CB) powder, by a solution reduction process where MnO4 - was reduced at 80 °C by the C substrate so as to give nano-crystalline MnO2 directly at the C surface. The nature of the C substrate has profound effects on polymorphicity, microstructure and electrochemical properties, in terms of supercapacitor application, of the resulting oxide. Deposition on CNT produces meso/macro-porous layer containing predominantly spinel MnO2 strongly bonded to the CNTs and having a larger surface area, while that on CB results in birnessite granules with a lower surface area. In addition to having a higher specific capacitance (309 F g-1), the MnO2/CNT electrode exhibits superior power performance (221 F g-1 at 500 mV s-1 or ca. 20 Wh kg -1at 88 kW kg-1) to MnO2/CB due to reduced electronic and ion-diffusion resistances. Furthermore, the MnO2/CNT electrode also exhibits slower self-discharging rate and greater cycling stability. The results indicate that the MnO2 spinel/CNT holds promise for supercapacitor applications. © 2011 Elsevier B.V. All rights reserved.

  4. Structural Series in the Ternary A-Mn-As System (A = Alkali Metal): Double-Layer-Type CsMn4As3 and RbMn4As3 and Tunnel-Type KMn4As3.

    Science.gov (United States)

    Ishida, Junichi; Iimura, Soshi; Hosono, Hideo

    2018-04-16

    New manganese arsenides CsMn 4 As 3 , RbMn 4 As 3 , and KMn 4 As 3 were synthesized by solid-state reaction. They consist of edge-sharing MnAs 4 tetrahedra, which are a building block similar to those of Fe-based superconductors. CsMn 4 As 3 and RbMn 4 As 3 adopt the KCu 4 S 3 -type structure (tetragonal P4/ mmm space group, No. 123) with a Mn 4 As 3 double layer, while KMn 4 As 3 has the CaFe 4 As 3 -type structure (orthorhombic Pnma space group, No. 62) with a Mn 4 As 3 tunnel framework. The structural change from CsMn 4 As 3 and RbMn 4 As 3 to KMn 4 As 3 as well as the structural trend of the other ternary A-Mn-As (A = alkali metal) and AE-Mn-As (AE = alkaline-earth metal) compounds is understood as a consequence of reduction of the coordination number around the A and AE sites owing to the decrease of the ionic radius from Cs + to Mg 2+ . Electrical resistivity measurements confirm that the three new phases are Mott insulators with band gaps of 0.52 (CsMn 4 As 3 ), 0.43 (RbMn 4 As 3 ), and 0.31 eV (KMn 4 As 3 ). Magnetic and heat capacity measurements revealed that CsMn 4 As 3 and RbMn 4 As 3 are antiferromagnets without apparent phase transitions below 400 K, which is similar to the magnetism of LaMnAsO and BaMn 2 As 2 , while the existence of the ferromagnetic component was indicated in KMn 4 As 3 with a magnetic transition at 179 K.

  5. Nanoporous LiMn2O4 spinel prepared at low temperature as cathode material for aqueous supercapacitors

    Science.gov (United States)

    Wang, F. X.; Xiao, S. Y.; Gao, X. W.; Zhu, Y. S.; Zhang, H. P.; Wu, Y. P.; Holze, R.

    2013-11-01

    LiMn2O4 spinel was prepared by a hydrothermal method using α-MnO2 nanotubes as precursor at 180 °C, a temperature much lower than that in previously reported methods. It is nanoporous with a pore size of about 40-50 nm and a BET surface area of 9.76 m2 g-1. It exhibits a high specific capacitance of 189 F g-1 at 0.3 A g-1 as a cathode for an aqueous supercapacitor. Even at 12 A g-1, it still has a capacitance of 166 F g-1. After 1500 cycles, there is no evident capacity fading. The LiMn2O4 cathode can deliver an energy density of 31.9 Wh kg-1 at 3480 W kg-1 and even maintain 19.4 Wh kg-1 at about 5100 W kg-1 based on the mass of LiMn2O4.

  6. Sintering temperature and impedance analysis of Mn{sub 0.9}Co{sub 1.2}Ni{sub 0.27}Mg{sub 0.15}Al{sub 0.03}Fe{sub 0.45}O{sub 4} NTC ceramic prepared by W/O microemulsion method

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Junbo [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Qing, E-mail: zhaoq@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); Gao, Bo [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); Chang, Aimin, E-mail: changam@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); Zhang, Bo; Zhao, Pengjun; Ma, Renjun [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-12-25

    Highlights: • The ceramics are mainly in spinel phase and cubic cobalt oxide phase. • A perfect sintering temperature of 1450 °C for the Mn–Co–Ni–Mg–Al–Fe–O was proposed. • The NTC characteristic of the ceramics derive from grain boundary resistance R{sub gb}. - Abstract: The Mn{sub 0.9}Co{sub 1.2}Ni{sub 0.27}Mg{sub 0.5}Al{sub 0.03}Fe{sub 0.45}O{sub 4} negative temperature coefficient (NTC) ceramics derived from nano-particles were sintered at 1380 °C, 1450 °C and 1560 °C, respectively. X-ray diffraction (XRD) result showed that the ceramics sintered at 1380 °C and 1450 °C were mainly in the cubic spinel structure except for a little of tetragonal spinel, and that sintered at 1560 °C was consisted of cubic spinel and cubic cobalt oxide phase. Scanning electron microscopy (SEM) image indicated that the grain size of the ceramic increased sharply when the sintering temperature increased from 1380 °C to 1450 °C, and it changed little when the temperature further increased to 1560 °C, while the porosity was enlarged seriously. Thus a perfect sintering temperature of 1450 °C was proposed. Impedance analysis revealed that the grain resistance R{sub g} showed positive temperature coefficient thermistor characteristic, while the grain boundary resistance R{sub gb} possessed negative temperature coefficient characteristic. Because the grain boundary resistance R{sub gb} was two orders of magnitude larger than the grain resistance R{sub g}, the material thus showed negative temperature coefficient thermistor characteristic.

  7. The influence of the iron content on the reductive decomposition of A{sub 3−x}Fe{sub x}Al{sub 2}Si{sub 3}O{sub 12} garnets (A = Mg, Mn; 0.47 ≤ x ≤ 2.85)

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, Claudia, E-mail: claudia.aparicio@upol.cz; Filip, Jan, E-mail: claudia.aparicio@upol.cz; Mashlan, Miroslav, E-mail: claudia.aparicio@upol.cz; Zboril, Radek, E-mail: claudia.aparicio@upol.cz [Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 77146 Olomouc (Czech Republic)

    2014-10-27

    Thermally-induced reductive decomposition of natural iron-bearing garnets of the almandine-pyrope and almandine-spessartine series were studied at temperatures up to 1200 °C (heating rate of 10 °C/min) under atmosphere of forming gas (10% of H{sub 2} in N{sub 2}). Crystallochemical formula of the studied garnet was calculated as {sup VIII}(A{sub 3−x}Fe{sub x}{sup 2+}){sup VI}(Al,Fe{sup 3+}){sub 2}Si{sub 3}O{sub 12}, where the amount of Fe{sup 3+} in the octahedral sites is negligible with the exception of pyrope, A = Mg, Mn, and 0.47 ≤ x ≤ 2.85. The observed decomposition temperature, determined from differential scanning calorimetry and thermogravimetry, is greater than 1000 °C in all cases and showed almost linear dependence on the iron content in the dodecahedral sites of the studied garnets, with the exception of garnet with a near-pyrope composition (Prp{sub 80}Alm{sub 20}). The initial garnet samples and decomposition products were characterized in details by means of X-ray powder diffraction and {sup 57}Fe Mössbauer spectroscopy. We found that all studied garnets have common decomposition products such as metallic iron (in general, rounded particles below 4 μm) and Fe-spinel; the other identified decomposition products depend on starting chemical composition of the garnet: Fe-cordierite, olivine (fayalite or tephroite), cristobalite, pyroxene (enstatite or pigeonite), and anorthite. Anorthite and pigeonite were only present in garnets with Ca in the dodecahedral site. All the identified phases were usually well crystallized.

  8. Mössbauer spectroscopic studies of Al{sup 3+} ions substitution effects in superparamagnetic Mg{sub 0.2}Mn{sub 0.5}Ni{sub 0.3}Al{sub y}Fe{sub 2−y}O{sub 4} compositions

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Satish, E-mail: satishapurva@gmail.com [Department of Physics, Govt. P.G. College, Solan (India); Chand, Jagdish; Singh, M. [Department of Physics, Himachal Pradesh University, Summer-Hill, Shimla, 171005 (India)

    2016-09-15

    Nanoparticles of Al{sup 3+} ions substituted Mg−Mn−Ni materials with compositions Mg{sub 0.2}Mn{sub 0.5}Ni{sub 0.3}Al{sub y}Fe{sub 2−y}O{sub 4} (y = 0.15–0.25) were synthesized by citrate precursor technique. Samples were characterized by X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer and room temperature {sup 57}Fe Mössbauer spectroscopy. Saturation magnetization decreases with increasing Al{sup 3+} ions concentration because replacement of Fe{sup 3+} ions by Al{sup 3+} ions at octahedral B-site weaken sublattice interaction and lowers magnetic moments. Mössbauer spectral studies show that as-prepared nano-sized samples are superparamagnetic at room temperature. Superparamagnetic relaxation was observed for small crystallite in samples with higher Al content, which is attributed to weakening of A–B exchange interaction. Mössbauer spectra at 300 K show a gradual collapse of magnetic hyperfine splitting typical for superparamagnetic relaxation. An increase in inversion parameter is observed with increasing Al{sup 3+} ions substitution, which is attributed to decrease in crystallite size. - Highlights: • Single phase nanocrystalline samples were synthesized by citrate precursor method. • Particle size decreases as non-magnetic Al{sup 3+} ions concentration increase. • Presence of doublet in Mössbauer spectra was due to superparamagnetic relaxation. • Study shows collapse of long range magnetic order and quenching of magnetic moment.

  9. Natural and anthropogenic processes that concentrate Mn in rural and urban environments of the lower Mississippi River Delta

    International Nuclear Information System (INIS)

    Mielke, H.W.; Gonzales, C.R.; Powell, E.; Shah, A.; Mielke, P.W.

    2002-01-01

    This study evaluated natural processes and projected ethyl cyclopentadienyl manganese tricarbonyl fuel additives as sources of Mn accumulation in the environment. Data sets include fresh alluvium and sediments from the lower Mississippi River Delta and a soil metal survey of metropolitan New Orleans. The (1) railroad Mn, (2) industrial Mn, and (3) dynamic aquifer-stream transfer of Mn hypotheses were tested with the Mississippi River Delta data. Friction between Mn-rich steel wheels and rails contributes Mn (P=0.017) to the environment, supporting (1). Sediment loads of Mn were similar (P=0.77) upstream and downstream from the Louisiana industrial corridor, not supporting (2). The median Mn on the alluvium surface (59 mg/kg), in the aquifer (159 mg/kg), and in the riverbank aquifer discharge zone (513 mg/kg) support (3) as a mechanism for Mn enrichment of lay. The New Orleans soil metal survey data set shows a rural to urban increase of fourfold for Mn and three orders of magnitude for Pb. At 1999 .S. highway fuel use, 8.3 mg of Mn per L would yield 5000 metric tons of Mn annually. If 13% of Mn were emitted, 650 tons of Mn would become aerosols annually, while 87% or 4350 tons would remain in engines. The 1999 toxic release inventory for Mn shows 370 tons as total emissions compared to the potential of 390 and 260 tons from vehicles, respectively, in urban and rural areas. A precautionary lesson from the use of Pb as a fuel additive is that the use of Mn as a fuel additive would be associated with an increased risk or neonates exceeding the estimated total tolerable daily intake of .1-16.5μg Mn (especially in urban inner city environments) because neonates lack fully functional hepatic clearance for Mn

  10. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.

    2013-10-10

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  11. Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors

    Science.gov (United States)

    Zhang, B. H.; Liu, Y.; Chang, Z.; Yang, Y. Q.; Wen, Z. B.; Wu, Y. P.; Holze, R.

    2014-05-01

    Nanowire Na0.35MnO2 was prepared by a simple and low energy consumption hydrothermal method; its electrochemical performance as a cathode material for aqueous asymmetric supercapacitors in Na2SO4 solution was investigated. Due to the nanowire structure its capacitance (157 F g-1) is much higher than that of the rod-like Na0.95MnO2 (92 F g-1) from solid phase reaction although its sodium content is lower. When it is assembled into an asymmetric aqueous supercapacitor using activated carbon as the counter electrode and aqueous 0.5 mol L-1 Na2SO4 electrolyte solution, the nanowire Na0.35MnO2 shows an energy density of 42.6 Wh kg-1 at a power density of 129.8 W kg-1 based on the total weight of the two electrode material, higher than those for the rod-like Na0.95MnO2, with an energy density of 27.3 Wh kg-1 at a power density of 74.8 W kg-1, and that of LiMn2O4. The new material presents excellent cycling behavior even when dissolved oxygen is not removed from the electrolyte solution. The results hold great promise for practical applications of this cathode material since sodium is much cheaper than lithium and its natural resources are rich.

  12. Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors

    Science.gov (United States)

    Zhi, Mingjia; Manivannan, Ayyakkannu; Meng, Fanke; Wu, Nianqiang

    2012-06-01

    This paper presents highly conductive carbon nanofiber/MnO2 coaxial cables in which individual electrospun carbon nanofibers are coated with an ultrathin hierarchical MnO2 layer. In the hierarchical MnO2 structure, an around 4 nm thick sheath surrounds the carbon nanofiber (CNF) in a diameter of 200 nm, and nano-whiskers grow radically outward from the sheath in view of the cross-section of the coaxial cables, giving a high specific surface area of MnO2. The CNFs are synthesized by electrospinning a precursor containing iron acetylacetonate (AAI). The addition of AAI not only enlarges the specific surface area of the CNF but also greatly enhances their electronic conductivity, which leads to a dramatic improvement in the specific capacitance and the rate capability of the CNF/MnO2 electrode. The AAI-CNF/MnO2 electrode shows a specific capacitance of 311 F g-1 for the whole electrode and 900 F g-1 for the MnO2 shell at a scan rate of 2 mV s-1. Good cycling stability, high energy density (80.2 Wh kg-1) and high power density (57.7 kW kg-1) are achieved. This work indicates that high electronic conductivity of the electrode material is crucial to achieving high power and energy density for pseudo-supercapacitors.

  13. Rational design of octahedron and nanowire CeO2@MnO2 core-shell heterostructures with outstanding rate capability for asymmetric supercapacitors.

    Science.gov (United States)

    Zhu, Shi Jin; Jia, Jia Qi; Wang, Tian; Zhao, Dong; Yang, Jian; Dong, Fan; Shang, Zheng Guo; Zhang, Yu Xin

    2015-10-14

    Two kinds of novel CeO2@MnO2 nanostructures have been synthesized via a self-assembly strategy. The as-prepared CeO2 nanowire@MnO2 nanostructures exhibited unprecedented pseudocapacitance performance (255 F g(-1)) with outstanding rate capability. A new mechanism based on the synergistic effect between CeO2 and MnO2 was proposed to interpret this phenomenon. When assembled as an asymmetric supercapacitor, an energy density of 27.5 W h kg(-1) with a maximum power density of 1.6 kW kg(-1) was achieved for CeO2 nanowire@MnO2 nanostructures.

  14. Low Temperature Mechanical Properties of Scandium-Modified Al-Zn-Mg-Cu Alloys

    National Research Council Canada - National Science Library

    Senkov, O

    2002-01-01

    Tensile properties of three wrought alloys, (1) Al-10Zn-3Mg-1.2Cu-0.15Zr, (2) Al-10Zn-3Mg-1.2Cu-0.15Zr-0.39Mn-0.49Sc, and (3) Al-12Zn-3Mg-1.2Cu-0.15Zr-0.39Mn-0.49Sc were studied in T6 and T7 conditions at 298K and 77K...

  15. Crystal structures of KM(AsF{sub 6}){sub 3} (M{sup 2+} = Mg, Co, Mn, Zn), KCu(SbF{sub 6}){sub 3} and [Co(HF){sub 2}]Sr[Sr(HF)]{sub 2}-[Sr(HF){sub 2}]{sub 2}[AsF{sub 6}]{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Mazej, Zoran; Goreshnik, Evgeny [Jozef Stefan Institute, Ljubljana (Slovakia). Dept. of Inorganic Chemisrty and Technology

    2015-05-01

    The KM(AsF{sub 6}){sub 3} (M{sup 2+} = Mg, Co, Mn, Zn) and KCu(SbF{sub 6}){sub 3} compounds crystallize isotypically to previously known KNi(AsF{sub 6}){sub 3}. The main features of the structure of these compounds are rings of MF{sub 6} octahedra sharing apexes with AsF{sub 6} octahedra connected into infinite tri-dimensional frameworks. In this arrangement cavities are formed where K{sup +} cations are placed. Single crystals of CoSr{sub 5}(AsF{sub 6}){sub 12}.8HF were obtained as one of the products after the crystallization of 3KF/CoF{sub 2}/SrF{sub 2} mixture in the presence of AsF{sub 5} in anhydrous HF. The CoSr{sub 5}(AsF{sub 6}){sub 12}.8HF is monoclinic, C/2c (No.15), with a = 26.773(5) Aa, b = 10.087(2) Aa, c = 21.141(5) Aa, β = 93.296(13) {sup circle}, V = 5699.9(19) Aa{sup 3} at 200 K, and Z = 4. There are three crystallographically non-equivalent Sr{sup 2+} cations in the crystal structure of CoSr{sub 5}(AsF{sub 6}){sub 12}.8HF. The Sr1 is coordinated by ten fluorine atoms from eight different [AsF{sub 6}]- anions, meanwhile Sr2 and Sr3 are bound to nine fluorine atoms provided by one HF and eight AsF{sub 6} units or by two HF and six AsF{sub 6} units, respectively. The Co{sup 2+} is coordinated distorted-octahedrally by six fluorine atoms from two HF molecules and four different AsF{sub 6} units. All those moieties in the crystal structure of [Co(HF){sub 2}]Sr[Sr(HF)]{sub 2}[Sr(HF){sub 2}]{sub 2}[AsF{sub 6}]{sub 12} are connected into tridimensional framework. The CoSr{sub 5}(AsF{sub 6}){sub 12}.8HF is a unique example of compound where HF molecules are directly bound via fluorine atoms to two different metal centres.

  16. Crystal structures of KM(AsF6)3 (M2+ = Mg, Co, Mn, Zn), KCu(SbF6)3 and [Co(HF)2]Sr[Sr(HF)]2-[Sr(HF)2]2[AsF6]12

    International Nuclear Information System (INIS)

    Mazej, Zoran; Goreshnik, Evgeny

    2015-01-01

    The KM(AsF 6 ) 3 (M 2+ = Mg, Co, Mn, Zn) and KCu(SbF 6 ) 3 compounds crystallize isotypically to previously known KNi(AsF 6 ) 3 . The main features of the structure of these compounds are rings of MF 6 octahedra sharing apexes with AsF 6 octahedra connected into infinite tri-dimensional frameworks. In this arrangement cavities are formed where K + cations are placed. Single crystals of CoSr 5 (AsF 6 ) 12 .8HF were obtained as one of the products after the crystallization of 3KF/CoF 2 /SrF 2 mixture in the presence of AsF 5 in anhydrous HF. The CoSr 5 (AsF 6 ) 12 .8HF is monoclinic, C/2c (No.15), with a = 26.773(5) Aa, b = 10.087(2) Aa, c = 21.141(5) Aa, β = 93.296(13) circle , V = 5699.9(19) Aa 3 at 200 K, and Z = 4. There are three crystallographically non-equivalent Sr 2+ cations in the crystal structure of CoSr 5 (AsF 6 ) 12 .8HF. The Sr1 is coordinated by ten fluorine atoms from eight different [AsF 6 ]- anions, meanwhile Sr2 and Sr3 are bound to nine fluorine atoms provided by one HF and eight AsF 6 units or by two HF and six AsF 6 units, respectively. The Co 2+ is coordinated distorted-octahedrally by six fluorine atoms from two HF molecules and four different AsF 6 units. All those moieties in the crystal structure of [Co(HF) 2 ]Sr[Sr(HF)] 2 [Sr(HF) 2 ] 2 [AsF 6 ] 12 are connected into tridimensional framework. The CoSr 5 (AsF 6 ) 12 .8HF is a unique example of compound where HF molecules are directly bound via fluorine atoms to two different metal centres.

  17. Densities and apparent molar volumes of atmospherically important electrolyte solutions. 2. The systems H(+)-HSO4(-)-SO4(2-)-H2O from 0 to 3 mol kg(-1) as a function of temperature and H(+)-NH4(+)-HSO4(-)-SO4)2-)-H2O from 0 to 6 mol kg(-1) at 25 °C using a Pitzer ion interaction model, and NH4HSO4-H2O and (NH4)3H(SO4)2-H2O over the entire concentration range.

    Science.gov (United States)

    Clegg, S L; Wexler, A S

    2011-04-21

    A Pitzer ion interaction model has been applied to the systems H(2)SO(4)-H(2)O (0-3 mol kg(-1), 0-55 °C) and H(2)SO(4)-(NH(4))(2)SO(4)-H(2)O (0-6 mol kg(-1), 25 °C) for the calculation of apparent molar volume and density. The dissociation reaction HSO(4)(-)((aq)) ↔ H(+)((aq)) + SO(4)(2-)((aq)) is treated explicitly. Apparent molar volumes of the SO(4)(2-) ion at infinite dilution were obtained from part 1 of this work, (1) and the value for the bisulfate ion was determined in this study from 0 to 55 °C. In dilute solutions of both systems, the change in the degree of dissociation of the HSO(4)(-) ion with concentration results in much larger variations of the apparent molar volumes of the solutes than for conventional strong (fully dissociated) electrolytes. Densities and apparent molar volumes are tabulated. Apparent molar volumes calculated using the model are combined with other data for the solutes NH(4)HSO(4) and (NH(4))(3)H(SO(4))(2) at 25 °C to obtain apparent molar volumes and densities over the entire concentration range (including solutions supersaturated with respect to the salts).

  18. A successive ionic layer adsorption and reaction (SILAR) method to fabricate a layer-by-layer (LbL) MnO2-reduced graphene oxide assembly for supercapacitor application

    Science.gov (United States)

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kim, Nam Hoon; Kuila, Tapas; Lee, Joong Hee

    2017-02-01

    A facile, cost effective and additive-free successive ionic layer adsorption and reaction (SILAR) technique is demonstrated to develop layer-by-layer (LbL) assembly of reduced graphene oxide (RGO) and MnO2 (MnO2-RGOSILAR) on a stainless steel current collector, for designing light-weight and small size supercapacitor electrode. The transmission electron microscopy and field emission scanning electron microscopy images shows uniform distribution of RGO and MnO2 in the MnO2-RGOSILAR. The LbL (MnO2-RGOSILAR) demonstrates improved physical and electrochemical properties over the hydrothermally prepared MnO2-RGO (MnO2-RGOHydro). The electrochemical environment of MnO2-RGOSILAR is explained by constant phase element in the high frequency region, and a Warburg element in the low frequency region in the Z-View fitted Nyquist plot. The equivalent circuit of the MnO2-RGOHydro, displays the co-existence of EDL and constant phase element, indicating inhomogeneous distribution of MnO2 and RGO by the hydrothermal technique. An asymmetric supercapacitor device is designed with MnO2-RGOSILAR as positive electrode, and thermally reduced GO (TRGO) as negative electrode. The designed cell exhibits high energy density of ∼88 Wh kg-1, elevated power density of ∼23,200 W kg-1, and ∼79% retention in capacitance after 10,000 charge-discharge cycles.

  19. Effects of dietary manganese contents on 54Mn metabolism in mice

    International Nuclear Information System (INIS)

    Sato, I.; Matsusaka, N.; Kobayashi, H.; Nishimura, Y.

    1996-01-01

    Several parameters of 54 Mn metabolism were noted in mice maintained on diets with manganese contents of 80 to 8000 mg/kg. Excretion of 54 Mn was promoted as the dietary manganese contents increased. Clearance of 54 Mn from the liver, kidneys, pancreas, and spleen was markedly accelerated by feeding mice a high-manganese diet, but clearance from the muscles, femurs, and brain was relatively insensitive to the dietary manganese. Manganese concentrations in the tissue were regulated homoestatically upto the dietary manganese content of 2400 mg/kg, but marked accumulations of manganese occurred when mice were given 8000 mg/kg diet. No toxic symptoms were found up to the 2400 mg/kg diet, but consumption of the 8000 mg/kg diet was less than for other diets. These results suggest that an oral intake of excess manganese is effective for promoting the excretion of 54 Mn from a body contaminated with this isotope. (author)

  20. Hierarchical chestnut-like MnCo2O4 nanoneedles grown on nickel foam as binder-free electrode for high energy density asymmetric supercapacitors

    Science.gov (United States)

    Hui, Kwun Nam; Hui, Kwan San; Tang, Zikang; Jadhav, V. V.; Xia, Qi Xun

    2016-10-01

    Hierarchical chestnut-like manganese cobalt oxide (MnCo2O4) nanoneedles (NNs) are successfully grown on nickel foam using a facile and cost-effective hydrothermal method. High resolution TEM image further verifies that the chestnut-like MnCo2O4 structure is assembled by numerous 1D MnCo2O4 nanoneedles, which are formed by numerous interconnected MnCo2O4 nanoparticles with grain diameter of ∼10 nm. The MnCo2O4 electrode exhibits high specific capacitance of 1535 F g-1 at 1 A g-1 and good rate capability (950 F g-1 at 10 A g-1) in a 6 M KOH electrolyte. An asymmetric supercapacitor is fabricated using MnCo2O4 NNs on Ni foam (MnCo2O4 NNs/NF) as the positive electrode and graphene/NF as the negative electrode. The device shows an operation voltage of 1.5 V and delivers a high energy density of ∼60.4 Wh kg-1 at a power density of ∼375 W kg-1. Moreover, the device exhibits an excellent cycling stability of 94.3% capacitance retention after 12000 cycles at 30 A g-1. This work demonstrates that hierarchical chestnut-like MnCo2O4 NNs could be a promising electrode for the high performance energy storage devices.

  1. Tailoring the morphology followed by the electrochemical performance of NiMn-LDH nanosheet arrays through controlled Co-doping for high-energy and power asymmetric supercapacitors.

    Science.gov (United States)

    Singh, Saurabh; Shinde, Nanasaheb M; Xia, Qi Xun; Gopi, Chandu V V M; Yun, Je Moon; Mane, Rajaram S; Kim, Kwang Ho

    2017-10-14

    Herein, we tailor the surface morphology of nickel-manganese-layered double hydroxide (NiMn-LDH) nanostructures on 3D nickel-foam via a step-wise cobalt (Co)-doping hydrothermal chemical process. At the 10% optimum level of Co-doping, we noticed a thriving tuned morphological pattern of NiMn-LDH nanostructures (NiCoMn-LDH (10%)) in terms of the porosity of the nanosheet (NS) arrays which not only improves the rate capability as well as cycling stability, but also demonstrates nearly two-fold specific capacitance enhancement compared to Co-free and other NiCoMn-LDH electrodes with a half-cell configuration in 3 M KOH, suggesting that Co-doping is indispensable for improving the electrochemical performance of NiMn-LDH electrodes. Moreover, when this high performing NiCoMn-LDH (10%) electrode is employed as a cathode material to fabricate an asymmetric supercapacitor (ASC) device with reduced graphene oxide (rGO) as an anode material, excellent energy storage performance (57.4 Wh kg -1 at 749.9 W kg -1 ) and cycling stability (89.4% capacitive retention even after 2500 cycles) are corroborated. Additionally, we present a demonstration of illuminating a light emitting diode for 600 s with the NiCoMn-LDH (10%)//rGO ASC device, evidencing the potential of the NiCoMn-LDH (10%) electrode in fabricating energy storage devices.

  2. Enhanced glass forming ability and refrigerant capacity of a Gd55Ni22Mn3Al20 bulk metallic glass

    International Nuclear Information System (INIS)

    Xia, L.; Chan, K.C.; Tang, M.B.

    2011-01-01

    Highlights: → A new Gd 55 Ni 22 Mn 3 Al 20 bulk metallic glass (BMG) was synthesized by minor Mn addition. → The BMG has enhanced glass forming ability and excellent refrigerant capacity (RC). → The RC of the BMG reaches a high value of 825 J kg -1 under a field of 3979 kA/m. → Its excellent RC is related to its large effective magnetic moment. - Abstract: In this work, a small amount of Mn was added to a Gd 55 Ni 25 Al 20 glass forming alloy, as a replacement for Ni, and a Gd 55 Ni 22 Mn 3 Al 20 bulk metallic glass (BMG) was obtained by suction casting. Its glass forming ability (GFA) was characterized by X-ray diffraction and differential scanning calorimetry, and its magnetic properties were measured using a magnetic property measurement system. It is found that the minor Mn addition can significantly improve both the GFA and the magnetocaloric effect (MCE) of the alloy. The refrigerant capacity (RC) of the BMG can reach a high value of 825 J kg -1 under a field of 3979 kA/m, which is about 29% larger than that of a Gd 55 Ni 25 Al 20 BMG. The effect of the minor Mn addition on the GFA and MCE of the BMG was investigated in the study.

  3. One-step synthesis of graphene nanoribbon-MnO2 hybrids and their all-solid-state asymmetric supercapacitors

    Science.gov (United States)

    Liu, Mingkai; Tjiu, Weng Weei; Pan, Jisheng; Zhang, Chao; Gao, Wei; Liu, Tianxi

    2014-03-01

    Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO2) of graphene nanoribbons (GNR) and MnO2 nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO2 nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO2 hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the desirable porous structure, excellent electrical conductivity, as well as high rate capability and specific capacitances of both the GNR and GNR-MnO2 hybrid, the optimized GNR//GNR-MnO2 asymmetric supercapacitor can be cycled reversibly in an enlarged potential window of 0-2.0 V. In addition, the fabricated GNR//GNR-MnO2 asymmetric supercapacitor exhibits a significantly enhanced maximum energy density of 29.4 W h kg-1 (at a power density of 12.1 kW kg-1), compared with that of the symmetric cells based on GNR-MnO2 hybrids or GNR sheets. This greatly enhanced energy storage ability and high rate capability can be attributed to the homogeneous dispersion and excellent pseudocapacitive performance of MnO2 nanoparticles and the high electrical conductivity of the GNRs.Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO2) of graphene nanoribbons (GNR) and MnO2 nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO2 nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO2 hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the

  4. Energy levels of 56Mn

    DEFF Research Database (Denmark)

    Van Assche, P. H. M.; Baader, H. A.; Koch, H. R.

    1971-01-01

    The low-energy spectrum of the 55Mn(n,γ)56 Mn reaction has been studied with a γ-diffraction spectrometer. These data allowed the construction of a level scheme for 56Mn with two previously unobserved doublets. High-energy γ-transitions to the low-energy states have been measured for different...

  5. Application of Mn/MCM-41 as an adsorbent to remove methyl blue from aqueous solution.

    Science.gov (United States)

    Shao, Yimin; Wang, Xi; Kang, Yuan; Shu, Yuehong; Sun, Qiangqiang; Li, Laisheng

    2014-09-01

    In this study, the application of Mn loaded MCM-41 (Mn/MCM-41) was reported as a novel adsorbent for methyl blue (MB) from aqueous solution. The mesoporous structure of Mn/MCM-41 was confirmed by XRD technique. Surface area, pore size and wall thickness were calculated from BET equation and BJH method using nitrogen sorption technique. FT-IR studies showed that Mn were loaded on the hexagonal mesoporous structures of MCM-41. It is found that the MCM-41 structure retained after loading of Mn but its surface area and pore diameter decreased due to pore blockage. Adsorption of MB from aqueous solution was investigated by Mn/MCM-41 with changing Mn content, adsorbent dosage, initial MB concentration, contact time, pH and the temperature. Under the chosen condition (25°C, 0.02 g adsorbent dosage, 6.32 pH, 50 mg L(-1) MB, 1 wt.% Mn), a high MB adsorption capacity (45.38 mg g(-1)) was achieved by Mn/MCM-41 process at 120 min, 8.6 times higher than MCM-41. The electrostatic interaction was considered to be the main mechanism for the dye adsorption. The experimental data fitted well to Freundlich and Dubinin-Radushkevich isotherms. The adsorption of MB on Mn/MCM-41 followed pseudo-second-order kinetics. Thermodynamic parameters suggested that the adsorption process is endothermic and spontaneous. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. CNS bioavailability and radiation protection of normal hippocampal neurogenesis by a lipophilic Mn porphyrin-based superoxide dismutase mimic, MnTnBuOE-2-PyP5+

    Directory of Open Access Journals (Sweden)

    David Leu

    2017-08-01

    Full Text Available Although radiation therapy can be effective against cancer, potential damage to normal tissues limits the amount that can be safely administered. In central nervous system (CNS, radiation damage to normal tissues is presented, in part, as suppressed hippocampal neurogenesis and impaired cognitive functions. Mn porphyrin (MnP-based redox active drugs have demonstrated differential effects on cancer and normal tissues in experimental animals that lead to protection of normal tissues and radio- and chemo-sensitization of cancers. To test the efficacy of MnPs in CNS radioprotection, we first examined the tissue levels of three different MnPs – MnTE-2-PyP5+(MnE, MnTnHex-2-PyP5+(MnHex, and MnTnBuOE-2-PyP5+(MnBuOE. Nanomolar concentrations of MnHex and MnBuOE were detected in various brain regions after daily subcutaneous administration, and MnBuOE was well tolerated at a daily dose of 3 mg/kg. Administration of MnBuOE for one week before cranial irradiation and continued for one week afterwards supported production and long-term survival of newborn neurons in the hippocampal dentate gyrus. MnP-driven S-glutathionylation in cortex and hippocampus showed differential responses to MnP administration and radiation in these two brain regions. A better understanding of how preserved hippocampal neurogenesis correlates with cognitive functions following cranial irradiation will be helpful in designing better MnP-based radioprotection strategies. Keywords: Mn porphyrin, Bioavailability, BMX-001, Hippocampus, Neurogenesis, Radioprotection

  7. Study of intergranular embrittlement in Fe-12Mn alloys

    International Nuclear Information System (INIS)

    Lee, H.J.

    1982-06-01

    A high resolution scanning Auger microscopic study has been performed on the intergranular fracture surfaces of Fe-12Mn steels in the as-austenitized condition. Fracture mode below the ductile-brittle transition temperature was intergranular whenever the alloy was quenched from the austenite field. The intergranular fracture surface failed to reveal any consistent segregation of P, S, As, O, or N. The occasional appearance of S or O on the fracture surface was found to be due to a low density precipitation of MnS and MnO 2 along the prior austenite boundaries. An AES study with Ar + ion-sputtering showed no evidence of manganese enrichment along the prior austenite boundaries, but a slight segregation of carbon which does not appear to be implicated in the tendency toward intergranular fracture. Addition of 0.002% B with a 1000 0 C/1h/WQ treatment yielded a high Charpy impact energy at liquid nitrogen temperature, preventing the intergranular fracture. High resolution AES studies showed that 3 at. % B on the prior austenite grain boundaries is most effective in increasing the grain boundary cohesive strength in an Fe-12Mn alloy. Trace additions of Mg, Zr, or V had negligible effects on the intergranular embrittlement. A 450 0 C temper of the boron-modified alloys was found to cause tempered martensite embrittlement, leading to intergranular fracture. The embrittling treatment of the Fe-12Mn alloys with and without boron additions raised the ductile-brittle transition by 150 0 C. This tempered martensite embrittlement was found to be due to the Mn enrichment of the fracture surface to 32 at. % Mn in the boron-modified alloy and 38 at. % Mn in the unmodified alloy. The Mn-enriched region along the prior austenite grain boundaries upon further tempering is believed to cause nucleation of austenite and to change the chemistry of the intergranular fracture surfaces. 61 figures

  8. (BS-Mn) nanocomposite

    African Journals Online (AJOL)

    Bamboo supported manganese (BS-Mn) nanocomposite was prepared in a single pot system via bottom-up approach using a chemical reduction method. Langmuir surface area, BET surface area, and Single pore surface area were 349.70 m2/g, 218.90 m2/g, and 213.50 m2/g, respectively. The pore size (24.34 Ȧ); pore ...

  9. Applications of thermodynamic calculations to Mg alloy design: Mg-Sn based alloy development

    International Nuclear Information System (INIS)

    Jung, In-Ho; Park, Woo-Jin; Ahn, Sang Ho; Kang, Dae Hoon; Kim, Nack J.

    2007-01-01

    Recently an Mg-Sn based alloy system has been investigated actively in order to develop new magnesium alloys which have a stable structure and good mechanical properties at high temperatures. Thermodynamic modeling of the Mg-Al-Mn-Sb-Si-Sn-Zn system was performed based on available thermodynamic, phase equilibria and phase diagram data. Using the optimized database, the phase relationships of the Mg-Sn-Al-Zn alloys with additions of Si and Sb were calculated and compared with their experimental microstructures. It is shown that the calculated results are in good agreement with experimental microstructures, which proves the applicability of thermodynamic calculations for new Mg alloy design. All calculations were performed using FactSage thermochemical software. (orig.)

  10. Characterization of the microstructure in Mg based alloy

    KAUST Repository

    Kutbee, Arwa T

    2013-01-01

    hardening is essential for age hardenable Mg-based alloys. In this work, microstructural investigation of the Mg–1.4Sn–1.3Zn–0.1Mn (at.%) precipitation system was performed using TEM. The chemical composition of the precipitates was analyzed using EDS. APT

  11. Mn bioavailability by polarized Caco-2 cells: comparison between Mn gluconate and Mn oxyprolinate

    Directory of Open Access Journals (Sweden)

    Fulgenzi Alessandro

    2011-07-01

    Full Text Available Abstract Background Micronutrient inadequate intake is responsible of pathological deficiencies and there is a need of assessing the effectiveness of metal supplementation, frequently proposed to rebalance poor diets. Manganese (Mn is present in many enzymatic intracellular systems crucial for the regulation of cell metabolism, and is contained in commercially available metal supplements. Methods We compared the effects of two different commercial Mn forms, gluconate (MnGluc and oxyprolinate (MnOxP. For this purpose we used the polarized Caco-2 cells cultured on transwell filters, an established in vitro model of intestinal epithelium. Since micronutrient deficiency may accelerate mitochondrial efficiency, the mitochondrial response of these cells, in the presence of MnGluc and MnOxP, by microscopy methods and by ATP luminescence assay was used. Results In the presence of both MnOxP and MnGluc a sustained mitochondrial activity was shown by mitoTraker labeling (indicative of mitochondrial respiration, but ATP intracellular content remained comparable to untreated cells only in the presence of MnOxP. In addition MnOxP transiently up-regulated the antioxidant enzyme Mn superoxide dismutase more efficiently than MnGluc. Both metal treatments preserved NADH and βNADPH diaphorase oxidative activity, avoided mitochondrial dysfunction, as assessed by the absence of a sustained phosphoERK activation, and were able to maintain cell viability. Conclusions Collectively, our data indicate that MnOxP and MnGluc, and primarily the former, produce a moderate and safe modification of Caco-2 cell metabolism, by activating positive enzymatic mechanisms, thus could contribute to long-term maintenance of cell homeostasis.

  12. Genome-wide association study to identify candidate loci and genes for Mn toxicity tolerance in rice.

    Directory of Open Access Journals (Sweden)

    Asis Shrestha

    Full Text Available Manganese (Mn is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.. A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170 with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits.

  13. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production

    International Nuclear Information System (INIS)

    Zhou, Hao; Pan, Haixia; Xu, Jianqiang; Xu, Weiping; Liu, Lifen

    2016-01-01

    Highlights: • An efficient Mn(II) oxidation marine sediments microbial community was obtained. • High-throughput sequencing indicated new Mn(II) oxidation associated genus. • Na_3MnPO_4CO_3 and MnCO_3 were synthesized by the consortium. • Consortium exhibited Mn(II) oxidation performance over a range of harsh conditions. - Abstract: Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1 mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5 mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N_2 adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8 mg g"−"1 adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na_3MnPO_4CO_3_. Results suggested the complexity of natural microbe-mediated Mn transformation.

  14. Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors.

    Science.gov (United States)

    Yang, Chunzhen; Zhou, Ming; Xu, Qian

    2013-12-07

    MnO2/carbon composites with ultrathin MnO2 nanofibers (diameter of 5-10 nm) uniformly deposited on three dimensional ordered macroporous (3DOM) carbon frameworks were fabricated via a self-limiting redox process. The MnO2 nanofibers provide a large surface area for charge storage, whereas the 3DOM carbon serves as a desirable supporting material providing rapid ion and electron transport through the composite electrodes. Cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) were used to characterize the capacitive performance of these composites. Optimization of the composition results in a composite with 57 wt% MnO2 content, which gives both a high specific capacitance (234 F g(-1) at a discharge current of 0.1 A g(-1)) and good rate capability (52% retention of the capacitance at 5 A g(-1)). An asymmetric supercapacitor was fabricated by assembling the optimized MnO2/carbon composite as the positive electrode and 3DOM carbon as the negative electrode. The asymmetric supercapacitor exhibits superior electrochemical performances, which can be reversibly charged and discharged at a maximum cell voltage of 2.0 V in 1.0 M Na2SO4 aqueous electrolyte, delivering both high energy density (30.2 W h kg(-1)) and power density (14.5 kW kg(-1)). Additionally, the asymmetric supercapacitor exhibits an excellent cycle life, with 95% capacitance retained after 1000 cycles.

  15. Polyhedral-Like NiMn-Layered Double Hydroxide/Porous Carbon as Electrode for Enhanced Electrochemical Performance Supercapacitors.

    Science.gov (United States)

    Yu, Mei; Liu, Ruili; Liu, Jianhua; Li, Songmei; Ma, Yuxiao

    2017-11-01

    Polyhedral-like NiMn-layered double hydroxide/porous carbon (NiMn-LDH/PC-x) composites are successfully synthesized by hydrothermal method (x = 1, 2 means different mass percent of porous carbon (PC) in composites). The NiMn-LDH/PC-1 composites possess specific capacitance 1634 F g -1 at a current density of 1 A g -1 , and it is much better than that of pure LDH (1095 F g -1 at 1 A g -1 ). Besides, the sample can retain 84.58% of original capacitance after 3000 cycles at 15 A g -1 . An asymmetric supercapacitor with NiMn-LDH/PC-1 as anode and activated carbon as cathode is fabricated, and the supercapacitor can achieve an energy density of 18.60 Wh kg -1 at a power density of 225.03 W kg -1 . The enhanced electrochemical performance attributes to the high faradaic pseudocapacitance of NiMn-LDH, the introduction of PC, and the 3D porous structure of LDH/PC-1 composites. The introduction of PC hinders serious agglomeration of LDH and further accelerates ions transport. The encouraging results indicate that these materials are one of the most potential candidates for energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Influence of oak planting on microelement composition (on example of Mn) of ordinary chernozem

    OpenAIRE

    Y. O. Tagunova

    2011-01-01

    Changes of Mn content in the ordinary chernozem of the forb-fescue-stipa steppeunder the influence of oak afforestation within the Prisamar’ya Dniprovske region were studied. The increase of the Mn content in the soil under the artificial oak plantation was noted. The average gross content of Mn in the root layer of the chernozem improved by forest was 541.2 mg/kg and 139.2 mg/kg in the ordinary chernozem. Average content of potentially available metal (mobile forms) in the root layer is 0.5 ...

  17. Preliminary study of the characteristics of a high Mg containing Al-Mg-Si alloy

    International Nuclear Information System (INIS)

    Yan, F; McKay, B J; Fan, Z; Chen, M F

    2012-01-01

    An Al-20Mg-4Si high Mg containing alloy has been produced and its characteristics investigated. The as-cast alloy revealed primary Mg 2 Si particles evenly distributed throughout an α-Al matrix with a β-Al 3 Mg 2 fully divorced eutectic phase observed in interdendritic regions. The Mg 2 Si particles displayed octahedral, truncated octahedral, and hopper morphologies. Additions of Sb, Ti and Zr had a refining influence reducing the size of the Mg 2 Si from 52 ± 4 μm to 25 ± 0.1 μm, 35 ± 1 μm and 34 ± 1 μm respectively. HPDC tensile test samples could be produced with a 0.6 wt.% Mn addition which prevented die soldering. Solution heating for 1 hr was found to dissolve the majority of the Al 3 Mg 2 eutectic phase with no evidence of any effect on the primary Mg 2 Si. Preliminary results indicate that the heat treatment has a beneficial effect on the elongation and the UTS.

  18. Mn porphyrin-based SOD mimic, MnTnHex-2-PyP(5+), and non-SOD mimic, MnTBAP(3-), suppressed rat spinal cord ischemia/reperfusion injury via NF-κB pathways.

    Science.gov (United States)

    Celic, T; Španjol, J; Bobinac, M; Tovmasyan, A; Vukelic, I; Reboucas, J S; Batinic-Haberle, I; Bobinac, D

    2014-12-01

    Herein we have demonstrated that both superoxide dismutase (SOD) mimic, cationic Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP(5+)), and non-SOD mimic, anionic Mn(III) meso-tetrakis(4-carboxylatophenyl)porphyrin (MnTBAP(3-)), protect against oxidative stress caused by spinal cord ischemia/reperfusion via suppression of nuclear factor kappa B (NF-κB) pro-inflammatory pathways. Earlier reports showed that Mn(III) N-alkylpyridylporphyrins were able to prevent the DNA binding of NF-κB in an aqueous system, whereas MnTBAP(3-) was not. Here, for the first time, in a complex in vivo system-animal model of spinal cord injury-a similar impact of MnTBAP(3-), at a dose identical to that of MnTnHex-2-PyP(5+), was demonstrated in NF-κB downregulation. Rats were treated subcutaneously at 1.5 mg/kg starting at 30 min before ischemia/reperfusion, and then every 12 h afterward for either 48 h or 7 days. The anti-inflammatory effects of both Mn porphyrins (MnPs) were demonstrated in the spinal cord tissue at both 48 h and 7 days. The downregulation of NF-κB, a major pro-inflammatory signaling protein regulating astrocyte activation, was detected and found to correlate well with the suppression of astrogliosis (as glial fibrillary acidic protein) by both MnPs. The markers of oxidative stress, lipid peroxidation and protein carbonyl formation, were significantly reduced by MnPs. The favorable impact of both MnPs on motor neurons (Tarlov score and inclined plane test) was assessed. No major changes in glutathione peroxidase- and SOD-like activities were demonstrated, which implies that none of the MnPs acted as SOD mimic. Increasing amount of data on the reactivity of MnTBAP(3-) with reactive nitrogen species (RNS) (.NO/HNO/ONOO(-)) suggests that RNS/MnTBAP(3-)-driven modification of NF-κB protein cysteines may be involved in its therapeutic effects. This differs from the therapeutic efficacy of MnTnHex-2-PyP(5+) which presumably occurs via reactive

  19. Phase control of Mn-based spinel films via pulsed laser deposition

    International Nuclear Information System (INIS)

    Feng, Zhenxing; Chen, Xiao; Fister, Timothy T.; Bedzyk, Michael J.; Fenter, Paul

    2016-01-01

    Phase transformations in battery cathode materials during electrochemical-insertion reactions lead to capacity fading and low cycle life. One solution is to keep the same phase of cathode materials during cation insertion-extraction processes. Here, we demonstrate a novel strategy to control the phase and composition of Mn-based spinel oxides for magnesium-ion battery applications through the growth of thin films on lattice-matched substrates using pulsed laser deposition. Materials at two extreme conditions are considered: fully discharged cathode MgMn_2O_4 and fully charged cathode Mn_2O_4. The tetragonal MgMn_2O_4 (MMO) phase is obtained on MgAl_2O_4 substrates, while the cubic MMO phase is obtained on MgO substrates. Similarly, growth of the empty Mn_2O_4 spinel in the cubic phase is obtained on an MgO substrate. These results demonstrate the ability to control separately the phase of spinel thin films (e.g., tetragonal vs. cubic MMO) at nominally fixed composition, and to maintain a fixed (cubic) phase while varying its composition (MgxMn_2O_4, for x = 0, 1). As a result, this capability provides a novel route to gain insights into the operation of battery electrodes for energy storage applications.

  20. Enhanced magnetocaloric effect tuning efficiency in Ni-Mn-Sn alloy ribbons

    Science.gov (United States)

    Quintana-Nedelcos, A.; Sánchez Llamazares, J. L.; Daniel-Perez, G.

    2017-11-01

    The present work was undertaken to investigate the effect of microstructure on the magnetic entropy change of Ni50Mn37Sn13 ribbon alloys. Unchanged sample composition and cell parameter of austenite allowed us to study strictly the correlation between the average grain size and the total magnetic field induced entropy change (ΔST). We found that a size-dependent martensitic transformation tuning results in a wide temperature range tailoring (>40 K) of the magnetic entropy change with a reasonably small variation on the peak value of the total field induced entropy change. The peak values varied from 6.0 J kg-1 K-1 to 7.7 J kg-1 K-1 for applied fields up to 2 T. Different tuning efficiencies obtained by diverse MCE tailoring approaches are compared to highlight the advantages of the herein proposed mechanism.

  1. Electrodeposition of Al-Mn alloy on AZ31B magnesium alloy in molten salts

    International Nuclear Information System (INIS)

    Zhang Jifu; Yan Chuanwei; Wang Fuhui

    2009-01-01

    The Al-Mn alloy coatings were electrodeposited on AZ31B Mg alloy in AlCl 3 -NaCl-KCl-MnCl 2 molten salts at 170 deg. C aiming to improve the corrosion resistance. However, in order to prevent AZ31B Mg alloy from corrosion during electrodeposition in molten salts and to ensure excellent adhesion of coatings to the substrate, AZ31B Mg alloy should be pre-plated with a thin zinc layer as intermediate layer. Then the microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD). It was indicated that, by adjusting the MnCl 2 content in the molten salts from 0.5 wt% to 2 wt%, the Mn content in the alloy coating was increased and the phase constituents were changed from f.c.c Al-Mn solid solution to amorphous phase. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization measurements in 3.5% NaCl solution. It was confirmed that the Al-Mn alloy coatings exhibited good corrosion resistance with a chear passive region and significantly reduced corrosion current density at anodic potentiodynamic polarization. The corrosion resistance of the alloy coatings was also related with the microstructure and Mn content of the coatings.

  2. On the synthesis and characterization of some new AB{sub 5} type MmNi{sub 4.3}Al{sub 0.3},Mn{sub 0.4}, LaNi{sub 5-{chi}}Si{sub {chi}} ({chi} = 0.1, 0.3, 0.5) and Mg-{chi} wt% CFMmNi{sub 5}-y wt% Si hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Srivistava, S.; Sai Raman, S.S.; Singh, B.K.; Srivistava, O.N. [Banaras Hindu Univ., Varanasi (India). Dept. of Physics

    2000-05-01

    The viability and feasibility of Hydrogen Energy becoming the clean alternative to Fossil Fuel Energy through replacement of 'Fossil Fuel' with 'Hydrogen' (the Green Fuel) is inextricably interlinked with development of 'Hydrogen Storage Systems'. Out of the high pressure gaseous hydrogen, liquid hydrogen, storage in glass microspheres, activated carbon, zeolites, hydrogen rich liquids and solid state hydrides, the last option is of implicit importance. Out of the AB (e.g., FeTi, storage capacity -- 1.75 wt%), AB{sub 2} or A{sub 2}B (Mg{sub 2}Ni -- 3.8 wt%), AB{sub 5} (LaNi{sub 5}, MmN{sub 5} -- 1.5 wt%) and K{sub 2} PtCl{sub 6} type (Mg{sub 2}FeH{sub 6} -- 5.2 wt%); the AB{sub 5} type holds potential promise due to easy activation, tolerance to impurities of charging H{sub 2} gas and avid amenability towards material tailoring for improved and better hydrogenation characteristics. We have carried out synthesis, characterization of several of the AB{sub 5} type storage materials. The present paper is aimed at describing and discussing some of our more recent efforts in regard to this. In the present study the hydrogen storage material (MH) has been synthesized through normal casting (Radio Frequency (RF) induction melting) and melt-spinning techniques. The improvements in basic alloys LaNi{sub 5}/MmNi{sub 5} have been studied through structural, microstructural and hydrogenation characteristics. The main features revealed by XRD characterizations are the existence of the free Ni and Si together with AB{sub 5} material in melt-spun alloy of LaNi{sub 5-{chi}}Si{sub {chi}}. These free Ni and Si were found to disappear, giving rise to a singular material after hydrogenation. Also in melt-spun alloy growth has taken place in a direction perpendicular to the c-axis. Melt-spun version was found to be superior over bulk version in regard to kinetics and activation process. For MmNi{sub 4.3}AlO{sub 3}Mn{sub 0.4} alloy, melt-spun version has

  3. High-Performance Asymmetric Supercapacitors of MnCo2O4 Nanofibers and N-Doped Reduced Graphene Oxide Aerogel.

    Science.gov (United States)

    Pettong, Tanut; Iamprasertkun, Pawin; Krittayavathananon, Atiweena; Sukha, Phansiri; Sirisinudomkit, Pichamon; Seubsai, Anusorn; Chareonpanich, Metta; Kongkachuichay, Paisan; Limtrakul, Jumras; Sawangphruk, Montree

    2016-12-14

    The working potential of symmetric supercapacitors is not so wide because one type of material used for the supercapacitor electrodes prefers either positive or negative charge to both charges. To address this problem, a novel asymmetrical supercapacitor (ASC) of battery-type MnCo 2 O 4 nanofibers (NFs)//N-doped reduced graphene oxide aerogel (N-rGO AE ) was fabricated in this work. The MnCo 2 O 4 NFs at the positive electrode store the negative charges, i.e., solvated OH - , while the N-rGO AE at the negative electrode stores the positive charges, i.e., solvated K + . An as-fabricated aqueous-based MnCo 2 O 4 //N-rGO AE ASC device can provide a wide operating potential of 1.8 V and high energy density and power density at 54 W h kg -1 and 9851 W kg -1 , respectively, with 85.2% capacity retention over 3000 cycles. To understand the charge storage reaction mechanism of the MnCo 2 O 4 , the synchrotron-based X-ray absorption spectroscopy (XAS) technique was also used to determine the oxidation states of Co and Mn at the MnCo 2 O 4 electrode after being electrochemically tested. The oxidation number of Co is oxidized from +2.76 to +2.85 after charging and reduced back to +2.75 after discharging. On the other hand, the oxidation state of Mn is reduced from +3.62 to +3.44 after charging and oxidized to +3.58 after discharging. Understanding in the oxidation states of Co and Mn at the MnCo 2 O 4 electrode here leads to the awareness of the uncertain charge storage mechanism of the spinel-type oxide materials. High-performance ASC here in this work may be practically used in high-power applications.

  4. Mixed oxides obtained from Co and Mn containing layered double hydroxides: Preparation, characterization, and catalytic properties

    International Nuclear Information System (INIS)

    Kovanda, Frantisek; Rojka, Tomas; Dobesova, Jana; Machovic, Vladimir; Bezdicka, Petr; Obalova, Lucie; Jiratova, Kveta; Grygar, Tomas

    2006-01-01

    Co-Mn-Al layered double hydroxides (LDHs) with various Co:Mn:Al molar ratios (4:2:0, 4:1.5:0.5, 4:1:1, 4:0.5:1.5, and 4:0:2) were prepared and characterized. Magnesium containing LDHs Co-Mg-Mn (2:2:2), Co-Mg-Mn-Al (2:2:1:1), and Co-Mg-Al (2:2:2) were also studied. Thermal decomposition of prepared LDHs and formation of related mixed oxides were studied using high-temperature X-ray powder diffraction and thermal analysis. The thermal decomposition of Mg-free LDHs starts by their partial dehydration accompanied by shrinkage of the lattice parameter c from ca. 0.76 to 0.66 nm. The dehydration temperature of the Co-Mn-Al LDHs decreases with increasing Mn content from 180 deg. C in Co-Al sample to 120 deg. C in sample with Co:Mn:Al molar ratio of 4:1.5:0.5. A subsequent step is a complete decomposition of the layered structure to nanocrystalline spinel, the complete dehydration, and finally decarbonation of the mixed oxide phase. Spinel-type oxides were the primary crystallization products. Mg-containing primary spinels had practically empty tetrahedral cationic sites. A dramatic increase of the spinel cell size upon heating and analysis by Raman spectroscopy revealed a segregation of Co-rich spinel in Co-Mn and Co-Mn-Al specimens. In calcination products obtained at 500 deg. C, the spinel mean coherence length was 5-10 nm, and the total content of the X-ray diffraction crystalline portion was 50-90%. These calcination products were tested as catalysts in the total oxidation of ethanol and decomposition of N 2 O. The catalytic activity in ethanol combustion was enhanced by increasing (Co+Mn) content while an optimum content of reducible components was necessary for high activity in N 2 O decomposition, where the highest conversions were found for calcined Co-Mn-Al sample with Co:Mn:Al molar ratio of 4:1:1

  5. Microstructural Analysis of AM50/Mg2Si Cast Magnesium Composites

    Directory of Open Access Journals (Sweden)

    Malik M.A.

    2012-12-01

    Full Text Available AM50/Mg2Si composites containing 5.7 wt. % and 9.9 wt. %. of Mg2Si reinforcing phase were prepared successfully by casting method. The microstructure of the cast AM50/Mg2Si magnesium matrix composites was investigated by light microscopy and X-ray diffractometry (XRD. The microstructure of these composites was characterized by the presence of α-phase (a solid solution of aluminium in magnesium, Mg17Al12 (γ-phase, Al8Mn5 and Mg2Si. It was demonstrated that the Mg2Si phase was formed mainly as primary dendrites and eutectic.

  6. Magnetic properties and magnetocaloric effects in Mn1.2Fe0.8P1-xGex compounds

    International Nuclear Information System (INIS)

    Ou, Z Q; Wang, G F; Lin Song; Tegus, O; Brueck, E; Buschow, K H J

    2006-01-01

    We have studied the magnetic properties and magnetocaloric effects in the Mn 1.2 Fe 0.8 P 1-x Ge x compounds with x = 0.2, 0.22, 0.3, 0.4 and 0.5. X-ray diffraction patterns show that the Mn 1.2 Fe 0.8 P 1-x Ge x compounds crystallize in the hexagonal Fe 2 P-type crystal structure. The magnetic moments of the Mn 1.2 Fe 0.8 P 1-x Ge x compounds measured at 5 K and 5 T increase with increasing Ge content. The Curie temperature increases strongly and the magnetic entropy change has a maximum around 233 K for the compound with x = 0.22, which is about 19 and 31 J kg -1 K -1 for a field change of 2 and 5 T, respectively

  7. Solubility limits in Mn–Mg ferrites system under hydrothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, O.M., E-mail: omhemeda@yahoo.co.uk [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Mostafa, N.Y. [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Faculty of Science, Taif University, PO Box 888, Al-Haweiah, Taif (Saudi Arabia); Abd Elkader, O.H. [Electron Microscope and Thin Films Department, National Research Center, Dokki 12622, Cairo (Egypt); Electron Microscope Unit, Zoology Department, King Saud University, Riyadh 11451 (Saudi Arabia); Ahmed, M.A. [Physics Department, Faculty of Science, Al Azhar University, Nasr City, Cairo (Egypt)

    2014-09-01

    In the present investigation, we successfully synthesized a pure MnFe{sub 2}O{sub 4} ferrite by the hydrothermal method. Moreover, the effect of Mg ion content on the formation of Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} particles (with x varying from 0.1 to 1.0) was also investigated using XRD, SEM, TEM and Mossbauer Spectroscopy. Phases formed in the system Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4}; 0.0≤x≤1.0 were investigated under hydrothermal conditions at 453 K.The produced phases were characterized by X-ray diffraction, Scanning, transmission microscopy and Mossbauer spectroscopy. The information of composition, cation distribution in the spinel structure and the particle size of the products were obtained. The spinel ferrites; Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} were formed in the range 0.0≤x≤0.3. However, sample with x>0.3 showed semi-crystalline magnesium hydroxide (Mg(OH){sub 2}) and hematite (Fe{sub 2}O{sub 3}) beside the ferrite phase. For x=1.0, only magnesium hydroxide and hematite are formed without any ferrites. Particles of uniform size around 10–20 nm were obtained in the spinel structure of Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} with x=0.0 and 0.1. The corresponding average crystallite size for each sample was 40.3 nm and 39.2 nm respectively. In addition, the Mossbauer spectra were analyzed into two subspectra, one for the tetrahedral A-site and the other for the octahedral B-site. The Mossbauer parameters were determined and discussed for the studied system. The cation distribution was estimated from the analysis of the Mossbauer spectra as well as the X-ray diffraction patterns. The results showed that Mg ions occupy mainly B-site while both Mn and Fe ions are distributed between A- and B-sites. - Highlights: • Mossbauer characterization of Mg–Mn ferrite prepared by hydrothermal route. • X-ray powder diffraction analysis of Mg–Mn ferrite prepared by hydrothermal route. • Solubility limit of MgMn ferrite under

  8. Effect of Ni, Fe and Mn in different proportions on microstructure and pollutant-catalyzed properties of Ni-Fe-Mn-O negative temperature coefficient ceramic nanocompositions

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yonglin, E-mail: leiyonglin@163.com [Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Lin, Xiaoyan, E-mail: linxy@swust.edu.cn [Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Liao, Huiwei, E-mail: liaohw@swust.edu.cn [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2017-06-15

    The effect of Ni, Fe and Mn in different proportions on microstructure and pollutant-catalyzed properties of Ni-Fe-Mn-O negative temperature coefficient ceramic nanocompositions was studied. Structural and physical characterization of all the samples was carried out by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) method, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric (TG). The results revealed that the interplanar spacing decreased with increasing Fe content, the grain size decreased with increasing Ni content, the substitution of Ni{sup 2+} in the tetrahedral sites by Fe{sup 2+} increased with increasing Fe content. And increase of iron could improve Ni-Fe-Mn-O high temperature stability. The low-temperature thermal removal efficiencies of 30 mg/L methyl orange solution for NiFeMnO{sub 4}, Ni{sub 0.6}Fe{sub 0.9}Mn{sub 1.5}O{sub 4,} Ni{sub 0.6}Fe{sub 1.8}Mn{sub 0.6}O{sub 4} and Ni{sub 0.3}Fe{sub 2.1}Mn{sub 0.6}O{sub 4} systems were 83.8%, 75.2%, 78.5% and 60.3% at 2400 min, respectively. And the microwave combining with H{sub 2}O{sub 2} removal efficiencies of 30 mg/L methyl orange solution for NiFeMnO{sub 4}, Ni{sub 0.6}Fe{sub 0.9}Mn{sub 1.5}O{sub 4,} Ni{sub 0.6}Fe{sub 1.8}Mn{sub 0.6}O{sub 4} and Ni{sub 0.3}Fe{sub 2.1}Mn{sub 0.6}O{sub 4} systems were 96.5%,93.8%, 98.7% and 98% at 6.0 min, respectively. These results indicated that the Ni-Fe-Mn-O ceramics with appropriate increase of iron were useful for industrial applications on degrading organic pollute. - Highlights: • The relationship of composition and catalytic properties of Ni-Fe-Mn-O was proposed. • The interplanar spacing decreased with increasing Fe content. • The grain size decreased with increasing Ni content. • The substitution of Ni{sup 2+} in the tetrahedral site by Fe{sup 2+} with increasing Fe content.

  9. Interstitial Fe in MgO

    CERN Document Server

    Mølholt, T E; Gunnlaugsson, H P; Svane, A; Masenda, H; Naidoo, D; Bharuth-Ram, K; Fanciulli, M; Gislason, H P; Johnston, K; Langouche, G; Ólafsson, S; Sielemann, R; Weyer, G

    2014-01-01

    Isolated Fe-57 atoms were studied in MgO single-crystals by emission Mossbauer spectroscopy following implantation of Mn-57 decaying to Fe-57. Four Mossbauer spectral components were found corresponding to different Fe lattice positions and/or charge states. Two components represent Fe atoms substituting Mg as Fe2+ and Fe3+, respectively; a third component is due to Fe in a strongly implantation-induced disturbed region. The fourth component, which is the focus of this paper, can be assigned to Fe at an interstitial site. Comparison of its measured isomer shift with ab initio calculations suggests that the interstitial Fe is located on, or close to, the face of the rock-salt MgO structure. To harmonize such an assignment with the measured near-zero quadrupole interaction a local motion process (cage motion) of the Fe has to be stipulated. The relation of such a local motion as a starting point for long range diffusion is discussed.

  10. Immobilization of Mn and NH4 (+)-N from electrolytic manganese residue waste.

    Science.gov (United States)

    Chen, Hongliang; Liu, Renlong; Liu, Zuohua; Shu, Jiancheng; Tao, Changyuan

    2016-06-01

    The objective of this work was the immobilization of soluble manganese (Mn) and ammonium nitrogen (NH4 (+)-N) leached from electrolytic manganese residue (EMR). Immobilization of Mn was investigated via carbonation using carbon dioxide (CO2) and alkaline additives. NH4 (+)-N immobilization was evaluated via struvite precipitation using magnesium and phosphate sources. Results indicated that the immobilization efficiency of Mn using CO2 and quicklime (CaO) was higher than using CO2 and sodium hydroxide (NaOH). This higher efficiency was likely due to the slower release of OH(-) during CaO hydrolysis. The immobilization efficiency of Mn was >99.99 % at the CaO:EMR mass ratio of 0.05:1 for 20-min reaction time. The struvite precipitation of NH4 (+)-N was conducted in the carbonated EMR slurry and the immobilization efficiency was 89 % using MgCl2 · 6H2O + Na3PO4 · 12H2O at the Mg:P:N molar ratio of 1.5:1.5:1 for 90-min reaction time. A leaching test showed that the concentrations of Mn and NH4 (+)-N in the filtrate of the treated EMR were 0.2 and 9 mg/L, respectively. The combined immobilization of Mn and NH4 (+)-N was an effective pretreatment method in the harmless treatment of the EMR.

  11. Three-Dimensional NiCo2O4@MnMoO4 Core-Shell Nanoarrays for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Yuan, Yuliang; Wang, Weicheng; Yang, Jie; Tang, Haichao; Ye, Zhizhen; Zeng, Yujia; Lu, Jianguo

    2017-10-10

    Design of new materials with sophisticated nanostructure has been proven to be an efficient strategy to improve their properties in many applications. Herein, we demonstrate the successful combination of high electron conductive materials of NiCo 2 O 4 with high capacitance materials of MnMoO 4 by forming a core-shell nanostructure. The NiCo 2 O 4 @MnMoO 4 core-shell nanoarrays (CSNAs) electrode possesses high capacitance of 1169 F g -1 (4.24 F cm -2 ) at a current density of 2.5 mA cm -2 , obviously larger than the pristine NiCo 2 O 4 electrode. The asymmetric supercapacitors (ASCs), assembled with NiCo 2 O 4 @MnMoO 4 CSNAs as binder-free cathode and active carbon (AC) as anode, exhibit high energy density of 15 Wh kg -1 and high power density of 6734 W kg -1 . Cycle performance of NiCo 2 O 4 @MnMoO 4 CSNAs//AC ASCs, conducted at current density of 20 mA cm -2 , remain 96.45% of the initial capacitance after 10,000 cycles, demonstrating its excellent long-term cycle stability. Kinetically decoupled analysis reveals that the capacitive capacitance is dominant in the total capacitance of NiCo 2 O 4 @MnMoO 4 CSNAs electrode, which may be the reason for ultra long cycle stability of ASCs. Our assembled button ASC can easily light up a red LED for 30 min and a green LED for 10 min after being charged for 30 s. The remarkable electrochemical performance of NiCo 2 O 4 @MnMoO 4 CSNAs//AC ASCs is attributed to its enhanced surface area, abundant electroactive sites, facile electrolyte infiltration into the 3D NiCo 2 O 4 @MnMnO 4 nanoarrays and fast electron and ion transport path.

  12. Thermodynamics of proton dissociations from aqueous glycine at temperatures from 278.15 to 393.15 K, molalities from 0 to 1.0 mol . kg-1, and at the pressure 0.35 MPa: Apparent molar heat capacities and apparent molar volumes of glycine, glycinium chloride, and sodium glycinate

    International Nuclear Information System (INIS)

    Ziemer, S.P.; Niederhauser, T.L.; Merkley, E.D.; Price, J.L.; Sorenson, E.C.; McRae, B.R.; Patterson, B.A.; Origlia-Luster, M.L.; Woolley, E.M.

    2006-01-01

    We have measured the densities of aqueous solutions of glycine, glycine plus equimolal HCl, and glycine plus equimolal NaOH at temperatures 278.15 ≤ T/K ≤ 368.15, molalities 0.01 ≤ m/mol . kg -1 ≤ 1.0, and at p = 0.35 MPa, using a vibrating tube densimeter. We have also measured the heat capacities of these solutions at 278.15 ≤ T/K ≤ 393.15 and at the same m and p using a fixed-cell differential scanning calorimeter. We used the densities to calculate apparent molar volumes V φ and the heat capacities to calculate apparent molar heat capacities C p,φ for these solutions. We used our results and values of V φ (T, m) and C p,φ (T, m) for HCl(aq), NaOH(aq), NaCl(aq) from the literature to calculate parameters for Δ r C p,m (T, m) for the first and second proton dissociations from protonated aqueous cationic glycine. We then integrated this value of Δ r C p,m (T, m) in an iterative algorithm, using Young's Rule to account for the effects of speciation and chemical relaxation on the observed V φ and C p,φ of the solutions. This procedure yielded parameters for V φ (T, m) and C p,φ (T, m) for glycinium chloride {H 2 Gly + Cl - (aq)} and sodium glycinate {Na + Gly - (aq)} which successfully modeled our observed results. We have then calculated values of Δ r C p,m , Δ r H m , Δ r V m , and pQ a for the first and second proton dissociations from protonated aqueous glycine as functions of T and m

  13. The Mn site in Mn-doped GaAs nanowires: an EXAFS study

    International Nuclear Information System (INIS)

    D’Acapito, F; Rovezzi, M; Boscherini, F; Jabeen, F; Bais, G; Piccin, M; Rubini, S; Martelli, F

    2012-01-01

    We present an EXAFS study of the Mn atomic environment in Mn-doped GaAs nanowires. Mn doping has been obtained either via the diffusion of the Mn used as seed for the nanowire growth or by providing Mn during the growth of Au-induced wires. As a general finding, we observe that Mn forms chemical bonds with As but is not incorporated in a substitutional site. In Mn-induced GaAs wires, Mn is mostly found bonded to As in a rather disordered environment and with a stretched bond length, reminiscent of that exhibited by MnAs phases. In Au-seeded nanowires, along with stretched MnAs coordination, we have found the presence of Mn in a MnAu intermetallic compound. (paper)

  14. Ultrasound assisted synthesis of Mn3O4 nanoparticles anchored graphene nanosheets for supercapacitor applications

    International Nuclear Information System (INIS)

    Raj, Balasubramaniam Gnana Sundara; Ramprasad, Rajasekharan Nair Radhika; Asiri, Abdullah M.; Wu, Jerry J; Anandan, Sambandam

    2015-01-01

    Highlights: • Room temperature synthesis of Mn 3 O 4 –graphene (MG) composite via ultra sound assisted method. • TEM images shows Mn 3 O 4 nanoparticles are uniformly distributed on the surface of graphene nanosheets. • MG composite exhibited high specific capacitance of 312 F g −1 in 1 M Na 2 SO 4 which was three times greater than pristine Mn 3 O 4 . • 76% of the initial capacitance was retained even after 1000 cycles. • The higher specific capacitance of the MG nanocomposite due to the synergistic effect between the Mn 3 O 4 nanoparticles and graphene nanosheets. - Abstract: Mn 3 O 4 nanoparticles anchored graphene nanosheets (MG) have been successfully synthesized by a simple ultrasound assisted synthesis at room temperature without the use of any templates or surfactants for supercapacitor applications. Upon ultrasound assisted synthesis, the formation of Mn 3 O 4 nanoparticles and the graphene oxide reduction occurs simultaneously. The crystalline structure of thus prepared MG nanocomposite have been characterized by the powder X-ray diffraction (XRD) analysis. Thermo Gravimetric Analysis (TGA) is used to determine the mass content of graphene (17 wt%) in the MG nanocomposite. Transmission electron microscopy (TEM) and Atomic force microscopy (AFM) studies shows that the Mn 3 O 4 nanoparticles (4–8 nm) were uniformly anchored on the surface of graphene nanosheets. The electrochemical properties of the MG nanocomposite were investigated by employing cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The capacitive properties of MG nanocomposite studied in the presence of 1 M Na 2 SO 4 exhibited high specific capacitance of 312 F g −1 which was approximately three times greater than that of pristine Mn 3 O 4 (113 F g −1 ) at the same current density of 0.5 mA cm −2 in the potential range from -0.1 to +0.9 V. About 76% of the initial capacitance was retained even after 1000 cycles

  15. Spectro-photometric determinations of Mn, Fe and Cu in aluminum master alloys

    Science.gov (United States)

    Rehan; Naveed, A.; Shan, A.; Afzal, M.; Saleem, J.; Noshad, M. A.

    2016-08-01

    Highly reliable, fast and cost effective Spectro-photometric methods have been developed for the determination of Mn, Fe & Cu in aluminum master alloys, based on the development of calibration curves being prepared via laboratory standards. The calibration curves are designed so as to induce maximum sensitivity and minimum instrumental error (Mn 1mg/100ml-2mg/100ml, Fe 0.01mg/100ml-0.2mg/100ml and Cu 2mg/100ml-10mg/ 100ml). The developed Spectro-photometric methods produce accurate results while analyzing Mn, Fe and Cu in certified reference materials. Particularly, these methods are suitable for all types of Al-Mn, Al-Fe and Al-Cu master alloys (5%, 10%, 50% etc. master alloys).Moreover, the sampling practices suggested herein include a reasonable amount of analytical sample, which truly represent the whole lot of a particular master alloy. Successive dilution technique was utilized to meet the calibration curve range. Furthermore, the workout methods were also found suitable for the analysis of said elements in ordinary aluminum alloys. However, it was observed that Cush owed a considerable interference with Fe, the later one may not be accurately measured in the presence of Cu greater than 0.01 %.

  16. Reduction of Mn-oxides by ferrous iron in a flow system: column experiment and reactive transport modeling

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Appelo, C. A. J.

    2000-01-01

    Cl2 solution into the column, an ion distribution pattern was observed in the effluent that suggests the formation of separate reaction fronts for Mn(III)-oxide and Mn(IV)-oxide travelling at different velocities through the column. At the proximal reaction front, Fe21 reacts with MnO2 producing Fe......The reduction of Mn-oxide by Fe21 was studied in column experiments, using a column filled with natural Mn-oxide coated sand. Analysis of the Mn-oxide indicated the presence of both Mn(III) and Mn(IV) in the Mn-oxide. The initial exchange capacity of the column was determined by displacement...... of adsorbed Ca21 with Mg21. Subsequently a FeCl2 solution was injected into the column causing the reduction of the Mn-oxide and the precipitation of Fe(OH)3. Finally the exchange capacity of the column containing newly formed Fe(OH)3 was determined by injection of a KBr solution. During injection of the Fe...

  17. Study on lithium extraction from brines based on LiMn2O4/Li1-xMn2O4 by electrochemical method

    International Nuclear Information System (INIS)

    Zhao, Meng-Yao; Ji, Zhi-Yong; Zhang, Yong-Guang; Guo, Zhi-Yuan; Zhao, Ying-Ying; Liu, Jie; Yuan, Jun-Sheng

    2017-01-01

    Highlights: •A recovery system with LiMn 2 O 4 /Li 1-x Mn 2 O 4 as electrodes was used to extract lithium. •The influence sequence of coexisting ions on lithium extraction was Mg 2+ > Na + > Ca 2+ > K + . •The values of α Li-Na , α Li-Mg and α Li-Ca were more than 300, 70 and 110, respectively. •The specific energy consumption was between 18 and 19 W h·mol −1 . -- Abstract: Lithium rechargeable batteries have been used for lithium extraction in recent years. Here, we report on a highly selective lithium recovery system that consists of a LiMn 2 O 4 positive electrode, a Li 1-x Mn 2 O 4 negative electrode and a monovalent selective anion-exchange membrane. The effect of potential, temperature and coexisting ions on lithium extraction were investigated in this paper, and the lithium recovery system was applied to extract lithium from brine and concentrated seawater. The extraction capacity of Li + reached 34.31 mg· (1 g LiMn 2 O 4 ) −1 at 1.2 V. With higher reaction rate and lower energy consumption, 25 °C (room temperature) was considered as the appropriate temperature. The system still remained high selective for Li + even in the presence of impurity ions (K + , Na + , Mg 2+ , Ca 2+ ). With simulated brine and concentrated seawater as source solutions, the concentrations of Na + , Mg 2+ and Ca 2+ were reduced more than 300, 70 and 100 times, consuming 18–19 W h per mole of lithium recovered. And the electrodes still had high separation coefficients of Li + and Me n+ (Na + , Mg 2+ , Ca 2+ ) after five cycles although a slight drop was existing.

  18. Effect of different seawater Mg

    NARCIS (Netherlands)

    Mewes, A.; Langer, G.; de Nooijer, L.J.; Bijma, J.; Reichart, G.J.

    2014-01-01

    Magnesium, incorporated in foraminiferal calcite (Mg/CaCC), is used intensively to reconstruct past seawater temperatures but, in addition to temperature, the Mg/CaCC of foraminiferal tests also depends on the ratio of Mg and Ca in seawater (Mg/CaSW). The physiological mechanisms responsible for

  19. Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@MnO2 perfect core-shell nanostructures for high-performance flexible supercapacitors

    Science.gov (United States)

    Zhou, Jinyuan; Zhao, Hao; Mu, Xuemei; Chen, Jiayi; Zhang, Peng; Wang, Yaling; He, Yongmin; Zhang, Zhenxing; Pan, Xiaojun; Xie, Erqing

    2015-08-01

    This study reports the preparation of 3D hierarchical carbon nanotube (CNT) @MnO2 core-shell nanostructures under the assistance of polypyrrole (PPy). The as-prepared CNT@PPy@MnO2 core-shell structures show a perfect coating of MnO2 on each CNT and, more importantly, a robust bush-like pseudocapacitive shell to effectively increase the specific surface area and enhance the ion accessibility. As expected, a high specific capacity of 490-530 F g-1 has been achieved from CNT@PPy@MnO2 single electrodes. And about 98.5% of the capacity is retained after 1000 charge/discharge cycles at a current density of 5 A g-1. Furthermore, the assembled asymmetric CNT@PPy@MnO2//AC capacitors show the maximum energy density of 38.42 W h kg-1 (2.24 mW h cm-3) at a power density of 100 W kg-1 (5.83 mW cm-3), and they maintain 59.52% of the initial value at 10 000 W kg-1 (0.583 W cm-3). In addition, the assembled devices show high cycling stabilities (89.7% after 2000 cycles for asymmetric and 87.2% for symmetric), and a high bending stability (64.74% after 200 bending tests). This ability to obtain high energy densities at high power rates while maintaining high cycling stability demonstrates that this well-designed structure could be a promising electrode material for high-performance supercapacitors.This study reports the preparation of 3D hierarchical carbon nanotube (CNT) @MnO2 core-shell nanostructures under the assistance of polypyrrole (PPy). The as-prepared CNT@PPy@MnO2 core-shell structures show a perfect coating of MnO2 on each CNT and, more importantly, a robust bush-like pseudocapacitive shell to effectively increase the specific surface area and enhance the ion accessibility. As expected, a high specific capacity of 490-530 F g-1 has been achieved from CNT@PPy@MnO2 single electrodes. And about 98.5% of the capacity is retained after 1000 charge/discharge cycles at a current density of 5 A g-1. Furthermore, the assembled asymmetric CNT@PPy@MnO2//AC capacitors show the

  20. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hao, E-mail: zhouhao@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221 (China); Pan, Haixia [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221 (China); Xu, Jianqiang [School of Life Science and Medicine, Dalian University of Technology, Panjin 124221 (China); Xu, Weiping; Liu, Lifen [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221 (China)

    2016-03-05

    Highlights: • An efficient Mn(II) oxidation marine sediments microbial community was obtained. • High-throughput sequencing indicated new Mn(II) oxidation associated genus. • Na{sub 3}MnPO{sub 4}CO{sub 3} and MnCO{sub 3} were synthesized by the consortium. • Consortium exhibited Mn(II) oxidation performance over a range of harsh conditions. - Abstract: Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1 mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5 mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N{sub 2} adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8 mg g{sup −1} adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na{sub 3}MnPO{sub 4}CO{sub 3.} Results suggested the complexity of natural microbe-mediated Mn transformation.

  1. 3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Zhai, Teng; Wang, Fuxin; Yu, Minghao; Xie, Shilei; Liang, Chaolun; Li, Cheng; Xiao, Fangming; Tang, Renheng; Wu, Qixiu; Lu, Xihong; Tong, Yexiang

    2013-07-01

    In this paper, we reported an effective and simple strategy to prepare large areal mass loading of MnO2 on porous graphene gel/Ni foam (denoted as MnO2/G-gel/NF) for supercapacitors (SCs). The MnO2/G-gel/NF (MnO2 mass: 13.6 mg cm-2) delivered a large areal capacitance of 3.18 F cm-2 (234.2 F g-1) and good rate capability. The prominent electrochemical properties of MnO2/G-gel/NF are attributed to the enhanced conductivities and improved accessible area for ions in electrolytes. Moreover, an asymmetric supercapacitor (ASC) based on MnO2/G-gel/NF (MnO2 mass: 6.1 mg cm-2) as the positive electrode and G-gel/NF as the negative electrode achieved a remarkable energy density of 0.72 mW h cm-3. Additionally, the fabricated ASC device also exhibited excellent cycling stability, with less than 1.5% decay after 10 000 cycles. The ability to effectively develop SC electrodes with high mass loading should open up new opportunities for SCs with high areal capacitance and high energy density.In this paper, we reported an effective and simple strategy to prepare large areal mass loading of MnO2 on porous graphene gel/Ni foam (denoted as MnO2/G-gel/NF) for supercapacitors (SCs). The MnO2/G-gel/NF (MnO2 mass: 13.6 mg cm-2) delivered a large areal capacitance of 3.18 F cm-2 (234.2 F g-1) and good rate capability. The prominent electrochemical properties of MnO2/G-gel/NF are attributed to the enhanced conductivities and improved accessible area for ions in electrolytes. Moreover, an asymmetric supercapacitor (ASC) based on MnO2/G-gel/NF (MnO2 mass: 6.1 mg cm-2) as the positive electrode and G-gel/NF as the negative electrode achieved a remarkable energy density of 0.72 mW h cm-3. Additionally, the fabricated ASC device also exhibited excellent cycling stability, with less than 1.5% decay after 10 000 cycles. The ability to effectively develop SC electrodes with high mass loading should open up new opportunities for SCs with high areal capacitance and high energy density. Electronic

  2. Flower-, wire-, and sheet-like MnO2-deposited diatomites: Highly efficient absorbents for the removal of Cr(VI).

    Science.gov (United States)

    Du, Yucheng; Wang, Liping; Wang, Jinshu; Zheng, Guangwei; Wu, Junshu; Dai, Hongxing

    2015-03-01

    Flower-, wire-, and sheet-like MnO2-deposited diatomites have been prepared using a hydrothermal method with Mn(Ac)2, KMnO4 and/or MnSO4 as Mn source and diatomite as support. Physical properties of the materials were characterized by means of numerous analytical techniques, and their behaviors in the adsorption of chromium(VI) were evaluated. It is shown that the MnO2-deposited diatomite samples with different morphologies possessed high surface areas and abundant surface hydroxyl groups (especially the wire-like MnO2/diatomite sample). The wire-like MnO2/diatomite sample showed the best performance in the removal of Cr(VI), giving the maximum Cr(VI) adsorption capacity of 101 mg/g. Copyright © 2014. Published by Elsevier B.V.

  3. Calix[4]arene supported clusters: a dimer of [Mn(III)Mn(II)] dimers

    DEFF Research Database (Denmark)

    Taylor, Stephanie M; McIntosh, Ruaraidh D; Beavers, Christine M

    2011-01-01

    Phosphinate ligands allow for the transformation of a calix[4]arene supported [Mn(III)(2)Mn(II)(2)] tetramer cluster motif into an unusual [Mn(III)Mn(II)](2) dimer of dimers; the clusters self-assemble in the crystal to form bi-layer arrays reminiscent of the typical packing of calixarene solvates....

  4. Evaluation of the sedimentation rate in a sediment profile of Bortolan Dam, MG, Brazil

    International Nuclear Information System (INIS)

    Almeida, Heleine C. de; Soares, Flávio V.T.S.; Taddei, Maria Helena T.; Mazzilli, Barbara P.

    2017-01-01

    Volcanic extrusion is one of the main causes for the high levels of environmental radioactivity in the region of Poços de Caldas (MG, Brazil). Uranium mining during the 80's further increased the background radiation in the region, especially in the Ribeirao das Antas watershed, where Bortolan Dam is located. Besides the uranium mining facility operating in the region, other activities, such as agriculture, were also responsible for the enhancement of the levels of radioactivity. The dam sediment profile provides an appropriate compartment for the study of the temporal variation of these radionuclides and for the evaluation of anthropogenic contamination. The main aim of this study is to evaluate the sedimentation rate and the dating of a profile collected in Bortolan Dam, by using the geochronology method. The activity concentration of "2"2"6Ra and "2"1"0Pb were measured in the sediment profile by gamma spectrometry. The concentration of "2"2"6Ra and "2"1"0Pb varied from (217 ± 9) Bq kg"-"1 to (286 ± 12) Bq kg"-"1 and from (262 ± 11) Bq kg"-"1 to (322 ± 34) Bq·kg"-"1 respectively; and the sedimentation rates varied from 0.021 to 0.144 g cm"-"2y"-"1. (author)

  5. Identification of the interstitial Mn site in ferromagnetic (Ga,Mn)As

    CERN Document Server

    AUTHOR|(CDS)2093111; Wahl, Ulrich; Augustyns, Valerie; Silva, Daniel; Granadeiro Costa, Angelo Rafael; Houben, K; Edmonds, Kevin W; Gallagher, BL; Campion, RP; Van Bael, MJ; Castro Ribeiro Da Silva, Manuel; Martins Correia, Joao; Esteves De Araujo, Araujo Joao Pedro; Temst, Kristiaan; Vantomme, André; Da Costa Pereira, Lino Miguel

    2015-01-01

    We determined the lattice location of Mn in ferromagnetic (Ga,Mn)As using the electron emission channeling technique. We show that interstitial Mn occupies the tetrahedral site with As nearest neighbors (TAs) both before and after thermal annealing at 200 °C, whereas the occupancy of the tetrahedral site with Ga nearest neighbors (TGa) is negligible. TAs is therefore the energetically favorable site for interstitial Mn in isolated form as well as when forming complexes with substitutional Mn. These results shed new light on the long standing controversy regarding TAs versus TGa occupancy of interstitial Mn in (Ga,Mn)As.

  6. Fractionation and risk assessment of Fe and Mn in surface sediments from coastal sites of Sonora, Mexico (Gulf of California).

    Science.gov (United States)

    Jara-Marini, Martín E; García-Camarena, Raúl; Gómez-Álvarez, Agustín; García-Rico, Leticia

    2015-07-01

    The aim of this study was to evaluate Fe and Mn distribution in geochemical fractions of the surface sediment of four oyster culture sites in the Sonora coast, Mexico. A selective fractionation scheme to obtain five fractions was adapted for the microwave system. Surface sediments were analyzed for carbonates, organic matter contents, and Fe and Mn in geochemical fractions. The bulk concentrations of Fe ranged from 10,506 to 21,918 mg/kg (dry weight, dry wt), and the bulk concentrations of Mn ranged from 185.1 to 315.9 mg/kg (dry wt) in sediments, which was low and considered as non-polluted in all of the sites. The fractionation study indicated that the major geochemical phases for the metals were the residual, as well as the Fe and Mn oxide fractions. The concentrations of metals in the geochemical fractions had the following order: residual > Fe and Mn oxides > organic matter > carbonates > interchangeable. Most of the Fe and Mn were linked to the residual fraction. Among non-residual fractions, high percentages of Fe and Mn were linked to Fe and Mn oxides. The enrichment factors (EFs) for the two metals were similar in the four studied coasts, and the levels of Fe and Mn are interpreted as non-enrichment (EF < 1) because the metals concentrations were within the baseline concentrations. According to the environmental risk assessment codes, Fe and Mn posed no risk and low risk, respectively. Although the concentrations of Fe and Mn were linked to the residual fraction, the levels in non-residual fractions may significantly result in the transference of other metals, depending on several physico-chemical and biological factors.

  7. Synthesis of nanostructured mixed oxide CeO2-Mn2O3 and investigation of their sorption ability for arsenic, ammoniac, iron, manganese

    International Nuclear Information System (INIS)

    Luu Minh Dai; Dao Ngoc Nhiem; Duong Thi Lim

    2012-01-01

    The nanostrutured mixed oxide CeO 2 -Mn 2 O 3 have been synthesised at low temperature (350 o C) by the combustion of gel prepared from polyvinyl alcohol (PVA), Ce (NO 3 ) 4 and Mn(No 3 ) 3 , CeO 2 -Mn 2 O 3 characterizations were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET (Brunauce-Emmet-Teller) measurements. The phase of CeO 2 -Mn 2 O 3 , with large specific surface ares 65.3 m 2 /g was obtained at 350 o C for 2 hours. The nanostructured CeO 2 -Mn 2 O 3 has been investigated for removing iron, manganese, arsenic and ammoniac from water. The sorption characteristics of the nanostrutured CeO 2 -Mn 2 O 3 for AS(V), NH4 + , Fe(III), Mn(II) according to the langmuir isotherm. The sorption capacities of nanostrutured CeO 2 -Mn 2 O 3 are 57.10 mg As(V)g; 154.54 mg NH4 + /g; 72.97 mg Fe(III)/g; 60.27 Mn(II) / g. (author)

  8. Elemental composition of commercial sea cucumbers (holothurians).

    Science.gov (United States)

    Wen, J; Hu, C

    2010-01-01

    Toxic and essential elements in 11 different sea cucumber species were determined and compared with daily intake recommendations and maximum allowed levels. The contents of macro-elements contents in dried sea cucumber samples were found to be 25,000-152,000 mg kg(-1) for Na, 4000-8600 mg kg(-1) for Mg, 1100-5200 mg kg(-1) for K, 15,000-68,000 mg kg(-1) and 36,300-251,000 mg kg(-1) for Cl. Trace element concentrations in dried sea cucumber samples were found to be 11-100 mg kg(-1) for Zn, 41-660 mg kg(-1) for Fe, 3-74 mg kg(-1) for Cu, 1.1-16 mg kg(-1) for Mn, 1.4-3.7 mg kg(-1) for Se, 1.1-9.6 mg kg(-1) for Cr, and 0.3-5.1 mg kg(-1) for Ni. All sea cucumber species were rich sources of Na, Cl, Mg, Ca, Fe, Cu, Se and Cr for human consumption. Regarding contaminants, As, Cd and Pb concentrations in dried sea cucumbers were in the ranges of 1.1-6.1, 0.03-0.06 and 0.11-0.69 mg kg(-1), respectively. Moreover, Hg values of 11 sea cucumbers were below the detection limit (0.01 mg kg(-1)).

  9. Efecto del fraccionamiento de la fertilización con N, P, K y Mg y la aplicación de los micronutrientes B, Mn y Zn en el rendimiento y calidad de papa criolla (Solanum phureja variedad Criolla Colombia

    Directory of Open Access Journals (Sweden)

    Pérez Liliana C.

    2008-12-01

    Full Text Available

    Se evaluó el efecto del fraccionamiento de la fertilización edáfica con nitrógeno, fósforo, potasio, magnesio y la aplicación de boro, manganeso y zinc, sobre el crecimiento, desarrollo, rendimiento y calidad de tubérculo en la variedad de papa Criolla Colombia. Se utilizó un diseño de bloques al azar con estructura factorial 24+2. Se presentaron diferencias estadísticas para las variables de crecimiento y desarrollo, rendimiento y calidad de tubérculos. No se observó efecto de los tratamientos para la interacción entre elementos menores, por lo cual el análisis se centró en el efecto del fraccionamiento de N-P-KMg y los niveles de fertilización con boro, manganeso y cinc. La fertilización sin fraccionamiento de N-P-K-Mg favoreció mejor desarrollo foliar y mayor potencial de rendimiento, por lo cual no se recomienda su fraccionamiento. Se observaron respuestas positivas a la aplicación de boro para la variable rendimiento y se encontró que su respuesta es complementaria al acompañamiento de nitrógeno, fósforo, potasio y magnesio en la fertilización. La variable gravedad específica presentó valores mayores a 1,088 mientras que el contenido de materia seca fue mayor en los tratamientos testigos y en el fraccionamiento; la aplicación de manganeso estuvo relacionada con incrementos en el contenido de materia seca posiblemente por contribuir a una mayor fotosíntesis neta.

  10. Removal of Mn(II) from the acid mine wastewaters using coal fired bottom ash

    Science.gov (United States)

    Mahidin, M.; Sulaiman, T. N.; Muslim, A.; Gani, A.

    2017-06-01

    Acid mine wastewater (AMW), the wastewater from mining activities which has low pH about 3-5 and contains hazardous heavy metals such as Cu, Fe, Mn, Zn, Pb, etc. Those heavy metals pollution is of prime concern from the environmental view point. Among the heavy metals, Mn occupies the third position in the AMW from one the iron ore mining company in Aceh, Indonesia. In this study, the possibility use of bottom ash from coal fired boiler of steam power plants for the removal of Mn(II) in AMW has been investigated. Experimental has been conducted as follows. Activation of bottom ash was done both by physical and chemical treatments through heating at 270 °C and washing with NaOH activator 0.5 and 1 M. Adsorption test contains two parts observation; preliminary and primary experiments. Preliminary study is addressed to select the best condition of three independent variables i.e.: pH of AMW (3 & 7), bottom ash particle size (40, 60 & 100 mesh) and initial Mn(II) concentrations (100 & 600 mg/l). AMW used was synthetics wastewater. It was found that the best value for NaOH is 1 M, pH is 7, particle size is 100 meshes and initial Mn(II) concentration is 600 mg/l from the adsorption efficiency point of view. The maximum adsorption capacity (q e) is 63.7 mg/g with the efficiency of 85%.

  11. Geochemistry of ferromanganese micronodules and associated Mn and trace metals diagenesis at high terrigenous depositional site of middle fan region, Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O

    The influence of sedimentation on the morphology, growth and geochemistry of the micronodules, and on Mn enrichment in the sediments of the Bay of Bengal has been evaluated. Mn accumulation is 307-219 mg cm u2 kyr u-1 in cores having 20-17 cm kyr u...

  12. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal.

    Science.gov (United States)

    Ma, Zichuan; Zhao, Dongyuan; Chang, Yongfang; Xing, Shengtao; Wu, Yinsu; Gao, Yuanzhe

    2013-10-21

    Magnetic nanomaterials that can be easily separated and recycled due to their magnetic properties have received considerable attention in the field of water treatment. However, these nanomaterials usually tend to aggregate and alter their properties. Herein, we report an economical and environmentally friendly method for the synthesis of magnetic nanoparticles with core-shell structure. MnFe2O4 nanoparticles have been successfully coated with amorphous Mn-Co oxide shells. The synthesized MnFe2O4@Mn-Co oxide nanoparticles have highly negatively charged surface in aqueous solution over a wide pH range, thus preventing their aggregation and enhancing their performance for heavy metal cation removal. The adsorption isotherms are well fitted to a Langmuir adsorption model, and the maximal adsorption capacities of Pb(II), Cu(II) and Cd(II) on MnFe2O4@Mn-Co oxide are 481.2, 386.2 and 345.5 mg g(-1), respectively. All the metal ions can be completely removed from the mixed metal ion solutions in a short time. Desorption studies confirm that the adsorbent can be effectively regenerated and reused.

  13. Characterization of Danio rerio Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase, the structural prototype of the ADPRibase-Mn-like protein family.

    Directory of Open Access Journals (Sweden)

    Joaquim Rui Rodrigues

    Full Text Available The ADPRibase-Mn-like protein family, that belongs to the metallo-dependent phosphatase superfamily, has different functional and structural prototypes. The functional one is the Mn(2+-dependent ADP-ribose/CDP-alcohol diphosphatase from Rattus norvegicus, which is essentially inactive with Mg(2+ and active with low micromolar Mn(2+ in the hydrolysis of the phosphoanhydride linkages of ADP-ribose, CDP-alcohols and cyclic ADP-ribose (cADPR in order of decreasing efficiency. The structural prototype of the family is a Danio rerio protein with a known crystallographic structure but functionally uncharacterized. To estimate the structure-function correlation with the same protein, the activities of zebrafish ADPRibase-Mn were studied. Differences between zebrafish and rat enzymes are highlighted. The former showed a complex activity dependence on Mn(2+, significant (≈25% Mg(2+-dependent activity, but was almost inactive on cADPR (150-fold less efficient than the rat counterpart. The low cADPR hydrolase activity agreed with the zebrafish genome lacking genes coding for proteins with significant homology with cADPR-forming enzymes. Substrate-docking to zebrafish wild-type protein, and characterization of the ADPRibase-Mn H97A mutant pointed to a role of His-97 in catalysis by orientation, and to a bidentate water bridging the dinuclear metal center as the potential nucleophile. Finally, three structural elements that delimit the active site entrance in the zebrafish protein were identified as unique to the ADPRibase-Mn-like family within the metallo-dependent phosphatase superfamily.

  14. Facile synthesis of hierarchical Co3O4@MnO2 core-shell arrays on Ni foam for asymmetric supercapacitors

    Science.gov (United States)

    Huang, Ming; Zhang, Yuxin; Li, Fei; Zhang, Lili; Wen, Zhiyu; Liu, Qing

    2014-04-01

    Hierarchical Co3O4@MnO2 core-shell arrays on Ni foam have been fabricated by a facile hydrothermal approach and further investigated as the electrode for high-performance supercapacitors. Owing to the high conductivity of the well-defined mesoporous Co3O4 nanowire arrays in combination with the large surface area provided by the ultrathin MnO2 nanosheets, the unique designed Co3O4@MnO2 core-shell arrays on Ni foam have exhibited a high specific capacitance (560 F g-1 at a current density of 0.2 A g-1), good rate capability, and excellent cycling stability (95% capacitance retention after 5000 cycles). An asymmetric supercapacitor with Co3O4@MnO2 core-shell nanostructure as the positive electrode and activated microwave exfoliated graphite oxide activated graphene (MEGO) as the negative electrode yielded an energy density of 17.7 Wh kg-1 and a maximum power density of 158 kW kg-1. The rational design of the unique core-shell array architectures demonstrated in this work provides a new and facile approach to fabricate high-performance electrode for supercapacitors.

  15. Construction of Hierarchical CNT/rGO-Supported MnMoO4 Nanosheets on Ni Foam for High-Performance Aqueous Hybrid Supercapacitors.

    Science.gov (United States)

    Mu, Xuemei; Du, Jingwei; Zhang, Yaxiong; Liang, Zhilin; Wang, Huan; Huang, Baoyu; Zhou, Jinyuan; Pan, Xiaojun; Zhang, Zhenxing; Xie, Erqing

    2017-10-18

    Rationally designed conductive hierarchical nanostructures are highly desirable for supporting pseudocapacitive materials to achieve high-performance electrodes for supercapacitors. Herein, manganese molybdate nanosheets were hydrothermally grown with graphene oxide (GO) on three-dimensional nickel foam-supported carbon nanotube structures. Under the optimal graphene oxide concentration, the obtained carbon nanotubes/reduced graphene oxide/MnMoO 4 composites (CNT/rGO/MnMoO 4 ) as binder-free supercapacitor cathodes perform with a high specific capacitance of 2374.9 F g -1 at the scan rate of 2 mV s -1 and good long-term stability (97.1% of the initial specific capacitance can be maintained after 3000 charge/discharge cycles). The asymmetric device with CNT/rGO/MnMoO 4 as the cathode electrode and the carbon nanotubes/activated carbon on nickel foam (CNT-AC) as the anode electrode can deliver an energy density of 59.4 Wh kg -1 at the power density of 1367.9 W kg -1 . These superior performances can be attributed to the synergistic effects from each component of the composite electrodes: highly pseudocapacitive MnMoO 4 nanosheets and three-dimensional conductive Ni foam/CNTs/rGO networks. These results suggest that the fabricated asymmetric supercapacitor can be a promising candidate for energy storage devices.

  16. Dose of rocuronium for rapid tracheal intubation following remifentanil 2 μg kg-1 and propofol 2 mg kg-1.

    Science.gov (United States)

    Oh, Ah-Young; Cho, Suk-Ju; Seo, Kwang-Suk; Ryu, Jung-Hee; Han, Sung-Hee; Hwang, Jung-Won

    2013-09-01

    Full relaxation is not mandatory for successful tracheal intubation. We tried to find the dose of rocuronium that gave acceptable intubation conditions in a rapid sequence intubation with remifentanil and propofol. A dose-finding study of rocuronium using a modified Dixon's up-and-down method. A single tertiary care teaching hospital. Patients undergoing elective surgery under general anaesthesia. After premedication with midazolam and glycopyrrolate, anaesthesia was induced using remifentanil 2 μg kg and propofol 2 mg kg, and a predetermined dose of rocuronium was administered. The dose of rocuronium was determined by a modified Dixon's up-and-down method starting from 0.8 mg kg with an interval of 0.1 or 0.05 mg kg. Intubation was performed 60 s after the start of the rocuronium injection. Intubation conditions were graded as excellent, good or poor. Excellent or good were regarded as clinically acceptable. A dose of rocuronium needed for acceptable intubation condition in 50% of patients (ED50) during rapid tracheal intubation after induction of anaesthesia with remifentanil and propofol. Twenty-eight patients were enrolled to obtain six crossovers. The ED50 of rocuronium was 0.20 mg kg (95% confidence interval, CI 0.17 to 0.23 mg kg) by a modified Dixon's up-and-down method. After induction of anaesthesia with remifentanil 2 μg kg and propofol 2 mg kg, the ED50 of rocuronium for acceptable intubation condition was 0.20 mg kg (95% CI, 0.17 to 0.23 mg kg) for rapid sequence intubation. Thus, we recommend that the intubation dose should be 0.8 mg kg. Clinical trial registration KCT0000094.

  17. Translocation of Cd and Mn from Bark to Leaves in Willows on Contaminated Sediments: Delayed Budburst Is Related to High Mn Concentrations

    Directory of Open Access Journals (Sweden)

    Bart Vandecasteele

    2015-04-01

    Full Text Available Changes in the hydrology of sediments in tidal marshes or landfills may affect the uptake of metals in the vegetation. Leaf and stem samples of Salix cinerea (grey sallow were collected during four consecutive growing seasons at six contaminated plots on a polluted dredged sediment landfill and one plot on an uncontaminated reference site. The first three contaminated plots were already emerged in the first half of the first growing season, while the other three were submerged in the first year, but became increasingly dry over the study period. Foliar and stem cutting concentrations for Cd, Zn and Mn increased on the latter three plots over the four years. Willow bark contained high concentrations of Cd, Zn and Mn. In two consecutive greenhouse experiments with willow cuttings from different origins (uncontaminated and contaminated sites and grown under different soil conditions (uncontaminated and contaminated, we observed an important translocation of Mn from bark to shoots. In a third experiment with willow cuttings collected on soils with a range of heavy metal concentrations and, thus, with a broad range of Cd (4–67 mg/kg dry matter, Zn (247–660 mg/kg dry matter and Mn (38–524 mg/kg dry matter concentrations in the bark, high Mn concentrations in the bark were found to affect the budburst of willow cuttings, while no association of delayed budburst with Cd and Zn concentrations in the bark was found. We conclude that wood and, especially, bark are not a sink for metals in living willows. The high Mn concentrations in the bark directly or indirectly caused delayed or restricted budburst of the willow cuttings.

  18. A green preparation of Mn-based product with high purity from low-grade rhodochrosite

    Science.gov (United States)

    Lian, F.; Ma, L.; Chenli, Z.; Mao, L.

    2018-01-01

    The low-grade rhodochrosite, the main resources for exploitation and applications in China, contains multiple elements such as iron, silicon, calcium and magnesium. So the conventional preparation of manganese sulphate and manganese oxide with high purity from electrolytic product is characterized by long production-cycle, high-resource input and high-pollution discharge. In our work, a sustainable preparation approach of high pure MnSO4 solution and Mn3O4 was studied by employing low-grade rhodochrosite (13.86%) as raw material. The repeated leaching of rhodochrosite with sulphuric acid was proposed in view of the same ion effect, in order to improve the solubility of Mn2+ and inhibit the dissolution of the impurities Ca2+ and Mg2+. With the aid of theoretical calculation, BaF2 was chosen to remove Ca2+ and Mg2+ completely in the process of purifying. The results showed that the impurities such as Ca2+, Mg2+, Na+ were decreased to less than 20ppm, and the Ni- and Fe- impurities were decreased to less than 1ppm, which meets the standards of high pure reagent for energy and electronic materials. The extraction ratio and the recovery ratio of manganese reached 94.3% and 92.7%, respectively. Moreover, the high pure Mn3O4 was one-step synthesized via the oxidation of MnSO4 solution with the ratios of OH-/Mn2+=2 and Mn2+/H2O2=1.03, and the recovery rate of manganese reaches 99%.

  19. NMR relaxation studies with MnDPDP

    International Nuclear Information System (INIS)

    Southon, T.E.; Grant, D.; Bjoernerud, A.; Moen, O.M.; Spilling, B.; Martinsen, I.; Refsum, H.

    1997-01-01

    Purpose: Our studies were designed to compare the efficacy of mangafodipir trisodium (MnDPDP, Teslascan) as a tissue-specific MR agent with that of manganese chloride (MnCl 2 ), to compare the efficacy of different doses and rates of administration of MnDPDP, and to collect the data needed for predicting optimum pulse sequences. Material and Methods: The dose response for the relaxation rates R1 and R2 at 0.47 T, and the manganese (Mn) concentrations in rat liver and in the liver, pancreas, heart and adrenals of pigs was determined for both MnDPDP and MnCl 2 administered i.v. Computer simulations were carried out to model the effects of different tissue Mn concentrations and TR on signal intensities and contrast-to-noise ratios. Results: In rat liver and pig organs both compounds produced a positive dose-response in R1 and tissue Mn concentration, and only small or no response in R2. The Mn concentration in rat liver was positively correlated with R1, regardless of the form in which Mn was given, or the rate of administration. Optimal imaging parametes are therefore expected to be different pre- and post-MnDPDP administration. (orig./AJ)

  20. Nanostructured Mn-Fe Binary Mixed Oxide: Synthesis, Characterization and Evaluation for Arsenic Removal.

    Science.gov (United States)

    Pillewan, Pradnya; Mukherjee, Shrabanti; Bansiwal, Amit; Rayalu, Sadhana

    2014-07-01

    Adsorption of arsenic on bimetallic Mn and Fe mixed oxide was carried out using both field as well as simulated water. The material was synthesized using hydrothermal method and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Langmuir and Freundlich adsorption isotherms were computed using batch adsorption studies to determine the adsorption capacity of Mn-Fe binary mixed oxide for arsenic. Adsorption capacity for MFBMO obtained from Freundlich model was found to be 2.048 mg/g for simulated water and 1.084 mg/g for field water. Mn-Fe binary mixed oxide was found to be effective adsorbent for removal of arsenic from water.

  1. A facile method of preparing LiMnPO4/reduced graphene oxide aerogel as cathodic material for aqueous lithium-ion hybrid supercapacitors

    Science.gov (United States)

    Xu, Lin; Wang, Senlin; Zhang, Xiao; He, Taobin; Lu, Fengxia; Li, Huichang; Ye, Junhui

    2018-01-01

    A facile method of preparing LiMnPO4/reduced graphene oxide aerogel (LMP/rGO) as cathodic material was reported here. LiMnPO4 nano-particles were prepared using a facile polyvinyl pyrrolidone-assisted solvothermal route. Then LMP/rGO aerogel was prepared using the accessible restacking method. The influence of the cathodic electrode composition (ratio of rGO to LiMnPO4) on the performance of the LMP/rGO was evaluated by constant-current discharge tests. When compared with 217C g-1 for the pristine LMP, the best LMP/rGO (the content of rGO is 27.3 wt%) exhibits a higher capacity of 464.5C g-1 (at 0.5 A g-1), which presenting the capacity enhance of 114%. Moreover, a lithium-ion hybrid supercapacitor (LIHS) was successfully assembled by using LMP/rGO aerogel as the cathodic electrode and rGO aerogel as the anodic electrode. The LMP/rGO//rGO device achieves excellent specific energy of 16.46 W h kg-1 at a power density of 0.38 kW kg-1, even under the higher specific power of 4.52 kW kg-1, there still holds the specific energy of 11.79 W h kg-1. The LMP/rGO//rGO device maintains 91.2% of the initial capacity after 10,000 cycles (at 2 A g-1), which displays high rate performance and long cycle life. The 3D LMP/rGO aerogel could be a promising candidate material for the lithium-ion hybrid supercapacitors.

  2. Quasicrystal-reinforced Mg alloys.

    Science.gov (United States)

    Kyun Kim, Young; Tae Kim, Won; Hyang Kim, Do

    2014-04-01

    The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg-Zn-Y and Mg-Zn-Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α -Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/matrix interface. The presence of an additional secondary solidification phase can further enhance formability and mechanical properties. In Mg-Zn-Y alloys, the co-presence of I and Ca 2 Mg 6 Zn 3 phases by addition of Ca can significantly enhance formability, while in Mg-Zn-Al alloys, the co-presence of the I-phase and Mg 2 Sn phase leads to the enhancement of mechanical properties. Dynamic and static recrystallization are significantly accelerated by addition of Ca in Mg-Zn-Y alloy, resulting in much smaller grain size and more random texture. The high strength of Mg-Zn-Al-Sn alloys is attributed to the presence of finely distributed Mg 2 Sn and I-phase particles embedded in the α -Mg matrix.

  3. Tuning the magnetic properties of GaAs:Mn/MnAs hybrids via the MnAs cluster shape

    International Nuclear Information System (INIS)

    Nidda, H-A Krug von; Kurz, T; Loidl, A; Hartmann, Th; Klar, P J; Heimbrodt, W; Lampalzer, M; Volz, K; Stolz, W

    2006-01-01

    We report a systematic study of ferromagnetic resonance in granular GaAs:Mn/MnAs hybrids grown on GaAs(001) substrates by metal-organic vapour-phase epitaxy. The ferromagnetic resonance of the MnAs clusters can be resolved at all temperatures below T c . An additional broad absorption is observed below 60 K and is ascribed to localized charge carriers of the GaAs:Mn matrix. The anisotropy of the MnAs ferromagnetic resonance field originates from the magneto-crystalline field and demagnetization effects of the ferromagnetic MnAs clusters embedded in the GaAs:Mn matrix. Its temperature dependence basically scales with magnetization. Comparison of the observed angular dependence of the resonance field with model calculations yields the preferential orientation and shape of the clusters formed in hybrid layers of different thickness (150-1000 nm) grown otherwise at the same growth conditions. The hexagonal axes of the MnAs clusters are oriented along the four cubic GaAs space diagonals. Thin layers contain lens-shaped MnAs clusters close to the surface, whereas thick layers also contain spherical clusters in the bulk of the layer. The magnetic properties of the hexagonal MnAs clusters can be tuned by a controlled variation of the cluster shape

  4. Characterization of Inclusion Populations in Mn-Si Deoxidized Steel

    Science.gov (United States)

    García-Carbajal, Alfonso; Herrera-Trejo, Martín; Castro-Cedeño, Edgar-Ivan; Castro-Román, Manuel; Martinez-Enriquez, Arturo-Isaias

    2017-12-01

    Four plant heats of Mn-Si deoxidized steel were conducted to follow the evolution of the inclusion population through ladle furnace (LF) treatment and subsequent vacuum treatment (VT). The liquid steel was sampled, and the chemical composition and size distribution of the inclusion populations were characterized. The Gumbel generalized extreme-value (GEV) and generalized Pareto (GP) distributions were used for the statistical analysis of the inclusion size distributions. The inclusions found at the beginning of the LF treatment were mostly fully liquid SiO2-Al2O3-MnO inclusions, which then evolved into fully liquid SiO2-Al2O3-CaO-MgO and partly liquid SiO2-CaO-MgO-(Al2O3-MgO) inclusions detected at the end of the VT. The final fully liquid inclusions had a desirable chemical composition for plastic behavior in subsequent metallurgical operations. The GP distribution was found to be undesirable for statistical analysis. The GEV distribution approach led to shape parameter values different from the zero value hypothesized from the Gumbel distribution. According to the GEV approach, some of the final inclusion size distributions had statistically significant differences, whereas the Gumbel approach predicted no statistically significant differences. The heats were organized according to indicators of inclusion cleanliness and a statistical comparison of the size distributions.

  5. Luminescence of MnS in glasses: spectroscopic probe for the study of thermal phase separation

    Energy Technology Data Exchange (ETDEWEB)

    Menassa, P E

    1984-01-01

    A new approach for studying thermal phase separation in sodium borosilicate glasses using MnS as a luminescent probe is investigated. Seventy-one samples of glasses activated by MnS inside and around the Na2O.B2O3.SiO2 miscibility gaps were prepared. These samples were then phase separated by dry thermal treatment. It is shown that on addition of MnO, the ternary Na2O.B2O3.SiO2 system behaved like other quaternary systems of the type X2O.MO.B2O3.SiO2 (X = Na, K; M = Mg, Ca, Ba, Zn). Scanning electron microscopy and X-ray microanalysis demonstrated that manganese concentrates preferentially in the boron-rich phase. This, analysis, in conjuction with a comparison of MnS emission spectra of upheated and heat treated glasses shows that the glasses are submicroscopically phase separated when prepared. The decay-time analysis of MnS luminescence indicates that the low energy emission band arises from MnS in the boron-rich phase while the high energy emission is due to MnS in the silica-rich phase. The difference in the crystal field parameters obtained from the excitation spectra of the two emission bands shows that the high energy emission band is from MnS in tetrahedral sites while the low energy emission band is from MnS in an octahedral environment.

  6. The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density

    Science.gov (United States)

    Hao, Pin; Zhao, Zhenhuan; Li, Liyi; Tuan, Chia-Chi; Li, Haidong; Sang, Yuanhua; Jiang, Huaidong; Wong, C. P.; Liu, Hong

    2015-08-01

    Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by calcination. The carbon aerogel exhibits a high electrical conductivity, high specific surface area and porous structure, ensuring high electrochemical performance of the hybrid nanostructure when coupled with the porous MnCo2O4.5 nanoneedles. The symmetric supercapacitor using the MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure as the active electrode material exhibits a high energy density of about 84.3 Wh kg-1 at a power density of 600 W kg-1. The voltage window is as high as 1.5 V in neutral aqueous electrolytes. Due to the unique nanostructure of the electrodes, the capacitance retention reaches 86% over 5000 cycles.Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by

  7. Binding of Mn-deoxyribonucleoside Triphosphates to the Active Site of the DNA Polymerase of Bacteriophage T7

    Energy Technology Data Exchange (ETDEWEB)

    B Akabayov; C Richardson

    2011-12-31

    Divalent metal ions are crucial as cofactors for a variety of intracellular enzymatic activities. Mg{sup 2+}, as an example, mediates binding of deoxyribonucleoside 5'-triphosphates followed by their hydrolysis in the active site of DNA polymerase. It is difficult to study the binding of Mg{sup 2+} to an active site because Mg{sup 2+} is spectroscopically silent and Mg{sup 2+} binds with low affinity to the active site of an enzyme. Therefore, we substituted Mg{sup 2+} with Mn{sup 2+}:Mn{sup 2+} that is not only visible spectroscopically but also provides full activity of the DNA polymerase of bacteriophage T7. In order to demonstrate that the majority of Mn{sup 2+} is bound to the enzyme, we have applied site-directed titration analysis of T7 DNA polymerase using X-ray near edge spectroscopy. Here we show how X-ray near edge spectroscopy can be used to distinguish between signal originating from Mn{sup 2+} that is free in solution and Mn{sup 2+} bound to the active site of T7 DNA polymerase. This method can be applied to other enzymes that use divalent metal ions as a cofactor.

  8. A high performance quasi-solid-state supercapacitor based on CuMnO2 nanoparticles

    Science.gov (United States)

    Wang, Lu; Arif, Muhammad; Duan, Guorong; Chen, Shenming; Liu, Xiaoheng

    2017-07-01

    Mixed metal or transition metal oxides hold an unveiled potential as one of the most promising energy storage material because of their excellent stability, reliable conductivity, and convenient use. In this work, CuMnO2 nanoparticles are successfully prepared by a facile hydrothermal process with the help of dispersing agent cetyltrimethylammonium bromide (CTAB). CuMnO2 nanoparticles possess a uniform quadrilateral shape, small size (approximately 25 × 25 nm-35 × 35 nm), excellent dispersity, and large specific surface specific (56.9 m2 g-1) with an interparticle mesoporous structure. All these characteristics can bring benefit for their application in supercapacitor. A quasi-solid-state symmetric supercapacitor device is assembled by using CuMnO2 nanoparticles as both positive electrode and negative electrode. The device exhibits good supercapacitive performance with a high specific capacitance (272 F g-1), a maximum power density of 7.56 kW kg-1 and a superior cycling stability of 18,000 continuous cycles, indicating an excellent potential to be used in energy storage device.

  9. Design and synthesis of hierarchical mesoporous WO3-MnO2 composite nanostructures on carbon cloth for high-performance supercapacitors

    Science.gov (United States)

    Shinde, Pragati A.; Lokhande, Vaibhav C.; Patil, Amar M.; Ji, Taeksoo; Lokhande, Chandrakant D.

    2017-12-01

    To enhance the energy density and power performance of supercapacitors, the rational design and synthesis of active electrode materials with hierarchical mesoporous structure is highly desired. In the present work, fabrication of high-performance hierarchical mesoporous WO3-MnO2 composite nanostructures on carbon cloth substrate via a facile hydrothermal method is reported. By varying the content of MnO2 in the composite, different WO3-MnO2 composite thin films are obtained. The formation of composite is confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. The Brunauer-Emmett-Teller (BET) analysis reveals maximum specific surface area of 153 m2 g-1. The optimized WO3-MnO2 composite electrode demonstrates remarkable electrochemical performance with high specific capacitance of 657 F g-1 at a scan rate of 5 mV s-1 and superior longterm cycling stability (92% capacity retention over 2000 CV cycles). Furthermore, symmetric flexible solid-state supercapacitor based on WO3-MnO2 electrodes has been fabricated. The device exhibits good electrochemical performance with maximum specific capacitance of 78 F g-1 at a scan rate of 5 mV s-1 and specific energy of 10.8 Wh kg-1 at a specific power of 0.65 kW kg-1. The improved electrochemical performance could be ascribed to the unique combination of multivalence WO3 and MnO2 nanostructures and synergistic effect between them

  10. Tuning the magnetocaloric response in half-Heusler/Heusler MnNi1 +xSb solid solutions

    Science.gov (United States)

    Levin, Emily E.; Bocarsly, Joshua D.; Wyckoff, Kira E.; Pollock, Tresa M.; Seshadri, Ram

    2017-12-01

    Materials with a large magnetocaloric response are associated with a temperature change upon the application of a magnetic field and are of interest for applications in magnetic refrigeration and thermomagnetic power generation. The usual metric of this response is the gravimetric isothermal entropy change Δ SM . The use of a simple proxy for the Δ SM that is based on density functional theory (DFT) calculations of the magnetic electronic structure suggests that half-Heusler MnNiSb should be a better magnetocaloric than the corresponding Heusler compound MnNi2Sb . Guided by this observation, we present a study of MnNi1 +xSb (x =0 , 0.25, 0.5, 0.75, and 1.0) to evaluate relevant structural and magnetic properties. DFT stability calculations suggest that the addition of Ni takes place at a symmetrically distinct Ni site in the half-Heusler structure and support the observation using synchrotron x-ray diffraction of a homogeneous solid solution between the half-Heusler and Heusler end members. There is a maximum in the saturation magnetization at x =0.5 and the Curie temperature systematically decreases with increasing x . Δ SM for a maximum magnetic field change of Δ H =5 T monotonically decreases in magnitude from -2.93 J kg-1K-1 in the half-Heusler to -1.35 J kg-1K-1 in the Heusler compound. The concurrent broadening of the magnetic transition results in a maximum in the refrigerant capacity at x =0.75 . The Curie temperature of this system is highly tunable between 350 K and 750 K, making it ideal for low grade waste heat recovery via thermomagnetic power generation. The increase in Δ SM with decreasing x may be extendable to other MnNi2Z Heusler systems that are currently under investigation for use in magnetocaloric refrigeration applications.

  11. A new rechargeable lithium-ion battery with a xLi2MnO3.(1 - x) LiMn0.4Ni0.4Co0.2O2 cathode and a hard carbon anode

    International Nuclear Information System (INIS)

    Liu Jinlong; Wang Jie; Xia Yongyao

    2011-01-01

    Highlights: → A new type of battery with 0.4Li 2 MnO 3 0.6LiMn 0.4 Ni 0.4 Co 0.2 O 2 and hard carbon was proposed. → The irreversible capacity encountered at both electrodes, can be counterbalanced each other. → The battery delivers capacities of 105 mAh g -1 and specific energies of 315 Wh kg -1 . - Abstract: We reported a new type of rechargeable lithium-ion battery consisting of a structurally integrated 0.4Li 2 MnO 3 .0.6LiMnNi 0.4 Co 0.2 O 2 cathode and a hard carbon anode. The drawback of the high irreversible capacity loss of both electrodes, occurring at the first charge/discharge process, can be counterbalanced each other. The battery shows good reversibility with a sloping voltage from 1.5 V to 4.5 V and delivers a capacity of 105 mA h g -1 and a specific energy of 315 W h kg -1 based on the total weight of the both active electrode materials.

  12. Kinetic Investigations of SiMn Slags From Different Mn Sources

    Science.gov (United States)

    Kim, Pyunghwa Peace; Tangstad, Merete

    2018-03-01

    The kinetics of MnO and SiO2 reduction were investigated for Silicomanganese (SiMn) slags using a Thermogravimetric analysis (TGA) between 1773 K and 1923 K (1500 °C and 1650 °C) under CO atmospheric pressure. The charge materials were based on Assmang ore and HC FeMn Slag. Rate models for MnO and SiO2 reduction were applied to describe the metal-producing rates, as shown by the following equations: r_{MnO} = k_{MnO} × A × ( {a_{MnO} - {a_{Mn} }/{K_{T }}} ) r_{{{SiO}2 }} = k_{SiO2} × A × ( {a_{{{SiO}2 }} - {a_{Si} }/{K_{T }}} ). The results show that the choice of raw materials in the charge considerably affected the reduction rate of MnO and SiO2. The highest reduction rate was found to be from charges using HC FeMn slag. The difference in the driving forces was insignificant among the SiMn slags, and the similar slag viscosities could not explain the different reduction rates. Instead, the difference is attributed to small amounts of sulfur and the amount of iron in the charge. In addition, the rate models were applicable to describe the reduction of MnO and SiO2 in SiMn slags.

  13. Chondritic Mn/Na ratio and limited post-nebular volatile loss of the Earth

    Science.gov (United States)

    Siebert, Julien; Sossi, Paolo A.; Blanchard, Ingrid; Mahan, Brandon; Badro, James; Moynier, Frédéric

    2018-03-01

    The depletion pattern of volatile elements on Earth and other differentiated terrestrial bodies provides a unique insight as to the nature and origin of planetary building blocks. The processes responsible for the depletion of volatile elements range from the early incomplete condensation in the solar nebula to the late de-volatilization induced by heating and impacting during planetary accretion after the dispersion of the H2-rich nebular gas. Furthermore, as many volatile elements are also siderophile (metal-loving), it is often difficult to deconvolve the effect of volatility from core formation. With the notable exception of the Earth, all the differentiated terrestrial bodies for which we have samples have non-chondritic Mn/Na ratios, taken as a signature of post-nebular volatilization. The bulk silicate Earth (BSE) is unique in that its Mn/Na ratio is chondritic, which points to a nebular origin for the depletion; unless the Mn/Na in the BSE is not that of the bulk Earth (BE), and has been affected by core formation through the partitioning of Mn in Earth's core. Here we quantify the metal-silicate partitioning behavior of Mn at deep magma ocean pressure and temperature conditions directly applicable to core formation. The experiments show that Mn becomes more siderophile with increasing pressure and temperature. Modeling the partitioning of Mn during core formation by combining our results with previous data at lower P-T conditions, we show that the core likely contains a significant fraction (20 to 35%) of Earth's Mn budget. However, we show that the derived Mn/Na value of the bulk Earth still lies on the volatile-depleted end of a trend defined by chondritic meteorites in a Mn/Na vs Mn/Mg plot, which tend to higher Mn/Na with increasing volatile depletion. This suggests that the material that formed the Earth recorded similar chemical fractionation processes for moderately volatile elements as chondrites in the solar nebula, and experienced limited post

  14. Removal of 54Mn from the mouse body by dilution with stable manganese and by chelation with DTPA

    International Nuclear Information System (INIS)

    Sato, Itaru; Matsusaka, Naonori; Tsuda, Shuji

    1999-01-01

    54 Mn is one of the activation products generated in nuclear reactors. This study was carried out to find a method appropriate for the removal of 54 Mn. Intraperitoneal administration of stable manganese effectively promoted the excretion of 54 Mn from the mouse body. The efficacy for removing 54 Mn was estimated to be 56, 67, 77 and 82% for manganese doses of 0.3, 1, 3 and 10 mg/kg, respectively. Oral administration of stable manganese was also effective for the removal of 54 Mn, but the efficacy was inferior to that obtained by intraperitoneal administration because of low gastrointestinal absorption of manganese. Ca-DTPA and Zn-DTPA promoted the excretion of 54 Mn when administered 1 h after administration of 54 Mn, but these chelating agents had little effect when administered after 3 h or more. Zn-DTPA was less effective than Ca-DTPA. These results demonstrate that dilution with stable manganese is more effective than chelation with DTPA for the removal of 54 Mn from the body. (author)

  15. Arsenic and Mn levels in Isaza (Gymnogobius isaza) during the mass mortality event in Lake Biwa, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Sawako Horai; Hayase, Daisuke; Eguchi, Akifumi; Itai, Takaaki; Nomiyama, Kei; Isobe, Tomohiko; Agusa, Tetsuro [Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan); Ishikawa, Toshiyuki [Department of Environmental Education, Faculty of Education, Shiga University, 2-5-1 Hiratsu, Otsu, Shiga 520-0862 (Japan); Kumagai, Michio [Lake Biwa Environmental Research Institute, 5-34 Yanagasaki, Otsu, Shiga 520-0022 (Japan); Tanabe, Shinsuke, E-mail: shinsuke@agr.ehime-u.ac.jp [Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan)

    2011-10-15

    The present study measured the concentrations of 25 elements (Li, Mg, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, Pb and Bi) in the whole body of Isaza which is an endemic fish species to Lake Biwa, Japan, and compared the values in the specimens from the mass mortality Isaza (MMI) and normal fresh Isaza (NFI). The mean levels of Mn and total As (T-As) were relatively higher in MMI than in NFI. In the T-As, highly toxic inorganic As was detected in MMI. Moreover we found Mn and As concentrations in surface sediment were extremely high and temporally increased. From all these results, we could infer that the dissolution of Mn and As from surface sediment of Lake Biwa might have been one of the cause for the mass mortality of Isaza. - Highlights: > Mn and As levels were significantly higher in MMI than in NFI. > The number of chemical species of As detected from MMI was less than that from NFI. > Mn and As levels were highest in surface sediment, and sharply decreased with depth. > Mn and As levels in surface sediment temporally increased. - As and Mn levels in dead Isaza caused by mass mortality.

  16. Amorphous MnO2 supported on 3D-Ni nanodendrites for large areal capacitance supercapacitors

    International Nuclear Information System (INIS)

    Xiao, Kang; Li, Jing-Wei; Chen, Gao-Feng; Liu, Zhao-Qing; Li, Nan; Su, Yu-Zhi

    2014-01-01

    Highlights: • A novel 3D dendrites-like MnO2 @Ni has been prepared by a simple electrochemical process. • The as-prepared 3D metal Ni can be improved the electrochemical performance by decorating MnO2. • The findings indicate that the novel 3D architectures offer a very promising design for supercapacitors. - Abstract: In this paper, we report a metal oxide/metal MnO 2 /3D dendrites-like Ni core-shell electrode on Ni foam for high-performance supercapacitors. The MnO 2 /3D-Ni electrode exhibits a large areal capacitance (837.6 mF cm −2 ) at high loading mass of MnO 2 (3 mg cm −2 ). Moreover, MnO 2 /3D-Ni composite electrodes exhibit excellent rate capability and high cycling stability (16% degradation after 2000 cycles). The high electrochemical properties of MnO 2 /3D-Ni electrode can be attributed to the high conductivity of the Ni metal core, high porous and large specific surface structure of the MnO 2 /3D-Ni nanocomposites, which facilitates electrolyte diffusion, electron transport, and material utilization. These results indicate highly conductive 3D dendrites-like Ni nanoparticles may could provide new opportunities for the development of high performance supercapacitors

  17. Surface studies of Li-ion and Mg battery electrodes

    Science.gov (United States)

    Esbenshade, Jennifer

    This dissertation focuses on studies of the surfaces of both Li-ion and Mg-ion battery electrodes. A fundamental understanding of processes occurring at the electrode surface is vital to the development of advanced battery systems. Additionally, modifications to the electrode surfaces are made and further characterized for improved performance. LiMn2O4 Cathodes for Li-ion Batteries: Effect of Mn in electrolyte on anode and Au coating to minimize dissolution: LiMn2O4 (LMO) is known to dissolve Mn ions with cycling. This section focuses on both the effect of the dissolution of Mn2+ into the electrolyte as well as Au coating on the LMO to improve electrochemical performance. Electrochemical quartz crystal microbalance (EQCM) was used to monitor changes in mass on the anode, SEM and AES were used to observe changes in surface morphology and chemical composition, and potentiostatic voltammetry was used to monitor charge and discharge capacity. The effect of Cu2+ addition in place of Mn2+ was also studied, as Cu is known to form an underpotential deposition (UPD) monolayer on Au electrodes. Following this, LMO particles were coated with a Au shell by a simple and scalable electroless deposition for use as Li-ion battery cathodes. The Au shell was intended to limit the capacity fade commonly seen with LMO cathodes by reducing the dissolution of Mn. Characterization by SEM, TEM, EELS, and AFM showed that the Au shell was approximately 3 nm thick. The Au shell prevented much of the Mn from dissolving in the electrolyte with 82% and 88% less dissolved Mn in the electrolyte at room temperature and 65 ºC, respectively, as compared to the uncoated LMO. Electrochemical performance studies with half cells showed that the Au shell maintained a higher discharge capacity over 400 cycles by nearly 30% with 110 mA hr g-1 for the 400th cycle as compared to a commercial LMO at 85 mA hr g-1. Similarly, the capacity fade was reduced in full cells: the coated LMO had 47% greater capacity

  18. Paramagnetic resonance of Mn4+ and Mn2+ centers in lanthanum gallate single crystals

    Science.gov (United States)

    Vazhenin, V. A.; Potapov, A. P.; Guseva, V. B.; Artyomov, M. Yu.

    2010-03-01

    An increase in the manganese concentration in lanthanum gallate in the range 0.5-5.0% has been found to result in a complete replacement of individual Mn4+ ions by Mn2+ ions. The relative concentrations and binding energies of individual Mn4+, Mn3+, and Mn2+ ions have been determined. The spin Hamiltonians of the Mn2+ and Mn4+ centers in the rhombohedral and orthorhombic phases, respectively, have been constructed and the orientation of the principal axes of the fine-structure tensor of Mn4+ at room temperature has been found. The possibility of using electron paramagnetic resonance for determining the rotation angles of oxygen octahedra of lanthanum gallate with respect to the perovskite structure has been discussed.

  19. Switchable Polarization in Mn Embedded Graphene.

    Science.gov (United States)

    Noor-A-Alam, Mohammad; Ullah, Hamid; Shin, Young-Han

    2018-03-14

    Graphene, despite its many unique properties, is neither intrinsically polar due to inversion symmetry nor magnetic. However, based on density functional theory, we find that Mn, one of transition metals, embedded in single or double vacancy (Mn@SV and Mn@DV) in a graphene monolayer induces a dipole moment perpendicular to the sheet, which can be switched from up to down by Mn penetration through the graphene. Such switching could be realized by an external stimuli introduced through the tip of a scanning probe microscope, as already utilized in the studies of molecular switches. We estimate the energy barriers for dipole switching, which are found to be 2.60 eV and 0.28 eV for Mn@SV and Mn@DV, respectively. However, by applying biaxial tensile strain, we propose a mechanism for tuning the barrier. We find that 10% biaxial tensile strain, which is already experimentally achievable in graphene-like two-dimensional materials, can significantly reduce the barrier to 0.16 eV in Mn@SV. Moreover, in agreement with previous studies, we find a high magnetic moment of 3 μ B for both Mn@SV and Mn@DV, promising the potential of these structures in spintronics as well as in nanoscale electro-mechanical or memory devices.

  20. A new insight of recycling of spent Zn-Mn alkaline batteries: Synthesis of Zn{sub x}Mn{sub 1−x}O nanoparticles and solar light driven photocatalytic degradation of bisphenol A using them

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jiao, E-mail: qujiao@bhu.edu.cn [School of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning 121013 (China); School of Urban and Environmental Sciences, Northeast Normal University, Changchun, Jilin 130024 (China); Feng, Yue; Zhang, Qian [School of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning 121013 (China); Cong, Qiao [School of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning 121013 (China); School of Urban and Environmental Sciences, Northeast Normal University, Changchun, Jilin 130024 (China); Luo, Chunqiu [School of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning 121013 (China); Yuan, Xing [School of Urban and Environmental Sciences, Northeast Normal University, Changchun, Jilin 130024 (China)

    2015-02-15

    Highlights: • Zn{sub 0.5}Mn{sub 0.5}O nanoparticles synthesized using SABs were cylinder with 60 nm diameter. • Adsorption equilibrium of BPA on Zn{sub x}Mn{sub 1−x}O nanoparticles were achieved in 40 min. • Decomposition yields of BPA were increased with light irradiation and Zn{sub x}Mn{sub 1−x}O nanoparticles. • The findings have positive effects on solving the recycling of SABs. - Abstract: This work focuses on the synthesis of Zn{sub 0.1}Mn{sub 0.9}O, Zn{sub 0.3}Mn{sub 0.7}O, and Zn{sub 0.5}Mn{sub 0.5}O nanoparticles using Zn-Mn spent alkaline batteries (SABs) as raw materials and their applications for photocatalytic degradation of bisphenol A in water. Zn-Mn SABs were manually dismantled into scrap (including plastics, copper cap, zinc crust, and carbon rod) and powder. The mashed zinc crust and pretreated powder were successively added into H{sub 2}SO{sub 4} and NH{sub 3}⋅H{sub 2}O, and the formed precipitates were characterized. The yield (wt) of synthesis of Zn{sub 0.5}Mn{sub 0.5}O (ZnMnO{sub 3}) nanoparticles was 57.1%. The synthesized Zn{sub 0.5}Mn{sub 0.5}O nanoparticles were cylinder, with a length of 60 nm. Afterwards, the removal efficiencies of bisphenol A (BPA) under solar light irradiation with the recovered Zn{sub x}Mn{sub 1−x}O nanoparticles were investigated: (1) the adsorption equilibrium of BPA on Zn{sub x}Mn{sub 1−x}O nanoparticles could be achieved after approximate 40 min. The saturation absorbance of BPA was about 32.40 ± 4.76 mg g{sup −1}, 20.40 ± 3.60 mg g{sup −1}, and 14.50 ± 4.55 mg g{sup −1} by Zn{sub 0.1}Mn{sub 0.9}O, Zn{sub 0.3}Mn{sub 0.7}O, and Zn{sub 0.5}Mn{sub 0.5}O nanoparticles, respectively; (2) compared with the 21.7 ± 1.6% degradation of BPA (only solar light irradiation for 180 min), the combination of solar light irradiation and Zn{sub 0.1}Mn{sub 0.9}O, Zn{sub 0.3}Mn{sub 0.7}O, and Zn{sub 0.5}Mn{sub 0.5}O nanoparticles could lead to 59.41 ± 4.32%, 83.43 ± 2.73%, and 71.22 ± 4

  1. Deformation induced dynamic recrystallization and precipitation strengthening in an Mg−Zn−Mn alloy processed by high strain rate rolling

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jimiao; Song, Min [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yan, Hongge [School of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Yang, Chao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Ni, Song, E-mail: song.ni@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2016-11-15

    The microstructure of a high strain-rate rolled Mg−Zn−Mn alloy was investigated by transmission electron microscopy to understand the relationship between the microstructure and mechanical properties. The results indicate that: (1) a bimodal microstructure consisting of the fine dynamic recrystallized grains and the largely deformed grains was formed; (2) a large number of dynamic precipitates including plate-like MgZn{sub 2} phase, spherical MgZn{sub 2} phase and spherical Mn particles distribute uniformly in the grains; (3) the major facets of many plate-like MgZn{sub 2} precipitates deviated several to tens of degrees (3°–30°) from the matrix basal plane. It has been shown that the high strength of the alloy is attributed to the formation of the bimodal microstructure, dynamic precipitation, and the interaction between the dislocations and the dynamic precipitates. - Highlights: •A bimodal microstructure was formed in a high strain-rate rolled Mg−Zn−Mn alloy. •Plate-like MgZn{sub 2}, spherical MgZn{sub 2} and spherical Mn phases were observed. •The major facet of the plate-like MgZn{sub 2} deviated from the matrix basal plane.

  2. Magnetic neutron diffraction of MnO thin films

    International Nuclear Information System (INIS)

    Neubeck, W.; Vettier, C.; Mannix, D.; Bernhoeft, N.; Hiess, A.; Ranno, L.; Givord, D.

    1999-01-01

    We report on magnetic neutron diffraction carried out on various epitaxial MnO(III) thin films grown on sapphire and MgO substrates. In all samples, of masses between 5 and 50 μg, magnetic Bragg peaks have been observed. The films exhibit what appears to be continuous phase-transitions in contrast to the strongly discontinuous transition exhibited by bulk samples. In addition, the Neel temperature of films prepared on sapphire substrates is strongly enhanced above that of the bulk whilst that of the film grown on MgO is depressed. The possibility to measure magnetic excitations in such thin film systems is discussed in the light of promising test results obtained from an inelastic magnetic neutron scattering experiment on the IN8 spectrometer. (authors)

  3. Structure and magnetic properties of La2/3Sr1/3MnO3/CaMnO3 multilayers

    International Nuclear Information System (INIS)

    Granada, Mara; Sirena, Martin; Steren, Laura B.; Leyva, Gabriela

    2004-01-01

    Structural and magnetic properties of manganite-based multilayers, La 2/3 Sr 1/3 MnO 3 /CaMnO 3 , composed of ferromagnetic metals and antiferromagnetic insulator barriers are investigated in this work. Compounds of similar lattice parameters were used to build the samples, so we expect an excellent stacking of the different layers along the structure. To get a first insight of this system, the crystalline structure of a series of samples, grown on (1 0 0) SrTiO 3 and (1 0 0) MgO single-crystalline substrates, has been studied. X-ray diffraction patterns show that the structure is strongly textured in the (1 0 0) direction when grown on SrTiO 3 , regardless the composition of the bottom layer. A different result is found on the same system grown on MgO: when the buffer layer is CaMnO 3 , the structure grows in the (1 1 0) orientation while it grows in the (1 0 0) direction when the bottom layer is La 2/3 Sr 1/3 MnO 3 . Magnetic coupling of the ferromagnetic layers across the antiferromagnetic spacer has been studied with magnetization measurements

  4. Synthesis of Li-Mn-O mesocrystals with controlled crystal phases through topotactic transformation of MnCO₃.

    Science.gov (United States)

    Dang, Feng; Hoshino, Tatsuhiko; Oaki, Yuya; Hosono, Eiji; Zhou, Haoshen; Imai, Hiroaki

    2013-03-21

    Mesocrystals of Li-Mn-O compounds, such as LiMn2O4, Li2MnO3, and LiMnO2-Li2MnO3, consisting of oriented nanoscale units were selectively produced under hydrothermal conditions from biomimetically prepared MnCO3 mesocrystals. Topotactic transformation through the intermediate phase of Mn5O8 inheriting a hierarchical structure of the MnCO3 precursor was essential for the formation of the mesocrystal compounds. The crystal phases were successfully controlled by varying the conditions for the hydrothermal reactions. The Li-Mn-O mesocrystals have considerable potential as cathodes of Li-ion batteries.

  5. Three-Dimensional Bi-Continuous Nanoporous Gold/Nickel Foam Supported MnO2 for High Performance Supercapacitors.

    Science.gov (United States)

    Zhao, Jie; Zou, Xilai; Sun, Peng; Cui, Guofeng

    2017-12-19

    A three-dimensional bi-continuous nanoporous gold (NPG)/nickel foam is developed though the electrodeposition of a gold-tin alloy on Ni foam and subsequent chemical dealloying of tin. The newly-designed 3D metal structure is used to anchor MnO 2 nanosheets for high-performance supercapacitors. The formed ternary composite electrodes exhibit significantly-enhanced capacitance performance, rate capability, and excellent cycling stability. A specific capacitance of 442 Fg -1 is achieved at a scan rate of 5 mV s -1 and a relatively high mass loading of 865 μg cm -2 . After 2500 cycles, only a 1% decay is found at a scan rate of 50 mV s -1 . A high power density of 3513 W kg -1 and an energy density of 25.73 Wh kg -1 are realized for potential energy storage devices. The results demonstrate that the NPG/nickel foam hybrid structure significantly improves the dispersibility of MnO 2 and makes it promising for practical energy storage applications.

  6. Enhancing pseudocapacitive kinetics of nanostructured MnO2 through anchoring onto biomass-derived porous carbon

    Science.gov (United States)

    Chen, Qiongyu; Chen, Jizhang; Zhou, Yuyang; Song, Chao; Tian, Qinghua; Xu, Junling; Wong, Ching-Ping

    2018-05-01

    The rational construction of heterostructured electrode materials that deliver superior performances to their individual counterparts offers an attractive strategy for supercapacitors. Herein, we anchor low-crystalline nanostructured MnO2 onto soybean stalk-derived carbon matrix through chemical activation and subsequent hydrothermal reaction. The highly porous and conductive matrix can effectively enhance pseudocapacitive kinetics of nanostructured MnO2. Therefore, the obtained nanocomposite exhibits high specific capacitance (384.9 F g-1 at a current density of 0.5 A g-1), great rate capability (185.0 F g-1 at 20 A g-1), and superior cyclability (90.7% capacitance retention after 5000 cycles). Using this nanocomposite as the positive electrode material, an asymmetric supercapacitor (ASC) is assembled, and achieves high specific energy of 34.2 Wh kg-1 and high specific power of 9.58 kW kg-1. The results of this study demonstrate great potential of combining biomass-derived porous carbon with metal oxides.

  7. Low-temperature phase MnBi compound: A potential candidate for rare-earth free permanent magnets

    International Nuclear Information System (INIS)

    Ly, V.; Wu, X.; Smillie, L.; Shoji, T.; Kato, A.; Manabe, A.; Suzuki, K.

    2014-01-01

    Highlights: • The spin reorientation temperature of MnBi is suppressed by nanoscale grain refinement. • Hardness parameter of MnBi reaches as large as 2.8 at 580 K. • MnBi has a great potential as a hard phase in rare-earth free nanocomposite magnets. • Improving the surface passivity is a remaining task for MnBi-based permanent magnets. - Abstract: The low-temperature phase (LTP) MnBi is one of the few rare-earth free compounds that exhibit a large magnetocrystalline anisotropy energy in the order of 10 6 J/m 3 . A large coercive field (μ 0 H cj ) above 1 T can be obtained readily by reducing the crystallite size (D) through mechanical grinding (MG). The room-temperature H cj values follow a phenomenological expression μ 0 H cj = μ 0 H a (δ/D) n where the anisotropy field (μ 0 H a ) is ∼4 T, the Bloch wall width (δ) is 7 nm and the exponent (n) is about 0.7 in our study. The grain refinement upon MG is accompanied by suppression of the spin reorientation transition temperature (T SR ) from 110 K to below 50 K. The coercive field starts to exhibit positive temperature dependence approximately 50 K above T SR and the room-temperature magnetic hardening induced by MG could partially be brought about by the lowered onset of this positive temperature dependence. The suppression of T SR by MG is likely to be induced by the surface anisotropy with which the 2nd order crystal field term is enhanced. One of the shortcomings of LTP-MnBi is its poor phase stability under the ambient atmosphere. The spontaneous magnetization decreases considerably after room-temperature aging for 1 week. This is due to oxidation of Mn which leads to decomposition of the MnBi phase. Hence, the surface passivity needs to be established before this material is considered for a permanent magnet in practical uses. Another shortcoming is the limited spontaneous magnetization. The theoretical upper limit of the maximum energy product in LTP-MnBi remains only a quarter of that in Nd 2

  8. Photosynthetic capacity, nutrient status and growth of maize (Zea mays L. upon MgSO4 leaf-application

    Directory of Open Access Journals (Sweden)

    Mareike eJezek

    2015-01-01

    Full Text Available The major plant nutrient magnesium is involved in numerous physiological processes and its deficiency can severely reduce the yield and quality of crops. Since Mg availability in soil and uptake into the plant is often limited by unfavorable soil or climatic conditions, application of Mg onto leaves, the site with highest physiological Mg demand, might be a reasonable alternative fertilization strategy. This study aimed to investigate, if MgSO4 leaf-application in practically relevant amounts can efficiently alleviate the effects of Mg starvation in maize, namely reduced photosynthesis capacity, disturbed ion homeostasis and growth depression. Results clearly demonstrated that Mg deficiency could be mitigated by MgSO4 leaf-application as efficiently as by resupply of MgSO4 via the roots in vegetative maize plants. Significant increases in SPAD values and net rate of CO2-assimilation as well as enhanced shoot biomass have been achieved. Ion analysis furthermore revealed an improvement of the nutrient status of Mg-deficient plants with regard to [Mg], [K] and [Mn] in distinct organs, thereby reducing the risk of Mn-toxicity at the rootside, which often occurs together with Mg deficiency on acid soils. In conclusion, foliar fertilization with Mg proved to be an efficient strategy to adequately supply maize plants with magnesium and might hence be of practical relevance to correct nutrient deficiencies during the growing season.

  9. Ecological modelling of a wetland for phytoremediating Cu, Zn and Mn in a gold–copper mine site using Typha domingensis (Poales: Typhaceae near Orange, NSW, Australia

    Directory of Open Access Journals (Sweden)

    Subrahmanyam Sreenath

    2017-12-01

    Full Text Available An artificial wetland was computationally modelled using STELLA®, a graphical programming tool for an Au-Cu mine site in Central-west NSW, the aim of which was to offer a predictive analysis of a proposed wetland for Cu, Zn and Mn removal using Typha domingensis as the agent. The model considers the important factors that impact phytoremediation of Cu, Zn and Mn. Simulations were performed to optimise the area of the wetland; concentration of Cu, Zn and Mn released from mine (AMD; and flow rates of water for maximum absorption of the metals. A scenario analysis indicates that at AMD = 0.75mg/L for Cu, Zn and Mn, 12.5, 8.6, and 357.9 kg of Cu, Zn and Mn, respectively, will be assimilated by the wetland in 35 years, which would be equivalent to 61 mg of Cu/kg, 70 mg of Zn/kg and 2,886 mg of Mn/kg of T. domingensis, respectively. However, should Cu, Zn and Mn in AMD increase to 3 mg/L, then 18.6 kg of Cu and 11.8 kg of Zn, respectively, will be assimilated in 35 years, whereas no substantial increase in absorption for Mn would occur. This indicates that 91 mg of Cu, 96 mg of Zn and 2917 mg of Mn will be assimilated for every kg of T. domingensis in the wetland. The best option for Cu storage would be to construct a wetland of 50,000 m2 area (AMD = 0.367 mg/L of Cu, which would capture 14.1 kg of Cu in 43 years, eventually releasing only 3.9 kg of Cu downstream. Simulations performed for a WA of 30,000 m2 indicate that for AMD = 0.367 mg/L of Zn, the wetland captures 6.2 kg, releasing only 3.5 kg downstream after 43 years; the concentration of Zn in the leachate would be 10.2 kg, making this the most efficient wetland amongst the options considered for phytoremediating Zn. This work will help mine managers and environmental researchers in developing an effective environmental management plan by focusing on phytoremediation, with a view at extracting Cu, Zn and Mn from the contaminated sites.

  10. Laboratory study on the adsorption of Mn(2+) on suspended and deposited amorphous Al(OH)(3) in drinking water distribution systems.

    Science.gov (United States)

    Wang, Wendong; Zhang, Xiaoni; Wang, Hongping; Wang, Xiaochang; Zhou, Lichuan; Liu, Rui; Liang, Yuting

    2012-09-01

    Manganese (II) is commonly present in drinking water. This paper mainly focuses on the adsorption of manganese on suspended and deposited amorphous Al(OH)(3) solids. The effects of water flow rate and water quality parameters, including solution pH and the concentrations of Mn(2+), humic acid, and co-existing cations on adsorption were investigated. It was found that chemical adsorption mainly took place in drinking water with pHs above 7.5; suspended Al(OH)(3) showed strong adsorption capacity for Mn(2+). When the total Mn(2+) input was 3 mg/L, 1.0 g solid could accumulate approximately 24.0 mg of Mn(2+) at 15 °C. In drinking water with pHs below 7.5, because of H(+) inhibition, active reaction sites on amorphous Al(OH)(3) surface were much less. The adsorption of Mn(2+) on Al(OH)(3) changed gradually from chemical coordination to physical adsorption. In drinking water with high concentrations of Ca(2+), Mg(2+), Fe(3+), and HA, the removal of Mn(2+) was enhanced due to the effects of co-precipitation and adsorption. In solution with 1.0 mg/L HA, the residual concentration of Mn(2+) was below 0.005 mg/L, much lower than the limit value required by the Chinese Standard for Drinking Water Quality. Unlike suspended Al(OH)(3), deposited Al(OH)(3) had a much lower adsorption capacity of 0.85 mg/g, and the variation in flow rate and major water quality parameters had little effect on it. Improved managements of water age, pipe flushing and mechanical cleaning were suggested to control residual Mn(2+). Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Thermopower and magnetocaloric properties in NdSrMnO/CrO3 composites

    Science.gov (United States)

    Ahmed, A. M.; Mohamed, H. F.; Paixão, J. A.; Mohamed, Sara A.

    2018-06-01

    The thermoelectric power (TEP) and magnetocaloric effect (MCE) for (Nd0.6Sr0.4MnO3)1-x/(CrO3)x composites have been measured. The TEP measurements show a negative sign value of the Seebeck coefficient (S), in microvolts. TEP data construe in the low range of temperature by the magnon and phonon drag model, whereas at high temperature by small polaron conduction mechanism. Magnetic measurements exhibit that all composites show a paramagnetic-ferromagnetic transition with decreasing temperature. The Arrott plots of composites reveal the occurrence of a second order phase transition. The maximum value of magnetic entropy change (ΔS) is 2.37 J kg-1 K-1, achieved fore the composite with x = 0.015. Moreover, the maximum value of relative cooling power (RCP) is 122.1 J kg-1, achieved for the composite with x = 0.020. These composites may be appropriate for magnetic application near room temperature.

  12. Hierarchical 3D NiFe2O4@MnO2 core-shell nanosheet arrays on Ni foam for high-performance asymmetric supercapacitors.

    Science.gov (United States)

    Zhang, Xinyang; Zhang, Ziqing; Sun, Shuanggan; Sun, Qiushi; Liu, Xiaoyang

    2018-02-13

    Hierarchical NiFe 2 O 4 @MnO 2 core-shell nanosheet arrays (NSAs) were synthesized on Ni foam as an integrated electrode for supercapacitors, using a facile two-step hydrothermal method followed by calcination treatment. The NiFe 2 O 4 nanosheets were designed as the core and ultrathin MnO 2 nanoflakes as the shell, creating a unique three-dimensional (3D) hierarchical electrode on Ni foam. The composite electrode exhibited remarkable electrochemical performance with a high specific capacitance of 1391 F g -1 at a current density of 2 mA cm -2 and long cycling stability at a high current density of 10 mA cm -2 (only 11.4% loss after 3000 cycles). Additionally, an asymmetric supercapacitor (ASC) device was fabricated with a NiFe 2 O 4 @MnO 2 composite as the positive electrode material and activated carbon (AC) as the negative one. The ASC device exhibited a high energy density (45.2 W h kg -1 ) at a power density of 174 W kg -1 , and an excellent cycling stability over 3000 cycles with 92.5% capacitance retention. The remarkable electrochemical performance demonstrated its great potential as a promising candidate for high-performance supercapacitors.

  13. Monodisperse MnO2@NiCo2O4 core/shell nanospheres with highly opened structures as electrode materials for good-performance supercapacitors

    Science.gov (United States)

    Zhou, You; Ma, Li; Gan, Mengyu; Ye, Menghan; Li, Xiurong; Zhai, Yanfang; Yan, Fabing; Cao, Feifei

    2018-06-01

    The monodisperse MnO2@NiCo2O4 core/shell nanospheres for good-performance supercapacitors are designed and synthesized by a two-step solution-based method and a simple post annealing process. In the composite, both MnO2 (the "core") and NiCo2O4 (the "shell") are formed by the accumulation of nanoflakes. Thus, nearly all the core/shell nanoflakes are highly opened and accessible to electrolyte, making them give full play to the Faradaic reaction. Our results demonstrate that the composite electrode exhibits desirable pseudocapacitive behaviors with higher specific capacitance (1127.27 F g-1 at a current density of 1 A g-1), better rate capability (81.0% from 1 to 16 A g-1) and superior cycling stability (actually 126.8% capacitance retention after 1000 cycles and only 3.7% loss after 10,000 cycles at 10 A g-1) in 3 M KOH aqueous solution. Moreover, it offers the excellent specific energy density of 26.6 Wh kg-1 at specific power density of 800 W kg-1. The present MnO2@NiCo2O4 core/shell nanospheres with remarkable electrochemical properties are considered as potential electrode materials for the next generation supercapacitors.

  14. Symmetric Sodium-Ion Capacitor Based on Na0.44MnO2 Nanorods for Low-Cost and High-Performance Energy Storage.

    Science.gov (United States)

    Chen, Zhongxue; Yuan, Tianci; Pu, Xiangjun; Yang, Hanxi; Ai, Xinping; Xia, Yongyao; Cao, Yuliang

    2018-04-11

    Batteries and electrochemical capacitors play very important roles in the portable electronic devices and electric vehicles and have shown promising potential for large-scale energy storage applications. However, batteries or capacitors alone cannot meet the energy and power density requirements because rechargeable batteries have a poor power property, whereas supercapacitors offer limited capacity. Here, a novel symmetric sodium-ion capacitor (NIC) is developed based on low-cost Na 0.44 MnO 2 nanorods. The Na 0.44 MnO 2 with unique nanoarchitectures and iso-oriented feature offers shortened diffusion path lengths for both electronic and Na + transport and reduces the stress associated with Na + insertion and extraction. Benefiting from these merits, the symmetric device achieves a high power density of 2432.7 W kg -1 , an improved energy density of 27.9 Wh kg -1 , and a capacitance retention of 85.2% over 5000 cycles. Particularly, the symmetric NIC based on Na 0.44 MnO 2 permits repeatedly reverse-polarity characteristics, thus simplifying energy management system and greatly enhancing the safety under abuse condition. This cost-effective, high-safety, and high-performance symmetric NIC can balance the energy and power density between batteries and capacitors and serve as an electric power source for future low-maintenance large-scale energy storage systems.

  15. Magnetic properties near the ferromagnetic-paramagnetic transformation in the austenite phase of Ni43Mn44X2Sn11 (X = Fe and Co) Heusler alloys

    Science.gov (United States)

    Nan, W. Z.; Thanh, T. D.; You, T. S.; Piao, H. G.; Yu, S. C.

    2018-03-01

    In this work, we present a detail study on the magnetic properties in the austenitic phase (A phase) Ni43Mn44X2Sn11 alloy with X = Fe and Co, which were prepared by an arc-melting method in an argon atmosphere. The M(T) curves of two samples exhibits a single magnetic phase transition at the Curie temperature of the ferromagnetic (FM) austenitic phase with TCA = 298 K and 334k for (X = Fe and Co) respectively. Based on the Landau theory and M(H) data measured at different temperatures, we found that the FM-PM phase transitions around TCA in both samples were the second-order phase transition. Under an applied field change of 30 kOe, around TCA , the magnetic entropy changes were found to be 0.66 J Kg-1 K-1 and 1.62 J Kg-1 K-1 for (X = Fe and Co) respectively.

  16. Myasthenia Gravis (MG): Medical Management

    Science.gov (United States)

    ... take effect, prior to surgery or for myasthenic crisis. However, some people receive regular plasmapheresis or IVIg as a supplement to immunosuppressant drugs. Pregnancy In rare cases, pregnancy appears to trigger the onset of MG. ...

  17. Valence state of Mn in Ca-doped LaMnO3 studied by high-resolution Mn K ß emission spectroscopy

    NARCIS (Netherlands)

    Tyson, T.A.; Qian, Q.; Kao, C.-C.; Rueff, J.-P.; Groot, F.M.F. de; Croft, M.; Cheong, S.-W.; Greenblatt, M.; Subramanian, M.A.

    1999-01-01

    Mn K ß x-ray emission spectra provide a direct method to probe the effective spin state and charge density on the Mn atom and is used in an experimental study of a class of Mn oxides. Specifically, the Mn K ß line positions and detailed spectral shapes depend on the oxidation and the spin state of

  18. Mn induced 1 × 2 reconstruction in the τ-MnAl(0 0 1) surface

    Science.gov (United States)

    Guerrero-Sánchez, J.; Takeuchi, Noboru

    2018-05-01

    We report on first principles total energy calculations to describe the structural, electronic and magnetic properties of MnAl(0 0 1) surfaces. We have concentrated in structural models having 1 × 1 and 1 × 2 periodicities, since recent experiments of the similar MnGa(0 0 1) surface have found 1 × 1 and 1 × 2 reconstructions. Our calculations show the existence of two stable structures for different ranges of chemical potential. A 1 × 1 surface is stable for Al-rich conditions, whereas a Mn-induced 1 × 2 reconstruction appears after increasing the Mn chemical potential up to Mn-rich conditions. It is important to notice that experimentally, Mn rich conditions are important for improved magnetic properties. The Mn layers in both structures have ferromagnetic arrangements, but they are aligned antiferromagnetically with the almost no magnetic Al atoms. Moreover, the on top Mn atoms, which produce the 1 × 2 reconstruction, align antiferromagnetically with the second layer Mn atoms. These findings are similar to those obtained experimentally in MnGa thin films grown by molecular beam epitaxy. Therefore, this method could also be used to grow the proposed MnAl films.

  19. Strong correlation and ferromagnetism in (Ga,Mn)As and (Ga,Mn)N

    International Nuclear Information System (INIS)

    Filippetti, A.; Spaldin, N.A.; Sanvito, S.

    2005-01-01

    The band energies of the ferromagnetic diluted magnetic semiconductors (Ga,Mn)As and (Ga,Mn)N are calculated using a self-interaction-free approach which describes covalent and strongly correlated electrons without adjustable parameters. Both materials are half-metallic, although the contribution of Mn-derived d states to the bands around the Fermi energy is very different in the two cases. In (Ga,Mn)As the bands are strongly p-d hybridized, with a dominance of As p states. In contrast in (Ga,Mn)N the Fermi energy lies within three flat bands of mainly d character that are occupied by two electrons. Thus the Mn ion in (Ga,Mn)N behaves as a deep trap acceptor, with the hole at 1.39 eV above the GaN valence band top, and is in excellent agreement with the experimental data

  20. FeOOH-loaded MnO2 nano-composite: An efficient emergency material for thallium pollution incident.

    Science.gov (United States)

    Chen, Meiqing; Wu, Pingxiao; Yu, Langfeng; Liu, Shuai; Ruan, Bo; Hu, Haihui; Zhu, Nengwu; Lin, Zhang

    2017-05-01

    A FeOOH-loaded MnO 2 nano-composite was developed as an emergency material for Tl(I) pollution incident. Structural characterizations showed that FeOOH successfully loaded onto MnO 2 , the nanosheet-flower structure and high surface area (191 m 2  g -1 ) of material contributed to the excellent performance for Tl(I) removal. FeOOH-loaded MnO 2 with a Fe/Mn molar ratio of 1:2 exhibited a noticeable enhanced capacity for Tl(I) removal compared to that of pure MnO 2 . The outstanding performance for Tl(I) removal involves in extremely high efficiency (achieved equilibrium and drinking water standard within 4 min) and the large maximum adsorption capacity (450 mg g -1 ). Both the control-experiment and XPS characterization proved that the removal mechanism of Tl(I) on FeOOH-loaded MnO 2 included adsorption and oxidation: the oxidation of MnO 2 played an important role for Tl(I) removal, and the adsorption of FeOOH loaded on MnO 2 enhanced Tl(I) purification at the same time. In-depth purification of Tl(I) had reach drinking water standards (0.1 μg L -1 ) at pH above 7, and there wasn't security risk produced from the dissolution of Mn 2+ and Fe 2+ . Moreover, the as-prepared material could be utilized as a recyclable adsorbent regenerated by using NaOH-NaClO binary solution. Therefore, the synthesized FeOOH-loaded MnO 2 in this study has the potential to be applied as an emergency material for thallium pollution incident. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Peculiarity of component interaction in {l_brace}Y, Dy{r_brace}-Mn-Sn ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Romaka, V.V. [Department of Materials Engineering and Applied Physics, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine); Konyk, M. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Romaka, L., E-mail: romakal@franko.lviv.ua [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Pavlyuk, V. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Jan Dlugosz University, Institute of Chemistry, Environmental Protection and Biotechnology, al. Armii Krajowej 13/15, 42200 Czestochowa (Poland); Ehrenberg, H. [Institute for Complex Materials, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden (Germany); Tkachuk, A. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine)

    2011-07-14

    Highlights: > {l_brace}Y, Dy{r_brace}-Mn-Sn ternary systems at 770 K are characterized by formation of stannides with general compositions RMn{sub 6}Sn{sub 6} and R{sub 4}Mn{sub 4}Sn{sub 7}. > The crystal structure of YMn{sub 6}Sn{sub 6} was determined by single crystal and powder diffraction methods. > Structural analysis showed that Dy{sub 4}Mn{sub 4}Sn{sub 7} compound is disordered. > Isostructural R{sub 4}Mn{sub 4}Sn{sub 7} compounds were also found with Gd, Tb, Ho, Er, Tm(confirmed), Yb, and Lu. - Abstract: The phase equilibria in the Y-Mn-Sn and Dy-Mn-Sn ternary systems were studied at 770 K by means of X-ray and metallographic analyses in the whole concentration range. Both Y-Mn-Sn and Dy-Mn-Sn systems are characterized by formation of two ternary compounds RMn{sub 6}Sn{sub 6} (MgFe{sub 6}Ge{sub 6}-type, space group P6/mmm) and R{sub 4}Mn{sub 4}Sn{sub 7} (Zr{sub 4}Co{sub 4}Ge{sub 7}-type, space group I4/mmm). The disorder in Dy{sub 4}Mn{sub 4}Sn{sub 7} compound was found by single crystal method. Compounds with the same type of structure were also found with Gd, Tb, Ho, Er, Tm (confirmed), Yb, and Lu and their lattice parameters were determined.

  2. Preparation of ErMnO3 by Sol-gel Method and its Photocatalytic Activity for Removal of Methyl Orange from Water

    Science.gov (United States)

    Xie, X. Y.; Yang, J. N.; Yu, L. L.; Min, J. Y.; Sun, D. D.; Tang, P. S.; Chen, H. F.

    2018-05-01

    The single phase perovskite ErMnO3 was synthesized using Er(NO3)3, manganese acetate, citric acid and urea by a facile sol-gel method. The gel of ErMnO3 precursor was kept for 36 hours in 100 °C oven to get the xerogel. Then, the xerogel was calcined at 800 °C for 12 hours in muffle furnace to prepare single phase ErMnO3. The prepared sample was characterized by thermogravimetry differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Under ultraviolet light, the photocatalytic activity of ErMnO3 was studied with methyl orange of 20 mg/L as the simulated sewage. The results show that the ErMnO3 sample particle size distribution is relatively uniform, the average grain size is mainly around 100 nm. The photocatalytic experiment demonstrates that ErMnO3 is highly photocatalytic activity for removal of methyl orange from water. When methyl orange of 20 mg/L is degraded for 120 min in the presence of ErMnO3, the degradation rate of methyl orange can reach about 95%. The degradation of methyl orange accords with first order kinetic model in presence ErMnO3 sample, and the apparent rate constant is 0.022 min-1.

  3. Nano-sized Mn3O4 and β-MnOOH from the decomposition of β-cyclodextrin-Mn: 2. The water-oxidizing activities.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Mostafalu, Ramin; Hołyńska, Małgorzata; Ebrahimi, Foad; Kaboudin, Babak

    2015-11-01

    Nano-sized Mn oxides contain Mn3O4, β-MnOOH and Mn2O3 have been prepared by a previously reported method using thermal decomposition of β-cyclodextrin-Mn complexes. In the next step, the water-oxidizing activities of these Mn oxides using cerium(IV) ammonium nitrate as a chemical oxidant are studied. The turnover frequencies for β-MnO(OH) and Mn3O4 are 0.24 and 0.01-0.17 (mmol O2/mol Mns), respectively. Subsequently, water-oxidizing activities of these compounds are compared to the other previously reported Mn oxides. Important factors affecting water oxidation by these Mn oxides are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Theoretical investigation of the reaction of Mn+ with ethylene oxide.

    Science.gov (United States)

    Li, Yuanyuan; Guo, Wenyue; Zhao, Lianming; Liu, Zhaochun; Lu, Xiaoqing; Shan, Honghong

    2012-01-12

    The potential energy surfaces of Mn(+) reaction with ethylene oxide in both the septet and quintet states are investigated at the B3LYP/DZVP level of theory. The reaction paths leading to the products of MnO(+), MnO, MnCH(2)(+), MnCH(3), and MnH(+) are described in detail. Two types of encounter complexes of Mn(+) with ethylene oxide are formed because of attachments of the metal at different sites of ethylene oxide, i.e., the O atom and the CC bond. Mn(+) would insert into a C-O bond or the C-C bond of ethylene oxide to form two different intermediates prior to forming various products. MnO(+)/MnO and MnH(+) are formed in the C-O activation mechanism, while both C-O and C-C activations account for the MnCH(2)(+)/MnCH(3) formation. Products MnO(+), MnCH(2)(+), and MnH(+) could be formed adiabatically on the quintet surface, while formation of MnO and MnCH(3) is endothermic on the PESs with both spins. In agreement with the experimental observations, the excited state a(5)D is calculated to be more reactive than the ground state a(7)S. This theoretical work sheds new light on the experimental observations and provides fundamental understanding of the reaction mechanism of ethylene oxide with transition metal cations.

  5. Industrial contamination of soil related to some active and closed mine facilities in the Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Tasev Goran K.

    2015-01-01

    Full Text Available Several industrial pollution sources at the territory of the Republic of Macedonia, were studied, one Pb-Zn mine with mill, one copper mine with mill and copper leaching facility, as well as one former Pb-Zn smelting facility near the city of Veles and one Fe-Ni smelting facility near the city of Kavadarci. The concentrations of heavy metals at Veles hot-spot were in the range: 20÷1823 mg kg- 1Pb, 29÷2395 mg kg-1Zn, 28÷65 mgkg-1Cd, 27÷82 mg kg-1 Cu, 39÷164 mg kg-1Ni, 508÷938 mgkg-1Mn and 1.6÷3.8% Fe, all of them being above Dutch standard optimal values. The vicinity of the Feni plant displayed concentrations of heavy metals as follows: 16÷31 mg kg-1 Pb, 117÷286 mgkg-1 Zn, 13÷24 mg kg-1Co, 42÷119 mg kg-1 Cu, 158÷292 mg kg-1Ni, 119÷236 mg kg-1 Cr and 2.24÷3.79% Fe. Airborne dust measurements around the Zletovo mine displayed multiplexed above standard values, with an exception of nickel, there enrichment factors ranged from mediate ones such were those for copper of 20.8, cadmium of 28.7, arsenic of 32.5 up to high ones for zinc with 341.7 and lead 925. Soil samples around the Zletovo mine displayed: 19.3-76.9 g kg-1 Fe, 643-28000 mg kg-1 Mn, 42.3-529.66 mg kg-1 Pb and 138-3240 mg kg-1 Zn. Finally around the Bucim copper mine the results displayed the following findings: 13.1÷225 mg kg-1 As, 0.67÷17.9 mg kg-1 Cd, 30.1÷171 mg kg-1 Cr, 17.8÷1734 mg kg-1 Cu, 9.8÷69.4 mg kg-1 Ni, 46÷3456 mg kg-1 Pb, 88÷3438 mg kg-1 Zn, 169÷998 mg kg-1 Mn, 0.73÷5.02% Fe.

  6. Role of nitric oxide of the median preoptic nucleus (MnPO in the alterations of salivary flow, arterial pressure and heart rate induced by injection of pilocarpine into the MnPO and intraperitoneally

    Directory of Open Access Journals (Sweden)

    Wilson A. Saad

    2003-07-01

    Full Text Available We investigated the effect of L-NAME, a nitric oxide (NO inhibitor and sodium nitroprusside (SNP, an NO-donating agent, on pilocarpine-induced alterations in salivary flow, mean arterial blood pressure (MAP and heart rate (HR in rats. Male Holtzman rats (250-300 g were implanted with a stainless steel cannula directly into the median preoptic nucleus (MnPO. Pilocarpine (10, 20, 40, 80, 160 µg injected into the MnPO induced an increase in salivary secretion (P<0.01. Pilocarpine (1, 2, 4, 8, 16 mg/kg ip also increased salivary secretion (P<0.01. Injection of L-NAME (40 µg into the MnPO prior to pilocarpine (10, 20, 40, 80, 160 µg injected into the MnPO or ip (1, 2, 4, 8, 16 mg/kg increased salivary secretion (P<0.01. SNP (30 µg injected into the MnPO or ip prior to pilocarpine attenuated salivary secretion (P<0.01. Pilocarpine (40 µg injection into the MnPO increased MAP and decreased HR (P<0.01. Pilocarpine (4 mg/kg body weight ip produced a decrease in MAP and an increase in HR (P<0.01. Injection of L-NAME (40 µg into the MnPO prior to pilocarpine potentiated the increase in MAP and reduced HR (P<0.01. SNP (30 µg injected into the MnPO prior to pilocarpine attenuated (100% the effect of pilocarpine on MAP, with no effect on HR. Administration of L-NAME (40 µg into the MnPO potentiated the effect of pilocarpine injected ip. SNP (30 µg injected into the MnPO attenuated the effect of ip pilocarpine on MAP and HR. The present study suggests that in the rat MnPO 1 NO is important for the effects of pilocarpine on salivary flow, and 2 pilocarpine interferes with blood pressure and HR (side effects of pilocarpine, that is attenuated by NO.

  7. Dependence of magnetic properties on different buffer layers of Mn3.5Ga thin films

    Science.gov (United States)

    Takahashi, Y.; Sato, K.; Shima, T.; Doi, M.

    2018-05-01

    D022-Mn3.5Ga thin films were prepared on MgO (100) single crystalline substrates with different buffer layer (Cr, Fe, Cr/Pt and Cr/Au) using an ultra-high-vacuum electron beam vapor deposition system. From XRD patterns, a fundamental (004) peak has clearly observed for all samples. The relatively low saturation magnetization (Ms) of 178 emu/cm3, high magnetic anisotropy (Ku) of 9.1 Merg/cm3 and low surface roughness (Ra) of 0.30 nm were obtained by D022-Mn3.5Ga film (20 nm) on Cr/Pt buffer layer at Ts = 300 °C, Ta = 400 °C (3h). These findings suggest that MnGa film on Cr/Pt buffer layer is a promising PMA layer for future spin electronics devices.

  8. In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors

    Science.gov (United States)

    Zheng, Huajun; Wang, Jiaoxia; Jia, Yi; Ma, Chun'an

    2012-10-01

    A new type of core-shell structured material consisting of multi-walled carbon nanotubes (MWCNTs) and manganese dioxide (MnO2) nanoflake is synthesized using an in-situ co-precipitation method. By scanning electron microscopy and transition electron microscope, it is confirmed that the core-shell nanostructure is formed by the uniform incorporation of birnessite-type MnO2 nanoflake growth round the surface of the activated-MWCNTs. That core-shell structured material electrode presents excellent electrochemical capacitance properties with the specific capacitance reaching 380 F g-1 at the current density of 5 A g-1 in 0.5 M Na2SO4 electrolyte. In addition, the electrode also exhibits good performance (the power density: 11.28 kW kg-1 at 5 A g-1) and long-term cycling stability (retaining 82.7% of its initial capacitance after 3500 cycles at 5 A g-1). It mainly attributes to MWCNTs not only providing considerable specific surface area for high mass loading of MnO2 nanoflakes to ensure effective utilization of MnO2 nanoflake, but also offering an electron pathway to improve electrical conductivity of the electrode materials. It is clearly indicated that such core-shell structured materials including MWCNTs and MnO2 nanoflake may find important applications for supercapacitors.

  9. High Volumetric Energy Density Asymmetric Supercapacitors Based on Well-Balanced Graphene and Graphene-MnO2 Electrodes with Densely Stacked Architectures.

    Science.gov (United States)

    Sheng, Lizhi; Jiang, Lili; Wei, Tong; Fan, Zhuangjun

    2016-10-01

    The well-matched electrochemical parameters of positive and negative electrodes, such as specific capacitance, rate performance, and cycling stability, are important for obtaining high-performance asymmetric supercapacitors. Herein, a facile and cost-effective strategy is demonstrated for the fabrication of 3D densely stacked graphene (DSG) and graphene-MnO 2 (G-MnO 2 ) architectures as the electrode materials for asymmetric supercapacitors (ASCs) by using MnO 2 -intercalated graphite oxide (GO-MnO 2 ) as the precursor. DSG has a stacked graphene structure with continuous ion transport network in-between the sheets, resulting in a high volumetric capacitance of 366 F cm -3 , almost 2.5 times than that of reduced graphene oxide, as well as long cycle life (93% capacitance retention after 10 000 cycles). More importantly, almost similar electrochemical properties, such as specific capacitance, rate performance, and cycling stability, are obtained for DSG as the negative electrode and G-MnO 2 as the positive electrode. As a result, the assembled ASC delivers both ultrahigh gravimetric and volumetric energy densities of 62.4 Wh kg -1 and 54.4 Wh L -1 (based on total volume of two electrodes) in 1 m Na 2 SO 4 aqueous electrolyte, respectively, much higher than most of previously reported ASCs in aqueous electrolytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis of Li-Mn-O mesocrystals with controlled crystal phases through topotactic transformation of MnCO3

    Science.gov (United States)

    Dang, Feng; Hoshino, Tatsuhiko; Oaki, Yuya; Hosono, Eiji; Zhou, Haoshen; Imai, Hiroaki

    2013-02-01

    Mesocrystals of Li-Mn-O compounds, such as LiMn2O4, Li2MnO3, and LiMnO2-Li2MnO3, consisting of oriented nanoscale units were selectively produced under hydrothermal conditions from biomimetically prepared MnCO3 mesocrystals. Topotactic transformation through the intermediate phase of Mn5O8 inheriting a hierarchical structure of the MnCO3 precursor was essential for the formation of the mesocrystal compounds. The crystal phases were successfully controlled by varying the conditions for the hydrothermal reactions. The Li-Mn-O mesocrystals have considerable potential as cathodes of Li-ion batteries.Mesocrystals of Li-Mn-O compounds, such as LiMn2O4, Li2MnO3, and LiMnO2-Li2MnO3, consisting of oriented nanoscale units were selectively produced under hydrothermal conditions from biomimetically prepared MnCO3 mesocrystals. Topotactic transformation through the intermediate phase of Mn5O8 inheriting a hierarchical structure of the MnCO3 precursor was essential for the formation of the mesocrystal compounds. The crystal phases were successfully controlled by varying the conditions for the hydrothermal reactions. The Li-Mn-O mesocrystals have considerable potential as cathodes of Li-ion batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33767g

  11. Studies on MgNi-Based Metal Hydride Electrode with Aqueous Electrolytes Composed of Various Hydroxides

    Directory of Open Access Journals (Sweden)

    Jean Nei

    2016-08-01

    Full Text Available Compositions of MgNi-based amorphous-monocrystalline thin films produced by radio frequency (RF sputtering with a varying composition target have been optimized. The composition Mg52Ni39Co3Mn6 is identified to possess the highest initial discharge capacity of 640 mAh·g−1 with a 50 mA·g−1 discharge current density. Reproduction in bulk form of Mg52Ni39Co3Mn6 alloy composition was prepared through a combination of melt spinning (MS and mechanical alloying (MA, shows a sponge-like microstructure with >95% amorphous content, and is chosen as the metal hydride (MH alloy for a sequence of electrolyte experiments with various hydroxides including LiOH, NaOH, KOH, RbOH, CsOH, and (C2H54N(OH. The electrolyte conductivity is found to be closely related to cation size in the hydroxide compound used as 1 M additive to the 4 M KOH aqueous solution. The degradation performance of Mg52Ni39Co3Mn6 alloy through cycling demonstrates a strong correlation with the redox potential of the cation in the alkali hydroxide compound used as 1 M additive to the 5 M KOH aqueous solution. NaOH, CsOH, and (C2H54N(OH additions are found to achieve a good balance between corrosion and conductivity performances.

  12. Effects of magnesium substitution on the magnetic properties of Nd0.7Sr0.3MnO3

    International Nuclear Information System (INIS)

    Tseggai, M.; Mathieu, R.; Nordblad, P.; Tellgren, R.; Bau, L.V.; Nam, D.N.H.; Phuc, N.X.; Khiem, N.V.; Andre, G.; Bouree, F.

    2005-01-01

    Effects of magnesium substitution on the magnetic properties of Nd 0.7 Sr 0.3 MnO 3 have been investigated by neutron powder diffraction and magnetization measurements on polycrystalline samples of composition Nd 0.7 Sr 0.3 MnO 3 , Nd 0.6 Mg 0.1 Sr 0.3 MnO 3 , Nd 0.6 Mg 0.1 Sr 0.3 Mn 0.9 Mg 0.1 O 3 , and Nd 0.6 Mg 0.1 Sr 0.3 Mn 0.8 Mg 0.2 O 3 . The pristine compound Nd 0.7 Sr 0.3 MnO 3 is ferromagnetic with a transition temperature occurring at about 210K. Increasing the Mg-substitution causes weakened ferromagnetic interaction and a great reduction in the magnetic moment of Mn. The Rietveld analyses of the neutron powder diffraction (NPD) data at 1.5K for the samples with Mg concentration, y=0.0 and 0.1, show ferromagnetic Mn moments of 3.44(4) and 3.14(4)μ B , respectively, which order along the [001] direction. Below 20K the Mn moments of these samples become canted giving an antiferromagnetic component along the [010] direction of about 0.4μ B at 1.5K. The analyses also show ferromagnetic polarization along [001] of the Nd moments below 50K, with a magnitude of almost 1μ B at 1.5K for both samples. In the samples with Mg substitution of 0.2 and 0.3 only short range magnetic order occurs and the magnitude of the ferromagnetic Mn moments is about 1.6μ B at 1.5K for both samples. Furthermore, the low-temperature NPD patterns show an additional very broad and diffuse feature resulting from short range antiferromagnetic ordering of the Nd moments

  13. High production rate of IBAD-MgO buffered substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, M., E-mail: myoshizumi@istec.or.j [Superconductivity Research Laboratory, ISTEC, Shinonome 1-10-13, Koto-ku, Tokyo 135-0062 (Japan); Miyata, S.; Ibi, A.; Fukushima, H.; Yamada, Y.; Izumi, T.; Shiohara, Y. [Superconductivity Research Laboratory, ISTEC, Shinonome 1-10-13, Koto-ku, Tokyo 135-0062 (Japan)

    2009-10-15

    The conventional IBAD (Ion Beam Assisted Deposition) process using fluorite materials yields low production rates, resulting in high production cost, which reduces the motivation for practical application in spite of its high quality. The IBAD process using rock salt materials, e.g. MgO, is well known as a strong candidate of practical application due to its potential of high production rate and high in-plane grain alignment. In this work, the IBAD-MgO process was investigated for a newly developed architecture of PLD (Pulsed Laser Deposition)-CeO{sub 2}/sputter-LMO (LaMnO{sub 3})/IBAD-MgO/sputter-GZO (Gd{sub 2}Zr{sub 2}O{sub 7})/Hastelloy{sup TM} to make long buffered metal tapes with high properties and a high production rate. The 50 m-long IBAD-MgO substrates with about 4 deg. of DELTAphiCeO{sub 2} in an XRD phi scan could be fabricated repeatedly. A GdBCO (GdBa{sub 2}Cu{sub 3}O{sub x}) layer deposited on the buffered substrate showed the minimum I{sub c} value of 325 A/cm-w in a 41 m-long tape. Almost of the tape showed 500-600 A/cm-w of I{sub c} value. The deposition time for the IBAD-MgO layer was 60 s which was about 2 orders of magnitude shorter than the conventional IBAD process. The production rate of 24 m/h was realized at the IBAD-MgO process to fabricate the GdBCO coated conductor with high J{sub c} and I{sub c} properties.

  14. Synthesis and Electrochemistry of Li3MnO4: Mn in the +5 OxidationState

    Energy Technology Data Exchange (ETDEWEB)

    Saint, Juliette.A.; Doeff, Marca M.; Reed, John

    2007-06-19

    Computational and experimental work directed at exploringthe electrochemical properties of tetrahedrally coordinated Mn in the +5oxidation state is presented. Specific capacities of nearly 700 mAh/g arepredicted for the redox processes of LixMnO4 complexes based on twotwo-phase reactions. One is topotactic extractionof Li from Li3MnO4 toform LiMnO4 and the second is topotactic insertion of Li into Li3MnO4 toform Li5MnO4. In experiments, it is found that the redox behavior ofLi3MnO4 is complicated by disproportionation of Mn5+ in solution to formMn4+ and Mn7+ and byother irreversible processes; although an initialcapacity of about 275 mAh/g in lithiumcells was achieved. Strategiesbased on structural considerations to improve the electrochemicalproperties of MnO4n- complexes are given.

  15. Spin reorientation transition and hard magnetic properties of MnBi intermetallic compound

    Science.gov (United States)

    Suzuki, K.; Wu, X.; Ly, V.; Shoji, T.; Kato, A.; Manabe, A.

    2012-04-01

    The effects of mechanical grinding (MG) on the crystallite size, the spin reorientation transition temperature (TSR) and the hard magnetic properties in melt-spun low temperature phase (LTP) MnBi have been investigated in order to understand the origin of magnetic hardening induced by MG. The room-temperature coercive field (μ0Hcj) is enhanced dramatically from 0.08 T before MG to 1.5 T after MG for 43.2 ks while TSR is concurrently suppressed from 110 to 38 K. The coercive force exhibits positive temperature dependence approximately 50-60 K above TSR and the lowered TSR after MG could result in magnetic hardening at room temperature. The room-temperature coercive force of LTP-MnBi is highly dependent on the crystallite size (D) and is found to be described phenomenologically by the following relationship: μ0Hcj = μ0Ha(δ/D)n, where μ0Ha is ˜ 4 T, the Bloch wall width δ is 7 nm, and the exponent n is approximately 0.7. Our results suggest that the grain refinement is the primary origin of the hardening effect induced by MG with a possible minor hardening effect due to the suppression of the spin reorientation transition temperature.

  16. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J., E-mail: jun.cui@pnnl.gov; Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Kramer, M. J.; Zarkevich, N. A.; Wang, L. L.; Johnson, D. D. [Materials Sciences and Engineering Division, Ames Laboratory, Ames, Iowa 50011 (United States); Marinescu, M. [Electron Energy Corporation, Landisville, Pennsylvania 17538 (United States); Huang, Q. Z.; Wu, H. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102 (United States); Vuong, N. V.; Liu, J. P. [Department of Physics, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μ{sub B} at 50 K and 300 K, respectively.

  17. Magnetic structures of Er6Mn23 and Dy6Mn23

    International Nuclear Information System (INIS)

    Ouladdiaf, B.; Deportes, J.; Rodriguez-Carvajal, J.

    1995-01-01

    The R 6 Mn 23 (R=rare earth) compounds crystallize in the cubic Th 6 Mn 23 -type structure with space group Fm3m. Powder neutron-diffraction experiments were performed on Dy 6 Mn 23 and Er 6 Mn 23 . The magnetic unit cell coincides with the chemical one. The R moments have a ferromagnetic non-collinear arrangement, whereas the Mn moments are parallel to the [1 1 1] direction. The magnetic structures belong to the three-dimensional Γ 5g irreducible representation of Fm3m associated with the wave vector K=[0 0 0]. The spin configurations in both compounds result from the competition between the R-R, R-Mn magnetic interactions and the crystal electric field on the R ions. (orig.)

  18. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J; Choi, JP; Li, G; Polikarpov, E; Darsell, J; Kramer, MJ; Zarkevich, NA; Wang, LL; Johnson, DD; Marinescu, M; Huang, QZ; Wu, H; Vuong, NV; Liu, JP

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 mu(B) at 50 K and 300 K, respectively. (C) 2014 AIP Publishing LLC.

  19. Fabrication of a 3D Hierarchical Sandwich Co9 S8 /α-MnS@N-C@MoS2 Nanowire Architectures as Advanced Electrode Material for High Performance Hybrid Supercapacitors.

    Science.gov (United States)

    Kandula, Syam; Shrestha, Khem Raj; Kim, Nam Hoon; Lee, Joong Hee

    2018-05-10

    Supercapacitors suffer from lack of energy density and impulse the energy density limit, so a new class of hybrid electrode materials with promising architectures is strongly desirable. Here, the rational design of a 3D hierarchical sandwich Co 9 S 8 /α-MnS@N-C@MoS 2 nanowire architecture is achieved during the hydrothermal sulphurization reaction by the conversion of binary mesoporous metal oxide core to corresponding individual metal sulphides core along with the formation of outer metal sulphide shell at the same time. Benefiting from the 3D hierarchical sandwich architecture, Co 9 S 8 /α-MnS@N-C@MoS 2 electrode exhibits enhanced electrochemical performance with high specific capacity/capacitance of 306 mA h g -1 /1938 F g -1 at 1 A g -1 , and excellent cycling stability with a specific capacity retention of 86.9% after 10 000 cycles at 10 A g -1 . Moreover, the fabricated asymmetric supercapacitor device using Co 9 S 8 /α-MnS@N-C@MoS 2 as the positive electrode and nitrogen doped graphene as the negative electrode demonstrates high energy density of 64.2 Wh kg -1 at 729.2 W kg -1 , and a promising energy density of 23.5 Wh kg -1 is still attained at a high power density of 11 300 W kg -1 . The hybrid electrode with 3D hierarchical sandwich architecture promotes enhanced energy density with excellent cyclic stability for energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of Fe substitution on magnetocaloric effect in La0.7Sr0.3Mn1-xFexO3 (0.05≤x≤0.20)

    International Nuclear Information System (INIS)

    Barik, S.K.; Krishnamoorthi, C.; Mahendiran, R.

    2011-01-01

    We have studied the effect of Fe substitution on magnetic and magnetocaloric properties in La 0.7 Sr 0.3 Mn 1-x Fe x O 3 (x=0.05, 0.07, 0.10, 0.15, and 0.20) over a wide temperature range (T=10-400 K). It is shown that substitution by Fe gradually decreases the ferromagnetic Curie temperature (T C ) and saturation magnetization up to x=0.15 but a dramatic change occurs for x=0.2. The x=0.2 sample can be considered as a phase separated compound in which both short-range ordered ferromagnetic and antiferromagnetic phases coexist. The magnetic entropy change (-ΔS m ) was estimated from isothermal magnetization curves and it decreases with increase of Fe content from 4.4 J kg -1 K -1 at 343 K (x=0.05) to 1.3 J kg -1 K -1 at 105 K (x=0.2), under ΔH=5 T. The La 0.7 Sr 0.3 Mn 0.93 Fe 0.07 O 3 sample shows negligible hysteresis loss, operating temperature range over 60 K around room temperature with refrigerant capacity of 225 J kg -1 , and magnetic entropy of 4 J kg -1 K -1 which will be an interesting compound for application in room temperature refrigeration. - Research highlights: → We report magnetocaloric effect in La 0.7 Sr 0.3 Mn 1-x Fe x O 3 (x=0-0.2). → Magnetic entropy change (ΔS m ) decreases with increasing x. → A large ΔS m and refrigeration capacity are found around 300 K in x=0.07.

  1. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-01

    Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (Al–5Mg–Mn alloy with low Fe content (Al6(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe), intermetallic Al6(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn) to become the primary phase at a lower Mn content. PMID:28787888

  2. Real-time tracking of hydrogen peroxide secreted by live cells using MnO{sub 2} nanoparticles intercalated layered doubled hydroxide nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Asif, Muhammad; Aziz, Ayesha [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Dao, Anh Quang [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Hue Industrial College, 70 Nguyen Hue, Hue, Thua Thien Hue, 531081 (Viet Nam); Hakeem, Abdul; Wang, Haitao; Dong, Shuang; Zhang, Guoan [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Xiao, Fei [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Shenzhen Institute of Huazhong University of Science & Technology, Shenzhen, 518000 (China); Liu, Hongfang, E-mail: liuhf@hust.edu.cn [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Shenzhen Institute of Huazhong University of Science & Technology, Shenzhen, 518000 (China)

    2015-10-22

    We report a facile and green method for the fabrication of new type of electrocatalysts based on MnO{sub 2} nanoparticles incorporated on MgAl LDH P-type semiconductive channel and explore its practical applications as high-performance electrode materials for electrochemical biosensor. A series of MgAl layered doubled hydroxide (LDH) nanohybrids with fixed Mg/Al (M{sup 2+}/M{sup 3+} atomic ratio of 3) and varied amount of MnCl{sub 2}.4H{sub 2}O are fabricated by a facile co-precipitation method. This approach demonstrates the combination of distinct properties including excellent intercalation features of LDH for entrapping nanoparticles and high loading of MnO{sub 2} nanoparticles in the host layers of LDH. Among all samples, Mn5–MgAl with 0.04% loaded manganese has a good crystalline morphology. A well-dispersed MnO{sub 2} nanoparticles encapsulated into the host matrix of hydrotalcite exhibit enhanced electrocatalytic activity towards the reduction of H{sub 2}O{sub 2} as well as excellent stability, selectivity and reproducibility due to synergistic effect of good catalytic ability of MnO{sub 2} and conductive MgAl LDH. Glass carbon electrode (GCE) modified with Mn5–MgAl possesses a wide linear range of 0.05–78 mM, lowest detection limit 5 μM (S/N = 3) and detection sensitivity of 0.9352 μAmM{sup −1}. This outstanding performance enables it to be used for real-time tracking of H{sub 2}O{sub 2} secreted by live HeLa cells. This work may provide new insight in clinical diagnosis, on-site environmental analysis and point of care testing devices. - Highlights: • MnO{sub 2}MgAl nanohybrids have been fabricated by a facile and robust co-precipitation approach. • MgAl layered doubled hydroxide can be used for the intercalation of MnO{sub 2} nanoparticles. • MgAl layered doubled hydroxide nanohybrid serves as p-type semiconductive channel for efficient electrocatalysis. • The nanohybrid electrode demonstrates excellent electrochemical performance

  3. Swelling of Fe-Mn and Fe-Cr-Mn alloys at high neutron fluence

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-06-01

    Swelling data on neutron-irradiated simple Fe-Cr-Mn and Fe-Mn alloys, as well as commercial Fe-Cr-Mn base alloys are now becoming available at exposure levels approaching 50 dpa. The swelling rate decreases from the ∼1%/dpa found at lower exposures, probably due to the extensive formation of ferritic phases. As expected, commercial alloys swell less than the simple alloys

  4. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Directory of Open Access Journals (Sweden)

    Yulin Liu

    2016-01-01

    Full Text Available Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt % to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %, intermetallic Al6(Fe,Mn was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe, intermetallic Al6(Fe,Mn became the dominant phase, even in the alloy with low Mn content (0.39 wt %. Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn to become the primary phase at a lower Mn content.

  5. Biota - 2011 Vegetation Inventory - Marsh Lake, MN

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — 2011 Vegetation Classification for Marsh Lake, MN Vegetation Project Report, OMBIL Environmental Stewardship - Level 1 Inventory. Marsh Lake is located on the...

  6. Antiferromagnetic MnN layer on the MnGa(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Sánchez, J., E-mail: guerrero@cnyn.unam.mx; Takeuchi, Noboru

    2016-12-30

    Highlights: • A ferromagnetic Gallium terminated surface is stable before N incorporation. • After N incorporation, an antiferromagnetic MnN layer becomes stable in a wide range of chemical potential. • Spin density distribution shows an antiferromagnetic/ferromagnetic (MnN/MnGa) arrangement at the surface. - Abstract: Spin polarized first principles total energy calculations have been applied to study the stability and magnetic properties of the MnGa(001) surface and the formation of a topmost MnN layer with the deposit of nitrogen. Before nitrogen adsorption, surface formation energies show a stable gallium terminated ferromagnetic surface. After incorporation of nitrogen atoms, the antiferromagnetic manganese terminated surface becomes stable due to the formation of a MnN layer (Mn-N bonding at the surface). Spin density distribution shows a ferromagnetic/antiferromagnetic arrangement in the first surface layers. This thermodynamically stable structure may be exploited to growth MnGa/MnN magnetic heterostructures as well as to look for exchange biased systems.

  7. Transition probabilities and dissociation energies of MnH and MnD molecules

    International Nuclear Information System (INIS)

    Nagarajan, K.; Rajamanickam, N.

    1997-01-01

    The Frank-Condon factors (vibrational transition probabilities) and r-centroids have been evaluated by the more reliable numerical integration procedure for the bands of A-X system of MnH and MnD molecules, using a suitable potential. By fitting the Hulburt- Hirschfelder function to the experimental potential curve using correlation coefficient, the dissociation energy for the electronic ground states of MnH and MnD molecules, respectively have been estimated as D 0 0 =251±5 KJ.mol -1 and D 0 0 =312±6 KJ.mol -1 . (authors)

  8. Fourier transform spectroscopy of MnH and MnD

    Science.gov (United States)

    Balfour, W. J.; Launila, O.; Klynning, L.

    Two infrared band systems, centred near 846 nm and 1060 nm in both MnH and MnD have been rotationally analysed and shown to have a common lower state. The electronic transitions lie within the quintet manifold and are here designated c 5Σ-a 5Σ and b 5Πi-a 5Σ for the 846 and 1060 nm systems, respectively. In the 846 nm system in MnH all 10 main branches have been found in the 0-0 and 1-1 bands, while in MnD the data are complete only for 0-0. Satellite branches have been identified in the 1060 nm system and all spin and Λ-type doublings have been established. The number of assigned 0-0 branches in the 1060 nm system is 35 for MnH and 37 for MnD. Molecular constants have been determined for all three states involved. Λ-doubling diagrams are presented for b 5Πi state with v = 1, 2 levels in MnH and with the v = 2 level in MnD. Local perturbations in c5Σ (v = 1) in MnH are suspected to originate from the v = 3 level of b 5Πi.

  9. Resonant optical alignment and orientation of Mn2+ spins in CdMnTe crystals

    Science.gov (United States)

    Baryshnikov, K. A.; Langer, L.; Akimov, I. A.; Korenev, V. L.; Kusrayev, Yu. G.; Averkiev, N. S.; Yakovlev, D. R.; Bayer, M.

    2015-11-01

    We report on spin orientation and alignment of Mn2 + ions in (Cd,Mn)Te diluted magnetic semiconductor crystals using resonant intracenter excitation with circular- and linear-polarized light. The resulting polarized emission of the magnetic ions is observed at low temperatures when the spin relaxation time of the Mn2 + ions is in the order of 1 ms , which considerably exceeds the photoluminescence decay time of 23 μ s . We demonstrate that the experimental data on optical orientation and alignment of Mn2 + ions can be explained using a phenomenological model that is based on the approximation of isolated centers.

  10. Rare earth conversion coating on Mg-8.5Li alloys

    International Nuclear Information System (INIS)

    Yang Xiaowei; Wang Guixiang; Dong Guojun; Gong Fan; Zhang Milin

    2009-01-01

    The conversion coating formed by immersion in a solution containing rare earth salt on Mg-8.5Li alloy was studied and the corrosion resistance was evaluated as well. The surface morphology was observed by scanning electron microscopy (SEM), and the chemical composition was characterized by X-ray photoelectron spectroscopy (XPS). The corrosion behaviors of Mg-8.5Li alloy and conversion coating were assessed by means of potentiodynamic polarization curves, electrochemical impedance spectra (EIS) and immersion tests. The experimental results indicated that the coating with cracked morphology was homogeneous. It was mainly composed of La 2 O 3 , CeO 2 , Mn 2 O 3 and MnO 2 as detected by XPS. The results of electrochemical measurements and immersion tests revealed that the rare earth conversion coating possessed better corrosion resistance than bare alloy and chromate conversion coating.

  11. Preparation of 99mTc-EDTA-MN and Its Bioimaging in Mouse

    Directory of Open Access Journals (Sweden)

    Yongshuai QI

    2015-07-01

    Full Text Available Background and objective Hypoxia is an important biological characteristics of solid tumor, it is not sensitive to radiotherapy and chemotherapy for which is the presence of hypoxic cell, thus increasing their resistance to conventional radiotherapy and chemotherapy, therefore, the detection of hypoxia degree of tumor tissue is of great significance. The hypoxia imaging of nuclear medicine can reflect the degree of tissue hypoxia, which can selectively retained on the hypoxic cells or tissues, including nitroimidazole and non nitroimidazole; the nitroimidazole is widely and deeply researched as hypoxic celles developer in China and abroad at present. The research about application of radionuclide labelled technique has clinical application value to develop the hypoxia imaging agent EDTA-MN complexes which was labeled. To study the feasibility of 99mTc by direct labeling method, the radiochemical properties evaluation of 99mTc-EDTA-MN, and observe the distribution characteristics of 99mTc radiolabeled EDTA-MN in the xenograft lung cancer nude mice bearing non-small cell lung cancer cell (A549, and provide experimental evidence for its further research and application. Methods The radiolabeling of EDTA-MN with 99mTc was performed with direct labeling method, respectively, on the reaction dosage (10 mg, 5 mg, 2 mg, stannous chloride dosage (8 mg/mL, 4 mg/mL, 2 mg/mL, mark system pH (2, 4, 5, 6 one by one test, using orthogonal design analysis, to find the optimal labeling conditions. Labelling rate, radiochemical purity, lipid-water partition coefficient and in vitro stability in normal saline (NS were determined by TLC and HPLC, and the preliminary study on the distribution of 99mTc-EDTA-MN in nude mice. Results The labeling rate of 99mTc-EDTA-MN with the best labeling conditions was (84.11±2.83%, and the radiochemical purity was higher than 90% by HPLC purification, without any notable decomposition at room temperature over a period of 12 h. The

  12. Isomeric cross section ratios in 55Mn(α, n)58m,gCo reaction

    International Nuclear Information System (INIS)

    Long Xianguan; He Fuqing; Peng Xiufen; Liu Mantian

    1989-01-01

    The isomeric cross section ratios in 55 Mn(α, n) 58m,g Co reaction are measured for incident alpha-particle energies ranging from 10.4 to 26.5 MeV by using activation method and stacked-foil technique. The measured values are compared with theoretical calculations performed by using Huizenga and Vandenbosch method and the values of spin cutoff factor are obtained for product nucleus 58 Co

  13. Reversible magnetic-field-induced martensitic transformation over a wide temperature window in Ni42-xCoxCu8Mn37Ga13 alloys

    Science.gov (United States)

    Hua, Hui; Wang, Jingmin; Jiang, Chengbao; Xu, Huibin

    2018-05-01

    Ni42-xCoxCu8Mn37Ga13 (0 ≤ x ≤ 14) alloys are reported to exhibit a magnetostructural transition from weakly-magnetic martensite to ferromagnetic austenite over a rather wide temperature window ranging from 200 K to 380 K. Simultaneously a large magnetization change Δσ of up to 105 Am2 kg-1 is obtained at the martensitic transformation. A reversible magnetic-field-induced martensitic transformation is realized, resulting in a large magnetocaloric effect related to the high magnetic entropy change with a broad working temperature span. This work shows how it is possible to effectively tailor the magnetostructural transition in Ni-Mn-Ga alloys so as to achieve a reversible magnetic-field-induced martensitic transformation and associated functionalities.

  14. Magnetic Properties and Magnetocaloric Effect in Layered NdMn1.9Ti0.1Si2

    Directory of Open Access Journals (Sweden)

    M.F. Md Din

    2014-04-01

    Full Text Available The structural and magnetic properties of the NdMn1.9Ti0.1Si2 compund have been studied by high-intensity x-ray and high-resolution neutron powder diffraction, specific heat, dc magnetization, and differential scanning calorimetry measurements over the temperature range of 3-450 K. The Curie temperature and Néel temperature of layered NdMn1.9Ti0.1Si2 are indicated as TC ~ 22 K and TN ~ 374 K respectively. The first order magnetic transition from antiferromagnetic [AFil-type] to ferromagnetic [F(Nd+Fmc] around TC is found in layered NdMn1.9Ti0.1Si2 and is associated with large magnetocaloric effect. This behavior has been confirmed as a contribution of the magnetostructural coupling by using neutron and x-ray powder diffraction. The magnetic entropy change –ΔSM ~ 15.3 J kg-1 K-1 and adiabatic temperature change ΔTad ~ 4.7 K have been determined using magnetization and specific heat measurement under 0-5 T applied fields. This compound exhibits almost no thermal and magnetic hysteresis, thus potentially applicable in low temperature region for magnetic refrigerator material

  15. [Comparison of 1 mg/body and 3 mg/body of intravenous granisetron for the prevention of chemotherapy-induced nausea and vomiting and adverse events in hematological malignancy patients].

    Science.gov (United States)

    Motohashi, Shinya; Hori, Katsuhito; Ono, Takaaki; Ohnishi, Kazunori; Kawakami, Junichi

    2012-01-01

    Granisetron is a selective 5-hydroxy tryptamine3 receptor antagonist and widely used for chemotherapy-induced nausea and vomiting (CINV). Recommended dose of intravenous granisetron in the USA and Europe has been set at 0.01 mg/kg (1 mg/body) in the antiemetic treatment guidelines established by the American Society of Clinical Oncology and National Comprehension Cancer Network. In contrast, the approved dose in Japan is 0.04 mg/kg (3 mg/body). Randomized controlled trials (RCTs) which compared 1 mg/body with 3 mg/body of intravenous granisetron for CINV had been reported in Japan. In these RCTs, however, hematological malignancy patients were excluded. We performed observational retrospective study to compare 1 mg/body with 3 mg/body of intravenous granisetron for the prevention of CINV and adverse events in hematological malignancy patients. Number of the patients and chemotherapy courses were 15 and 30 in the 1 mg/body group, and 15 and 27 in the 3 mg/body group, respectively. No nausea rates in the 1 and 3 mg/body group were 83% and 89% of courses, respectively. No vomiting rates in the 1 and 3 mg/body group were 97% and 100% of courses, respectively. The incidences of constipation in the 1 and 3 mg/body group were 34% and 45% of courses, respectively. Anaphylaxis and headache did not occur in both groups. Our findings suggested that 1 mg/body of intravenous granisetron can prevent from CINV in hematological malignancy patients, as well as 3 mg/body.

  16. Removal of trace mercury (II) from aqueous solution by in situ MnO(x) combined with poly-aluminum chloride.

    Science.gov (United States)

    Lu, Xixin; Huangfu, Xiaoliu; Zhang, Xiang; Wang, Yaan; Ma, Jun

    2015-06-01

    Removal of trace mercury from aqueous solution by Mn (hydr)oxides formed in situ during coagulation with poly-aluminum chloride (PAC) (in situ MnO(x) combined with PAC) was investigated. The efficiency of trace mercury removal was evaluated under the experimental conditions of reaction time, Mn dosage, pH, and temperature. In addition, the ionic strength and the initial mercury concentration were examined to evaluate trace mercury removal for different water qualities. The results clearly demonstrated that in situ MnO(x) combined with PAC was effective for trace mercury removal from aqueous solution. A mercury removal ratio of 9.7 μg Hg/mg Mn was obtained at pH 3. Furthermore, at an initial mercury concentration of 30 μg/L and pH levels of both 3 and 5, a Mn dosage of 4 mg/L was able to lower the mercury concentration to meet the standards for drinking water quality at less than 1 μg/L. Analysis by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy suggests that the hydroxyls on the surface of Mn (hydr)oxides are the active sites for adsorption of trace mercury from aqueous solution.

  17. Correlation of Mn charge state with the electrical resistivity of Mn doped indium tin oxide thin films

    KAUST Repository

    Kumar, S. R. Sarath; Hedhili, Mohamed N.; Alshareef, Husam N.; Kasiviswanathan, S.

    2010-01-01

    Correlation of charge state of Mn with the increase in resistivity with Mn concentration is demonstrated in Mn-doped indium tin oxide films. Bonding analysis shows that Mn 2p3/2 core level can be deconvoluted into three components corresponding to Mn2+ and Mn4+ with binding energies 640.8 eV and 642.7 eV, respectively, and a Mn2+ satellite at ∼5.4 eV away from the Mn2+ peak. The presence of the satellite peak unambiguously proves that Mn exists in the +2 charge state. The ratio of concentration of Mn2+ to Mn4+ of ∼4:1 suggests that charge compensation occurs in the n-type films causing the resistivity increase.

  18. Correlation of Mn charge state with the electrical resistivity of Mn doped indium tin oxide thin films

    KAUST Repository

    Kumar, S. R. Sarath

    2010-09-15

    Correlation of charge state of Mn with the increase in resistivity with Mn concentration is demonstrated in Mn-doped indium tin oxide films. Bonding analysis shows that Mn 2p3/2 core level can be deconvoluted into three components corresponding to Mn2+ and Mn4+ with binding energies 640.8 eV and 642.7 eV, respectively, and a Mn2+ satellite at ∼5.4 eV away from the Mn2+ peak. The presence of the satellite peak unambiguously proves that Mn exists in the +2 charge state. The ratio of concentration of Mn2+ to Mn4+ of ∼4:1 suggests that charge compensation occurs in the n-type films causing the resistivity increase.

  19. Characterization of the microstructure in Mg based alloy

    KAUST Repository

    Kutbee, Arwa T

    2013-06-01

    The cast products Mg–Sn based alloys are promising candidates for automobile industries, since they provide a cheap yet thermally stable alternative to existing alloys. One drawback of the Mg–Sn based alloys is their insufficient hardness. The hardenability can be improved by engineering the microstructure through additions of Zn to the base alloy and selective aging conditions. Therefore, detailed knowledge about the microstructural characteristics and the role of Zn to promote precipitation hardening is essential for age hardenable Mg-based alloys. In this work, microstructural investigation of the Mg–1.4Sn–1.3Zn–0.1Mn (at.%) precipitation system was performed using TEM. The chemical composition of the precipitates was analyzed using EDS. APT was employed to obtain precise chemical information on the distribution of Zn in the microstructure. It was found from microstructural studies that different precipitates with varying sizes and phases were present; lath-shaped precipitates of the Mg2Sn phase have an incoherent interface with the matrix, unlike the lath-shaped MgZn2 precipitates. Furthermore, nano-sized precipitates dispersed in the microstructure with short-lath morphology can either be enriched with Sn or Zn. On the other hand, APT analysis revealed the strong repulsion between Sn and Zn atoms in a portion of the analysis volume. However, larger reconstruction volume required to identify the role of Zn is still limited to the optimization of specimen preparation.

  20. MgB sub 2 superconductor: a review

    CERN Document Server

    Mollah, S; Chaudhuri, B K

    2003-01-01

    Synthesis, structure and properties of the most intensively studied newly discovered intermetallic binary superconductor MgB sub 2 have been reviewed up to October, 2002. It has a hexagonal unit cell with cell parameters a approx 3.1432 A and c approx 3.5193 A. MgB sub 2 bulk samples synthesized under high pressure (approx 3.5 GPa) and high temperature (approx 1000 degC) has density approx 2.63 g/cm sup 3. The normal state carriers of MgB sub 2 are holes which have been established from the positive thermoelectric power and Hall coefficient measurements. The external pressure decreases the critical temperature (T sub c) with dT sub c /dP in the range of -1 to -2 K/GPa. The T sub c decreases rapidly by the doping of Mn, Li, Co, C, Al, Ni and Fe but increases slightly by Zn doping. However, no significant change of T sub c is observed by the doping of Si and Be. It is further noticed that the anisotropic ratio gamma(= H sub c sub 2 sup a sup b /H sub c sub 2 sup c) approx 1-5 with lower critical field (H sub c ...

  1. The effect of Ca2+ ions and ionic strength on Mn(II) oxidation by spores of the marine Bacillus sp. SG-1

    Science.gov (United States)

    Toyoda, Kazuhiro; Tebo, Bradley M.

    2013-01-01

    Manganese(IV) oxides, believed to form primarily through microbial activities, are extremely important mineral phases in marine environments where they scavenge a variety of trace elements and thereby control their distributions. The presence of various ions common in seawater are known to influence Mn oxide mineralogy yet little is known about the effect of these ions on the kinetics of bacterial Mn(II) oxidation and Mn oxide formation. We examined factors affecting bacterial Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1 in natural and artificial seawater of varying ionic conditions. Ca2+ concentration dramatically affected Mn(II) oxidation, while Mg2+, Sr2+, K+, Na+ and NO3- ions had no effect. The rate of Mn(II) oxidation at 10 mM Ca2+ (seawater composition) was four or five times that without Ca2+. The relationship between Ca2+ content and oxidation rate demonstrates that the equilibrium constant is small (on the order of 0.1) and the binding coefficient is 0.5. The pH optimum for Mn(II) oxidation changed depending on the amount of Ca2+ present, suggesting that Ca2+ exerts a direct effect on the enzyme perhaps as a stabilizing bridge between polypeptide components. We also examined the effect of varying concentrations of NaCl or KNO3 (0-2000 mM) on the kinetics of Mn(II) oxidation in solutions containing 10 mM Ca2+. Mn(II) oxidation was unaffected by changes in ionic strength (I) below 0.2, but it was inhibited by increasing salt concentrations above this value. Our results suggest that the critical coagulation concentration is around 200 mM of salt (I = ca. 0.2), and that the ionic strength of seawater (I > 0.2) accelerates the precipitation of Mn oxides around the spores. Under these conditions, the aggregation of Mn oxides reduces the supply of dissolved O2 and/or Mn2+ and inhibits the Mn(II) → Mn(III) step controlling the enzymatic oxidation of Mn(II). Our results suggest that the hardness and ionic strength of the aquatic environment

  2. Removal of aqueous Pb(II) by adsorption on Al{sub 2}O{sub 3}-pillared layered MnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haipeng; Gu, Liqin; Zhang, Ling; Zheng, Shourong; Wan, Haiqin; Sun, Jingya [State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023 (China); Zhu, Dongqiang [School of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Xu, Zhaoyi, E-mail: zhaoyixu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2017-06-01

    Highlights: • Al{sub 2}O{sub 3}-pillared layered MnO{sub 2} (p-MnO{sub 2}) was prepared from δ-MnO{sub 2} precursor. • p-MnO{sub 2} showed markedly higher Pb(II) adsorption capacity than pristine δ-MnO{sub 2.}. • Pillaring of Al{sub 2}O{sub 3} into the layer of δ-MnO{sub 2} enhanced the Pb(II) adsorption. - Abstract: In the present study, Al{sub 2}O{sub 3}-pillared layered MnO{sub 2} (p-MnO{sub 2}) was synthesized using δ-MnO{sub 2} as precursor and Pb(II) adsorption on p-MnO{sub 2} and δ-MnO{sub 2} was investigated. To clarify the adsorption mechanism, Al{sub 2}O{sub 3} was also prepared as an additional sorbent. The adsorbents were characterized by X-ray fluorescence analysis, powder X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and N{sub 2} adsorption-desorption. Results showed that in comparison with pristine δ-MnO{sub 2}, Al{sub 2}O{sub 3} pillaring led to increased BET surface area of 166.3 m{sup 2} g{sup −1} and enlarged basal spacing of 0.85 nm. Accordingly, p-MnO{sub 2} exhibited a higher adsorption capacity of Pb(II) than δ-MnO{sub 2}. The adsorption isotherms of Pb(II) on δ-MnO{sub 2} and Al{sub 2}O{sub 3} pillar fitted well to the Freundlich model, while the adsorption isotherm of Pb(II) on p-MnO{sub 2} could be well described using a dual-adsorption model, attributed to Pb(II) adsorption on both δ-MnO{sub 2} and Al{sub 2}O{sub 3}. Additionally, Pb(II) adsorption on δ-MnO{sub 2} and p-MnO{sub 2} followed the pseudo second-order kinetics, and a lower adsorption rate was observed on p-MnO{sub 2} than δ-MnO{sub 2}. The Pb(II) adsorption capacity of p-MnO{sub 2} increased with solution pH and co-existing cation concentration, and the presence of dissolved humic acid (10.2 mg L{sup −1}) did not markedly impact Pb(II) adsorption. p-MnO{sub 2} also displayed good adsorption capacities for aqueous Cu(II) and Cd(II). Findings in this study indicate that p-MnO{sub 2} could be used as a highly effective

  3. Effet du Mg et des oligo-éléments sur le comportement de cinq variétés d'arachides (Arachis hypogeae L.

    Directory of Open Access Journals (Sweden)

    Lumpungu, K.

    1987-01-01

    Full Text Available Effect of magnesium and trace elements on the development of five groundnut varieties (Arachis hypogeae L.. A study of Mg and certain minor elements (B, Cu, Fe, Mn, Mo and Zn given by seed imbibition has been conducted. The results have shown that the effect of Mg and minor elements on the growth, yield (pods and seeds and lipids content of the seeds depend on the variety and rate of Mg and minor elements application.

  4. Ionizing radiation effects in MgAl2O4

    International Nuclear Information System (INIS)

    Ibarra Sanchez, A.

    1990-01-01

    The effect of ionizing radiation in MgAl2O4 has been studied, paying special interest to the influence of the high concentration of intrinsic dsefects of this material. Optical absorption, ESR, photoluminiscence, radioluminiscence, and thermoluminiscence are the main techniques used. The ionizing radiation induces to formation of V centres. During the work its characteristics (structure, thermal stability, absorption spectra, etc.) has been studied. The thermoluminiscence spectra allowed the discovery of several charge release processes between 85 and 650 K, all of them associated to electron release. The V-centres and several impurities (Cr, Mn,...) appear as recombination centres. The obtained data show that the kinetic of these charge release processes is regulated by the presence of a point defect with a very high concentration. This defect is an electron trap and its structure is an Al ion in a lattice site of tetraedral symmetry. (Author)

  5. High mobility 2D electron gas in CdTe/CdMgTe heterostructures

    International Nuclear Information System (INIS)

    Karczewski, G.; Jaroszynski, J.; Kurowski, M.; Barcz, A.; Wojtowicz, T.; Kossut, J.

    1997-01-01

    We report on iodine doping of molecular beam epitaxy (MBE)-grown Cd(Mn)Te quasi-bulk films and modulation-doped CdTe/Cd 1-y Mg y Te two-dimensional (2D) single quantum well structures. Modulation doping with iodine of CdTe/Cd 1-y Mg y Te structures resulted in fabrication of a 2D electron gas with mobility exceeding 10 5 cm 2 /(Vs). This is the highest mobility reported in wide-gap II-VI materials

  6. Monodispersed MnO nanoparticles with epitaxial Mn{sub 3}O{sub 4} shells

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, A E; Rodriguez, G F [Department of Physics, University of California, San Diego La Jolla, CA 92093 (United States); Hong, J I; Fullerton, E E [Center for Magnetic Recording Research, University of California-San Diego La Jolla, CA 92093 (United States); An, K; Hyeon, T [National Creative Research Initiative Center for Oxide Nanocrystalline Materials, Seoul National University, Seoul 151-744 (Korea, Republic of); Agarwal, N; Smith, D J [School of Materials and Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2008-07-07

    We report the microstructural and magnetic properties of monodispersed nanoparticles (NPs) of antiferromagnetic MnO (T{sub N} = 118 K), with epitaxial ferrimagnetic Mn{sub 3}O{sub 4} (T{sub C} = 43 K) shells. Above T{sub C}, an unusually large magnetization is present, produced by the uncompensated spins (UCSs) on the surface of the MnO particles. These spins impart a net anisotropy to the MnO particles that is approximately three orders of magnitude larger than the bulk value. As a result, an anomalously high blocking temperature is exhibited by the MnO particles, and finite coercivity and exchange bias are present above T{sub C}. When field cooled below T{sub C}, a strong exchange bias was established in the Mn{sub 3}O{sub 4} shells as a result of high net anisotropy of the MnO particles. A large coercivity was also observed. Models of several aspects of the behaviour of this unusual system emphasized the essential role of the UCSs on the surfaces of the MnO NPs.

  7. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.; Yang, Y. M.; Guo, Z. B.; Wu, Y. H.; Qiu, J. J.

    2013-01-01

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb

  8. Tempering of Mn and Mn-Si-V dual-phase steels

    Science.gov (United States)

    Speich, G. R.; Schwoeble, A. J.; Huffman, G. P.

    1983-06-01

    Changes in the yield behavior, strength, and ductility of a Mn and a Mn-Si-V d11Al-phase (ferrite-martensite) steel were investigated after tempering one hour at 200 to 600 °C. The change in yield behavior was complex in both steels with the yield strength first increasing and then decreasing as the tempering temperature was increased. This complex behavior is attributed to a combination of factors including carbon segregation to dislocations, a return of discontinuous yielding, and the relief of resid11Al stresses. In contrast, the tensile strength decreased continuously as the tempering temperature was increased in a manner that could be predicted from the change in hardness of the martensite phase using a simple composite strengthening model. The initial tensile ductility (total elongation) of the Mn-Si-V steel was much greater than that of the Mn steel. However, upon tempering up to 400 °C, the ductility of the Mn-Si-V decreased whereas that of the Mn steel increased. As a result, both steels had similar ductilities after tempering at 400 °C or higher temperatures. These results are attributed to the larger amounts of retained austenite in the Mn-Si-V steel (9 pct) compared to the Mn steel (3 pct) and its contribution to tensile ductility by transforming to martensite during plastic straining. Upon tempering at 400 °C, the retained austenite decomposes to bainite and its contribution to tensile ductility is eliminated.

  9. Preliminary Experiment on Neutron-Induced Mn Activity in Mn-Cd Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1942-07-01

    This report was written by E. Broda, J. Gueron and L. Kowarski at the Cavendish Laboratory (Cambridge) in June 1942 and is about a preliminary experiment on neutron-induced Mn activity in Mn-Cd solutions. The description of the experiment and the results can be found also in this report. (nowak)

  10. Mn concentration and quantum size effects on spin-polarized transport through CdMnTe based magnetic resonant tunneling diode.

    Science.gov (United States)

    Mnasri, S; Abdi-Ben Nasrallahl, S; Sfina, N; Lazzari, J L; Saïd, M

    2012-11-01

    Theoretical studies on spin-dependent transport in magnetic tunneling diodes with giant Zeeman splitting of the valence band are carried out. The studied structure consists of two nonmagnetic layers CdMgTe separated by a diluted magnetic semiconductor barrier CdMnTe, the hole is surrounded by two p-doped CdTe layers. Based on the parabolic valence band effective mass approximation and the transfer matrix method, the magnetization and the current densities for holes with spin-up and spin-down are studied in terms of the Mn concentration, the well and barrier thicknesses as well as the voltage. It is found that, the current densities depend strongly on these parameters and by choosing suitable values; this structure can be a good spin filter. Such behaviors are originated from the enhancement and suppression in the spin-dependent resonant states.

  11. Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading

    KAUST Repository

    Hu, Liangbing; Chen, Wei; Xie, Xing; Liu, Nian; Yang, Yuan; Wu, Hui; Yao, Yan; Pasta, Mauro; Alshareef, Husam N.; Cui, Yi

    2011-01-01

    While MnO2 is a promising material for pseudocapacitor applications due to its high specific capacity and low cost, MnO2 electrodes suffer from their low electrical and ionic conductivities. In this article, we report a structure where MnO2 nanoflowers were conformally electrodeposited onto carbon nanotube (CNT)-enabled conductive textile fibers. Such nanostructures effectively decrease the ion diffusion and charge transport resistance in the electrode. For a given areal mass loading, the thickness of MnO2 on conductive textile fibers is much smaller than that on a flat metal substrate. Such a porous structure also allows a large mass loading, up to 8.3 mg/cm2, which leads to a high areal capacitance of 2.8 F/cm2 at a scan rate of 0.05 mV/s. Full cells were demonstrated, where the MnO2-CNT-textile was used as a positive electrode, reduced MnO2-CNT-textile as a negative electrode, and 0.5 M Na2SO4 in water as the electrolyte. The resulting pseudocapacitor shows promising results as a low-cost energy storage solution and an attractive wearable power. © 2011 American Chemical Society.

  12. Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading

    KAUST Repository

    Hu, Liangbing

    2011-11-22

    While MnO2 is a promising material for pseudocapacitor applications due to its high specific capacity and low cost, MnO2 electrodes suffer from their low electrical and ionic conductivities. In this article, we report a structure where MnO2 nanoflowers were conformally electrodeposited onto carbon nanotube (CNT)-enabled conductive textile fibers. Such nanostructures effectively decrease the ion diffusion and charge transport resistance in the electrode. For a given areal mass loading, the thickness of MnO2 on conductive textile fibers is much smaller than that on a flat metal substrate. Such a porous structure also allows a large mass loading, up to 8.3 mg/cm2, which leads to a high areal capacitance of 2.8 F/cm2 at a scan rate of 0.05 mV/s. Full cells were demonstrated, where the MnO2-CNT-textile was used as a positive electrode, reduced MnO2-CNT-textile as a negative electrode, and 0.5 M Na2SO4 in water as the electrolyte. The resulting pseudocapacitor shows promising results as a low-cost energy storage solution and an attractive wearable power. © 2011 American Chemical Society.

  13. Fourier transform infrared emission spectra of MnH and MnD

    Science.gov (United States)

    Gordon, Iouli E.; Appadoo, Dominique R. T.; Shayesteh, Alireza; Walker, Kaley A.; Bernath, Peter F.

    2005-01-01

    Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7Σ + electronic state. The vibration-rotation bands from v = 1 → 0 to v = 3 → 2 for MnH and from v = 1 → 0 to v = 4 → 3 for MnD were recorded at an instrumental resolution of 0.0085 cm -1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant ( ωe) for MnH was found to be 1546.84518(65) cm -1, the equilibrium rotational constant ( Be) is 5.6856789(103) cm -1 and the eqilibrium bond distance ( re) was determined to be 1.7308601(47) Å.

  14. Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single-molecule magnets

    Science.gov (United States)

    Liu, RuiYuan; Zuo, JunWei; Li, YanRong; Zhou, YuRong; Wang, YunPing

    2012-07-01

    Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single molecule magnets (SMMs) have been measured at different temperatures, and hence the anisotropic parameters D 2 and D 4 of the spin Hamiltonian hat H = D_2 hat S_z^2 + D_4 hat S_z^4 have been calculated. For Mn12 SMM, D 2=-10.9 GHz and D 4=-2.59×10-2 GHz, while for Mn3 SMM, D 2=-22.0 GHz and D 4 can be considered negligible. This suggests Mn3 SMM can be considered as a simpler and more suitable candidate for magnetic quantum tunneling research.

  15. High Mass Loading MnO2 with Hierarchical Nanostructures for Supercapacitors.

    Science.gov (United States)

    Huang, Zi-Hang; Song, Yu; Feng, Dong-Yang; Sun, Zhen; Sun, Xiaoqi; Liu, Xiao-Xia

    2018-04-24

    Metal oxides have attracted renewed interest as promising electrode materials for high energy density supercapacitors. However, the electrochemical performance of metal oxide materials deteriorates significantly with the increase of mass loading due to their moderate electronic and ionic conductivities. This limits their practical energy. Herein, we perform a morphology and phase-controlled electrodeposition of MnO 2 with ultrahigh mass loading of 10 mg cm -2 on a carbon cloth substrate to achieve high overall capacitance without sacrificing the electrochemical performance. Under optimum conditions, a hierarchical nanostructured architecture was constructed by interconnection of primary two-dimensional ε-MnO 2 nanosheets and secondary one-dimensional α-MnO 2 nanorod arrays. The specific hetero-nanostructures ensure facile ionic and electric transport in the entire electrode and maintain the structure stability during cycling. The hierarchically structured MnO 2 electrode with high mass loading yields an outstanding areal capacitance of 3.04 F cm -2 (or a specific capacitance of 304 F g -1 ) at 3 mA cm -2 and an excellent rate capability comparable to those of low mass loading MnO 2 electrodes. Finally, the aqueous and all-solid asymmetric supercapacitors (ASCs) assembled with our MnO 2 cathode exhibit extremely high volumetric energy densities (8.3 mWh cm -3 at the power density of 0.28 W cm -3 for aqueous ASC and 8.0 mWh cm -3 at 0.65 W cm -3 for all-solid ASC), superior to most state-of-the-art supercapacitors.

  16. Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase

    Science.gov (United States)

    Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung-Woo; Spiro, Thomas G.; Tebo, Bradley M.

    2013-01-01

    Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. With the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs. PMID:23818588

  17. Magnetic ordering of GdMn2

    International Nuclear Information System (INIS)

    Ouladdiaf, B.; Ritter, C.; Ballou, R.; Deportes, J.

    1999-01-01

    Complete text of publication follows. GdMn 2 crystallizes in the C15 cubic Laves phase structure. Within this structure Mn atoms lie at the vertices of regular tetrahedra stacked in the diamond arrangement connected by sharing vertices, leading to a strong geometric frustration. An antiferromagnetic magnetic order sets in below T N ∼ 105 K. It gives rise to a large magnetovolume effect (ΔV/V ∼ 1%). Thermal expansion data show two anomalies at 105 K and 35 K. The second anomaly was often interpreted as the ferromagnetic ordering of Gd sublattice. Moessbauer data indicate however, that Gd sublattice orders at T N ∼ 105 K as the Mn moments. Elastic neutron scattering measurements were performed using short wavelength neutron beam (λ = 0.5 A) on D9 at ILL. No magnetic contribution to the nuclear peaks was found excluding thereby any K = [0 0 0] component. However antiferromagnetic peaks indexed by a propagation vector [2/3 2/3 0] were observed leading to a non collinear magnetic arrangement of both Mn and Gd sublattices. The results are discussed by invoking the geometric frustration associated with the Mn atomic packing and the singlet state of the Gd ions. (author)

  18. Noncollinear antiferromagnetic Mn3Sn films

    Science.gov (United States)

    Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.

    2018-05-01

    Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.

  19. Water quality and toxicity of river water downstream of the uranium mining facility at Pocos de Caldas, MG, Brazil

    International Nuclear Information System (INIS)

    Lauria, Dejanira C.; Vascocnellos, Luisa M.H.; Simoes, Francisco F. Lamego; Clain, Almir F.; Scassiotti, Walter F.; Antunes, Ivan; Ferreira, Ana M.; Nascimento, Marcos R.L.

    2009-01-01

    The uranium mining site of Pocos de Caldas consists of open mine pit, tailings, waste rock dumps and an acid rock drainage problem, which has the potential to impact upon freshwater of the Ribeirao das Antas catchment. The high level of manganese (value of 1.8 mg/L) contained in the discharge water (DW) is an important factor affecting the water quality of the river (water quality criterion for aquatic life for Mn is 0.1 mg/L). Water quality criteria (WQC) are used for regulatory purpose and intended to define concentrations of chemicals in water that are protective of aquatic life and human health. WQC is a standard, although it is recognized that in some instances these criteria may be overprotective as metal bioavailability and hence toxicity is dependent on water chemistry. The toxicity assessment of WD was performed by bioassays with Daphnia similis and Ceriodaphnia dubia as bioindicators. As DW showed no toxicity to the organisms and the chemical anal