WorldWideScience

Sample records for mg elemental iron

  1. TheoSSA - Model WD Spectra on Demand: The Impact of Ne, Na, Mg, and Iron-group Elements on the Balmer Lines

    Science.gov (United States)

    Reindl, N.; Rauch, T.

    2015-06-01

    The registered German Astrophysical Virtual Observatory (GAVO) service TheoSSA provides easy access to synthetic stellar spectra. This GAVO database contains already ten thousands of these, which were calculated with different chemical compositions of the elements H to Ni. In addition to the database, it is possible to calculate individual spectra for hot, compact stars based on the Tübingen NLTE Model-Atmosphere Package (TMAP) via the TMAW service. The TMAW models were, in the pilot phase, restricted to the elements H, He, C, N, and O. Now, TMAW is extended to additionally consider opacities from Ne, Na, and Mg. Soon, TMAW will also be able to include the opacities from the so-called iron-group elements (Ca - Ni). We describe the improvements and show the impact of Ne, Na, Mg, and iron-group elements on the Balmer lines.

  2. Ferrous bisglycinate 25 mg iron is as effective as ferrous sulfate 50 mg iron in the prophylaxis of iron deficiency and anemia during pregnancy in a randomized trial

    DEFF Research Database (Denmark)

    Milman, Nils; Jønsson, Lisbeth; Dyre, Pernille

    2014-01-01

    OBJECTIVE: To compare the effects of oral ferrous bisglycinate 25 mg iron/day vs. ferrous sulfate 50 mg iron/day in the prevention of iron deficiency (ID) and iron deficiency anemia (IDA) in pregnant women. Design: Randomized, double-blind, intention-to-treat study. Setting: Antenatal care clinic...

  3. Magnetic microscopy for characterization of local critical current in iron-sheathed MgB2 wires

    International Nuclear Information System (INIS)

    Higashikawa, K.; Yamamoto, A.; Kiss, T.; Ye, S.; Matsumoto, A.; Kumakura, H.

    2014-01-01

    Highlights: • We developed a characterization method of local critical current in MgB 2 wires. • Local homogeneity was visualized by the scanning Hall-probe microscopy (SHPM). • Local critical current value was quantified with the aid of the finite element method (FEM). • MgB 2 wire still has inhomogeneous distribution in local critical current. • Higher potential than that estimated by the four-probe transport method was suggested. - Abstract: We have developed a characterization method of local critical current in iron-sheathed MgB 2 wires. Local homogeneity was visualized by the scanning Hall-probe microscopy (SHPM). The value of local critical current was quantified with the aid of the finite element method (FEM) considering the ferromagnetic properties of the iron sheath. The results suggested that MgB 2 wires fabricated by internal Mg diffusion processes still have large longitudinal inhomogeneity and much higher potential than that estimated by the four-probe transport method. This will be very important information for making a correct strategy for further development of MgB 2 wires

  4. The effect of Mg dopants on magnetic and structural properties of iron oxide and zinc ferrite thin films

    Science.gov (United States)

    Saritaş, Sevda; Ceviz Sakar, Betul; Kundakci, Mutlu; Yildirim, Muhammet

    2018-06-01

    Iron oxide thin films have been obtained significant interest as a material that put forwards applications in photovoltaics, gas sensors, biosensors, optoelectronic and especially in spintronics. Iron oxide is one of the considerable interest due to its chemical and thermal stability. Metallic ion dopant influenced superexchange interactions and thus changed the structural, electrical and magnetic properties of the thin film. Mg dopped zinc ferrite (Mg:ZnxFe3-xO4) crystal was used to avoid the damage of Fe3O4 (magnetite) crystal instead of Zn2+ in this study. Because the radius of the Mg2+ ion in the A-site (tetrahedral) is almost equal to that of the replaced Fe3+ ion. Inverse-spinel structure in which oxygen ions (O2-) are arranged to form a face-centered cubic (FCC) lattice where there are two kinds of sublattices, namely, A-site and B-site (octahedral) interstitial sites and in which the super exchange interactions occur. In this study, to increase the saturation of magnetization (Ms) value for iron oxide, inverse-spinal ferrite materials have been prepared, in which the iron oxide was doped by multifarious divalent metallic elements including Zn and Mg. Triple and quaternary; iron oxide and zinc ferrite thin films with Mg metal dopants were grown by using Spray Pyrolysis (SP) technique. The structural, electrical and magnetic properties of Mg dopped iron oxide (Fe2O3) and zinc ferrite (ZnxFe3-xO4) thin films have been investigated. Vibrating Sample Magnetometer (VSM) technique was used to study for the magnetic properties. As a result, we can say that Mg dopped iron oxide thin film has huge diamagnetic and of Mg dopped zinc ferrite thin film has paramagnetic property at bigger magnetic field.

  5. Ion exchange separation of minor elements from iron for the analysis of S/G sludge

    International Nuclear Information System (INIS)

    Park, Kyoung Kyun; Choi, Kwang Soon; Kim, Jong Goo

    2005-01-01

    The chemical data of minor elements in steam generator sludge could give information about the contamination sources such as a system corrosion, an intrusion of chemicals, etc. The major component of sludge is iron. Iron of a high concentration in a measuring solution worsens the determination limit of the minor elements in a spectroscopic atom analysis. Moreover, iron has so many absorption or emission bands in a wide wavelength range that it has a spectroscopic interference on the atomic spectroscopy of various minor elements such as B, Pb, etc. Thus, the quantitative separation of minor elements from the iron matrix is essential for their determination. Gas sublimation, co-precipitation, solvent extraction and ion exchange are used for this separation. Ion exchange chromatography is applied to the separation of specific minor elements. Ion exchange method has an advantage from the point of experimental space, waste production, and number of elements when applyed to radioactive samples. This presentation describes the results of a separation of some minor elements(Al, B, Ba, Ca, Cd, Co, Cr, Cu, Gd, Mg, Mn, Mo, Nd, Ni, P, Pb, Si, Sn, Sr, Ti, V, Yb, Zn and Zr) from synthetic iron samples by anionic and cationic exchange methods for the purpose of analyzing them in the S/G sludge from a power plant

  6. The influence of selected elements upon mechanical properties of ductile iron EN-GJS-500-7

    Directory of Open Access Journals (Sweden)

    M. S. Soiński

    2008-10-01

    Full Text Available On the basis of chemical composition and mechanical properties analyses of EN-GJS-500-7 spheroidal graphite cast iron (as per PN-EN1563 standard, an attempt to determine the relations between the changes in the contents of elements included in alloy (such as: C, Si, Mn, P, S, Cr, Ni, Mo, Cu, Mg, and its tensile strength (Rm, proof stress (Rp0,2, elongation (A5 and hardness (HB, has been made. Cast iron subjected to the tests came from 291 heats, conducted in one of the domestic foundries. Cast iron was melted in medium-frequency induction furnace, spheroidized with bell method and modified with “in-stream” method.It results from conducted calculations that in a number of cases even small changes of the elements contents lead to statistically significant increases or decreases in examined mechanical properties of cast iron.

  7. [Interaction among the trace elements zinc, copper and iron after depletion and repletion of dairy cows with zinc].

    Science.gov (United States)

    Kirchgessner, M; Schwarz, F J; Roth, H P; Schwarz, W A

    1978-12-01

    Imbalances in the supply with trace elements may be caused by the excessive administration of one or several elements or the insufficient administration in relation to other trace elements. This article deals with the interactions between the trace elements zinc and copper resp. zinc and iron under the conditions of the insufficient supply with Zn (6 mg per kg dry matter of the fodder) and the supply according to the demand with other trace elements (14 mg copper resp. 83 mg iron per dry matter of the fodder). For this purpose we investigated the copper, iron and zinc content of the milk and the serum of cows that were first depleted of zinc through a semi-synthetic zinc deficiency diet and then repleted with extra allowances of zinc. The closest connections exist between the copper and zinc content of the milk. Thus extreme Zn-deficiency feeding conditions the decreased Zn-content on the one hand and increased Cu-content on the other. In contrast to this, the cows' Zn-excretion in the milk increases after Zn-repletion whereas the Cu-content decreases. This shows a distinctly negative correlation. A loose connection could only be detected for the Cu- and Zn-content of the serum. Though the Zn-content changed considerably in dependence on the Zn-supply, the Cu-content remained largely uninfluenced. The Fe-content of both milk and serum shows no interaction with the nutritive Zn-supply. Only after 19 test weeks of extreme Zn-deficiency could a slight increase of the Fe-concentration be indicated.

  8. Influence of Iron in AlSi10MgMn Alloy

    Directory of Open Access Journals (Sweden)

    Žihalová M.

    2014-12-01

    Full Text Available Presence of iron in Al-Si cast alloys is common problem mainly in secondary (recycled aluminium alloys. Better understanding of iron influence in this kind of alloys can lead to reduction of final castings cost. Presented article deals with examination of detrimental iron effect in AlSi10MgMn cast alloy. Microstructural analysis and ultimate tensile strength testing were used to consider influence of iron to microstructure and mechanical properties of selected alloy.

  9. Rare earth elements and uranium in fountain waters from different towns of the Iron Quadrangle, MG, Brazil

    International Nuclear Information System (INIS)

    Ferreira, Claudia A.; Palmieri, Helena E.L.; Menezes, Maria Angela de B.C.

    2015-01-01

    Rare earth elements (REE) and uranium were evaluated in 34 fountain waters collected in different towns of the Iron Quadrangle (IQ), Minas Gerais, Brazil. The IQ is one of the largest and most well-known mineral deposits in the world. Not only extensive iron deposits but also hydrothermal gold deposits are found in this region. Because of the toxicological properties of REE, monitoring of groundwater which is used for drinking water may be useful if relatively high concentrations of REE are expected. The total REE (ΣREE) concentrations in fountain water range from 3 to 33395 ng L -1 . It was observed that fountains with a pH value below 5 presented higher concentration values of the determined elements proposed in this work. This is due to the fact that waters exhibiting low pH values enhance the dissolution of these elements. Moreover, for uranium the values ranged from less than < 2 to 540 ng L -1 . The highest concentrations in waters were observed only in four cities. Statistical methods such as Pearson correlation, PCA and HCA analysis were applied to the data set to shed some light on the behavior of the elements in water in this study. Three major groups with similar characteristics were identified and six diagrams of REE signatures in fountain waters were plotted according to their groupings of subdivisions. Using the REE-Post-Archean Australian Shale (PAAS) normalized patterns it was possible to verify presence of distinct REE signatures and recognize that the two samples belong to the same aquifer type. (author)

  10. Iron Intermetallic Phases in the Alloy Based on Al-Si-Mg by Applying Manganese

    Directory of Open Access Journals (Sweden)

    Podprocká R.

    2017-09-01

    Full Text Available Manganese is an effective element used for the modification of needle intermetallic phases in Al-Si alloy. These particles seriously degrade mechanical characteristics of the alloy and promote the formation of porosity. By adding manganese the particles are being excluded in more compact shape of “Chinese script” or skeletal form, which are less initiative to cracks as Al5FeSi phase. In the present article, AlSi7Mg0.3 aluminium foundry alloy with several manganese content were studied. The alloy was controlled pollution for achieve higher iron content (about 0.7 wt. % Fe. The manganese were added in amount of 0.2 wt. %, 0.6 wt. %, 1.0 wt. % and 1.4 wt. %. The influence of the alloying element on the process of crystallization of intermetallic phases were compared to microstructural observations. The results indicate that increasing manganese content (> 0.2 wt. % Mn lead to increase the temperature of solidification iron rich phase (TAl5FeSi and reduction this particles. The temperature of nucleation Al-Si eutectic increase with higher manganese content also. At adding 1.4 wt. % Mn grain refinement and skeleton particles were observed.

  11. Elemental analysis of two Egyptian iron ores and produced industrial iron samples by neutron activation analysis

    International Nuclear Information System (INIS)

    Sroor, A.; Abdel-Basset, N.; Abdel-Haleem, A.S.; Hassan, A.M.

    2001-01-01

    Elemental analysis of two iron ores and initial industrial iron production prepared by the Egyptian Iron and Steel Company of Helwan near Cairo were performed by the instrumental neutron activation analysis technique. Five samples of each type were irradiated for 48 h in a thermal neutron flux of 4x10 12 n/cm 2 s in the first Egyptian research reactor ET-RR-1. Also, the Pneumatic Irradiation Rabbit System (PIRS), attached to the reactor ET-RR-1 in Inshass, was used to measure short-life elements. The γ-ray spectra were obtained with a hyper pure germanium detection system. The concentration percentage values of major, minor and trace elements are presented. Implications of the elemental concentration values obtained are presented

  12. Elemental composition of the particulate matter present in the atmospheric aerosols of Sete Lagoas, MG

    International Nuclear Information System (INIS)

    Queiroz, Paula Guimaraes Moura; Jacomino, Vanusa Maria Feliciano; Menezes, Maria Angela de Barros Correia

    2007-01-01

    The main objective of this study was the identification of sources generating particulate matter in the atmospheric aerosols of Sete Lagoas, Minas Gerais. The measurement of the mineral composition was accomplished by X-ray diffractometry and the elemental concentration by neutron activation analysis. The results showed that Al, Cl, Cu, Fe, K, Mg and Na are the predominant chemical elements in the total suspended particles (TPS). The presence of Na, Ba, Cl, Cu, Eu, Fe and Sm in those particles with aerodynamic diameter smaller than 10 μm (PM 10 ), indicates that soil dust and ceramic and pig iron industries are the main sources of air quality degradation in the region. (author)

  13. Criticality of iron and its principal alloying elements.

    Science.gov (United States)

    Nuss, Philip; Harper, E M; Nassar, N T; Reck, Barbara K; Graedel, T E

    2014-04-01

    Because modern technology depends on reliable supplies of a wide variety of materials and because of increasing concern about those supplies, a comprehensive methodology was created to quantify the degree of criticality of the metals of the periodic table. In this paper, we apply this methodology to iron and several of its main alloying elements (i.e., vanadium, chromium, manganese, and niobium). These elements represent the basic metals of any industrial society and are vital for national security and economic well-being. Assessments relating to the dimensions of criticality - supply risk, vulnerability to supply restriction, and environmental implications - for 2008 are made on the global level and for the United States. Evaluations of each of the multiple indicators are presented, with aggregate results plotted in "criticality space", together with Monte Carlo simulation-derived "uncertainty cloud" estimates. Iron has the lowest supply risk, primarily because of its widespread geological occurrence. Vanadium displays the highest cradle-to-gate environmental implications, followed by niobium, chromium, manganese, and iron. Chromium and manganese, both essential in steel making, display the highest vulnerability to supply restriction, largely because substitution or substitution at equal performance is not possible for all end-uses. From a comprehensive perspective, we regard the overall criticality as low for iron and modest for the alloying elements we evaluated.

  14. The separation and determination of trace elements in iron ore

    International Nuclear Information System (INIS)

    Jones, E.A.

    1977-01-01

    The separation, concentration, and determination of trace elements in iron ores are described. After the sample has been dissolved, the iron is separated by liquid-liquid extraction with a liquid cation-exchanger, di-(2-ethylhexyl) phosphoric acid. The trace elements aluminium, cadmium, calcium, chromium, cobalt, copper, lead, magnesium, manganese, mercury, potassium, sodium, vanadium, and zinc are determined in the aqueous phase by atomic-absorption spectrophotometry

  15. Evaluation of Ferric and Ferrous Iron Therapies in Women with Iron Deficiency Anaemia

    Science.gov (United States)

    Berber, Ilhami; Erkurt, Mehmet Ali; Aydogdu, Ismet; Kuku, Irfan

    2014-01-01

    Introduction. Different ferric and ferrous iron preparations can be used as oral iron supplements. Our aim was to compare the effects of oral ferric and ferrous iron therapies in women with iron deficiency anaemia. Methods. The present study included 104 women diagnosed with iron deficiency anaemia after evaluation. In the evaluations performed to detect the aetiology underlying the iron deficiency anaemia, it was found and treated. After the detection of the iron deficiency anaemia aetiology and treatment of the underlying aetiology, the ferric group consisted of 30 patients treated with oral ferric protein succinylate tablets (2 × 40 mg elemental iron/day), and the second group consisted of 34 patients treated with oral ferrous glycine sulphate tablets (2 × 40 mg elemental iron/day) for three months. In all patients, the following laboratory evaluations were performed before beginning treatment and after treatment. Results. The mean haemoglobin and haematocrit increases were 0.95 g/dL and 2.62% in the ferric group, while they were 2.25 g/dL and 5.91% in the ferrous group, respectively. A significant difference was found between the groups regarding the increase in haemoglobin and haematocrit values (P < 0.05). Conclusion. Data are submitted on the good tolerability, higher efficacy, and lower cost of the ferrous preparation used in our study. PMID:25006339

  16. Very low sound velocities in iron-rich (Mg,Fe)O: Implications for the core-mantle boundary region

    International Nuclear Information System (INIS)

    Wicks, J.K.; Jackson, J.M.; Sturhahn, W.

    2010-01-01

    The sound velocities of (Mg .16 Fe .84 )O have been measured to 121 GPa at ambient temperature using nuclear resonant inelastic x-ray scattering. The effect of electronic environment of the iron sites on the sound velocities were tracked in situ using synchrotron Moessbauer spectroscopy. We found the sound velocities of (Mg .16 Fe .84 )O to be much lower than those in other presumed mantle phases at similar conditions, most notably at very high pressures. Conservative estimates of the effect of temperature and dilution on aggregate sound velocities show that only a small amount of iron-rich (Mg,Fe)O can greatly reduce the average sound velocity of an assemblage. We propose that iron-rich (Mg,Fe)O be a source of ultra-low velocity zones. Other properties of this phase, such as enhanced density and dynamic stability, strongly support the presence of iron-rich (Mg,Fe)O in localized patches above the core-mantle boundary.

  17. Performance of Iron Plaque of Wetland Plants for Regulating Iron, Manganese, and Phosphorus from Agricultural Drainage Water

    Directory of Open Access Journals (Sweden)

    Xueying Jia

    2018-01-01

    Full Text Available Agricultural drainage water continues to impact watersheds and their receiving water bodies. One approach to mitigate this problem is to use surrounding natural wetlands. Our objectives were to determine the effect of iron (Fe-rich groundwater on phosphorus (P removal and nutrient absorption by the utilization of the iron plaque on the root surface of Glyceria spiculosa (Fr. Schmidt. Rosh. The experiment was comprised of two main factors with three regimes: Fe2+ (0, 1, 20, 100, 500 mg·L−1 and P (0.01, 0.1, 0.5 mg·L−1. The deposition and structure of iron plaque was examined through a scanning electron microscope and energy-dispersive X-ray analyzer. Iron could, however, also impose toxic effects on the biota. We therefore provide the scanning electron microscopy (SEM on iron plaques, showing the essential elements were iron (Fe, oxygen (O, aluminum (Al, manganese (Mn, P, and sulphur (S. Results showed that (1 Iron plaque increased with increasing Fe2+ supply, and P-deficiency promoted its formation; (2 Depending on the amount of iron plaque on roots, nutrient uptake was enhanced at low levels, but at higher levels, it inhibited element accumulation and translocation; (3 The absorption of manganese was particularly affected by iron plague, which also enhanced phosphorus uptake until the external iron concentration exceeded 100 mg·L−1. Therefore, the presence of iron plaque on the root surface would increase the uptake of P, which depends on the concentration of iron-rich groundwater.

  18. Impact of iron supplementation and deworming on growth performance in preschool Beninese children

    NARCIS (Netherlands)

    Dossa, R.A.M.; Ategbo, E.A.D.; Koning, de F.L.H.A.; Raaij, van J.M.A.; Hautvast, J.G.A.J.

    2001-01-01

    To assess the effects of iron and deworming on linear growth performance of preschoolers. Design: Three-month randomized, double-blind and placebo-controlled trial. The children were allocated to four treatments: iron (60 mg elemental iron/day) albendazole (200 mg/day for 3 consecutive days,

  19. Effects of iron on intermetallic compound formation in scandium modified Al–Si–Mg Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Patakham, Ussadawut [National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Klong Nueng, Klong Luang, Pathumthani 12120 (Thailand); Limmaneevichitr, Chaowalit, E-mail: chaowalit.lim@mail.kmutt.ac.th [Production Engineering Department, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand)

    2014-12-15

    Highlights: • Iron reduces the modification effects of scandium in Al–Si–Mg alloys. • Morphologies of Sc-rich intermetallic phases vary with Fe and Sc contents and the cooling rates. • Sc neutralizes effects of Fe by changing Fe-rich intermetallic phases from platelets to more cubic. - Abstract: In general, iron has a strong tendency to dissolve in molten aluminum. Iron has very low solid solubility in aluminum–silicon casting alloys, so it will form intermetallic compounds that cause detrimental effects on mechanical properties. In this work, the effects of iron on intermetallic compound formations in scandium modified Al–Si–Mg alloys were studied. There were two levels of iron addition (0.2 and 0.4 wt.%) and two levels of scandium addition (0.2 and 0.4 wt.%). We found that the effects of scandium modification decreased with increasing iron addition. The morphologies of the complex intermetallic compounds were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) techniques. It was found that scandium changes the morphology of Fe-rich intermetallic compounds from β-phase (plate-like) to α-phase, which reduces the harmful effects of β-phase.

  20. Finite element simulation of ironing process under warm conditions

    Directory of Open Access Journals (Sweden)

    Swadesh Kumar Singh

    2014-01-01

    Full Text Available Metal forming is one of the most important steps in manufacturing of a large variety of products. Ironing in deep drawing is done by adjusting the clearance between the punch and the die and allow the material flow over the punch. In the present investigation effect of extent of ironing behavior on the characteristics of the product like thickness distribution with respect to temperature was studied. With the help of finite element simulation using explicit finite element code LS-DYNA the stress in the drawn cup were predicted in the drawn cup. To increase the accuracy in the simulation process, numbers of integration points were increased in the thickness direction and it was found that there is very close prediction of finite element results to that of experimental ones.

  1. Iron aluminide useful as electrical resistance heating elements

    Science.gov (United States)

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1997-04-15

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {=}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {>=}0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, {<=}1% oxygen, {<=}3% Cu, balance Fe. 64 figs.

  2. Reductive Degradation of Perfluorinated Compounds in Water using Mg-aminoclay coated Nanoscale Zero Valent Iron

    OpenAIRE

    Arvaniti, Olga S.; Hwang, Yuhoon; Andersen, Henrik Rasmus; Stasinakis, Athanasios S.; Thomaidis , Nikolaos S.; Aloupi, Maria

    2015-01-01

    Perfluorinated Compounds (PFCs) are extremely persistent micropollutants that are detected worldwide. We studied the removal of PFCs (perfluorooctanoic acid; PFOA, perfluorononanoic acid; PFNA, perfluorodecanoic acid; PFDA and perfluorooctane sulfonate; PFOS) from water by different types of nanoscale zero-valent iron (nZVI). Batch experiments showed that an iron dose of 1 g•L-1 in the form of Mg-aminoclay (MgAC) coated nZVI, at an initial pH of 3.0 effectively removed 38 % to 96 % of individ...

  3. The Pressure-Volume-Temperature Equation of State of Iron-Rich (Mg,Fe)O

    Science.gov (United States)

    Wicks, J. K.; Jackson, J. M.; Zhuravlev, K. K.; Prakapenka, V.

    2012-12-01

    Seismic observations near the base of the core-mantle boundary (CMB) have detected 5-20 km thick patches in which the seismic wave velocities are reduced by up to 30%. These ultra-low velocity zones (ULVZs) have been interpreted as aggregates of partially molten material (e.g. Williams and Garnero 1996, Hernlund and Jellinek, 2010) or as solid, iron-enriched residues (e.g. Knittle and Jeanloz, 1991; Mao et al., 2006; Wicks et al., 2010), typically based on proposed sources of velocity reduction. The stabilities of these structure types have been explored through dynamic models that have assembled a relationship between ULVZ stability and density (Hernlund and Tackley, 2007; Bower et al., 2010). Now, to constrain the chemistry of ULVZs, more information is needed on the relationship between density and sound velocity of candidate phases. Recently, we have shown that the characteristically low sound speeds of ULVZs can be produced by small amounts of iron-rich (Mg,Fe)O, which is likely to be found in iron-rich assemblages based on current partitioning studies (eg. Sakai et al., 2010; Tange et al., 2009). We determined the Debye velocity (VD) of (Mg.1657Fe.84)O using nuclear resonant inelastic x-ray scattering (NRIXS), and calculated the seismically relevant compressional (VP) and shear (VS) wave velocities up to 120 GPa using an equation of state of a similar composition (Wicks et al., 2010). These densities and sound velocities, in turn, are consistent with reasonable morphologies of modeled solid ULVZs (Bower et al., 2011). To increase the accuracy of density and sound velocity predictions, measurements must be made at elevated temperatures to correctly predict the properties of iron-rich (Mg,Fe)O at mantle conditions. In this study, we present the pressure-volume-temperature equation of state of (Mg.0657Fe.94)O measured up to pressures of 120 GPa and temperatures of 2000 K. Volume was measured with x-ray diffraction at beamline 13-ID-D of the Advanced Photon

  4. Effect of Adding Elements on Microstructure of Mg-3Si Alloy

    Directory of Open Access Journals (Sweden)

    CUI Bin

    2017-03-01

    Full Text Available The microstructure of alloy Mg-3Si(mass fraction/%, same as below after successive additions with different elements of Zn, Nd, Gd and Y was observed and the microstructure evolution was investigated by scanning electron microscopy and X-ray diffraction. The results show the primary Mg2Si particles co-exist with eutectic Mg2Si particles in binary alloy Mg-Si. With minor addition of Zn element, only primary Mg2Si can be found in ternary Mg-3Si-3Zn system while eutectic Mg2Si particles disappear. In quaternary alloy Mg-2.0Nd-3.0Zn-3.0Si, the addition of Nd element can effectively refine the primary Mg2Si particles and form some Mg41Nd5 particles. After continuous adding of Gd and Y elements into quaternary system, Gd5Si3 and YSi particles increase significantly in the alloy Mg-8.0Gd-4.0Y-2.0Nd-3.0Zn-3.0Si, while volume fraction of primary Mg2Si decrease significantly. Thermo-Calc calculation predicts that the Gibbs free energy for primary particles Gd5Si3, YSi is lower, and therefore Gd, Y atom and Si are more likely to form compounds. In Mg-8Gd-4Y-2Nd-3Zn-3Si alloy, room temperature Gibbs free energy for primary particles Mg2Si, Gd5Si3, YSi is -9.56×104, -8.72×104, -2.83×104J/mol, respectively, and the mass fraction of these particles is 8.07%, 5.27%, 1.40% respectively.

  5. Chemical fingerprint of iron oxides related to iron enrichment of banded iron formation from the Cauê Formation - Esperança Deposit, Quadrilátero Ferrífero, Brazil: a laser ablation ICP-MS study

    Directory of Open Access Journals (Sweden)

    Lucilia Aparecida Ramos de Oliveira

    Full Text Available Chemical signatures of iron oxides from dolomitic itabirite and high-grade iron ore from the Esperança deposit, located in the Quadrilátero Ferrífero, indicate that polycyclic processes involving changing of chemical and redox conditions are responsible for the iron enrichment on Cauê Formation from Minas Supergroup. Variations of Mn, Mg and Sr content in different generations of iron oxides from dolomitic itabirite, high-grade iron ore and syn-mineralization quartz-carbonate-hematite veins denote the close relationship between high-grade iron ore formation and carbonate alteration. This indicates that dolomitic itabirite is the main precursor of the iron ore in that deposit. Long-lasting percolation of hydrothermal fluids and shifts in the redox conditions have contributed to changes in the Y/Ho ratio, light/heavy rare earth elements ratio and Ce anomaly with successive iron oxide generations (martite-granular hematite, as well as lower abundance of trace elements including rare earth elements in the younger specularite generations.

  6. Iron aluminide useful as electrical resistance heating elements

    Science.gov (United States)

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1997-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  7. Bioavailability of elemental iron powders to rats is less than bakery-grade ferrous sulfate and predicted by iron solubility and particle surface area.

    Science.gov (United States)

    Swain, James H; Newman, Samuel M; Hunt, Janet R

    2003-11-01

    Foods are fortified with elemental forms of iron to reduce iron deficiency. However, the nutritional efficacy of current, commercially produced elemental iron powders has not been verified. We determined the bioavailability of six commercial elemental iron powders and examined how physicochemistry influences bioavailability. Relative biological value (RBV) of the iron powders was determined using a hemoglobin repletion/slope ratio method, treating iron-deficient rats with repletion diets fortified with graded quantities of iron powders, bakery-grade ferrous sulfate or no added iron. Iron powders were assessed physicochemically by measuring iron solubility in hydrochloric acid at pH 1.0 and 1.7, surface area by nitrogen gas adsorption and surface microstructure by electron microscopy. Bioavailability from the iron powders, based on absolute iron intake, was significantly less than from FeSO4 (100%; P Electrolytic (54%; A-131, U.S.) > Electrolytic (46%; Electrolytic Iron, India) > H-Reduced (42%; AC-325, U.S.) > Reduced (24%; ATOMET 95SP, Canada) > CO-Reduced (21%; RSI-325, Sweden). Solubility testing of the iron powders resulted in different relative rankings and better RBV predictability with increasing time at pH 1.7 (R2 = 0.65 at 150 min). The prediction was improved with less time and lower pH (R2 = 0.82, pH 1.0 at 30 min). Surface area, ranging from 90 to 370 m2/kg, was also highly predictive of RBV (R2 = 0.80). Bioavailability of iron powders is less than bakery-grade ferrous sulfate and varies up to three times among different commercial forms. Solubility at pH 1.0 and surface area were predictive of iron bioavailability in rats.

  8. Effectiveness of nutrition education, iron supplementation or both on iron status in children.

    Science.gov (United States)

    Kapur, D; Sharma, S; Agarwal, K N

    2003-12-01

    A community-based, randomized trial was designed to compare the effect of nutrition education and/or iron supplementation (weekly) on iron status of children in an urban slum in Delhi. Four hundred and fifty one children, 9-36 months of age and their caretakers (mothers), assigned to one of the following groups were included in the cohort. Group 1, nutrition education. Group 2, supplementation (with 20 mg elemental iron). Group 3, nutrition education with supplementation (with 20 mg elemental iron) and Group 4, control given placebo. The intervention program was of four months duration, with a treatment phase of 8 wk followed by 8 wk of no treatment. Post intervention, at 8 wk and at 16 wk, the hemoglobin change in the nutrition education, supplementation, nutrition education with supplementation and control groups was 2.9, 1.9, 3.8 and -5.9%, respectively and 2.1, -1.9, 0 and -9.3%, respectively (as compared to initial values). There was no significant effect of any of the intervention at 8 weeks. At 16 wk, there was significant positive effect of nutrition education group (p less than 0.05). The percent change in serum ferritin value at 16 wk in the nutrition education, supplementation, nutrition education with supplementation and control groups was 5.7, -2.3, -3.4 and -40%, respectively. Serum ferritin values were significantly higher for the nutrition education group (p nutrition education group mothers showed significantly higher nutrition knowledge and the dietary iron intake of children was significantly higher than their control group counterparts (p nutrition education did have a positive effect on the iron status possibly by improving the dietary iron intake.

  9. Compositional and structural variabilities of Mg-rich iron oxide spinels from tuffite

    Directory of Open Access Journals (Sweden)

    W. N. Mussel

    1999-12-01

    Full Text Available Maghemite (γFe2O3 from tuffite is exceptionally rich in Mg, relatively to most of those reportedly found in other mafic lithosystems. To investigate in detail the compositional and structural variabilities of this natural magnetic iron oxide, sets of crystals were isolated from samples collected at different positions in a tuffite weathering mantle. These sets of crystal were individually powdered and studied by X-ray diffractometry, Mössbauer spectroscopy, magnetization measurements and chemical analysis. Lattice parameter of the cubic cell (a0 was found to vary from 0.834(1 to 0.8412(1 nm. Lower a0-values are characteristic of maghemite whereas higher ones are related to a magnetite precursor. FeO content ranges up to 17 mass % and spontaneous magnetization ranges from 8 to 32 J T-1 kg-1. Zero-field room temperature Mössbauer spectra are rather complex, indicating that the hyperfine field distributions due to Fe3+ and mixed valence Fe3+/2+ overlap. The structural variabilities of the (Mg, Ti-rich iron oxide spinels is essentially related to the range of chemical composition of its precursor (Mg, Ti-rich magnetite, and probably to the extent to which it has been oxidized during transformation in soil.

  10. Method of manufacturing iron aluminide by thermomechanical processing of elemental powders

    Science.gov (United States)

    Deevi, Seetharama C.; Lilly, Jr., A. Clifton; Sikka, Vinod K.; Hajaligol, Mohammed R.

    2000-01-01

    A powder metallurgical process of preparing iron aluminide useful as electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 20 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1 % rare earth metal, .ltoreq.1% oxygen, and/or .ltoreq.3% Cu. The process includes forming a mixture of aluminum powder and iron powder, shaping the mixture into an article such as by cold rolling the mixture into a sheet, and sintering the article at a temperature sufficient to react the iron and aluminum powders and form iron aluminide. The sintering can be followed by hot or cold rolling to reduce porosity created during the sintering step and optional annealing steps in a vacuum or inert atmosphere.

  11. Serum and tissue contents of copper, calcium, iron and magnesium elements in cases of acne vulgaris after zinc therapy

    International Nuclear Information System (INIS)

    El-Said, S.M.; El-Bedewi, A.F.

    2002-01-01

    The effect of zinc therapy on some trace elements contents in serum and skin was studied in normal group (forty) and patients group with acne vulgaris (26 males and 14 females) with age ranged between 14-30 year. They were under medical treatment with 330 mg oral zinc sulfate for 12 weeks. Highly significant decreases in both serum and tissue contents of copper and calcium were detected, as well as, highly significant decrease in the serum content of magnesium was recorded. The serum content of iron was highly significantly increased and that for tissue content was slightly significantly increased. It could be concluded that zinc therapy could be valuable through modulation of copper. calcium, iron and magnesium in acne patients

  12. Quantification of trace elements and speciation of iron in atmospheric particulate matter

    Science.gov (United States)

    Upadhyay, Nabin

    Trace metal species play important roles in atmospheric redox processes and in the generation of oxidants in cloud systems. The chemical impact of these elements on atmospheric and cloud chemistry is dependent on their occurrence, solubility and speciation. First, analytical protocols have been developed to determine trace elements in particulate matter samples collected for carbonaceous analysis. The validated novel protocols were applied to the determination of trace elements in particulate samples collected in the remote marine atmosphere and urban areas in Arizona to study air pollution issues. The second part of this work investigates on solubility and speciation in environmental samples. A detailed study on the impact of the nature and strength of buffer solutions on solubility and speciation of iron lead to a robust protocol, allowing for comparative measurements in matrices representative of cloud water conditions. Application of this protocol to samples from different environments showed low iron solubility (less than 1%) in dust-impacted events and higher solubility (5%) in anthropogenically impacted urban samples. In most cases, Fe(II) was the dominant oxidation state in the soluble fraction of iron. The analytical protocol was then applied to investigate iron processing by fogs. Field observations showed that only a small fraction (1%) of iron was scavenged by fog droplets for which each of the soluble and insoluble fraction were similar. A coarse time resolution limited detailed insights into redox cycling within fog system. Overall results suggested that the major iron species in the droplets was Fe(1I) (80% of soluble iron). Finally, the occurrence and sources of emerging organic pollutants in the urban atmosphere were investigated. Synthetic musk species are ubiquitous in the urban environment (less than 5 ng m-3) and investigations at wastewater treatment plants showed that wastewater aeration basins emit a substantial amount of these species to

  13. Iron and Vitamin C Co-Supplementation Increased Serum Vitamin C Without Adverse Effect on Zinc Level in Iron Deficient Female Youth

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Khoshfetrat

    2014-01-01

    Full Text Available Background: Iron supplementation can decrease the absorption of zinc and influence other antioxidants levels such as vitamin C. This study aimed to investigate the effect of iron supplements alone and in combination with vitamin C on zinc and vitamin C status in iron deficient female students. Methods: In a double-blind randomized clinical trail, 60 iron deficient students were selected from 289 volunteers residing in dormitory. After matching, subjects were randomly assigned into two groups: Group I (50 mg elemental iron supplements and Group II (50 mg elemental iron + 500 mg ascorbic acid. Serum ferritin, iron, serum zinc, and plasma vitamin C concentrations were measured by using enzyme-linked immunosorbent assay, spectrophotometer, atomic absorption spectrometer, and colorimeter, respectively after 6 and 12 weeks supplementation. Student′s t-test and repeated measures analysis of variance were applied to analyze the data using SPSS software. Results: Serum zinc levels had no significant differences between 2 groups at the baseline; however, its concentration decreased from 80.9 ± 4.2-68.9 ± 2.7 μg/dl to 81.2 ± 4.5-66.1 ± 2.9 μg/dl (P < 0.001 in Groups I and II, respectively after 6 weeks of supplementation. Continuous supplementation increased serum zinc concentration to baseline levels (79.0 ± 2.9 μg/dl; P < 0.01 in Group I and 70.5 ± 3.1 μg/dl in Group II following 12 weeks of supplementation. Plasma vitamin C increased from 3 ± 0/1-3.3 ± 0.2 mg/dl to 2.7 ± 0. 1-4.2 ± 0.2 mg/dl (P < 0.01 in Groups I and II, respectively. At the end of study, plasma vitamin C significantly increased from 3.3 ± 0.3-4.7 ± 0.3 (P < 0.01 to 4.2 ± 0.2-7.1 ± 0.2 (P < 0.001 in Groups I and II, respectively. Conclusions: Iron supplementation with and without vitamin C led to reduction in serum Zn in iron-deficient female students after 6 weeks. However, the decreasing trend stops after repletion of iron stores and Zn levels returned to the

  14. Distribution of potentially toxic elements (PTEs) in tailings, soils, and plants around Gol-E-Gohar iron mine, a case study in Iran.

    Science.gov (United States)

    Soltani, Naghmeh; Keshavarzi, Behnam; Moore, Farid; Sorooshian, Armin; Ahmadi, Mohamad Reza

    2017-08-01

    This study investigated the concentration of potentially toxic elements (PTEs) including Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, V, and Zn in 102 soils (in the Near and Far areas of the mine), 7 tailings, and 60 plant samples (shoots and roots of Artemisia sieberi and Zygophylum species) collected at the Gol-E-Gohar iron ore mine in Iran. The elemental concentrations in tailings and soil samples (in Near and Far areas) varied between 7.4 and 35.8 mg kg -1 for As (with a mean of 25.39 mg kg -1 for tailings), 7.9 and 261.5 mg kg -1 (mean 189.83 mg kg -1 for tailings) for Co, 17.7 and 885.03 mg kg -1 (mean 472.77 mg kg -1 for tailings) for Cu, 12,500 and 400,000 mg kg -1 (mean 120,642.86 mg kg -1 for tailings) for Fe, and 28.1 and 278.1 mg kg -1 (mean 150.29 mg kg -1 for tailings) for Ni. A number of physicochemical parameters and pollution index for soils were determined around the mine. Sequential extractions of tailings and soil samples indicated that Fe, Cr, and Co were the least mobile and that Mn, Zn, Cu, and As were potentially available for plants uptake. Similar to soil, the concentration of Al, As, Co, Cr, Cu, Fe, Mn, Mo, Ni, and Zn in plant samples decreased with the distance from the mining/processing areas. Data on plants showed that metal concentrations in shoots usually exceeded those in roots and varied significantly between the two investigated species (Artemisia sieberi > Zygophylum). All the reported results suggest that the soil and plants near the iron ore mine are contaminated with PTEs and that they can be potentially dispersed in the environment via aerosol transport and deposition.

  15. Quantification of body iron and iron absorption in the REDS-II Donor Iron Status Evaluation (RISE) study.

    Science.gov (United States)

    Kiss, Joseph E; Birch, Rebecca J; Steele, Whitney R; Wright, David J; Cable, Ritchard G

    2017-07-01

    Repeated blood donation alters the iron balance of blood donors. We quantified these effects by analyzing changes in body iron as well as calculating iron absorbed per day for donors enrolled in a prospective study. For 1308 donors who completed a final study visit, we calculated total body iron at the enrollment and final visits and the change in total body iron over the course of the study. Taking into account iron lost from blood donations during the study and obligate losses, we also calculated the average amount of iron absorbed per day. First-time/reactivated donors at enrollment had iron stores comparable to previous general population estimates. Repeat donors had greater donation intensity and greater mean iron losses than first-time/reactivated donors, yet they had little change in total body iron over the study period, whereas first-time/reactivated donors had an average 35% drop. There was higher estimated iron absorption in the repeat donors (men: 4.49 mg/day [95% confidence interval [CI], 4.41-4.58 mg/day]; women: 3.75 mg/day [95% CI, 3.67-3.84 mg/day]) compared with estimated iron absorption in first-time/reactivated donors (men: 2.89 mg/day [95% CI, 2.75-3.04 mg/day]; women: 2.76 mg/day [95% CI, 2.64-2.87 mg/day]). The threshold for negative estimated iron stores (below "0" mg/kg stores) was correlated with the development of anemia at a plasma ferritin value of 10 ng/mL. These analyses provide quantitative data on changes in estimated total body iron for a broad spectrum of blood donors. In contrast to using ferritin alone, this model allows assessment of the iron content of red blood cells and the degree of both iron surplus and depletion over time. © 2017 AABB.

  16. Severe iron intoxication treated with exchange transfusion

    DEFF Research Database (Denmark)

    Carlsson, M; Cortes, D; Jepsen, S

    2009-01-01

    An 18-month-old previous healthy girl who had ingested 442 mg elemental iron/kg was admitted to a paediatric intensive care unit. The child was treated with gastric lavage, whole bowel irrigation and intravenous deferoxamine. After 2 h of standard therapy serum iron had risen threefold to 1362 µg....../dl (244 µmol/l). The child was treated with exchange transfusion (ET; 52 ml/kg) and serum iron fell to 134 µg/dl (24 µmol/l). The patient made an uncomplicated recovery. ET should be considered in severe iron poisoning when standard therapy is inadequate....

  17. Iron: a versatile element to produce materials for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Ana Paula C.; Araujo, Maria H.; Oliveira, Luiz C.A.; Moura, Flavia C.C.; Lago, Rochel M., E-mail: rochel@ufmg.br, E-mail: anapct@ufmg.br [Departamento de Quimica, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Tristao, Juliana C. [Universidade Federal de Vicosa, Florestal, MG (Brazil); Ardisson, Jose D. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Fisica Aplicada; Amorim, Camila C., E-mail: juliana@ufv.br [Departamento de Engenharia Sanitaria e Ambiental, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2012-09-15

    Iron is a versatile element forming several phases with different oxidation states and {sup s}tructures, such as Fe{sup 0}, FeO, Fe{sub 3}O{sub 4}, {gamma}-Fe{sub 2}O{sub 3}, {alpha}-Fe{sub 2}O{sub 3} and FeOOH. All these phases have unique physicochemical properties which can be used for different applications. In this work, it is described the use of different iron compounds, synthetic and also from natural and waste sources, in environmental and technological applications. Two main research areas are described. The first one is related to strategies to increase the reactivity of Fe phases, mainly by the formation of Fe{sup 0}/iron oxide composites and by the introduction of new metals in the iron oxide structure to promote new surface reactions. The second area is the use of the magnetic properties of some iron phases to produce versatile magnetic materials with focus in adsorption, catalysis and emulsions. (author)

  18. Two main and a new type rare earth elements in Mg alloys: A review

    Science.gov (United States)

    Kong, Linghang

    2017-09-01

    Magnesium (Mg) alloys stand for the lightest structure engineering materials. Moreover, the strengthening of Mg alloys in ductility, toughness and corrosion predominates their wide applications. With adding rare earth elements in Mg, the mechanical properties will be improved remarkably, especially their plasticity and strength. A brief overview of the addition of rare earth elements for Mg alloys is shown. The basic mechanisms of strengthening Mg alloys with rare earth elements are reviewed, including the solid solution strengthening, grain refinement and long period stacking ordered (LPSO) phase. Furthermore, the available rare earth elements are summarized by type, chemical or physical effects and other unique properties. Finally, some challenge problems that the research is facing and future expectations of ra-re-earth Mg alloys are stated and discussed.

  19. Effect of sodium iron ethylenediaminetetraacetic acid on the absorption of various trace elements in anemic rats

    International Nuclear Information System (INIS)

    Igarashi, Kaori; Sasaki, Ayako; Yoda, Yoko; Inage, Hiroko; Nakanishi, Yukiko; Kimura, Shuichi; Yanagiya, Takahiro; Hirunuma, Rieko; Enomoto, Shuichi

    2001-01-01

    Iron deficiency in developing countries is attributed to the bioavailability of iron derived from staple food such as grains, vegetables and legumes. Sodium iron ethylenediaminetetraacetic acid (NaFeEDTA), a strong metal chelator, is one of the food additives for iron fortification and it has been for improvement of iron deficiency in the world. However, the effect of NaFeEDTA on the absorption of trace elements other than Fe has been poorly understood. In the present study, to investigate the effect of NaFeEDTA on the absorption of trace elements, we determined the uptake rate of various metals using a multitracer technique. The uptake rates of Zn, Co, and Na in rats fed with NaFeEDTA diet were significantly lower than those in rats fed with ferrous sulfate (FS) diet, suggesting that iron fortification by NaFeEDTA lowers the bioavailability of various elements compared with FS. On the other hand, iron fortification using the FS diet in the presence of tannic acid decreased the bioavailability of Zn and Rb. However, no effect of tannic acid on the uptake rate of metal was observed in NaFeEDTA diet, suggesting that iron fortification using NaFeEDTA is less affected by tannic acid than that using the FS diet. These results indicate that iron fortification using NaFeEDTA is an effective method for improving iron deficiency. (author)

  20. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes

    Science.gov (United States)

    Knipping, Jaayke L.; Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Barra, Fernando; Deditius, Artur P.; Wälle, Markus; Heinrich, Christoph A.; Holtz, François; Munizaga, Rodrigo

    2015-12-01

    Iron oxide-apatite (IOA) deposits are an important source of iron and other elements (e.g., REE, P, U, Ag and Co) vital to modern society. However, their formation, including the namesake Kiruna-type IOA deposit (Sweden), remains controversial. Working hypotheses include a purely magmatic origin involving separation of an Fe-, P-rich, volatile-rich oxide melt from a Si-rich silicate melt, and precipitation of magnetite from an aqueous ore fluid, which is either of magmatic-hydrothermal or non-magmatic surface or metamorphic origin. In this study, we focus on the geochemistry of magnetite from the Cretaceous Kiruna-type Los Colorados IOA deposit (∼350 Mt Fe) located in the northern Chilean Iron Belt. Los Colorados has experienced minimal hydrothermal alteration that commonly obscures primary features in IOA deposits. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) transects and electron probe micro-analyzer (EPMA) wavelength-dispersive X-ray (WDX) spectrometry mapping demonstrate distinct chemical zoning in magnetite grains, wherein cores are enriched in Ti, Al, Mn and Mg. The concentrations of these trace elements in magnetite cores are consistent with igneous magnetite crystallized from a silicate melt, whereas magnetite rims show a pronounced depletion in these elements, consistent with magnetite grown from an Fe-rich magmatic-hydrothermal aqueous fluid. Further, magnetite grains contain polycrystalline inclusions that re-homogenize at magmatic temperatures (>850 °C). Smaller inclusions (500 ppm) concentrations.

  1. Effect of diluted alloying elements on mechanical properties of iron

    International Nuclear Information System (INIS)

    Hassan, A.A.S.

    1996-01-01

    Iron and its alloys have extensive applications. The effect of solute additions on mechanical properties of iron was investigated to check the efficiency of solute atoms on strength and surface e life. Additions in the range of 0.1 wt.% and 0.3 wt.% of alloying elements of Cu,Ni and Si were used. Samples of grains size ranged from 6-40 m which have been prepared by annealing followed by furnace cooling. The recrystallization temperature increases with alloying addition (475 degree C for Fe-0.3 wt. % C alloy compared to 375 degree C for pure iron). Si and Cu additions inhibit grain growth of iron whereas Ni addition enhances it.Addition of Si or Ni to iron induced softening below room temperature whereas addition of Cu caused hardening. The work hardening parameters decreased due to alloying additions. The strength coefficient K was 290 M N/m2 for Fe-03 wt % Ni compared to 340 M N/m2 for pure iron. The work hardening exponent n is 0.12 for fe-0.3 wt. Cu alloy compared to 0.17 for pure iron. All the investigated alloys fulfilled the Hall-Petch relation at liquid Nitrogen and at room temperature. Alloying addition which caused softening addition which caused hardening increased the Half-Petch parameters. Ni addition favors ductility of iron whereas Cu addition reduces it. Alloying additions generally lead to brittle fracture and decrease the crack resistance of iron. 9 tabs., 55 figs., 103 refs

  2. Adsorption of trace elements of radionuclides on hydrous iron oxides

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.

    1988-01-01

    Factors that influence the adsorption of trace elements or radionuclides on hydrous iron oxides were investigated. The adsorption of monovalent cations (Cs + , Rb + ) on hydrous iron oxides is not strongly pH-dependent and it can be regarded as nonspecific. On the other hand, the adsorption of Ag + , divalent cations (Zn 2+ , Cd 2+ , Mn 2+ , Sr 2+ ) or trivalent cations (Cr 3+ , La 3+ , Ce 3+ , Eu 3+ , Gd 3+ , Er 3+ , Yb 3+ ) is strongly pH-dependent. The regularities of the adsorption of these cations on hydrous iron oxides are discussed. The differences in the adsorption behaviour of some divalent and trivalent cations are also explained. Freshly precipitated iron(III) hydroxide can be used for the decontamination of radionuclides from low-level waste solutions. However, the efficacy of decontamination depends on the oxidation state and the chemical properties of radionuclides. (author) 40 refs.; 9 figs

  3. Severe iron intoxication treated with exchange transfusion

    DEFF Research Database (Denmark)

    Carlsson, Marcella; Cortes, Dina; Jepsen, Søren

    2008-01-01

    An 18-month-old previous healthy girl who had ingested 442 mg elemental iron/kg was admitted to a paediatric intensive care unit. The child was treated with gastric lavage, whole bowel irrigation and intravenous deferoxamine. After 2 h of standard therapy serum iron had risen threefold to 1362 mi...... microg/dl (244 micromol/l). The child was treated with exchange transfusion (ET; 52 ml/kg) and serum iron fell to 134 microg/dl (24 micromol/l). The patient made an uncomplicated recovery. ET should be considered in severe iron poisoning when standard therapy is inadequate....

  4. Intravenous Iron Therapy in Patients with Iron Deficiency Anemia: Dosing Considerations

    Directory of Open Access Journals (Sweden)

    Todd A. Koch

    2015-01-01

    Full Text Available Objective. To provide clinicians with evidence-based guidance for iron therapy dosing in patients with iron deficiency anemia (IDA, we conducted a study examining the benefits of a higher cumulative dose of intravenous (IV iron than what is typically administered. Methods. We first individually analyzed 5 clinical studies, averaging the total iron deficit across all patients utilizing a modified Ganzoni formula; we then similarly analyzed 2 larger clinical studies. For the second of the larger studies (Study 7, we also compared the efficacy and retreatment requirements of a cumulative dose of 1500 mg ferric carboxymaltose (FCM to 1000 mg iron sucrose (IS. Results. The average iron deficit was calculated to be 1531 mg for patients in Studies 1–5 and 1392 mg for patients in Studies 6-7. The percentage of patients who were retreated with IV iron between Days 56 and 90 was significantly (p<0.001 lower (5.6% in the 1500 mg group, compared to the 1000 mg group (11.1%. Conclusions. Our data suggests that a total cumulative dose of 1000 mg of IV iron may be insufficient for iron repletion in a majority of patients with IDA and a dose of 1500 mg is closer to the actual iron deficit in these patients.

  5. Iron: A Key Element for Understanding the Origin and Evolution of Interstellar Dust

    Science.gov (United States)

    Dwek, Eli

    2016-01-01

    The origin and depletion of iron differ from all other abundant refractory elements that make up the composition of the interstellar dust. Iron is primarily synthesized in Type Ia supernovae (SNe Ia) and in core collapse supernovae (CCSN), and is present in the outflows from AGB (Asymptotic Giant Branch) stars. Only the latter two are observed to be sources of interstellar dust, since searches for dust in SN Ia have provided strong evidence for the absence of any significant mass of dust in their ejecta. Consequently, more than 65 percent of the iron is injected into the ISM (Inter-Stellar Matter) in gaseous form. Yet, ultraviolet and X-ray observations along many lines of sight in the ISM show that iron is severely depleted in the gas phase compared to expected solar abundances. The missing iron, comprising about 90 percent of the total, is believed to be locked up in interstellar dust. This suggests that most of the missing iron must have precipitated from the ISM gas by cold accretion onto preexisting silicate, carbon, or composite grains. Iron is thus the only element that requires most of its growth to occur outside the traditional stellar condensation sources. This is a robust statement that does not depend on our evolving understanding of the dust destruction efficiency in the ISM. Reconciling the physical, optical, and chemical properties of such composite grains with their many observational manifestations is a major challenge for understanding the nature and origin of interstellar dust.

  6. Estimation of Trace Elements (Iodine and Iron Content in Breast Milk

    Directory of Open Access Journals (Sweden)

    N.A. Belykh

    2013-08-01

    Full Text Available The estimation of iodine and iron content in breast milk (n = 88 has been carried out. The study shows that the concentration of iodine and iron in breast milk of the women did not correspond to the physiological needs of an infant. It has been demonstrated that the use of iron-containing vitamin-mineral supplements during lactation has no significant effect on the level of iron in breast milk. The iodine content in breast milk depends on the iodine subsidies. It is shown that the level of micronutrients in breast milk is not affected by the presence of gestational maternal anemia and goiter, due date and place of residence of the family. It is concluded that a statistically significant impact on the level of iodine in the breast milk of combined iodine prophylaxis (acceptance by the mother during lactation drugs potassium iodide (200 mg/day due to the use of iodized salt.

  7. Effect of alloying elements on characteristics of iron passive state in sulfuric acid

    International Nuclear Information System (INIS)

    Rejes Jola, O.; Mustafa-Zade, F.M.; Sukhotin, A.M.; Tchannikova, O.A.

    1981-01-01

    The curves of anodic polarization of iron binary alloys with Cr, Mo, W, Ni, Si, Co, Mn, Re, Ti, Al, Cu, Bi, Zn, In, V, Sb, Ta, Hf, Pb, Sn, Zr, Nb, Ce, B, P, S in 0.5 MH 2 SO 4 are studied. Passivation potentials, potentials of total passivation, transpassivity and current density are determined in the passivity region. All alloys had alpha-structure, the content of alloying elements was close to solubility in solid solution. Elements are classified according to the type of their effect on passive state of iron. Character of this effect does not have a direct connection with passivation ability the elements themselves, it is determined, probably, by a possibility to form stable passivating ruixed oxides of the ferrospinel type [ru

  8. Graphitic encapsulation of MgO and Fe3C nanoparticles in the reaction of iron pentacarbonyl with magnesium

    International Nuclear Information System (INIS)

    Dyjak, Sławomir; Cudziło, Stanisław; Polański, Marek; Budner, Bogusław; Bystrzycki, Jerzy

    2013-01-01

    A simple method to produce highly ordered carbon nanostructures by combustion synthesis is presented. Graphite-encapsulated magnesium oxide, iron carbide nanoparticles and carbon nanobelts were synthesized by the one-step reduction of iron pentacarbonyl with magnesium. High-resolution transmission electron microscopy analysis of the products revealed nanocrystalline MgO and Fe 3 C particles surrounded by a well-crystallized, tight graphite film. The possible formation mechanism is presented and discussed. - Highlights: • We present a simple method to produce highly ordered carbon nanostructures by combustion synthesis. • The cubic MgO particles are completely coated by tight graphitic shells. • The mechanism of formation a distant carbon film on MgO surface has been discussed. • The presented method can be applied to synthesis of other core-shell structures

  9. Trapped Melt in IIIAB Irons: Solid/Liquid Elemental Partitioning During the Fractionation of the IIIAB Magma

    Science.gov (United States)

    Wasson, John T.

    1999-01-01

    Group IIIAB, the largest iron-meteorite group, shows compositional trends (including a three-order-of-magnitude It concentration range) indicating that it formed by fractional crystallization of a metallic magma. Because about 200 irons are available, and all degrees of crystallization are well represented, IIIAB offers an excellent set of samples for the study of crystallization at all depths of the asteroidal core. On log-log Ir-Au, and Ir-As diagrams IIIAB forms a broad band; the breadth represents real meteorite-to-meteorite variations, far outside experimental or sampling uncertainties. A successful model must explain the width of this band; I suggest that it mainly resulted from the trapping of parental magma within the crystallizing solid. Because S is essentially insoluble in metal, the abundance of FeS is a measure of the fraction of trapped liquid. The trapped-melt model is supported by the observation that irons having higher S contents plot closer to the inferred composition of the magmatic parental liquid. The lowest S values are found in the irons occupying the left envelope of the IIIAB Ir-Au or Ir-As compositional fields, thus it is this set of irons that should be interpreted as the solid products of a fractionating magma. This simplifies the modeling of the crystallization process and allows inferences regarding the distribution ratios for other elements in the evolved IIIAB system. The large (multiton) Cape York irons show wide variations in their trapped-melt fractions; their compositions seem best understood in terms of a low initial S content of the IIIAB magma, about 20 mg/g. The inferred initial IIIAB distribution coefficient for Ir, 4.6, is much higher than published values based on laboratory studies of low-S systems; I suggest that low-S (and low-P) partition-ratio measurements tend to err in the direction of unity. In IIIAB distribution coefficients for Au, As, and Ni were still < 1 when the most evolved IIIAB irons formed, another

  10. Absorption of controlled-release iron

    International Nuclear Information System (INIS)

    Cook, J.D.; Lipschitz, D.A.; Skikne, B.S.

    1982-01-01

    A multiple-dose double radioiron technic was used to compare absorption of iron administered as a controlled release (CR) capsule and as an elixir; both formulations contained 50 mg elemental iron as ferrous sulfate. When taken by normal subjects in the fasting state, mean absorption from the elixir and CR capsule averaged 4.92% and 4.38%, which gave a CR capsule:elixir ratio of 0.89. This difference was not significant, but when taken with meals that inhibit absorption of dietary iron by different degrees, absorption of the CR formulation was superior. CR capsule:elixir absorption ratios averaged 1.70 from a meal that is mildly inhibitory and 3.13 from a meal that causes more marked inhibition. It is concluded that CR iron formulations may offer a therapeutic advantage to patients who take oral iron with meals to avoid gastrointestinal side effects

  11. Mineralogy, geochemistry and origin of Zafarabad iron deposit based on REE and trace elements of magnetite

    Directory of Open Access Journals (Sweden)

    Mehrdad Barati

    2013-10-01

    Full Text Available Zafarabad iron deposit is located northwest of Divandareh, in the northern margin of Sanandaj-Sirjan plutonic-metamorphic zone. The deposit is in lentoid to tubular shape, within a shear zone and occrrued in host rocks of calc-schist and limestone. Magnetite with massive, cataclastic and replacement textures are the main phases, while pyrite and other sulfide minerals are found. Major and trace elements are measured by ICP-MS and ICP-AES methods. Based on some ratios of trace elements in the ore samples and (Ti+V vs. Cal+Al+Mn and Ti+V vs. Ni/(Cr+Mn diagrams which are used for classification of iron deposit types, Zafarabad iron deposit fall in the range of skarn deposits. Spider diagrams show a steady decline from LREE to HREE elements with Eu (mean value of 0.06 ppm and Ce (mean value of 0.94 ppm negative anomalies. Comparing the distribution patterns of REE for the Zafarabad magnetites with those of various types of iron deposits shows that the REE pattern for Zafarabad is similar to these deposits. Analysis of calculated parameters for REE shows that the hydrothermal fluids responsible for mineralization are mainly of magmatic origin through fractionation and crystallization processes of a deep iron rich fluid phase and its emplacement within the carbonate rocks, forming iron skarn.

  12. Evolution of Mg-5Al-0.4Mn microstructure after rare earth elements addition

    Directory of Open Access Journals (Sweden)

    A. Żydek

    2011-04-01

    Full Text Available Mg-5Al-0.4Mn-xRE (x = 0, 1, 2, 3 wt.% magnesium alloys were prepared successfully by casting method. The microstructure wasinvestigated by light microscopy. The influence of rare earth (RE elements on the area fraction of eutectic was analysed. The obtainedresults revealed that the as-cast Mg-5Al-0.4Mn alloy consist of α - Mg matrix and eutectic α + γ (where γ is Mg17Al12. However, whilerare earth elements were added to the Mg-Al type alloy, Al11RE3 precipitates were formed. The amount of the Al11RE3 precipitatesincreased with increasing addition of RE, but the amount of γ - Mg17Al12 decreased.

  13. Influences of alloying elements and oxygen on the stability and elastic properties of Mg17Al12

    International Nuclear Information System (INIS)

    Dai, Jianhong; Song, Yan; Yang, Rui

    2014-01-01

    Highlights: • Most alloying elements stabilize Mg 17 Al 12 with negative occupation energy. • The alloying element and oxygen co-existed Mg 17 Al 12 are stable. • Strong bonding interactions existed between alloying element and host atoms. - Abstract: Influence of alloying elements (Ca, Mn, Ni, Cu, Zn, Zr, Sn, and La) and oxygen on stability and elastic properties of Mg 17 Al 12 has been studied by first principles total energy calculations. The occupation preferences of oxygen and alloying elements in Mg 17 Al 12 are identified. Ca, Zr, and La tend to substitute for Mg atoms, Zn, Cu, and Ni prefer to occupy Al site, and Mn and Sn show positive occupation energy for substituting both Mg and Al atoms. The impurity oxygen prefers to occupy interstitial sites surrounded by four Mg atoms regardless the presence of alloying elements in this system. Elastic constants were estimated to evaluate the mechanical stability of alloyed systems. The results show that alloys which own negative occupation energy also satisfy the mechanical stability criteria. Electronic structures were analyzed to clarify the intrinsic mechanisms of how alloying elements and oxygen influence the stability of Mg 17 Al 12 . The stabilization effect of alloying elements and oxygen was found to originate from the strong bonding interaction with the matrix

  14. Whole-body iron-59 retention measurements for estimating the iron status of piglets

    International Nuclear Information System (INIS)

    Pfau, A.; Rudolphi, K.; Heinrich, H.C.; Gabbe, E.E.

    1976-01-01

    A large-volume, 4π whole-body liquid scintillation detector was used to determine 59 Fe absorption in 173 one-to-six-weeks-old piglets with normal and depleted iron stores. Values of intestinal absorption from a 10 μmole (corresponds to 0.558 mg) 59 Fe 2+ test dose were compared with levels of haemoglobin, haematocrit, and serum iron as well as with stainable diffuse iron of bone marrow reticuloendothelial cells, and the dose relationship of intestinal iron absorption from 59 Fe-labelled FeSO 4 and methaemoglobin was measured. The investigations indicated that neither blood parameters, cytochemical gradings nor absorption levels from the 59 Fe test dose alone were sufficient to describe quantitatively the various stages of iron deficiency in piglets. A synopsis of all parameters appeared to be necessary for defining normal iron status and prelatent, latent and manifest iron deficiency. Piglets fed on sows' milk only developed manifest iron deficiency within the first three weeks of age. After an access to soil and/or creep feed from the eighth day of age, or intramuscular injections of 200 mg Fe as iron-dextran at three days of age, or injections of 200 or 400 mg Fe combined with access to creep feed, stages of manifest, latent or prelatent iron deficiency could be observed. For an iron-dextran dose of 800 mg Fe injected in amounts of 400 mg Fe at 3 and 10 days of age, a normal iron status was obtained in three-week-old piglets. The iron dose relationship indicated that 20 mg Fe administered orally as FeSO 4 or 40 mg Fe as methaemoglobin-Fe daily should cover the iron requirement of piglets for the first three weeks of life, whereas a three-week total of iron given orally in a single dose would lead to unphysiological or fatal conditions in nursing pigs. (author)

  15. Liquid-Liquid Extraction and Determination of Trace Elements in Iron Minerals by Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Taseska, Milena; Stafilov, Trajche; Makreski, Petre; Jacimovic, Radojko; Jovanovski, Gligor

    2006-01-01

    Various trace elements (cadmium, chromium, cobalt, nickel, manganese) in some iron minerals were determined by flame (FAAS) and electrothermal atomic absorption spectrometry (ETAAS). The studied minerals were chalcopyrite (CuFeS 2 ), hematite (Fe 2 O 3 ) and pyrite (FeS 2 ). To avoid the interference of iron, a method for liquid-liquid extraction of iron and determination of investigated elements in the inorganic phase was proposed. Iron was extracted by diisopropyl ether in hydrochloride acid solution and the extraction method was optimized. Some parameters were obtained to be significantly important: Fe mass in the sample should not exceed 0.3 g, the optimal concentration of HCI should be 7.8 mol 1 -1 and ratio of the inorganic and organic phase should be 1: 1. The procedure was verified by the method of standard additions and by its applications to reference standard samples. The investigated minerals originate from various mines in the Republic of Macedonia. (Author)

  16. Optimizing individual iron deficiency prevention strategies in physiological pregnancy

    Directory of Open Access Journals (Sweden)

    Kramarskiy V.A.

    2018-04-01

    Full Text Available Sideropenia by the end of pregnancy takes place in all mothers without exception. Moreover, the selective administration of iron preparations, in contrast to the routine, makes it possible to avoid hemochromatosis, frequency of which in the general population makes from 0.5 to 13 %. The aim of the study was to optimize the individual strategy for the prevention of iron deficiency in physiological pregnancy. A prospective pre-experimental study was conducted, the criterion of inclusion in which was the mother’s extragenital and obstetrical pathology during the first half of pregnancy, a burdened obstetric and gynecological anamnesis. The study group of 98 women with a physiological pregnancy in the period of 20 to 24 weeks was recruited by simple ran- dom selection. Serum ferritin, hemoglobin, and serum iron were used to estimate iron deficiency. In the latent stage of iron deficiency against a background of monthly correction with Fenules ® in a dose of 90 mg of elemental iron per day, there was a significant increase in ferritin and iron in the blood rotor. In healthy mothers, during the gestational period of 20–24 weeks, a regularity arises in the replenishment of iron status, especially in the case of repeated pregnancy, which is successfully satisfied during the month of Fenules ® intake in doses of 45 mg or 90 mg per day with a serum ferritin level of, respectively, 30 up to 70 μg/l or less than 30 μg/l.

  17. Valence electron structure of cast iron and graphltization behaviour criterion of elements

    Institute of Scientific and Technical Information of China (English)

    刘志林; 李志林; 孙振国; 杨晓平; 陈敏

    1995-01-01

    The valence electron structure of common alloy elements in phases of cast iron is calculated- The relationship between the electron structure of alloy elements and equilibrium, non-equilibrium solidification and graphitization is revealed by defining the bond energy of the strongest bond in a phase as structure formation factor S. A criterion of graphitization behaviour of elements is advanced with the critical value of the structure formation factor of graphite and the n of the strongest covalent bond in cementite. It is found that this theory conforms to practice very well when the criterion is applied to the common alloy elements.

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... amounts of iron, in milligrams (mg) at different ages and stages of life. Until the teen years, the recommended amount of iron is the same for boys and girls. From birth to 6 months, babies need 0.27 mg of iron. This number goes up to 11 mg for children ages 7 to 12 months, and down to 7 ...

  19. Influence of Nickel Addition on Properties of Secondary AlSi7Mg0.3 Alloy

    Directory of Open Access Journals (Sweden)

    Richtárech L.

    2015-06-01

    Full Text Available This paper deals with influence on segregation of iron based phases on the secondary alloy AlSi7Mg0.3 microstructure by nickel. Iron is the most common and harmful impurity in aluminum casting alloys and has long been associated with an increase of casting defects. In generally, iron is associated with the formation of Fe-rich intermetallic phases. It is impossible to remove iron from melt by standard operations. Some elements eliminates iron by changing iron intermetallic phase morphology, decreasing its extent and by improving alloy properties. Realization of experiments and results of analysis show new view on solubility of iron based phases during melt preparation with higher iron content and influence of nickel as iron corrector of iron based phases.

  20. A practical and successful desensitization protocol for immediate hypersensitivity reactions to iron salts.

    Science.gov (United States)

    Demir, Semra; Olgac, Muge; Unal, Derya; Gelincik, Asli; Colakoglu, Bahauddin; Buyukozturk, Suna

    2014-01-01

    Orally administered iron salts (OAS) are widely used in the management of iron deficiency anemia and hypersensitivity reactions to OAS are not common. If an offending drug is the sole option or is significantly more effective than its alternatives, it can be readministered by desensitization. The oral desensitization protocols for iron published so far concern either desensitization that was completed only over a long period or did not attain the recommended therapeutic dose. We aimed to develop a more effective protocol. We report here on 2 patients who experienced hypersensitivity reactions to OAS. After confirming the diagnosis, both patients were desensitized to oral ferrous (II) glycine sulfate complex according to a 2-day desensitization protocol. A commercial suspension of oral ferrous glycine sulfate, which contains 4 mg of elemental iron in 1 ml, was preferred. We started with a dose as low as 0.1 ml from a 1/100 dilution (0.004 mg elemental iron) of the original suspension and reached the maximum effective dose in 2 days. Both patients were successfully desensitized and they went on to complete the 6-month iron treatment without any adverse effects. Although hypersensitvity reactions to iron are not common, there is no alternative for iron administration. Therefore, desensitization has to be the choice. This easy desensitization protocol seems to be a promising option. © 2014 S. Karger AG, Basel.

  1. Chemical Hand Warmer Packet Ingestion: A Case of Elemental Iron Exposure.

    Science.gov (United States)

    Weiland, Jessica L; Sherrow, Leighanne K; Jayant, Deepak A; Katz, Kenneth D

    2017-09-01

    For individuals who work outdoors in the winter or play winter sports, chemical hand warmers are becoming increasingly more commonplace because of their convenience and effectiveness. A 32-year-old woman with a history of chronic pain and bipolar disorder presented to the emergency department complaining of a "warm sensation" in her mouth and epigastrium after reportedly ingesting the partial contents of a chemical hand warmer packet containing between 5 and 8 g of elemental iron. She had been complaining of abdominal pain for approximately 1 month and was prescribed unknown antibiotics the previous day. The patient denied ingestion of any other product or medication other than what was prescribed. A serum iron level obtained approximately 6 hours after ingestion measured 235 micrograms/dL (reference range 40-180 micrograms/dL). As the patient demonstrated no new abdominal complaints and no evidence of systemic iron toxicity, she was discharged uneventfully after education. However, the potential for significant iron toxicity exists depending on the extent of exposure to this or similar products. Treatment for severe iron toxicity may include fluid resuscitation, whole bowel irrigation, and iron chelation therapy with deferoxamine. Physicians should become aware of the toxicity associated with ingestion of commercially available hand warmers. Consultation with a medical toxicologist is recommended. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  2. Effect of low-dose versus higher-dose antenatal iron supplementation on child health outcomes at 36 months of age in Viet Nam: longitudinal follow-up of a cluster randomised controlled trial.

    Science.gov (United States)

    Hanieh, Sarah; Ha, Tran T; Simpson, Julie A; Braat, Sabine; Thuy, Tran T; Tran, Thach D; King, Janet; Tuan, Tran; Fisher, Jane; Biggs, Beverley-Ann

    2017-01-01

    Intermittent iron-folic acid supplementation (IFA) is currently recommended for pregnant women in populations where anaemia prevalence among pregnant women is Viet Nam among children of 36 months of age, born to women previously enrolled in a cluster randomised controlled trial of antenatal micronutrient supplementation (daily IFA (60 mg elemental iron) vs twice-weekly IFA (60 mg elemental iron) vs twice-weekly multiple micronutrient (MMN) supplementation (60 mg elemental iron)). Primary outcomes were height-for-age z-scores (HAZ), according to WHO growth standards and cognitive composite scores (Bayley Scales of Infant and Toddler Development, third edition) at 36 months of age. A total of 1017 children born to mothers enrolled in the cluster randomised trial were assessed at 36 months of age. Adjusted mean differences (MDs) in HAZ were -0.14 (95% CI -0.28 to -0.01) and -0.15 (95% CI -0.29 to -0.01) in children born to mothers who received twice-weekly IFA or MMN compared with those who received daily IFA. Children born to mothers who received twice-weekly MMN had lower composite motor scores compared with those who received daily IFA (MD -2.07, 95% CI -4.11 to -0.03). There were no differences in composite cognitive scores in the twice-weekly compared with daily regimens. Low-dose antenatal IFA supplementation (120 mg elemental iron per week) resulted in lower HAZ and motor composite scores in children compared with higher-dose antenatal IFA supplementation (420 mg elemental iron per week). This highlights the importance of adequate iron stores during pregnancy and the need for careful monitoring when lower-dose antenatal iron regimens are used. Australia New Zealand Clinical Trials Registry: 12610000944033.

  3. Variations of selected trace element contents in two layers of red deer antlers

    Directory of Open Access Journals (Sweden)

    Giżejewska Aleksandra

    2016-12-01

    Full Text Available Introduction: Hard antlers of deer are unique bioindicators of environmental metal pollutions, but sampling methods presented in the literature are inconsistent. Due to the specific growth pattern of antlers and their histological structure, sampling methods described in the literature were reviewed, the suitability of using mixed samples of both antler layers as element bioindicators was assessed, and the codified method of antler sampling used for bioindication was described. Material and Methods: Lead, cadmium, mercury, arsenic, copper, zinc, and iron in trabecular and cortical parts of hard antlers of red deer (Cervus elaphus were determined using different methods of atomic absorption spectrometry (depending on the element. Results: Mean mercury content in trabecular bone (0.010 ±0.018 mg/kg was 5 times higher than in cortical bone (0.002 ±0.003 mg/kg. Mean iron concentration was approximately 15 times higher in trabecular (239.83 ±130.15 mg/kg than in cortical bone (16.17 ±16.44 mg/kg. Concentrations of other analysed elements did not differ statistically between antler layers. Conclusion: In mixed antler samples, concentrations of mercury and iron depend on the particular antler layer contents. This therefore warrants caution when comparing results across studies and specification of the sampling methodology of antlers is highly recommended.

  4. Influence of elemental diffusion on low temperature formation of MgH2 in TiMn1.3T0.2-Mg (T = 3d-transition elements)

    International Nuclear Information System (INIS)

    Yamamoto, K.; Tanioka, S.; Tsushio, Y.; Shimizu, T.; Morishita, T.; Orimo, S.; Fujii, H.

    1996-01-01

    In order to examine the influence of the elemental diffusion from the host compound into the Mg region on low temperature formation of MgH 2 , we have investigated the hydriding properties and the microstructures of the composite materials TiMn 1.3 T 0.2 -Mg (T = V, Cr, Mn, Fe, Co, Ni and Cu). MgH 2 is formed at 353 K in all composite materials. Of all the substitutions, the amount of MgH 2 is the largest in the case of the Cu substitution, which originates from the existence of the Mg-Mg 2 Cu eutectic formed by Cu diffusion from the host compound TiMn 1.3 Cu 0.2 into the Mg region during the liquid phase sintering. In addition, the hydrogen capacity of TiMn 1.3 Cu 0.2 -Mg (that is TiMn 1.3 Cu 0.1 -(Mg+Mg 2 Cu) after the sintering) easily saturates in comparison with TiMn 1.5 -(Mg+Mg 2 Cu) without Cu diffusion. It is concluded that Cu diffusion promotes the mobility of hydrogen atoms at the complex interface between the host compound and the Mg region. (orig.)

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... mg and women need 18 mg. After age 51, both men and women need 8 mg. Pregnant ... for iron-deficiency anemia. Learn about exciting research areas that NHLBI is exploring about iron-deficiency anemia. ...

  6. Finite element calculation of forces on a DC magnet moving over an iron rail

    Energy Technology Data Exchange (ETDEWEB)

    Rodger, D.; Allen, N.; Coles, P.C.; Street, S.; Leonard, P.J.; Eastham, J.F. (Univ. of Bath (United Kingdom))

    1994-11-01

    This paper describes results taken from a test rig consisting of a DC magnet over a 0.35m radius spinning iron wheel. The magnet is excited by two coils. The iron parts are unlaminated. Eddy currents are induced in the wheel by virtue of the relative motion of wheel and magnetic field. All iron parts have a nonlinear B-H characteristic. Forces on the magnet are compared with 3D finite element predictions. The results are of relevance to the design of MAGLEV vehicles which are supported by DC magnets.

  7. Exploring Ultra-Heavy Cosmic Rays with the Trans-Iron Galactic Element Recorder (TIGER)

    Science.gov (United States)

    Link, Jason; Supertiger Collaboration

    2017-01-01

    Elements heavier than iron are primarily synthesized by neutron capture. These elements can be accelerated as cosmic-rays and measuring their abundances at Earth can yield information about galactic cosmic-rays' sources, the acceleration processes and the composition of the universe beyond the boundaries of our solar system. The Trans-Iron Galactic Element Recorder (TIGER) and its larger successor SuperTIGER was designed to measure the abundance of these ultra-heavy cosmic rays between Z=10 and Z=60. These detectors utilize scintillators with a wavelength shifter bar and PMT readout system as well as aerogel and acrylic Cherenkov detectors to identify the charge and energy of a particle and utilize a scintillating fiber hodoscope to provide trajectory information. In this talk I will review the results from this highly successful program, give the status for the next SuperTIGER flight planned for a December 2017 launch from Antarctica, and discuss the future direction of the program.

  8. Point-of-use fortification of foods with micronutrient powders containing iron in children of preschool and school-age.

    Science.gov (United States)

    De-Regil, Luz Maria; Jefferds, Maria Elena D; Peña-Rosas, Juan Pablo

    2017-11-23

    review authors independently assessed the eligibility of trials against the inclusion criteria, extracted data from included trials, assessed the risk of bias of the included trials and graded the quality of the evidence. We included 13 studies involving 5810 participants from Latin America, Africa and Asia. We excluded 38 studies and identified six ongoing/unpublished trials. All trials compared the provision of MNP for point-of-use fortification with no intervention or placebo. No trials compared the effects of MNP versus iron-containing supplements (as drops, tablets or syrup).The sample sizes in the included trials ranged from 90 to 2193 participants. Six trials included participants younger than 59 months of age only, four included only children aged 60 months or older, and three trials included children both younger and older than 59 months of age.MNPs contained from two to 18 vitamins and minerals. The iron doses varied from 2.5 mg to 30 mg of elemental iron. Four trials reported giving 10 mg of elemental iron as sodium iron ethylenediaminetetraacetic acid (NaFeEDTA), chelated ferrous sulphate or microencapsulated ferrous fumarate. Three trials gave 12.5 mg of elemental iron as microencapsulated ferrous fumarate. Three trials gave 2.5 mg or 2.86 mg of elemental iron as NaFeEDTA. One trial gave 30 mg and one trial provided 14 mg of elemental iron as microencapsulated ferrous fumarate, while one trial gave 28 mg of iron as ferrous glycine phosphate.In comparison with receiving no intervention or a placebo, children receiving iron-containing MNP for point-of-use fortification of foods had lower risk of anaemia prevalence ratio (PR) 0.66, 95% confidence interval (CI) 0.49 to 0.88, 10 trials, 2448 children; moderate-quality evidence) and iron deficiency (PR 0.35, 95% CI 0.27 to 0.47, 5 trials, 1364 children; moderate-quality evidence) and had higher haemoglobin (mean difference (MD) 3.37 g/L, 95% CI 0.94 to 5.80, 11 trials, 2746 children; low-quality evidence

  9. Biological reduction of iron to the elemental state from ochre deposits of Skelton Beck in Northeast England

    Directory of Open Access Journals (Sweden)

    Pattanathu K S M Rahman

    2014-06-01

    Full Text Available Ochre, consequence of acid mine drainage, is iron oxides-rich soil pigments that can be found in the water drainage from historic base metal and coal mines. The anaerobic strains of Geobacter sulfurreducens and Shewanella denitrificans were used for the microbial reduction of iron from samples of ochre collected from Skelton Beck (Saltburn Orange River, NZ 66738 21588 in Northeast England. The aim of the research was to determine the ability of the two anaerobic bacteria to reduce the iron present in ochre and to determine the rate of the reduction process. The physico-chemical changes in the ochre sample after the microbial reduction process were observed by the production of zero-valent iron which was later confirmed by the detection of elemental Fe in XRD spectrum. The XRF results revealed that 69.16% and 84.82% of iron oxide can be reduced using G. sulfurreducens and S. denitrificans respectively after 8 days of incubation. These results could provide the basis for the development of a biohydrometallurgical process for the production of elemental iron from ochre sediments.

  10. Influence of Iron Supplementation on Injury Risk in Basic Combat Training

    National Research Council Canada - National Science Library

    Knapik, Joseph J; Spiess, Anita; McClung, James P; Corum, Sonya; Williams, Kelly; Nindl, Brad; Lieberman, Harris; Tobler, Steven

    2008-01-01

    ...) or a placebo group (PG, n=103). The ISG consumed 16 mg elemental iron daily. Prior to treatment, measures of physical activity, tobacco use, menstrual status, physical characteristics, body composition, physical fitness, and demographics were obtained...

  11. Iron Supplementation and Altitude: Decision Making Using a Regression Tree

    Directory of Open Access Journals (Sweden)

    Laura A. Garvican-Lewis, Andrew D. Govus, Peter Peeling, Chris R. Abbiss, Christopher J. Gore

    2016-03-01

    based on Ferritin-Pre. Fifteen athletes were not supplemented based on medical advice or because of already high Ferritin-Pre. Oral iron (FerroGrad C, 325 mg ferrous sulphate and 1,000 mg ascorbic acid, equivalent to 105 mg elemental iron; Abbott Laboratories, Botany Bay, Australia was provided to the remaining athletes daily for the duration of altitude exposure. Nineteen athletes ingested two iron tablets per day (210 mg elemental iron owing to Ferritin-Pre of or 34.6 µg.L-1 who were supplemented with 105 mg.d-1 increased Hbmass by 3.4±2.8%, whilst those with Ferritin-Pre 20 µg.L-1 who were supplemented with 210 mg.d-1 increased Hbmass by 3.3±3.4%, whereas those with Ferritin-Pre 100 µg.L-1, non-supplemented athletes increased Hbmass by 1.2±3.2%, compared with 3.4±3.3% in those who ingested 105 mg.d-1. Our regression tree suggests daily iron supplementation may support Hbmass production during altitude exposure (Govus et al., 2015, particularly in athletes with low Ferritin-Pre. Interestingly, supplemented athletes with low Ferritin-Pre, tended to exhibit a greater Hbmass response than athletes with otherwise “healthy” iron stores. In fact, iron deficient (ID athletes (ferritin <20 µg.L-1 who ingested 210 mg.d-1 increased their Hbmass after altitude exposure by 7%, which is substantially larger than expected (Gore et al., 2013. Improved iron availability (arising from supplementation, combined with enhanced iron absorption at altitude (Reynafarje and Ramos, 1961 and an accelerated erythropoietic drive may explain this observation. Prolonged altitude exposure suppresses the iron regulatory hormone hepcidin, thereby aiding intestinal iron absorption (Goetze et al., 2013. Iron deficiency may also elevate erythropoietin (EPO, therein ‘priming’ the erythropoietic system in anticipation of iron delivery (Mast et al., 2014. In combination, these factors may improve the efficacy of iron supplementation in ID athletes at altitude. In contrast, since Hbmass did

  12. Iron-biofortified rice improves the iron stores of nonanemic Filipino women.

    Science.gov (United States)

    Haas, Jere D; Beard, John L; Murray-Kolb, Laura E; del Mundo, Angelita M; Felix, Angelina; Gregorio, Glenn B

    2005-12-01

    Iron deficiency is endemic in much of the world, and food system-based approaches to eradication may be viable with new plant breeding approaches to increase the micronutrient content in staple crops. It is thought that conventional plant breeding approaches provide varieties of rice that have 400-500% higher iron contents than varieties commonly consumed in much of Asia. The efficacy of consuming high-iron rice was tested during a 9-mo feeding trial with a double-blind dietary intervention in 192 religious sisters living in 10 convents around metro Manila, the Philippines. Subjects were randomly assigned to consume either high-iron rice (3.21 mg/kg Fe) or a local variety of control rice (0.57 mg/kg Fe), and daily food consumption was monitored. The high-iron rice contributed 1.79 mg Fe/d to the diet in contrast to 0.37 mg Fe/d from the control rice. The 17% difference in total dietary iron consumption compared with controls (10.16 +/- 1.06 vs. 8.44 +/- 1.82 mg/d) resulted in a modest increase in serum ferritin (P = 0.10) and total body iron (P = 0.06) and no increase in hemoglobin (P = 0.59). However, the response was greater in nonanemic subjects for ferritin (P = 0.02) and body iron (P = 0.05), representing a 20% increase after controlling for baseline values and daily rice consumption. The greatest improvements in iron status were seen in those nonanemic women who had the lowest baseline iron status and in those who consumed the most iron from rice. Consumption of biofortified rice, without any other changes in diet, is efficacious in improving iron stores of women with iron-poor diets in the developing world.

  13. Effect of alloying elements on solidification of primary austenite in Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2011-04-01

    Full Text Available Within the research, determined were direction and intensity of alloying elements influence on solidification way (directional orvolumetric of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu. 50 cast shafts dia. 20 mm were analysed.Chemical composition of the alloy was as follows: 1.7 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.9 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to0.16 % P and 0.03 to 0.04 % S. The discriminant analysis revealed that carbon influences solidification of primary austenite dendrites most intensively. It clearly increases the tendency to volumetric solidification. Influence of the other elements is much weaker. This means that the solidification way of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu does not differ from that in an unalloyed cast iron.

  14. Investigation of iron spin crossover pressure in Fe-bearing MgO using hybrid functional

    Science.gov (United States)

    Cheng, Ya; Wang, Xianlong; Zhang, Jie; Yang, Kaishuai; Zhang, Chuanguo; Zeng, Zhi; Lin, Haiqin

    2018-04-01

    Pressure-induced spin crossover behaviors of Fe-bearing MgO were widely investigated by using an LDA  +  U functional for describing the strongly correlated Fe–O bonding. Moreover, the simulated spin crossover pressures depend on the applied U values, which are sensitive to environments and parameters. In this work, the spin crossover pressures of (Mg1‑x ,Fe x )O are investigated by using the hybrid functional with a uniform parameter. Our results indicate that the spin crossover pressures increase with increasing iron concentration. For example, the spin crossover pressure of (Mg0.03125,Fe0.96875)O and FeO was 56 GPa and 127 GPa, respectively. The calculated crossover pressures agreed well with the experimental observations. Therefore, the hybrid functional should be an effective method for describing the pressure-induced spin crossover behaviors in transition metal oxides.

  15. Iron abundance evolution in spiral and elliptical galaxies

    International Nuclear Information System (INIS)

    Matteucci, F.

    1987-01-01

    Chemical evolution models for the Galaxy and ellipticals, which take into account the most recent developments on theories of nucleosynthesis and supernova progenitors, are presented. The evolution of the abundance of iron in these systems, under the assumption that this element is mainly produced by type I SNe, originating from white dwarfs in binary systems, has been computed and the results have been compared with the observations. Overabundances of O, Si, Ne and Mg with respect to iron have been predicted for halo stars in their Galaxy. The existence of an Fe - total mass relation with a slope steeper than the corresponding relations for Mg and O has been predicted for ellipticals. The masses of Fe ejected by ellipticals of various masses into the intergalactic medium have also been computed in detail. The general agreement obtained between these theoretical models and the observations for galaxies of different morphological type supports the assumptions made about the origin of iron

  16. Determination of trace impurities in iron-based alloy using neutron activation analysis

    International Nuclear Information System (INIS)

    Zaidi, J.H.; Waheed, S.; Ahmad, S.

    2000-01-01

    A radiochemical neutron activation analysis procedure has been developed and applied to investigate 40 major, minor, and trace impurities in iron-based alloy. A comparison of RNAA and INAA indicated a significant improvement in the detection limits. The extensive use of these alloys in the heavy mechanical industry, manufacturing of aircraft engines, nuclear applications, medical devices and chemical equipment requires their precise characterization. The concentration of iron in the iron-based alloy was found to be 86.7%, whereas Ca, Cr, K, Mg, Mn, V and W were the other constituents of the alloy, which constituted to around 12.89%. The rest of the elements were present in minor or trace levels. Most of the rare earth elements were also present in trace amounts. (orig.)

  17. Superheavy-element fission tracks in iron meteorites, and reply by Bull, R.K

    International Nuclear Information System (INIS)

    Runcorn, S.K.

    1980-01-01

    Comment is made on the lack of superheavy element (SHE) fission tracks observed in silicates from the class IA Odessa iron meteorite by Bull (Nature; 282:393 (1979)). Two explanations are suggested. Firstly, a thermal history for Odessa can be constructed in which the meteorite reaches track retention temperatures only after a time corresponding to many half lives for the SHEs (taken to be approximately 100 Myr) has elapsed and secondly that the IA irons never took up many SHEs. These suggestions are discussed in a reply by Bull. (U.K.)

  18. Iron absorption in relation to iron status

    International Nuclear Information System (INIS)

    Magnusson, B.; Bjoern-Rasmussen, E.; Hallberg, L.; Rossander, L.

    1981-01-01

    The absorption from a 3 mg dose of ferrous iron was measured in 250 male subjects. The absorption was related to the log concentration of serum ferritin in 186 subjects of whom 99 were regular blood donors (r= -0.76), and to bone marrow haemosiderin grading in 52 subjects with varying iron status. The purpose was to try and establish a percentage absorption from such a dose that is representative of subjects who are borderline iron deficient. This information is necessary for food iron absorption studies in order (1) to calculate the absorption of iron from the diet at a given iron status and (2) compare the absorption of iron from different meals studied in different groups of subjects by different investigarors. The results suggest that an absorption of about 40% of a 3 mg reference dose of ferrous iron is given in a fasting state, roughly corresponds to the absorption in borderline-iron-deficient subjects. The results indicate that this 40% absorption value corresponds to a serum ferritin level of 30 μg/l and that food iron absorption in a group of subjects should be expressed preferably as the absorption corresponding to a reference-dose absorption of 45%, or possibly a serum ferritin level of 30 μg/l. (author)

  19. Manufacture of Toothed Elements in Nanoausferritic Ductile Iron

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2014-10-01

    Full Text Available The technology currently used for the fabrication of toothed wheels, gear couplings and chain drums involves the induction hardening process or hardening and tempering after carburising. All these processes take a long time and cause adverse changes in the dimensions and surface quality of products, requiring post-treatment machining to remove the resulting cavities. The paper proposes the implementation of gear elements made of ductile iron with nanoausferritic matrix obtained by a new appropriate heat treatment process. The new material offers good performance characteristics and nearly no need for the application of other technological processes commonly used in the manufacture of gears.

  20. The influence of ferric iron in calcined nano-Mg/Al hydrotalcite on adsorption of Cr (VI) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Lili [College of Chemistry, Dalian University of Technology, Dalian, Liaoning 116023 (China); Ma Wei, E-mail: chmawv@yahoo.com [College of Chemistry, Dalian University of Technology, Dalian, Liaoning 116023 (China); Han Mei; Cheng Zihong [College of Chemistry, Dalian University of Technology, Dalian, Liaoning 116023 (China)

    2011-02-15

    Research highlights: {yields} The reconstruction processes of CH-Mg/Al and CH-Mg/Al/Fe were fast and efficient, but the adsorption of Cr (VI) on CH-Mg/Al/Fe reached equilibrium faster. {yields} The removal mechanism involved not only intercalation but also adsorption on external surface of the layers and interlayer anion exchange. {yields} The existence of Fe3{sup +} in Mg/Al calcined hydrotalcite led to the interlayer anion exchange more difficult and it is affected equilibrium amount of Cr (VI) adsorption. - Abstract: The influence of ferric iron in calcined nano-Mg/Al hydrotalcite on removal of Cr (VI) from aqueous solution was studied from aspects of structure characteristics, adsorption properties and mechanism discussions. The calcined hydrotalcites (CH-Mg/Al and CH-Mg/Al/Fe) were obtained by thermal decomposition of their corresponding precursors and characterized by XRD, TEM, pH{sub PZC} and FTIR. The adsorption properties were studied as a function of pH, initial Cr (VI) concentration and contact time. The results showed that the nature of adsorption is endothermic and spontaneous for both CH-Mg/Al and CH-Mg/Al/Fe, but the thermodynamic parameter value changes revealed the addition of Fe{sup 3+} is disadvantage to adsorption process and the theoretical saturated adsorption capacity decreased by approximately 10.2 mg/g at tested temperatures. The removal mechanism involved not only intercalation but adsorption on external surface of the layers and interlayer anion exchange for both CH-Mg/Al and CH-Mg/Al/Fe. Furthermore, the results also indicated that intercalation accounts for a large proportion during removal process whatever for CH-Mg/Al, or for CH-Mg/Al/Fe. Additionally, the replacement of Al{sup 3+} by Fe{sup 3+} in CH-Mg/Al led to the interlayer anion exchange more difficult. On the basis of the results, it is concluded that the existence of ferric iron in calcined Mg/Al hydrotalcite is unfavorable to removal of Cr (VI) from aqueous solution.

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... ages and stages of life. Until the teen years, the recommended amount of iron is the same for boys and girls. From birth to 6 months, babies need 0.27 mg of iron. This number goes up to 11 mg for children ages 7 to 12 months, and down to 7 mg for children ...

  2. Investigation of washing and storage strategy on aging Of Mg-aminoclay (MgAC) coated nanoscale zero-valent iron (nZVI) particles

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Lee, Young-Chul; Mines, Paul D.

    2014-01-01

    The tendency towards agglomeration and oxidation of nanoscale zero-valent iron (nZVI) particles limits its application for in situ groundwater and soil remediation. Although the effect of surface coatings on nanoparticle stabilization has been commonly practiced, the effect of preparation...... correlations (r2 > 0.95, p one another. Pre-storage washing, followed by addition of MgAC, exhibits high stability as pre-storage washing, as well as high reactivity as post-storage washing. Here, it is found that the proper washing procedure is crucial in coated nZVI preparation...

  3. Blood lead: Its effect on trace element levels and iron structure in hemoglobin

    International Nuclear Information System (INIS)

    Jin, C.; Li, Y.; Li, Y.L.; Zou, Y.; Zhang, G.L.; Normura, M.; Zhu, G.Y.

    2008-01-01

    Lead is a ubiquitous environmental pollutant that induce a broad range of physiological and biochemical dysfunctions. The purpose of this study was to investigate its effects on trace elements and the iron structure in hemoglobin. Blood samples were collected from rats that had been exposed to lead. The concentration of trace elements in whole blood and blood plasma was determined by ICP-MS and the results indicate that lead exists mainly in the red blood cells and only about 1-3% in the blood plasma. Following lead exposure, the concentrations of zinc and iron in blood decrease, as does the hemoglobin level. This indicates that the heme biosynthetic pathway is inhibited by lead toxicity and that lead poisoning-associated anemia occurs. The selenium concentration also decreases after lead exposure, which may lead to an increased rate of free radical production. The effect of lead in the blood on iron structure in hemoglobin was determined by EXAFS. After lead exposure, the Fe-O bond length increases by about 0.07 A and the Fe-Np bond length slightly increases, but the Fe-N ε bond length remains unchanged. This indicates that the blood content of Hb increases, but that the content of HbO 2 decreases

  4. Elemental and iron isotopic composition of aerosols collected in a parking structure

    International Nuclear Information System (INIS)

    Majestic, Brian J.; Anbar, Ariel D.; Herckes, Pierre

    2009-01-01

    The trace metal contents and iron isotope composition of size-resolved aerosols were determined in a parking structure in Tempe, AZ, USA. Particulate matter (PM) 2.5 μm were collected. Several air toxics (e.g., arsenic, cadmium, and antimony) were enriched above the crustal average, implicating automobiles as an important source. Extremely high levels of fine copper (up to 1000 ng m -3 ) were also observed in the parking garage, likely from brake wear. The iron isotope composition of the aerosols were found to be + 0.15 ± 0.03 per mille and + 0.18 ± 0.03 per mille for the PM 2.5 μm fractions, respectively. The similarity of isotope composition indicates a common source for each size fraction. To better understand the source of iron in the parking garage, the elemental composition in four brake pads (two semi-metallic and two ceramic), two tire tread samples, and two waste oil samples were determined. Striking differences in the metallic and ceramic brake pads were observed. The ceramic brake pads contained 10-20% copper by mass, while the metallic brake pads contained about 70% iron, with very little copper. Both waste oil samples contained significant amounts of calcium, phosphorous, and zinc, consistent with the composition of some engine oil additives. Differences in iron isotope composition were observed between the source materials; most notably between the tire tread (average = + 0.02 per mille ) and the ceramic brake linings (average = + 0.65 per mille ). Differences in isotopic composition were also observed between the metallic (average = + 0.18 per mille ) and ceramic brake pads, implying that iron isotope composition may be used to resolve these sources. The iron isotope composition of the metallic brake pads was found to be identical to the aerosols, implying that brake dust is the dominant source of iron in a parking garage.

  5. A study based on trace elements of differentiated metabasic rocks from the Machado-MG region

    International Nuclear Information System (INIS)

    Choudhuri, A.; Carvalho, S.G. de.

    1983-01-01

    Large metabasic intrusive bodies occur in the Precambrian gneiss-migmatite basement around Poco Fundo - Campestre - Machado Triangle, south Minas Gerais. Separate occurrences consisting in each case of pyroxenite, metagabbro and amphibolite seem to be related to each other as is evident from their mineralogy, texture and trends of trace element concentration when plotted against their mg number (Mg/MgO + FeO mol.). Furthermore, their trace elements indicate that these rocks belong to a differentiated sequence resulting from separation of pyroxenes in situ. In spite of their high large ion lithophile element contents comparable to calc-alcaline rocks, the metabasic rocks show close resemblance to present-day mid-ocean ridge basalts when these are plotted in relevant variation diagrams. The tectonic implication of the observations is, however, not yet clear. (Author) [pt

  6. Effect of Iron Impurity on the Phase Composition, Structure and Properties of Magnesium Alloys Containing Manganese and Aluminum

    Science.gov (United States)

    Volkova, E. F.

    2017-07-01

    Results of a study of the interaction between iron impurity and manganese and aluminum alloying elements during formation of phase composition in alloys of the Mg - Mn, Mg - Al, Mg - Al - Mn, and Mg - Al - Zn - Mn systems are presented. It is proved that this interaction results in introduction of Fe into the intermetallic phase. The phase compositions of model magnesium alloys and commercial alloys MA2-1 and MA5 are studied. It is shown that both manganese and aluminum may bind the iron impurity into phases. Composite Fe-containing intermetallic phases of different compositions influence differently the corrosion resistance of magnesium alloys.

  7. Ti-Mg alloy powder synthesis via mechanochemical reduction of TiO 2 by elemental magnesium

    CSIR Research Space (South Africa)

    Mushove, T

    2009-04-01

    Full Text Available This paper reports the preliminary results of an investigation on the synthesis of a Ti-Mg alloy powder through mechanochemical processing of TiO 2 and Mg powders. TiO 2 was mixed with elemental Mg according to a nominal stoichiometric composition...

  8. Elimination of Iron Based Particles in Al-Si Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2015-03-01

    Full Text Available This paper deals with influence on segregation of iron based phases on the secondary alloy AlSi7Mg0.3 microstructure by chrome. Iron is the most common and harmful impurity in aluminum casting alloys and has long been associated with an increase of casting defects. In generally, iron is associated with the formation of Fe-rich phases. It is impossible to remove iron from melt by standard operations, but it is possible to eliminate its negative influence by addition some other elements that affect the segregation of intermetallics in less harmful type. Realization of experiments and results of analysis show new view on solubility of iron based phases during melt preparation with higher iron content and influence of chrome as iron corrector of iron based phases. By experimental work were used three different amounts of AlCr20 master alloy a three different temperature of chill mold. Our experimental work confirmed that chrome can be used as an iron corrector in Al-Si alloy, due to the change of intermetallic phases and shortening their length.

  9. A provenance study of iron archaeological artefacts by Inductively Coupled Plasma-Mass Spectrometry multi-elemental analysis

    International Nuclear Information System (INIS)

    Desaulty, Anne-Marie; Mariet, Clarisse; Dillmann, Philippe; Joron, Jean Louis; Fluzin, Philippe

    2008-01-01

    Raw materials and wastes (i.e. ore, slag and laitier) from ironmaking archaeological sites have been analyzed in order to understand the behavior of the trace elements in the ancient ironmaking processes and to find the significant-most elements to characterize an iron making region. The ICP-MS (Inductively Coupled Plasma Mass Spectrometry) appears to be an excellent technique for this type of studies. The comparison between the ICP-MS results obtained with the Standard Addition method and the INAA (Instrumental Neutron Activation Analyses) results proved that Sc, Co, (Ni), Rb, Cs, Ba, La, Ce, Sm, Eu, Yb, Hf, Th, U contents in the ores, slag and laitiers, and Co and Ni contents in the cast iron can be successfully determined by ICP-MS after wet acid digestion (low detection limits, good sensitivity and precision). By using significant trace element pairs (Yb/Ce, Ce/Th, La/Sc, U/Th, Nb/Y) present in the ores, laitiers and slag, it is possible to discriminate different French ironmaking regions as the Pays de Bray, Lorraine and Pays d'Ouche. These results open the way to further studies on the provenance of iron objects. The comparison between the ICP-MS results obtained with the Standard Calibration Curves method and the INAA results shows that matrices rich in iron, affect the ICP-MS analyses by suppressing the analytes signal. Further studies are necessary to improve understanding matrix effects

  10. Enhanced carcinogenicity by coexposure to arsenic and iron and a novel remediation system for the elements in well drinking water.

    Science.gov (United States)

    Kumasaka, Mayuko Y; Yamanoshita, Osamu; Shimizu, Shingo; Ohnuma, Shoko; Furuta, Akio; Yajima, Ichiro; Nizam, Saika; Khalequzzaman, Md; Shekhar, Hossain U; Nakajima, Tamie; Kato, Masashi

    2013-03-01

    Various carcinomas including skin cancer are explosively increasing in arsenicosis patients who drink arsenic-polluted well water, especially in Bangladesh. Although well drinking water in the cancer-prone areas contains various elements, very little is known about the effects of elements except arsenic on carcinogenicity. In order to clarify the carcinogenic effects of coexposure to arsenic and iron, anchorage-independent growth and invasion in human untransformed HaCaT and transformed A431 keratinocytes were examined. Since the mean ratio of arsenic and iron in well water was 1:10 in cancer-prone areas of Bangladesh, effects of 1 μM arsenic and 10 μM iron were investigated. Iron synergistically promoted arsenic-mediated anchorage-independent growth in untransformed and transformed keratinocytes. Iron additionally increased invasion in both types of keratinocytes. Activities of c-SRC and ERK that regulate anchorage-independent growth and invasion were synergistically enhanced in both types of keratinocytes. Our results suggest that iron promotes arsenic-mediated transformation of untransformed keratinocytes and progression of transformed keratinocytes. We then developed a low-cost and high-performance adsorbent composed of a hydrotalcite-like compound for arsenic and iron. The adsorbent rapidly reduced concentrations of both elements from well drinking water in cancer-prone areas of Bangladesh to levels less than those in WHO health-based guidelines for drinking water. Thus, we not only demonstrated for the first time increased carcinogenicity by coexposure to arsenic and iron but also proposed a novel remediation system for well drinking water.

  11. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr

    Science.gov (United States)

    Li, H. F.; Xie, X. H.; Zheng, Y. F.; Cong, Y.; Zhou, F. Y.; Qiu, K. J.; Wang, X.; Chen, S. H.; Huang, L.; Tian, L.; Qin, L.

    2015-01-01

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals. PMID:26023878

  12. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr.

    Science.gov (United States)

    Li, H F; Xie, X H; Zheng, Y F; Cong, Y; Zhou, F Y; Qiu, K J; Wang, X; Chen, S H; Huang, L; Tian, L; Qin, L

    2015-05-29

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals.

  13. Comprehensive Wavelengths, Energy Levels, and Hyperfine Structure Parameters of Singly-Ionized Iron-Group Elements

    Science.gov (United States)

    Nave, Gillian

    We propose to measure wavelengths, energy levels, and hyperfine structure parameters of Ni II, Mn II, Sc II and other singly-ionized iron-group elements, covering the wavelength range 80 nm to 5500 nm. We shall use archival data from spectrometers at NIST and Kitt Peak National Observatory for spectra above 140 nm. Additional experimental observations will be taken if needed using Fourier transform spectrometers at NIST. Spectra will be taken using our normal incidence grating spectrograph to provide better sensitivity than the FT spectra and to extend the wavelength range down to 80 nm. We aim to produce a comprehensive description of the spectra of all singly-ionized iron- group elements. The wavelength uncertainty of the strong lines will be better than 1 part in 10^7. For most singly-ionized iron-group elements available laboratory data have uncertainties an order of magnitude larger than astronomical observations over wide spectra ranges. Some of these laboratory measurements date back to the 1960's. Since then, Fourier transform spectroscopy has made significant progress in improving the accuracy and quantity of data in the UV-vis-IR region, but high quality Fourier transform spectra are still needed for Mn II, Ni II and Sc II. Fourier transform spectroscopy has low sensitivity in the VUV region and is limited to wavelengths above 140 nm. Spectra measured with high-resolution grating spectrographs are needed in this region in order to obtain laboratory data of comparable quality to the STIS and COS spectrographs on the Hubble Space Telescope. Currently, such data exist only for Fe II and Cr II. Lines of Sc II, V II, and Mn II show hyperfine structure, but hyperfine structure parameters have been measured for relatively few lines of these elements. Significant errors can occur if hyperfine structure is neglected when abundances are determined from stellar spectra. Measurements of hyperfine structure parameters will be made using Fourier transform spectroscopy

  14. Effect of Nano Iron and Solupotasse Fertilizers on Accumulation of Nutrient Elements and Quality of Two Onion (Allium cepa Cultivars

    Directory of Open Access Journals (Sweden)

    Ali Joghatay

    2015-11-01

    Full Text Available To study the effect of nano iron and solupotass on agronomic and physiological traits of two onion cultivars, a factorial experiment was conducted in complete randomized block design with 32 treatments and three replications in Joghatai of Khorasan-e- Razavi province, Iran. Treatments consisted of two onion cultivars (red, yellow and four levels (0, 1, 2, 3 kg per hectare of nano iron chelat and four levels of solupotass (0, 5, 10, 15 kg per hectare. Results showed that the effect of nano iron and solupotasse on fresh weight, dry weight, pyrovic acid and macro element (N, P, S contents were significant at %1 levels. Application nano iron, solupotasse to red onion cultivar increased dry weight significantly at the %5 level. Highest onion weight was obtained by using 2 kg nano iron and 15 kg solupotasse (17.3 g. Use of nano iron and solupotasse highly increased the pyruvic acid percentage (1.07 mM. Highest rate of pyruvic acid obtained by application of 3 and 15 kg nano iron and solupotasse respectively. Application of nano iron on the sulfur and nitrogen contents of onion were significant. Use of 2 kg/ha of nano iron exhibited highest increase in these elements. Thus, soil application of 10 kg/ha solupotasse, 3 kg/ha nano iron would highly increase red onion traits mentioned above.

  15. Milk iron content in breast-feeding mothers after administration of intravenous iron sucrose complex.

    Science.gov (United States)

    Breymann, Christian; von Seefried, Bettina; Stahel, Michele; Geisser, Peter; Canclini, Camillo

    2007-01-01

    To study the transfer of parenteral iron sucrose into maternal milk in the postpartum period. Ten healthy lactating mothers with functional iron deficiency 2-3 days after delivery received 100 mg intravenous iron sucrose and were observed together with a control group (n=5) without iron treatment during four days. Milk samples were taken before the treatment and every day afterwards. Mean milk iron levels at baseline were 0.43 and 0.46 mg/kg in the treatment and control group and decreased until the end of observation in both groups by 0.11 mg/kg. No significant difference between the groups was found on any study day as well as in the mean change from baseline over all four days. We could not show transfer of iron-sucrose into maternal milk for the given dosage. Since parenteral iron sucrose is widely used in obstetrics, the results provide information about safety of parenteral iron sucrose in the lactation period. The findings are also in agreement with other reports on active biological mammary gland regulation of milk iron concentration.

  16. The use of optical fibers in the Trans Iron Galactic Element Recorder (TIGER)

    International Nuclear Information System (INIS)

    Sposato, S. H.; Binns, W. R.; Dowkontt, P. F.; Epstein, J. W.; Hink, P. L.; Israel, M. H.; Klarmann, J.; Lawrence, D. J.; Barbier, L. M.; Christian, E. R.; Mitchell, J. W.; Streitmatter, R. E.; Nolfo, G. A. de; Mewaldt, R. A.; Shindler, S. M.; Waddington, C. J.

    1998-01-01

    TIGER, the Trans-Iron Galactic Element Recorder, is a cosmic-ray balloon borne experiment that utilizes a scintillating Fiber Hodoscope/Time of Flight (TOF) counter. It was flown aboard a high altitude balloon on September 24, 1997. The objective of this experiment is to measure the elemental abundances of all nuclei within the charge range: 26≤Z≤40. This initial balloon flight will test the detector concept, which will be used in future balloon and space experiments. The instrument and the fiber detector are described

  17. Theoretical Modeling for the X-ray Spectroscopy of Iron-bearing MgSiO3 under High Pressure

    Science.gov (United States)

    Wang, X.; Tsuchiya, T.

    2012-12-01

    The behaviors of iron (Fe) in MgSiO3 perovskite, including valence state, spin state, and chemical environments, at high pressures are of fundamental importance for more detailed understanding the properties of the Earth's lower mantle. The pressure induced spin transition of Fe-bearing MgO and MgSiO3 are detected often by using high-resolution K-edge X-ray emission spectroscopy (XES) [1,2,3] and confirmed by theoretical simulations. [4,5] Since the Fe K-edge XES is associated to the 3p orbital, which is far from the valence orbitals (3d and 4s), it provides no information about its coordination environments. However, the Fe L-edge XES and X-ray absorption spectroscopy (XAS) can directly present the distribution and intensity of Fe-3d character. To identify both the spin states and the coordination environments of iron-bearing MgSiO3, we systematically investigate the L-edge XAS, XES and X-ray photoelectron (XPS) spectroscopy of Fe2+- and Fe3+-bearing MgSiO3 under high pressure by using the first-principles density functional method combined with the slater-transition method. Our results show that Fe2+ and Fe3+ can be distinguished easily by taking the XPS spectra. The spin transition of Fe2+ and Fe3+ can also be clearly certified by XAS and XES. Interestingly, the broadness of L-edge XES of Fe changes depending on the iron position, meaning that its coordination environment might also be distinguishable by using high-resolution XES measurements. Research supported by the Ehime University G-COE program and KAKENHI. [1] James Badro, Guillaume Fiquet, FranÇois Guyot, Jean-Pascal Rueff, Viktor V. Struzhkin, György VankÓ, and Giulio Monaco. Science 300, 789 (2003), [2] James Badro, Jean-Pascal Rueff, György VankÓ, Giulio Monaco, Guillaume Fiquet, and FranÇois Guyot, Science 305, 383 (2004), [3] Jung-Fu Lin, Viktor V. Struzhkin, Steven D. Jacobsen, Michael Y. Hu, Paul Chow, Jennifer Kung, Haozhe Liu, Ho-kwang Mao, and Gussell J. Hemley, Nature 436, 377 (2005). [4

  18. Methodology for determination of trace elements in mineral phases of iron banded formation by LA-ICP-MS

    International Nuclear Information System (INIS)

    Sousa, Denise V.M. de; Nalini Junior, Herminio A.; Sampaio, Geraldo M.S.; Abreu, Adriana T. de; Lana, Cristiano de C.

    2015-01-01

    The study of the chemical composition of mineral phases of iron formation (FF), especially of trace elements, is an important tool in the understanding of the genesis of these rocks and the contribution of the phases in the composition of whole rock. Low mass fraction of such elements in the mineral phases present in this rock type requires a suitable analytical procedure. The laser ablation technique coupled with ICP-MS (LA-ICP-MS) has been widely used for determination of trace elements in geological samples. Thus, the aim of this study is to develop calibration curves for determination of trace elements (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) in mineral phases of banded iron formations by LA-ICP-MS. Several certified reference materials (CRM) were used for calibrate the equipment. The analytical conditions were checked by CRM NIST SRM 614. The results were satisfactory, since the curves showed good linearity coefficients, good accuracy and precision of results. (author)

  19. Iron Quadrangle, Brazil. Elemental concentration determined by k0-instrumental neutron activation analysis. Part 1. Soil samples

    International Nuclear Information System (INIS)

    Menezes, M.A.B.C.; Palmieri, H.E.L.; Leonel, L.V.; Nalini, H.A.Jr.; Jacimovic, R.

    2006-01-01

    The Iron Quadrangle, Minas Gerais, Brazil, is rich in mineral occurrences and is considered one of the richest mineral-bearing regions in the world. Most investigations in this region have dealt with the determination of arsenic and mercury but so far few studies have been carried out aiming at determining other important elements. Having in mind the potential risk caused by mineral activities, this study was developed in order to assess the potential influence of the soil on foodstuffs. The soil samples were collected from three sites inside and outside the Iron Quadrangle. The samples were analyzed at the Laboratory for Neutron Activation Analysis, CDTN/CNEN by the k 0 -instrumental neutron activation analysis. This paper reports the elemental concentration determined in soil and emphasises the elements cited in the Brazilian environmental legislation for soil. This work also confirms the high elemental concentration of several minerals, however, it is difficult to distinguish the contamination from anthropogenic activities from the natural occurrence. (author)

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... girls. From birth to 6 months, babies need 0.27 mg of iron. This number goes up ... screen blood donors for low iron stores. Reliable point-of-care testing may help identify iron deficiency ...

  1. A Comparative Analysis of Nutrients and Mineral Elements Content ...

    African Journals Online (AJOL)

    (Mg), Iron (Fe), Copper (Cu) and Zinc (Zn) content, while P. pedicellatum has high ... INTRODUCTION ... central to animal production and productivity. .... for growth and serve as structural element in all plant ... the animal's body, it ensured correct maintenance of ... Ash content because Ash is the approximation of total.

  2. Intestinal absorbtion from therapeutic iron doses

    International Nuclear Information System (INIS)

    Werner, E.

    1977-01-01

    On a total of 105 persons with normal iron stores, iron depletion, and iron deficiency the intestinal absorption from therapeutic iron doses (100 mg Fe and 50 mg Fe as ferrous glycocoll sulphate) of a special galenic form was measured. The measurements were performed by means of a whole-body counter and preparations labelled with radio iron ( 59 Fe). Mean values of absorption rates from 100 mg Fe in healthy males were 5.0% and in healthy females 5.6% whereas in latent iron deficiency and in iron deficiency anemia mean values of 10% and 13% were obtained, respectively. The maximum absorption rate of 20 to 25% is reached already in the late stage of latent iron deficiency. Advancing severeness of iron deficiency is not followed by an increase of iron absorption. Investigations an 21 persons showed no significant difference between absorption rates of the galenic preparations used when administered orally before or after breakfast, respectively. (orig.) [de

  3. High purity Fe3O4 from Local Iron Sand Extraction

    Science.gov (United States)

    Gunanto, Y. E.; Izaak, M. P.; Jobiliong, E.; Cahyadi, L.; Adi, W. A.

    2018-04-01

    Indonesia has a long coastline and is rich with iron sand. The iron sand is generally rich in various elements such as iron and titanium. One of the products processing of the iron sand mineral is iron (II) (III) oxide (magnetite Fe3O4). The stages of purification process to extracting magnetite phase and discarding the other phases has been performed. Magnetite phase analysis of ironsand extraction retrieved from Indonesia have been investigated. The result of analysis element of iron sand shows that it consists of majority Fe around 65 wt%. However, there are still 17 impurities such as Ti, Al, Ce, Co, Cr, Eu, La, Mg, Mn, Na, Sc, Sm, Th, V, Yb, and Zn. After extraction process, Fe element content increases up to 94%. The iron sand powder after milling for 10 hours and separating using a magnetic separator, the iron sand powders are dissolved in acid chloride solution to form a solution of iron chloride, and this solution is sprinkled with sodium hydroxide to obtain fine powders of Fe3O4. The fine powders which formed were washed with de-mineralization water. The X-ray diffraction pattern shows that the fine powders have a single phase of Fe3O4. The analysis result shows that the sample has the chemical formula: Fe3O4 with a cubic crystal system, space group: Fd-3m and lattice parameters: a = b = c = 8.3681 (1) Å, α = β = γ = 90°. The microstructure analysis shows that the particle of Fe3O4 homogeneously shaped like spherical. The magnetic properties using vibrating sample magnetometer shows that Fe3O4 obtained have ferromagnetic behavior with soft magnetic characteristics. We concluded that this purification of iron sand had been successfully performed to obtain fine powders of Fe3O4 with high purity.

  4. Atomic absorption determination of iron and copper impurities in rare earth compounds

    International Nuclear Information System (INIS)

    Zelyukova, Yu.V.; Kravchenko, J.B.; Kucher, A.A.

    1978-01-01

    An extraction atomic absorption method for the determination of copper and iron impurities in rare earth compounds has been developed. The extraction separation of determined elements as hydroxy quinolinates with isobuthyl alcohol was used. It increased the sensitivity of these element determination and excluded the effect of the analysed sample. Cu, Te, Zn, Bi, Sn, In, Ga, Tl and the some other elements can be determined at pH 2.0-3.0 but rare earths are remained in an aqueous phase. The condition of the flame combustion does not change during the introduction of isobutyl extract but the sensitivity of the determination of the elements increased 2-3 times. The limit of Fe determination is 0.01 mg/ml and the limit of Cu determination is 0.014 mg/ml

  5. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.

    Science.gov (United States)

    Liu, B; Zheng, Y F

    2011-03-01

    Pure iron was determined to be a valid candidate material for biodegradable metallic stents in recent animal tests; however, a much faster degradation rate in physiological environments was desired. C, Mn, Si, P, S, B, Cr, Ni, Pb, Mo, Al, Ti, Cu, Co, V and W are common alloying elements in industrial steels, with Cr, Ni, Mo, Cu, Ti, V and Si being acknowledged as beneficial in enhancing the corrosion resistance of iron. The purpose of the present work (using Fe-X binary alloy models) is to explore the effect of the remaining alloying elements (Mn, Co, Al, W, B, C and S) and one detrimental impurity element Sn on the biodegradability and biocompatibility of pure iron by scanning electron microscopy, X-ray diffraction, metallographic observation, tensile testing, microhardness testing, electrochemical testing, static (for 6 months) and dynamic (for 1 month with various dissolved oxygen concentrations) immersion testing, cytotoxicity testing, hemolysis and platelet adhesion testing. The results showed that the addition of all alloying elements except for Sn improved the mechanical properties of iron after rolling. Localized corrosion of Fe-X binary alloys was observed in both static and dynamic immersion tests. Except for the Fe-Mn alloy, which showed a significant decrease in corrosion rate, the other Fe-X binary alloy corrosion rates were close to that of pure iron. It was found that compared with pure iron all Fe-X binary alloys decreased the viability of the L929 cell line, none of experimental alloying elements significantly reduced the viability of vascular smooth muscle cells and all the elements except for Mn increased the viability of the ECV304 cell line. The hemolysis percentage of all Fe-X binary alloy models were less than 5%, and no sign of thrombogenicity was observed. In vitro corrosion and the biological behavior of these Fe-X binary alloys are discussed and a corresponding mechanism of corrosion of Fe-X binary alloys in Hank's solution proposed. As a

  6. Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study

    International Nuclear Information System (INIS)

    Zhou, Bi-Cheng; Shang, Shun-Li; Wang, Yi; Liu, Zi-Kui

    2016-01-01

    First-principles calculations based on density functional theory have been used to calculate the temperature-dependent dilute tracer diffusion coefficients for 47 substitutional alloying elements in hexagonal closed packed (hcp) Mg by combining transition state theory and an 8-frequency model. The minimum energy pathways and the saddle point configurations during solute migration are calculated with the climbing image nudged elastic band method. Vibrational properties are obtained using the quasi-harmonic Debye model with inputs from first-principles calculations. An improved generalized gradient approximation of PBEsol is used in the present first-principles calculations, which is able to well describe both vacancy formation energies and vibrational properties. It is found that the solute diffusion coefficients in hcp Mg are roughly inversely proportional to the bulk modulus of the dilute alloys, which reflects the solutes' bonding to Mg. Transition metal elements with d electrons show strong interactions with Mg and have large diffusion activation energies. Correlation effects are not negligible for solutes Ca, Na, Sr, Se, Te, and Y, in which the direct solute migration barriers are much smaller than the solvent (Mg) migration barriers. Calculated diffusion coefficients are in remarkable agreement with available experimental data in the literature.

  7. Investigation on concentration of elements in wetland sediments and aquatic plants

    Directory of Open Access Journals (Sweden)

    H. Janadeleh

    2016-01-01

    Full Text Available The major aim of the present study was to investigate element (Fe, Ni, Pb, V, Zn concentrations in sediment and different tissues of Phragmities australis and Typha latifolia in Hor al-Azim Wetland Southwest Iran. Sampling of sediments and aquatic plants was carried out during spring and summer 2014. Results showed that the mean  concentrations of elements in Phragmities australis  in root and stem-leaf were as follows: Iron:4448 mg/kg, Nickel: 28 mg/kg, Lead:8 mg/kg, Vanadium:10 mg/kg  and Zinc 15.5 mg/kg in root and: Fe:645 mg/kg, Ni:15 mg/kg, Pb:4 mg/kg, V:4 mg/kg and Zinc 16 mg/kg respectively. Also, the mean concentrations of Fe, Ni, Pb, V and Zn in roots of Typha latifolia were 8696 mg/kg, 34 mg/kg, 5 mg/kg, 19 mg/kg and 27 mg/kg respectively. The mean concentrations of Fe, Ni, V, Pb, Zn in stem-leaves of Typha latifolia were as follows: 321 mg/kg, 3 mg/kg, 7 mg/kg, 2 mg/kg and 14 mg/kg respectively. The mean concentrations of Fe, Ni, V, Pb and zinc were as: 40991 mg/kg, 65 mg/kg, 60 mg/kg, 31 mg/kg, 60 mg/kg respectively in surface sediment of study area. Concentration pattern of elements in sediment were as: Fe>Ni>Zn>V>Pb. The highest concentration of elements in the plant was seen in the roots. Also, Typha latifolia can uptake more concentration of elements than Phragmities australis. Based on the enrichment factor, Ni in summer had the highest EF values among the elements studied and it has a moderate enrichment.

  8. Pre-Altitude Serum Ferritin Levels and Daily Oral Iron Supplement Dose Mediate Iron Parameter and Hemoglobin Mass Responses to Altitude Exposure.

    Directory of Open Access Journals (Sweden)

    Andrew D Govus

    Full Text Available To investigate the influence of daily oral iron supplementation on changes in hemoglobin mass (Hbmass and iron parameters after 2-4 weeks of moderate altitude exposure.Hematological data collected from 178 athletes (98 males, 80 females exposed to moderate altitude (1,350-3,000 m were analysed using linear regression to determine how altitude exposure combined with oral iron supplementation influenced Hbmass, total iron incorporation (TII and blood iron parameters [ferritin and transferrin saturation (TSAT].Altitude exposure (mean ± s: 21 ± 3 days increased Hbmass by 1.1% [-0.4, 2.6], 3.3% [1.7, 4.8], and 4.0% [2.0, 6.1] from pre-altitude levels in athletes who ingested nil, 105 mg and 210 mg respectively, of oral iron supplement daily. Serum ferritin levels decreased by -33.2% [-46.9, -15.9] and 13.8% [-32.2, 9.7] from pre-altitude levels in athletes who supplemented with nil and 105 mg of oral iron supplement daily, but increased by 36.8% [1.3, 84.8] in athletes supplemented with 210 mg of oral iron daily. Finally, athletes who ingested either 105 mg or 210 mg of oral iron supplement daily had a greater TII compared with non-supplemented athletes (0 versus 105 mg: effect size (d = -1.88 [-2.56, -1.17]; 0 versus 210 mg: effect size (d = -2.87 [-3.88, -1.66].Oral iron supplementation during 2-4 weeks of moderate altitude exposure may enhance Hbmass production and assist the maintenance of iron balance in some athletes with low pre-altitude iron stores.

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron, in milligrams (mg) at different ages and stages of life. Until the teen years, the recommended amount of ... and choosing iron-rich foods, especially during certain stages of life when more iron is needed, such as childhood ...

  10. Towards bio monitoring of toxic (lead) and essential elements in ...

    African Journals Online (AJOL)

    The degree of lead intoxication in all the children studied was low; The established reference intervals for Cu, Zn, Ca and Mg provide an important guidance for the reasonable supplementation of essential elements during different age groups. Keywords: prenatal biomonitoring, copper, zinc, calcium, magnesium, iron, lead ...

  11. Determination of lanthanum and rare earth elements in bovine whole blood reference material by ICP-MS after coprecipitation preconcentration with heme-iron as coprecipitant

    International Nuclear Information System (INIS)

    Fujimori, Eiji; Hayashi, Tatsuya; Inagaki, Kazumi; Haraguchi, H.

    1999-01-01

    An analytical method for the determination of lanthanide elements in the bovine whole blood reference material (IAEA A-13) has been investigated by inductively coupled plasma mass spectrometry (ICP-MS). The bovine whole blood reference material was digested with HNO 3 and HClO 4 , and then the pH of the digested solution was adjusted to 12 with 3 M sodium hydroxide aqueous solution. In this experimental procedure, lanthanide elements in the blood sample were coprecipitated with iron mainly derived from heme-iron in blood itself. In order to minimize matrix effects due to iron, excess iron in the analysis solution was removed by solvent extraction using methyl isobutyl ketone (MIBK) prior to the determination of lanthanide elements by ICP-MS. The recoveries of all lanthanide elements were almost quantitative in the recovery test. In consequence, it has been found that all lanthanide elements in bovine whole blood reference material are at the wide concentration range of 0.90 pg/g for Tm ∝1880 pg/g for Ce. (orig.)

  12. Investigation of some trace elements in drinking water: Nuba Mountains Section, Sudan

    International Nuclear Information System (INIS)

    Elgorashe, R.E.E.

    2008-09-01

    This study was conducted to assess the extent of pollution in the drinking water from various sources at the area of the Nuba Mountains, Sudan. 42 samples were collected from hand pump stations, water yard (diesel machine) stations and surface water (lake) stations.These waters were analyzed using atomic absorption spectrophotometer. The concentrations of iron, nickel, copper, manganese, magnesium, zinc and chromium were determined using flame atomic spectroscopy, while the concentrations of cadmium and lead were determined by furnace atomic spectroscopy. The mean concentrations of iron, nickel, lead, copper, manganese, magnesium, zinc and chromium in water samples collected from hand pump stations were 1.901, 0.010, 0.1310, 0.0070, 0.0410, 20.35, 0.558 and 0.0430 mg/L respectively. And in samples collected from water yard stations were found to be 0.871, 0.013, 0.438, 0.209, 0.128, 28.41, 0.103 and 0.032 mg/L for iron, nickel, lead, copper, manganese, magnesium, zinc and chromium respectively. And in samples collected from surface water station were found to be 13.74, 0.023, 0.015, 0.017, 0.118, 7.008, 0.042 and 0.0002 mg/L for iron, nickel, lead, copper, manganese, magnesium, zinc and chromium respectively. The concentrations of cadmium were found below detection of limits. Mean concentrations of elements from different sources were compared using the Kruskal - wallis method. This study showed that there are significant different between mean concentrations for these elements. The spear man correlation method was identified between elements. Correlation study shows that there is a significant positive correlation between iron and chromium. Comparison between those data and the specific criterion specifies drinking water by the World Health Organization (WHO) showed that the concentrations of Pb are exceeding the maximum permissible levels in eighteen stations. Violations of drinking water limits were observed also for the elements Mn in six stations and Cr in

  13. Investigation of some trace elements in drinking water: Nuba Mountains Section, Sudan

    Energy Technology Data Exchange (ETDEWEB)

    Elgorashe, R E.E. [Coordination Council of Sudan Atomic Energy Commission, Sudan Academy of Sciences, Khartoum (Sudan)

    2008-09-15

    This study was conducted to assess the extent of pollution in the drinking water from various sources at the area of the Nuba Mountains, Sudan. 42 samples were collected from hand pump stations, water yard (diesel machine) stations and surface water (lake) stations.These waters were analyzed using atomic absorption spectrophotometer. The concentrations of iron, nickel, copper, manganese, magnesium, zinc and chromium were determined using flame atomic spectroscopy, while the concentrations of cadmium and lead were determined by furnace atomic spectroscopy. The mean concentrations of iron, nickel, lead, copper, manganese, magnesium, zinc and chromium in water samples collected from hand pump stations were 1.901, 0.010, 0.1310, 0.0070, 0.0410, 20.35, 0.558 and 0.0430 mg/L respectively. And in samples collected from water yard stations were found to be 0.871, 0.013, 0.438, 0.209, 0.128, 28.41, 0.103 and 0.032 mg/L for iron, nickel, lead, copper, manganese, magnesium, zinc and chromium respectively. And in samples collected from surface water station were found to be 13.74, 0.023, 0.015, 0.017, 0.118, 7.008, 0.042 and 0.0002 mg/L for iron, nickel, lead, copper, manganese, magnesium, zinc and chromium respectively. The concentrations of cadmium were found below detection of limits. Mean concentrations of elements from different sources were compared using the Kruskal - wallis method. This study showed that there are significant different between mean concentrations for these elements. The spear man correlation method was identified between elements. Correlation study shows that there is a significant positive correlation between iron and chromium. Comparison between those data and the specific criterion specifies drinking water by the World Health Organization (WHO) showed that the concentrations of Pb are exceeding the maximum permissible levels in eighteen stations. Violations of drinking water limits were observed also for the elements Mn in six stations and Cr in

  14. Iron prophylaxis during pregnancy -- how much iron is needed? A randomized dose- response study of 20-80 mg ferrous iron daily in pregnant women

    DEFF Research Database (Denmark)

    Milman, Nils; Bergholt, Thomas; Eriksen, Lisbeth

    2005-01-01

    To determine the lowest dose of iron preventative of iron deficiency and iron deficiency anemia in pregnancy.......To determine the lowest dose of iron preventative of iron deficiency and iron deficiency anemia in pregnancy....

  15. Iron, Oxidative Stress and Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Taifeng Zhuang

    2014-09-01

    Full Text Available Both iron deficiency and hyperglycemia are highly prevalent globally for pregnant women. Iron supplementation is recommended during pregnancy to control iron deficiency. The purposes of the review are to assess the oxidative effects of iron supplementation and the potential relationship between iron nutrition and gestational diabetes. High doses of iron (~relative to 60 mg or more daily for adult humans can induce lipid peroxidation in vitro and in animal studies. Pharmaceutical doses of iron supplements (e.g., 10× RDA or more for oral supplements or direct iron supplementation via injection or addition to the cell culture medium for a short or long duration will induce DNA damage. Higher heme-iron intake or iron status measured by various biomarkers, especially serum ferritin, might contribute to greater risk of gestational diabetes, which may be mediated by iron oxidative stress though lipid oxidation and/or DNA damage. However, information is lacking about the effect of low dose iron supplementation (≤60 mg daily on lipid peroxidation, DNA damage and gestational diabetes. Randomized trials of low-dose iron supplementation (≤60 mg daily for pregnant women are warranted to test the relationship between iron oxidative stress and insulin resistance/gestational diabetes, especially for iron-replete women.

  16. Impact of Zn, Mg, Ni and Co elements on glass alteration: Additive effects

    Energy Technology Data Exchange (ETDEWEB)

    Aréna, H., E-mail: helene.arena@cea.fr [CEA, DEN, DTCD, LCLT, Centre de Marcoule, F-30207 Bagnols sur Cèze Cedex (France); Godon, N. [CEA, DEN, DTCD, LCLT, Centre de Marcoule, F-30207 Bagnols sur Cèze Cedex (France); Rébiscoul, D.; Podor, R. [ICSM-UMR5257 CNRS/CEA/UM2/ENCSM, Site de Marcoule, Bat. 426, 30207 Bagnols/Cèze (France); Garcès, E. [CEA, DEN, DTCD, LCLT, Centre de Marcoule, F-30207 Bagnols sur Cèze Cedex (France); Cabie, M. [Aix-Marseille Université, CP2M, F-13397 Marseille (France); Mestre, J.-P. [CEA, DEN, DTCD, LCLT, Centre de Marcoule, F-30207 Bagnols sur Cèze Cedex (France)

    2016-03-15

    The minor elements present in the nuclear glass composition or coming from the groundwater of the future repository may impact glass alteration. In this study, the effects of Zn, Mg, Ni and Co on the International Simple Glass (ISG) alteration were studied throughout 511 days of aqueous leaching experiments. The aim was to determine their additive or competitive effect on glass alteration and the nature of the alteration products. The four elements were introduced separately or altogether in solution as XCl{sub 2} chloride salts (X = Zn, Mg, Ni or Co) with monthly additions to compensate for their consumption. The alteration kinetics were determined by leachate analyses (ICP-AES) and alteration products were characterized in terms of composition, morphology and microstructure (SEM, TEM-EDX, ToF-SIMS and XRD). Results indicate that when they are introduced separately, Zn, Mg, Ni and Co have the same qualitative and quantitative effect on glass alteration kinetics and on pH: they form secondary phases leading to a pH decrease and a significant increase in glass alteration. The secondary phases were identified as silicates of the added X element: trioctahedral smectites with a stoichiometry of[(Si{sub (4-a)} Al{sub a}) (X{sub (3-b)} Al{sub b}) O{sub 10} (OH){sub 2}]{sup (a+b)−} [X{sub c} Na{sub d} Ca{sub e}] {sup (2c+d+2e) +} with a = 0.11 to 0.45, b = 0.00 to 0.29, c = 0, d = 0.19 to 0.74 and e = 0.10 to 0.14. . It was shown that as pH stabilizes at a minimum value, X-silicates no longer precipitate, thus leading to a significant drop in the glass alteration rate. This pH value depends on X and it has been identified as being 8 for Mg-silicates, probably around 7.3 for Ni and Co-silicates and less than 6.2 for Zn-silicates. When tested together, the effects of these four elements on glass alteration are additive and lead to the formation of a mix of X-silicates that precipitate as long as their constitutive elements are available and the pH is above

  17. Body iron and individual prophylaxis in pregnancy-should the iron dose be adjusted according to serum  ferritin?

    DEFF Research Database (Denmark)

    Milman, N; Byg, KE; Bergholt, T

    2006-01-01

    ferritin, serum soluble transferrin receptor (sTfR), haemoglobin] were recorded at 18, 32 and 39 weeks gestation and 8 weeks postpartum. Body iron was calculated using the serum sTfR/serum ferritin ratio. ID was defined by serum ferritin ...This study aims to evaluate iron prophylaxis in pregnant women from the individual aspect, i.e. according to serum ferritin levels at the beginning of pregnancy, and to assess which dose of iron would be adequate to prevent iron deficiency (ID) and iron deficiency anaemia (IDA) during pregnancy...... and postpartum. A randomised, double-blind study comprising 301 healthy Danish pregnant women allocated into four groups taking ferrous iron (as fumarate) in doses of 20 mg (n=74), 40 mg (n=76), 60 mg (n=77) and 80 mg (n=75) from 18 weeks gestation (inclusion) to 8 weeks postpartum. Iron status markers [serum...

  18. Long-term performance of elemental iron and hydroxyapatite for uranium retention in permeable reactive barriers used for groundwater remediation

    International Nuclear Information System (INIS)

    Biermann, V.

    2007-01-01

    Elemental iron (Fe 0 ) and hydroxyapatite (HAP) were evaluated as reactive mate-rials for use in permeable reactive barriers (PRBs) to remove uranium from conta-minated groundwater. Special attention was given to the long-term performance of the materials, which was investigated by means of column tests with a duration of up to 30 months using two different artificial groundwaters (AGW) with varying composition and uranium concentration. The interaction of the materials with AGW was studied in column tests using 237 U as a radiotracer to monitor the movement of the contamination front through the columns. The tested materials were shredded cast iron (granulated grey cast iron, 0.3 - 1.3 mm) supplied by Gotthard Mayer, Rheinfelden, Germany, and food quality grade hydroxyapatite (Ca 5 (PO 4 ) 3 OH, 99 % 0 (AGW with 9.6 mg U/L and low bicarbonate content of 120 mg/L). No breakthrough was observed for the Fe 0 columns with effluent uranium con-centrations being below the detection limit of 10 μg/L after treating more than 2,000 pore volumes (PV) and no uranium could be leached from loaded Fe 0 columns with 200 PV of uranium free AGW. However, columns with high Fe 0 content (≥ 50%) suffered from severe loss of permeability when AGW with ≥ 320 mg/L bicarbonate was used. In the HAP columns a breakthrough occurred with effluent uranium concentrations > 15 μg/l after treating 1,240 PV (10% and 50% breakthrough after 1,460 PV and 2,140 PV respectively). 12.2% of the accu-mulated uranium could be desorbed again with 840 PV of uranium free AGW. Adsorption was found to be the dominant reaction mechanism for uranium and HAP. Image analysis of high uranium content samples showed uranium and phosphate bearing crystals growing from HAP surfaces. The uranium phases chernikovite and meta-ankoleite of the autunite group were identified by x-ray diffraction. The existence of these mineral phases proves that surface precipitation also occurs under favourable conditions. No uranium

  19. Correlation between sub-micron surface roughness of iron oxide encrustations and trace element concentrations

    International Nuclear Information System (INIS)

    Fischer, Cornelius; Karius, Volker; Luettge, Andreas

    2009-01-01

    Iron oxide encrustations are formed on black slate surfaces during oxidative weathering of iron sulfide and phosphate bearing, organic matter-rich slates. Synchronously, trace elements are released during ongoing weathering. Laser ablation ICP-MS analyses of a weathered and encrusted slate showed that major portions of the V, Cu, As, Mo, Pb, Th, and U reside in the encrustation. Recently a potential relationship between several micrometer to 500 nm surface topography roughness of such encrustations and its uranium concentration was shown. Based on laser scanning microscopy measurements, the present study shows that this interrelation must be expanded to small submicron-sized half-pores with diameters between 100 nm and 500 nm. We demonstrate that the relationship is not limited to topography variations of a single encrustation in the hand-specimen scale. Surface topography and geochemical analyses of iron oxide encrustations from several locations but from the same geochemical environment and with similar weathering history showed that the concentrations of U, P, Cu, and Zn correlate inversely with the surface roughness parameter F. This parameter represents the total surface area and is - in this case - a proxy for the root-mean square surface roughness Rq. This study substantiates the environmental importance that micrometer- to submicrometer topography variations of fluid-rock interfaces govern the trapping of trace elements.

  20. Correlation between sub-micron surface roughness of iron oxide encrustations and trace element concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Cornelius, E-mail: cornelius@rice.edu [Department of Earth Science, MS-126, Rice University, 6100 Main Street, Houston, TX 77005 (United States); Geowissenschaftliches Zentrum der Universitaet Goettingen, Abt. Sedimentologie and Umweltgeologie, Goldschmidtstr. 3, D-37077 Goettingen (Germany); Karius, Volker [Geowissenschaftliches Zentrum der Universitaet Goettingen, Abt. Sedimentologie and Umweltgeologie, Goldschmidtstr. 3, D-37077 Goettingen (Germany); Luettge, Andreas [Department of Earth Science, MS-126, Rice University, 6100 Main Street, Houston, TX 77005 (United States); Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 (United States)

    2009-08-01

    Iron oxide encrustations are formed on black slate surfaces during oxidative weathering of iron sulfide and phosphate bearing, organic matter-rich slates. Synchronously, trace elements are released during ongoing weathering. Laser ablation ICP-MS analyses of a weathered and encrusted slate showed that major portions of the V, Cu, As, Mo, Pb, Th, and U reside in the encrustation. Recently a potential relationship between several micrometer to 500 nm surface topography roughness of such encrustations and its uranium concentration was shown. Based on laser scanning microscopy measurements, the present study shows that this interrelation must be expanded to small submicron-sized half-pores with diameters between 100 nm and 500 nm. We demonstrate that the relationship is not limited to topography variations of a single encrustation in the hand-specimen scale. Surface topography and geochemical analyses of iron oxide encrustations from several locations but from the same geochemical environment and with similar weathering history showed that the concentrations of U, P, Cu, and Zn correlate inversely with the surface roughness parameter F. This parameter represents the total surface area and is - in this case - a proxy for the root-mean square surface roughness Rq. This study substantiates the environmental importance that micrometer- to submicrometer topography variations of fluid-rock interfaces govern the trapping of trace elements.

  1. The NIMO Scandinavian Study: A Prospective Observational Study of Iron Isomaltoside Treatment in Patients with Iron Deficiency

    Directory of Open Access Journals (Sweden)

    Svein Oskar Frigstad

    2017-01-01

    Full Text Available Background. Intravenous iron allows for efficient and well-tolerated treatment in iron deficiency and is routinely used in diseases of the gastrointestinal tract. Objective. The aims of this study were to determine the probability of relapse of iron deficiency over time and to investigate treatment routine, effectiveness, and safety of iron isomaltoside. Methods. A total of 282 patients treated with iron isomaltoside were observed for two treatments or a minimum of one year. Results. Out of 282 patients, 82 had Crohn’s disease and 67 had ulcerative colitis. Another 133 patients had chronic blood loss, malabsorption, or malignancy. Patients who received an iron isomaltoside dose above 1000 mg had a 65% lower probability of needing retreatment compared with those given 1000 mg. A clinically significant treatment response was shown, but in 71/191 (37% of patients, anaemia was not corrected. The mean dose given was 1100 mg, lower than the calculated total iron need of 1481 mg. Adverse drug reactions were reported in 4% of patients. Conclusion. Iron isomaltoside is effective with a good safety profile, and high doses reduce the need for retreatment over time. Several patients were anaemic after treatment, indicating that doses were inadequate for full iron correction. This trial is registered with NCT01900197.

  2. Distribution of trace and minor elements in Hungarian spice paprika plants

    Energy Technology Data Exchange (ETDEWEB)

    Sziklai, I L; Oerdoegh, M; Szabo, E; Molnar, E

    1988-06-01

    Detailed investigations were carried out to study the distribution of trace and minor elements in different parts (fruit, seed and rib, peduncle, stem, leaf, root) of ripe Hungarian spice paprika plants. Two varieties were analyzed for their Cl, Co, Fe, K, Mg, Mn, Na, Rb, Sc, V and Zn content by non-destructive neutron activation analysis. The results showed that the iron contents of the samples were much higher than those of the other trace elements. For trace elements Co, Fe, Mn, Sc, V and Zn a considerable enrichment was observed in the leaf, while the Rb and K, Na, Mg showed accumulation mainly in the peduncle. (author) 8 refs.; 3 tabs.

  3. Experimental investigation in separating the heavy metal elements of refuse incineration fly ashes by using molten iron

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. [Chongqing Univ., Chongqing (China)]|[CPI-Yuanda Environmental-protection Engineering Co. Ltd., Chongqing (China); Liu, Q.; Dong, L. [Chongqing Univ., Chongqing (China); Du, Y. [CPI-Yuanda Environmental-protection Engineering Co. Ltd., Chongqing (China)

    2008-07-01

    One of the main waste treatment methods in the world for municipal solid waste (MSW) is incineration. It is effective in toxic substance destruction, waste volume reduction, and energy recovery. Some chemical substances are accumulated during incineration, most notably lead, zinc, chromium and cadmium, as well as other heavy metals. Untreated fly ash disposed in landfills can pollute the soil, surface water and groundwater because of the high levels of hazardous heavy metals and high salt concentration that can be leached out. This paper presented an experiment that melt-separated the heavy metal elements from fly ash generated during refuse incineration. Molted iron, was used as resolvent to dissolve the heavy metal elements in it. The paper described the materials and methods as well as the results of the study. It was concluded that using molted iron to separate the heavy metal elements from MSW incineration fly ash was feasible. The removal ratio of the main heavy metal elements was above 80 per cent, and some of it was above 99 per cent. 5 refs., 7 tabs., 1 fig.

  4. Iron concentration in breast milk normalised within one week of a single high-dose infusion of iron isomaltoside in randomised controlled trial

    DEFF Research Database (Denmark)

    Holm, Charlotte; Thomsen, Lars Lykke; Nørgaard, Astrid

    2017-01-01

    AIM: We compared the iron concentration in breast milk after a single high-dose of intravenous iron isomaltoside or daily oral iron for postpartum haemorrhage. METHODS: In this randomised controlled trial, the women were allocated a single dose of intravenous 1,200mg iron isomaltoside or oral iron...... deviation) iron concentration in breast milk in the intravenous and oral groups were 0.72 ± 0.27 mg/L and 0.40 ± 0.18 mg/L at three days (p birth. CONCLUSION: A single high...

  5. Preconcentration of ultra-trace amounts of iron and antimony using ion pair solid phase extraction with modified multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Fazelirad, Hamid; Taher, Mohammad Ali

    2014-01-01

    Ion pair solid phase extraction was applied to the simultaneous preconcentration of iron and antimony. The ion pairs consisting of FeCl 4 − or SbCl 4 − anions and the benzyldimethyltetradecyl ammonium cation were formed on the surface of multi-walled carbon nanotubes, then eluted with nitric acid, and the elements finally quantified by ETAAS. The adsorption capacities of the impregnated MWCNTs are 9.2 mg g −1 for iron and 27.5 mg g −1 for antimony. The following analytical figures of merit were determined for iron and antimony, respectively: Enrichment factors of 210 and 230, assay precisions of ±5.3 % and ±4.8 %, linear calibration plots from 0.7 to 9.4 and 13.0 to 190 ng L −1 , and detection limits of 0.17 and 3.5 ng L −1 . The method was applied to the determination of iron and antimony in human hair, synthetic sample, and to the certified reference materials gold ore (MA-1b) and trace elements in water (SRM 1643d). (author)

  6. Characterization and mass balance of trace elements in an iron ore sinter plant

    Directory of Open Access Journals (Sweden)

    Lucas Ladeira Lau

    2016-04-01

    Full Text Available Environmental legislation is becoming more restrictive in several industrial sectors, especially in the steel industry, which is well known for its large pollution potential. With the recent growth of interest in effects of trace elements on the environment and health, the inclusion of emission limits on these elements in this legislation has become increasingly popular. This article aims to describe the partitioning of trace elements between the products (sinter and plant emissions in an iron ore sinter plant, aiming to better understand the behavior of these elements in the sintering process to eventually support interventions to modify these partitions. Chemical characterization of several sintering inputs was initially performed, revealing that the steel-making residues contained large concentrations of trace elements, whereas low concentrations were observed in the flux. Based on the trace element concentrations, we analyzed the injection of trace elements in a sintering pilot using a sintering mixture. Mass balance was then used to determine the theoretical partitioning of trace elements in the sinter and emissions; cadmium, nickel, lead, mercury, and copper exhibited greater tendencies to concentrate in atmospheric emissions.

  7. The iron content and ferritin contribution in fresh, dried, and toasted nori, Pyropia yezoensis.

    Science.gov (United States)

    Masuda, Taro; Yamamoto, Ami; Toyohara, Haruhiko

    2015-01-01

    Iron is one of the essential trace elements for humans. In this study, the iron contents in fresh, dried, and toasted nori (Pyropia yezoensis) were analyzed. The mean iron content of fresh, dried, and toasted nori were 19.0, 22.6, and 26.2 mg/100 g (dry weight), respectively. These values were superior to other food of plant origin. Furthermore, most of the iron in nori was maintained during processing, such as washing, drying, and toasting. Then, the form of iron in fresh, dried, and toasted nori was analyzed. As a result, an iron storage protein ferritin contributed to iron storage in raw and dried nori, although the precise rate of its contribution is yet to be determined, while ferritin protein cage was degraded in the toasted nori. It is the first report that verified the ferritin contribution to iron storage in such edible macroalgae with commercial importance.

  8. Relationships Between Element Contents in Polish Children's and Adolescents' Hair.

    Science.gov (United States)

    Długaszek, Maria; Skrzeczanowski, Wojciech

    2017-11-01

    Environment, sex, and age are the main factors which determine the elemental composition of hair. The objective of the study is to determine the contents of calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), iron (Fe), lead (Pb), and cadmium (Cd) in girls' and boys' hair in five age groups (within 1-19-year range) corresponding to successive human ontogenesis phases as well as to evaluate the relationships between these elements. Quantitative analysis has been carried out using atomic absorption spectrometry (AAS). Experimental results were analyzed using classic and principal component (PCA) statistical analyses. In particular, differences between contents of particularly Ca, Mg, and Zn in girls' and boys' hair were found, and substantial differences between age groups were stated. In general, larger amounts of Ca, Mg, and Zn as compared to boys' hair have been observed for girls' hair and higher toxic element (Pb, Cd) contents for boys were measured in some age groups. An increasing trend was found for bioelements (Ca, Mg, Zn) both for girls and boys in all age groups, while for Cu and Fe content, changes are insignificant and even decreasing for teenagers. The most frequently correlating element pairs are Ca-Mg, Ca-Zn, Mg-Zn, and Pb-Cd. Classic and PCA statistics show, in general, a satisfactory consistence. The elemental composition of hair varies depending on the gender and age of children and young people.

  9. Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status.

    Science.gov (United States)

    Petry, Nicolai; Egli, Ines; Gahutu, Jean B; Tugirimana, Pierrot L; Boy, Erick; Hurrell, Richard

    2014-11-01

    The common bean is a staple crop in many African and Latin American countries and is the focus of biofortification initiatives. Bean iron concentration has been doubled by selective plant breeding, but the additional iron is reported to be of low bioavailability, most likely due to high phytic acid (PA) concentrations. The present study evaluated the impact of PA on iron bioavailability from iron-biofortified beans. Iron absorption, based on erythrocyte incorporation of stable iron isotopes, was measured in 22 Rwandese women who consumed multiple, composite bean meals with potatoes or rice in a crossover design. Iron absorption from meals containing biofortified beans (8.8 mg Fe, 1320 mg PA/100 g) and control beans (5.4 mg Fe, 980 mg PA/100 g) was measured with beans containing either their native PA concentration or with beans that were ∼50% dephytinized or >95% dephytinized. The iron concentration of the cooked composite meals with biofortified beans was 54% higher than in the same meals with control beans. With native PA concentrations, fractional iron absorption from the control bean meals was 9.2%, 30% higher than that from the biofortified bean meals (P bean meals (406 μg) was 19% higher (P bean meals. With ∼50% and >95% dephytinization, the quantity of iron absorbed from the biofortified bean meals increased to 599 and 746 μg, respectively, which was 37% (P bean meals. PA strongly decreases iron bioavailability from iron-biofortified beans, and a high PA concentration is an important impediment to the optimal effectiveness of bean iron biofortification. Plant breeders should focus on lowering the PA concentration of high-iron beans. This trial was registered at clinicaltrials.gov as NCT01521273. © 2014 American Society for Nutrition.

  10. Study on the effects of different cooking methods on concentration of essential elements (Fe, Zn, Cu, Ni in Cyprinus Carpio

    Directory of Open Access Journals (Sweden)

    Askary Sary A., Askary Sary A.,

    2017-11-01

    Full Text Available This study was performed to evaluate the effect of different cooking methods on the level of iron, copper, zinc, and nickel in the muscle of Cyprinus carpio. For this purpose, 75 samples of fish with different sizes were obtained from Azadegan Aquaculture Center in Ahvaz. The samples were digested through the wet-digestion method and the concentrations of the essential elements were measured by Atomic Absorption Spectrophotometer. According to the results, fried and steamed samples had the highest (3.54±0.31 mg/100g wet weight and lowest (1.64±0.11 mg/100g wet weight concentration of iron. The highest and lowest concentration of zinc was recorded in the fried (1.74±0.09 mg/100g WW and steamed (1.24±0.09 mg/100g WW samples, respectively. In the case of copper, the highest (0.12±0.09 mg/100g WW and lowest (0.07±0.003 mg/100g WW concentration were recorded in the micro-waved and steamed specimens, respectively. The results for nickel was determined as 0.023±0.001 mg/100g WW and 0.016±0.0002 mg/100g WW in the fried and grilled fishes Moreover, the highest and the lowest level of essential elements which were recorded among the samples belonged to iron and nickel respectively. In all samples, the level of iron was recorded below the FDA limit. In addition, in all samples, the level of nickel, zinc, and copper was estimated below the maximum acceptable limit of WHO, MAFF, NHMRC, and FAO.

  11. Iron and genome stability: An update

    International Nuclear Information System (INIS)

    Prá, Daniel; Franke, Silvia Isabel Rech; Henriques, João Antonio Pêgas; Fenech, Michael

    2012-01-01

    Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7 mg/day to 18 mg/day depending on life stage and gender. Pregnant women need 27 mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40–45 mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20 mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.

  12. Iron and genome stability: An update

    Energy Technology Data Exchange (ETDEWEB)

    Pra, Daniel, E-mail: daniel_pra@yahoo.com [PPG em Promocao da Saude, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS (Brazil); PPG em Saude e Comportamento, Universidade Catolica de Pelotas, Pelotas, RS (Brazil); Franke, Silvia Isabel Rech [PPG em Promocao da Saude, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS (Brazil); Henriques, Joao Antonio Pegas [Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil); Fenech, Michael [CSIRO Food and Nutritional Sciences, Adelaide, SA (Australia)

    2012-05-01

    Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7 mg/day to 18 mg/day depending on life stage and gender. Pregnant women need 27 mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40-45 mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20 mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.

  13. Iron Quadrangle, Brazil. Elemental concentration determined by k0-instrumental neutron activation analysis. Part 2. Kale samples

    International Nuclear Information System (INIS)

    Menezes, M.A.B.C.; Palmieri, H.E.L.; Leonel, L.V.; Nalini, H.A.Jr.; Jacimovic, R.

    2006-01-01

    The objective of this study was to evaluate the influence of mining activity on elemental concentrations in kale grown around a mining area. Two sites studied are in the Iron Quadrangle, Minas Gerais, Brazil, considered one of the richest mineral-bearing regions in the world. One site is near mineral exploration activity and the other is an ecological area. A comparator site outside the Iron Quadrangle was also analyzed. This work focused on the determination of the elemental concentrations in kale applying the k 0 -instrumental neutron activation analysis. As the Brazilian legislation specifies values for soil only, the results for kale were compared to the literature values and it was found that the vegetable does not present any health risks. (author)

  14. Efficacy of iron supplementation may be misinterpreted using conventional measures of iron status in iron-depleted, nonanemic women undergoing aerobic exercise training.

    Science.gov (United States)

    Pompano, Laura M; Haas, Jere D

    2017-12-01

    Background: Despite its known detrimental effects, iron deficiency remains the most common micronutrient deficiency in the world. Many interventions that aim to improve iron status involve physically active populations. Intense aerobic exercise training negatively affects iron status; however, the impact of regular moderate aerobic exercise on the effectiveness of iron supplementation remains unclear. Objective: This study aimed to determine whether aerobic training modifies the assessment of the effectiveness of iron supplementation in improving conventional iron status measures. Design: Seventy-two iron-depleted, nonanemic Chinese women [serum ferritin (sFer) 110 g/L] were included in an 8-wk, partially blinded, randomized controlled trial with a 2 × 2 factorial design including iron supplements (42 mg elemental Fe/d) or placebo and aerobic training (five 25-min sessions/wk at 75-85% of maximum heart rate) or no training. Linear mixed models were used to evaluate the relation between supplement type, training, and changes in iron status over time, measured by sFer, hemoglobin, soluble transferrin receptor (sTfR), and estimated total body iron. Results: After treatment, both the iron-supplemented trained and untrained groups showed significantly improved sFer, sTfR, and body iron values compared with either of the placebo groups. Similarly, trained participants had significantly higher aerobic fitness measures than untrained participants. Training modified the sFer response to supplementation (training by supplement interaction, P = 0.07), with the iron-supplemented trained group having significantly lower sFer than the iron-supplemented untrained group at week 8 (mean ± SD: 31.8 ± 13.5 and 47.6 ± 15.7 μg/L, respectively; P = 0.042), whereas there was no significant difference between the placebo trained and untrained groups (21.3 ± 12.2 and 20.3 ± 7.0 μg/L, respectively; P = 1.00). Conclusions: Regular aerobic training reduces the apparent effectiveness

  15. 21 CFR 522.1182 - Iron injection.

    Science.gov (United States)

    2010-04-01

    ... follows: (i) For prevention of iron deficiency anemia, inject 100 mg (1 mL) by intramuscular injection at 2 to 4 days of age. (ii) For treatment of iron deficiency anemia, inject 100 mg (1 mL) by... repeated in 14 to 21 days. (ii) For the treatment of anemia due to iron deficiency, administer an...

  16. Fatigue crack tip damaging micromechanisms in a ferritic-pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-07-01

    Full Text Available Due to the peculiar graphite elements shape, obtained by means of a chemical composition control (mainly small addition of elements like Mg, Ca or Ce, Ductile Cast Irons (DCIs are able to offer the good castability of gray irons with the high mechanical properties of irons (first of all, toughness. This interesting properties combination can be improved both by means of the chemical composition control and by means of different heat treatments(e.g. annealing, normalizing, quenching, austempering etc. In this work, fatigue crack tip damaging micromechanisms in a ferritic-pearlitic DCI were investigated by means of scanning electron microscope observations performed on a lateral surface of Compact Type (CT specimens during the fatigue crack propagation test (step by step procedure, performed according to the “load shedding procedure”. On the basis of the experimental results, different fatigue damaging micromechanisms were identified, both in the graphite nodules and in the ferritic – pearlitic matrix.

  17. Trace Elements Iron, Copper and Zinc in Vitreous of Patients with Various Vitreoretinal Diseases

    Directory of Open Access Journals (Sweden)

    Sulochana Konerirajapuram

    2004-01-01

    Full Text Available Purpose: To measure the concentrations of iron, copper and zinc in human vitreous and to interpret their levels with various vitreoretinal diseases like proliferative diabetic retinopathy, retinal detachment, intraocular foreign body, Eales′ disease and macular hole. Methods: Undiluted vitreous fluid collected during pars plana vitrectomy was used to measure trace elements using an atomic absorption spectrophotometer. Results: The level of vitreous iron increased threefold in Eales′ disease (1.85 ± 0.36 pg/ml, 2.5-fold in proliferative diabetic retinopathy (1.534 ± 0.17 pg/ml and 2.3-fold in eyes with intraocular foreign body (1.341 ± 0.25 pg/ml when compared with macular hole (0.588 ± 0.16 pg/ml. This was statistically significant (P < 0.05. Zinc was found to be low in Eales′ disease (0.57 ± 0.22 pg/ml when compared with other groups, though the difference was not statistically significant. Conclusion: The increased level of iron with decreased zinc content in Eales′ disease confirms the earlier reported oxidative stress mechanism for the disease. In proliferative diabetic retinopathy and intraocular foreign body the level of iron increases. This is undesirable as iron can augment glycoxidation, which can lead to increased susceptibility to oxidative damage, in turn causing vitreous liquefaction, posterior vitreous detachment and ultimately retinal detachment and vision loss

  18. Use of radionuclides in the study of iron metabolism in iron deficient states

    International Nuclear Information System (INIS)

    Anatkov, A.; Karakostov, K.; Iliev, Z.; Dimitrov, L.

    1977-01-01

    A study of erythropoiesis in iron deficient anemias by simultaneous labelling with the radionuclides iron 59 and chromium 51 revealed accelerated iron circuit, higher percentage of daily hemolysis, severely reduced or even absent labile reserves, decreased volume of packed red cells with no decrease of blood volume. Adequate iron 59 utilization was observed after administration of large doses of iron (500 mg) in the treatment of iron deficient anemias. (author)

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... age, sex, and whether you are pregnant or breastfeeding. Recommended daily iron intake for children and adults. ... need 8 mg. Pregnant women need 27 mg. Breastfeeding girls under age 18 need 10 mg while ...

  20. Effect of the AlCr20 Addition on the Microstructure of Secondary AlSi7Mg0.3 Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2014-06-01

    Full Text Available This paper deals with influence of chrome addition and heat treatment on segregation of iron based phases in the secondary alloy AlSi7Mg0.3 microstructure by chrome and heat treatment. Iron is the most common and harmful impurity in aluminum casting alloys and has long been associated with an increase of casting defects. In generally, iron is associated with the formation of Fe-rich intermetallic phases. It is impossible to remove iron from melt by standard operations, but it is possible to eliminate its negative influence by addition some other elements that affect the segregation of intermetallics in less harmful type or by heat treatment. Realization of experiments and results of analysis show new view on solubility of iron based phases during melt preparation with higher iron content and influence of chrome as iron corrector of iron based phases.

  1. Combined Therapy of Iron Chelator and Antioxidant Completely Restores Brain Dysfunction Induced by Iron Toxicity

    Science.gov (United States)

    Sripetchwandee, Jirapas; Pipatpiboon, Noppamas; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-01-01

    Background Excessive iron accumulation leads to iron toxicity in the brain; however the underlying mechanism is unclear. We investigated the effects of iron overload induced by high iron-diet consumption on brain mitochondrial function, brain synaptic plasticity and learning and memory. Iron chelator (deferiprone) and antioxidant (n-acetyl cysteine) effects on iron-overload brains were also studied. Methodology Male Wistar rats were fed either normal diet or high iron-diet consumption for 12 weeks, after which rats in each diet group were treated with vehicle or deferiprone (50 mg/kg) or n-acetyl cysteine (100 mg/kg) or both for another 4 weeks. High iron-diet consumption caused brain iron accumulation, brain mitochondrial dysfunction, impaired brain synaptic plasticity and cognition, blood-brain-barrier breakdown, and brain apoptosis. Although both iron chelator and antioxidant attenuated these deleterious effects, combined therapy provided more robust results. Conclusion In conclusion, this is the first study demonstrating that combined iron chelator and anti-oxidant therapy completely restored brain function impaired by iron overload. PMID:24400127

  2. Solidification of cast iron - A study on the effect of microalloy elements on cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham

    The present thesis deals with the heat transfer and solidification of ductile and microalloyed grey cast iron. Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. A series of ductile iron samples with two different...... of the austenite, in the last region to solidify. The superfine graphite which forms in this type of irons is short (10-20µm) and stubby. The microstructure of this kind of graphite flakes in titanium alloyed cast iron is studied using electron microscopy techniques. The methods to prepare samples of cast iron...... for comprehensive transmission electron microscopy of graphite and the surrounding iron matrix have been developed and explained. Dual beam microscopes are used for sample preparation. A TEM study has been carried out on graphite flakes in grey cast iron using selected area electron diffraction (SAED). Based...

  3. Search for trans-iron elements in hot, helium-rich white dwarfs with the HST Cosmic Origins Spectrograph

    Science.gov (United States)

    Hoyer, D.; Rauch, T.; Werner, K.; Kruk, J. W.

    2018-04-01

    The metal abundances in the atmospheres of hot white dwarfs (WDs) entering the cooling sequence are determined by the preceding Asymptotic Giant Branch (AGB) evolutionary phase and, subsequently, by the onset of gravitational settling and radiative levitation. In this paper, we investigate three hot He-rich WDs, which are believed to result from a late He-shell flash. During such a flash, the He-rich intershell matter is dredged up and dominates the surface chemistry. Hence, in contrast to the usual H-rich WDs, their spectra allow direct access to s-process element abundances in the intershell that were synthesized during the AGB stage. In order to look for trans-iron group elements (atomic number Z > 29), we performed a non-local thermodynamic equilibrium model atmosphere analysis of new ultraviolet spectra taken with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. One of our program stars is of PG 1159 spectral type; this star, PG 1707+427, has effective temperature Teff = 85 000 K, and surface gravity logg = 7.5. The two other stars are DO white dwarfs: WD 0111+002 has Teff = 58 000 K and log g = 7.7, and PG 0109+111 has Teff = 70 000 K and log g = 8.0. These stars trace the onset of element diffusion during early WD evolution. While zinc is the only trans-iron element we could detect in the PG 1159 star, both DOs exhibit lines from Zn, Ga, Ge, Se; one additionally exhibits lines from Sr, Sn, Te, and I and the other from As. Generally, the trans-iron elements are very abundant in the DOs, meaning that radiative levitation must be acting. Most extreme is the almost six orders of magnitude oversolar abundance of tellurium in PG 0109+111. In terms of mass fraction, it is the most abundant metal in the atmosphere. The two DOs join the hitherto unique hot DO RE 0503-289, in which 14 trans-iron elements had even been identified. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which

  4. Effect of irradiation and storage in the iron availability in lamb meat treated with different diets

    International Nuclear Information System (INIS)

    Souza, Adriana Regia Marques de; Arthur, Valter

    2008-01-01

    Irradiation is an efficient method to increase the microbiological safety and to maintain the nutrients such as iron in the meat. The best absorption form, heme iron, should be preserved in order to increase the nutritional quality of stored meat. The diet can alter the nutrients contents and form in the meat. The iron is provided from the diet and it is an essential element for the metabolic processes such as oxygen transport, oxidative metabolism, and cellular growth. Meat lamb samples treated with different diets (it controls, TAC1, TAC2 and sorghum) were wrapped to vacuous, and irradiated in the doses 0, 2 and 4 kGy and stored at 4 deg C during 15 days. The values of total iron and heme iron were measured at 0 and 15 days of storage. The storage reduced the content of total iron (18.36 for 14.28 mg.100 g -1 ) and heme iron (13.78 for 10.52 mg.100 g -1 ). The diets affected the levels of total and heme iron of the meat, and the sorghum diet was the one that presented the larger content. The dose of 2 kGy was the one that affected the iron the most independently of the storage time. It was verified that the amounts of total and heme iron varied according to the storage time, irradiation doses, and lamb diets. (author)

  5. Iron and Silicate Dust Growth in the Galactic Interstellar Medium: Clues from Element Depletions

    Science.gov (United States)

    Zhukovska, Svitlana; Henning, Thomas; Dobbs, Clare

    2018-04-01

    The interstellar abundances of refractory elements indicate a substantial depletion from the gas phase, which increases with gas density. Our recent model of dust evolution, based on hydrodynamic simulations of the life cycle of giant molecular clouds (GMCs), proves that the observed trend for [Sigas/H] is driven by a combination of dust growth by accretion in the cold diffuse interstellar medium (ISM) and efficient destruction by supernova (SN) shocks. With an analytic model of dust evolution, we demonstrate that even with optimistic assumptions for the dust input from stars and without destruction of grains by SNe it is impossible to match the observed [Sigas/H]–n H relation without growth in the ISM. We extend the framework developed in our previous work for silicates to include the evolution of iron grains and address a long-standing conundrum: “Where is the interstellar iron?” Much higher depletion of Fe in the warm neutral medium compared to Si is reproduced by the models, in which a large fraction of interstellar iron (70%) is locked as inclusions in silicate grains, where it is protected from efficient sputtering by SN shocks. The slope of the observed [Fegas/H]–n H relation is reproduced if the remaining depleted iron resides in a population of metallic iron nanoparticles with sizes in the range of 1–10 nm. Enhanced collision rates due to the Coulomb focusing are important for both silicate and iron dust models to match the slopes of the observed depletion–density relations and the magnitudes of depletion at high gas density.

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... of iron is the same for boys and girls. From birth to 6 months, babies need 0. ... 14 to 18, boys need 11 mg, while girls need 15 mg. From ages 19 to 50, ... 8 mg. Pregnant women need 27 mg. Breastfeeding girls under age 18 need 10 mg while breastfeeding ...

  7. Effects of a reduced dose of injected iron on health, iron status and growth of suckling piglets with access to iron enriched soil.

    Science.gov (United States)

    Thanner, S; Gutzwiller, A

    2018-02-01

    The effects of the recommended dose of 200 mg iron and of half that dose injected on the first day of life on health, iron status and performance during the 4 week suckling period were studied in 2'123 piglets. All piglets received creep feed and soil which was supplemented with 14 g iron per kg. Neither mortality nor the prevalence of arthritis, meningitis and foot abscess (each disease affecting about 1% of the piglets) differed between the two groups. The low dose of 100 mg iron decreased blood haemoglobin concentration at weaning (110 ± 19 vs.120 ± 15 g/l), but did not affect growth rate.

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... same for boys and girls. From birth to 6 months, babies need 0.27 mg of iron. ... for iron deficiency at certain ages: Infants between 6 and 12 months, especially if they are fed ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... breastfeeding women older than 18 need 9 mg. Problems absorbing iron Even if you consume the recommended ... interested in learning how having iron-deficiency anemia early in life affects later behavior, thinking, and mood ...

  10. Effects of iron, tin, and copper on zinc absorption in humans

    International Nuclear Information System (INIS)

    Valberg, L.S.; Flanagan, P.R.; Chamberlain, M.J.

    1984-01-01

    Zinc absorption as measured by body retention of [65Zn]zinc chloride or a turkey test meal extrinsically labeled with 65Zn was determined in human subjects by whole body counting after 7 days. Average 65Zn absorption from zinc chloride in persons with a high iron-absorbing capacity was similar to persons with a low capacity to absorb iron. Inorganic iron, 920 mumol (51 mg), or HB iron, 480 mumol (26 mg), inhibited 65Zn absorption from 92 mumol (6 mg) of zinc chloride. When 610 mumol of iron (34 mg) was added to a turkey test meal containing 61 mumol of zinc (4 mg), 65Zn absorption was not inhibited. Tin, 306 mumol (36 mg), given with zinc chloride or turkey test meals (61 mumol, 4 mg, of Zn) significantly reduced 65Zn absorption. Copper, 79 mumol (5 mg), had no significant effect on the 65Zn absorption from 7.9 mumol (0.5 mg) of zinc chloride. In summary, the capacity to absorb iron did not influence 65Zn absorption, but both inorganic iron and heme-iron inhibited 65Zn absorption from zinc chloride. Inorganic iron had no effect, however, on 65Zn absorption from the turkey test meal. Tin in a large dose also inhibited 65Zn absorption from both zinc chloride and the turkey test meal

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... need 15 mg. From ages 19 to 50, men need 8 mg and women need 18 mg. After age 51, both men and women need 8 mg. Pregnant women need ... 50 years need more iron than boys and men of the same age. Women are at higher ...

  12. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins.

    Science.gov (United States)

    Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L

    2008-02-22

    One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.

  13. Arsenic removal with iron(II) and iron(III) in waters with high silicate and phosphate concentrations.

    Science.gov (United States)

    Roberts, Linda C; Hug, Stephan J; Ruettimann, Thomas; Billah, Morsaline; Khan, Abdul Wahab; Rahman, Mohammad Tariqur

    2004-01-01

    Arsenic removal by passive treatment, in which naturally present Fe(II) is oxidized by aeration and the forming iron(III) (hydr)oxides precipitate with adsorbed arsenic, is the simplest conceivable water treatment option. However, competing anions and low iron concentrations often require additional iron. Application of Fe(II) instead of the usually applied Fe(III) is shown to be advantageous, as oxidation of Fe(II) by dissolved oxygen causes partial oxidation of As(III) and iron(III) (hydr)oxides formed from Fe(II) have higher sorption capacities. In simulated groundwater (8.2 mM HCO3(-), 2.5 mM Ca2+, 1.6 mM Mg2+, 30 mg/L Si, 3 mg/L P, 500 ppb As(III), or As(V), pH 7.0 +/- 0.1), addition of Fe(II) clearly leads to better As removal than Fe(III). Multiple additions of Fe(II) further improved the removal of As(II). A competitive coprecipitation model that considers As(III) oxidation explains the observed results and allows the estimation of arsenic removal under different conditions. Lowering 500 microg/L As(III) to below 50 microg/L As(tot) in filtered water required > 80 mg/L Fe(III), 50-55 mg/L Fe(II) in one single addition, and 20-25 mg/L in multiple additions. With As(V), 10-12 mg/L Fe(II) and 15-18 mg/L Fe(III) was required. In the absence of Si and P, removal efficiencies for Fe(II) and Fe(III) were similar: 30-40 mg/L was required for As(II), and 2.0-2.5 mg/L was required for As(V). In a field study with 22 tubewells in Bangladesh, passive treatment efficiently removed phosphate, but iron contents were generally too low for efficient arsenic removal.

  14. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    OpenAIRE

    Edelman , Irina; Ivanova , Oxana; Ivantsov , Ruslan; Velikanov , D.; Zabluda , V.; Zubavichus , Y.; Veligzhanin , A.; Zaikovskiy , V.; Stepanov , S.; Artemenko , Alla; Curély , Jacques; Kliava , Janis

    2012-01-01

    International audience; A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge struct...

  15. Efficacy of iron fortification compared to iron supplementation among Vietnamese schoolchildren.

    Science.gov (United States)

    Thi Le, Huong; Brouwer, Inge D; Burema, Jan; Nguyen, Khan Cong; Kok, Frans J

    2006-12-05

    The effect of iron fortification is generally assumed to be less than iron supplementation; however, the magnitude of difference in effects is not known. The present study aims to compare the efficacy of these two strategies on anaemia and iron status. After screening on low Hb, 425 anaemic children in six primary schools in Tam Nong district of Phu Tho province were included in a randomized, placebo-controlled trial comparing two groups receiving iron fortified instant noodles or iron supplementation for 6 months and a control group, with children in all groups having been dewormed. Blood samples were collected before and after intervention for haemoglobin, serum ferritin (SF), serum transferrin receptor (TfR), C-reactive protein (CRP), and haemoglobinopathies analysis. Regression analysis was used to assess the effect of iron fortification and iron supplementation on haemoglobin concentration, SF, TfR, body iron, and anaemic status as outcome variables. The improvement of haemoglobin, SF, and body iron level in the group receiving iron fortification was 42% (2.6 g/L versus 6.2 g/L), 20% (23.5 microg/L versus 117.3 microg/L), and 31.3% (1.4 mg/kg versus 4.4 mg/kg) of that in the iron supplementation group. The prevalence of anaemia dropped to 15.1% in the control group, with an additional reduction of anaemia of 8.5% in the iron supplementation group. The additional reduction due to iron fortification was 5.4%, which amounts to well over 50% of the impact of supplementation. In conclusion, the efficacy of iron fortification based on reduction of prevalence of anaemia, and on the change in haemoglobin level, is about half of the maximum impact of supplementation in case of optimal compliance. Thus, in a population of anaemic children with mild iron deficiency, iron fortification should be the preferred strategy to combat anaemia.

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... recommended amount of iron is the same for boys and girls. From birth to 6 months, babies need 0. ... 13, 8 mg. From ages 14 to 18, boys need 11 mg, while girls need 15 mg. From ages 19 to 50, ...

  17. Comparison of food habits, iron intake and iron status in adolescents before and after the withdrawal of the general iron fortification in Sweden.

    Science.gov (United States)

    Sjöberg, A; Hulthén, L

    2015-04-01

    Sifted flour was fortified with carbonyl iron for 50 years in Sweden. This study evaluates changes in food habits, intake of iron, factors affecting iron absorption and iron status after the discontinuation of the general iron fortification in adolescents with the highest requirements. A total of 2285 15- to 16-year-old students in 1994 (634 girls and 611 boys) and in 2000 (534 girls and 486 boys) in 13 schools in Gothenburg, Sweden, were included in two cross-sectional surveys assessing food habits with diet history interviews and iron deficiency defined with serum ferritin stores ⩽ 15 μg/l and no preceding infection. In girls, iron deficiency increased from 37 to 45%, while in boys, it was stable at 23%. Total iron intake decreased from 15.7 to 9.5 mg/day and 22.5 to 13.9 mg/day in girls and boys, respectively. Cereals were the main iron source. Among girls, the increase of fish and decrease of calcium intake may not counteract the effect of decreased intake of fortification iron. Among boys, more meat, less calcium and more vitamin C may have favoured the bioavailability of iron. The discontinuation of the general iron fortification resulted in a 39% decrease in total iron intake and iron deficiency increased substantially in girls. However, in boys no change in iron deficiency was observed. Whether this was a result of changed bioavailability of dietary iron or simultaneous changes of non-dietary factors remains to be explored.

  18. Validation of FNAA method for testing the elements of Mn, Cr and Mg on the Gajahwong river sediment sample

    International Nuclear Information System (INIS)

    Wisjachudin Faisal; Elin Nuraini

    2010-01-01

    Validation of elements of Mn, Cr and Mg by using FNAA method has been performed. NBS SRM 8704 (Bufallo River Sediment), was used as the standard reference material, with the neutrons generator operating condition at the optimum voltage of 110 kV. Energy and channel number of calibration lines obtained with the standard equation as y = 1.034 x + 151.21. From the analysis of SRM, the results show that only Mg can be analyzed, because Cr and Mn are located at the same peak point (interferences), so that they can not be analyzed. From the analysis for Mg element (SRM), the precision and the accuration obtained are 95.53 % and 94.88%, while the average price of expanded uncertainty for the various locations is 0.233 ± 0.012. Mg content analysis result at various locations along the river Gajahwong ranging from 85.41 – 103.55 ppm. When compared with previous studies showing the elements content of Fe, Al and Si is much higher than Mg content. (author)

  19. Iron status in Danish women, 1984-1994: a cohort comparison of changes in iron stores and the prevalence of iron deficiency and iron overload

    DEFF Research Database (Denmark)

    Milman, N.; Byg, K.E.; Ovesen, Lars

    2003-01-01

    Background and objectives: From 1954 to 1986, flour in Denmark was fortified with 30 mg carbonyl iron per kilogram. This mandatory enrichment of cereal products was abolished in 1987. The aim was to evaluate iron status in the Danish female population before and after abolishment of iron...... fortification. Methods: Iron status, serum ferritin and haemoglobin, was assessed in population surveys in 1983-1984 comprising 1221 Caucasian women (1089 non-blood-donors, 130 donors) and in 1993-1994 comprising 1261 women (1155 non-blood-donors, 104 donors) equally distributed in age cohorts of 40, 50, 60......, postmenopausal women had median ferritin of 75 mug/L and in 1994 of 93 mug/L (P iron stores (ferritin iron stores (ferritin less...

  20. Effects of various iron fortificants on sensory acceptability and shelf-life stability of instant noodles.

    Science.gov (United States)

    Kongkachuichai, Ratchanee; Kounhawej, Arunwadee; Chavasit, Visith; Charoensiri, Rin

    2007-06-01

    Iron-deficiency anemia is the most common nutritional problem in Thailand and many developing countries. One of the most sustainable and cost-effective strategies for combating iron deficiency is fortification of staple foods with iron. In this study, the feasibility of fortifying instant noodles with different forms of iron fortificants (ferrous sulfate [FS], ferric sodium ethylenediaminetetraacetic acid [NaFeEDTA], and encapsulated H-reduced elemental iron [EEI] was evaluated, and the fortified noodles were compared with unfortified noodles for changes in physical, chemical, and sensory qualities. Wheat flour used to make instant noodles was fortified to produce a concentration of 5 mg of iron per 50-g serving of instant noodles (one-third of the Thai recommended dietary intake). Analytical data showed that the iron contents were close to 5 mg per serving of noodles fortified with FS, NaFeEDTA, or EEI (5.27 +/- 0.10, 4.27 +/- 0.07, and 5.26 +/- 0.47 mg, respectively). The color quality (measured by L*, lightness, and b* yellowness) of the raw dough sheet and of uncooked and cooked instant noodles fortified with FS was lower than that of the unfortified, but color quality was not changed by the addition of NaFeEDTA. The overall sensory acceptability scores of unfortified and fortified noodles were about 6 ("like slightly"). No metallic odor was observed. During 3 months of storage at room temperature, the iron fortificants did not affect the peroxide level, color, or sensory qualities of the product. Iron fortification of wheat flour used to make instant noodles is feasible. NaFeEDTA is the preferred fortificant because of its nonsignificant effect on the color and sensory quality of the products.

  1. Crystal structure and Mössbauer spectroscopy of a new iron phosphate Mg{sub 2.88}Fe{sub 4.12}(PO{sub 4}){sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Y. [UR Matériaux Inorganiques, Faculté des Sciences, 5019 Monastir (Tunisia); Hidouri, M., E-mail: mourad_hidouri@yahoo.fr [UR Matériaux Inorganiques, Faculté des Sciences, 5019 Monastir (Tunisia); Álvarez-Serrano, I.; Veiga, M.L. [Departamento de Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid (Spain); Wattiaux, A. [Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, Université de Bordeaux I, 87 Avenue du Dr. A. Schweitzer, 33608 Pessac-Cedex (France); Amara, Mongi B. [UR Matériaux Inorganiques, Faculté des Sciences, 5019 Monastir (Tunisia)

    2014-01-25

    Highlights: • This study reports the synthesis and characterization of a new iron phosphate. • The cationic distribution is supported by a Mössbauer spectroscopy study. • The magnetic susceptibility results are discussed. -- Abstract: A new mixed valence iron phosphate Mg{sub 2.88}Fe{sub 4.12}(PO{sub 4}){sub 6} has been prepared as single crystals by the flux method and as a powder by solid state reaction and its crystal structure has been determined by X-ray diffraction. This compound crystallises in the triclinic system with space group P1{sup ¯} and a = 6.325(5) Å, b = 7.911(3) Å, c = 9.271(3) Å, α = 104.62(1)°, β = 108.41(1)° and γ = 101.24(1)° and Z = 1. Its structure is similar to that of the mineral howardevansite. It consists of Fe{sub 2}O{sub 10} bioctahedral units and MgO{sub 5} trigonal bipyramids sharing edges to form infinite zigzag chains. Such chains are linked to each other by MO{sub 6} (0.88 Mg{sup 2+} + 0.12 Fe{sup 2+}) octahedra and PO{sub 4} tetrahedra resulting in a 3D covalent framework. Magnetic measurements indicated two successive transitions at 46 K and 22 K. Mössbauer spectroscopy confirmed the mixed valence of iron and gave accurate information about its local environment.

  2. Pygoscelis antarcticus feathers as bioindicator of trace element risk in marine environments from Barton Peninsula, 25 de Mayo (King George) Island, Antarctica.

    Science.gov (United States)

    Catán, Soledad Perez; Bubach, Debora; Di Fonzo, Carla; Dopchiz, Laura; Arribére, Maria; Ansaldo, Martin

    2017-04-01

    We report the contents of elements in feathers of Chinstrap penguin (Pygoscelis antarcticus), which had not been informed up to now, such as silver and bromine and others listed as hazardous by the United States Environmental Protection Agency as arsenic, cobalt, chromium, and mercury. Analyses of the element concentrations in feathers, adult and chicken, from Barton Peninsulas at 25 de Mayo (King George) Island, South Shetlands, were made by Instrumental Neutron Activation Analysis. Samarium, lanthanum a, thorium, and uranium concentrations in Chinstrap penguin feathers were below 0.1 mg/kg. This suggests that the elements in feather do not come from atmospheric particles surface deposition. Arsenic (0.120 ± 0.050 mg/kg) and cobalt (0.030 ± 0.020 mg/kg) concentrations were lower than the reports for other colony of Chinstrap penguins, and essential elements as iron (26 ± 12 mg/kg), zinc (78.0 ± 5.3 mg/kg), and chromium (0.51 ± 0.27 mg/kg) were in the same range while Se (2.90 ± 0.65 mg/kg) content were the lowest reported. Mercury (0.43 ± 0.21 mg/kg), chromium (0.210 ± 0.060 mg/kg), and silver (0.083 ± 0.003 mg/kg) in chicks tended to be lower than in adults. Iron, cobalt, and arsenic concentrations in feathers found in this study were the lowest compared to measurements were in several penguin species in Antarctica. These results confirm to feathers like effective indicators for the trace elements incorporated in the penguins and it provide a data set which can adds to the baseline for bioindication studies using feathers.

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... girls. From birth to 6 months, babies need 0.27 mg of iron. This number goes up to 11 mg for children ages 7 to 12 months, and down to 7 mg for children ages 1 to 3. From ages 4 to 8, children ...

  4. Associations between Dietary Iron and Zinc Intakes, and between Biochemical Iron and Zinc Status in Women

    Directory of Open Access Journals (Sweden)

    Karen Lim

    2015-04-01

    Full Text Available Iron and zinc are found in similar foods and absorption of both may be affected by food compounds, thus biochemical iron and zinc status may be related. This cross-sectional study aimed to: (1 describe dietary intakes and biochemical status of iron and zinc; (2 investigate associations between dietary iron and zinc intakes; and (3 investigate associations between biochemical iron and zinc status in a sample of premenopausal women aged 18–50 years who were recruited in Melbourne and Sydney, Australia. Usual dietary intakes were assessed using a 154-item food frequency questionnaire (n = 379. Iron status was assessed using serum ferritin and hemoglobin, zinc status using serum zinc (standardized to 08:00 collection, and presence of infection/inflammation using C-reactive protein (n = 326. Associations were explored using multiple regression and logistic regression. Mean (SD iron and zinc intakes were 10.5 (3.5 mg/day and 9.3 (3.8 mg/day, respectively. Median (interquartile range serum ferritin was 22 (12–38 μg/L and mean serum zinc concentrations (SD were 12.6 (1.7 μmol/L in fasting samples and 11.8 (2.0 μmol/L in nonfasting samples. For each 1 mg/day increase in dietary iron intake, zinc intake increased by 0.4 mg/day. Each 1 μmol/L increase in serum zinc corresponded to a 6% increase in serum ferritin, however women with low serum zinc concentration (AM fasting < 10.7 μmol/L; AM nonfasting < 10.1 μmol/L were not at increased risk of depleted iron stores (serum ferritin <15 μg/L; p = 0.340. Positive associations were observed between dietary iron and zinc intakes, and between iron and zinc status, however interpreting serum ferritin concentrations was not a useful proxy for estimating the likelihood of low serum zinc concentrations and women with depleted iron stores were not at increased risk of impaired zinc status in this cohort.

  5. Electronic properties of iron impurity in hcp metals from Moessbauer studies

    International Nuclear Information System (INIS)

    Janot, C.; Delcroix, P.

    1975-01-01

    Moessbauer spectroscopy was used in quantitative investigating the electronic properties of iron impurities in hexagonal close-packed metals. Beryllium of the highest commercially obtainable purity containing about 300 ppm residual impurities was used as a host element. Experimental evidence is given for the existence of localized electronic states which have non-spherical distribution and obviously contribute especially to the electric field gradient. Iron impurity seems to retain the same electronic behaviour as long as the host hcp metal is a normal one (Mg, Cd, Zn), but the localized electronic states seem to disappear when the host is a transition hcp metal (Co, Ti, Sc, Zr, etc.). (Z.S.)

  6. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    DEFF Research Database (Denmark)

    Scholz, Florian; Löscher, Carolin; Fiskal, Annika

    2016-01-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface...

  7. Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Sha, Gang; Yao, Lan; Liao, Xiaozhou; Ringer, Simon P.; Chao Duan, Zhi; Langdon, Terence G.

    2011-01-01

    The solute segregation at grain boundaries (GBs) of an ultrafine grained (UFG) Al-Zn-Mg-Cu alloy processed by equal-channel angular pressing (ECAP) at 200 o C was characterised using three-dimensional atom probe. Mg and Cu segregate strongly to the grain boundaries. In contrast, Zn does not always show clear segregation and may even show depletion near the grain boundaries. Trace element Si selectively segregates at some GBs. An increase in the number of ECAP passes leads to a decrease in the grain size but an increase in solute segregation at the boundaries. The significant segregation of alloying elements at the boundaries of ultrafine-grained alloys implies that less solutes will be available in the matrix for precipitation with a decrease in the average grain size. -- Research Highlights: → Atom probe tomography has been employed successfully to reveal unique segregation of solutes at ultrafine grained material. → Mg and Cu elements segregated strongly at the grain boundary of an ultrafine grained Al-Zn-Mg-Cu alloy processed by 4-pass and 8-pass ECAP at 200 o C. Zn frequently depleted at GBs with a Zn depletion region of 7-15 nm in width on one or both sides of the GBs. Only a small fraction (3/13) of GBs were observed with a low level of Zn segregation where the combined Mg and Cu excess is over 3.1 atom/nm 2 . Si appeared selectively segregated at some of the GBs. → The increase in number of ECAP passes from 4 to 8 correlated with the increase in mean level segregation of Mg and Cu for both solute excess and peak concentration. → The change of plane normal of a grain boundary within 30 o only leads to a slight change in the solute segregation level.

  8. Studies on the absorption of iron after oral administration in piglets

    International Nuclear Information System (INIS)

    Thoren-Tolling, K.

    1975-01-01

    72 newborn piglets from 9 litters were used to determinate the retention and distribution in the body of labelled iron given either orally as ferrous fumarate (100 mg Fe 2+ ) or iron dextran (200 mg Fe 3+ ), or by injection as iron dextran (100 mg Fe 3+ ). About 25-30 % of the radioiron from a single oral dose of labelled ferrous fumarate (100 mg Fe 2+ ), and about 55-60 % from a single oral dose of labelled iron dextran (200 mg Fe 3+ ) were absorbed by the body. As iron is excreted throughout the experiment, only about 20% and 40-50% respectively of the radio-iron from these iron compounds were recovered 3 weeks after treatment. The total amounts of labelled iron retained in the body after oral administration of the same doses of these iron compounds, alone or in combination, were compared. A slight retardation of the absorption of ferrous iron was observed when iron dextran was administered simultaneeously. The absorption of iron dextran was not influenced by the simultaneous administration of ferrous fumarate. The importance of the liver as the main iron storage site was shown, and the rapid utilization of iron from storage sites, about 2-3 weeks after treatment was demonstrated. The concentration of labelled iron in urine and some lymphglands was measured. Only minute quantities of radio-iron were excreted in the urine throughout the entire experiment. The lymph nodes seem to act as iron stones after administration of iron dextran. The importance of the lymphatic tissue in absorption and storage of labelled iron is discussed. (author)

  9. Improvement of bioavailability for iron from vegetarian meals by ascorbic acid

    International Nuclear Information System (INIS)

    Sritongkul, N.; Tuntawiroon, M.; Pleehachinda, R.; Suwanik, R.

    1996-01-01

    There are two kinds of iron in the diet with respect to the mechanism of absorption, heme-iron which is present as haemoglobin or myoglobin in meat and blood products, and, non-heme iron which is the main source of dietary iron. The bioavailability of the non-heme food iron is much lower than heme-iron. Vegetarian diets contain only non-heme iron. Iron intake from vegetarian meals are generally satisfied with the requirements, however, the bioavailabilities for non-heme iron is determined not only by iron content byt also the balance between different dietary factors enhancing and inhibiting iron absorption. The main enhancing factor in vegetarian meals is ascorbic acid in fruits and vegetables, inhibitors are phytate in cereals and grains, and tannins in some spices and vegetables. It has been reported that iron deficiency is one of the common micronutrient problems associated with unplanned vegetarian diets. In the present study the absorption of non-heme iron was measured from 2 vegetarian meals containing considerable amounts of phytate and tannin. The extrinsic tay method ( 59 Fe/ 55 Fe) was used to labelled the non-heme iron. The mean percentage absorption of non-heme iron from both meals was slightly different due to differences in their dietary contents. Their initial percentages iron absorption were apparent low (3.5% and 4.1%), however, the absorption progressively increased with increase in the level of ascorbic acid, 2-3 times with 100 mg and 4-5 times with 200 mg of ascorbic acid. The average amount of iron absorbed per 2000 kcal increased from 0.37 mg to 0.86 mg and 1.45 mg with the addition of 100 mg and 200 mg ascorbic acid respectively (p < 0.001). Considering the limited caloric intakes and the iron content in the meals, the amount of iron absorbed from vegetarian meals without ascorbic acid was not able to meet certain requirements for children, adolescents and menstruating women. The minimal requirement for dietary iron needed to be absorbed is

  10. Improvement of bioavailability for iron from vegetarian meals by ascorbic acid

    Energy Technology Data Exchange (ETDEWEB)

    Sritongkul, N; Tuntawiroon, M; Pleehachinda, R; Suwanik, R [Siriraj Hospital Medical School, Bangkok (Thailand). Section of Nuclear Medicine

    1996-12-01

    There are two kinds of iron in the diet with respect to the mechanism of absorption, heme-iron which is present as haemoglobin or myoglobin in meat and blood products, and, non-heme iron which is the main source of dietary iron. The bioavailability of the non-heme food iron is much lower than heme-iron. Vegetarian diets contain only non-heme iron. Iron intake from vegetarian meals are generally satisfied with the requirements, however, the bioavailabilities for non-heme iron is determined not only by iron content byt also the balance between different dietary factors enhancing and inhibiting iron absorption. The main enhancing factor in vegetarian meals is ascorbic acid in fruits and vegetables, inhibitors are phytate in cereals and grains, and tannins in some spices and vegetables. It has been reported that iron deficiency is one of the common micronutrient problems associated with unplanned vegetarian diets. In the present study the absorption of non-heme iron was measured from 2 vegetarian meals containing considerable amounts of phytate and tannin. The extrinsic tay method ({sup 59}Fe/ {sup 55}Fe) was used to labelled the non-heme iron. The mean percentage absorption of non-heme iron from both meals was slightly different due to differences in their dietary contents. Their initial percentages iron absorption were apparent low (3.5% and 4.1%), however, the absorption progressively increased with increase in the level of ascorbic acid, 2-3 times with 100 mg and 4-5 times with 200 mg of ascorbic acid. The average amount of iron absorbed per 2000 kcal increased from 0.37 mg to 0.86 mg and 1.45 mg with the addition of 100 mg and 200 mg ascorbic acid respectively (p < 0.001). Considering the limited caloric intakes and the iron content in the meals, the amount of iron absorbed from vegetarian meals without ascorbic acid was not able to meet certain requirements for children, adolescents and menstruating women. The minimal requirement for dietary iron needed to be

  11. Relationships Between Element Contents in Polish Children’s and Adolescents’ Hair

    OpenAIRE

    Długaszek, Maria; Skrzeczanowski, Wojciech

    2017-01-01

    Environment, sex, and age are the main factors which determine the elemental composition of hair. The objective of the study is to determine the contents of calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), iron (Fe), lead (Pb), and cadmium (Cd) in girls’ and boys’ hair in five age groups (within 1–19-year range) corresponding to successive human ontogenesis phases as well as to evaluate the relationships between these elements. Quantitative analysis has been carried out using atomic abso...

  12. Mg2BIV: Narrow Bandgap Thermoelectric Semiconductors

    Science.gov (United States)

    Kim, Il-Ho

    2018-05-01

    Thermoelectric materials can convert thermal energy directly into electric energy and vice versa. The electricity generation from waste heat via thermoelectric devices can be considered as a new energy source. For instance, automotive exhaust gas and all industrial processes generate an enormous amount of waste heat that can be converted to electricity by using thermoelectric devices. Magnesium compound Mg2BIV (BIV = Si, Ge or Sn) has a favorable combination of physical and chemical properties and can be a good base for the development of new efficient thermoelectrics. Because they possess similar properties to those of group BIV elemental semiconductors, they have been recognized as good candidates for thermoelectric applications. Mg2Si, Mg2Ge and Mg2Sn with an antifluorite structure are narrow bandgap semiconductors with indirect band gaps of 0.77 eV, 0.74 eV, and 0.35 eV, respectively. Mg2BIV has been recognized as a promising material for thermoelectric energy conversion at temperatures ranging from 500 K to 800 K. Compared to other thermoelectric materials operating in the similar temperature range, such as PbTe and filled skutterudites, the important aspects of Mg2BIV are non-toxic and earth-abundant elements. Based on classical thermoelectric theory, the material factor β ( m* / m e)3/2μκ L -1 can be utilized as the criterion for thermoelectric material selection, where m* is the density-of-states effective mass, me is the mass of an electron, μ is the carrier mobility, and κL is the lattice thermal conductivity. The β for magnesium silicides is 14, which is very high compared to 0.8 for iron silicides, 1.4 for manganese silicides, and 2.6 for silicon-germanium alloys. In this paper, basic phenomena of thermoelectricity and transport parameters for thermoelectric materials were briefly introduced, and thermoelectric properties of Mg2BIV synthesized by using a solid-state reaction were reviewed. In addition, various Mg2BIV compounds were discussed

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... age, sex, and whether you are pregnant or breastfeeding. Recommended daily iron intake for children and adults. The table lists the recommended amounts of iron, in milligrams (mg) at different ages and stages of life. Until the teen years, the recommended amount of ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... on your age, sex, and whether you are pregnant or breastfeeding. Recommended daily iron intake for children ... 51, both men and women need 8 mg. Pregnant women need 27 mg. Breastfeeding girls under age ...

  15. The relative dietary importance of haem and non-haem iron

    International Nuclear Information System (INIS)

    Bezwoda, W.R.; Bothwell, T.H.; Charlton, R.W.; Torrance, J.D.; MacPhail, A.P.; Derman, D.P.; Mayet, F.

    1983-01-01

    A study was undertaken to find out the relative amounts of haem and non-haem iron absorbed from meals in which varying amounts of these substances were present. Four meals, each containing 6 mg of iron but with varying ratios of haem and non-haem iron, were fed to two groups of subjects, each group receiving two meals. The geometric mean percentage absorption of non-haem iron decreased from 18,0% (SD range 14,6-22,3%) to 6,4% (SD range 3,4-11,8%) as the non-haem iron content of the meal increased from 1,52 mg to 5,72 mg - there was therefore little variation in the actual amounts of non-haem iron absorbed from the different meals. In contrast, the geometric mean absorption of haem iron was approximately 20% from all four meals, although the haem iron content varied between 0,28 mg and 4,48 mg. The amount of haem iron absorbed was thus a linear function of the amount of haem iron in the meal. Two points emerged from the study. Firstly, the relative importance of haem iron in overall iron nutrition was confirmed. Secondly, the fact that the pattern of absorption in relation to dosage was so different from haem iron and non-haem iron suggested that a controlling mechanism for non-haem iron absorption may be located at the mucosal surface. This conclusion is based on the fact that haem iron, the percentage absorption of which was found to be independent of the size of the dose, is absorped into the mucosal cell when still contained within the porphyrin ring and the iron thus bypasses some controlling mechanism at the mucosal border

  16. Experimental oral iron administration: Histological investigations and expressions of iron handling proteins in rat retina with aging.

    Science.gov (United States)

    Kumar, Pankaj; Nag, Tapas Chandra; Jha, Kumar Abhiram; Dey, Sanjay Kumar; Kathpalia, Poorti; Maurya, Meenakshi; Gupta, Chandan Lal; Bhatia, Jagriti; Roy, Tara Sankar; Wadhwa, Shashi

    2017-12-01

    Iron is implicated in age-related macular degeneration (AMD). The aim of this study was to see if long-term, experimental iron administration with aging modifies retinal and choroidal structures and expressions of iron handling proteins, to understand some aspects of iron homeostasis. Male Wistar rats were fed with ferrous sulphate heptahydrate (500mg/kg body weight/week, oral; elemental iron availability: 20%) from 2 months of age onward until they were 19.5 month-old. At 8, 14 and 20 months of age, they were sacrificed and serum and retinal iron levels were detected by HPLC. Oxidative stress was analyzed by TBARS method. The retinas were examined for cell death (TUNEL), histology (electron microscopy) and the expressions of transferrin, transferrin receptor-1 [TFR-1], H- and L-ferritin. In control animals, at any age, there was no difference in the serum and retinal iron levels, but the latter increased significantly in 14- and 20 month-old iron-fed rats, indicating that retinal iron accumulation proceeds with progression of aging (>14 months). The serum and retinal TBARS levels increased significantly with progression of aging in experimental but not in control rats. There was significant damage to choriocapillaris, accumulation of phagosomes in retinal pigment epithelium and increased incidence of TUNEL+ cells in outer nuclear layer and vacuolation in inner nuclear layer (INL) of 20 month-aged experimental rats, compared to those in age-matched controls. Vacuolations in INL could indicate a long-term effect of iron accumulation in the inner retina. These events paralleled the increased expression of ferritins and transferrin and a decrease in the expression of TFR-1 in iron-fed rats with aging, thereby maintaining iron homeostasis in the retina. As some of these changes mimic with those happening in eyes with AMD, this model can be utilized to understand iron-induced pathophysiological changes in AMD. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. X-shooter spectroscopy of young stellar objects in Lupus. Lithium, iron, and barium elemental abundances

    Science.gov (United States)

    Biazzo, K.; Frasca, A.; Alcalá, J. M.; Zusi, M.; Covino, E.; Randich, S.; Esposito, M.; Manara, C. F.; Antoniucci, S.; Nisini, B.; Rigliaco, E.; Getman, F.

    2017-09-01

    Aims: With the purpose of performing a homogeneous determination of elemental abundances for members of the Lupus T association, we analyzed three chemical elements: lithium, iron, and barium. The aims were: 1) to derive the lithium abundance for the almost complete sample ( 90%) of known class II stars in the Lupus I, II, III, and IV clouds; 2) to perform chemical tagging of a region where few iron abundance measurements have been obtained in the past, and no determination of the barium content has been done up to now. We also investigated possible barium enhancement at the very young age of the region, as this element has become increasingly interesting in the last few years following the evidence of barium over-abundance in young clusters, the origin of which is still unknown. Methods: Using the X-shooter spectrograph mounted on the Unit 2 (UT2) at the Very Large Telescope (VLT), we analyzed the spectra of 89 cluster members, both class II (82) and class III (7) stars. We measured the strength of the lithium line at λ6707.8 Å and derived the abundance of this element through equivalent width measurements and curves of growth. For six class II stars we also derived the iron and barium abundances using the spectral synthesis method and the code MOOG. The veiling contribution was taken into account in the abundance analysis for all three elements. Results: We find a dispersion in the strength of the lithium line at low effective temperatures and identify three targets with severe Li depletion. The nuclear age inferred for these highly lithium-depleted stars is around 15 Myr, which exceeds by an order of magnitude the isochronal one. We derive a nearly solar metallicity for the members whose spectra could be analyzed. We find that Ba is over-abundant by 0.7 dex with respect to the Sun. Since current theoretical models cannot reproduce this abundance pattern, we investigated whether this unusually large Ba content might be related to effects due to stellar

  18. Efficacy of iron fortification compared to iron supplementation among Vietnamese schoolchildren

    Directory of Open Access Journals (Sweden)

    Nguyen Khan

    2006-12-01

    Full Text Available Abstract The effect of iron fortification is generally assumed to be less than iron supplementation; however, the magnitude of difference in effects is not known. The present study aims to compare the efficacy of these two strategies on anaemia and iron status. After screening on low Hb, 425 anaemic children in six primary schools in Tam Nong district of Phu Tho province were included in a randomized, placebo-controlled trial comparing two groups receiving iron fortified instant noodles or iron supplementation for 6 months and a control group, with children in all groups having been dewormed. Blood samples were collected before and after intervention for haemoglobin, serum ferritin (SF, serum transferrin receptor (TfR, C-reactive protein (CRP, and haemoglobinopathies analysis. Regression analysis was used to assess the effect of iron fortification and iron supplementation on haemoglobin concentration, SF, TfR, body iron, and anaemic status as outcome variables. The improvement of haemoglobin, SF, and body iron level in the group receiving iron fortification was 42% (2.6 g/L versus 6.2 g/L, 20% (23.5 μg/L versus 117.3 μg/L, and 31.3% (1.4 mg/kg versus 4.4 mg/kg of that in the iron supplementation group. The prevalence of anaemia dropped to 15.1% in the control group, with an additional reduction of anaemia of 8.5% in the iron supplementation group. The additional reduction due to iron fortification was 5.4%, which amounts to well over 50% of the impact of supplementation. In conclusion, the efficacy of iron fortification based on reduction of prevalence of anaemia, and on the change in haemoglobin level, is about half of the maximum impact of supplementation in case of optimal compliance. Thus, in a population of anaemic children with mild iron deficiency, iron fortification should be the preferred strategy to combat anaemia.

  19. Composição elementar do material particulado presente no aerossol atmosférico do município de Sete Lagoas, Minas Gerais Elemental composition of the particulate matter present in the atmospheric aerosols of Sete Lagoas, MG

    Directory of Open Access Journals (Sweden)

    Paula Guimarães Moura Queiroz

    2007-10-01

    Full Text Available The main objective of this study was the identification of sources generating particulate matter in the atmospheric aerosols of Sete Lagoas, Minas Gerais. The measurement of the mineral composition was accomplished by X-ray diffractometry and the elemental concentration by neutron activation analysis. The results showed that Al, Cl, Cu, Fe, K, Mg and Na are the predominant chemical elements in the total suspended particles (TPS. The presence of Na, Ba, Cl, Cu, Eu, Fe and Sm in those particles with aerodynamic diameter smaller than 10 µm (PM10, indicates that soil dust and ceramic and pig iron industries are the main sources of air quality degradation in the region.

  20. Instant Noodles and Iron Nutrition

    International Nuclear Information System (INIS)

    Tuntawiroon, Malulee; Sritongkul, Nopamon; Sookpeng Witoo

    2003-06-01

    Instant noodles represent the biggest category of instant foods in the supermarket. This study was undertaken to determine dietary availability for iron from their varieties without and with an addition of pork and/or vitamin C rich-vegetables by in vitro radiometric ( 59 Fe) method. The results showed that 8 to 13 percent of iron in the noodles was available for absorption of which contributed to 0.79 mg absorbed iron per day. This amount was too low to meet certain requirements for children, adolescents and menstruating women. With added pork or vegetables, iron availability increased by 2 to 3 times, and by 4 times with added pork and collard or cabbage (p<0.001). The amounts as high as 1.5 to 3.4 mg absorbed iron per day can meet the FAO/WHO requirements for most of the high-risk groups

  1. Physiological Responses of Some Iranian Grape Cultivars to Iron Chelate Application in Calcareous Soil

    Directory of Open Access Journals (Sweden)

    H. Doulati Baneh

    2016-07-01

    Full Text Available Introduction: Iron chlorosis is considered to be one of the most important nutritional disorders in grapevines, particularly in calcareous soils that under these conditions fruit yield and quality is depressed in the current year and fruit buds poorly develop for following year. Symptoms of iron chlorosis in orchards and vineyards are usually more frequent in spring when shoot growth is rapid and bicarbonate concentration in the soil solution buffers soil pH in the rhizosphere and root apoplast. Several native grapevine (Vitis vinifera L. genotypes, highly appreciated for their organoleptic characteristics and commercial potential, are widely cultivated in Iran. Cultivated plants differ as to their susceptibility to Fe deficiency in calcareous soils, some being poorly affected while others showing severe leaf chlorotic symptoms. Selection and the use of Fe-efficient genotypes is one of the important approaches to prevent this nutritional problem. In this research the response of three local grapevine cultivars was evaluated to iron chelate consumption in a calcareous soil (26% T.N.V. Materials and Methods: Well rooted woody cuttings of three autochthonous varieties (Rasha, Qezel uzum, Keshmeshi Qermez were cultivated in pots filled with a calcareous soil with iron chelate consumption at three rates (0, 7.5 and 15 mg Fe/ Kg soil. The study was conducted with two factors (cultivar and iron chelate and 3 replicates in a factorial arrangement based on randomized complete block design. Plant parameters including vegetative growth, chlorophyll index and leaf area were monitored during the growth period. At the end of the treatment, fresh and dry weight of shoots and roots were determined. The concentrations of macro and micro elements in the leaves were assayed using an atomic absorption and spectrophotometer. One-way-ANOVA was applied comparing the behavior of the cultivars growing. Results and Discussion: Analysis of variance showed that chlorophyll

  2. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes

    Science.gov (United States)

    Wang, Shui-Jiong; Teng, Fang-Zhen; Li, Shu-Guang; Zhang, Li-Fei; Du, Jin-Xue; He, Yong-Sheng; Niu, Yaoling

    2017-10-01

    Slab-derived fluids play a key role in mass transfer and elemental/isotopic exchanges in subduction zones. The exhumation of deeply subducted crust is achieved via a subduction channel where fluids from various sources are abundant, and thus the chemical/isotopic compositions of these rocks could have been modified by subduction-zone fluid-rock interactions. Here, we investigate the Mg isotopic systematics of eclogites from southwestern Tianshan, in conjunction with major/trace element and Sr-Nd isotopes, to characterize the source and nature of fluids and to decipher how fluid-rock interactions in subduction channel might influence the Mg isotopic systematics of exhumed eclogites. The eclogites have high LILEs (especially Ba) and Pb, high initial 87Sr/86Sr (up to 0.7117; higher than that of coeval seawater), and varying Ni and Co (mostly lower than those of oceanic basalts), suggesting that these eclogites have interacted with metamorphic fluids mainly released from subducted sediments, with minor contributions from altered oceanic crust or altered abyssal peridotites. The positive correlation between 87Sr/86Sr and Pb* (an index of Pb enrichment; Pb* = 2*PbN/[CeN + PrN]), and the decoupling relationships and bidirectional patterns in 87Sr/86Sr-Rb/Sr, Pb*-Rb/Sr and Pb*-Ba/Pb spaces imply the presence of two compositionally different components for the fluids: one enriched in LILEs, and the other enriched in Pb and 87Sr/86Sr. The systematically heavier Mg isotopic compositions (δ26Mg = - 0.37 to + 0.26) relative to oceanic basalts (- 0.25 ± 0.07) and the roughly negative correlation of δ26Mg with MgO for the southwestern Tianshan eclogites, cannot be explained by inheritance of Mg isotopic signatures from ancient seafloor alteration or prograde metamorphism. Instead, the signatures are most likely produced by fluid-rock interactions during the exhumation of eclogites. The high Rb/Sr and Ba/Pb but low Pb* eclogites generally have high bulk-rock δ26Mg values

  3. Dietary intake of trace elements, minerals, and vitamins of patients on chronic hemodialysis.

    Science.gov (United States)

    Bossola, Maurizio; Di Stasio, Enrico; Viola, Antonella; Leo, Alessandra; Carlomagno, Giusy; Monteburini, Tania; Cenerelli, Stefano; Santarelli, Stefano; Boggi, Rolando; Miggiano, Giacinto; Vulpio, Carlo; Mele, Cristina; Tazza, Luigi

    2014-04-01

    We aimed to estimate dietary intakes of trace elements, minerals, and vitamins in hemodialysis patients (HDP) of three centers in one metropolitan and two urban areas of Italy. Daily dietary intake was assessed using a 3-day diet diary in 128 HDP. Mean daily intakes of trace elements were as follows: zinc, 7.6 ± 5.4 mg; copper, 14.3 ± 11.8 mg; selenium, 28.3 ± 18.1 μg; and iron, 7.2 ± 4.1 mg (7.8 ± 2.6 mg in women, 6.9 ± 2.4 mg in men). The distribution of patients by daily intakes of trace elements showed most were under the recommended values, with the exception of copper intake, which was much higher. Mean daily intakes of minerals were as follows: magnesium, 174.4 ± 94.3 mg; phosphorus, 842.6 ± 576.8 mg; calcium, 371.8 ± 363.7 mg; potassium, 1,616.2 ± 897.3 mg; and sodium, 1,350 ± 1,281 mg. Mean daily intakes of vitamins were as follows: vitamin A, 486.1 ± 544.6 μg; vitamin B1, 0.86 ± 0.7 mg; vitamin B2, 1.1 ± 0.7 mg; vitamin B3, 13.3 ± 8.1 mg; vitamin C, 47.8 ± 50.3 mg; and vitamin E, 9.5 ± 3.6 mg. The distribution of patients by daily intakes of vitamins showed most were under the recommended values. Daily intakes of trace elements and vitamins were similar among the three centers and did not differ between dialysis and non-dialysis days. Many HDP have daily dietary intakes of trace elements and vitamins below the recommended values, whereas the intake of copper is much higher.

  4. Mineralogical study of zard koh and kulli koh iron ore deposits of pakistan

    International Nuclear Information System (INIS)

    Khoso, S.A.; Abro, M.I.

    2017-01-01

    Zard Koh and Kulli Koh are two recently discovered iron ore deposits, existing in the Chagai district, Balochistan, Pakistan. PSM (Pakistan Steel Mill Limited) is interested to utilize these ore deposits at priority. Purpose of the present study was to assess the mineralogy of the Zard Koh and Kulli Koh iron ore deposits, as it plays a vital role in the selection of an appropriate processing method. The mineralogical study of ore deposits was carried out by XRD (X-Ray Diffraction), XRF (X-Ray Fluorescence), SEM (Scanning Electron Microscope) attached with EDS (Energy Dispersive Spectroscope) and SM (Stereomicroscope) techniques. Results indicated that the Zard Koh ore is mainly composed of 60.15% maghemite, 23.57% pyrite, 4.07% chlorite, 10.30% grossular and 1.65% admontite minerals. The chemical analysis revealed that Zard Koh iron ore contains an average of 54.27% Fe, 12.73% S, 8.70% Si, 3.07% Al, 4.07% Ca, and 2.16% Mg. Similarly, the mineralogical study of the Kulli Koh iron ore indicated that, ore is containing 51.16% hematite, 29.24% quartz, 8.89% dravite, and 8.76% kaolinite minerals. Elemental analysis of different samples indicated that Kulli Koh iron ore contains an average composition of 40.23% Fe, 20.67% Si, 3.44% Ca, 3.81% Al and 3.25% Mg. Mineralogical study of the Zard Koh and Kulli Koh iron ore deposits suggested that these ore deposits can be beneficiated costeffectively by using magnetic separation techniques. (author)

  5. Sulfide-iron interactions in domestic wastewater from a gravity sewer

    NARCIS (Netherlands)

    Nielsen, A.H.; Lens, P.N.L.; Vollertsen, J.; Hvitved-Jacobsen, Th.

    2005-01-01

    Interactions between iron and sulfide in domestic wastewater from a gravity sewer were investigated with particular emphasis on redox cycling of iron and iron sulfide formation. The concentration ranges of iron and total sulfide in the experiments were 0.4-5.4 mg Fe L-1 and 0-5.1 mg S L-1,

  6. Isotopes produced by galactic cosmic rays in iron meteorites

    International Nuclear Information System (INIS)

    Birck, J.L.; Allegre, C.J.

    1985-01-01

    The elements Li, Mg, K, Ca, Ti, V, Cr have been investigated in the iron meteorites Grant and Carbo. Their isotopic ratios show clearly the effects of spallation by galactic cosmic rays. Our experimental technique allows us to determine the concentration of spallation products with a precision close to 1 per mil for a number of isotopes. The effects of shielding are clearly evidenced in the calcium data and the exposure ages are calculated by using the 40 K measurements

  7. The Efficiency of Iron and Manganese Removal from Groundwater Using Tower Aeration

    Directory of Open Access Journals (Sweden)

    Meghdad Pirsaheb

    2012-09-01

    Full Text Available Groundwaters passing through different layers of soil and due to its water properties and its high solubility, contain elements and minerals of material in the soil that sometimes can be dangerous for the health of consumers or at least undesirable in terms of cognitive beautiful. Iron and manganese are from constitutive of the soil and rocks of the Earth's surface. Water penetration through soil and rock can minerals such as these elements have dissolved and bring them into solution. The problems of iron and manganese in groundwater in domestic installations, commercial, industrial and refineries are created, and because much of the community water supply from underground water supplies will be removed where iron and manganese concentrations exceeded it is necessary. In this study Tower aeration system performance for the removal of iron and manganese from groundwater sources have been studied. In this research, pilot column aeration tower design, implementation and was established. This system made of PVC with a diameter and height 150 cm and 15 cm which was filled with flexible pipe parts. The initial pH=5, 7 and 9 and the initial concentration of Fe and Mn 2, 3 and 4 mg/l of the output system, sampling was done.

  8. Iron nutrition in Indian women at different ages

    International Nuclear Information System (INIS)

    MacPhail, A.P.; Bothwell, T.H.; Torrance, J.D.; Derman, D.P.; Bezwoda, W.R.; Charlton, R.W.; Mayet, F.G.H.

    1981-01-01

    The iron status of 320 Indian women living in Chatsworth, Durban, who had volunteered for iron absorption studies, was assessed using a number of measurements. These included radio-iron absorption, the transferrin saturation, the serum ferritin concentration and the haemoglobin concentration. In the sample as a whole, the prevalence of iron deficiency anaemia (haemoglobin concentration smaller than 12 g/dl, with two or more abnormal measurements of iron status) was 14,4%. A further 26% had depleted iron stores (serum ferritin smaller than 12μg/l) and 8,4% also had evidence of iron-deficient erythropoiesis (serum ferritin smaller than 12μg/l and transferrin saturation below 16%). A profile of iron status based on the cumulative frequency distribution of iron stores showed that the sample with calculated median iron stores of 150 mg and lower and upper 10 percentiles of -355 mg and 655 mg respectively, was significantly more iron deficient than a sample of women studied in Washington State, USA. Of interest was the observation that all measurements of iron status were better in the older age groups, presumably as a result of the cessation of menstruation. In addition, there was evidence that the duration of menstruation, as volunteered in a brief history, had a significant effect on several measurements of iron status. This was particularly true of the serum ferritin concentration and radio-iron absorption, both of which reflect the size of the iron stores

  9. Oral sucrosomial iron versus intravenous iron in anemic cancer patients without iron deficiency receiving darbepoetin alfa: a pilot study.

    Science.gov (United States)

    Mafodda, Antonino; Giuffrida, D; Prestifilippo, A; Azzarello, D; Giannicola, R; Mare, M; Maisano, R

    2017-09-01

    Erythropoiesis-stimulating agents (ESAs) are often used in treatment of patients with chemotherapy-induced anemia. Many studies have demonstrated an improved hemoglobin (Hb) response when ESA is combined with intravenous iron supplementation and a higher effectiveness of intravenous iron over traditional oral iron formulations. A new formulation of oral sucrosomial iron featuring an increased bioavailability compared to traditional oral formulations has recently become available and could provide a valid alternative to those by intravenous (IV) route. Our study evaluated the performance of sucrosomial iron versus intravenous iron in increasing hemoglobin in anemic cancer patients receiving chemotherapy and darbepoetin alfa, as well as safety, need of transfusion, and quality of life (QoL). The present study considered a cohort of 64 patients with chemotherapy-related anemia (Hb >8 g/dL iron deficiency, scheduled to receive chemotherapy and darbepoetin. All patients received darbepoetin alfa 500 mcg once every 3 weeks and were randomly assigned to receive 8 weeks of IV ferric gluconate 125 mg weekly or oral sucrosomial iron 30 mg daily. The primary endpoint was to demonstrate the performance of oral sucrosomial iron in improving Hb response, compared to intravenous iron. The Hb response was defined as the Hb increase ≥2 g/dL from baseline or the attainment Hb ≥ 12 g/dL. There was no difference in the Hb response rate between the two treatment arms. Seventy one percent of patients treated with IV iron achieved an erythropoietic response, compared to 70% of patients treated with oral iron. By conventional criteria, this difference is considered to be not statistically significant. There were also no differences in the proportion of patients requiring red blood cell transfusions and changes in QoL. Sucrosomial oral iron was better tolerated. In cancer patients with chemotherapy-related anemia receiving darbepoetin alfa, sucrosomial oral iron provides

  10. Comparison of gated and non-gated detectors for double-pulse laser induced plasma analysis of trace elements in iron oxide

    International Nuclear Information System (INIS)

    Heilbrunner, H.; Huber, N.; Wolfmeir, H.; Arenholz, E.; Pedarnig, J.D.; Heitz, J.

    2012-01-01

    Double-pulse laser-induced breakdown spectroscopy (LIBS) is an emerging technique for accurate compositional analysis of many different materials. We present results of collinear double-pulse LIBS for analysis of the trace elements aluminum, phosphorus and boron in sintered iron oxide targets. The samples were ablated in air by double-pulse Nd:YAG laser radiation (6 ns pulse duration, laser wavelength of 532 nm) and spectra were recorded with an Echelle spectrometer equipped either with a CCD (charge coupled device) or an ICCD (intensified charge coupled device) camera. For the trace elements aluminum and phosphorus, the use of the CCD detector system resulted in considerable higher signal-to-noise ratios and/or better limits of detection compared to the results achieved with the ICCD detector. The use of CCD double-pulse LIBS enables to detect low concentrations of phosphorus with a limit of detection of 10 ppm by evaluating the UV line at 214.91 nm, which overlaps with a Fe I line. Compared to the ICCD system, the CCD system requires the accumulation of a higher number of laser double-pulses to achieve acceptable signal quality. This can be disadvantageous for elements showing pronounced depletion effects as for the trace element boron in sintered iron oxide targets. - Highlights: ► Direct comparison of double-pulse LIBS analysis using CCD and ICCD detectors ► Double-pulse LIBS technique for monitoring of trace elements in iron oxide ► CCD detector can result in better signal-to-noise ratios and limits of detection. ► Low P concentrations detectable by CCD double-pulse LIBS of the line at 214.91 nm ► CCD system disadvantageous for elements showing pronounced depletion effects

  11. Effect of Alloy Elements on Microstructures and Mechanical Properties in Al-Mg-Si Alloys

    Science.gov (United States)

    Kato, Yoshikazu; Hisayuki, Koji; Sakaguchi, Masashi; Higashi, Kenji

    Microstructures and mechanical properties in the modified Al-Mg-Si alloys with variation in the alloy elements and their contents were investigated to enhance higher strength and ductility. Optimizing both the alloy element design and the industrial processes including heat-treatments and extrusion technology was carried out along the recent suggestion from the first principles calculation. The investigation concluded that the addition of Fe and/or Cu could recovery their lost ductility, furthermore increase their tensile strength up to 420 MPa at high elongation of 24 % after T6 condition for Al-0.8mass%Mg-1.0mass%Si-0.8mass%Cu-0.5mass%Fe alloy with excess Si content. The excellent combination between strength and ductility could be obtained by improvement to the grain boundary embitterment caused by grain boundary segregation of Si as a result from the interaction of Si with Cu or Fe with optimizing the amount of Cu and Fe contents.

  12. The Influence of Iron and Zinc Supplementation on the Bioavailability of Provitamin A Carotenoids from Papaya Following Consumption of a Vitamin A-Deficient Diet.

    Science.gov (United States)

    Kana-Sop, Marie Modestine; Gouado, Inocent; Achu, Mercy Bih; Van Camp, John; Amvam Zollo, Paul Henri; Schweigert, Florian J; Oberleas, Donald; Ekoe, Tetanye

    2015-01-01

    Iron deficiency anemia, zinc and vitamin A deficiencies are serious public health problems in Cameroon, as in many developing countries. Local vegetables which are sources of provitamin A carotenoids (PACs) can be used to improve vitamin A intakes. However, traditional meals are often unable to cover zinc and iron needs. The aim of this study was to determine the bioavailability of 3 PACs (α-carotene, β-carotene, and β-cryptoxanthin) in young men, who were fed with a vitamin A-free diet and received iron and zinc supplementation. Twelve healthy participants were divided into three groups and were supplemented with elemental iron (20 mg of iron fumarate), 20 mg of zinc sulfate or iron+zinc (20 mg of iron in the morning and 20 mg of zinc in the evening) for 11 d. They were given a vitamin A- and PAC-free diet from the 6th to the 11th day, followed by a test meal containing 0.55 kg of freshly peeled papaya as a source of PACs. Blood samples were collected four times successively on the 11th day (the test meal day), at T0 (just after the test meal), after 2 h (T2), after 4 h (T4) and after 7 h (T7). Ultracentrifugation was used to isolate serum chylomicrons. Retinol appearance and PAC postprandial concentrations were determined. The supplementation with zinc, iron and iron+zinc influenced the chylomicron appearance of retinol and PACs differently as reflected by retention times and maximum absorption peaks. Iron led to highest retinol levels in the chylomicron. Zinc and iron+zinc supplements were best for optimal intact appearance of α-carotene, β-carotene and β-cryptoxanthin respectively. Supplementation with iron led to the greatest bioavailability of PACs from papaya and its conversion to retinol.

  13. Virtual iron concentration imaging based on dual-energy CT for noninvasive quantification and grading of liver iron content: An iron overload rabbit model study

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian Fu; Yang, Yi; Xie, Xue Qian; Zhang, Huan; Chai, Wei Min; Yan, Fu Hua [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Ruijin Hospital, Shanghai (China); Yan, Jing [Siemens Shanghai Medical Equipment Ltd., Shanghai (China); Wang, Li [Fudan University, Center of Analysis and Measurement, Shanghai (China); Schmidt, Bernhard [Siemens AG, Healthcare Sector, Forchheim (Germany)

    2015-09-15

    To assess the accuracy of liver iron content (LIC) quantification and grading ability associated with clinical LIC stratification using virtual iron concentration (VIC) imaging on dual-energy CT (DECT) in an iron overload rabbit model. Fifty-one rabbits were prepared as iron-loaded models by intravenous injection of iron dextran. DECT was performed at 80 and 140 kVp. VIC images were derived from an iron-specific algorithm. Postmortem LIC assessments were conducted on an inductively coupled plasma (ICP) spectrometer. Correlation between VIC and LIC was analyzed. VIC were stratified according to the corresponding clinical LIC thresholds of 1.8, 3.2, 7.0, and 15.0 mg Fe/g. Diagnostic performance of stratification was evaluated by receiver operating characteristic analysis. VIC linearly correlated with LIC (r = 0.977, P < 0.01). No significant difference was observed between VIC-derived LICs and ICP (P > 0.05). For the four clinical LIC thresholds, the corresponding cutoff values of VIC were 19.6, 25.3, 36.9, and 61.5 HU, respectively. The highest sensitivity (100 %) and specificity (100 %) were achieved at the threshold of 15.0 mg Fe/g. Virtual iron concentration imaging on DECT showed potential ability to accurately quantify and stratify hepatic iron accumulation in the iron overload rabbit model. (orig.)

  14. Determination of trace elements in seawater using Mg-scavenger as preconcentration agent, and neutron activation analysis

    International Nuclear Information System (INIS)

    Andersen, B.

    1986-01-01

    In order to determine trace elements in seawater, a preconsentration method based on coprecipitation on Mg(OH) 2 is presented. Different parameters influencing the carrying effects have been investigated using model solutions and radioactive tracers. The deposit and solution are separated by filtration. Filter with deposit is stored in quarts ampules for later determination of trace elements by means of neutron activation analysis

  15. Oral iron therapy in human subjects, comparative absorption between ferrous salts and iron polymaltose

    International Nuclear Information System (INIS)

    Jacobs, P.; Johnson, G.; Wood, L.

    1984-01-01

    Iron absorption was directly compared between equivalent doses of ferrous salts and a polymaltose complex using a twin-isotope technique in which each individual acts as his own control. In the first study, bioavailability of iron from ferrous sulfate and the complex was defined at physiologic doses of 5 mg (Group 1: n = 14) and therapeutic doses of 50 mg (Group 2: n = 13). In Group 1, mean absorption from salt was 47.77% (SD 14.58%) and from polymaltose, 46.56% SD 17.07%). In Group 2, mean absorption from salt was 32.92% (SD 13.42%) and from polymaltose, 27.07% (SD 6.50%). In a second study, 100 mg of iron in a chewable formulation was used to compare absorption between equal doses of ferrous fumarate and the polymaltose complex. Mean absorption from salt was 10.25% (SD 6.89%) and from polymaltose 10.68% (SD 4.68%). At all three dosage levels, iron is equally available from salt or polymaltose for hemoglobin synthesis (p greater than 0.20), and absorption negatively correlated with plasma ferritin (p less than 0.01). These two materials may be used interchangeably in the treatment of patients with absolute iron deficiency

  16. Iron bioavailability of Lupinus rotundiflorus seeds and roots in low-iron-diet treated rats

    Directory of Open Access Journals (Sweden)

    Elia Herminia VALDÉS MIRAMONTES

    Full Text Available ABSTRACT Objective To evaluate iron bioavailability of roots and cooked seeds of Lupinus rotundiflorus for human consumption using a low-iron-diet rat model. Methods A hemoglobin depletion–repletion test was performed using rats. A standard diet containing 8mg kg-1 of iron was used. Three experimental diets were prepared based on the standard diet: 2.3g of root flour added to D1, 21.5g cooked seed flour added to D2, and 0.03g of ferrous sulfate added to D3 (control diet, adjusting iron concentration of the diets to 24mg kg-1. Hemoglobin regeneration efficiency was used to measure iron bioavailability. Results Hemoglobin regeneration efficiency showed values of 13.80+2.49%, 13.70+1.60% and 18.38+1.56 in D1, D2 and D3 respectively, and biological relative values of 72.8, 75.08, and 100.00% (.<0.05. Conclusion Roots and cooked seeds of Lupinus rotundiflorus showed potential iron bioavailability, despite being a vegetal source, which could also encourage the study of other species of lupin as a source of iron.

  17. Effect of RE elements on the microstructural evolution of as cast and SIMA processed Mg-4Al alloy

    International Nuclear Information System (INIS)

    Nayyeri, Mohammad Javad; Khomamizadeh, Farzad

    2011-01-01

    Research highlights: → In this article, we examined the effect of Rare Earth elements on the microstructural development of as cast and semisolid Mg-4Al alloy produced by SIMA process. → Our investigations contained metallographic observation, scanning electron microscope and quantitative metallographic methods. → Results showed that alloy's dendrites turn into larger fully dendritic shape with sharp and narrow arms from equiaxed rosette type as the amount of RE elements increased from 0 through 4 percent. → Also we studied the effect of RE elements on the quality and quantityof intragranular liquid droplets as well as kinetic of microstructural changes. → Moreover, the effect of REs on the other parameters such as fraction of liquid, shape factor and particle size was studied.In this article, we examined the effect of Rare Earth elements on the microstructural development of as cast and semisolid Mg-4Al alloy produced by SIMA process. Our investigations contained metallographic observation, scanning electron microscope and quantitative metallographic methods. Results showed that alloy's dendrites turn into larger fully dendritic shape with sharp and narrow arms from equiaxed rosette type as the amount of RE elements increased from 0 through 4 percent. Also we studied the effect of RE elements on the quality and quantityof intragranular liquid droplets as well as kinetic of microstructural changes. Moreover, the effect of REs on the other parameters such as fraction of liquid, shape factor and particle size was studied. - Abstract: In the present article, the effect of Rare Earth elements on the microstructural development of as cast and semisolid Mg-4Al alloy produced by SIMA process is studied. Investigation conducted by metallographic observation, scanning electron microscope and quantitative metallographic methods. Results showed that alloy's dendrites turn into larger fully dendritic shape with sharp and narrow arms from equiaxed rosette type as the

  18. Instant Noodles and Iron Nutrition

    Energy Technology Data Exchange (ETDEWEB)

    Tuntawiroon, Malulee; Sritongkul, Nopamon; Witoo, Sookpeng [Section of Nuclear Medicine, Department of radiology, Faculty of Medicine Siriraj Hospital (Thailand)

    2003-06-01

    Instant noodles represent the biggest category of instant foods in the supermarket. This study was undertaken to determine dietary availability for iron from their varieties without and with an addition of pork and/or vitamin C rich-vegetables by in vitro radiometric ({sup 59}Fe) method. The results showed that 8 to 13 percent of iron in the noodles was available for absorption of which contributed to 0.79 mg absorbed iron per day. This amount was too low to meet certain requirements for children, adolescents and menstruating women. With added pork or vegetables, iron availability increased by 2 to 3 times, and by 4 times with added pork and collard or cabbage (p<0.001). The amounts as high as 1.5 to 3.4 mg absorbed iron per day can meet the FAO/WHO requirements for most of the high-risk groups.

  19. Mammalian iron metabolism and its control by iron regulatory proteins☆

    Science.gov (United States)

    Anderson, Cole P.; Shen, Lacy; Eisenstein, Richard S.; Leibold, Elizabeth A.

    2013-01-01

    Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP–IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22610083

  20. Consuming Iron Biofortified Beans Increases Iron Status in Rwandan Women after 128 Days in a Randomized Controlled Feeding Trial.

    Science.gov (United States)

    Haas, Jere D; Luna, Sarah V; Lung'aho, Mercy G; Wenger, Michael J; Murray-Kolb, Laura E; Beebe, Stephen; Gahutu, Jean-Bosco; Egli, Ines M

    2016-08-01

    Food-based strategies to reduce nutritional iron deficiency have not been universally successful. Biofortification has the potential to become a sustainable, inexpensive, and effective solution. This randomized controlled trial was conducted to determine the efficacy of iron-biofortified beans (Fe-Beans) to improve iron status in Rwandan women. A total of 195 women (aged 18-27 y) with serum ferritin Beans, with 86 mg Fe/kg, or standard unfortified beans (Control-Beans), with 50 mg Fe/kg, 2 times/d for 128 d in Huye, Rwanda. Iron status was assessed by hemoglobin, serum ferritin, soluble transferrin receptor (sTfR), and body iron (BI); inflammation was assessed by serum C-reactive protein (CRP) and serum α1-acid glycoprotein (AGP). Anthropometric measurements were performed at baseline and at end line. Random weekly serial sampling was used to collect blood during the middle 8 wk of the feeding trial. Mixed-effects regression analysis with repeated measurements was used to evaluate the effect of Fe-Beans compared with Control-Beans on iron biomarkers throughout the course of the study. At baseline, 86% of subjects were iron-deficient (serum ferritin beans/d. The Fe-Beans group consumed 14.5 ± 1.6 mg Fe/d from biofortified beans, whereas the Control-Beans group consumed 8.6 ± 0.8 mg Fe/d from standard beans (P Beans group had significantly greater increases in hemoglobin (3.8 g/L), log serum ferritin (0.1 log μg/L), and BI (0.5 mg/kg) than did controls after 128 d. For every 1 g Fe consumed from beans over the 128 study days, there was a significant 4.2-g/L increase in hemoglobin (P beans significantly improved iron status in Rwandan women. This trial was registered at clinicaltrials.gov as NCT01594359. © 2016 American Society for Nutrition.

  1. Comparative biogeochemical behaviors of iron-55 and stable iron in the marine environment

    International Nuclear Information System (INIS)

    Weimer, W.C.; Langford, J.C.; Jenkins, C.E.

    1978-01-01

    Studies of atmospheric aerosols have demonstrated that much of the 55 Fe associated with the aerosol input to the oceans is present as either an amorphous or hydrous iron oxide or as very small particulate species attached to the surfaces of the large aerosol particles. By comparison, nearly all of the stable iron is bound in the mineral phase of aerosol particles. This difference in the chemical and physical forms of the radioactive and stable iron isotopes results in the 55 Fe being more biologically available than is the stable iron. This difference in availability is responsible for the transfer of a much higher specific activity 55 Fe to certain ocean organisms and man relative to the specific activity of the total aerosol or of sea water. This differential biological uptake of the radioactive element and its stable element counterpart points out that natural levels of stable elements in the marine environment may not effectively dilute radioelements or other stable elements of anthropogenic sources. The effectiveness of dilution by natural sources depends on the chemical and physical forms of the materials in both the source terms and the receiving environments. The large difference in specific activities of 55 Fe in aerosols and sea water relative to ocean organisms reflects the independent behaviors of 55 Fe and stable iron

  2. Microsegregation in Nodular Cast Iron with Carbides

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-12-01

    Full Text Available In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen.The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

  3. Microsegregation in Nodular Cast Iron with Carbides

    Directory of Open Access Journals (Sweden)

    Pietrowski S.

    2012-12-01

    Full Text Available In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

  4. Effects of Alloying Elements (Mo, Ni, and Cu on the Austemperability of GGG-60 Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Erkan Konca

    2017-08-01

    Full Text Available The interest in austempered ductile irons (ADI is continuously increasing due to their various advantageous properties over conventional ductile irons and some steels. This study aimed to determine the roles of alloying elements Ni, Cu, and Mo, on the austemperability of GGG-60 ductile cast iron. Two different sets of GGG-60 (EN-GJS-600-3 samples, one set alloyed with Ni and Cu and the other set alloyed with Mo, Ni, and Cu, were subjected to austempering treatments at 290 °C, 320 °C, and 350 °C. A custom design heat treatment setup, consisting of two units with the top unit (furnace serving for austenitizing and the 200 L capacity bottom unit (stirred NaNO2-KNO3 salt bath serving for isothermal treatment, was used for the experiments. It was found that austempering treatment at 290 °C increased the hardness of the Ni-Cu alloyed GGG-60 sample by about 44% without causing a loss in its ductility. In the case of the Mo-Ni-Cu alloyed sample, the increase in hardness due to austempering reached to almost 80% at the same temperature while some ductility was lost. Here, the microstructural investigation and mechanical testing results of the austempered samples are presented and the role of alloying elements (Mo, Ni, and Cu on the austemperability of GGG-60 is discussed.

  5. Synthesis and characterization of nanostructured iron compounds prepared from the decomposition of iron pentacarbonyl dispersed into carbon materials with varying porosities

    International Nuclear Information System (INIS)

    Schettino, Miguel A. Jr.; Cunha, Alfredo G.; Nunes, Evaristo; Passamani, Edson C.; Freitas, Jair C. C.; Emmerich, Francisco G.; Morigaki, Milton K.

    2016-01-01

    This work describes the production and characterization of carbon-iron nanocomposites obtained from the decomposition of iron pentacarbonyl (Fe(CO) 5 ) mixed with different carbon materials: a high surface area activated carbon (AC), powdered graphite (G), milled graphite (MG), and carbon black (CB). The nanocomposites were prepared either under argon or in ambient atmosphere, with a fixed ratio of Fe(CO) 5 (4.0 mL) to carbon precursor (2.0 g). The images of scanning electron microscopy and the analysis of textural properties indicated the presence of nanostructured Fe compounds homogeneously dispersed into the different classes of pores of the carbon matrices. The elemental Fe content was always larger for samples prepared in ambient atmosphere, reaching values in the range of 20–32 wt%. On the other hand, samples prepared under argon showed reduced Fe content, with values in the range 5–10 wt% for samples prepared from precursors with low surface area (G, MG, and CB) and a much higher value (~19 wt%) for samples prepared from the precursor of high surface area (AC). Mössbauer spectroscopy and X-ray diffractometry showed that the nanoparticles were mostly composed of iron oxides in the case of the samples prepared in oxygen-rich ambient atmosphere and also for the AC-derived nanocomposite prepared under argon, which is consistent with the large oxygen content of this precursor. For the other precursors, with reduced or no oxygen content, metallic iron and iron carbides were found to be the dominant phases in samples prepared under oxygen-free atmosphere. The samples prepared in ambient atmosphere and the AC-derived sample prepared under argon exhibited superparamagnetic behavior at room temperature, as revealed by temperature-dependent magnetization curves and Mössbauer spectroscopy.

  6. A study of phosphate absorption by magnesium iron hydroxycarbonate.

    Science.gov (United States)

    Du, Yi; Rees, Nicholas; O'Hare, Dermot

    2009-10-21

    A study of the mechanism of phosphate adsorption by magnesium iron hydroxycarbonate, [Mg(2.25)Fe(0.75)(OH)(6)](CO(3))(0.37).0.65H(2)O over a range of pH has been carried out. The efficiency of the phosphate removal from aqueous solution has been investigated between pH 3-9 and the resulting solid phases have been studied by elemental analysis, XRD, FT-IR, Raman, HRTEM, EDX and solid-state MAS (31)P NMR. The analytical and spectroscopic data suggest that phosphate removal from solution occurs not by anion intercalation of the relevant phosphorous oxyanion (H(2)PO(4)(-) or HPO(4)(2-)) into the LDH but by the precipitation of either an insoluble iron hydrogen phosphate hydrate and/or a magnesium phosphate hydrate.

  7. Influencing factors on as-cast and heat treated 400-18 ductile iron grade characteristics

    Directory of Open Access Journals (Sweden)

    I. Riposan

    2007-11-01

    Full Text Available As-cast and heat-treated 400-18 ductile iron (DI grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (Px and Antinodulizing Complex Factor (K1 have an important influence on property of DI, depending on the Mn and P level, the metallurgical quality of iron melt, rare earth (RE and inoculation. It was also found that the influence of Mn is depended on the phosphorus and residual elements level in ductile iron. Less than 0.03%P and 0.2%Mn and Px2.0 determines presence of pearlite in as-cast structure, while ferrite structure is obtained after a short annealing heat treatment. Lower level of phosphorus (P1.2. Si has a significant influence on the mechanical properties of heat treated ductile irons: an important decreasing of elongation level and a moderate increasing of yield and tensile strength and their ratio in 150-170 HB typical hardness field. A typical final chemical composition for as-cast 400-18 ductile iron could include 3.5%-3.7%C, 2.4%-2.5%Si, max.0.18%Mn, max.0.025%P, max.0.01%S, 0.04%-0.05%Mgres. for Px<1.5 and K1<1.1. High purity pig iron, RE-bearing FeSiMg and powerful inoculant are also recommended.

  8. Solubility of iron and other trace elements in rainwater collected on the Kerguelen Islands (South Indian Ocean

    Directory of Open Access Journals (Sweden)

    A. Heimburger

    2013-10-01

    Full Text Available The soluble fraction of aerosols that is deposited on the open ocean is vital for phytoplankton growth. It is believed that a large proportion of this dissolved fraction is bioavailable for marine biota and thus plays an important role in primary production, especially in HNLC oceanic areas where this production is limited by micronutrient supply. There is still much uncertainty surrounding the solubility of atmospheric particles in global biogeochemical cycles and it is not well understood. In this study, we present the solubilities of seven elements (Al, Ce, Fe, La, Mn, Nd, Ti in rainwater on the Kerguelen Islands, in the middle of the Southern Indian Ocean. The solubilities of elements exhibit high values, generally greater than 70%, and Ti remains the least soluble element. Because the Southern Indian Ocean is remote from its dust sources, only a fraction of smaller aerosols reaches the Kerguelen Islands after undergoing several cloud and chemical processes during their transport, resulting in a drastic increase in solubility. Finally, we deduced an average soluble iron deposition flux of 27 ± 6 μg m−2 d−1 (~0.5 μmol m−2 d−1 for the studied oceanic area, taking into account a median iron solubility of 82% ± 18%.

  9. Hepatic iron overload: Quantitative MR imaging

    International Nuclear Information System (INIS)

    Gomori, J.M.; Horev, G.; Tamary, H.; Zandback, J.; Kornreich, L.; Zaizov, R.; Freud, E.; Krief, O.; Ben-Meir, J.; Rotem, H.

    1991-01-01

    Iron deposits demonstrate characteristically shortened T2 relaxation times. Several previously published studies reported poor correlation between the in vivo hepatic 1/T2 measurements made by means of midfield magnetic resonance (MR) units and the hepatic iron content of iron-overloaded patients. In this study, the authors assessed the use of in vivo 1/T2 measurements obtained by means of MR imaging at 0.5 T using short echo times (13.4 and 30 msec) and single-echo-sequences as well as computed tomographic (CT) attenuation as a measure of liver iron concentration in 10 severely iron-overloaded patients with beta-thalassemia major. The iron concentrations in surgical wedge biopsy samples of the liver, which varied between 3 and 9 mg/g of wet weight (normal, less than or equal to 0.5 mg/g), correlated well (r = .93, P less than or equal to .0001) with the preoperative in vivo hepatic 1/T2 measurements. The CT attenuation did not correlate with liver iron concentration. Quantitative MR imaging is a readily available noninvasive method for the assessment of hepatic iron concentration in iron-overloaded patients, reducing the need for needle biopsies of the liver

  10. Redistribution and Effect of Various Elements on the Morphology of Primary Graphite in Cast Iron

    Directory of Open Access Journals (Sweden)

    J. Lacaze

    2013-01-01

    Full Text Available It has been shown repeatedly that many elements present as traces or at low level can affect graphite shape in cast irons. As part of a long term project aimed at clarifying the growth and the alteration of spheroidal graphite, a study on the effect of a few elements (Cu, Sn, Sb, and Ti on primary graphite growth was undertaken and analysed with reference to an alloy without any such additions. This work was performed by remelting alloys in graphite crucibles thus saturating the melt in carbon and enabling primary graphite to grow by controlled cooling of the melt above the eutectic temperature. Primary graphite growth in the reference alloy was observed to be lamellar, while the added elements were found to affect bulk graphite and to modify its outer shape, with Sb leading eventually to rounded agglomerates together with wavy lamellae. Secondary ion mass spectrometry was used to analyze the distribution of elements, and no build-up of trace elements at the graphite surface could be observed. Instead, it is established that the perturbation of bulk graphite is associated with inhomogeneous distribution of metallic elements inside graphite precipitates.

  11. Twenty years of analysis of light elements at the LARN

    International Nuclear Information System (INIS)

    Demortier, G.

    1992-01-01

    We review the applications of ion beam analysis of light elements performed in the LARN during the last twenty years. The works mainly concern: helium bubbles in aluminum foils, Li in aluminum alloys, carbon in high purity MgO crystals and in olivines, nitrogen bubbles in glass and implanted nitrogen in iron and aluminum, oxygen in YBaCuO superconductors, fluorine in tooth enamel and implanted fluorine in metals. (orig.)

  12. The effect of nutrition knowledge and dietary iron intake on iron status in young women.

    Science.gov (United States)

    Leonard, Alecia J; Chalmers, Kerry A; Collins, Clare E; Patterson, Amanda J

    2014-10-01

    Previous research on the relationships between general nutrition knowledge and dietary intake, and dietary iron intake and iron status has produced inconsistent results. Currently, no study has focused on knowledge of dietary iron and its effect on dietary iron intake. This study aimed to determine whether nutrition knowledge of iron is related to dietary iron intake in young women, and subsequently whether greater knowledge and intake translates into better iron status. A cross-sectional assessment of nutrition knowledge of iron, dietary iron intake and iron status was conducted in women aged 18-35 years living in Newcastle, NSW, Australia. Iron status was assessed by serum ferritin, haemoglobin, soluble transferrin receptor and alpha-1-glycoprotein. One hundred and seven women (27.8 ± 4.7 years) completed the nutrition knowledge questionnaire and FFQ. Of these, 74 (70%) also had biomarkers of iron status measured. Mean iron intake was 11.2 ± 3.8 mg/day. There was no association between nutrition knowledge score and whether the women met the RDI for iron (F (1, 102) = .40, P = .53). A positive correlation was shown between nutrition knowledge score and iron intake (mg/day) (r = 0.25, P = .01). Serum ferritin was positively associated with the frequency of flesh food intake (r = .27 P = .02). Vegetarians (including partial vegetarians) had significantly lower serum ferritin levels than non-vegetarians (F (1, 71) = 7.44, P = .01). Significant positive correlations found between higher flesh food intake and biomarkers of iron status suggest that educating non-vegetarians about the benefits of increased flesh food consumption and vegetarians about dietary iron enhancers and inhibitors may have potential for addressing the high rates of iron deficiency among young women. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  13. Extraction chromatographic separation of iron from complex liquid samples and the determination of 55Fe

    International Nuclear Information System (INIS)

    Grahek, Z.; Rozmaric Macefat, M.

    2006-01-01

    Iron separation is described from liquid samples with a high concentration of ions that enables simple determination of 55 Fe. One of the described methods consists of iron precipitation from a large volume seawater by sodium hydroxide and/or ammonium carbonate and separation from other elements (Ca, Sr, Cu, Mg, etc.) on a TRU column with 4M HCl or 8M HNO 3 . In the other procedure iron is separated directly from a mixture of seawater samples and HCl on a TRU column. In both methods, the iron recovery is almost 100%. After separation, 55 Fe is determined by counting with a liquid scintillation counter. The binding of Fe and Zn on TEVA, U/TEVA and TRU resins from seawater solutions of HCl and HNO 3 depends on the type of the resin, concentration of acid and other ions. Iron and zinc can be separated from seawater on a U/TEVA column with 2M HCl. (author)

  14. Mineralogical Study of Zard Koh and Kulli Koh Iron Ore Deposits of Pakistan

    Directory of Open Access Journals (Sweden)

    SULTAN AHMED KHOSO

    2017-10-01

    Full Text Available Zard Koh and Kulli Koh are two recently discovered iron ore deposits, existing in the Chagai district, Balochistan, Pakistan. PSM (Pakistan Steel Mill Limited is interested to utilize these ore deposits at priority. Purpose of the present study was to assess the mineralogy of the Zard Koh and Kulli Koh iron ore deposits, as it plays a vital role in the selection of an appropriate processing method. The mineralogical study of ore deposits was carried out by XRD (X-Ray Diffraction, XRF (X-Ray Fluorescence, SEM (Scanning Electron Microscope attached with EDS (Energy Dispersive Spectroscope and SM (Stereomicroscope techniques. Results indicated that the Zard Koh ore is mainly composed of 60.15% maghemite, 23.57% pyrite, 4.07% chlorite, 10.30% grossular and 1.65% admontite minerals. The chemical analysis revealed that Zard Koh iron ore contains an average of 54.27% Fe, 12.73% S, 8.70% Si, 3.07% Al, 4.07% Ca, and 2.16% Mg. Similarly, the mineralogical study of the Kulli Koh iron ore indicated that, ore is containing 51.16% hematite, 29.24% quartz, 8.89% dravite, and 8.76% kaolinite minerals. Elemental analysis of different samples indicated that Kulli Koh iron ore contains an average composition of 40.23% Fe, 20.67% Si, 3.44% Ca, 3.81% Al and 3.25% Mg. Mineralogical study of the Zard Koh and Kulli Koh iron ore deposits suggested that these ore deposits can be beneficiated costeffectively by using magnetic separation techniques.

  15. Synthesized of PEG-6000 coated MgFe2O4 nanoparticles based on natural iron sand by co-precipitation method

    Science.gov (United States)

    Setiadi, E. A.; Simbolon, S.; Saputra, A. S. P.; Marlianto, E.; Djuhana; Kurniawan, C.; Yunus, M.; Sebayang, P.

    2018-02-01

    The polymer coated Magnesium Ferrite nanoparticles (MgFe2O4) based on natural iron sand, Mg(CH3COO)2.4H2O, and PEG-6000 have been successfully prepared by co-precipitation method. The mass variation of PEG-6000 content was from 0 to 12 gram. It was prepared at synthesize temperature of 70°C. The PEG coating reduced the effect of agglomeration, so the coercivity value can be closed to soft magnets. The nanoparticle of synthesized has MgFe2O4 single phase and cubic spinel structure. The bonding of MgFe2O4 and PEG-6000 as a coating material was confirmed by FTIR curve. The MgFe2O4 density decreased with the increasing of PEG 6000 content. On the other hand, the coercivity value was slightly reduced as the addition of PEG-6000, with the lowest value was obtained on 8 gram PEG content. The optimum condition is obtained at addition of 8 gram PEG 6000 to MgFe2O4, with coercivity, saturation, and remanence are 198.41 Oe, 52.53 emu/g, and 8.51 emu/g, respectively. So that, the sample is widely used as absorbance material of heavy metal.

  16. ICP-AES determination of trace elements in carbon steel

    International Nuclear Information System (INIS)

    Sengupta, Arijit; Rajeswari, B.; Kadam, R.M.; Babu, Y.; Godbole, S.V.

    2010-01-01

    concentrations of matrix constituents. In the direct analysis of carbon steel by ICP-AES, where no prior separation of matrix is involved, spectral interference of iron on the analytes under study needs to be investigated. Therefore, a systematic study was carried out to monitor the interference effect of iron on the analytical lines of 18 elements, viz., Pb, Cd, Mn, Mo, Mg, Si, V, Cu, Ag, Ca, Na, Li, Cr, Zn, Ni, Co, B and Al. For some of the elements interference free analytical lines were identified while for the other elements, appropriate correction factors were calculated and applied to obtain final the concentration values. The method developed was used for the analysis of two carbon steel samples. (author)

  17. Element distribution in the corrosion layer and cytotoxicity of alloy Mg-10Dy during in vitro biodegradation.

    Science.gov (United States)

    Yang, Lei; Hort, Norbert; Laipple, Daniel; Höche, Daniel; Huang, Yuanding; Kainer, Karl Ulrich; Willumeit, Regine; Feyerabend, Frank

    2013-11-01

    The present work investigates the corrosion behaviour, the element distribution in the corrosion layer and the cytocompatibility of alloy Mg-10Dy. The corrosion experiments were performed in a cell culture medium (CCM) under cell culture conditions close to the in vivo environment. The element distribution on the surface as well as in cross-sections of the corrosion layer was investigated using scanning electron microscopy, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy and X-ray diffraction. The cytocompatibility of alloy Mg-10Dy with primary human osteoblasts was evaluated by MTT, cell adhesion and live/dead staining tests. The results show that the corrosion layer was enriched in Dy, while the P and Ca content gradually decreased from the surface to the bottom of the corrosion layer. In addition, large amounts of MgCO3·3H2O formed in the corrosion layer after 28 days immersion. Both extracts and the Dy-enriched corrosion layer of alloy Mg-10Dy showed no cytotoxicity to primary human osteoblasts. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. A comparison of physical properties, screening procedures and a human efficacy trial for predicting the bioavailability of commercial elemental iron powders used for food fortification

    NARCIS (Netherlands)

    Zimmermann, M.B.; Lynch, S.R.; Bothwell, T.

    2007-01-01

    Elemental iron powders are widely used to fortify staple foods. This paper summarizes physical and chemical measurements that were conducted to assess the bioavailability of these iron powders relative to ferrous sulfate, along with validation of these assessments from a study with human subjects.

  19. Long-term intake of iron fortified wholemeal rye bread appears to benefit iron status of young women

    DEFF Research Database (Denmark)

    Hansen, Max; Nielsen, Sussi Bæch; Thomsen, A.D.

    2005-01-01

    The efficacy of intake of iron fortified, wholemeal rye bread on iron status of young women with low iron stores was evaluated in a 5 month single-blind intervention study. Two parallel groups of women (20-38 y) were given 144 g of rye bread/d either fortified with 6 mg iron as ferrous fumarate/100...... stores of young women with poor iron status which were otherwise reduced by intake of the unfortified control bread....

  20. Analysis of heavy metals and minerals elements in the turmeric using Total-Reflection X-ray Fluorescence analysis technique and Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Andriamisetra, V.M.Z.

    2014-01-01

    Currently, many studies demonstrate anti-cancer and anti-inflammatory benefits of turmeric. The aims of this work is to perform analysis of metals such as calcium, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, bromine, rubidium, strontium, cadmium and lead in the turmeric collected from various places in Madagascar. The analysis by total reflection X-ray fluorescence technique is used to determine the concentrations of heavy metals, while the atomic absorption spectrometry is used for the determination of trace elements. Analysis results show that the concentration of calcium in the turmeric is very high, its average concentration is 1025.8 mg.kg -1 . The average concentrations of manganese, of copper and of iron are respectively 44.7 mg.kg -1 ; 19.7 mg.kg -1 and 53.6 mg.kg -1 . The average concentrations of zinc, of rubidium and of strontium are respectively 17.3 mg.kg -1 ; 35.2 mg.kg -1 and 21.7 mg.kg -1 [fr

  1. First principles calculations on the influence of solute elements and chlorine adsorption on the anodic corrosion behavior of Mg (0001) surface

    Science.gov (United States)

    Luo, Zhe; Zhu, Hong; Ying, Tao; Li, Dejiang; Zeng, Xiaoqin

    2018-06-01

    The influences of solute atoms (Li, Al, Mn, Zn, Fe, Ni, Cu, Y, Zr) and Cl adsorption on the anodic corrosion performance on Mg (0001) surface have been investigated based on first-principles calculations, which might be useful for the design of corrosion-resistant Mg alloys. Work function and local electrode potential shift are chosen as descriptors since they quantify the barrier for charge transfer and anodic stability. We found that at 25% surface doping rate, Y decreased the work function of Mg, while the impact of remaining doping elements on the work function of Mg was trivial due to the small surface dipole moment change. The adsorption of Cl destabilized the Mg atoms at surface by weakening the bonding between surface Mg atoms. We find that a stronger hybridization of d orbits of alloying elements (e.g. Zr) with the orbits of Mg can greatly increase the local electrode potential,which even overbalances the negative effect introduced by Cl adsorbates and hence improves the corrosion resistance of Mg alloys.

  2. The content of minerals and trace elements in meals

    International Nuclear Information System (INIS)

    Bognar, A.; Schelenz, R.; Gruenewald, T.; Frahm, H.; Heine, K.; Wiechen, A.; Bundesanstalt fuer Milchforschung, Kiel

    1981-07-01

    Within the frame work of the research programme 'School Feeding', 68 menu items of different producers were investigated for the content of the minerals calcium, chlorine, iron, potassium, magnesium, sodium and phosphorus, and for the trace elements antimony, barium, bromine, cesium, chromium, hafnium, iridium,cobalt, copper, manganese, mercury, rubidium, scandium, selenium, silver, strontium, tin and zinc. For the analytical determination of the elements, instrumental neutron activation analysis and X-ray fluorometry were applied. The studies showed that a calculation of the content of minerals and trace elements in meals on the basis of recipes and nutritive tables for raw foods is not justified, expect for sodium and phosphorus, because incorrect results can be obtained for the majority of meals. (orig./MG) [de

  3. Iron oxide deposits associated with the ectosymbiotic bacteria in the hydrothermal vent shrimp Rimicaris exoculata

    Directory of Open Access Journals (Sweden)

    P. Compère

    2008-09-01

    Full Text Available The Rimicaris exoculata shrimp is considered as a primary consumer that dominates the fauna of most Mid-Atlantic Ridge (MAR hydrothermal ecosystems. These shrimps harbour in their gill chambers an important ectosymbiotic community of chemoautotrophic bacteria associated with iron oxide deposits. The structure and elemental composition of the mineral concretions associated with these bacteria have been investigated by using LM, ESEM, TEM STEM and EDX microanalyses. The nature of the iron oxides in shrimps obtained from the Rainbow vent field has also been determined by Mössbauer spectroscopy. This multidisciplinary approach has revealed that the three layers of mineral crust in the Rimicaris exoculata shrimps consist of large concretions formed by aggregated nanoparticles of two-line ferrihydrite and include other minor elements as Si, Ca, Mg, S and P, probably present as silicates cations, sulphates or phosphates respectively that may contribute to stabilise the ferrihydrite form of iron oxides. TEM-observations on the bacteria have revealed their close interactions with these minerals. Abiotic and biotic precipitation could occur within the gill chamber of Rimicaris exoculata, suggesting the biologically-mediated formation of the iron oxide deposits. The difference of the bacterial density in the three-mineral crust layers could be correlated to the importance of the iron oxide concretions and suggest that the first mineral particles precipitates on the lower layer which could be considered as the most likely location of iron-oxidizing bacteria.

  4. Oral Iron Prophylaxis in Pregnancy: Not Too Little and Not Too Much!

    Directory of Open Access Journals (Sweden)

    Nils Milman

    2012-01-01

    Full Text Available An adequate supply of iron is essential for normal development of the fetus and newborn child. Iron deficiency and iron deficiency anemia (IDA during pregnancy increase the risk of preterm birth and low birth weight. Iron is important for development of the fetal brain and cognitive abilities of the newborn. Children born to iron-deficient mothers will start their lives suffering from iron deficiency or even IDA. Oral iron prophylaxis to pregnant women improves iron status and prevents development of IDA. The Danish National Board of Health has since 1992 recommended prophylactic oral iron supplements to all pregnant women and the currently advocated dose is 40–50 mg ferrous iron taken between meals from 10 weeks gestation to delivery. However, 30–40 mg ferrous iron is probably an adequate dose in most affluent societies. In developed countries, individual iron prophylaxis guided by iron status (serum ferritin has physiological advantages compared to general iron prophylaxis. In contrast, in most developing countries, general iron prophylaxis is indicated, and higher doses of oral iron, for example, 60 mg ferrous iron or even more should be recommended, according to the present iron status situation in the specific populations of women of fertile age and pregnant women.

  5. Results of the First American Prospective Study of Intravenous Iron in Oral Iron-Intolerant Iron-Deficient Gravidas.

    Science.gov (United States)

    Auerbach, Michael; James, Stephanie E; Nicoletti, Melissa; Lenowitz, Steven; London, Nicola; Bahrain, Huzefa F; Derman, Richard; Smith, Samuel

    2017-12-01

    Anemia affects up to 42% of gravidas. Neonatal iron deficiency is associated with low birth weight, delayed growth and development, and increased cognitive and behavioral abnormalities. While oral iron is convenient, up to 70% report significant gastrointestinal toxicity. Intravenous iron formulations allowing replacement in one visit with favorable side-effect profiles decrease rates of anemia with improved hemoglobin responses and maternal fetal outcomes. Seventy-four oral iron-intolerant, second- and third-trimester iron-deficient gravidas were questioned for oral iron intolerance and treated with intravenous iron. All received 1000 mg of low-molecular-weight iron dextran in 250 mL normal saline. Fifteen minutes after a test dose, the remainder was infused over the balance of 1 hour. Subjects were called at 1, 2, and 7 days to assess delayed reactions. Four weeks postinfusion or postpartum, hemoglobin levels and iron parameters were measured. Paired t test was used for hemoglobin and iron; 58/73 women were questioned about interval growth and development of their babies. Seventy-three of 74 enrolled subjects completed treatment. Sixty had paired pre- and posttreatment data. The mean pre- and posthemoglobin concentrations were 9.7 and 10.8 g/dL (P iron deficiency anemia. Intravenous iron has less toxicity and is more effective, supporting moving it closer to frontline therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effects of calcium carbonate and hydroxyapatite on zinc and iron retention in postmenopausal women

    International Nuclear Information System (INIS)

    Dawson-Hughes, B.; Seligson, F.H.; Hughes, V.A.

    1986-01-01

    We measured the effect of calcium carbonate and hydroxyapatite on whole-body retention of zinc-65 in 11 and iron-59 in 13 healthy, postmenopausal women. In a single-blind, controlled, crossover study, each subject, on three occasions, ingested a standard test meal supplemented with iron-59 or zinc-65 and capsules containing placebo or 500 mg elemental calcium as calcium carbonate or hydroxyapatite. Whole-body countings were performed prior to, 30 min after, and 2 wk after each meal. Mean (SEM) zinc retention was 18.1 +/- 1.0% with placebo (control) and did not vary significantly with calcium carbonate (110.0 +/- 8.6% of control) or hydroxyapatite (106.0 +/- 7.9% of control). Iron retention, 6.3 +/- 2.0% with placebo, was significantly reduced with both calcium carbonate (43.3 +/- 8.8% of control, p = 0.002) and hydroxyapatite (45.9 +/- 10.0% of control, p = 0.003). Iron absorption may be significantly reduced when calcium supplements are taken with meals

  7. Shigella Iron Acquisition Systems and their Regulation.

    Science.gov (United States)

    Wei, Yahan; Murphy, Erin R

    2016-01-01

    Survival of Shigella within the host is strictly dependent on the ability of the pathogen to acquire essential nutrients, such as iron. As an innate immune defense against invading pathogens, the level of bio-available iron within the human host is maintained at exceeding low levels, by sequestration of the element within heme and other host iron-binding compounds. In response to sequestration mediated iron limitation, Shigella produce multiple iron-uptake systems that each function to facilitate the utilization of a specific host-associated source of nutrient iron. As a mechanism to balance the essential need for iron and the toxicity of the element when in excess, the production of bacterial iron acquisition systems is tightly regulated by a variety of molecular mechanisms. This review summarizes the current state of knowledge on the iron-uptake systems produced by Shigella species, their distribution within the genus, and the molecular mechanisms that regulate their production.

  8. Distribution of major elements (Na, K, Ca, Mg in the various anatomical parts of Fadama crops in Ekiti State, Nigeria

    Directory of Open Access Journals (Sweden)

    E.I. Adeyeye

    2005-12-01

    Full Text Available Levels of sodium, potassium, calcium and magnesium were determined in plant organs (bud, flowers, fruit, seed, leaves, stems, roots, cobs, styles, shaft, grains and efflorescences of three Fadama farms located in Ifaki-Ekiti, Ado-Ekiti and Ikere-Ekiti of Ekiti State, Nigeria. The highest levels of Mg, K, Na and Ca were obtained in the bud of Hibiscus esculentus with respective values (ppm dry weight, ppm DW of 4397, 2983, 3928 and 1622; this was closely followed by their levels in Lycopersicon esculentum root: Mg (2734, K (1079, Na (2111 and Ca (678. The levels of all the elements were highly varied in the anatomical parts of each plant and between the various plants. The index of bioaccumulation (ratio in plants/soil was recorded for all the elements with all values falling within 1-101 showing that the degree of accumulation was intensive. The overall levels of the elements were Mg > Na > K > Ca.

  9. Trace element intake and dietary status of nuts consumed in Pakistan: study using INAA

    Energy Technology Data Exchange (ETDEWEB)

    Waheed, S; Siddique, N; Rahman, A [Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan). Nuclear Chemistry Div.

    2007-07-01

    Five nuts, namely almond, cashew nuts, peanuts, pine nuts and pistachio, commonly consumed in Pakistan, were analyzed for their inorganic element contents. Instrumental neutron activation analysis (INAA) methodology, using different irradiation, cooling and counting protocols, was adopted to determine Al, Br, Ca, Cl, Co, Cs, Eu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Rb, Sc, Se, Sr and Zn. The investigated nuts were found to contain substantial amounts of Ca, Cl, Fe, Mg, K, Na and Zn. Dietary intake of the essential inorganic elements present in these nuts, as compared to the recommended dietary allowance, has also been calculated. This has further substantiated the nutrient role of nuts in the prevention of cardiovascular disease, as in addition to their established efficacy in improving the lipid profile, they are a rich source of cardioprotective trace elements such as magnesium, zinc, iron and calcium. Toxic elements were present in very low concentrations in nuts. (orig.)

  10. Trace element intake and dietary status of nuts consumed in Pakistan: study using INAA

    International Nuclear Information System (INIS)

    Waheed, S.; Siddique, N.; Rahman, A.

    2007-01-01

    Five nuts, namely almond, cashew nuts, peanuts, pine nuts and pistachio, commonly consumed in Pakistan, were analyzed for their inorganic element contents. Instrumental neutron activation analysis (INAA) methodology, using different irradiation, cooling and counting protocols, was adopted to determine Al, Br, Ca, Cl, Co, Cs, Eu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Rb, Sc, Se, Sr and Zn. The investigated nuts were found to contain substantial amounts of Ca, Cl, Fe, Mg, K, Na and Zn. Dietary intake of the essential inorganic elements present in these nuts, as compared to the recommended dietary allowance, has also been calculated. This has further substantiated the nutrient role of nuts in the prevention of cardiovascular disease, as in addition to their established efficacy in improving the lipid profile, they are a rich source of cardioprotective trace elements such as magnesium, zinc, iron and calcium. Toxic elements were present in very low concentrations in nuts. (orig.)

  11. Erythropoietic response to oral iron in patients with nondialysis-dependent chronic kidney disease in the FIND-CKD trial
.

    Science.gov (United States)

    Macdougall, Iain C; Bock, Andreas H; Carrera, Fernando; Eckardt, Kai-Uwe; Gaillard, Carlo; Wyck, David Van; Meier, Yvonne; Larroque, Sylvain; Perrin, Amandine; Roger, Simon D

    2017-12-01

    To evaluate erythropoietic response rates to oral iron over time in iron-deficient anemic patients with nondialysis-dependent chronic kidney disease (ND-CKD). FIND-CKD was a 1-year, randomized, multicenter trial of iron therapy in patients with ND-CKD, anemia, and iron deficiency, without erythropoiesis-stimulating agent (ESA) therapy. Patients with active infection or C-reactive protein > 20 mg/L were excluded. In this post-hoc analysis, response was defined as ≥ 1 g/dL increase in hemoglobin (Hb) from baseline, before initiation of alternative anemia therapy (i.e., ESA, transfusion, or intravenous iron). 308 patients received oral iron (200 mg elemental iron/day). Mean (SD) Hb at baseline was 10.4 (0.7) g/dL. At week 4, Hb data were available from 292 patients without alternative anemia therapy: 63/292 (21.6%) showed a response. Among the 229 nonresponders at week 4, 48.8% showed a cumulative response on ≥ 1 occasion by week 52 (11.1%, 19.9%, 25.9%, and 28.7% had a response at weeks 8, 12, 24, and 52, respectively), and 27.9% had received alternative iron therapy by week 52. Baseline levels of Hb, ferritin, and transferrin saturation were lower in responders than in nonresponders. Neither concomitant medication nor adherence (as assessed by medication count) was substantially different between early responders and nonresponders. Four weeks after starting oral iron therapy, only 21.6% of anemic patients with ND-CKD and iron deficiency showed an Hb increase of at least 1 g/dL. Among early nonresponders, < 30% responded at any subsequent time point. Earlier consideration of alternative therapy could improve anemia management in this population.
.

  12. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  13. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    International Nuclear Information System (INIS)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  14. Prenatal Iron Supplementation Reduces Maternal Anemia, Iron Deficiency, and Iron Deficiency Anemia in a Randomized Clinical Trial in Rural China, but Iron Deficiency Remains Widespread in Mothers and Neonates.

    Science.gov (United States)

    Zhao, Gengli; Xu, Guobin; Zhou, Min; Jiang, Yaping; Richards, Blair; Clark, Katy M; Kaciroti, Niko; Georgieff, Michael K; Zhang, Zhixiang; Tardif, Twila; Li, Ming; Lozoff, Betsy

    2015-08-01

    Previous trials of prenatal iron supplementation had limited measures of maternal or neonatal iron status. The purpose was to assess effects of prenatal iron-folate supplementation on maternal and neonatal iron status. Enrollment occurred June 2009 through December 2011 in Hebei, China. Women with uncomplicated singleton pregnancies at ≤20 wk gestation, aged ≥18 y, and with hemoglobin ≥100 g/L were randomly assigned 1:1 to receive daily iron (300 mg ferrous sulfate) or placebo + 0.40 mg folate from enrollment to birth. Iron status was assessed in maternal venous blood (at enrollment and at or near term) and cord blood. Primary outcomes were as follows: 1) maternal iron deficiency (ID) defined in 2 ways as serum ferritin (SF) iron (BI) anemia [ID + anemia (IDA); hemoglobin 118 μmol/mol). A total of 2371 women were randomly assigned, with outcomes for 1632 women or neonates (809 placebo/folate, 823 iron/folate; 1579 mother-newborn pairs, 37 mothers, 16 neonates). Most infants (97%) were born at term. At or near term, maternal hemoglobin was significantly higher (+5.56 g/L) for iron vs. placebo groups. Anemia risk was reduced (RR: 0.53; 95% CI: 0.43, 0.66), as were risks of ID (RR: 0.74; 95% CI: 0.69, 0.79 by SF; RR: 0.65; 95% CI: 0.59, 0.71 by BI) and IDA (RR: 0.49; 95% CI: 0.38, 0.62 by SF; RR: 0.51; 95% CI: 0.40, 0.65 by BI). Most women still had ID (66.8% by SF, 54.7% by BI). Adverse effects, all minor, were similar by group. There were no differences in cord blood iron measures; >45% of neonates in each group had ID. However, dose-response analyses showed higher cord SF with more maternal iron capsules reported being consumed (β per 10 capsules = 2.60, P iron supplementation reduced anemia, ID, and IDA in pregnant women in rural China, but most women and >45% of neonates had ID, regardless of supplementation. This trial was registered at clinicaltrials.gov as NCT02221752. © 2015 American Society for Nutrition.

  15. Nano-Structured Magnesium Oxide Coated Iron Ore: Its Application to the Remediation of Wastewater Containing Lead.

    Science.gov (United States)

    Nagarajah, Ranjini; Jang, Min; Pichiah, Saravanan; Cho, Jongman; Snyder, Shane A

    2015-12-01

    Magnetically separable nano-structured magnesium oxide coated iron ore (IO(MgO)) was prepared using environmentally benign chemicals, such as iron ore (IO), magnesium(II) nitrate hexahydrate [Mg(NO3)2 x 6H2O] and urea; via an easy and fast preparation method. The lO(MgO) was characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and alternating gradient magnetometer (AGM) analyses. The isotherm and kinetic studies indicated that lO(MgO) has a comparably higher Langmuir constant (K(L), 1.69 L mg(-1)) and maximum sorption capacity (33.9 mg g(-1)) for lead (Pb) than other inorganic media. Based on MgO amount, the removal capacity of Pb by IO(MgO) was 2,724 mg Pb (g MgO)(-1), which was higher than that (1,980 mg g(-1)) for flowerlike magnesium oxide nanostructures reported by Cao et al. The kinetics, FE-SEM, elemental mapping and XRD results revealed that the substitution followed by precipitation was identified as the mechanism of Pb removal and plumbophyllite (Pb2Si4O10 x H2O) was the precipitated phase of Pb. A leaching test revealed that IOMgO) had negligible concentrations of leached Fe at pH 4-9. Since the base material, IO, is cheap and easily available, lO(MgO) could be produced in massive amounts and used for remediation of wastewater containing heavy metals, applying simple and fast magnetic separation.

  16. Effect of nocturnal exhaustion exercise on the metabolism of selected elements

    Directory of Open Access Journals (Sweden)

    Patlar Suleyman

    2014-01-01

    Full Text Available The present study aims to examine how exercise performed until fatigue at night affects element distribution in the serum. The study examined 10 healthy sedentary males who were not actively engaged in any particular sport and whose mean age was 23.00±0.25 years, mean height 177.79±2.25 cm, and mean weight 70.70±1.63 kg. Blood samples were collected from the subjects at midnight twice: during rest before exercise and after exercise. Serum phosphorus, sodium, potassium, sulfur (mmol/L, cobalt, boron, cadmium, chrome, nickel, manganese, molybdenum, copper, iron, zinc and calcium levels (mg/L were measured using atomic emission spectroscopy (ICP-AES. Exhaustion exercise performed at night brought about a decrease in copper levels only (p<0.05, while elevating levels of potassium, sodium, magnesium, calcium, iron, zinc, manganese, nickel, selenium, molybdenum, chrome, cobalt, lead and cadmium (p<0.05. The results of the study demonstrate that nighttime exercise until exhaustion significantly alters element metabolism.

  17. Determinants of compliance to iron supplementation among ...

    African Journals Online (AJOL)

    2014-01-28

    Jan 28, 2014 ... practice of routine iron supplementation in pregnancy. The major problem with .... elemental iron and 350 μg of folic acid per tablet. Definition of ..... Determinants of adherence to iron/folate supplementation during pregnancy.

  18. Nanoparticle Zere-valent Iron Affect on As (V Removal from Drinking Water

    Directory of Open Access Journals (Sweden)

    Hamed Koohpayehzadeh

    2012-10-01

    Full Text Available Arsenic which is present in the underground and surface water is one of the most toxic elements threating human health and animals. Arsenic has been removed in different type of ways. In this study Arsenic removal from drinking water and its decreasing rates were investigated by NZVI (nanoparticle zerovalent iron to standard limit (I.e.  0.01 mg/lit . The tests were conducted on reactor containing 100 ml water containing 1mg/L. Arsenic by virtue of Batch method. The mixture was executed in mixing was done an Oultrasnic device in order to have better mixture and complete distribution of nanoparticles in water. Then the arsenic was removed from the water by VATMAN paper of 0.45 Hm. The remained arsenic in the water was measured by ICP device. In this article the influence of the parameters including mixture time , PH ,NZVI and arcenic doses were examined . Having perfomed many tests the results showed that 1 mg arsenic can be removed 100 percent by 0.05 g NZVI in 8 min. It is possible to remove by 98 percent arsenic in 5-10 PH range. Iron nanopaticle way is an effective and rapid way to remove arsenic from water and various conditions have not considerable effect on it.

  19. [Iron absorption of the habitual diet in a population of low socioeconomic level].

    Science.gov (United States)

    Morón, C; Kremenchuzky, S; Passamai, M I; D'Andrea de Rivero, S; Pérez de Galíndez, G; Gerschcovich, C

    1985-06-01

    Iron absorption using the extrinsic double-tag method was determined in the habitual diet consumed by a group of 32 volunteers of both sexes, pertaining to the low socioeconomic strata. The diet was made up of bread, spaghetti, vegetables and meat, totalling 2,022 kcal, 65.0 g protein, 17.57 mg iron, and 28.75 mg ascorbic acid. According to our findings, men were found to be neither anemic nor iron-deficient. Among the women, however, 4.8% had anemia and 57.1% suffered from iron deficiency. The non-heme iron absorption was very low: 1.35% at breakfast, 3.29% at lunch, and 3.82% at dinner. Among those subjects found to be normal, the absorption was half the above figures, whereas among those with iron deficiency it was threefold, the differences being highly significant. The absorption of heme-iron for lunch and dinner was 17.53%. The iron deficient group had an absorption value four times greater than the normal group, the differences also being highly significant. The daily availability of non-heme, heme and total iron was 0.44, 1.13 and 1.57 mg, respectively. In the subjects who formed the normal group, total iron available was 1.14 mg, barely covering a man's daily requirements, but not those of a woman. In the iron-deficient group, it was 4.31 mg, that is, four times greater than in the normal group; while this value improves the balance, it does not prevent deficiency in women, with great blood losses. Bearing these results in mind, it is suggested that measures tending to improve dietary iron content and bio-availability, be enforced.

  20. Role of phenolics from Spondias pinnata bark in amelioration of iron overload induced hepatic damage in Swiss albino mice.

    Science.gov (United States)

    Chaudhuri, Dipankar; Ghate, Nikhil Baban; Panja, Sourav; Mandal, Nripendranath

    2016-07-26

    Crude Spondias pinnata bark extract was previously assessed for its antioxidant, anticancer and iron chelating potentials. The isolated compounds gallic acid (GA) and methyl gallate (MG) were evaluated for their curative potential against iron overload-induced liver fibrosis and hepatocellular damage. In vitro iron chelation property and in vivo ameliorating potential from iron overload induced liver toxicity of GA and MG was assessed by different biochemical assays and histopathological studies. MG and GA demonstrated excellent reducing power activities but iron chelation potential of MG is better than GA. Oral MG treatment in mice displayed excellent efficacy (better than GA) to significantly restore the levels of liver antioxidants, serum markers and cellular reactive oxygen species in a dose-dependent fashion. Apart from these, MG exceptionally prevented lipid peroxidation and protein oxidation whereas GA demonstrated better activity to reduce collagen content, thereby strengthening its position as an efficient drug against hepatic damage/fibrosis, which was further supported by histopathological studies. Alongside, MG efficiently eliminated the cause of liver damage, i.e., excess iron, by chelating free iron and reducing the ferritin-bound iron. The present study confirmed the curative effect of GA and MG against iron overload hepatic damage via their potent antioxidant and iron-chelating potential.

  1. Bacterial Disproportionation of Elemental Sulfur Coupled to Chemical Reduction of Iron or Manganese

    Science.gov (United States)

    Thamdrup, Bo; Finster, Kai; Hansen, Jens Würgler; Bak, Friedhelm

    1993-01-01

    A new chemolithotrophic bacterial metabolism was discovered in anaerobic marine enrichment cultures. Cultures in defined medium with elemental sulfur (S0) and amorphous ferric hydroxide (FeOOH) as sole substrates showed intense formation of sulfate. Furthermore, precipitation of ferrous sulfide and pyrite was observed. The transformations were accompanied by growth of slightly curved, rod-shaped bacteria. The quantification of the products revealed that S0 was microbially disproportionated to sulfate and sulfide, as follows: 4S0 + 4H2O → SO42- + 3H2S + 2H+. Subsequent chemical reactions between the formed sulfide and the added FeOOH led to the observed precipitation of iron sulfides. Sulfate and iron sulfides were also produced when FeOOH was replaced by FeCO3. Further enrichment with manganese oxide, MnO2, instead of FeOOH yielded stable cultures which formed sulfate during concomitant reduction of MnO2 to Mn2+. Growth of small rod-shaped bacteria was observed. When incubated without MnO2, the culture did not grow but produced small amounts of SO42- and H2S at a ratio of 1:3, indicating again a disproportionation of S0. The observed microbial disproportionation of S0 only proceeds significantly in the presence of sulfide-scavenging agents such as iron and manganese compounds. The population density of bacteria capable of S0 disproportionation in the presence of FeOOH or MnO2 was high, > 104 cm-3 in coastal sediments. The metabolism offers an explanation for recent observations of anaerobic sulfide oxidation to sulfate in anoxic sediments. PMID:16348835

  2. The FIND-CKD study--a randomized controlled trial of intravenous iron versus oral iron in non-dialysis chronic kidney disease patients: background and rationale.

    Science.gov (United States)

    Macdougall, Iain C; Bock, Andreas; Carrera, Fernando; Eckardt, Kai-Uwe; Gaillard, Carlo; Van Wyck, David; Roubert, Bernard; Cushway, Timothy; Roger, Simon D

    2014-04-01

    Rigorous data are sparse concerning the optimal route of administration and dosing strategy for iron therapy with or without concomitant erythropoiesis-stimulating agent (ESA) therapy for the management of iron deficiency anaemia in patients with non-dialysis dependent chronic kidney disease (ND-CKD). FIND-CKD was a 56-week, open-label, multicentre, prospective, randomized three-arm study (NCT00994318) of 626 patients with ND-CKD and iron deficiency anaemia randomized to (i) intravenous (IV) ferric carboxymaltose (FCM) at an initial dose of 1000 mg iron with subsequent dosing as necessary to target a serum ferritin level of 400-600 µg/L (ii) IV FCM at an initial dose of 200 mg with subsequent dosing as necessary to target serum ferritin 100-200 µg/L or (iii) oral ferrous sulphate 200 mg iron/day. The primary end point was time to initiation of other anaemia management (ESA therapy, iron therapy other than study drug or blood transfusion) or a haemoglobin (Hb) trigger (two consecutive Hb values FIND-CKD was the longest randomized trial of IV iron therapy to date. Its findings will address several unanswered questions regarding iron therapy to treat iron deficiency anaemia in patients with ND-CKD. It was also the first randomized trial to utilize both a high and low serum ferritin target range to adjust IV iron dosing, and the first not to employ Hb response as its primary end point.

  3. Iron supported on bioinspired green silica for water remediation.

    Science.gov (United States)

    Alotaibi, Khalid M; Shiels, Lewis; Lacaze, Laure; Peshkur, Tanya A; Anderson, Peter; Machala, Libor; Critchley, Kevin; Patwardhan, Siddharth V; Gibson, Lorraine T

    2017-01-01

    Iron has been used previously in water decontamination, either unsupported or supported on clays, polymers, carbons or ceramics such as silica. However, the reported synthesis procedures are tedious, lengthy (involving various steps), and either utilise or produce toxic chemicals. Herein, the use of a simple, rapid, bio-inspired green synthesis method is reported to prepare, for the first time, a family of iron supported on green nanosilica materials (Fe@GN) to create new technological solutions for water remediation. In particular, Fe@GN were employed for the removal of arsenate ions as a model for potentially toxic elements in aqueous solution. Several characterization techniques were used to study the physical, structural and chemical properties of the new Fe@GN. When evaluated as an adsorption platform for the removal of arsenate ions, Fe@GN exhibited high adsorption capacity (69 mg of As per g of Fe@GN) with superior kinetics (reaching ∼35 mg As per g sorbent per hr) - threefold higher than the highest removal rates reported to date. Moreover, a method was developed to regenerate the Fe@GN allowing for a full recovery and reuse of the adsorbent in subsequent extractions; strongly highlighting the potential technological benefits of these new green materials.

  4. Impact of trace element additives on anaerobic digestion of sewage sludge with in-situ carbon dioxide sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Linville, Jessica L.; Shen, Yanwen; Schoene, Robin P.; Nguyen, Maximilian; Urgun-Demirtas, Meltem; Snyder, Seth W.

    2016-09-01

    Anaerobic digestion (AD) of sludge at wastewater treatment plants can benefit from addition of essential trace metals such as iron, nickel and cobalt to increase biogas production for utilization in combined heat and power systems, fed into natural gas pipelines or as a vehicle fuel. This study evaluated the impact and benefits of Ni/Co and olivine addition to the digester at mesophilic temperatures. These additions supplement previously reported research in which iron-rich olivine (MgSiO4) was added to sequester CO2 in-situ during batch AD of sludge. Trace element addition has been shown to stimulate and stabilize biogas production and have a synergistic effect on the mineral carbonation process. AD with 5% w/v olivine and 1.5 mg/L Ni/Co addition had a 17.3% increase in methane volume, a 6% increase in initial exponential methane production rate and a 56% increase in methane yield (mL CH4/g CODdegraded) compared to the control due to synergistic trace element and olivine addition while maintaining 17.7% CO2 sequestration from olivine addition. Both first-order kinetic modeling and response surface methodology modeling confirmed the combined benefit of the trace elements and olivine addition. These results were significantly higher than previously reported results with olivine addition alone [1].

  5. Assessment of polyphase sintered iron-cobalt-iron boride cermets

    International Nuclear Information System (INIS)

    Nowacki, J.; Pieczonka, T.

    2004-01-01

    Sintering of iron, cobalt and boron powders has been analysed. As a result iron-iron boride, Fe-Fe 2 B and iron/cobalt boride with a slight admixture of molybdenum, Fe - Co - (FeMoCo) 2 B cermets have been produced. Iron was introduced to the mixture as the Astalloy Mo Hoeganaes grade powder. Elemental amorphous boron powder was used, and formation of borides occurred both during heating and isothermal sintering periods causing dimensional changes of the sintered body. Dilatometry was chosen to control basic phenomena taking place during multiphase sintering of investigated systems. The microstructure and phase constituents of sintered compacts were controlled as well. The cermets produced were substituted to: metallographic tests, X-ray analysis, measurements of hardness and of microhardness, and of wear in the process of sliding dry friction. Cermets are made up of two phases; hard grains of iron - cobalt boride, (FeCo) 2 B (1800 HV) constituting the reinforcement and a relatively soft and plastic eutectic mixture Fe 2 B - Co (400-500 HV) constituting the matrix. (author)

  6. Iron Supplementation Effects on Redox Status following Aseptic Skeletal Muscle Trauma in Adults and Children.

    Science.gov (United States)

    Deli, Chariklia K; Fatouros, Ioannis G; Paschalis, Vassilis; Tsiokanos, Athanasios; Georgakouli, Kalliopi; Zalavras, Athanasios; Avloniti, Alexandra; Koutedakis, Yiannis; Jamurtas, Athanasios Z

    2017-01-01

    Exercise-induced skeletal muscle microtrauma is characterized by loss of muscle cell integrity, marked aseptic inflammatory response, and oxidative stress. We examined if iron supplementation would alter redox status after eccentric exercise. In a randomized, double blind crossover study, that was conducted in two cycles, healthy adults ( n = 14) and children ( n = 11) received daily either 37 mg of elemental iron or placebo for 3 weeks prior to and up to 72 h after an acute eccentric exercise bout. Blood was drawn at baseline, before exercise, and 72 h after exercise for the assessment of iron status, creatine kinase activity (CK), and redox status. Iron supplementation at rest increased iron concentration and transferrin saturation ( p exercise, while no changes occurred in children. Iron supplementation increased TBARS at 72 h after exercise in both adults and children; no changes occurred under placebo condition. Eccentric exercise decreased bilirubin concentration at 72 h in all groups. Iron supplementation can alter redox responses after muscle-damaging exercise in both adults and children. This could be of great importance not only for healthy exercising individuals, but also in clinical conditions which are characterized by skeletal muscle injury and inflammation, yet iron supplementation is crucial for maintaining iron homeostasis. This study was registered at Clinicaltrials.gov Identifier: NCT02374619.

  7. Effect of the third element on the structure of liquid Mg{sub 65}Cu{sub 25}Y{sub 10} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dan [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Weihai Wanfeng Magnesium Industry Science and Technology Development Co. Ltd., Weihai 264209 (China); Zhu, Xun Ming [Weihai Wanfeng Magnesium Industry Science and Technology Development Co. Ltd., Weihai 264209 (China); Qin, Jing Yu, E-mail: qinjy@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Duan, Jun Peng; Wang, Ai Min [Weihai Wanfeng Magnesium Industry Science and Technology Development Co. Ltd., Weihai 264209 (China); Gu, Ting Kun [School of Electrical Engineering, Shandong University, Jinan 250061 (China)

    2016-08-12

    The liquid structures of Mg{sub 65}Cu{sub 25}Y{sub 10} and its three homologous binary liquid alloys are investigated via ab initio molecular dynamics in the present work. The chemical and topological environments in all four liquid alloys are analyzed using pair distribution function, coordination number, and the Voronoi polyhedron. It shows that the Cu atoms play significant role in deciding the chemical and topological short-range orders of the Mg{sub 65}Cu{sub 25}Y{sub 10} liquid alloy. The Voronoi polyhedra in the ternary liquid alloy illustrate less varieties and longer lifetime. Moreover, the diffusion coefficients are decreased significantly in the ternary liquid alloys according to the mean square displacements. All above offer a deeper insight into how the three species work in the Mg{sub 65}Cu{sub 25}Y{sub 10} liquid alloy. - Highlights: • Cu plays crucial role in Mg{sub 65}Cu{sub 25}Y{sub 10}'s chemical and topological SROs. • Additive elements decrease varieties and prolong lifetimes of Voronoi polyhedra. • Additive elements hinder the diffusion of Mg and Y efficiently.

  8. Influence of the surface topography, morphology and structure on magnetic properties of ion beam sputtered iron layers, Fe/Cr/Fe- and Fe/MgO/Fe multilayers; Untersuchung der Morphologie und magnetische Eigenschaften von ionenstrahl-gesputterten Eisen-Einzelschichten, Fe/Cr/Fe- und Fe/MgO/Fe-Schichtsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Steeb, Alexandra

    2007-04-05

    In this PhD Thesis, the influence of the surface topography, morphology and structure on magnetic properties of ion beam sputtered iron layers on GaAs is examined. To analyze the structure of the produced iron films, low energy electron diffraction and scanning tunneling microscopy is employed. The utilized methods to investigate the magnetic properties are Kerr- and SQUID-magnetometry and ferromagnetic resonance. It is demonstrated that on untreated as well as on presputtered and heated GaAs substrates the sputtered iron films grow epitaxially. The least surface roughness of 1 A exhibit iron films grown on untreated GaAs, while iron films on heated GaAs have the highest roughness of 30 A. The largest crystal anisotropy constant is found for the presputtered GaAs/Fe-System. For this preparation method, two monolayers of iron are determined to be magnetically dead layers. At a film thickness of 100 A, 83% of the value for saturation magnetization of bulk iron are achieved. The small observed FMR-linewidths confirm the good bulk properties of the ion beam sputtered iron. Furthermore, an antiferromagnetic interlayer exchange coupling in sputtered Fe/Cr/Fe-films was achieved. For a thickness of 12 to 17 A of the chrome interlayer, a coupling strength up to 0.2 mJ/m{sup 2} is found. To account for the small coupling strength, a strong intermixing at the interface is assumed. Finally, epitaxial Fe/MgO/Fe/FeMn multilayers are deposited on GaAs. After the structuring, it is possible to detect tunneling processes in the tunneling contacts with current-voltage measurements. The tunnel magneto resistance values of 2% are small, which can be explained by the absence of sharp, well-defined interfaces between the Fe/FeMn and the Fe/MgO interfaces. These results demonstrate, that analog to MBE the ion beam sputtering method realizes good magnetic bulk properties. However, interface sensitive phenomena are weakened because of a strong intermixing at the interfaces. (orig.)

  9. A spectral X-ray CT simulation study for quantitative determination of iron

    Science.gov (United States)

    Su, Ting; Kaftandjian, Valérie; Duvauchelle, Philippe; Zhu, Yuemin

    2018-06-01

    Iron is an essential element in the human body and disorders in iron such as iron deficiency or overload can cause serious diseases. This paper aims to explore the ability of spectral X-ray CT to quantitatively separate iron from calcium and potassium and to investigate the influence of different acquisition parameters on material decomposition performance. We simulated spectral X-ray CT imaging of a PMMA phantom filled with iron, calcium, and potassium solutions at various concentrations (15-200 mg/cc). Different acquisition parameters were considered, such as the number of energy bins (6, 10, 15, 20, 30, 60) and exposure factor per projection (0.025, 0.1, 1, 10, 100 mA s). Based on the simulation data, we investigated the performance of two regularized material decomposition approaches: projection domain method and image domain method. It was found that the former method discriminated iron from calcium, potassium and water in all cases and tended to benefit from lower number of energy bins for lower exposure factor acquisition. The latter method succeeded in iron determination only when the number of energy bins equals 60, and in this case, the contrast-to-noise ratios of the decomposed iron images are higher than those obtained using the projection domain method. The results demonstrate that both methods are able to discriminate and quantify iron from calcium, potassium and water under certain conditions. Their performances vary with the acquisition parameters of spectral CT. One can use one method or the other to benefit better performance according to the data available.

  10. Experimental detection of iron overload in liver through neutron stimulated emission spectroscopy

    International Nuclear Information System (INIS)

    Kapadia, A J; Tourassi, G D; Sharma, A C; Crowell, A S; Kiser, M R; Howell, C R

    2008-01-01

    Iron overload disorders have been the focus of several quantification studies involving non-invasive imaging modalities. Neutron spectroscopic techniques have demonstrated great potential in detecting iron concentrations within biological tissue. We are developing a neutron spectroscopic technique called neutron stimulated emission computed tomography (NSECT), which has the potential to diagnose iron overload in the liver at clinically acceptable patient dose levels through a non-invasive scan. The technique uses inelastic scatter interactions between atomic nuclei in the sample and incoming fast neutrons to non-invasively determine the concentration of elements in the sample. This paper discusses a non-tomographic application of NSECT investigating the feasibility of detecting elevated iron concentrations in the liver. A model of iron overload in the human body was created using bovine liver tissue housed inside a human torso phantom and was scanned with a 5 MeV pulsed beam using single-position spectroscopy. Spectra were reconstructed and analyzed with algorithms designed specifically for NSECT. Results from spectroscopic quantification indicate that NSECT can currently detect liver iron concentrations of 6 mg g -1 or higher and has the potential to detect lower concentrations by optimizing the acquisition geometry to scan a larger volume of tissue. The experiment described in this paper has two important outcomes: (i) it demonstrates that NSECT has the potential to detect clinically relevant concentrations of iron in the human body through a non-invasive scan and (ii) it provides a comparative standard to guide the design of iron overload phantoms for future NSECT liver iron quantification studies

  11. Trace elements concentrations in aquatic biota from the Iron Gates wetlands in Romania

    Directory of Open Access Journals (Sweden)

    Matache M. L.

    2013-04-01

    Full Text Available Concentration of four heavy metals was studied in living organisms from the wetlands ecosystems within the Iron Gates Natural Park in Romania. Samples included aquatic plants (Ceratophyllum ssp., Potamogeton pectinatus, Potamogeton natans, molluscs (Sinanodonta woodiana, Unio tumidus, Unio pictorum and fish (Silurus glanis, Sander lucioperca, Aspius aspius, Cyprinus carpio, Carassius gibelio. Metals organotropism in fish samples (gills, liver, muscle, eggs has been studied (Kojadinovici et al., 2007; Foata et. Al, 2009; Dutton and Fisher, 2011; David et al., 2012. Metal contamination of the wetlandecosystems in the Iron Gates Natural Park has been documented in the past for sediments (Matache et. al, 2002 and soils (Matache et al., 2003. This is a consequence of the mining and quarrying activities performed in the Moldova Noua region between 1960’s and 2000’s. Zinc is the main metal contaminant in all categories of collected samples. For fish muscle tissue (part of the fish mainly consumed by the local inhabitants, comparison with EU standards has been performed. Issues related to human health appear especially for cadmium (EC, 2006. Potamogeton pectinatus is the least accumulating plant species, whilst Potamogeton natans and Ceratophyllum ssp. had shown similar accumulation capacities of the trace elements.

  12. Antioxidative responses of Elodea nuttallii (Planch.) H. St. John to short-term iron exposure.

    Science.gov (United States)

    Xing, Wei; Li, Dunhai; Liu, Guihua

    2010-01-01

    Antioxidative responses of Elodea nuttallii (Planch.) H. St. John to short-term iron exposure were investigated in the study. Results showed that iron accumulation in E. nuttallii was concentration dependent. Growth of E. nuttallii was promoted by low iron concentration (1-10 mg L(-1) [Fe(3+)]), but growth inhibition was observed when iron concentration beyond 10 mg L(-1). The synthesis of protein and pigments increased within 1-10 mg L(-1) [Fe(3+)] range. The activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione-S-transferase (GST) were up to maximal values at 10 mg L(-1) [Fe(3+)]. High iron concentration inhibited the synthesis of protein and pigments as well as activities of antioxidative enzymes, and accelerated degradation of pigment and production of ROS. Low iron concentration had no significant influences on PSII maximal quantum yield, activity of PSII and relative electron transport rate though PSII. Malondialdehyde (MDA) and proline concentrations were highest at 100 and 1 mg L(-1) [Fe(3+)], respectively. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  13. Evaluation of chromium, nickel, iron and manganese content in wheat, flour, bran and selected baked products

    Directory of Open Access Journals (Sweden)

    Bawiec Piotr

    2014-06-01

    Full Text Available Considering the nutritional values, breadstuff plays a big part in covering human nourishment needs and constitutes a base of all day diet. Moreover, bread is an excellent source of numerous vitamins and minerals the abundance of which depends on the degree of grinding. Thus, it seems to be very important to know the composition and level of bio-elements. That is why the main target of this study was to evaluate the concentration of selected trace elements: chromium (Cr, nickel (Ni, iron (Fe and manganese (Mn in wheat grain, wheat bran, different wheat and rye flour types and variety of breadstuff also with addition of grains and seeds from different bakeries and mills. Another task was to analyze if the technological process has an influence on secondary despoil of bread goods with heavy metal elements. The analyzed trace elements were measured with a precise and accurate atomic absorption spectrophotometric method (AAS and the results were expressed in mg/kg of selected sample. Obtained results show that bread and grain products are a good source of trace elements like chromium, nickel, iron and manganese. However, the higher levels of chromium and nickel in bread goods could rather be an effect of impurity caused by a technological process in mill and bakeries.

  14. The effect of harmeful elements in production of iron in relation to input and output material balance

    Directory of Open Access Journals (Sweden)

    P. Besta

    2012-07-01

    Full Text Available The main objectives of blast-furnace operators include maximum production of pig iron of required chemical composition at minimal cost. This can be ensured only in case of quality raw material basis and trouble-free operation of blast-furnace. Both parameters are influenced by the concentration of undesirable elements. The negative elements contained in the blast-furnace raw materials cause many technological problems in the sintering as well as in the blast-furnace process. These are mainly heavy metals and alkaline carbonates. The article deals with the analysis of material balance of zinc and selected alkaline carbonates contents in the input raw materials and output products of the blast-furnace.

  15. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation.

    Science.gov (United States)

    Hilty, Florentine M; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T N; Ehrensperger, Felix; Hurrell, Richard F; Pratsinis, Sotiris E; Langhans, Wolfgang; Zimmermann, Michael B

    2010-05-01

    Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO(4)), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area approximately 190 m(2) g(-1)) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO(4) and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO(4) and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Frequent blood donation Frequent blood tests, especially in infants and small children Heavy menstrual periods Injury or ... boys and girls. From birth to 6 months, babies need 0.27 mg of iron. This number ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Leadership Scientific Divisions Operations and Administration Advisory Committees Budget and Legislative Information Jobs and Working at the ... girls. From birth to 6 months, babies need 0.27 mg of iron. This number goes up ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... breastfeeding women older than 18 need 9 mg. Problems absorbing iron Even if you consume the recommended ... anemia may cause the following complications: Depression Heart problems. If you do not have enough hemoglobin-carrying ...

  19. Iron nutrition and premenopausal women: effects of poor iron status on physical and neuropsychological performance.

    Science.gov (United States)

    McClung, James P; Murray-Kolb, Laura E

    2013-01-01

    Iron is a nutritionally essential trace element that functions through incorporation into proteins and enzymes, many of which contribute to physical and neuropsychological performance. Poor iron status, including iron deficiency (ID; diminished iron stores) and iron deficiency anemia (IDA; poor iron stores and diminished hemoglobin), affects billions of people worldwide. This review focuses on physical and neuropsychological outcomes associated with ID and IDA in premenopausal women, as the prevalence of ID and IDA is often greater in premenopausal women than other population demographics. Recent studies addressing the physiological effects of poor iron status on physical performance, including work productivity, voluntary activity, and athletic performance, are addressed. Similarly, the effects of iron status on neurological performance, including cognition, affect, and behavior, are summarized. Nutritional countermeasures for the prevention of poor iron status and the restoration of decrements in performance outcomes are described.

  20. Dietary inulin supplementation does not promote colonic iron absorption in a porcine model

    Science.gov (United States)

    Prebiotics may enhance iron bioavailability by increasing iron absorption in the colon. Anemic pigs fitted with cecal cannulas were fed a low-iron diet with or without 4% inulin. Over 7 days, pigs were administered 1 mg 54 Fe in the morning feed followed by cannula infusion of 0.5 mg 58 Fe to measu...

  1. Performance of hybrid nano-micro reinforced mg metal matrix composites brake calliper: simulation approach

    Science.gov (United States)

    Fatchurrohman, N.; Chia, S. T.

    2017-10-01

    Most commercial vehicles use brake calliper made of grey cast iron (GCI) which possesses heavy weight. This contributes to the total weight of the vehicle which can lead to higher fuel consumption. Another major problem is GCI calliper tends to deflect during clamping action, known as “bending of bridge”. This will result in extended pedal travel. Magnesium metal matrix composites (Mg-MMC) has a potential application in the automotive industry since it having a lower density, higher strength and very good modulus of elasticity as compared to GCI. This paper proposed initial development of hybrid Mg-MMC brake calliper. This was achieved by analyzing the performance of hybrid nano-micro reinforced Mg-MMC and comparing with the conventional GCI brake calliper. It was performed using simulation in ANSYS, a finite element analysis (FEA) software. The results show that hybrid Mg-MMC has better performance in terms of reduction the weight of the brake calliper, reduction in total deformation/deflection and better ability to withstand equivalent elastic strain.

  2. Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna

    International Nuclear Information System (INIS)

    Simon, Edina; Braun, Mihaly; Vidic, Andreas; Bogyo, David; Fabian, Istvan; Tothmeresz, Bela

    2011-01-01

    Foliage dust contains heavy metal that may have harmful effects on human health. The elemental contents of tree leaves and foliage dust are especially useful to assess air environmental pollution. We studied the elemental concentrations in foliage dust and leaves of Acer pseudoplatanus along an urbanization gradient in Vienna, Austria. Samples were collected from urban, suburban and rural areas. We analysed 19 elements in both kind of samples: aluminium, barium, calcium, copper, iron, potassium, magnesium, sodium, phosphor, sulphur, strontium and zinc. We found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for aluminium, barium, iron, lead, phosphor and selenium. Elemental concentrations of leaves were significantly higher in urban than in rural area for manganese and strontium. Urbanization changed significantly the elemental concentrations of foliage dust and leaves and the applied method can be useful for monitoring the environmental load. - Highlights: → We studied the elements in dust and leaves along an urbanization gradient, Austria. → We analysed 19 elements: Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Na, P, Pb, S, Sr and Zn. → Elemental concentrations were higher in urban area than in the rural area. → Studied areas were separated by CDA based on the elemental concentrations. → Dust and leaves can be useful for monitoring the environmental load. - Studying the elements (Al, Ba, Ca, Cu, Fe, K, Mg, Na, P, S, Sr, Zn) in dust and leaves along an urbanization gradient in Wien, Austria we found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for Al, Ba, Fe, Pb, P and Se, and concentrations of leaves were significantly higher in urban than in rural area for Mn and Sr.

  3. Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Edina, E-mail: edina.simon@gmail.com [Department of Ecology, University of Debrecen, H-4010 Debrecen, P.O. Box 71 (Hungary); Braun, Mihaly [Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, P.O. Box 21 (Hungary); Vidic, Andreas [Department fuer Naturschutzbiologie, Vegetations- und Landschaftsoekologie, Universitat Wien, Althanstrasse 14, 1090 Wien (Austria); Bogyo, David [Department of Ecology, University of Debrecen, H-4010 Debrecen, P.O. Box 71 (Hungary); Fabian, Istvan [Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, P.O. Box 21 (Hungary); Tothmeresz, Bela [Department of Ecology, University of Debrecen, H-4010 Debrecen, P.O. Box 71 (Hungary)

    2011-05-15

    Foliage dust contains heavy metal that may have harmful effects on human health. The elemental contents of tree leaves and foliage dust are especially useful to assess air environmental pollution. We studied the elemental concentrations in foliage dust and leaves of Acer pseudoplatanus along an urbanization gradient in Vienna, Austria. Samples were collected from urban, suburban and rural areas. We analysed 19 elements in both kind of samples: aluminium, barium, calcium, copper, iron, potassium, magnesium, sodium, phosphor, sulphur, strontium and zinc. We found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for aluminium, barium, iron, lead, phosphor and selenium. Elemental concentrations of leaves were significantly higher in urban than in rural area for manganese and strontium. Urbanization changed significantly the elemental concentrations of foliage dust and leaves and the applied method can be useful for monitoring the environmental load. - Highlights: > We studied the elements in dust and leaves along an urbanization gradient, Austria. > We analysed 19 elements: Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Na, P, Pb, S, Sr and Zn. > Elemental concentrations were higher in urban area than in the rural area. > Studied areas were separated by CDA based on the elemental concentrations. > Dust and leaves can be useful for monitoring the environmental load. - Studying the elements (Al, Ba, Ca, Cu, Fe, K, Mg, Na, P, S, Sr, Zn) in dust and leaves along an urbanization gradient in Wien, Austria we found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for Al, Ba, Fe, Pb, P and Se, and concentrations of leaves were significantly higher in urban than in rural area for Mn and Sr.

  4. SOLUBILITY OF IRON IN METALLIC HYDROGEN AND STABILITY OF DENSE CORES IN GIANT PLANETS

    International Nuclear Information System (INIS)

    Wahl, Sean M.; Wilson, Hugh F.; Militzer, Burkhard

    2013-01-01

    The formation of the giant planets in our solar system, and likely a majority of giant exoplanets, is most commonly explained by the accretion of nebular hydrogen and helium onto a large core of terrestrial-like composition. The fate of this core has important consequences for the evolution of the interior structure of the planet. It has recently been shown that H 2 O, MgO, and SiO 2 dissolve in liquid metallic hydrogen at high temperature and pressure. In this study, we perform ab initio calculations to study the solubility of an innermost metallic core. We find dissolution of iron to be strongly favored above 2000 K over the entire pressure range (0.4-4 TPa) considered. We compare with and summarize the results for solubilities on other probable core constituents. The calculations imply that giant planet cores are in thermodynamic disequilibrium with surrounding layers, promoting erosion and redistribution of heavy elements. Differences in solubility behavior between iron and rock may influence evolution of interiors, particularly for Saturn-mass planets. Understanding the distribution of iron and other heavy elements in gas giants may be relevant in understanding mass-radius relationships, as well as deviations in transport properties from pure hydrogen-helium mixtures

  5. Increased glucose dependence in resting, iron-deficient rats

    International Nuclear Information System (INIS)

    Brooks, G.A.; Henderson, S.A.; Dallman, P.R.

    1987-01-01

    Rates of blood glucose and lactate turnover were assessed in resting iron-deficient and iron-sufficient (control) rats to test the hypothesis that dependence on glucose metabolism is increased in iron deficiency. Male Sprague-Dawley rats, 21 days old, were fed a diet containing either 6 mg iron/kg feed (iron-deficient group) or 50 mg iron/kg feed (iron-sufficient group) for 3-4 wk. The iron-deficient group became anemic, with hemoglobin levels of 6.4 ± 0.2 compared with 13.8 ± 0.3 g/dl for controls. Rats received a 90-min primed continuous infusion of D-[6- 3 H]glucose and sodium L-[U- 14 C]lactate via a jugular catheter. Serial samples were taken from a carotid catheter for concentration and specific activity determinations. Iron-deficient rats had significantly higher blood glucose and lactate concentrations than controls. The iron-deficient group had a significantly higher glucose turnover rate than the control group. Significantly more metabolite recycling in iron-deficient rats was indicated by greater incorporation of 14 C into blood glucose. Assuming a carbon crossover correction factor of 2, half of blood glucose arose from lactate in deficient animals. By comparison, only 25% of glucose arose from lactate in controls. Lack of a difference in lactate turnover rates between deficient rats and controls was attributed to 14 C recycling. The results indicate a greater dependence on glucose metabolism in iron-deficient rats

  6. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation

    International Nuclear Information System (INIS)

    Wang, Jie; Fang, Zhanqiang; Cheng, Wen; Yan, Xiaomin; Tsang, Pokeung Eric; Zhao, Dongye

    2016-01-01

    In this study, the effects of concentrations 0, 100, 250, 500, 750 and 1000 mg kg"−"1 of nanoscale zero-valent iron (nZVI) on germination, seedlings growth, physiology and toxicity mechanisms were investigated. The results showed that nZVI had no effect on germination, but inhibited the rice seedlings growth in higher concentrations (>500 mg kg"−"1 nZVI). The highest suppression rate of the length of roots and shoots reached 46.9% and 57.5%, respectively. The 1000mg kg"−"1 nZVI caused the highest suppression rates for chlorophyll and carotenoids, at 91.6% and 85.2%, respectively. In addition, the activity of antioxidant enzymes was altered by the translocation of nanoparticles and changes in active iron content. Visible symptoms of iron deficiency were observed at higher concentrations, at which the active iron content decreased 61.02% in the shoots, but the active iron content not decreased in roots. Interestingly, the total and available amounts of iron in the soil were not less than those in the control. Therefore, the plants iron deficiency was not caused by (i) deficiency of available iron in the soil and (ii) restraint of the absorption that plant takes in the available iron, while induced by (ⅲ) the transport of active iron from the root to the shoot was blocked. The cortex tissues were seriously damaged by nZVI which was transported from soil to the root, these were proved by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). This current study shows that the mechanism of iron deficiency in rice seedling was due to transport of active iron from the root to the shoot blocked, which was caused by the uptake of nZVI. - Highlights: • Higher concentrations of nZVI induced iron deficiency in rice seedlings visibly. • nZVI was taken in rice seedlings and transported form root to shoot. • The pathway of active iron transport from root to shoot was inhibited. • The cortex tissues

  7. Siderophore-mediated iron trafficking in humans is regulated by iron

    Science.gov (United States)

    Liu, Zhuoming; Lanford, Robert; Mueller, Sebastian; Gerhard, Glenn S.; Luscieti, Sara; Sanchez, Mayka; Devireddy, L.

    2013-01-01

    Siderophores are best known as small iron binding molecules that facilitate microbial iron transport. In our previous study we identified a siderophore-like molecule in mammalian cells and found that its biogenesis is evolutionarily conserved. A member of the short chain dehydrogenase family of reductases, 3-OH butyrate dehydrogenase (BDH2) catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore. We have shown that depletion of the mammalian siderophore by inhibiting expression of bdh2 results in abnormal accumulation of cellular iron and mitochondrial iron deficiency. These observations suggest that the mammalian siderophore is a critical regulator of cellular iron homeostasis and facilitates mitochondrial iron import. By utilizing bioinformatics, we identified an iron-responsive element (IRE; a stem-loop structure that regulates genes expression post-transcriptionally upon binding to iron regulatory proteins or IRPs) in the 3′-untranslated region (3′-UTR) of the human BDH2 (hBDH2) gene. In cultured cells as well as in patient samples we now demonstrate that the IRE confers iron-dependent regulation on hBDH2 and binds IRPs in RNA electrophoretic mobility shift assays. In addition, we show that the hBDH2 IRE associates with IRPs in cells and that abrogation of IRPs by RNAi eliminates the iron-dependent regulation of hBDH2 mRNA. The key physiologic implication is that iron-mediated post-transcriptional regulation of hBDH2 controls mitochondrial iron homeostasis in human cells. These observations provide a new and an unanticipated mechanism by which iron regulates its intracellular trafficking. PMID:22527885

  8. Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: Duodenal expression profile of genes involved in heme iron absorption.

    Directory of Open Access Journals (Sweden)

    Robert Staroń

    Full Text Available Heme is an efficient source of iron in the diet, and heme preparations are used to prevent and cure iron deficiency anemia in humans and animals. However, the molecular mechanisms responsible for heme absorption remain only partially characterized. Here, we employed young iron-deficient piglets as a convenient animal model to determine the efficacy of oral heme iron supplementation and investigate the pathways of heme iron absorption. The use of bovine hemoglobin as a dietary source of heme iron was found to efficiently counteract the development of iron deficiency anemia in piglets, although it did not fully rebalance their iron status. Our results revealed a concerted increase in the expression of genes responsible for apical and basolateral heme transport in the duodenum of piglets fed a heme-enriched diet. In these animals the catalytic activity of heme oxygenase 1 contributed to the release of elemental iron from the protoporphyrin ring of heme within enterocytes, which may then be transported by the strongly expressed ferroportin across the basolateral membrane to the circulation. We hypothesize that the well-recognized high bioavailability of heme iron may depend on a split pathway mediating the transport of heme-derived elemental iron and intact heme from the interior of duodenal enterocytes to the bloodstream.

  9. In situ treatment of cyanide-contaminated groundwater by iron cyanide precipitation

    International Nuclear Information System (INIS)

    Ghosh, R.S.; Dzombak, D.A.; Luthy, R.G.; Smith, J.R.

    1999-01-01

    Groundwater contamination with cyanide is common at many former or active industrial sites. Metal-cyanide complexes typically dominate aqueous speciation of cyanide in groundwater systems, with iron-cyanide complexes often most abundant. Typically, metal-cyanide complexes behave as nonadsorbing solutes in sand-gravel aquifer systems in the neutral pH range, rendering cyanide relatively mobile in groundwater systems. Groundwater pump-and-treat systems have often been used to manage cyanide contamination in groundwater. This study examined the feasibility of using in situ precipitation of iron cyanide in a reactive barrier to attenuate the movement of cyanide in groundwater. Laboratory column experiments were performed in which cyanide solutions were passed through mixtures of sand and elemental iron filings. Removal of dissolved cyanide was evaluated in a variety of cyanide-containing influents under various flow rates and sand-to-iron weight ratios. Long-term column tests performed with various cyanide-containing influents under both oxic and anoxic conditions, at neutral pH and at flow rates typical of sand-gravel porous media, yielded effluent concentrations of total cyanide as low as 0.5 mg/L. Effluent cyanide concentrations achieved were close to the solubilities of Turnbull's blue-hydrous ferric oxide solid solutions, indicating co-precipitation of the two solids. Maximum cyanide removal efficiency was achieved with approximately 10% by weight of iron in the sand-iron mixtures; higher iron contents did not increase removal efficiency significantly. Results obtained indicate that in situ precipitation is a promising passive treatment approach for cyanide in groundwater

  10. The effect of a standardized protocol for iron supplementation to blood donors low in hemoglobin concentration.

    Science.gov (United States)

    Magnussen, Karin; Bork, Nanna; Asmussen, Lisa

    2008-04-01

    Iron deficiency leading to low hemoglobin concentration (cHb) is a common problem for blood donors as well as for blood banks. A standardized protocol offering iron supplementation based on P-ferritin determination may help to reduce the problem and retain donors. This was a prospective study where 879 blood donors, presenting with cHb at or below the limit of acceptance for donation, were included. The predonation cHb result was read after donation. The donors received 50 iron tablets (JernC or Ferrochel, 100 or 25 mg elemental iron, respectively), and samples for P-ferritin, mean corpuscular volume, and control of cHb were secured. Based on a P-ferritin level of less than 60 microg per L, 20 iron tablets were offered after all following donations. Mean cHb was 7.6 mmol per L (122 g/L) and 8.2 mmol per L (132 g/L) in women and men, respectively. In 80 percent of the women and 48 percent of the men, iron stores were low (P-ferritin protocol offering iron supplementation and simple oral and written advice based on P-ferritin measurements is effective in normalizing cHb and retaining donors presenting with cHb at or below the limit of acceptance for donation.

  11. Statistical study to determine the effect of carbon, silicon, nickel and other alloying elements on the mechanical properties of as-cast ferritic ductile irons

    International Nuclear Information System (INIS)

    Lacaze, J.; Sertucha, J.; Larranaga, P.; Suarez, R.

    2016-01-01

    There is a great interest in fully ferritic ductile irons due to their structural homogeneity, remarkable ductility and good response when machining. On the other hand the wide variety of raw materials available in foundry plants becomes a problem when controlling the chemical composition of the manufactured alloys. The present work shows a statistical study about the effect of different C, Si, Ni contents and other minor elements on structural and mechanical properties of a group of ferritic ductile iron alloys. A set of equations are finally presented to predict room temperature mechanical properties of ferritic ductile irons by means of their chemical composition and pearlite content. (Author)

  12. Statistical study to determine the effect of carbon, silicon, nickel and other alloying elements on the mechanical properties of as-cast ferritic ductile irons

    Energy Technology Data Exchange (ETDEWEB)

    Lacaze, J.; Sertucha, J.; Larranaga, P.; Suarez, R.

    2016-10-01

    There is a great interest in fully ferritic ductile irons due to their structural homogeneity, remarkable ductility and good response when machining. On the other hand the wide variety of raw materials available in foundry plants becomes a problem when controlling the chemical composition of the manufactured alloys. The present work shows a statistical study about the effect of different C, Si, Ni contents and other minor elements on structural and mechanical properties of a group of ferritic ductile iron alloys. A set of equations are finally presented to predict room temperature mechanical properties of ferritic ductile irons by means of their chemical composition and pearlite content. (Author)

  13. Iron exclusion in rice genotypes as affected by different vapor pressure deficit conditions

    Directory of Open Access Journals (Sweden)

    Ram Kumar Shrestha

    2015-08-01

    Full Text Available Root iron (Fe exclusion capacity of four lowland rice genotypes were evaluated in increasing rate of Fe2+ stresses (0, 500, 1000 and 1500 mg/L in growing medium under the conditions of low and high vapor pressure deficit. Rice root excluded significantly higher amount of iron under dry atmospheric condition (655 mg Fe/g root dry matter than moist atmospheric condition (118 mg Fe/g root dry matter. But their iron exclusion capacity reduced when they were gradually exposed to the higher levels of Fe stress. Tolerant genotype such as TOX3107 excluded more iron when they were exposed to dry atmospheric condition.

  14. Evaluation of iron, zinc, copper, manganese and selenium in oral hospital diets.

    Science.gov (United States)

    Moreira, Daniele C F; de Sá, Júlia S M; Cerqueira, Isabela B; Oliveira, Ana P F; Morgano, Marcelo A; Quintaes, Késia D

    2014-10-01

    Many trace elements are nutrients essential to humans, acting in the metabolism as constituents or as enzymatic co-factors. The iron, zinc, copper, manganese and selenium contents of hospital diets (regular, blend and soft) and of oral food complement (OFC) were determined, evaluating the adequacy of each element in relation to the nutritional recommendations (DRIs) and the percent contribution alone and with OFC. Duplicate samples were taken of six daily meals and of the OFC on two non-consecutive days from a hospital in Belo Horizonte (MG, Brazil) in May and September of 2010 and January of 2011. The elements were determined by ICP OES. Of the diets, the soft diet showed the highest elements content. Offering the OFC was insufficient to provide adequate levels of the trace elements. The oral hospital diets were inadequate in relation to the RDAs for the trace elements studied and the use of the OFCs was insufficient to compensate the values. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  15. The Tendencies of Piece Casting from Modified Irons

    Directory of Open Access Journals (Sweden)

    Cinca Ionel Lupinca

    2010-10-01

    Full Text Available In this paper we have presented the metalographic studies made on the grey cast irons treated with complex modifying substances, type FeSiMgRE (Mg alloy and their influence on the compactness degree of graphite separations. For research and experiments, a melt of grey iron was produced in an induction furnace of a capacity of 5to, starting with a metallic charge made from 100% synthetic pig iron. We realized eight practical charge made modification, by using different combinations of modifying substance and in different concentrations. The addition of carbon to the melt was performed using electrode graphite powder in the metallic charge.

  16. Clean recycle and utilization of hazardous iron-bearing waste in iron ore sintering process.

    Science.gov (United States)

    Gan, Min; Ji, Zhiyun; Fan, Xiaohui; Chen, Xuling; Zhou, Yang; Wang, Guojing; Tian, Ye; Jiang, Tao

    2018-04-18

    Applying recycled iron-bearing waste materials (RIM) into iron ore sintering process is the general disposal approach worldwide, while its use is still a thorny problem. Results showed that adding RIM increased contents of hazardous elements (K, Na, Pb, Zn, and Cl) in sinter product, and also enhanced emission concentration of PM 2.5 in flue gas; increasing reaction temperature, and contents of CaO & coke breeze in raw mixtures improved hazardous elements removal. Based on these features, a novel method through granulating natural iron ores and RIM separately and distributing granulated RIM in bottom sintering layers was proposed for clean RIM cycle. When recycling 5% RIM, granulating RIM separately with higher contents of CaO and coke breeze removed hazardous elements effectively, the contents of which in sinter were reduced to comparable level of the case without RIM. Moreover, distributing RIM in bottom sintering layer reached intensive release of hazardous elements and PM 2.5 during sintering, which reduced the flue gas volume needing purification by about 2/3. Through activated carbon purification, about 60% of PM 2.5 comprised high contents of hazardous elements was removed. Novel technique eliminated the negative impact of RIM and has the prospect to reach clean recycle in sinter-making plants. Copyright © 2018. Published by Elsevier B.V.

  17. Daily dietary intake of iron, copper, zinc and manganese in a Spanish population.

    Science.gov (United States)

    Rubio, Carmen; Gutiérrez, Angel José; Revert, Consuelo; Reguera, Juan Ignacio; Burgos, Antonio; Hardisson, Arturo

    2009-11-01

    To evaluate the daily dietary intake of essential metals in the Canary Islands, the iron, copper, zinc and manganese contents in 420 food and drink samples collected in local markets were analysed by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The estimated daily dietary intakes of iron, copper, zinc and manganese are 13.161 mg/day, 2.098 mg/day, 8.954 mg/day and 2.372 mg/day, respectively. The iron dietary intake was found to be below the recommendations fixed for adult women, while the copper and manganese dietary intakes fulfilled the Recommended Dietary Allowances. The mean daily intake of zinc was below the Recommended Dietary Allowance. Cereals were found to be the food group that contributed most to the intake of these metals. While the island of El-Hierro presented iron, copper, zinc and manganese mean intakes over the estimated intakes for the whole archipelago, Fuerteventura island showed the lowest intakes. Tenerife and Fuerteventura showed the lowest iron intakes, being below the recommendations.

  18. Concentration differences between serum and plasma of the elements cobalt, iron, mercury, rubidium, selenium and zinc determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Kasperek, K.; Kiem, J.; Iyengar, G.V.; Feinendegen, L.E.

    1981-01-01

    The differences in concentrations of cesium, cobalt, iron, mercury, rubidium, selenium and zinc between serum and plasma were examined with the aid of instrumental neutron activation analysis. Eighty serum and plasma samples obtained from 13 donors were compared. Serum was prepared in plastic tubes immediately after clotting, and plasma was separated with heparin as anticoagulant. No significant differences in the concentrations of cesium, cobalt, mercury and selenium were observed. However, the concentrations of iron, rubidium and zinc were significantly higher in serum than in plasma. The average differences were 322, 12 and 20 ng/ml for iron, rubidium and zinc, respectively. The average differences found for cesium, rubidium and zinc were far below that which can be expected from a complete, or considerable release of these elements from platelets which aggregate or disintegrate during the clotting process in preparing serum. (orig.)

  19. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    Science.gov (United States)

    Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E.

    2016-11-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface. Even in the anoxic water of oxygen minimum zones, where iron solubility should be enhanced, most of the iron is rapidly re-precipitated. To constrain the mechanism(s) of iron removal in anoxic ocean regions we explored the sediment and water in the oxygen minimum zone off Peru. During our sampling campaign the water column featured two distinct redox boundaries separating oxic from nitrate-reducing (i.e., nitrogenous) water and nitrogenous from weakly sulfidic water. The sulfidic water mass in contact with the shelf sediment contained elevated iron concentrations >300 nM. At the boundary between sulfidic and nitrogenous conditions, iron concentrations dropped sharply to <20 nM coincident with a maximum in particulate iron concentration. Within the iron gradient, we found an increased expression of the key functional marker gene for nitrate reduction (narG). Part of this upregulation was related to the activity of known iron-oxidizing bacteria. Collectively, our data suggest that iron oxidation and removal is induced by nitrate-reducing microbes, either enzymatically through anaerobic iron oxidation or by providing nitrite for an abiotic reaction. Given the important role that iron plays in nitrogen fixation, photosynthesis and respiration, nitrate-dependent iron oxidation likely represents a key-link between the marine biogeochemical cycles of nitrogen, oxygen and carbon.

  20. The effect of supplementing sow and piglet diets with different forms of iron

    Directory of Open Access Journals (Sweden)

    Aliny Kétilim Novais

    Full Text Available ABSTRACT The objective of this study was to evaluate the effect of chelated iron supplementation on gestating and lactating sows and on their suckling and weaned piglets. Reproductive traits, piglet performance, hematological parameters, and the iron concentrations in colostrum, milk, and stillborn livers were measured. Ninety-six sows were subjected to one of three treatment groups. Group T1 comprised pregnant and lactating sows treated with diets supplemented with inorganic iron (551 mg Fe/kg and suckling piglets administered 200 mg of injectable iron dextran. Group T2 was the same as T1, except that sows after 84 days of gestation, lactating sows, and suckling piglets were fed a diet supplemented with 150 mg Fe/kg of chelated iron, and suckling piglets were administered injectable iron dextran. Group T3 was the same as T2 but without injectable iron dextran for suckling piglets. During the nursery phase, all of the weaned piglets were penned with their original groups or treatments and received isonutritive and isocaloric feeds. Piglets from the T2 and T3 groups also received an additional 150 mg Fe/kg of chelated iron via their feed. There were no differences among the treatments for reproductive traits or the iron concentrations in the colostrum, milk, or liver. The piglets that did not receive the injectable iron dextran showed the poorest performance during the pre-and post-weaning phases and showed the poorest hematological parameters of the suckling piglets. The chelated iron supplementation is insufficient to meet piglet demand. The iron dextran supply is necessary for suckling and weaned piglets.

  1. Removal of arsenic from synthetic acid mine drainage by electrochemical pH adjustment and coprecipitation with iron hydroxide.

    Science.gov (United States)

    Wang, Jenny Weijun; Bejan, Dorin; Bunce, Nigel J

    2003-10-01

    Acid mine drainage (AMD), which is caused by the biological oxidation of sulfidic materials, frequently contains arsenic in the form of arsenite, As(III), and/or arsenate, As(V), along with much higher concentrations of dissolved iron. The present work is directed toward the removal of arsenic from synthetic AMD by raising the pH of the solution by electrochemical reduction of H+ to elemental hydrogen and coprecipitation of arsenic with iron(III) hydroxide, following aeration of the catholyte. Electrolysis was carried out at constant current using two-compartment cells separated with a cation exchange membrane. Four different AMD model systems were studied: Fe(III)/As(V), Fe(III)/As(III), Fe(II)/As(V), and Fe(II)/As(III) with the initial concentrations for Fe(III) 260 mg/L, Fe(II) 300 mg/L, As(V), and As(III) 8 mg/L. Essentially quantitative removal of arsenic and iron was achieved in all four systems, and the results were independent of whether the pH was adjusted electrochemically or by the addition of NaOH. Current efficiencies were approximately 85% when the pH of the effluent was 4-7. Residual concentrations of arsenic were close to the drinking water standard proposed by the World Health Organization (10 microg/L), far below the mine waste effluent standard (500 microg/L).

  2. Effect of Andrographolide‭ Extract on Blood Glucose and Lipid Profile in Rats with Secondary Iron Overload

    Directory of Open Access Journals (Sweden)

    َArash Mehri Pirayvatlo

    2017-01-01

    Full Text Available Background & objectives: Iron overload is involved in the pathophysiology of many diseases including diabetes. In fact, the excess iron by creating free radicals makes damage to pancreas and leads to insulin resistance and diabetes. Andrographolide extract has hypoglycemic and antioxidant properties. This study has surveyed the effects of andrographolide on blood glucose and lipid profile in rats with secondary iron overload. Methods: In this experimental study, 36 male Wistar rats were randomly divided into 6 groups: the healthy control group, secondary iron overload group, secondary iron overload groups treated with a dose of 3.5 and 7 mg/kg of andrographolide extract, and andrographolide groups treated with a dose of 3.5 and 7 mg/kg of extract. Iron and extract were injected for 6 and 12 days, respectively. Blood samples were taken for measurement of blood glucose and lipid profiles. Data were analyzed using ANOVA test. Results: The pathological results of samples from liver of animals receiving iron showed that the iron was deposited in the liver tissues. Iron injection significantly increased blood glucose levels compared to healthy control group (p<0.05. In the iron overload group, andrographolide extract with a dose of 3.5 mg/kg or 7 mg/kg significantly decreased blood glucose levels (p<0.05. Iron injections did not increase the serum triglyceride and cholesterollevels. Injections of andrographolide extract with a dose of 3.5 mg/kg and 7 mg/kg, significantly decreased the cholesterol levels compared to iron receiving group (p<0.05. Conclusion: Results of this study showed that the andrographolide with different doses may be effective in the treatment of diabetes by reducing serum glucose and cholesterol levels.

  3. High-precision abundances of elements in Kepler LEGACY stars. Verification of trends with stellar age

    Science.gov (United States)

    Nissen, P. E.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Collet, R.; Grundahl, F.; Slumstrup, D.

    2017-12-01

    Context. A previous study of solar twin stars has revealed the existence of correlations between some abundance ratios and stellar age providing new knowledge about nucleosynthesis and Galactic chemical evolution. Aims: High-precision abundances of elements are determined for stars with asteroseismic ages in order to test the solar twin relations. Methods: HARPS-N spectra with signal-to-noise ratios S/N ≳ 250 and MARCS model atmospheres were used to derive abundances of C, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, and Y in ten stars from the Kepler LEGACY sample (including the binary pair 16 Cyg A and B) selected to have metallicities in the range - 0.15 LTE iron abundances derived from Fe I and Fe II lines. Available non-LTE corrections were also applied when deriving abundances of the other elements. Results: The abundances of the Kepler stars support the [X/Fe]-age relations previously found for solar twins. [Mg/Fe], [Al/Fe], and [Zn/Fe] decrease by 0.1 dex over the lifetime of the Galactic thin disk due to delayed contribution of iron from Type Ia supernovae relative to prompt production of Mg, Al, and Zn in Type II supernovae. [Y/Mg] and [Y/Al], on the other hand, increase by 0.3 dex, which can be explained by an increasing contribution of s-process elements from low-mass AGB stars as time goes on. The trends of [C/Fe] and [O/Fe] are more complicated due to variations of the ratio between refractory and volatile elements among stars of similar age. Two stars with about the same age as the Sun show very different trends of [X/H] as a function of elemental condensation temperature Tc and for 16 Cyg, the two components have an abundance difference, which increases with Tc. These anomalies may be connected to planet-star interactions. Based on spectra obtained with HARPS-N@TNG under programme A33TAC_1.Tables 1 and 2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http

  4. Ameliorating role of rutin on oxidative stress induced by iron overload in hepatic tissue of rats.

    Science.gov (United States)

    Aziza, Samy Ali Hussein; Azab, Mohammed El-Said; El-Shall, Soheir Kamal

    2014-08-01

    Iron is an essential element that participates in several metabolic activities of cells; however, excess iron is a major cause of iron-induced oxidative stress and several human diseases. Natural flavonoids, as rutin, are well-known antioxidants and could be efficient protective agents. Therefore, the present study was undertaken to evaluate the protective influence of rutin supplementation to improve rat antioxidant systems against IOL-induced hepatic oxidative stress. Sixty male albino rats were randomly divided to three equal groups. The first group, the control, the second group, iron overload group, the third group was used as iron overload+rutin group. Rats received six doses of ferric hydroxide polymaltose (100 mg kg(-1) b.wt.) as one dose every two days, by intraperitoneal injections (IP) and administrated rutin (50 mg kg(-1) b.wt.) as one daily oral dose until the sacrificed day. Blood samples for serum separation and liver tissue specimens were collected three times, after three, four and five weeks from the onset of the experiment. Serum iron profiles total iron, Total Iron Binding Capacity (TIBC), Unsaturated Iron Binding Capacity (UIBC), transferrin (Tf) and Transferrin Saturation% (TS%)}, ferritin, albumin, total Protein, total cholesterol, triacylglycerols levels and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were determined. Moreover, total iron in the liver, L-malondialdehyde (L-MDA), glutathione (GSH), Nitric Oxide (NO) and Total Nucleic Acid (TNA) levels and glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) activities were also determined. The obtained results revealed that, iron overload (IOL) resulted in significant increase in serum iron, TIBC, Tf, TS% and ferritin levels and AST and ALT activities and also increased liver iron, L-MDA and NO levels. Meanwhile, it decreased serum UIBC, total cholesterol, triacylglycerols, albumin, total protein and liver GSH, TNA levels and Gpx, CAT

  5. Determination of elements in concrete of a nuclear accelerator to dismantle, by instrumental neutron activation analysis, ICPMS and ICPAES

    International Nuclear Information System (INIS)

    Gaudry, A.; Bertho, X.; Piccot, D.; Fougeron, C.

    1998-01-01

    The distribution of radionuclides and their radioactivity in irradiated waste concrete are modelled using the characteristics of nuclear particle fluxes integrated all during the life-time of the installation, chemical composition of the material, and activation parameters of nuclear reactions produced by particles and secondary neutrons on elements. This paper describes the techniques used for determining the chemical composition of trace elements radioactivated by neutrons and particles, but also the major elements which act upon the neutron penetration into the depth of the concrete. Major elements were determined using mainly, Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) for Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, P and Instrumental Neutron Activation Analysis (INAA) for Al, Mn, Fe, Mg, Ca, Ba, Na, K, and other specific methods for C, O, S, and H. Trace elements were also determined using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and INAA. Forty five elements were determined. When present, solid iron was separated by a magnetic bar after previous breaking of the concrete. The concrete was powdered to a granulometry of less than 0.5 mm for INAA and homogenized. Iron was determined separately by INAA. For the determinations by ICP-AES and ICP-MS, powders were previously fused by means of LiBO 2 , then dissolved in dilute HNO 3 before analysis. A comparison between the results obtained, on the one hand, by ICP-AES and INAA, on the second hand, by ICP-MS and INAA revealed generally a very good agreement, making consistent analytical results

  6. Determination of trace amounts of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment by inductively coupled plasma atomic emission spectrometry after iron matrix removal with extractant-contained resin

    International Nuclear Information System (INIS)

    Xu Yuyu; Zhou Jianfeng; Wang Guoxin; Zhou Jinfan; Tao Guanhong

    2007-01-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) was applied to the determination of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment. Samples were dissolved with hydrochloric acid and hydrogen peroxide. The digest was passed through a column, which was packed with a polymer resin containing a neutral organophosphorus extractant, tri-n-butylphosphate. Iron was sorbed selectively on the resin and the analytes of interest passed through the column, allowing the effective separation of them from the iron matrix. Conditions of separation were optimized. The detection limits (3σ) in solution were 10, 40, 7 and 5 μg L -1 , and in pigment were 0.2, 0.8, 0.14 and 0.1 mg kg -1 for lead, arsenic, cobalt and nickel, respectively. The recoveries ranged from 95% to 107% when sample digests were spiked with 5 μg of the analytes of interest, and relative standard deviations (n = 6) were 1.5-17.6% for the determination of the spiked samples. The method was successfully applied to the determination of trace amounts of these elements in high-purity iron oxide pigment samples

  7. Iron Supplementation Effects on Redox Status following Aseptic Skeletal Muscle Trauma in Adults and Children

    Directory of Open Access Journals (Sweden)

    Chariklia K. Deli

    2017-01-01

    Full Text Available Exercise-induced skeletal muscle microtrauma is characterized by loss of muscle cell integrity, marked aseptic inflammatory response, and oxidative stress. We examined if iron supplementation would alter redox status after eccentric exercise. In a randomized, double blind crossover study, that was conducted in two cycles, healthy adults (n=14 and children (n=11 received daily either 37 mg of elemental iron or placebo for 3 weeks prior to and up to 72 h after an acute eccentric exercise bout. Blood was drawn at baseline, before exercise, and 72 h after exercise for the assessment of iron status, creatine kinase activity (CK, and redox status. Iron supplementation at rest increased iron concentration and transferrin saturation (p<0.01. In adults, CK activity increased at 72 h after exercise, while no changes occurred in children. Iron supplementation increased TBARS at 72 h after exercise in both adults and children; no changes occurred under placebo condition. Eccentric exercise decreased bilirubin concentration at 72 h in all groups. Iron supplementation can alter redox responses after muscle-damaging exercise in both adults and children. This could be of great importance not only for healthy exercising individuals, but also in clinical conditions which are characterized by skeletal muscle injury and inflammation, yet iron supplementation is crucial for maintaining iron homeostasis. This study was registered at Clinicaltrials.gov Identifier: NCT02374619.

  8. Essential trace elements in milk and blood serum of lactating donkeys as affected by lactation stage and dietary supplementation with trace elements.

    Science.gov (United States)

    Fantuz, F; Ferraro, S; Todini, L; Mariani, P; Piloni, R; Salimei, E

    2013-11-01

    The aim of this trial was to study the concentration of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), selenium (Se), cobalt (Co) and iodine (I) in milk and blood serum of lactating donkeys, taking into account the effects of lactation stage and dietary supplementation with trace elements. During a 3-month period, 16 clinically healthy lactating donkeys (Martina-Franca-derived population), randomly divided into two homogeneous groups (control (CTL) and trace elements (TE)), were used to provide milk and blood samples at 2-week intervals. Donkeys in both groups had continuous access to meadow hay and were fed 2.5 kg of mixed feed daily, divided into two meals. The mixed feed for the TE group had the same ingredients as the CTL, but was supplemented with a commercial premix providing 163 mg Zn, 185 mg Fe, 36 mg Cu, 216 mg Mn, 0.67 mg Se, 2.78 mg Co and 3.20 mg I/kg mixed feed. The concentrations of Zn, Fe, Cu, Mn, Se, Co and I were measured in feeds, milk and blood serum by inductively coupled plasma-MS. Data were processed by ANOVA for repeated measures. The milk concentrations of all the investigated elements were not significantly affected by the dietary supplementation with TE. Serum concentrations of Zn, Fe, Cu Mn and Se were not affected by dietary treatment, but TE-supplemented donkeys showed significantly higher concentrations of serum Co (1.34 v. 0.69 μg/l) and I (24.42 v. 21.43 μg/l) than unsupplemented donkeys. The effect of lactation stage was significant for all the investigated elements in milk and blood serum, except for serum manganese. A clear negative trend during lactation was observed for milk Cu and Se concentrations (-38%), whereas that of Mn tended to increase. The serum Cu concentration was generally constant and that of Co tended to increase. If compared with data reported in the literature for human milk, donkey milk showed similarities for Zn, Mn, Co and I. Furthermore, this study indicated that, in the current experimental conditions

  9. Ferrokinetic studies in normal and iron deficiency anemic calves

    International Nuclear Information System (INIS)

    Moellerberg, L.; Ekman, L.; Jacobsson, S.-O.

    1975-01-01

    inetic studies were performed on control calves and on calves with experimentallally induced iron deficiency anemia, all 15 weeks old. The plasma iron clearance half time was about 4 times shorter in the experimental than in the control group. The low plasma iron concentration in the anemic calves was partially compensated by a more rapid plasma iron disappearance. Therefore the difference in the plasma iron turnover rate was reduced. The mean value of plasma iron renewal rate was about 3 times higher in the experimental than in the control group. The maximum uptake of injected 59 Fe into blood cells was reached 14 to 16 days after injection. The uptake of 59 Fe was about 10 % higher in the control than in the experimental group. Using the values from the ferrokinetietic study, the iron need for calves could be estimated. The requirement of iron to maintain a normal and constant Hb in a calf weighing 100 kg at a growth rate of 1 kg/daily was estimated as being 17.5 mg/day. Based on information in the literature and assuming a retention of dietary Fe of 25 %, the total daily iron need for such a calf gaining 1 kg/day would be 160-180 mg. (author)

  10. Mobilization of iron and arsenic from soil by construction and demolition debris landfill leachate.

    Science.gov (United States)

    Wang, Yu; Sikora, Saraya; Kim, Hwidong; Dubey, Brajesh; Townsend, Timothy

    2012-05-01

    Column experiments were performed to examine (a) the potential for leachate from construction and demolition (C&D) debris landfills to mobilize naturally-occurring iron and arsenic from soils underlying such facilities and (b) the ability of crushed limestone to remove these aqueous phase pollutants. In duplicate columns, water was added to a 30-cm layer of synthetic C&D debris, with the resulting leachate serially passed through a 30-cm soil layer containing iron and arsenic and a 30-cm crushed limestone layer. This experiment was conducted for two different soil types (one high in iron (10,400mg/kg) and the second high in iron (5400mg/kg) and arsenic (70mg/kg)); also monitored were control columns for both soil types with water infiltration alone. Despite low iron concentrations in the simulated C&D debris leachate, elevated iron concentrations were observed when leachate passed through the soils; reductive dissolution was concluded to be the cause of iron mobilization. In the soil containing elevated arsenic, increased iron mobilization from the soil was accompanied by a similar but delayed arsenic mobilization. Since arsenic sorbs to oxidized iron soil minerals, reductive dissolution of these minerals results in arsenic mobilization. Crushed limestone significantly reduced iron (to values below the detection limit of 0.01mg/L in most cases); however, arsenic was not removed to any significant extent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Effects of Alloying Elements on Room and High Temperature Tensile Properties of Al-Si Cu-Mg Base Alloys =

    Science.gov (United States)

    Alyaldin, Loay

    In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a

  12. Iron behavior in the ozonation and filtration of groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Sallanko, J.; Lakso, E.; Ropelinen, J. [University of Oulu, Oulu (Finland)

    2006-08-15

    In Finnish groundwater, the main substances that require treatment are iron and manganese. In addition to this, groundwaters are soft and acidic. Iron removal is usually relatively effective by oxidizing dissolved iron into an insoluble form, either by aeration or chemical oxidation and removing the formed precipitate by sand filtration. Sometimes, if the untreated water contains high amounts of organic matter, problems may arise for iron removal. In Finland, it is quite common that groundwater contains high levels of both iron and natural organic matter, mainly as humic substances. The groundwater of the Kukkala intake plant in Liminka has been found to be problematic, due to its high level of natural organic matter. This research studied the removal of iron from this water by means of oxidation with ozone and filtration. While the oxidation of iron by ozone was rapid, the precipitate particles formed were small, and thus could not be removed by sand and anthracite filtration, and the iron residue in the treated water was more than 2 mg L{sup -1}. And while the filtration was able to remove iron well without the feed of ozone, the iron residue in the treated water was only 0.30 mg L{sup -1}. In this case, iron was led to the filter in a bivalent dissolved form. So, the result of iron removal was the best when the sand/anthracite filter functioned largely as an adsorption filter.

  13. Iron deposition in skin of patients with haemochromatosis

    International Nuclear Information System (INIS)

    Pinheiro, T.; Silva, J.N.; Alves, L.C.; Filipe, P.

    2003-01-01

    Haemochromatosis is the most common inherited liver disease in Caucasians and the most common autosomal recessive genetic disorder. It is characterized by inappropriately high iron absorption resulting in progressive iron overload in parenchymal organs such as liver, heart, pancreas, pituitary, joints, and skin. Upon early detection, haemochromatosis can be a manageable chronic disease but, if undetected, is potentially fatal. Skin biopsies were obtained from patients and from healthy donors. Images of the elemental distributions in skin were obtained using nuclear microscopy techniques (nuclear microprobe, NMP). Elemental profiles along skin, and intra-, and extra-cellular iron concentrations, were determined. Results for patients with haemochromatosis were cross-examined with morphologic features and with data obtained for healthy skin. Skin iron content is much increased in patients with haemochromatosis when compared with healthy subjects. Extensive iron deposits are observed at dermis, at the dermo-epidermal interface, at upper epidermis layers and at stratum corneum. Iron deposition was observed preferentially at cell boundaries or at the interstitial matrix

  14. Isotope-aided studies of the bioavailability of iron and zinc from human diets consumed in Poland

    International Nuclear Information System (INIS)

    Rafalski, H.; Switoniak, T.

    1994-01-01

    The bioavailability of food iron is affected by a number of physiological and dietary variables and it should be checked for the population living in natural conditions. The primary purpose of this study was to measure in volunteers iron absorption after oral administration of a wheat roll enriched with 15 mg of Fe as FeSO 4· 7H 2 O and 20 μCi of 59 Fe. For assessment of iron absorption whole body counting was used. The secondary purpose was to relate the available iron to iron stores, anthropometric indices, bleeding days and dietary variables. Thirteen female and 7 male healthy subjects aged between 19 and 47 years were observed. Hematological measurements on blood: serum ferritin (SF), serum iron (SI), total iron binding capacity (TIBC), transferrin (ST), transferrin saturation (TS), hemoglobin (Hb), hematocrit (Hct), red blood cell (RBC), mean corpuscular volume (MCV) were made. The subjects were examined by a specialist in internal medicine. Their 24-hour recall food intake was performed by questionnaire. The findings concerning the purposes of the study may be summarized as follows: 1) mean absorbed iron was 1.6 ± 1.2 mg for women, and 0.5±0.2 mg for men; 2) iron stores evaluated from SF were in women 2.6± 1.7 mg/kg body weight and in men 10.4±5.4 mg/kg; 3) blood indices proved iron deficiency anemia in 1 woman, Hb = 9.2 g/dL, SF = 1.8 μg/L, TS = 6%; in 4 women deficient iron stores were observed, Hb > 12g/dL, SF < 12 mg/L; 8 women and 7 men were normal; 4) in women the absorbed iron related inversely to SF (-0.61) and iron stores (-0.61); 5) the iron stores related to the sum of four skinfolds in women (0.55) and in men (0.80), in women it related to body weight (0.77) too; 6) in women the absorbed iron related to bleeding days (0.69); 7) in women ascorbic acid consumption related to iron store indices; SF, SI and TS. (author). 2 figs, 3 tabs

  15. ROLE OF TAURINE ON THE LEVEL OF SOME ESSENTIAL ELEMENTS AND OXIDATIVE STRESS IN DIFFERENT TISSUES OF RATS EXPOSED TO GAMMA RADIATION

    International Nuclear Information System (INIS)

    ANIS, L.M.

    2008-01-01

    Whole body exposure to ionizing radiation induces the formation of reactive oxygen species (ROS) in the different tissues provoking oxidative damage and organ dysfunction. The present study was designed to determine the possible protective effect of taurine against gamma radiation-induced disorders in iron (Fe), copper (Cu), zinc (Zn) and magnesium (Mg) in parallel to radiation-induced oxidative stress in liver, spleen and heart tissues. Irradiated rats were whole body exposed to 6.5 Gy gamma radiations. Taurine treated irradiated rats received 250 mg taurine/kg body weight/day for 10 successive days before irradiation. Animals were sacrificed on 1 st , 7 th and 14 th days after irradiation. The results obtained demonstrated significant increases in Fe, Cu, Zn and Mg levels in the liver. Significant increases of Fe and Cu and significant decrease of Zn and non-significant changes in Mg were observed in the spleen. Heart tissues showed significant decrease in the level of iron and non-significant changes in the levels of Cu, Zn and Mg. Alterations in the levels of essential elements were associated with oxidative stress. Significant decreases of SOD and CAT activities along with significant increase of TBARS levels were recorded in the different tissues after irradiation. Taurine administration pre-irradiation has significantly attenuated the radiation-induced oxidative stress and alteration in the levels of essential elements. It could be concluded that taurine might protect from oxidative damage induced by gamma irradiation

  16. Daily oral iron supplementation during pregnancy

    Science.gov (United States)

    Peña-Rosas, Juan Pablo; De-Regil, Luz Maria; Dowswell, Therese; Viteri, Fernando E

    2014-01-01

    ). Although the difference between groups did not reach statistical significance, women who received iron supplements were more likely than controls to report side effects (25.3% versus 9.91%) (RR 2.36; 95% CI 0.96 to 5.82, 11 trials, 4418 women), particularly at doses 60 mg of elemental iron or higher. Women receiving iron were on average more likely to have higher haemoglobin (Hb) concentrations at term and in the postpartum period, but were at increased risk of Hb concentrations greater than 130g/L during pregnancy and at term. Twenty-three studies were conducted in countries that in 2011 had some malaria risk in parts of the country. In some of these countries/territories, malaria is present only in certain areas or up to a particular altitude. Only two of these reported malaria outcomes. There is no evidence that iron supplementation increases placental malaria. For some outcomes heterogeneity was higher than 50%. Authors’ conclusions Prenatal supplementation with daily iron are effective to reduce the risk of low birthweight, and to prevent maternal anaemia and iron deficiency in pregnancy. Associated maternal side effects and particularly high Hb concentrations during pregnancy at currently used doses suggest the need to update recommendations on doses and regimens for routine iron supplementation. PMID:23235616

  17. Comparison of bio-dissolution of spent Ni-Cd batteries by sewage sludge using ferrous ions and elemental sulfur as substrate.

    Science.gov (United States)

    Zhao, Ling; Zhu, Nan-Wen; Wang, Xiao-Hui

    2008-01-01

    Bioleaching of spent Ni-Cd batteries using acidified sewage sludge was carried out in a continuous flow two-step leaching system including an acidifying reactor and a leaching reactor. Two systems operated about 30d to achieve almost complete dissolution of heavy metals Ni, Cd and Co in four Ni-Cd batteries. Ferrous sulphate and elemental sulfur were used as two different substrates to culture indigenous thiobacilli in sewage sludge. pH and ORP of the acidifying reactor was stabilized around 2.3 and 334mV for the iron-oxidizing system and 1.2 and 390mV for the sulfur-oxidizing system. It was opposite to the acidifying reactor, the pH/ORP in the leaching reactor of the iron-oxidizing system was relatively lower/higher than that of the sulphur-oxidizing system in the first 17d. The metal dissolution, in the first 12-16d, was faster in the iron-oxidizing system than in the sulphur-oxidizing system due to the lower pH. In the iron-oxidizing system, the maximum solubilization of cadmium (2500mg l(-1)) and cobalt (260mg l(-1)) can be reached at day 6-8 and the most of metal nickel was leached in the first 16d. But in the sulphur-oxidizing system there was a lag period of 4-8d to reach the maximum solubilization of cadmium and cobalt. The maximum dissolution of nickel hydroxide (1400mg l(-1)) and metallic nickel (2300mg l(-1)) occurred at about day 12 and day 20, respectively.

  18. Comparison of home fortification with two iron formulations among Kenyan children: Rationale and design of a placebo-controlled non-inferiority trial.

    Science.gov (United States)

    Teshome, Emily M; Otieno, Walter; Terwel, Sofie R; Osoti, Victor; Demir, Ayşe Y; Andango, Pauline E A; Prentice, Andrew M; Verhoef, Hans

    2017-09-01

    Home fortification powders containing iron and other micronutrients have been recommended by World Health Organisation to prevent iron deficiency anaemia in areas of high prevalence. There is evidence, however, that home fortification at this iron dose may cause gastrointestinal adverse events including diarrhoea. Providing a low dose of highly absorbable iron (3 mg iron as NaFeEDTA) may be safer because the decreased amount of iron in the gut lumen can possibly reduce the burden of these adverse effects whilst resulting in similar or higher amounts of absorbed iron. To show non-inferiority of home fortification with 3 mg iron as NaFeEDTA compared with 12.5 mg iron as encapsulated ferrous fumarate, with haemoglobin response as the primary outcome. 338 Kenyan children aged 12-36 months will be randomly allocated to daily home fortification with either: a) 3 mg iron as NaFeEDTA (experimental treatment), b) 12.5 mg iron as encapsulated ferrous fumarate (reference), or c) placebo. At baseline, after 30 days of intervention and within 100 days post-intervention, blood samples will be assessed for primary outcome (haemoglobin concentration), iron status markers, Plasmodium parasitaemia and inflammation markers. Urine and stool samples will be assessed for hepcidin concentrations and inflammation, respectively. Adherence will be assessed by self-reporting, sachet counts and by an electronic monitoring device. If daily home fortification with a low dose of iron (3 mg NaFeEDTA) has similar or superior efficacy to a high dose (12.5 mg ferrous fumarate) then it would be the preferred choice for treatment of iron deficiency anaemia in children.

  19. Sustainability of the effects of medicinal iron and iron rich food supplementation on haemoglobin, intelligence quotient and growth of school aged girls

    Directory of Open Access Journals (Sweden)

    Monika Jain

    2014-12-01

    Full Text Available Anaemia in school aged girls is an important but neglected issue. Since iron supplementation programmes have had little reported success in reducing anaemia, interest is turning to food based approaches that have higher potential for achieving far reaching benefits. The purpose of the study was to observe sustainability of the effect of iron and food supplementation on haemoglobin (Hb, intelligence quotient (IQ and growth of the subjects. At baseline, estimation of haemoglobin (Hb, red cell indices, serum iron, total iron binding capacity, serum transferrin saturation and serum ferritin was done. IQ, weight and height were measured using standard procedures. Anaemic subjectswere divided into three groups, viz., (i twice weekly supplementation of iron folic acid syrup (53 mg iron/week; (ii daily supplementation of 4 niger seed and defatted soyaflour biscuits plus 2 lemons (45 mg iron/week and (iii control. Non anaemic group(NAC was not intervened. Endline data was collected after 120 days. Follow up for Hb, IQ, weight and height was done 4 months after cessation of supplementation. The prevalence of anaemia was 77% in the study population; 46% subjects had mild anaemia and 32% had moderate anaemia. Iron status was lower in anaemic subjects (p<0.001.Iron supplementation was more effective in raising Hb and building iron stores than iron rich food supplementation. Iron supplementation improved IQ but did not bring about catch up of anaemics to non anaemics. Iron rich food supplementation was better than medicinal iron in promoting growth in anaemic girls. The impact of iron rich food supplementation on Hb, IQ and growth sustained for 4 months while that of medicinal iron did not. Effects of food supplementation are sustainable for 4 months, therefore, this strategy holds more potential to control anaemia, in school aged girls.

  20. Study on the effect of the metal–support (Fe-MgO and Pt-MgO) interaction in alcohol-CVD synthesis of carbon nanotubes

    International Nuclear Information System (INIS)

    Steplewska, Anna; Borowiak-Palen, Ewa

    2011-01-01

    This study presents the effect of the metal–support interaction in two systems: (1) iron particle, and (2) platinum particles, being supported on magnesium oxide (MgO) nanopowder in alcohol-CVD process for carbon nanotubes (CNTs) growth. The employment of the different metals but the same substrate (with equal molar ratio) resulted in the synthesis of single-walled CNTs (SWCNTs) or double-walled CNTs (DWCNTs), using iron and platinum, respectively. Furthermore, along with the prolongation of the process time, the decrease of the mean nanotubes diameter in case of iron-catalyzed materials was detected. Interestingly, the extention of the growth time in the synthesis using Pt/MgO resulted in the synthesis of the thicker mean nanotubes diameter. However, for both applied catalytic systems the reduction of the diameter distribution of the tubes and the increase of relative purity of the samples upon the growth time increase were detected.

  1. Study on the effect of the metal-support (Fe-MgO and Pt-MgO) interaction in alcohol-CVD synthesis of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Steplewska, Anna, E-mail: asteplewska@zut.edu.pl; Borowiak-Palen, Ewa [West Pomeranian University of Technology, Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical and Environment Engineering (Poland)

    2011-05-15

    This study presents the effect of the metal-support interaction in two systems: (1) iron particle, and (2) platinum particles, being supported on magnesium oxide (MgO) nanopowder in alcohol-CVD process for carbon nanotubes (CNTs) growth. The employment of the different metals but the same substrate (with equal molar ratio) resulted in the synthesis of single-walled CNTs (SWCNTs) or double-walled CNTs (DWCNTs), using iron and platinum, respectively. Furthermore, along with the prolongation of the process time, the decrease of the mean nanotubes diameter in case of iron-catalyzed materials was detected. Interestingly, the extention of the growth time in the synthesis using Pt/MgO resulted in the synthesis of the thicker mean nanotubes diameter. However, for both applied catalytic systems the reduction of the diameter distribution of the tubes and the increase of relative purity of the samples upon the growth time increase were detected.

  2. Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H2O2 Production and UV Photolysis.

    Science.gov (United States)

    Barazesh, James M; Prasse, Carsten; Wenk, Jannis; Berg, Stephanie; Remucal, Christina K; Sedlak, David L

    2018-01-02

    As water scarcity intensifies, point-of-use and point-of-entry treatment may provide a means of exploiting locally available water resources that are currently considered to be unsafe for human consumption. Among the different classes of drinking water contaminants, toxic trace elements (e.g., arsenic and lead) pose substantial operational challenges for distributed drinking water treatment systems. Removal of toxic trace elements via adsorption onto iron oxides is an inexpensive and robust treatment method; however, the presence of metal-complexing ligands associated with natural organic matter (NOM) often prevents the formation of iron precipitates at the relatively low concentrations of dissolved iron typically present in natural water sources, thereby requiring the addition of iron which complicates the treatment process and results in a need to dispose of relatively large amounts of accumulated solids. A point-of-use treatment device consisting of a cathodic cell that produced hydrogen peroxide (H 2 O 2 ) followed by an ultraviolet (UV) irradiation chamber was used to decrease colloid stabilization and metal-complexing capacity of NOM present in groundwater. Exposure to UV light altered NOM, converting ∼6 μM of iron oxides into settable forms that removed between 0.5 and 1 μM of arsenic (As), lead (Pb), and copper (Cu) from solution via adsorption. After treatment, changes in NOM consistent with the loss of iron-complexing carboxylate ligands were observed, including decreases in UV absorbance and shifts in the molecular composition of NOM to higher H/C and lower O/C ratios. Chronoamperometric experiments conducted in synthetic groundwater revealed that the presence of Ca 2+ and Mg 2+ inhibited intramolecular charge-transfer within photoexcited NOM, leading to substantially increased removal of iron and trace elements.

  3. Process development for elemental recovery from PGM tailings by thermochemical treatment: Preliminary major element extraction studies using ammonium sulphate as extracting agent.

    Science.gov (United States)

    Mohamed, Sameera; van der Merwe, Elizabet M; Altermann, Wladyslaw; Doucet, Frédéric J

    2016-04-01

    Mine tailings can represent untapped secondary resources of non-ferrous, ferrous, precious, rare and trace metals. Continuous research is conducted to identify opportunities for the utilisation of these materials. This preliminary study investigated the possibility of extracting major elements from South African tailings associated with the mining of Platinum Group Metals (PGM) at the Two Rivers mine operations. These PGM tailings typically contain four major elements (11% Al2O3; 12% MgO; 22% Fe2O3; 34% Cr2O3), with lesser amounts of SiO2 (18%) and CaO (2%). Extraction was achieved via thermochemical treatment followed by aqueous dissolution, as an alternative to conventional hydrometallurgical processes. The thermochemical treatment step used ammonium sulphate, a widely available, low-cost, recyclable chemical agent. Quantification of the efficiency of the thermochemical process required the development and optimisation of the dissolution technique. Dissolution in water promoted the formation of secondary iron precipitates, which could be prevented by leaching thermochemically-treated tailings in 0.6M HNO3 solution. The best extraction efficiencies were achieved for aluminium (ca. 60%) and calcium (ca. 80%). 35% iron and 32% silicon were also extracted, alongside chromium (27%) and magnesium (25%). Thermochemical treatment using ammonium sulphate may therefore represent a promising technology for extracting valuable elements from PGM tailings, which could be subsequently converted to value-added products. However, it is not element-selective, and major elements were found to compete with the reagent to form water-soluble sulphate-metal species. Further development of this integrated process, which aims at achieving the full potential of utilisation of PGM tailings, is currently underway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Environmental Risks of Nano Zerovalent Iron for Arsenate Remediation: Impacts on Cytosolic Levels of Inorganic Phosphate and MgATP2- in Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Weilan; Lo, Irene M C; Hu, Liming; Voon, Chia Pao; Lim, Boon Leong; Versaw, Wayne K

    2018-04-03

    The use of nano zerovalent iron (nZVI) for arsenate (As(V)) remediation has proven effective, but full-scale injection of nZVI into the subsurface has aroused serious concerns for associated environmental risks. This study evaluated the efficacy of nZVI treatment for arsenate remediation and its potential hazards to plants using Arabidopsis thaliana grown in a hydroponic system. Biosensors for inorganic phosphate (Pi) and MgATP 2- were used to monitor in vivo Pi and MgATP 2- levels in plant cells. The results showed that nZVI could remove As(V) from growth media, decrease As uptake by plants, and mitigate As(V) toxicity to plants. However, excess nZVI could cause Pi starvation in plants leading to detrimental effects on plant growth. Due to the competitive adsorption of As(V) and Pi on nZVI, removing As(V) via nZVI treatment at an upstream site could relieve downstream plants from As(V) toxicity and Pi deprivation, in which case 100 mg/L of nZVI was the optimal dosage for remediation of As(V) at a concentration around 16.13 mg/L.

  5. Evaluation of dietary exposure to minerals, trace elements and heavy metals from the muscle tissue of the lionfish Pterois volitans (Linnaeus 1758).

    Science.gov (United States)

    Hoo Fung, Leslie A; Antoine, Johann M R; Grant, Charles N; Buddo, Dayne St A

    2013-10-01

    Twenty-five samples of Pterois volitans caught in Jamaican waters were analyzed for 25 essential, non-essential and toxic elements using Graphite Furnace Atomic Absorption Spectrophotometry (GF-AAS), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and Instrumental Neutron Activation Analysis (INAA). The mean values for calcium (355 mg/kg), copper (107 μg/kg), iron (0.81 mg/kg), potassium (3481 mg/kg), magnesium (322 mg/kg), manganese (0.04 mg/kg), selenium (0.47 mg/kg), sodium (700 mg/kg) and zinc (4.46 mg/kg) were used to estimate dietary intake. The percentage contribution to provisional tolerable weekly intake for a 70 kg male and a 65 kg female were also estimated for the toxic elements arsenic (1.28% M, 1.38% F), cadmium (0.26% M. 0.28% F), mercury (3.85% M, 4.15% F) and lead (0.17% M, 0.18% F). To further assess the risk of mercury toxicity and the role of mitigation provided by selenium, selenium-mercury molar ratios were calculated for all samples. All samples were shown to have a molar excess of selenium. In addition the suggested selenium health benefit value was calculated, and was positive for all samples. It was concluded that P. volitans appears to contribute modestly to mineral and trace element nutrition, while not being a significant contributor to dietary exposure of toxic elements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Hardening mechanisms of spray formed Al-Zn-Mg-Cu alloys with scandium and other elemental additions

    International Nuclear Information System (INIS)

    Sharma, M.M.; Amateau, M.F.; Eden, T.J.

    2006-01-01

    The hardening mechanisms in spray formed Al-Zn-Mg-Cu alloys with additions of chromium, zinc and scandium were studied. The microstructure of the spray formed alloys was analyzed by transmission electron microscopy. A range of tensile strengths were achieved, and varied based on elemental additions, and second phase particle strengthening. To explain the significantly higher strength in one alloy with scandium, theoretical results due to the yield stress of Al-Zn-Mg-Cu alloys as a function of volume fraction and precipitate particle size, were compared to experimental data. Both the possibilities of coherency and order strengthening are examined. The significant additional hardening achieved in the alloy with scandium is attributed to small ordered particles of Al 3 Sc, which precipitated during aging

  7. Comparison of home fortification with two iron formulations among Kenyan children: Rationale and design of a placebo-controlled non-inferiority trial

    Directory of Open Access Journals (Sweden)

    Emily M. Teshome

    2017-09-01

    Full Text Available Introduction: Home fortification powders containing iron and other micronutrients have been recommended by World Health Organisation to prevent iron deficiency anaemia in areas of high prevalence. There is evidence, however, that home fortification at this iron dose may cause gastrointestinal adverse events including diarrhoea. Providing a low dose of highly absorbable iron (3 mg iron as NaFeEDTA may be safer because the decreased amount of iron in the gut lumen can possibly reduce the burden of these adverse effects whilst resulting in similar or higher amounts of absorbed iron. Objective: To show non-inferiority of home fortification with 3 mg iron as NaFeEDTA compared with 12.5 mg iron as encapsulated ferrous fumarate, with haemoglobin response as the primary outcome. Design: 338 Kenyan children aged 12–36 months will be randomly allocated to daily home fortification with either: a 3 mg iron as NaFeEDTA (experimental treatment, b 12.5 mg iron as encapsulated ferrous fumarate (reference, or c placebo. At baseline, after 30 days of intervention and within 100 days post-intervention, blood samples will be assessed for primary outcome (haemoglobin concentration, iron status markers, Plasmodium parasitaemia and inflammation markers. Urine and stool samples will be assessed for hepcidin concentrations and inflammation, respectively. Adherence will be assessed by self-reporting, sachet counts and by an electronic monitoring device. Conclusion: If daily home fortification with a low dose of iron (3 mg NaFeEDTA has similar or superior efficacy to a high dose (12.5 mg ferrous fumarate then it would be the preferred choice for treatment of iron deficiency anaemia in children. Keywords: Adherence, Anaemia, Child, Preschool, Dietary supplements, Iron, Non-inferiority, Fortification

  8. Determination of the Element Contents in Turkish Coffee and Effect of Sugar Addition

    OpenAIRE

    M. M. Fercan; A. S. Kipcak; O. Dere Ozdemir; M. B. Piskin; E. Moroydor Derun

    2016-01-01

    Coffee is a widely consumed beverage with many components such as caffeine, flavonoids, phenolic compounds, and minerals. Coffee consumption continues to increase due to its physiological effects, its pleasant taste, and aroma. Robusta and Arabica are two basic types of coffee beans. The coffee bean used for Turkish coffee is Arabica. There are many elements in the structure of coffee and have various effect on human health such as Sodium (Na), Boron (B), Magnesium (Mg) and Iron (Fe). In this...

  9. Influence of food tannins on certain aspects of iron metabolism : Part 1 -- Absorption and excretion in normal and anemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S N [Albert Einstein Coll. of Medicine, Bronx, NY (USA); Mukher ee, S [Calcutta Univ. (India). Dept. of Applied Chemistry

    1979-04-01

    Studies on absorption and excretion of iron by isotopic and non-isotopic methods in normal and hemolytic anemic rats indicate that dietary food tannins at a dose of 0.5 mg/kg body wt/day tend to increase iron excretion in normal rats but more iron is absorbed or retained in tannin-fed anemic rats and absorption of iron is comparable to that in normal control. Both in vivo and in vitro tannin at a high dose (2.0 mg/kg body wt/day) inhibits the iron absorption in experimental animals. The interference of food tannins (0.5 kg/mg body wt/day) with absorption of iron (/sup 59/Fe) varies with plant species from which tannin has been prepared. Normal iron balance in tannin-fed (0.5 mg/kg body wt/day) anemic rats may result from increased assimilation of tannin-bound iron in intestinal mucosa, and absorbed tannin appears to remove unabsorbed iron.

  10. Radiochemical investigation of the coprecipitation of microamounts of some hydrolyzable elements with metal hydroxides and metal oxides. Pt. 5

    International Nuclear Information System (INIS)

    Plotnikov, V.I.; Safonov, I.I.

    1979-12-01

    Investigation of the coprecipitation of various amounts of iron (III) (between 1 μg and 3.5 mg) with hydroxides of Sn(IV), Ga, Th, Sc, Be, Cd, and Mg as a function of the pH value of the solution. It is shown that the precipitation of the iron (III) with the precipitates of the hydroxides of Be, Cd, Ga, and Sc, which are of lower acidity compared with the microcomponent, is preceded by an acido-basic reaction of Fe(III) with the ions of the macrocomponent. The beginning of this reaction has been observed to coincide with the occurrence of its primary hydrolytical forms in the solution. It is furthermore intensified with decreasing difference in the acidic properties of iron (III) and the other element taking part in the reaction. The neutral hydroxide complex Fe(OH) 0 3 is shown to be the principal coprecipitated form of the iron (III). The coprecipitation of microquantities of iron (III) with tin (IV) hydroxide has been chosen as an example to illustrate the effect of additions of Th, Sc, and Be ions equimolar to the collector. The observed quantitative increase of the microcomponent in the solution is suggested to mainly result from the decrease of the hydrolytical degree of precipitation of tin (IV) due to the interaction of the latter with the ions of impurities. (orig.) 891 RSH/orig. 892 HIS [de

  11. [Correction of anemia in hemodialysis, effect of intravenous iron without erythropoietin].

    Science.gov (United States)

    Alvo, Miriam; Elgueta, Leticia; Aragón, Henry; Cotera, Alejandro

    2002-08-01

    In the last two decades, the use of erythropoietin for the correction of anemia in hemodialysis patients has been recommended. In Chile, only 10% of hemodialysis patients use erythropoietin, therefore, the correction of iron deficiency must be optimized. To report the effects of intravenous iron without erythropoietin in the management of anemia in hemodialysis patients. Retrospective analysis of 42 patients that received intravenous ferrous sacharate in doses of 100 mg/week during 5 weeks and 100 mg bimonthly during six months. These patients did not receive erythropoietin. Thirty six patients had iron deficiency. Basal ferritin was 137 +/- 22 micrograms/l and increased to 321 +/- 28 micrograms/l after treatment. Packed red cell volume increased from 24 +/- 2% to 29 +/- 3%. No adverse effects were reported. Iron deficiency is frequent in hemodialyzed patients. Intraveineous iron is safe and effective in the treatment of iron deficiency in these patients.

  12. [Assessment of nutritional education and iron supplement impact on prevention of pregnancy anemia].

    Science.gov (United States)

    Parra, Beatriz Elena; Manjarrés, Luz Mariela; Gómez, Alba Lucía; Alzate, Dora María; Jaramillo, María Clemencia

    2005-06-01

    Iron and folic acid deficiencies are the major causes of health problems among pregnant women and children, with a significant negative impact on economic and social development. From April 2002 to April 2003 at the Gilberto Mejía Mejía Hospital (Rionegro, Antioquia), the prenatal program was assessed for its impact on a cohort of pregnant women concerning knowledge of the following nutritional parameters: iron and folic acid functions, their source foods and bioavailability, supplement intake and tolerance, and globular indexes. A sample of 42 pregnant women was subjected to a nutritional education program along with the administration of a supplement consisting of 60 mg elemental iron, 400 microg folic acid, and 70 mg vitamin C. This formulation was prepared specifically for the study by Laboratorio Profesional Farmacéutico, LAPROFF. The effect of the educational program was measured by knowledge changes about how patient behaviours affect nutrient bioavailability via source foods intake, as well as recognition of the tolerance limits of supplements and potential effect of non-adherance. The physiological status of each patient was measured by three hematologic variables--hemoglobin, hematocrit, and ferritin. A positive understanding of how to improve nutritional practices was observed. With the supplements, 94.4% of women did not show anaemia at the end of pregnancy. These results agree with those in other, similar populations and indicate that implementation of prenatal control programs by educational and supplement administration is worthwhile.

  13. Iron plaque formation and morphoanatomy of roots from species of restinga subjected to excess iron.

    Science.gov (United States)

    Siqueira-Silva, Advanio Inácio; da Silva, Luzimar Campos; Azevedo, Aristéa Alves; Oliva, Marco Antonio

    2012-04-01

    The restingas, a sandy coastal plain ecosystem of Brazil, have received an additional amount of iron due to the activity of mining industries. The present study aims to characterize morphoanatomically and histochemically the iron plaque formation on roots of Ipomoea pes-caprae L. and Canavalia rosea DC, cultivated in hydroponic solution with and without excess iron. The iron plaque formation as well as changes in the external morphology of the lateral roots of both species were observed after the subjection to excess iron. Changes in the nutrient uptake, and in the organization and form of the pericycle and cortex cells were observed for both species. Scanning electron microscopy showed evident iron plaques on the whole surface of the root. The iron was histolocalized in all root tissues of both species. The species of restinga studied here formed iron plaque in their roots when exposed to excess of this element, which may compromise their development in environments polluted by particulated iron. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. A hospital-based cost minimization study of the potential financial impact on the UK health care system of introduction of iron isomaltoside 1000.

    Science.gov (United States)

    Bhandari, Sunil

    2011-01-01

    The clinical need to be able to administer high doses of intravenous iron conveniently in a single rapid infusion has been addressed by the recent introduction of ferric carboxymaltose and subsequently iron isomaltoside 1000. Neither requires a test dose. Ferric carboxymaltose can be administered at 15 mg/kg body weight to a maximum dose of 1000 mg, whereas iron isomaltoside 1000 can be administered at 20 mg/kg body weight. The ability to give high doses of iron is important in the context of managing iron deficiency anemia in a number of clinical conditions where demands for iron are high (including chronic blood loss associated with inflammatory bowel disease, menorrhagia, and chronic kidney disease). It is also an important component in the strategy as an alternative to a blood transfusion. Affordability is a key issue for health services. This study was a comparative analysis of the costs of administering the newly available intravenous iron formulations against standard practice (blood transfusion, intravenous iron sucrose) by considering the cost of this treatment option plus nursing costs associated with administration, equipment for administration, and patient transportation in the secondary care (hospital) setting across three dosage levels (600 mg, 1000 mg, and 1600 mg). The analysis indicates that the use of iron isomaltoside 1000 results in a net saving when compared with iron sucrose, blood, and ferric carboxymaltose. At 600 mg and 1000 mg doses, it is cheaper than low-molecular-weight iron dextran but more expensive at a dose of 1600 mg. However, it takes six hours to administer low-molecular-weight iron dextran at this dose level, which is inconvenient and reduces patient throughput (productivity).

  15. Effect of organic matrices on the determination of the trace element chemistry (Mg, Sr, Mg/Ca, Sr/Ca) of aragonitic bivalve shells (Arctica islandica). Comparison of ICP-OES and LA-ICP-MS data

    International Nuclear Information System (INIS)

    Schoene, Bernd R.; Zhang, Zengjie; Jacob, Dorrit; Soldate, Analia; Gillikin, David P.; Tuetken, Thomas; Garbe-Shoenberg, Dieter; McConnaughey, Ted

    2010-01-01

    The element chemistry of biogenic carbonates can provide important data on past environments. However, the Sr/Ca and Mg/Ca ratios as well as the Mg and Sr concentrations of biological carbonates, especially aragonitic bivalves often depart from apparent thermodynamic equilibrium. When measured in situ by means of LA-ICP-MS, the Mg concentration is often substantially enriched (two- to threefold) near the organic-rich, annual growth lines. To test the hypothesis that some organic components exert a major influence on the skeletal metal content, the element chemistry of different shell components (insoluble organic matrix, IOM; dissolved CaCO 3 and soluble organics, SOM) of Arctica islandica was measured by means of ICP-OES and LA-ICP-MS. The ICP-OES data indicate that the IOM is strongly enriched in Mg (130 ppm) and depleted in Sr and Ca (10 ppm and 0.22 wt%, respectively) when compared to the whole biomineral (Mg: 68 to 99 ppm, Sr: 860 to 1,060 ppm, Ca: ∼35.72 wt%). Although the average relative abundance of the IOM barely exceeds 0.46 wt%, its chemical composition in combination with its heterogeneous distribution across the shell can significantly increase estimates of the Mg concentration if measured in situ by LA-ICP-MS. Depending on the distribution of the IOM, the Ca concentration may be significantly lower locally than the average Ca concentration of the whole shell (35.72 wt%). If this remains undetected, the Mg concentration of shell portions with higher than average IOM content is overestimated by LA-ICP-MS and, conversely, the Mg concentration is underestimated in shell portions with lower than average IOM content. Removal of the IOM prior to the chemical analysis by LA-ICP-MS or mathematical correction for the IOM-derived magnesium concentrations is therefore strongly advised. The different chemistry of the IOM may also exert a major control on the trace element to calcium ratios. Shell portions enriched in IOM will show up to 200 times higher Mg

  16. A novel approach for arsenic adsorbents regeneration using MgO.

    Science.gov (United States)

    Tresintsi, Sofia; Simeonidis, Konstantinos; Katsikini, Maria; Paloura, Eleni C; Bantsis, Georgios; Mitrakas, Manassis

    2014-01-30

    An integrated procedure for the regeneration of iron oxy-hydroxide arsenic adsorbents by granulated MgO is proposed in this study. A continuous recirculation configuration, with a NaOH solution flowing sequentially through the saturated adsorbent (leaching step) and the MgO (adsorption step) column beds, was optimized by utilizing the high arsenic adsorption efficiency of MgO at strong alkaline environments. Experimental results indicated that the total amount of leached arsenic was captured by MgO whereas the regenerated iron oxy-hydroxide recovered around 80% of its removal capacity upon reuse. The improved adsorption capacity of MgO for As(V), which is maximized at pH 10, is explained by the intermediate hydration to Mg(OH)2 and the following As(V) oxy-anions adsorption on its surface through the formation of monodentate inner sphere complexes, as it is deduced from the AsK-edge X-ray absorption fine structure (EXAFS) analysis. In addition to the economical-benefits, corresponding tests proved that the solid wastes of this process, namely spent MgO/Mg(OH)2, can be environmentally safely disposed as stable additives in cement products, while the alkaline solution is completely detoxified and can be recycled to the regeneration task. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. ABSORBABLE IRON IN BREAD: PROCEDURES OF ITS AUGMENTATION

    Directory of Open Access Journals (Sweden)

    M SABZEVARY

    2001-12-01

    Full Text Available Introduction: As many as 35 percent of the world population suffer from some degree of iron deficiency anemia. According to recent reports published by WHO and ICN (International Congress of Nutrition 20-40 percent of women are suffering from iron deficiency. Iron deficiency anemia is caused by lack of intake of the necessary doses of Fe+2 called Heme. The recommended intake dose is 10-17 mg Fe + 2/day. In Iran, bread is the main source of daily iron intake. However, the iron content of bread is Fe+3 which is not absorbable. The objectives of this study is to determine the levels of absorbable iron (Fe + 2 in two common types of Iranian bread and identify the means of raising these to an adequate levels.
    Methods: Random sampling method together with the normal distribution curve was employed in testing 120 samples of flour and bread. Quantification was carried out on each sample in duplicate using spectrophotometer at 510 mu, micrometer wave length. The effect of three organic acids (lactic ascorbic and acetic acid converting of Fe+3 to Fe + 2 was investigated. Two groups of bread was tested. One group was baked in tratitional oven (Noon-e-Tanoori and the second group through the common Iranian hot rotating iron plate baking machine (Noon-e-Machini.
    Results: Our results showed that the amount of absorbable Fe+2 in breads baked in rotatory oven (Noon-e-Tanoori is 0.8 ± 0.32 mg and the amount of unabsorbable Fe+3 in dried bread is 2.34 ± 0.25 mg/100 gm while the amount of absorbable Fe + 2 baked in traditional ovens is only 0.3±0.11 mg versus of unabsorbable Fe  + 3 1.9±0.13 mg/100 gm of dried bread. Meanwhile it was found that lactic and ascorbic acids can convert Fe+3 to Fe+2. Therefore, addition of one of these two acids to bread can catalyze conversion of unabsorbable Fe+3 to absorbable Fe + 2.
    Discussion: On the average an Iranian consumes 370 gm of

  18. Cast Iron in The 19th Century Building Equipment

    Science.gov (United States)

    Kwasek, Michał; Piwek, Aleksander

    2017-10-01

    Cast iron is a material, characteristics of which enable to receive extremely artistic elements. It maintains good strength properties at the same time. That combination of these seemingly contrary traits makes it a commodity that was widely used in the 19th century industry and architecture. These usages were not only as decorative elements, technical and structural ones. The production of new household utilities started, which made people’s lives more comfortable. Cast iron allowed for fast and cheap production while maintaining high aesthetic qualities. Useful elements, which often were ornamental parts of buildings were created. The aim of the article is to characterise elements of interior equipment of the 19th century building that are made of cast iron. As it appears from performed bibliography, archival and field studies, the ways of exploitation are very broad. Some were mounted into the building; the others were a mobile equipment. As it occurred they were most commonly used as functional items. Cast iron was used to produce the minor elements, which were only parts of the bigger wooden or stone items. Notwithstanding, there were also bigger ones casted as a whole, and frequently ones that were assembled from many elements. Nowadays, elements of an interior feature are one of the subjects of study during the restoration work of the buildings. They can provide important information about the building and the way people lived and are considered as the essential part of historical objects.

  19. Iron absorption after antrectomy with gastroduodenostomy

    International Nuclear Information System (INIS)

    Magnusson, B.E.O.

    1976-01-01

    Haematological values were studied in 177 unselected patients 3-6 years after antrectomy with gastroduodenostomy. The majority (76%) had been operated upon for duodenal ulcer, 20% for gastric ulcer and the remaining patients had had both a duodenal and a gastric ulcer before the operation. In 65 patients a vagotomy had been added to the resection. 10% of the males and 15% of the females had a haemoglobin concentration below 13.0 or 12.0 g/100 ml, respectively. The corresponding frequencies for iron defifiency, defined as absence or only traces of haemosiderin in bone marrow smears, were 7% and 15%. The absorption of a small test dose of inorganic iron (0.56 mg Fe ++ as ferrous ascorbate) was studied in all the antrectomized patients. The absorption was also investigated in normal men and in patients who had had a Billroth II partial gastrectomy. No malabsorption of inorganic iron could be found in any of the groups. An inverse relationship between iron absorption and the grading of haemosiderin in bone marrow smears was found in normal subjects as well as in operated patients. Thus, an adequate increase of the absorption of ferrous iron was found even in operated patients with iron deficiency. Gastric acid secretion, measured as the peak acid output (PAO) after stimulation, was determined in all antrectomized patients. In patients having the same grading of haemosiderin (grade II) a slight but significant positive correlation was found between PAO and the absorption from the test dose (Fe ++ ). The absorption of food iron from a composite meal and the absorption from an iron salt (3.0 mg Fe ++ as ferrous ascorbate) was studied in 4 different groups: 1) normal males, 2) non-operated patients with peptic ulcer, 3) antrectomized patients with gastroduodenostomy and 4) patients operated upon with Billroth II partial gastrectomy. The range and mean absorption values from the test dose of inorganic iron were about the same in all groups. The absorption of food iron

  20. Neutron activation analysis in trace element determinaton in studies of wound healing and in the framework of dose-effect studies on platinum-containing cancer chemotherapeutics

    International Nuclear Information System (INIS)

    Trebert Haeberlin, S.

    1986-01-01

    The origin of the iron concentration in wound tissues was studied. To differentiate between blood and tissue iron the erythrocytes of a rabbit were marked with radioactive 55 Fe. Under the assumption that the half-life of rabbit erythrocytes of 34.5 days would not be changed by 55 Fe marking, the 55 Fe activity found in samples taken from the wound area of muscle cut wounds in a healing time of up to 14 days should be a measure for the blood iron share in the wound. The total iron content was determined be measuring 59 Fe with the help of NAA. The portion of iron which was from the tissues was found as the difference between total iron (NAA) and blood iron ( 55 Fe). The activation analysis of the samples from the wound tissues was supposed to give information about the participation of other essential trace elements in wound healing. In the framework of the development of new cancer chemotherapeutics with a specific effect on hormone-dependent mammary carcinoma, the distribution of the respective medications in tumor tissues and organs of rats and mice based on the activation analysis determination of platinum content in tissues of interest was ascertained. In the activation analyses for platinum determination the amounts in the samples of other essential trace elements was also determined, in order to ascertain characteristic accumulation or reduction of trace elements in various tissues as a result of tumor development or in connection with therapy. (orig./MG) [de

  1. Reduction of iron-bearing lunar minerals for the production of oxygen

    Science.gov (United States)

    Massieon, Charles; Cutler, Andrew; Shadman, Farhang

    1992-01-01

    The kinetics and mechanism of the reduction of simulants of the iron-bearing lunar minerals olivine ((Fe,Mg)2SiO4), pyroxene ((Fe,Mg,Ca)SiO3), and ilmenite (FeTiO3) are investigated, extending previous work with ilmenite. Fayalite is reduced by H2 at 1070 K to 1480 K. A layer of mixed silica glass and iron forms around an unreacted core. Reaction kinetics are influenced by permeation of hydrogen through this layer and a reaction step involving dissociated hydrogen. Reaction mechanisms are independent of Mg content. Augite, hypersthene, and hedenbergite are reduced in H2 at the same temperatures. The products are iron metal and lower iron silicates mixed throughout the mineral. Activation energy rises with calcium content. Ilmenite and fayalite are reduced with carbon deposited on partially reduced minerals via the CO disproportionation reaction. Reduction with carbon is rapid, showing the carbothermal reduction of lunar minerals is possible.

  2. The iron, aluminate and jarosite deposits in Riazas area as potential source of arsenic in groundwater; Los yacimientos de hierro, alunita y jarosita de la zona de Riaza como posible origen del arsenico en las aguas subterraneas

    Energy Technology Data Exchange (ETDEWEB)

    Leal Meca, M.; Lilo Ramos, J.

    2009-07-01

    Arsenic in concentrations above the legal limit of 10 {mu}g/l has been detected in groundwaters of the Duero Cenozoic Basin. The origin of arsenic is related to sedimentary units with arsenic content above the background value of 28.5 mg/kg. Thus, iron-rich deposits located at the base of Cenozoic succession may constitute a potential source of arsenic in the groundwaters. Three outcrops of iron-rich conglomerates in the Riazas area of Segovia province (one in El Negredo and two in Madriguera) have been studied to determine the significance of these materials as a potential source of arsenic in groundwater. These outcrops occur above an unconformity separating them from strongly altered Paleozoic slates, rich in alunite and jarosite. The work is based in geochemical (trace elements detection by INAA) and mineralogical analyses (through XRD-EDAX and ESEM) of 18 samples of altered slates and materials of ferriferrous deposits. Besides, 3 water samples from springs have subjected to hydrochemical analysis to establish major ionic species and trace elements. Although mineralogical study reveals that arsenic occurs in iron oxides and high arsenic concentrations have been identified in rocks of El Negredo (up to 361 mg/kg, average 143.3 mg/kg), the arsenic concentrations in Ca-Mg-HCO{sub 3} - water type are always lower than 10 {mu}g/l. Therefore, it does not seem to be probable that these deposits act as arsenic source, at least at the present physic-chemical conditions.(Author) 37 refs.

  3. Deciphering the iron isotope message of the human body

    Science.gov (United States)

    Walczyk, Thomas; von Blanckenburg, Friedhelm

    2005-04-01

    Mass-dependent variations in isotopic composition are known since decades for the light elements such as hydrogen, carbon or oxygen. Multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS) and double-spike thermal ionization mass spectrometry (TIMS) permit us now to resolve small variations in isotopic composition even for the heavier elements such as iron. Recent studies on the iron isotopic composition of human blood and dietary iron sources have shown that lighter iron isotopes are enriched along the food chain and that each individual bears a certain iron isotopic signature in blood. To make use of this finding in biomedical research, underlying mechanisms of isotope fractionation by the human body need to be understood. In this paper available iron isotope data for biological samples are discussed within the context of isotope fractionation concepts and fundamental aspects of human iron metabolism. This includes evaluation of new data for body tissues which show that blood and muscle tissue have a similar iron isotopic composition while heavier iron isotopes are concentrated in the liver. This new observation is in agreement with our earlier hypothesis of a preferential absorption of lighter iron isotopes by the human body. Possible mechanisms for inducing an iron isotope effect at the cellular and molecular level during iron uptake are presented and the potential of iron isotope effects in human blood as a long-term measure of dietary iron absorption is discussed.

  4. IRON AND {alpha}-ELEMENT PRODUCTION IN THE FIRST ONE BILLION YEARS AFTER THE BIG BANG

    Energy Technology Data Exchange (ETDEWEB)

    Becker, George D.; Carswell, Robert F. [Kavli Institute for Cosmology and Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Sargent, Wallace L. W. [Palomar Observatory, California Institute of Technology, Pasadena, CA 91125 (United States); Rauch, Michael, E-mail: gdb@ast.cam.ac.uk, E-mail: acalver@ast.cam.ac.uk, E-mail: wws@astro.caltech.edu, E-mail: mr@obs.carnegiescience.edu [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2012-01-10

    We present measurements of carbon, oxygen, silicon, and iron in quasar absorption systems existing when the universe was roughly one billion years old. We measure column densities in nine low-ionization systems at 4.7 < z < 6.3 using Keck, Magellan, and Very Large Telescope optical and near-infrared spectra with moderate to high resolution. The column density ratios among C II, O I, Si II, and Fe II are nearly identical to sub-damped Ly{alpha} systems (sub-DLAs) and metal-poor ([M/H] {<=} -1) DLAs at lower redshifts, with no significant evolution over 2 {approx}< z {approx}< 6. The estimated intrinsic scatter in the ratio of any two elements is also small, with a typical rms deviation of {approx}< 0.1 dex. These facts suggest that dust depletion and ionization effects are minimal in our z > 4.7 systems, as in the lower-redshift DLAs, and that the column density ratios are close to the intrinsic relative element abundances. The abundances in our z > 4.7 systems are therefore likely to represent the typical integrated yields from stellar populations within the first gigayear of cosmic history. Due to the time limit imposed by the age of the universe at these redshifts, our measurements thus place direct constraints on the metal production of massive stars, including iron yields of prompt supernovae. The lack of redshift evolution further suggests that the metal inventories of most metal-poor absorption systems at z {approx}> 2 are also dominated by massive stars, with minimal contributions from delayed Type Ia supernovae or winds from asymptotic giant branch stars. The relative abundances in our systems broadly agree with those in very metal-poor, non-carbon-enhanced Galactic halo stars. This is consistent with the picture in which present-day metal-poor stars were potentially formed as early as one billion years after the big bang.

  5. Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial.

    Science.gov (United States)

    Zhang, Erlin; Chen, Haiyan; Shen, Feng

    2010-07-01

    Biocorrosion properties and blood- and cell compatibility of pure iron were studied in comparison with 316L stainless steel and Mg-Mn-Zn magnesium alloy to reveal the possibility of pure iron as a biodegradable biomaterial. Both electrochemical and weight loss tests showed that pure iron showed a relatively high corrosion rate at the first several days and then decreased to a low level during the following immersion due to the formation of phosphates on the surface. However, the corrosion of pure iron did not cause significant increase in pH value to the solution. In comparison with 316L and Mg-Mn-Zn alloy, the pure iron exhibited biodegradable property in a moderate corrosion rate. Pure iron possessed similar dynamic blood clotting time, prothrombin time and plasma recalcification time to 316L and Mg-Mn-Zn alloy, but a lower hemolysis ratio and a significant lower number density of adhered platelets. MTT results revealed that the extract except the one with 25% 24 h extract actually displayed toxicity to cells and the toxicity increased with the increasing of the iron ion concentration and the incubation time. It was thought there should be an iron ion concentration threshold in the effect of iron ion on the cell toxicity.

  6. Effects of Basicity and MgO in Slag on the Behaviors of Smelting Vanadium Titanomagnetite in the Direct Reduction-Electric Furnace Process

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2016-05-01

    Full Text Available The effects of basicity and MgO content on reduction behavior and separation of iron and slag during smelting vanadium titanomagnetite by electric furnace were investigated. The reduction behaviors affect the separation of iron and slag in the direct reduction-electric furnace process. The recovery rates of Fe, V, and Ti grades in iron were analyzed to determine the effects of basicity and MgO content on the reduction of iron oxides, vanadium oxides, and titanium oxides. The chemical compositions of vanadium-bearing iron and main phases of titanium slag were detected by XRF and XRD, respectively. The results show that the higher level of basicity is beneficial to the reduction ofiron oxides and vanadium oxides, and titanium content dropped in molten iron with the increasing basicity. As the content of MgO increased, the recovery rate of Fe increased slightly but the recovery rate of V increased considerably. The grades of Ti in molten iron were at a low level without significant change when MgO content was below 11%, but increased as MgO content increased to 12.75%. The optimum conditions for smelting vanadium titanomagnetite were about 11.38% content of MgO and quaternary basicity was about 1.10. The product, vanadium-bearing iron, can be applied in the converter steelmaking process, and titanium slag containing 50.34% TiO2 can be used by the acid leaching method.

  7. Trace element analysis of the Otani Collection's Dunhuang and Turfan manuscripts by PIXE

    International Nuclear Information System (INIS)

    Kohno, M.; Yoshida, K.; Moritani, K.; Norizawa, K.; Enami, K.; Kasajima, H.; Ueyama, D.; Takada, J.; Matsushita, R.

    1999-01-01

    In order to classify the Otani Collection's Dunhuang and Turfan manuscripts, their trace elements were analyzed by PIXE. The paper samples of these manuscripts were fallen off when they were photographed for a CD-ROM catalog. These samples were very small and their size was less than several millimeters. In addition, some paper fragments dating from the late Edo-era of Japan and the late Qing Dynasty of China, and modern Japanese handmade paper were analyzed using PIXE and NAA. Quite interesting results were obtained when analyzing the trace elements - Na, Mg, Al, Si, S, Cl, K, Ca, Sc, Mn, Fe, Cu, Zn, As, Br, Sr, Ba, Pb, La, Sm. It was found that Dunhuang and Turfan papers of the Otani Collection were characterized by its highest iron and bromine content. The reason of the highest iron content probably originates in their making process and/or depends on their preservative environment. On the other hand, it became clear as for the highest bromine content that the origin is from fumigation of methyl bromide. (author)

  8. A hospital-based cost minimization study of the potential financial impact on the UK health care system of introduction of iron isomaltoside 1000

    Directory of Open Access Journals (Sweden)

    Sunil Bhandari

    2011-03-01

    Full Text Available Sunil BhandariDepartment of Renal Medicine, Hull and East Yorkshire Hospitals National Health Service Trust and Hull York Medical School, Kingston upon Hull, UKBackground: The clinical need to be able to administer high doses of intravenous iron conveniently in a single rapid infusion has been addressed by the recent introduction of ferric carboxymaltose and subsequently iron isomaltoside 1000. Neither requires a test dose. Ferric carboxymaltose can be administered at 15 mg/kg body weight to a maximum dose of 1000 mg, whereas iron isomaltoside 1000 can be administered at 20 mg/kg body weight. The ability to give high doses of iron is important in the context of managing iron deficiency anemia in a number of clinical conditions where demands for iron are high (including chronic blood loss associated with inflammatory bowel disease, menorrhagia, and chronic kidney disease. It is also an important component in the strategy as an alternative to a blood transfusion. Affordability is a key issue for health services.Methods: This study was a comparative analysis of the costs of administering the newly available intravenous iron formulations against standard practice (blood transfusion, intravenous iron sucrose by considering the cost of this treatment option plus nursing costs associated with administration, equipment for administration, and patient transportation in the secondary care (hospital setting across three dosage levels (600 mg, 1000 mg, and 1600 mg.Results and conclusion: The analysis indicates that the use of iron isomaltoside 1000 results in a net saving when compared with iron sucrose, blood, and ferric carboxymaltose. At 600 mg and 1000 mg doses, it is cheaper than low-molecular-weight iron dextran but more expensive at a dose of 1600 mg. However, it takes six hours to administer low-molecular-weight iron dextran at this dose level, which is inconvenient and reduces patient throughput (productivity.Keywords: iron isomaltoside 1000, iron

  9. Spatial Distribution of Iron Within the Normal Human Liver Using Dual-Source Dual-Energy CT Imaging.

    Science.gov (United States)

    Abadia, Andres F; Grant, Katharine L; Carey, Kathleen E; Bolch, Wesley E; Morin, Richard L

    2017-11-01

    Explore the potential of dual-source dual-energy (DSDE) computed tomography (CT) to retrospectively analyze the uniformity of iron distribution and establish iron concentration ranges and distribution patterns found in healthy livers. Ten mixtures consisting of an iron nitrate solution and deionized water were prepared in test tubes and scanned using a DSDE 128-slice CT system. Iron images were derived from a 3-material decomposition algorithm (optimized for the quantification of iron). A conversion factor (mg Fe/mL per Hounsfield unit) was calculated from this phantom study as the quotient of known tube concentrations and their corresponding CT values. Retrospective analysis was performed of patients who had undergone DSDE imaging for renal stones. Thirty-seven patients with normal liver function were randomly selected (mean age, 52.5 years). The examinations were processed for iron concentration. Multiple regions of interest were analyzed, and iron concentration (mg Fe/mL) and distribution was reported. The mean conversion factor obtained from the phantom study was 0.15 mg Fe/mL per Hounsfield unit. Whole-liver mean iron concentrations yielded a range of 0.0 to 2.91 mg Fe/mL, with 94.6% (35/37) of the patients exhibiting mean concentrations below 1.0 mg Fe/mL. The most important finding was that iron concentration was not uniform and patients exhibited regionally high concentrations (36/37). These regions of higher concentration were observed to be dominant in the middle-to-upper part of the liver (75%), medially (72.2%), and anteriorly (83.3%). Dual-source dual-energy CT can be used to assess the uniformity of iron distribution in healthy subjects. Applying similar techniques to unhealthy livers, future research may focus on the impact of hepatic iron content and distribution for noninvasive assessment in diseased subjects.

  10. Moessbauer study of Mg-Ni(Fe) alloys processed as materials for solid state hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Palade, P.; Principi, G., E-mail: giovanni.principi@unipd.it; Sartori, S.; Maddalena, A. [Universita di Padova, Settore Materiali, DIM (Italy); Lo Russo, S. [Universita di Padova, Dipartimento di Fisica (Italy); Schinteie, G.; Kuncser, V.; Filoti, G. [National Institute for Materials Physics, Solid State Magnetism Department (Romania)

    2006-02-15

    Mg-Ni-Fe magnesium-rich intermetallic compounds were prepared following two distinct routes. A Mg{sub 88}Ni{sub 11}Fe{sub 1} sample (A) was prepared by melt spinning Mg-Ni-Fe pellets and then by high-energy ball milling for 6 h the obtained ribbons. A (MgH{sub 2}){sub 88}Ni{sub 11}Fe{sub 1} sample (B) was obtained by high-energy ball milling for 20 h a mixture of Ni, Fe and MgH{sub 2} powders in the due proportions. A SPEX8000 shaker mill with a 10:1 ball to powder ratio was used for milling in argon atmosphere. The samples were submitted to repeated hydrogen absorption/desorption cycles in a Sievert type gas-solid reaction controller at temperatures in the range 520 - 590 K and a maximum pressure of 2.5 MPa during absorption. The samples were analysed before and after the hydrogen absorption/desorption cycles by X-ray diffraction and Moessbauer spectroscopy. The results concerning the hydrogen storage properties of the studied compounds are discussed in connection with the micro-structural characteristics found by means of the used analytical techniques. The improved kinetics of hydrogen desorption for sample A, in comparison to sample B, has been ascribed to the different behaviour of iron atoms in the two cases, as proved by Moessbauer spectroscopy. In fact, iron results homogeneously distributed in sample A, partly at the Mg{sub 2}Ni grain boundaries, with catalytic effect on the gas-solid reaction; in sample B, instead, iron is dispersed inside the hydride powder as metallic iron or superparamagnetic iron.

  11. Boron solubility in Fe-Cr-B cast irons

    International Nuclear Information System (INIS)

    Guo Changqing; Kelly, P.M.

    2003-01-01

    Boron solubility in the as-cast and solution treated martensite of Fe-Cr-B cast irons, containing approximately 1.35 wt.% of boron, 12 wt.% of chromium, as well as other alloying elements, has been investigated using conventional microanalysis. The significant microstructural variations after tempering at 750 deg. C for 0.5-4 h, compared with the original as-cast and solution treated microstructures, indicated that the matrix consisted of boron and carbon supersaturated solid solutions. The boron solubility detected by electron microprobe was between 0.185-0.515 wt.% for the as-cast martensite and 0.015-0.0589 wt.% for the solution treated martensite, much higher than the accepted value of 0.005 wt.% in pure iron. These remarkable increases are thought to be associated with some metallic alloying element addition, such as chromium, vanadium and molybdenum, which have atomic diameters larger than iron, and expand the iron lattice to sufficiently allow boron atoms to occupy the interstitial sites in iron lattice

  12. Composition of MBE-grown iron oxide films

    NARCIS (Netherlands)

    Voogt, F.C; Hibma, T; Smulders, P.J M; Niesen, L

    A wide range of iron oxides have been grown epitaxially on MgO(100) substrates using a dual beam technique in which the deposited iron is oxidised by a beam of NO2 particles. At high fluxes magnetite (Fe3-deltaO4) phases with compositions between near-stoichiometric magnetite (Fe3O4, delta = 0) and

  13. The Histological Effects of L-arginine on Ventricular Myocardium in Iron Treated Male Rats

    Directory of Open Access Journals (Sweden)

    M Sofiabadi

    2012-05-01

    Full Text Available

    Background and Objectives: Iron overload is detrimental for the body and can create damage to different body tissues, such as myocardium by producing oxidative stress. Therefore, the antioxidant factors can neutralize iron induced damages. According to available reports, L-arginine as a precursor nitric oxide production has antioxidant effects. This study was carried out to evaluate the histological effects of iron overload on ventricular muscle and preventive role of L-arginine in male rats.
    Methods: In this experiment, 40 male rats with weight range of 300-250g were divided at random into five equal groups including:1- Control, 2- Iron (10mg/kg, ip, 3- Iron(10mg/kg, ip+L-arginine (1mg/ml, po, 4- Iron (50mg/kg, ip and 5- Iron (50mg/kg,ip+L-arginine(1mg/ml,po. After treatment (6 weeks, the animals were anesthetized and the samples of left apical ventricular myocardium were taken out and morphological studies were done following fixation with 10% formalin and H&E staining. Microscopic parameters under study were cell swelling, vessel dilatation and hypercongestion, cell necrosis and tissue deformity. The type and severity of damage to the tissue were also noted. Data were analyzed using chi-square statistical procedure, and Pvalue≤0.05 were considered to be significant. 
    Results: The data showed moderate changes in the ventricular myocardium of group 2 that was significant in comparison to the control group (P<0.05. The ventricular myocardium of group 3 showed low changes and wasn't significant in comparison to control group (P=0.84. The ventricular myocardium of the group 4 showed severe changes in comparison to the control group (P<0.01. The low change showed in the ventricular myocardium of group 5 that wasn't significant in comparison to the control group.

    Conclusion: This study showed

  14. Mobilization of Iron by Plant-Borne Coumarins.

    Science.gov (United States)

    Tsai, Huei Hsuan; Schmidt, Wolfgang

    2017-06-01

    Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have evolved efficient strategies to increase iron solubility. Recent evidence provides support for a previously underestimated role of root-secreted coumarins in mobilizing iron through reduction and chelation as part of an orchestrated strategy evolved to improve the acquisition of iron from recalcitrant pools. Understanding the mechanisms that tune the production of iron-mobilizing coumarins and their intricate interplay with other biosynthesis pathways could yield clues for deciphering the molecular basis of 'iron efficiency' - the ability of plants to thrive on soils with limited iron availability - and may open avenues for generating iron-fortified crops. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Study of Ascorbic Acid as Iron(III Reducing Agent for Spectrophotometric Iron Speciation

    Directory of Open Access Journals (Sweden)

    Antesar Elmagirbi

    2012-10-01

    Full Text Available The study of ascorbic acid as a reducing agent for iron(III has been investigated in order to obtain an alternative carcinogenic reducing agent, hydroxylamine, used in spectrophotometric standard method based on the formation of a red-orange complex of Fe(II-o-phenanthroline. The study was optimised with regards to ascorbic acid concentration as well as pH solution. The results showed that ascorbic acid showed maximum capacity as reducing agent of iron(III under concentration of 4.46.10-4 M and pH solution of 1-4.Under these conditions, ascorbic acid reduced iron(III proportionally and performed similarly to that of hydroxylamine.  The method gave result to linear calibration over the range of 0.2-2 mg/L withhigh accuracy of 97 % and relative standard deviation of less than 2 %. This method was successfully applied to assay iron speciation in water samples.

  16. In vivo and in vitro degradation comparison of pure Mg, Mg-10Gd and Mg-2Ag: a short term study

    Directory of Open Access Journals (Sweden)

    I Marco

    2017-02-01

    Full Text Available The purpose of this study was to compare short term in vitro and in vivo biodegradation studies with low purity Mg (> 99.94 %, Mg-10Gd and Mg-2Ag designed for biodegradable implant applications. Three in vitro testing conditions were applied, using (i phosphate buffered saline (PBS, (ii Hank’s balanced salt solution (HBSS and (iii Dulbecco’s modified eagle medium (DMEM in 5 % CO2 under sterile conditions. Gas evolution and mass loss (ML were assessed, as well as the degradation layer, by elemental mapping and scanning electron microscopy (SEM. In vivo, implantations were performed on male Sprague-Dawley rats evaluating both, gas cavity volume and implant volume reduction by micro-computed tomography (µCT, 7 d after implantation. Samples were produced by casting, solution heat treatment and extrusion in disc and pin shape for the in vitro and in vivo experiments, respectively. Results showed that when the processing of the Mg sample varied, differences were found not only in the alloy impurity content and the grain size, but also in the corrosion behaviour. An increase of Fe and Ni or a large grain size seemed to play a major role in the degradation process, while the influence of alloying elements, such as Gd and Ag, played a secondary role. Results also indicated that cell culture conditions induced degradation rates and degradation layer elemental composition comparable to in vivo conditions. These in vitro and in vivo degradation layers consisted of Mg hydroxide, Mg-Ca carbonate and Ca phosphate.

  17. Removal of Iron and Manganese in Groundwater using Natural Biosorbent

    Science.gov (United States)

    Baharudin, F.; Tadza, M. Y. Mohd; Imran, S. N. Mohd; Jani, J.

    2018-04-01

    This study was conducted to measure and compare the concentration of iron, manganese and hardness of the river and groundwater and to determine the effectiveness of iron and manganese removal by using natural biosorbent which is banana peels. The samples of river and groundwater were collected at riverbank filtration site at Jenderam Hilir, Dengkil. Based on the water quality investigation, the concentration of iron and manganese in the samples of groundwater have exceeded the drinking water quality standard which are 0.3 mg/L for iron and 0.1 mg/L for manganese. The removal process of the iron and manganese in the groundwater was done by using 2, 4 and 8 grams of banana peels activated carbon. It is found that with higher amount of activated banana peels, the removal of iron and manganese is more effective. The ranges of percentage of iron and manganese removal are between 82.25% to 90.84% and 98.79% to 99.43% respectively. From the result, banana peels activated carbon can be concluded as a one of the most effective low-cost adsorbent for groundwater treatment.

  18. Impact of daily consumption of iron fortified ready-to-eat cereal and pumpkin seed kernels (Cucurbita pepo) on serum iron in adult women.

    Science.gov (United States)

    Naghii, Mohammad Reza; Mofid, Mahmood

    2007-01-01

    Iron deficiency, anemia, is the most prevalent nutritional problem in the world today. The objective of this study was to consider the effectiveness of consumption of iron fortified ready-to-eat cereal and pumpkin seed kernels as two sources of dietary iron on status of iron nutrition and response of hematological characteristics of women at reproductive ages. Eight healthy female, single or non pregnant subjects, aged 20-37 y consumed 30 g of iron fortified ready-to-eat cereal (providing 7.1 mg iron/day) plus 30 g of pumpkin seed kernels (providing 4.0 mg iron/day) for four weeks. Blood samples collected on the day 20 of menstrual cycles before and after consumption and indices of iron status such as reticulocyte count, hemoglobin (Hb), hematocrit (Ht), serum ferritin, iron, total iron-binding capacity (TIBC), transferrin and transferrin saturation percent were determined. Better response for iron status was observed after consumption period. The statistical analysis showed a significant difference between the pre and post consumption phase for higher serum iron (60 +/- 22 vs. 85 +/- 23 ug/dl), higher transferrin saturation percent (16.8 +/- 8.0 vs. 25.6 +/- 9.0%), and lower TIBC (367 +/- 31 vs. 339 +/- 31 ug/dl). All individuals had higher serum iron after consumption. A significant positive correlation (r=0.981, p=0.000) between the differences in serum iron levels and differences in transferrin saturation percentages and a significant negative correlation (r=-0.916, pfoods contribute to maintaining optimal nutritional status and minimizing the likelihood of iron insufficiencies and use of fortified ready-to-eat cereals is a common strategy. The results showed that adding another food source of iron such as pumpkin seed kernels improves the iron status. Additional and longer studies using these two food products are recommended to further determine the effect of iron fortification on iron nutrition and status among the target population, and mainly in young

  19. Determination of trace elements in the human substantia nigra

    Energy Technology Data Exchange (ETDEWEB)

    Morawski, M. [Paul-Flechsig-Institut fuer Hirnforschung, Universitaet Leipzig, Jahnallee 59, 04109 Leipzig (Germany)]. E-mail: morm@medizin.uni-leipzig.de; Meinecke, Ch. [Fakultaet fuer Physik und Geowissenschaften, Universitaet Leipzig, Linnestrasse 5, 04105 Leipzig (Germany); Reinert, T. [Fakultaet fuer Physik und Geowissenschaften, Universitaet Leipzig, Linnestrasse 5, 04105 Leipzig (Germany); Doerffel, A.C. [Paul-Flechsig-Institut fuer Hirnforschung, Universitaet Leipzig, Jahnallee 59, 04109 Leipzig (Germany); Riederer, P. [Klin. Neurochemie, Abt. Psychiatrie, Universitaet Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg (Germany); Arendt, T. [Paul-Flechsig-Institut fuer Hirnforschung, Universitaet Leipzig, Jahnallee 59, 04109 Leipzig (Germany); Butz, T. [Fakultaet fuer Physik und Geowissenschaften, Universitaet Leipzig, Linnestrasse 5, 04105 Leipzig (Germany)

    2005-04-01

    'The gain in brain is mainly in the stain' was long time a key sentence for research in neurodegenerative disease. However, for a quantification of the element concentrations (especially iron) in brain tissue, standard staining methods are insufficient. Advanced physical methods allow a quantitative elemental analysis of brain tissue. The sophisticated ion beam analysis provides a quantitative determination of elemental concentrations with a subcellular spatial resolution using a scanning proton beam focussed down to below 1 {mu}m that induces characteristic X-rays in the specimen (PIXE - particle induced X-ray emission). Histochemical and biochemical determinations of total iron content in brain regions from idiopathic Parkinson's disease have demonstrated an increase of iron in parkinsonian substantia nigra pars compacta but not in the pars reticulata, however without a clear cellular classification. For the first time, we have differentially investigated the intra- and extraneuronal elemental concentrations (especially iron) of the human substantia nigra pars compacta versus pars reticulata with detection limits in the range of 50 {mu}mol/l. Thus, we could compare the neuronal iron concentration in human brain sections of healthy and parkinsonian brain tissue. Clear differences in the iron concentration and distribution could be disclosed. Additionally, we could show in situ that the increased intraneuronal iron content is linked to neuromelanin.

  20. Seasonal and spatial variations of atmospheric trace elemental deposition in the Aliaga industrial region, Turkey

    Science.gov (United States)

    Kara, Melik; Dumanoglu, Yetkin; Altiok, Hasan; Elbir, Tolga; Odabasi, Mustafa; Bayram, Abdurrahman

    2014-11-01

    Atmospheric bulk deposition (wet + dry deposition) samples (n = 40) were collected concurrently at ten sites in four seasons between June 2009 and April 2010 in the Aliaga heavily industrialized region, Turkey, containing a number of significant air pollutant sources. Analyses of trace elements were carried out using inductively coupled plasma-mass spectrometry (ICP-MS). While there were significant differences in the particulate matter (PM) deposition fluxes among the sampling sites, seasonal variations were not statistically significant (Kruskal-Wallis test, p < 0.05). Both PM deposition and elemental fluxes were increased at the sampling sites in the vicinity of industrial activities. The crustal elements (i.e., Ca, Mg) and some anthropogenic elements (such as Fe, Zn, Mn, Pb, Cu, and Cr) were high, and the highest fluxes were mostly measured in summer and winter seasons. The enrichment factor (EF) and principal component analysis (PCA) was applied to the data to determine the possible sources in the study area. High EF values were obtained for the anthropogenic elements such as Ag, Cd, Zn, Pb, Cu and Sb. The possible sources were identified as anthropogenic sources (i.e., iron-steel production) (45.4%), crustal and re-suspended dust (27.1%), marine aerosol (7.9%), and coal and wood combustion (8.2%). Thus, the iron-steel production and its related activities were found to be the main pollutant sources for this region.

  1. Analysis of Trace Elements in Rat Bronchoalveolar Lavage Fluid by Inductively Coupled Plasma Mass Spectrometry.

    Science.gov (United States)

    Qamar, Wajhul; Al-Ghadeer, Abdul Rahman; Ali, Raisuddin; Abuelizz, Hatem A

    2017-08-01

    The main objective was to determine the elemental profile of the lung lining fluid of rats which are used as model animals in various experiments. Lung lining fluid elemental constitution obtained after bronchoalveolar lavage fluid (BALF) was analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine the biological trace elements along with calcium and magnesium. BALF was collected from healthy rats using a tracheal cannula. However, cells in BALF were counted to monitor any underlying inflammatory lung condition. Cell free BALF samples were processed and analyzed for the elements including magnesium (Mg), calcium (Ca), chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), selenium (Se), bromine (Br), and iodine (I). In view of this, calcium concentration was the highest (6318.08 ± 3094.3 μg/L) and copper concentration was the lowest (0.89 ± 0.21 μg/L). The detected elements, from high to low concentration, include Ca > Mg > Fe > Br > I > Cr > Ni > Zn > Mn > Se > Cu. Pearson's correlation analysis revealed no significant correlation between cell count and concentration of any of the element detected in BALF. Correlation analysis also revealed significant positive correlation among Fe, I, Cr, Ni, and Mn. Ca was found to be correlated negatively with Cu and positively with Se. Br and Mg found to be positively correlated with each other. Zn remained the only element that was not found to be correlated with any of the elements in the rat BALF.

  2. Current understanding of iron homeostasis.

    Science.gov (United States)

    Anderson, Gregory J; Frazer, David M

    2017-12-01

    Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.

  3. Synthesis and analysis of some iron vitamins

    International Nuclear Information System (INIS)

    Nimir, H.; Salah Eldin, E.; Mohammed, K.

    2009-01-01

    Ferrous sulfate tablets and syrup were prepared according to the pharmaceutical methods. Two types of biologically related iron salts, namely ferrous citrate and glycinate were prepared as potential iron supplements. The quantitative analysis of iron in these samples was determined using two techniques, atomic absorption spectrophotometery and uv-visible spectroscopy. The amount of iron was found to be 0.52-0.60 mg in tablet and 0.805-0.840g/100 ml in the syrup respectively. The percentage of Fe in the two ferrous citrate samples and ferrous glycinate sample were found to be 88.65%, 26.22% and 60.63% respectively. (Author)

  4. Arsenic, Chromium, and Other Potentially Toxic Elements in the Rocks and Sediments of Oropos-Kalamos Basin, Attica, Greece

    Directory of Open Access Journals (Sweden)

    D. Alexakis

    2014-01-01

    Full Text Available Rocks and sediments are non-anthropogenic sources of elements contamination. In this study, a series of potentially toxic elements were quantified in rocks and sediments of the Oropos-Kalamos basin. Only As, Hg, Pb, and Sb contents, in all the examined rocks and sediments, were higher than the levels given in international literature. Concentration of the elements As, Cr, Hg, Mo, Ni, and U is highly elevated in the lignite compared to crustal element averages. The enrichment of Cr and Ni in the lignite can be attributed to the known ultramafic rock masses surrounding the basin, while enrichment of As, Hg, Mo, Sb, and U is associated with the past geothermal activity of the Upper Miocene (about 15 million years ago. Nickel and Cr were transported into the lignite deposition basin by rivers and streams draining ultramafic rock bodies. The results of this study imply the natural source of Cr3+ and Cr6+ contamination of the Oropos-Kalamos groundwater, since high Cr contents were also recorded in the lignite (212.3 mg kg−1, chromiferous iron ore occurrences (256.6 mg kg−1, and alluvial deposits (212.5 mg kg−1, indicating Cr leaching and transportation to the depositional basin dating from the Upper Miocene age.

  5. Uncoupling and oxidative stress in liver mitochondria isolated from rats with acute iron overload

    Energy Technology Data Exchange (ETDEWEB)

    Pardo Andreu, G.L. [Centro de Quimica Farmaceutica, Departamento de Investigaciones Biomedicas, Ciudad de La Habana (Cuba); Inada, N.M.; Vercesi, A.E. [Universidade Estadual de Campinas, Departamento de Patologia Clinica, Faculdade de Ciencias Medicas, Campinas, SP (Brazil); Curti, C. [Universidade de Sao Paulo, Departamento de Fisica e Quimica, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, SP (Brazil)

    2009-01-15

    One hypothesis for the etiology of cell damage arising from iron overload is that its excess selectively affects mitochondria. Here we tested the effects of acute iron overload on liver mitochondria isolated from rats subjected to a single dose of i.p. 500 mg/kg iron-dextran. The treatment increased the levels of iron in mitochondria (from 21{+-}4 to 130{+-}7 nmol/mg protein) and caused both lipid peroxidation and glutathione oxidation. The mitochondria of iron-treated rats showed lower respiratory control ratio in association with higher resting respiration. The mitochondrial uncoupling elicited by iron-treatment did not affect the phosphorylation efficiency or the ATP levels, suggesting that uncoupling is a mitochondrial protective mechanism against acute iron overload. Therefore, the reactive oxygen species (ROS)/H{sup +} leak couple, functioning as a mitochondrial redox homeostatic mechanism could play a protective role in the acutely iron-loaded mitochondria. (orig.)

  6. Identification of precipitates formed on zero-valent iron in anaerobic aqueous solutions

    International Nuclear Information System (INIS)

    Schuhmacher, T.; Odziemkowski, M.S.; Reardon, E.J.; Gillham, R.W.

    1997-01-01

    The formation of precipitates has been identified as a possible limitation in the use of granular iron for in situ remediation of groundwater. This study was undertaken to identify the precipitates that form on the iron surfaces under conditions of differing water chemistry. Two laboratory column tests were performed using 100 mesh, 99% pure electrolytic iron. A 120 mg/L calcium carbonate (CaCO 3 ) solution passed through one column and a 40 mg/L potassium bromide (KBr) solution through the other. The CaCO, treated iron formed a whitish gray coating on the first centimeter of the column but the KBr treated iron did not display any visible precipitates. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy were used to identify the precipitates. Calcium carbonate and ferrous carbonate (FeCO 3 ) phases were only present on the surface of the iron removed from the influent end of the column treated with a CaCO 3 solution. Iron surfaces analyzed from both the influent and the effluent end of the KBr treated iron and the effluent end of the CaCO 3 treated iron indicated the presence of magnetite (Fe 3 O 4 ) precipitates

  7. Effect of irradiation and storage in the iron availability in lamb meat treated with different diets; Efeito da irradiacao e do armazenamento na disponibilidade de ferro em carne de cordeiro tratado com diferentes dietas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Adriana Regia Marques de; Arthur, Valter [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Irradiacao de Alimentos e Radioentomologia]. E-mail: acornel@cena.usp.br; arthur@cena.usp.br; Canniatti-Brazaca, Solange Guidolin [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Agroindustria, Alimentos e Nutricao]. E-mail: sgcbraza@esalq.usp.br; Couto, Meylene Aparecida Luzia [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil)]. E-mail: malcouto@esalq.usp.br

    2008-10-15

    Irradiation is an efficient method to increase the microbiological safety and to maintain the nutrients such as iron in the meat. The best absorption form, heme iron, should be preserved in order to increase the nutritional quality of stored meat. The diet can alter the nutrients contents and form in the meat. The iron is provided from the diet and it is an essential element for the metabolic processes such as oxygen transport, oxidative metabolism, and cellular growth. Meat lamb samples treated with different diets (it controls, TAC1, TAC2 and sorghum) were wrapped to vacuous, and irradiated in the doses 0, 2 and 4 kGy and stored at 4 deg C during 15 days. The values of total iron and heme iron were measured at 0 and 15 days of storage. The storage reduced the content of total iron (18.36 for 14.28 mg.100 g{sup -1}) and heme iron (13.78 for 10.52 mg.100 g{sup -1}). The diets affected the levels of total and heme iron of the meat, and the sorghum diet was the one that presented the larger content. The dose of 2 kGy was the one that affected the iron the most independently of the storage time. It was verified that the amounts of total and heme iron varied according to the storage time, irradiation doses, and lamb diets. (author)

  8. Arsenic removal from water using iron-coated seaweeds.

    Science.gov (United States)

    Vieira, Bárbara R C; Pintor, Ariana M A; Boaventura, Rui A R; Botelho, Cidália M S; Santos, Sílvia C R

    2017-05-01

    Arsenic is a semi-metal element that can enter in water bodies and drinking water supplies from natural deposits and from mining, industrial and agricultural practices. The aim of the present work was to propose an alternative process for removing As from water, based on adsorption on a brown seaweed (Sargassum muticum), after a simple and inexpensive treatment: coating with iron-oxy (hydroxides). Adsorption equilibrium and kinetics were studied and modeled in terms of As oxidation state (III and V), pH and initial adsorbate concentration. Maximum adsorption capacities of 4.2 mg/g and 7.3 mg/g were obtained at pH 7 and 20 °C for arsenite and arsenate, respectively. When arsenite was used as adsorbate, experimental evidences pointed to the occurrence of redox reactions involving As(III) oxidation to As(V) and Fe(III) reduction to Fe(II), with As(V) uptake by the adsorbent. The proposed adsorption mechanism was then based on the assumption that arsenate was the adsorbed arsenic species. The most relevant drawback found in the present work was the considerable leaching of iron to the solution. Arsenite removal from a mining-influenced water by adsorption plus precipitation was studied and compared to a traditional process of coagulation/flocculation. Both kinds of treatment provided practically 100% of arsenite removal from the contaminated water, leading at best in 12.9 μg/L As after the adsorption and precipitation assays and 14.2 μg/L after the coagulation/flocculation process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of zinc therapy in patients with psoriasis and a topic dermatitis on some trace elements in serum and skin

    International Nuclear Information System (INIS)

    ElBedewl, A.E.; ElSaid, S.M.

    2002-01-01

    The effects of zinc therapy on some trace elements in serum and skin had been studied in forty patients with psoriasis and a topic dermatitis with age range between 20-65 years. Patients were treated with 330 mg oral zinc sulfate for 12 week. Significant increases in both serum and skin copper levels were detected. Also, serum and skin calcium and magnesium levels in both psoriatic and a topic patients were significantly decreased, while iron level was significantly increased in psoriasis and significantly decreased in a topic patients. It could be conclude that zinc therapy could affect copper, calcium, iron and magnesium levels in both psoriatic and a topic patients

  10. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes.

    Science.gov (United States)

    Jin, Juntao; Guan, Yuntao

    2014-10-01

    New insights into the biocorrosion process may be gained through understanding of the interaction between extracellular polymeric substances (EPS) and iron. Herein, the effect of iron ions on the formation of biofilms and production of EPS was investigated. Additionally, the impact of EPS on the corrosion of cast iron coupons was explored. The results showed that a moderate concentration of iron ions (0.06 mg/L) promoted both biofilm formation and EPS production. The presence of EPS accelerated corrosion during the initial stage, while inhibited corrosion at the later stage. The functional groups of EPS acted as electron shuttles to enable the binding of iron ions. Binding of iron ions with EPS led to anodic dissolution and promoted corrosion, while corrosion was later inhibited through oxygen reduction and availability of phosphorus from EPS. The presence of EPS also led to changes in crystalline phases of corrosion products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. [The efficacy of phlebotomy with a low iron diet in the management of pulmonary iron overload].

    Science.gov (United States)

    Fukuda, Tomoko; Kimura, Fumiaki; Watanabe, Yoichi; Yoshino, Tadasi; Kimura, Ikuro

    2003-05-01

    Numerous studies have shown that workers in ferriferous industries have an elevated risk of respiratory tract neoplasia and other airway diseases. Evidence is presented that iron is a carcinogenic and tissue toxic hazard as regarding the inhalation of ferriferous substances. Elimination of the inhaled iron and prevention from accumulation of iron in the lung seems to be very important. A 26-year-old man was admitted to our hospital complaining of right chest pain. He had worked as an arc welder for two years without a mask. A chest CT showed diffuse ground glass opacity in the bilateral lung fields. A transbronchial lung biopsy specimen showed numerous alveolar and interstitial iron-laden macrophages. A 200 ml phlebotomy was carried out biweekly in combination with a low iron diet (8 mg/day). When serum ferritin reached 20 ng/ml, phlebotomy was stopped. After that, serum ferritin level was kept at around 20 ng/ml with the low iron diet alone. A transbronchial lung biopsy was carried out again 7 months later and the specimen showed remarkable reduction in the number of iron-laden alveolar and interstitial macrophages. Phlebotomy in combination with a low iron diet might become a useful strategy in the management of pulmonary conditions associated with iron loading.

  12. Evaluation of Trace Elements and Their Relationship with Growth and Development of Young Children.

    Science.gov (United States)

    Cao, Jia; Gao, Zhenyan; Yan, Jin; Li, Minming; Su, Jia; Xu, Jian; Yan, Chong-Huai

    2016-06-01

    This study was conducted to assess the levels of trace elements and their relationship with growth and development of children in Shanghai, China, to offer scientific evidence for supplementing trace elements in children. A stratified, clustered, random sampling method was used in the study. Blood samples were taken from 2141 Shanghai children from 0 to 6.0 years old, and the concentrations of zinc (Zn), calcium (Ca), iron (Fe), copper (Cu), and magnesium (Mg) were measured using inductively coupled plasma mass spectrometry (ICP-MS). Nutritional status was determined and Z-scores of anthropometric parameters, such as height for age (HFA), weight for age (WFA), and body mass index (BMI) were calculated, indicated by HAZ, WAZ, and BMIZ, respectively. The overall median blood levels of Zn, Ca, Fe, Cu, and Mg were 8.83, 79.02, 9.49, 1.04, and 15.45 mg/L, respectively. Fe, Cu, and Mg increased with age and Zn, Fe, and Cu differed by sex. HAZ and WAZ were positively correlated with Zn (r (2) = 0.072 and 0.053, respectively; P children's growth and development. Dietary supplementation and screening of nutritional states are potential solutions to improve children's growth and development.

  13. Elemental composition of Malawian rice.

    Science.gov (United States)

    Joy, Edward J M; Louise Ander, E; Broadley, Martin R; Young, Scott D; Chilimba, Allan D C; Hamilton, Elliott M; Watts, Michael J

    2017-08-01

    Widespread potential dietary deficiencies of calcium (Ca), iron (Fe), iodine (I), selenium (Se) and zinc (Zn) have been identified in Malawi. Several deficiencies are likely to be compounded by high phytic acid (PA) consumption. Rice (Oryza sativa) is commonly consumed in some Malawian populations, and its mineral micronutrient content is important for food security. The considerable irrigation requirements and flooded conditions of paddy soils can also introduce or mobilise potentially toxic elements including arsenic (As), cadmium (Cd) and lead (Pb). The aim of this study was to determine the mineral composition of rice sampled from farmers' fields and markets in Malawi. Rice was sampled from 18 extension planning areas across Malawi with 21 white (i.e. polished) and 33 brown samples collected. Elemental composition was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Arsenic speciation was performed using high-performance liquid chromatography (HPLC)-ICP-MS. Concentration of PA was determined using a PA-total phosphorus assay. Median total concentrations (mg kg -1 , dry weight) of elements important for human nutrition in brown and white rice, respectively, were: Ca = 66.5 and 37.8; Cu = 3.65 and 2.49; Fe = 22.1 and 7.2; I = 0.006 and rice samples, respectively, median PA concentrations were 5438 and 1906 mg kg -1 , and median PA:Zn molar ratios were 29 and 13. Concentrations of potentially toxic elements (mg kg -1 , dry weight) in brown and white rice samples, respectively, were: As = 0.030 and 0.006; Cd  ≤ 0.002 and 0.006; Pb = 0.008 and 0.008. Approximately 95 % of As was found to be inorganic As, where this could be quantified. Malawian rice, like the more widely consumed staple grain maize, contains inadequate Ca, I, Se or Zn to meet dietary requirements. Biofortification strategies could significantly increase Se and Zn concentrations and require further investigation. Concentrations of Fe in rice grain varied

  14. Towards bio monitoring of toxic (lead) and essential elements in whole blood from 1- to 72-month old children: a cross-sectional study.

    Science.gov (United States)

    Kang-Sheng, Liu; Xiao-Dong, Mao; Juan, Shi; Chun-Fan, Dai; Pingqing, Gu

    2015-06-01

    Minerals such as zinc, copper, selenium, calcium, and magnesium are essential for normal human development and functioning of the body. They have been found to play important roles in immuno-physiologic functions. The study is to evaluate the distribution and correlation of nonessential (lead) and essential elements in whole blood from 1- to 72-month old children. The cross-sectional study was performed in 1551 children. Six element concentrations, including copper (Cu), zinc (Zn), calcium (Ca), magnesium (Mg), iron (Fe) and lead (Pb) in the blood were determined by atomic absorption spectrometry. Distributions and correlations of trace elements in different age groups were analyzed and compared. A Pearson correlation controlled for age and gender was used to assess the relationship of non essential (lead) and essential elements. Levels of copper and magnesium were 18.09 ± 4.42 µmol/L and 1.42 ± 0.12 mmol/L, respectively. 6.04% of all children showed copper levels below the normal threshold, the levels of Magnesium were stable in different age groups. Though the overall mean blood zinc and iron concentrations (61.19 ± 11.30 µmol/L and 8.24 ± 0.59 mmol/L, respectively) gradually increased with age and the overall deficiency levels (24.1% and 36.0%, respectively) decreased with age, zinc and iron deficiencies were still very stable. Controlling for gender and age, significant positive correlations were found when comparing copper to zinc, calcium, magnesium, and iron ((r = 0.333, 0.241, 0.417, 0.314 ,p lead levels (41.16 ± 16.10) were relatively unstable among different age groups. The prevalence of lead intoxication in all children was 1.3% .Calcium levels decreased gradually with age, with an overall concentration of 1.78 ± 0.13 mmol/L. Significant negative correlations were also noted between Pb and Zn, Fe (r = -0.179, -0.124.p lead intoxication in all the children studied was low; The established reference intervals for Cu, Zn, Ca and Mg provide an

  15. The Effects of Micro Elements of Iron and Zinc on Morphological Characteristics of Mycorrhized Barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Shahab Khaghani

    2016-06-01

    Full Text Available Deficiency of micro-nutrients in human diet may cause health problems. To increase the amount of these elements in the edible parts of the plants would eliminate the incidence of these health problems. Thus, the effects of iron and zinc on seed yield and morphological characteristics of mycorrhized barley (cv. Bahman root was studied in Karaj, Iran, during growing season of 2013-14. It was carried out in afactorial experiment based on randomized complete block design with three replications. Treatments consisted two levels of mycorrhiza, non-inoculation (M0 and inoculation with 10 kg/ha of Glomus intraradices (M1, and three levels of iron from Fe-EDDHA (Sequestrene138 as control (F0, 2.5 kg/ha (F1 and 5kg/ha (F2 and three levels of zinc as zinc sulphate (ZnSO4 as control (Z0, 25 kg/ha (Z1 and 50 kg/ha (Z2. The results showed that application of mycorrhiza increased parameters like total root length (TRL, root length density (RLD, specific root length (SLR, root colonization percentage and grain yield by 900.6 cm, 0.52 cm/cm3, 1738.1 cm/g, 5.41% and 1ton/ha respectively. Mean comparisons also revealed that using iron, mycorrhiza and without Zn application increased levels of root dry weight (RDW by 2.81 g.

  16. Fabrication and properties of high-strength extruded brass using elemental mixture of Cu-40% Zn alloy powder and Mg particle

    Energy Technology Data Exchange (ETDEWEB)

    Atsumi, Haruhiko, E-mail: atsumi-h@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Imai, Hisashi; Li, Shufeng; Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kousaka, Yoshiharu; Kojima, Akimichi [San-etsu Metals Co. Ltd., 1892 Ohta, Tonami, Toyama 939-1315 (Japan)

    2012-08-15

    In this paper, high-strength brass (Cu-40% Zn) alloy with magnesium (Mg) element was fabricated via powder technology process, and the effect of the additive Mg element on microstructural and mechanical properties of extruded brass alloys with {alpha}-{beta} duplex phases was investigated. Pre-mixed Cu-40% Zn alloy powder with 0.5-1.5 mass% pure Mg powder (Cu-40% Zn + Mg) was consolidated using a spark plasma sintering (SPS) equipment. SPSed Cu-40% Zn + Mg specimens consisted of {alpha}-{beta} duplex phases containing Mg(Cu{sub 1-x}Zn{sub x}){sub 2} intermetallic compounds (IMCs) with a mean particle size of 10-30 {mu}m in diameter. The IMCs were completely dissolved in the {alpha}-{beta} duplex phases by a heat-treatment at 973 K for 15 min; thus, in order to disperse fine IMCs on {alpha}-{beta} duplex phase matrix, the SPSed Cu-40% Zn + Mg specimens were pre-heated at the solid solutionizing condition, and immediately extruded. The extruded specimen exhibited fine {alpha}-{beta} duplex phases, containing very fine precipitates of the above Mg(Cu{sub 1-x}Zn{sub x}){sub 2} IMCs with 0.5-3.0 {mu}m in diameter. In particular, a mean grain size of the extruded Cu-40% Zn + 1.0% Mg specimen was 3.32 {mu}m analyzed using an electron back-scattered diffraction. Tensile properties of the extruded Cu-40% Zn + 1.0% Mg specimen were an average value of yield strength (YS): 328 MPa, ultimate tensile strength (UTS): 553 MPa, and 25% elongation. This indicated that the extruded Cu-40% Zn + 1.0% Mg specimen revealed the significantly high-strength properties compared to a conventional binary brass alloy with 229 MPa YS and 464 MPa UTS. A high strengthening mechanism of this wrought brass alloy was mainly due to the grain refinement because of a pinning effect by the fine Mg(Cu{sub 1-x}Zn{sub x}){sub 2} precipitates at the boundaries of each phase. -- Highlights: Black-Right-Pointing-Pointer New high-strength extruded brass alloy with Mg was fabricated via powder metallurgy. Black

  17. A novel continuous process for synthesis of carbon nanotubes using iron floating catalyst and MgO particles for CVD of methane in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sarah; Khodadadi, Abasali [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Mortazavi, Yadollah, E-mail: mortazav@ut.ac.ir [Nanoelectronics Centre of Excellence, University of Tehran, POB 11365-4563, Tehran (Iran, Islamic Republic of)

    2010-02-15

    A novel continuous process is used for production of carbon nanotubes (CNTs) by catalytic chemical vapor deposition (CVD) of methane on iron floating catalyst in situ deposited on MgO in a fluidized bed reactor. In the hot zone of the reactor, sublimed ferrocene vapors were contacted with MgO powder fluidized by methane feed to produce Fe/MgO catalyst in situ. An annular tube was used to enhance the ferrocene and MgO contacting efficiency. Multi-wall as well as single-wall CNTs was grown on the Fe/MgO catalyst while falling down the reactor. The CNTs were continuously collected at the bottom of the reactor, only when MgO powder was used. The annular tube enhanced the contacting efficiency and improved both the quality and quantity of CNTs. The SEM and TEM micrographs of the products reveal that the CNTs are mostly entangled bundles with diameters of about 10-20 nm. Raman spectra show that the CNTs have low amount of amorphous/defected carbon with I{sub G}/I{sub D} ratios as high as 10.2 for synthesis at 900 deg. C. The RBM Raman peaks indicate formation of single-walled carbon nanotubes (SWNTs) of 1.0-1.2 nm diameter.

  18. Iron removal from acid mine drainage by wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Sexstone, A.J.; Skousen, J.G.; Calabrese, J.; Bhumbla, D.K.; Cliff, J.; Sencindiver, J.C.; Bissonnette, G.K.

    1999-07-01

    Neutralization of acid mine drainage (AMD) in man-made cattail (Typha) wetlands was investigated over a four-year period utilizing experimental models constructed in a greenhouse. A naturally occurring AMD (430 mg/L Fe, 5 mg/L Mn, 2,900 mg/L sulfate, pH 2.75) was collected in the field and added to the greenhouse wetlands at 60.5 L/day. Monthly water samples from four depths (10, 20, 30, and 40 cm) were obtained from the influent, midpoint, and effluent locations of the wetland. During the first year of AMD treatment, near neutral pH (6.5) and anoxic conditions ({minus}300 mV) were observed in subsurface sediments of wetlands. The wetlands retained an estimated 65% of the total applied iron in the first year, primarily in the exchangeable, organically bound, and oxide form. During later years, 20 to 30% of the influent iron was retained predominantly as precipitated oxides. Iron sulfides resulting form sulfate reduction accounted for less than 5% of the iron retained, and were recovered primarily as monosulfides during the first year and as disulfides in the fourth year. Improvement in effluent pH was primarily attributed to limestone dissolution in the anaerobic subsurface sediments, which decreased with time. Constructed wetlands exhibit finite lives for effective AMD treatment and provisions should be made for their periodic rejuvenation or replacement.

  19. Colour Metallography of Cast Iron - Chapter 2: Grey Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-08-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  20. [Iron and invasive fungal infection].

    Science.gov (United States)

    Álvarez, Florencio; Fernández-Ruiz, Mario; Aguado, José María

    2013-01-01

    Iron is an essential factor for both the growth and virulence of most of microorganisms. As a part of the innate (or nutritional) immune system, mammals have developed different mechanisms to store and transport this element in order to limit free iron bioavailability. To survive in this hostile environment, pathogenic fungi have specific uptake systems for host iron sources, one of the most important of which is based on the synthesis of siderophores-soluble, low-molecular-mass, high-affinity iron chelators. The increase in free iron that results from iron-overload conditions is a well-established risk factor for invasive fungal infection (IFI) such as mucormycosis or aspergillosis. Therefore, iron chelation may be an appealing therapeutic option for these infections. Nevertheless, deferoxamine -the first approved iron chelator- paradoxically increases the incidence of IFI, as it serves as a xeno-siderophore to Mucorales. On the contrary, the new oral iron chelators (deferiprone and deferasirox) have shown to exert a deleterious effect on fungal growth both in vitro and in animal models. The present review focuses on the role of iron metabolism in the pathogenesis of IFI and summarises the preclinical data, as well as the limited clinical experience so far, in the use of new iron chelators as treatment for mucormycosis and invasive aspergillosis. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  1. Regional framework and geology of iron oxide-apatite-rare earth element and iron oxide-copper-gold deposits of the Mesoproterozoic St. Francois Mountains Terrane, southeast Missouri

    Science.gov (United States)

    Day, Warren C.; Slack, John F.; Ayuso, Robert A.; Seeger, Cheryl M.

    2016-01-01

    This paper provides an overview on the genesis of Mesoproterozoic igneous rocks and associated iron oxide ± apatite (IOA) ± rare earth element, iron oxide-copper-gold (IOCG), and iron-rich sedimentary deposits in the St. Francois Mountains terrane of southeast Missouri, USA. The St. Francois Mountains terrane lies along the southeastern margin of Laurentia as part of the eastern granite-rhyolite province. The province formed during two major pulses of igneous activity: (1) an older early Mesoproterozoic (ca. 1.50–1.44 Ga) episode of volcanism and granite plutonism, and (2) a younger middle Mesoproterozoic (ca. 1.33–1.30 Ga) episode of bimodal gabbro and granite plutonism. The volcanic rocks are predominantly high-silica rhyolite pyroclastic flows, volcanogenic breccias, and associated volcanogenic sediments with lesser amounts of basaltic to andesitic volcanic and associated subvolcanic intrusive rocks. The iron oxide deposits are all hosted in the early Mesoproterozoic volcanic and volcaniclastic sequences. Previous studies have characterized the St. Francois Mountains terrane as a classic, A-type within-plate granitic terrane. However, our new whole-rock geochemical data indicate that the felsic volcanic rocks are effusive derivatives from multicomponent source types, having compositional similarities to A-type within-plate granites as well as to S- and I-type granites generated in an arc setting. In addition, the volcanic-hosted IOA and IOCG deposits occur within bimodal volcanic sequences, some of which have volcanic arc geochemical affinities, suggesting an extensional tectonic setting during volcanism prior to emplacement of the ore-forming systems.The Missouri iron orebodies are magmatic-related hydrothermal deposits that, when considered in aggregate, display a vertical zonation from high-temperature, magmatic ± hydrothermal IOA deposits emplaced at moderate depths (~1–2 km), to magnetite-dominant IOA veins and IOCG deposits emplaced at shallow

  2. NCOA4 Deficiency Impairs Systemic Iron Homeostasis

    Directory of Open Access Journals (Sweden)

    Roberto Bellelli

    2016-01-01

    Full Text Available The cargo receptor NCOA4 mediates autophagic ferritin degradation. Here we show that NCOA4 deficiency in a knockout mouse model causes iron accumulation in the liver and spleen, increased levels of transferrin saturation, serum ferritin, and liver hepcidin, and decreased levels of duodenal ferroportin. Despite signs of iron overload, NCOA4-null mice had mild microcytic hypochromic anemia. Under an iron-deprived diet (2–3 mg/kg, mice failed to release iron from ferritin storage and developed severe microcytic hypochromic anemia and ineffective erythropoiesis associated with increased erythropoietin levels. When fed an iron-enriched diet (2 g/kg, mice died prematurely and showed signs of liver damage. Ferritin accumulated in primary embryonic fibroblasts from NCOA4-null mice consequent to impaired autophagic targeting. Adoptive expression of the NCOA4 COOH terminus (aa 239–614 restored this function. In conclusion, NCOA4 prevents iron accumulation and ensures efficient erythropoiesis, playing a central role in balancing iron levels in vivo.

  3. Update on the use of deferasirox in the management of iron overload

    Directory of Open Access Journals (Sweden)

    Ali Taher

    2009-10-01

    Full Text Available Ali Taher,1 Maria Domenica Cappellini21American University of Beirut, Beirut, Lebanon; 2Universitá di Milano, Policlinico Foundation IRCCS, Milan, ItalyAbstract: Regular blood transfusions as supportive care for patients with chronic anemia inevitably lead to iron overload as humans cannot actively remove excess iron. The cumulative effects of iron overload cause significant morbidity and mortality if not effectively treated with chelation therapy. Based on a comprehensive clinical development program, the once-daily, oral iron chelator deferasirox (Exjade® is approved for the treatment of transfusional iron overload in adult and pediatric patients with various transfusion-dependent anemias, including β-thalassemia and the myelodysplastic syndromes. Deferasirox dose should be titrated for each individual patient based on transfusional iron intake, current iron burden and whether the goal is to decrease or maintain body iron levels. Doses of >30 mg/kg/day have been shown to be effective with a safety profile consistent with that observed at doses <30 mg/kg/day. Recent data have highlighted the ability of deferasirox to decrease cardiac iron levels and to prevent the accumulation of iron in the heart. The long-term efficacy and safety of deferasirox for up to 5 years of treatment have now been established. The availability of this effective and generally well tolerated oral therapy represents a significant advance in the management of transfusional iron overload. Keywords: deferasirox, Exjade, oral, iron chelation, iron overload, cardiac iron 

  4. Electrical resistivity of liquid iron with high concentration of light element impurities

    Science.gov (United States)

    Wagle, F.; Steinle-Neumann, G.

    2017-12-01

    The Earth's outer core mainly consists of liquid iron, enriched with several weight percent of lighter elements, such as silicon, oxygen, sulfur or carbon. Electrical resistivities of alloys of this type determine the stability of the geodynamo. Both computational and experimental results show that resistivites of Fe-based alloys deviate significantly from values of pure Fe. Using optical conductivity values computed with the Kubo-Greenwood formalism for DFT-based molecular dynamics results, we analyze the high-P and T behavior of resitivities for Fe-alloys containing various concentrations of sulfur, oxygen and silicon. As the electron mean free path length in amorphous and liquid material becomes comparable to interatomic distances at high P and T, electron scattering is expected to be dominated by the short-range order, rather than T-dependent vibrational contributions, and we describe such correlations in our results. In analogy to macroscopic porous media, we further show that resistivity of a liquid metal-nonmetal alloy is determined to first order by the resistivity of the metallic matrix and the volume fraction of non-metallic impurities.

  5. Iron enriched Saccharomyces cerevisiae maintains its fermenting power and bakery properties

    Directory of Open Access Journals (Sweden)

    Fernanda Gaensly

    2011-12-01

    Full Text Available Iron is an essential micronutrient in the metabolism of almost all living organisms; however, its deficiency is well documented especially in pregnant women and in children. Iron salts as a dietary supplement have low bioavailability and can cause gastrointestinal discomforts. Iron enriched yeasts can provide a supplementation of this micronutrient to the diet because this mineral has a better bioavailability when bonded to yeast cell macromolecules. These yeasts can be used as feed supplement for human and animals and also as baker's yeast. Baker's yeast Saccharomyces cerevisiae was cultivated in a reactor employing yeast media supplemented with 497 mg ferrous sulfate.L-1, and the resultant biomass incorporated 8 mg Fe.g-1 dry matter. This biomass maintained its fermenting power regarding both water displace measurement through carbonic dioxide production and bakery characteristics. The bread produced using the yeast obtained by cultivation in yeast media supplemented with iron presented six times more iron than the bread produced using the yeast obtained by cultivation without iron supplementation.

  6. Heterogeneous kinetics of the reduction of chromium (VI) by elemental iron

    International Nuclear Information System (INIS)

    Fiuza, Antonio; Silva, Aurora; Carvalho, Goreti; Fuente, Antonio V. de la; Delerue-Matos, Cristina

    2010-01-01

    Zero valent iron (ZVI) has been extensively used as a reactive medium for the reduction of Cr(VI) to Cr(III) in reactive permeable barriers. The kinetic rate depends strongly on the superficial oxidation of the iron particles used and the preliminary washing of ZVI increases the rate. The reaction has been primarily modelled using a pseudo-first-order kinetics which is inappropriate for a heterogeneous reaction. We assumed a shrinking particle type model where the kinetic rate is proportional to the available iron surface area, to the initial volume of solution and to the chromium concentration raised to a power α which is the order of the chemical reaction occurring at surface. We assumed α = 2/3 based on the likeness to the shrinking particle models with spherical symmetry. Kinetics studies were performed in order to evaluate the suitability of this approach. The influence of the following parameters was experimentally studied: initial available surface area, chromium concentration, temperature and pH. The assumed order for the reaction was confirmed. In addition, the rate constant was calculated from data obtained in different operating conditions. Digital pictures of iron balls were periodically taken and the image treatment allowed for establishing the time evolution of their size distribution.

  7. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments

    Science.gov (United States)

    Mey, Alexandra R.; Wyckoff, Elizabeth E.

    2015-01-01

    SUMMARY Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats. PMID:26658001

  8. Cadmium Toxicity Affects Phytochemicals and Nutrient Elements Composition of Lettuce (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Sani Ahmad Jibril

    2017-01-01

    Full Text Available Lettuce varieties Bombilasta BBL and Italian 167 were treated with different concentrations of cadmium (0, 3, 6, 9, and 12 mg/L in a nutrient film technique (NFT system to study its toxicity on phytochemicals and nutrient elements. Antioxidants analysis which employed DPPH and FRAP, flavonoids, phenolic, vitamin C, malondialdehyde (MDA, and proline indicated significant effects of Cd treatment on the varieties tested. Different concentration levels of Cd lead to positive interactions in FRAP, phenolic, and MDA but no significant effect in flavonoids, vitamin C, and proline. Contents of macro- and microelements in the varieties were significantly affected with increase in the toxicity levels of Cd in all nutrient elements tested with interactions exhibited for iron, manganese, and zinc.

  9. Bioconcentration of manganese and iron in Panaeoloideae Sing

    NARCIS (Netherlands)

    Stijve, T.; Blake, C.

    1994-01-01

    According to literature, the manganese content of most basidiomycetes fluctuates between 10 and 60 mg/kg, whereas the iron levels range from 100-500 mg/kg (both expressed on dry weight). The present authors report that bioconcentration of manganese is a distinguishing feature of the Panaeoloideae,

  10. Determination of some trace elements in Elsaraf Dam area using AAS and XRF

    International Nuclear Information System (INIS)

    Yagob, T. I.; Ahmed, T. E. A.

    2006-12-01

    To screen the plants in Elsaraf dam (Gedaref-Sudan), for their ability to uptake metal ions and the effect of seasonal rain on the availability of these metal ions for plants, trace elements in plant roots and the associated soil were studied in two seasons using atomic absorption spectroscopy and x-ray fluorescence. The nutrient elements, (Fe, Mn, Zn, Cu, Co) showed higher concentrations than toxic elements (Cr, Ni, Cd) in both plant and soil samples. Iron has the highest concentration 549/5660 and 3358/3680 mg/100 g, manganese has shown the second highest concentration followed by nickel and zinc. Copper, cobalt and chromium have shown relatively similar concentrations,while cadmium has the lowest concentration. In general, almost for all elements the soils have shown higher concentration followed by the plant. Estimation of soil/plant transfer factor (CR) that Cyperus rotandus has the highest affinity toward accumulating most of the metal ions, while the rest of plants have shown almost almost similar affinity.(Author)

  11. Beta-Thalassemia Major and Female Fertility: The Role of Iron and Iron-Induced Oxidative Stress

    Science.gov (United States)

    Roussou, Paraskevi; Tsagarakis, Nikolaos J.; Diamanti-Kandarakis, Evanthia

    2013-01-01

    Endocrine complications due to haemosiderosis are present in a significant number of patients with beta-thalassemia major (BTM) worldwide and often become barriers in their desire for parenthood. Thus, although spontaneous fertility can occur, the majority of females with BTM is infertile due to hypogonadotropic hypogonadism (HH) and need assisted reproductive techniques. Infertility in these women seems to be attributed to iron deposition and iron-induced oxidative stress (OS) in various endocrine organs, such as hypothalamus, pituitary, and female reproductive system, but also through the iron effect on other organs, such as liver and pancreas, contributing to the impaired metabolism of hormones and serum antioxidants. Nevertheless, the gonadal function of these patients is usually intact and fertility is usually retrievable. Meanwhile, a significant prooxidants/antioxidants imbalance with subsequent increased (OS) exists in patients with BTM, which is mainly caused by tissue injury due to overproduction of free radicals by secondary iron overload, but also due to alteration in serum trace elements and antioxidant enzymes. Not only using the appropriate antioxidants, essential trace elements, and minerals, but also regulating the advanced glycation end products, could probably reduce the extent of oxidative damage and related complications and retrieve BTM women's infertility. PMID:24396593

  12. Vivianite as an important iron phosphate precipitate in sewage treatment plants

    NARCIS (Netherlands)

    Wilfert, P.K.; Mandalidis, A.; Dugulan, A.I.; Goubitz, K.; Korving, L; Temmink, H; Witkamp, G.J.; van Loosdrecht, Mark C.M.

    2016-01-01

    Iron is an important element for modern sewage treatment, inter alia to remove phosphorus from sewage. However, phosphorus recovery from iron phosphorus containing sewage sludge, without incineration, is not yet economical. We believe, increasing the knowledge about iron-phosphorus speciation in

  13. Isotope-aided studies of the bioavailability of iron from Myanmar diets

    Energy Technology Data Exchange (ETDEWEB)

    Naing, Khin Maung [Department of Medical Research, Yangon (Myanmar). Nutrition Research Div.; Khin, Myo [Department of Medical Research, Yangon, (Myanmar). Nuclear Medicine Research Div.

    1994-12-31

    A study was conducted to determine the dietary intakes and serum levels of iron and zinc in twenty apparently healthy Myanmar adults (10 males and 10 females), using atomic absorption spetrophotometry. The mean iron intake of females was found to be lower than the FAO/WHO recommended allowance whereas for men it was found to be adequate. The mean serum iron concentration in females was found to be significantly lower than in males (p < 0.05). It was observed that zinc intakes of males was significantly higher than in females (p < 0.01) but there was no significant difference in serum zinc level between the two groups. Dietary zinc intakes of both groups were found to be low. There was a weak positive correlation between dietary intake and serum concentrations of these minerals. Laboratory scale production of iron-fortified salt containing 1 mg of Fe/g salt was conducted by mixing 5g of FeSO{sub 4{center_dot}}7H{sub 2}O, and 5g of sodium-hexa-metaphosphate thoroughly and then the mixture was again mixed with 1 kg of salt. This was done in July 1992. Stability of iron-fortified salt (i.e. change in colour of salt) as well as ferrous and ferric iron content of iron-fortified salt, were determined at monthly intervals. Iron-fortified salt was found to be stable up to the time of report writing, i.e. 3rd week of October, 1992. The ferrous iron content of salt was found to range between 0.95 to 0.98 mg Fe/g salt. Bioavailability studies of iron from two types of standard meals, one containing staple rice, 32 g of fish, water cress, watery fish paste and cucumber, and another containing boiled peas in place of fish, were conducted on two groups of male subjects using {sup 59}Fe as an extrinsic tag. Bioavailability studies of iron from the above two types of meals cooked with iron-fortified salt (1 mg/g salt) were also conducted on the same groups of subjects using {sup 59}Fe as an extrinsic tag. Reference dose absorption of iron will be conducted. This work is in progress.

  14. Subcellular Iron Localization Mechanisms in Plants

    Directory of Open Access Journals (Sweden)

    Emre Aksoy

    2017-12-01

    Full Text Available The basic micro-nutrient element iron (Fe is present as a cofactor in the active sites of many metalloproteins with important roles in the plant. On the other hand, since it is excessively reactive, excess accumulation in the cell triggers the production of reactive oxygen species, leading to cell death. Therefore, iron homeostasis in the cell is very important for plant growth. Once uptake into the roots, iron is distributed to the subcellular compartments. Subcellular iron transport and hence cellular iron homeostasis is carried out through synchronous control of different membrane protein families. It has been discovered that expression levels of these membrane proteins increase under iron deficiency. Examination of the tasks and regulations of these carriers is very important in terms of understanding the iron intake and distribution mechanisms in plants. Therefore, in this review, the transporters responsible for the uptake of iron into the cell and its subcellular distribution between organelles will be discussed with an emphasis on the current developments about these transporters.

  15. Intramuscular versus Subcutaneous Administration of Iron Dextran in Suckling Piglets

    Directory of Open Access Journals (Sweden)

    M. Svoboda

    2007-01-01

    Full Text Available The aim of the study was to compare the development of red blood cell indices after subcutaneous versus intramuscular administration of iron dextran to suckling piglets during early postnatal period. The piglets in group I (n = 17 were injected subcutaneously (into groin with 200 mg Fe3+ as iron dextran on day 3 of life. In group II (n = 16, the piglets received intramuscular injection (into gluteal muscles of 200 mg Fe3+ as iron dextran on day 3 of life. In group III (n = 10, the piglets did not receive any iron till the age of 3 days. The blood was taken and analyzed (Hb, PCV, RBC, MCV, MCH, MCHC, Fe on days 3, 7, 14, 21, 28 and 35. Haematological indices of piglets in group III were characteristic for hypochromic anaemia. Anaemia in group III had a detrimental effect on the growth rate of piglets. The development of red blood cell indices and iron concentration in blood plasma in subcutaneously treated piglets did not differ significantly from that of intramuscularly-treated group. Both treatments prevented development of anaemia.

  16. Measured Hugoniot states of a two-element fluid, O2 + N2, near 2 Mg/m3

    International Nuclear Information System (INIS)

    Schott, G.L.

    1983-01-01

    Measured single-shock Hugoniot quantities are reported for a 1:1 atomic mixture of the elements oxygen and nitrogen in each of two liquid initial states. One of these is the inert equimolar solution O 2 + N 2 , at T approx. = 85K, v approx. = 1.06 m 3 /Mg; the other is the pure explosive compound nitric oxide, NO, at T approx. = 122K, v approx. = 0.79 m 3 /Mg. First-shock pressures are in the range 10 to 30 GPa. The two Hugoniots have common values of specific volumes and energies near 20 GPa; that is, they intersect. This permits a novel test of attainment of steady waves with equilibrium composition, such that a single equation of state may describe the shocked reactive fluid. 5 figures

  17. The influence of manganese treatment on the distribution of metal elements in rats and the protection by sodium para-amino salicylic acid.

    Science.gov (United States)

    Yuan, Zong-Xiang; Chen, Hai-Bin; Li, Shao-Jun; Huang, Xiao-Wei; Mo, Yu-Huan; Luo, Yi-Ni; He, Sheng-Nan; Deng, Xiang-Fa; Lu, Guo-Dong; Jiang, Yue-Ming

    2016-07-01

    Manganese (Mn) overexposure induced neurological damages, which could be potentially protected by sodium para-aminosalicylic acid (PAS-Na). In this study, we systematically detected the changes of divalent metal elements in most of the organs and analyzed the distribution of the metals in Mn-exposed rats and the protection by PAS-Na. Sprague Dawley (SD) rats received intraperitoneal injections of 15mg/kg MnCl2·4H2O (5d/week for 3 weeks), followed by subcutaneous (back) injections of PAS-Na (100 and 200mg/kg, everyday for 5 weeks). The concentrations of Mn and other metal elements [Iron (Fe), Copper (Cu), Zinc (Zn), Magnesium (Mg), Calcium (Ca)] in major organs (liver, spleen, kidney, thighbone and iliac bone, cerebral cortex, hippocampus and testes) and blood by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The results showed that Mn overexposure significantly increased Mn in most organs, Fe and Zn in liver, Fe and Mg in blood; however decreased Fe, Cu, Zn, Mg and Ca in cortex, Cu and Zn in kidney, Cu and Mg in iliac bone, and Zn in blood. In contrast, PAS-Na treatment restored most changes particularly in cortex. In conclusion, excessive Mn exposure disturbed the balance of other metal elements but PAS-Na post-treatments could restore these alterations. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Mineralogy and Trace Element Chemistry of Ferberite/Reinite from Tungsten Deposits in Central Rwanda

    Directory of Open Access Journals (Sweden)

    Philippe Muchez

    2013-04-01

    Full Text Available Tungsten mineralization in hydrothermal quartz veins from the Nyakabingo,Gifurwe and Bugarama deposits in central Rwanda occurs as the iron-rich endmember ofthe wolframite solid solution series (ferberite and in the particular form of reinite, whichrepresents a pseudomorph of ferberite after scheelite. Primary ferberite, reinite and latesecondary ferberite are characterized by their trace element chemistry and rare earthelement patterns. The replacement of scheelite by ferberite is also documented in the traceelement composition. Primary ferberite shows high Mg, Zn, Sc, V, Nb, In and Snconcentrations, but very low Ca, Pb, Sr and Ba contents. Reinite and late secondaryferberite display an uncommon trace element composition containing high concentrationsof Ca, Pb, Sr, Ba, As and Ga, but very low levels in Sn, Zr, Hf, In, Ti, Sc, Nb, Ta, Mg andZn. Late secondary ferberite replacing primary ferberite is characterized by additionalenrichments in Bi, Pb, As and Sb. The rare earth element patterns of reinite and secondaryferberite are also similar to hydrothermal scheelite. The formation of the tungsten depositsin central Rwanda is interpreted to be epigenetic in origin, and the hydrothermalmineralizing fluids are related to the intrusion of the G4-granites.

  19. Effects of wheat-flour biscuits fortified with iron and EDTA, alone and in combination, on blood lead concentration, iron status, and cognition in children: a double-blind randomized controlled trial.

    Science.gov (United States)

    Bouhouch, Raschida R; El-Fadeli, Sana; Andersson, Maria; Aboussad, Abdelmounaim; Chabaa, Laila; Zeder, Christophe; Kippler, Maria; Baumgartner, Jeannine; Sedki, Azzedine; Zimmermann, Michael B

    2016-11-01

    Lead is a common neurotoxicant and its absorption may be increased in iron deficiency (ID). Thus, iron fortification to prevent ID in populations is a promising lead mitigation strategy. Two common fortificants are ferrous sulfate (FeSO 4 ) and ferric sodium EDTA (NaFeEDTA). EDTA can chelate iron and lead. Our study objective was to determine the effects of iron and EDTA, alone and in combination, on blood lead (BPb) concentration, iron status, and cognition. In this 2 × 2 factorial, double-blind placebo-controlled trial, 457 lead-exposed Moroccan children were stratified by school and grade and randomly assigned to consume biscuits (6 d/wk at school) containing 1) ∼8 mg Fe as FeSO 4 , 2) ∼8 mg Fe as NaFeEDTA that contained ∼41 mg EDTA, 3) ∼41 mg EDTA as sodium EDTA (Na 2 EDTA), or 4) placebo for 28 wk. The primary outcome was BPb concentration; secondary outcomes were iron status and cognitive outcomes from subtests of the Kaufman Assessment Battery for Children and the Hopkins Verbal Learning Test. These outcomes were measured at baseline and endpoint. All data were analyzed by intention-to-treat. The adjusted geometric mean BPb concentration at baseline was 4.3 μg/dL (95% CI: 4.2, 4.3 μg/dL), and at endpoint these values were 3.3 μg/dL (95% CI: 3.1, 3.5 μg/dL) for FeSO 4 , 2.9 μg/dL (95% CI: 2.7, 3.0 μg/dL) for NaFeEDTA, 3.3 μg/dL (95% CI: 3.1, 3.5 μg/dL) for EDTA, and 3.7 μg/dL (95% CI: 3.5, 3.9 μg/dL) for placebo. We found an effect of iron (P = 0.009) and EDTA (P = 0.012) for reduced BPb concentrations at endpoint, but no iron × EDTA interaction. Iron fortification improved iron status, but there were no positive effects of iron or EDTA on cognitive test scores. Food fortification with iron and EDTA additively reduces BPb concentrations. Our findings suggest that NaFeEDTA should be the iron fortificant of choice in lead-exposed populations. This trial was registered at clinicaltrials.gov as NCT01573013. © 2016 American Society for

  20. Long-term performance of elemental iron and hydroxyapatite for uranium retention in permeable reactive barriers used for groundwater remediation; Langzeitverhalten von elementarem Eisen und Hydroxylapatit zur Uranrueckhaltung in permeablen reaktiven Waenden bei der Grundwassersanierung

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, V.

    2007-11-21

    Elemental iron (Fe{sup 0}) and hydroxyapatite (HAP) were evaluated as reactive mate-rials for use in permeable reactive barriers (PRBs) to remove uranium from conta-minated groundwater. Special attention was given to the long-term performance of the materials, which was investigated by means of column tests with a duration of up to 30 months using two different artificial groundwaters (AGW) with varying composition and uranium concentration. The interaction of the materials with AGW was studied in column tests using {sup 237}U as a radiotracer to monitor the movement of the contamination front through the columns. The tested materials were shredded cast iron (granulated grey cast iron, 0.3 - 1.3 mm) supplied by Gotthard Mayer, Rheinfelden, Germany, and food quality grade hydroxyapatite (Ca{sub 5}(PO{sub 4}){sub 3}OH, 99 % < 0.42 mm) supplied by Che-mische Fabrik Budenheim CFB, Germany. Both materials exhibited uranium retention of more than 99.9% and sorption capacities of up to 28.3 mg U/g HAP and more than 38.4 mg U/g Fe{sup 0} (AGW with 9.6 mg U/L and low bicarbonate content of 120 mg/L). No breakthrough was observed for the Fe{sup 0} columns with effluent uranium con-centrations being below the detection limit of 10 {mu}g/L after treating more than 2,000 pore volumes (PV) and no uranium could be leached from loaded Fe{sup 0} columns with 200 PV of uranium free AGW. However, columns with high Fe{sup 0} content ({>=} 50%) suffered from severe loss of permeability when AGW with {>=} 320 mg/L bicarbonate was used. In the HAP columns a breakthrough occurred with effluent uranium concentrations > 15 {mu}g/l after treating 1,240 PV (10% and 50% breakthrough after 1,460 PV and 2,140 PV respectively). 12.2% of the accu-mulated uranium could be desorbed again with 840 PV of uranium free AGW. Adsorption was found to be the dominant reaction mechanism for uranium and HAP. Image analysis of high uranium content samples showed uranium and phosphate bearing crystals growing

  1. A Room Temperature Ultrasensitive Magnetoelectric Susceptometer for Quantitative Tissue Iron Detection

    Science.gov (United States)

    Xi, Hao; Qian, Xiaoshi; Lu, Meng-Chien; Mei, Lei; Rupprecht, Sebastian; Yang, Qing X.; Zhang, Q. M.

    2016-07-01

    Iron is a trace mineral that plays a vital role in the human body. However, absorbing and accumulating excessive iron in body organs (iron overload) can damage or even destroy an organ. Even after many decades of research, progress on the development of noninvasive and low-cost tissue iron detection methods is very limited. Here we report a recent advance in a room-temperature ultrasensitive biomagnetic susceptometer for quantitative tissue iron detection. The biomagnetic susceptometer exploits recent advances in the magnetoelectric (ME) composite sensors that exhibit an ultrahigh AC magnetic sensitivity under the presence of a strong DC magnetic field. The first order gradiometer based on piezoelectric and magnetostrictive laminate (ME composite) structure shows an equivalent magnetic noise of 0.99 nT/rt Hz at 1 Hz in the presence of a DC magnetic field of 0.1 Tesla and a great common mode noise rejection ability. A prototype magnetoelectric liver susceptometry has been demonstrated with liver phantoms. The results indicate its output signals to be linearly responsive to iron concentrations from normal iron dose (0.05 mg Fe/g liver phantom) to 5 mg Fe/g liver phantom iron overload (100X overdose). The results here open up many innovative possibilities for compact-size, portable, cost-affordable, and room-temperature operated medical systems for quantitative determinations of tissue iron.

  2. Eficácia da suplementação de ferro associado ou não à vitamina A no controle da anemia em escolares Efficacy of iron supplementation with or without vitamin A for anemia control

    Directory of Open Access Journals (Sweden)

    Rute Cândida Pereira

    2007-06-01

    Full Text Available Com o objetivo de avaliar a eficácia da suplementação de ferro, associado ou não à vitamina A, na anemia ferropriva, administrado semanalmente, realizou-se ensaio clínico comunitário, randomizado, não controlado por placebo, em 1999. Uma amostra probabilística de 267 escolares de ambos os sexos com 6 a 14 anos de idade foram casualizados em bloco segundo dois tipos de intervenção: um grupo (144 recebeu 200mg de sulfato ferroso com (40mg de ferro elementar e o outro (123 recebeu dose similar de sulfato ferroso associado a 10.000 UI de vitamina A, durante 30 semanas. A prevalência de anemia ao final foi reduzida de 48,4%, para 17,7% (p This study aimed to evaluate the efficacy of weekly iron supplementation with or without vitamin A in the treatment of iron deficiency anemia, using an experimental, randomized, non-placebo-controlled design in 1999. 267 schoolchildren 6 to 14 years of age were randomized to two treatment groups: one group (144 received 200mg iron sulfate alone, with 40mg of elemental iron, while the other (123 received the same iron supplementation dose plus 10,000 IU of vitamin A (both groups for 30 weeks. Final anemia prevalence was reduced from 48.4% to 17.7% (p < 0.001 in the group receiving iron supplementation alone and 58.1% to 14.3% (p < 0.001 in the group receiving iron plus vitamin A. There was no significant difference between the groups at the end of the study according to mean Hb (p = 0.355 and anemia (p = 0.479. There was a significant correction for iron deficiency anemia with weekly iron-alone supplementation, but with no additional advantage of vitamin A. New studies on the synergism between these two micronutrients are recommended.

  3. Effectiveness of fortification of drinking water with iron and vitamin C in the reduction of anemia and improvement of nutritional status in children attending day-care centers in Belo Horizonte, Brazil.

    Science.gov (United States)

    Rocha, Daniela da Silva; Capanema, Flávio Diniz; Netto, Michele Pereira; de Almeida, Carlos Alberto Nogueira; Franceschini, Sylvia do Carmo Castro; Lamounier, Joel Alves

    2011-12-01

    Because of the high prevalence of iron-deficiency anemia in Brazil, individual control measures tend to be ineffective, and fortification of foods with iron is considered the most effective method to fight anemia. To evaluate the effectiveness of fortification of drinking water with iron and vitamin C in the reduction of anemia in children in day-care centers in Belo Horizonte, Brazil. This before-and-after study evaluated 318 children aged 6 to 74 months. Identification data and data on socioeconomic variables were collected; anthropometric and biochemical measurements were performed before and after 5 months of fortification of water with 5 mg of elemental iron and 50 mg of ascorbic acid per liter. The fortified water was used for drinking and cooking at the day-care center. Wilcoxon's nonparametric test was used to evaluate the differences in continuous variables, and McNemar's test was used to compare the prevalence rates of anemia. The prevalence of anemia decreased significantly from 29.3% before fortification to 7.9% at the end of the study, with a significant increase in hemoglobin levels. Reductions in the prevalence rates of stunting and underweight were observed. Fortification of water with iron and vitamin C significantly reduced the prevalence of anemia and improved nutritional status among children attending day-care centers.

  4. Serum Iron and Haemoglobin Estimation in Oral Submucous Fibrosis and Iron Deficiency Anaemia: A Diagnostic Approach.

    Science.gov (United States)

    Bhardwaj, Divya; Dinkar, Ajit D; Satoskar, Sujata K; Desai, Sapna Raut

    2016-12-01

    Oral Submucous Fibrosis (OSMF) is a premalignant condition with potential malignant behaviour characterized by juxta-epithelial fibrosis of the oral cavity. In the process of collagen synthesis, iron gets utilized, by the hydroxylation of proline and lysine, leading to decreased serum iron levels. The trace element like iron is receiving much attention in the detection of oral cancer and precancerous condition like OSMF as it was found to be significantly altered in these conditions. The aim of this study was to compare the haemoglobin and serum iron values of OSMF subjects with that of iron deficiency anaemia subjects. Total of 120 subjects were included, 40 subjects with the OSMF, 40 with the iron deficiency anemia without tobacco chewing habit, 40 healthy control subjects without OSMF and iron deficiency anaemia. A total of 5ml of venous blood was withdrawn from all the subjects and serum iron and haemoglobin levels were estimated for all the subjects. Estimation of iron was done using Ferrozine method and haemoglobin by Sahli's method. The statistical method applied were Kruskal Wallis, Mann Whitney and Pearson correlation coefficient test. There was a statistically significant difference in serum iron and haemoglobin level in all three groups (pauxillary test in assessment of prognosis of the disease.

  5. Egg Yolk Protein Delays Recovery while Ovalbumin Is Useful in Recovery from Iron Deficiency Anemia

    Directory of Open Access Journals (Sweden)

    Yukiko Kobayashi

    2015-06-01

    Full Text Available Protein is a main nutrient involved in overall iron metabolism in vivo. In order to assess the prevention of iron deficiency anemia (IDA by diet, it is necessary to confirm the influence of dietary protein, which coexists with iron, on iron bioavailability. We investigated the usefulness of the egg structural protein in recovery from IDA. Thirty-one female Sprague-Dawley rats were divided into a control group (n = 6 fed a casein diet (4.0 mg Fe/100 g for 42 days and an IDA model group (n = 25 created by feeding a low-iron casein diet (LI, 0.4 mg Fe/100 g for 21 days and these IDA rats were fed normal iron diet with different proteins from eggs for another 21 days. The IDA rats were further divided into four subgroups depending on the proteins fed during the last 21 days, which were those with an egg white diet (LI-W, 4.0 mg Fe/100 g, n = 6, those with an ovalbumin diet (LI-A, 4.0 mg Fe/100 g, n = 7, those with an egg yolk-supplemented diet (LI-Y, 4.0 mg Fe/100 g, n = 6, and the rest with a casein diet (LI-C, 4.0 mg Fe/100 g, n = 6. In the LI-Y group, recovery of the hematocrit, hemoglobin, transferrin saturation level and the hepatic iron content were delayed compared to the other groups (p < 0.01, 0.01, 0.01, and 0.05, respectively, resulting in no recovery from IDA at the end of the experimental period. There were no significant differences in blood parameters in the LI-W and LI-A groups compared to the control group. The hepatic iron content of the LI-W and LI-A groups was higher than that of the LI-C group (p < 0.05. We found that egg white protein was useful for recovery from IDA and one of the efficacious components was ovalbumin, while egg yolk protein delayed recovery of IDA. This study demonstrates, therefore, that bioavailability of dietary iron varies depending on the source of dietary protein.

  6. Iron Fortified Complementary Foods Containing a Mixture of Sodium Iron EDTA with Either Ferrous Fumarate or Ferric Pyrophosphate Reduce Iron Deficiency Anemia in 12- to 36-Month-Old Children in a Malaria Endemic Setting: A Secondary Analysis of a Cluster-Randomized Controlled Trial.

    Science.gov (United States)

    Glinz, Dominik; Wegmüller, Rita; Ouattara, Mamadou; Diakité, Victorine G; Aaron, Grant J; Hofer, Lorenz; Zimmermann, Michael B; Adiossan, Lukas G; Utzinger, Jürg; N'Goran, Eliézer K; Hurrell, Richard F

    2017-07-14

    Iron deficiency anemia (IDA) is a major public health problem in sub-Saharan Africa. The efficacy of iron fortification against IDA is uncertain in malaria-endemic settings. The objective of this study was to evaluate the efficacy of a complementary food (CF) fortified with sodium iron EDTA (NaFeEDTA) plus either ferrous fumarate (FeFum) or ferric pyrophosphate (FePP) to combat IDA in preschool-age children in a highly malaria endemic region. This is a secondary analysis of a nine-month cluster-randomized controlled trial conducted in south-central Côte d'Ivoire. 378 children aged 12-36 months were randomly assigned to no food intervention ( n = 125; control group), CF fortified with 2 mg NaFeEDTA plus 3.8 mg FeFum for six days/week ( n = 126; FeFum group), and CF fortified with 2 mg NaFeEDTA and 3.8 mg FePP for six days/week ( n = 127; FePP group). The outcome measures were hemoglobin (Hb), plasma ferritin (PF), iron deficiency (PF anemia (Hb iron deficiency with or without anemia ( p = 0.068). IDA prevalence sharply decreased in the FeFum (32.8% to 1.2%, p anemia. These data indicate that, despite the high endemicity of malaria and elevated inflammation biomarkers (C-reactive protein or α-1-acid-glycoprotein), IDA was markedly reduced by provision of iron fortified CF to preschool-age children for 9 months, with no significant differences between a combination of NaFeEDTA with FeFum or NaFeEDTA with FePP. However, there was no overall effect on anemia, suggesting most of the anemia in this setting is not due to ID. This trial is registered at clinicaltrials.gov (NCT01634945).

  7. Effect of various dopant elements on primary graphite growth

    International Nuclear Information System (INIS)

    Valle, N; Theuwissen, K; Lacaze, J; Sertucha, J

    2012-01-01

    Five spheroidal graphite cast irons were investigated, a usual ferritic grade and four pearlitic alloys containing Cu and doped with Sb, Sn and Ti. These alloys were remelted in a graphite crucible, leading to volatilization of the magnesium added for spheroidization and to carbon saturation of the liquid. The alloys were then cooled down and maintained at a temperature above the eutectic temperature. During this step, primary graphite could develop showing various features depending on the doping elements added. The largest effects were that of Ti which greatly reduces graphite nucleation and growth, and that of Sb which leads to rounded agglomerates instead of lamellar graphite. The samples have been investigated with secondary ion mass spectrometry to enlighten distribution of elements in primary graphite. SIMS analysis showed almost even distribution of elements, including Mg and Al (from the inoculant) in the ferritic grade, while uneven distribution was evident in all doped alloys. Investigations are going on to clarify if the uneven distribution is associated with structural defects in the graphite precipitates.

  8. A new approach to MgB2 superconducting magnet fabrication

    International Nuclear Information System (INIS)

    Miyazoe, A; Ando, T; Wada, H; Abe, H; Hirota, N; Sekino, M

    2008-01-01

    Fabrication of MgB 2 -based superconducting magnets has been attempted by a new approach using film coated on symmetric tubes. Superconducting MgB 2 films have been prepared on iron substrates by electroplating in molten electrolytes. The critical current (I c ) of the MgB 2 electroplating films at 4.2 K and at self-field was 15 A on the basis of 1 μV/cm of I c criterion. A model calculation has shown that MgB 2 -based superconducting magnets based on MgB 2 electroplating films have the potential to generate magnetic fields over 0.5 T

  9. The treatment of iron deficiency without anaemia (in otherwise healthy persons).

    Science.gov (United States)

    Clénin, German E

    2017-06-21

    gastrointestinal side effects of oral treatment, the use of preparations with reasonable but not excessive elemental iron content (28-50 mg) seems appropriate. Only in exceptional cases will an intravenous injection be necessary (e.g., concomitant disease needing urgent treatment, repeated failure of first-step therapy).To measure the success of treatment, the basic blood tests should be repeated after 8 to 10 weeks. Patients with repeatedly low ferritin will benefit from intermittent oral substitution to preserve iron stores and from long term follow-up, with the basic blood tests repeated every 6 or 12 months to monitor iron stores. Long-term daily oral or intravenous iron supplementation in the presence of normal or even high ferritin values is, however, not recommended and is potentially harmful.

  10. Macroscopic and microscopic biodistribution of intravenously administered iron oxide nanoparticles

    Science.gov (United States)

    Misra, Adwiteeya; Petryk, Alicia A.; Strawbridge, Rendall R.; Hoopes, P. Jack

    2015-03-01

    Iron oxide nanoparticles (IONP) are being developed for use as a cancer treatment. They have demonstrated efficacy when used either as a monotherapy or in conjunction with conventional chemotherapy and radiation. The success of IONP as a therapeutic tool depends on the delivery of a safe and controlled cytotoxic thermal dose to tumor tissue following activation with an alternating magnetic field (AMF). Prior to clinical approval, knowledge of IONP toxicity, biodistribution and physiological clearance is essential. This preliminary time-course study determines the acute toxicity and biodistribution of 110 nm dextran-coated IONP (iron) in mice, 7 days post systemic, at doses of 0.4, 0.6, and 1.0 mg Fe/ g mouse bodyweight. Acute toxicity, manifested as changes in the behavior of mice, was only observed temporarily at 1.0 mg Fe/ g mouse bodyweight, the highest dose administered. Regardless of dose, mass spectrometry and histological analysis demonstrated over 3 mg Fe/g tissue in organs within the reticuloendotheilial system (i.e. liver, spleen, and lymph nodes). Other organs (brain, heart, lungs, and kidney) had less than 0.5 mg Fe/g tissue with iron predominantly confined to the organ vasculature.

  11. Nuclear resonance vibrational spectroscopic studies of iron-containing biomolecules

    International Nuclear Information System (INIS)

    Ohta, Takehiro; Seto, Makoto

    2014-01-01

    In this review, we report recent nuclear resonance vibrational spectroscopic (NRVS) studies of iron-containing biomolecules and their model complexes. The NRVS is synchrotron-based element-specific vibrational spectroscopic methods. Unlike Raman and infrared spectroscopy, the NRVS can investigate all iron motions without selection rules, which provide atomic level insights into the structure/reactivity correlation of biologically relevant iron complexes. (author)

  12. Measurement of trace elements in drinking water of Rawalpindi and Islamabad areas

    International Nuclear Information System (INIS)

    Akhter, P.; Mohammad, D.; Khan, K.; Orfi, S.D.

    2005-01-01

    Concentrations of calcium, magnesium, sodium, zinc and iron were determined in potable water, supplied from Rawal Lake and Simly Dam to residential areas of Rawalpindi and Islamabad, using AAS and ICP-AES techniques. Average measured concentration of these elements were 56.58 plus minus 15.21,18.02 plus minus 4.62, 24.27 plus minus 15.01, 0.15 plus minus 0.105 and 0.34 plus minus 0.11 ppm, respectively. Median contributions of Ca, Mg, Na, Fe and Zn were 13.29%, 12.13%, 1.14%, 5.38% and 2% to our daily intake and were found to be in the safe range for human consumption as per WHO standards. A comparison with previous estimates shows no significant change in trace element contents over the years. (author)

  13. Effect of dietary iron loading on recognition memory in growing rats.

    Directory of Open Access Journals (Sweden)

    Murui Han

    Full Text Available While nutritional and neurobehavioral problems are associated with both iron deficiency during growth and overload in the elderly, the effect of iron loading in growing ages on neurobehavioral performance has not been fully explored. To characterize the role of dietary iron loading in memory function in the young, weanling rats were fed iron-loading diet (10,000 mg iron/kg diet or iron-adequate control diet (50 mg/kg for one month, during which a battery of behavioral tests were conducted. Iron-loaded rats displayed elevated non-heme iron levels in serum and liver, indicating a condition of systemic iron overload. In the brain, non-heme iron was elevated in the prefrontal cortex of iron-loaded rats compared with controls, whereas there was no difference in iron content in other brain regions between the two diet groups. While iron loading did not alter motor coordination or anxiety-like behavior, iron-loaded rats exhibited a better recognition memory, as represented by an increased novel object recognition index (22% increase from the reference value than control rats (12% increase; P=0.047. Western blot analysis showed an up-regulation of dopamine receptor 1 in the prefrontal cortex from iron-loaded rats (142% increase; P=0.002. Furthermore, levels of glutamate receptors (both NMDA and AMPA and nicotinic acetylcholine receptor (nAChR were significantly elevated in the prefrontal cortex of iron-loaded rats (62% increase in NR1; 70% increase in Glu1A; 115% increase in nAChR. Dietary iron loading also increased the expression of NMDA receptors and nAChR in the hippocampus. These results support the idea that iron is essential for learning and memory and further reveal that iron supplementation during developmental and rapidly growing periods of life improves memory performance. Our investigation also demonstrates that both cholinergic and glutamatergic neurotransmission pathways are regulated by dietary iron and provides a molecular basis for the

  14. Low Z elements (Mg, Al, and Si) K-edge X-ray absorption spectroscopy in minerals and disordered systems

    International Nuclear Information System (INIS)

    Ildefonse, P.; Calas, G.; Flank, A.M.; Lagarde, P.

    1995-01-01

    Soft X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy have been performed at the Mg-, Al- and Si-K edges in order to establish the ability of this spectroscopy to derive structural information in disordered solids such as glasses and gels. Mg- and Al-K XANES are good structural probes to determine the coordination state of these elements in important minerals, glasses and gels. In a CaO-MgO-2SiO 2 glass Mg XANES spectra differ from that found in the crystalline equivalent, with a significant shift of the edge maxima to lower energy, consistent with a CN lower than 6. Mg-EXAFS on the same sample are in agreement and indicate the presence of 5-coordinated Mg with Mg-O distances of 2.01 A. In aluminosilicate gels, Al-K XANES has been used to investigate the [4]Al/Al total ratios. These ratios increase as the Al/Si ratios decrease. Aluminosilicate and ferric-silicate gels were studied by using Si-K edge XANES. XANES spectra differ significantly among the samples studied. Aluminosilicate gels with Al/Si=1 present a different Al and Si local environment from that known in clay minerals with the same Al/Si ratio. The gel-to-mineral transformation thus implies a dissolution-recrystallization mechanism. On the contrary, ferric-silicate gel presents a Si local environment close to that found in nontronite which may be formed by a long range ordering of the initial gels. (orig.)

  15. Major inorganic elements in tap water samples in Peninsular Malaysia.

    Science.gov (United States)

    Azrina, A; Khoo, H E; Idris, M A; Amin, I; Razman, M R

    2011-08-01

    Quality drinking water should be free from harmful levels of impurities such as heavy metals and other inorganic elements. Samples of tap water collected from 24 locations in Peninsular Malaysia were determined for inorganic element content. Minerals and heavy metals were analysed by spectroscopy methods, while non-metal elements were analysed using test kits. Minerals and heavy metals determined were sodium, magnesium, potassium, calcium, chromium, manganese, iron, nickel, copper, zinc, arsenic, cadmium and lead while the non-metal elements were fluoride, chloride, nitrate and sulphate. Most of the inorganic elements found in the samples were below the maximum permitted levels recommended by inter-national drinking water standard limits, except for iron and manganese. Iron concentration of tap water from one of the locations was higher than the standard limit. In general, tap water from different parts of Peninsular Malaysia had low concentrations of heavy metals and inorganic elements.

  16. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirayama, Satoshi; Kawada, Toshiyuki; Matsuzaki, Masayoshi.

    1980-01-01

    Purpose: To provide a fuel element for reducing the mechanical interactions between a fuel-cladding tube and the fuel element and for alleviating the limits of the operating conditions of a reactor. Constitution: A fuel element having mainly uranium dioxide consists of a cylindrical outer pellet and cylindrical inner pellet inserted into the outer pellet. The outer pellet contains two or more additives selected from aluminium oxide, beryllium oxide, magnesium oxide, silicon oxide, sodium oxide, phosphorus oxide, calcium oxide and iron oxide, and the inner pellet contains nuclear fuel substance solely or one additive selected from calcium oxide, silicon oxide, aluminium oxide, magnesium oxide, zirconium oxide and iron oxide. The outer pellet of the fuel thus constituted is reduced in mechanical strength and also in the mechanical interactions with the cladding tube, and the plastic fluidity of the entire pellet is prevented by the inner pellet increased in the mechanical strength. (Kamimura, M.)

  17. Low levels of iron enhance UV/H2O2 efficiency at neutral pH.

    Science.gov (United States)

    Ulliman, Sydney L; McKay, Garrett; Rosario-Ortiz, Fernando L; Linden, Karl G

    2018-03-01

    While the presence of iron is generally not seen as favorable for UV-based treatment systems due to lamp fouling and decreased UV transmittance, we show that low levels of iron can lead to improvements in the abatement of chemicals in the UV-hydrogen peroxide advanced oxidation process. The oxidation potential of an iron-assisted UV/H 2 O 2 (UV 254  + H 2 O 2  + iron) process was evaluated at neutral pH using iron levels below USEPA secondary drinking water standards (UV/H 2 O 2 systems. The effects of iron species (Fe 2+ and Fe 3+ ), iron concentration (0-0.3 mg/L), H 2 O 2 concentration (0-10 mg/L) and background water matrix (low-carbon tap (LCT) and well water) on HO production and compound removal were examined. Iron-assisted UV/H 2 O 2 efficiency was most influenced by the target chemical and the water matrix. Added iron to UV/H 2 O 2 was shown to increase the steady-state HO concentration by approximately 25% in all well water scenarios. While CBZ removal was unchanged by iron addition, 0.3 mg/L iron improved NDMA removal rates in both LCT and well water matrices by 15.1% and 4.6% respectively. Furthermore, the combination of UV/Fe without H 2 O 2 was also shown to enhance NDMA removal when compared to UV photolysis alone indicating the presence of degradation pathways other than HO oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Iron in Alzheimer's and Control Hippocampi - Moessbauer, Atomic Absorption and ELISA Studies

    International Nuclear Information System (INIS)

    Galazka-Friedman, J.; Szlachta, K.; Bauminger, E.R.; Koziorowski, D.; Friedman, A.; Tomasiuk, R.; Jaklewicz, A.; Wszolek, Z.K.; Dickson, D.; Kaplinska, K.

    2011-01-01

    Alzheimer disease is a neurodegenerative process of unknown mechanism taking place in a part of the brain - hippocampus. Oxidative stress and the role of iron in it is one of the suggested mechanisms of cells death. In this study several methods were used to assess iron and iron binding compounds in human hippocampus tissues. Moessbauer spectroscopy was used for identification of the iron binding compound and determination of total iron concentration in 12 control and one Alzheimer disease sample of hippocampus. Moessbauer parameters obtained for all samples suggest that most of the iron is ferritin-like iron. The average concentration of iron determined by Moessbauer spectroscopy in control hippocampus was 45 ± 10 ng/mg wet tissue. The average concentration of iron in 10 Alzheimer disease samples determined by atomic absorption was 66 ± 13 ng/mg wet tissue. The concentration of H and L chains of ferritin in 20 control and 10 AD hippocampi was assessed with enzyme-linked immuno-absorbent assay. The concentration of H and L ferritin was higher in Alzheimer disease compared to control (19.36 ± 1.51 vs. 5.84 ± 0.55 ng/μg protein for H, and 1.39 ± 0.25 vs. 0.55 ± 0.10 for L). This 3-fold increase of the concentration of ferritin is accompanied by a small increase of the total iron concentration. (authors)

  19. Constraining the Single-degenerate Channel of Type Ia Supernovae with Stable Iron-group Elements in SNR 3C 397

    Energy Technology Data Exchange (ETDEWEB)

    Dave, Pranav; Kashyap, Rahul; Fisher, Robert [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States); Timmes, Frank [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Townsley, Dean [Department of Physics and Astronomy, Box 870324, University of Alabama, Tuscaloosa, AL 35487 (United States); Byrohl, Chris [Institut für Astrophysik, Georg August Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)

    2017-05-20

    Recent Suzaku X-ray spectra of supernova remnant (SNR) 3C 397 indicate enhanced stable iron group element abundances of Ni, Mn, Cr, and Fe. Seeking to address key questions about the progenitor and explosion mechanism of 3C 397, we compute nucleosynthetic yields from a suite of multidimensional hydrodynamics models in the near-Chandrasekhar-mass, single-degenerate paradigm for Type Ia supernovae (SNe Ia). Varying the progenitor white dwarf (WD) internal structure, composition, ignition, and explosion mechanism, we find that the best match to the observed iron peak elements of 3C 397 are dense (central density ≥6 × 10{sup 9} g cm{sup −3}), low-carbon WDs that undergo a weak, centrally ignited deflagration, followed by a subsequent detonation. The amount of {sup 56}Ni produced is consistent with a normal or bright normal SNe Ia. A pure deflagration of a centrally ignited, low central density (≃2 × 10{sup 9} g cm{sup −3}) progenitor WD, frequently considered in the literature, is also found to produce good agreement with 3C 397 nucleosynthetic yields, but leads to a subluminous SN Ia event, in conflict with X-ray line width data. Additionally, in contrast to prior work that suggested a large supersolar metallicity for the WD progenitor for SNR 3C 397, we find satisfactory agreement for solar- and subsolar-metallicity progenitors. We discuss a range of implications our results have for the single-degenerate channel.

  20. A systematic and detailed investigation of radiative rates for forbidden transitions of astrophysical interest in doubly ionized iron peak elements

    Science.gov (United States)

    Quinet, Pascal; Fivet, Vanessa; Bautista, Manuel

    2015-08-01

    The knowledge of accurate and reliable atomic data for lowly ionized iron peak elements, from scandium to copper, is of paramount importance for the analysis of the high resolution spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources like Herbig-Haro objects in the Orion Nebula [1] and stars like Eta Carinae [2]. However, forbidden transitions between low-lying metastable levels of doubly ionized species have been little investigated so far and radiative rates for those lines remain sparse or inexistent.In the present contribution, we report on the recent study we have performed concerning the determination of magnetic dipole (M1) and electric quadrupole (E2) transition probabilities in those ions. For the calculations, we have extensively used the pseudo-relativistic Hartree-Fock (HFR) code of Cowan [3] and the central Thomas-Fermi-Dirac potential approximation implemented in AUTOSTRUCTURE [4]. This multi-platform approach allowed us to check the consistency and to assess the accuracy of the results obtained.[1] Mesa-Delgado A. et al., MNRAS 395, 855 (2009)[2] Johansson S. et al., A&A 361, 977 (2000)[3] Cowan R.D., The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley (1981)[4] Badnell N.R., J. Phys. B: At. Mol. Opt. Phys. 30, 1 (1997)

  1. An experimental study on MR lymphography with various iron colloid agents

    Energy Technology Data Exchange (ETDEWEB)

    Okuhata, Yoshitaka (Nihon Univ., Tokyo (Japan). School of Medicine)

    1992-08-01

    Magnetic resonance (MR) lymphography with iron colloid agents was evaluated in an animal model. The agents examined were ferric gluconate (FeG), saccharated ferric oxide (SFO), iron chondroitin sulfate (ICS) and cideferron (CiF), which were used as intravenous medication for iron deficiency anemia. The author performed time-dose-response and correlative histologic studies. MR images of the popliteal lymph nodes of rabbits were obtained at 1.5 T with a spin-echo sequence (TR=300, TE=30 msec) before and after subcutaneous injection of the agents to dorsal hind-feet. The images were evaluated by signal intensity (SI). Histologic specimens were evaluated for distribution and relative quantity of stained iron with a color image analyzer. The SI with FeG 4 mgFe increased by 50% at 5 to 60 minutes after injection but returned to the pre-contrast level 48 hours later. The SIs with SFO 8 mgFe, ICS 1 mgFe and CiF 1 mgFe decreased to the background level at 60 minutes and 48 hours after injection. The histologic study in combination with the images indicated that in case of FeG the particles in lymph increased SI while in the other agents those within macrophages decreased SI. Because the agents are already used clinically, they can be safety applied to MR lymphography. (author).

  2. In Vitro Iron Availability from Insects and Sirloin Beef.

    Science.gov (United States)

    Latunde-Dada, Gladys O; Yang, Wenge; Vera Aviles, Mayra

    2016-11-09

    Interest in the consumption of insects (entomophagy) as an alternative environmentally sustainable source of protein in the diet of humans has recently witnessed a surge. Knowledge of the nutrient composition and, in particular, the bioavailability of minerals from insects is currently sparse. This study evaluated the availability of Fe, Ca, Cu, Mg, Mn, and Zn from four commonly eaten insects and compared these to sirloin beef. Soluble iron from the samples was measured by inductively coupled plasma optical emission spectrometry (ICP-OES). Iron bioavailability was determined using an in vitro simulated peptic-pancreatic digestion, followed by measurement of ferritin (a surrogate marker for iron absorption) in Caco-2 cells. Cricket and sirloin beef had comparably higher levels of Fe, Ca, and Mn than grasshopper, meal, and buffalo worms. However, iron solubility was significantly higher from the insect samples than from beef. The complementation of whole-wheat flour with insect or beef protein resulted in overall decreases in mineral content and iron solubility in the composite mixtures. Collectively, the data show that grasshopper, cricket, and mealworms contain significantly higher chemically available Ca, Cu, Mg, Mn, and Zn than sirloin. However, buffalo worms and sirloin exhibited higher iron bioavailability comparable to that of FeSO 4 . Commonly consumed insect species could be excellent sources of bioavailable iron and could provide the platform for an alternative strategy for increased mineral intake in the diets of humans.

  3. EFFECT OF REACTIVE MATERIALS ON THE CONTENT OF SELECTED ELEMENTS IN INDIAN MUSTARD GROWN IN CR(VI-CONTAMINATED SOILS

    Directory of Open Access Journals (Sweden)

    Maja Radziemska

    2016-04-01

    Full Text Available Reactive materials represent a promising agent for environmental co-remediation. The research was aimed to determine the influence of hexavalent chromium in doses of 0, 25, 50, and 150 mg Cr(VI.kg-1 of soil as well as zero valent-iron, and lignite additives on the content of macroelements in the Indian mustard (Brassica juncea L.. The average accumulation of the analysed elements in Indian mustard grown in Cr(VI contaminated soil were found to follow the decreasing order Mg>Na>P>Ca>K. Soil contamination at 150 mg Cr(VI.kg-1 of soil led to the highest increase in magnesium, calcium, sodium, and potassium content in Indian mustard. The application of zero-valent iron had a positive influence on the average Na and K content of the tested plant. The application of lignite had a positive influence on the average magnesium, sodium and calcium content in the above-ground parts of the studied plant. In the non-amended treatments (without reactive materials, the increasing rates of chromium (VI had an explicitly positive effect on the content of phosphorous and sodium in Indian mustard.

  4. Comparison of sodium, potassium, calcium, magnesium, zinc, copper and iron concentrations of elements in 24-h urine and spot urine in hypertensive patients with healthy renal function.

    Science.gov (United States)

    Zhang, Tianjing; Chang, Xiaoyu; Liu, Wanlu; Li, Xiaoxia; Wang, Faxuan; Huang, Liping; Liao, Sha; Liu, Xiuying; Zhang, Yuhong; Zhao, Yi

    2017-12-01

    Sodium, potassium, calcium, magnesium, zinc, copper and iron are associated with the sequela of hypertension. The most reliable method for testing those elements is by collecting 24-h urine samples. However, this is cumbersome and collection of spot urine is more convenient in some circumstance. The aim of this study was to compare the concentrations of different elements in 24-h urine and spot urine. Data was collected from a sub-study of China Salt Substitute and Stroke Study. 240 participants were recruited randomly from 12 villages in two counties in Ningxia, China. Both spot and 24-h urine specimens were collected from each patient. Routine urine test was conducted, and concentration of elements was measured using microwave digestion and Inductively Coupled Plasma-Optical Emission Spectrometry. Partial correlation analysis and Spearman correlation analysis were used to investigate the concentration of different elements and the relationship between 24- h urine and spot urine. A partial correlation in sodium, potassium, calcium, magnesium and iron was found between paired 24-h urine and spot urine samples except copper and zinc: 0.430, 0.426, 0.550, 0.221 and 0.191 respectively. Spot urine can replace 24-h urine for estimating some of the elements in hypertensive patients with normal renal function. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Influence of food tannins on certain aspects of iron metabolism : Part 2 -- Storage and transport in normal and anemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S N [Albert Einstein Coll. of Medicine, Bronx, NY (USA); Mukherjee, S [Calcutta Univ. (India). Dept. of Applied Chemistry

    1979-04-01

    Administration of tannin (0.5 mg/kg body wt/day) from fruits and vegetables lowers the iron content in liver, spleen and bone marrow with an elevation in Total Iron Binding Capacity (TIBC) of serum and serum iron concentration in normal rats. The same dose of tannin increases the iron content in storage tissues, particularly bone marrow of hemolytic anemic rats. In anemic rats, TIBC is decreased and serum iron concentration is raised from anemic level to approximately normal value due to ingestion of tannin. Radioiron administration, either by oral or by intravenous route, also elicits similar results. Recovery of iron storage and transport values from the anemic to the normal condition by tannin (0.5 mg/kg) varies with the source of tannin used. Thus more iron required for compensating the anemic conditions is retained within their body by tannin (0.5 mg/kg) which appears to reduce the loss of peripheral iron probably by protecting the lysis of red cells.

  6. Some Ghanaian herbal blood tonics as sources of Iron and other ...

    African Journals Online (AJOL)

    Cu, Zn, Mn, Cd, Pb) ... Maximum estimated daily dosages of less than 1 mg/day of iron was obtained for all the herbal tonics, except the Madam Catherine brand which had 2.17 mg, compared with the required daily intake of 10 – 15 mg.

  7. Precipitation of iron (III) using magnesium oxide in fluidized bed

    International Nuclear Information System (INIS)

    Esteban-Bocardo, P. A.; Ferreira-Rocha, S. D.

    2006-01-01

    A process for iron (III) removal by hydroxide precipitation from and acid synthetic inorganic effluent using magnesium oxide as an alternative precipitant agent in a fluidized bed was developed. An acid synthetic inorganic effluent containing 100 and 200 mg/l of ferric ions (pH=1.0) was continuously fed up to the acrylic column (30 cm high and 2 cm diameter) during 180 minutes. Magnesium oxide pulp (3% v/v) was injected at the beginning of the experiment in order to allow the iron hydroxides precipitation. The concentration and pH profiles agreed in their curves, while the pH profile rose,the concentration profile decreased and a high percentage of iron removal /higher to 99%) was reached. Extremely low iron concentrations have been reached, thus permitting to attend to the environmental standard of 10.0 mg/l for discharge of effluent containing ferric ions established by the law DN 10/86 of COPAM (Conselho de Politica Ambiental do Estado de Minas Gerais-Brazil). (Author)

  8. Rare earth elements in the banded iron formation of the Griqualand West sequence, northern Cape Province, South Africa

    International Nuclear Information System (INIS)

    Horstmann, U.E.; Haelbich, I.W.; Cornell, D.H.

    1990-01-01

    The Proterozoic banded iron-formations (BIF) of the Griqualand West sequence of the Transvaal Supergroup in the northern Cape Province of South Africa have been investigated for their rare earth elements (REE) contents. Twenty three REE analyses were completed using an ICP-AES method. Despite diagenetic and metamorphic processes, it can be concluded from the so far available REE data that the conspicuous differences in REE patterns to those reported from elsewhere indicate the BIF of the Transvaal Supergroup to have originated in relative restricted parts or basins of the Precambrian ocean. 7 refs., 1 fig

  9. Phosphorus in antique iron music wire.

    Science.gov (United States)

    Goodway, M

    1987-05-22

    Harpsichords and other wire-strung musical instruments were made with longer strings about the beginning of the 17th century. This change required stronger music wire. Although these changes coincided with the introduction of the first mass-produced steel (iron alloyed with carbon), carbon was not found in samples of antique iron harpsichord wire. The wire contained an amount of phosphorus sufficient to have impeded its conversion to steel, and may have been drawn from iron rejected for this purpose. The method used to select pig iron for wire drawing ensured the highest possible phosphorus content at a time when its presence in iron was unsuspected. Phosphorus as an alloying element has had the reputation for making steel brittle when worked cold. Nevertheless, in replicating the antique wire, it was found that lowcarbon iron that contained 0.16 percent phosphorus was easily drawn to appropriate gauges and strengths for restringing antique harpsichords.

  10. Trace element studies in urolithiasis; preliminary investigation on mixed calcium oxalate-struvite urinary calculi

    International Nuclear Information System (INIS)

    Syed, A.M.; Qadiruddin, M.; Shirin, K.; Manser, W.W.T.

    1999-01-01

    In this study the levels of the trace elements copper , zinc, lead, iron, aluminum, nickel, chromium along with magnesium, sodium and potassium were estimated in fifteen mixed calcium oxalate-struvite (CaOx/STR) urinary stones. The mean values of the combined results were, copper 4.24, zinc 1302, zinc 1302.10, lead 23.25, iron 36.83,nickel 0.69, chromium 1.93, magnesium 4530441, sodium 54.13 and potassium 5.93 ng mg/sup -1/. It was observed that zinc, aluminum and potassium levels were higher than in calcium oxalate(CaOx) calculi 0.05>P>0.02 and potassium levels were higher than in mixed calcium oxalate-hydroxy appetite (CaOx/APA) calculi, P<0.01. A combination of all the results was also compared with similar data from South Africa, Turkey, Austria, India, U.S.A and Japan. (author)

  11. Isotope-aided studies of the bioavailability of iron and zinc from human diets consumed in Chile and Ecuador

    International Nuclear Information System (INIS)

    Hertrampf, E.; Pizarro, F.; Olivares, M.; Fuenmayor, G.; Yepes, R.; Soria, A.; Walter, T.

    1994-01-01

    Currently it is accepted that iron absorbed from infant formulas is less than 10%. However, the composition of such formulas has changed considerably and there is no recent information on the effects of these modifications. Iron bioavailability from infant formulas with different levels of iron fortification (8 and 12 mg of iron/L) and from a standard meal based on a wheat cream (''farina'' flour) was measured by a double radioisotopic technique (Eakins and Brown) in 13 adult female volunteers. Iron bioavailability in infant formulas was very high. Eighteen and 20.6 percent of the iron was absorbed in the 8 and 12 mg iron/L fortified formulas respectively (geometric means corrected to 40% of reference dose absorption). The corresponding value for iron absorption from the standard meal was 6.7%. These high and non significant differences in iron bioavailability from the two formulas and the fact that daily consumption of 750 ml of formula supplies more iron than recommended would permit a lowering of the current iron fortification level of 12 mg/L. Iron availability of the Standard Meal measured with FLAIR modifications of Miller's in vitro technique was 4.42%. The percentage of dialyzable zinc was 2.04%. Research activities for next year will be based on the validation and application of the in vitro technique in Chilean and Ecuadorian foods. (author). 26 refs, 4 tabs

  12. Isotope-aided studies of the bioavailability of iron and zinc from human diets consumed in Chile and Ecuador

    Energy Technology Data Exchange (ETDEWEB)

    Hertrampf, E; Pizarro, F; Olivares, M [Chile Univ., Santiago (Chile). Inst. de Nutricion y Tecnologia de los Alimentos (INTA); Fuenmayor, G; Yepes, R [Universidad Central del Ecuador, Quito (Ecuador). Lab. de Investigaciones en Metabolismo y Nutricion (LIMN); Soria, A [Carabobo Univ., Valencia (Venezuela). Facultad de Ciencias de la Salud; Walter, T

    1994-12-31

    Currently it is accepted that iron absorbed from infant formulas is less than 10%. However, the composition of such formulas has changed considerably and there is no recent information on the effects of these modifications. Iron bioavailability from infant formulas with different levels of iron fortification (8 and 12 mg of iron/L) and from a standard meal based on a wheat cream (``farina`` flour) was measured by a double radioisotopic technique (Eakins and Brown) in 13 adult female volunteers. Iron bioavailability in infant formulas was very high. Eighteen and 20.6 percent of the iron was absorbed in the 8 and 12 mg iron/L fortified formulas respectively (geometric means corrected to 40% of reference dose absorption). The corresponding value for iron absorption from the standard meal was 6.7%. These high and non significant differences in iron bioavailability from the two formulas and the fact that daily consumption of 750 ml of formula supplies more iron than recommended would permit a lowering of the current iron fortification level of 12 mg/L. Iron availability of the Standard Meal measured with FLAIR modifications of Miller`s in vitro technique was 4.42%. The percentage of dialyzable zinc was 2.04%. Research activities for next year will be based on the validation and application of the in vitro technique in Chilean and Ecuadorian foods. (author). 26 refs, 4 tabs.

  13. Experimental evidence of body centered cubic iron in Earth's core

    Science.gov (United States)

    Hrubiak, R.; Meng, Y.; Shen, G.

    2017-12-01

    The Earth's core is mainly composed of iron. While seismic evidence has shown a liquid outer core and a solid inner core, the crystalline nature of the solid iron at the core condition remains debated, largely due to the difficulties in experimental determination of exact polymorphs at corresponding pressure-temperature conditions. We have examined crystal structures of iron up to 220 GPa and 6000 K with x-ray diffraction using a double-sided laser heating system at HPCAT, Advanced Photon Source. The iron sample is confined in a small chamber surrounded by single crystal MgO. The laser power can be modulated together with temperature measurements. The modulated heating of iron in an MgO single crystal matrix allows for microstructure analysis during heating and after the sample is quenched. We present experimental evidence of a body-centered-cubic (BCC) iron from about 100 GPa and 3000 K to at least 220 GPa and 4000 K. The observed BCC phase may be consistent with a theoretically predicted BCC phase that is dynamically stable in similar pressure-temperature conditions [1]. We will discuss the stability region of the BCC phase and the melting curve of iron and their implications in the nature of the Earth's inner core. References: A. B. Belonoshko et al., Nat. Geosci., 1-6 (2017).

  14. Iron status and its determinants in a nationally representative sample of pregnant women.

    Science.gov (United States)

    Vandevijvere, Stefanie; Amsalkhir, Sihame; Van Oyen, Herman; Egli, Ines; Ines, Egli; Moreno-Reyes, Rodrigo

    2013-05-01

    Iron-deficiency anemia is associated with adverse neonatal health outcomes. Iron status and its determinants were assessed in a representative sample of Belgian pregnant women. Blood samples were collected and a questionnaire was completed face-to-face. Hemoglobin (Hb) and mean cell volume were measured using a Beckman Coulter Hematology Analyzer and serum ferritin (SF) and transferrin receptor (sTfr) concentrations by immunoassay. In total, 55 obstetric clinics and 1,311 pregnant women were included. Approximately 40% of third-trimester and 6% of first-trimester women had SF levels less than 15 μg/L. Approximately 21% of third-trimester and 4% of first-trimester women had anemia (Hb 8.5 mg/L). The median body iron stores were 8.1 mg/kg among first-trimester women, but only 3.6 mg/kg among third-trimester women. SF levels were significantly positively associated with age and education level, and were higher among nulliparous women and lower among North-African women. sTfr concentrations were significantly negatively associated with age and were lower among smokers, nulliparous women, and women who planned their pregnancy. Despite the fact that two thirds of Belgian pregnant women took iron-containing supplements, iron deficiency and iron-deficiency anemia were frequent in third-trimester women. The World Health Organization regards this as a moderate public health problem. National iron supplementation guidelines are needed in Belgium to optimize iron status during pregnancy. Copyright © 2013 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  15. Deferoxamine inhibition of malaria is independent of host iron status

    International Nuclear Information System (INIS)

    Hershko, C.; Peto, T.E.

    1988-01-01

    The mechanism whereby deferoxamine (DF) inhibits the growth of malaria parasites was studied in rats infected with Plasmodium berghei. Peak parasitemia was 32.6% (day 14) in untreated controls and 0.15% (day 7) in rats receiving 0.33 mg/g in 8 hourly DF injections, subcutaneously. DF inhibition of parasite growth was achieved without any reduction in transferrin saturation or hemoglobin synthesis and with only a partial (56%) depletion of hepatic iron stores. Dietary iron depletion resulted in anemia (hematocrit 25 vs. 46%), microcytosis (MCV 54 vs. 60 fl), and reduced transferrin saturation (17 vs. 96%) without any effect on infection (peak parasitemia 30 vs. 36%). Similarly, parenteral iron loading with ferric citrate over 10 d (75 mg iron/kg) failed to aggravate infection. In a search for evidence of direct interaction between DF and parasitized erythrocytes, gel filtration and ultrafiltration was performed on hemolysates obtained from in vivo 59 Fe-labeled parasitized erythrocytes. This showed that 1.1-1.9% of the intracellular radioiron was located in a chelatable, labile iron pool. Incubation of intact cells with 0-500 microM DF resulted in a proportional increase in intracellular iron chelation, and the chelation of all available labile intracellular iron was completed within 6 h. These observations indicate that the severity of P. berghei infection in rats and its in vivo suppression by DF are independent of host iron status and suggest that DF inhibition of malaria involves intracellular chelation of a labile iron pool in parasitized erythrocytes

  16. Mineral resource of the month: Iron and steel

    Science.gov (United States)

    Fenton, Michael D.

    2014-01-01

    Iron is one of the most abundant elements on Earth, but it does not occur in nature in a useful metallic form. Although ancient people may have recovered some iron from meteorites, it wasn’t until smelting was invented that iron metal could be derived from iron oxides. After the beginning of the Iron Age in about 1200 B.C., knowledge of iron- and steelmaking spread from the ancient Middle East through Greece to the Roman Empire, then to Europe and, in the early 17th century, to North America. The first successful furnace in North America began operating in 1646 in what is now Saugus, Mass. Introduction of the Bessemer converter in the mid-19th century made the modern steel age possible.

  17. The effect of gold kiwifruit consumed with an iron fortified breakfast cereal meal on iron status in women with low iron stores: A 16 week randomised controlled intervention study

    Directory of Open Access Journals (Sweden)

    Coad Jane

    2010-01-01

    Full Text Available Abstract Background Dietary treatment is often recommended as the first line of treatment for women with mild iron deficiency. Although it is well established that ascorbic acid enhances iron absorption, it is less clear whether the consumption of ascorbic acid rich foods (such as kiwifruit with meals fortified with iron improves iron status. The aim of this study is to investigate whether the consumption of ZESPRI® GOLD kiwifruit (a fruit high in ascorbic acid and carotenoids with an iron fortified breakfast cereal meal increases iron status in women with low iron stores. Methods/Design Eighty nine healthy women aged 18-44 years with low iron stores (serum ferritin (SF ≤ 25 μg/L, haemoglobin (Hb ≥ 115 g/L living in Auckland, New Zealand were randomised to receive an iron fortified breakfast cereal (16 mg iron per serve and either two ZESPRI® GOLD kiwifruit or a banana (low ascorbic acid and carotenoid content to eat at breakfast time every day for 16 weeks. Iron status (SF, Hb, C-reactive protein (CRP and soluble transferrin receptor (sTfR, ascorbic acid and carotenoid status were measured at baseline and after 16 weeks. Anthropometric measures, dietary intake, physical activity and blood loss were measured before and after the 16 week intervention. Discussion This randomised controlled intervention study will be the first study to investigate the effect of a dietary based intervention of an iron fortified breakfast cereal meal combined with an ascorbic acid and carotenoid rich fruit on improving iron status in women with low iron stores. Trial registration ACTRN12608000360314

  18. Iron status in 358 apparently healthy 80-year-old Danish men and women: relation to food composition and dietary and supplemental iron intake

    DEFF Research Database (Denmark)

    Milman, Nils; Pedersen, Agnes Nadelmann; Ovesen, Lars

    2004-01-01

    of age from a 1914 cohort study. Blood samples included serum ferritin and hemoglobin (Hb). A dietary survey was performed in 232 subjects (120 men, 112 women) using a dietary history method. Median serum ferritin was 100 mug/l in men and 78 mug/l in women (p300 mug/l (i.e., iron overload) were found......In Denmark, the intake of dietary iron has decreased since 1987, when the mandatory iron fortification of flour (30 mg carbonyl iron/kg) was stopped. Since there have been no studies of iron status in elderly Danes after the abolishment of iron fortification, there is a need to assess actual iron...... status in the elderly population. The objective was to evaluate iron status and the relationship with food composition and dietary and supplemental iron intake in an elderly population in Copenhagen County. Participants in this health examination survey were 358 subjects (171 men, 187 women) 80 years...

  19. A study on the formation of iron aluminide (FeAl) from elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Sina, H.; Corneliusson, J.; Turba, K.; Iyengar, S.

    2015-07-05

    Highlights: • Fe–40 at.% Al discs with coarse iron powder showed precombustion and combustion peaks. • Loose powder mixtures and discs with fine iron powder showed only combustion peaks. • Slower heating rate and fine aluminum particles promote precombustion. • The major product formed during both the reactions was Fe{sub 2}Al{sub 5}. • Heating the samples to 1000 °C yielded a stable FeAl phase as the final product. - Abstract: The formation of iron aluminide (FeAl) during the heating of Fe–40 at.% Al powder mixture has been studied using a differential scanning calorimeter. The effect of particle size of the reactants, compaction of the powder mixtures as well as the heating rate on combustion behavior has been investigated. On heating compacted discs containing relatively coarser iron powder, DSC data show two consecutive exothermic peaks corresponding to precombustion and combustion reactions. The product formed during both these reactions is Fe{sub 2}Al{sub 5} and there is a volume expansion in the sample. The precombustion reaction could be improved by a slower heating rate as well as a better surface coverage of iron particles using relatively finer aluminum powder. The combustion reaction was observed to be weaker after a strong precombustion stage. Heating the samples to 1000 °C resulted in the formation of a single and stable FeAl phase through the diffusional reaction between Fe{sub 2}Al{sub 5} and residual iron. DSC results for compacted discs containing relatively finer iron powder and for the non-compacted samples showed a single combustion exotherm during heating, with Fe{sub 2}Al{sub 5} as the product and traces of FeAl. X-ray diffraction and EDS data confirmed the formation of FeAl as the final product after heating these samples to 1000 °C.

  20. IRON-ZINC SUPPLEMENTATION AMONG ADOLESCENT GIRLS AT ELEMENTARY SCHOOL IN KUPANG CITY, EAST TIMOR PROVINCE.

    Directory of Open Access Journals (Sweden)

    Yustina Anie Indriastuti Kurniawan

    2014-09-01

    Full Text Available Anemia is the main micronutrient deficiency problem among adolescent girls in Indonesia. Anemia due to iron deficiency often coexists with zinc deficiency. Both iron deficiency anemia and zinc deficiency can increase the risk of obstetric complications among pregnant women i.e. bleeding during labor and post-partum hemorrhage. Iron-folate supplementation among pregnant women had been conducting since long time ago throughout this country; however, effort to improve the nutritional status particularly among adolescent girls prior to pregnancy is still lack behind. Iron and zinc have antagonistic interaction. Therefore it was challenging to alleviate anemia problem among adolescent girls with appropriate ratio of iron-zinc supplementation, and will give a benefit to improve their nutritional status. This study was aimed to investigate the different ratios of ironzinc supplementation on reducing the prevalence of anemia as improving the nutritional status of adolescent school girls.A female elementary school students age 10-12 years old (n= 137 were screened in rural area of Kupang City, East Timor Province. Subjects were assigned randomly to one of the three groups for daily iron-zinc supplementation for 12 weeks; Group 1 (iron; 60 mg/day, Group 2 (iron and zinc; 30 mg and 15 mg/day, Group 3 (iron and zinc; 60 mg and 15 mg/day. Hemoglobin concentration was measured by cyanmethemoglobin method (Hemocue to determine the prevalence of anemia (Hb level < 120 g/L, while anthropometric assessment was conducted for measuring weight and height to determine the nutritional status. General characteristics was assessed through interview. At base line, 29.1% of subjects suffered from anemia and in general, the prevalence was reduced to around 13.1% after they took iron supplements with or without zinc. Hemoglobin concentration was significantly increased among all subjects euther suffered from anemia or not. The result of this study showed that subject who

  1. Constraints on the ^22Ne(α,n)^25Mg reaction rate from ^natMg+n Total and ^25Mg(n,γ ) Cross Sections

    Science.gov (United States)

    Koehler, Paul

    2002-10-01

    The ^22Ne(α,n)^25Mg reaction is the neutron source during the s process in massive and intermediate mass stars as well as a secondary neutron source during the s process in low mass stars. Therefore, an accurate determination of this rate is important for a better understanding of the origin of nuclides heavier than iron as well as for improving s-process models. Also, because the s process produces seed nuclides for a later p process in massive stars, an accurate value for this rate is important for a better understanding of the p process. Because the lowest observed resonance in direct ^22Ne(α,n)^25Mg measurements is considerably above the most important energy range for s-process temperatures, the uncertainty in this rate is dominated by the poorly known properties of states in ^26Mg between this resonance and threshold. Neutron measurements can observe these states with much better sensitivity and determine their parameters much more accurately than direct ^22Ne(α,n)^25Mg measurements. I have analyzed previously reported Mg+n total and ^25Mg(n,γ ) cross sections to obtain a much improved set of resonance parameters for states in ^26Mg in this region, and an improved estimate of the uncertainty in the ^22Ne(α,n)^25Mg reaction rate. This work was supported by the U.S. DOE under contract No. DE-AC05-00OR22725 with UT-Battell, LLC.

  2. Iron deficiency in blood donors

    Directory of Open Access Journals (Sweden)

    Rodolfo Delfini Cançado

    Full Text Available CONTEXT: Blood donation results in a substantial loss of iron (200 to 250 mg at each bleeding procedure (425 to 475 ml and subsequent mobilization of iron from body stores. Recent reports have shown that body iron reserves generally are small and iron depletion is more frequent in blood donors than in non-donors. OBJECTIVE: The aim of this study was to evaluate the frequency of iron deficiency in blood donors and to establish the frequency of iron deficiency in blood donors according to sex, whether they were first-time or multi-time donors, and the frequency of donations per year. DESIGN: From September 20 to October 5, 1999, three hundred blood donors from Santa Casa Hemocenter of São Paulo were studied. DIAGNOSTIC TESTS: Using a combination of biochemical measurements of iron status: serum iron, total iron-binding capacity, transferrin saturation index, serum ferritin and the erythrocyte indices. RESULTS: The frequency of iron deficiency in blood donors was 11.0%, of whom 5.5% (13/237 were male and 31.7% (20/63 female donors. The frequency of iron deficiency was higher in multi-time blood donors than in first-time blood donors, for male blood donors (7.6% versus 0.0%, P < 0.05 and female ones (41.5% versus 18.5%, P < 0.05. The frequency of iron deficiency found was higher among the male blood donors with three or more donations per year (P < 0.05 and among the female blood donors with two or more donations per year (P < 0.05. CONCLUSIONS: We conclude that blood donation is a very important factor for iron deficiency in blood donors, particularly in multi-time donors and especially in female donors. The high frequency of blood donors with iron deficiency found in this study suggests a need for a more accurate laboratory trial, as hemoglobin or hematocrit measurement alone is not sufficient for detecting and excluding blood donors with iron deficiency without anemia.

  3. Cost-minimization analysis favours intravenous ferric carboxymaltose over ferric sucrose for the ambulatory treatment of severe iron deficiency.

    Directory of Open Access Journals (Sweden)

    Xavier Calvet

    Full Text Available OBJECTIVE: Intravenous iron is widely used to treat iron deficiency in day-care units. Ferric carboxymaltose (FCM allows administration of larger iron doses than iron sucrose (IS in each infusion (1000 mg vs. 200 mg. As FCM reduces the number of infusions required but is more expensive, we performed a cost-minimization analysis to compare the cost impact of the two drugs. MATERIALS AND METHODS: The number of infusions and the iron dose of 111 consecutive patients who received intravenous iron at a gastrointestinal diseases day-care unit from 8/2007 to 7/2008 were retrospectively obtained. Costs of intravenous iron drugs were obtained from the Spanish regulatory agencies. The accounting department of the Hospital determined hospital direct and indirect costs for outpatient iron infusion. Non-hospital direct costs were calculated on the basis of patient interviews. In the pharmacoeconomic model, base case mean costs per patient were calculated for administering 1000 mg of iron per infusion using FCM or 200 mg using IS. Sensitivity analysis and Monte Carlo simulation were performed. RESULTS: Under baseline assumptions, the estimated cost of iron infusion per patient and year was €304 for IS and €274 for FCM, a difference of €30 in favour of FCM. Adding non-hospital direct costs to the model increased the difference to €67 (€354 for IS vs. €287 for FCM. A Monte Carlo simulation taking into account non-hospital direct costs favoured the use of FCM in 97% of simulations. CONCLUSION: In this pharmacoeconomic analysis, FCM infusion reduced the costs of iron infusion at a gastrointestinal day-care unit.

  4. Effect of three Electron Shuttles on Bioreduction of Ferric Iron in two Acidic and Calcareous soils

    Directory of Open Access Journals (Sweden)

    Setareh Sharifi

    2017-01-01

    from locations in Mashhad and Guilan cities, Iran, in 2015. The soil samples were air dried in a glasshouse and later subjected to general analysis. Some part of the soil samples were kept at 4 oC as fresh soil samples for bioreduction assay. In that part of experiment, all soil samples were treated with glucose (10 mM as electron donor. Native ferric iron considered as electron acceptor. Then soil samples were treated with AQS, humic acid and fulvic acid (as electron shuttles and inoculated with bacterial cells (Shewanella sp. and P. aeruginosa and they were incubated for 30 days in an incubator at 30 and 37 oC according to the optimum temperature for bacteria in an anaerobic condition. At the end of incubation time, ferrous and acid extractable iron were determined with Ferrozine assay by spectrophotometer in 562 nm (8, 25. Results and Discussion: Results showed that the AQS had a noticeable effect on ferrous iron concentrations in both acidic and calcareous soils. In these cases ferrous iron concentrations were 8 and 15.7 times higher compared to initial concentration in acidic and calcareous soils, respectively. The Shewanella sp. intensified ferrous iron concentration 7.2 and 16.3 fold in acidic and calcareous soils, respectively but P. aeruginosa increased it 5.6 and 12.1 fold compared to initial concentration of ferrous iron. In acidic soil, in the presence of Shewanella sp. and AQS, ferrous and acid extractable iron concentrations were 1.45 and 4.50 mg g-1, respectively. Results showed that 11.7 fold enhancements occur in the presence of Shewanella sp. and AQS compared to initial (0.385 mg g-1 concentration of iron in acidic soil. When P. aeruginosa was inoculated in acidic soil in the presence of AQS, soluble ferrous iron concentration was 1.27 mg g-1. The acid extractable iron in this treatment was 2.85 mg g-1. The concentration of soluble ferrous iron in calcareous soil was 0.81 mg g-1, when AQS was added to Shewanella sp. treatments. That value was 0

  5. Heme metabolism as an integral part of iron homeostasis

    Directory of Open Access Journals (Sweden)

    Paweł Lipiński

    2014-01-01

    Full Text Available Heme, a ferrous iron protoporphyrin IX complex, is employed as a prosthetic group in a number of diverse heme proteins that participate in important cellular and systemic physiological processes. Provision of an adequate amount of iron for heme biosynthesis is one of the elemental hallmarks of intracellular iron homeostasis. In the cell the bioavailability of iron for the two main iron biological pathways – heme synthesis and the biogenesis of iron-sulfur clusters ([Fe-S] – is mainly regulated by the IRP/IRE posttranscriptional system. The biogenesis of [Fe-S] centers is crucial for heme synthesis because these co-factors determine the activity of IRP1 and that of ferrochelatase, an enzyme responsible for the insertion of an iron into protoporphyrin IX to produce heme. On the other hand, delivery of iron for heme and hemoglobin synthesis in erythroblasts, precursors of erythrocytes in bone marrow, is an indispensable element of body iron homeostasis. This process relies on the recovery of iron from senescent red blood cells through the enzymatic degradation of heme molecules and recycling of iron to the circulation. Molecular coordination of these processes involves the activity of heme oxygenase 1, IRP1 and IRP2 as well as the functioning of the hepcidin-ferroportin regulatory axis. Recent studies show in mammals the existence of an expanded system of proteins involved in the transport of intact heme molecules at the cellular and systemic levels. The biological role of this system is of particular importance when the concentration of free heme reaches a toxic level in the body (intravascular hemolysis as well as locally in cells having intensive heme metabolism such as erythroblasts and macrophages.

  6. [Heme metabolism as an integral part of iron homeostasis].

    Science.gov (United States)

    Lipiński, Paweł; Starzyński, Rafał R; Styś, Agnieszka; Gajowiak, Anna; Staroń, Robert

    2014-01-02

    Heme, a ferrous iron protoporphyrin IX complex, is employed as a prosthetic group in a number of diverse heme proteins that participate in important cellular and systemic physiological processes. Provision of an adequate amount of iron for heme biosynthesis is one of the elemental hallmarks of intracellular iron homeostasis. In the cell the bioavailability of iron for the two main iron biological pathways--heme synthesis and the biogenesis of iron-sulfur clusters ([Fe-S])--is mainly regulated by the IRP/IRE posttranscriptional system. The biogenesis of [Fe-S] centers is crucial for heme synthesis because these co-factors determine the activity of IRP1 and that of ferrochelatase, an enzyme responsible for the insertion of an iron into protoporphyrin IX to produce heme. On the other hand, delivery of iron for heme and hemoglobin synthesis in erythroblasts, precursors of erythrocytes in bone marrow, is an indispensable element of body iron homeostasis. This process relies on the recovery of iron from senescent red blood cells through the enzymatic degradation of heme molecules and recycling of iron to the circulation. Molecular coordination of these processes involves the activity of heme oxygenase 1, IRP1 and IRP2 as well as the functioning of the hepcidin-ferroportin regulatory axis. Recent studies show in mammals the existence of an expanded system of proteins involved in the transport of intact heme molecules at the cellular and systemic levels. The biological role of this system is of particular importance when the concentration of free heme reaches a toxic level in the body (intravascular hemolysis) as well as locally in cells having intensive heme metabolism such as erythroblasts and macrophages.

  7. Determination of trace elements in Ethiopian, Vietnamese, and Japanese women using high-resolution IC-PMS.

    Science.gov (United States)

    Tekeste, Zinaye; Amare, Bemnet; Asfaw, Fanaye; Fantahun, Bereket; van Nguyen, Nhien; Nishikawa, Takeshi; Yabutani, Tomoki; Okayasu, Takako; Ota, Fusao; Kassu, Afework

    2015-10-01

    Humans and other living organisms require small quantities of trace elements throughout life. Both insufficient and excessive intakes of trace elements can have negative consequences. However, there is little information on serum level of trace elements in different populations. This study examines serum levels of trace elements in Ethiopian, Japanese, and Vietnamese women. Random samples of healthy women who were referred for routine hospital laboratory examinations in the cities of Hanoi, Sapporo, and Gondar were invited to participate in the study. Serum levels of magnesium, zinc, copper, iron, selenium, and calcium were determined using an inductively coupled plasma mass spectrometer. Furthermore, body mass index of each study participant was determined. The mean ± SD serum concentrations of zinc (μg/dL), copper (μg/dL), iron (μg/dL), selenium (μg/dL) and calcium (mg/dL), respectively, were 76.51 ± 39.16, 152.20 ± 55.37, 385.68 ± 217.95, 9.15 ± 4.21, and 14.18 ± 3.91 in Ethiopian women; 111.49 ± 52.92, 105.86 ± 26.02, 155.09 ± 94.83, 14.11 ± 3.41, and 11.66 ± 2.51 in Vietnamese women; and 60.69 ± 9.76, 107 ± 156, 268 ± 128, 8.33 ± 3.65, and 11.18 ± 0.68 in Japanese participants. Ethiopian women had significantly higher level of serum calcium than Vietnamese and Japanese women (both P Vietnamese women was higher than in women from Japan, the difference was not statistically significant (P > 0.05). Furthermore, compared with Japanese women, Ethiopian women had significantly high iron and copper concentrations (P Vietnamese than Ethiopian women. The study revealed a remarkable difference in serum concentrations of trace elements in women from different countries, implying differences in trace elements in the food or soil. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Serum Iron and Nitric Oxide Production in Trypanosoma brucei ...

    African Journals Online (AJOL)

    JTEkanem

    reduction in the serum iron status and a modulation of nitric oxide synthase activity of T. brucei infected rats. ... inflammation and tissue damage15. ... The serum iron level was determined ... concentration or of total nitrate and nitrite ... 15. 16. 17. 18. Days. S e ru m iro n lev e l mg. /ml. Infected treated. Infected untreated. 0.

  9. Association of dietary and supplemental iron and colorectal cancer in a population-based study.

    Science.gov (United States)

    Ashmore, Joseph H; Lesko, Samuel M; Miller, Paige E; Cross, Amanda J; Muscat, Joshua E; Zhu, Junjia; Liao, Jason; Harper, Gregory; Lazarus, Philip; Hartman, Terryl J

    2013-11-01

    We evaluated the role of dietary iron, heme iron, and supplemental iron on colorectal cancer (CRC) risk in a population-based case-control study in Pennsylvania, including 1005 incident cases and 1062 controls. Diet was assessed through a modified food frequency questionnaire that included supplement use and a meat-specific module. Cases reported intakes for the year before diagnosis, whereas controls reported intakes for the year before interview. Heme iron intake was calculated using a new heme database developed by the US National Cancer Institute. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional logistic regression. After multivariate adjustment, there were no significant associations between heme iron or total iron intake and CRC incidence. Dietary iron intake was inversely associated with CRC among women (OR Q5 vs. Q1=0.45; 95% CI=0.22-0.92), but not among men. Supplemental iron intake of more than 18 mg/day versus none was positively associated with CRC incidence (OR=2.31; 95% CI=1.48-3.59; P-trendconsumption of more than 18 mg/day of supplemental iron may increase risk for CRC.

  10. The influence of selected elements on mechanical properties of ferritic ductile iron

    Directory of Open Access Journals (Sweden)

    M. S. Soiński

    2008-03-01

    Full Text Available An altcmpi of dcrcrinininp rhc relationship bcrwccn changcs of quantities of clcmcnts in the alloy (such 'as C, Si, Mn. P. S. Cr, Ni. CL~M.g and thc basic mcchanical propcrtics of thc matcrisl (R,, Rp,0,2r As, IIB, KCV has bccn undcstakcn on thc basis of data concerningproduction of fcrritic ductilc iron of thc EN-G1S-400-IRU-LT grndc (according 10 PN-EN 1563 Standard from about 300 hcars. Thccxamincd cast imn has hccn pmduccd by onc of thc domcstic roundrics in thc induction lurnacc of mcdium Srcqucncy. sphcroidizcd hy t hcplunging rncthod and thcn modified hy thc in-strcam rncthod whilc transferring Ihc cnst iron from thc tmumcnt *csscl to ~ h pco uring IadEc.Caaings havc hccn hcnt trcntcd in ordcr to achicvc khc fully fcrritic structure. Thc analysis of ~ h cco llcctcd data has shown that cvcn srnilllchangcs in cantcnt or n scrics afclc~ncnts( fdling within tlrc limits rcquircd For production of thc duciilc iron can lcnd tn t l~cst atisticallysignificant incrcascs or dccrcnscs in mcchanicnl propcrt ics of rcrriric ductilc iron.

  11. Adaptation of atomic spectrometric methods for the determination of trace elements in whole blood and blood fractions

    International Nuclear Information System (INIS)

    Prohaska, C.

    2002-05-01

    Analytical methods were developed and optimized for the determination of the elements Ca, Cr, Cu, Fe, Mg, Mn, Se, V and Zn in whole blood and in the blood fractions plasma, erythrocytes and lymphocytes of a group of people suffering from diabetes and of a control group of healthy individuals. Cr, Mn, Se and V were analyzed by ETAAS. Ca, Cu, Fe, Mg and Zn were analyzed by ICP-OES. The status of trace elements in lymphocytes of people suffering from diabetes is changed. Physiologically interesting correlations were observed between the clinical parameters cholesterol, HDL, LDL, blood glucose, HbA1c, age and BMI and the trace element concentrations, e.g. a correlation of blood glucose and HbA1c with selenium in whole blood. An ETAAS - method for the determination of Co and Mo was developed and optimized. The samples were digested applying a mixture of HNO3 and HF, different types of graphite furnaces were tested and a multiple injection technique was applied, thereby enabling a contribution to the normal values of these elements in human whole blood. An on-line coupling of a LC, controlled by FIA, with an ICP-OES was developed to investigate the concentrations of the iron species Fe(II) and Fe(III) and the copper species Cu(I) and Cu(II) in human blood plasma. The ICP-OES instrument was adapted, batch experiments were carried out, oxidizing and reducing agents were added and the acidity of the eluens, the flow rate and the integration time were optimized. Choosing alanine for complexation of the species of interest enables their separation under physiological conditions. In the real plasma samples measured most of the copper and iron was found in their oxidized forms. (author)

  12. Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets

    Science.gov (United States)

    Duncan, Paul G.

    2002-01-01

    Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

  13. mRNA Levels of Placental Iron and Zinc Transporter Genes Are Upregulated in Gambian Women with Low Iron and Zinc Status.

    Science.gov (United States)

    Jobarteh, Modou Lamin; McArdle, Harry J; Holtrop, Grietje; Sise, Ebrima A; Prentice, Andrew M; Moore, Sophie E

    2017-07-01

    Background: The role of the placenta in regulating micronutrient transport in response to maternal status is poorly understood. Objective: We investigated the effect of prenatal nutritional supplementation on the regulation of placental iron and zinc transport. Methods: In a randomized trial in rural Gambia [ENID (Early Nutrition and Immune Development)], pregnant women were allocated to 1 of 4 nutritional intervention arms: 1 ) iron and folic acid (FeFol) tablets (FeFol group); 2 ) multiple micronutrient (MMN) tablets (MMN group); 3 ) protein energy (PE) as a lipid-based nutrient supplement (LNS; PE group); and 4 ) PE and MMN (PE+MMN group) as LNS. All arms included iron (60 mg/d) and folic acid (400 μg/d). The MMN and PE+MMN arms included 30 mg supplemental Zn/d. In a subgroup of ∼300 mother-infant pairs, we measured maternal iron status, mRNA levels of genes encoding for placental iron and zinc transport proteins, and cord blood iron levels. Results: Maternal plasma iron concentration in late pregnancy was 45% and 78% lower in the PE and PE+MMN groups compared to the FeFol and MMN groups, respectively ( P Zinc supplementation in the MMN arm was associated with higher maternal plasma zinc concentrations (10% increase; P zinc-uptake proteins, in this case zrt, irt-like protein (ZIP) 4 and ZIP8, were 96-205% lower in the PE+MMN arm than in the intervention arms without added zinc ( P zinc, the placenta upregulates the gene expression of iron and zinc uptake proteins, presumably in order to meet fetal demands in the face of low maternal supply. The ENID trial was registered at www.controlled-trials.com as ISRCTN49285450.

  14. Hepcidin: A Critical Regulator of Iron Metabolism during Hypoxia

    Directory of Open Access Journals (Sweden)

    Korry J. Hintze

    2011-01-01

    Full Text Available Iron status affects cognitive and physical performance in humans. Recent evidence indicates that iron balance is a tightly regulated process affected by a series of factors other than diet, to include hypoxia. Hypoxia has profound effects on iron absorption and results in increased iron acquisition and erythropoiesis when humans move from sea level to altitude. The effects of hypoxia on iron balance have been attributed to hepcidin, a central regulator of iron homeostasis. This paper will focus on the molecular mechanisms by which hypoxia affects hepcidin expression, to include a review of the hypoxia inducible factor (HIF/hypoxia response element (HRE system, as well as recent evidence indicating that localized adipose hypoxia due to obesity may affect hepcidin signaling and organismal iron metabolism.

  15. Experimental observation of zinc dialkyl dithiophosphate (ZDDP)-induced iron sulphide formation

    Energy Technology Data Exchange (ETDEWEB)

    Soltanahmadi, Siavash, E-mail: s.soltanahmadi@leeds.ac.uk [Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT (United Kingdom); Morina, Ardian [Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT (United Kingdom); Eijk, Marcel C.P. van; Nedelcu, Ileana [SKF Engineering and Research Centre, 3430 DT Nieuwegein (Netherlands); Neville, Anne [Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT (United Kingdom)

    2017-08-31

    Graphical abstract: Chemical analysis of ZDDP-induced tribofilm under severe boundary lubricated regime in nano and micro-meter scales.▪ - Highlights: • A ZDDP-derived locally formed iron-sulphide layer is detected on the steel surface. • The iron-sulphide is a 5–10 nm thin distinct layer at steel-phosphate interface. • Near the surface-crack site the elemental distribution of the tribofilm is altered. • Sulphur concentration is enhanced in the iron-sulphide layer near the cracked-site. • ZDDP elements are detected inside the crack with a greater contribution of sulphur. - Abstract: Zinc dialkyl dithiophosphate (ZDDP) as a well-known anti-wear additive enhances the performance of the lubricant beyond its wear-protection action, through its anti-oxidant and Extreme Pressure (EP) functionality. In spite of over thirty years of research attempting to reveal the mechanism of action of ZDDP, there are still some uncertainties around the exact mechanisms of its action. This is especially the case with the role of sulphide layer formed in the tribofilm and its impact on surface fatigue. Although iron sulphide on the substrate is hypothesised in literature to form as a separate layer, there has been no concrete experimental observation on the distribution of the iron sulphide as a dispersed precipitate, distinct layer at the steel substrate or both. It remains to be clarified whether the iron sulphide layer homogeneously covers the surface or locally forms at the surface. In the current study a cross section of the specimen after experiment was prepared and has been investigated with Transmission Electron Microscopy (TEM) and Energy-Dispersive X-ray (EDX) elemental analysis. A 5–10 nm iron sulphide layer is visualised on the interface as a separate layer underneath the phosphate layer with an altered distribution of tribofilm elements near the crack site. The iron sulphide interface layer is more visible near the crack site where the concentration of the

  16. Experimental observation of zinc dialkyl dithiophosphate (ZDDP)-induced iron sulphide formation

    International Nuclear Information System (INIS)

    Soltanahmadi, Siavash; Morina, Ardian; Eijk, Marcel C.P. van; Nedelcu, Ileana; Neville, Anne

    2017-01-01

    Graphical abstract: Chemical analysis of ZDDP-induced tribofilm under severe boundary lubricated regime in nano and micro-meter scales.▪ - Highlights: • A ZDDP-derived locally formed iron-sulphide layer is detected on the steel surface. • The iron-sulphide is a 5–10 nm thin distinct layer at steel-phosphate interface. • Near the surface-crack site the elemental distribution of the tribofilm is altered. • Sulphur concentration is enhanced in the iron-sulphide layer near the cracked-site. • ZDDP elements are detected inside the crack with a greater contribution of sulphur. - Abstract: Zinc dialkyl dithiophosphate (ZDDP) as a well-known anti-wear additive enhances the performance of the lubricant beyond its wear-protection action, through its anti-oxidant and Extreme Pressure (EP) functionality. In spite of over thirty years of research attempting to reveal the mechanism of action of ZDDP, there are still some uncertainties around the exact mechanisms of its action. This is especially the case with the role of sulphide layer formed in the tribofilm and its impact on surface fatigue. Although iron sulphide on the substrate is hypothesised in literature to form as a separate layer, there has been no concrete experimental observation on the distribution of the iron sulphide as a dispersed precipitate, distinct layer at the steel substrate or both. It remains to be clarified whether the iron sulphide layer homogeneously covers the surface or locally forms at the surface. In the current study a cross section of the specimen after experiment was prepared and has been investigated with Transmission Electron Microscopy (TEM) and Energy-Dispersive X-ray (EDX) elemental analysis. A 5–10 nm iron sulphide layer is visualised on the interface as a separate layer underneath the phosphate layer with an altered distribution of tribofilm elements near the crack site. The iron sulphide interface layer is more visible near the crack site where the concentration of the

  17. A photo-oxidation procedure using UV radiation/H{sub 2}O{sub 2} for decomposition of wine samples - Determination of iron and manganese content by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Walter N.L. dos [Departamento de Ciencias Exatas e da Terra, Universidade do Estado da Bahia, Salvador, Bahia (Brazil); Universidade Federal da Bahia, Instituto de Quimica, Campus Ondina, Salvador, Bahia, 40170-290 Brazil (Brazil)], E-mail: wlopes@uneb.br; Brandao, Geovani C.; Portugal, Lindomar A.; David, Jorge M.; Ferreira, Sergio L.C. [Universidade Federal da Bahia, Instituto de Quimica, Campus Ondina, Salvador, Bahia, 40170-290 Brazil (Brazil)

    2009-06-15

    This paper proposes the use of photo-oxidation with UV radiation/H{sub 2}O{sub 2} as sample pretreatment for the determination of iron and manganese in wines by flame atomic absorption spectrometry (FAAS). The optimization involved the study of the following variables: pH and concentration of buffer solution, concentrated hydrogen peroxide volume and irradiation time. The evaluation of sample degradation was monitored by measuring the absorbance at the maximum wavelength of red wine (530 nm). Using the experimental conditions established during the optimization (irradiation time of 30 min, oxidant volume of 2.5 mL, pH 10, and a buffer concentration of 0.15 mol L{sup - 1}), this procedure allows the determination of iron and manganese with limits of detection of 30 and 22 {mu}g L{sup - 1}, respectively, for a 5 mL volume of digested sample. The precision levels, expressed as relative standard deviation (RSD), were 2.8% and 0.65% for iron and 2.7% and 0.54% for manganese for concentrations of 0.5 and 2.0 mg L{sup - 1}, respectively. Addition/recovery tests for evaluation of the accuracy were in the ranges of 90%-111% and 95%-107% for iron and manganese, respectively. This digestion procedure has been applied for the determination of iron and manganese in six wine samples. The concentrations varied from 1.58 to 2.77 mg L{sup - 1} for iron and from 1.30 to 1.91 mg L{sup - 1} for manganese. The results were compared with those obtained by an acid digestion procedure and determination of the elements by FAAS. There was no significant difference between the results obtained by the two methods based on a paired t-test (at 95% confidence level)

  18. Assessing the iron chelation capacity of goat casein digest isolates.

    Science.gov (United States)

    Smialowska, A; Matia-Merino, L; Carr, A J

    2017-04-01

    We isolated goat phosphopeptides via calcium and ethanol precipitation from a caseinate digest and investigated their feasibility as an iron-fortification ingredient in nutritional foods. Goat tryptic-digested phosphopeptides could bind 54.37 ± 0.50 mg of Fe/g of protein compared with goat milk, which could bind 3.83 ± 0.01 mg of Fe/g of protein, indicating that isolation did increase iron binding. However, the >13-fold increase in iron binding was only partly explained by the increased concentration of phosphoserine-rich residues in the isolated fraction: we observed a 77% increase in serine residue content and a 5.9-fold increase in phosphorus in the goat peptide isolate compared with the starting caseinate material. We investigated the effect of potential industrial processing conditions (including heating, cooling, holding time, and processing order) on iron binding by the tryptic-digested phosphopeptides. In addition, we tested the effect of ionic strength and the addition of peptides to a milk system to understand how food formulations could affect iron binding. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, I.; Ivanova, O.; Ivantsov, R.; Velikanov, D.; Zabluda, V. [L.V. Kirensky Institute of Physics SB RAS, 660036 Krasnoyarsk (Russian Federation); Zubavichus, Y.; Veligzhanin, A. [NRC ' Kurchatov Institute,' 123182 Moscow (Russian Federation); Zaikovskiy, V. [Boreskov Institute of Catalysis, Siberian Branch of RAS, 630090 Novosibirsk (Russian Federation); Stepanov, S. [S.I. Vavilov State Optical Institute, St. Petersburg (Russian Federation); Artemenko, A. [ICMCB, UPR CNRS 9048, 33608 Pessac cedex (France); Curely, J.; Kliava, J. [LOMA, UMR 5798 Universite Bordeaux 1-CNRS, 33405 Talence cedex (France)

    2012-10-15

    A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge structure, and small-angle x-ray scattering, show a broad distribution of nanoparticle sizes with characteristics depending on the treatment regime; a crystalline structure of these nanoparticles is detected in heat treated samples. Magnetic circular dichroism (MCD) studies of samples subjected to heat treatment as well as of maghemite, magnetite, and iron garnet allow to unambiguously assign the nanoparticle structure to maghemite, independently of co-dopant nature and of heat treatment regime used. Different features observed in the MCD spectra are related to different electron transitions in Fe{sup 3+} ions gathered in the nanoparticles. The static magnetization in heat treated samples has non-linear dependence on the magnetizing field with hysteresis. Zero-field cooled magnetization curves show that at higher temperatures the nanoparticles occur in superparamagnetic state with blocking temperatures above 100 K. Below ca. 20 K, a considerable contribution to both zero field-cooled and field-cooled magnetizations occurs from diluted paramagnetic ions. Variable-temperature electron magnetic resonance (EMR) studies unambiguously show that in as-prepared glasses paramagnetic ions are in diluted state and confirm the formation of magnetic nanoparticles already at earlier stages of heat treatment. Computer simulations of the EMR spectra corroborate the broad distribution of nanoparticle sizes found by 'direct' techniques as well as superparamagnetic nanoparticle behaviour demonstrated in the

  20. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    International Nuclear Information System (INIS)

    Edelman, I.; Ivanova, O.; Ivantsov, R.; Velikanov, D.; Zabluda, V.; Zubavichus, Y.; Veligzhanin, A.; Zaikovskiy, V.; Stepanov, S.; Artemenko, A.; Curély, J.; Kliava, J.

    2012-01-01

    A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge structure, and small-angle x-ray scattering, show a broad distribution of nanoparticle sizes with characteristics depending on the treatment regime; a crystalline structure of these nanoparticles is detected in heat treated samples. Magnetic circular dichroism (MCD) studies of samples subjected to heat treatment as well as of maghemite, magnetite, and iron garnet allow to unambiguously assign the nanoparticle structure to maghemite, independently of co-dopant nature and of heat treatment regime used. Different features observed in the MCD spectra are related to different electron transitions in Fe 3+ ions gathered in the nanoparticles. The static magnetization in heat treated samples has non-linear dependence on the magnetizing field with hysteresis. Zero-field cooled magnetization curves show that at higher temperatures the nanoparticles occur in superparamagnetic state with blocking temperatures above 100 K. Below ca. 20 K, a considerable contribution to both zero field-cooled and field-cooled magnetizations occurs from diluted paramagnetic ions. Variable-temperature electron magnetic resonance (EMR) studies unambiguously show that in as-prepared glasses paramagnetic ions are in diluted state and confirm the formation of magnetic nanoparticles already at earlier stages of heat treatment. Computer simulations of the EMR spectra corroborate the broad distribution of nanoparticle sizes found by “direct” techniques as well as superparamagnetic nanoparticle behaviour demonstrated in the magnetization

  1. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    Science.gov (United States)

    Edelman, I.; Ivanova, O.; Ivantsov, R.; Velikanov, D.; Zabluda, V.; Zubavichus, Y.; Veligzhanin, A.; Zaikovskiy, V.; Stepanov, S.; Artemenko, A.; Curély, J.; Kliava, J.

    2012-10-01

    A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge structure, and small-angle x-ray scattering, show a broad distribution of nanoparticle sizes with characteristics depending on the treatment regime; a crystalline structure of these nanoparticles is detected in heat treated samples. Magnetic circular dichroism (MCD) studies of samples subjected to heat treatment as well as of maghemite, magnetite, and iron garnet allow to unambiguously assign the nanoparticle structure to maghemite, independently of co-dopant nature and of heat treatment regime used. Different features observed in the MCD spectra are related to different electron transitions in Fe3+ ions gathered in the nanoparticles. The static magnetization in heat treated samples has non-linear dependence on the magnetizing field with hysteresis. Zero-field cooled magnetization curves show that at higher temperatures the nanoparticles occur in superparamagnetic state with blocking temperatures above 100 K. Below ca. 20 K, a considerable contribution to both zero field-cooled and field-cooled magnetizations occurs from diluted paramagnetic ions. Variable-temperature electron magnetic resonance (EMR) studies unambiguously show that in as-prepared glasses paramagnetic ions are in diluted state and confirm the formation of magnetic nanoparticles already at earlier stages of heat treatment. Computer simulations of the EMR spectra corroborate the broad distribution of nanoparticle sizes found by "direct" techniques as well as superparamagnetic nanoparticle behaviour demonstrated in the magnetization studies.

  2. Scientific Opinion on dietary reference values for iron

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2015-01-01

    as the dietary requirement at the 97.5th percentile, is 11 mg/day. For postmenopausal women, the same DRVs as for men are proposed. In premenopausal women, additional iron is lost through menstruation but, because losses are highly skewed, the Panel set a PRI of 16 mg/day to cover requirements of 95...

  3. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅳ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-11-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  4. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅰ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-02-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  5. Colour Metallography of Cast Iron - Chapter 4: Vermicular Graphite Cast Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2011-05-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  6. Low Z elements (Mg, Al, and Si) K-edge X-ray absorption spectroscopy in minerals and disordered systems

    Science.gov (United States)

    Ildefonse, Ph.; Calas, G.; Flank, A. M.; Lagarde, P.

    1995-05-01

    Soft X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy have been performed at the Mg-, Al- and Si-K edges in order to establish the ability of this spectroscopy to derive structural information in disordered solids such as glasses and gels. Mg- and Al-K XANES are good structural probes to determine the coordination state of these elements in important minerals, glasses and gels. In a CaOsbnd MgOsbnd 2SiO2 glass Mg XANES spectra differ from that found in the crystalline equivalent, with a significant shift of the edge maxima to lower energy, consistent with a CN lower than 6. Mg-EXAFS on the same sample are in agreement and indicate the presence of 5-coordinated Mg with Mgsbnd O distances of 2.01Å. In aluminosilicate gels, Alsbnd K XANES has been used to investigate the [4]Al/Altotal ratios. These ratios increase as the Al/Si ratios decrease. Aluminosilicate and ferric-silicate gels were studied by using Sisbnd K edge XANES. XANES spectra differ significantly among the samples studied. Aluminosilicate gels with Al/Si= 1 present a different Al and Si local environment from that known in clay minerals with the same Al/Si ratio. The gel-to-mineral transformation thus implies a dissolution-recrystallization mechanism. On the contrary, ferric-silicate gel presents a Si local environment close to that found in nontronite which may be formed by a long range ordering of the initial gels.

  7. Prebiotic galacto-oligosaccharides mitigate the adverse effects of iron fortification on the gut microbiome: a randomised controlled study in Kenyan infants.

    Science.gov (United States)

    Paganini, Daniela; Uyoga, Mary A; Kortman, Guus A M; Cercamondi, Colin I; Moretti, Diego; Barth-Jaeggi, Tanja; Schwab, Clarissa; Boekhorst, Jos; Timmerman, Harro M; Lacroix, Christophe; Karanja, Simon; Zimmermann, Michael B

    2017-11-01

    Iron-containing micronutrient powders (MNPs) reduce anaemia in African infants, but the current high iron dose (12.5 mg/day) may decrease gut Bifidobacteriaceae and Lactobacillaceae , and increase enteropathogens, diarrhoea and respiratory tract infections (RTIs). We evaluated the efficacy and safety of a new MNP formula with prebiotic galacto-oligosaccharides (GOS) combined with a low dose (5 mg/day) of highly bioavailable iron. In a 4-month, controlled, double-blind trial, we randomised Kenyan infants aged 6.5-9.5 months (n=155) to receive daily (1) a MNP without iron (control); (2) the identical MNP but with 5 mg iron (2.5 mg as sodium iron ethylenediaminetetraacetate and 2.5 mg as ferrous fumarate) (Fe group); or (3) the identical MNP as the Fe group but with 7.5 g GOS (FeGOS group). Anaemia decreased by ≈50% in the Fe and FeGOS groups (pgut microbiome and morbidity in African infants. NCT02118402. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Solubility of iron in liquid lead

    International Nuclear Information System (INIS)

    Ali-Khan, I.

    1981-01-01

    The use of liquid lead in high temperature chemical and metallurgical processes is well known. The structural materials applied for the containment of these processes are either iron base alloys or possess iron as an alloying element. Besides that, lead itself is alloyed in some steels to achieve some very useful properties. For understanding the effect of liquid lead in such structural materials, it is important to determine the solubility of iron in liquid lead which would also be indicative of the stability of these alloys. At the institute of reactor materials of KFA Juelich, investigations have been conducted to determine the solubility of iron in liquid lead up to a temperature of about 1000 0 C. In this presentation the data concerning the solubility of iron in liquid lead are brought up to date and discussed including the results of our previous investigations. (orig.)

  9. Analytical applications of condensed phosphoric acid-I Determination of ferrous and total iron in iron ores after decomposition with condensed phosphoric acid.

    Science.gov (United States)

    Mizoguchi, T; Ishii, H

    1978-06-01

    A simple method is described for the determination of ferrous and total iron in iron ores. Iron ores are dissolved by condensed phosphoric acid (CPA) very rapidly without any tedious and time-consuming manipulations such as elimination of silica and filtration. Under the proposed conditions (amount of sample 100 mg, amount of CPA added 10 g, heating temperature 290 degrees , heating time 30 min), magnetite, limonite and hematite are completely dissolved. The iron content can be determined in the presence of condensed phosphoric acid by titration with dichromate solution, if a slight modification is made. The total iron in iron ores, determined by the present method, is in agreement with that found by the JIS method. The ferrous iron in iron ores can be determined by dissolving the samples with CPA in a nitrogen atmosphere and titrating with dichromate solution. Chelatometric titration of iron after solvent extraction with MIBK from solutions prepared by use of CPA is found to be accurate for samples such as pyrite cinder. The ability of CPA to dissolve various materials has been investigated.

  10. Increased lipid peroxidation in pregnant women after iron and vitamin C supplementation.

    Science.gov (United States)

    Lachili, B; Hininger, I; Faure, H; Arnaud, J; Richard, M J; Favier, A; Roussel, A M

    2001-11-01

    Iron overload could promote the generation of free radicals and result in deleterious cellular damages. A physiological increase of oxidative stress has been observed in pregnancy. A routine iron supplement, especially a combined iron and vitamin C supplementation, without biological justifications (low hemoglobin [Hb] and iron stores) could therefore aggravate this oxidative risk. We investigated the effect of a daily combined iron supplementation (100 mg/d as fumarate) and vitamin C (500 mg/d as ascorbate) for the third trimester of pregnancy on lipid peroxidation (plasma TBARS), antioxidant micronutriments (Zn, Se, retinol, vitamin E, (beta-carotene) and antioxidant metalloenzymes (RBC Cu-Zn SOD and Se-GPX). The iron-supplemented group (n = 27) was compared to a control group (n = 27), age and number of pregnancies matched. At delivery, all the women exhibited normal Hb and ferritin values. In the supplemented group, plasma iron level was higher than in the control group (26.90 +/- 5.52 mmol/L) and TBARs plasma levels were significantly enhanced (p cell antioxidant metalloenzymes. Furthermore, the alpha-tocopherol plasma level was lowered in the iron-supplemented groups, suggesting an increased utilization of vitamin E. These data show that pharmalogical doses of iron, associated with high vitamin C intakes, can result in uncontrolled lipid peroxidation. This is predictive of adverse effects for the mother and the fetus. This study illustrates the potential harmful effects of iron supplementation when prescribed only on the assumption of anemia and not on the bases of biological criteria.

  11. Iron oxides, divalent cations, silica, and the early earth phosphorus crisis

    DEFF Research Database (Denmark)

    Jones, C.; Nomosatryo, S.; Crowe, S.A.

    2015-01-01

    As a nutrient required for growth, phosphorus regulates the activity of life in the oceans. Iron oxides sorb phosphorus from seawater, and through the Archean and early Proterozoic Eons, massive quantities of iron oxides precipitated from the oceans, producing a record of seawater chemistry...... that is preserved as banded iron formations (BIFs) today. Here we show that Ca2+, Mg2+, and silica in seawater control phosphorus sorption onto iron oxides, influencing the record of seawater phosphorus preserved in BIFs. Using a model for seawater cation chemistry through time, combined with the phosphorus...... waters shifted from phosphorus to iron limiting....

  12. Uranium, thorium and rare earth elements distribution from different iron quadrangle spring waters

    International Nuclear Information System (INIS)

    Ferreira, Cláudia A.; Palmieri, Helena E.L.; Menezes, Maria A. de B.C.; Rodrigues, Paulo C.H.

    2017-01-01

    This study was conducted to evaluate the concentrations of thorium, uranium and the rare earth elements (REE) in 26 spring waters, as well as the patterns of the REE of the samples from the Cercadinho, Moeda and Caue aquifers in different municipalities of the Iron Quadrangle (Quadrilatero Ferrifero), located in the central-southeast of Minas Gerais state. The pH value of the ground waters ranged from 3.8 to 7.0, indicating an acid nature of most of the spring waters. The investigation of REE speciation showed that all the REEs exist in the free X"3"+ ionic forms, under the prevailing Eh and pH conditions. In the studied samples the uranium concentrations ( 1000 ng L"-"1) originating from aquifers located in Sabara, Barao de Cocais, Santa Barbara, Mario Campos, Congonhas and Lavras Novas. The REEs patterns in the spring waters from the Cercadinho, Caue and Moeda aquifers are characterized by middle REE (MREE) enrichment compared to light REE (LREE) and heavy REEs (HREE), negative Ce anomalies (except for one sample) and positive Eu anomalies in all three aquifers studied. (author)

  13. Efficiency of carbon removal per added iron in ocean iron fertilization

    NARCIS (Netherlands)

    de Baar, Hein J. W.; Gerringa, Loes J. A.; Laan, Patrick; Timmermans, Klaas R.

    2008-01-01

    The major response to ocean iron fertilization is by large diatoms, which at Fe-replete ambient seawater show an optimum C:Fe elemental ratio of similar to 23 000 and a higher ratio of similar to 160 000 or more under Fe-limited conditions. The efficiency of CO2 drawdown during the several weeks of

  14. The effect of iron plaque on uptake and translocation of norfloxacin in rice seedlings grown in paddy soil.

    Science.gov (United States)

    Yan, Dafang; Ma, Wei; Song, Xiaojing; Bao, Yanyu

    2017-03-01

    Although the role of iron plaque on rice root surface has been investigated in recent years, its effect on antibiotic uptake remains uncertain. In the study, pot experiment was conducted to investigate the effect of iron plaque on uptake and translocation of norfloxacin (adding 10 and 50 mg·kg -1 treatments) in rice seedlings grown in paddy soil. Iron plaque was induced by adding different amounts of Fe(II) in soil. The results showed that the presence of norfloxacin can decrease the amount of iron plaque induced. After rice with iron plaque induced, norfloxacin was mainly accumulated in iron plaque on root surface, followed by inside root, but its translocation from root to other rice tissues is not observed. Iron plaque played the role of a barrier for norfloxacin uptake into rice roots under high norfloxacin concentration of 50 mg·kg -1 , however not that under low concentration of 10 mg·kg -1 . And the barrier function was the most strongest with adding Fe(II) of 30 mg·kg -1 as combined action of iron plaque and rhizosphere effect. Fluorescence microscope analysis showed that norfloxacin mainly distributed in the outside of root cell, which showed its translocation as apoplastic pathway in rice. Comparing with non-rhizosphere, more norfloxacin was accumulated in rhizosphere soil. Maybe, strong root oxidization (high Eh values) induced more iron oxide formation in rhizosphere and on root surface, which led to norfloxacin's mobility towards to rhizosphere through its strong adsorption of iron oxides and then promoted its uptake by rice on root surface.

  15. Evaluation of some essential and trace elements in diets from 3 nurseries from Juiz de Fora, M.G., Brazil, by neutron activation analysis

    International Nuclear Information System (INIS)

    Favaro, D.I.T.; Maihara, V.A.; Zangrande, K.C.; Rodrigues, M.I.; Vasconcellos, M.B.A.; Chicourel, E.L.; Barra, L.G.; Cozzolino, S.M.F.

    2001-01-01

    A study was made in diets offered to a group of pre-school children, whose mean age was 67 months and remained the whole day in three day care centers from Juiz de Fora, M.G., Brazil. For sampling, the duplicate portion technique was used, and the diets were collected and analyzed separately each day in the 3 nurseries. Instrumental neutron activation analysis was applied to the determination of 16 elements. The daily dietary intake values were compared to the RDA (children 4-6 years old). Based on this reference, Ca, Fe, Se and Zn were found to be deficient, Mg and Mn were comparable to the RDA and the Cl and Na concentrations were higher compared to their RDA. For the other elements measured, there are no RDA's for children. (author)

  16. Removal of Iron and Manganese Using Cascade Aerator and Limestone Roughing Filter

    Directory of Open Access Journals (Sweden)

    Mohd Sanusi Azrin

    2016-01-01

    Full Text Available Combination between oxidation and filtration can be used for removing iron and manganese from groundwater especially when the concentrations of these metals were high. This study focused on the effectiveness of the cascade aerator and the size of the limestone filter media to remove iron and manganese from groundwater. Water samples used for this study were collected from orphanage home, Rumah Nur Kasih, Taiping. Universiti Sains Malaysia (USM has provided a tube well of 15 m depth and 150 mm diameter for the orphanage home. However, the water cannot be used for domestic consumption due to high amount of iron and manganese at 6.48 and 1.9 mg/L which exceeded the drinking water standard of 0.3 and 0.1 mg/L respectively. Using laboratory physical model, the study has shown that the removals of iron and manganese have reduce the concentration until 0.17 and 0.2 mg/L respectively. Thus, the results from this study which utilize cascade aerator and limestone roughing filter could be implemented on site for the community to use the ground water for domestic purposes.

  17. Acceptability and use of iron and iron-alloy cooking pots: implications for anaemia control programmes.

    Science.gov (United States)

    Tripp, Katherine; Mackeith, Nancy; Woodruff, Bradley A; Talley, Leisel; Mselle, Laurent; Mirghani, Zahra; Abdalla, Fathia; Bhatia, Rita; Seal, Andrew J

    2010-01-01

    To evaluate the acceptability of iron and iron-alloy cooking pots prior to an intervention trial and to investigate factors affecting retention and use. Pre-trial research was conducted on five types of iron and iron-alloy pots using focus group discussions and a laboratory evaluation of Fe transfer during cooking was undertaken. Usage and retention during the subsequent intervention trial were investigated using focus group discussions and market monitoring. Three refugee camps in western Tanzania. Refugee health workers were selected for pre-trial research. Mothers of children aged 6-59 months participated in the investigation of retention and use. Pre-trial research indicated that the stainless steel pot would be the only acceptable type for use in this population due to excessive rusting and/or the high weight of other types. Cooking three typical refugee dishes in stainless steel pots led to an increase in Fe content of 3.2 to 17.1 mg/100 g food (P basic acceptability criteria. The relatively low usage reported during the trial highlights the limitations of using high-value iron-alloy cooking pots as an intervention in populations where poverty and the availability of other pots may lead to selling.

  18. A model for Cryogenian iron formation

    Science.gov (United States)

    Cox, Grant M.; Halverson, Galen P.; Poirier, André; Le Heron, Daniel; Strauss, Justin V.; Stevenson, Ross

    2016-01-01

    The Neoproterozoic Tatonduk (Alaska) and Holowilena (South Australia) iron formations share many characteristics including their broadly coeval (Sturtian) ages, intimate association with glaciogenic sediments, and mineralogy. We show that these shared characteristics extend to their neodymium (εNd) and iron isotope (δ56Fe) systematics. In both regions δ56Fe values display a distinct up-section trend to isotopically heavier values, while εNd values are primitive and similar to non-ferruginous mudstones within these successions. The δ56Fe profiles are consistent with oxidation of ferruginous waters during marine transgression, and the εNd values imply that much of this iron was sourced from the leaching of continental margin sediments largely derived from continental flood basalts. Rare earth element data indicate a secondary hydrothermal source for this iron.

  19. Study of transfer of minor elements during ironmaking by neutron activation analysis

    International Nuclear Information System (INIS)

    Ene, A.; Pantelica, A.

    2010-01-01

    In this work instrumental neutron activation analysis (INAA) was applied to investigate a total of 30 samples of metallurgical raw materials (sinter, pellets, coke) and related finished products (pig iron. slag, blast-furnace flue dust) sampled from the same blast furnace discharge in the iron-making process in the Integrated Iron and Steel Works of Galati (Romania). The transfer efficiencies of minor elements As, Cu, K, Na, V and W from raw materials - iron-bearing components (sinter, pellets) and coke - to pig iron and their losses in slag and flue dust have been determined and a discussion of the behaviour of each element during the blast furnace process was done. (orig.)

  20. Isotope-aided studies of the bioavailability of iron from Myanmar diets

    International Nuclear Information System (INIS)

    Khin Maung Naing; Myo Khin

    1994-01-01

    A study was conducted to determine the dietary intakes and serum levels of iron and zinc in twenty apparently healthy Myanmar adults (10 males and 10 females), using atomic absorption spetrophotometry. The mean iron intake of females was found to be lower than the FAO/WHO recommended allowance whereas for men it was found to be adequate. The mean serum iron concentration in females was found to be significantly lower than in males (p 4· 7H 2 O, and 5g of sodium-hexa-metaphosphate thoroughly and then the mixture was again mixed with 1 kg of salt. This was done in July 1992. The stability of iron-fortified salt (i.e. change in colour of salt) as well as ferrous and ferric iron content of iron-fortified salt, were determined at monthly intervals. The iron-fortified salt was found to be stable up to the time of report writing, i.e. 3rd week of October, 1992. The ferrous iron content of salt was found to range between 0.95 to 0.98 mg Fe/g salt. Bioavailability studies of iron from two types of standard meals, one containing staple rice, 32 g of fish, water cress, watery fish paste and cucumber, and another containing boiled peas in place of fish, were conducted on two groups of male subjects using 59 Fe as an extrinsic tag. Bioavailability studies of iron from the above two types of meals cooked with iron-fortified salt (1 mg/g salt) were also conducted on the same groups of subjects using 59 Fe as an extrinsic tag. Reference dose absorption of iron will be conducted. This work is in progress. (author). 6 refs, 4 tabs

  1. Iron Supplementation during Three Consecutive Days of Endurance Training Augmented Hepcidin Levels

    Directory of Open Access Journals (Sweden)

    Aya Ishibashi

    2017-07-01

    Full Text Available Iron supplementation contributes an effort to improving iron status among athletes, but it does not always prevent iron deficiency. In the present study, we explored the effect of three consecutive days of endurance training (twice daily on the hepcidin-25 (hepcidin level. The effect of iron supplementation during this period was also determined. Fourteen male endurance athletes were enrolled and randomly assigned to either an iron-treated condition (Fe condition, n = 7 or a placebo condition (Control condition; CON, n = 7. They engaged in two 75-min sessions of treadmill running at 75% of maximal oxygen uptake on three consecutive days (days 1–3. The Fe condition took 12 mg of iron twice daily (24 mg/day, and the CON condition did not. On day 1, both conditions exhibited significant increases in serum hepcidin and plasma interleukin-6 levels after exercise (p < 0.05. In the CON condition, the hepcidin level did not change significantly throughout the training period. However, in the Fe condition, the serum hepcidin level on day 4 was significantly higher than that of the CON condition (p < 0.05. In conclusion, the hepcidin level was significantly elevated following three consecutive days of endurance training when moderate doses of iron were taken.

  2. Iron Supplementation during Three Consecutive Days of Endurance Training Augmented Hepcidin Levels.

    Science.gov (United States)

    Ishibashi, Aya; Maeda, Naho; Kamei, Akiko; Goto, Kazushige

    2017-07-30

    Iron supplementation contributes an effort to improving iron status among athletes, but it does not always prevent iron deficiency. In the present study, we explored the effect of three consecutive days of endurance training (twice daily) on the hepcidin-25 (hepcidin) level. The effect of iron supplementation during this period was also determined. Fourteen male endurance athletes were enrolled and randomly assigned to either an iron-treated condition (Fe condition, n = 7) or a placebo condition (Control condition; CON, n = 7). They engaged in two 75-min sessions of treadmill running at 75% of maximal oxygen uptake on three consecutive days (days 1-3). The Fe condition took 12 mg of iron twice daily (24 mg/day), and the CON condition did not. On day 1, both conditions exhibited significant increases in serum hepcidin and plasma interleukin-6 levels after exercise ( p < 0.05). In the CON condition, the hepcidin level did not change significantly throughout the training period. However, in the Fe condition, the serum hepcidin level on day 4 was significantly higher than that of the CON condition ( p < 0.05). In conclusion, the hepcidin level was significantly elevated following three consecutive days of endurance training when moderate doses of iron were taken.

  3. Rapid quantification of iron content in fish sauce and soy sauce: a promising tool for monitoring fortification programs.

    Science.gov (United States)

    Laillou, Arnaud; Icard-Vernière, Christèle; Rochette, Isabelle; Picq, Christian; Berger, Jacques; Sambath, Pol; Mouquet-Rivier, Claire

    2013-06-01

    In a number of Southeast Asian countries and China, fish sauce and soy sauce produced at the industrial level are fortified with iron. Unfortunately, the food producers and regulatory agencies implementing fortification programs do not always have the capacity to monitor the programs on an ongoing basis. To assess a new portable device for the quantitative measurement of iron content of fortified sauces that could be used to control fortification levels. The linearity, detection limits, and inter- and intraassay variability of this device were assessed on fish sauce and soy sauce fortified with ferrous sulfate, ferrous fumarate, and sodium iron ethylenediaminetetraacetate (NaFeEDTA); the accuracy of the results was determined by comparing them with the results obtained by atomic absorption spectrophotometry. Measurements required a minimum incubation time of 1 hour for iron sulfate or iron fumarate and 24 hours for NaFeEDTA. Linearity of the results ranged from 2 to 10 mg iron/L for ferrous sulfate or ferrous fumarate and from 1 to 10 mg iron/L for NaFeEDTA, implying the need for proper dilution, as the iron contents of fortified sauce are usually in the range of 150 to 1,000 mg/L. Depending on incubation time, iron compounds, and sauces, the coefficient of variation (CV) of intraassay precision was between 1.5% and 7.6% and the CV of interassay precision was between 2.9% and 7.4%. Comparison with results from atomic absorption spectrophotometry showed high agreement between both methods, with R = 0.926 and R = 0.935 for incubation times of 1 hour and 24 hours, respectively. The Bland-Altman plots showed limits of agreement between the two methods of +/- 70 mg/L in the range of fortification levels tested (100 to 500 mg/L). CONCLUSIONS; This device offers a viable method for field monitoring of iron fortification of soy and fish sauces after incubation times of 1 hour for ferrous sulfate or ferrous fumarate and 24 hours for NaFeEDTA.

  4. Investigation of the levels of some element in edible oil samples produced in Turkey by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mendil, Durali; Uluoezlue, Ozguer Dogan; Tuezen, Mustafa; Soylak, Mustafa

    2009-01-01

    The element contents (Fe, Mn, Zn, Cu, Pb, Co, Cd, Na, K, Ca and Mg) in edible oils (olive oil, hazelnut oil, sunflower oil, margarine, butter and corn oil) from Turkey were determined using atomic absorption spectrometry after microwave digestion. The concentrations of trace element in the samples were found to be 291.0-52.0, 1.64-0.04, 3.08-1.03, 0.71-0.05, 0.03-0.01, 1.30-0.50, 84.0-0.90, 50.1-1.30, 174.2-20.8 and 20.8-0.60 μg/g for iron, manganese, zinc, copper, lead, cobalt, sodium, potassium, calcium, and magnesium, respectively. Cadmium was found to be 4.57-0.09 μg/kg. The high heavy metal and minerals accumulation levels in the samples were found in olive oil for Cu, Pb, Co, margarine for Fe, K, corn oil for Zn, Mn, butter for Na, Mg, sunflower oil for Ca and hazelnut oil for Cd, respectively.

  5. The pH dependence of silicon-iron interaction in rats.

    Science.gov (United States)

    Jia, X; Emerick, R J; Kayongo-Male, H

    1997-01-01

    A 2 x 2 x 3 factorial experiment was conducted to study the pH dependence of a silicon-iron interaction in vivo. The dietary treatments used in the factorial design were the following (mg/kg of diet): silicon, 0 and 500; iron, 35 and 187; acid-base, ammonium chloride as 0.5% of total diet (acidic), sodium bicarbonate as 1.0% of total diet (basic), or no supplementation of acid or base (control). The supplementation of 500 mg silicon/kg of diet increased plasma-iron concentration in rats fed the acidic or control diets, but not in rats fed the basic diet. A high dietary-iron level suppressed copper absorption and utilization and subsequently imposed a negative effect on its own utilization. An increase in the plasma total-cholesterol concentration caused by high dietary-iron level was likely a consequence of the antagonistic effect of iron on copper absorption and utilization. The use of cupric sulfate pentahydrate as the dietary-copper source in this study resulted in plasma copper concentrations that were approximately twice those obtained in a related study using cupric carbonate. Also, a 42% coefficient of variation (C.V.) for plasma-copper concentrations of rats fed cupric sulfate in this study was greatly reduced from the C.V. = 108% previously associated with the dietary cupric carbonate.

  6. Fuel element

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1976-01-01

    A fuel element for nuclear reactors is proposed which has a higher corrosion resisting quality in reactor operations. The zirconium alloy coating around the fuel element (uranium or plutonium compound) has on its inside a protection layer of metal which is metallurgically bound to the substance of the coating. As materials are namned: Alluminium, copper, niobium, stainless steel, and iron. This protective metallic layer has another inner layer, also metallurgically bound to its surface, which consists usually of a zirconium alloy. (UWI) [de

  7. Bioconcentration of manganese and iron in Panaeoloideae Sing

    OpenAIRE

    Stijve, T.; Blake, C.

    1994-01-01

    According to literature, the manganese content of most basidiomycetes fluctuates between 10 and 60 mg/kg, whereas the iron levels range from 100-500 mg/kg (both expressed on dry weight). The present authors report that bioconcentration of manganese is a distinguishing feature of the Panaeoloideae, as demonstrated by the analysis of 44 collections representing 15 taxons. Carpophores generally contain between 250 and 2500 mg/kg on dry weight, and, with the notable exception of Panaeolus semiova...

  8. Arsenic and iron removal from groundwater by oxidation–coagulation at optimized pH: Laboratory and field studies

    International Nuclear Information System (INIS)

    Bordoloi, Shreemoyee; Nath, Suresh K.; Gogoi, Sweety; Dutta, Robin K.

    2013-01-01

    Highlights: • Arsenic and iron removed by a systematic oxidation–coagulation at optimized pH. • Used KMnO 4 as oxidant and FeCl 3 as coagulant in presence of NaHCO 3 . • Field trial results are highly encouraging. • The method is efficient, safe, simple and low-cost. • The method is suitable for rural application in developing countries. -- Abstract: A three-step treatment process involving (i) mild alkaline pH-conditioning by NaHCO 3 ; (ii) oxidation of arsenite and ferrous ions by KMnO 4 , itself precipitating as insoluble MnO 2 under the pH condition; and (iii) coagulation by FeCl 3 has been used for simultaneous removal of arsenic and iron ions from water. The treated water is filtered after a residence time of 1–2 h. Laboratory batch experiments were performed to optimize the doses. A field trial was performed with an optimized recipe at 30 households and 5 schools at some highly arsenic affected villages in Assam, India. Simultaneous removals of arsenic from initial 0.1–0.5 mg/L to about 5 μg/L and iron from initial 0.3–5.0 mg/L to less than 0.1 mg/L have been achieved along with final pH between 7.0 and 7.5 after residence time of 1 h. The process also removes other heavy elements, if present, without leaving any additional toxic residue. The small quantity of solid sludge containing mainly ferrihydrite with adsorbed arsenate passes the toxicity characteristic leaching procedure (TCLP) test. The estimated recurring cost is approximately USD 0.16 per/m 3 of purified water. A high efficiency, an extremely low cost, safety, non-requirement of power and simplicity of operation make the technique potential for rural application

  9. Arsenic and iron removal from groundwater by oxidation–coagulation at optimized pH: Laboratory and field studies

    Energy Technology Data Exchange (ETDEWEB)

    Bordoloi, Shreemoyee; Nath, Suresh K.; Gogoi, Sweety; Dutta, Robin K., E-mail: robind@tezu.ernet.in

    2013-09-15

    Highlights: • Arsenic and iron removed by a systematic oxidation–coagulation at optimized pH. • Used KMnO{sub 4} as oxidant and FeCl{sub 3} as coagulant in presence of NaHCO{sub 3}. • Field trial results are highly encouraging. • The method is efficient, safe, simple and low-cost. • The method is suitable for rural application in developing countries. -- Abstract: A three-step treatment process involving (i) mild alkaline pH-conditioning by NaHCO{sub 3}; (ii) oxidation of arsenite and ferrous ions by KMnO{sub 4}, itself precipitating as insoluble MnO{sub 2} under the pH condition; and (iii) coagulation by FeCl{sub 3} has been used for simultaneous removal of arsenic and iron ions from water. The treated water is filtered after a residence time of 1–2 h. Laboratory batch experiments were performed to optimize the doses. A field trial was performed with an optimized recipe at 30 households and 5 schools at some highly arsenic affected villages in Assam, India. Simultaneous removals of arsenic from initial 0.1–0.5 mg/L to about 5 μg/L and iron from initial 0.3–5.0 mg/L to less than 0.1 mg/L have been achieved along with final pH between 7.0 and 7.5 after residence time of 1 h. The process also removes other heavy elements, if present, without leaving any additional toxic residue. The small quantity of solid sludge containing mainly ferrihydrite with adsorbed arsenate passes the toxicity characteristic leaching procedure (TCLP) test. The estimated recurring cost is approximately USD 0.16 per/m{sup 3} of purified water. A high efficiency, an extremely low cost, safety, non-requirement of power and simplicity of operation make the technique potential for rural application.

  10. Direct Biohydrometallurgical Extraction of Iron from Ore

    Energy Technology Data Exchange (ETDEWEB)

    T.C. Eisele

    2005-10-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe{sup +2}) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron.

  11. Fluoride-induced iron overload contributes to hepatic oxidative damage in mouse and the protective role of Grape seed proanthocyanidin extract.

    Science.gov (United States)

    Niu, Qiang; He, Ping; Xu, Shangzhi; Ma, Ruling; Ding, Yusong; Mu, Lati; Li, Shugang

    2018-01-01

    Emerging evidence has demonstrated that iron overload plays an important role in oxidative stress in the liver. This study aimed to explore whether fluoride-induced hepatic oxidative stress is associated with iron overload and whether grape seed proanthocyanidin extract (GSPE) alleviates oxidative stress by reducing iron overload. Forty Kunming male mice were randomly divided into 4 groups and treated for 5 weeks with distilled water (control), sodium fluoride (NaF) (100 mg/L), GSPE (400 mg/kg bw), or NaF (100 mg/L) + GSPE (400 mg/kg bw). Mice exposed to NaF showed typical poisoning changes of morphology, increased aspartate aminotransferase and alanine aminotransferase activities in the liver. NaF treatment also increased MDA accumulation, decreased GSH-Px, SOD and T-AOC levels in liver, indicative of oxidative stress. Intriguingly, all these detrimental effects were alleviated by GSPE. Further study revealed that NaF induced disorders of iron metabolism, as manifested by elevated iron level with increased hepcidin but decreased ferroportin expression, which contributed to hepatic oxidative stress. Importantly, the iron dysregulation induced by NaF could be normalized by GSPE. Collectively, these data provide a novel insight into mechanisms underlying fluorosis and highlight the potential of GSPE as a naturally occurring prophylactic treatment for fluoride-induced hepatotoxicity associated with iron overload.

  12. The Role of Serum Copper and Iron in Oral Submucous Fibrosis

    Directory of Open Access Journals (Sweden)

    Master Luquman

    2004-01-01

    Full Text Available Oral submucous fibrosis (OSMF is a chronic insidious disease of multifactorial etiology. The habit of chewing arecanut is thought to be one of the most important etiologic factors. Copper and iron are elements in the human body that form part of important enzymes. We estimated the serum copper and iron in patients with OSMF as well as normal controls and discuss the role of these elements in the etiology of OSMF.

  13. Plant mechanisms of siderophore-iron utilization

    International Nuclear Information System (INIS)

    Crowley, D.E.

    1986-01-01

    Mechanisms of siderophore iron-utilization by plants were examined to determine whether plants have direct mechanisms for acquiring iron from microbially-produced hydroxamate siderophores or simply take up inorganic iron in equilibrium with the chelate (shuttle mechanism). Experiments were designed to determine whether the monocot plant species, oat (Avena sativa L. cv. Victory) could acquire iron from ferrichrome under hydroponic conditions in which iron uptake was most likely to occur by direct use of the chelating agent. Ten-day-old iron-deficient seedlings, grown in aerated Hoagland's nutrient solution (minus iron) buffered at pH 7.4 with CaCO 3 , were placed in fresh nutrient solution containing 10/sup -7.4/M radioactive 55 FeCl 3 (23.7 mCi/mg) with the synthetic chelate, EDDHA (10π 5 M), ferrichrome (10 -5 M), or with no chelate. After 6 days, shoot content of 55 Fe in shoots of plants provided with ferrichrome was 100-fold greater than that in shoots of plants provided with EDDHA. Therefore iron uptake by oat under these conditions not only indicates direct use of ferrichrome, but also suggest that oat may be better able to acquire iron from siderophores than from synthetic chelates. One possible mechanism for direct use of chelating agents, may involve siderophore binding sites on the plasmalemma of root cortical cells where iron is split from the chelate by enzymatic reduction of ferric to ferrous iron. To demonstrate hypothesized siderophore binding sites on oat roots, experiments examined possible competition for presumed siderophore binding sites by an inert analog of ferrichrome constructed by irreversible chelation with chromium

  14. Elemental Composition of Two Rice Cultivars under Potentially Toxic an Aquept and Aquent

    Directory of Open Access Journals (Sweden)

    Adesola Olutayo OLALEYE

    2009-12-01

    Full Text Available Iron toxicity is a major nutrient disorder affecting rice production of wetland rice in the irrigated and rainfed ecosystem in West Africa sub-region. Little attention has been paid to evaluating nutrient contents of rice cultivars grown on such soils and their relationship to the iron toxicity scores, grain yield and dry matter yields. A pot experiment was conducted on two potentially Fe-toxic soils (Aeric Fluvaquent and Aeric Tropaquept. The experiment was a 2 x 2 x 4 factorial experiment with three replicates in arranged in a randomized fashion. The factors were two soil types, two rice cultivars (ITA 212 and tolerant (Suakoko 8 and four Fe 2+ levels (control, 1000, 3000 and 4000 mg L-1. The result showed that for both susceptible cultivar (ITA 212 and the relatively tolerant (Suakoko 8 cultivar, little or no differences were observed in their elemental composition with regards to micro and macro-nutrients. For the susceptible cultivar, results showed that none of the tissue nutrients significantly relates to iron toxicity scores (ITS, grain yield and dry matter yield on both soil types. However, for the tolerant cultivar, ITS was observed to be significantly related to tissue K and P contents on the two soil types respectively. Tissue Ca and Mg were observed to be significantly related to the dry matter yield (DMY on Aeric Tropquept. It could be concluded that for these rice cultivars grown on two potentially Fe-toxic soils, different tissue nutrients may trigger the manifestation of bronzing or yellowing symptoms of rice cultivars.

  15. Experimental constraints on light elements in the Earth’s outer core

    OpenAIRE

    Youjun Zhang; Toshimori Sekine; Hongliang He; Yin Yu; Fusheng Liu; Mingjian Zhang

    2016-01-01

    Earth?s outer core is liquid and dominantly composed of iron and nickel (~5?10?wt%). Its density, however, is ~8% lower than that of liquid iron, and requires the presence of a significant amount of light element(s). A good way to specify the light element(s) is a direct comparison of density and sound velocity measurements between seismological data and those of possible candidate compositions at the core conditions. We report the sound velocity measurements of a model core composition in th...

  16. Electrochemical removal of hexavalent chromium from wastewater using Platinum-Iron/Iron-carbon nanotubes and bipolar Electrodes

    Directory of Open Access Journals (Sweden)

    Hoshyar Hossini

    2015-01-01

    Full Text Available Background: In recent decades, electrocoagulation (EC has engrossed much attention as an environmental-friendly and effectiveness process. In addition, the EC process is a potential suitable way for treatment of wastewater with concern to costs and environment. The object of this study was electrochemical evaluation of chromium removal from industrial wastewater using Platinum and carbon nanotubes electrodes. Materials and Methods: The effect of key variables including pH (3–9, hexavalent chromium concentration (50–300 mg/l, supporting electrolyte (NaCl, KCl, Na2CO3 and KNO3 and its dosage, Oxidation-Reduction variations, sludge generation rate and current density (2–20 mA/cm2 was determined. Results: Based on experimental data, optimum conditions were determined in 20, 120 min, pH 3, NaCl 0.5% and 100 mg/L initial concentration of chromium. Conclusions: Removal of hexavalent chromium from the wastewater could be successfully performanced using Platinum-Iron/Iron-carbon nanotubes and bipolar Electrodes.

  17. Identification of a cast iron alloy containing nonstrategic elements

    Science.gov (United States)

    Cooper, C. V.; Anton, D. L.; Lemkey, F. D.; Nowotny, H.; Bailey, R. S.; Favrow, L. H.; Smeggil, J. G.; Snow, D. B.

    1989-01-01

    A program was performed to address the mechanical and environmental needs of Stirling engine heater head and regenerator housing components, while reducing the dependence on strategic materials. An alloy was developed which contained no strategic elemental additions per se. The base is iron with additions of manganese, molybdenum, carbon, silicon, niobium, and ferro-chromium. Such an alloy should be producible on a large scale at very low cost. The resulting alloy, designated as NASAUT 4G-Al, contained 15 Mn, 15 Cr, 2 Mo, 1.5 C, 1.0 Si, 1.0 Nb (in weight percent) with a balance of Fe. This alloy was optimized for chemistry, based upon tensile strength, creep-rupture strength, fracture behavior, and fatigue resistance up to 800 C. Alloys were also tested for environmental compatibility. The microstructure and mechanic properties (including hardness) were assessed in the as-cast condition and following several heat treatments, including one designed to simulate a required braze cycle. The alloy was fabricated and characterized in the form of both equiaxed and columnar-grained castings. The columnar grains were produced by directional solidification, and the properties were characterized in both the longitudinal and transverse orientations. The NASAUT 4G-Al alloy was found to be good in cyclic-oxidation resistance and excellent in both hydrogen and hot-corrosion resistance, especially in comparison to the baseline XF-818 alloy. The mechanical properties of yield strength, stress-rupture life, high-cycle-fatigue resistance, and low-cycle-fatigue resistance were good to excellent in comparison to the current alloy for this application, HS-31 (X-40), with precise results depending in a complex manner on grain orientation and temperature. If required, the ductility could be improved by lowering the carbon content.

  18. CHRONIC HEART FAILURE AND IRON-DEFICIENT ANEMIA

    Directory of Open Access Journals (Sweden)

    M. V. Melnik

    2015-12-01

    Full Text Available 62 chronic heart failure (CHF patients with iron-deficient anemia (IDA were studied. Standard CHF therapy (angiotensin converting enzyme inhibitors, β-blockers, diuretics, cardiac glycosides was accompanied with the correction of iron deficiency by intravenous injection of Venofer and subsequent Ferro-Folgamma prescription (average daily dose of iron 137,75±5mg. After treatment serum iron level increased by 95,5% and hemoglobin level – by 9,8%. Left ventricular ejection fraction increased by 32,2% and physical activity tolerance – by 47,6%. Before treatment 32 CHF patients with IDA (51,6% had III functional class (FC of CHF according to NYHA and 16 patients (25,8% – IV FC. After treatment I FC was observed in 18 CHF patients (29%, II FC – in 26 patients and only 18 patients demonstrated III FC of CHF.

  19. CHRONIC HEART FAILURE AND IRON-DEFICIENT ANEMIA

    Directory of Open Access Journals (Sweden)

    M. V. Melnik

    2007-01-01

    Full Text Available 62 chronic heart failure (CHF patients with iron-deficient anemia (IDA were studied. Standard CHF therapy (angiotensin converting enzyme inhibitors, β-blockers, diuretics, cardiac glycosides was accompanied with the correction of iron deficiency by intravenous injection of Venofer and subsequent Ferro-Folgamma prescription (average daily dose of iron 137,75±5mg. After treatment serum iron level increased by 95,5% and hemoglobin level – by 9,8%. Left ventricular ejection fraction increased by 32,2% and physical activity tolerance – by 47,6%. Before treatment 32 CHF patients with IDA (51,6% had III functional class (FC of CHF according to NYHA and 16 patients (25,8% – IV FC. After treatment I FC was observed in 18 CHF patients (29%, II FC – in 26 patients and only 18 patients demonstrated III FC of CHF.

  20. Determination of essential elements in milk and urine of camel and in nigella sativa Seeds

    International Nuclear Information System (INIS)

    AI-Attas, A.S.

    2009-01-01

    Studies on milk and urine of camel and Nigella sativa seeds, either with respect to concentration or bioavailability of major and trace essential elements of these materials are limited and warrant further investigation. The objective of this study was to analyze urine, milk of camel and Nigella sativa for some element using neutron activation analysis. Camel milk and urine have higher concentration of Na than Nigella sativa seeds but K concentration in camel urine and Nigella sativa is higher than that of milk. The Ca and Mg concentration in Nigella sativa seeds are higher than that in milk and urine. The concentration of iron and Zn in Nigella sativa is high. The concentration of Co and Cr in urine is higher than in Nigella sativa and camel milk Se is detected only in urine's camel. Nigella sativa seeds contain more trace elements as Sr, Al, Rb, Ba and La.

  1. Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion.

    Science.gov (United States)

    Cheng, Wei-Hung; Huang, Kuo-Yang; Huang, Po-Jung; Hsu, Jo-Hsuan; Fang, Yi-Kai; Chiu, Cheng-Hsun; Tang, Petrus

    2015-07-25

    Iron plays a pivotal role in the pathogenesis of Trichomonas vaginalis, the causative agent of highly prevalent human trichomoniasis. T. vaginalis resides in the vaginal region, where the iron concentration is constantly changing. Hence, T. vaginalis must adapt to variations in iron availability to establish and maintain an infection. The free radical signaling molecules reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been proven to participate in iron deficiency in eukaryotes. However, little is known about the roles of these molecules in iron-deficient T. vaginalis. T. vaginalis cultured in iron-rich and -deficient conditions were collected for all experiments in this study. Next generation RNA sequencing was conducted to investigate the impact of iron on transcriptome of T. vaginalis. The cell viabilities were monitored after the trophozoites treated with the inhibitors of nitric oxide (NO) synthase (L-NG-monomethyl arginine, L-NMMA) and proteasome (MG132). Hydrogenosomal membrane potential was measured using JC-1 staining. We demonstrated that NO rather than ROS accumulates in iron-deficient T. vaginalis. The level of NO was blocked by MG132 and L-NMMA, indicating that NO production is through a proteasome and arginine dependent pathway. We found that the inhibition of proteasome activity shortened the survival of iron-deficient cells compared with untreated iron-deficient cells. Surprisingly, the addition of arginine restored both NO level and the survival of proteasome-inhibited cells, suggesting that proteasome-derived NO is crucial for cell survival under iron-limited conditions. Additionally, NO maintains the hydrogenosomal membrane potential, a determinant for cell survival, emphasizing the cytoprotective effect of NO on iron-deficient T. vaginalis. Collectively, we determined that NO produced by the proteasome prolonged the survival of iron-deficient T. vaginalis via maintenance of the hydrogenosomal functions. The findings in this

  2. The Solar Twin Planet Search. III. The [Y/Mg] clock: estimating stellar ages of solar-type stars

    Science.gov (United States)

    Tucci Maia, M.; Ramírez, I.; Meléndez, J.; Bedell, M.; Bean, J. L.; Asplund, M.

    2016-05-01

    Context. Solar twins are stars with similar stellar (surface) parameters to the Sun that can have a wide range of ages. This provides an opportunity to analyze the variation of their chemical abundances with age. Nissen (2015, A&A, 579, A52) recently suggested that the abundances of the s-process element Y and the α-element Mg could be used to estimate stellar ages. Aims: This paper aims to determine with high precision the Y, Mg, and Fe abundances for a sample of 88 solar twins that span a broad age range (0.3-10.0 Gyr) and investigate their use for estimating ages. Methods: We obtained high-quality Magellan Inamori Kyocera Echelle (MIKE) spectra and determined Y and Mg abundances using equivalent widths and a line-by-line differential method within a 1D LTE framework. Stellar parameters and iron abundances were measured in Paper I of this series for all stars, but a few (three) required a small revision. Results: The [Y/Mg] ratio shows a strong correlation with age. It has a slope of -0.041 ± 0.001 dex/Gyr and a significance of 41σ. This is in excellent agreement with the relation first proposed by Nissen (2015). We found some outliers that turned out to be binaries where mass transfer may have enhanced the yttrium abundance. Given a precise measurement of [Y/Mg] with typical error of 0.02 dex in solar twins, our formula can be used to determine a stellar age with ~0.8 Gyr precision in the 0 to 10 Gyr range. Based on observations obtained at the Clay Magellan Telescopes at Las Campanas Observatory, Chile and at the 3.6 m Telescope at the La Silla ESO Observatory, Chile (program ID 188.C-0265).

  3. Removal of iron interferences by solvent extraction for geochemical analysis by atomic-absorption spectrophotometry

    Science.gov (United States)

    Zhou, L.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    Iron is a common interferent in the determination of many elements in geochemical samples. Two approaches for its removal have been taken. The first involves removal of iron by extraction with methyl isobutyl ketone (MIBK) from hydrochloric acid medium, leaving the analytes in the aqueous phase. The second consists of reduction of iron(III) to iron(II) by ascorbic acid to minimize its extraction into MIBK, so that the analytes may be isolated by extraction. Elements of interest can then be determined using the aqueous solution or the organic extract, as appropriate. Operating factors such as the concentration of hydrochloric acid, amounts of iron present, number of extractions, the presence or absence of a salting-out agent, and the optimum ratio of ascorbic acid to iron have been determined. These factors have general applications in geochemical analysis by atomic-absorption spectrophotometry. ?? 1985.

  4. A COMMUNITY BASED RANDOMIZED CONTROLLED TRIAL OF IRON AND ZINC SUPPLEMENTATION IN INFANTS: EFFECTS ON GROWTH AND DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    T. Lind

    2006-01-01

    Full Text Available Deficiencies of iron and zinc are associated with delayed development, growth faltering, and increased infectious disease morbidity during infancy and childhood. Combined iron and zinc supplementation may therefore be a logical preventive strategy. Objective: the objective of the study was to compare the effects of combined iron and zinc supplementation in infancy with the effects of iron and zinc as single micronutrients on growth, psychomotor development, and incidence of infectious disease. Design: Indonesian infants (n = 680 were randomly assigned to daily supplementation with 10 mg Fe (Fe group, 10 mg Zn (Zn group, 10 mg Fe and 10 mg Zn (Fe + Zn group, or placebo from 6 to 12 mo of age. Anthropometric indexes, developmental indexes (bay ley scales of infant development; sid, and morbidity were recorded. Results: at 12 mo, two factor analysis of variance showed a significant interaction between Iron and Zinc for weight for age z score, knee heel length, and sid psychomotor development. Weight forage z score was higher in the Zn group than in the placebo and Fe + Zn groups, knee heel length was higher in the Zn and Fe groups than in the placebo group, and the sid psychomotor development index was higher in the Fe group than in the placebo group. No significant effect on morbidity was found. Conclusions: single supplementation with zinc significantly improved growth, and single supplementation with iron significantly improved growth and psychomotor development, but combined supplementation with iron and zinc had no significant effect on growth or development. Combined, simultaneous supplementation with iron and zinc to infants cannot be routinely recommended at the iron to zinc ratio used in this study.Key words: infants, growth, knee heel length, development, iron, zinc.

  5. Iron oxides in human spleen.

    Science.gov (United States)

    Kopáni, Martin; Miglierini, Marcel; Lančok, Adriana; Dekan, Július; Čaplovicová, Mária; Jakubovský, Ján; Boča, Roman; Mrazova, Hedviga

    2015-10-01

    Iron is an essential element for fundamental cell functions and a catalyst for chemical reactions. Three samples extracted from the human spleen were investigated by scanning (SEM) and transmission electron microscopy (TEM), Mössbauer spectrometry (MS), and SQUID magnetometry. The sample with diagnosis of hemosiderosis (H) differs from that referring to hereditary spherocytosis and the reference sample. SEM reveals iron-rich micrometer-sized aggregate of various structures-tiny fibrils in hereditary spherocytosis sample and no fibrils in hemochromatosis. Hematite and magnetite particles from 2 to 6 μm in TEM with diffraction in all samples were shown. The SQUID magnetometry shows different amount of diamagnetic, paramagnetic and ferrimagnetic structures in the tissues. The MS results indicate contribution of ferromagnetically split sextets for all investigated samples. Their occurrence indicates that at least part of the sample is magnetically ordered below the critical temperature. The iron accumulation process is different in hereditary spherocytosis and hemosiderosis. This fact may be the reason of different iron crystallization.

  6. Accelerated remediation of pesticide-contaminated soil with zerovalent iron

    Energy Technology Data Exchange (ETDEWEB)

    Shea, P.J. [University of Nebraska-Lincoln, Lincoln, NE 68583-0915 (United States)]. E-mail: pshea@unl.edu; Machacek, T.A. [University of Nebraska-Lincoln, Lincoln, NE 68583-0915 (United States); Comfort, S.D. [University of Nebraska-Lincoln, Lincoln, NE 68583-0915 (United States)

    2004-11-01

    High pesticide concentrations in soil from spills or discharges can result in point-source contamination of ground and surface waters. Cost-effective technologies are needed for on-site treatment that meet clean-up goals and restore soil function. Remediation is particularly challenging when a mixture of pesticides is present. Zerovalent iron (Fe{sup 0}) has been shown to promote reductive dechlorination and nitro group reduction of a wide range of contaminants in soil and water. We employed Fe{sup 0} for on-site treatment of soil containing >1000 mg metolachlor, >55 mg alachlor, >64 mg atrazine, >35 mg pendimethalin, and >10 mg chlorpyrifos kg{sup -1}. While concentrations were highly variable within the windrowed soil, treatment with 5% (w/w) Fe{sup 0} resulted in >60% destruction of the five pesticides within 90 d and increased to >90% when 2% (w/w) Al{sub 2}(SO{sub 4}){sub 3} was added to the Fe{sup 0}. GC/MS analysis confirmed dechlorination of metolachlor and alachlor during treatment. Our observations support the use of Fe{sup 0} for ex situ treatment of pesticide-contaminated soil. - Capsule: Zerovalent iron promotes pesticide degradation in highly contaminated soil.

  7. Methodology for determination of trace elements in mineral phases of iron banded formation by LA-ICP-MS; Metodologia de determinacao de elementos-traco em fases minerais de formacoes ferriferas bandadas por LA-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Denise V.M. de; Nalini Junior, Herminio A.; Sampaio, Geraldo M.S.; Abreu, Adriana T. de; Lana, Cristiano de C., E-mail: deniseversiane2@yahoo.com.br, E-mail: nalini@degeo.ufop.br, E-mail: geraldomssampaio@gmail.com, E-mail: adrianatropia@gmail.com, E-mail: cristianodeclana@gmail.com [Universidade Federal de Ouro Preto (DEGEO/UFOP), Ouro Preto, MG (Brazil). Departamento de Geologia

    2015-07-01

    The study of the chemical composition of mineral phases of iron formation (FF), especially of trace elements, is an important tool in the understanding of the genesis of these rocks and the contribution of the phases in the composition of whole rock. Low mass fraction of such elements in the mineral phases present in this rock type requires a suitable analytical procedure. The laser ablation technique coupled with ICP-MS (LA-ICP-MS) has been widely used for determination of trace elements in geological samples. Thus, the aim of this study is to develop calibration curves for determination of trace elements (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) in mineral phases of banded iron formations by LA-ICP-MS. Several certified reference materials (CRM) were used for calibrate the equipment. The analytical conditions were checked by CRM NIST SRM 614. The results were satisfactory, since the curves showed good linearity coefficients, good accuracy and precision of results. (author)

  8. Multi-element analysis of wheat flour and white bread by neutron activation

    International Nuclear Information System (INIS)

    Godinez A, M.A.

    1994-01-01

    One of the best source of feeding even for the human being as for animals are the Cereals. Although they are mainly energetic aliment, due to its composition in starch, they are a very important source of proteins and amino acids. They contribute mineral elements to the diet. Even those elements constitute a very small part of the total diet, they take a very important place in many human metabolic processes. To make a multielemental analysis of an aliment is very important that we are based on a very sensible analytic technique so we are able to find them, just as the Neutronic Activation. This Nuclear technique allows you to make a qualitative and quantitative analysis of the elements that are in a sample, but it does n't show the way in which the elements are presented. It is based in turning those elements into radioactive ones through its exposition to an uniform and constant fluid of neutrons, so then its radioactivity can be determined. The present work has as a main purpose to make a multielemental analysis of the wheat flour and white bread through the Neutronic Activation Technique, using the comparator method and establishing previously the most appropriate work conditions as much irradiation as digestion and measuring of the radioactivity of the sample. In this way, it was able to know that the wheat flour has potassium, chlorine, magnesium, sodium, iron, zinc, manganese, rubidium and selenium elements in a concentration of 2000, 700, 500, 25, 18, 13, 5.5, 0.9 and 0.01 - 0.3 mg/g respectively. In an other hand it was found that the white bread has the same elements than the wheat flour but its concentration was: 1700, 9000, 400, 7000, 52, 13, 6, 1 and 0.05 - 0.3 mg/g respectively. (Author)

  9. Arsenic and iron removal from groundwater by oxidation-coagulation at optimized pH: laboratory and field studies.

    Science.gov (United States)

    Bordoloi, Shreemoyee; Nath, Suresh K; Gogoi, Sweety; Dutta, Robin K

    2013-09-15

    A three-step treatment process involving (i) mild alkaline pH-conditioning by NaHCO₃; (ii) oxidation of arsenite and ferrous ions by KMnO₄, itself precipitating as insoluble MnO₂ under the pH condition; and (iii) coagulation by FeCl₃ has been used for simultaneous removal of arsenic and iron ions from water. The treated water is filtered after a residence time of 1-2 h. Laboratory batch experiments were performed to optimize the doses. A field trial was performed with an optimized recipe at 30 households and 5 schools at some highly arsenic affected villages in Assam, India. Simultaneous removals of arsenic from initial 0.1-0.5 mg/L to about 5 μg/L and iron from initial 0.3-5.0 mg/L to less than 0.1 mg/L have been achieved along with final pH between 7.0 and 7.5 after residence time of 1h. The process also removes other heavy elements, if present, without leaving any additional toxic residue. The small quantity of solid sludge containing mainly ferrihydrite with adsorbed arsenate passes the toxicity characteristic leaching procedure (TCLP) test. The estimated recurring cost is approximately USD 0.16 per/m(3) of purified water. A high efficiency, an extremely low cost, safety, non-requirement of power and simplicity of operation make the technique potential for rural application. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The physiological functions of iron regulatory proteins in iron homeostasis - an update

    Directory of Open Access Journals (Sweden)

    De-Liang eZhang

    2014-06-01

    Full Text Available Iron regulatory proteins (IRPs regulate the expression of genes involved in iron metabolism by binding to RNA stem-loop structures known as iron responsive elements (IREs in target mRNAs. IRP binding inhibits the translation of mRNAs that contain an IRE in the 5’untranslated region of the transcripts, and increases the stability of mRNAs that contain IREs in the 3'untranslated region of transcripts. By these mechanisms, IRPs increase cellular iron absorption and decrease storage and export of iron to maintain an optimal intracellular iron balance. There are two members of the mammalian IRP protein family, IRP1 and IRP2, and they have redundant functions as evidenced by the embryonic lethality of the mice that completely lack IRP expression (Irp1-/-/Irp2-/- mice, which contrasts with the fact that Irp1-/- and Irp2-/- mice are viable. In addition, Irp2-/- mice also display neurodegenerative symptoms and microcytic hypochromic anemia, suggesting that IRP2 function predominates in the nervous system and erythropoietic homeostasis. Though the physiological significance of IRP1 had been unclear since Irp1-/- animals were first assessed in the early 1990’s, recent studies indicate that IRP1 plays an essential function in orchestrating the balance between erythropoiesis and bodily iron homeostasis. Additionally, Irp1-/- mice develop pulmonary hypertension, and they experience sudden death when maintained on an iron-deficient diet, indicating that IRP1 has a critical role in the pulmonary and cardiovascular systems. This review summarizes recent progress that has been made in understanding the physiological roles of IRP1 and IRP2, and further discusses the implications for clinical research on patients with idiopathic polycythemia, pulmonary hypertension and neurodegeneration.

  11. Removal of arsenic from contaminated groundwater with application of iron electrodissolution, aeration and sand filtration

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Arturi, Kasia; Søgaard, Erik Gydesen

    2014-01-01

    The results from a new water treatment system for arsenic removal are presented. The technology is based on the employment of an electrolytic iron dissolution and efficient aeration procedure prior to sand filtration. The treatment was introduced and investigated in a pilot scale plant and full......, there was a relationship where the higher applied current from the iron generator resulted in a better quality of the produced water. The long period of use also helped to determine a proper iron dosage (the Fe/As ratio 68 mg/mg) and identify carbonate scale formation in the electrochemical process. The electrolytic...

  12. Tea fungus fermentation on a substrate with iron(ii-ions

    Directory of Open Access Journals (Sweden)

    Malbaša Radomir V.

    2002-01-01

    Full Text Available Iron is essential element for human metabolism and it is a constituent of both heme- containing and nonheme proteins. Its deficiency can cause serious diseases, i.e. iron-deficiency anemia, with some fatal consequences. Tea fungus beverage has high nutritional value and some pharmaceutical effects. It is widely consumed allover the world and its benefits were proved a number of times. The aim of this paper was to investigate tea fungus fermentation on a substrate containing iron(II-ions and the possibility of obtaining a beverage enriched with iron. We monitored pH, iron content and also the production of L-ascorbic acid, which is very important for iron absorption in humans.

  13. Comparison of Deferoxamine, Activated Charcoal, and Vitamin C in Changing the Serum Level of Fe in Iron Overloaded Rats

    Directory of Open Access Journals (Sweden)

    Reza Ghafari

    2014-02-01

    Full Text Available Background: Iron is an essential mineral for normal cellular physiology but its overload can lead to cell injury. For many years, deferoxamine injection has been used as an iron chelator for treatment of iron overload. The aim of this study is to compare oral deferoxamine, activated charcoal, and vitamin C, as an absorbent factor of Fe, in changing the serum level of iron in iron overload rats. Methods: In this experimental study, all groups were administered 150 mg iron dextran orally by gavage. After eight hours, rats in the first group received oral deferoxamine while those in the second and third groups received oral activated charcoal 1 mg/kg and oral vitamin C 150 mg, respectively. Then, serum levels of iron ware measured in all rats. Results: The mean serum level of iron in rats that received oral deferoxamine was 258.11±10.49 µg/dl, whereas mean levels of iron in charcoal and vitamin C groups were 380.88±11.21 µg/dl and 401.22±13.28 µg/dl, respectively. None of the measurements were within safety limits of serum iron. Conclusion: It seems that oral deferoxamine per se may not help physicians in the management of cases presented with iron toxicity. Activated charcoal did not reduce serum iron significantly in this study and further investigations may be warranted to assess the potential clinical utility of its mixture with oral deferoxamine as an adjunct in the clinical management of iron ingestions.

  14. IRON CHELATION THERAPY IN THALASSEMIA SYNDROMES

    Directory of Open Access Journals (Sweden)

    Paolo Cianciulli

    2009-06-01

    Full Text Available Transfusional hemosiderosis is a frequent complication in patients with transfusion dependent chronic diseases such as  thalassemias and severe type of sickle cell diseases. As there are no physiological mechanisms to excrete the iron contained in transfused red cells (1 unit of blood contains approximately 200 mg of iron the excess of iron is stored in various organs. Cardiomyopathy is the most severe complication covering more than 70% of the causes of death of thalassemic patients. Although the current reference standard iron chelator deferoxamine (DFO has been used clinically for over four decades, its effectiveness is limited by a demanding therapeutic regimen that leads to poor compliance. Despite poor compliance, because of the inconvenience of subcutaneous infusion, DFO improved considerably the survival and quality of life of patients with thalassemia. Deferiprone since 1998 and Deferasirox since 2005 were licensed for clinical use. The oral chelators have a better compliance because of oral use, a comparable efficacy to DFO in iron excretion and probably a better penetration to myocardial cells. Considerable increase in iron excretion was documented with combination therapy of DFO and Deferiprone. The proper use of the three chelators will improve the prevention and treatment of iron overload, it will reduce  complications, and improve survival and quality of life of transfused patients

  15. Ferrous Iron Oxidation by Thiobacillus ferrooxidans: Inhibition with Benzoic Acid, Sorbic Acid, and Sodium Lauryl Sulfate

    OpenAIRE

    Onysko, Steven J.; Kleinmann, Robert L. P.; Erickson, Patricia M.

    1984-01-01

    Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds.

  16. Superconducting properties of MgB2 particle impregnated with Mg-based alloys

    International Nuclear Information System (INIS)

    Shimizu, Yusuke; Matsuda, Kenji; Mizutani, Manabu; Nishimura, Katsuhiko; Kawabata, Tokimasa; Ikeno, Susumu; Hishinuma, Yoshimitsu; Aoyama, Shigeki

    2011-01-01

    The three-dimensional penetration method combined with semi-solid casting (SS-3DPC) was utilized to prepare magnesium diboride (MgB 2 ) powder composite materials with various host materials of Mg, Mg-3%Al, Mg-3%Al-1%Zn, Mg-9%Al, and Mg-9%Al-1%Zn. X-ray diffraction measurements indicated predominant peak patterns of MgB 2 and a host alloy, implying that the host material tightly bonded MgB 2 grains without melting the MgB 2 powder. This was confirmed by SEM images. Measured electrical resistivity and magnetization versus temperature showed clear signals of superconducting transition temperature of 27-38 K for all the samples cut out from the billets. Magnetic hysteresis loop observed at 5 K enabled us to estimate a critical current density (J c ) based on the extended Bean model. Additions of aluminum and zinc elements to magnesium host-matrix were found to enhance J c and increase residual resistivity (ρ 0 ) suggesting that aluminum and zinc have an effect on pinning magnetic flux flow for J c enhancement, and scattering conduction electrons for increase of ρ 0 . (author)

  17. [Iron supplementation in Chilean Mapuche infants of the Cautin Province, Chile].

    Science.gov (United States)

    Franco, E; Hertrampf, E; Hazbún, J; Segú, S; Illanes, J C; Palacios, L; Figueroa, G; Orellana, J

    1996-06-01

    A 1.8 ml iron supplementation of ferrous sulfate is administered for 90 days to 76 Mapuche infants, 12 months of age, male and female, from the rural area of the Cautin province of Chile. The iron nutrition is evaluated before and after the supplementation, through: hemoglobin, haematocrit, transferrin saturation and seric ferritin. Stools test are taken at the infant's home, to confirm the supplement intake and to measure the iron excreted. To study the contained of dietary Fe a Recordatory 24 hour Inquest (RI) is applied moreover a Proximal Chemical Analysis (PCHA) to meal test proceeding from the infant's homes. At 12 months before starting the supplementation, the anemia prevalence was of 28.3%, but it disappear as a result of the intervention. Also 65.3% of the infants showed and increase of 1 g or more on their hemoglobin, which indicates that they were anemic at the beginning of the iron supplementation. By means of this therapeutic test it was find 31% more of anemic infants, indicating more sensibility of this method. The high levels of anemia prevalence are due to the low iron intake, characteristic of the non lactious foods, which according results of the RI reaches an average of 2.8 +/- 1.2 mg of Fe/day, versus 4.8 +/- 4.0 mg of Fe/day according to PCHA. The observed difference between both test showed that there is a process of food environmental contamination, by the use of iron utensils and great soil contact. The high environmental contamination could also be proved by the high iron excretion stools (140 mg of Fe/100 g of stools). This method used to measure the Fe excretion of the supplement, would not be valid in rural population groups with similar characteristics to those of the studied group, because it does not discriminate between the intake and the extremely high environmental contamination. To prevent anemia due to iron absence in infants, it is absolutely necessary to have some iron fortified food starting at 6 months of age, as a

  18. Registration of Crystallization Process of Ultra-Lightweight Mg-Li Alloys with Use of ATND Method

    Directory of Open Access Journals (Sweden)

    A. Białobrzeski

    2007-07-01

    Full Text Available Magnesium alloys are characterized by advantageous ratio of strength and/or elastic modulus to density, that is, can sustain static and dynamic loads similar to iron and aluminium, and additionally feature good vibration damping. Castings from magnesium alloys are lighter with about 20 – 30% than aluminium alloys and with 50 – 75% than iron alloys, that is why they are used in aviation and rocket industry and everywhere the weight of a product is of important significance for conditions of its operation. Also automotive industry introduces to vehicle’s structure an elements (castings manufactured from such alloys. On metallic matrix of magnesium alloys with lithium are also manufactured a composites reinforced with e.g. ceramic fiber, which are used as lightweight and resistant structure materials. The paper presents an attempt of implementation of ATND method (Thermal-Voltage-Derivative Analysis to monitoring of crystallization process of ultra-lightweight Mg-Li alloys. Investigated magnesium alloys with contents of about 2,3% Li, 10% Li and 11 % Li were produced in the Foundry Research Institute. Registration of melting and crystallization processes was made with use of the ATND method. Results of preliminary tests are shown in graphical form.

  19. Which is the best oxidant for complexed iron removal from groundwater: The Kogalym case

    Energy Technology Data Exchange (ETDEWEB)

    Munter, R.; Overbeck, P.; Sutt, J. [Tallinn University of Technology, Tallinn (Estonia). Dept. of Chemical Engineering

    2008-07-01

    A short overview of the significance of a preoxidation stage groundwater treatment is presented. As an example the case of complexed iron removal from Kogalym groundwater (Tjumen, Siberia, Russian Federation) using different preoxidants (ozone, oxygen, chlorine, hydrogen peroxide, and potassium permanganate) is discussed. The key problem is stable di- and trivalent iron-organic complexes in groundwater which after aeration tend to pass through the hydroanthracite-sand gravity filters. The total organic carbon (TOC) content in raw groundwater is in the range of 3.2-6.4 mg/L, total iron content 2.7-6.0 mg/L and divalent iron content 2.4-4.0 mg/L. Separation from Kogalym groundwater by XAD-16 adsorbent humic matter fraction was homogeneous, with only 1 peak on the chromatogram with maximum Rt = 10.75 min and corresponding molecular mass 1911 ({lt} 2000). The final developed treatment technology is based on the water oxidation/reduction potential (ORP) optimization according to the iron system pE-pH diagram and consists of intensive aeration of raw water in the Gas-Degas Treatment (GDT) unit with the following sequence: filtration through the hydroanthracite and special anthracite Everzit, with intermediate enrichment of water with pure oxygen between the filtration stages.

  20. Oxidized Carbo-Iron causes reduced reproduction and lower tolerance of juveniles in the amphipod Hyalella azteca

    Energy Technology Data Exchange (ETDEWEB)

    Weil, Mirco, E-mail: m.weil@ect.de [ECT Oekotoxikologie GmbH, Böttgerstrasse 2-14, 65439 Flörsheim (Germany); Meißner, Tobias, E-mail: tmeiss@gmx.net [Fraunhofer Institute for Ceramic Technologies and Systems, Winterbergstrasse 28, 01277 Dresden (Germany); Springer, Armin, E-mail: armin.springer@nano.tu-dresden.de [Dresden University of Technology, Budapesterstrasse 27, 01069 Dresden (Germany); Bundschuh, Mirco, E-mail: mirco.bundschuh@slu.se [Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala (Sweden); Institute for Environmental Sciences, University of Koblenz-Landau, Forststrasse 7, 76829 Landau (Germany); Hübler, Lydia, E-mail: lydia.huebler@gmail.com [ECT Oekotoxikologie GmbH, Böttgerstrasse 2-14, 65439 Flörsheim (Germany); Schulz, Ralf, E-mail: schulz@uni-landau.de [Institute for Environmental Sciences, University of Koblenz-Landau, Forststrasse 7, 76829 Landau (Germany); Duis, Karen, E-mail: k-duis@ect.de [ECT Oekotoxikologie GmbH, Böttgerstrasse 2-14, 65439 Flörsheim (Germany)

    2016-12-15

    Highlights: • Effects on growth, reproduction and survival at ≥12.5 mg of oxidized Carbo-Iron/L were studied. • Carbo-Iron significantly increases sensitivity of offspring from exposed amphipods. • Toxicity is most likely mediated by an impaired uptake of nutrients and energy. - Abstract: For in situ remediation of groundwater contaminated by halogenated hydrocarbons Carbo-Iron{sup ®}, a composite of microscale activated carbon and nano Fe{sup 0}, was developed. Against the background of intended release of Carbo-Iron into the environment in concentrations in the g/L-range, potential ecotoxicological consequences were evaluated in the present study. The nano Fei{sup 0} in Carbo-Iron acts as reducing agent and is oxidized in aqueous systems by chlorinated solvents, groundwater constituents (e.g. dissolved oxygen) and anaerobic corrosion. As Carbo-Iron is generally oxidized rapidly after application into the environment, the oxidized state is environmentally most relevant, and Carbo-Iron was used in its oxidized form in the ecotoxicological tests. The amphipod Hyalella azteca was selected as a surrogate test species for functionally important groundwater crustaceans. Effects of Carbo-Iron on H. azteca were determined in a 10-d acute test, a 7-d feeding activity test and a 42-d chronic test. Additionally, a 56-d life cycle test was performed with a modified design to further evaluate effects of Carbo-Iron on adult H. azteca and their offspring. The size of Carbo-Iron particles in stock and test suspensions was determined via dynamic light scattering. Potential uptake of particles into test organisms was investigated using transmission and scanning electron microscopy. At the termination of the feeding and acute toxicity test (i.e. after 7 and 10 d of exposure, respectively), Carbo-Iron had a significant effect on the weight, length and feeding rate of H. azteca at the highest test concentration of 100 mg/L. While an uptake of Carbo-Iron into the gut was