WorldWideScience

Sample records for mg deslorelin implant

  1. Long-term contraception in a small implant: A review of Suprelorin (deslorelin) studies in cats.

    Science.gov (United States)

    Fontaine, Christelle

    2015-09-01

    Deslorelin (Suprelorin®; Virbac) is a gonadotropin-releasing hormone (GnRH) agonist licensed in select countries for the long-term suppression of fertility in adult male dogs and male ferrets. This article summarizes studies investigating the use of deslorelin implants for the long-term suppression of fertility in male and female domestic cats. Slow-release deslorelin implants have been shown to generate effective, safe and reversible long-term contraception in male and female cats. In pubertal cats, a 4.7 mg deslorelin implant suppressed steroid sex hormones for an average of approximately 20 months (range 15-25 months) in males and an average of approximately 24 months (range 16-37 months) in females. Reversibility has been demonstrated by fertile matings approximately 2 years post-treatment in both male and female adult cats. In prepubertal female cats of approximately 4 months of age, puberty was postponed to an average of approximately 10 months of age (range 6-15 months) by a 4.7 mg deslorelin implant. The large variability in the duration of suppression of gonadal activity makes the definition of the optimal time for reimplantation quite challenging. In addition, the temporary stimulation phase occurring in the weeks following deslorelin implantation can induce in adult female cats a fertile estrus that needs to be managed to avoid unwanted pregnancy. Longer duration and larger scale controlled field studies implementing blinding, a negative control group and a carefully controlled randomization to each group are needed. Furthermore, the effects of repeated treatment need to be investigated. Finally, the effect of treatment on growth and bone quality of prepubertal cats needs to be assessed. However, the ease of use, long-lasting effects and reversibility of deslorelin implants are strong positive points supporting their use for controlling feline reproduction. © The Author(s) 2015.

  2. Semen quality and interval to sterility in tom cats treated with a 9.4 mg deslorelin implant.

    Science.gov (United States)

    Romagnoli, Stefano; Baldan, Anna; Righetti, Camilla; Milani, Chiara; Mollo, Antonio; Stelletta, Calogero

    2017-02-01

    Objectives Gonadotropin-releasing hormone (GnRH) agonists like deslorelin are being increasingly used in tom cats for their efficacy in controlling reproductive behaviour and fertility. Deslorelin implants have been widely available in Europe since 2008. Little, if anything, is known about the interval between treatment and onset of sterility, as well as semen quality, after treatment in tom cats. The purpose of this study was to investigate semen quality and interval to sterility in tom cats treated with a 9.4 mg deslorelin implant. Methods Fifteen healthy adult tom cats were treated with a 9.4 mg deslorelin implant (Suprelorin 12). For each cat, semen collection and a GnRH stimulation test (intramuscular administration of 50 μg gonadorelin [Fertagyl], followed by blood sampling 1 h later, to assay serum testosterone) were performed on the first consultation and then repeated every 15 days until complete sterility was achieved. Semen collection was performed by introducing a 14 cm, open-end feline catheter (Argyle) 9 cm into the distal urethra 10 mins after sedation by intramuscular injection of 100 μg/kg medetomidine (Domitor). Results Semen collection was not successful in all cats at each attempt. In the first month after treatment, the semen of only four cats could be evaluated, while the semen of eight cats could be evaluated during the second and third months of the study. Semen quality (ejaculate volume, progressive motility and morphological abnormalities) improved slightly during the first 19-25 days in 2/4 cats, and in 1/4 cats motility was still very high (80%) 25 days post-treatment (PT), but we have no data regarding fertility prior to treatment in this cat. The last cat never produced spermatozoa. Subsequently, semen quality gradually worsened in all cats from 30 days onwards. At 70 days PT, one cat was still potentially fertile. After 72 days all cats were sterile. Conclusions and relevance Semen quality increased slightly in treated cats during

  3. COMPARISON OF TWO 4.7-MILLIGRAM TO ONE 9.4-MILLIGRAM DESLORELIN ACETATE IMPLANTS ON EGG PRODUCTION AND PLASMA PROGESTERONE CONCENTRATIONS IN JAPANESE QUAIL (COTURNIX COTURNIX JAPONICA).

    Science.gov (United States)

    Petritz, Olivia A; Guzman, David Sanchez-Migallon; Hawkins, Michelle G; Kass, Philip H; Conley, Alan J; Paul-Murphy, Joanne

    2015-12-01

    Reproductive disease in captive avian species is common, and medical management is often chosen over surgical removal of the reproductive tract. In a previous study with Japanese quail, a single 4.7-mg deslorelin acetate implant reversibly decreased egg production in 6 out 10 birds for 70 days. The objective of the current study was to evaluate the effects of two 4.7-mg deslorelin acetate implants versus one 9.4-mg implant on egg production and plasma progesterone concentrations in Japanese quail ( Coturnix coturnix japonica). Following a 10-day period of consistent egg laying, 30 adult female Japanese quail were anesthetized and received two 4.7-mg deslorelin implants (n = 10), one 9.4-mg deslorelin implant (n = 10), or a single, identical placebo implant (n = 10) s.c. between the scapulae. Egg production was monitored daily, and plasma progesterone concentrations were measured on days 0, 14, 29, 120, 148, and 182 via enzyme-linked immunoassay. All birds were weighed periodically and euthanized at day 182, after which their reproductive tracts were evaluated at gross necropsy. Seven out of 10 birds treated with two 4.7-mg implants ceased egg laying 1 wk after implantation and remained nonovulatory for approximately 100 days. Cessation of egg laying for the 9.4-mg treatment group occurred in 7 out of 10 birds; onset was variable (weeks 5-12) and continued for the remainder of the study period. Plasma progesterone concentrations for deslorelin treatment groups were not significantly different compared to the placebo group at any time point. In conclusion, the two 4.7-mg and the one 9.4-mg implant treatments ceased egg laying in a similar number of birds, but the 9.4-mg implant had a slower onset of action and the effects on egg laying were inconsistent throughout the study period. Further studies evaluating use of deslorelin acetate in other avian species are needed.

  4. Location and removal of deslorelin acetate implants in female African lions (Panthera leo).

    Science.gov (United States)

    Moresco, Anneke; Dadone, Liza; Arble, Jason; Klaphake, Eric; Agnew, Dalen W

    2014-06-01

    Contraception is necessary to manage zoo animal populations and to be able to house animals in groups without producing additional unwanted offspring. In felids and canids, an association between exposure to progestins and the occurrence of endometrial and mammary gland pathology has been documented. Therefore, the Association of Zoos and Aquariums (AZA) Wildlife Contraceptive Center recommends the use of deslorelin acetate for long-term contraception in carnivores. Return to cyclicity after deslorelin treatment has been variable; some individuals show ovarian suppression for long periods after the expected end of the deslorelin efficacy. In an attempt to reduce the time to reversal, techniques to locate and remove previous implants are being developed. This report documents the successful implementation of high-frequency ultrasonography in lions (Panthera leo) to locate and direct surgical removal of multiple deslorelin implants placed at least 2 yr previously as well as the return of follicular activity in both females at 7 months post-removal of implants.

  5. Postpartum suppression of ovarian activity with a Deslorelin implant enhanced uterine involution in lactating dairy cows.

    Science.gov (United States)

    Silvestre, F T; Bartolome, J A; Kamimura, S; Arteche, A C; Pancarci, S M; Trigg, T; Thatcher, W W

    2009-01-01

    Holstein cows received, subcutaneously a non-degradable implant containing 5mg of the GnRH agonist Deslorelin (DESL) or no implant (CON) at 2+/-1 days postpartum (dpp). All cows were injected with PGF(2alpha) at 9 dpp. Previous pregnant (PPH) and non-pregnant uterine horns (PNPH) were determined by palpation per rectum. In Experiment 1, cows [DESL implant (n=10) and CON (n=9)] were examined by ultrasonography to record ovarian structures (23, 30 and 37 dpp) and uterine horn and cervical diameters (16, 23, 30 and 37 dpp). Uterine tone was scored before ultrasonography. Vaginoscopy was conducted just after ultrasonography examination to assess cervical discharge and color of the external cervical os. Blood samples were collected on a weekly basis for hormonal analyses. In Experiment 2, cows [DESL implant (n=77) and CON (n=70)] were palpated per rectum and vaginoscopy at 30 dpp for scoring of uterine tone, uterine horns, cervical diameter, and discharge. Blood samples were collected only at 9 dpp. In Experiment 1, DESL-implant-treated cows had more Class 1 follicles (Pscore did not differ between treatments. Treatment with non-degradable Deslorelin (5mg) implant during postpartum: (1) suppressed ovarian follicular development, (2) enhanced physical involution of the uterus and cervix, (3) increased tone of the uterine wall, (4) decreased frequency of purulent cervical discharges, and (5) reduced inflammatory processes of the reproductive tract.

  6. Inhibition of the reproductive system by deslorelin in male and female pigeons (Columba livia).

    Science.gov (United States)

    Cowan, Melinda Lee; Martin, Graeme Bruce; Monks, Deborah Jane; Johnston, Stephen Douglas; Doneley, Robert James Tyson; Blackberry, Margaret Anne

    2014-06-01

    Veterinary practitioners frequently encounter disorders of the reproductive system in avian patients. Management of these disorders relies on manipulating reproduction by modifying the environment, diet, and social interactions, and by the use of pharmacologic agents and surgery, with varying levels of success and side effects. An alternative is to use the gonadotropin-releasing hormone (GnRH) agonist deslorelin to suppress the pituitary-gonadal axis. To determine the efficacy of deslorelin in domestic pigeons (Columba livia), male (n = 10) and female (n = 10) birds each were implanted intramuscularly with a single long-acting implant containing 4.7 mg deslorelin. Untreated males (n = 11) and females (n = 10) were used as controls. The baseline serum concentration of luteinizing hormone (LH) was assayed at 7, 28, 56, and 84 days after treatment, and egg production was recorded weekly. In females, deslorelin administration significantly reduced serum LH concentrations compared to pretreatment levels at 7, 28, 56, and 84 days (P < .05). In males, deslorelin significantly reduced LH concentrations at 7, 28, and 56 days (P < .05). Female birds treated with deslorelin laid significantly fewer eggs over the course of the study (mean = 1.46, SEM = 0.84) compared with controls (mean = 5.54, SEM = 0.88). Deslorelin treatment had no discernible effect on body weight. Deslorelin is effective for controlling egg laying in female pigeons for at least 49 days, but further research is required to determine the effects on male fertility and the duration of action in both sexes.

  7. The use of the gonadotropin-releasing hormone analog deslorelin for short-term contraception in red pandas (Ailurus fulgens).

    Science.gov (United States)

    Koeppel, Katja N; Barrows, Michelle; Visser, Katherine

    2014-01-15

    Red pandas (Ailurus fulgens) are threatened with extinction owing to habitat loss, exacerbated by their unique ecology and low fecundity. Regional breeding programs manage captive red panda populations. Recommendations not to breed may be made for various reasons, including genetic overrepresentation of certain individuals. No recommendations have been published on the use of contraception for red pandas. This article discusses the use of the GnRH analog deslorelin as a reversible method of contraception in both male and female pandas. The mean time from last contraception to conception was 3 years with a 4.6-mg deslorelin implant. The average dose of GnRH implant received was 1.09 mg/kg (range, 0.88-1.32). Males returned to breeding sooner than females. No reproductive side effects were noted with up to three consecutive annual GnRH implants. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Effect of deslorelin on testicular function, serum dihydrotestosterone and oestradiol concentrations during and after suppression of sexual activity in tom cats.

    Science.gov (United States)

    Gültiken, Nilgün; Aslan, Selim; Ay, Serhan Serhat; Gülbahar, Mustafa Yavuz; Thuróczy, Julianna; Koldaş, Ece; Kaya, Duygu; Fındık, Murat; Schäfer-Somi, Sabine

    2017-02-01

    Objectives The aim of the study was to evaluate the efficacy of a 4.7 mg deslorelin implant in tom cats. Methods Nine mature male cats were included in the deslorelin group and five cats in the control group. Before the study started, all cats were confirmed to have distinct sexually dimorphic behaviour. Blood samples were taken on the implantation day, at day 7 and at day 15, then monthly, in order to measure serum dihydrotestosterone (DHT) and 17beta(β)-oestradiol concentrations. The deslorelin group (n = 9) was divided into two subgroups: five cats (cats 1-5) were neutered in the postimplantation period during suppression of sexually dimorphic behaviour, and four cats (cats 6-9) were neutered after re-expression of sexually dimorphic behaviour. The control group cats (n = 5) were castrated without administration of the implant. Results Sexually dimorphic behaviours ceased within a mean ± SD of 13-58 days (23.30 ± 14.17) after implantation. DHT concentration decreased within 30 days. The mean duration of suppression was 26.5 ± 7.42 months and reactivation coincided with increased DHT values reaching preimplantation concentrations within 1 month. 17β-oestradiol concentrations significantly correlated with DHT concentrations ( P tom cats without any side effects and with full reversibility; however, duration of suppression is highly individual.

  9. The influence of exogenous progestin on the occurrence of proestrous or estrous signs, plasma concentrations of luteinizing hormone and estradiol in deslorelin (GnRH agonist) treated anestrous bitches.

    Science.gov (United States)

    Sung, M; Armour, A F; Wright, P J

    2006-10-01

    The objectives of this study were to confirm: (i) whether progestin treatment suppressed GnRH agonist-induced estrus in anestrous greyhound bitches; and (ii) the site of progestin action (i.e. pituitary, ovary). All bitches received a deslorelin implant on Day 0 and blood samples were taken from -1 h to +6 h. Five bitches were treated with megestrol acetate (2 mg/kg orally once daily) from -7 d to +6 d (Group 1) and 10 bitches were untreated controls (Group 2). Proestrous or estrous signs were observed in 4 of 5 bitches in Group 1, and 4 of 10 bitches in Group 2 (P = 0.28). The plasma LH responses (area under the curve from 0 to 6h after implantation) were higher (P = 0.008) in Group 2 than in Group 1. Plasma LH responses were similar (P = 0.59) in bitches showing signs of proestrus or estrus (responders) and in non-responders. The plasma estradiol responses (calculated as for LH response) were greater in Group 1 than in Group 2 (P = 0.048), and in responders than in non-responders (P = 0.02). (i) progestin treatment (a) did not suppress the incidence of bitches showing deslorelin-induced proestrus or estrus, and (b) was associated with a reduced pituitary responsiveness and an increased ovarian responsiveness to deslorelin treatment; (ii) the occurrence of proestrous or estrous signs reflected increased ovarian responsiveness to induced gonadotrophin secretion and not increased pituitary responsiveness to deslorelin.

  10. GnRH-agonist implants suppress reproductive function and affects ovarian LHR and FSHR expression in prepubertal female cats.

    Science.gov (United States)

    Mehl, N S; Srisuwatanasagul, S; Swangchan-Uthai, T; Sirivaidyapong, S; Khalid, M

    2017-01-01

    Effect of a GnRH-agonist (deslorelin) was studied on reproductive function and ovarian luteinizing hormone receptor (LHR) and follicle stimulating hormone receptor (FSHR) expression in prepubertal female cats that were either implanted with 4.7-mg deslorelin (implanted: n = 6) or not (controls: n = 18) or ovariohysterectomized at prepubertal age (prepubertal OVH: n = 6). Body weights, fecal estradiol, and sexual behavior of implanted and control cats were monitored for 48 weeks followed by collection of ovaries and uteri. Ovaries and uteri were collected from control cats at follicular, luteal, and inactive stage (n = 6/group) and from prepubertal OVH cats at prepubertal age. Ovaries and uteri were analyzed for anatomical/histological characteristics. Ovaries were also analyzed for LHR and FSHR expression. Statistical analysis showed higher (P ≤ 0.05) body weight in control than implanted cats only during 22nd to 26th weeks of the study. Estrus was observed in control cats only. Deslorelin reduced (P ≤ 0.05) ovarian weight and number of antral follicles but did not affect endometrial thickness and gland diameter. However, myometrial thickness of implanted cats was significantly lower than control cats at follicular and luteal stage. Ovarian LHR mRNA expression was lower (P ≤ 0.05) in implanted cats than control cats at follicular stage. FSHR mRNA and LHR protein expression did not differ among the three groups. FSHR protein expression was lower (P ≤ 0.05) in prepubertal OVH cats and was not affected by deslorelin. In conclusion, deslorelin suppresses reproductive function in prepubertal female cats for at least 48 weeks possibly through a change in the ovarian mRNA expression of LHR. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The development of a testosterone stimulation test in the Virginia opossum (Didelphis virginiana) and its use in evaluating deslorelin contraception.

    Science.gov (United States)

    Johnston, S D; Camacho, F C; Carrillo, L; Guy, N; Govea, J; Martinez, O; Parãs, A; Lisle, A T; D'Occhio, M

    2008-01-01

    The aims of the present study were to examine the variability of testosterone secretion in the Virginia Opossum over a 24 h period and to develop a testosterone stimulation test that would provide an index of the prevailing testosterone biosynthetic capacity of the testes; the latter was used to clinically evaluate the efficacy of a gonadotrophin-releasing hormone agonist contraceptive. Sexually-mature captive opossums (n = 12) located in Africam Safari (Mexico) sampled every 12 h over 24 h consistently showed basal (<0.21 ng mL(-1)) blood testosterone concentrations. Intra-muscular injection of buserelin (2 microg mL(-1)) and human chorionic gonadotrophin (hCG; 1000 IU) resulted in an increase (P < 0.05) of plasma testosterone concentrations with maximal concentrations (3.9 ng mL(-1) and 5.8 ng mL(-1) respectively) occurring 120 min after injection. Plasma testosterone declined relatively rapidly to basal concentrations after 240 min with hCG but remained elevated after the same period of time with buserelin. Male opossums treated with (n = 6) and without (n = 6) a controlled-release deslorelin implant (Suprelorin; 4.7 mg deslorelin) were evaluated over a 10-week period for changes in testosterone secretion (hCG stimulation test) and sperm production (spermatorrhea). At the end of this period, the animals were hemi-castrated and their relative testicular quantitative histology compared. Testosterone concentration decreased over the course of the study in both treated and control animals (P < 0.0001) but there was no apparent effect of deslorelin on testosterone secretion, testicular histology (relative proportions of testicular cell types and seminiferous tubule diameter), or sperm production (presence of sperm in the cauda epididymis or urine).

  12. The effects of a slow release GnRH agonist implant on male rabbits

    DEFF Research Database (Denmark)

    Goericke-Pesch, Sandra Kathrin; Groeger, Gesa; Wehrend, Axel

    2015-01-01

    Surgical castration is done in male pet rabbits for reproduction control, to reduce inter-male aggression and to control hyper-sexuality, territory marking and aggression against humans. Alternatives to surgical castration are requested because of a relatively great anaesthetic risk in rabbits....... Long-term application of a GnRH agonist implant results in a fully reversible "hormonal" castration in male dogs, cats, boars and many other species. Therefore, the present study using New Zealand White hybrid and German Giant rabbits aimed to investigate the effects of a 4.7mg deslorelin implant...

  13. 75 FR 81455 - New Animal Drugs; Deslorelin

    Science.gov (United States)

    2010-12-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Parts 510 and 522 [Docket No. FDA-2010-N-0002] New Animal Drugs; Deslorelin AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is amending the animal drug...

  14. Los implantes MG-OSSEOUS: Estudio multicéntrico retrospectivo MG-OSSEOUS implants: A multicentric retrospective study

    Directory of Open Access Journals (Sweden)

    E. Serrano Caturla

    2006-12-01

    Full Text Available Objetivo. Aportar unos datos estadísticamente fiables sobre la supervivencia e incidencias asociadas a los implantes y prótesis del modelo MG-OSSEOUS (Mozo-Grau, S.L., Valladolid, España y demostrar que su eficacia es comparable a todas las marcas comerciales. Material y método. Estudio multicéntrico retrospectivo coordinado por la empresa Scientific Management in O&SS (Barcelona, España. Se colocaron 1001 implantes en 247 pacientes y se diseñaron 328 prótesis, entre los años 2004 y 2005, con un seguimiento de 2 años. Todos los implantes cargados. Se analizan y pormenorizan todos los implantes, por diámetros, longitudes, posiciones, fases quirúrgicas, cargas, tipos y modelos de prótesis y técnicas complementarias aplicadas, tanto sincrónica como anacrónicamente. Resultados. Tras la homogeneización de las muestras, se objetiva una supervivencia del 97,8% a los 2 años, detallando los fracasos según las características de cada caso clínico. No se reporta ningún fracaso de la prótesis. Discusión. Protocolizamos una serie de criterios e indicaciones a la hora de colocar los implantes MG-OSSEOUS según los casos clínicos. Comparamos nuestros resultados con la bibliografía, tanto pretérita como actual, coincidiendo con la manera de actuar a lo largo de la historia de la implantología. Finalmente, extrapolamos los resultados que consideramos comparables a los publicados por el grupo Branemark. Conclusión. La calidad del implante MG-OSSEOUS combinada con protocolos implantológicos científicamente contrastados, muestra un 2,2% de fracaso a los 2 años de seguimiento, con un porcentaje de éxito del 100% tanto en la recolocación del implante como en la fase protésica.Objective. We present some statistically contrasted results regarding the survival and incidences of MG-OSSEOUS implants and prosthetic components (Mozo-Grau, S.L., Valladolid, Spain, and we prove that they have the same efficacy when compared with other

  15. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants.

    Science.gov (United States)

    Yu, Yiqiang; Jin, Guodong; Xue, Yang; Wang, Donghui; Liu, Xuanyong; Sun, Jiao

    2017-02-01

    In order to improve the osseointegration and long-term survival of dental implants, it is urgent to develop a multifunctional titanium surface which would simultaneously have osteogeneic, angiogeneic and antibacterial properties. In this study, a potential dental implant material-dual Zn/Mg ion co-implanted titanium (Zn/Mg-PIII) was developed via plasma immersion ion implantation (PIII). The Zn/Mg-PIII surfaces were found to promote initial adhesion and spreading of rat bone marrow mesenchymal stem cells (rBMSCs) via the upregulation of the gene expression of integrin α1 and integrin β1. More importantly, it was revealed that Zn/Mg-PIII could increase Zn 2+ and Mg 2+ concentrations in rBMSCs by promoting the influx of Zn 2+ and Mg 2+ and inhibiting the outflow of Zn 2+ , and then could enhance the transcription of Runx2 and the expression of ALP and OCN. Meanwhile, Mg 2+ ions from Zn/Mg-PIII increased Mg 2+ influx by upregulating the expression of MagT1 transporter in human umbilical vein endothelial cells (HUVECs), and then stimulated the transcription of VEGF and KDR via activation of hypoxia inducing factor (HIF)-1α, thus inducing angiogenesis. In addition to this, it was discovered that zinc in Zn/Mg-PIII had certain inhibitory effects on oral anaerobic bacteria (Pg, Fn and Sm). Finally, the Zn/Mg-PIII implants were implanted in rabbit femurs for 4 and 12weeks with Zn-PIII, Mg-PIII and pure titanium as controls. Micro-CT evaluation, sequential fluorescent labeling, histological analysis and push-out test consistently demonstrated that Zn/Mg-PIII implants exhibit superior capacities for enhancing bone formation, angiogenesis and osseointegration, while consequently increasing the bonding strength at bone-implant interfaces. All these results suggest that due to the multiple functions co-produced by zinc and magnesium, rapid osseointegration and sustained biomechanical stability are enhanced by the novel Zn/Mg-PIII implants, which have the potential

  16. Lithium ion implantation effects in MgO (100)

    NARCIS (Netherlands)

    van Huis, MA; Fedorov, AV; van Veen, A; Labohm, F; Schut, H; Mijnarends, PE; Kooi, BJ; De Hosson, JTM; Triftshauser, W; Kogel, G; Sperr, P

    2001-01-01

    Single crystals of MgO (100) were implanted with 10(16) (6)Li ions cm(-2) at an energy of 30 keV. After ion implantation the samples were annealed isochronally in air at temperatures up to 1200K. After implantation and after each annealing step, the defect evolution was monitored with optical

  17. Characterization of an Mg-implanted GaN p-i-n Diode

    Science.gov (United States)

    2016-03-31

    Characterization of an Mg- implanted GaN p-i-n Diode Travis J. Anderson, Jordan D. Greenlee, Boris N. Feigelson, Karl D. Hobart, and Francis J...Kub Naval Research Laboratory, Washington, DC 20375 Abstract: A p-i-n diode formed by the implantation of Mg in GaN was fabricated and...characterized. After implantation , Mg was activated using the symmetrical multicycle rapid thermal annealing technique with heating pulses up to 1340C

  18. High surface hole concentration p-type GaN using Mg implantation

    International Nuclear Information System (INIS)

    Long Tao; Yang Zhijian; Zhang Guoyi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 17 cm -3 ) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  19. GnRH-agonist implantation of prepubertal male cats affects their reproductive performance and testicular LH receptor and FSH receptor expression.

    Science.gov (United States)

    Mehl, N S; Khalid, M; Srisuwatanasagul, S; Swangchan-Uthai, T; Sirivaidyapong, S

    2016-03-15

    This study was conducted to investigate the effect of GnRH-agonist implantation in prepubertal tomcats on sexual behavior, reproductive performance, and expression of testicular LH receptor (LHR) and FSH receptor (FSHR) and also to compare the testicular characteristics, LHR and FSHR expression between prepubertal and adult tomcats. In experiment 1, 3-month-old tomcats (n = 6/group) were either treated with or left without 4.7 mg deslorelin implants. Semen collection and evaluation were performed just before castration at 48 weeks after treatment; removed testes were analyzed for mRNA and protein expression of LHR and FSHR. We were able to collect semen from six non-treated cats, whereas in treated cats, semen was uncollectable. The results revealed that sexual behavior was absent in the implanted cats throughout the study period. Testicular volume was found to decrease from 30 weeks after treatment onward in the implanted cats compared to the controls (P score, seminiferous tubule diameter, and LHR protein expression were found lower in the implanted cats (P reproductive function without any adverse effects for at least 48 weeks in male cats. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. High surface hole concentration p-type GaN using Mg implantation

    CERN Document Server

    Long Tao; Zhang Guo Yi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 sup 1 sup 7 cm sup - sup 3) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  1. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell

    International Nuclear Information System (INIS)

    Kim, Beom-Su; Kim, Jin Seong; Park, Young Min; Choi, Bo-Young; Lee, Jun

    2013-01-01

    Magnesium (Mg) is one of the most important ions associated with bone osseointegration. The aim of this study was to evaluate the cellular effects of Mg implantation in titanium (Ti) surfaces treated with sand blast using large grit and acid etching (SLA). Mg ions were implanted into the surface via vacuum arc source ion implantation. The surface morphology, chemical properties, and the amount of Mg ion release were evaluated by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and inductively coupled plasma-optical emission spectrometer (ICP-OES). Human mesenchymal stem cells (hMSCs) were used to evaluate cellular parameters such as proliferation, cytotoxicity, and adhesion morphology by MTS assay, live/dead assay, and SEM. Furthermore, osteoblast differentiation was determined on the basis of alkaline phosphatase (ALP) activity and the degree of calcium accumulation. In the Mg ion-implanted disk, 2.3 × 10 16 ions/cm 2 was retained. However, after Mg ion implantation, the surface morphology did not change. Implanted Mg ions were rapidly released during the first 7 days in vitro. The MTS assay, live/dead assay, and SEM demonstrated increased cell attachment and growth on the Mg ion-implanted surface. In particular, Mg ion implantation increased the initial cell adhesion, and in an osteoblast differentiation assay, ALP activity and calcium accumulation. These findings suggest that Mg ion implantation using the plasma source ion implantation (PSII) technique may be useful for SLA-treated Ti dental implants to improve their osseointegration capacity. - Highlights: ► Mg ion was coated onto surface of SLA treated titanium via vacuum arc source ion implantation method. ► The morphological characteristics did not change after Mg ion implantation. ► Mg ion implanted SLA Ti is highly cytocompatible. ► Initial cell adhesion of MSCs is improved by Mg ion implantation. ► Mg ion implantation improved

  2. Lithium ion implantation effects in MgO(100)

    Energy Technology Data Exchange (ETDEWEB)

    Huis, M.A. van; Fedorov, A.V.; Veen, A. van; Labohm, F.; Schut, H.; Mijnarends, P.E. [Interfaculty Reactor Inst., Delft Univ. of Technology, Delft (Netherlands); Kooi, B.J.; Hosson, J.T.M. de [Rijksuniversiteit Groningen (Netherlands). Materials Science Centre

    2001-07-01

    Single crystals of MgO(100) were implanted with 10{sup 16} {sup 6}Li ions cm{sup -2} at an energy of 30 keV. After ion implantation the samples were annealed isochronally in air at temperatures up to 1200K. After implantation and after each annealing step, the defect evolution was monitored with optical absorption spectroscopy and depth-sensitive Doppler Broadening positron beam analysis (PBA). A strong increase in the S-parameter is observed in the implantation layer at a depth of approximately 100 nm. The high value of the S-parameter is ascribed to positron annihilation in small lithium precipitates. The results of 2D-ACAR and X-TEM analysis show evidence of the presence of lithium precipitates. The depth distribution of the implanted {sup 6}Li atoms was monitored with neutron depth profiling (NDP). It was observed that detrapping and diffusion of {sup 6}Li starts at an annealing temperature of 1200K. (orig.)

  3. Lithium ion implantation effects in MgO(100)

    International Nuclear Information System (INIS)

    Huis, M.A. van; Fedorov, A.V.; Veen, A. van; Labohm, F.; Schut, H.; Mijnarends, P.E.; Kooi, B.J.; Hosson, J.T.M. de

    2001-01-01

    Single crystals of MgO(100) were implanted with 10 16 6 Li ions cm -2 at an energy of 30 keV. After ion implantation the samples were annealed isochronally in air at temperatures up to 1200K. After implantation and after each annealing step, the defect evolution was monitored with optical absorption spectroscopy and depth-sensitive Doppler Broadening positron beam analysis (PBA). A strong increase in the S-parameter is observed in the implantation layer at a depth of approximately 100 nm. The high value of the S-parameter is ascribed to positron annihilation in small lithium precipitates. The results of 2D-ACAR and X-TEM analysis show evidence of the presence of lithium precipitates. The depth distribution of the implanted 6 Li atoms was monitored with neutron depth profiling (NDP). It was observed that detrapping and diffusion of 6 Li starts at an annealing temperature of 1200K. (orig.)

  4. Mg amorphous alloys for biodegradable implants

    International Nuclear Information System (INIS)

    Danez, G.P.; Koga, G.Y.; Tonucci, S.; Bolfarini, C.; Kiminami, C.S.; Botta Filho, W.J.

    2010-01-01

    The use of implants made from amorphous alloys magnesium-based with additions of zinc and calcium are promising. Properties such as biocompatibility, low density, high mechanical strength, low modulus (as compared to alloys such as stainless steel and titanium), corrosion resistance and wear resistance make it attractive for use in implants. Moreover, the by-products of corrosion and wear are not toxic and may contribute to fixation. Aiming to understand the tendency of this amorphous ternary (Mg-Zn-Ca) and expand the information about this system, this work involved the use of the topological criterion of instability (λ) and the criterion of electronegativity (Δe) to the choice of compositions. The alloys were processed into wedge-shaped and analyzed structurally and in X-ray diffraction and scanning electron microscopy. (author)

  5. Room-temperature ferromagnetism observed in C-/N-/O-implanted MgO single crystals

    Science.gov (United States)

    Li, Qiang; Ye, Bonian; Hao, Yingping; Liu, Jiandang; Zhang, Jie; Zhang, Lijuan; Kong, Wei; Weng, Huimin; Ye, Bangjiao

    2013-01-01

    MgO single crystals were implanted with 70 keV C/N/O ions at room temperature with respective doses of 2 × 1016 and 2 × 1017 ions/cm2. All samples with high-dose implantation showed room temperature hysteresis in magnetization loops. Magnetization and slow positron annihilation measurements confirmed that room temperature ferromagnetism in O-implanted samples was attributed to the presence of Mg vacancies. Furthermore, the introduction of C or N played more effective role in ferromagnetic performance than Mg vacancies. Moreover, the magnetic moment possibly occurred from the localized wave function of unpaired electrons and the exchange interaction formed a long-range magnetic order.

  6. Biodegradable Magnesium (Mg) Implantation Does Not Impose Related Metabolic Disorders in Rats with Chronic Renal Failure

    Science.gov (United States)

    Wang, Jiali; Xu, Jiankun; Liu, Waiching; Li, Yangde; Qin, Ling

    2016-05-01

    Mg and its alloys have been considered as one of the most promising biodegradable medical devices, but it was still unclear whether hypermagnesemia involved health risks would occur in persons with kidney disease due to their deteriorated kidney function for Mg ions excretion from their body. In this study, we established a chronic renal failure (CRF) model in rats induced by adenine administration prior to Mg implantation, aiming to predict if CRF patients are suitable for the use of Mg implants. The results showed that Mg levels in serum, urine, feces and internal organs had no significant changes after Mg implantation for both normal and CRF rats. Biochemical indices detection and histopathological analysis in kidney, liver and heart tissue confirmed that Mg implants did not induce any extra damage in animals even with renal failure. Our study indicates that Mg based orthopaedic medical device may be considered for use in CRF patients without biosafety concerns.

  7. Surface and local electronic structure modification of MgO film using Zn and Fe ion implantation

    Science.gov (United States)

    Singh, Jitendra Pal; Lim, Weon Cheol; Lee, Jihye; Song, Jonghan; Lee, Ik-Jae; Chae, Keun Hwa

    2018-02-01

    Present work is motivated to investigate the surface and local electronic structure modifications of MgO films implanted with Zn and Fe ions. MgO film was deposited using radio frequency sputtering method. Atomic force microscopy measurements exhibit morphological changes associated with implantation. Implantation of Fe and Zn ions leads to the reduction of co-ordination geometry of Mg2+ ions in host lattice. The effect is dominant at bulk of film rather than surface as the large concentration of implanted ions resides inside bulk. Moreover, the evidences of interaction among implanted ions and oxygen are not being observed using near edge fine structure measurements.

  8. Annealing temperature effects on the magnetic properties and induced defects in C/N/O implanted MgO

    Science.gov (United States)

    Li, Qiang; Ye, Bonian; Hao, Yingping; Liu, Jiandang; Kong, Wei; Ye, Bangjiao

    2013-02-01

    Virgin MgO single crystals were implanted with 70 keV C/N/O ions at room temperature to a dose of 2 × 1017/cm2. After implantation the samples showed room temperature hysteresis in magnetization loops. The annealing effects on the magnetic properties and induced defects of these samples were determined by vibrating sample magnetometer and positron annihilation spectroscopy, respectively. The experimental results indicate that ferromagnetism can be introduced to MgO single crystals by doping with C, N or introduction of Mg related vacancy defects. However, the Mg vacancies coexistence with C or N ions in the C-/N-implanted samples may play a negative role in magnetic performance in these MgO samples. The rapid increase of magnetic moment in O-implanted sample is attributed to the formation of new type of vacancy defects.

  9. Optical features of C, N, Mn implanted MgO films

    International Nuclear Information System (INIS)

    Dorosinets, V.A.; Dobrinets, I.A.; Wieck, A.

    2013-01-01

    Optical absorption and Raman spectra investigations of C/ N/ Mn implanted MgO films have been investigated. The spectra reveal a surface modification and a dependence of the defect formation mechanism on the ion type and the annealing regime. (authors)

  10. Longstanding refractory pseudophakic cystoid macular edema resolved using intravitreal 0.7 mg dexamethasone implants

    DEFF Research Database (Denmark)

    Brynskov, Troels; Laugesen, Caroline Schmidt; Halborg, Jakob

    2013-01-01

    Refractory pseudophakic cystoid macular edema (PCME) following cataract surgery has long posed a challenge to clinicians, but intravitreal injections with a sustained delivery 0.7 mg dexamethasone implant has emerged as a promising therapy for this condition.......Refractory pseudophakic cystoid macular edema (PCME) following cataract surgery has long posed a challenge to clinicians, but intravitreal injections with a sustained delivery 0.7 mg dexamethasone implant has emerged as a promising therapy for this condition....

  11. Finding the Balance: Fertility Control for the Management of Fragmented Populations of a Threatened Rock-Wallaby Species.

    Science.gov (United States)

    Willers, Nicole; Martin, Graeme B; Matson, Phill; Mawson, Peter R; Morris, Keith; Bencini, Roberta

    2015-12-16

    Populations of Australian marsupials can become overabundant, resulting in detrimental impacts on the environment. For example, the threatened black-flanked rock-wallaby ( Petrogale lateralis lateralis ) has previously been perceived as overabundant and thus 'unwanted' when they graze crops and cause habitat degradation. Hormonally-induced fertility control has been increasingly used to manage population size in other marsupials where alternative management options are not viable. We tested whether deslorelin, a superagonist of gonadotropin-releasing hormone (GnRH), would suppress reproduction in free-living adult female rock-wallabies without adversely impacting body condition. We trapped, synchronised reproduction and allocated female rock-wallabies to a placebo implant (control, n = 22), one (n = 22) or two (n = 20) subcutaneous implants of deslorelin. Females were then recaptured over the following 36 months to monitor reproduction, including Luteinising Hormone levels, and body condition. Following treatment, diapaused blastocysts reactivated in five females and the resulting young were carried through to weaning. No wallabies treated with deslorelin, conceivede a new young for at least 27 months. We did not observe adverse effects on body condition on treated females. We conclude that deslorelin implants are effective for the medium-term suppression of reproduction in female black-flanked rock-wallabies and for managing overabundant populations of some marsupials.

  12. Finding the Balance: Fertility Control for the Management of Fragmented Populations of a Threatened Rock-Wallaby Species

    Directory of Open Access Journals (Sweden)

    Nicole Willers

    2015-12-01

    Full Text Available Populations of Australian marsupials can become overabundant, resulting in detrimental impacts on the environment. For example, the threatened black-flanked rock-wallaby ( Petrogale lateralis lateralis has previously been perceived as overabundant and thus ‘unwanted’ when they graze crops and cause habitat degradation. Hormonally-induced fertility control has been increasingly used to manage population size in other marsupials where alternative management options are not viable. We tested whether deslorelin, a superagonist of gonadotropin-releasing hormone (GnRH, would suppress reproduction in free-living adult female rock-wallabies without adversely impacting body condition. We trapped, synchronised reproduction and allocated female rock-wallabies to a placebo implant (control, n = 22, one (n = 22 or two (n = 20 subcutaneous implants of deslorelin. Females were then recaptured over the following 36 months to monitor reproduction, including Luteinising Hormone levels, and body condition. Following treatment, diapaused blastocysts reactivated in five females and the resulting young were carried through to weaning. No wallabies treated with deslorelin, conceivede a new young for at least 27 months. We did not observe adverse effects on body condition on treated females. We conclude that deslorelin implants are effective for the medium-term suppression of reproduction in female black-flanked rock-wallabies and for managing overabundant populations of some marsupials.

  13. Mechanism of phase transformations in Mg-based alloys subjected to plasma immersion ion implantation of Ag

    International Nuclear Information System (INIS)

    Kutsenko, Larisa; Fuks, David; Kiv, Arnold; Talianker, Michael; Burlaka, Ljubov; Monteiro, Othon; Brown, Ian

    2006-01-01

    The formation of a new phase of composition Mg 54 Al 28 Ag 18 was observed as a result of plasma immersion ion implantation of Ag into the compound Mg 17 Al 12 . The new structure was characterized using a micro-beam diffraction technique. It was found that the implantation-induced phase transition occurs when the retained dose of the implanted ions is within the range of about 10 15 -10 16 ions/cm 2 . The implanted system has been studied theoretically by means of density-functional electronic structure calculations and a new ab initio approach has been developed to evaluate the specific concentrations of the implanted ions that might cause the phase transition effect in the implanted matrix. The theoretically estimated values of concentrations are in good agreement with experimental observations

  14. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants

    International Nuclear Information System (INIS)

    Uddin, M S; Hall, Colin; Murphy, Peter

    2015-01-01

    Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes—conversion and deposition coatings—while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches

  15. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants

    Science.gov (United States)

    Uddin, M S; Hall, Colin; Murphy, Peter

    2015-01-01

    Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes—conversion and deposition coatings—while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches

  16. A hot implantation study on the evolution of defects in He ion implanted MgO(1 0 0)

    International Nuclear Information System (INIS)

    Fedorov, A.V.; Huis, M.A. van; Veen, A. van

    2002-01-01

    Ion implantation at elevated temperature, so-called hot implantation, was used to study nucleation and thermal stability of the defects. In this work, MgO(1 0 0) single crystal samples were implanted with 30 keV He ions at various implantation temperatures. The implantation doses ranged from 10 14 to 10 16 cm -2 . The implantation introduced defects were subsequently studied by thermal helium desorption spectroscopy (THDS) and Doppler broadening positron beam analysis (PBA). The THDS study provides vital information on the kinetics of He release from the sample. PBA technique, being sensitive to the open volume defects, provides complementary information on cavity evolution. The THD study has shown that in most cases helium release is characterised by the activation energy of Q=4.7±0.5 eV with the maximum release temperature of T max =1830 K. By applying first order desorption model the pre-exponent factor is estimated as ν=4.3x10 11 s -1

  17. Copper implantation defects in MgO observed by positron beam analysis, RBS and X-TEM

    International Nuclear Information System (INIS)

    Huis, M.A. van; Fedorov, A.V.; Veen, A. van; Smulders, P.J.M.; Kooi, B.J.; Hosson, J.Th.M. de

    2000-01-01

    In this work, effects of copper ion implantation in MgO were studied. (1 0 0) MgO samples were implanted with 50 keV Cu ions and thermally annealed stepwise in air for 30 minutes at 550, 750, 1000, 1250 and 1350 K. After ion implantation and after each annealing step, the samples were analysed with positron beam analysis (PBA). Use was also made of Rutherford backscattering spectrometry/channeling (RBS-C) and cross-sectional transmission electron microscopy (X-TEM). The combination of these techniques enabled to monitor the depth resolved evolution of both created defects and the copper atom depth distribution. PBA results show that copper implantation at a dose of 10 15 ions cm -2 yields a single layer of vacancy type defects after annealing. However a copper implantation at a dose of 10 16 ions cm -2 clearly yields two layers of defects in the material after annealing, separated by an intermediate layer. In both layers nanocavities have been identified. RBS experimental results show that the implanted copper atoms diffuse into the bulk material during annealing. X-TEM and channeling results show that after annealing, the lattice of the copper nanoprecipitates is epitaxial to the MgO host lattice. Under some circumstances, copper precipitates and small voids can co-exist. Furthermore, X-TEM measurements show that the nanocavities have rectangular shapes

  18. Induction of ovarian activity and ovulation in an induced ovulator, the maned wolf (Chrysocyon brachyurus), using GnRH agonist and recombinant LH.

    Science.gov (United States)

    Johnson, Amy E M; Freeman, Elizabeth W; Colgin, Mark; McDonough, Caitlin; Songsasen, Nucharin

    2014-07-01

    Assisted reproductive techniques, such as ovarian manipulation and artificial insemination, are useful for enhancing genetic management of threatened wildlife maintained ex situ. In this study, we used noninvasive fecal hormone monitoring to investigate (1) the influence of pairing with a male on endocrine responses of female maned wolves (Chrysocyon brachyurus) to a GnRH agonist (deslorelin) and (2) the efficiency of recombinant LH (reLH) on ovulation induction in females housed alone. Deslorelin (2.1 mg Ovuplant) was given to females that were either paired with a male (n = 4) or housed alone (n = 7); the implant was removed 7 to 11 days postimplantation. Three of seven singleton females were injected with reLH (0.0375 mg) on the day of implant removal, whereas the remaining females (n = 4) did not receive the additional treatment. Fecal samples were collected 5 to 7 days/wk from all females starting 11 days prior to hormone insertion until at least 70 days post implant removal for a total of 11 hormone treatment cycles. Fecal estrogen and progestagen metabolites were extracted and analyzed by enzyme immunoassay. Evidence of ovulation, demonstrated by a surge of estrogen followed by a significant rise in progestagen, occurred in all paired females. Three of the four singleton females that did not receive reLH treatment exhibited no rise in progestagen after an estrogen surge. All singleton females treated with reLH exhibited a rise in fecal progestagen after injection, indicating ovulation. In conclusion, deslorelin is effective at inducing ovarian activity and ovulation in paired female maned wolves; however, exogenous reLH is needed to induce ovulation in females housed alone. The findings obtained from this study serve as a foundation for future application of artificial insemination to enhance genetic management of this threatened species ex situ. Published by Elsevier Inc.

  19. Investigation of GaN LED with Be-implanted Mg-doped GaN layer

    International Nuclear Information System (INIS)

    Huang, H.-W.; Kao, C.C.; Chu, J.T.; Kuo, H.C.; Wang, S.C.; Yu, C.C.; Lin, C.F.

    2004-01-01

    We report the electrical and optical characteristics of GaN light emitting diode (LED) with beryllium (Be) implanted Mg-doped GaN layer. The p-type layer of Be-implanted GaN LED showed a higher hole carrier concentration of 2.3 x 10 18 cm -3 and low specific contact resistance value of 2.0 x 10 -4 Ωcm 2 than as-grown p-GaN LED samples without Be-implantation. The Be-implanted GaN LEDs with InGaN/GaN MQW show slightly lower light output (about 10%) than the as-grown GaN LEDs, caused by the high RTA temperature annealing process

  20. Mg amorphous alloys for biodegradable implants; Ligas amorfas de magnesio utilizadas em implantes consumiveis

    Energy Technology Data Exchange (ETDEWEB)

    Danez, G.P., E-mail: gabidanez@hotmail.co [Universidade Federal de Sao Carlos (PPG-CEMUFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Koga, G.Y.; Tonucci, S.; Bolfarini, C.; Kiminami, C.S.; Botta Filho, W.J. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    The use of implants made from amorphous alloys magnesium-based with additions of zinc and calcium are promising. Properties such as biocompatibility, low density, high mechanical strength, low modulus (as compared to alloys such as stainless steel and titanium), corrosion resistance and wear resistance make it attractive for use in implants. Moreover, the by-products of corrosion and wear are not toxic and may contribute to fixation. Aiming to understand the tendency of this amorphous ternary (Mg-Zn-Ca) and expand the information about this system, this work involved the use of the topological criterion of instability ({lambda}) and the criterion of electronegativity ({Delta}e) to the choice of compositions. The alloys were processed into wedge-shaped and analyzed structurally and in X-ray diffraction and scanning electron microscopy. (author)

  1. Radiation-damage recovery in undoped and oxidized Li doped Mg O crystals implanted with lithium ions

    Energy Technology Data Exchange (ETDEWEB)

    Alves, E. E-mail: ealves@itn.pt; Silva, R.C. da; Pinto, J.V.; Monteiro, T.; Savoini, B.; Caceres, D.; Gonzalez, R.; Chen, Y

    2003-05-01

    Undoped MgO and oxidized Li-doped MgO single crystals were implanted with 1 x 10{sup 17} Li{sup +}/cm{sup 2} at 175 keV. The Rutherford backscattering spectrometry (RBS)/channeling data obtained after implantation shows that damage was produced throughout the entire range of the implanted ions. Optical absorption measurements indicate that after implantation the most intense band occurs at {approx}5.0 eV, which has been associated with anion vacancies. After annealing at 450 K the intensity of the oxygen-vacancy band decreases monotonically with temperature and completely disappears at 950 K. A broad extinction band centered at {approx}2.14 eV associated with lithium precipitates emerges gradually and anneals out at 1250 K. RBS/channeling shows that recovery of the implantation damage is completed after annealing the oxidized samples at 1250 K.

  2. Structural, compositional, mechanical characterization and biological assessment of bovine-derived hydroxyapatite coatings reinforced with MgF_2 or MgO for implants functionalization

    International Nuclear Information System (INIS)

    Mihailescu, Natalia; Stan, G.E.; Duta, L.; Chifiriuc, Mariana Carmen; Bleotu, Coralia; Sopronyi, M.; Luculescu, C.; Oktar, F.N.; Mihailescu, I.N.

    2016-01-01

    Hydroxyapatite (HA) is a consecrated biomaterial for bone reconstruction. In the form of thin films deposited by pulsed laser technologies, it can be used to cover metallic implants aiming to increase biocompatibility and osseointegration rate. HA of animal origin (bovine, BHA) reinforced with MgF_2 (2 wt.%) or MgO (5 wt.%) were used for deposition of thin coatings with improved adherence, biocompatibility and antimicrobial activity. For pulsed laser deposition experiments, a KrF* (λ = 248 nm, τ_F_W_H_M ≤ 25 ns) excimer laser source was used. The deposited structures were characterized from a physical–chemical point of view by X-Ray Diffraction, Fourier Transform Infra-Red Spectroscopy, Scanning Electron Microscopy in top- and cross-view modes, Energy Dispersive X-Ray Spectroscopy and Pull-out adherence tests. The microbiological assay using the HEp-2 cell line revealed that all target materials and deposited thin films are non-cytotoxic. We conducted tests on three strains isolated from patients with dental implants failure, i.e. Microccocus sp., Enterobacter sp. and Candida albicans sp. The most significant anti-biofilm effect against Microcococcus sp. strain, at 72 h, was obtained in the presence of BHA:MgO thin films. For Enterobacter sp. strain a superior antimicrobial activity at 72 h was noticed, in respect with simple BHA or Ti control. The enhanced antimicrobial performances, correlated with good cytocompatibility and mechanical properties recommend these biomaterials as an alternative to synthetic HA for the fabrication of reliable implant coatings for dentistry and other applications. - Highlights: • Novel biological derived HA coatings fabricated by pulsed laser deposition. • Renewable resources • Reinforcement with MgF_2 and MgO improves the HA coatings' bonding strength. • Significant anti-biofilm effect obtained for MgO reinforced HA films. • Alternative low cost solutions for a new generation of dental implants.

  3. Optimization of cell adhesion on mg based implant materials by pre-incubation under cell culture conditions.

    Science.gov (United States)

    Willumeit, Regine; Möhring, Anneke; Feyerabend, Frank

    2014-05-05

    Magnesium based implants could revolutionize applications where orthopedic implants such as nails, screws or bone plates are used because they are load bearing and degrade over time. This prevents a second surgery to remove conventional implants. To improve the biocompatibility we studied here if and for how long a pre-incubation of the material under cell culture conditions is favorable for cell attachment and proliferation. For two materials, Mg and Mg10Gd1Nd, we could show that 6 h pre-incubation are already enough to form a natural protective layer suitable for cell culture.

  4. Optimization of Cell Adhesion on Mg Based Implant Materials by Pre-Incubation under Cell Culture Conditions

    Directory of Open Access Journals (Sweden)

    Regine Willumeit

    2014-05-01

    Full Text Available Magnesium based implants could revolutionize applications where orthopedic implants such as nails, screws or bone plates are used because they are load bearing and degrade over time. This prevents a second surgery to remove conventional implants. To improve the biocompatibility we studied here if and for how long a pre-incubation of the material under cell culture conditions is favorable for cell attachment and proliferation. For two materials, Mg and Mg10Gd1Nd, we could show that 6 h pre-incubation are already enough to form a natural protective layer suitable for cell culture.

  5. Structural, compositional, mechanical characterization and biological assessment of bovine-derived hydroxyapatite coatings reinforced with MgF{sub 2} or MgO for implants functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Mihailescu, Natalia [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania); Stan, G.E. [National Institute of Materials Physics, Magurele RO-077125 (Romania); Duta, L. [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania); Chifiriuc, Mariana Carmen [Department of Microbiology, Faculty of Biology, Bucharest RO-060101 (Romania); Bleotu, Coralia [Stefan S. Nicolau Institute of Virology, 85 Mihai Bravu Avenue, Bucharest RO-030304 (Romania); Sopronyi, M.; Luculescu, C. [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania); Oktar, F.N. [Department of Bioengineering, Faculty of Engineering, Marmara University, Goztepe, Istanbul TR-34722 (Turkey); Advance Nanomaterials Research Laboratory, Marmara University, Goztepe, Istanbul TR-34722 (Turkey); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania)

    2016-02-01

    Hydroxyapatite (HA) is a consecrated biomaterial for bone reconstruction. In the form of thin films deposited by pulsed laser technologies, it can be used to cover metallic implants aiming to increase biocompatibility and osseointegration rate. HA of animal origin (bovine, BHA) reinforced with MgF{sub 2} (2 wt.%) or MgO (5 wt.%) were used for deposition of thin coatings with improved adherence, biocompatibility and antimicrobial activity. For pulsed laser deposition experiments, a KrF* (λ = 248 nm, τ{sub FWHM} ≤ 25 ns) excimer laser source was used. The deposited structures were characterized from a physical–chemical point of view by X-Ray Diffraction, Fourier Transform Infra-Red Spectroscopy, Scanning Electron Microscopy in top- and cross-view modes, Energy Dispersive X-Ray Spectroscopy and Pull-out adherence tests. The microbiological assay using the HEp-2 cell line revealed that all target materials and deposited thin films are non-cytotoxic. We conducted tests on three strains isolated from patients with dental implants failure, i.e. Microccocus sp., Enterobacter sp. and Candida albicans sp. The most significant anti-biofilm effect against Microcococcus sp. strain, at 72 h, was obtained in the presence of BHA:MgO thin films. For Enterobacter sp. strain a superior antimicrobial activity at 72 h was noticed, in respect with simple BHA or Ti control. The enhanced antimicrobial performances, correlated with good cytocompatibility and mechanical properties recommend these biomaterials as an alternative to synthetic HA for the fabrication of reliable implant coatings for dentistry and other applications. - Highlights: • Novel biological derived HA coatings fabricated by pulsed laser deposition. • Renewable resources • Reinforcement with MgF{sub 2} and MgO improves the HA coatings' bonding strength. • Significant anti-biofilm effect obtained for MgO reinforced HA films. • Alternative low cost solutions for a new generation of dental implants.

  6. A pro-angiogenic degradable Mg-poly(lactic-co-glycolic acid) implant combined with rhbFGF in a rat limb ischemia model.

    Science.gov (United States)

    Bao, Hanmei; Lv, Feng; Liu, Tianjun

    2017-12-01

    Site-specific controlled release of exogenous angiogenic growth factors, such as recombinant human basic fibroblast growth factor (rhbFGF), has become a promising approach to improve peripheral vascular disease. Here, we have developed an implant composed of spiral magnesium (Mg) and a coating made using poly(lactic-co-glycolic acid) (PLGA) with encapsulated rhbFGF (Mg-PLGA-rhbFGF). The encapsulated protein could release continually for 4weeks with well preserved bioactivity. We compared the angiogenic effect produced by Mg-PLGA-rhbFGF with that of a PLGA implant loaded with rhbFGF (PLGA-rhbFGF). The incorporation of Mg in the implant raised the microclimate pH in the polymer, which preserved the stability of rhbFGF. Mg-PLGA-rhbFGF exhibited advantages over PLGA-rhbFGF implant in terms of a cytocompatibility evaluation. An in vivo angiogenesis test further confirmed the efficacy of released rhbFGF. HE, CD31 and α-SMA staining revealed that the controlled release of rhbFGF from the Mg-PLGA-rhbFGF implant was superior in promoting angiogenesis compared with that of the PLGA-rhbFGF implant. Four weeks post-implantation, the capillary density of the Mg-PLGA-rhbFGF group was significantly higher than that of the PLGA-rhbFGF, control and the normal group (pspiral magnesium and a coating made using poly(lactic-co-glycolic acid) (PLGA) with encapsulated rhbFGF (Mg-PLGA-rhbFGF). The preparation method does not involve any complex processes and results in a high encapsulation efficiency (approximately 100%). The degradation of metal Mg raise the microclimate pH in the PLGA polymer, which could well preserve the bioactivity of rhbFGF incorporated in the implant. Mg-PLGA-based, sustained local delivery of rhbFGF promotes post-ischemic angiogenesis and blood flow recovery in rat limb ischemic model. This work marks the first report for controlled release of rhbFGF in combination with metal Mg, and suggests potential therapeutic usefulness of Mg-PLGA-rhbFGF for tissue ischemia

  7. Morphology and Differentiation of MG63 Osteoblast Cells on Saliva Contaminated Implant Surfaces

    Directory of Open Access Journals (Sweden)

    Neda Shams

    2015-11-01

    Full Text Available Objectives: Osteoblasts are the most important cells in the osseointegration process. Despite years of study on dental Implants, limited studies have discussed the effect of saliva on the adhesion process of osteoblasts to implant surfaces. The aim of this in vitro study was to evaluate the effect of saliva on morphology and differentiation of osteoblasts attached to implant surfaces.Materials and Methods: Twelve Axiom dental implants were divided into two groups. Implants of the case group were placed in containers, containing saliva, for 40 minutes. Then, all the implants were separately stored in a medium containing MG63 human osteoblasts for a week. Cell morphology and differentiation were assessed using a scanning electron microscope and their alkaline phosphatase (ALP activity was determined. The t-test was used to compare the two groups.Results: Scanning electron microscopic observation of osteoblasts revealed round or square cells with fewer and shorter cellular processes in saliva contaminated samples, whereas elongated, fusiform and well-defined cell processes were seen in the control group. ALP level was significantly lower in case compared to control group (P<0.05.Conclusion: Saliva contamination alters osteoblast morphology and differentiation and may subsequently interfere with successful osseointegration. Thus, saliva contamination of bone and implant must be prevented or minimized.

  8. Estudio multicéntrico prospectivo con implantes MG-OSSEOUS a los 2 años de seguimiento Multicentric prospective study of MG-OSSEOUS implants at 2 year follow-up

    Directory of Open Access Journals (Sweden)

    E. Serrano

    2009-10-01

    Full Text Available Introducción. La implantología es uno de los procedimientos terapéuticos más realizados en nuestros días. El objetivo del presente estudio es presentar los resultados de los los implantes MG-OSSEOUS (Mozo-Grau, S.L., Valladolid, España a los 2 años de seguimiento. Material y método. La empresa Scientific Management in O&SS (Barcelona, España, diseñó unos cuestionarios exhaustivos que rellenaron, por cada caso, cada uno de los profesionales del estudio. La compilación y el tratamiento estadístico de los datos obtenidos fue extremadamente pormenorizada. Se aplicaron estudios de subpoblaciones desde la población N de implantes totales colocados y, mediante la aplicación de ANOVA, se valoraron parámetros concretos en dichas subpoblaciones para determinar y concluir la influencia de los mismos sobre el fracaso de los implantes. Resultados. Se colocaron 1475 implantes en 480 pacientes entre Junio de 2005 y Mayo de 2006, con una supervivencia del 98,2% con un seguimiento de 2 años de promedio con las prótesis cargadas. Se detallan los implantes por posiciones, diámetros y longitudes y se analizan los resultados en las subpoblaciones de implantes postexodoncia, implantes de carga inmediata e implantes asociados a injertos. Discusión. Se focaliza, realizando un amplio repaso de la bibliografía actual, en el alto fracaso obtenido en nuestro estudio de los implantes de diámetro ancho (4,25 mm postexodoncia y en la versatilidad del empleo de los implantes de diámetro estrecho (3,4 mm en cualquier posición oral para cualquier tipo de carga. Conclusiones. Este estudio es la completa antítesis de la filosofía, en el que se interpreta de una sola manera, científica y reproducible, una serie de resultados en el campo de la implantología oral, nuestra realidad. Seguiremos este estudio para alargar el tiempo observacional, como mínimo, a 5 años.Introduction. Implantology is the most common therapeutic procedure nowadays. Professor P

  9. Electrically active point defects in Mg implanted n-type GaN grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Alfieri, G.; Sundaramoorthy, V. K.; Micheletto, R.

    2018-05-01

    Magnesium (Mg) is the p-type doping of choice for GaN, and selective area doping by ion implantation is a routine technique employed during device processing. While electrically active defects have been thoroughly studied in as-grown GaN, not much is known about defects generated by ion implantation. This is especially true for the case of Mg. In this study, we carried out an electrical characterization investigation of point defects generated by Mg implantation in GaN. We have found at least nine electrically active levels in the 0.2-1.2 eV energy range, below the conduction band. The isochronal annealing behavior of these levels showed that most of them are thermally stable up to 1000 °C. The nature of the detected defects is then discussed in the light of the results found in the literature.

  10. In vivo study of nanostructured diopside (CaMgSi2O6) coating on magnesium alloy as biodegradable orthopedic implants

    International Nuclear Information System (INIS)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Razavi, Seyed Mohammad; Heidari, Fariba; Manshaei, Maziar; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Highlights: • In vitro biocompatibility of biodegradable Mg alloy was improved by diopside coating. • In vivo biocompatibility of biodegradable Mg alloy was improved by diopside coating. • Degradation behavior of biodegradable Mg alloy was improved by diopside coating. - Abstract: In order to improve the corrosion resistance and bioactivity of a biodegradable magnesium alloy, we have recently prepared a nanostructured diopside (CaMgSi 2 O 6 ) coating on AZ91 magnesium alloy through a combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method (reported elsewhere). In this work, we performed a detailed biocompatibility analysis of the implants made by this material and compared their performance with those of the uncoated and micro arc oxidized magnesium implants. The biocompatibility evaluation of samples was performed by culturing L-929 cells and in vivo animal study, including implantation of samples in greater trochanter of rabbits, radiography and histological examinations. The results from both the in vitro and in vivo studies indicated that the diopside/MAO coated magnesium implant significantly enhanced cell viability, biodegradation resistance and new bone formation compared with both the uncoated and the micro-arc oxidized magnesium implants. Our data provides an example of how the proper surface treatment of magnesium implants can overcome their drawbacks in terms of high degradation rate and gas bubble formation under physiological conditions

  11. Age-associated and deslorelin-induced declines in serum anti-Müllerian hormone concentrations in female cheetahs, Acinonyx jubatus.

    Science.gov (United States)

    Place, Ned J; Crosier, Adrienne E; Comizzoli, Pierre; Nagashima, Jennifer B; Haefele, Holly; Schmidt-Küntzel, Anne; Marker, Laurie L

    2017-09-01

    Anti-Müllerian hormone (AMH) is widely used in human medicine to non-invasively estimate the size of the ovarian follicle reserve and to predict the ovarian response to gonadotropin stimulation in the context of assisted reproductive technologies (e.g., IVF). These applications of AMH testing have recently expanded to non-human mammals, with production animals, such as cows, goats and sheep being the primary focus of AMH research. However, few investigations have involved exotic species, and in particular carnivores. In this study, we measured AMH concentrations (0.078-3.078ng/mL) in archived serum samples that had been collected from 36 adult female cheetahs across their reproductive lifespan (2-15years of age). Similar to other mammals, AMH concentration in cheetahs declined with age, and its variability among females of the same age was considerable. The rates at which AMH declined over time in individual cheetahs were also highly variable. Five cheetahs had been contracepted with the long-acting GnRH agonist deslorelin for 6-18months prior to sample collection, and their AMH concentrations were relatively low compared to untreated females. In this first study of AMH in an exotic carnivore, the findings demonstrate that the age-associated decline in AMH is highly variable and that deslorelin appears to suppress AMH concentration in serum. Owing to the increased use of assisted reproductive technologies in ex situ populations of threatened and endangered species, such as cheetahs, the present study's findings will need to be taken into consideration if AMH is to be used successfully to optimize breeding management decisions in exotic species. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Surface characterization, in vitro and in vivo biocompatibility of Mg-0.3Sr-0.3Ca for temporary cardiovascular implant.

    Science.gov (United States)

    Bornapour, M; Mahjoubi, H; Vali, H; Shum-Tim, D; Cerruti, M; Pekguleryuz, M

    2016-10-01

    Magnesium-based alloys are attractive candidate materials for medical applications. Our earlier work showed that the ternary Mg-0.3Sr-0.3Ca alloy exhibits slower degradation rates than both binary Mg-Sr and Mg-Ca alloys. The ternary alloy immersed in simulated body fluid (SBF) forms a compact surface layer of corrosion products that we hypothesized to be a Sr-substituted hydroxyapatite (HA). The main objectives of the current work are to understand the bio-degradation mechanism of Mg-0.3Sr-0.3Ca, to identify the exact nature of its protective layer and to evaluate the in vitro and in vivo biocompatibility of the alloy for cardiovascular applications. To better simulate the physiological environment, the alloy was immersed in SBF which was daily refreshed. Raman spectroscopy and X-Ray photoelectron spectroscopy (XPS) confirmed the formation of a thin, Sr-substituted HA layer at the interface between the alloy and the corrosion products. In vitro biocompatibility evaluated via indirect cytotoxicity assays using HUVECs showed no toxicity effect and ions extracted from Mg-0.3Sr-0.3Ca in fact increased the viability of HUVECs after one week. In vivo tests were performed by implanting a tubular Mg-0.3Sr-0.3Ca stent along with a WE43 control stent into the right and left femoral artery of a dog. Post implantation and histological analyses showed no thrombosis in the artery with Mg-0.3Sr-0.3Ca stent after 5weeks of implantation while the artery implanted with WE43 stent was extensively occluded and thrombosed. Microscopic observation of the Mg-0.3Sr-0.3Ca implant-tissue interface confirmed the in situ formation of Sr-substituted HA on the surface during in vivo test. These results show that the interfacial layer protects the surface of the Mg-0.3Sr-0.3Ca alloy both in vitro and in vivo, and is the key factor in the bio-corrosion resistance of the alloy. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Hyperfine interaction of 13O and 23Mg implanted in Pt

    International Nuclear Information System (INIS)

    Matsuta, K.; Yoshida, K.; Ozawa, A.; Momota, S.; Kobayashi, T.; Tanihata, I.; Alonso, J.R.; Krebs, G.F.; Symons, T.J.M.

    1996-01-01

    The spin relaxation time T 1 for short-lived beta emitters 13 O and 23 Mg implanted in Pt have been measured for the first time; T 1 T( 13 O)=2.90±0.65 Ks and T 1 T( 23 Mg)=1665±140 Ks. The Knight shift for 13 O in Pt was measured at 300 K to be K( 13 O)=+(4.23±0.14).10 -3 . In the case of 13 O, the Knight shift is unusually large and the relaxation time is unusually fast compared with other interstitial impurities in Pt. A KKR band-structure calculation reproduces the present large Knight shift fairly well. (orig.)

  14. Surface characterization, in vitro and in vivo biocompatibility of Mg-0.3Sr-0.3Ca for temporary cardiovascular implant

    Energy Technology Data Exchange (ETDEWEB)

    Bornapour, M., E-mail: mandana.bornapour@mail.mcgill.ca [Light Metals and Advanced Magnesium Materials, Mining and Materials Engineering, McGill University, Montreal, Qc, H3A 0C5 (Canada); Biointerface Lab, Mining and Materials Engineering, McGill University, Montreal, Qc H3A 0C5 (Canada); Mahjoubi, H. [Biointerface Lab, Mining and Materials Engineering, McGill University, Montreal, Qc H3A 0C5 (Canada); Vali, H. [Department of Anatomy and Cell Biology, McGill University, Montreal, Qc, H3A 0C7 (Canada); Shum-Tim, D. [Department of Cardiac Surgery and Surgical Research, McGill University, Montreal, Qc H3G 1A1 (Canada); Cerruti, M. [Biointerface Lab, Mining and Materials Engineering, McGill University, Montreal, Qc H3A 0C5 (Canada); Pekguleryuz, M. [Light Metals and Advanced Magnesium Materials, Mining and Materials Engineering, McGill University, Montreal, Qc, H3A 0C5 (Canada)

    2016-10-01

    Magnesium-based alloys are attractive candidate materials for medical applications. Our earlier work showed that the ternary Mg-0.3Sr-0.3Ca alloy exhibits slower degradation rates than both binary Mg-Sr and Mg-Ca alloys. The ternary alloy immersed in simulated body fluid (SBF) forms a compact surface layer of corrosion products that we hypothesized to be a Sr-substituted hydroxyapatite (HA). The main objectives of the current work are to understand the bio-degradation mechanism of Mg-0.3Sr-0.3Ca, to identify the exact nature of its protective layer and to evaluate the in vitro and in vivo biocompatibility of the alloy for cardiovascular applications. To better simulate the physiological environment, the alloy was immersed in SBF which was daily refreshed. Raman spectroscopy and X-Ray photoelectron spectroscopy (XPS) confirmed the formation of a thin, Sr-substituted HA layer at the interface between the alloy and the corrosion products. In vitro biocompatibility evaluated via indirect cytotoxicity assays using HUVECs showed no toxicity effect and ions extracted from Mg-0.3Sr-0.3Ca in fact increased the viability of HUVECs after one week. In vivo tests were performed by implanting a tubular Mg-0.3Sr-0.3Ca stent along with a WE43 control stent into the right and left femoral artery of a dog. Post implantation and histological analyses showed no thrombosis in the artery with Mg-0.3Sr-0.3Ca stent after 5 weeks of implantation while the artery implanted with WE43 stent was extensively occluded and thrombosed. Microscopic observation of the Mg-0.3Sr-0.3Ca implant-tissue interface confirmed the in situ formation of Sr-substituted HA on the surface during in vivo test. These results show that the interfacial layer protects the surface of the Mg-0.3Sr-0.3Ca alloy both in vitro and in vivo, and is the key factor in the bio-corrosion resistance of the alloy. - Highlights: • The surface active elements of Sr and Ca alter the corrosion of Mg alloy in SBF • Sr

  15. Surface characterization, in vitro and in vivo biocompatibility of Mg-0.3Sr-0.3Ca for temporary cardiovascular implant

    International Nuclear Information System (INIS)

    Bornapour, M.; Mahjoubi, H.; Vali, H.; Shum-Tim, D.; Cerruti, M.; Pekguleryuz, M.

    2016-01-01

    Magnesium-based alloys are attractive candidate materials for medical applications. Our earlier work showed that the ternary Mg-0.3Sr-0.3Ca alloy exhibits slower degradation rates than both binary Mg-Sr and Mg-Ca alloys. The ternary alloy immersed in simulated body fluid (SBF) forms a compact surface layer of corrosion products that we hypothesized to be a Sr-substituted hydroxyapatite (HA). The main objectives of the current work are to understand the bio-degradation mechanism of Mg-0.3Sr-0.3Ca, to identify the exact nature of its protective layer and to evaluate the in vitro and in vivo biocompatibility of the alloy for cardiovascular applications. To better simulate the physiological environment, the alloy was immersed in SBF which was daily refreshed. Raman spectroscopy and X-Ray photoelectron spectroscopy (XPS) confirmed the formation of a thin, Sr-substituted HA layer at the interface between the alloy and the corrosion products. In vitro biocompatibility evaluated via indirect cytotoxicity assays using HUVECs showed no toxicity effect and ions extracted from Mg-0.3Sr-0.3Ca in fact increased the viability of HUVECs after one week. In vivo tests were performed by implanting a tubular Mg-0.3Sr-0.3Ca stent along with a WE43 control stent into the right and left femoral artery of a dog. Post implantation and histological analyses showed no thrombosis in the artery with Mg-0.3Sr-0.3Ca stent after 5 weeks of implantation while the artery implanted with WE43 stent was extensively occluded and thrombosed. Microscopic observation of the Mg-0.3Sr-0.3Ca implant-tissue interface confirmed the in situ formation of Sr-substituted HA on the surface during in vivo test. These results show that the interfacial layer protects the surface of the Mg-0.3Sr-0.3Ca alloy both in vitro and in vivo, and is the key factor in the bio-corrosion resistance of the alloy. - Highlights: • The surface active elements of Sr and Ca alter the corrosion of Mg alloy in SBF • Sr

  16. Effects of material growth technique and Mg doping on Er3+ photoluminescence in Er-implanted GaN

    International Nuclear Information System (INIS)

    Kim, S.; Henry, R. L.; Wickenden, A. E.; Koleske, D. D.; Rhee, S. J.; White, J. O.; Myoung, J. M.; Kim, K.; Li, X.; Coleman, J. J.

    2001-01-01

    Photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies have been carried out at 6 K on the ∼1540 nm 4 I 13/2 - 4 I 15/2 emissions of Er 3+ in Er-implanted and annealed GaN. These studies revealed the existence of multiple Er 3+ centers and associated PL spectra in Er-implanted GaN films grown by metalorganic chemical vapor deposition, hydride vapor phase epitaxy, and molecular beam epitaxy. The results demonstrate that the multiple Er 3+ PL centers and below-gap defect-related absorption bands by which they are selectively excited are universal features of Er-implanted GaN grown by different techniques. It is suggested that implantation-induced defects common to all the GaN samples are responsible for the Er site distortions that give rise to the distinctive, selectively excited Er 3+ PL spectra. The investigations of selectively excited Er 3+ PL and PLE spectra have also been extended to Er-implanted samples of Mg-doped GaN grown by various techniques. In each of these samples, the so-called violet-pumped Er 3+ PL band and its associated broad violet PLE band are significantly enhanced relative to the PL and PLE of the other selectively excited Er 3+ PL centers. More importantly, the violet-pumped Er 3+ PL spectrum dominates the above-gap excited Er 3+ PL spectrum of Er-implanted Mg-doped GaN, whereas it was unobservable under above-gap excitation in Er-implanted undoped GaN. These results confirm the hypothesis that appropriate codopants can increase the efficiency of trap-mediated above-gap excitation of Er 3+ emission in Er-implanted GaN. [copyright] 2001 American Institute of Physics

  17. In vivo study of nanostructured diopside (CaMgSi{sub 2}O{sub 6}) coating on magnesium alloy as biodegradable orthopedic implants

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mehdi, E-mail: mrzavi2659@gmail.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Savabi, Omid [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Razavi, Seyed Mohammad [School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Heidari, Fariba; Manshaei, Maziar [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Vashaee, Daryoosh [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@okstate.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States)

    2014-09-15

    Highlights: • In vitro biocompatibility of biodegradable Mg alloy was improved by diopside coating. • In vivo biocompatibility of biodegradable Mg alloy was improved by diopside coating. • Degradation behavior of biodegradable Mg alloy was improved by diopside coating. - Abstract: In order to improve the corrosion resistance and bioactivity of a biodegradable magnesium alloy, we have recently prepared a nanostructured diopside (CaMgSi{sub 2}O{sub 6}) coating on AZ91 magnesium alloy through a combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method (reported elsewhere). In this work, we performed a detailed biocompatibility analysis of the implants made by this material and compared their performance with those of the uncoated and micro arc oxidized magnesium implants. The biocompatibility evaluation of samples was performed by culturing L-929 cells and in vivo animal study, including implantation of samples in greater trochanter of rabbits, radiography and histological examinations. The results from both the in vitro and in vivo studies indicated that the diopside/MAO coated magnesium implant significantly enhanced cell viability, biodegradation resistance and new bone formation compared with both the uncoated and the micro-arc oxidized magnesium implants. Our data provides an example of how the proper surface treatment of magnesium implants can overcome their drawbacks in terms of high degradation rate and gas bubble formation under physiological conditions.

  18. Ferromagnetism and transport in Mn and Mg co-implanted GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Kulbachinskii, V A [Moscow State University, Low Temperature Physics Department, 119992, GSP-2, Moscow (Russian Federation); Gurin, P V [Moscow State University, Low Temperature Physics Department, 119992, GSP-2, Moscow (Russian Federation); Danilov, Yu A [Physico-Technical Research Institute, University of Nizhny Novgorod, 603950, Nizhny Novgorod (Russian Federation); Malysheva, E I [Physico-Technical Research Institute, University of Nizhny Novgorod, 603950, Nizhny Novgorod (Russian Federation); Horikoshi, Y [School of science and engineering, Waseda university, 3-4-1, Okubo, Tokyo 169-8555 (Japan); Onomitsu, K [School of science and engineering, Waseda university, 3-4-1, Okubo, Tokyo 169-8555 (Japan)

    2007-03-15

    We investigated the influence of Mn and Mg co-implantation accompanied by rapid thermal annealing on magnetic and galvanomagnetic properties of p-GaAs. We characterized the samples with SQUID magnetometry and magnetotransport measurements in the temperature interval 4.2 Kimplanted samples. Temperature dependences of resistance, magnetoresistance and Hall effect have been measured in the temperature range 4.2{<=}T{<=}300 K. The anomalous Hall effect is visible up to 195 K and shows influence of ferromagnetism of Ga{sub 1-x}Mn{sub x}As solid solution on galvanomagnetic properties of holes. Above this temperature, ferromagnetism survives due to the MnAs and Ga{sub 1-x}Mn{sub x} clusters. The magnetoresistance changes from colossal negative to enhanced positive with increasing temperature near T = 35 K.

  19. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    NARCIS (Netherlands)

    van Huis, MA; van Veen, A; Schut, H; Eijt, SWH; Kooi, BJ; De Hosson, JTM

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were

  20. In vitro study of nanostructured diopside coating on Mg alloy orthopedic implants

    International Nuclear Information System (INIS)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    The high corrosion rate of Mg alloys has hindered their application in various areas, particularly for orthopedic applications. In order to decrease the corrosion rate and to improve the bioactivity, mechanical stability and cytocompatibility of the Mg alloy, nanostructured diopside (CaMgSi 2 O 6 ) has been coated on AZ91 Mg alloy using a combined micro arc oxidation (MAO) and electrophoretic deposition (EPD) method. The crystalline structure, the morphology and the composition of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Electrochemical corrosion test, immersion test, and compression test were used to evaluate the corrosion resistance, the in vitro bioactivity and the mechanical stability of the samples, respectively. The cytocompatibility of the samples was tested by the cell viability and the cell attachment of L-929 cells. The results confirmed that the diopside coating not only slows down the corrosion rate, but also enhances the in vitro bioactivity, mechanical stability and cytocompatibility of AZ91 Mg alloy. Therefore, Mg alloy coated with nanostructured diopside offers a promising approach for biodegradable bone implants. - Highlights: • The diopside coating was applied on Mg alloy using the combined MAO and EPD methods. • The corrosion resistance of the diopside coated Mg alloy was noticeably improved. • The in vitro bioactivity of the diopside coated Mg alloy was considerably increased. • The mechanical stability of biodegradable Mg alloy was enhanced by diopside coating. • The cytocompatibility of the Mg alloy was improved employing diopside coating

  1. In vitro study of nanostructured diopside coating on Mg alloy orthopedic implants

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mehdi, E-mail: mehdi.razavi@okstate.edu [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Savabi, Omid [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Vashaee, Daryoosh [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@okstate.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States)

    2014-08-01

    The high corrosion rate of Mg alloys has hindered their application in various areas, particularly for orthopedic applications. In order to decrease the corrosion rate and to improve the bioactivity, mechanical stability and cytocompatibility of the Mg alloy, nanostructured diopside (CaMgSi{sub 2}O{sub 6}) has been coated on AZ91 Mg alloy using a combined micro arc oxidation (MAO) and electrophoretic deposition (EPD) method. The crystalline structure, the morphology and the composition of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Electrochemical corrosion test, immersion test, and compression test were used to evaluate the corrosion resistance, the in vitro bioactivity and the mechanical stability of the samples, respectively. The cytocompatibility of the samples was tested by the cell viability and the cell attachment of L-929 cells. The results confirmed that the diopside coating not only slows down the corrosion rate, but also enhances the in vitro bioactivity, mechanical stability and cytocompatibility of AZ91 Mg alloy. Therefore, Mg alloy coated with nanostructured diopside offers a promising approach for biodegradable bone implants. - Highlights: • The diopside coating was applied on Mg alloy using the combined MAO and EPD methods. • The corrosion resistance of the diopside coated Mg alloy was noticeably improved. • The in vitro bioactivity of the diopside coated Mg alloy was considerably increased. • The mechanical stability of biodegradable Mg alloy was enhanced by diopside coating. • The cytocompatibility of the Mg alloy was improved employing diopside coating.

  2. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    International Nuclear Information System (INIS)

    Huis, M.A. van; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2005-01-01

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were monitored using optical absorption and positron annihilation spectroscopy. High-resolution TEM on cross-sections after annealing at a temperature of 1300 K showed that clusters with a size below 5 nm have the high-pressure rock-salt structure and are in a cube-on-cube orientation relation with MgO, whereas clusters larger than 5 nm adopt the stable wurtzite crystal structure and were observed in two different orientation relations with MgO

  3. Radiation-induced effects in MgO single crystal by 200 keV and 1 MeV Ni ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Nakai, Yoshihiro; Hamaguchi, Dai [Kyoto Inst. of Tech. (Japan); and others

    1997-03-01

    MgO(100) single crystals were implanted with 1.0 MeV and 200 keV Ni ions between 10{sup 15} and 10{sup 17} ions/cm{sup 2} at room temperature. Before and after thermal annealing the radiation damage and the lattice location of implanted Ni ions were analyzed by using Rutherford backscattering spectrometry with channeling and optical absorption measurements. For 1.0 MeV Ni ions, the disorder of Mg atoms increased slowly with ion dose near surface region, while it increased sharply and saturated with ion dose from 2x10{sup 16} ions/cm{sup 2} near ion range. The radiation damage was recovered and implanted Ni ions diffused to the whole of crystal and occupied substitutional positions after 1400degC annealing. For 200 keV Ni ions, the disorder of Mg atoms increased with dose near ion range and had a maximum at about 5x10{sup 16} ions/cm{sup 2}. This tendency agrees with the behavior of color centers obtained from optical measurements. For thermal annealing the radiation damage did not change during 500degC annealing, but the aggregate centers appeared after 300degC annealing. (author)

  4. A Reproductive Management Program for an Urban Population of Eastern Grey Kangaroos (Macropus giganteus

    Directory of Open Access Journals (Sweden)

    Andrew Tribe

    2014-09-01

    Full Text Available Traditionally, culling has been the expedient, most common, and in many cases, the only tool used to control free-ranging kangaroo populations. We applied a reproductive control program to a population of eastern grey kangaroos confined to a golf course in South East Queensland. The program aimed to reduce fecundity sufficiently for the population to decrease over time so that overgrazing of the fairways and the frequency of human–animal conflict situations were minimised. In 2003, 92% of the female kangaroos above 5 kg bodyweight were implanted with the GnRH agonist deslorelin after darting with a dissociative anaesthetic. In 2007, 86% of the females above 5 kg were implanted with deslorelin and also 87% of the males above 5 kg were sterilised by either orchidectomy or vasectomy. In 2005, 2008 and 2009, the population was censused to assess the effect of each treatment. The 2003 deslorelin program resulted in effective zero population growth for approximately 2.5 years. The combined deslorelin–surgery program in 2007 reduced the birth rate from 0.3 to 0.06%/year for 16 months, resulting in a 27% population reduction by November 2009. The results were consistent with implants conferring contraception to 100% of implanted females for at least 12 months. The iatrogenic mortality rates for each program were 10.5% and 4.9%, respectively, with 50% of all mortalities due to darting-related injuries, exertional myopathy/hyperthermia or recovery misadventure. The short term sexual and agonistic behaviour of the males was assessed for the 2007 program: no significant changes were seen in adult males given the vasectomy procedure, while sexual behaviours’ were decreased in adult males given the orchidectomy procedure. It is concluded that female reproduction was effectively controlled by implantation with deslorrelin and male reproductive behaviour was reduced by orchidectomy, which together achieved population control.

  5. Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification.

    Science.gov (United States)

    Zhao, Chaoyong; Pan, Fusheng; Zhao, Shuang; Pan, Hucheng; Song, Kai; Tang, Aitao

    2015-09-01

    In this study, biodegradable Mg-Sn alloys were fabricated by sub-rapid solidification, and their microstructure, corrosion behavior and cytotoxicity were investigated by using optical microscopy, scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction, immersion test, potentiodynamic polarization test and cytotoxicity test. The results showed that the microstructure of Mg-1Sn alloy was almost equiaxed grain, while the Mg-Sn alloys with higher Sn content (Sn≥3 wt.%) displayed α-Mg dendrites, and the secondary dendrite arm spacing of the primary α-Mg decreased significantly with increasing Sn content. The Mg-Sn alloys consisted of primary α-Mg matrix, Sn-rich segregation and Mg2Sn phase, and the amount of Mg2Sn phases increased with increasing Sn content. Potentiodynamic polarization and immersion tests revealed that the corrosion rates of Mg-Sn alloys increased with increasing Sn content. Cytotoxicity test showed that Mg-1Sn and Mg-3Sn alloys were harmless to MG63 cells. These results of the present study indicated that Mg-1Sn and Mg-3Sn alloys were promising to be used as biodegradable implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Validation of a noninvasive diagnostic tool to verify neuter status in dogs: The urinary FSH to creatinine ratio.

    Science.gov (United States)

    Albers-Wolthers, C H J; de Gier, J; Oei, C H Y; Schaefers-Okkens, A C; Kooistra, H S

    2016-09-15

    Determining the presence of functional gonadal tissue in dogs can be challenging, especially in bitches during anestrus or not known to have been ovariectomized, or in male dogs with nonscrotal testes. Furthermore, in male dogs treated with deslorelin, a slow-release GnRH agonist implant for reversible chemical castration, the verification of complete downregulation of the hypothalamic-pituitary-gonadal (HPG) axis can be difficult, especially if pretreatment parameters such as the size of the testes or prostate gland are not available. The aims of this study were to validate an immunoradiometric assay for measurement of FSH in canine urine, to determine if the urinary FSH to creatinine ratio can be used to verify the neuter status in bitches and male dogs, as an alternative to the plasma FSH concentration, and to determine if downregulation of the HPG axis is achieved in male dogs during deslorelin treatment. Recovery of added canine FSH and serial dilutions of urine reported that the immunoradiometric assay measures urinary FSH concentration accurately and with high precision. Plasma FSH concentrations (the mean of two samples, taken 40 minutes apart) and the urinary FSH to creatinine ratio were determined before gonadectomy and 140 days (median, range 121-225 days) and 206 days (median, range 158-294 days) after gonadectomy of 13 bitches and five male dogs, respectively, and in 13 male dogs before and 132 days (median, range 117-174 days) after administration of a deslorelin implant. In both bitches and male dogs, the plasma FSH concentration and the urinary FSH to creatinine ratio were significantly higher after gonadectomy, with no overlapping of their ranges. Receiver operating characteristic analysis of the urinary FSH to creatinine ratio revealed a cut-off value of 2.9 in bitches and 6.5 in males to verify the presence or absence of functional gonadal tissue. In male dogs treated with deslorelin, the plasma FSH concentrations and urinary FSH to

  7. Glass-ceramic coated Mg-Ca alloys for biomedical implant applications.

    Science.gov (United States)

    Rau, J V; Antoniac, I; Fosca, M; De Bonis, A; Blajan, A I; Cotrut, C; Graziani, V; Curcio, M; Cricenti, A; Niculescu, M; Ortenzi, M; Teghil, R

    2016-07-01

    Biodegradable metals and alloys are promising candidates for biomedical bone implant applications. However, due to the high rate of their biodegradation in human body environment, they should be coated with less reactive materials, such, for example, as bioactive glasses or glass-ceramics. Fort this scope, RKKP composition glass-ceramic coatings have been deposited on Mg-Ca(1.4wt%) alloy substrates by Pulsed Laser Deposition method, and their properties have been characterized by a number of techniques. The prepared coatings consist of hydroxyapatite and wollastonite phases, having composition close to that of the bulk target material used for depositions. The 100μm thick films are characterized by dense, compact and rough morphology. They are composed of a glassy matrix with various size (from micro- to nano-) granular inclusions. The average surface roughness is about 295±30nm due to the contribution of micrometric aggregates, while the roughness of the fine-texture particulates is approximately 47±4nm. The results of the electrochemical corrosion evaluation tests evidence that the RKKP coating improves the corrosion resistance of the Mg-Ca (1.4wt%) alloy in Simulated Body Fluid. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Basal testosterone concentrations after the application of a slow-release GnRH agonist implant are associated with a loss of response to buserelin, a short-term GnRH agonist, in the tom cat.

    Science.gov (United States)

    Goericke-Pesch, Sandra; Georgiev, Plamen; Fasulkov, Ivan; Vodenicharov, Angel; Wehrend, Axel

    2013-07-01

    Slow-release GnRH agonist implants are considered an effective, reversible alternative to surgical castration in male tom cats. Individual differences exist regarding the onset of efficacy and might be delayed in some animals. Single measurements of testosterone (T) might result in basal concentrations also in intact male cats. Consequently, GnRH stimulation tests are performed to measure T increase in intact animals and to differentiate castrated from intact male cats. In this study, five tom cats were treated with a 4.7-mg deslorelin implant and GnRH stimulation tests using buserelin were performed before treatment and at 4-week intervals afterward until Week 20. After the last test in Week 20 all animals were castrated. Four of five animals had basal T after 4 weeks and-in contrast to pretreatment-application of buserelin did not result in any further T increase. In one animal, T was low after implant insertion, but not basal; however, a GnRH stimulation test induced a slight increase of T in Week 8 and 16 only and no response in Weeks 4, 12, and 20. Testicular volume was significantly decreased and penile spines disappeared in all cats. Testicular histology showed mixed atrophy, but also fully elongated spermatids in three of five male cats making infertility questionable. Because of the loss of the stimulatory effect of short-term GnRH application (buserelin), it can be assumed that long-term GnRH agonists also act by some mechanisms of downregulation of pituitary GnRH receptors in the tom cat. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials.

    Science.gov (United States)

    Chou, Da-Tren; Hong, Daeho; Saha, Partha; Ferrero, Jordan; Lee, Boeun; Tan, Zongqing; Dong, Zhongyun; Kumta, Prashant N

    2013-11-01

    This study introduces a class of biodegradable Mg-Y-Ca-Zr alloys novel to biological applications and presents evaluations for orthopedic and craniofacial implant applications. Mg-Y-Ca-Zr alloys were processed using conventional melting and casting techniques. The effects of increasing Y content from 1 to 4 wt.% as well as the effects of T4 solution treatment were assessed. Basic material phase characterization was conducted using X-ray diffraction, optical microscopy and scanning electron microscopy. Compressive and tensile tests allowed for the comparison of mechanical properties of the as-cast and T4-treated Mg-Y-Ca-Zr alloys to pure Mg and as-drawn AZ31. Potentiodynamic polarization tests and mass loss immersion tests were used to evaluate the corrosion behavior of the alloys. In vitro cytocompatibility tests on MC3T3-E1 pre-osteoblast cells were also conducted. Finally, alloy pellets were implanted into murine subcutaneous tissue to observe in vivo corrosion as well as local host response through H&E staining. SEM/EDS analysis showed that secondary phase intermetallics rich in yttrium were observed along the grain boundaries, with the T4 solution treatment diffusing the secondary phases into the matrix while increasing the grain size. The alloys demonstrated marked improvement in mechanical properties over pure Mg. Increasing the Y content contributed to improved corrosion resistance, while solution-treated alloys resulted in lower strength and compressive strain compared to as-cast alloys. The Mg-Y-Ca-Zr alloys demonstrated excellent in vitro cytocompatibility and normal in vivo host response. The mechanical, corrosion and biological evaluations performed in this study demonstrated that Mg-Y-Ca-Zr alloys, especially with the 4 wt.% Y content, would perform well as orthopedic and craniofacial implant biomaterials. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Controlling wildlife reproduction : reversible suppression of reproductive function or sex-related behaviour in wildlife species

    NARCIS (Netherlands)

    Bertschinger, H.J.

    2010-01-01

    Fertility control represents a proactive approach to population management for various mammalian wildlife species. In large predators, deslorelin implants have proven to be useful contraceptives in species such as lions, tigers and cheetahs. Although female lions and tigers responded well to various

  11. The formation of microvoids in MgO by helium ion implantation and thermal annealing

    International Nuclear Information System (INIS)

    Veen, A. van; Schut, H.; Fedorov, A.V.; Labohm, F.; Neeft, E.A.C.; Konings, R.J.M.

    1999-01-01

    The formation of microvoids in metal oxides by helium implantation and thermal annealing is observed under similar conditions as has been shown earlier for silicon. Cleaved MgO (1 0 0) single crystals were implanted with 30 keV 3 He ions with doses varying from 10 15 to 10 16 cm -2 and subsequently thermally annealed from RT to 1500 K. Monitoring of the defect depth profile and the retained amount of helium was performed by positron beam analysis and neutron depth profiling, respectively. For a dose larger than 2x10 15 cm -2 annealing of the defects was observed in two stages: at 1000 K helium filled monovacancies dissociated, and other defects still retaining the helium were formed, and at 1300 K all helium left the sample while an increase of positron-valence-electron annihilations was observed, indicating an increase of the volume available in the defects. The voids of nm size were located at shallower depth than the implanted helium. At lower dose no voids were left after high temperature annealing. Voids can also be created, and even more effectively, by hydrogen or deuterium implantation. The voids are stable to temperatures of 1500 K. The use of the nanovoids as a precursor state for nanoprecipitates of metals or other species is discussed

  12. The formation of microvoids in MgO by helium ion implantation and thermal annealing

    Science.gov (United States)

    van Veen, A.; Schut, H.; Fedorov, A. V.; Labohm, F.; Neeft, E. A. C.; Konings, R. J. M.

    1999-01-01

    The formation of microvoids in metal oxides by helium implantation and thermal annealing is observed under similar conditions as has been shown earlier for silicon. Cleaved MgO (1 0 0) single crystals were implanted with 30 keV 3He ions with doses varying from 10 15 to 10 16 cm -2 and subsequently thermally annealed from RT to 1500 K. Monitoring of the defect depth profile and the retained amount of helium was performed by positron beam analysis and neutron depth profiling, respectively. For a dose larger than 2 × 10 15 cm -2 annealing of the defects was observed in two stages: at 1000 K helium filled monovacancies dissociated, and other defects still retaining the helium were formed, and at 1300 K all helium left the sample while an increase of positron-valence-electron annihilations was observed, indicating an increase of the volume available in the defects. The voids of nm size were located at shallower depth than the implanted helium. At lower dose no voids were left after high temperature annealing. Voids can also be created, and even more effectively, by hydrogen or deuterium implantation. The voids are stable to temperatures of 1500 K. The use of the nanovoids as a precursor state for nanoprecipitates of metals or other species is discussed.

  13. The formation of microvoids in MgO by helium ion implantation and thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Veen, A. van E-mail: avveen@iri.tudelft.nl; Schut, H.; Fedorov, A.V.; Labohm, F.; Neeft, E.A.C.; Konings, R.J.M

    1999-01-02

    The formation of microvoids in metal oxides by helium implantation and thermal annealing is observed under similar conditions as has been shown earlier for silicon. Cleaved MgO (1 0 0) single crystals were implanted with 30 keV {sup 3}He ions with doses varying from 10{sup 15} to 10{sup 16} cm{sup -2} and subsequently thermally annealed from RT to 1500 K. Monitoring of the defect depth profile and the retained amount of helium was performed by positron beam analysis and neutron depth profiling, respectively. For a dose larger than 2x10{sup 15} cm{sup -2} annealing of the defects was observed in two stages: at 1000 K helium filled monovacancies dissociated, and other defects still retaining the helium were formed, and at 1300 K all helium left the sample while an increase of positron-valence-electron annihilations was observed, indicating an increase of the volume available in the defects. The voids of nm size were located at shallower depth than the implanted helium. At lower dose no voids were left after high temperature annealing. Voids can also be created, and even more effectively, by hydrogen or deuterium implantation. The voids are stable to temperatures of 1500 K. The use of the nanovoids as a precursor state for nanoprecipitates of metals or other species is discussed.

  14. Suppression of the internal electric field effects in ZnO/Zn0.7Mg0.3O quantum wells by ion-implantation induced intermixing

    International Nuclear Information System (INIS)

    Davis, J A; Dao, L V; Wen, X; Ticknor, C; Hannaford, P; Coleman, V A; Tan, H H; Jagadish, C; Koike, K; Sasa, S; Inoue, M; Yano, M

    2008-01-01

    Strong suppression of the effects caused by the internal electric field in ZnO/ZnMgO quantum wells following ion-implantation and rapid thermal annealing, is revealed by photoluminescence, time-resolved photoluminescence, and band structure calculations. The implantation and annealing induces Zn/Mg intermixing, resulting in graded quantum well interfaces. This reduces the quantum-confined Stark shift and increases electron-hole wavefunction overlap, which significantly reduces the exciton lifetime and increases the oscillator strength

  15. Anisotropy of electrical conductivity in dc due to intrinsic defect formation in α-Al{sub 2}O{sub 3} single crystal implanted with Mg ions

    Energy Technology Data Exchange (ETDEWEB)

    Tardío, M., E-mail: mtardio@fis.uc3m.es [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III, Avda. de la Universidad, 30, 28911 Leganés (Madrid) (Spain); Egaña, A.; Ramírez, R.; Muñoz-Santiuste, J.E. [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III, Avda. de la Universidad, 30, 28911 Leganés (Madrid) (Spain); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela (Portugal)

    2016-07-15

    The electrical conductivity in α-Al{sub 2}O{sub 3} single crystals implanted with Mg ions in two different crystalline orientations, parallel and perpendicular to c axis, was investigated. The samples were implanted at room temperature with energies of 50 and 100 keV and fluences of 1 × 10{sup 15}, 5 × 10{sup 15} and 5 × 10{sup 16} ions/cm{sup 2}. Optical characterization reveals slight differences in the absorption bands at 6.0 and 4.2 eV, attributed to F type centers and Mie scattering from Mg precipitates, respectively. DC electrical measurements using the four and two-point probe methods, between 295 and 490 K, were used to characterize the electrical conductivity of the implanted area (Meshakim and Tanabe, 2001). Measurements in this temperature range indicate that: (1) the electrical conductivity is thermally activated independently of crystallographic orientation, (2) resistance values in the implanted region decrease with fluence levels, and (3) the I–V characteristic of electrical contacts in samples with perpendicular c axis orientation is clearly ohmic, whereas contacts are blocking in samples with parallel c axis. When thin layers are sequentially removed from the implanted region by immersing the sample in a hot solution of nitric and fluorhydric acids the electrical resistance increases until reaching the values of non-implanted crystal (Jheeta et al., 2006). We conclude that the enhancement in conductivity observed in the implanted regions is related to the intrinsic defects created by the implantation rather than to the implanted Mg ions (da Silva et al., 2002; Tardío et al., 2001; Tardío et al., 2008).

  16. Validation of a noninvasive diagnostic tool to verify neuter status in dogs: The urinary FSH to creatinine ratio

    NARCIS (Netherlands)

    Albers-Wolthers, C. H J; de Gier, J.; Oei, C. H Y; Schaefers-Okkens, A. C.; Kooistra, H. S.

    2016-01-01

    Determining the presence of functional gonadal tissue in dogs can be challenging, especially in bitches during anestrus or not known to have been ovariectomized, or in male dogs with nonscrotal testes. Furthermore, in male dogs treated with deslorelin, a slow-release GnRH agonist implant for

  17. Effects of phosphorus doping by plasma immersion ion implantation on the structural and optical characteristics of Zn0.85Mg0.15O thin films

    International Nuclear Information System (INIS)

    Saha, S.; Nagar, S.; Chakrabarti, S.

    2014-01-01

    ZnMgO thin films deposited on 〈100〉 Si substrates by RF sputtering were annealed at 800, 900, and 1000 °C after phosphorus plasma immersion ion implantation. X-ray diffraction spectra confirmed the presence of 〈101 ¯ 0〉 and 〈101 ¯ 3〉 peaks for all the samples. However, in case of the annealed samples, the 〈0002〉 peak was also observed. Scanning electron microscopy images revealed the variation in surface morphology caused by phosphorus implantation. Implanted and non-implanted samples were compared to examine the effects of phosphorus implantation on the optical properties of ZnMgO. Optical characteristics were investigated by low-temperature (15 K) photoluminescence experiments. Inelastic exciton–exciton scattering and localized, and delocalized excitonic peaks appeared at 3.377, 3.42, and 3.45 eV, respectively, revealing the excitonic effect resulting from phosphorus implantation. This result is important because inelastic exciton–exciton scattering leads to nonlinear emission, which can improve the performance of many optoelectronic devices

  18. Biodegradable Orthopedic Magnesium-Calcium (MgCa Alloys, Processing, and Corrosion Performance

    Directory of Open Access Journals (Sweden)

    Yuebin Guo

    2012-01-01

    Full Text Available Magnesium-Calcium (Mg-Ca alloy has received considerable attention as an emerging biodegradable implant material in orthopedic fixation applications. The biodegradable Mg-Ca alloys avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. They also provide sufficient mechanical strength in load carrying applications as opposed to biopolymers. However, the key issue facing a biodegradable Mg-Ca implant is the fast corrosion in the human body environment. The ability to adjust degradation rate of Mg-Ca alloys is critical for the successful development of biodegradable orthopedic implants. This paper focuses on the functions and requirements of bone implants and critical issues of current implant biomaterials. Microstructures and mechanical properties of Mg-Ca alloys, and the unique properties of novel magnesium-calcium implant materials have been reviewed. Various manufacturing techniques to process Mg-Ca based alloys have been analyzed regarding their impacts on implant performance. Corrosion performance of Mg-Ca alloys processed by different manufacturing techniques was compared. In addition, the societal and economical impacts of developing biodegradable orthopedic implants have been emphasized.

  19. Mechanical properties, corrosion, and biocompatibility of Mg-Zr-Sr-Dy alloys for biodegradable implant applications.

    Science.gov (United States)

    Ding, Yunfei; Lin, Jixing; Wen, Cuie; Zhang, Dongmei; Li, Yuncang

    2017-11-28

    This study investigates the microstructure, mechanical properties, corrosion behavior, and biocompatibility of magnesium (Mg)-based Mg1Zr2SrxDy (x = 0, 1, 1.63, 2.08 wt %) alloys for biodegradable implant applications. The corrosion behavior of the Mg-based alloys has been evaluated in simulated body fluid using an electrochemical technique and hydrogen evolution. The biocompatibility of the Mg-based alloys has been assessed using SaSO2 cells. Results indicate that the addition of Dy to Mg-Zr-Sr alloy showed a positive impact on the corrosion behavior and significantly decreased the degradation rates of the alloys. The degradation rate of Mg1Zr2Sr1.0Dy decreased from 17.61 to 12.50 mm year -1 of Mg1Zr2Sr2.08Dy based on the hydrogen evolution. The ultimate compressive strength decreased from 270.90 MPa for Mg1Zr2Sr1Dy to 236.71 MPa for Mg1Zr2Sr2.08Dy. An increase in the addition of Dy to the Mg-based alloys resulted in an increase in the volume fraction of the Mg 2 Dy phase, which mitigated the galvanic effect between the Mg 17 Sr 2 phase and the Mg matrix, and led to an increase in the corrosion resistance of the base alloy. The biocompatibility of the Mg-based alloys was enhanced with decreasing corrosion rates. Mg1Zr2Sr2.08Dy exhibited the lowest corrosion rate and the highest biocompatibility compared with the other Mg-based alloys. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  20. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    OpenAIRE

    van Huis, MA; van Veen, A; Schut, H; Eijt, SWH; Kooi, BJ; De Hosson, JTM

    2005-01-01

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were monitored using optical absorption and positron annihilation spectroscopy. High-resolution TEM on cross-sections after annealing at a temperature of 1300 K showed that clusters with a size below 5...

  1. Longstanding refractory pseudophakic cystoid macular edema resolved using intravitreal 0.7 mg dexamethasone implants

    Directory of Open Access Journals (Sweden)

    Brynskov T

    2013-06-01

    Full Text Available Troels Brynskov,1,2 Caroline Schmidt Laugesen,1 Jakob Halborg,1 Henrik Kemp,1 Torben Lykke Sørensen1,21Department of Ophthalmology, Copenhagen University Hospital Roskilde, Roskilde, Denmark; 2Faculty of Health Sciences, University of Copenhagen, Copenhagen, DenmarkBackground: Refractory pseudophakic cystoid macular edema (PCME following cataract surgery has long posed a challenge to clinicians, but intravitreal injections with a sustained delivery 0.7 mg dexamethasone implant has emerged as a promising therapy for this condition.Objective: To present a case of longstanding and refractory PCME with complete remission through 189 days of follow-up after two successive injections with intravitreal dexamethasone implants.Case report: A 59-year-old male had experienced metamorphopsia for approximately 4 years and had been diagnosed with PCME 15 months earlier. Since the time of the diagnosis, the condition had been refractory to both subtenon triamcinolone acetonide and a total of five injections with intravitreal ranibizumab. After the last injection with ranibizumab, central subfield mean thickness was 640 µm, and the best corrected visual acuity was 78 Early Treatment Diabetic Retinopathy Study letters. Following an intravitreal injection with a dexamethasone implant, the macular edema resolved at the next follow-up. The macular edema returned 187 days after the first injection and was treated with another intravitreal dexamethasone implant. Again, the macular edema subsided completely, and best corrected visual acuity improved to 84 Early Treatment Diabetic Retinopathy Study letters, a condition which was maintained through an additional 189 days of follow-up.Conclusion: Chronic PCME is traditionally a difficult condition to treat, but we are encouraged by the optimal response experienced with intravitreal sustained release dexamethasone implants in our patient whose longstanding PCME had been refractory to previous treatments with both

  2. In vivo and in vitro degradation comparison of pure Mg, Mg-10Gd and Mg-2Ag: a short term study

    Directory of Open Access Journals (Sweden)

    I Marco

    2017-02-01

    Full Text Available The purpose of this study was to compare short term in vitro and in vivo biodegradation studies with low purity Mg (> 99.94 %, Mg-10Gd and Mg-2Ag designed for biodegradable implant applications. Three in vitro testing conditions were applied, using (i phosphate buffered saline (PBS, (ii Hank’s balanced salt solution (HBSS and (iii Dulbecco’s modified eagle medium (DMEM in 5 % CO2 under sterile conditions. Gas evolution and mass loss (ML were assessed, as well as the degradation layer, by elemental mapping and scanning electron microscopy (SEM. In vivo, implantations were performed on male Sprague-Dawley rats evaluating both, gas cavity volume and implant volume reduction by micro-computed tomography (µCT, 7 d after implantation. Samples were produced by casting, solution heat treatment and extrusion in disc and pin shape for the in vitro and in vivo experiments, respectively. Results showed that when the processing of the Mg sample varied, differences were found not only in the alloy impurity content and the grain size, but also in the corrosion behaviour. An increase of Fe and Ni or a large grain size seemed to play a major role in the degradation process, while the influence of alloying elements, such as Gd and Ag, played a secondary role. Results also indicated that cell culture conditions induced degradation rates and degradation layer elemental composition comparable to in vivo conditions. These in vitro and in vivo degradation layers consisted of Mg hydroxide, Mg-Ca carbonate and Ca phosphate.

  3. Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material

    Energy Technology Data Exchange (ETDEWEB)

    Györgyey, Ágnes; Ungvári, Krisztina [Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary); Kecskeméti, Gabriella; Kopniczky, Judit [Department of Optics and Quantum Electronics, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged (Hungary); Hopp, Béla [Research Group on Laser Physics, Hungarian Academy of Sciences and University of Szeged, H-6720 Szeged (Hungary); Oszkó, Albert [Department of Physical Chemistry and Materials Science, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged (Hungary); Pelsöczi, István; Rakonczay, Zoltán [Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary); Nagy, Katalin [Department of Oral Surgery, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary); Turzó, Kinga, E-mail: kturzo@yahoo.com [Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary)

    2013-10-15

    Demand is increasing for shortening the long (3–6 months) osseointegration period to rehabilitate patients' damaged chewing apparatus in as short a time as possible. For dental implants, as for biomaterials in general, the bio- and osseointegration processes can be controlled at molecular and cellular levels by modification of the implant surface. One of the most promising of such surface modifications is laser ablation, as demonstrated by our previous results [46]. Commercially pure (CP4) sand-blasted, acid-etched titanium disks (Denti® System Ltd., Hungary) were irradiated with a KrF excimer laser (248 nm, fluence 0.4 J/cm{sup 2}, FWHM 18 ns, 2000 pulses), or with a Nd:YAG laser (532 nm, 1.3 J/cm{sup 2}, 10 ns, 200 pulses) then examined by SEM, AFM, and XPS. In vitro attachment (24 h) and proliferation (72 h) of MG-63 osteoblast cells were investigated via dimethylthiazol-diphenyl tetrazolium bromide (MTT), alamarBlue (AB) assays alkaline phosphatase quantification (ALP) and SEM. SEM and AFM revealed significant changes in morphology and roughness. XPS confirmed the presence of TiO{sub 2} on each sample; after Nd:YAG treatment a reduced state of Ti (Ti{sup 3+}) was also observed. MTT, AB and ALP measurements detected an increase in the number of cells between the 24- and 72 hour observations; however, laser treatment did not affect cell attachment and proliferation significantly. - Highlights: • CP4 titanium implant surfaces were modified with Nd:YAG and KrF excimer laser. • SEM and AFM revealed significant changes in morphology and roughness. • XPS confirmed the presence of TiO{sub 2} on each sample; after Nd:YAG treatment a reduced state of Ti (Ti{sup 3+}) was found. • Cell proliferation experiments detected an increased number of MG-63 cells between the 24 h and 72 h observations. • Laser treatments neither disturbed, nor enhanced MG-63 cell attachment and proliferation significantly.

  4. Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material

    International Nuclear Information System (INIS)

    Györgyey, Ágnes; Ungvári, Krisztina; Kecskeméti, Gabriella; Kopniczky, Judit; Hopp, Béla; Oszkó, Albert; Pelsöczi, István; Rakonczay, Zoltán; Nagy, Katalin; Turzó, Kinga

    2013-01-01

    Demand is increasing for shortening the long (3–6 months) osseointegration period to rehabilitate patients' damaged chewing apparatus in as short a time as possible. For dental implants, as for biomaterials in general, the bio- and osseointegration processes can be controlled at molecular and cellular levels by modification of the implant surface. One of the most promising of such surface modifications is laser ablation, as demonstrated by our previous results [46]. Commercially pure (CP4) sand-blasted, acid-etched titanium disks (Denti® System Ltd., Hungary) were irradiated with a KrF excimer laser (248 nm, fluence 0.4 J/cm 2 , FWHM 18 ns, 2000 pulses), or with a Nd:YAG laser (532 nm, 1.3 J/cm 2 , 10 ns, 200 pulses) then examined by SEM, AFM, and XPS. In vitro attachment (24 h) and proliferation (72 h) of MG-63 osteoblast cells were investigated via dimethylthiazol-diphenyl tetrazolium bromide (MTT), alamarBlue (AB) assays alkaline phosphatase quantification (ALP) and SEM. SEM and AFM revealed significant changes in morphology and roughness. XPS confirmed the presence of TiO 2 on each sample; after Nd:YAG treatment a reduced state of Ti (Ti 3+ ) was also observed. MTT, AB and ALP measurements detected an increase in the number of cells between the 24- and 72 hour observations; however, laser treatment did not affect cell attachment and proliferation significantly. - Highlights: • CP4 titanium implant surfaces were modified with Nd:YAG and KrF excimer laser. • SEM and AFM revealed significant changes in morphology and roughness. • XPS confirmed the presence of TiO 2 on each sample; after Nd:YAG treatment a reduced state of Ti (Ti 3+ ) was found. • Cell proliferation experiments detected an increased number of MG-63 cells between the 24 h and 72 h observations. • Laser treatments neither disturbed, nor enhanced MG-63 cell attachment and proliferation significantly

  5. Formation of definite GaN p-n junction by Mg-ion implantation to n--GaN epitaxial layers grown on a high-quality free-standing GaN substrate

    Science.gov (United States)

    Oikawa, Takuya; Saijo, Yusuke; Kato, Shigeki; Mishima, Tomoyoshi; Nakamura, Tohru

    2015-12-01

    P-type conversion of n--GaN by Mg-ion implantation was successfully performed using high quality GaN epitaxial layers grown on free-standing low-dislocation-density GaN substrates. These samples showed low-temperature PL spectra quite similar to those observed from Mg-doped MOVPE-grown p-type GaN, consisting of Mg related donor-acceptor pair (DAP) and acceptor bound exciton (ABE) emission. P-n diodes fabricated by the Mg-ion implantation showed clear rectifying I-V characteristics and UV and blue light emissions were observed at forward biased conditions for the first time.

  6. Effects of phosphorus doping by plasma immersion ion implantation on the structural and optical characteristics of Zn{sub 0.85}Mg{sub 0.15}O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Saha, S.; Nagar, S.; Chakrabarti, S., E-mail: subho@ee.iitb.ac.in [Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2014-08-11

    ZnMgO thin films deposited on 〈100〉 Si substrates by RF sputtering were annealed at 800, 900, and 1000 °C after phosphorus plasma immersion ion implantation. X-ray diffraction spectra confirmed the presence of 〈101{sup ¯}0〉 and 〈101{sup ¯}3〉 peaks for all the samples. However, in case of the annealed samples, the 〈0002〉 peak was also observed. Scanning electron microscopy images revealed the variation in surface morphology caused by phosphorus implantation. Implanted and non-implanted samples were compared to examine the effects of phosphorus implantation on the optical properties of ZnMgO. Optical characteristics were investigated by low-temperature (15 K) photoluminescence experiments. Inelastic exciton–exciton scattering and localized, and delocalized excitonic peaks appeared at 3.377, 3.42, and 3.45 eV, respectively, revealing the excitonic effect resulting from phosphorus implantation. This result is important because inelastic exciton–exciton scattering leads to nonlinear emission, which can improve the performance of many optoelectronic devices.

  7. Innovative micro-textured hydroxyapatite and poly(l-lactic)-acid polymer composite film as a flexible, corrosion resistant, biocompatible, and bioactive coating for Mg implants.

    Science.gov (United States)

    Kim, Sae-Mi; Kang, Min-Ho; Kim, Hyoun-Ee; Lim, Ho-Kyung; Byun, Soo-Hwan; Lee, Jong-Ho; Lee, Sung-Mi

    2017-12-01

    The utility of a novel ceramic/polymer-composite coating with a micro-textured microstructure that would significantly enhance the functions of biodegradable Mg implants is demonstrated here. To accomplish this, bioactive hydroxyapatite (HA) micro-dots can be created by immersing a Mg implant with a micro-patterned photoresist surface in an aqueous solution containing calcium and phosphate ions. The HA micro-dots can then be surrounded by a flexible poly(l-lactic)-acid (PLLA) polymer using spin coating to form a HA/PLLA micro-textured coating layer. The HA/PLLA micro-textured coating layer showed an excellent corrosion resistance when it was immersed in a simulated body fluid (SBF) solution and good biocompatibility, which was assessed by in vitro cell tests. In addition, the HA/PLLA micro-textured coating layer had high deformation ability, where no apparent changes in the coating layer were observed even after a 5% elongation, which would be unobtainable using HA and PLLA coating layers; furthermore, this allowed the mechanically-strained Mg implant with the HA/PLLA micro-textured coating layer to preserve its excellent corrosion resistance and biocompatibility in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Composite polymer-containing coatings on Mg alloys perspective for industry and implant surgery

    Science.gov (United States)

    Gnedenkov, S. V.; Sinebryukhov, S. L.; Mashtalyar, D. V.; Imshinetskiy, I. M.; Gnedenkov, A. S.; Minaev, A. N.

    2017-09-01

    In order to improve the corrosion resistance of magnesium alloys the ways of composite protective coating formation were developed by means of plasma electrolytic oxidation (PEO) as well as electrophoretic deposition methods. Electrochemical, corrosion, tribological, and morphological properties of the MAS magnesium alloy composite coatings were studied. The composite polymer-containing coating decrease the corrosion current density values by three orders of magnitude (Ic = 2.0 . 10-10 A/cm2), in comparison with the base PEO-layer. These polymer-containing layers enable one to expand the practical usage area of Mg alloys. The application of such coatings provides the increasing the bioactivity and regulate the corrosion rate of resorbable magnesium implants.

  9. Twelve-month discontinuation rates of levonorgestrel intrauterine system 13.5 mg and subdermal etonogestrel implant in women aged 18-44: A retrospective claims database analysis.

    Science.gov (United States)

    Law, Amy; Liao, Laura; Lin, Jay; Yaldo, Avin; Lynen, Richard

    2018-04-21

    To investigate the 12-month discontinuation rates of levonorgestrel intrauterine system 13.5 mg (LNG-IUS 13.5) and subdermal etonogestrel (ENG) implant in the US. We identified women aged 18-44 who had an insertion of LNG-IUS 13.5 or ENG implant from the MarketScan Commercial claims database (7/1/2013-9/30/2014). Women were required to have 12 months of continuous insurance coverage prior to the insertion (baseline) and at least 12-months after (follow-up). Discontinuation was defined as presence of an insurance claim for pregnancy-related services, hysterectomy, female sterilization, a claim for another contraceptive method, or removal of the index contraceptive without re-insertion within 30 days. Using Cox regression we examined the potential impact of ENG implant vs. LNG-IUS 13.5 on the likelihood for discontinuation after controlling for patient characteristics. A total of 3680 (mean age: 25.4 years) LNG-IUS 13.5 and 23,770 (mean age: 24.6 years) ENG implant users met the selection criteria. Prior to insertion, 56.6% of LNG-IUS 13.5 and 42.1% of ENG implant users had used contraceptives, with oral contraceptives being most common (LNG-IUS 13.5: 42.1%; ENG implant: 28.5%). Among users of LNG-IUS 13.5 and ENG implant, rates of discontinuation were similar during the 12-month follow-up (LNG-IUS 13.5: 24.9%; ENG implant: 24.0%). Regression results showed that women using LNG-IUS 13.5 vs. ENG implant had similar likelihood for discontinuation (hazard ratio: 0.97, 95% confidence interval: 0.90-1.05, p=.41). In the real-world US setting, women aged 18-44 using LNG-IUS 13.5 and ENG implant have similar discontinuation rates after 12 months. In the United States, women aged 18-44 using levonorgestrel intrauterine system (13.5 mg) and subdermal etonogestrel implant have similar discontinuation rates after 12 months. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Study on microstructure and properties of extruded Mg-2Nd-0.2Zn alloy as potential biodegradable implant material.

    Science.gov (United States)

    Li, Junlei; Tan, Lili; Wan, Peng; Yu, Xiaoming; Yang, Ke

    2015-04-01

    Mg-2Nd-0.2Zn (NZ20) alloy was prepared for the application as biodegradable implant material in this study. The effects of the extrusion process on microstructure, mechanical and corrosion properties of the alloy were investigated. The as-cast alloy was composed of α-Mg matrix and Mg12Nd eutectic compound. The solution treatment could lead to the Mg12Nd phase dissolution and the grain coarsening. The alloy (E1) preheated at 380°C for 1h and extruded at 390°C presents fine grains with amounts of tiny Mg12Nd particles uniformly dispersed throughout the boundaries and the interior of the grains. The alloy (E2) preheated at 480°C for 1h and extruded at 500°C exhibits relatively larger grains with few nano-scale Mg12Nd phase particles dispersed. The alloy of E1, compared with E2, showed relatively lower corrosion rate, higher yield strength and slightly lower elongation. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice.

    Science.gov (United States)

    Jähn, Katharina; Saito, Hiroaki; Taipaleenmäki, Hanna; Gasser, Andreas; Hort, Norbert; Feyerabend, Frank; Schlüter, Hartmut; Rueger, Johannes M; Lehmann, Wolfgang; Willumeit-Römer, Regine; Hesse, Eric

    2016-05-01

    Intramedullary stabilization is frequently used to treat long bone fractures. Implants usually remain unless complications arise. Since implant removal can become technically very challenging with the potential to cause further tissue damage, biodegradable materials are emerging as alternative options. Magnesium (Mg)-based biodegradable implants have a controllable degradation rate and good tissue compatibility, which makes them attractive for musculoskeletal research. Here we report for the first time the implantation of intramedullary nails made of an Mg alloy containing 2% silver (Mg2Ag) into intact and fractured femora of mice. Prior in vitro analyses revealed an inhibitory effect of Mg2Ag degradation products on osteoclast differentiation and function with no impair of osteoblast function. In vivo, Mg2Ag implants degraded under non-fracture and fracture conditions within 210days and 133days, respectively. During fracture repair, osteoblast function and subsequent bone formation were enhanced, while osteoclast activity and bone resorption were decreased, leading to an augmented callus formation. We observed a widening of the femoral shaft under steady state and regenerating conditions, which was at least in part due to an uncoupled bone remodeling. However, Mg2Ag implants did not cause any systemic adverse effects. These data suggest that Mg2Ag implants might be promising for intramedullary fixation of long bone fractures, a novel concept that has to be further investigated in future studies. Biodegradable implants are promising alternatives to standard steel or titanium implants to avoid implant removal after fracture healing. We therefore developed an intramedullary nail using a novel biodegradable magnesium-silver-alloy (Mg2Ag) and investigated the in vitro and in vivo effects of the implants on bone remodeling under steady state and fracture healing conditions in mice. Our results demonstrate that intramedullary Mg2Ag nails degrade in vivo over time without

  12. Electric quadrupole interactions on /sup 12/B and /sup 12/N implanted in Mg studied by nuclear depolarization due to level mixing

    Energy Technology Data Exchange (ETDEWEB)

    Tanihata, I; Kogo, S; Sugimoto, K [Osaka Univ., Toyonaka (Japan). Lab. of Nuclear Studies

    1977-04-25

    Electric quadrupole interactions on polarized /sup 12/B and /sup 12/N implanted in a Mg single crystal have been studied by a new method in which the nuclear depolarization due to level mixing caused by an external magnetic field is detected.

  13. Nanocavity formation processes in MgO(1 0 0) by light ion (D, He, Li) and heavy ion (Kr, Cu, Au) implantation

    International Nuclear Information System (INIS)

    Veen, A. van; Huis, M.A. van; Fedorov, A.V.; Schut, H.; Labohm, F.; Kooi, B.J.; Hosson, J.Th.M. de

    2002-01-01

    In studies on the controlled growth of metallic precipitates in MgO it is attempted to use nanometer size cavities as precursors for formation of metallic precipitates. In MgO nanocavities can easily be generated by light gas ion bombardment at room temperature with typically 30 keV ion energy to a dose of 10 16 cm -2 , followed by annealing to 1300 K. It has been shown earlier by transmission electron microscopy (TEM) that the cavities (thickness 2-3 nm and length/width 5-10 nm) have a perfectly rectangular shape bounded by {1 0 0} faces. The majority of the gas has been released at this temperature and the cavities are stable until annealing at 1500 K. The depth location of the cavities and the implanted ions is monitored by positron beam analysis, neutron depth profiling, RBS/channeling and energy dispersive spectroscopy. The presence of metallic nanoprecipitates is detected by optical absorption measurements and by high-resolution XTEM. Surprisingly, all the metallic implants induce, in addition to metallic precipitates in a band at the mean ion range, small rectangular and cubic nanocavities. These are most clearly observed at a depth shallower than the precipitate band. In the case of gold the cavities are produced in close proximity to the crystal surface. The results indicate that in MgO vacancy clustering dominates over Frenkel-pair recombination. Results of molecular dynamics calculations will be used to discuss the observed defect recovery and clustering processes in MgO

  14. Microstructure and bio-corrosion behaviour of Mg-5Zn-0.5Ca -xSr alloys as potential biodegradable implant materials

    Science.gov (United States)

    Yan, Li; Zhou, Jiaxing; Sun, Zhenzhou; Yang, Meng; Ma, Liqun

    2018-04-01

    Magnesium alloys are widely studied as biomedical implants owing to their biodegradability. In this work, novel Mg-5Zn-0.5Ca-xSr (x = 0, 0.14, 0.36, 0.50, 0.70 wt%) alloys were prepared as biomedical materials. The influence of strontium (Sr) addition on the microstructure, corrosion properties and corrosion morphology of the as-cast Mg-5Zn-0.5Ca-xSr alloys is investigated by a variety of techniques such as scanning electron microscopy, x-ray diffraction, and electrochemical measurements. The Sr-free alloy is composed of three phases, namely, α-Mg, CaMg2 and Ca2Mg6Zn3, while the alloys with the Sr addition consist of α-Mg, CaMg2 and Ca2Mg6Zn3 and Mg17Sr2. Corrosion experiments in Hank’s solution show that the addition of a small amount of Sr can improve the corrosion resistance of the Mg-5Zn-0.5Ca alloy. The corrosion products include Mg(OH)2, Zn(OH)2, Ca(OH)2, and HA (Ca5(PO4)3(OH)). Mg-5Zn-0.5Ca-0.36Sr alloy has the minimum weight loss rate (0.68 mm/a), minimal hydrogen evolution (0.08 ml/cm2/d) and minimum corrosion current density (7.4 μA/cm2), indicating that this alloy shows the best corrosion resistance.

  15. Nanocavity formation processes in MgO(1 0 0) by light ion (D, He, Li) and heavy ion (Kr, Cu, Au) implantation

    Energy Technology Data Exchange (ETDEWEB)

    Veen, A. van E-mail: avveen@iri.tudelft.nl; Huis, M.A. van; Fedorov, A.V.; Schut, H.; Labohm, F.; Kooi, B.J.; Hosson, J.Th.M. de

    2002-05-01

    In studies on the controlled growth of metallic precipitates in MgO it is attempted to use nanometer size cavities as precursors for formation of metallic precipitates. In MgO nanocavities can easily be generated by light gas ion bombardment at room temperature with typically 30 keV ion energy to a dose of 10{sup 16} cm{sup -2}, followed by annealing to 1300 K. It has been shown earlier by transmission electron microscopy (TEM) that the cavities (thickness 2-3 nm and length/width 5-10 nm) have a perfectly rectangular shape bounded by {l_brace}1 0 0{r_brace} faces. The majority of the gas has been released at this temperature and the cavities are stable until annealing at 1500 K. The depth location of the cavities and the implanted ions is monitored by positron beam analysis, neutron depth profiling, RBS/channeling and energy dispersive spectroscopy. The presence of metallic nanoprecipitates is detected by optical absorption measurements and by high-resolution XTEM. Surprisingly, all the metallic implants induce, in addition to metallic precipitates in a band at the mean ion range, small rectangular and cubic nanocavities. These are most clearly observed at a depth shallower than the precipitate band. In the case of gold the cavities are produced in close proximity to the crystal surface. The results indicate that in MgO vacancy clustering dominates over Frenkel-pair recombination. Results of molecular dynamics calculations will be used to discuss the observed defect recovery and clustering processes in MgO.

  16. In vitro biodegradation testing of Mg-alloy EZK400 and manufacturing of implant prototypes using PM (powder metallurgy) methods.

    Science.gov (United States)

    Wolff, M; Luczak, M; Schaper, J G; Wiese, B; Dahms, M; Ebel, T; Willumeit-Römer, R; Klassen, T

    2018-09-01

    The study is focussing towards Metal Injection Moulding (MIM) of Mg-alloys for biomedical implant applications. Especially the influence of the sintering processing necessary for the consolidation of the finished part is in focus of this study. In doing so, the chosen high strength EZK400 Mg-alloy powder material was sintered using different sintering support bottom plate materials to evaluate the possibility of iron impurity pick up during sintering. It can be shown that iron pick up took place from the steel bottom plate into the specimen. Despite the fact that a separating boron nitrite (BN) barrier layer was used and the Mg-Fe phase diagram is not predicting any significant solubility to each other. As a result of this study a new bottom plate material not harming the sintering and the biodegradation performance of the as sintered material, namely a carbon plate material, was found.

  17. Interstitial Fe in MgO

    CERN Document Server

    Mølholt, T E; Gunnlaugsson, H P; Svane, A; Masenda, H; Naidoo, D; Bharuth-Ram, K; Fanciulli, M; Gislason, H P; Johnston, K; Langouche, G; Ólafsson, S; Sielemann, R; Weyer, G

    2014-01-01

    Isolated Fe-57 atoms were studied in MgO single-crystals by emission Mossbauer spectroscopy following implantation of Mn-57 decaying to Fe-57. Four Mossbauer spectral components were found corresponding to different Fe lattice positions and/or charge states. Two components represent Fe atoms substituting Mg as Fe2+ and Fe3+, respectively; a third component is due to Fe in a strongly implantation-induced disturbed region. The fourth component, which is the focus of this paper, can be assigned to Fe at an interstitial site. Comparison of its measured isomer shift with ab initio calculations suggests that the interstitial Fe is located on, or close to, the face of the rock-salt MgO structure. To harmonize such an assignment with the measured near-zero quadrupole interaction a local motion process (cage motion) of the Fe has to be stipulated. The relation of such a local motion as a starting point for long range diffusion is discussed.

  18. Structure of ion-implanted ceramics

    International Nuclear Information System (INIS)

    Naramoto, Hiroshi

    1983-01-01

    The variation of structure of LiF, MgO, Al 2 O 3 and TiO 2 accompanying annealing after ion implantation is explained. The analysis of structure is usually made by the perturbed gamma ray angular correlation, the internal electron Moessbauer method, or the ion scattering method. The results of analyses are discussed for alkali ion implantation, Fe-ion implantation, In-ion implantation, Au-ion implantation, Pt-ion implantation, Pb-ion implantation and transition metal ion implantation. The coupling of the implanted elements with lattice defects and matrix elements, and the compatibility between deposited elements and matrix crystal lattice were studied. The variation of physical properties due to ion implantation such as phase transition, volume change, the control of single crystal region, and the variation of hardness near surface were investigated, and the examples are presented. (Kato, T.)

  19. Biological activity evaluation of magnesium fluoride coated Mg-Zn-Zr alloy in vivo.

    Science.gov (United States)

    Jiang, Hongfeng; Wang, Jingbo; Chen, Minfang; Liu, Debao

    2017-06-01

    To explore the biodegradable characteristics and biological properties, which could promote new bone formation, of MgF 2 coated magnesium alloy (Mg-3wt%Zn-0.5wt%Zr) in rabbits. Magnesium alloy with MgF 2 coating was made and the MgF 2 /Mg-Zn-Zr was implanted in the femoral condyle of rabbits. Twelve healthy adult Japanese white rabbits in weight of 2.8-3.2kg were averagely divided into A(Mg-Zn-Zr) group and B(MgF 2 /MgZn-Zr) group. Indexes such as microstructural evolution, SEM scan, X-ray, Micro-CT and mechanical properties were observed and detected at 1th day, 2th, 4th, 8th, 12th, 24th week after implantation. Low-density regions occurred around the cancellous bone, and the regions gradually expanded during the 12weeks after implantation. The implant was gradually absorbed from 12 to 24weeks. The density of surrounding cancellous bone increased compared with the 12th week data. The degradation rate of B group was lower than that of A group (Pmagnesium ions. The biological properties of the coating itself presented good biocompatibility and bioactivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Antibacterial biodegradable Mg-Ag alloys

    Directory of Open Access Journals (Sweden)

    D Tie

    2013-06-01

    Full Text Available The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4 and aging (T6 heat treatment.The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH2 and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7, revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231 and Staphylococcus epidermidis (DSMZ 3269, and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials.

  1. Corrosion resistance of titanium ion implanted AZ91 magnesium alloy

    International Nuclear Information System (INIS)

    Liu Chenglong; Xin Yunchang; Tian Xiubo; Zhao, J.; Chu, Paul K.

    2007-01-01

    Degradable metal alloys constitute a new class of materials for load-bearing biomedical implants. Owing to their good mechanical properties and biocompatibility, magnesium alloys are promising in degradable prosthetic implants. The objective of this study is to improve the corrosion behavior of surgical AZ91 magnesium alloy by titanium ion implantation. The surface characteristics of the ion implanted layer in the magnesium alloys are examined. The authors' results disclose that an intermixed layer is produced and the surface oxidized films are mainly composed of titanium oxide with a lesser amount of magnesium oxide. X-ray photoelectron spectroscopy reveals that the oxide has three layers. The outer layer which is 10 nm thick is mainly composed of MgO and TiO 2 with some Mg(OH) 2 . The middle layer that is 50 nm thick comprises predominantly TiO 2 and MgO with minor contributions from MgAl 2 O 4 and TiO. The third layer from the surface is rich in metallic Mg, Ti, Al, and Ti 3 Al. The effects of Ti ion implantation on the corrosion resistance and electrochemical behavior of the magnesium alloys are investigated in simulated body fluids at 37±1 deg. C using electrochemical impedance spectroscopy and open circuit potential techniques. Compared to the unimplanted AZ91 alloy, titanium ion implantation significantly shifts the open circuit potential (OCP) to a more positive potential and improves the corrosion resistance at OCP. This phenomenon can be ascribed to the more compact surface oxide film, enhanced reoxidation on the implanted surface, as well as the increased β-Mg 12 Al 17 phase

  2. Lattice location of Mg in GaN: a fresh look at doping limitations

    CERN Document Server

    AUTHOR|(CDS)2069243; Augustyns, Valerie; Granadeiro Costa, Angelo Rafael; David Bosne, Eric; De Lemos Lima, Tiago Abel; Lippertz, Gertjan; Martins Correia, Joao; Castro Ribeiro Da Silva, Manuel; Kappers, Menno; Temst, Kristiaan; Vantomme, André; Da Costa Pereira, Lino Miguel

    2017-01-01

    Radioactive 27Mg (t1/2=9.5 min) was implanted into GaN of different doping types at CERN’s ISOLDE facility and its lattice site determined via beta− emission channeling. Following implantations between room temperature and 800°C, the majority of 27Mg occupies the substitutional Ga sites, however, below 350°C significant fractions were also found on interstitial positions ~0.6 Å from ideal octahedral sites. The interstitial fraction of Mg was correlated with the GaN doping character, being highest (up to 31%) in samples doped p-type with 2E19 cm−3 stable Mg during epilayer growth, and lowest in Si-doped n-GaN, thus giving direct evidence for the amphoteric character of Mg. Implanting above 350°C converts interstitial 27Mg to substitutional Ga sites, which allows estimating the activation energy for migration of interstitial Mg as between 1.3 and 2.0 eV.

  3. C-reactive protein, erythrocyte sedimentation rate and orthopedic implant infection.

    Directory of Open Access Journals (Sweden)

    Kerryl E Piper

    Full Text Available BACKGROUND: C-reactive protein (CRP and erythrocyte sedimentation rate (ESR have been shown to be useful for diagnosis of prosthetic hip and knee infection. Little information is available on CRP and ESR in patients undergoing revision or resection of shoulder arthroplasties or spine implants. METHODS/RESULTS: We analyzed preoperative CRP and ESR in 636 subjects who underwent knee (n=297, hip (n=221 or shoulder (n=64 arthroplasty, or spine implant (n=54 removal. A standardized definition of orthopedic implant-associated infection was applied. Receiver operating curve analysis was used to determine ideal cutoff values for differentiating infected from non-infected cases. ESR was significantly different in subjects with aseptic failure infection of knee (median 11 and 53.5 mm/h, respectively, p=<0.0001 and hip (median 11 and 30 mm/h, respectively, p=<0.0001 arthroplasties and spine implants (median 10 and 48.5 mm/h, respectively, p=0.0033, but not shoulder arthroplasties (median 10 and 9 mm/h, respectively, p=0.9883. Optimized ESR cutoffs for knee, hip and shoulder arthroplasties and spine implants were 19, 13, 26, and 45 mm/h, respectively. Using these cutoffs, sensitivity and specificity to detect infection were 89 and 74% for knee, 82 and 60% for hip, and 32 and 93% for shoulder arthroplasties, and 57 and 90% for spine implants. CRP was significantly different in subjects with aseptic failure and infection of knee (median 4 and 51 mg/l, respectively, p<0.0001, hip (median 3 and 18 mg/l, respectively, p<0.0001, and shoulder (median 3 and 10 mg/l, respectively, p=0.01 arthroplasties, and spine implants (median 3 and 20 mg/l, respectively, p=0.0011. Optimized CRP cutoffs for knee, hip, and shoulder arthroplasties, and spine implants were 14.5, 10.3, 7, and 4.6 mg/l, respectively. Using these cutoffs, sensitivity and specificity to detect infection were 79 and 88% for knee, 74 and 79% for hip, and 63 and 73% for shoulder arthroplasties, and 79 and

  4. Nitrogen vacancies as a common element of the green luminescence and nonradiative recombination centers in Mg-implanted GaN layers formed on a GaN substrate

    Science.gov (United States)

    Kojima, Kazunobu; Takashima, Shinya; Edo, Masaharu; Ueno, Katsunori; Shimizu, Mitsuaki; Takahashi, Tokio; Ishibashi, Shoji; Uedono, Akira; Chichibu, Shigefusa F.

    2017-06-01

    The photoluminescences of ion-implanted (I/I) and epitaxial Mg-doped GaN (GaN:Mg) are compared. The intensities and lifetimes of the near-band-edge and ultraviolet luminescences associated with a MgGa acceptor of I/I GaN:Mg were significantly lower and shorter than those of the epilayers, respectively. Simultaneously, the green luminescence (GL) became dominant. These emissions were quenched far below room temperature. The results indicate the generation of point defects common to GL and nonradiative recombination centers (NRCs) by I/I. Taking the results of positron annihilation measurement into account, N vacancies are the prime candidate to emit GL and create NRCs with Ga vacancies, (VGa) m (VN) n , as well as to inhibit p-type conductivity.

  5. Surface characterization and biodegradation behavior of magnesium implanted poly(L-lactide/caprolactone) films

    Science.gov (United States)

    Sokullu, Emel; Ersoy, Fulya; Yalçın, Eyyup; Öztarhan, Ahmet

    2017-11-01

    Biopolymers are great source for medical applications such as drug delivery, wound patch, artificial tissue studies etc., food packaging, cosmetic applications etc. due to their biocompatibility and biodegradability. Particularly, the biodegradation ability of a biomaterial makes it even advantageous for the applications. The more tunable the biodegradation rate the more desired the biopolymers. There are many ways to tune degradation rate including surface modification. In this study ion implantation method applied to biopolymer surface to determine its effect on biodegradation rate. In this study, surface modification of poly(L-lactide/caprolactone) copolymer film is practiced via Mg-ion-implantation using a MEVVA ion source. Mg ions were implanted at a fluence of 1 × 1015 ions/cm2 and ion energy of 30 keV. Surface characterization of Mg-ion-implanted samples is examined using Atomic Force Microscopy, Raman spectroscopy, contact angle measurement and FT-IR Spectroscopy. These analyses showed that the surface become more hydrophilic and rougher after the ion implantation process which is advantageous for cell attachment on medical studies. The in vitro enzymatic degradation of Mg-implanted samples was investigated in Lipase PS containing enzyme solution. Enzymatic degradation rate was examined by mass loss calculation and it is shown that Mg-implanted samples lost more than 30% of their weight while control samples lost around 20% of their weight at the end of the 16 weeks. The evaluation of the results confirmed that Mg-ion-implantation on poly(L-lactide/caprolactone) films make the surface rougher and more hydrophilic and changes the organic structure on the surface. On the other hand, ion implantation has increased the biodegradation rate.

  6. Optical properties of ion-implanted InP and GaAs: Selectivity-excited photoluminescence spectra

    International Nuclear Information System (INIS)

    Makita, Yunosuke; Yamada, Akimasa; Kimura, Shinji; Niki, Shigeru; Yoshinaga, Hiroshi; Matsumori, Tokue; Iida, Tsutomu; Uekusa, Ichiro

    1993-01-01

    Implantation of Mg+ ions was carried out into high purity InP grown by liquid encapsulated Czochralski method. Mg+ ion-implanted InP presented the formation of plural novel emissions with increasing Mg concentration, [Mg] in the low temperature photoluminescence spectra. Selectively-excited photoluminescence (SPL) measurements were made to examine the features of two-hole replicas pertinent to the emissions of excitons bound to neutral Mg and residual Zn acceptors. Systematic variation of the emission intensities from the two types of two-hole replicas was found to be utilized for the evaluation of ion-implanted materials. The significant discrepancy of emission spectra between PL and SPL was attributed to the difference of the depth examined by using the excitation light with high and low absorption coefficient. The results revealed that the diffusion of ion-implanted Mg is extremely enhanced when [Mg] exceeds 1x10 17 cm -3

  7. Real-world assessment of intravitreal dexamethasone implant (0.7 mg in patients with macular edema: the CHROME study

    Directory of Open Access Journals (Sweden)

    Lam WC

    2015-07-01

    Full Text Available Wai-Ching Lam,1 David A Albiani,2 Pradeepa Yoganathan,3 John Chanchiang Chen,4 Amin Kherani,5 David AL Maberley,6 Alejandro Oliver,7 Theodore Rabinovitch,3 Thomas G Sheidow,8 Eric Tourville,9 Leah A Wittenberg,10 Chris Sigouin,11 Darryl C Baptiste12 1Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, 2West Coast Retinal Consultants, Vancouver, BC, 3North Toronto Eye Care, North York, ON, 4Department of Ophthalmology, McGill University, Montreal, QC, 5Southern Alberta Eye Center, Calgary, AB, 6Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, 7Timmins and District Hospital, Timmins, ON, 8Ivey Eye Institute, London, ON, 9Center Oculaire de Quebec, Quebec City, QC, 10Retina Surgical Associates, New Westminster, BC, 11Clinwest Research Inc, Burlington, ON, 12Allergan Inc., Markham, ON, Canada Background: The purpose of this study was to evaluate the real-world use, efficacy, and safety of one or more dexamethasone intravitreal implant(s 0.7 mg (DEX implant in patients with macular edema (ME.Methods: This was a retrospective cohort study of patients with ME secondary to retinal disease treated at ten Canadian retina practices, including one uveitis center. Best-corrected visual acuity (BCVA, central retinal thickness (CRT, intraocular pressure (IOP, glaucoma and cataract surgery, and safety data were collected from the medical charts of patients with ≥3 months of follow-up after the initial DEX implant.Results: One hundred and one patient charts yielded data on 120 study eyes, including diagnoses of diabetic ME (DME (n=34, retinal vein occlusion (RVO, n=30; branch in 19 and central in 11, and uveitis (n=23. Patients had a mean age of 60.9 years, and 73.3% of the study eyes had ME for a duration of ≥12 months prior to DEX implant injection(s. Baseline mean (± standard error BCVA was 0.63±0.03 logMAR (20/86 Snellen equivalents and mean CRT was 474.4±18.2 µm. The

  8. Analysis of metallic traces from the biodegradation of endomedullary AZ31 alloy temporary implants in rat organs after long implantation times.

    Science.gov (United States)

    Bodelón, O G; Iglesias, C; Garrido, J; Clemente, C; Garcia-Alonso, M C; Escudero, M L

    2015-08-04

    AZ31 alloy has been tested as a biodegradable material in the form of endomedullary implants in female Wistar rat femurs. In order to evaluate the accumulation of potentially toxic elements from the biodegradation of the implant, magnesium (Mg), aluminium (Al), zinc (Zn), manganese (Mn) and fluorine (F) levels have been measured in different organs such as kidneys, liver, lungs, spleen and brain. Several factors that may influence accumulation have been taken into account: how long the implant has been in place, whether or not the bone is fractured, and the presence of an MgF2 protective coating on the implant. The main conclusions and the clinical relevance of the study have been that AZ31 endomedullary implants have a degradation rate of about 60% after 13 months, which is fully compatible with fracture consolidation. Neither bone fracture nor an MgF2 coating seems to influence the accumulation of trace elements in the studied organs. Aluminium is the only alloying element in this study that requires special attention. The increase in Al recovered from the sampled organs represents 3.95% of the amount contained in the AZ31 implant. Al accumulates in a statistically significant way in all the organs except the brain. All of this suggests that in long-term tests AZ31 may be a suitable material for osteosynthesis.

  9. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Zhou-Shan [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Zhou, Wan-Shu [Endocrine & Metabolic Diseases Unit, Affiliated Hospital of Guizhou Medical University, Guizhou 550001 (China); He, Xing-Wen [Department of Orthopaedic Surgery, Hangzhou Bay Hospital of Ningbo, 315000 (China); Liu, Wei [Department of Orthopaedic Surgery, Jingmen No. 1 People' s Hospital, Jingmen 44800, Hubei (China); Bai, Bing-Li; Zhou, Qiang; Huang, Zheng-Liang; Tu, Kai-kai; Li, Hang; Sun, Tao [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Lv, Yang-Xun [Department of Orthopaedic Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000 (China); Cui, Wei [Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road, Chengdu, Sichuan 610000 (China); Yang, Lei, E-mail: tzs19900327@163.com [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China)

    2016-05-01

    Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), magnesium (Mg), and strontium (Sr) present a beneficial effect on bone growth, and positively affect bone regeneration. The aim of this study was to confirm the different effects of the fixation strength of Zn, Mg, Sr-substituted hydroxyapatite-coated (Zn-HA-coated, Mg-HA-coated, Sr-HA-coated) titanium implants via electrochemical deposition in the osteoporotic condition. Female Sprague–Dawley rats were used for this study. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group HA; group Zn-HA; group Mg-HA and group Sr-HA. Afterwards, all rats from groups HA, Zn-HA, Mg-HA and Sr-HA received implants with hydroxyapatite containing 0%, 10% Zn ions, 10% Mg ions, and 10% Sr ions. Implants were inserted bilaterally in all animals until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. All treatment groups increased new bone formation around the surface of titanium rods and push-out force; group Sr-HA showed the strongest effects on new bone formation and biomechanical strength. Additionally, there are significant differences in bone formation and push-out force was observed between groups Zn-HA and Mg-HA. This finding suggests that Zn, Mg, Sr-substituted hydroxyapatite coatings can improve implant osseointegration, and the 10% Sr coating exhibited the best properties for implant osseointegration among the tested coatings in osteoporosis rats. - Highlights: • Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. • However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), Magnesium(Mg), Strontium (Sr) present a benificial effect on bone

  10. Shape and Site Dependent in Vivo Degradation of Mg-Zn Pins in Rabbit Femoral Condyle

    Directory of Open Access Journals (Sweden)

    Pei Han

    2014-02-01

    Full Text Available A type of specially designed pin model of Mg-Zn alloy was implanted into the full thickness of lesions of New Zealand rabbits’ femoral condyles. The recovery progress, outer surface healing and in vivo degradation were characterized by various methods including radiographs, Micro-CT scan with surface rendering, SEM (scanning electron microscope with EDX (Energy Dispersive X-ray analysis and so on. The in vivo results suggested that a few but not sufficient bridges for holding force were formed between the bone and the implant if there was a preexisting gap between them. The rapid degradation of the implantation in the condyle would result in the appearance of cavities. Morphological evaluation of the specially designed pins indicated that the cusp was the most vulnerable part during degradation. Furthermore, different implantation sites with distinct components and biological functions can lead to different degradation rates of Mg-Zn alloy. The rate of Mg-Zn alloy decreases in the following order: implantation into soft tissue, less trabecular bone, more trabecular bone, and cortical bone. Because of the complexities of in vivo degradation, it is necessary for the design of biomedical Mg-Zn devices to take into consideration the implantation sites used in clinics.

  11. Positron annihilation 2D-ACAR study of semi-coherent Li nanoclusters in MgO(1 0 0) and MgO(1 1 0)

    International Nuclear Information System (INIS)

    Falub, C.V.; Mijnarends, P.E.; Eijt, S.W.H.; Huis, M.A. van; Veen, A. van; Schut, H.

    2002-01-01

    Depth selective positron annihilation two-dimensional angular correlation of annihilation radiation (2D-ACAR) is used to determine the electronic structure of Li nanoclusters formed by implantation of 10 16 cm -2 6 Li ions (with an energy of 30 keV) in MgO(1 0 0) and (1 1 0) crystals, and subsequently annealed at 950 K. The 2D-ACAR spectra of Li-implanted MgO obtained with 4 keV positrons reveal the semi-coherent ordering state of the embedded metallic Li nanoclusters. The results agree with ab initio Korringa-Kohn-Rostoker calculations

  12. Positron annihilation 2D-ACAR study of semi-coherent Li nanoclusters in MgO(1 0 0) and MgO(1 1 0)

    Energy Technology Data Exchange (ETDEWEB)

    Falub, C.V. E-mail: c.falub@iri.tudelft.nl; Mijnarends, P.E.; Eijt, S.W.H.; Huis, M.A. van; Veen, A. van; Schut, H

    2002-05-01

    Depth selective positron annihilation two-dimensional angular correlation of annihilation radiation (2D-ACAR) is used to determine the electronic structure of Li nanoclusters formed by implantation of 10{sup 16} cm{sup -2} {sup 6}Li ions (with an energy of 30 keV) in MgO(1 0 0) and (1 1 0) crystals, and subsequently annealed at 950 K. The 2D-ACAR spectra of Li-implanted MgO obtained with 4 keV positrons reveal the semi-coherent ordering state of the embedded metallic Li nanoclusters. The results agree with ab initio Korringa-Kohn-Rostoker calculations.

  13. Positron annihilation 2D-ACAR study of semi-coherent Li nanoclusters in MgO( 1 0 0 ) and MgO( 1 1 0 )

    Science.gov (United States)

    Falub, C. V.; Mijnarends, P. E.; Eijt, S. W. H.; van Huis, M. A.; van Veen, A.; Schut, H.

    2002-05-01

    Depth selective positron annihilation two-dimensional angular correlation of annihilation radiation (2D-ACAR) is used to determine the electronic structure of Li nanoclusters formed by implantation of 10 16 cm -26Li ions (with an energy of 30 keV) in MgO(1 0 0) and (1 1 0) crystals, and subsequently annealed at 950 K. The 2D-ACAR spectra of Li-implanted MgO obtained with 4 keV positrons reveal the semi-coherent ordering state of the embedded metallic Li nanoclusters. The results agree with ab initio Korringa-Kohn-Rostoker calculations.

  14. Ultraviolet spectra of Mg in liquid helium

    International Nuclear Information System (INIS)

    Moriwaki, Y.; Morita, N.

    1999-01-01

    Emission and absorption spectra of Mg atoms implanted in liquid helium have been observed in the ultraviolet region. We have presented a model of exciplex formation of Mg-He 10 and found that this model is more suitable for understanding the dynamics in the 3s3p 1 P→3s 21 S transition than the bubble model. (orig.)

  15. In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg-Ca and Mg-Ca-Zn alloys for biomedical applications.

    Science.gov (United States)

    Pan, Yaokun; He, Siyu; Wang, Diangang; Huang, Danlan; Zheng, Tingting; Wang, Siqi; Dong, Pan; Chen, Chuanzhong

    2015-02-01

    Calcium phosphate (CaP) ceramic coatings were fabricated on pure magnesium (Mg) and self-designed Mg-0.6Ca, Mg-0.55Ca-1.74Zn alloys by microarc oxidation (MAO). The coating formation, growth and biomineralization mechanisms were discussed. The coating degradability and bioactivity were evaluated by immersion tests in trishydroxymethyl-aminomethane hydrochloric acid (Tris-HCl) buffer and simulated body fluid (SBF) solutions, respectively. The coatings and corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and fourier transform infrared spectrometer (FT-IR). The electrochemical workstation was used to investigate the electrochemical corrosion behaviors of substrates and coatings. Results showed that Mg-0.55Ca-1.74Zn alloy exhibits the highest mechanical strength and electrochemical corrosion resistance among the three alloys. The MAO-coated Mg-0.55Ca-1.74Zn alloy has the potential to be served as a biodegradable implant. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Yttrium ion implantation on the surface properties of magnesium

    International Nuclear Information System (INIS)

    Wang, X.M.; Zeng, X.Q.; Wu, G.S.; Yao, S.S.

    2006-01-01

    Owing to their excellent physical and mechanical properties, magnesium and its alloys are receiving more attention. However, their application has been limited to the high reactivity and the poor corrosion resistance. The aim of the study was to investigate the beneficial effects of ion-implanted yttrium using a MEVVA ion implanter on the surface properties of pure magnesium. Isothermal oxidation tests in pure O 2 at 673 and 773 K up to 90 min indicated that the oxidation resistance of magnesium had been significantly improved. Surface morphology of the oxide scale was analyzed using scanning electron microscope (SEM). Auger electron spectroscopy (AES) and X-ray diffraction (XRD) analyses indicated that the implanted layer was mainly composed of MgO and Y 2 O 3 , and the implanted layer with a duplex structure could decrease the inward diffusion of oxygen and reduce the outward diffusion of Mg 2+ , which led to improving the oxidation resistance of magnesium. Potentiodynamic polarization curves were used to evaluate the corrosion resistance of the implanted magnesium. The results show yttrium implantation could enhance the corrosion resistance of implanted magnesium compared with that of pure magnesium

  17. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    International Nuclear Information System (INIS)

    Huis, M.A. van; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2004-01-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 x 10 16 Cd ions cm -2 and 210 keV, 1 x 10 16 Se ions cm -2 in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions

  18. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    Science.gov (United States)

    van Huis, M. A.; van Veen, A.; Schut, H.; Eijt, S. W. H.; Kooi, B. J.; De Hosson, J. Th. M.

    2004-06-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 × 10 16 Cd ions cm -2 and 210 keV, 1 × 10 16 Se ions cm -2 in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions.

  19. Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6)

    Science.gov (United States)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Beni, Batoul Hashemi; Razavi, Seyed Mohammad; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Magnesium alloys with their biodegradable characteristic can be a very good candidate to be used in orthopedic implants. However, magnesium alloys may corrode and degrade too fast for applications in the bone healing procedure. In order to enhance the corrosion resistance and the in vitro bioactivity of a magnesium alloy, a nanostructured diopside (CaMgSi2O6) film was coated on AZ91 magnesium alloy through combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) methods. The crystalline structures, morphologies and compositions of the coated and uncoated substrates were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy. Polarization, electrochemical impedance spectroscopy, and immersion test in simulated body fluid (SBF) were employed to evaluate the corrosion resistance and the in vitro bioactivity of the samples. The results of our investigation showed that the nanostructured diopside coating deposited on the MAO layer increases the corrosion resistance and improves the in vitro bioactivity of the biodegradable magnesium alloy.

  20. Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6)

    International Nuclear Information System (INIS)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Beni, Batoul Hashemi; Razavi, Seyed Mohammad; Vashaee, Daryoosh

    2014-01-01

    Magnesium alloys with their biodegradable characteristic can be a very good candidate to be used in orthopedic implants. However, magnesium alloys may corrode and degrade too fast for applications in the bone healing procedure. In order to enhance the corrosion resistance and the in vitro bioactivity of a magnesium alloy, a nanostructured diopside (CaMgSi 2 O 6 ) film was coated on AZ91 magnesium alloy through combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) methods. The crystalline structures, morphologies and compositions of the coated and uncoated substrates were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy. Polarization, electrochemical impedance spectroscopy, and immersion test in simulated body fluid (SBF) were employed to evaluate the corrosion resistance and the in vitro bioactivity of the samples. The results of our investigation showed that the nanostructured diopside coating deposited on the MAO layer increases the corrosion resistance and improves the in vitro bioactivity of the biodegradable magnesium alloy.

  1. Mg-MOF-74/MgF₂ Composite Coating for Improving the Properties of Magnesium Alloy Implants: Hydrophilicity and Corrosion Resistance.

    Science.gov (United States)

    Liu, Wei; Yan, Zhijie; Ma, Xiaolu; Geng, Tie; Wu, Haihong; Li, Zhongyue

    2018-03-07

    Surface modification on Mg alloys is highly promising for their application in the field of bone repair. In this study, a new metal-organic framework/MgF₂ (Mg-MOF-74/MgF₂) composite coating was prepared on the surface of AZ31B Mg alloy via pre-treatment of hydrofluoric acid and in situ hydrothermal synthesis methods. The surface topography of the composite coating is compact and homogeneous, and Mg-MOF-74 has good crystallinity. The corrosion resistance of this composite coating was investigated through Tafel polarization test and immersion test in simulated body fluid at 37 °C. It was found that Mg-MOF-74/MgF₂ composite coating significantly slowed down the corrosion rate of Mg alloy. Additionally, Mg-MOF-74/MgF₂ composite coating expresses super-hydrophilicity with the water contact angle of nearly 0°. In conclusion, on the basis of MgF₂ anticorrosive coating, the introduction of Mg-MOF-74 further improves the biological property of Mg alloys. At last, we propose that the hydrophilicity of the composite coating is mainly owing to the large number of hydroxyl groups, the high specific surface area of Mg-MOF-74, and the rough coating produced by Mg-MOF-74 particles. Hence, Mg-MOF-74 has a great advantage in enhancing the hydrophilicity of Mg alloy surface.

  2. Controlling the Biodegradation of Magnesium Implants Through Nanostructured Calcium-Phosphate Coating

    Science.gov (United States)

    Iskandar, Maria Emil

    Magnesium (Mg) alloys, a novel class of degradable, metallic biomaterials, have attracted growing interest as a promising alternative for medical implant and device applications due to their advantageous mechanical and biological properties. Moreover, Mg is biodegradable in the physiological environments. However, the major obstacle for Mg to be used as medical implants is its rapid degradation in physiological fluids. Therefore, the present key challenge lies in controlling Mg degradation rate in the physiological environment. The objective of this study was to develop a nanostructured-hydroxyapatite (nHA) coating on polished Mg implants to control the degradation and bone tissue integration of the implants. The nHA coatings were deposited on Mg using the Spire's patented TPA process to moderate the aggressive degradation of Mg and to improve quick osteointegration between Mg and natural bone. Nanostructured-HA coatings mimic the nanostructure and chemistry of natural bone, which will provide a desirable environment for bone tissue regeneration. Surface morphology, element compositions, and crystal structures were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and x-ray diffractometry (XRD), respectively. SEM images of the deposited nHA-coating was analyzed using ImageJ's quantitative image analysis tool, to determine the nHA-coating particle size and thickness. The degradation of nHA-coated and non-coated Mg samples was investigated by incubating samples in phosphate buffered saline (PBS) and revised simulated body fluid (r-SBF), under standard cell culture conditions. To mimic the in vivo cell response in the physiological environment, rat bone marrow stromal cells (BMSC) were harvested and cultured with nHA-coated and non-coated polished Mg samples to determine cytocompatibilty. The degradation results suggested that the nanocoatings positively mediated Mg degradation. It can therefore be concluded that n

  3. Degradation testing of Mg alloys in Dulbecco's modified eagle medium: Influence of medium sterilization.

    Science.gov (United States)

    Marco, Iñigo; Feyerabend, Frank; Willumeit-Römer, Regine; Van der Biest, Omer

    2016-05-01

    This work studies the in vitro degradation of Mg alloys for bioabsorbable implant applications under near physiological conditions. For this purpose, the degradation behaviour of Mg alloys in Dulbecco's modified eagle medium (DMEM) which is a commonly used cell culture medium is analysed. Unfortunately, DMEM can be contaminated by microorganisms, acidifying the medium and accelerating the Mg degradation process by dissolution of protective degradation layers, such as (Mgx,Cay)(PO4)z. In this paper the influence of sterilization by applying UV-C radiation and antibiotics (penicillin/streptomycin) is analysed with two implant material candidates: Mg-Gd and Mg-Ag alloys; and pure magnesium as well as Mg-4Y-3RE as a reference. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Similarities and differences in coatings for magnesium-based stents and orthopaedic implants

    Directory of Open Access Journals (Sweden)

    Jun Ma

    2014-07-01

    Full Text Available Magnesium (Mg-based biodegradable materials are promising candidates for the new generation of implantable medical devices, particularly cardiovascular stents and orthopaedic implants. Mg-based cardiovascular stents represent the most innovative stent technology to date. However, these products still do not fully meet clinical requirements with regards to fast degradation rates, late restenosis, and thrombosis. Thus various surface coatings have been introduced to protect Mg-based stents from rapid corrosion and to improve biocompatibility. Similarly, different coatings have been used for orthopaedic implants, e.g., plates and pins for bone fracture fixation or as an interference screw for tendon-bone or ligament-bone insertion, to improve biocompatibility and corrosion resistance. Metal coatings, nanoporous inorganic coatings and permanent polymers have been proved to enhance corrosion resistance; however, inflammation and foreign body reactions have also been reported. By contrast, biodegradable polymers are more biocompatible in general and are favoured over permanent materials. Drugs are also loaded with biodegradable polymers to improve their performance. The key similarities and differences in coatings for Mg-based stents and orthopaedic implants are summarized.

  5. Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases

    Science.gov (United States)

    Cha, Pil-Ryung; Han, Hyung-Seop; Yang, Gui-Fu; Kim, Yu-Chan; Hong, Ki-Ha; Lee, Seung-Cheol; Jung, Jae-Young; Ahn, Jae-Pyeong; Kim, Young-Yul; Cho, Sung-Youn; Byun, Ji Young; Lee, Kang-Sik; Yang, Seok-Jo; Seok, Hyun-Kwang

    2013-01-01

    Crystalline Mg-based alloys with a distinct reduction in hydrogen evolution were prepared through both electrochemical and microstructural engineering of the constituent phases. The addition of Zn to Mg-Ca alloy modified the corrosion potentials of two constituent phases (Mg + Mg2Ca), which prevented the formation of a galvanic circuit and achieved a comparable corrosion rate to high purity Mg. Furthermore, effective grain refinement induced by the extrusion allowed the achievement of much lower corrosion rate than high purity Mg. Animal studies confirmed the large reduction in hydrogen evolution and revealed good tissue compatibility with increased bone deposition around the newly developed Mg alloy implants. Thus, high strength Mg-Ca-Zn alloys with medically acceptable corrosion rate were developed and showed great potential for use in a new generation of biodegradable implants. PMID:23917705

  6. P- and N-type implantation doping of GaN with Ca and O

    International Nuclear Information System (INIS)

    Zolper, J.C.; Wilson, R.G.; Pearton, S.J.

    1996-01-01

    III-N photonic devices have made great advances in recent years following the demonstration of doping of GaN p-type with Mg and n-type with Si. However, the deep ionization energy level of Mg in GaN (∼ 160 meV) limits the ionized of acceptors at room temperature to less than 1.0% of the substitutional Mg. With this in mind, the authors used ion implantation to characterize the ionization level of Ca in GaN since Ca had been suggested by Strite to be a shallow acceptor in GaN. Ca-implanted GaN converted from n-to-p type after a 1,100 C activation anneal. Variable temperature Hall measurements give an ionization level at 169 meV. Although this level is equivalent to that of Mg, Ca-implantation may have advantages (shallower projected range and less straggle for a given energy) than Mg for electronic devices. In particular, the authors report the first GaN device using ion implantation doping. This is a GaN junction field effect transistor (JFET) which employed Ca-implantation. A 1.7 microm JFET had a transconductance of 7 mS/mm, a saturation current at 0 V gate bias of 33 mA/mm, a f t of 2.7 GHz, and a f max of 9.4 GHz. O-implantation was also studied and shown to create a shallow donor level (∼ 25 meV) that is similar to Si. SIMS profiles of as-implanted and annealed samples showed no measurable redistribution of either Ca or O in GaN at 1,125 C

  7. Hydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response.

    Science.gov (United States)

    Kim, Sae-Mi; Jo, Ji-Hoon; Lee, Sung-Mi; Kang, Min-Ho; Kim, Hyoun-Ee; Estrin, Yuri; Lee, Jong-Ho; Lee, Jung-Woo; Koh, Young-Hag

    2014-02-01

    Magnesium and its alloys are candidate materials for biodegradable implants; however, excessively rapid corrosion behavior restricts their practical uses in biological systems. For such applications, surface modification is essential, and the use of anticorrosion coatings is considered as a promising avenue. In this study, we coated Mg with hydroxyapatite (HA) in an aqueous solution containing calcium and phosphate sources to improve its in vitro and in vivo biocorrosion resistance, biocompatibility and bone response. A layer of needle-shaped HA crystals was created uniformly on the Mg substrate even when the Mg sample had a complex shape of a screw. In addition, a dense HA-stratum between this layer and the Mg substrate was formed. This HA-coating layer remarkably reduced the corrosion rate of the Mg tested in a simulated body fluid. Moreover, the biological response, including cell attachment, proliferation and differentiation, of the HA-coated samples was enhanced considerably compared to samples without a coating layer. The preliminary in vivo experiments also showed that the biocorrosion of the Mg implant was significantly retarded by HA coating, which resulted in good mechanical stability. In addition, in the case of the HA-coated implants, biodegradation was mitigated, particularly over the first 6 weeks of implantation. This considerably promoted bone growth at the interface between the implant and bone. These results confirmed that HA-coated Mg is a promising material for biomedical implant applications. © 2013 Wiley Periodicals, Inc.

  8. Comparison of the reaction of bone-derived cells to enhanced MgCl2-salt concentrations.

    Science.gov (United States)

    Burmester, Anna; Luthringer, Bérengère; Willumeit, Regine; Feyerabend, Frank

    2014-01-01

    Magnesium-based implants exhibit various advantages such as biodegradability and potential for enhanced in vivo bone formation. However, the cellular mechanisms behind this possible osteoconductivity remain unclear. To determine whether high local magnesium concentrations can be osteoconductive and exclude other environmental factors that occur during the degradation of magnesium implants, magnesium salt (MgCl2) was used as a model system. Because cell lines are preferred targets in studies of non-degradable implant materials, we performed a comparative study of 3 osteosarcoma-derived cell lines (MG63, SaoS2 and U2OS) with primary human osteoblasts. The correlation among cell count, viability, cell size and several MgCl2 concentrations was used to examine the influence of magnesium on proliferation in vitro. Moreover, bone metabolism alterations during proliferation were investigated by analyzing the expression of genes involved in osteogenesis. It was observed that for all cell types, the cell count decreases at concentrations above 10 mM MgCl2. However, detailed analysis showed that MgCl2 has a relevant but very diverse influence on proliferation and bone metabolism, depending on the cell type. Only for primary cells was a clear stimulating effect observed. Therefore, reliable results demonstrating the osteoconductivity of magnesium implants can only be achieved with primary osteoblasts.

  9. Magnesium aluminate planar waveguides fabricated by C-ion implantation with different energies and fluences

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hong-Lian; Yu, Xiao-Fei; Zhang, Lian; Wang, Tie-Jun; Qiao, Mei; Zhang, Jing; Liu, Peng; Wang, Xue-Lin, E-mail: xuelinwang@sdu.edu.cn

    2015-11-01

    We report on MgAl{sub 2}O{sub 4} planar waveguides produced using different energies and fluences of C-ion implantation at room temperature. Based on the prism coupling method and end-face coupling measurements, light could propagate in the C-ion-implanted samples. The Raman spectra results indicate that the MgAl{sub 2}O{sub 4} crystal lattice was damaged during the multi-energy C implantation process, whereas the absorption spectra were hardly affected by the C-ion implantation in the visible and infrared bands.

  10. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Huis, M.A. van E-mail: vanhuis@iri.tudelft.nl; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2004-06-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 x 10{sup 16} Cd ions cm{sup -2} and 210 keV, 1 x 10{sup 16} Se ions cm{sup -2} in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions.

  11. Magnesium alloys for temporary implant applications: stress corrosion cracking and biocompatible coating

    OpenAIRE

    Choudhary, Lokesh Kumar

    2017-01-01

    Magnesium (Mg) alloys have emerged as potential candidate materials for construction of biodegradable temporary implant devices particularly due to advantages of favourable mechanical properties, biodegradability and biocompatibility. However, the poor corrosion resistance of Mg alloys in the physiological environment presents a major challenge to their use as biodegradable temporary implants. Furthermore, complex interaction of mechanical loading and aggressive physiological environment may ...

  12. SIMS analysis of isotopic impurities in ion implants

    International Nuclear Information System (INIS)

    Sykes, D.E.; Blunt, R.T.

    1986-01-01

    The n-type dopant species Si and Se used for ion implantation in GaAs are multi-isotopic with the most abundant isotope not chosen because of potential interferences with residual gases. SIMS analysis of a range of 29 Si implants produced by several designs of ion implanter all showed significant 28 Si impurity with a different depth distribution from that of the deliberately implanted 29 Si isotope. This effect was observed to varying degrees with all fifteen implanters examined and in every 29 Si implant analysed to date 29 Si + , 29 Si ++ and 30 Si implants all show the same effect. In the case of Se implantation, poor mass resolution results in the implantation of all isotopes with the same implant distribution (i.e. energy), whilst implants carried out with good mass resolution show the implantation of all isotopes with the characteristic lower depth distribution of the impurity isotopes as found in the Si implants. This effect has also been observed in p-type implants into GaAs (Mg) and for Ga implanted in Si. A tentative explanation of the effect is proposed. (author)

  13. Fabrication of implanted $^{22}$Na targets

    CERN Multimedia

    2002-01-01

    A knowledge of the $^{22}$Na(p,$\\gamma$)$^{23}$ Mg reaction rate is of significant astrophysical interest. In order to complete previous studies of this reaction, radioactive $^{22}$Na targets of high purity are required. We ask for support to fabricate these targets via the implantation technique at ISOLDE GPS (off—line mode) using $^{22}$Na nuclides in an Al matrix produced in Nov. 1990 at the PSI (Zürich). The $^{22}$Na nuclides are released and ionized in a surface ionisation source, mass-analyzed at ISOLDE GPS, and implanted in a Ni-Ta backing and a C—foil in a special implantation setup.

  14. Towards 31Mg-β-NMR resonance linewidths adequate for applications in magnesium chemistry

    DEFF Research Database (Denmark)

    Stachura, M.; McFadden, R. M. L.; Chatzichristos, A.

    2017-01-01

    The span of most chemical shifts recorded in conventional 25Mg-NMR spectroscopy is ~ 100 ppm. Accordingly, linewidths of ~ 10 ppm or better are desirable to achieve adequate resolution for applications in chemistry. Here we present first high-field 31Mg- β-NMR measurements of 31Mg+ ions implanted...

  15. Microstructure and degradation performance of biodegradable Mg-Si-Sr implant alloys.

    Science.gov (United States)

    Gil-Santos, Andrea; Marco, Iñigo; Moelans, Nele; Hort, Norbert; Van der Biest, Omer

    2017-02-01

    In this work the microstructure and degradation behavior of several as-cast alloy compositions belonging to the Mg rich corner of the Mg-Si-Sr system are presented and related. The intermetallic phases are identified and analyzed describing the microstructure evolution during solidification. It is intended in this work to obtain insight in the behavior of the ternary alloys in in vitro tests and to analyze the degradation behavior of the alloys under physiologically relevant conditions. The as-cast specimens have been exposed to immersion tests, both mass loss (ML) and potentiodynamic polarization (PDP). The degradation rate (DR) have been assessed and correlated to microstructure features, impurity levels and alloy composition. The initial reactions resulted to be more severe while the degradation stabilizes with time. A higher DR is related with a high content of the Mg 17 Sr 2 phase and with the presence of coarse particles of the intermetallics Mg 2 Si, MgSiSr and MgSi 2 Sr. Specimens with a higher DR typically have higher levels of impurities and alloy contents. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Doping of GaN by ion implantation: Does It Work?

    International Nuclear Information System (INIS)

    Suvkhanov, A.; Wu, W.; Price, K.; Parikh, N.; Irene, E.; Hunn, J.; Thomson, D.; Davis, R.F.; Krasnobaev, L.

    1998-04-01

    Epitaxially grown GaN by metal organic chemical vapor deposition (MOCVD) on SiC were implanted with 100 keV Si + (for n-type) and 80 keV Mg + (for p-type) with various fluences from 1 x 10 12 to 7 x 10 15 ions/cm 2 at liquid nitrogen temperature (LT), room temperature (RT), and 700 C (HT). High temperature (1,200 C and 1,500 C) annealing was carried out after capping the GaN with epitaxial AlN by MOCVD to study damage recovery. Samples were capped by a layer of AlN in order to protect the GaN surface during annealing. Effects of implant temperature, damage and dopant activation are critically studied to evaluate a role of ion implantation in doping of GaN. The damage was studied by Rutherford Backscattering/Channeling, spectroscopic ellipsometry and photoluminescence. Results show dependence of radiation damage level on temperature of the substrate during implantation: implantations at elevated temperatures up to 550 C decrease the lattice disorder; hot implants above 550 C can not be useful in doping of GaN due to nitrogen loss from the surface. SE measurements have indicated very high sensitivity to the implantation damage. PL measurements at LT of 80 keV Mg + (5 x 10 14 cm 2 ) implanted and annealed GaN showed two peaks: one ∼ 100 meV and another ∼ 140 meV away from the band edge

  17. Degradation testing of Mg alloys in Dulbecco's modified eagle medium: Influence of medium sterilization

    International Nuclear Information System (INIS)

    Marco, Iñigo; Feyerabend, Frank; Willumeit-Römer, Regine; Van der Biest, Omer

    2016-01-01

    This work studies the in vitro degradation of Mg alloys for bioabsorbable implant applications under near physiological conditions. For this purpose, the degradation behaviour of Mg alloys in Dulbecco's modified eagle medium (DMEM) which is a commonly used cell culture medium is analysed. Unfortunately, DMEM can be contaminated by microorganisms, acidifying the medium and accelerating the Mg degradation process by dissolution of protective degradation layers, such as (Mg_x,Ca_y)(PO_4)_z. In this paper the influence of sterilization by applying UV-C radiation and antibiotics (penicillin/streptomycin) is analysed with two implant material candidates: Mg–Gd and Mg–Ag alloys; and pure magnesium as well as Mg–4Y–3RE as a reference. - Highlights: • Contamination of DMEM by microorganisms increases the degradation rate of Mg. • Mg and its alloys show passivation during long term immersion tests in DMEM. • The use of a control sample position is essential to assess H_2 evolution in DMEM.

  18. Unique antitumor property of the Mg-Ca-Sr alloys with addition of Zn

    Science.gov (United States)

    Wu, Yuanhao; He, Guanping; Zhang, Yu; Liu, Yang; Li, Mei; Wang, Xiaolan; Li, Nan; Li, Kang; Zheng, Guan; Zheng, Yufeng; Yin, Qingshui

    2016-02-01

    In clinical practice, tumor recurrence and metastasis after orthopedic prosthesis implantation is an intensely troublesome matter. Therefore, to develop implant materials with antitumor property is extremely necessary and meaningful. Magnesium (Mg) alloys possess superb biocompatibility, mechanical property and biodegradability in orthopedic applications. However, whether they possess antitumor property had seldom been reported. In recent years, it showed that zinc (Zn) not only promote the osteogenic activity but also exhibit good antitumor property. In our present study, Zn was selected as an alloying element for the Mg-1Ca-0.5Sr alloy to develop a multifunctional material with antitumor property. We investigated the influence of the Mg-1Ca-0.5Sr-xZn (x = 0, 2, 4, 6 wt%) alloys extracts on the proliferation rate, cell apoptosis, migration and invasion of the U2OS cell line. Our results show that Zn containing Mg alloys extracts inhibit the cell proliferation by alteration the cell cycle and inducing cell apoptosis via the activation of the mitochondria pathway. The cell migration and invasion property were also suppressed by the activation of MAPK (mitogen-activated protein kinase) pathway. Our work suggests that the Mg-1Ca-0.5Sr-6Zn alloy is expected to be a promising orthopedic implant in osteosarcoma limb-salvage surgery for avoiding tumor recurrence and metastasis.

  19. Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi{sub 2}O{sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mehdi, E-mail: mehdi.razavi@okstate.edu [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Savabi, Omid [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Beni, Batoul Hashemi [Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Razavi, Seyed Mohammad [School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Vashaee, Daryoosh [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); and others

    2014-01-01

    Magnesium alloys with their biodegradable characteristic can be a very good candidate to be used in orthopedic implants. However, magnesium alloys may corrode and degrade too fast for applications in the bone healing procedure. In order to enhance the corrosion resistance and the in vitro bioactivity of a magnesium alloy, a nanostructured diopside (CaMgSi{sub 2}O{sub 6}) film was coated on AZ91 magnesium alloy through combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) methods. The crystalline structures, morphologies and compositions of the coated and uncoated substrates were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy. Polarization, electrochemical impedance spectroscopy, and immersion test in simulated body fluid (SBF) were employed to evaluate the corrosion resistance and the in vitro bioactivity of the samples. The results of our investigation showed that the nanostructured diopside coating deposited on the MAO layer increases the corrosion resistance and improves the in vitro bioactivity of the biodegradable magnesium alloy.

  20. Polarized micro-Raman scattering characterization of Mg2Si nanolayers in (001) Si matrix

    International Nuclear Information System (INIS)

    Zlateva, G; Atanassov, A; Baleva, M; Nikolova, L; Abrashev, M V

    2007-01-01

    An orientational growth of the Mg 2 Si lattice relative to the Si lattice is considered assuming minimum mismatch of their lattice parameters. The Raman scattering cross-sections are calculated for the four possible orientations of the Mg 2 Si lattice positioned in this way. The integral intensity ratios for the F 2g mode of Mg 2 Si in different polarization configurations, obtained from the experimental spectra, are compared with the calculated ratios. It is found that the Mg 2 Si nanolayer's morphology is sensitive to the implantation energy, which determines both the peak Mg concentration in the initial implantation profile and its position in the sample depth. At a peak concentration of the order of the stoichiometric concentration, the layers are highly oriented. When the peak concentration is higher and the peak is placed closer to the surface, the layers are polycrystalline

  1. The synthesis and characterization of Mg-Zn-Ca alloy by powder metallurgy process

    Energy Technology Data Exchange (ETDEWEB)

    Annur, Dhyah; Franciska, P.L.; Erryani, Aprilia; Amal, M. Ikhlasul; Kartika, Ika, E-mail: pepeng2000@yahoo.com [Research center for Metallurgy and Material, Indonesian Institute of Science (Indonesia); Sitorus, Lyandra S. [Sultan Ageng Tirtayasa University (Indonesia)

    2016-04-19

    Known for its biodegradation and biocompatible properties, magnesium alloys have gained many interests to be researched as implant material. In this study, Mg-3Zn-1Ca, Mg-29Zn-1Ca, and Mg-53Zn-4.3Ca (in wt%) were synthesized by means of powder metallurgy method. The compression strength and corrosion resistance of magnesium alloy were thoroughly examined. The microstructures of the alloy were characterized using optical microscopy, Scanning Electron Microscope, and also X-ray diffraction analysis. The corrosion resistance were evaluated using electrochemical analysis. The result indicated that Mg- Zn- Ca alloy could be synthesized using powder metallurgy method. This study showed that Mg-29Zn-1Ca would make the highest mechanical strength up to 159.81 MPa. Strengthening mechanism can be explained by precipitation hardening and grain refinement mechanism. Phase analysis had shown the formation of α Mg, MgO, and intermetallic phases: Mg2Zn11 and also Ca2Mg6Zn3. However, when the composition of Zn reach 53% weight, the mechanical strength will be decreasing. In addition, all of Mg-Zn-Ca alloy studied here had better corrosion resistance (Ecorr around -1.4 VSCE) than previous study of Mg. This study indicated that Mg- 29Zn- 1Ca alloy can be further analyzed to be a biodegradable implant material.

  2. Bacterial Biofilm Infection Detected in Breast Implant-Associated Anaplastic Large-Cell Lymphoma.

    Science.gov (United States)

    Hu, Honghua; Johani, Khalid; Almatroudi, Ahmad; Vickery, Karen; Van Natta, Bruce; Kadin, Marshall E; Brody, Garry; Clemens, Mark; Cheah, Chan Yoon; Lade, Stephen; Joshi, Preeti Avinash; Prince, H Miles; Deva, Anand K

    2016-06-01

    A recent association between breast implants and the development of anaplastic large-cell lymphoma (ALCL) has been observed. The purpose of this study was to identify whether bacterial biofilm is present in breast implant-associated ALCL and, if so, to compare the bacterial microbiome to nontumor capsule samples from breast implants with contracture. Twenty-six breast implant-associated ALCL samples were analyzed for the presence of biofilm by real-time quantitative polymerase chain reaction, next-generation sequencing, fluorescent in situ hybridization, and scanning electron microscopy, and compared to 62 nontumor capsule specimens. Both the breast implant-associated ALCL and nontumor capsule samples yielded high mean numbers of bacteria (breast implant-associated ALCL, 4.7 × 10 cells/mg of tissue; capsule, 4.9 × 10 cells/mg of tissue). Analysis of the microbiome in breast implant-associated ALCL specimens showed significant differences with species identified in nontumor capsule specimens. There was a significantly greater proportion of Ralstonia spp. present in ALCL specimens compared with nontumor capsule specimens (p capsule specimens compared with breast implant-associated ALCL specimens (p < 0.001). Bacterial biofilm was visualized both on scanning electron microscopy and fluorescent in situ hybridization. This novel finding of bacterial biofilm and a distinct microbiome in breast implant-associated ALCL samples points to a possible infectious contributing cause. Breast implants are widely used in both reconstructive and aesthetic surgery, and strategies to reduce their contamination should be more widely studied and practiced. Risk, V.

  3. High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance

    Science.gov (United States)

    Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-04-01

    This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

  4. Chondrogenic differentiation of ATDC5-cells under the influence of Mg and Mg alloy degradation.

    Science.gov (United States)

    Martinez Sanchez, Adela H; Feyerabend, Frank; Laipple, Daniel; Willumeit-Römer, Regine; Weinberg, Annelie; Luthringer, Bérengère J C

    2017-03-01

    Biodegradable magnesium (Mg)-based materials are a potential alternative to permanent implants for application in children. Nevertheless effects of those materials on growth plate cartilage and chondrogenesis have not been previously evaluated. In vitro differentiation of ATDC5 cells was evaluated under the influence of pure Mg (PMg), Mg with 10wt% of gadolinium (Mg-10Gd) and Mg with 2wt% of silver (Mg-2Ag) degradation products (extracts) and direct cell culture on the materials. Gene expression showed an inhibitory effect on ATDC5 mineralization with the three extracts and a chondrogenic potential of Mg-10Gd. Cells cultured in Mg-10Gd and Mg-2Ag extracts showed the same proliferation and morphology than cells cultured in growth conditions. Mg-10Gd induced an increase in production of ECM and a bigger cell size, similar to the effects found with differentiation conditions. An increased metabolic activity was observed in cells cultured under the influence of Mg-10Gd extracts, indicated by an acidic pH during most of the culture period. After 7days of culture on the materials, ATDC5 growth, distribution and ECM synthesis were higher on Mg-10Gd samples, followed by Mg-2Ag and PMg, which was influenced by the homogeneity and composition of the degradation layer. This study confirmed the tolerance of ATDC5 cells to Mg-based materials and a chondrogenic effect of Mg-10Gd. Further studies in vitro and in vivo are necessary to evaluate cell reactions to those materials, as well as the effects on bone growth and the biocompatibility of the alloying system in the body. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Evaluation of Osseointegration of Titanium Alloyed Implants Modified by Plasma Polymerization

    Directory of Open Access Journals (Sweden)

    Carolin Gabler

    2014-02-01

    Full Text Available By means of plasma polymerization, positively charged, nanometre-thin coatings can be applied to implant surfaces. The aim of the present study was to quantify the adhesion of human bone cells in vitro and to evaluate the bone ongrowth in vivo, on titanium surfaces modified by plasma polymer coatings. Different implant surface configurations were examined: titanium alloy (Ti6Al4V coated with plasma-polymerized allylamine (PPAAm and plasma-polymerized ethylenediamine (PPEDA versus uncoated. Shear stress on human osteoblast-like MG-63 cells was investigated in vitro using a spinning disc device. Furthermore, bone-to-implant contact (BIC was evaluated in vivo. Custom-made conical titanium implants were inserted at the medial tibia of female Sprague-Dawley rats. After a follow-up of six weeks, the BIC was determined by means of histomorphometry. The quantification of cell adhesion showed a significantly higher shear stress for MG-63 cells on PPAAm and PPEDA compared to uncoated Ti6Al4V. Uncoated titanium alloyed implants showed the lowest BIC (40.4%. Implants with PPAAm coating revealed a clear but not significant increase of the BIC (58.5% and implants with PPEDA a significantly increased BIC (63.7%. In conclusion, plasma polymer coatings demonstrate enhanced cell adhesion and bone ongrowth compared to uncoated titanium surfaces.

  6. PHB, crystalline and amorphous magnesium alloys: Promising candidates for bioresorbable osteosynthesis implants?

    Energy Technology Data Exchange (ETDEWEB)

    Celarek, Anna [Institute for Building Construction and Technology E-206-4, Vienna University of Technology, Karlsplatz 13, 1040 Vienna (Austria); Kraus, Tanja [Department of Paediatric Orthopaedics, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz (Austria); Tschegg, Elmar K., E-mail: elmar.tschegg@tuwien.ac.at [Institute for Building Construction and Technology E-206-4, Vienna University of Technology, Karlsplatz 13, 1040 Vienna (Austria); Fischerauer, Stefan F. [Department of Paediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz (Austria); Stanzl-Tschegg, Stefanie [Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter Jordan Str. 82, 1190 Vienna (Austria); Uggowitzer, Peter J. [Department of Materials, Laboratory for Metal Physics and Technology, ETH Zurich, 8093 Zurich (Switzerland); Weinberg, Annelie M. [Department of Paediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz (Austria)

    2012-08-01

    In this study various biodegradable materials were tested for their suitability for use in osteosynthesis implants, in particular as elastically stable intramedullary nails for fracture treatment in paediatric orthopaedics. The materials investigated comprise polyhydroxybutyrate (PHB), which belongs to the polyester family and is produced by microorganisms, with additions of ZrO{sub 2} and a bone graft substitute; two crystalline magnesium alloys with significantly different degradation rates ZX50 (MgZnCa, fast) and WZ21 (MgYZnCa, slow); and MgZnCa bulk metallic glasses (BMG). Push-out tests were conducted after various implantation times in rat femur meta-diaphysis to evaluate the shear forces between the implant material and the bone. The most promising materials are WZ21 and BMG, which exhibit high shear forces and push-out energies. The degradation rate of ZX50 is too fast and thus the alloy does not maintain its mechanical stability long enough during the fracture-healing period. PHB exhibits insufficient mechanical properties: it degrades very slowly and the respective low shear forces and push-out energy levels are unsatisfactory. - Highlights: Black-Right-Pointing-Pointer In-vivo (rat model) investigation of biodegradable materials suitable for ESIN. Black-Right-Pointing-Pointer Materials: polymer PHB, crystalline Mg ZX50 and Mg WZ21, MgZnCa bulk metallic glasses. Black-Right-Pointing-Pointer Evaluated interface shear strength, push-out energies, stiffness, histology. Black-Right-Pointing-Pointer Mg WZ21 suitable, other materials only after alterations.

  7. PHB, crystalline and amorphous magnesium alloys: Promising candidates for bioresorbable osteosynthesis implants?

    International Nuclear Information System (INIS)

    Celarek, Anna; Kraus, Tanja; Tschegg, Elmar K.; Fischerauer, Stefan F.; Stanzl-Tschegg, Stefanie; Uggowitzer, Peter J.; Weinberg, Annelie M.

    2012-01-01

    In this study various biodegradable materials were tested for their suitability for use in osteosynthesis implants, in particular as elastically stable intramedullary nails for fracture treatment in paediatric orthopaedics. The materials investigated comprise polyhydroxybutyrate (PHB), which belongs to the polyester family and is produced by microorganisms, with additions of ZrO 2 and a bone graft substitute; two crystalline magnesium alloys with significantly different degradation rates ZX50 (MgZnCa, fast) and WZ21 (MgYZnCa, slow); and MgZnCa bulk metallic glasses (BMG). Push-out tests were conducted after various implantation times in rat femur meta-diaphysis to evaluate the shear forces between the implant material and the bone. The most promising materials are WZ21 and BMG, which exhibit high shear forces and push-out energies. The degradation rate of ZX50 is too fast and thus the alloy does not maintain its mechanical stability long enough during the fracture-healing period. PHB exhibits insufficient mechanical properties: it degrades very slowly and the respective low shear forces and push-out energy levels are unsatisfactory. - Highlights: ► In-vivo (rat model) investigation of biodegradable materials suitable for ESIN. ► Materials: polymer PHB, crystalline Mg ZX50 and Mg WZ21, MgZnCa bulk metallic glasses. ► Evaluated interface shear strength, push-out energies, stiffness, histology. ► Mg WZ21 suitable, other materials only after alterations.

  8. Bacterial microleakage at the abutment-implant interface, in vitro study.

    Science.gov (United States)

    Larrucea, Carlos; Conrado, Aparicio; Olivares, Denise; Padilla, Carlos; Barrera, Andrea; Lobos, Olga

    2018-02-15

    In implant rehabilitation, a microspace is created at the abutment-implant interface (AII). Previous research has shown that oral microbiome can proliferate in this microspace and affect periimplant tissues, causing inflammation in peri-implant tissues. Preventing microbial leakages through the AII is therefore an important goal in implantology. To determine the presence of marginal bacterial microleakage at the AII according to the torque applied to the prosthetic implant in vitro. Twenty-five Ticare Inhex internal conical implants (MG Mozo-Grau, Valladolid, España) were connected to a prosthetic abutment using torques of micro TC, while the rest were mounted on devices according to the bacterial leakage model with Porphyromonas gingivalis. Bacterial leakage was observed only in the implant adjustment as determined by micro-CT. The different torques applied to the abutment-implant system condition the bacterial leakage at the implant interface. No microleakage was observed at 20 and 30 N. © 2018 Wiley Periodicals, Inc.

  9. Resonant Raman scattering in ion-beam-synthesized Mg2Si in a silicon matrix

    International Nuclear Information System (INIS)

    Baleva, M.; Zlateva, G.; Atanassov, A.; Abrashev, M.; Goranova, E.

    2005-01-01

    Resonant Raman scattering by ion beam synthesized in silicon matrix Mg 2 Si phase is studied. The samples are prepared with the implantation of 24 Mg + ions with dose 4x10 17 cm -2 and with two different energies 40 and 60 keV into (100)Si substrates. The far infrared spectra are used as criteria for the formation of the Mg 2 Si phase. The Raman spectra are excited with different lines of Ar + laser, with energies of the lines lying in the interval from 2.40 to 2.75 eV. The resonant scattering can be investigated using these laser lines, as far as according to the Mg 2 Si band structure, there are direct gaps with energies in the same region. The energy dependences of the scattered intensities in the case of the scattering by the allowed F 2g and the forbidden LO-type modes are experimentally obtained and theoretically interpreted. On the base of the investigation energies of the interband transitions in the Mg 2 Si are determined. It is found also that the resonant Raman scattering appears to be a powerful tool for characterization of a material with inclusions in it. In the particular case it is concluded that the Mg 2 Si phase is present in the form of a surface layer in the sample, prepared with implantation energy 40 keV and as low-dimensional precipitates, embedded in the silicon matrix, in the sample, prepared with the higher implantation energy

  10. Suppression of fertility in adult cats

    DEFF Research Database (Denmark)

    Goericke-Pesch, Sandra Kathrin; Wehrend, A.; Georgiev, P.

    2014-01-01

    /needed? (iii) sex of the animal? New effective and available methods for hormonal contraception include melatonin implants for short-term post ponement of oestrus in adult queens and slow-release GnRH-agonist implants containing deslorelin (Suprelorin®) for short- and long-term contraception in male and female......Contents: Cats are animals with highly efficient reproduction, clearly pointing to a need for suppression of fertility. Although surgical contraception is highly effective, it is not always the method of choice. This is predominantly because it is cost-intensive, time-consuming and irreversible......, with the latter being of major importance for cat breeders. This article reviews the use of progestins, scleroting agents, immunocontraception, melatonin, GnRH antagonists and finally, GnRH agonists, in adult male and female cats in detail, according to the present state of the art. By now, various scientific...

  11. Sequential multiple-step europium ion implantation and annealing of GaN

    KAUST Repository

    Miranda, S. M C; Edwards, Paul R.; O'Donnell, Kevin Peter; Boćkowski, Michał X.; Alves, Eduardo Jorge; Roqan, Iman S.; Vantomme, André ; Lorenz, Katharina

    2014-01-01

    Sequential multiple Eu ion implantations at low fluence (1×1013 cm-2 at 300 keV) and subsequent rapid thermal annealing (RTA) steps (30 s at 1000 °C or 1100 °C) were performed on high quality nominally undoped GaN films grown by metal organic chemical vapour deposition (MOCVD) and medium quality GaN:Mg grown by hydride vapour phase epitaxy (HVPE). Compared to samples implanted in a single step, multiple implantation/annealing shows only marginal structural improvement for the MOCVD samples, but a significant improvement of crystal quality and optical activation of Eu was achieved in the HVPE films. This improvement is attributed to the lower crystalline quality of the starting material, which probably enhances the diffusion of defects and acts to facilitate the annealing of implantation damage and the effective incorporation of the Eu ions in the crystal structure. Optical activation of Eu3+ ions in the HVPE samples was further improved by high temperature and high pressure annealing (HTHP) up to 1400 °C. After HTHP annealing the main room temperature cathodo- and photoluminescence line in Mg-doped samples lies at ∼ 619 nm, characteristic of a known Mg-related Eu3+ centre, while after RTA treatment the dominant line lies at ∼ 622 nm, typical for undoped GaN:Eu. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Sequential multiple-step europium ion implantation and annealing of GaN

    KAUST Repository

    Miranda, S. M C

    2014-01-20

    Sequential multiple Eu ion implantations at low fluence (1×1013 cm-2 at 300 keV) and subsequent rapid thermal annealing (RTA) steps (30 s at 1000 °C or 1100 °C) were performed on high quality nominally undoped GaN films grown by metal organic chemical vapour deposition (MOCVD) and medium quality GaN:Mg grown by hydride vapour phase epitaxy (HVPE). Compared to samples implanted in a single step, multiple implantation/annealing shows only marginal structural improvement for the MOCVD samples, but a significant improvement of crystal quality and optical activation of Eu was achieved in the HVPE films. This improvement is attributed to the lower crystalline quality of the starting material, which probably enhances the diffusion of defects and acts to facilitate the annealing of implantation damage and the effective incorporation of the Eu ions in the crystal structure. Optical activation of Eu3+ ions in the HVPE samples was further improved by high temperature and high pressure annealing (HTHP) up to 1400 °C. After HTHP annealing the main room temperature cathodo- and photoluminescence line in Mg-doped samples lies at ∼ 619 nm, characteristic of a known Mg-related Eu3+ centre, while after RTA treatment the dominant line lies at ∼ 622 nm, typical for undoped GaN:Eu. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Chondrogenic differentiation of ATDC5-cells under the influence of Mg and Mg alloy degradation

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Sanchez, Adela H., E-mail: adela.martinez@hzg.de [Helmholtz-Zentrum Geesthacht, Institute of Material Research, Department for Structural Research on Macromolecules, Geesthacht (Germany); Feyerabend, Frank; Laipple, Daniel; Willumeit-Römer, Regine [Helmholtz-Zentrum Geesthacht, Institute of Material Research, Department for Structural Research on Macromolecules, Geesthacht (Germany); Weinberg, Annelie [Department of Orthopedics and Orthopedic Surgery, Medical University of Graz (Austria); Luthringer, Bérengère J.C. [Helmholtz-Zentrum Geesthacht, Institute of Material Research, Department for Structural Research on Macromolecules, Geesthacht (Germany)

    2017-03-01

    Biodegradable magnesium (Mg)-based materials are a potential alternative to permanent implants for application in children. Nevertheless effects of those materials on growth plate cartilage and chondrogenesis have not been previously evaluated. In vitro differentiation of ATDC5 cells was evaluated under the influence of pure Mg (PMg), Mg with 10 wt% of gadolinium (Mg-10Gd) and Mg with 2 wt% of silver (Mg-2Ag) degradation products (extracts) and direct cell culture on the materials. Gene expression showed an inhibitory effect on ATDC5 mineralization with the three extracts and a chondrogenic potential of Mg-10Gd. Cells cultured in Mg-10Gd and Mg-2Ag extracts showed the same proliferation and morphology than cells cultured in growth conditions. Mg-10Gd induced an increase in production of ECM and a bigger cell size, similar to the effects found with differentiation conditions. An increased metabolic activity was observed in cells cultured under the influence of Mg-10Gd extracts, indicated by an acidic pH during most of the culture period. After 7 days of culture on the materials, ATDC5 growth, distribution and ECM synthesis were higher on Mg-10Gd samples, followed by Mg-2Ag and PMg, which was influenced by the homogeneity and composition of the degradation layer. This study confirmed the tolerance of ATDC5 cells to Mg-based materials and a chondrogenic effect of Mg-10Gd. Further studies in vitro and in vivo are necessary to evaluate cell reactions to those materials, as well as the effects on bone growth and the biocompatibility of the alloying system in the body. - Highlights: • Degradation of PMg, and Mg-2Ag do not influence ATDC5 cells growth and chondrogenic redifferentiation. • Mg-10Gd enhances fast chondrogenic redifferentiation and expression of hyperthrophic markers on ATDC5 cells. • Further evaluation of the effects of PMg, Mg-10Gd and Mg-2Ag in vivo are necessary to confirm its potential for application in growing bones.

  14. Chondrogenic differentiation of ATDC5-cells under the influence of Mg and Mg alloy degradation

    International Nuclear Information System (INIS)

    Martinez Sanchez, Adela H.; Feyerabend, Frank; Laipple, Daniel; Willumeit-Römer, Regine; Weinberg, Annelie; Luthringer, Bérengère J.C.

    2017-01-01

    Biodegradable magnesium (Mg)-based materials are a potential alternative to permanent implants for application in children. Nevertheless effects of those materials on growth plate cartilage and chondrogenesis have not been previously evaluated. In vitro differentiation of ATDC5 cells was evaluated under the influence of pure Mg (PMg), Mg with 10 wt% of gadolinium (Mg-10Gd) and Mg with 2 wt% of silver (Mg-2Ag) degradation products (extracts) and direct cell culture on the materials. Gene expression showed an inhibitory effect on ATDC5 mineralization with the three extracts and a chondrogenic potential of Mg-10Gd. Cells cultured in Mg-10Gd and Mg-2Ag extracts showed the same proliferation and morphology than cells cultured in growth conditions. Mg-10Gd induced an increase in production of ECM and a bigger cell size, similar to the effects found with differentiation conditions. An increased metabolic activity was observed in cells cultured under the influence of Mg-10Gd extracts, indicated by an acidic pH during most of the culture period. After 7 days of culture on the materials, ATDC5 growth, distribution and ECM synthesis were higher on Mg-10Gd samples, followed by Mg-2Ag and PMg, which was influenced by the homogeneity and composition of the degradation layer. This study confirmed the tolerance of ATDC5 cells to Mg-based materials and a chondrogenic effect of Mg-10Gd. Further studies in vitro and in vivo are necessary to evaluate cell reactions to those materials, as well as the effects on bone growth and the biocompatibility of the alloying system in the body. - Highlights: • Degradation of PMg, and Mg-2Ag do not influence ATDC5 cells growth and chondrogenic redifferentiation. • Mg-10Gd enhances fast chondrogenic redifferentiation and expression of hyperthrophic markers on ATDC5 cells. • Further evaluation of the effects of PMg, Mg-10Gd and Mg-2Ag in vivo are necessary to confirm its potential for application in growing bones.

  15. RBS/NRA/channeling analysis of implanted immiscible species

    International Nuclear Information System (INIS)

    Naramoto, H.; Yamamoto, S.; Narumi, K.

    2000-01-01

    Ion implantation of immiscible elements was performed to prepare supersaturated substance for further heat treatment. 63 Cu ion implantation was made at low temperature into Nb(1 0 0), (1 1 0) and (1 1 1) single crystal films on sapphire, and the induced lattice damage and the lattice location of implanted Cu atoms were analyzed by 2.7 MeV 4 He + RBS/channeling. The coherent segregation of 63 Cu atoms with specific crystallographic orientations was found in the near surface region (Cu(1 0 0)/Nb(1 0 0), Cu(1 1 1)/Nb(1 1 0) and Cu(1 1 0)/Nb(1 1 1)). The same kind of study was also made in Ir(1 0 0)/MgO(1 0 0) implanted with 50 keV 12 C + ions. In addition to 2 MeV 4 He + RBS/channeling, 1.22 MeV d + RBS/NRA/channeling was employed to detect implanted 12 C atoms. The results suggest that 12 C atoms are aligned along Ir direction at least by low temperature implantation followed by thermal annealing

  16. In vivo assessment of a new multifunctional coating architecture for improved Mg alloy biocompatibility.

    Science.gov (United States)

    Gomes, Pedro S; Zomorodian, Amir; Kwiatkowski, Lech; Lutze, Rafal; Balkowiec, Alicja; Colaço, Bruno; Pinheiro, Vitor; Fernandes, João C S; Montemor, Maria F; Fernandes, Maria H

    2016-08-10

    Magnesium alloys are regarded as potential biodegradable load-bearing biomaterials for orthopedic applications due to their physico-chemical and biomechanical properties. However, their clinical applicability is restricted by their high degradation rate, which limits the physiological reconstruction of the neighbouring tissues. In this work, a multifunctional coating architecture was developed on an AZ31 alloy by conjoining an anodization process with the deposition of a polymeric-based layer consisting of polyether imine reinforced with hydroxyapatite nanoparticles, aiming at improved control of the corrosion activity and biological performance of the Mg substrate. Anodization and coating protocols were evaluated either independently or combined for corrosion resistance and biological behaviour, i.e. the irritation potential and angiogenic capability within a chicken chorioallantoic membrane assay, and bone tissue response following tibia implantation within a rabbit model. Electrochemical impedance spectroscopy (EIS) analysis showed that coated Mg constructs, particularly anodized plus coated with AZ31, exhibited excellent stability compared to the anodized alloy and, particularly, to the bare AZ31. Microtomographic evaluation of the implanted samples correlated with these degradation results. Mg constructs displayed a non-irritating behaviour, and were associated with high levels of vascular ingrowth. Bone ingrowth neighbouring the implanted constructs was observed for all samples, with coated and anodized plus coated samples presenting the highest bone formation. Gene expression analysis suggested that the enhanced bone tissue formation was associated with the boost in osteogenic activity through Runx2 upregulation, following the activation of PGC-1α/ERRα signaling. Overall, the developed multifunctional coatings appear to be a promising strategy to obtain safe and bioactive biodegradable Mg-based implants with potential applications within bone tissue.

  17. Biological characteristics of the MG-63 human osteosarcoma cells on composite tantalum carbide/amorphous carbon films.

    Directory of Open Access Journals (Sweden)

    Yin-Yu Chang

    Full Text Available Tantalum (Ta is a promising metal for biomedical implants or implant coating for orthopedic and dental applications because of its excellent corrosion resistance, fracture toughness, and biocompatibility. This study synthesizes biocompatible tantalum carbide (TaC and TaC/amorphous carbon (a-C coatings with different carbon contents by using a twin-gun magnetron sputtering system to improve their biological properties and explore potential surgical implant or device applications. The carbon content in the deposited coatings was regulated by controlling the magnetron power ratio of the pure graphite and Ta cathodes. The deposited TaC and TaC/a-C coatings exhibited better cell viability of human osteosarcoma cell line MG-63 than the uncoated Ti and Ta-coated samples. Inverted optical and confocal imaging was used to demonstrate the cell adhesion, distribution, and proliferation of each sample at different time points during the whole culture period. The results show that the TaC/a-C coating, which contained two metastable phases (TaC and a-C, was more biocompatible with MG-63 cells compared to the pure Ta coating. This suggests that the TaC/a-C coatings exhibit a better biocompatible performance for MG-63 cells, and they may improve implant osseointegration in clinics.

  18. Ion beam synthesis of Fe nanoparticles in MgO and yttria-stabilized zirconia

    Science.gov (United States)

    Potzger, K.; Reuther, H.; Zhou, Shengqiang; Mücklich, A.; Grötzschel, R.; Eichhorn, F.; Liedke, M. O.; Fassbender, J.; Lichte, H.; Lenk, A.

    2006-04-01

    To form embedded Fe nanoparticles, MgO(001) and YSZ(001) single crystals have been implanted at elevated temperatures with Fe ions at energies of 100 keV and 110 keV, respectively. The ion fluence was fixed at 6×1016 cm-2. As a result, γ- and α-phase Fe nanoparticles were synthesized inside MgO and YSZ, respectively. A synthesis efficiency of 100% has been achieved for implantation at 1273 K into YSZ. The ferromagnetic behavior of the α-Fe nanoparticles is reflected by a magnetic hyperfine field of 330 kOe and a hysteretic magnetization reversal. Electron holography showed a fringing magnetic field around some, but not all of the particles.

  19. Ion beam synthesis of Fe nanoparticles in MgO and yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Potzger, K.; Reuther, H.; Zhou, Shengqiang; Muecklich, A.; Groetzschel, R.; Eichhorn, F.; Liedke, M. O.; Fassbender, J.; Lichte, H.; Lenk, A.

    2006-01-01

    To form embedded Fe nanoparticles, MgO(001) and YSZ(001) single crystals have been implanted at elevated temperatures with Fe ions at energies of 100 keV and 110 keV, respectively. The ion fluence was fixed at 6x10 16 cm -2 . As a result, γ- and α-phase Fe nanoparticles were synthesized inside MgO and YSZ, respectively. A synthesis efficiency of 100% has been achieved for implantation at 1273 K into YSZ. The ferromagnetic behavior of the α-Fe nanoparticles is reflected by a magnetic hyperfine field of 330 kOe and a hysteretic magnetization reversal. Electron holography showed a fringing magnetic field around some, but not all of the particles

  20. The residue of trenbolone from male Garut sheep which implanted by trenbolone acetate

    Directory of Open Access Journals (Sweden)

    R Widiastuti

    2001-10-01

    Full Text Available Trenbolone acetate (TBA is a growth hormone promoter which is implanted into animal to increase the body weight. The implantation of TBA in animal may cause the occurrence of residues of TBA and its metabolite (17-β-trenbolone. The presence of the residue might threat to human health. The aim of this research work was to study the presence of the residue of trenbolone in male Garut sheep which is implanted by TBA. The sheep were divided into 2 groups, those were D1 which were implanted by 40 mg TBA and D2 which were implanted by 60 mg TBA. One animal each from D1 and D2 were killed in the week 1, 2, 3 and 4 after implantation. And 24 hours before slaughtering the urine of D1 and D2 were collected using the metabolism cages. The samples for residue analysis were the organs such as liver, kidney, and the muscles around the implantation sites i.e inner and outer, upper front leg and upper back leg. The samples were extracted by organic solvents and analysed by HPLC. The residue of trenbolone occured in all samples of D1 and D2 which killed on 1 and 2 weeks after implantation. The residues occured on those which were killed 3 weeks after implantation were only in inner and outer samples. The residues in meat and organs were not detected in D1 nor D2 which were killed 4 weeks after implantation. The residue of trenbolone was also detected in the urine and still were detected in D1 and D2 which implanted by TBA for 4 weeks.

  1. The use of guideline recommended beta-blocker therapy in primary prevention implantable cardioverter defibrillator patients

    DEFF Research Database (Denmark)

    Ruwald, Anne Christine; Gislason, Gunnar Hilmar; Vinther, Michael

    2017-01-01

    Aims: We aimed to examine the use of guideline recommended beta-blocker therapy prior to and after primary prevention implantable cardioverter defibrillator (ICD) implantation in a 'real-life' setting. Methods and results: From the Danish Pacemaker and ICD Registry we identified all 1st-time prim......Aims: We aimed to examine the use of guideline recommended beta-blocker therapy prior to and after primary prevention implantable cardioverter defibrillator (ICD) implantation in a 'real-life' setting. Methods and results: From the Danish Pacemaker and ICD Registry we identified all 1st......-time primary prevention ICD and cardiac resynchronization therapy defibrillator (CRT-D) implantations in Denmark from 2007-12 (n = 2935). Use of beta-blocker, type and dose was acquired through the Danish Prescription Registry. According to guideline recommendations, we defined target daily doses as ≥50 mg...... carvedilol and ≥200 mg metoprolol. Prior to implantation 2427 of 2935 (83%) patients received beta-blocker therapy, with 2166 patients (89%) having initiated treatment 3 months or more prior to implantation. The majority of patients was prescribed carvedilol (52%) or metoprolol (41%). Patients on carvedilol...

  2. Synthesis and Cell Seeding Assessment of Novel Biphasic Nano Powder in the CaO–MgO–SiO2 System for Bone Implant Application

    Directory of Open Access Journals (Sweden)

    Kazem Marzban

    2017-02-01

    Full Text Available Objective(s: CaO–MgO–SiO2 system bioceramics possess good characteristics for hard tissue engineering applications. The aim of the study was to synthesize the nano powder by using a sol-gel method and evaluate of bioactivity in the cells culture. Methods: To characterize of powder X-ray diffraction (XRD, transmission electron microscopy (TEM and to evaluate the bioactivity sample cell seeding and methylthiazol tetrazolium (MTT assay were performed. Results: X-ray diffraction (XRD analysis showed that the biphasic powder was obtained at 1300°C for 2 h by using a sol-gel method. Transmission electron microscopy (TEM image showed that powder particle size was about 45 nm. Besides, cell culture results indicated that the percentage of viability values was increased by the extension of period. Conclusions: found that the sample is cytocompatible and has cell proliferation potential in culture medium. The present study demonstrates that, the biphasic CaO–MgO–SiO2 system can be used to achieve novel bioactive materials for bone implant application.

  3. Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration

    Science.gov (United States)

    Mushahary, Dolly; Sravanthi, Ragamouni; Li, Yuncang; Kumar, Mahesh J; Harishankar, Nemani; Hodgson, Peter D; Wen, Cuie; Pande, Gopal

    2013-01-01

    Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr) alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants. PMID:23976848

  4. Eelectrochemical properties and corrosion resistance of carbon-ion-implanted magnesium

    International Nuclear Information System (INIS)

    Xu, Ruizhen; Yang, Xiongbo; Li, Penghui; Suen, Kai Wong; Wu, Guosong; Chu, Paul K.

    2014-01-01

    Highlights: • Carbon, as a biocompatible benign element, was implanted into Mg. • A protective amorphous carbon layer was formed after implantation. • Treated sample exhibits good corrosion resistance in two solutions. - Abstract: The corrosion resistance of magnesium-based biomaterials is critical to clinical applications. In this work, carbon as a biocompatible and benign nonmetallic element with high chemical inertness is implanted into pure magnesium to improve the corrosion behavior. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), and Raman scattering reveal the formation of an amorphous carbon layer after ion implantation. Electrochemical studies demonstrate remarkable improvement in the corrosion resistance of magnesium in simulated body fluids (SBF) and Dulbecco’s Modified Eagle Medium (DMEM)

  5. Improvement of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation

    International Nuclear Information System (INIS)

    Jin, Weihong; Wu, Guosong; Feng, Hongqing; Wang, Wenhao; Zhang, Xuming; Chu, Paul K.

    2015-01-01

    Highlights: • Nd self-ion implantation produces a smooth and hydrophobic surface on rare-earth WE43 Mg alloy. • The implanted layer is composed of mainly Nd 2 O 3 and MgO. • Degradation is significantly retarded in simulated body fluids and cell culture medium. • The Nd-implanted WE43 alloy exhibits remarkably enhanced cell adhesion and biocompatibility. - Abstract: Without introducing extraneous elements, a small amount of Nd is introduced into rare-earth WE43 magnesium alloy by ion implantation. The surface composition, morphology, polarization, and electrochemical properties, as well as weight loss, pH, and leached ion concentrations after immersion, are systematically evaluated to determine the corrosion behavior. The cell adhesion and viability are also determined to evaluate the biological response in vitro. A relatively smooth and hydrophobic surface layer composed of mainly Nd 2 O 3 and MgO is produced and degradation of WE43 is significantly retarded. Furthermore, significantly enhanced cell adhesion and excellent biocompatibility are observed after Nd self-ion implantation

  6. Engineered Protein Coatings to Improve the Osseointegration of Dental and Orthopaedic Implants

    Science.gov (United States)

    Raphel, Jordan; Karlsson, Johan; Galli, Silvia; Wennerberg, Ann; Lindsay, Christopher; Haugh, Matthew; Pajarinen, Jukka; Goodman, Stuart B.; Jimbo, Ryo; Andersson, Martin; Heilshorn, Sarah C.

    2016-01-01

    Here we present the design of an engineered, elastin-like protein (ELP) that is chemically modified to enable stable coatings on the surfaces of titanium-based dental and orthopaedic implants by novel photocrosslinking and solution processing steps. The ELP includes an extended RGD sequence to confer bio-signaling and an elastin-like sequence for mechanical stability. ELP thin films were fabricated on cp-Ti and Ti6Al4V surfaces using scalable spin and dip coating processes with photoactive covalent crosslinking through a carbene insertion mechanism. The coatings withstood procedures mimicking dental screw and hip replacement stem implantations, a key metric for clinical translation. They promoted rapid adhesion of MG63 osteoblast-like cells, with over 80% adhesion after 24 hours, compared to 38% adhesion on uncoated Ti6Al4V. MG63 cells produced significantly more mineralization on ELP coatings compared to uncoated Ti6Al4V. Human bone marrow mesenchymal stem cells (hMSCs) had an earlier increase in alkaline phosphatase activity, indicating more rapid osteogenic differentiation and mineral deposition on adhesive ELP coatings. Rat tibia and femur in vivo studies demonstrated that cell-adhesive ELP-coated implants increased bone-implant contact area and interfacial strength after one week. These results suggest that ELP coatings withstand surgical implantation and promote rapid osseointegration, enabling earlier implant loading and potentially preventing micromotion that leads to aseptic loosening and premature implant failure. PMID:26790146

  7. Degradation testing of Mg alloys in Dulbecco's modified eagle medium: Influence of medium sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Marco, Iñigo, E-mail: inigo.marco@mtm.kuleuven.be [Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg, 44, 3001 Leuven (Belgium); Feyerabend, Frank; Willumeit-Römer, Regine [Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Geesthacht, Max-Planck-Str., 1, 21502 Geesthacht (Germany); Van der Biest, Omer [Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg, 44, 3001 Leuven (Belgium)

    2016-05-01

    This work studies the in vitro degradation of Mg alloys for bioabsorbable implant applications under near physiological conditions. For this purpose, the degradation behaviour of Mg alloys in Dulbecco's modified eagle medium (DMEM) which is a commonly used cell culture medium is analysed. Unfortunately, DMEM can be contaminated by microorganisms, acidifying the medium and accelerating the Mg degradation process by dissolution of protective degradation layers, such as (Mg{sub x},Ca{sub y})(PO{sub 4}){sub z}. In this paper the influence of sterilization by applying UV-C radiation and antibiotics (penicillin/streptomycin) is analysed with two implant material candidates: Mg–Gd and Mg–Ag alloys; and pure magnesium as well as Mg–4Y–3RE as a reference. - Highlights: • Contamination of DMEM by microorganisms increases the degradation rate of Mg. • Mg and its alloys show passivation during long term immersion tests in DMEM. • The use of a control sample position is essential to assess H{sub 2} evolution in DMEM.

  8. Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation

    Science.gov (United States)

    Wu, Guosong; Xu, Ruizhen; Feng, Kai; Wu, Shuilin; Wu, Zhengwei; Sun, Guangyong; Zheng, Gang; Li, Guangyao; Chu, Paul K.

    2012-07-01

    Aluminum ion implantation is employed to modify pure Mg as well as AZ31 and AZ91 magnesium alloys and their surface degradation behavior in simulated body fluids is studied. Polarization tests performed in conjunction with scanning electron microscopy (SEM) reveal that the surface corrosion resistance after Al ion implantation is improved appreciably. This enhancement can be attributed to the formation of a gradient surface structure with a gradual transition from an Al-rich oxide layer to Al-rich metal layer. Compared to the high Al-content magnesium alloy (AZ91), a larger reduction in the degradation rate is achieved from pure magnesium and AZ31. Our results reveal that the surface corrosion resistance of Mg alloys with no or low Al content can be improved by Al ion implantation.

  9. Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation

    International Nuclear Information System (INIS)

    Wu Guosong; Xu Ruizhen; Feng Kai; Wu Shuilin; Wu Zhengwei; Sun Guangyong; Zheng Gang; Li Guangyao; Chu, Paul K.

    2012-01-01

    Aluminum ion implantation is employed to modify pure Mg as well as AZ31 and AZ91 magnesium alloys and their surface degradation behavior in simulated body fluids is studied. Polarization tests performed in conjunction with scanning electron microscopy (SEM) reveal that the surface corrosion resistance after Al ion implantation is improved appreciably. This enhancement can be attributed to the formation of a gradient surface structure with a gradual transition from an Al-rich oxide layer to Al-rich metal layer. Compared to the high Al-content magnesium alloy (AZ91), a larger reduction in the degradation rate is achieved from pure magnesium and AZ31. Our results reveal that the surface corrosion resistance of Mg alloys with no or low Al content can be improved by Al ion implantation.

  10. Peripheral white blood cells profile of biodegradable metal implant in mice animal model

    Science.gov (United States)

    Paramitha, Devi; Noviana, Deni; Estuningsih, Sri; Ulum, Mokhamad Fakhrul; Nasution, Ahmad Kafrawi; Hermawan, Hendra

    2015-09-01

    Biocompatibility or safety of the medical device is considered important. It can be determined by blood profile examination. The aim of this study was to assess the biocompatibility of biodegradable metal implant through peripheral white blood cells (WBCs) profile approach. Forty eight male ddy mice were divided into four groups according to the materials implanted: iron wire (Fe), magnesium rod (Mg), stainless steel surgical wire (SS316L) and control with sham (K). Implants were inserted and attached onto the right femoral bone on latero-medial region. In this study, peripheral white blood cells and leukocyte differentiation were the parameters examined. The result showed that the WBCs value of all groups were decreased at the first day after implantation, increased at the 10th day and continued increasing at the 30th day of observation, except Mg group which has decreased. Neutrophil, as an inflammatory cells, was increased at the early weeks and decreased at the day-30 after surgery in all groups. Despite, these values during the observation were still within the normal range. As a conclus ion, biodegradable metal implants lead to an inflammatory reaction, with no adverse effect on WBC value found.

  11. Peripheral white blood cells profile of biodegradable metal implant in mice animal model

    Energy Technology Data Exchange (ETDEWEB)

    Paramitha, Devi; Noviana, Deni, E-mail: deni@ipb.ac.id; Estuningsih, Sri [Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor (Indonesia); Ulum, Mokhamad Fakhrul [Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor (Indonesia); Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru (Malaysia); Nasution, Ahmad Kafrawi [Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru (Malaysia); Faculty of Engineering, Muhammadiyah University of Riau (UMRI), Pekanbaru (Indonesia); Hermawan, Hendra [Department of Mining, Metallurgical and Materials Engineering & CHU de Québec Research Center, Laval University (ULaval) (Canada)

    2015-09-30

    Biocompatibility or safety of the medical device is considered important. It can be determined by blood profile examination. The aim of this study was to assess the biocompatibility of biodegradable metal implant through peripheral white blood cells (WBCs) profile approach. Forty eight male ddy mice were divided into four groups according to the materials implanted: iron wire (Fe), magnesium rod (Mg), stainless steel surgical wire (SS316L) and control with sham (K). Implants were inserted and attached onto the right femoral bone on latero-medial region. In this study, peripheral white blood cells and leukocyte differentiation were the parameters examined. The result showed that the WBCs value of all groups were decreased at the first day after implantation, increased at the 10th day and continued increasing at the 30th day of observation, except Mg group which has decreased. Neutrophil, as an inflammatory cells, was increased at the early weeks and decreased at the day-30 after surgery in all groups. Despite, these values during the observation were still within the normal range. As a conclus ion, biodegradable metal implants lead to an inflammatory reaction, with no adverse effect on WBC value found.

  12. Biocompatibility Assessment of Novel Bioresorbable Alloys Mg-Zn-Se and Mg-Zn-Cu for Endovascular Applications: In- Vitro Studies.

    Science.gov (United States)

    Persaud-Sharma, Dharam; Budiansky, Noah; McGoron, Anthony J

    2013-01-01

    Previous studies have shown that using biodegradable magnesium alloys such as Mg-Zn and Mg-Zn-Al possess the appropriate mechanical properties and biocompatibility to serve in a multitude of biological applications ranging from endovascular to orthopedic and fixation devices. The objective of this study was to evaluate the biocompatibility of novel as-cast magnesium alloys Mg-1Zn-1Cu wt.% and Mg-1Zn-1Se wt.% as potential implantable biomedical materials, and compare their biologically effective properties to a binary Mg-Zn alloy. The cytotoxicity of these experimental alloys was evaluated using a tetrazolium based- MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and a lactate dehydrogenase membrane integrity assay (LDH). The MTS assay was performed on extract solutions obtained from a 30-day period of alloy immersion and agitation in simulated body fluid to evaluate the major degradation products eluted from the alloy materials. Human foreskin fibroblast cell growth on the experimental magnesium alloys was evaluated for a 72 hour period, and cell death was quantified by measuring lactate dehydrogenase concentrations. Both Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. The Mg-Zn-Cu alloy was found to completely degrade within 72 hours, resulting in lower human foreskin fibroblast cell viability. The Mg-Zn-Se alloy was shown to be less cytotoxic than both the Mg-Zn-Cu and Mg-Zn alloys.

  13. The in vitro biocompatibility and macrophage phagocytosis of Mg17Al12 phase in Mg-Al-Zn alloys.

    Science.gov (United States)

    Liu, Chen; He, Peng; Wan, Peng; Li, Mei; Wang, Kehong; Tan, Lili; Zhang, Yu; Yang, Ke

    2015-07-01

    Mg alloys are gaining interest for applications as biodegradable medical implant, including Mg-Al-Zn series alloys with good combination of mechanical properties and reasonable corrosion resistance. However, whether the existence of second phase particles in the alloys exerts influence on the biocompatibility is still not clear. A deeper understanding of how the particles regulate specific biological responses is becoming a crucial requirement for their subsequent biomedical application. In this work, the in vitro biocompatibility of Mg17Al12 as a common second phase in biodegradable Mg-Al-Zn alloys was investigated via hemolysis, cytotoxicity, cell proliferation, and cell adhesion tests. Moreover, osteogenic differentiation was evaluated by the extracellular matrix mineralization assay. The Mg17Al12 particles were also prepared to simulate the real situation of second phase in the in vivo environment in order to estimate the cellular response in macrophages to the Mg17Al12 particles. The experimental results indicated that no hemolysis was found and an excellent cytocompatibility was also proved for the Mg17Al12 second phase when co-cultured with L929 cells, MC3T3-E1 cells and BMSCs. Macrophage phagocytosis co-culture test revealed that Mg17Al12 particles exerted no harmful effect on RAW264.7 macrophages and could be phagocytized by the RAW264.7 cells. Furthermore, the possible inflammatory reaction and metabolic way for Mg17Al12 phase were also discussed in detail. © 2014 Wiley Periodicals, Inc.

  14. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities.

    Science.gov (United States)

    Bakhsheshi-Rad, H R; Hamzah, E; Low, H T; Kasiri-Asgarani, M; Farahany, S; Akbari, E; Cho, M H

    2017-04-01

    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg 2 (Zn, Al) 11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5MgAl-0.3MgAl-0.1MgAl. The cytotoxicity tests exhibited that the Zn-0.5Al-0.5Mg alloy presents higher viability of MC3T3-E1 cell compared to the Zn-0.5Al alloy, which suggested good biocompatibility. The antibacterial activity result of both Zn-0.5Al and Zn-0.5Al-Mg alloys against Escherichia coli presented some antibacterial activity, while the Zn-0.5Al-0.5Mg significantly prohibited the growth of Escherichia coli. Thus, Zn-0.5Al-0.5Mg alloy with appropriate mechanical properties, low corrosion rate, good biocompatibility and antibacterial activities was believed to be a good candidate as a biodegradable implant material. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Radiation control in the intensive care unit for high intensity iridium-192 brain implants

    International Nuclear Information System (INIS)

    Sewchand, W.; Drzymala, R.E.; Amin, P.P.; Salcman, M.; Salazar, O.M.

    1987-01-01

    A bedside lead cubicle was designed to minimize the radiation exposure of intensive care unit staff during routine interstitial brain irradiation by removable, high intensity iridium-192. The cubicle shields the patient without restricting intensive care routines. The design specifications were confirmed by exposure measurements around the shield with an implanted anthropomorphic phantom simulating the patient situation. The cubicle reduces the exposure rate around an implant patient by as much as 90%, with the exposure level not exceeding 0.1 mR/hour/mg of radium-equivalent 192 Ir. Evaluation of data accumulated for the past 3 years has shown that the exposure levels of individual attending nurses are 0.12 to 0.36 mR/mg of radium-equivalent 192 Ir per 12-hour shift. The corresponding range for entire nursing teams varies between 0.18 and 0.26. A radiation control index (exposure per mg of radium-equivalent 192 Ir per nurse-hour) is thus defined for individual nurses and nursing teams; this index is a significant guide to the planning of nurse rotations for brain implant patients with various 192 Ir loads. The bedside shield reduces exposure from 192 Ir implants by a factor of about 20, as expected, and the exposure from the lower energy radioisotope iodine-125 is barely detectable

  16. Suspected bacterial endophthalmitis following sustained-release dexamethasone intravitreal implant: a case report.

    Science.gov (United States)

    Arıkan Yorgun, Mücella; Mutlu, Melek; Toklu, Yasin; Cakmak, Hasan Basri; Cağıl, Nurullah

    2014-06-01

    A 58-year-old man admitted to our opthalmology department with the complaint of branch retinal vein occlusion. He was treated with intravitreal Ozurdex in the right eye. Two days after the injection, the patient presented with ocular pain and the visual acuity was hand movement. A diagnosis of endophthalmitis was made. We performed emergent pars plana vitrectomy (PPV) and the implant was removed from the vitreous cavity using a retinal forceps. A combination of vancomycin 1.0 mg and amikacin 0.4 mg was injected intravitreally. However, because of the blurring in the vitreus one week after the procedure, phacoemulsification and a repeat PPV was performed. Five days after the last procedure the signs and symptoms of endophthalmitis were resolved. Our case demonstrated that endophthalmitis could develop after intravitreal implantation of Ozurdex. Surgical removal of the implant and immediate vitrectomy seems to be a useful treatment option in these cases.

  17. Observation of the bone mineral density of newly formed bone using rabbits. Compared with newly formed bone around implants and cortical bone

    International Nuclear Information System (INIS)

    Nakada, Hiroshi; Numata, Yasuko; Sakae, Toshiro; Tamaki, Hiroyuki; Kato, Takao

    2009-01-01

    There have been many studies reporting that newly formed bone around implants is spongy bone. However, although the morphology is reported as being like spongy bone, it is difficult to discriminate whether the bone quality of newly formed bone appears similar to osteoid or cortical bone; therefore, evaluation of bone quality is required. The aims of this study were to measure the bone mineral density (BMD) values of newly formed bone around implants after 4, 8, 16, 24 and 48 weeks, to represent these values on three-dimensional color mapping (3Dmap), and to evaluate the change in bone quality associated with newly formed bone around implants. The animal experimental protocol of this study was approved by the Ethics Committee for Animal Experiments of our University. This experiment used 20 surface treatment implants (Ti-6Al-4V alloy: 3.1 mm in diameter and 30.0 mm in length) by grit-blasting. They were embedded into surgically created flaws in femurs of 20 New Zealand white rabbits (16 weeks old, male). The rabbits were sacrificed with an ear intravenous overdose of pentobarbital sodium under general anesthesia each period, and the femurs were resected. We measured BMD of newly formed bone around implants and cortical bone using Micro-CT, and the BMD distribution map of 3Dmap (TRI/3D Bon BMD, Ratoc System Engineering). The BMD of cortical bone was 1,026.3±44.3 mg/cm 3 at 4 weeks, 1,023.8±40.9 mg/cm 3 at 8 weeks, 1,048.2±45.6 mg/cm 3 at 16 weeks, 1,067.2±60.2 mg/cm 3 at 24 weeks, and 1,069.3±50.7 mg/cm 3 at 48 weeks after implantation, showing a non-significant increase each period. The BMD of newly formed bone around implants was 296.8±25.6 mg/cm 3 at 4 weeks, 525.0±72.4 mg/cm 3 at 8 weeks, 691.2±26.0 mg/cm 3 at 16 weeks, 776.9±27.7 mg/cm 3 at 24 weeks, and 845.2±23.1 mg/cm 3 at 48 weeks after implantation, showing a significant increase after each period. It was revealed that the color scale of newly formed bone was Low level at 4 weeks, and then it

  18. Bio-corrosion characterization of Mg-Zn-X (X = Ca, Mn, Si) alloys for biomedical applications.

    Science.gov (United States)

    Rosalbino, F; De Negri, S; Saccone, A; Angelini, E; Delfino, S

    2010-04-01

    The successful applications of magnesium-based alloys as biodegradable orthopedic implants are mainly inhibited due to their high degradation rates in physiological environment. This study examines the bio-corrosion behaviour of Mg-2Zn-0.2X (X = Ca, Mn, Si) alloys in Ringer's physiological solution that simulates bodily fluids, and compares it with that of AZ91 magnesium alloy. Potentiodynamic polarization and electrochemical impedance spectroscopy results showed a better corrosion behaviour of AZ91 alloy with respect to Mg-2Zn-0.2Ca and Mg-2Zn-0.2Si alloys. On the contrary, enhanced corrosion resistance was observed for Mg-2Zn-0.2Mn alloy compared to the AZ91 one: Mg-2Zn-0.2Mn alloy exhibited a four-fold increase in the polarization resistance than AZ91 alloy after 168 h exposure to the Ringer's physiological solution. The improved corrosion behaviour of the Mg-2Zn-0.2Mn alloy with respect to the AZ91 one can be ascribed to enhanced protective properties of the Mg(OH)(2) surface layer. The present study suggests the Mg-2Zn-0.2Mn alloy as a promising candidate for its applications in degradable orthopedic implants, and is worthwhile to further investigate the in vivo corrosion behaviour as well as assessed the mechanical properties of this alloy.

  19. Thermically stimulated exoelectronic emissions and thermoluminescence of MgO

    International Nuclear Information System (INIS)

    Chubaci, J.F.D.

    1987-01-01

    In this work, studies were performed on the following topics: i) thermically stimulated exoelectronic emission (TSEE) in pure MgO single crystals ion implanted, submitted to thermal treatment with fast on slow cooling and water adsorption; ii) ultraviolet light effect on TSEE; iii) thermoluminescent emission; iv) crystallization of FeCoB amorphous alloys. (A.C.A.S.) [pt

  20. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats

    International Nuclear Information System (INIS)

    Guo, Yue; Ren, Ling; Liu, Chang; Yuan, Yajiang; Lin, Xiao; Tan, Lili; Chen, Shurui; Yang, Ke; Mei, Xifan

    2013-01-01

    The study was focused on the implantation of a biodegradable AZ31 magnesium alloy into the femoral periosteal of the osteoporosis modeled rats. The experimental results showed that after 4 weeks implantation of AZ31 alloy in the osteoporosis modeled rats, the expression of BMP-2 in bone tissues of the rats was much enhanced, even higher than the control group, which should promote the bone formation and be beneficial for reducing the harmful effect of osteoporosis. Results of HE stains showed that the implantation of AZ31 alloy did not have obvious pathological changes on both the liver and kidney of the animal. - Highlights: • Mg alloy greatly increased expression of BMP-2 in osteoporosis modeled rat bone. • Mg alloy showed good biological safety. • Mg alloy is beneficial for reducing the symptom of osteoporosis

  1. Influence of copper composition on mechanical properties of biodegradable material Mg-Zn-Cu for orthopedic application

    Science.gov (United States)

    Purniawan, A.; Maulidiah, H. M.; Purwaningsih, H.

    2018-04-01

    Implant is usually used as a treatment of bone fracture. At the moment, non-biodegradable implants is still widely employed in this application. Non-biodegradable implant requires re-surgery to retrieve implants that are installed in the body. It increase the cost and it is painful for the patient itself. In order to solve the problem, Mg-based biodegradable metals is developing so that the material will be compatible with body and gradually degrade in patient's body. However, magnesium has several disadvantages such as high degradation rates and low mechanical properties when compared to the mechanical properties of natural bone. Therefore, it is necessary to add elements into the magnesium alloy. In this research, copper (Cu) was alloyed in Mg alloy based biodegradable material. In addition, Cu is not only strengthening the structure but also for supporting element for the immune system, antibacterial and antifungal. The purpose of this research is to improve mechanical properties of Mg-based biodegradable material using Cu alloying. Powder metallurgy method was used to fabricate the device. The variation used in this research is the composition of Cu (0.5, 1, and 1.5% Cu). The porosity test was performed using apparent porosity test, compressive test and hardness test to know the mechanical properties of the alloy, and the weightless test to find out the material degradation rate. Based on the results can be conclude that Mg-Zn-Cu alloy material with 1% Cu composition is the most suitable specimen to be applied as a candidate for orthopedic devices material with hardness value is 393.6 MPa. Also obtained the value of the compressive test is 153 MPa.

  2. Biodegradation Resistance and Bioactivity of Hydroxyapatite Enhanced Mg-Zn Composites via Selective Laser Melting.

    Science.gov (United States)

    Shuai, Cijun; Zhou, Yuanzhuo; Yang, Youwen; Feng, Pei; Liu, Long; He, Chongxian; Zhao, Mingchun; Yang, Sheng; Gao, Chengde; Wu, Ping

    2017-03-17

    Mg-Zn alloys have attracted great attention as implant biomaterials due to their biodegradability and biomechanical compatibility. However, their clinical application was limited due to the too rapid degradation. In the study, hydroxyapatite (HA) was incorporated into Mg-Zn alloy via selective laser melting. Results showed that the degradation rate slowed down due to the decrease of grain size and the formation of protective layer of bone-like apatite. Moreover, the grain size continually decreased with increasing HA content, which was attributed to the heterogeneous nucleation and increased number of nucleation particles in the process of solidification. At the same time, the amount of bone-like apatite increased because HA could provide favorable areas for apatite nucleation. Besides, HA also enhanced the hardness due to the fine grain strengthening and second phase strengthening. However, some pores occurred owing to the agglomerate of HA when its content was excessive, which decreased the biodegradation resistance. These results demonstrated that the Mg-Zn/HA composites were potential implant biomaterials.

  3. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    NARCIS (Netherlands)

    van Huis, M.A.; van Veen, A.; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; de Hosson, J.T.M.

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 x 10(16) Cd ions cm(-2) and 210 keV, 1 x 10(16) Se ions cm(-2) in single crystals of MgO(001) and subsequent thermal annealing at a temperature of 1300 K, The structural properties and the orientation relationship between

  4. Bilateral Intravitreal Dexamethasone Implant for Retinitis Pigmentosa-Related Macular Edema

    Directory of Open Access Journals (Sweden)

    Ali Osman Saatci

    2013-03-01

    Full Text Available Purpose: To report the efficacy of intravitreal dexamethasone implant in a patient with retinitis pigmentosa and bilateral cystoid macular edema unresponsive to topical carbonic anhydrase inhibitors. Case Report: A 36-year-old man with bilateral cystoid macular edema associated with retinitis pigmentosa that was unresponsive to topical carbonic anhydrase inhibitors underwent bilateral 0.7-mg intravitreal dexamethasone implants two weeks apart. Spectral domain optical coherence tomography revealed resolution of macular edema one week following each injection in both eyes and his visual acuity improved. However, macular edema recurred two months later in OS and three months later in OD. Second implant was considered for both eyes. No implant-related complication was experienced during the follow-up of seven months. Conclusion: Inflammatory process seems to play a role in retinitis pigmentosa. Intravitreal dexamethasone implant may offer retina specialists a therapeutic option especially in cases unresponsive to other treatment regimens in eyes with retinitis pigmentosa-related macular edema.

  5. Qualitative and quantitative analysis of bacteria from vaginitis associated with intravaginal implants in ewes following estrus synchronization

    OpenAIRE

    Carlos Otávio de Paula Vasconcelos; Felipe Zandonadi Brandão; Gabriel Martins; Bruno Penna; Joanna Maria Gonçalves de Souza-Fabjan; Walter Lilenbaum

    2016-01-01

    ABSTRACT: This study evaluated the presence of vaginitis and the bacterial load associated with different intravaginal implants in ewes. Twenty-four Dorper and crossbred ewes were allocated into three groups and received intravaginal implant containing 0.3g progesterone (CIDR(r)), 60mg MAP or sponges without progesterone (CONTROL) for six days. Then, CIDR and MAP treated-ewes received 12.5mg dinoprost and 300IU eCG. Vaginal mucus samples were collected at four times: before device insertion, ...

  6. Perioperative management of calves undergoing implantation of a left ventricular assist device.

    Science.gov (United States)

    Wilson, D V; Kantrowitz, A; Pacholewicz, J; Salat, O; Paules, B R; Zhou, Y; Dawe, E J

    2000-01-01

    To describe perioperative management of calves that underwent left lateral thoracotomy, aortic cross-clamping, partial left heart bypass and implantation of a left ventricular assist device. A total of 43 healthy castrated male calves, weighing 121 +/- 24 kg. Diazepam (mean +/- SD, 0.26 +/- 0.07 mg/kg), ketamine (5.9 +/- 2.17 mg/kg) and isoflurane were used in the anesthetic management of calves undergoing implantation of a left ventricular assist device in the descending thoracic aorta. Other adjunctive agents administered were fentanyl (11 +/- 5.4 microg/kg), lidocaine (4.9 +/- 3.19 mg/kg), bupivacaine (0.75%) and butorphanol (0.49 +/- 0.13 mg/kg). None of the calves regurgitated at induction or during intubation. A tube was used to drain the rumen and prevent bloat during the procedure. Partial left heart bypass was used to perfuse the caudal half of the body during the period of aortic cross clamp and device implantation. Initial mean systemic blood pressure was 96 +/- 25 mm Hg, and pressures measured in the auricular artery increased during aortic cross-clamping and bypass. Vasoconstrictor therapy was required to treat caudal arterial hypotension during the procedure in 9 calves. Mean systemic arterial pressures returned to baseline values by the end of the anesthetic period. Initial mean pulmonary arterial pressures (PAP) were 22 +/- 3 mm Hg. A significant but transient increase in pulmonary arterial pressure occurred after both heparin and protamine administration. The described anesthetic protocol was effective for thoracotomy and implantation of an intra-aortic left ventricular assist device in normal calves. Partial left ventricular bypass was a useful adjunct during the period of aortic cross clamp. The doses of heparin and protamine administered were effective. Responsibility to monitor oxygenation of the cranial half of the animal continues during the bypass period as hypoxemia due to pulmonary dysfunction will not be detected by the perfusionist.

  7. Corrosion mechanism applicable to biodegradable magnesium implants

    Energy Technology Data Exchange (ETDEWEB)

    Atrens, Andrej, E-mail: Andrejs.Atrens@uq.edu.au [University of Queensland, Division of Materials, Brisbane, Qld 4072 (Australia); Liu Ming; Zainal Abidin, Nor Ishida [University of Queensland, Division of Materials, Brisbane, Qld 4072 (Australia)

    2011-12-15

    Much of our understanding of the Mg corrosion mechanism is based on research using aggressive chloride based solutions like 3% NaCl, which are appropriate for understand the corrosion for applications such as auto construction. The chloride ions tend to cause break down of the partly protective surface film on the Mg alloy surface. The corrosion rate increases with exposure time until steady state is reached, which may take several weeks. An overview is provided of the aspects which determine the corrosion of Mg alloys: (i) measurement details; (ii) impurity elements Fe, Ni, Cu and Co; (iii) second phases; (iv) surface films and surface condition and (v) stress corrosion cracking (SCC). This understanding is used to help understand Mg corrosion for Mg as a biodegradable implant for medical applications. Solutions that elucidate these applications tend to form surface films and the corrosion rate tends to decrease with immersion time.

  8. Perception of the population of Morro do Pilar (MG on the implantation of a mining enterprise in the municipal

    Directory of Open Access Journals (Sweden)

    Tamyres de Paula Rodrigues

    2018-01-01

    Full Text Available Mining plays an important role in the economy of a country, and is fundamental for obtaining the necessary raw materials for people's daily lives. However, this activity has negative impacts on the environment, such as the landscape degradation, deforestation, water contamination and air pollution. In this way, this research had the objective of analyzing the population perception of Morro do Pilar (MG, about the socio-environmental and economic impacts that can be triggered by the implantation of a mining enterprise in the city from a questionnaire applied to 340 residents. Thus, concerning to the positive impacts, the participants of this research highlighted the growth of the municipality and the generation of employment for the population. Considering the negative socio-environmental and economic impacts were mentioned pollution, environmental destruction, increase of people who are not from the region and violence in the city. In this sense, the importance of public participation in public hearings is emphasized, since it is through this action that information is obtained regarding the mining activity development and the measures that will be adopted to minimize and/or eliminate the negative effects of this upon the environment and society.

  9. Fluocinolone acetonide ophthalmic--Bausch & Lomb: fluocinolone acetonide Envision TD implant.

    Science.gov (United States)

    2005-01-01

    Bausch & Lomb and Control Delivery Systems have developed an intravitreal implant that can deliver the corticosteroid fluocinolone acetonide [fluocinolone acetonide implant, Retisert] to posterior eye tissue for up to 3 years. The implant uses Bausch & Lomb's Envision TD technology. This fluocinolone acetonide implant has been designed for the treatment of non-infectious uveitis affecting the posterior segment of the eye and other eye disorders, which benefit from local anti-inflammatory therapy. In July 2003, Bausch & Lomb assumed all responsibility for day-to-day clinical development and regulatory activities relating to fluocinolone acetonide implant development from Control Delivery Systems. In May 2002, Control Delivery systems and Bausch & Lomb formally amended their budget for their license and development agreement. Bausch & Lomb will increase its funding to support the development of agents for the treatment of diabetic macular oedema, posterior uveitis and wet age-related macular degeneration to USD $206 million through to 2008. In January 2004, Bausch & Lomb decided to focus development of the fluocinolone acetonide implant in only one indication, non-infectious uveitis affecting the posterior segment of the eye. It had been in development for other indications, including macular oedema and age-related macular degeneration. However, these will be targeted with later-generation implant technologies, different drugs, or combinations of both. The implant delivering fluocinolone acetonide 0.59 mg or 2.1mg has completed enrollment in two pivotal 3-year phase IIb/III trials in the US, Canada, Australia and Asia for the treatment of posterior uveitis. Enrollment in these multicenter randomised, double-masked studies was closed in May 2003. Bausch & Lomb was expected to file an NDA with the US FDA for the use of the agent in the treatment of uveitis in mid-2003. However, in February 2003, the company reported that, after a review of various filing strategies

  10. Quantification of in vitro wear of a synthetic meniscus implant using gravimetric and micro-CT measurements.

    Science.gov (United States)

    Elsner, Jonathan J; Shemesh, Maoz; Shefy-Peleg, Adaya; Gabet, Yankel; Zylberberg, Eyal; Linder-Ganz, Eran

    2015-09-01

    A synthetic meniscus implant was recently developed for the treatment of patients with mild to moderate osteoarthritis with knee pain associated with medial joint overload. The implant is distinctively different from most orthopedic implants in its pliable construction, and non-anchored design, which enables implantation through a mini-arthrotomy without disruption to the bone, cartilage, and ligaments. Due to these features, it is important to show that the material and design can withstand knee joint conditions. This study evaluated the long-term performance of this device by simulating loading for a total of 5 million gait cycles (Mc), corresponding to approximately five years of service in-vivo. All five implants remained in good condition and did not dislodge from the joint space during the simulation. Mild abrasion was detected by electron microscopy, but µ-CT scans of the implants confirmed that the damage was confined to the superficial surfaces. The average gravimetric wear rate was 14.5 mg/Mc, whereas volumetric changes in reconstructed µ-CT scans point to an average wear rate of 15.76 mm(3)/Mc (18.8 mg/Mc). Particles isolated from the lubricant had average diameter of 15 µm. The wear performance of this polycarbonate-urethane meniscus implant concept under ISO-14243 loading conditions is encouraging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Short Implants: New Horizon in Implant Dentistry.

    Science.gov (United States)

    Jain, Neha; Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-09-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration.

  12. Ion implantation and annealing studies in III-V nitrides

    International Nuclear Information System (INIS)

    Zolper, J.C.; Pearton, S.J.

    1996-01-01

    Ion implantation doping and isolation is expected to play an enabling role for the realization of advanced III-Nitride based devices. In fact, implantation has already been used to demonstrate n- and p-type doping of GaN with Si and Mg or Ca, respectively, as well as to fabricate the first GaN junction field effect transistor. Although these initial implantation studies demonstrated the feasibility of this technique for the III-Nitride materials, further work is needed to realize its full potential. After reviewing some of the initial studies in this field, the authors present new results for improved annealing sequences and defect studies in GaN. First, sputtered AlN is shown by electrical characterization of Schottky and Ohmic contacts to be an effect encapsulant of GaN during the 1,100 C implant activation anneal. The AlN suppresses N-loss from the GaN surface and the formation of a degenerate n + -surface region that would prohibit Schottky barrier formation after the implant activation anneal. Second, they examine the nature of the defect generation and annealing sequence following implantation using both Rutherford Backscattering (RBS) and Hall characterization. They show that for a Si-dose of 1 x 10 16 cm -2 50% electrical donor activation is achieved despite a significant amount of residual implantation-induced damage in the material

  13. Influence of Palatal Coverage and Implant Distribution on Implant Strain in Maxillary Implant Overdentures.

    Science.gov (United States)

    Takahashi, Toshihito; Gonda, Tomoya; Mizuno, Yoko; Fujinami, Yozo; Maeda, Yoshinobu

    2016-01-01

    Maxillary implant overdentures are often used in clinical practice. However, there is no agreement or established guidelines regarding prosthetic design or optimal implant placement configuration. The purpose of this study was to examine the influence of palatal coverage and implant number and distribution in relation to impact strain under maxillary implant overdentures. A maxillary edentulous model with implants and experimental overdentures with and without palatal coverage was fabricated. Four strain gauges were attached to each implant, and they were positioned in the anterior, premolar, and molar areas. A vertical occlusal load of 98 N was applied through a mandibular complete denture, and the implant strains were compared using one-way analysis of variance (P = .05). The palatolabial strain was much higher on anterior implants than on other implants in both denture types. Although there was no significant difference between the strain under dentures with and without palatal coverage, palateless dentures tended to result in higher implant strain than dentures with palatal coverage. Dentures supported by only two implants registered higher strain than those supported by four or six implants. Implants under palateless dentures registered higher strain than those under dentures with palatal coverage. Anterior implants exhibited higher palatolabial strain than other implants regardless of palatal coverage and implant configuration; it is therefore recommended that maxillary implant overdentures should be supported by six implants with support extending to the distal end of the arch.

  14. Influence of irradiation spectrum and implanted ions on the amorphization of ceramics

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Snead, L.L.

    1995-01-01

    Polycrystalline Al2O3, magnesium aluminate spinel (MgAl2O4), MgO, Si3N4, and SiC were irradiated with various ions at 200-450 K, and microstructures were examined following irradiation using cross-section TEM. Amorphization was not observed in any of the irradiated oxide ceramics, despsite damage energy densities up to ∼7 keV/atom (70 displacements per atom). On the other hand, SiC readily amorphized after damage levels of ∼0.4 dpa at room temperature (RT). Si3N4 exhibited intermediate behavior; irradiation with Fe 2+ ions at RT produced amorphization in the implanted ion region after damage levels of ∼1 dpa. However, irradiated regions outside the implanted ion region did not amorphize even after damage levels > 5 dpa. The amorphous layer in the Fe-implanted region of Si3N4 did not appear if the specimen was simultaneoulsy irradiated with 1-MeV He + ions at RT. By comparison with published results, it is concluded that the implantation of certain chemical species has a pronounced effect on the amorphization threshold dose of all five materials. Intense ionizing radiation inhibits amorphization in Si3N4, but does not appear to significantly influence the amorphization of SiC

  15. Photoluminescence of magnesium-associated color centers in LiF crystals implanted with magnesium ions

    Science.gov (United States)

    Nebogin, S. A.; Ivanov, N. A.; Bryukvina, L. I.; V. Shipitsin, N.; E. Rzhechitskii, A.; Papernyi, V. L.

    2018-05-01

    In the present paper, the effect of magnesium nanoparticles implanted in a LiF crystal on the optical properties of color centers is studied. The transmittance spectra and AFM images demonstrate effective formation of the color centers and magnesium nanoparticles in an implanted layer of ∼ 60-100 nm in thickness. Under thermal annealing, a periodical structure is formed on the surface of the crystal and in the implanted layer due to self-organization of the magnesium nanoparticles. Upon excitation by argon laser with a wavelength of 488 nm at 5 K, in a LiF crystal, implanted with magnesium ions as well as in heavily γ-irradiated LiF: Mg crystals, luminescence of the color centers at λmax = 640 nm with a zero-phonon line at 601.5 nm is observed. The interaction of magnesium nanoparticles and luminescing color centers in a layer implanted with magnesium ions has been revealed. It is shown that the luminescence intensity of the implanted layer at a wavelength of 640 nm is by more than two thousand times higher than that of a heavily γ-irradiated LiF: Mg crystal. The broadening of the zero-phonon line at 601.5 nm in the spectrum of the implanted layer indicates the interaction of the emitting quantum system with local field of the surface plasmons of magnesium nanoparticles. The focus of this work is to further optimize the processing parameters in a way to result in luminescence great enhancement of color centers by magnesium nanoparticles in LiF.

  16. Vacancy Clusters on Surfaces of Au Nanoparticles Embedded in MgO

    International Nuclear Information System (INIS)

    Xu, Jun; Mills, A. P. Jr.; Ueda, A.; Henderson, D. O.; Suzuki, R.; Ishibashi, S.

    1999-01-01

    MeV implantation of gold ions into MgO(100) followed by annealing is a method to form gold nanoparticles for obtaining modified optical properties. We show from variable-energy positron spectroscopy that clusters of 2 Mg and 2 O vacancies (v 4 ) are attached to the gold nanoparticle surfaces within the projected range (R p ) . We also find that v 4 vacancy clusters are created at depths less than R p , and extend into the region greater than R p due to damage induced by knock-on collisions. (c) 1999 The American Physical Society

  17. The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study.

    Science.gov (United States)

    Zhang, Jian; Li, Haiyan; Wang, Wu; Huang, Hua; Pei, Jia; Qu, Haiyun; Yuan, Guangyin; Li, Yongdong

    2018-03-15

    Mg-based stent is a promising candidate of the next generation fully degradable vascular stents. The latest progress includes the CE approval of the Magmaris ® WE43 based drug eluting stent. However, so far, the long term (more than 1 year implantation) in vivo degradation and the physiological effects caused by the degradation products were still unclear. In this study, a 20 month observation was carried out after the bare Mg-Nd-Zn-Zr (abbr. JDBM) stent prototype was implanted into the common carotid artery of New Zealand white rabbit in order to evaluate its safety, efficacy and especially degradation behavior. The degradation of the main second phase Mg 12 Nd was also studied. Results showed that the bare JDBM stent had good safety and efficacy with a complete re-endothelialization within 28 days. The JDBM stent struts were mostly replaced in situ by degradation products in 4 month. The important finding was that the volume and Ca concentration of the degradation products decreased in the long term, eliminating the clinicians' concern of possible vessel calcification. In addition, the alloying elements Mg and Zn in the stent could be safely metabolized as continuous enrichment in any of the main organs were not detected although Nd and Zr showed an abrupt increase in spleen and liver after 1 month implantation. Collectively, the long term in vivo results showed the rapid re-endothelialization of JDBM stent and the long term safety of the degradation products, indicating its great potential as the backbone of the fully degradable vascular stent. Mg-based stent is a promising candidate of the next generation fully degradable stents, especially after the recent market launch of one of its kind (Magmaris). However the fundamental question about the long term degradation and metabolic mechanism of Mg-based stent and its degradation products remain unanswered. We implanted our patented Mg-Nd-Zn-Zr bare stent into the common carotid artery of rabbits and

  18. Biodegradation Resistance and Bioactivity of Hydroxyapatite Enhanced Mg-Zn Composites via Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Cijun Shuai

    2017-03-01

    Full Text Available Mg-Zn alloys have attracted great attention as implant biomaterials due to their biodegradability and biomechanical compatibility. However, their clinical application was limited due to the too rapid degradation. In the study, hydroxyapatite (HA was incorporated into Mg-Zn alloy via selective laser melting. Results showed that the degradation rate slowed down due to the decrease of grain size and the formation of protective layer of bone-like apatite. Moreover, the grain size continually decreased with increasing HA content, which was attributed to the heterogeneous nucleation and increased number of nucleation particles in the process of solidification. At the same time, the amount of bone-like apatite increased because HA could provide favorable areas for apatite nucleation. Besides, HA also enhanced the hardness due to the fine grain strengthening and second phase strengthening. However, some pores occurred owing to the agglomerate of HA when its content was excessive, which decreased the biodegradation resistance. These results demonstrated that the Mg-Zn/HA composites were potential implant biomaterials.

  19. GaN への Mg イオン注入によるp 型層形成の検討

    OpenAIRE

    西城, 祐亮

    2016-01-01

    A selective area doping technology is required for making high performance GaN devices. Usually,ion implantation is used as a method of the selective area doping, but formation of the p-type conductive layer by ion implantation has been difficult for GaN. Mg-ion implanted layers in n--GaN on a high quality free-standing GaN substrate show p-type conduction after high temperature annealing at 1230°C,but Implanted layer consisted of uniform p-type crystalline area and localized crystal defect...

  20. Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration

    Directory of Open Access Journals (Sweden)

    Mushahary D

    2013-08-01

    Full Text Available Dolly Mushahary,1,2 Ragamouni Sravanthi,2 Yuncang Li,2 Mahesh J Kumar,1 Nemani Harishankar,4 Peter D Hodgson,1 Cuie Wen,3 Gopal Pande2 1Institute for Frontier Materials, Deakin University, Geelong, Australia; 2CSIR- Centre for Cellular and Molecular Biology, Hyderabad, India; 3Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Australia; 4National Institute of Nutrition (ICMR, Tarnaka, Hyderabad, India Abstract: Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants. Keywords: osteoblasts, bone mineralization, corrosion, osseointegration, surface energy, peri-implant

  1. Plasma deposited composite coatings to control biological response of osteoblast-like MG-63 cells

    Science.gov (United States)

    Keremidarska, M.; Radeva, E.; Eleršič, K.; Iglič, A.; Pramatarova, L.; Krasteva, N.

    2014-12-01

    The successful osseointegration of a bone implant is greatly dependent on its ability to support cellular adhesion and functions. Deposition of thin composite coatings onto the implant surface is a promising approach to improve interactions with cells without compromising implant bulk properties. In this work, we have developed composite coatings, based on hexamethyldisiloxane (HMDS) and detonation nanodiamond (DND) particles and have studied adhesion, growth and function of osteoblast-like MG-63 cells. PPHMDS/DND composites are of interest for orthopedics because they combine superior mechanical properties and good biocompatibility of DND with high adherence of HMDS to different substrata including glass, metals and plastics. We have used two approaches of the implementation of DND particles into a polymer matrix: pre-mixture of both components followed by plasma polymerization and layer-by-layer deposition of HMDS and DND particles and found that the deposition approach affects significantly the surface properties of the resulting layers and cell behaviour. The composite, prepared by subsequent deposition of monomer and DND particles was hydrophilic, with a rougher surface and MG-63 cells demonstrated better spreading, growth and function compared to the other composite which was hydrophobic with a smooth surface similarly to unmodified polymer. Thus, by varying the deposition approach, different PPHMDS/DND composite coatings, enhancing or inhibiting osteoblast adhesion and functions, can be obtained. In addition, the effect of fibronectin pre-adsorption was studied and was found to increase greatly MG-63 cell spreading.

  2. The effect of magnesium ion implantation into alumina upon the adhesion of human bone derived cells

    International Nuclear Information System (INIS)

    Howlett, C.R.; Zreiqat, H.; O'Dell, R.; Noorman, J.; Evans, P.; Dalton, B.A.; McFarland, C.; Steele, J.G.

    1994-01-01

    Our group is investigating the potential of modifying the surface atomic layers of biomaterials by ion beam implantation in order to stimulate adhesion of bone cells to these treated biomaterials. In this study alumina that had been implanted with magnesium ions (Mg)-(Al 2 O 3 ), was compared to unmodified alumina (Al 2 O 3 ) for the adhesion of cells cultured from explanted human bone. The attachment and spreading of cultured human bone derived cells onto (Mg)-(Al 2 O 3 ) was significantly enhanced as compared to Al 2 O 3 . The role of adsorption of serum adhesive glycoproteins firbronectin (Fn) and vitronectin (Vn) in the adhesion of human bone derived cells to (Mg)-(Al 2 O 3 ) was determined. (Author)

  3. Towards {sup 31}Mg-β-NMR resonance linewidths adequate for applications in magnesium chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Stachura, M., E-mail: mstachura@triumf.ca [TRIUMF (Canada); McFadden, R. M. L. [University of British Columbia, Chemistry Department (Canada); Chatzichristos, A.; Dehn, M. H. [University of British Columbia, Department of Physics and Astronomy (Canada); Gottberg, A. [TRIUMF (Canada); Hemmingsen, L. [Københavns Universitet Universitetsparken 5, Kemisk Institut (Denmark); Jancso, A. [University of Szeged, Department of Inorganic and Analytical Chemistry (Hungary); Karner, V. L. [University of British Columbia, Chemistry Department (Canada); Kiefl, R. F. [University of British Columbia, Department of Physics and Astronomy (Canada); Larsen, F. H. [Københavns Universitet Rolighedsvej 26, Institut for Fødevarevidenskab (Denmark); Lassen, J.; Levy, C. D. P.; Li, R. [TRIUMF (Canada); MacFarlane, W. A. [University of British Columbia, Chemistry Department (Canada); Morris, G. D. [TRIUMF (Canada); Pallada, S. [CERN (Switzerland); Pearson, M. R. [TRIUMF (Canada); Szunyogh, D.; Thulstrup, P. W. [Københavns Universitet Universitetsparken 5, Kemisk Institut (Denmark); Voss, A. [University of Jyväskylä, Department of Physics (Finland)

    2017-11-15

    The span of most chemical shifts recorded in conventional {sup 25}Mg-NMR spectroscopy is ~ 100 ppm. Accordingly, linewidths of ~ 10 ppm or better are desirable to achieve adequate resolution for applications in chemistry. Here we present first high-field {sup 31}Mg- β-NMR measurements of {sup 31}Mg{sup +} ions implanted into a MgO single crystal carried out at the ISAC facility at TRIUMF. The resonances recorded at 2.5 T and 3.5 T show strong linewidth dependency on the applied RF power, ranging from ~ 419 ppm for the highest RF power down to ~ 48 ppm for the lowest one.

  4. Improved corrosion resistance on biodegradable magnesium by zinc and aluminum ion implantation

    Science.gov (United States)

    Xu, Ruizhen; Yang, Xiongbo; Suen, Kai Wong; Wu, Guosong; Li, Penghui; Chu, Paul K.

    2012-12-01

    Magnesium and its alloys have promising applications as biodegradable materials, and plasma ion implantation can enhance the corrosion resistance by modifying the surface composition. In this study, suitable amounts of zinc and aluminum are plasma-implanted into pure magnesium. The surface composition, phases, and chemical states are determined, and electrochemical tests and electrochemical impedance spectroscopy (EIS) are conducted to investigate the surface corrosion behavior and elucidate the mechanism. The corrosion resistance enhancement after ion implantation is believed to stem from the more compact oxide film composed of magnesium oxide and aluminum oxide as well as the appearance of the β-Mg17Al12 phase.

  5. Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi2O7) coating on biodegradable magnesium alloy for biomedical applications.

    Science.gov (United States)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Hashemi Beni, Batoul; Vashaee, Daryoosh; Tayebi, Lobat

    2014-05-01

    Magnesium (Mg) alloys, owing to their biodegradability and good mechanical properties, have potential applications as biodegradable orthopedic implants. However, several poor properties including low corrosion resistance, mechanical stability and cytocompatibility have prevented their clinical application, as these properties may result in the sudden failure of the implants during the bone healing. In this research, nanostructured akermanite (Ca2MgSi2O7) powder was coated on the AZ91 Mg alloy through electrophoretic deposition (EPD) assisted micro arc oxidation (MAO) method to modify the properties of the alloy. The surface microstructure of coating, corrosion resistance, mechanical stability and cytocompatibility of the samples were characterized with different techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical corrosion test, immersion test, compression test and cell culture test. The results showed that the nanostructured akermanite coating can improve the corrosion resistance, mechanical stability and cytocompatibility of the biodegradable Mg alloy making it a promising material to be used as biodegradable bone implants for orthopedic applications. Published by Elsevier B.V.

  6. Pharmacokinetics of nebulized and subcutaneously implanted terbinafine in cottonmouths (Agkistrodon piscivorus).

    Science.gov (United States)

    Kane, L P; Allender, M C; Archer, G; Leister, K; Rzadkowska, M; Boers, K; Souza, M; Cox, S

    2017-10-01

    Ophidiomyces ophiodiicola, the causative agent of snake fungal disease, is proposed as a serious threat to the conservation of several snake populations. The objective of this study was to determine the pharmacokinetic parameters of terbinafine administered through nebulization and a sustained subcutaneous implant as potential treatments of Ophidiomyces in reptiles. Seven adult cottonmouths (Agkistrodon piscivorus) were used in single-dose trials. Each snake was nebulized with terbinafine (2 mg/ml) for 30 min and had blood collected before nebulization and up to 12 hr after nebulization. Following a 5-month washout, the same snakes were administered a subcutaneous implant containing 24.5 mg terbinafine; blood was collected at baseline, 1 day postimplant placement, and then once weekly for 9 weeks. Plasma for both studies was analyzed by high-performance liquid chromatography. The mean plasma concentrations of nebulized terbinafine peaked between 0.5 and 4 hr. The subcutaneously implanted terbinafine reached therapeutic concentrations on day 1 and maintained therapeutic for over 6 weeks. These methods and doses are recommended as potential treatment options for snake fungal disease in reptiles. © 2017 John Wiley & Sons Ltd.

  7. Curcumin Implants, not Curcumin Diet Inhibits Estrogen-Induced Mammary Carcinogenesis in ACI Rats

    Science.gov (United States)

    Bansal, Shyam S.; kausar, Hina; Vadhanam, Manicka V.; Ravoori, Srivani; Pan, Jianmin; Rai, Shesh N.; Gupta, Ramesh C.

    2014-01-01

    Curcumin is widely known for its anti-oxidant, anti-inflammatory and anti-proliferative activities in cell culture studies. However, poor oral bioavailability limited its efficacy in animal and clinical studies. Recently, we developed polymeric curcumin implants that circumvents oral bioavailability issues, and tested their potential against 17β-estradiol (E2)-mediated mammary tumorigenesis. Female ACI rats were administered curcumin either via diet (1,000 ppm) or via polymeric curcumin implants (two 2-cm; 200 mg each; 20% drug load) 4 days prior to grafting a subcutaneous E2 silastic implant (1.2 cm, 9 mg E2). Implants were changed after 4½ months to provide higher curcumin dose at the appearance of palpable tumors. The animals were euthanized after 3 weeks, 3 months and after the tumor incidence reached >80% (~6 months) in control animals. The curcumin administered via implants resulted in significant reduction in both the tumor multiplicity (2±1 vs 5±3; p=0.001) and tumor volume (184±198 mm3 vs 280±141 mm3; p=0.0283); the dietary curcumin, however, was ineffective. Dietary curcumin increased hepatic CYP1A and CYP1B1 activities without any effect on CYP3A4 activity whereas curcumin implants increased both CYP1A and CYP3A4 activities but decreased CYP1B1 activity in presence of E2. Since CYP1A and 3A4 metabolize most of the E2 to its non-carcinogenic 2-OH metabolite and CYP1B1 produces potentially carcinogenic 4-OH metabolite, favorable modulation of these CYPs via systemically delivered curcumin could be one of the potential mechanisms. The analysis of plasma and liver by HPLC showed substantially higher curcumin levels via implants versus the dietary route despite substantially higher dose administered. PMID:24501322

  8. Efeito do anti-TNF-α em implantes endometriais no peritônio de ratas

    Directory of Open Access Journals (Sweden)

    William Kondo

    Full Text Available OBJETIVO: Avaliar o efeito da terapia anti-TNF-α no tratamento de implantes endometriais no peritônio de ratas. MÉTODOS: Os implantes endometrióticos foram induzidos cirurgicamente em 120 ratas Wistar-Albino. Os animais foram aleatoriamente distribuídos em 4 grupos. O grupo C (n=36 recebeu uma injeção intraperitoneal de 0,2ml de solução salina. O grupo L (n=41 recebeu uma injeção subcutânea de 1mg/kg de leuprolide. O grupo I5 (n=20 recebeu uma injeção subcutânea de 5mg/kg de anticorpo monoclonal anti-fator de necrose tumoral (TNF a (infliximab. O grupo I10 (n=20 recebeu uma injeção subcutânea de 10mg/kg de infliximab. As ratas foram sacrificadas após 21 dias para se avaliar o tamanho dos implantes e a expressão do TNF-α. RESULTADOS: O tratamento com leuprolide promoveu uma redução absoluta na área de superfície do implante comparado com o grupo C (+14mm vs. 0mm; p=0,013 e com o grupo I10 (+14mm vs. +5mm; p=0,018. Da mesma forma, uma redução percentual da area de superfície do implante foi observada comparando o grupo L com o grupo C (+33,3% vs. 0%; p=0,005 e com o grupo I10 (+33,3% vs. +18,3%; p=0,027. O tratamento com infliximab não foi capaz de diminuir a área de superfície do implante comparado com o grupo C. A expressão de TNF-α reduziu nos grupos L, I5 e I10 comparado com o grupo C (505,6µm² vs. 660,5µm² vs. 317,2µm² vs. 2519,3µm², respectivamente; p<0,001. CONCLUSÃO: A terapia anti-TNF-α reduziu a expressão de TNF-α nos implantes endometrióticos mas não reduziu a área de superfície da lesão.

  9. Ion beam modification of thermal stress resistance of MgO single crystals with different crystallographic faces

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Otsuka, P.H.; Williams, J.S.; Conway, M.J.

    2000-01-01

    Ion beam modification of thermal shock stress resistance of MgO single crystals with various crystallographic faces is investigated. The most stable crystal faces in terms of stress and damage resistance are established. Ion implantation is shown to reduce the temperature threshold of fracture for all crystal faces tested. The (111) face is demonstrated to be of highest stability compared to (110) and (100) faces in both implanted and unimplanted crystals. At the same time ion implantation substantially increases the microcrack density for all the faces tested and reduces the degree of fracture damage following thermal shock. The theoretical resistance parameters for various crystal faces are calculated using the continuum mechanics approach. The results are discussed on the basis of fracture mechanics principles and the effect of the implantation-induced lattice damage on crack nucleation

  10. [Influence of coping material selection and porcelain firing on marginal and internal fit of computer-aided design/computer- aided manufacturing of zirconia and titanium ceramic implant-supported crowns].

    Science.gov (United States)

    Cuiling, Liu; Liyuan, Yang; Xu, Gao; Hong, Shang

    2016-06-01

    This study aimed to investigate the influence of coping material and porcelain firing on the marginal and internal fit of computer-aided design/computer-aided manufacturing (CAD/CAM) of zirconia ceramic implant- and titanium ceramic implant-supported crowns. Zirconia ceramic implant (group A, n = 8) and titanium metal ceramic implant-supported crowns (group B, n = 8) were produced from copings using the CAD/CAM system. The marginal and internal gaps of the copings and crowns were measured by using a light-body silicone replica technique combined with micro-computed tomography scanning to obtain a three-dimensional image. Marginal gap (MG), horizontal marginal discrepancy (HMD), and axial wall (AW) were measured. Statistical analyses were performed using SPSS 17.0. Prior to porcelain firing, the measurements for MG, HMD, and AW of copings in group A were significantly larger than those in group B (P 0.05). Porcelain firing significantly reduced MG (P 0.05). The marginal fits of CAD/CAM zirconia ceramic implant-supported crowns were superior to those of CAD/CAM titanium ceramic-supported crowns. The fits of both the CAD/CAM zirconia ceramic implant- and titanium ceramic implant-supported crowns were obviously influenced by porcelain firing.

  11. Lithium chloride enhances bone regeneration and implant osseointegration in osteoporotic conditions.

    Science.gov (United States)

    Jin, Yifan; Xu, Lihua; Hu, Xiaohui; Liao, Shixian; Pathak, Janak L; Liu, Jinsong

    2016-10-06

    Osteoporotic patients have a high risk of dental and orthopedic implant failure. Lithium chloride (LiCl) has been reported to enhance bone formation. However, the role of LiCl in the success rate of dental and orthopedic implants in osteoporotic conditions is still unknown. We investigated whether LiCl enhances implant osseointegration, implant fixation, and bone formation in osteoporotic conditions. Sprague-Dawley female rats (n = 18) were ovariectomized (OVX) to induce osteoporosis, and another nine rats underwent sham surgery. Three months after surgery, titanium implants were implanted in the tibia of the OVX and sham group rats. After implantation, the OVX rats were gavaged with 150 mg/kg/2 days of LiCl (OVX + LiCl group) or saline (OVX group), and sham group rats were gavaged with saline for 3 months. Implant osseointegration and bone formation were analyzed using histology, biomechanical testing, and micro computed tomography (micro-CT). More bone loss was observed in the OVX group compared to the control, and LiCl treatment enhanced bone formation and implant fixation in osteoporotic rats. In the OVX group, bone-implant contact (BIC) was decreased by 81.2 % compared to the sham group. Interestingly, the OVX + LiCl group showed 4.4-fold higher BIC compared to the OVX group. Micro-CT data of tibia from the OVX + LiCl group showed higher bone volume, trabecular thickness, trabecular number, and osseointegration compared to the OVX group. Maximum push-out force and implant-bone interface shear strength were 2.9-fold stronger in the OVX + LiCl group compared to the OVX group. In conclusion, LiCl enhanced implant osseointegration, implant fixation, and bone formation in osteoporotic conditions, suggesting LiCl as a promising therapeutic agent to prevent implant failure and bone loss in osteoporotic conditions.

  12. Ion implantation

    International Nuclear Information System (INIS)

    Dearnaley, Geoffrey

    1975-01-01

    First, ion implantation in semiconductors is discussed: ion penetration, annealing of damage, gettering, ion implanted semiconductor devices, equipement requirements for ion implantation. The importance of channeling for ion implantation is studied. Then, some applications of ion implantation in metals are presented: study of the corrosion of metals and alloys; influence or ion implantation on the surface-friction and wear properties of metals; hyperfine interactions in implanted metals

  13. The Suitability of Zn–1.3%Fe Alloy as a Biodegradable Implant Material

    Directory of Open Access Journals (Sweden)

    Alon Kafri

    2018-02-01

    Full Text Available Efforts to develop metallic zinc for biodegradable implants have significantly advanced following an earlier focus on magnesium (Mg and iron (Fe. Mg and Fe base alloys experience an accelerated corrosion rate and harmful corrosion products, respectively. The corrosion rate of pure Zn, however, may need to be modified from its reported ~20 µm/year penetration rate, depending upon the intended application. The present study aimed at evaluating the possibility of using Fe as a relatively cathodic biocompatible alloying element in zinc that can tune the implant degradation rate via microgalvanic effects. The selected Zn–1.3wt %Fe alloy composition produced by gravity casting was examined in vitro and in vivo. The in vitro examination included immersion tests, potentiodynamic polarization and impedance spectroscopy, all in a simulated physiological environment (phosphate-buffered saline, PBS at 37 °C. For the in vivo study, two cylindrical disks (seven millimeters diameter and two millimeters height were implanted into the back midline of male Wister rats. The rats were examined post implantation in terms of weight gain and hematological characteristics, including red blood cell (RBC, hemoglobin (HGB and white blood cell (WBC levels. Following retrieval, specimens were examined for corrosion rate measurements and histological analysis of subcutaneous tissue in the implant vicinity. In vivo analysis demonstrated that the Zn–1.3%Fe implant avoided harmful systemic effects. The in vivo and in vitro results indicate that the Zn–1.3%Fe alloy corrosion rate is significantly increased compared to pure zinc. The relatively increased degradation of Zn–1.3%Fe was mainly related to microgalvanic effects produced by a secondary Zn11Fe phase.

  14. Wound dehiscence and device migration after subconjunctival bevacizumab injection with Ahmed glaucoma valve implantation

    OpenAIRE

    Arezoo Miraftabi; Naveed Nilforushan

    2016-01-01

    Purpose: To report a complication pertaining to subconjunctival bevacizumab injection as an adjunct to Ahmed Glaucoma Valve (AGV) implantation. Case Report: A 54-year-old woman with history of complicated cataract surgery was referred for advanced intractable glaucoma. AGV implantation with adjunctive subconjunctival bevacizumab (1.25 mg) was performed with satisfactory results during the first postoperative week. However, 10 days after surgery, she developed wound dehiscence and tube exposur...

  15. A background subtraction routine for enhancing energy-filtered plasmon images of MgAl2O4 implanted with Al+ and Mg+ ions

    International Nuclear Information System (INIS)

    Evans, N.D.; Kenik, E.A.; Bentley, J.; Zinkle, S.J.

    1995-01-01

    MgAl 2 O 4 , a candidate fusion reactor material, was irradiated with Al + or Mg + ions; electron energy-loss spectra and energy-filtered plasmon images showed that metallic Al colloids are present in the ion-irradiated regions. This paper shows the subtraction of the spinel plasmon component in images using 15-eV-loss electrons in some detail

  16. In vitro and in vivo corrosion measurements of Mg-6Zn alloys in the bile.

    Science.gov (United States)

    Chen, Yigang; Yan, Jun; Wang, Zhigang; Yu, Song; Wang, Xiaohu; Yuan, Ziming; Zhang, Xiaonong; Zhao, Changli; Zheng, Qi

    2014-09-01

    Mg-6Zn alloy was studied as candidate biodegradable metallic implants for the common bile duct (CBD) in terms of its in vitro corrosion and in vivo corrosion. Electrochemical measurements, immersion tests and hydrogen evolution were performed in the bile and Hanks' solution to evaluate the in vitro degradation behavior of Mg-6Zn alloy. The results showed that the degradation rate and hydrogen evolution were higher when Mg-6Zn alloy immersed in the bile than in the Hanks' solution. The polarization resistance of the samples in the Hanks' solution was about 1.5 times to that in the bile. In the in vivo experiment, Mg-6Zn alloy stents were inserted in CBD of 42 rabbits, and CT scans, the value of total bilirubin (TB) and in vivo corrosion rate were determined. From the results of CT images and the fluctuations of TB values, it can be seen that the stent was degraded gradually in CBD. After 1 week post-implantation, the majority of the Mg-6Zn alloy sample remained in the CBD. Usually the required support time for CBD stent was approximately 7-10 days, thus the Mg-6Zn alloy stent was very close to the clinical requirement for CBD support materials. After three weeks, the residual weight of the Mg-6Zn alloy was only 9% of the original weight. The in vivo corrosion rate of Mg-6Zn alloy was ~0.107 mm·year(-1), which was much lower than that calculated in vitro (~0.72 mm·year(-1) by electrochemical test). Based on our research, there is promising for the Mg-6Zn alloy in CBD applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effect of nursing-calf implant timing on growth performance and carcass characteristics.

    Science.gov (United States)

    Webb, M J; Harty, A A; Salverson, R R; Kincheloe, J J; Zuelly, S M S; Underwood, K R; Luebbe, M K; Olson, K C; Blair, A D

    2017-12-01

    The objective of this study was to compare pre- and postweaning growth performance, carcass characteristics, and meat quality attributes of calves that did not receive an implant or were implanted early or late in the nursing period. Crossbred steer calves ( = 135) were stratified by birth date and birth weight and randomly assigned to the following implant treatments: control (CON; no preweaning implant), 58 d (EARLY; 36 mg zeranol, administered at an average of 58 ± 13 d of age), and 121 d (LATE; 36 mg zeranol, administered at an average 121 ± 13 d of age). After weaning, steers were blocked by initial feed yard BW to 15 pens (5 pens/treatment and 9 steers/pen). All steers were implanted on d 21 after arrival at the feed yard and again on d 108 of finishing. Steer BW and ultrasound assessment of rib eye area (uREA), rib fat thickness (uRFT), and percent intramuscular fat (uIMF) were collected when implants were administered, at weaning, and on harvest day. Carcass measurements included HCW, rib eye area (REA), 12th-rib fat thickness (FT), and marbling score. Objective color (L*, a*, and b*) was recorded, and a 3.8-cm strip loin section was removed from both sides of each carcass and portioned into 2.54-cm steaks that were aged for 3 or 14 d for analysis of cook loss and Warner-Bratzler shear force (WBSF). The remaining portion of each sample was used for analysis of moisture and crude fat. Steer BW, ADG, and G:F did not differ among treatments ( > 0.05). Steers implanted in the EARLY treatment had a greater ( 0.05); however, steers on the CON treatment had a greater ( ≤ 0.05) percent uIMF than EARLY implanted steers, whereas steers receiving the LATE implant were intermediate and not different from the other treatments. Hot carcass weight, REA, FT, USDA yield grade, marbling score, and objective color did not differ ( > 0.05) among treatments. The proportion of steers in each USDA yield and quality grade was similar ( > 0.05) among treatments, and no

  18. In vivo degradation behavior and biological activity of some new Mg-Ca alloys with concentration's gradient of Si for bone grafts

    Science.gov (United States)

    Trincă, Lucia Carmen; Fântânariu, Mircea; Solcan, Carmen; Trofin, Alina Elena; Burtan, Liviu; Acatrinei, Dumitru Mihai; Stanciu, Sergiu; Istrate, Bogdan; Munteanu, Corneliu

    2015-10-01

    Magnesium based alloys, especially Mg-Ca alloys, are biocompatible substrates with mechanical properties similar to those of bones. The biodegradable alloys of Mg-Ca provide sufficient mechanical strength in load carrying applications as opposed to biopolymers and also they avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. The main issue facing a biodegradable Mg-Ca alloy is the fast degradation in the aggressive physiological environment of the body. The alloy's corrosion is proportional with the dissolution of the Mg in the body: the reaction with the water generates magnesium hydroxide and hydrogen. The accelerated corrosion will lead to early loss of the alloy's mechanical integrity. The degradation rate of an alloy can be improved mainly through tailoring the composition and by carrying out surface treatments. This research focuses on the ability to adjust degradation rate of Mg-Ca alloys by an original method and studies the biological activity of the resulted specimens. A new Mg-Ca alloy, with a Si gradient concentration from the surface to the interior of the material, was obtained. The surface morphology was investigated using scanning electron microscopy (VegaTescan LMH II, SE detector, 30 kV), X-ray diffraction (X'Pert equipment) and energy dispersive X-ray (Bruker EDS equipment). In vivo degradation behavior, biological compatibility and activity of Mg-Ca alloys with/without Si gradient concentration were studied with an implant model (subcutaneous and bony) in rats. The organism response to implants was characterized by using radiological (plain X-rays and computed tomography), biochemical and histological methods of investigation. The results sustained that Si gradient concentration can be used to control the rate of degradation of the Mg-Ca alloys for enhancing their biologic activity in order to facilitate bone tissue repair.

  19. Density functional theory (DFT) study on the hydrolysis behavior of degradable Mg/Mg alloys for biomedical applications

    Science.gov (United States)

    Nezafati, Marjan

    Magnesium-based (Mg and/or Mg alloys) materials possess many advantageous physicochemical/biological characteristics such as good biocompatibility and similarity of the mechanical properties to the human bone tissue, which renders this material a promising candidate for the biomedical and implant applications. One of the most attractive features of Mg-based materials is the degradability in the physiological environment. With the burst of research on the biodegradable materials for the healthcare device applications, Mg and its alloys attracted a strong attention in the bioengineering field in recent years. However, the major limitation of applying Mg-based materials to biomedical applications is the fast degradation/corrosion rate with regards to the healing process time-span. In the present thesis, an atomistic model employing the density-functional theory (DFT) has been developed to study the hydrolysis process by understanding the influences of commonly used alloying elements (zinc (Zn), calcium (Ca), aluminum (Al), and yttrium (Y)) and the crystallographic orientation of the dissolution surfaces (basal (0001), prism (1010), and pyramidal (1011) planes) on the corrosion behavior. These parameters are known to strongly impact the initial hydrolysis phenomena of Mg-based materials. To develop the atomistic computational model, we have implemented the Dmol3 software package in conjunction with PBE (Perdew, Burke and Ernzerhof) correlation energy functional in the GGA (generalized gradient approximation) scheme. Throughout the thesis, we performed three sets of calculations, i) surface energy, ii) dissolution potential, and iii) water adsorption computations, to examine the hydrolysis mechanism and the subsequent corrosion/degradation of Mg/Mg alloys. The total energy changes of various Mg-based systems in different conditions for these surface energies, dissolution behavior, and tendency of the system for adsorbing the water molecule were quantified. The results

  20. Ion beam modification of thermal stress resistance of MgO single crystals with different crystallographic faces

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Otsuka, P.H.; Jamieson, D.N.; Williams, J.S.; Conway, M.

    1999-01-01

    Ion beam modification of thermal shock stress and damage resistance of MgO single crystals with various crystallographic faces is investigated. The most stable crystal faces in terms of stress and damage resistance are established. Ion implantation is shown to reduce the temperature threshold of fracture for all crystal faces tested. The (111) face is demonstrated to be of highest stability compared to (110) and (100) faces in both implanted and unimplanted crystals. At the same time ion implantation substantially increases the microcrack density for the faces tested and reduces the degree of fracture damage following thermal shock. The microcrack density is found to be highest in the crystals with (110) face in comparison with the (001) and (111) faces. The effect is analysed using fracture mechanics principles and discussed in terms of the implantation-induced lattice damage

  1. Effects of the Preoperative Administration of Dexketoprofen Trometamol on Pain and Swelling After Implant Surgery: A Randomized, Double-Blind Controlled Trial.

    Science.gov (United States)

    Sánchez-Pérez, Arturo; Muñoz-Peñalver, Jesús; Moya-Villaescusa, María José; Sánchez-Matás, Carmen

    2018-04-01

    The fear of postoperative pain is often mentioned by patients as one of the factors that is most frequently associated with dental implants. To reduce this factor, a single oral dose of 25 mg dexketoprofen trometamol (DKT) or placebo was administered 15 minutes before implant surgery. One hundred patients who required single-implant treatments were randomly assigned to 1 of 2 blinded groups. The patients in the test group were given 25 mg DKT (DKT group), and those in the control group were given 500 mg vitamin C as a placebo (PLACEBO group). A subjective visual analogue scale of 100 mm in length was used to evaluate pain. Inflammation and complications were assessed using a 5-point Likert scale. An analysis of variance, t-tests, and a Mann-Whitney U test were performed. Among the 100 patients, 83 completed the study (there were 8 dropouts in the PLACEBO group and 9 in the DKT group). The patients who received DKT reported a lower pain intensity during the immediate postoperative period. The inflammatory response was weaker in the DKT group than the control group at 48 hours, but bleeding was greater. There were no other complications in either of the groups. In conclusion, the preemptive use of 25 mg soluble DKT administered orally 15 minutes before implant surgery can reduce the severity of immediate postoperative pain.

  2. Mechanical verification of soft-tissue attachment on bioactive glasses and titanium implants.

    Science.gov (United States)

    Zhao, Desheng; Moritz, Niko; Vedel, Erik; Hupa, Leena; Aro, Hannu T

    2008-07-01

    Soft-tissue attachment is a desired feature of many clinical biomaterials. The aim of the current study was to design a suitable experimental method for tensile testing of implant incorporation with soft-tissues. Conical implants were made of three compositions of bioactive glass (SiO(2)-P(2)O(5)-B(2)O(3)-Na(2)O-K(2)O-CaO-MgO) or titanium fiber mesh (porosity 84.7%). The implants were surgically inserted into the dorsal subcutaneous soft-tissue or back muscles in the rat. Soft-tissue attachment was evaluated by pull-out testing using a custom-made jig 8 weeks after implantation. Titanium fiber mesh implants had developed a relatively high pull-out force in subcutaneous tissue (12.33+/-5.29 N, mean+/-SD) and also measurable attachment with muscle tissue (2.46+/-1.33 N). The bioactive glass implants failed to show mechanically relevant soft-tissue bonding. The experimental set-up of mechanical testing seems to be feasible for verification studies of soft-tissue attachment. The inexpensive small animal model is beneficial for large-scale in vivo screening of new biomaterials.

  3. Alkalescent nanotube films on a titanium-based implant: A novel approach to enhance biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanxian [Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Dong, Chaofang, E-mail: cfdong@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Yang, Sefei [Department of Stomatology, The PLA General Hospital, Beijing 100853 (China); Wu, Junsheng; Xiao, Kui; Huang, Yunhua; Li, Xiaogang [Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083 (China)

    2017-03-01

    The interfacial pH value has a marked effect on cell viability because the pro-mineralization activity of osteoblasts increases at alkaline extracellular pH, whereas the pro-resorptive activity of osteoclasts increases under more acidic conditions. To obtain the more favorable alkaline interface, we developed a novel nanotube layer that was incorporated with magnesium oxide on a titanium implant substrate (MgO/NT/Ti) via ethylenediamine tetraacetic acid (EDTA) chelation. This facile immersion-annealing process successfully created a homogeneous magnesium oxide layer with sustained release kinetics and superior hydrophilicity according to the surface characterization and microenvironment measurement. The titania nanotubes on the substrate with an anatase phase exhibited a lower passivation current and a more positive corrosion potential compared with pure titanium, which guaranteed a reasonable corrosion resistance, even when it was wrapped with a magnesium oxide layer. In vitro cell cultures showed that MgO/NT/Ti significantly increased cell proliferation and alkaline phosphatase (ALP) activity. The resulting alkalescent microenvironment created by the MgO layer encouraged the cells to spread into polygonal shapes, accelerated the differentiation stage to osteoblast and induced a higher expression of vinculin. In summary, the incorporated alkalescent microenvironment of MgO/NT/Ti provided a viable approach to stimulate cell proliferation, adhesion, and differentiation and to improve the implant osseointegration. - Highlights: • We developed a novel nanotube layer incorporated with magnesium oxide to obtain a favorable alkaline interface. • The homogeneous magnesium oxide layer exhibited sustained release kinetics. • The resulting alkalescent microenvironment provided a viable approach to improve the implant osseointegration.

  4. The influence of direct laser metal sintering implants on the early stages of osseointegration in diabetic mini-pigs.

    Science.gov (United States)

    Tan, Naiwen; Liu, Xiangwei; Cai, Yanhui; Zhang, Sijia; Jian, Bo; Zhou, Yuchao; Xu, Xiaoru; Ren, Shuai; Wei, Hongbo; Song, Yingliang

    2017-01-01

    High failure rates of oral implants have been reported in diabetic patients due to the disruption of osseointegration. The aim of this study was to investigate whether direct laser metal sintering (DLMS) could improve osseointegration in diabetic animal models. Surface characterizations were carried out on two types of implants. Cell morphology and the osteogenic-related gene expression of MG63 cells were observed under conditions of DLMS and microarc oxidation (MAO). A diabetes model in mini-pigs was established by intravenous injection of streptozotocin (150 mg/kg), and a total of 36 implants were inserted into the mandibular region. Micro-computed tomography (micro-CT) and histologic evaluations were performed 3 and 6 months after implantation. The Ra (the average of the absolute height of all points) of MAO surface was 2.3±0.3 µm while the DLMS surface showed the Ra of 27.4±1.1 µm. The cells on DLMS implants spread out more podia than those on MAO implants through cell morphology analysis. Osteogenic-related gene expression was also dramatically increased in the DLMS group. Obvious improvement was observed in the micro-CT and Van Gieson staining analyses of DLMS implants compared with MAO at 3 months, although this difference disappeared by 6 months. DLMS implants showed a higher bone-implant contact percentage (33.2%±11.2%) at 3 months compared with MAO group (18.9%±7.3%) while similar results were showed at 6 months between DLMS group (42.8%±10.1%) and MAO group (38.3%±10.8%). The three-dimensional environment of implant surfaces with highly porous and fully interconnected channel and pore architectures can improve cell spreading and accelerate the progress of osseointegration in diabetic mini-pigs.

  5. Short dental implants: an emerging concept in implant treatment.

    Science.gov (United States)

    Al-Hashedi, Ashwaq Ali; Taiyeb Ali, Tara Bai; Yunus, Norsiah

    2014-06-01

    Short implants have been advocated as a treatment option in many clinical situations where the use of conventional implants is limited. This review outlines the effectiveness and clinical outcomes of using short implants as a valid treatment option in the rehabilitation of edentulous atrophic alveolar ridges. Initially, an electronic search was performed on the following databases: Medline, PubMed, Embase, Cochrane Database of Systematic Reviews, and DARE using key words from January 1990 until May 2012. An additional hand search was included for the relevant articles in the following journals: International Journal of Oral and Maxillofacial Implants, Clinical Oral Implants Research, Journal of Clinical Periodontology, International Journal of Periodontics, Journal of Periodontology, and Clinical Implant Dentistry and Related Research. Any relevant papers from the journals' references were hand searched. Articles were included if they provided detailed data on implant length, reported survival rates, mentioned measures for implant failure, were in the English language, involved human subjects, and researched implants inserted in healed atrophic ridges with a follow-up period of at least 1 year after implant-prosthesis loading. Short implants demonstrated a high rate of success in the replacement of missing teeth in especially atrophic alveolar ridges. The advanced technology and improvement of the implant surfaces have encouraged the success of short implants to a comparable level to that of standard implants. However, further randomized controlled clinical trials and prospective studies with longer follow-up periods are needed.

  6. Number of implants for mandibular implant overdentures: a systematic review

    Science.gov (United States)

    Lee, Jeong-Yol; Kim, Ha-Young; Bryant, S. Ross

    2012-01-01

    PURPOSE The aim of this systematic review is to address treatment outcomes of Mandibular implant overdentures relative to implant survival rate, maintenance and complications, and patient satisfaction. MATERIALS AND METHODS A systematic literature search was conducted by a PubMed search strategy and hand-searching of relevant journals from included studies. Randomized Clinical Trials (RCT) and comparative clinical trial studies on mandibular implant overdentures until August, 2010 were selected. Eleven studies from 1098 studies were finally selected and data were analyzed relative to number of implants. RESULTS Six studies presented the data of the implant survival rate which ranged from 95% to 100% for 2 and 4 implant group and from 81.8% to 96.1% for 1 and 2 implant group. One study, which statistically compared implant survival rate showed no significant differences relative to the number of implants. The most common type of prosthetic maintenance and complications were replacement or reattaching of loose clips for 2 and 4 implant group, and denture repair due to the fracture around an implant for 1 and 2 implant groups. Most studies showed no significant differences in the rate of prosthetic maintenance and complication, and patient satisfaction regardless the number of implants. CONCLUSION The implant survival rate of mandibular overdentures is high regardless of the number of implants. Denture maintenance is likely not inflenced substantially by the number of implants and patient satisfaction is typically high again regardless os the number of implants. PMID:23236572

  7. Importance of beta-blocker dose in prevention of ventricular tachyarrhythmias, heart failure hospitalizations, and death in primary prevention implantable cardioverter-defibrillator recipients

    DEFF Research Database (Denmark)

    Ruwald, A C; Gislason, G H; Vinther, M

    2018-01-01

    Aims: There is a paucity of studies investigating a dose-dependent association between beta-blocker therapy and risk of outcome. In a nationwide cohort of primary prevention implantable cardioverter-defibrillator (ICD) patients, we aimed to investigate the dose-dependent association between beta-blocker...... therapy and risk of ventricular tachyarrhythmias (VT/VF), heart failure (HF) hospitalizations, and death. Methods and results: Information on ICD implantation, endpoints, comorbidities, beta-blocker usage, type, and dose were obtained through Danish nationwide registers. The two major beta-blockers...... carvedilol and metoprolol were examined in three dose levels; low (metoprolol ≤ 25 mg; carvedilol ≤ 12.5 mg), intermediate (metoprolol 26-199 mg; carvedilol 12.6-49.9 mg), and high (metoprolol ≥ 200 mg; carvedilol ≥ 50 mg). Time to events was investigated utilizing multivariate Cox models with beta-blocker...

  8. The Enhancement of Mg Corrosion Resistance by Alloying Mn and Laser-Melting

    Directory of Open Access Journals (Sweden)

    Youwen Yang

    2016-03-01

    Full Text Available Mg has been considered a promising biomaterial for bone implants. However, the poor corrosion resistance has become its main undesirable property. In this study, both alloying Mn and laser-melting were applied to enhance the Mg corrosion resistance. The corrosion resistance, mechanical properties, and microstructure of rapid laser-melted Mg-xMn (x = 0–3 wt % alloys were investigated. The alloys were composed of dendrite grains, and the grains size decreased with increasing Mn. Moreover, Mn could dissolve and induce the crystal lattice distortion of the Mg matrix during the solidification process. Mn ranging from 0–2 wt % dissolved completely due to rapid laser solidification. As Mn contents further increased up to 3 wt %, a small amount of Mn was left undissolved. The compressive strength of Mg-Mn alloys increased first (up to 2 wt % and then decreased with increasing Mn, while the hardness increased continuously. The refinement of grains and the increase in corrosion potential both made contributions to the enhancement of Mg corrosion resistance.

  9. Primary prevention of peri-implantitis: managing peri-implant mucositis.

    Science.gov (United States)

    Jepsen, Søren; Berglundh, Tord; Genco, Robert; Aass, Anne Merete; Demirel, Korkud; Derks, Jan; Figuero, Elena; Giovannoli, Jean Louis; Goldstein, Moshe; Lambert, France; Ortiz-Vigon, Alberto; Polyzois, Ioannis; Salvi, Giovanni E; Schwarz, Frank; Serino, Giovanni; Tomasi, Cristiano; Zitzmann, Nicola U

    2015-04-01

    Over the past decades, the placement of dental implants has become a routine procedure in the oral rehabilitation of fully and partially edentulous patients. However, the number of patients/implants affected by peri-implant diseases is increasing. As there are--in contrast to periodontitis--at present no established and predictable concepts for the treatment of peri-implantitis, primary prevention is of key importance. The management of peri-implant mucositis is considered as a preventive measure for the onset of peri-implantitis. Therefore, the remit of this working group was to assess the prevalence of peri-implant diseases, as well as risks for peri-implant mucositis and to evaluate measures for the management of peri-implant mucositis. Discussions were informed by four systematic reviews on the current epidemiology of peri-implant diseases, on potential risks contributing to the development of peri-implant mucositis, and on the effect of patient and of professionally administered measures to manage peri-implant mucositis. This consensus report is based on the outcomes of these systematic reviews and on the expert opinion of the participants. Key findings included: (i) meta-analysis estimated a weighted mean prevalence for peri-implant mucositis of 43% (CI: 32-54%) and for peri-implantitis of 22% (CI: 14-30%); (ii) bleeding on probing is considered as key clinical measure to distinguish between peri-implant health and disease; (iii) lack of regular supportive therapy in patients with peri-implant mucositis was associated with increased risk for onset of peri-implantitis; (iv) whereas plaque accumulation has been established as aetiological factor, smoking was identified as modifiable patient-related and excess cement as local risk indicator for the development of peri-implant mucositis; (v) patient-administered mechanical plaque control (with manual or powered toothbrushes) has been shown to be an effective preventive measure; (vi) professional intervention

  10. Buprenorphine Implants for Treatment of Opioid Dependence: Randomized Comparison to Placebo and Sublingual Buprenorphine/Naloxone

    Science.gov (United States)

    Rosenthal, Richard N.; Ling, Walter; Casadonte, Paul; Vocci, Frank; Bailey, Genie L.; Kampman, Kyle; Patkar, Ashwin; Chavoustie, Steven; Blasey, Christine; Sigmon, Stacey; Beebe, Katherine L.

    2015-01-01

    Aims To evaluate safety and efficacy of buprenorphine implants (BI) versus placebo implants (PI) for the treatment of opioid dependence. A secondary aim compared BI to open-label sublingual buprenorphine/naloxone tablets (BNX). Design Randomized, double-blind, placebo-controlled trial. Subjects received either 4 buprenorphine implants (80 mg/implant) (n=114), 4 placebo implants (n=54), or open-label BNX (12–16 mg/d) (n=119). Setting 20 addiction treatment centers. Participants Adult outpatients (ages 18 to 65) with DSM-IV-TR opioid dependence. Measurements The primary efficacy endpoint was the percent of urine samples negative for opioids collected from weeks 1 to 24, examined as a cumulative distribution function (CDF). Findings The BI CDF was significantly different from placebo (P<.0001). Mean (95% CI) proportions of urines negative for opioids were: BI: 31.2% (25.3, 37.1) and PI: 13.4% (8.3, 18.6). BI subjects had a higher study completion rate relative to placebo (64% vs. 26%, P<.0001), lower clinician-rated (P<.0001) and patient-rated (P<.0001) withdrawal, lower patient-ratings of craving (P<.0001), and better subjects’ (P=.031) and clinicians’ (P=.022) global ratings of improvement. BI also resulted in significantly lower cocaine use (P=.0016). Minor implant-site reactions were comparable in the buprenorphine (27.2% [31/114]) and placebo groups (25.9% [14/54]). BI were non-inferior to BNX on percent urines negative for opioids [mean (95% CI): 33.5 (27.3, 39.6); CI for the difference of proportions, (−10.7, 6.2)]. Conclusions Compared with placebo, buprenorphine implants result in significantly less frequent opioid use, and are non-inferior to sublingual buprenorphine/naloxone tablets. PMID:23919595

  11. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    OBJECTIVES: The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. MATERIAL AND METHODS: A MEDLINE (PubMed), Embase and Cochrane library search...... of suprastructures has never been compared within the same study. High implant survival rate was reported in all the included studies. Significantly more peri-implant marginal bone loss, higher probing depth score, bleeding score and gingival score was observed around implants with a scalloped implant-abutment...... loss around implants with a scalloped implant-abutment connection. CONCLUSIONS: A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must...

  12. Bioactive glass coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  13. Mechanical properties of ion implanted ceramic surfaces

    International Nuclear Information System (INIS)

    Burnett, P.J.

    1985-01-01

    This thesis investigates the mechanisms by which ion implantation can affect those surface mechanical properties of ceramics relevant to their tribological behaviour, specifically hardness and indentation fracture. A range of model materials (including single crystal Si, SiC, A1 2 0 3 , Mg0 and soda-lime-silica glass) have been implanted with a variety of ion species and at a range of ion energies. Significant changes have been found in both low-load microhardness and indentation fracture behaviour. The changes in hardness have been correlated with the evolution of an increasingly damaged and eventually amorphous thin surface layer together with the operation of radiation-, solid-solution- and precipitation-hardening mechanisms. Compressive surface stresses have been shown to be responsible for the observed changes in identation fracture behaviour. In addition, the levels of surface stress present have been correlated with the structure of the surface layer and a simple quantitative model proposed to explain the observed stress-relief upon amorphisation. Finally, the effects of ion implantation upon a range of polycrystalline ceramic materials has been investigated and the observed properties modifications compared and contrasted to those found for the model single crystal materials. (author)

  14. Enhanced Physicochemical and Biological Properties of Ion-Implanted Titanium Using Electron Cyclotron Resonance Ion Sources

    Directory of Open Access Journals (Sweden)

    Csaba Hegedűs

    2016-01-01

    Full Text Available The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS. The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants.

  15. Dislocation loops in spinel crystals irradiated successively with deep and shallow ion implants

    International Nuclear Information System (INIS)

    Ai, R.X.; Cooper, E.A.; Sickafus, K.E.; Nastasi, M.; Bordes, N.; Ewing, R.C.

    1993-01-01

    This study examines the influence of microstructural defects on irradiation damage accumulation in the oxide spinel. Single crystals of the compound MgAl 2 O 4 with surface normal [111] were irradiated under cryogenic temperature (100K) either with 50 keV Ne ions (fluence 5.0 x 10 12 /cm 2 ), 400 keV Ne ions (fluence 6.7 x 10 13 /cm 2 ) or successively with 400 keV Ne ions followed by 50 keV Ne ions. The projected range of 50 keV Ne ions in spinel is ∼50 mn (''shallow'') while the projected range of 400 keV Ne ions is ∼500 mn (''deep''). Transmission electron microscopy (TEM) was used to examine dislocation loops/defect clusters formed by the implantation process. Measurements of the dislocation loop size were made using weak-beam imaging technique on cross-sectional TEM ion-implanted specimens. Defect clusters were observed in both deep and shallow implanted specimens, while dislocation loops were observed in the shallow implanted sample that was previously irradiated by 400 keV Ne ions. Cluster size was seen to increase for shallow implants in crystals irradiated with a deep implant (size ∼8.5 nm) as compared to crystals treated only to a shallow implant (size ∼3.1 nm)

  16. Does antibiotic prophylaxis at implant placement decrease early implant failures? A Cochrane systematic review.

    Science.gov (United States)

    Esposito, Marco; Grusovin, Maria Gabriella; Loli, Vasiliki; Coulthard, Paul; Worthington, Helen V

    2010-01-01

    conducted. Four RCTs were identified: three comparing 2 g of preoperative amoxicillin versus placebo (927 patients) and the other comparing 1 g of preoperative amoxicillin plus 500 mg four times a day for 2 days versus no antibiotics (80 patients). The meta-analyses of the four trials showed a statistically significantly higher number of patients experiencing implant failures in the group not receiving antibiotics: risk ratio=0.40 (95% confidence interval (CI) 0.19 to 0.84). The number needed to treat (NNT) to prevent one patient having an implant failure is 33 (95% CI 17-100), based on a patient implant failure rate of 5% in patients not receiving antibiotics. The other outcomes were not statistically significant, and only two minor adverse events were recorded, one in the placebo group. There is some evidence suggesting that 2 g of amoxicillin given orally 1 h preoperatively significantly reduce failures of dental implants placed in ordinary conditions. No significant adverse events were reported. It might be sensible to suggest the use of a single dose of 2 g prophylactic amoxicillin prior to dental implant placement. It is still unknown whether post-operative antibiotics are beneficial, and which is the most effective antibiotic.

  17. Effect of Using Melatonin Implants on Postpartum Reproductive Indices in Tigaia Sheep Breed

    Directory of Open Access Journals (Sweden)

    Ioan Padeanu

    2012-10-01

    Full Text Available Investigations were carried out in a commercial farm from Turnu, Arad County, on a number of 110 indigenous adultewes from the Tigaia breed. It is estimated by some authors that administration of subcutaneous melatonin implantsduring a period of 30 days, in lactating or dry ewes, would improve the reproductive performances in some sheepbreeds. Subcutaneous melatonin implants (Melovin were inserted to the ewes in doses of 18 mg. Current research,emphasized treated that from indigenous Tigaia breed, can be obtained superior reproduction indexes if the animalsare treated with melatonin implants with 35 days before the mating season, differences from the untreated groupbeing significantly (p<0.001. However, in sheep treated used melatonin implants, the lambing interval were reducedwith 40 to 50%. It seems that use of melatonin implants Melovin type near the beginning of normal breeding season,increases the reproductive performance of adult ewes from the Tigaia breed.

  18. Depth-selective 2D-ACAR and coincidence Doppler investigation of embedded Au nanocrystals in MgO

    International Nuclear Information System (INIS)

    Eijt, S.W.H.; Veen, A. van; Falub, C.V.; Schut, H.; Huis, M.A. van; Mijnarends, P.E.

    2004-01-01

    We present a depth-selective 2D-ACAR and two-detector Doppler broadening study on Au nanocrystals in monocrystalline MgO(100), produced in sub-surface layers by ion implantation and subsequent thermal annealing to temperatures beyond the stability range of vacancy clusters in MgO. In contrast to the case of Li nanocrystals, it was found that positrons do not trap inside the Au nanocrystals, but only in defects at the nanocrystal-to-host interface (attached vacancy clusters). This is interpreted in terms of the positron affinity of Au, MgO and the defects. (orig.)

  19. Depth-selective 2D-ACAR and coincidence Doppler investigation of embedded Au nanocrystals in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Eijt, S.W.H.; Veen, A. van; Falub, C.V.; Schut, H.; Huis, M.A. van [Interfaculty Reactor Inst., Delft Univ. of Technology, Delft (Netherlands); Mijnarends, P.E. [Interfaculty Reactor Inst., Delft Univ. of Technology, Delft (Netherlands); Dept. of Physics, Northeastern Univ., Boston, MA (United States)

    2004-07-01

    We present a depth-selective 2D-ACAR and two-detector Doppler broadening study on Au nanocrystals in monocrystalline MgO(100), produced in sub-surface layers by ion implantation and subsequent thermal annealing to temperatures beyond the stability range of vacancy clusters in MgO. In contrast to the case of Li nanocrystals, it was found that positrons do not trap inside the Au nanocrystals, but only in defects at the nanocrystal-to-host interface (attached vacancy clusters). This is interpreted in terms of the positron affinity of Au, MgO and the defects. (orig.)

  20. The Role Of Inflammation In Stent Restenosis More Than 1 Year Afetr Drug Eluting Stent Implantation

    Directory of Open Access Journals (Sweden)

    Hasan Shemirani

    2011-09-01

    Full Text Available Background: In stent restenosis (ISR following endovascular interventions is the main limitation of their long-term success. Despite advances have been made during recent years to decrease restenosis, it remains a challenging clinical problem.The aim of this study was to evaluate the relationship between angiographic coronary in stent restenosis, inflammation after successful stent implantation. Methods: This study included 78 patients, 35year old and higher who underwent coronary angiography more than 1 year after drug-eluting stent (DES implantation because of symptoms suggestive ischemia. Patients were divided into ISR group (case and patent stent group (control according to angiography results. For all patients blood lipids and high sensitivity C-Reactive Protein (hsCRP were measured simultaneously. Results: Age, sex, hypertension, current smoking, and lipid profile other than High Density Lipoprotein (HDL-C of patients in the case and control groups were similar .However, HDL-C < 40mg/L was more prevalent with ISR (66.7% vs. 30.8%, p=0.002. The hsCRP level was 2.98±2.06 mg/L in the case group and 2.50±1.80 mg/L in the control group. There were no significant differences in mean hsCRP concentration between the two groups (p=0.14, however mean hsCRP level was significantly higher in men of case group than control group (3.35mg/L vs. 2.21mg/L, p<0.05. Conclusion: This study demonstrates that in men but not in women inflammation may be a predictor of in stent restenosis more than 1 year after drug eluting stent implantation. Also, high-density lipoprotein (HDL probably has protective effect against stent restenosis.

  1. Effect of ion implantation on thermal shock resistance of magnesia and glass

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Williams, J.S.; Watt, A.J.

    1995-01-01

    Monocrystals of magnesia together with glass samples have been subjected to ion implantation prior to thermal shock testing in an impulse plasma of continuously varied intensity. Measurements of the separation between fragments have been used to estimate the surface temperature. Fracture and deformation characteristics of the surface layer are measured in ion implanted and unimplanted samples using optical and scanning electron microscopy. Implantation-induced near-surface damage is analysed by ion channeling using 2 MeV He + ions. Ion implantation is shown to modify the near-surface structure of magnesia samples by introducing damage, which makes crack initiation easier under thermal stresses. The fracture threshold and maximum crack density are shifted towards the lower temperature range. Ion implanted MgO crystals show a ten fold increase in surface crack density. An increased crack density results in a decreased degree of damage characterised by the depth of crack penetration. The thermal stress resistance parameter of glass samples is increased at relatively small doses and decreased at higher doses. The results suggest that crack density and the degree of fracture damage in brittle ceramics operating under thermal shock conditions can be effectively controlled by ion implantation which provides crack initiating defects in the near-surface region. 23 refs., 7 figs

  2. Why are mini-implants lost: the value of the implantation technique!

    Science.gov (United States)

    Romano, Fabio Lourenço; Consolaro, Alberto

    2015-01-01

    The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1) Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2) Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3) Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4) The more precise the lancing procedures, the better the implant placement technique; 5) Self-drilling does not mean higher pressures; 6) Knowing where implant placement should end decreases the risk of complications and mini-implant loss.

  3. Why are mini-implants lost: The value of the implantation technique!

    Directory of Open Access Journals (Sweden)

    Fabio Lourenço Romano

    2015-02-01

    Full Text Available The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1 Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2 Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3 Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4 The more precise the lancing procedures, the better the implant placement technique; 5 Self-drilling does not mean higher pressures; 6 Knowing where implant placement should end decreases the risk of complications and mini-implant loss.

  4. Primary prevention of peri-implantitis: Managing peri-implant mucositis

    OpenAIRE

    Jepsen, Søren; Berglundh, Tord; Genco, Robert; Aass, Anne Merete; Demirel, Korkud; Derks, Jan; Figuero, Elena; Giovannoli, Jean Louis; Goldstein, Moshe; LAMBERT, France; Ortiz-Vigon, Alberto; Polyzois, Ioannis; Salvi, Giovanni; Schwarz, Frank; Serino, Giovanni

    2015-01-01

    Abstract AIMS: Over the past decades, the placement of dental implants has become a routine procedure in the oral rehabilitation of fully and partially edentulous patients. However, the number of patients/implants affected by peri-implant diseases is increasing. As there are--in contrast to periodontitis--at present no established and predictable concepts for the treatment of peri-implantitis, primary prevention is of key importance. The management of peri-implant mucositis is considere...

  5. Osteogenesis and Morphology of the Peri-Implant Bone Facing Dental Implants

    Directory of Open Access Journals (Sweden)

    Marco Franchi

    2004-01-01

    Full Text Available This study investigated the influence of different implant surfaces on peri-implant osteogenesis and implant face morphology of peri-implant tissues during the early (2 weeks and complete healing period (3 months. Thirty endosseous titanium implants (conic screws with differently treated surfaces (smooth titanium = SS, titanium plasma sprayed = TPS, sand-blasted zirconium oxide = Zr-SLA were implanted in femur and tibiae diaphyses of two mongrel sheep. Histological sections of the implants and surrounding tissues obtained by sawing and grinding techniques were observed under light microscopy (LM. The peri-implant tissues of other samples were mechanically detached from the corresponding implants to be processed for SEM observation. Two weeks after implantation, we observed osteogenesis (new bone trabeculae around all implant surfaces only where a gap was present at the host bone-metal interface. No evident bone deposition was detectable where threads of the screws were in direct contact with the compact host bone. Distance osteogenesis predominated in SS implants, while around rough surfaces (TPS and Zr-SLA, both distance and contact osteogenesis were present. At SEM analysis 2 weeks after implantation, the implant face of SS peri-implant tissue showed few, thin, newly formed, bone trabeculae immersed in large, loose, marrow tissue with blood vessels. Around the TPS screws, the implant face of the peri-implant tissue was rather irregular because of the rougher metal surface. Zr-SLA screws showed more numerous, newly formed bone trabeculae crossing marrow spaces and also needle-like crystals in bone nodules indicating an active mineralising process. After 3 months, all the screws appeared osseointegrated, being almost completely covered by a compact, mature, newly formed bone. However, some marrow spaces rich in blood vessels and undifferentiated cells were in contact with the metal surface. By SEM analysis, the implant face of the peri-implant

  6. Survival of dental implants placed in sites of previously failed implants.

    Science.gov (United States)

    Chrcanovic, Bruno R; Kisch, Jenö; Albrektsson, Tomas; Wennerberg, Ann

    2017-11-01

    To assess the survival of dental implants placed in sites of previously failed implants and to explore the possible factors that might affect the outcome of this reimplantation procedure. Patients that had failed dental implants, which were replaced with the same implant type at the same site, were included. Descriptive statistics were used to describe the patients and implants; survival analysis was also performed. The effect of systemic, environmental, and local factors on the survival of the reoperated implants was evaluated. 175 of 10,096 implants in 98 patients were replaced by another implant at the same location (159, 14, and 2 implants at second, third, and fourth surgeries, respectively). Newly replaced implants were generally of similar diameter but of shorter length compared to the previously placed fixtures. A statistically significant greater percentage of lost implants were placed in sites with low bone quantity. There was a statistically significant difference (P = 0.032) in the survival rates between implants that were inserted for the first time (94%) and implants that replaced the ones lost (73%). There was a statistically higher failure rate of the reoperated implants for patients taking antidepressants and antithrombotic agents. Dental implants replacing failed implants had lower survival rates than the rates reported for the previous attempts of implant placement. It is suggested that a site-specific negative effect may possibly be associated with this phenomenon, as well as the intake of antidepressants and antithrombotic agents. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Sub-meninges implantation reduces immune response to neural implants.

    Science.gov (United States)

    Markwardt, Neil T; Stokol, Jodi; Rennaker, Robert L

    2013-04-15

    Glial scar formation around neural interfaces inhibits their ability to acquire usable signals from the surrounding neurons. To improve neural recording performance, the inflammatory response and glial scarring must be minimized. Previous work has indicated that meningeally derived cells participate in the immune response, and it is possible that the meninges may grow down around the shank of a neural implant, contributing to the formation of the glial scar. This study examines whether the glial scar can be reduced by placing a neural probe completely below the meninges. Rats were implanted with sets of loose microwire implants placed either completely below the meninges or implanted conventionally with the upper end penetrating the meninges, but not attached to the skull. Histological analysis was performed 4 weeks following surgical implantation to evaluate the glial scar. Our results found that sub-meninges implants showed an average reduction in reactive astrocyte activity of 63% compared to trans-meninges implants. Microglial activity was also reduced for sub-meninges implants. These results suggest that techniques that isolate implants from the meninges offer the potential to reduce the encapsulation response which should improve chronic recording quality and stability. Published by Elsevier B.V.

  8. Dexamethasone intravitreal implant (Ozurdex) for the treatment of pediatric uveitis.

    Science.gov (United States)

    Bratton, Monica L; He, Yu-Guang; Weakley, David R

    2014-04-01

    To report our experience using Ozurdex (Allergan, Irvine, CA), a biodegradable intravitreal implant containing of 0.7 mg of dexamethasone approved for use in adults with noninfectious uveitis in adults, in the treatment of pediatric uveitis. The medical records of consecutive patients with noninfectious posterior uveitis who were unresponsive to standard treatment and subsequently received the Ozurdex implant from March 2011 to March 2013 were retrospectively reviewed. A total of 14 eyes of 11 patients (mean age, 10.1 years; range 4-12) received 22 Ozurdex implants during the study period. Of the 11 patients, 7 had idiopathic intermediate or posterior uveitis, 1 had sympathetic ophthalmia, 2 had juvenile idiopathic arthritis, and 1 had sarcoidosis. All patients were uncontrolled with standard treatment, including topical or sub-Tenon's or systemic corticosteriods and/or immune-modulation. Visual acuity improved after Ozurdex implant in 5 of 8 patients (63%). Intraocular inflammation was controlled or improved after 17 of 22 of implants (12 eyes [77%]). The frequency of topical corticosteroids was decreased and/or discontinued after 18 of 22 implants (12 eyes [82%]). Complications included implant migration into the anterior chamber (4 aphakic eyes), increased intraocular pressure (5 eyes), and progression of a preexisting cataract (1 eye). The uveitis reoccurred in 57% of eyes at 4.3 months (2-7 months) after injection. The Ozurdex implant in combination with systemic immunomodulatory therapy resulted in improved visual acuity, control of intraocular inflammation, and a decrease in corticosteroid use. In the majority of eyes the uveitis reoccurred around 4 months after injection. The adverse events in our study are similar to those identified in adult studies. Copyright © 2014 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  9. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    OBJECTIVES: The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. MATERIAL AND METHODS: A MEDLINE (PubMed), Embase and Cochrane library search......-abutment connection. There were no significant differences between the two treatment modalities regarding professional or patient-reported outcome measures. Meta-analysis disclosed a mean difference of peri-implant marginal bone loss of 1.56 mm (confidence interval: 0.87 to 2.25), indicating significant more bone...... loss around implants with a scalloped implant-abutment connection. CONCLUSIONS: A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must...

  10. Imaging of common breast implants and implant-related complications: A pictorial essay.

    Science.gov (United States)

    Shah, Amisha T; Jankharia, Bijal B

    2016-01-01

    The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer.

  11. Immediate Direct-To-Implant Breast Reconstruction Using Anatomical Implants

    Directory of Open Access Journals (Sweden)

    Sung-Eun Kim

    2014-09-01

    Full Text Available BackgroundIn 2012, a new anatomic breast implant of form-stable silicone gel was introduced onto the Korean market. The intended use of this implant is in the area of aesthetic breast surgery, and many reports are promising. Thus far, however, there have been no reports on the use of this implant for breast reconstruction in Korea. We used this breast implant in breast reconstruction surgery and report our early experience.MethodsFrom November 2012 to April 2013, the Natrelle Style 410 form-stable anatomically shaped cohesive silicone gel-filled breast implant was used in 31 breasts of 30 patients for implant breast reconstruction with an acellular dermal matrix. Patients were treated with skin-sparing mastectomies followed by immediate breast reconstruction.ResultsThe mean breast resection volume was 240 mL (range, 83-540 mL. The mean size of the breast implants was 217 mL (range, 125-395 mL. Breast shape outcomes were considered acceptable. Infection and skin thinning occurred in one patient each, and hematoma and seroma did not occur. Three cases of wound dehiscence occurred, one requiring surgical intervention, while the others healed with conservative treatment in one month. Rippling did not occur. So far, complications such as capsular contracture and malrotation of breast implant have not yet arisen.ConclusionsBy using anatomic breast implants in breast reconstruction, we achieved satisfactory results with aesthetics better than those obtained with round breast implants. Therefore, we concluded that the anatomical implant is suitable for breast reconstruction.

  12. Preparation and characterization of porous Mg-Zn-Ca alloy by space holder technique

    Science.gov (United States)

    Annur, D.; Lestari, Franciska P.; Erryani, A.; Sijabat, Fernando A.; G. P. Astawa, I. N.; Kartika, I.

    2018-04-01

    Magnesium had been recently researched as a future biodegradable implant material. In the recent study, porous Mg-Zn-Ca alloys were developed using space holder technique in powder metallurgy process. Carbamide (10-20%wt) was added into Mg-6Zn-1Ca (in wt%) alloy system as a space holder to create porous structure material. Sintering process was done in a tube furnace under Argon atmosphere in 610 °C for 5 hours. Porous structure of the resulted alloy was examined using Scanning Electron Microscope (SEM), while the phase formation was characterized by X-ray diffraction analysis (XRD). Further, mechanical properties of porous Mg-Zn-Ca alloy was examined through compression testing. Microstructure characterization showed higher content of Carbamide in the alloy would give different type of pores. However, compression test showed that mechanical properties of Mg-Zn-Ca alloy would decrease significantly when higher content of carbamide was added.

  13. Implants in free fibula flap supporting dental rehabilitation - Implant and peri-implant related outcomes of a randomized clinical trial.

    Science.gov (United States)

    Kumar, Vinay V; Ebenezer, Supriya; Kämmerer, Peer W; Jacob, P C; Kuriakose, Moni A; Hedne, Naveen; Wagner, Wilfried; Al-Nawas, Bilal

    2016-11-01

    The objective of this study was to assess the difference in success rates of implants when using two or four implant-supported-overdentures following segmental mandibular reconstruction with fibula free flap. This prospective, parallel designed, randomized clinical study was conducted with 1:1 ratio. At baseline, all participants already had segmental reconstruction of mandible with free fibula flap. The participants were randomized into two groups: Group-I received implant-supported-overdentures on two tissue-level implants and Group-II received implant-supported-overdentures on four tissue-level implants. Success rates of the implants were evaluated at 3 months, 6 months and 12 months following implant loading using marginal bone level changes as well as peri-implant indices (Buser et al., 1990). 52 patients were randomized into two treatment groups (26 each), out of which 18 patients (36 implants) of Group-I and 17 patients (68 implants) of Group-II were evaluated. One implant in Group-I was lost due to infective complications and one patient in the same group had superior barrel necrosis. There was a statistically significant increase at both time points (p = 0.03, p = 0.04 at 6 months, 12 months) in the amount of marginal bone loss in Group-I (0.4 mm, 0.5 mm at 6 months, 12 months) as compared to Group-II (0.1 mm, 0.2 mm at 6 months, 12 months). There were no clinically significant changes peri-implant parameters between both groups. Peri-implant soft tissue hyperplasia was seen in both groups, 32% of implants at 3-months, 26% at 6-months and 3% at 12-months follow-up. The results of this study show that patients with 2-implant-supported-overdentures had higher marginal bone loss as compared to patients with 4-implant-supported-overdentures. There were no clinically significant differences in peri-implant soft tissue factors in patients with 2- or 4-implant-supported-overdentures. Hyperplastic peri-implant tissues are common in the early implant

  14. Imaging of common breast implants and implant-related complications: A pictorial essay

    Directory of Open Access Journals (Sweden)

    Amisha T Shah

    2016-01-01

    Full Text Available The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer.

  15. Single-Dose Bone Pharmacokinetics of Vancomycin in a Porcine Implant-Associated Osteomyelitis Model

    DEFF Research Database (Denmark)

    Bue, Mats; Hanberg, Pelle; Koch, Janne

    2018-01-01

    , vancomycin bone and soft tissue penetration during infection remains unclear. In eight pigs, implant-associated osteomyelitis was induced on day 0, using a Staphylococcus aureus strain. Following administration of 1,000 mg of vancomycin on day 5, vancomycin concentrations were obtained with microdialysis...

  16. Retrograde peri-implantitis

    Directory of Open Access Journals (Sweden)

    Mohamed Jumshad

    2010-01-01

    Full Text Available Retrograde peri-implantitis constitutes an important cause for implant failure. Retrograde peri-implantitis may sometimes prove difficult to identify and hence institution of early treatment may not be possible. This paper presents a report of four cases of (the implant placed developing to retrograde peri-implantitis. Three of these implants were successfully restored to their fully functional state while one was lost due to extensive damage. The paper highlights the importance of recognizing the etiopathogenic mechanisms, preoperative assessment, and a strong postoperative maintenance protocol to avoid retrograde peri-implant inflammation.

  17. Suppression of Mg propagation into subsequent layers grown by MOCVD

    Science.gov (United States)

    Agarwal, Anchal; Tahhan, Maher; Mates, Tom; Keller, Stacia; Mishra, Umesh

    2017-01-01

    Low temperature (LT) flow modulation epitaxy (FME) or "pulsed" growth was successfully used to prevent magnesium from Metalorganic Chemical Vapor Deposition (MOCVD) grown p-GaN:Mg layers riding into subsequently deposited n-type layers. Mg concentration in the subsequent layers was lowered from ˜1 × 1018 cm-3 for a medium temperature growth at 950 °C to ˜1 × 1016 cm-3 for a low temperature growth at 700 °C via FME. The slope of the Mg concentration drop in the 700 °C FME sample was 20 nm/dec—the lowest ever demonstrated by MOCVD. For growth on Mg implanted GaN layers, the drop for a medium temperature regrowth at 950 °C was ˜10 nm/dec compared to >120 nm/dec for a high temperature regrowth at 1150 °C. This drop-rate obtained at 950 °C or lower was maintained even when the growth temperature in the following layers was raised to 1150 °C. A controlled silicon doping series using LT FME was also demonstrated with the lowest and highest achieved doping levels being 5 × 1016 cm-3 and 6 × 1019 cm-3, respectively.

  18. Antibiotic use at dental implant placement.

    Science.gov (United States)

    Veitz-Keenan, Analia; Keenan, James R

    2015-06-01

    Cochrane Oral Health Groups Trial Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE via OVID and EMBASE via OVID. Databases were searched with no language or date restrictions. Two authors independently reviewed the titles and the abstracts for inclusion. Disagreements were resolved by discussion. If needed, a third author was consulted. Included were randomised clinical trials with a follow-up of at least three months which evaluated the use of prophylactic antibiotic compared to no antibiotic or a placebo and examined different antibiotics of different doses and durations in patients undergoing dental implant placement. The outcomes were implant failure (considered as implant mobility, removal of implant due to bone loss or infection) and prosthesis failure (prosthesis could not be placed). Standard Cochrane methodology procedures were followed. Risk of bias was completed independently and in duplicate by two review authors. Results were expressed as risk ratios (RRs) using a random-effects model for dichotomous outcomes with 95% confidence intervals (CI). The statistical unit was the participant and not the prosthesis or implant. Heterogeneity including both clinical and methodological factors was investigated. Six randomised clinical trials with 1162 participants were identified for the review. Three trials compared 2 g of preoperative amoxicillin versus placebo (927 participants). One trial compared 3 g of preoperative amoxicillin versus placebo (55 participants). Another trial compared 1 g of preoperative amoxicillin plus 500 mg four times a day for two days versus no antibiotic (80 participants). An additional trial compared four groups: (1) 2 g of preoperative amoxicillin; (2) 2 g of preoperative amoxicillin plus 1 g twice a day for seven days; (3) 1 g of postoperative amoxicillin twice a day for seven days and (4) no antibiotics (100 participants). The overall body of the evidence was considered moderate.The meta-analysis of the

  19. Cochlear implants in children implanted in Jordan: A parental overview.

    Science.gov (United States)

    Alkhamra, Rana A

    2015-07-01

    Exploring the perspective of parents on the cochlear implant process in Jordan. Sixty parents of deaf children were surveyed on the information gathering process prior to cochlear implant surgery, and their implant outcome expectations post-surgery. Whether child or parent characteristics may impact parents' post-surgical expectations was explored. Although parents used a variety of information sources when considering a cochlear implant, the ear, nose and throat doctor comprised their major source of information (60%). Parents received a range of information prior to cochlear implant but agreed (93.3%) on the need for a multidisciplinary team approach. Post-surgically, parents' expected major developments in the areas of spoken language (97%), and auditory skills (100%). Receiving education in mainstream schools (92%) was expected too. Parents perceived the cochlear implant decision as the best decision they can make for their child (98.3%). A significant correlation was found between parents contentment with the cochlear implant decision and expecting developments in the area of reading and writing (r=0.7). Child's age at implantation and age at hearing loss diagnosis significantly affected parents' post-implant outcome expectations (pparents agree on the need for a comprehensive multidisciplinary team approach during the different stages of the cochlear implant process. Parents' education about cochlear implants prior to the surgery can affect their post-surgical outcome expectations. The parental perspective presented in this study can help professionals develop better understanding of parents' needs and expectations and henceforth improve their services and support during the different stages of the cochlear implant process. Copyright © 2015. Published by Elsevier Ireland Ltd.

  20. Long time follow up of implant therapy and treatment of peri-implantitis.

    Science.gov (United States)

    Roos-Jansåker, Ann-Marie

    2007-01-01

    Dental implants have become an often used alternative to replace missing teeth, resulting in an increasing percentage of the adult population with implant supported prosthesis. Although favourable long-term results of implant therapy have been reported, infections occur. Until recently few reports included data on peri-implant infections, possibly underestimating this complication of implant treatment. It is possible that some infections around implants develop slowly and that with time peri-implantitis will be a common complication to implant therapy as an increasing number of patients have had their implants for a long time (>10 years). Data on treatment of peri-implant lesions are scarce leaving the clinician with limited guidance regarding choice of treatment. The aim of this thesis was to study the frequency of implant loss and presence of peri-implant lesions in a group of patients supplied with Brånemark implants 9-14 years ago, and to relate these events to patient and site specific characteristics. Moreover three surgical treatment modalities for peri-implantitis were evaluated. The thesis is based on six studies; Studies I-III included 218 patients and 1057 implants followed for 9-14 years evaluating prevalence of, and factors related to implant loss (Paper I) and prevalence of peri-implant infections and related factors (Paper I-III). Study IV is a review describing different treatment modalities of peri-implant infections. Study V is a prospective cohort study involving 36 patients and 65 implants, evaluating the use of a bone substitute with or without the use of a resorbable membrane. Study VI is a case series with 12 patients and 16 implants, evaluating a bone substitute in combination with a resorbable membrane and submerged healing. This thesis demonstrated that: After 9-14 years the survival rates of dental implants are high (95.7%). Implant loss seems to cluster within patients and are related to periodontitis evidenced as bone loss on

  1. Improved ovulation rate and implantation in rats treated with royal jelly

    African Journals Online (AJOL)

    The ovaries and uteris of 12 mature female rats (Rattus norvegicus) were examined to determine the effect of commercial royal jelly on ovulation, ovarian weight and implantation rates. Rats were split in two groups of 6 each. Group one served as the treatment and group two the control. A daily dose of 25mg of royal jelly ...

  2. Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review.

    Science.gov (United States)

    Martinez Sanchez, Adela Helvia; Luthringer, Bérengère J C; Feyerabend, Frank; Willumeit, Regine

    2015-02-01

    Due to their biodegradability, magnesium and magnesium-based alloys could represent the third generation of biomaterials. However, their mechanical properties and time of degradation have to match the needs of applications. Several approaches, such as choice of alloying elements or tailored microstructure, are employed to tailor corrosion behaviour. Due to the high electrochemical activity of Mg, numerous environmental factors (e.g. temperature and surrounding ion composition) influence its corrosion behaviour, making it unpredictable. Nevertheless, the need of reliable in vitro model(s) to predict in vivo implant degradation is increasing. In an attempt to find a correlation between in vitro and vivo corrosion rates, this review presents a systematic literature survey, as well as an attempt to correlate the different results. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Hip Implant Systems

    Science.gov (United States)

    ... Implants and Prosthetics Metal-on-Metal Hip Implants Hip Implants Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Hip implants are medical devices intended to restore mobility ...

  4. Age at implantation and auditory memory in cochlear implanted children.

    Science.gov (United States)

    Mikic, B; Miric, D; Nikolic-Mikic, M; Ostojic, S; Asanovic, M

    2014-05-01

    Early cochlear implantation, before the age of 3 years, provides the best outcome regarding listening, speech, cognition an memory due to maximal central nervous system plasticity. Intensive postoperative training improves not only auditory performance and language, but affects auditory memory as well. The aim of this study was to discover if the age at implantation affects auditory memory function in cochlear implanted children. A total of 50 cochlear implanted children aged 4 to 8 years were enrolled in this study: early implanted (1-3y) n = 27 and late implanted (4-6y) n = 23. Two types of memory tests were used: Immediate Verbal Memory Test and Forward and Backward Digit Span Test. Early implanted children performed better on both verbal and numeric tasks of auditory memory. The difference was statistically significant, especially on the complex tasks. Early cochlear implantation, before the age of 3 years, significantly improve auditory memory and contribute to better cognitive and education outcomes.

  5. Mechanical properties and corrosion behavior of Mg-Gd-Ca-Zr alloys for medical applications.

    Science.gov (United States)

    Shi, Ling-Ling; Huang, Yuanding; Yang, Lei; Feyerabend, Frank; Mendis, Chamini; Willumeit, Regine; Ulrich Kainer, Karl; Hort, Norbert

    2015-07-01

    Magnesium alloys are promising candidates for biomedical applications. In this work, influences of composition and heat treatment on the microstructure, the mechanical properties and the corrosion behavior of Mg-Gd-Ca-Zr alloys as potential biomedical implant candidates were investigated. Mg5Gd phase was observed at the grain boundaries of Mg-10Gd-xCa-0.5Zr (x=0, 0.3, 1.2wt%) alloys. Increase in the Ca content led to the formation of additional Mg2Ca phase. The Ca additions increased both the compressive and the tensile yield strengths, but reduced the ductility and the corrosion resistance in cell culture medium. After solution heat treatment, the Mg5Gd particles dissolved in the Mg matrix. The compressive strength decreased, while the corrosion resistance improved in the solution treated alloys. After ageing at 200°C, metastable β' phase formed on prismatic planes and a new type of basal precipitates have been observed, which improved the compressive and tensile ultimate strength, but decreased the ductility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Breast reconstruction - implants

    Science.gov (United States)

    Breast implants surgery; Mastectomy - breast reconstruction with implants; Breast cancer - breast reconstruction with implants ... harder to find a tumor if your breast cancer comes back. Getting breast implants does not take as long as breast reconstruction ...

  7. Corrosion inhibition of powder metallurgy Mg by fluoride treatments.

    Science.gov (United States)

    Pereda, M D; Alonso, C; Burgos-Asperilla, L; del Valle, J A; Ruano, O A; Perez, P; Fernández Lorenzo de Mele, M A

    2010-05-01

    Pure Mg has been proposed as a potential degradable biomaterial to avoid both the disadvantages of non-degradable internal fixation implants and the use of alloying elements that may be toxic. However, it shows excessively high corrosion rate and insufficient yield strength. The effects of reinforcing Mg by a powder metallurgy (PM) route and the application of biocompatible corrosion inhibitors (immersion in 0.1 and 1M KF solution treatments, 0.1M FST and 1M FST, respectively) were analyzed in order to improve Mg mechanical and corrosion resistance, respectively. Open circuit potential measurements, polarization techniques (PT), scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy (EIS) were performed to evaluate its corrosion behavior. SECM showed that the local current of attacked areas decreased during the F(-) treatments. The corrosion inhibitory action of 0.1M FST and 1M FST in phosphate buffered solution was assessed by PT and EIS. Under the experimental conditions assayed, 0.1M FST revealed better performance. X-ray photoelectron spectroscopy, energy dispersive X-ray and X-ray diffraction analyses of Mg(PM) with 0.1M FST showed the presence of KMgF(3) crystals on the surface while a MgF(2) film was detected for 1M FST. After fluoride inhibition treatments, promising results were observed for Mg(PM) as degradable metallic biomaterial due to its higher yield strength and lower initial corrosion rate than untreated Mg, as well as a progressive loss of the protective characteristics of the F(-)-containing film which ensures the gradual degradation process. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. The in vitro indirect cytotoxicity test and in vivo interface bioactivity evaluation of biodegradable FHA coated Mg-Zn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianan [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Han Pei, E-mail: hanpei_cn@163.com [Orthopaedic Department of the 6th People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Ji Weiping [Orthopaedic Department of the 6th People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Song, Yang; Zhang, Shaoxiang; Chen Ying; Zhao Changli; Zhang Fan [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Xiaonong, E-mail: xnzhang@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200051 (China); Jiang Yao [Orthopaedic Department of the 6th People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China)

    2011-12-15

    A kind of biodegradable fluoridated hydroxyapatite (FHA) coating was prepared on Mg-Zn alloy to improve the interface bioactivity in bone healing via electrodeposition method. The in vitro cytotoxicity evaluation of the ions released during degradation was taken. No toxicity was shown and even higher cells' viability appeared on the 7th day compared with the normal culture case (negative control). In vivo implantation was carried out in the femoral condyle of adult New Zealand rabbits. The cross section showed by Micro-CT scan confirmed that the better interface contacts happened in the coated group after one month implantation. Also the coating left can still be normally observed by scanning electron microscope (SEM) with a little degradation. As a result, the FHA coating may be a promising candidate to enhance interface bioactivity for biodegradable Mg alloys in orthopaedics.

  9. Effect of Using Melatonin Implants on Reproductive Performances in Turcana Ewes

    Directory of Open Access Journals (Sweden)

    Ioan Pădeanu

    2011-10-01

    Full Text Available It is estimated by some authors that the administration of subcutaneous melatonin implants during a period of 30 days, in lactating or dry ewes, would improve the reproductive performance in some sheep breeds. This study was conducted in Giarmata Mare, Timis County, on 78 lactating ewes and 75 dry ewes, which were individually inserted with implants containing 18 mg melatonin on 31 August 2009. Control group consisted of 100 lactating and dry ewes in equal proportions. The results shown that the main reproduction indices as prolificacy, birth rate and the lamb number productivity index are significantly (p < 0.05 higher in ewes from the experimental group, compared with ewes from the control group, and that treated ewes shortened the period of mating and lambing to half-time comparing to the control group. There is a suggestion that the use of melatonin implants Melovin ® type near the normal breeding season increases the reproductive performance of ewes from Turcana breed.

  10. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Science.gov (United States)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-11-01

    The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  11. Nanostructured titanate with different metal ions on the surface of metallic titanium: a facile approach for regulation of rBMSCs fate on titanium implants.

    Science.gov (United States)

    Ren, Na; Li, Jianhua; Qiu, Jichuan; Sang, Yuanhua; Jiang, Huaidong; Boughton, Robert I; Huang, Ling; Huang, Wei; Liu, Hong

    2014-08-13

    Titanium (Ti) is widely used for load-bearing bio-implants, however, it is bio-inert and exhibits poor osteo-inductive properties. Calcium and magnesium ions are considered to be involved in bone metabolism and play a physiological role in the angiogenesis, growth, and mineralization of bone tissue. In this study, a facile synthesis approach to the in situ construction of a nanostructure enriched with Ca(2+) and Mg(2+) on the surface of titanium foil is proposed by inserting Ca(2+) and Mg(2+) into the interlayers of sodium titanate nanostructures through an ion-substitution process. The characteriz 0.67, and 0.73 nm ation results validate that cations can be inserted into the interlayer regions of the layered nanostructure without any obvious change of morphology. The cation content is positively correlated to the concentration of the solutions employed. The biological assessments indicate that the type and the amount of cations in the titanate nanostructure can alter the bioactivity of titanium implants. Compared with a Na(+) filled titanate nanostructure, the incorporation of divalent ions (Mg(2+) , Ca(2+) ) can effectively enhance protein adsorption, and thus also enhance the adhesion and differentiation ability of rat bone-marrow stem cells (rBMSCs). The Mg(2+) /Ca(2+) -titanate nanostructure is a promising implantable material that will be widely applicable in artificial bones, joints, and dental implants. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Precision of fit between implant impression coping and implant replica pairs for three implant systems.

    Science.gov (United States)

    Nicoll, Roxanna J; Sun, Albert; Haney, Stephan; Turkyilmaz, Ilser

    2013-01-01

    The fabrication of an accurately fitting implant-supported fixed prosthesis requires multiple steps, the first of which is assembling the impression coping on the implant. An imprecise fit of the impression coping on the implant will cause errors that will be magnified in subsequent steps of prosthesis fabrication. The purpose of this study was to characterize the 3-dimensional (3D) precision of fit between impression coping and implant replica pairs for 3 implant systems. The selected implant systems represent the 3 main joint types used in implant dentistry: external hexagonal, internal trilobe, and internal conical. Ten impression copings and 10 implant replicas from each of the 3 systems, B (Brånemark System), R (NobelReplace Select), and A (NobelActive) were paired. A standardized aluminum test body was luted to each impression coping, and the corresponding implant replica was embedded in a stone base. A coordinate measuring machine was used to quantify the maximum range of displacement in a vertical direction as a function of the tightening force applied to the guide pin. Maximum angular displacement in a horizontal plane was measured as a function of manual clockwise or counterclockwise rotation. Vertical and rotational positioning was analyzed by using 1-way analysis of variance (ANOVA). The Fisher protected least significant difference (PLSD) multiple comparisons test of the means was applied when the F-test in the ANOVA was significant (α=.05). The mean and standard deviation for change in the vertical positioning of impression copings was 4.3 ±2.1 μm for implant system B, 2.8 ±4.2 μm for implant system R, and 20.6 ±8.8 μm for implant system A. The mean and standard deviation for rotational positioning was 3.21 ±0.98 degrees for system B, 2.58 ±1.03 degrees for system R, and 5.30 ±0.79 degrees for system A. The P-value for vertical positioning between groups A and B and between groups A and R was <.001. No significant differences were found for

  13. Influence of Dy in solid solution on the degradation behavior of binary Mg-Dy alloys in cell culture medium.

    Science.gov (United States)

    Yang, Lei; Ma, Liangong; Huang, Yuanding; Feyerabend, Frank; Blawert, Carsten; Höche, Daniel; Willumeit-Römer, Regine; Zhang, Erlin; Kainer, Karl Ulrich; Hort, Norbert

    2017-06-01

    Rare earth element Dy is one of the promising alloying elements for magnesium alloy as biodegradable implants. To understand the effect of Dy in solid solution on the degradation of Mg-Dy alloys in simulated physiological conditions, the present work studied the microstructure and degradation behavior of Mg-Dy alloys in cell culture medium. It is found the corrosion resistance enhances with the increase of Dy content in solid solution in Mg. This can be attributed to the formation of a relatively more corrosion resistant Dy-enriched film which decreases the anodic dissolution of Mg. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Sol-Gel Derived Hydroxyapatite Coating on Mg-3Zn Alloy for Orthopedic Application

    Science.gov (United States)

    Singh, Sanjay; Manoj Kumar, R.; Kuntal, Kishor Kumar; Gupta, Pallavi; Das, Snehashish; Jayaganthan, R.; Roy, Partha; Lahiri, Debrupa

    2015-04-01

    In recent years, magnesium and its alloys have gained a lot of interest as orthopedic implant constituents because their biodegradability and mechanical properties are closer to that of human bone. However, one major concern with Mg in orthopedics is its high corrosion rate that results in the reduction of mechanical integrity before healing the bone tissue. The current study evaluates the sol-gel-derived hydroxyapatite (HA) coating on a selected Mg alloy (Mg-3Zn) for decreasing the corrosion rate and increasing the bioactivity of the Mg surface. The mechanical integrity of the coating is established as a function of the surface roughness of the substrate and the sintering temperature of the coating. Coating on a substrate roughness of 15-20 nm and sintering at 400°C shows the mechanical properties in similar range of bone, thus making it suitable to avoid the stress-shielding effect. The hydroxyapatite coating on the Mg alloy surface also increases corrosion resistance very significantly by 40 times. Bone cells are also found proliferating better in the HA-coated surface. All these benefits together establish the candidature of sol-gel HA-coated Mg-3Zn alloy in orthopedic application.

  15. Ion implantation

    International Nuclear Information System (INIS)

    Johnson, E.

    1986-01-01

    It is the purpose of the present paper to give a review of surface alloy processing by ion implantation. However, rather than covering this vast subject as a whole, the survey is confined to a presentation of the microstructures that can be found in metal surfaces after ion implantation. The presentation is limited to alloys processed by ion implantation proper, that is to processes in which the alloy compositions are altered significantly by direct injection of the implanted ions. The review is introduced by a presentation of the processes taking place during development of the fundamental event in ion implantation - the collision cascade, followed by a summary of the various microstructures which can be formed after ion implantation into metals. This is compared with the variability of microstructures that can be achieved by rapid solidification processing. The microstructures are subsequently discussed in the light of the processes which, as the implantations proceed, take place during and immediately after formation of the individual collision cascades. These collision cascades define the volumes inside which individual ions are slowed down in the implanted targets. They are not only centres for vigorous agitation but also the sources for formation of excess concentrations of point defects, which will influence development of particular microstructures. A final section presents a selection of specific structures which have been observed in different alloy systems. (orig./GSCH)

  16. Insight of magnesium alloys and composites for orthopedic implant applications – a review

    Directory of Open Access Journals (Sweden)

    R Radha

    2017-09-01

    Full Text Available Magnesium (Mg and its alloys have been widely researched for orthopedic applications recently. Mg alloys have stupendous advantages over the commercially available stainless steel, Co-Cr-Ni alloy and titanium implants. Till date, extensive mechanical, in-vitro and in-vivo studies have been done to improve the biomedical performance of Mg alloys through alloying, processing conditions, surface modification etc. This review comprehensively describes the strategies for improving the mechanical and degradation performance of Mg alloys through properly tailoring the composition of alloying elements, reinforcements and processing techniques. It also highlights the status and progress of research in to (i the selection of nutrient elements for alloying, reinforcement and its effects (ii type of Mg alloy system (binary, ternary and quaternary and composites (iii grain refinement for strengthening through severe plastic deformation techniques. Furthermore it also emphasizes on the importance of Mg composites with regard to hard tissue applications.

  17. Efficacy of Ozurdex implant in treatment of noninfectious intermediate uveitis

    Directory of Open Access Journals (Sweden)

    Swetha Palla

    2015-01-01

    Full Text Available Aims: To report our experiences using Ozurdex, a biodegradable implant, containing 0.7 mg of dexamethasone in the treatment of noninfectious intermediate uveitis. Settings and Design: Retrospective study design. Methods: We conducted a retrospective study of medical records of patients with noninfectious intermediate uveitis having either cystoid macular edema (CME or vitritis who were not responsive to standard treatment and subsequently received Ozurdex implant from March 2011 to April 2013. The outcomes measured were best-corrected visual acuity, central retinal thickness (CRT, and vitreous haze score. Statistical Analysis Used: Paired t-test was used to test the significance of difference between quantitative variables. A P < 0.05 is taken to denote significant relationship. Results: Twenty eyes of 15 patients with mean age of 39.8 years who received Ozurdex implant were included in the study. The mean baseline visual acuity improved from 0. 666 logarithm of the minimum angle of resolution (logMAR units to 0.479 logMAR units at 6 weeks after the implant. The mean CRT improved from 536.1 to 361.4 microns at 6 weeks postimplant both parameters were statistically significant. The ocular inflammation was controlled in almost all the patients. Cataract and raised intraocular pressure were documented complications. Conclusion: Ozurdex implant is a promising treatment option and efficient in controlling the inflammation and CME in cases of noninfectious intermediate uveitis not responding to standard treatment.

  18. Enhancement of osteogenesis and biodegradation control by brushite coating on Mg-Nd-Zn-Zr alloy for mandibular bone repair.

    Science.gov (United States)

    Guan, Xingmin; Xiong, Meiping; Zeng, Feiyue; Xu, Bin; Yang, Lingdi; Guo, Han; Niu, Jialin; Zhang, Jian; Chen, Chenxin; Pei, Jia; Huang, Hua; Yuan, Guangyin

    2014-12-10

    To diminish incongruity between bone regeneration and biodegradation of implant magnesium alloy applied for mandibular bone repair, a brushite coating was deposited on a matrix of a Mg-Nd-Zn-Zr (hereafter, denoted as JDBM) alloy to control the degradation rate of the implant and enhance osteogenesis of the mandible bone. Both in vitro and in vivo evaluations were carried out in the present work. Viability and adhesion assays of rabbit bone marrow mesenchyal stem cells (rBM-MSCs) were applied to determine the biocompatibility of a brushite-coated JDBM alloy. Osteogenic gene expression was characterized by quantitative real-time polymerase chain reaction (RT-PCR). Brushite-coated JDBM screws were implanted into mandible bones of rabbits for 1, 4, and 7 months, respectively, using 316L stainless steel screws as a control group. In vivo biodegradation rate was determined by synchrotron radiation X-ray microtomography, and osteogenesis was observed and evaluated using Van Gieson's picric acid-fuchsin. Both the naked JDBM and brushite-coated JDBM samples revealed adequate biosafety and biocompatibility as bone repair substitutes. In vitro results showed that brushite-coated JDBM considerably induced osteogenic differentiation of rBM-MSCs. And in vivo experiments indicated that brushite-coated JDBM screws presented advantages in osteoconductivity and osteogenesis of mandible bone of rabbits. Degradation rate was suppressed at a lower level at the initial stage of implantation when new bone tissue formed. Brushite, which can enhance oeteogenesis and partly control the degradation rate of an implant, is an appropriate coating for JDBM alloys used for mandibular repair. The Mg-Nd-Zn-Zr alloy with brushite coating possesses great potential for clinical applications for mandibular repair.

  19. Anestesia para implante de marca-passo em paciente adulto com ventrículo único não-operado: relato de caso Anestesia para implante de marcapaso en paciente adulto con ventrículo único no operado: relato de caso Anesthesia for pacemaker implant in an adult patient with unoperated univentricular heart: case report

    Directory of Open Access Journals (Sweden)

    Adriano Bechara de Souza Hobaika

    2007-02-01

    Full Text Available JUSTIFICATIVA E OBJETIVOS: Ventrículo único é anormalidade rara encontrada em cerca de 1% dos pacientes com cardiopatia congênita. Somente 11 casos de pacientes com ventrículo único não-operado e idade acima de 50 anos foram relatados na literatura. Este trabalho teve como objetivo descrever a conduta anestésica em paciente com ventrículo único para implante de marca-passo. RELATO DO CASO: Paciente do sexo feminino, 47 anos, com presença de dupla via de entrada do ventrículo esquerdo, L-transposição de grandes artérias e estenose subpulmonar, sem correção cirúrgica prévia, foi agendada para implante de marca-passo cardíaco definitivo seqüencial de duas câmaras. Ao MAPA apresentava bloqueio atrioventricular de segundo grau e uma freqüência cardíaca média de 45 bpm. Os exames pré-operatórios mostravam hematócrito de 57%, coagulograma normal, função ventricular preservada. A monitorização constou de oxímetro de pulso, ECG nas derivações D II e V5, PIA, capnógrafo e analisador de gases. Um marca-passo temporário transcutâneo foi disponibilizado no caso de bradicardia intensa. A anestesia foi induzida com fentanil (0,25 mg, etomidato (20 mg e atracúrio (35 mg. Quatro minutos após a indução, a freqüência cardíaca diminuiu para 30 bpm, sendo administrado 1 mg de atropina, com reversão da bradicardia. A anestesia foi mantida com sevoflurano a 2,5%, ar 60% e oxigênio 40%. O estado hemodinâmico e a saturação de oxigênio permaneceram estáveis. A paciente foi encaminhada à unidade de terapia intensiva estável e extubada ao final do procedimento. CONCLUSÕES: A conduta anestésica para implante de marca-passo em paciente de 47 anos com dupla via de entrada do ventrículo esquerdo e estenose subpulmonar não-operada foi adequada, haja vista que permitiu a realização do procedimento indicado.JUSTIFICATIVA Y OBJETIVOS: Ventrículo único es una anormalidad rara encontrada en aproximadamente 1% de los

  20. Loss of Endothelial Barrier in Marfan Mice (mgR/mgR Results in Severe Inflammation after Adenoviral Gene Therapy.

    Directory of Open Access Journals (Sweden)

    Philipp Christian Seppelt

    Full Text Available Marfan syndrome is an autosomal dominant inherited disorder of connective tissue. The vascular complications of Marfan syndrome have the biggest impact on life expectancy. The aorta of Marfan patients reveals degradation of elastin layers caused by increased proteolytic activity of matrix metalloproteinases (MMPs. In this study we performed adenoviral gene transfer of human tissue inhibitor of matrix metalloproteinases-1 (hTIMP-1 in aortic grafts of fibrillin-1 deficient Marfan mice (mgR/mgR in order to reduce elastolysis.We performed heterotopic infrarenal transplantation of the thoracic aorta in female mice (n = 7 per group. Before implantation, mgR/mgR and wild-type aortas (WT, C57BL/6 were transduced ex vivo with an adenoviral vector coding for human TIMP-1 (Ad.hTIMP-1 or β-galactosidase (Ad.β-Gal. As control mgR/mgR and wild-type aortas received no gene therapy. Thirty days after surgery, overexpression of the transgene was assessed by immunohistochemistry (IHC and collagen in situ zymography. Histologic staining was performed to investigate inflammation, the neointimal index (NI, and elastin breaks. Endothelial barrier function of native not virus-exposed aortas was evaluated by perfusion of fluorescent albumin and examinations of virus-exposed tissue were performed by transmission electron microscopy (TEM.IHC and ISZ revealed sufficient expression of the transgene. Severe cellular inflammation and intima hyperplasia were seen only in adenovirus treated mgR/mgR aortas (Ad.β-Gal, Ad.hTIMP-1 NI: 0.23; 0.43, but not in native and Ad.hTIMP-1 treated WT (NI: 0.01; 0.00. Compared to native mgR/mgR and Ad.hTIMP-1 treated WT aorta, the NI is highly significant greater in Ad.hTIMP-1 transduced mgR/mgR aorta (p = 0.001; p = 0.001. As expected, untreated Marfan grafts showed significant more elastolysis compared to WT (p = 0.001. However, elastolysis in Marfan aortas was not reduced by adenoviral overexpression of hTIMP-1 (compared to untreated

  1. Does the number of implants have any relation with peri-implant disease?

    Directory of Open Access Journals (Sweden)

    Bernardo Born PASSONI

    2014-10-01

    Full Text Available Objective: The aim of this study was to evaluate the relationship between the number of pillar implants of implant-supported fixed prostheses and the prevalence of periimplant disease. Material and Methods: Clinical and radiographic data were obtained for the evaluation. The sample consisted of 32 patients with implant-supported fixed prostheses in function for at least one year. A total of 161 implants were evaluated. Two groups were formed according to the number of implants: G1 ≤5 implants and G2 >5 implants. Data collection included modified plaque index (MPi, bleeding on probing (BOP, probing depth (PD, width of keratinized mucosa (KM and radiographic bone loss (BL. Clinical and radiographic data were grouped for each implant in order to conduct the diagnosis of mucositis or peri-implantitis. Results: Clinical parameters were compared between groups using Student’s t test for numeric variables (KM, PD and BL and Mann-Whitney test for categorical variables (MPi and BOP. KM and BL showed statistically significant differences between both groups (p<0.001. Implants from G1 – 19 (20.43% – compared with G2 – 26 (38.24% – showed statistically significant differences regarding the prevalence of peri-implantitis (p=0.0210. Conclusion: It seems that more than 5 implants in total fixed rehabilitations increase bone loss and consequently the prevalence of implants with periimplantitis. Notwithstanding, the number of implants does not have any influence on the prevalence of mucositis.

  2. Enhanced biocorrosion resistance and biocompatibility of degradable Mg-Nd-Zn-Zr alloy by brushite coating.

    Science.gov (United States)

    Niu, Jialin; Yuan, Guangyin; Liao, Yi; Mao, Lin; Zhang, Jian; Wang, Yongping; Huang, Feng; Jiang, Yao; He, Yaohua; Ding, Wenjiang

    2013-12-01

    To further improve the corrosion resistance and biocompatibility of Mg-Nd-Zn-Zr alloy (JDBM), a biodegradable calcium phosphate coating (Ca-P coating) with high bonding strength was developed using a novel chemical deposition method. The main composition of the Ca-P coating was brushite (CaHPO4·2H2O). The bonding strength between the coating and the JDBM substrate was measured to be over 10 MPa, and the thickness of the coating layer was about 10-30 μm. The in vitro corrosion tests indicated that the Ca-P treatment improved the corrosion resistance of JDBM alloy in Hank's solution. Ca-P treatment significantly reduced the hemolysis rate of JDBM alloy from 48% to 0.68%, and induced no toxicity to MC3T3-E1 cells. The in vivo implantation experiment in New Zealand's rabbit tibia showed that the degradation rate was reduced obviously by the Ca-P treatment and less gas was produced from Ca-P treated JDBM bone plates and screws in early stage of the implantation, and at least 10weeks degradation time can be prolonged by the present coating techniques. Both Ca-P treated and untreated JDBM Mg alloy induced bone growth. The primary results indicate that the present Ca-P treatment is a promising technique for the degradable Mg-based biomaterials for orthopedic applications. © 2013.

  3. Tribological properties of nitrogen implanted and boron implanted steels

    International Nuclear Information System (INIS)

    Kern, K.T.

    1996-01-01

    Samples of a steel with high chrome content was implanted separately with 75 keV nitrogen ions and with 75 keV boron ions. Implanted doses of each ion species were 2-, 4-, and 8 x 10 17 /cm 2 . Retained doses were measured using resonant non-Rutherford Backscattering Spectrometry. Tribological properties were determined using a pin-on-disk test with a 6-mm diameter ruby pin with a velocity of 0.94 m/min. Testing was done at 10% humidity with a load of 377 g. Wear rate and coefficient of friction were determined from these tests. While reduction in the wear rate for nitrogen implanted materials was observed, greater reduction (more than an order of magnitude) was observed for boron implanted materials. In addition, reduction in the coefficient of friction for high-dose boron implanted materials was observed. Nano-indentation revealed a hardened layer near the surface of the material. Results from grazing incidence x-ray diffraction suggest the formation of Fe 2 N and Fe 3 N in the nitrogen implanted materials and Fe 3 B in the boron implanted materials. Results from transmission electron microscopy will be presented

  4. Cochlear implantation in late-implanted adults with prelingual deafness.

    Science.gov (United States)

    Most, Tova; Shrem, Hadas; Duvdevani, Ilana

    2010-01-01

    The purpose of this study was to examine the effect of cochlear implantation (CI) on prelingually deafened participants who were implanted as adults. The effect of the CI was examined with regard to the following variables: communication, family, social skills, education, and work satisfaction with one's life, loneliness, and self-esteem. Thirty-eight adults participated. Four self-report questionnaires were used at 2 points in time: before and after CI. The research findings show significant differences in the reports of most variables before and after implantation. The participants felt better with regard to communication, social skills, education, and work and satisfaction with one's life after implantation in comparison to their feelings before implantation. Furthermore, they felt less lonely after implantation. However, there were no significant differences before and after implantation regarding their feelings within the family and regarding their self-esteem. The results demonstrated the need to evaluate the benefits resulting from the CI not only with traditional clinical measures but with additional measures as well. Furthermore, they demonstrated the benefit of the CI on the positive psychosociological implications of prelingually deafened adults. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Histology of a dental implant with a platform switched implant-abutment connection

    Directory of Open Access Journals (Sweden)

    Vittoria Perrotti

    2011-10-01

    Full Text Available Background: Peri-implant crestal bone must be stable for aesthetic reasons. Aim of this study was a histologic analysis of an implant with a platform switched implant-abutment connection. Materials and methods: A 32-year-old male patient participated in this study. The patient needed a bilateral mandibular restoration. Four implants were used, and were immediately restored and loaded the same day of insertion. After a 6 weeks healing period, one implant with platform-switched abutment was retrieved with trephine. Before retrieval the implant was osseointegrated and not mobile. On one side of the implant, a 1 mm resorption of the crestal bone was present. On the contrary, on the other side no bone resorption had occurred and about 1 mm of bone was present over the implant shoulder. Results: The bone-implant contact percentage was 65.1 ± 6.3 %. Platform- switching could help in maintaining the height of the peri-implant crestal bone.

  6. Effectiveness of Implant Therapy Analyzed in a Swedish Population: Prevalence of Peri-implantitis.

    Science.gov (United States)

    Derks, J; Schaller, D; Håkansson, J; Wennström, J L; Tomasi, C; Berglundh, T

    2016-01-01

    Peri-implantitis is an inflammatory disease affecting soft and hard tissues surrounding dental implants. As the global number of individuals that undergo restorative therapy through dental implants increases, peri-implantitis is considered as a major and growing problem in dentistry. A randomly selected sample of 588 patients who all had received implant-supported therapy 9 y earlier was clinically and radiographically examined. Prevalence of peri-implantitis was assessed and risk indicators were identified by multilevel regression analysis. Forty-five percent of all patients presented with peri-implantitis (bleeding on probing/suppuration and bone loss >0.5 mm). Moderate/severe peri-implantitis (bleeding on probing/suppuration and bone loss >2 mm) was diagnosed in 14.5%. Patients with periodontitis and with ≥4 implants, as well as implants of certain brands and prosthetic therapy delivered by general practitioners, exhibited higher odds ratios for moderate/severe peri-implantitis. Similarly, higher odds ratios were identified for implants installed in the mandible and with crown restoration margins positioned ≤1.5 mm from the crestal bone at baseline. It is suggested that peri-implantitis is a common condition and that several patient- and implant-related factors influence the risk for moderate/severe peri-implantitis (ClinicalTrials.gov NCT01825772). © International & American Associations for Dental Research 2015.

  7. Bilateral Poly Implant Prothèse Implant Rupture: An Uncommon Presentation

    Directory of Open Access Journals (Sweden)

    Peter Mallon

    2013-07-01

    Full Text Available Summary: A woman in her 50s underwent delayed bilateral Poly Implant Prothèse implant reconstruction following mastectomy for breast cancer. Symptoms of implant rupture developed 43 months after surgery with an erythematous rash on her trunk. The rash then spread to her reconstructed breast mounds. Initial ultrasound scan and magnetic resonance imaging were normal; however, subsequent magnetic resonance imaging demonstrated left implant rupture only. In theater, following removal of both implants, both were found to be ruptured. The rash on her trunk resolved within 3 weeks in the postoperative period. Chemical analyses of silicone in both implants confirmed a nonauthorized silicone source; in addition, the chemical structure was significantly different between the left and right implant, perhaps explaining the variation in presentation.

  8. Microstructure and corrosion behavior of laser surface-treated AZ31B Mg bio-implant material.

    Science.gov (United States)

    Wu, Tso-Chang; Ho, Yee-Hsien; Joshi, Sameehan S; Rajamure, Ravi S; Dahotre, Narendra B

    2017-05-01

    Although magnesium and magnesium alloys are considered biocompatible and biodegradable, they suffer from poor corrosion performance in the human body environment. In light of this, surface modification via rapid surface melting of AZ31B Mg alloy using a continuous-wave Nd:YAG laser was conducted. Laser processing was performed with laser energy ranging from 1.06 to 3.18 J/mm 2 . The corrosion behavior in simulated body fluid of laser surface-treated and untreated AZ31B Mg alloy samples was evaluated using electrochemical technique. The effect of laser surface treatment on phase and microstructure evolution was evaluated using X-ray diffraction and scanning electron microscopy. Microstructure examination revealed grain refinement as well as formation and uniform distribution of Mg 17 Al 12 phase along the grain boundary for laser surface-treated samples. Evolution of such unique microstructure during laser surface treatment indicated enhancement in the corrosion resistance of laser surface-treated samples compared to untreated alloy.

  9. The mechanism of sputter-induced orientation change in YBCO films on MgO (001)

    International Nuclear Information System (INIS)

    Huang, Y.; Vuchic, B.V.; Baldo, P.; Merkle, K.L.; Buchholz, D.B.; Mahajan, S.; Lei, J.S.; Markworth, P.R.; Chang, R.P.H.

    1996-12-01

    The mechanisms of the sputter-induced orientation change in YBa 2 Cu 3 O 7-x (YBCO) films grown on MgO (001) substrates by pulsed organometallic beam epitaxy (POMBE) are investigated by x-ray diffraction. Rutherford backscatter spectroscopy (RBS), cross-section TEM (XTEM) and microanalysis. It is found that the W atom implantation concurring with the ion sputtering plays an important role in effecting the orientation change. This implantation changes the surface structure of the substrate and induces an intermediate layer in the initial growth of the YBCO film, which in turn acts as a template that induces the orientation change. It seems that the surface morphology change caused by ion sputtering has only a minor effect on the orientation change

  10. Complications after cardiac implantable electronic device implantations

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard

    2013-01-01

    Complications after cardiac implantable electronic device (CIED) treatment, including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are associated with increased patient...

  11. Management of peri-implantitis

    Directory of Open Access Journals (Sweden)

    Jayachandran Prathapachandran

    2012-01-01

    Full Text Available Peri-implantitis is a site-specific infectious disease that causes an inflammatory process in soft tissues, and bone loss around an osseointegrated implant in function. The etiology of the implant infection is conditioned by the status of the tissue surrounding the implant, implant design, degree of roughness, external morphology, and excessive mechanical load. The microorganisms most commonly associated with implant failure are spirochetes and mobile forms of Gram-negative anaerobes, unless the origin is the result of simple mechanical overload. Diagnosis is based on changes of color in the gingiva, bleeding and probing depth of peri-implant pockets, suppuration, X-ray, and gradual loss of bone height around the tooth. Treatment will differ depending upon whether it is a case of peri-implant mucositis or peri-implantitis. The management of implant infection should be focused on the control of infection, the detoxification of the implant surface, and regeneration of the alveolar bone. This review article deals with the various treatment options in the management of peri-implantitis. The article also gives a brief description of the etiopathogenesis, clinical features, and diagnosis of peri-implantitis.

  12. Experimental study on bone tissue reaction around HA implants radiated after implantation

    International Nuclear Information System (INIS)

    Kudo, Masato; Matsui, Yoshiro; Tamura, Sayaka; Chen, Xuan; Uchida, Haruo; Mori, Kimie; Ohno, Kohsuke; Michi, Ken-ichi

    1998-01-01

    This study was conducted to investigate histologically and histomorphometrically the tissue reaction around hydroxylapatite (HA) implants that underwent irradiation in 3 different periods in the course of bone healing after implantation. The cylindrical high-density HA implants were implanted in 48 Japanese white rabbit mandibles. A single 15 Gy dose was applied to the mandible 5, 14, or 28 days after implantation. The rabbits were sacrificed 7, 14, 28, and 90 days after irradiation. Nonirradiated rabbits were used as controls. CMR, labeling with tetracycline and calcein, and non-decalcified specimens stained with toluidine blue were used for histological analyses and histomorphometric measurements. The results were as follows: In the rabbits irradiated 5 days after implantation, the HA-bone contact was observed later than that in the controls and the bone-implant contact surface ratio was lower than that in the controls at examination because necrosis of the newly-formed bone occurred just after irradiation. HA-bone contact of the rabbits irradiated 14 and 28 days after implantation was similar to that of the controls. And, bone remodeling was suppressed in rabbits of each group sacrificed at 90 days after irradiation. The results suggested that a short interval between implantation and irradiation causes direct contact between HA implant and bone and a long lapse of time before irradiation hardly affects the bone-implant contact, but delays bone remodeling. Therefore, it is necessary to prevent overloading the HA implants irradiated after implantation and pay utmost attention to conditions around the bone-implant contact. (author)

  13. One-stage explant-implant procedure of exposed porous orbital implants

    DEFF Research Database (Denmark)

    Toft, Peter B; Rasmussen, Marie L Roed; Prause, Jan Ulrik

    2011-01-01

    Purpose:  To investigate the risks of implant exposure after a combined explant-implant procedure in patients with an exposed porous orbital implant. Methods:  Twenty-four consecutive patients who had a combined explant-implant procedure of an exposed hydroxyapatite (21) or porous polyethylene (3...... at the same procedure in sockets without profound signs of infection. The procedure carries a possible risk of poor motility....

  14. Two-stage implant systems.

    Science.gov (United States)

    Fritz, M E

    1999-06-01

    Since the advent of osseointegration approximately 20 years ago, there has been a great deal of scientific data developed on two-stage integrated implant systems. Although these implants were originally designed primarily for fixed prostheses in the mandibular arch, they have been used in partially dentate patients, in patients needing overdentures, and in single-tooth restorations. In addition, this implant system has been placed in extraction sites, in bone-grafted areas, and in maxillary sinus elevations. Often, the documentation of these procedures has lagged. In addition, most of the reports use survival criteria to describe results, often providing overly optimistic data. It can be said that the literature describes a true adhesion of the epithelium to the implant similar to adhesion to teeth, that two-stage implants appear to have direct contact somewhere between 50% and 70% of the implant surface, that the microbial flora of the two-stage implant system closely resembles that of the natural tooth, and that the microbiology of periodontitis appears to be closely related to peri-implantitis. In evaluations of the data from implant placement in all of the above-noted situations by means of meta-analysis, it appears that there is a strong case that two-stage dental implants are successful, usually showing a confidence interval of over 90%. It also appears that the mandibular implants are more successful than maxillary implants. Studies also show that overdenture therapy is valid, and that single-tooth implants and implants placed in partially dentate mouths have a success rate that is quite good, although not quite as high as in the fully edentulous dentition. It would also appear that the potential causes of failure in the two-stage dental implant systems are peri-implantitis, placement of implants in poor-quality bone, and improper loading of implants. There are now data addressing modifications of the implant surface to alter the percentage of

  15. Impact of implant design on primary stability of orthodontic mini-implants.

    Science.gov (United States)

    Wilmes, Benedict; Ottenstreuer, Stephanie; Su, Yu-Yu; Drescher, Dieter

    2008-01-01

    Skeletal anchorage with mini-implants has greatly broadened the treatment possibilities in orthodontics over the last few years. To reduce implant failure rates, it is advisable to obtain adequate primary stability. The aim of this study was to quantitatively analyze the impact of implant design and dimension on primary stability. Forty-two porcine iliac bone segments were prepared and embedded in resin. To evaluate the primary stability, we documented insertion torques of the following mini-implants: Aarhus Screw, AbsoAnchor, LOMAS, Micro-Anchorage-System, ORLUS and Spider Screw. In each bone, five Dual Top Screws were inserted for reference purposes to achieve comparability among the specimens. We observed wide variation in insertion torques and hence primary stability, depending on mini-implant design and dimension; the great impact that mini-implant diameter has on insertion torques was particularly conspicuous. Conical mini-implants achieved higher primary stabilities than cylindrical designs. The diameter and design of the mini-implant thread have a distinctive impact on primary stability. Depending on the region of insertion and local bone quality, the choice of the mini-implant design and size is crucial to establish sufficient primary stability.

  16. Effect of implant position, angulation, and attachment height on peri-implant bone stress associated with mandibular two-implant overdentures: a finite element analysis.

    Science.gov (United States)

    Hong, Hae Ryong; Pae, Ahran; Kim, Yooseok; Paek, Janghyun; Kim, Hyeong-Seob; Kwon, Kung-Rock

    2012-01-01

    The aim of this study was to analyze and compare the level and distribution of peri-implant bone stresses associated with mandibular two-implant overdentures with different implant positions. Mathematical models of mandibles and overdentures were designed using finite element analysis software. Two intraosseous implants and ball attachment systems were placed in the interforaminal region. The overdenture, which was supported by the two implants, was designed to withstand bilateral and unilateral vertical masticatory loads (total 100 N). In all, eight types of models, which differed according to assigned implant positions, height of attachments, and angulation, were tested: MI (model with implants positioned in the lateral incisor sites), MC (implants in canine sites), MP (implants in premolar sites), MI-Hi (greater height of attachments), MC-M (canine implants placed with mesial inclination), MC-D (canine implants placed with distal inclination), MC-B (canine implants placed with buccal inclination), and MC-L (canine implants placed with lingual inclination). Peri-implant bone stress levels associated with overdentures retained by lateral incisor implants resulted in the lowest stress levels and the highest efficiency in distributing peri-implant stress. MI-Hi showed increased stress levels and decreased efficiency in stress distribution. As the implants were inclined, stress levels increased and the efficiency of stress distribution decreased. Among the inclined models, MC-B showed the lowest stress level and best efficiency in stress distribution. The lowest stress and the best stability of implants in mandibular two-implant overdentures were obtained when implants were inserted in lateral incisor areas with shorter attachments and were placed parallel to the long axes of the teeth.

  17. Implantation of β-emitters on biomedical implants: 32 P isotropic ion implantation using a coaxial plasma reactor

    International Nuclear Information System (INIS)

    Fortin, M.A.; Paynter, R.W.; Sarkissian, A.; Stansfield, B.L.; Terreault, B.; Dufresne, V.

    2003-01-01

    The development of endovascular brachytherapy and the treatment of certain types of cancers (liver, lung, prostate) often require the use of beta-emitters, sometimes in the form of radioisotope-implanted devices. Among the most commonly used isotopes figures 32 P, a pure beta-emitter (maximum energy: 1.7 MeV), of which the path in biological tissues is of a few cm, restricting the impact of electron bombardment to the immediate environment of the implant. Several techniques and processes have been tried to elaborate surfaces and devices showing strongly bonded, or implanted 32 P. Anodizing, vapor phase deposition, grafting of oligonucleotides, as well as ion implantation processes have been investigated by several research groups as methods to implant beta-radioisotopes into surfaces. A coaxial plasma reactor was developed at INRS to implant radioisotopes into cylindrical metallic objects, such as coronary stents commonly used in angioplasty procedures. The dispersion of 32 P atoms on the interior surfaces of the chamber can be investigated using radiographs, contributing to image the plasma ion transport mechanisms that guide the efficiency of the implantation procedure. The amount of radioactivity on the wall liner, on the internal components, and on the biomedical implants are quantified using a surface barrier detector. A comparative study establishes a relationship between the gray scale of the radiographs, and dose measurements. A program was developed to convert the digitized images into maps showing surface dose density in mCi/cm 2 . An integration process allows the quantification of the doses on the walls and components of the reactor. Finally, the resulting integral of the 32 P dose is correlated to the initial amount of radioactivity inserted inside the implanter before the dismantling procedure. This method could be introduced as a fast and reliable way to test, qualify and assess the amount of radioactivity present on the as-produced implants

  18. Improved Bone Micro Architecture Healing Time after Implant Surgery in an Ovariectomized Rat.

    Science.gov (United States)

    Takahashi, Takahiro; Watanabe, Takehiro; Nakada, Hiroshi; Sato, Hiroki; Tanimoto, Yasuhiro; Sakae, Toshiro; Kimoto, Suguru; Mijares, Dindo; Zhang, Yu; Kawai, Yasuhiko

    2016-01-01

    The present animal study investigated whether oral intake of synthetic bone mineral (SBM) improves peri-implant bone formation and bone micro architecture (BMA). SBM was used as an intervention experimental diet and AIN-93M was used as a control. The SBM was prepared by mixing dicalcium phosphate dihydrate (CaHPO 4 ·2H 2 O) and magnesium and zinc chlorides (MgCl 2 and ZnCl 2 , respectively), and hydrolyzed in double-distilled water containing dissolved potassium carbonate and sodium fluoride. All rats were randomly allocated into one of two groups: a control group was fed without SBM (n = 18) or an experimental group was fed with SBM (n = 18), at seven weeks old. At 9 weeks old, all rats underwent implant surgery on their femurs under general anesthesia. The implant was inserted into the insertion socket prepared at rats' femur to a depth of 2.5 mm by using a drill at 500 rpm. Nine rats in each group were randomly selected and euthanized at 2 weeks after implantation. The remaining nine rats in each group continued their diets, and were euthanized in the same manner at 4 weeks after implantation. The femur, including the implant, was removed from the body and implant was pulled out by an Instron universal testing machine. After the implant removal, BMA was evaluated by bone surface ratio (BS/BV), bone volume fraction (BV/TV), trabecular thickness (TbTh), trabecular number (TbN), trabecular star volume (Vtr), and micro-CT images. BS/BV, BV/TV, TbTh and Vtr were significantly greater in the rats were fed with SBM than those were fed without SBM at 2 and 4 weeks after implantation (P implant formation and BMA, prominent with trabecular bone structure. The effect of SBM to improve secondary stability of the implant, and shortening the treatment period should be investigated in the future study.

  19. Early implant-associated osteomyelitis results in a peri-implanted bacterial reservoir

    DEFF Research Database (Denmark)

    Jensen, Louise Kruse; Koch, Janne; Aalbæk, Bent

    2017-01-01

    weight of Staphylococcus aureus or saline was inserted into the right tibial bone of 12 pigs. The animals were consecutively killed on day 2, 4 and 6 following implantation. Bone tissue around the implant was histologically evaluated. Identification of S. aureus was performed immunohistochemically...... on tissue section and with scanning electron microscopy and peptide nucleic acid in situ hybridization on implants. The distance of the peri-implanted pathological bone area (PIBA), measured perpendicular to the implant, was significantly larger in infected animals compared to controls (p = 0...

  20. Influence of different implant materials on the primary stability of orthodontic mini-implants

    OpenAIRE

    Chin-Yun Pan; Szu-Ting Chou; Yu-Chuan Tseng; Yi-Hsin Yang; Chao-Yi Wu; Ting-Hsun Lan; Pao-Hsin Liu; Hong-Po Chang

    2012-01-01

    This study evaluates the influence of different implant materials on the primary stability of orthodontic mini-implants by measuring the resonance frequency. Twenty-five orthodontic mini-implants with a diameter of 2 mm were used. The first group contained stainless steel mini-implants with two different lengths (10 and 12 mm). The second group included titanium alloy mini-implants with two different lengths (10 and 12 mm) and stainless steel mini-implants 10 mm in length. The mini-implants w...

  1. Iodine-125 seed implantation for unresectable pancreatic carcinoma guided by intraoperative ultrasound

    International Nuclear Information System (INIS)

    Wang Junjie; Xiu Dianrong; Ran Weiqiang; Bai Jing; Zhu Lihong; Liu Jiangping

    2005-01-01

    Objective: To investigate the surgical technique, efficacy and side effects of 125 I seed interstitial implantation for pancreatic carcinoma. Methods: A total of 22 patients with biopsy proven unresectable adenocarcinoma of pancreas were treated with 125 I implants during laparotomy. Of them 11 patients were treated previously by a combination of bypass surgery. The stent was implanted in 2 cases 2 weeks before and 4 weeks after seed implantation. Seed needles were implanted parallelly to each other, with 1-1.5 cm apart. Mick applicator was being connected to each needle to implant seed. The radioactive activity ranged 0.40-0.70 mCi, the matched peripheral doses were 65-145 Gy. The mean number of 125 I seed was 11-78. Five cases received external beam irradiation with 3D-CRT, the doses were 39-70 Gy and 5 patients received 2 cycle of gemcitabine chemotherapy at 1000 mg/m 2 on dl and d8. Results: Pain was completely relieved in 12 cases, partially relieved in 2 cases, and no response was noted in one case, so the response rate was 93.33%. The median time was 2-3 d. Altogethe 27.27% of the cases died from local recurrence of pancreatic carcinoma and 50% from metastasis. The median survival time in these patients was 6 months, with a 2-year survival rate of 9.09%. The seed immigrated to liver in 3 cases. There were no serious side effects such as infection, pancreatitis, pancreatic fistula, etc. Conclusion: Radioactive seed implantation was safe, high local control, minidamage, satisfactory palliation of pain and without significant complications. (authors)

  2. Efficacy and safety of intravitreal bevacizumab in eyes with neovascular glaucoma undergoing Ahmed glaucoma valve implantation: 2-year follow-up.

    Science.gov (United States)

    Arcieri, Enyr S; Paula, Jayter S; Jorge, Rodrigo; Barella, Kleyton A; Arcieri, Rafael S; Secches, Danilo J; Costa, Vital P

    2015-02-01

    To evaluate the efficacy and safety of intravitreal bevacizumab (IVB) in eyes with neovascular glaucoma (NVG) undergoing Ahmed glaucoma valve (AGV) implantation. This was a multicentre, prospective, randomized clinical trial that enrolled 40 patients with uncontrolled neovascular glaucoma that had undergone panretinal photocoagulation and required glaucoma drainage device implantation. Patients were randomized to receive IVB (1.25 mg) or not during Ahmed valve implant surgery. Injections were administered intra-operatively, and 4 and 8 weeks after surgery. After a mean follow-up of 2.25 ± 0.67 years (range 1.5-3 years), both groups showed a significant decrease in IOP (p glaucoma undergoing Ahmed glaucoma valve implantation. There is a trend to slightly lower IOPs and number of medications with IVB use during AGV implantation for neovascular glaucoma. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  3. Qualitative and quantitative analysis of bacteria from vaginitis associated with intravaginal implants in ewes following estrus synchronization

    Directory of Open Access Journals (Sweden)

    Carlos Otávio de Paula Vasconcelos

    2016-04-01

    Full Text Available ABSTRACT: This study evaluated the presence of vaginitis and the bacterial load associated with different intravaginal implants in ewes. Twenty-four Dorper and crossbred ewes were allocated into three groups and received intravaginal implant containing 0.3g progesterone (CIDR(r, 60mg MAP or sponges without progesterone (CONTROL for six days. Then, CIDR and MAP treated-ewes received 12.5mg dinoprost and 300IU eCG. Vaginal mucus samples were collected at four times: before device insertion, at the day of its removal, 24 and 48 hours after. The samples were cultured and the colonies were counted (CFU/mL and identified. The results obtained from the counting of CFU mL-1 were submitted to Kruskal-Wallis H test, with P0.05 in comparison with MAP and CIDR-treated ewes. During the occurrence of vaginitis, the predominant isolates belonged to the coliform group, mainly Escherichia coli (72.7%. Such infection was not determined by the members of the vaginal microbiota that were present before implant insertion and normal microbiota was restored between 24 to 48 hours after insert removal.

  4. Influence of different implant materials on the primary stability of orthodontic mini-implants.

    Science.gov (United States)

    Pan, Chin-Yun; Chou, Szu-Ting; Tseng, Yu-Chuan; Yang, Yi-Hsin; Wu, Chao-Yi; Lan, Ting-Hsun; Liu, Pao-Hsin; Chang, Hong-Po

    2012-12-01

    This study evaluates the influence of different implant materials on the primary stability of orthodontic mini-implants by measuring the resonance frequency. Twenty-five orthodontic mini-implants with a diameter of 2 mm were used. The first group contained stainless steel mini-implants with two different lengths (10 and 12 mm). The second group included titanium alloy mini-implants with two different lengths (10 and 12 mm) and stainless steel mini-implants 10 mm in length. The mini-implants were inserted into artificial bones with a 2-mm-thick cortical layer and 40 or 20 lb/ft(3) trabecular bone density at insertion depths of 2, 4, and 6 mm. The resonance frequency of the mini-implants in the artificial bone was detected with the Implomates(®) device. Data were analyzed by two-way analysis of variance followed by the Tukey honestly significant difference test (α = 0.05). Greater insertion depth resulted in higher resonance frequency, whereas longer mini-implants showed lower resonance frequency values. However, resonance frequency was not influenced by the implant materials titanium alloy or stainless steel. Therefore, the primary stability of a mini-implant is influenced by insertion depth and not by implant material. Insertion depth is extremely important for primary implant stability and is critical for treatment success. Copyright © 2012. Published by Elsevier B.V.

  5. Influence of different implant materials on the primary stability of orthodontic mini-implants

    Directory of Open Access Journals (Sweden)

    Chin-Yun Pan

    2012-12-01

    Full Text Available This study evaluates the influence of different implant materials on the primary stability of orthodontic mini-implants by measuring the resonance frequency. Twenty-five orthodontic mini-implants with a diameter of 2 mm were used. The first group contained stainless steel mini-implants with two different lengths (10 and 12 mm. The second group included titanium alloy mini-implants with two different lengths (10 and 12 mm and stainless steel mini-implants 10 mm in length. The mini-implants were inserted into artificial bones with a 2-mm-thick cortical layer and 40 or 20 lb/ft3 trabecular bone density at insertion depths of 2, 4, and 6 mm. The resonance frequency of the mini-implants in the artificial bone was detected with the Implomates® device. Data were analyzed by two-way analysis of variance followed by the Tukey honestly significant difference test (α = 0.05. Greater insertion depth resulted in higher resonance frequency, whereas longer mini-implants showed lower resonance frequency values. However, resonance frequency was not influenced by the implant materials titanium alloy or stainless steel. Therefore, the primary stability of a mini-implant is influenced by insertion depth and not by implant material. Insertion depth is extremely important for primary implant stability and is critical for treatment success.

  6. Imaging of common breast implants and implant-related complications: A pictorial essay

    OpenAIRE

    Shah, Amisha T; Jankharia, Bijal B

    2016-01-01

    The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance i...

  7. Dental Implant Surgery

    Science.gov (United States)

    ... here to find out more. Dental Implant Surgery Dental Implant Surgery Dental implant surgery is, of course, ... to find out more. Wisdom Teeth Management Wisdom Teeth Management An impacted wisdom tooth can damage neighboring ...

  8. [Clinical application of individualized three-dimensional printing implant template in multi-tooth dental implantation].

    Science.gov (United States)

    Wang, Lie; Chen, Zhi-Yuan; Liu, Rong; Zeng, Hao

    2017-08-01

    To study the value and satisfaction of three-dimensional printing implant template and conventional implant template in multi-tooth dental implantation. Thirty cases (83 teeth) with missing teeth needing to be implanted were randomly divided into conventional implant template group (CIT group, 15 cases, 42 teeth) and 3D printing implant template group (TDPIT group, 15 cases, 41 teeth). Patients in CIT group were operated by using conventional implant template, while patients in TDPIT group were operated by using three-dimensional printing implant template. The differences of implant neck and tip deviation, implant angle deviation and angle satisfaction between the two groups were compared. The difference of probing depth and bone resorption of implant were compared 1 year after operation between the two groups. The difference of success rate and satisfaction of dental implantation were compared 1 year after operation between the two groups. SPSS19.0 software package was used for statistical analysis. The deviation direction of the neck and the tip in disto-mesial, bucco-palatal, vertical direction and angle of implants in disto-mesial and bucco-palatal direction in TDPIT group were significantly lower than in CIT group (P0.05). The difference of the cumulative success rate in dental implantation at 3 months and 6 months between the two groups were not significant (P>0.05), but the cumulative success rate of TDPIT group was significantly higher than CIT group at 9 months and 1 year (90.48% vs 100%,P=0.043). The patients' satisfaction rate of dental implantation in TDPIT group was significantly higher than in CIT group (86.67% vs 53.33%, P=0.046). Using three-dimensional printing implant template can obtain better accuracy of implant, higher implant success rate and better patients' satisfaction than using conventional implant template. It is suitable for clinical application.

  9. Nanosystems in Ceramic Oxides Created by Means of Ion Implantation

    OpenAIRE

    Van Huis, M.A.

    2003-01-01

    The material properties of nanometer-sized clusters are dependent on the cluster size. Changing the cluster dimensions induces structural phase transformations, metal-insulator transitions, non-linear optical properties and widening of the band gap of semiconductors. In this work, nanoclusters are created by ion implantation followed by thermal annealing. The ceramic oxides MgO and Al2O3 are used as embedding materials because of their stability and optical transparency. All clusters were cre...

  10. Osseointegration of zirconia implants: an SEM observation of the bone-implant interface.

    Science.gov (United States)

    Depprich, Rita; Zipprich, Holger; Ommerborn, Michelle; Mahn, Eduardo; Lammers, Lydia; Handschel, Jörg; Naujoks, Christian; Wiesmann, Hans-Peter; Kübler, Norbert R; Meyer, Ulrich

    2008-11-06

    The successful use of zirconia ceramics in orthopedic surgery led to a demand for dental zirconium-based implant systems. Because of its excellent biomechanical characteristics, biocompatibility, and bright tooth-like color, zirconia (zirconium dioxide, ZrO2) has the potential to become a substitute for titanium as dental implant material. The present study aimed at investigating the osseointegration of zirconia implants with modified ablative surface at an ultrastructural level. A total of 24 zirconia implants with modified ablative surfaces and 24 titanium implants all of similar shape and surface structure were inserted into the tibia of 12 Göttinger minipigs. Block biopsies were harvested 1 week, 4 weeks or 12 weeks (four animals each) after surgery. Scanning electron microscopy (SEM) analysis was performed at the bone implant interface. Remarkable bone attachment was already seen after 1 week which increased further to intimate bone contact after 4 weeks, observed on both zirconia and titanium implant surfaces. After 12 weeks, osseointegration without interposition of an interfacial layer was detected. At the ultrastructural level, there was no obvious difference between the osseointegration of zirconia implants with modified ablative surfaces and titanium implants with a similar surface topography. The results of this study indicate similar osseointegration of zirconia and titanium implants at the ultrastructural level.

  11. Ion Implantation in III-V Compound Semiconductors

    Science.gov (United States)

    1984-09-01

    340 keV H + -0 Ga P  O UES-723-292 !:• (H o>ray *P-K X - rayO Ga-K X -ray iii! RBS * ..I -iO.. 0 10I to1. 01 • .0 -. I0 1 LI =i, O I 0 01 0.J 10...Identity by blo ," pume) Ion Implantation, GaAs, Hall effect, electrical resistivity, Rutherford Backscattering (RBS), channeling, Proton induced x -ray...Mebility (jH) upon Aiinealing Temperature (TA) for 1 X 101 /cm• Dose Samples of GaAs:Mg with Three Different Capping Methods 33 p 14 Dependence of Surface

  12. Influence of controlled immediate loading and implant design on peri-implant bone formation.

    Science.gov (United States)

    Vandamme, Katleen; Naert, Ignace; Geris, Liesbet; Vander Sloten, Jozef; Puers, Robert; Duyck, Joke

    2007-02-01

    Tissue formation at the implant interface is known to be sensitive to mechanical stimuli. The aim of the study was to compare the bone formation around immediately loaded versus unloaded implants in two different implant macro-designs. A repeated sampling bone chamber with a central implant was installed in the tibia of 10 rabbits. Highly controlled loading experiments were designed for a cylindrical (CL) and screw-shaped (SL) implant, while the unloaded screw-shaped (SU) implant served as a control. An F-statistic model with alpha=5% determined statistical significance. A significantly higher bone area fraction was observed for SL compared with SU (pimplant contact occurred was the highest for SL and significantly different from SU (pimplant contact was observed, a loading (SL versus SU: p=0.0049) as well as an implant geometry effect (SL versus CL: p=0.01) was found, in favour of the SL condition. Well-controlled immediate implant loading accelerates tissue mineralization at the interface. Adequate bone stimulation via mechanical coupling may account for the larger bone response around the screw-type implant compared with the cylindrical implant.

  13. The influence of direct laser metal sintering implants on the early stages of osseointegration in diabetic mini-pigs

    Directory of Open Access Journals (Sweden)

    Tan NW

    2017-07-01

    Full Text Available Naiwen Tan,1–3,* Xiangwei Liu,1,2,* Yanhui Cai,4 Sijia Zhang,1,2 Bo Jian,1,2 Yuchao Zhou,1,2 Xiaoru Xu,1,2 Shuai Ren,1,2 Hongbo Wei,1,2 Yingliang Song1,2 1State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Xi’an, Shaanxi, China; 2Department of Implant Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China; 3Department of Stomatology, Hospital 463 of PLA, Xi’an, Shaanxi, China; 4Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China *These authors contributed equally to this work Background: High failure rates of oral implants have been reported in diabetic patients due to the disruption of osseointegration. The aim of this study was to investigate whether direct laser metal sintering (DLMS could improve osseointegration in diabetic animal models. Methods: Surface characterizations were carried out on two types of implants. Cell morphology and the osteogenic-related gene expression of MG63 cells were observed under conditions of DLMS and microarc oxidation (MAO. A diabetes model in mini-pigs was established by intravenous injection of streptozotocin (150 mg/kg, and a total of 36 implants were inserted into the mandibular region. Micro-computed tomography (micro-CT and histologic evaluations were performed 3 and 6 months after implantation. Results: The Ra (the average of the absolute height of all points of MAO surface was 2.3±0.3 µm while the DLMS surface showed the Ra of 27.4±1.1 µm. The cells on DLMS implants spread out more podia than those on MAO implants through cell morphology analysis. Osteogenic-related gene expression was also dramatically increased in the DLMS group. Obvious improvement was observed in the micro-CT and Van Gieson staining analyses of DLMS implants compared with MAO at 3 months

  14. Resistance of Magnesium Alloys to Corrosion Fatigue for Biodegradable Implant Applications: Current Status and Challenges

    Science.gov (United States)

    Raman, R. K. Singh; Harandi, Shervin Eslami

    2017-01-01

    Magnesium (Mg) alloys are attracting increasing interest as the most suitable metallic materials for construction of biodegradable and bio-absorbable temporary implants. However, Mg-alloys can suffer premature and catastrophic fracture under the synergy of cyclic loading and corrosion (i.e., corrosion fatigue (CF)). Though Mg alloys are reported to be susceptible to CF also in the corrosive human body fluid, there are very limited studies on this topic. Furthermore, the in vitro test parameters employed in these investigations have not properly simulated the actual conditions in the human body. This article presents an overview of the findings of available studies on the CF of Mg alloys in pseudo-physiological solutions and the employed testing procedures, as well as identifying the knowledge gap. PMID:29144428

  15. Resistance of Magnesium Alloys to Corrosion Fatigue for Biodegradable Implant Applications: Current Status and Challenges.

    Science.gov (United States)

    Raman, R K Singh; Harandi, Shervin Eslami

    2017-11-16

    Magnesium (Mg) alloys are attracting increasing interest as the most suitable metallic materials for construction of biodegradable and bio-absorbable temporary implants. However, Mg-alloys can suffer premature and catastrophic fracture under the synergy of cyclic loading and corrosion (i.e., corrosion fatigue (CF)). Though Mg alloys are reported to be susceptible to CF also in the corrosive human body fluid, there are very limited studies on this topic. Furthermore, the in vitro test parameters employed in these investigations have not properly simulated the actual conditions in the human body. This article presents an overview of the findings of available studies on the CF of Mg alloys in pseudo-physiological solutions and the employed testing procedures, as well as identifying the knowledge gap.

  16. Effect of Cs and Li atom adsorption on MgO: Secondary emission and work function

    International Nuclear Information System (INIS)

    Bagraev, N.T.; Borisov, V.L.

    1980-01-01

    Adsorption of Cs and Li atoms on the surface of single crystal magnesium oxide films has been investigated using Auger, LEED and contact difference techniques. A decreased work function for a single crystal MgO film grown on the Mo (100) face was observed to be accompanied by an increased secondary electron emission yield shown to be due to a larger escape depth for secondary electrons. LEED showed well ordered layers of adsorbed Cs on the MgO film surface. A model to explain the behaviour of Cs atoms on the film surface is proposed. It is shown that the stability of the Cs coating is not dependent on a prolonged bombardment of the film by incident electron beams of high current density. Depositing and implanting of thin single crystal MgO films with Li were found to result in an increased secondary electron emission yield, with Li adsorption on the MgO film surface being disordered. (orig.)

  17. Influence of Implant Positions and Occlusal Forces on Peri-Implant Bone Stress in Mandibular Two-Implant Overdentures: A 3-Dimensional Finite Element Analysis.

    Science.gov (United States)

    Alvarez-Arenal, Angel; Gonzalez-Gonzalez, Ignacio; deLlanos-Lanchares, Hector; Brizuela-Velasco, Aritza; Dds, Elena Martin-Fernandez; Ellacuria-Echebarria, Joseba

    2017-12-01

    The aim of this study was to evaluate and compare the bone stress around implants in mandibular 2-implant overdentures depending on the implant location and different loading conditions. Four 3-dimensional finite element models simulating a mandibular 2-implant overdenture and a Locator attachment system were designed. The implants were located at the lateral incisor, canine, second premolar, and crossed-implant levels. A 150 N unilateral and bilateral vertical load of different location was applied, as was 40 N when combined with midline load. Data for von Mises stress were produced numerically, color coded, and compared between the models for peri-implant bone and loading conditions. With unilateral loading, in all 4 models much higher peri-implant bone stress values were recorded on the load side compared with the no-load side, while with bilateral occlusal loading, the stress distribution was similar on both sides. In all models, the posterior unilateral load showed the highest stress, which decreased as the load was applied more mesially. In general, the best biomechanical environment in the peri-implant bone was found in the model with implants at premolar level. In the crossed-implant model, the load side greatly altered the biomechanical environment. Overall, the overdenture with implants at second premolar level should be the chosen design, regardless of where the load is applied. The occlusal loading application site influences the bone stress around the implant. Bilateral occlusal loading distributes the peri-implant bone stress symmetrically, while unilateral loading increases it greatly on the load side, no matter where the implants are located.

  18. CLINICAL CONSIDERATIONS OF DENTAL IMPLANT SYSTEM IN IMMEDIATE LOADING IMPLANT CASES

    Directory of Open Access Journals (Sweden)

    Carolina Damayanti Marpaung

    2015-06-01

    Full Text Available Immediate loading of dental implant has been researched intensively in the development of Branemark’s early concept of 2 stages implant placement. This was embarked from both patients and practiitioner’s convenience towards a simpler protocol and shorter time frame. Many recent researchers later found that micromotions derived from occlusal loading for a certain degree, instead of resulting a fibrous tissue encapsulation, can enhance the osseointegration process. Dental Implant system enhancement towards maximizing the primary stability held a key factor in Branemark’s concept development. Surgical protocol and implant design was found to give a significant contribution to the prognosis of immediate-loading implants.

  19. Psychological intervention following implantation of an implantable defibrillator

    DEFF Research Database (Denmark)

    Pedersen, Susanne S.; van den Broek, Krista C; Sears, Samuel F

    2007-01-01

    The medical benefits of the implantable cardioverter defibrillator (ICD) are unequivocal, but a subgroup of patients experiences emotional difficulties following implantation. For this subgroup, some form of psychological intervention may be warranted. This review provides an overview of current ...

  20. Prevalence of Peri-Implant Mucositis and Peri-Implantitis in Patients Treated with a Combination of Axial and Tilted Implants Supporting a Complete Fixed Denture

    Directory of Open Access Journals (Sweden)

    Nicolò Cavalli

    2015-01-01

    Full Text Available Objectives. The aim of this retrospective study was to assess the incidence and prevalence of peri-implant mucositis and peri-implantitis in patients with a fixed full-arch prosthesis supported by two axial and two tilted implants. Materials and Methods. Sixty-nine patients were included in the study. Each patient received a fixed full-arch prosthesis supported by two mesial axial and two distal tilted implants to rehabilitate the upper arch, the lower arch, or both. Three hundred thirty-six implants for 84 restorations were delivered. Patients were scheduled for follow-up visits every 6 months in the first 2 years and yearly after. At each follow-up visit peri-implant mucositis and peri-implantitis were diagnosed if present. Results. The overall follow-up range was from 12 to 130 months (mean 63,2 months. Three patients presented peri-implantitis. The prevalence of peri-implant mucositis ranged between 0 and 7,14% of patients (5,06% of implants while the prevalence of peri-implantitis varied from 0 to 4,55% of patients (3,81% of implants. Conclusions. The prevalence and incidence of peri-implant mucositis and peri-implantitis are lower than most of the studies in literature. Therefore this kind of rehabilitation could be considered a feasible option, on the condition of adopting a systematic hygienic protocol.

  1. A new system of implant abutment connection: how to improve a two piece implant system sealing.

    Science.gov (United States)

    Grecchi, F; DI Girolamo, M; Cura, F; Candotto, V; Carinci, F

    2017-01-01

    Implant dentistry has become one of the most successful dentistry techniques for replacing missing teeth. The success rate of implant dentistry is above 80%. However, peri-implantitis is a later complication of implant dentistry that if untreated, can lead to implant loss. One of the hypotized causes of peri-implantis is the bacterial leakage at the level of implant-abutment connection. Bacterial leakage is favored to the presence of a micro gap at the implant-abutment interface, allowing microorganisms to penetrate and colonize the inner part of the implant leading to biofilm accumulation and consequently to peri-implantitis development. To identify the capability of the implant to protect the internal space from the external environment, the passage of genetically modified Escherichia coli across implant-abutment interface was evaluated. Implants were immerged in a bacterial culture for twenty-four hours and then bacteria amount was measured inside implant-abutment interface with Real-time PCR. Bacteria were detected inside all studied implants, with a median percentage of 9%. The reported results are better to those of previous studies carried out on different implant systems. Until now, none implant-abutment system has been proven to seal the gap between implant and abutment.

  2. Poly Implants Prosthèse Breast Implants: A Case Series and Review of the Literature.

    Science.gov (United States)

    Klein, Doron; Hadad, Eran; Wiser, Itay; Wolf, Omer; Itzhaki Shapira, Ortal; Fucks, Shir; Heller, Lior

    2018-01-01

    Silicone breast implants from the French manufacturer Poly Implants Prosthèse (PIP) were recalled from the European market after the French regulator has revealed the implants contain non-medical-grade silicone filler. In December 2011, following a large increase in reported rupture rate and a possible cancer risk, the French Ministry of Health recommended consideration of the PIP explantation, regardless of their condition. In 2012, the Israel Ministry of Health recommended to replace the implants only upon suspected implant rupture. The aims of this study were to characterize breast-augmented Israeli patients with PIP implants, compare their outcomes with those of breast-augmented patients with different implant types, and review the current PIP literature. Breast-augmented patients who underwent an elective breast implant exchange in Israel between January 2011 and January 2017 were included in the study. Data were collected from electronic and physical medical files. There were 73 breast-augmented female patients with 146 PIP breast implants included in this study. Average implant age was 6.7 ± 2.79 years. Mean implant size was 342.8 ± 52.9 mL. Fourteen women (19 implants [16%]) had a high-grade capsular contracture (Baker grade 3-4). During exchange, 28 implants were found to be ruptured (19.2%). Less than 10 years following breast augmentation, PIP implants demonstrated higher rupture rate compared with other implants. Our data are comparable to overall available rupture rate. Among patients with definitive rupture diagnosis, an elective implant removal should be recommended. In cases of undamaged implants, plastic surgeons should also seriously consider PIP implant explantation. When the patient does not desire to remove the implant, an annual physical examination and breast ultrasound are recommended, beginning a year after augmentation.

  3. Ion implantation into diamond

    International Nuclear Information System (INIS)

    Sato, Susumu

    1994-01-01

    The graphitization and the change to amorphous state of diamond surface layer by ion implantation and its characteristics are reported. In the diamond surface, into which more than 10 16 ions/cm 2 was implanted, the diamond crystals are broken, and the structure changes to other carbon structure such as amorphous state or graphite. Accompanying this change of structure, the electric conductivity of the implanted layer shows two discontinuous values due to high resistance and low resistance. This control of structure can be done by the temperature of the base during the ion implantation into diamond. Also it is referred to that by the base temperature during implantation, the mutual change of the structure between amorphous state and graphite can be controlled. The change of the electric resistance and the optical characteristics by the ion implantation into diamond surface, the structural analysis by Raman spectroscopy, and the control of the structure of the implanted layer by the base temperature during implantation are reported. (K.I.)

  4. Sacroiliac joint stability: Finite element analysis of implant number, orientation, and superior implant length.

    Science.gov (United States)

    Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K

    2018-03-18

    To analyze how various implants placement variables affect sacroiliac (SI) joint range of motion. An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the SI joint using various placement configurations of triangular implants (iFuse Implant System ® ). Placement configurations were varied by changing implant orientation, superior implant length, and number of implants. The range of motion of the SI joint was calculated using a constant moment of 10 N-m with a follower load of 400 N. The changes in motion were compared between the treatment groups to assess how the different variables affected the overall motion of the SI joint. Transarticular placement of 3 implants with superior implants that end in the middle of the sacrum resulted in the greatest reduction in range of motion (flexion/extension = 73%, lateral bending = 42%, axial rotation = 72%). The range of motions of the SI joints were reduced with use of transarticular orientation (9%-18%) when compared with an inline orientation. The use of a superior implant that ended mid-sacrum resulted in median reductions of (8%-14%) when compared with a superior implant that ended in the middle of the ala. Reducing the number of implants, resulted in increased SI joint range of motions for the 1 and 2 implant models of 29%-133% and 2%-39%, respectively, when compared with the 3 implant model. Using a validated finite element model we demonstrated that placement of 3 implants across the SI joint using a transarticular orientation with superior implant reaching the sacral midline resulted in the most stable construct. Additional clinical studies may be required to confirm these results.

  5. Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys.

    Science.gov (United States)

    Zhao, Chaoyong; Pan, Fusheng; Zhang, Lei; Pan, Hucheng; Song, Kai; Tang, Aitao

    2017-01-01

    In this study, as-extruded Mg-Sr alloys were studied for orthopedic application, and the microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys were investigated by optical microscopy, scanning electron microscopy with an energy dispersive X-ray spectroscopy, X-ray diffraction, tensile and compressive tests, immersion test, electrochemical test and cytotoxicity test. The results showed that as-extruded Mg-Sr alloys were composed of α-Mg and Mg 17 Sr 2 phases, and the content of Mg 17 Sr 2 phases increased with increasing Sr content. As-extruded Mg-Sr alloy with 0.5wt.% Sr was equiaxed grains, while the one with a higher Sr content was long elongated grains and the grain size of the long elongated grains decreased with increasing Sr content. Tensile and compressive tests showed an increase of both tensile and compressive strength and a decrease of elongation with increasing Sr content. Immersion and electrochemical tests showed that as-extruded Mg-0.5Sr alloy exhibited the best anti-corrosion property, and the anti-corrosion property of as-extruded Mg-Sr alloys deteriorated with increasing Sr content, which was greatly associated with galvanic couple effect. The cytotoxicity test revealed that as-extruded Mg-0.5Sr alloy did not induce toxicity to cells. These results indicated that as-extruded Mg-0.5Sr alloy with suitable mechanical properties, corrosion resistance and good cytocompatibility was potential as a biodegradable implant for orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Impact of cone-beam computed tomography on implant planning and on prediction of implant size

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso, Ludmila Assuncao de Mello; Silva, Maria Alves Garcia Santos, E-mail: ludmilapedroso@hotmail.com [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia; Garcia, Robson Rodrigues [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Medicina Oral; Leles, Jose Luiz Rodrigues [Universidade Paulista (UNIP), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Cirurgia; Leles, Claudio Rodrigues [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Prevencao e Reabilitacao Oral

    2013-11-15

    The aim was to investigate the impact of cone-beam computed tomography (CBCT) on implant planning and on prediction of final implant size. Consecutive patients referred for implant treatment were submitted to clinical examination, panoramic (PAN) radiography and a CBCT exam. Initial planning of implant length and width was assessed based on clinical and PAN exams, and final planning, on CBCT exam to complement diagnosis. The actual dimensions of the implants placed during surgery were compared with those obtained during initial and final planning, using the McNemmar test (p < 0.05). The final sample comprised 95 implants in 27 patients, distributed over the maxilla and mandible. Agreement in implant length was 50.5% between initial and final planning, and correct prediction of the actual implant length was 40.0% and 69.5%, using PAN and CBCT exams, respectively. Agreement in implant width assessment ranged from 69.5% to 73.7%. A paired comparison of the frequency of changes between initial or final planning and implant placement (McNemmar test) showed greater frequency of changes in initial planning for implant length (p < 0.001), but not for implant width (p = 0.850). The frequency of changes was not influenced by implant location at any stage of implant planning (chi-square test, p > 0.05). It was concluded that CBCT improves the ability of predicting the actual implant length and reduces inaccuracy in surgical dental implant planning. (author)

  7. Metals for bone implants. Part 1. Powder metallurgy and implant rendering.

    Science.gov (United States)

    Andani, Mohsen Taheri; Shayesteh Moghaddam, Narges; Haberland, Christoph; Dean, David; Miller, Michael J; Elahinia, Mohammad

    2014-10-01

    New metal alloys and metal fabrication strategies are likely to benefit future skeletal implant strategies. These metals and fabrication strategies were looked at from the point of view of standard-of-care implants for the mandible. These implants are used as part of the treatment for segmental resection due to oropharyngeal cancer, injury or correction of deformity due to pathology or congenital defect. The focus of this two-part review is the issues associated with the failure of existing mandibular implants that are due to mismatched material properties. Potential directions for future research are also studied. To mitigate these issues, the use of low-stiffness metallic alloys has been highlighted. To this end, the development, processing and biocompatibility of superelastic NiTi as well as resorbable magnesium-based alloys are discussed. Additionally, engineered porosity is reviewed as it can be an effective way of matching the stiffness of an implant with the surrounding tissue. These porosities and the overall geometry of the implant can be optimized for strain transduction and with a tailored stiffness profile. Rendering patient-specific, site-specific, morphology-specific and function-specific implants can now be achieved using these and other metals with bone-like material properties by additive manufacturing. The biocompatibility of implants prepared from superelastic and resorbable alloys is also reviewed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Thermal exposure effects on the in vitro degradation and mechanical properties of Mg-Sr and Mg-Ca-Sr biodegradable implant alloys and the role of the microstructure.

    Science.gov (United States)

    Bornapour, M; Celikin, M; Pekguleryuz, M

    2015-01-01

    Magnesium is an attractive biodegradable material for medical applications due to its non-toxicity, low density and good mechanical properties. The fast degradation rate of magnesium can be tailored using alloy design. The combined addition of Sr and Ca results in a good combination of mechanical and corrosion properties; the alloy compositions with the best performance are Mg-0.5Sr and Mg-0.3Sr-0.3Ca. In this study, we investigated an important effect, namely thermal treatment (at 400 °C), on alloy properties. The bio-corrosion of the alloys was analyzed via in vitro corrosion tests in simulated body fluid (SBF); the mechanical properties were studied through tensile, compression and three-point bending tests in two alloy conditions, as-cast and heat-treated. We showed that 8h of heat treatment increases the corrosion rate of Mg-0.5Sr very rapidly and decreases its mechanical strength. The same treatment does not significantly change the properties of Mg-0.3Sr-0.3Ca. An in-depth microstructural investigation via transmission electron microscopy, scanning electron microscopy, electron probe micro-analysis and X-ray diffraction elucidated the effects of the thermal exposure. Microstructural characterization revealed that Mg-0.3Sr-0.3Ca has a new intermetallic phase that is stable after 8h of thermal treatment. Longer thermal exposure (24h) leads to the dissolution of this phase and to its gradual transformation to the equilibrium phase Mg17Sr2, as well as to a loss of mechanical and corrosion properties. The ternary alloy shows better thermal stability than the binary alloy, but the manufacturing processes should aim to not exceed exposure to high temperatures (400 °C) for prolonged periods (over 24 h). Copyright © 2014 Elsevier B.V. All rights reserved.

  9. New, fast corroding high ductility Mg–Bi–Ca and Mg–Bi–Si alloys, with no clinically observable gas formation in bone implants

    International Nuclear Information System (INIS)

    Remennik, S.; Bartsch, I.; Willbold, E.; Witte, F.; Shechtman, D.

    2011-01-01

    Highlights: ► Biodegradable, biocompatible and highly ductile Mg alloys based on the Mg–Bi system have been produced by rapid solidification and extrusion processes. ► The implants corroded fast within the first 4 weeks after implantation in rabbit bone, but no gas formation has been clinically observed. ► The corrosion rate could be significantly reduced in vitro and in vivo by using high purity magnesium for the alloy production. - Abstract: Current approaches to initial corrosion rate reduction of biodegradable magnesium alloys include alloying with rare earth elements, mechanical processing, coatings and the use of metallic glasses. The latter has limited ductility needed for implant adaptively to various surgery procedures. Furthermore, slow corroding magnesium alloys, coatings or metallic glasses have not proved to be fully dissolvable in vivo. With this in mind, we have developed a new class of biocompatible, biodegradable ductile magnesium alloys with 40% elongation at room temperature. The alloys are based on the Mg–Bi system and undergo a series of production routes, which include rapid solidification (RS) and various extrusion processes. The Mg–Bi–Si (B-BS) system exhibited a high corrosion rates in vitro and was excluded from in vivo screening. In preliminary experiments of Mg–Bi–Ca (B-BX) in rabbit femur bones, the alloy corroded rapidly without any clinically visible gas formation. Only 30% of the B-BX implant remained uncorroded after 4 weeks of implantation. After using low iron Mg for implant preparation the corrosion rate of HP-B-BX was reduced in bone leaving 70% of the implant uncorroded after 4 weeks, while the corrosion in intramuscular and subcutaneous sites were still high leaving only 40% and 10% uncorroded after 4 weeks. The foreign body reaction was very mild and enhanced bone formation could be observed in the vicinity of the corroding implant. Thus, these new magnesium alloys are potentially promising biomaterials

  10. Sensitivity of the ureter to radiation before and after ureterojejuno-implantation

    International Nuclear Information System (INIS)

    Schenk, K.J.

    1981-01-01

    The investigation refers to dexhal ureterosigmoidostomies, carried out on 15 dogs. The implanted right ureters and the left ureters left in the bladders of 5 dogs were then treated with radiation of a total focal dose of 60 Gy. The investigation referred to the comparison of different ureter modalities and their sensibility to radiation in respect to statements on the various sorts of therapy strategies. The test animals which has been only operated on were killed 68 d.p.o at earliest and 295 d.p.o. The survival time of the 5 animals which has been operated on and irradiated was 156-269 d.p.o. and 22-59 d after the last irradiation, respectively. While the non-altered ureters remained without pathological findings, there were anastomotic stenoses with ascending infections of the upper urinary tract in 40% of the ureters only implanted into the sigma and another increase in the anastomotic stenoses (80%) was observed in the ureters which had been implanted and irradiated with a total focal dose of 60 Gy. It was also shown by means of X-ray method, macro and micropathology, that those ureters which had only been irradiated tolerated 30 and 60 Gy, resp., well and that the implanted ureters with subradical total focal dose of 30 Gy showed exact passage conditions in the i.v. urogram. (orig./MG) [de

  11. Novel implant design improves implant survival in multirooted extraction sites: a preclinical pilot study.

    Science.gov (United States)

    Sivan-Gildor, Adi; Machtei, Eli E; Gabay, Eran; Frankenthal, Shai; Levin, Liran; Suzuki, Marcelo; Coelho, Paulo G; Zigdon-Giladi, Hadar

    2014-10-01

    The primary aim is to evaluate clinical, radiographic, and histologic parameters of novel implants with "three roots" design that were inserted into fresh multirooted extraction sockets. A secondary aim is to compare this new implant to standard root-form dental implants. Immediate implantation of novel or standard design 6 × 6-mm implants was performed bilaterally into multirooted sockets in mandibles of mini-pigs. Twelve weeks later, clinical, radiographic, stability, histomorphometric, and microcomputed tomography (micro-CT) analyses were performed. Survival rates were significantly higher in the test implants compared with control (92.8% versus 33.3%, respectively; P micro-CT analyses demonstrated bone fill in the inner part of the test implants. Moreover, bone-to-implant contact was higher in the test implants (55.50% ± 3.68% versus 42.47% ± 9.89%). Contrary to the clinical, radiographic, and histomorphometric results, resonance frequency analysis measurements were greater in the control group (77.74 ± 3.21 implant stability quotient [ISQ]) compared with the test group (31.09 ± 0.28 ISQ), P = 0.008. The novel design implants resulted in significantly greater survival rate in multirooted extraction sites. Further studies will be required to validate these findings.

  12. Group D. Initiator paper. Implants--peri-implant (hard and soft tissue) interactions in health and disease: the impact of explosion of implant manufacturers.

    Science.gov (United States)

    Ivanovski, Saso

    2015-01-01

    1. The best-documented implants have a threaded solid screw-type design and are manufactured from commercially pure (grade IV) titanium. There is good evidence to support implants ≥ 6 mm in length, and ≥ 3 mm in diameter. 2. Integrity of the seal between the abutment and the implant is important for several reasons, including minimization of mechanical and biological complications and maintaining marginal bone levels. Although the ideal design features of the implant-abutment connection have not been determined, an internal connection, micro-grooves at the implant collar, and horizontal offset of the implant-abutment junction (platform switch) appear to impart favorable properties. 3. Implants with moderately rough implant surfaces provide advantages over machined surfaces in terms of the speed and extent of osseointegration. While the favorable performances of both minimally and moderately rough surfaces are supported by long-term data, moderately rough surfaces provide superior outcomes in compromised sites, such as the posterior maxilla. 4. Although plaque is critical in the progression of peri-implantitis, the disease has a multi-factorial aetiology, and may be influenced by poor integrity of the abutment/implant connection. Iatrogenic factors, such as the introduction of a foreign body. (e.g., cement) below the mucosal margin, can be important contributors. 5. Clinicians should exercise caution when using a particular implant system, ensuring that the implant design is appropriate and supported by scientific evidence. Central to this is access to and participation in quality education on the impact that implant characteristics can have on clinical outcomes. Caution should be exercised in utilizing non-genuine restorative componentry that may lead to a poor implant-abutment fit and subsequent technical and biological complications.

  13. New orthopaedic implant management tool for computer-assisted planning, navigation, and simulation: from implant CAD files to a standardized XML-based implant database.

    Science.gov (United States)

    Sagbo, S; Blochaou, F; Langlotz, F; Vangenot, C; Nolte, L-P; Zheng, G

    2005-01-01

    Computer-Assisted Orthopaedic Surgery (CAOS) has made much progress over the last 10 years. Navigation systems have been recognized as important tools that help surgeons, and various such systems have been developed. A disadvantage of these systems is that they use non-standard formalisms and techniques. As a result, there are no standard concepts for implant and tool management or data formats to store information for use in 3D planning and navigation. We addressed these limitations and developed a practical and generic solution that offers benefits for surgeons, implant manufacturers, and CAS application developers. We developed a virtual implant database containing geometrical as well as calibration information for orthopedic implants and instruments, with a focus on trauma. This database has been successfully tested for various applications in the client/server mode. The implant information is not static, however, because manufacturers periodically revise their implants, resulting in the deletion of some implants and the introduction of new ones. Tracking these continuous changes and keeping CAS systems up to date is a tedious task if done manually. This leads to additional costs for system development, and some errors are inevitably generated due to the huge amount of information that has to be processed. To ease management with respect to implant life cycle, we developed a tool to assist end-users (surgeons, hospitals, CAS system providers, and implant manufacturers) in managing their implants. Our system can be used for pre-operative planning and intra-operative navigation, and also for any surgical simulation involving orthopedic implants. Currently, this tool allows addition of new implants, modification of existing ones, deletion of obsolete implants, export of a given implant, and also creation of backups. Our implant management system has been successfully tested in the laboratory with very promising results. It makes it possible to fill the current gap

  14. Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg-6 wt.% Zn Scaffolds for Bone Tissue Engineering

    Science.gov (United States)

    Yan, Yang; Kang, Yijun; Li, Ding; Yu, Kun; Xiao, Tao; Wang, Qiyuan; Deng, Youwen; Fang, Hongjie; Jiang, Dayue; Zhang, Yu

    2018-03-01

    Porous Mg-based scaffolds have been extensively researched as biodegradable implants due to their attractive biological and excellent mechanical properties. In this study, porous Mg-6 wt.% Zn scaffolds were prepared by powder metallurgy using ammonium bicarbonate particles as space-holder particles. The effects of space-holder particle content on the microstructure, mechanical properties and corrosion resistance of the Mg-6 wt.% Zn scaffolds were studied. The mean porosity and pore size of the open-cellular scaffolds were within the range 6.7-52.2% and 32.3-384.2 µm, respectively. Slight oxidation was observed at the grain boundaries and on the pore walls. The Mg-6 wt.% Zn scaffolds were shown to possess mechanical properties comparable with those of natural bone and had variable in vitro degradation rates. Increased content of space-holder particles negatively affected the mechanical behavior and corrosion resistance of the Mg-6 wt.% Zn scaffolds, especially when higher than 20%. These results suggest that porous Mg-6 wt.% Zn scaffolds are promising materials for application in bone tissue engineering.

  15. Ion implantation technology

    CERN Document Server

    Downey, DF; Jones, KS; Ryding, G

    1993-01-01

    Ion implantation technology has made a major contribution to the dramatic advances in integrated circuit technology since the early 1970's. The ever-present need for accurate models in ion implanted species will become absolutely vital in the future due to shrinking feature sizes. Successful wide application of ion implantation, as well as exploitation of newly identified opportunities, will require the development of comprehensive implant models. The 141 papers (including 24 invited papers) in this volume address the most recent developments in this field. New structures and possible approach

  16. Wear Behavior of an Unstable Knee: Stabilization via Implant Design?

    Directory of Open Access Journals (Sweden)

    Jörn Reinders

    2014-01-01

    Full Text Available Background. Wear-related failures and instabilities are frequent failure mechanisms of total knee replacements. High-conforming designs may provide additional stability for the joint. This study analyzes the effects of a ligamentous insufficiency on the stability and the wear behavior of a high-conforming knee design. Methods. Two simulator wear tests were performed on a high-conforming total knee replacement design. In the first, a ligamentous-stable knee replacement with a sacrificed anterior cruciate ligament was simulated. In the second, a ligamentous-unstable knee with additionally insufficient posterior cruciate ligament and medial collateral ligament was simulated. Wear was determined gravimetrically and wear particles were analyzed. Implant kinematics was recorded during simulation. Results. Significantly higher wear rates (P≤0.001 were observed for the unstable knee (14.58±0.56 mg/106 cycles compared to the stable knee (7.97 ± 0.87 mg/106 cycles. A higher number of wear particles with only small differences in wear particle characteristics were observed. Under unstable knee conditions, kinematics increased significantly for translations and rotations (P≤0.01. This increase was mainly attributed to higher tibial posterior translation and internal rotations. Conclusion. Higher kinematics under unstable test conditions is a result of insufficient stabilization via implant design. Due to the higher kinematics, increased wear was observed in this study.

  17. Individual titanium zygomatic implant

    Science.gov (United States)

    Nekhoroshev, M. V.; Ryabov, K. N.; Avdeev, E. V.

    2018-03-01

    Custom individual implants for the reconstruction of craniofacial defects have gained importance due to better qualitative characteristics over their generic counterparts – plates, which should be bent according to patient needs. The Additive Manufacturing of individual implants allows reducing cost and improving quality of implants. In this paper, the authors describe design of zygomatic implant models based on computed tomography (CT) data. The fabrication of the implants will be carried out with 3D printing by selective laser melting machine SLM 280HL.

  18. A 5-year randomized trial to compare 1 or 2 implants for implant overdentures.

    Science.gov (United States)

    Bryant, S R; Walton, J N; MacEntee, M I

    2015-01-01

    The hypothesis of this 5-y randomized clinical trial was that there would be no significant difference in the satisfaction of edentulous participants with removable complete overdentures attached to 1 or 2 mandibular implants. Secondary aims were to test changes in satisfaction between and within the groups from baseline to 5 y and differences between the groups in implant survival and prosthodontic maintenance over 5 y. Each of the 86 participants (mean age, 67 y) was randomly allocated to receive either 1 implant in the midline (group 1) or 2 implants in the canine areas (group 2) attached to a mandibular overdenture opposing a maxillary complete denture. Satisfaction was self-assessed by participants on a visual analog scale at baseline prior to implants, as well as at 2 mo and 1, 3, and 5 y with implant overdentures, whereas implant survival and prosthodontic maintenance were assessed by clinical examination. After 5 y, 29 participants in group 1 and 33 in group 2 were available, with most dropouts due to death. Satisfaction with the implant denture after 5 y was significantly (P overdentures retained by 1 implant or 2 implants. Additional research is required to confirm long-term treatment effectiveness of single-implant dentures and the implications of prosthetic maintenance with implant overdentures (ClinicalTrials.gov: NCT02117856). © International & American Associations for Dental Research 2014.

  19. Recent advances in dental implants.

    Science.gov (United States)

    Hong, Do Gia Khang; Oh, Ji-Hyeon

    2017-12-01

    Dental implants are a common treatment for the loss of teeth. This paper summarizes current knowledge on implant surfaces, immediate loading versus conventional loading, short implants, sinus lifting, and custom implants using three-dimensional printing. Most of the implant surface modifications showed good osseointegration results. Regarding biomolecular coatings, which have been recently developed and studied, good results were observed in animal experiments. Immediate loading had similar clinical outcomes compared to conventional loading and can be used as a successful treatment because it has the advantage of reducing treatment times and providing early function and aesthetics. Short implants showed similar clinical outcomes compared to standard implants. A variety of sinus augmentation techniques, grafting materials, and alternative techniques, such as tilted implants, zygomatic implants, and short implants, can be used. With the development of new technologies in three-dimension and computer-aided design/computer-aided manufacturing (CAD/CAM) customized implants can be used as an alternative to conventional implant designs. However, there are limitations due to the lack of long-term studies or clinical studies. A long-term clinical trial and a more predictive study are needed.

  20. Comparison of Reconstructive Outcomes in Breast Cancer Patients With Preexisting Subpectoral Implants: Implant-Sparing Mastectomy With Delayed Implant Exchange Versus Immediate Tissue Expander Reconstruction.

    Science.gov (United States)

    Parabkaharan, Sangeetha; Melody, Megan; Trotta, Rose; Lleshi, Amina; Sun, Weihong; Smith, Paul D; Khakpour, Nazanin; Dayicioglu, Deniz

    2016-06-01

    Women who have undergone prior augmentation mammoplasty represent a unique subset of breast cancer patients with several options available for breast reconstruction. We performed a single institution review of surgical outcomes of breast reconstruction performed in patients with breast cancer with prior history of subpectoral breast augmentation. Institutional review board-approved retrospective review was conducted among patients with previously mentioned criteria treated at our institution between 2000 and 2014. Reconstructions were grouped into 2 categories as follows: (1) removal of preexisting subpectoral implant during mastectomy with immediate tissue expander placement and (2) implant-sparing mastectomy followed by delayed exchange to a larger implant. We reviewed demographics, tumor features, and reconstruction outcomes of these groups. Fifty-three patients had preexisting subpectoral implants. Of the 63 breast reconstructions performed, 18 (28.6%) had immediate tissue expander placed and 45 (71.4%) had implant-sparing mastectomy followed by delayed implant exchange. The groups were comparable based on age, body mass index, cancer type, tumor grade, TNM stage at presentation, and hormonal receptor status. No significant difference was noted between tumor margins or subsequent recurrence, mastectomy specimen weight, removed implant volume, volume of implant placed during reconstruction, or time from mastectomy to final implant placement. Rates of complications were significantly higher in the tissue expander group compared to the implant-sparing mastectomy group 7 (38.9%) versus 4 (8.9%) (P = 0.005). Implant-sparing mastectomy with delayed implant exchange in patients with preexisting subpectoral implants is safe and has fewer complications compared to tissue expander placement. There was no difference noted in the final volume of implant placed, time interval for final implant placement, or tumor margins.

  1. Effect of implant design and bioactive glass coating on biomechanical properties of fiber-reinforced composite implants.

    Science.gov (United States)

    Ballo, Ahmed M; Akca, Eralp; Ozen, Tuncer; Moritz, Niko; Lassila, Lippo; Vallittu, Pekka; Närhi, Timo

    2014-08-01

    This study aimed to evaluate the influence of implant design and bioactive glass (BAG) coating on the response of bone to fiber-reinforced composite (FRC) implants. Three different FRC implant types were manufactured for the study: non-threaded implants with a BAG coating; threaded implants with a BAG coating; and threaded implants with a grit-blasted surface. Thirty-six implants (six implants for each group per time point) were installed in the tibiae of six pigs. After an implantation period of 4 and 12 wk, the implants were retrieved and prepared for micro-computed tomography (micro-CT), push-out testing, and scanning electron microscopy analysis. Micro-CT demonstrated that the screw-threads and implant structure remained undamaged during the installation. The threaded FRC/BAG implants had the highest bone volume after 12 wk of implantation. The push-out strengths of the threaded FRC/BAG implants after 4 and 12 wk (463°N and 676°N, respectively) were significantly higher than those of the threaded FRC implants (416°N and 549°N, respectively) and the nonthreaded FRC/BAG implants (219°N and 430°N, respectively). Statistically significant correlation was found between bone volume and push-out strength values. This study showed that osseointegrated FRC implants can withstand the static loading up to failure without fracture, and that the addition of BAG significantly improves the push-out strength of FRC implants. © 2014 Eur J Oral Sci.

  2. Mecanobiología de la interfase hueso-implante dental Mechanobiology of bone-dental implant interphase

    Directory of Open Access Journals (Sweden)

    Juan Carlos Vanegas Acosta

    2010-03-01

    Full Text Available La osteointegración es la conexión estructural y funcional entre el hueso y un implante. Cuando un implante se inserta en el hueso, se crea la denominada interfase hueso-implante, una zona de unión entre la superficie del biomaterial del implante y el hueso circundante. La cicatrización de esta interfase depende de las condiciones biológicas del hueso, las características de diseño del implante y la distribución de cargas entre hueso e implante. En este artículo se hace una revisión del proceso de cicatrización de la interfase hueso-implante para el caso de un implante dental. El objetivo es describir la secuencia de eventos biológicos iniciados con la lesión causada por la inserción del implante y que concluyen con la formación de nuevo hueso en la interfase. Esta descripción incluye una novedosa clasificación de los fenómenos mecánicos que intervienen durante el proceso de cicatrización de los tejidos lesionados. Esta descripción mecanobiológica de la interfase hueso-implante dental se utiliza para determinar las características más relevantes a tener en cuenta en la formulación de un modelo matemático de la osteointegración de implantes dentales.The osteointegration is the structural and functional connection between bone and implant. When an implant is inserted in bone, it creates the so-called bone-implant interphase, a joint zone between implant biomaterial surface and the surrounding bone. The healing of this interphase depends on bone biological conditions, characteristic of implant design and the distribution of loads between bone and implant. The aim of present article is to review of healing process of bone-implant interphase for a dental implant and also to describe the sequence of biological events beginning with lesion caused by implant insertion and leading to the formation of a new bone in the interphase. This description includes a novel classification of mechanical phenomena present in the healing

  3. Cochlear Implants

    Science.gov (United States)

    ... implant, including: • How long a person has been deaf, •The number of surviving auditory nerve fibers, and • ... Implant, Severe Sensoryneurial Hearing Loss Get Involved Professional Development Practice Management ENT Careers Marketplace Privacy Policy Terms ...

  4. New horizon for high performance Mg-based biomaterial with uniform degradation behavior: Formation of stacking faults.

    Science.gov (United States)

    Zhang, Jinghuai; Xu, Chi; Jing, Yongbin; Lv, Shuhui; Liu, Shujuan; Fang, Daqing; Zhuang, Jinpeng; Zhang, Milin; Wu, Ruizhi

    2015-09-09

    Designing the new microstructure is an effective way to accelerate the biomedical application of magnesium (Mg) alloys. In this study, a novel Mg-8Er-1Zn alloy with profuse nano-spaced basal plane stacking faults (SFs) was prepared by combined processes of direct-chill semi-continuous casting, heat-treatment and hot-extrusion. The formation of SFs made the alloy possess outstanding comprehensive performance as the biodegradable implant material. The ultimate tensile strength (UTS: 318 MPa), tensile yield strength (TYS: 207 MPa) and elongation (21%) of the alloy with SFs were superior to those of most reported degradable Mg-based alloys. This new alloy showed acceptable biotoxicity and degradation rate (0.34 mm/year), and the latter could be further slowed down through optimizing the microstructure. Most amazing of all, the uniquely uniform in vitro/vivo corrosion behavior was obtained due to the formation of SFs. Accordingly we proposed an original corrosion mechanism for the novel Mg alloy with SFs. The present study opens a new horizon for developing new Mg-based biomaterials with highly desirable performances.

  5. The clinical implications of poly implant prothèse breast implants: an overview.

    Science.gov (United States)

    Wazir, Umar; Kasem, Abdul; Mokbel, Kefah

    2015-01-01

    Mammary implants marketed by Poly Implant Prothèse (PIP) were found to contain industrial grade silicone and this caused heightened anxiety and extensive publicity regarding their safety in humans. These implants were used in a large number of patients worldwide for augmentation or breast reconstruction. We reviewed articles identified by searches of Medline, PubMed, Embase, and Google Scholar databases up to May 2014 using the terms: "PIP", "Poly Implant Prothèse", "breast implants" and "augmentation mammoplasty" "siloxanes" or "silicone". In addition the websites of regulating bodies in Europe, USA, and Australia were searched for reports related to PIP mammary implants. PIP mammary implants are more likely to rupture than other implants and can cause adverse effects in the short to the medium term related to the symptoms of rupture such as pain, lumps in the breast and axilla and anxiety. Based on peer-reviewed published studies we have calculated an overall rupture rate of 14.5% (383/2,635) for PIP implants. However, there is no evidence that PIP implant rupture causes long-term adverse health effects in humans so far. Silicone lymphadenopathy represents a foreign body reaction and should be treated conservatively. The long-term adverse effects usually arise from inappropriate extensive surgery, such as axillary lymph node dissection or extensive resection of breast tissue due to silicone leakage.

  6. The Clinical Implications of Poly Implant Prothèse Breast Implants: An Overview

    Directory of Open Access Journals (Sweden)

    Umar Wazir

    2015-01-01

    Full Text Available Mammary implants marketed by Poly Implant Prothèse (PIP were found to contain industrial grade silicone and this caused heightened anxiety and extensive publicity regarding their safety in humans. These implants were used in a large number of patients worldwide for augmentation or breast reconstruction. We reviewed articles identified by searches of Medline, PubMed, Embase, and Google Scholar databases up to May 2014 using the terms: "PIP", "Poly Implant Prothèse", "breast implants" and "augmentation mammoplasty" "siloxanes" or "silicone". In addition the websites of regulating bodies in Europe, USA, and Australia were searched for reports related to PIP mammary implants. PIP mammary implants are more likely to rupture than other implants and can cause adverse effects in the short to the medium term related to the symptoms of rupture such as pain, lumps in the breast and axilla and anxiety. Based on peer-reviewed published studies we have calculated an overall rupture rate of 14.5% (383/2,635 for PIP implants. However, there is no evidence that PIP implant rupture causes long-term adverse health effects in humans so far. Silicone lymphadenopathy represents a foreign body reaction and should be treated conservatively. The long-term adverse effects usually arise from inappropriate extensive surgery, such as axillary lymph node dissection or extensive resection of breast tissue due to silicone leakage.

  7. Microstructure and in vitro degradation performance of Mg-Zn-Mn alloys for biomedical application.

    Science.gov (United States)

    Rosalbino, F; De Negri, S; Scavino, G; Saccone, A

    2013-03-01

    Manganese and zinc were selected as alloying elements to develop a Mg-based ternary alloy for biomedical applications, taking into account the good biocompatibility of these metals. The microstructures of Mg-Zn-Mn alloys containing 0.5 or 1.0 mass% of manganese and 1.0 or 1.5 mass% of zinc were investigated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. Their corrosion properties were assessed by means of potentiodynamic polarization and electrochemical impedance spectroscopy measurements performed in Ringer's physiological solution that simulates bodily fluids. All tested samples are two-phase alloys formed by a Mg-based matrix, consisting of a Mg-Zn-Mn solid solution, and a Mg-Zn binary phase. The electrochemical results show an improvement of the corrosion behavior of the investigated alloys with increasing Zn and Mn content. This is attributed to the formation of a partially protective Mg(OH)(2) surface film whose protective capabilities are increased by the alloying elements. The reduced influence of the Mg-Zn intermetallic compound on the corrosion rate of Mg-Zn-Mn alloys in the presence of a partially protective surface layer can be ascribed to an increasing resistance between the Mg-Zn-Mn solid solution and the second phase, thereby decreasing the effective driving force for microgalvanic corrosion. Owing to its highest corrosion protective ability, the Mg-1.5Zn-1Mn alloy is a promising candidate for the development of degradable implants, such as screws, plates, and rods. Copyright © 2012 Wiley Periodicals, Inc.

  8. Release of low molecular weight silicones and platinum from silicone breast implants.

    Science.gov (United States)

    Lykissa, E D; Kala, S V; Hurley, J B; Lebovitz, R M

    1997-12-01

    We have conducted a series of studies addressing the chemical composition of silicone gels from breast implants as well as the diffusion of low molecular weight silicones (LM-silicones) and heavy metals from intact implants into various surrounding media, namely, lipid-rich medium (soy oil), aqueous tissue culture medium (modified Dulbecco's medium, DMEM), or an emulsion consisting of DMEM plus 10% soy oil. LM-silicones in both implants and surrounding media were detected and quantitated using gas chromatography (GC) coupled with atomic emission (GC-AED) as well as mass spectrometric (GC/MS) detectors, which can detect silicones in the nanogram range. Platinum, a catalyst used in the preparation of silicone gels, was detected and quantitated using inductive argon-coupled plasma/mass spectrometry (ICP-MS), which can detect platinum in the parts per trillion range. Our results indicate that GC-detectable low molecular weight silicones contribute approximately 1-2% to the total gel mass and consist predominantly of cyclic and linear poly-(dimethylsiloxanes) ranging from 3 to 20 siloxane [(CH3)2-Si-O] units (molecular weight 200-1500). Platinum can be detected in implant gels at levels of approximately 700 micrograms/kg by ICP-MS. The major component of implant gels appears to be high molecular weight silicone polymers (HM-silicones) too large to be detected by GC. However, these HM-silicones can be converted almost quantitatively (80% by mass) to LM-silicones by heating implant gels at 150-180 degrees C for several hours. We also studied the rates at which LM-silicones and platinum leak through the intact implant outer shell into the surrounding media under a variety of conditions. Leakage of silicones was greatest when the surrounding medium was lipid-rich, and up to 10 mg/day LM-silicones was observed to diffuse into a lipid-rich medium per 250 g of implant at 37 degrees C. This rate of leakage was maintained over a 7-day experimental period. Similarly, platinum was

  9. Management of peri-implant infections

    Directory of Open Access Journals (Sweden)

    K L Vandana

    2015-01-01

    Full Text Available The ever-increasing popularity of dental implants in recent years has been associated with the reported incidence of short-term and long-term complications such as peri-implant mucositis and peri-implantitis. Therapies proposed for treating peri-implantitis are based on the evidence available for the treatment of periodontitis, and are aimed at reducing the bacterial load within peri-implant pockets and decontaminating implant surfaces, and, in some cases, attempting afterward to bring about bone regeneration. The treatment of peri-implant infections comprises conservative (nonsurgical and surgical approaches. This paper reviews various treatment strategies used for the treatment of peri-implant diseases. There are many approaches suggested by various authors for the treatment of peri-implant diseases, but there is no “ideal peri-implant therapy” that has been described in the literature. There is no consensus regarding the treatment protocol as the studies conducted so far have had varying study designs, small sample sizes, and short follow-up periods.

  10. An in vivo assessment of the effects of using different implant abutment occluding materials on implant microleakage and the peri-implant microbiome

    Science.gov (United States)

    Rubino, Caroline

    Microleakage may be a factor in the progression of peri-implant pathology. Microleakage in implant dentistry refers to the passage of bacteria, fluids, molecules or ions between the abutment-implant interface to and from the surrounding periodontal tissues. This creates a zone of inflammation and reservoir of bacteria at the implant-abutment interface. Bone loss typically occurs within the first year of abutment connection and then stabilizes. It has not yet been definitively proven that the occurrence of microleakage cannot contribute to future bone loss or impede the treatment of peri-implant disease. Therefore, strategies to reduce or eliminate microleakage are sought out. Recent evidence demonstrates that the type of implant abutment channel occluding material can affect the amount of microleakage in an in vitro study environment. Thus, we hypothesize that different abutment screw channel occluding materials will affect the amount of observed microleakage, vis-a-vis the correlation between the microflora found on the abutment screw channel occluding material those found in the peri-implant sulcus. Additional objectives include confirming the presence of microleakage in vivo and assessing any impact that different abutment screw channel occluding materials may have on the peri-implant microbiome. Finally, the present study provides an opportunity to further characterize the peri-implant microbiome. Eight fully edentulous patients restored with at dental implants supporting screw-retained fixed hybrid prostheses were included in the study. At the initial appointment (T1), the prostheses were removed and the implants and prostheses were cleaned. The prostheses were then inserted with polytetrafluoroethylene tape (PTFE, TeflonRTM), cotton, polyvinyl siloxane (PVS), or synthetic foam as the implant abutment channel occluding material and sealed over with composite resin. About six months later (T2), the prostheses were removed and the materials collected. Paper

  11. Biodegradable radioactive implants for glaucoma filtering surgery produced by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W. [Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, 85748 Garching (Germany)]. E-mail: walter.assmann@lmu.de; Schubert, M. [Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, 85748 Garching (Germany); Held, A. [Augenklinik, Technische Universitaet Muenchen, 81675 Munich (Germany); Pichler, A. [Augenklinik, Technische Universitaet Muenchen, 81675 Muenchen (Germany); Chill, A. [Zentralinstitut fuer Medizintechnik, Technische Universitaet Muenchen, 85748 Garching (Germany); Kiermaier, S. [Zentralinstitut fuer Medizintechnik, Technische Universitaet Muenchen, 85748 Garching (Germany); Schloesser, K. [Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Busch, H. [NTTF GmbH, 53619 Rheinbreitbach (Germany); Schenk, K. [NTTF GmbH, 53619 Rheinbreitbach (Germany); Streufert, D. [Acri.Tec GmbH, 16761 Hennigsdorf (Germany); Lanzl, I. [Augenklinik, Technische Universitaet Muenchen, 81675 Munich (Germany)

    2007-04-15

    A biodegradable, {beta}-emitting implant has been developed and successfully tested which prevents fresh intraocular pressure increase after glaucoma filtering surgery. Ion implantation has been used to load the polymeric implants with the {beta}-emitter {sup 32}P. The influence of ion implantation and gamma sterilisation on degradation and {sup 32}P-fixation behavior has been studied by ion beam and chemical analysis. Irradiation effects due to the applied ion fluence (10{sup 15} ions/cm{sup 2}) and gamma dose (25 kGy) are found to be tolerable.

  12. Trends in cochlear implants.

    Science.gov (United States)

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management.

  13. Micro-cutting of silicon implanted with hydrogen and post-implantation thermal treatment

    Science.gov (United States)

    Jelenković, Emil V.; To, Suet; Sundaravel, B.; Xiao, Gaobo; Huang, Hu

    2016-07-01

    It was reported that non-amorphizing implantation by hydrogen has a potential in improving silicon machining. Post-implantation high-temperature treatment will affect implantation-induced damage, which can have impact on silicon machining. In this article, a relation of a thermal annealing of hydrogen implanted in silicon to micro-cutting experiment is investigated. Hydrogen ions were implanted into 4″ silicon wafers with 175 keV, 150 keV, 125 keV and doses of 2 × 1016 cm-2, 2 × 1016 cm-2 and 3 × 1016 cm-2, respectively. In this way, low hydrogen atom-low defect concentration was created in the region less than ~0.8 μm deep and high hydrogen atom-high defect concentration was obtained at silicon depth of ~0.8-1.5 μm. The post-implantation annealing was carried out at 300 and 400 °C in nitrogen for 1 h. Physical and electrical properties of implanted and annealed samples were characterized by secondary ion mass spectroscopy (SIMS), X-ray diffraction (XRD), Rutherford backscattering (RBS) and nanoindentation. Plunge cutting experiment was carried out in and silicon crystal direction. The critical depth of cut and cutting force were monitored and found to be influenced by the annealing. The limits of hydrogen implantation annealing contribution to the cutting characteristics of silicon are discussed in light of implantation process and redistribution of hydrogen and defects generation during annealing process.

  14. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    Science.gov (United States)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore

  15. Immediately loaded mini dental implants as overdenture retainers: 1-Year cohort study of implant stability and peri-implant marginal bone level.

    Science.gov (United States)

    Šćepanović, Miodrag; Todorović, Aleksandar; Marković, Aleksa; Patrnogić, Vesna; Miličić, Biljana; Moufti, Adel M; Mišić, Tijana

    2015-05-01

    This 1-year cohort study investigated stability and peri-implant marginal bone level of immediately loaded mini dental implants used to retain overdentures. Each of 30 edentulous patients received 4 mini dental implants (1.8 mm × 13 mm) in the interforaminal mandibular region. The implants were immediately loaded with pre-made overdentures. Outcome measures included implant stability and bone resorption. Implant stability was measured using the Periotest Classic(®) device immediately after placement and on the 3rd and 6th weeks and the 4th, 6th and 12th months postoperatively. The peri-implant marginal bone level (PIBL) was evaluated at the implant's mesial and distal sides from the polished platform to the marginal crest. Radiographs were taken using a tailored film holder to reproducibly position the X-ray tube at the 6th week, 4th and 12th months postoperatively. The primary stability (Periotest value, PTV) measured -0.27 ± 3.41 on a scale of -8 to + 50 (lower PTV reflects higher stability). The secondary stability decreased significantly until week 6 (mean PTV = 7.61 ± 7.05) then increased significantly reaching (PTV = 6.17 ± 6.15) at 12 months. The mean PIBL measured -0.40 mm after 1 year of functional loading, with no statistically significant differences at the various follow-ups (p = 0.218). Mini dental implants placed into the interforaminal region could achieve a favorable primary stability for immediate loading. The follow-up Periotest values fluctuated, apparently reflecting the dynamics of bone remodeling, with the implants remaining clinically stable (98.3%) after 1 year of function. The 1-year bone resorption around immediately loaded MDIs is within the clinically acceptable range for standard implants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Comparative silicone breast implant evaluation using mammography, sonography, and magnetic resonance imaging: experience with 59 implants.

    Science.gov (United States)

    Ahn, C Y; DeBruhl, N D; Gorczyca, D P; Shaw, W W; Bassett, L W

    1994-10-01

    With the current controversy regarding the safety of silicone implants, the detection and evaluation of implant rupture are causing concern for both plastic surgeons and patients. Our study obtained comparative value analysis of mammography, sonography, and magnetic resonance imaging (MRI) in the detection of silicone implant rupture. Twenty-nine symptomatic patients (total of 59 silicone implants) were entered into the study. Intraoperative findings revealed 21 ruptured implants (36 percent). During physical examination, a positive "squeeze test" was highly suggestive of implant rupture. Mammograms were obtained of 51 implants (sensitivity 11 percent, specificity 89 percent). Sonography was performed on 57 implants (sensitivity 70 percent, specificity 92 percent). MRI was performed on 55 implants (sensitivity 81 percent, specificity 92 percent). Sonographically, implant rupture is demonstrated by the "stepladder sign." Double-lumen implants may appear as false-positive results for rupture on sonography. On MRI, the "linguine sign" represents disrupted fragments of a ruptured implant. The most reliable imaging modality for implant rupture detection is MRI, followed by sonogram. Mammogram is the least reliable. Our study supports the clinical indication and diagnostic value of sonogram and MRI in the evaluation of symptomatic breast implant patients.

  17. Mechanical and degradation properties of biodegradable Mg strengthened poly-lactic acid composite through plastic injection molding.

    Science.gov (United States)

    Butt, Muhammad Shoaib; Bai, Jing; Wan, Xiaofeng; Chu, Chenglin; Xue, Feng; Ding, Hongyan; Zhou, Guanghong

    2017-01-01

    Full biodegradable magnesium alloy (AZ31) strengthened poly-lactic acid (PLA) composite rods for potential application for bone fracture fixation were prepared by plastic injection process in this work. Their surface/interfacial morphologies, mechanical properties and vitro degradation were studied. In comparison with untreated Mg rod, porous MgO ceramic coating on Mg surface formed by Anodizing (AO) and micro-arc-oxidation (MAO)treatment can significantly improve the interfacial binding between outer PLA cladding and inner Mg rod due to the micro-anchoring action, leading to better mechanical properties and degradation performance of the composite rods.With prolonging immersion time in simulated body fluid (SBF) solution until 8weeks, the MgO porous coating were corroded gradually, along with the disappearance of original pores and the formation of a relatively smooth surface. This resulted in a rapidly reduction in mechanical properties for corresponding composite rods owing to the weakening of interfacial binding capacity. The present results indicated that this new PLA-clad Mg composite rods show good potential biomedical applications for implants and instruments of orthopedic inner fixation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effects of Implant-Associated Osteomyelitis on Cefuroxime Bone Pharmacokinetics

    DEFF Research Database (Denmark)

    Tøttrup, Mikkel; Bue, Mats; Koch, Janne

    2016-01-01

    Background: The prolonged antibiotic therapy that is often needed for successful management of osteomyelitis may be related to incomplete penetration of antibiotics into the target site. The objective of this study was to assess the effects of implant-associated osteomyelitis on cefuroxime...... cavity up to MICs of 2 mg/L compared with the other tissues, but the time was shorter for higher MICs.  Conclusions: Cefuroxime penetration into infected cancellous bone was incomplete but comparable with that in healthy bone. The destructive bone processes associated with acute osteomyelitis reduced...

  19. The Efficacy of Supportive Peri-Implant Therapies in Preventing Peri-Implantitis and Implant Loss: a Systematic Review of the Literature

    Directory of Open Access Journals (Sweden)

    Ausra Ramanauskaite

    2016-09-01

    Full Text Available Objectives: To study the efficacy of supportive peri-implant therapies in preventing clinical and radiological signs of peri-implantitis and implant loss. Material and Methods: Longitudinal human studies, published between January 1, 2006, and February 1, 2016, were included based on an electronic search using MEDLINE and EMBASE databases and complemented by a manual search. Articles were included only if 1 they comprised a group of patients involved in/adhering to regular supportive peri-implant therapies (SPTs and a control group without such therapies or with poor adherence to them, 2 the protocol of the SPTs was clearly described and 3 the outcome was indicated by means of clinical/radiological changes or implant loss. Results: After initially identifying a total of 710 titles and abstracts, 12 full text articles were selected for eligibility assessment. Seven studies, three prospective and four retrospective, fulfilled the inclusion criteria for this review. The frequency of recall visits varied between the studies from a minimum of one visit every three months to an individually tailored regimen. In all the studies a lack of SPTs or poor adherence to them resulted in significantly higher frequencies of sites with mucosal bleeding, deepened peri-implant pockets or alveolar bone loss. In line with the above, a lack of/poor adherence to SPTs was associated with higher implant loss. Conclusions: To prevent peri-implantitis, an individually tailored supportive programme based on patient motivation and re-instruction in oral hygiene measures combined with professional implant cleaning seem to be crucial.

  20. A study of the bending resistance of implant-supported reinforced alumina and machined zirconia abutments and copies.

    Science.gov (United States)

    Sundh, Anders; Sjögren, Göran

    2008-05-01

    The purpose of the present study was to evaluate the bending resistance of implant-supported CAD/CAM-processed restorations made out of zirconia or manually shaped made out of reinforced alumina. Units of abutments and copies made of (i) a prefabricated hot isostatic pressed (HIPed) yttrium oxide partially-stabilized zirconia (Y-TZP) (Denzir), (ii) a prefabricated densely-sintered magnesia partially stabilized zirconia (Mg-PSZ) (Denzir-M) or, copies made of (iii) a prefabricated partially-sintered, porous reinforced alumina ceramic (RN synOcta-In-Ceram) were subjected to static loading perpendicularly at the long axis. The abutments were attached to either stainless steel analogs or titanium implant fixtures. The Y-TZP and Mg-PSZ copies were bonded onto the ceramic abutments with a dual-cured resin composite (Rely-X Unicem). Units of titanium abutment attached to a titanium implant fixtures were used as reference. The units comprising Denzir abutments as delivered (pstainless steel analogs exhibited significantly higher bending resistance than the control. The heat-treated Denzir copies bonded to the heat-treated Denzir M abutments attached to titanium implant fixtures and the In-Ceram specimens attached to stainless steel analogs showed significantly (pstainless steel analogs. No statistically significant (p>0.05) differences were seen among the other groups studied. All the ceramic abutments and copies exhibited values that were equal or superior to that of the control and exceeded the reported value, up to 300 N, for maximum incisal bite forces. To assess the clinical behavior long-term clinical studies should be conducted.

  1. Graphene-reinforced calcium silicate coatings for load-bearing implants.

    Science.gov (United States)

    Xie, Youtao; Li, Hongqing; Zhang, Chi; Gu, Xin; Zheng, Xuebin; Huang, Liping

    2014-04-01

    Owing to the superior mechanical properties and low coefficient of thermal expansion, graphene has been widely used in the reinforcement of ceramics. In the present study, various ratios of graphene (0.5 wt%, 1.5 wt% and 4 wt%) were reinforced into calcium silicate (CS) coatings for load-bearing implant surface modification. Surface characteristics of the graphene/calcium silicate (GC) composite coatings were characterized by scanning electron microscopy. Results show that the graphene plates (less than 4 wt% in the coatings) were embedded in the CS matrix homogeneously. The surfaces of the coatings showed a hierarchical hybrid nano-/microstructure, which is believed to be beneficial to the behaviors of the cell and early bone fixation of the implants. Wear resistance measured by a pin-on-disc model exhibited an obvious enhancement with the adoption of graphene plates. The weight losses of the GC coatings decreased with the increase of graphene content. However, too high graphene content (4 wt% or more) made the composite coatings porous and the wear resistance decreased dramatically. The weight loss was only 1.3 ± 0.2 mg for the GC coating containing 1.5 wt% graphene (denoted as GC1.5) with a load of 10 N and sliding distance of 500 m, while that of the pure CS coating reached up to 28.6 ± 0.5 mg. In vitro cytocompatibility of the GC1.5 coating was evaluated using a human marrow stem cell (hMSC) culture system. The proliferation and alkaline phosphatase, osteopontin and osteocalcin (OC) osteogenesis-related gene expression of the cells on the GC1.5 coating did not deteriorate with the adoption of graphene. Conversely, even better adhesion of the hMSCs was observed on the GC1.5 coating than on the pure CS coating. All of the results indicate that the GC1.5 coating is a good candidate for load-bearing implants.

  2. Benefits and Risks of Cochlear Implants

    Science.gov (United States)

    ... and Medical Procedures Implants and Prosthetics Cochlear Implants Benefits and Risks of Cochlear Implants Share Tweet Linkedin ... the Use of Cochlear Implants What are the Benefits of Cochlear Implants? For people with implants: Hearing ...

  3. An economic evaluation of maxillary implant overdentures based on six vs. four implants.

    Science.gov (United States)

    Listl, Stefan; Fischer, Leonhard; Giannakopoulos, Nikolaos Nikitas

    2014-08-18

    The purpose of the present study was to assess the value for money achieved by bar-retained implant overdentures based on six implants compared with four implants as treatment alternatives for the edentulous maxilla. A Markov decision tree model was constructed and populated with parameter estimates for implant and denture failure as well as patient-centred health outcomes as available from recent literature. The decision scenario was modelled within a ten year time horizon and relied on cost reimbursement regulations of the German health care system. The cost-effectiveness threshold was identified above which the six-implant solution is preferable over the four-implant solution. Uncertainties regarding input parameters were incorporated via one-way and probabilistic sensitivity analysis based on Monte-Carlo simulation. Within a base case scenario of average treatment complexity, the cost-effectiveness threshold was identified to be 17,564 € per year of denture satisfaction gained above of which the alternative with six implants is preferable over treatment including four implants. Sensitivity analysis yielded that, depending on the specification of model input parameters such as patients' denture satisfaction, the respective cost-effectiveness threshold varies substantially. The results of the present study suggest that bar-retained maxillary overdentures based on six implants provide better patient satisfaction than bar-retained overdentures based on four implants but are considerably more expensive. Final judgements about value for money require more comprehensive clinical evidence including patient-centred health outcomes.

  4. [Researches on biomechanics of micro-implant-bone interface and optimum design of micro implant's neck].

    Science.gov (United States)

    Deng, Feng; Zhang, Lei; Zhang, Yi; Song, Jin-lin; Fan, Yuboa

    2007-07-01

    To compare and analyze the stress distribution at the micro-implant-bone interface based on the different micro-implant-bone conditioned under orthodontic load, and to optimize the design of micro implant's neck. An adult skull with all tooth was scanned by spiral CT, and the data were imported into computer for three-dimensional reconstruction with software Mimics 9.0. The three dimensional finite element models of three micro-implant-bone interfaces(initial stability, full osseointegration and fibrous integration) were analyzed by finite element analysis software ABAQUS6.5. The primary stress distributions of different micro-implant-bone conditions were evaluated when 2N force was loaded. Then the diameter less than 1.5 mm of the micro implant's neck was added with 0.2 mm, to compare the stress distribution of the modified micro-implant-bone interface with traditional type. The stress mostly concentrated on the neck of micro implant and the full osseointegration interface in all models showed the lowest strain level. Compared with the traditional type, the increasing diameter neck of the micro implant obviously decreased the stress level in all the three conditions. The micro-implant-bone interface and the diameter of micro implant's neck both are the important influence factors to the stress distribution of micro implant.

  5. Implant Mandibular Overdentures Retained by Immediately Loaded Implants: A 1-Year Randomized Trial Comparing the Clinical and Radiographic Outcomes Between Mini Dental Implants and Standard-Sized Implants.

    Science.gov (United States)

    Zygogiannis, Kostas; Aartman, Irene Ha; Parsa, Azin; Tahmaseb, Ali; Wismeijer, Daniel

    The aim of this 1-year randomized trial was to evaluate and compare the clinical and radiographic performance of four immediately loaded mini dental implants (MDIs) and two immediately loaded standard-sized tissue-level (STL) implants, placed in the interforaminal region of the mandible and used to retain mandibular overdentures (IODs) in completely edentulous patients. A total of 50 completely edentulous patients wearing conventional maxillary dentures and complaining about insufficient retention of their mandibular dentures were divided into two groups; 25 patients received four MDIs and 25 patients received two STL implants. The marginal bone loss (MBL) at the mesial and distal sides of each implant was assessed by means of standardized intraoral radiographs after a period of 1 year. Implant success and survival rates were also calculated. Immediate loading was possible for all patients in the first group. In the second group, an immediate loading protocol could not be applied for 10 patients. These patients were treated with a delayed loading protocol. A mean MBL of 0.42 ± 0.56 mm for the MDIs and 0.54 ± 0.49 mm for the immediately loaded STL implants was recorded at the end of the evaluation period. There was no statistically significant difference between the MDIs and the immediately loaded STL implants. Two MDIs failed, resulting in a survival rate of 98%. The success rate was 91%. For the immediately loaded conventional implants, the survival rate was 100% and the success rate 96.7% after 1 year of function. However, in 10 patients, the immediate loading protocol could not be followed. Considering the limitations of this short-term clinical study, immediate loading of four unsplinted MDIs or two splinted STL implants to retain mandibular overdentures seems to be a feasible treatment option. The marginal bone level changes around the MDIs were well within the clinically acceptable range.

  6. Implant decontamination with phosphoric acid during surgical peri-implantitis treatment : a RCT

    NARCIS (Netherlands)

    Hentenaar, Diederik F M; De Waal, Yvonne C M; Strooker, Hans; Meijer, Henny J A; Van Winkelhoff, Arie-Jan; Raghoebar, Gerry M

    2017-01-01

    BACKGROUND: Peri-implantitis is known as an infectious disease that affects the peri-implant soft and hard tissue. Today, scientific literature provides very little evidence for an effective intervention protocol for treatment of peri-implantitis. The aim of the present randomized controlled trial

  7. Effect of alpha-lipoic acid on endometrial implants in an experimental rat model.

    Science.gov (United States)

    Pınar, Neslihan; Soylu Karapınar, Oya; Özcan, Oğuzhan; Özgür, Tümay; Bayraktar, Suphi

    2017-10-01

    To investigate the antioxidant and anti-inflammatory effects of alpha-lipoic acid (ALA) in the treatment of endometriosis in an experimental rat model by evaluating biochemical and histopathologic parameters. Experimental endometriosis was induced by the peritoneal implantation of autologous endometrial tissue. The rats were randomly divided into two groups with eight rats each. Group I was intraperitoneally administered ALA 100 mg/kg/day for 14 days. Group II was intraperitoneally administered saline solution at the same dosage and over the same period. Endometrial implant volume was measured in both groups both pre- and post-treatment. Tumor necrosis factor alpha (TNF-α) was measured in peritoneal fluid. Total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) were assessed in serum. The implants were histopathologically evaluated. In the ALA group, the serum TOS and OSI levels, the endometrial implant volumes, the TNF-α levels in serum and peritoneal fluid, and the histopathologic scores were significantly lower compared to the control group (P < 0.05). Alpha-lipoic acid may have a therapeutic potential in the treatment of endometriosis due to its antioxidant and anti-inflammatory effects. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  8. Randomized study on the effect of single-implant versus two-implant retained overdentures on implant loss and muscle activity: a 12-month follow-up report.

    Science.gov (United States)

    Alqutaibi, A Y; Kaddah, A F; Farouk, M

    2017-06-01

    The objective was to evaluate and compare single- and two-implant retained overdentures for the rehabilitation of the edentulous mandible. Fifty-six edentulous subjects were eligible for inclusion. Using a random sampling system, a single implant or two implants were placed in the mandible. After 3 months, locator attachments were connected to the implants and the denture delivered with the retentive components incorporated in the denture base. Implant failure and muscle activity were evaluated at the 3-, 6-, and 12-month follow-up examinations. The study sample comprised 56 patients (32 male, 24 female), with a mean age of 58.2 years. A total of 84 implants were placed (28 in the single-implant group and 56 in the two-implant group). All patients completed the 12 months of follow-up. No significant differences were found between subjects in the two groups with respect to implant failure. With regard to improvements in muscle activity, the two-implant group showed statistically significant but perhaps not clinically important differences. Single-implant mandibular overdentures may be suggested as an alternative treatment modality for the rehabilitation of edentulous patients who cannot afford the cost of a two-implant overdenture. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Ultrasonographic and laparoscopic evaluation of the reproductive tract in older captive female cheetahs (Acinonyx jubatus).

    Science.gov (United States)

    Schulman, M L; Kirberger, R M; Tordiffe, A S W; Marker, L L; Schmidt-Küntzel, A; Hartman, M J

    2015-12-01

    The study uniquely described the clinical value of transabdominal ultrasonography for monitoring features characterizing the estrous cycle in female cheetahs (Acinonyx jubatus). The reproductive tracts of 21 female, nulliparous, and relatively aged (median: 11 and interquartile range: 9.25-14 years) captive cheetahs resident on two sites in Namibia were assessed by transabdominal ultrasound. Subsequently, the ovarian findings on ultrasound were compared with direct visualization while performing laparoscopic sterilization. A combination of these observations supported by concurrent sampling for vaginal cytology and serum progesterone concentrations defined the estrous status of individual animals. At one site, six cheetahs had been implanted with the GnRH agonist, deslorelin as a contraceptive at least once within the preceding 11 years. On ultrasound, 31 uterine horns and 35 ovaries with discernible structures on 28 (86%) were visualized in the 21 cheetahs. The uterine body was difficult to visualize because of its intrapelvic location. Eleven of 19 uteri (58%) visualized showed endometrial edema suggestive of estrogenization. The uteri of four cheetahs (19%) showed evidence of mild cystic endometrial hyperplasia. Paraovarian cysts were seen on ultrasound (n = 21) and laparoscopy (n = 26) in 16 (76.2%) and 18 (85.7%) cheetahs, respectively. Ovarian volumes obtained from ultrasonographically determined dimensions predicted cyclic activity. Laparoscopy showed that 19 ovaries had discernible follicular structures. In the study population, 10 (47.6%) cheetahs were in proestrus or estrus; none in the luteal phase; and 11 (52.4%) in anestrus. Transabdominal ultrasound, in combination with serum progesterone concentrations and vaginal cytology, was used with acceptable accuracy to assess cyclic ovarian activity in captive cheetahs. A considerable proportion of this aged population showed ovarian activity and the prevalence of paraovarian cysts was notable. A

  10. Plasma-implantation-based surface modification of metals with single-implantation mode

    Science.gov (United States)

    Tian, X. B.; Cui, J. T.; Yang, S. Q.; Fu, Ricky K. Y.; Chu, Paul K.

    2004-12-01

    Plasma ion implantation has proven to be an effective surface modification technique. Its biggest advantage is the capability to treat the objects with irregular shapes without complex manipulation of target holder. Many metal materials such as aluminum, stainless steel, tool steel, titanium, magnesium etc, has been treated using this technique to improve their wear-resistance, corrosion-resistance, fatigue-resistance, oxidation-resistance, bio-compatiblity etc. However in order to achieve thicker modified layers, hybrid processes combining plasma ion implantation with other techniques have been frequently employed. In this paper plasma implantation based surface modification of metals using single-implantation mode is reviewed.

  11. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fazel Anvari-Yazdi, Abbas [Department of Biomedical Engineering, Materials and Biomaterials Research Center (MBMRC), Tehran, IR (Iran, Islamic Republic of); Tahermanesh, Kobra, E-mail: tahermanesh.k@iums.ac.ir [Endometriosis and Gynecologic Disorders Research Center, Department of Ob. & Gyn., Rasoul-e Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, IR (Iran, Islamic Republic of); Hadavi, Seyed Mohammad Mehdi [Materials and Energy Research Center (MERC), Karaj, IR (Iran, Islamic Republic of); Talaei-Khozani, Tahereh [Tissue Engineering Lab, Anatomy Department, School of Medicine, Shiraz University of Medical Sciences (SUMS), Shiraz, IR (Iran, Islamic Republic of); Razmkhah, Mahboobeh [Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences (SUMS), Shiraz, IR (Iran, Islamic Republic of); Abed, Seyedeh Mehr [School of Medicine, Yasuj University of Medical Sciences (YUMS), Yasuj, IR (Iran, Islamic Republic of); Mohtasebi, Maryam Sadat [Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences (SUMS), Shiraz, IR (Iran, Islamic Republic of)

    2016-12-01

    Magnesium (Mg)-based alloys have been extensively considered as biodegradable implant materials for orthopedic surgery. Mg and its alloys are metallic biomaterials that can degrade in the body and promote new bone formation. In this study, the corrosion behavior and cytotoxicity of Mg-Zn-Ca alloys are evaluated with adipose-derived mesenchymal stem cells (ASCs). Mg-2Zn and Mg-2Zn-xCa (x = 1, 2 and 3 wt.%) alloys were designated. Mg alloys were analyzed with scanning electron microscopy and potentiodynamic polarization. To understand the in-vitro biocompatibility and cytotoxicity of Mg-2Zn and Mg-2Zn-xCa alloys, ASCs were cultured for 24 and 72 h in contact with 10%, 50% and 100% extraction of all alloys prepared in DMEM. Cell cytotoxicity and viability of ASCs were examined by MTT assay. Alloying elements including Zn and Ca improved the corrosion resistance of alloys were compared with pure Mg. The cytotoxicity results showed that all alloys had no significant adverse effects on cell viability in 24 h. After 72 h, cell viability and proliferation increased in the cells exposed to pure Mg and Mg-2Zn-1Ca extracts. The release of Mg, Zn and Ca ions in culture media had no toxic impacts on ASCs viability and proliferation. Mg-2Zn-1Ca alloy can be suggested as a good candidate to be used in biomedical applications. - Highlights: • Short and long term corrosion behavior of Mg-Zn-Ca alloys studied • Viability and toxicity of Adipose-derived Stem cells studied with Mg-Zn-Ca alloys • Understanding the morphology of cultured adipose stem cells on Mg alloys • Stem cells on Mg-Zn-Ca alloys could proliferate and expand.

  12. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys

    International Nuclear Information System (INIS)

    Fazel Anvari-Yazdi, Abbas; Tahermanesh, Kobra; Hadavi, Seyed Mohammad Mehdi; Talaei-Khozani, Tahereh; Razmkhah, Mahboobeh; Abed, Seyedeh Mehr; Mohtasebi, Maryam Sadat

    2016-01-01

    Magnesium (Mg)-based alloys have been extensively considered as biodegradable implant materials for orthopedic surgery. Mg and its alloys are metallic biomaterials that can degrade in the body and promote new bone formation. In this study, the corrosion behavior and cytotoxicity of Mg-Zn-Ca alloys are evaluated with adipose-derived mesenchymal stem cells (ASCs). Mg-2Zn and Mg-2Zn-xCa (x = 1, 2 and 3 wt.%) alloys were designated. Mg alloys were analyzed with scanning electron microscopy and potentiodynamic polarization. To understand the in-vitro biocompatibility and cytotoxicity of Mg-2Zn and Mg-2Zn-xCa alloys, ASCs were cultured for 24 and 72 h in contact with 10%, 50% and 100% extraction of all alloys prepared in DMEM. Cell cytotoxicity and viability of ASCs were examined by MTT assay. Alloying elements including Zn and Ca improved the corrosion resistance of alloys were compared with pure Mg. The cytotoxicity results showed that all alloys had no significant adverse effects on cell viability in 24 h. After 72 h, cell viability and proliferation increased in the cells exposed to pure Mg and Mg-2Zn-1Ca extracts. The release of Mg, Zn and Ca ions in culture media had no toxic impacts on ASCs viability and proliferation. Mg-2Zn-1Ca alloy can be suggested as a good candidate to be used in biomedical applications. - Highlights: • Short and long term corrosion behavior of Mg-Zn-Ca alloys studied • Viability and toxicity of Adipose-derived Stem cells studied with Mg-Zn-Ca alloys • Understanding the morphology of cultured adipose stem cells on Mg alloys • Stem cells on Mg-Zn-Ca alloys could proliferate and expand

  13. A dual-task design of corrosion-controlling and osteo-compatible hexamethylenediaminetetrakis- (methylene phosphonic acid) (HDTMPA) coating on magnesium for biodegradable bone implants application.

    Science.gov (United States)

    Zhao, Sheng; Chen, Yingqi; Liu, Bo; Chen, Meiyun; Mao, Jinlong; He, Hairuo; Zhao, Yuancong; Huang, Nan; Wan, Guojiang

    2015-05-01

    Magnesium as well as its alloys appears increasingly as a revolutionary bio-metal for biodegradable implants application but the biggest challenges exist in its too fast bio-corrosion/degradation. Both corrosion-controllable and bio-compatible Mg-based bio-metal is highly desirable in clinic. In present work, hexamethylenediaminetetrakis (methylenephosphonic acid) [HDTMPA, (H2 O3 P-CH2 )2 -N-(CH2 )6 -N-(CH2 -PO3 H2 )2 ], as a natural and bioactive organic substance, was covalently immobilized and chelating-deposited onto Mg surface by means of chemical conversion process and dip-coating method, to fullfill dual-task performance of corrosion-protective and osteo-compatible functionalities. The chemical grafting of HDTMPA molecules, by participation of functional groups on pretreated Mg surface, ensured a firmly anchored base layer, and then sub-sequential chelating reactions of HDTMPA molecules guaranteed a homogenous and dense HDTMPA coating deposition on Mg substrate. Electrochemical corrosion and immersion degradation results reveal that the HDTMPA coated Mg provides a significantly better controlled bio-corrosion/degradation behavior in phosphate buffer saline solution as compared with untreated Mg from perspective of clinic requirement. Moreover, the HDTMPA coated Mg exhibits osteo-compatible in that it induces not only bioactivity of bone-like apatite precipitation but also promotes osteoblast cells adhesion and proliferation. Our well-controlled biodegradable and biocompatible HDTMPA modified Mg might bode well for next generation bone implant application. © 2014 Wiley Periodicals, Inc.

  14. Preparation of novel functional Mg/O/PCL/ZnO composite biomaterials and their corrosion resistance

    International Nuclear Information System (INIS)

    Xi, Zhongxian; Tan, Cui; Xu, Lan; Yang, Na; Li, Qing

    2015-01-01

    Highlights: • Novel functional Mg/O/PCL/ZnO composite biomaterials were prepared. • The biomaterials were prepared by anodization treatment and dip-coating technique. • The composite biomaterials were smooth and with low porosity. • The prepared biomaterials have good corrosion resistance in SBF. • The composite biomaterials can release zinc ion to promote bone formation. - Abstract: In this study, novel and functional Mg/O/PCL/ZnO (magnesium/anodic film/poly(ε-caprolactone)/zinc oxide) composite biomaterials for enhancing the bioactivity and biocompatibility of the implant was prepared by using anodization treatment and dip-coating technique. The surface morphology, microstructure, adhesion strength and corrosion resistance of the composite biomaterials were investigated using scanning electron microscopy (SEM), adhesion measurements, electrochemical tests and immersion tests respectively. In addition, the biocompatible properties of Mg (magnesium), Mg/PCL (magnesium/poly(ε-caprolactone)) and Mg/O/PCL (magnesium/anodic film/poly(ε-caprolactone)) samples were also investigated. The results show that the Mg/O/PCL/ZnO composite biomaterials were with low porosity and with the ZnO powders dispersed in PCL uniformly. The adhesion tests suggested that Mg/O/PCL/ZnO composite biomaterials had better adhesion strength than that of Mg/PCL composite biomaterials obviously. Besides, an in vitro test for corrosion demonstrated that the Mg/O/PCL/ZnO composite biomaterials had good corrosion resistance and zinc ion was released obviously in SBF

  15. Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chaoyong [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China); Zhang, Lei; Pan, Hucheng; Song, Kai; Tang, Aitao [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2017-01-01

    In this study, as-extruded Mg-Sr alloys were studied for orthopedic application, and the microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys were investigated by optical microscopy, scanning electron microscopy with an energy dispersive X-ray spectroscopy, X-ray diffraction, tensile and compressive tests, immersion test, electrochemical test and cytotoxicity test. The results showed that as-extruded Mg-Sr alloys were composed of α-Mg and Mg{sub 17}Sr{sub 2} phases, and the content of Mg{sub 17}Sr{sub 2} phases increased with increasing Sr content. As-extruded Mg-Sr alloy with 0.5 wt.% Sr was equiaxed grains, while the one with a higher Sr content was long elongated grains and the grain size of the long elongated grains decreased with increasing Sr content. Tensile and compressive tests showed an increase of both tensile and compressive strength and a decrease of elongation with increasing Sr content. Immersion and electrochemical tests showed that as-extruded Mg-0.5Sr alloy exhibited the best anti-corrosion property, and the anti-corrosion property of as-extruded Mg-Sr alloys deteriorated with increasing Sr content, which was greatly associated with galvanic couple effect. The cytotoxicity test revealed that as-extruded Mg-0.5Sr alloy did not induce toxicity to cells. These results indicated that as-extruded Mg-0.5Sr alloy with suitable mechanical properties, corrosion resistance and good cytocompatibility was potential as a biodegradable implant for orthopedic application. - Highlights: • Biodegradable as-extruded Mg-Sr alloys were fabricated. • Microstructure of alloys changed with increasing Sr content. • Mechanical properties of alloys could be controlled by adjusting the Sr content. • Corrosion properties of alloys decreased with increasing Sr content. • As-extruded Mg-0.5Sr alloy was potential for orthopedic application.

  16. Effect of calcium content on the microstructure, hardness and in-vitro corrosion behavior of biodegradable Mg-Ca binary alloy

    Directory of Open Access Journals (Sweden)

    Shervin Eslami Harandi

    2013-02-01

    Full Text Available Effect of calcium addition on microstructure, hardness value and corrosion behavior of five different Mg-xCa binary alloys (x = 0.7, 1, 2, 3, 4 wt. (% was investigated. Notable refinement in microstructure of the alloy occurred with increasing calcium content. In addition, more uniform distribution of Mg2Ca phase was observed in a-Mg matrix resulted in an increase in hardness value. The in-vitro corrosion examination using Kokubo simulated body fluid showed that the addition of calcium shifted the fluid pH value to a higher level similar to those found in pure commercial Mg. The high pH value amplified the formation and growth of bone-like apatite. Higher percentage of Ca resulted in needle-shaped growth of the apatite. Electrochemical measurements in the same solution revealed that increasing Ca content led to higher corrosion rates due to the formation of more cathodic Mg2Ca precipitate in the microstructure. The results therefore suggested that Mg-0.7Ca with the minimum amount of Mg2Ca is a good candidate for bio-implant applications.

  17. Effect of calcium content on the microstructure, hardness and in-vitro corrosion behavior of biodegradable Mg-Ca binary alloy

    Directory of Open Access Journals (Sweden)

    Shervin Eslami Harandi

    2012-01-01

    Full Text Available Effect of calcium addition on microstructure, hardness value and corrosion behavior of five different Mg-xCa binary alloys (x = 0.7, 1, 2, 3, 4 wt. (% was investigated. Notable refinement in microstructure of the alloy occurred with increasing calcium content. In addition, more uniform distribution of Mg2Ca phase was observed in a-Mg matrix resulted in an increase in hardness value. The in-vitro corrosion examination using Kokubo simulated body fluid showed that the addition of calcium shifted the fluid pH value to a higher level similar to those found in pure commercial Mg. The high pH value amplified the formation and growth of bone-like apatite. Higher percentage of Ca resulted in needle-shaped growth of the apatite. Electrochemical measurements in the same solution revealed that increasing Ca content led to higher corrosion rates due to the formation of more cathodic Mg2Ca precipitate in the microstructure. The results therefore suggested that Mg-0.7Ca with the minimum amount of Mg2Ca is a good candidate for bio-implant applications.

  18. Plasma Concentrations of Itraconazole, Voriconazole, and Terbinafine When Delivered by an Impregnated, Subcutaneous Implant in Japanese Quail ( Coturnix japonica ).

    Science.gov (United States)

    Souza, Marcy J; Redig, Patrick; Cox, Sherry K

    2017-06-01

    Aspergillosis is a common fungal infection in both wild and pet birds. Although effective antifungal medications are available, treatment of aspergillosis can require months of medication administration, which entails stressful handling one or more times per day. This study examined the delivery of the antifungal drugs itraconazole, voriconazole, and terbinafine to Japanese quail ( Coturnix japonica ) via an impregnated implant. Implants contained 0.5, 3, 8, or 24 mg of itraconazole, voriconazole, or terbinafine. The implants were administered subcutaneously over the dorsum and between the scapulae. Blood was collected from birds before and 2, 7, 21, 42, and 56 days after implant placement. Plasma was analyzed by high-performance liquid chromatography for concentrations of itraconazole, voriconazole, or terbinafine, as appropriate. During the course of the study, targeted terbinafine concentrations were achieved in some birds at various time points, but concentrations were inconsistent. Itraconazole and voriconazole concentrations were also inconsistent and did not reach targeted concentrations. Currently, the implant examined in this study cannot be recommended for treatment of aspergillosis in avian species.

  19. Influence of prosthesis design and implantation technique on implant stresses after cementless revision THR

    Directory of Open Access Journals (Sweden)

    Duda Georg N

    2011-05-01

    Full Text Available Abstract Background Femoral offset influences the forces at the hip and the implant stresses after revision THR. For extended bone defects, these forces may cause considerable bending moments within the implant, possibly leading to implant failure. This study investigates the influences of femoral anteversion and offset on stresses in the Wagner SL revision stem implant under varying extents of bone defect conditions. Methods Wagner SL revision stems with standard (34 mm and increased offset (44 mm were virtually implanted in a model femur with bone defects of variable extent (Paprosky I to IIIb. Variations in surgical technique were simulated by implanting the stems each at 4° or 14° of anteversion. Muscle and joint contact forces were applied to the reconstruction and implant stresses were determined using finite element analyses. Results Whilst increasing the implant's offset by 10 mm led to increased implant stresses (16.7% in peak tensile stresses, altering anteversion played a lesser role (5%. Generally, larger stresses were observed with reduced bone support: implant stresses increased by as much as 59% for a type IIIb defect. With increased offset, the maximum tensile stress was 225 MPa. Conclusion Although increased stresses were observed within the stem with larger offset and increased anteversion, these findings indicate that restoration of offset, key to restoring joint function, is unlikely to result in excessive implant stresses under routine activities if appropriate fixation can be achieved.

  20. Expressive Language Development in 45 Cochlear Implanted Children Following 2 Years of Implantation

    Directory of Open Access Journals (Sweden)

    Seyed Basir Hashemi

    2011-10-01

    Full Text Available Objectives: Profound hearing loss encounters children with delay in speech and language. As it is known language acquisition in young deaf children is a lengthy process, but cochlear implanted children have better spoken language skills than if they had not received the device. According to the importance of cochlear implant in deaf child's language development, this study evaluates the effect of different variables on child's language performance. Methods: 45 cochlear implanted children were tested, all of whom had used the device for at least 2 years. In order to evaluate the children, the NEWSHA test which is fitted for Persian speaking children was performed and language development of the children was compared through stepwise discriminant analysis. Results: After evaluation of the effect of different variables like child's age of implantation, participating in rehabilitation classes, parent's cooperation and their level of education, we came to a conclusion that the child's age of implantation and rehabilitation program significantly develop the child's language performance. Discussion: The value of cochlear implant in improvement of deaf children in speech, language perception, production and comprehension is confirmed by different studies which have been done on cochlear implanted children. Also, the present study indicates that language development in cochlear implanted children is highly related to their age of implantation and rehabilitation program.

  1. Optical effects of ion implantation

    International Nuclear Information System (INIS)

    Townsend, P.D.

    1987-01-01

    The review concerns the effects of ion implantation that specifically relate to the optical properties of insulators. Topics which are reviewed include: ion implantation, ion range and damage distributions, colour centre production by ion implantation, high dose ion implantation, and applications for integrated optics. Numerous examples are presented of both diagnostic and industrial examples of ion implantation effects in insulators. (U.K.)

  2. Effect of healing time on bone-implant contact of orthodontic micro-implants: a histologic study.

    Science.gov (United States)

    Ramazanzadeh, Barat Ali; Fatemi, Kazem; Dehghani, Mahboobe; Mohtasham, Nooshin; Jahanbin, Arezoo; Sadeghian, Hamed

    2014-01-01

    Objectives. This study aimed to evaluate the effect of immediate and delayed loading of orthodontic micro-implants on bone-implant contact. Materials and Methods. Sixty four micro-implants were implanted in dog's jaw bone. The micro-implants were divided into loaded and unloaded (control) groups. The control group had two subgroups: four and eight weeks being implanted. The loaded group had two subgroups of immediate loading and delayed (after four weeks healing) loading. Loaded samples were subjected to 200g load for four weeks. After sacrificing the animals micro-implants and surrounding tissues were observed histologically. Bone-implant contact ratios (BIC) were calculated and different groups' results were compared by three-way ANOVA. Results. Mean survival rate was 96.7% in general. Survival rates were 96.7%, 94.4% and 100% for control, immediate and delayed loaded groups, respectively. BIC values were not significantly different in loaded and control groups, immediate and delayed loading groups, and pressure and tension sides. Mandibular micro-implants had significantly higher BIC than maxillary ones in immediate loading, 4-weeks control, and 8-weeks control groups (P = 0.021, P = 0.009, P = 0.003, resp.). Conclusion Immediate or delayed loading of micro-implants in dog did not cause significant difference in Bone-implant contact which could be concluded that healing time had not significant effect on micro-implant stability.

  3. The pharmacokinetics and safety of an intraoperative bupivacaine-collagen implant (XaraColl® for postoperative analgesia in women following total abdominal hysterectomy

    Directory of Open Access Journals (Sweden)

    Cusack SL

    2013-03-01

    Full Text Available Susan L Cusack,1 Philip Reginald,2 Lisa Hemsen,3 Emmanuel Umerah21Cusack Pharmaceutical Consulting, Burlington, NJ, USA; 2Departments of Gynaecology and Anaesthetics, Wexham Park Hospital, Slough, SL2 4HL, UK; 3Innocoll Technologies, Athlone, IrelandBackground: XaraColl®, a collagen-based intraoperative implant that delivers bupivacaine to the site of surgical trauma, is under development for postoperative analgesia. We examined the pharmacokinetics, safety and efficacy of XaraColl following implantation in women undergoing total abdominal hysterectomy.Methods: Three XaraColl implants, each containing 50 mg bupivacaine hydrochloride, were implanted in 12 women undergoing total abdominal hysterectomy for a benign condition. Serum samples were obtained through 96 hours for pharmacokinetic analysis. Patients received acetaminophen 1000 mg every 6 hours, diclofenac 50 mg every 8 hours, and were given access to intravenous morphine for breakthrough pain via patient-controlled analgesia during the first 24 hours. Pain intensity was assessed at regular intervals using a 100 mm visual analog scale. Safety was assessed through 30 days.Results: The pharmacokinetic profile displayed a double peak in bupivacaine concentration with the second peak occurring up to 24 hours after the first and at a generally higher concentration. The time to maximum concentration (tmax varied from 0.5 to 24 hours (median 12 hours according to which peak predominated. The mean maximum concentration (Cmax was 0.22 µg/mL and the maximum individual Cmax was 0.44 µg/mL, which are well below the established systemic toxicity threshold. Morphine use was generally low (mean 16.8 mg; median 6.5 mg and compared favorably with institutional experience. At 6 hours post-surgery, 11 patients recorded pain scores ≤ 20 mm, 6 recorded ≤ 10 mm, and 2 reported no pain. Scores continued to decline throughout the study. The product was considered safe and well tolerated.Conclusion: Xara

  4. Implant-supported mandibular removable partial dentures; patient-based outcome measures in relation to implant position.

    Science.gov (United States)

    Jensen, Charlotte; Raghoebar, Gerry M; Kerdijk, Wouter; Meijer, Henny J A; Cune, Marco S

    2016-12-01

    To assess the benefits of implant support to Removable Partial Dentures (RPD) in patients with a bilateral free-ending situation in the mandible and to determine the most favorable implant position: the premolar (PM) or the molar (M) region. Thirty subjects with a bilateral unbounded posterior saddle received 2 PM and 2M implants. A new RPD was placed. Implant support was provided 3 months later. Two PM implants supported the RPD. After 3 months the 2M implants were used or vice versa. Outcome measures included oral health related quality of life (OHIP-NL49), general health status (SF-36), contentment assessed on a Visual Analogue Scale (VAS) and the number of hours that the RPD was worn. Data were collected prior to treatment, 3 months after having functioned with a new RPD and after 3 and 6 months with implant support. Finally, patients expressed their preferred implant position. The general health status (SF-36) was not influenced. OHIP-NL49 values and mean wearing-time were statistical significantly more favorable for ISRPD's, regardless of the implant position. Per day, the ISRPD's were worn 2-3h more than the unsupported new RPD. Patients' expectations were met as the VAS-scores of anticipated and realized contentment did not reach a statistical significant level (p>0.05). VAS scores for ISRPD's with M implant support were higher than for PM implant support. Finally, 56.7% of subjects preferred the M implant support, 13.3% expressed no preference and 30% opted for PM implant support. Mandibular implant support favorably influences oral health related patient-based outcome measures in patients with a bilateral free-ending situation. The majority of patients prefer the implant support to be in the molar region. Patients with a bilateral free-ending situation in the mandible opposed by a maxillary denture benefit from implant support to their mandibular removable partial denture. Most patients prefer this support to be in the molar region. Copyright © 2016

  5. Rehabilitación sobre implantes oseointegrados A case with rehabilitation on boneintegrated implants

    Directory of Open Access Journals (Sweden)

    Leticia María Lemus Cruz

    2009-03-01

    Full Text Available Se presenta un caso de un paciente rehabilitado en la consulta de Implantología de la Facultad de Estomatología de Ciudad de La Habana. La historia de la implantología moderna se remonta a principios de los años 60, cuando Per-Ingvar Branemark sienta las bases de la osteointegración y describe los primeros implantes de titanio con forma de tornillo. Aunque antigua, es la prótesis más moderna. Si la meticulosidad es obligada en la elaboración de todo tipo de prótesis, en los trabajos de implantes no se admite el más mínimo fallo, desde la planificación del caso hasta la implantación de la prótesis en boca. Para obtener buenos resultados, las técnicas y los procesos han de observarse escrupulosamente. En nuestra Facultad se ha creado el Grupo de Implantología, que es el encargado de la colocación de implantes y la rehabilitación prótesica de estos. Para ello han sido utilizado diferentes tipos de implantes comercializados y patentizados al nivel mundial. Se reafirma que la rehabilitación sobre implantes mejora la calidad estética y funcional de los pacientes.A case of rehabilitation patient is presented seen in Implantation Science consulting room of Stomatology Faculty of Havana City. History of implantation science dates back to at the beginning of 60s, when Per-Ingvar Branemark creates the bases of bone-integration and to describe the firsts titanium implants in a screw form. Although ancient, it is the more modern prosthesis. If meticulousness if mandatory in elaboration of all type of prosthesis, in implants works it inadmissible the minimum of failure, from the case planning until prosthesis implantation in mouth. To achieve good results, techniques and processes has to be scrupulously observed. In our Faculty it has been created a group of Implantation Science, which is in charge of implants placement, and of the prosthetic rehabilitation of these. Thus, we used different types of marketed and showed at world level. It

  6. Cd doping of AlN via ion implantation studied with perturbed angular correlation

    CERN Document Server

    Kessler, Patrick; Miranda, Sérgio MC; Simon, R; Correia, João Guilherme; Johnston, Karl; Vianden, Reiner

    2012-01-01

    AlN with a wide bandgap of 6.2 eV is a promising candidate for ultraviolet light-emitting diodes and laser diodes. However, the production of the required p-type AlN is still challenging. As a possible dopant Cd was suggested among other Group II atoms (Be, Mg, and Zn). In this study the annealing condition of implanted Cd in AlN was investigated with the method of the perturbed angular correlation (PAC). Therefore radioactive $^{117}$Cd or $^{111m}$Cd ions were implanted into thin AlN films on sapphire substrate with an energy of 30 keV and fluences in the range of 10$^{11}$ ions/cm$^{2}$. After thorough annealing with a proximity cap of the same material most of the Cd-probes occupy substitutional lattice sites and almost all implantation damage can be annealed. This results in a distinct frequency in the PAC spectra which increases with temperature. In contrast to the formation of an indium nitrogen-vacancy complex observed with the probe $^{111}$In on substitutional Al-sites no defects are bound to substi...

  7. Intracranial implantation with subsequent 3D in vivo bioluminescent imaging of murine gliomas.

    Science.gov (United States)

    Abdelwahab, Mohammed G; Sankar, Tejas; Preul, Mark C; Scheck, Adrienne C

    2011-11-06

    The mouse glioma 261 (GL261) is recognized as an in vivo model system that recapitulates many of the features of human glioblastoma multiforme (GBM). The cell line was originally induced by intracranial injection of 3-methyl-cholantrene into a C57BL/6 syngeneic mouse strain (1); therefore, immunologically competent C57BL/6 mice can be used. While we use GL261, the following protocol can be used for the implantation and monitoring of any intracranial mouse tumor model. GL261 cells were engineered to stably express firefly luciferase (GL261-luc). We also created the brighter GL261-luc2 cell line by stable transfection of the luc2 gene expressed from the CMV promoter. C57BL/6-cBrd/cBrd/Cr mice (albino variant of C57BL/6) from the National Cancer Institute, Frederick, MD were used to eliminate the light attenuation caused by black skin and fur. With the use of albino C57BL/6 mice; in vivo imaging using the IVIS Spectrum in vivo imaging system is possible from the day of implantation (Caliper Life Sciences, Hopkinton, MA). The GL261-luc and GL261-luc2 cell lines showed the same in vivo behavior as the parental GL261 cells. Some of the shared histological features present in human GBMs and this mouse model include: tumor necrosis, pseudopalisades, neovascularization, invasion, hypercellularity, and inflammation (1). Prior to implantation animals were anesthetized by an intraperitoneal injection of ketamine (50 mg/kg), xylazine (5 mg/kg) and buprenorphine (0.05 mg/kg), placed in a stereotactic apparatus and an incision was made with a scalpel over the cranial midline. A burrhole was made 0.1 mm posterior to the bregma and 2.3mm to the right of the midline. A needle was inserted to a depth of 3mm and withdrawn 0.4 mm to a depth of 2.6 mm. Two μl of GL261-luc or GL261-luc2 cells (10(7) cells/ml) were infused over the course of 3 minutes. The burrhole was closed with bonewax and the incision was sutured. Following stereotactic implantation the bioluminescent cells are

  8. Implant-supported mandibular removable partial dentures: Functional, clinical and radiographical parameters in relation to implant position.

    Science.gov (United States)

    Jensen, Charlotte; Speksnijder, Caroline M; Raghoebar, Gerry M; Kerdijk, Wouter; Meijer, Henny J A; Cune, Marco S

    2017-06-01

    Patients with a Kennedy class I situation often encounter problems with their removable partial denture (RPD). To assess the functional benefits of implant support to RPDs, the clinical performance of the implants and teeth and to determine the most favorable implant position: the premolar (PM) or molar (M) region. Thirty subjects received 2 PM and 2 M implants. A new RPD was made. Implant support was provided 3 months later. In a cross-over model, randomly, 2 implants (PM or M) supported the RPD during 3 months. Masticatory performance was assessed using the mixing ability index (MAI). Clinical and radiographic parameters were assessed. Non-parametric statistical analysis for related samples and post hoc comparisons were performed. Masticatory performance differed significantly between the stages of treatment (P < .001). MAI-scores improved with implant support although the implant position had no significant effect. No complications to the implants or RPD were observed and clinical and radiographical parameters for both implants and teeth were favorable. Higher scores for bleeding on probing were seen for molar implants. Implant support to a Kennedy class I RPD significantly improves masticatory function, regardless of implant position. No major clinical problems were observed. © 2017 Wiley Periodicals, Inc.

  9. Effects of Zafirlukast on the Capsular Fibrosis of Silicone Breast Implants

    Directory of Open Access Journals (Sweden)

    Emre Hocaoglu

    2014-06-01

    Methods: Forty-eight adult female Sprague-Dawley rats were divided into four groups. Smooth-surfaced, gel-filled prostheses were implanted in 36 rats. Group A: The day of the operation, 12 animals received Zafirlukast treatment for 14 weeks (oral gavage, once a day, 6 days a week, 4 mg/kg/day; Group B: 10 weeks after the operation, 12 animals received Zafirlukast treatment for 4 weeks; Group C: 12 animals were implanted but did not receive treatment; Group D: 12 animals did not have an operation, but for 14 weeks received oral gavage containing water instead of Zafirlukast. At the end of the 14 weeks, the implants with the surrounding capsules were extracted. Blind macroscopic inspectional evaluation of the capsules was performed, and microscopic capsular thickness measurements were made. Results: The mean capsular thickness was 0.033 mm (SD: 0.011 in Group A, and 0.089 mm (SD: 0.023 and 0.125 mm (SD: 0.025 in Groups B and C, respectively. Differences between Groups A and C and between Groups A and B were significant (p0.05. Similarly, Macroscopic Inspectional Fibrosis Scoring showed a significant difference between Groups A and C and a non-significant difference between Groups B and C. Conclusion: Daily prophylactic oral administration of Zafirlukast immediately after implantation significantly diminishes the development of fibrotic capsules around the silicone prostheses. [Arch Clin Exp Surg 2014; 3(3.000: 139-146

  10. Electric-field gradients at the $^{111}In$ and $^{111m}Cd$ sites in undoped and Mg-doped $LiNbO_{3}$

    CERN Document Server

    Hauer, B; Marques, J G; Barradas, N P; Correia, J G; Agulló-López, F; Diéguez, E

    1995-01-01

    The quadrupole interaction of 111Cd in undoped (congruent) and Mg-doped LiNbO3 single crystals has been studied using the perturbed angular correlation technique after implantation of 111In and 111mCd. A stepwise-annealing procedure shows the lattice to be fully reconstructed at 773 K. Our results show that both In and Cd are in the Li position. Mg doping at 6 mol % does not have any effect on the lattice location of these impurities in LiNbO3.

  11. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection: a Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Starch-Jensen, Thomas; Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. A MEDLINE (PubMed), Embase and Cochrane library search in combination with a hand-search of relevant journals was conducted. No language or year of publication restriction was applied. The search provided 298 titles. Three studies fulfilled the inclusion criteria. The included studies were characterized by low or moderate risk of bias. Survival of suprastructures has never been compared within the same study. High implant survival rate was reported in all the included studies. Significantly more peri-implant marginal bone loss, higher probing depth score, bleeding score and gingival score was observed around implants with a scalloped implant-abutment connection. There were no significant differences between the two treatment modalities regarding professional or patient-reported outcome measures. Meta-analysis disclosed a mean difference of peri-implant marginal bone loss of 1.56 mm (confidence interval: 0.87 to 2.25), indicating significant more bone loss around implants with a scalloped implant-abutment connection. A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must be rejected. However, further long-term randomized controlled trials assessing implant treatment outcome with the two treatment modalities are needed before definite conclusions can be provided about the beneficial use of implants with a scalloped implant-abutment connection on preservation of the peri-implant marginal bone level.

  12. A prospective, split-mouth study comparing tilted implants with angulated connection versus conventional implants with angulated abutment.

    Science.gov (United States)

    Van Weehaeghe, Manú; De Bruyn, Hugo; Vandeweghe, Stefan

    2017-12-01

    An angulation of the implant connection could overcome the problems related to angulated abutments. This study compares conventional implants with angulated abutment to tilted implants with an angulated connection. Twenty patients were treated in the edentulous mandible. In the posterior jaw locations, one conventional tilted implant with angulated abutment and one angulated implant without abutment were placed. In the anterior jaw, two conventional implants were placed, one with and one without abutment. Implants were immediately loaded and 3 months later, the final bridge (PFM or monolithic zirconia) was placed. After a follow-up of 48 months, 17 patients were available for clinical examination. The mean overall marginal bone loss (MBL) was 1.26 mm. No significant differences in implant survival, MBL, periodontal indices, patients' satisfaction, or complications was found between implants restored on abutment or implant level, between the posteriorly located angulated implant nor angulated abutment, and between both anterior implants with or without abutment. The posterior implants demonstrated less MBL compared to the anterior implants (P abutment were replaced and four loose bridge screws connected to the angulated abutments had to be tightened. Patients were overall satisfied (4.74/5). An implant with angulated connection may results in a stronger connection but does not affect the marginal bone loss. No difference in MBL was seen between implants restored on abutment or implant level. Zirconia seems to reduce the amount of plaque. © 2017 Wiley Periodicals, Inc.

  13. Quantitative ion implantation

    International Nuclear Information System (INIS)

    Gries, W.H.

    1976-06-01

    This is a report of the study of the implantation of heavy ions at medium keV-energies into electrically conducting mono-elemental solids, at ion doses too small to cause significant loss of the implanted ions by resputtering. The study has been undertaken to investigate the possibility of accurate portioning of matter in submicrogram quantities, with some specific applications in mind. The problem is extensively investigated both on a theoretical level and in practice. A mathematical model is developed for calculating the loss of implanted ions by resputtering as a function of the implanted ion dose and the sputtering yield. Numerical data are produced therefrom which permit a good order-of-magnitude estimate of the loss for any ion/solid combination in which the ions are heavier than the solid atoms, and for any ion energy from 10 to 300 keV. The implanted ion dose is measured by integration of the ion beam current, and equipment and techniques are described which make possible the accurate integration of an ion current in an electromagnetic isotope separator. The methods are applied to two sample cases, one being a stable isotope, the other a radioisotope. In both cases independent methods are used to show that the implantation is indeed quantitative, as predicted. At the same time the sample cases are used to demonstrate two possible applications for quantitative ion implantation, viz. firstly for the manufacture of calibration standards for instrumental micromethods of elemental trace analysis in metals, and secondly for the determination of the half-lives of long-lived radioisotopes by a specific activity method. It is concluded that the present study has advanced quantitative ion implantation to the state where it can be successfully applied to the solution of problems in other fields

  14. Subsurface Synthesis and Characterization of Ag Nanoparticles Embedded in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Vilayur Ganapathy, Subramanian; Devaraj, Arun; Colby, Robert J.; Pandey, Archana; Varga, Tamas; Shutthanandan, V.; Manandhar, Sandeep; El-Khoury, Patrick Z.; Kayani, Asghar N.; Hess, Wayne P.; Thevuthasan, Suntharampillai

    2013-03-08

    Metal nanoparticles exhibit localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the dielectric medium surrounding it. LSPR causes field enhancement near the surface of the nanoparticle making them interesting candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix form hotspots which are prime locations for LSPR spectroscopy and sensing. This study involves synthesizing partially buried Ag nanoparticles in MgO and investigating the characteristics of this material system. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 10000C for 10 and 30 hours. A detailed optical and structural characterization was carried out to understand the evolution of Ag nanoparticle microstructure and size distribution inside the MgO matrix. Micro x-ray diffraction (MicroXRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes as seen from aberration corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  15. The effects of subcutaneous injection of nicotine on osseointegration of machined and anodized implants in rabbits.

    Science.gov (United States)

    Linden, Maria Salete Sandini; Bittencourt, Marcos Eugênio de; Carli, João Paulo De; Miyagaki, Daniela Cristina; Santos, Pâmela Letícia Dos; Paranhos, Luiz Renato; Groppo, Francisco Carlos; Ramacciato, Juliana Cama

    2018-01-01

    To evaluate the influence of subcutaneous injection nicotine in osseointegration process on different implant surfaces. Twenty-two male rabbits were distributed into two groups according to the subcutaneous injections: (1) nicotine 3 mg/day/kg and (2) 0.9 % NaCI 3 mL/day/kg, three times a day; subgroups were then designated-machined and anodized implants were placed in the right and left tibia bones, respectively. The animals were submitted euthanasia after periods of eight weeks to determine nicotine and cotinine levels, alkaline phosphatase and biomechanical analysis. The plasmatic levels of nicotine and cotinine were 0.5 ± 0.28 ng/mL and 9.5 ± 6.51 ng/mL, respectively. The alkaline phosphatase analyses in blood levels in control group were observed 40.8 ± 11.88 UI/L and 40.75 ± 12.46 UI/L, for the surfaces machined and anodized, respectively. In the test group was observed levels 37.9 ± 4.84 UI/L, for both implant surfaces. No significant differences were observed between control and test groups and between the implant surfaces regarding alkaline phosphatase blood levels. For biomechanics, no significant differences were observed in control group between the machined (25±8.46 Ncm) or anodized (31.2 ± 6.76 Ncm) implants. However, the treatment with nicotine induced higher torque than control in both machined (38.3 ± 13.52 Ncm) and anodized (35.5 ± 14.17 Ncm) implants, with p = 0.0024 and p = 0.0121, respectively. Subcutaneous injection of nicotine following implant insertion didn't have effect on osseointegration, independently from the implant surface.

  16. Impact of cone-beam computed tomography on implant planning and on prediction of implant size

    International Nuclear Information System (INIS)

    Pedroso, Ludmila Assuncao de Mello; Silva, Maria Alves Garcia Santos; Garcia, Robson Rodrigues; Leles, Jose Luiz Rodrigues; Leles, Claudio Rodrigues

    2013-01-01

    The aim was to investigate the impact of cone-beam computed tomography (CBCT) on implant planning and on prediction of final implant size. Consecutive patients referred for implant treatment were submitted to clinical examination, panoramic (PAN) radiography and a CBCT exam. Initial planning of implant length and width was assessed based on clinical and PAN exams, and final planning, on CBCT exam to complement diagnosis. The actual dimensions of the implants placed during surgery were compared with those obtained during initial and final planning, using the McNemmar test (p 0.05). It was concluded that CBCT improves the ability of predicting the actual implant length and reduces inaccuracy in surgical dental implant planning. (author)

  17. In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants.

    Science.gov (United States)

    Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman; Sahasrabudhe, Himanshu; Banerjee, Dishary; Bose, Susmita

    2017-01-01

    Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 vol.% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO 2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control.

  18. In vivo response of laser processed porous titanium implants for load-bearing implants

    Science.gov (United States)

    Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman; Sahasrabudhe, Himanshu; Banerjee, Dishary; Bose, Susmita

    2016-01-01

    Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 volume% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control. PMID:27307009

  19. Ion implantation and bio-compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshiaki; Kusakabe, Masahiro [Sony Corp., Tokyo (Japan). Corporate Research Labs.; Iwaki, Masaya

    1992-07-01

    Surface modification of polymers by ion implantation has been carried out to control surface properties such as conductivity, wettability, blood and tissue compatibility. Ion implantation into silicone rubber, polystyrene and segmented polyurethane was performed at 150 keV with doses ranging from 1 x 10[sup 15] to 3 x 10[sup 17] ions/cm[sup 2] to improve bio-compatibility. The platelet accumulation on ion implanted silicone rubber decreased and non-thrombogenicity of ion implanted specimens were improved. The ion implanted polystyrene and segmented polyurethane have been found to exhibit remarkably higher adhesion and spreading of endothelial cells compared to the non-implanted case. It is concluded that ion implantation into polymers is effective in controlling their bio-compatibility. (author).

  20. Ion Implantation of Calcium and Zinc in Magnesium for Biodegradable Implant Applications

    Directory of Open Access Journals (Sweden)

    Sahadev Somasundaram

    2018-01-01

    Full Text Available In this study, magnesium was implanted with calcium-ion and zinc-ion at fluences of 1015, 1016, and 1017 ion·cm−2, and its in vitro degradation behaviour was evaluated using electrochemical techniques in simulated body fluid (SBF. Rutherford backscattering spectrometry (RBS revealed that the implanted ions formed layers within the passive magnesium-oxide/hydroxide layers. Electrochemical impedance spectroscopy (EIS results demonstrated that calcium-ion implantation at a fluence of 1015 ions·cm−2 increased the polarisation resistance by 24%, but higher fluences showed no appreciable improvement. In the case of zinc-ion implantation, increase in the fluence decreased the polarisation resistance. A fluence of 1017 ion·cm−2 decreased the polarisation resistance by 65%, and fluences of 1015 and 1016 showed only marginal effect. Similarly, potentiodynamic polarisation results also suggested that low fluence of calcium-ion decreased the degradation rate by 38% and high fluence of zinc-ion increased the degradation rate by 61%. All the post-polarized ion-implanted samples and the bare metal revealed phosphate and carbonate formation. However, the improved degradative behaviour in calcium-ion implanted samples can be due to a relatively better passivation, whereas the reduction in degradation resistance in zinc-ion implanted samples can be attributed to the micro-galvanic effect.

  1. Biofilm Analysis of Retrieved Dental Implants after Different Peri-Implantitis Treatments

    Directory of Open Access Journals (Sweden)

    Thaise C. Geremias

    2017-01-01

    Full Text Available The aim of the current study was to analyse the planktonic growth of Streptococcus mutans on the surfaces of three implants retrieved after three different peri-implantitis treatments. Three implants from a male patient with high levels of bone loss were treated by mechanical debridement, chemical decontamination, and implantoplasty. After 4 months of follow-up, the implants were removed. The growth and biofilm formation were measured by spectrophotometry (OD630 nm and scanning electron microscopy (SEM, after 48 hours of incubation. Results showed an average of Streptococcus mutans planktonic growth over the implants of 0.21 nm (mechanical debridement, 0.16 nm (chemical decontamination, and 0.15 nm (implantoplasty. Data were analysed by ANOVA and Tukey’s test (p<0.05 for chemical decontamination and implantoplasty. Implantoplasty and chemical decontamination showed the lowest levels of planktonic growth, indicating a possible influence of the modification procedures on the titanium surface on the initial biofilm attachment.

  2. Electromagnetic Interference in Patients with Implanted Cardioverter-Defibrillators and Implantable Loop Recorders

    Directory of Open Access Journals (Sweden)

    Marcos de Sousa

    2002-07-01

    Full Text Available Modern life exposes us all to an ever-increasing number of potential sources of electromagnetic interference (EMI and patients with Implantable rhythm devices (IRD like pacemakers, implantable cardioverter defibrillators or implantable loop recorders often ask about the use of microwave ovens, walking through airport metal detectors and the use of cellular phones. Electromagnetic interference occurs when electromagnetic waves emitted by one device impede the normal function of another electronic device. The potential for interaction between implanted pacing systems and cardioverter-defibrillators (electromagnetic interference, EMI has been recognized for years.1,2,3,4. It has been shown that EMI can produce clinically significant effects on patients with implanted pacemakers and ICDs. For these reasons the following text discusses the influence of several EMI generating devices on IRD .

  3. Nanotechnology for dental implants.

    Science.gov (United States)

    Tomsia, Antoni P; Lee, Janice S; Wegst, Ulrike G K; Saiz, Eduardo

    2013-01-01

    With the advent of nanotechnology, an opportunity exists for the engineering of new dental implant materials. Metallic dental implants have been successfully used for decades, but they have shortcomings related to osseointegration and mechanical properties that do not match those of bone. Absent the development of an entirely new class of materials, faster osseointegration of currently available dental implants can be accomplished by various surface modifications. To date, there is no consensus regarding the preferred method(s) of implant surface modification, and further development will be required before the ideal implant surface can be created, let alone become available for clinical use. Current approaches can generally be categorized into three areas: ceramic coatings, surface functionalization, and patterning on the micro- to nanoscale. The distinctions among these are imprecise, as some or all of these approaches can be combined to improve in vivo implant performance. These surface improvements have resulted in durable implants with a high percentage of success and long-term function. Nanotechnology has provided another set of opportunities for the manipulation of implant surfaces in its capacity to mimic the surface topography formed by extracellular matrix components of natural tissue. The possibilities introduced by nanotechnology now permit the tailoring of implant chemistry and structure with an unprecedented degree of control. For the first time, tools are available that can be used to manipulate the physicochemical environment and monitor key cellular events at the molecular level. These new tools and capabilities will result in faster bone formation, reduced healing time, and rapid recovery to function.

  4. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Energy Technology Data Exchange (ETDEWEB)

    Abdal-hay, Abdalla [Departmentt of Bionano System Engineering, College of Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Dewidar, Montasser [Department of Materials and Mechanical Design, Faculty of Energy Engineering, South Valley University, Aswan (Egypt); Lim, Jae Kyoo, E-mail: jklim@jbnu.ac.kr [Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The corrosion behavior of magnesium for orthopedic applications is extremely poor. Black-Right-Pointing-Pointer The solvent (DCM, THF and DMF) had a strong effect on the coatings performance. Black-Right-Pointing-Pointer Mg bar alloy coated with PVAc/DCM layers provided an excellent bonding strength. Black-Right-Pointing-Pointer Treated samples indicated significant damping for the degradation rate. Black-Right-Pointing-Pointer Cytocompatibility on MC3T3 cells of the PVAc/DCM samples revealed a good behavior. - Abstract: The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might

  5. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    International Nuclear Information System (INIS)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-01-01

    Highlights: ► The corrosion behavior of magnesium for orthopedic applications is extremely poor. ► The solvent (DCM, THF and DMF) had a strong effect on the coatings performance. ► Mg bar alloy coated with PVAc/DCM layers provided an excellent bonding strength. ► Treated samples indicated significant damping for the degradation rate. ► Cytocompatibility on MC3T3 cells of the PVAc/DCM samples revealed a good behavior. - Abstract: The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc–solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  6. Dental-Implantate und ihre Werkstoffe

    Science.gov (United States)

    Newesely, Heinrich

    1983-07-01

    Some new trends in materials for dental implants, which also effect in the operative techniques and implant design, are described. Advantages and shortcomings of the different material types are exemplified and correlated with their bioinert resp. bioactive functions. The practical interest in metallic implants focussed in titanium resp. oxide ceramics in the ceramic field, whereas the special goal of implant research follows from the improvement of the bioactive principle with loaded calcium phosphate implants.

  7. Precipitation processes in implanted materials

    International Nuclear Information System (INIS)

    Borders, J.A.

    1978-01-01

    Ion implantation is a nonequilibrium process. It is possible to implant materials with impurities to concentration levels which exceed the solid solubilities. The return of the system to thermodynamic equilibrium is often accomplished by precipitation of the implanted species or a compound involving atoms of both the host and the implanted species. This may involve long time scales when taking place at room temperature or it may take place during the implantation

  8. Implantable electronic medical devices

    CERN Document Server

    Fitzpatrick, Dennis

    2014-01-01

    Implantable Electronic Medical Devices provides a thorough review of the application of implantable devices, illustrating the techniques currently being used together with overviews of the latest commercially available medical devices. This book provides an overview of the design of medical devices and is a reference on existing medical devices. The book groups devices with similar functionality into distinct chapters, looking at the latest design ideas and techniques in each area, including retinal implants, glucose biosensors, cochlear implants, pacemakers, electrical stimulation t

  9. Quantification of ion or atom transfer phenomena in materials implanted by nuclear methods

    International Nuclear Information System (INIS)

    Oudadesse, Hassane

    1998-01-01

    Knowledge of transfer of the constituents of a system from regions of higher to lower concentration is of interest for implanted bio-materials. It allows determining the rate at which this material is integrated in a living material. To evaluate the ossification kinetics and to study the bio-functionality in corals of Ca and Sr, irradiations with a 10 13 n.cm -2 .s -1 was performed, followed by the examination of changes in the localization of these elements. By using PIXE analysis method the distribution of Ca, P, Sr, Zn and Fe in the implant, bone and bone-implant interfaces were determined. Thus, it was shown that resorption of coral in sheep is achieved in 5 months after implantation and is identical to the cortical tissues 4 months after implantation in animals as for instance in hares. We have analyzed the tissues from around the prostheses extracted from patients. The samples were calcined and reduced to powder weighting some milligrams. We have adopted for this study the PIXE analysis method. The samples were irradiated by a proton beam of 3 MeV and about 400 μm diameter. The results show the presence of the elements Ti, Fe, Cr, Ni or Zn according to the type of the implanted prosthesis. This dispersal of the metallic ions and atoms contaminate the tissues. The transfer factors translate the exchanges between bone and the implanted material. The solvatation phenomenon and the electric charge equilibrium explain the transfer order of cations Mg 2+ , Ca 2+ and Sr 2+ and of the anion PO 4 3- . We have also determined these factors for the elements Ti, Cr and Ni. An original technique to study the bone bio-functionality was used. Use of phosphate derivatives labelled by 99m Tc allows obtaining information about the fixation of radioactive tracer. It was found that only after the eighth month at the implantation the neo-formed bone fixes the MDP (methyl diphosphate) labelled by 99m Tc in a similar way as in the control sample. Starting from this moment the

  10. Implant retention systems for implant-retained overdentures.

    Science.gov (United States)

    Laverty, D P; Green, D; Marrison, D; Addy, L; Thomas, M B M

    2017-03-10

    Implant retained overdentures are being increasingly utilised in both general and specialist practice to rehabilitate patients with missing teeth, particularly those that are edentate. This article aims to inform the reader of a variety of retention systems that are available to retain an implant overdenture and to understand how these systems work, their advantages and disadvantages and to outline some of the clinical and treatment planning considerations involved in selecting the most appropriate retention system for patients.

  11. Falha prematura em implantes orais = Early oral implant failures

    Directory of Open Access Journals (Sweden)

    Fadanelli, Alexandro Bianchi

    2005-01-01

    Full Text Available Atualmente, ainda há uma percentagem significativa de fracassos de implantes na prática clínica, causando transtorno para o profissional e para o paciente. O objetivo deste estudo foi avaliar a bibliografia disponível sobre o assunto, apresentar um caso clínico e discutir os aspectos relacionados aos insucessos na terapia com implantes ocorridos durante o período de osteointegração. A avaliação da literatura mostrou haverem múltiplos fatores possivelmente envolvidos nas falhas de implantes, sendo que através do estudo das falhas pode-se minimizar sua ocorrência

  12. Pre-implantation implantable cardioverter defibrillator concerns and Type D personality increase the risk of mortality in patients with an implantable cardioverter defibrillator

    DEFF Research Database (Denmark)

    Pedersen, Susanne S.; van den Broek, Krista C; Erdman, Ruud A M

    2010-01-01

    Little is known about the influence of psychological factors on prognosis in implantable cardioverter defibrillator (ICD) patients. We examined the influence of the distressed personality (Type D) and pre-implantation device concerns on short-term mortality in ICD patients.......Little is known about the influence of psychological factors on prognosis in implantable cardioverter defibrillator (ICD) patients. We examined the influence of the distressed personality (Type D) and pre-implantation device concerns on short-term mortality in ICD patients....

  13. Comparison of surface modified zirconia implants with commercially available zirconium and titanium implants: a histological study in pigs.

    Science.gov (United States)

    Gredes, Tomasz; Kubasiewicz-Ross, Pawel; Gedrange, Tomasz; Dominiak, Marzena; Kunert-Keil, Christiane

    2014-08-01

    New biomaterials and their various surface modifications should undergo in vitro and in vivo evaluation before clinical trials. The objective of our in vivo study was to evaluate the biocompatibility of newly created zirconium implant surfaces after implantation in the lower jaw of pigs and compare the osseointegration of these dental implants with commercially available zirconium and titanium implants. After a healing period of 12 weeks, a histological analysis of the soft and hard tissues and a histomorphometric analysis of the bone-implant contact (BIC) were performed. The implant surfaces showed an intimate connection to the adjacent bone for all tested implants. The 3 newly created zirconium implant surfaces achieved a BIC of 45% on average in comparison with a BIC of 56% from the reference zirconium implants and 35% from titanium implants. Furthermore, the new zirconium implants had a better attachment to gingival and bone tissues in the range of implant necks as compared with the reference implants. The results suggest that the new implants comparably osseointegrate within the healing period, and they have a good in vivo biocompatibility.

  14. Effect of calcium on the microstructure and corrosion behavior of microarc oxidized Mg-xCa alloys.

    Science.gov (United States)

    Pan, Yaokun; Chen, Chuanzhong; Feng, Rui; Cui, Hongwei; Gong, Benkui; Zheng, Tingting; Ji, Yarou

    2018-01-16

    Magnesium alloys are potential biodegradable implants for biomedical applications, and calcium (Ca) is one kind of ideal element being examined for magnesium alloys and biodegradable ceramic coatings owing to its biocompatibility and mechanical suitability. In this study, microarc oxidation (MAO) coatings were prepared on Mg-xCa alloys to study the effect of Ca on the microstructure and corrosion resistance of Mg-xCa alloys and their surface MAO coatings. The electrochemical corrosion behavior was investigated using an electrochemical workstation, and the degradability and bioactivity were evaluated by soaking tests in simulated body fluid (SBF) solutions. The corrosion products were characterized by scanning electron microscopy, x-ray diffractometry, and Fourier transform infrared spectrometry. The effects of Ca on the alloy phase composition, microstructure, MAO coating formation mechanism, and corrosion behavior were investigated. Results showed that the Mg-0.82Ca alloy and MAO-coated Mg-0.82Ca exhibited the highest corrosion resistance. The number and distribution of Mg 2 Ca phases can be controlled by adjusting the Ca content in the Mg-xCa alloys. The proper amount of Ca in magnesium alloy was about 0.5-0.8 wt. %. The pore size, surface roughness, and corrosion behavior of microarc oxidized Mg-xCa samples can be controlled by the number and distribution of the Mg 2 Ca phase. The corrosion behaviors of microarc oxidized Mg-Ca in SBF solutions were discussed.

  15. Evaluation of contiguous implants with cement-retained implant-abutment connections. A minipig study

    Directory of Open Access Journals (Sweden)

    Raquel Rezende Martins de Barros

    2014-03-01

    Full Text Available Aim: The presence of a microgap at the implant-abutment interface may permit bacterial contamination and lead to bone resorption, interfering with papillae formation. The present study evaluated adjacent implants with cement-retained abutments as an option to control such deleterious effects. Materials and methods Seven minipigs had their bilateral mandibular premolars previously extracted. After 8 weeks, four implants were installed in each hemi-mandible of each animal. The adjacent implants were randomly inserted on one side at the crestal bone level and on the other, 1.5 mm subcrestally. Immediately, a non-submerged healing and functional loading were provided with the abutments cementation and prostheses installation. Clinical examination and histomorphometry served to analyze the implant success. Results A total of 52 implants were evaluated at the end of the study. The subcrestal group achieved statistical better results when compared to the crestal group, clinically in papillae formation (1.97 x 1.57 mm and histomorphometrically in crestal bone remodeling (1.17 x 1.63 mm, bone density (52.39 x 45.22% and bone-implant contact (54.13 x 42.46%. Conclusion The subcrestal placement of cement-retained abutment implants showed better indexes of osseointegration and also improved papillae formation and crestal bone remodeling at the interimplant area after immediate loading, making them a promising option for the treatment of esthetic regions.

  16. The effect of varying implant position in immediately loaded implant-supported mandibular overdentures.

    Science.gov (United States)

    Shaarawy, Mohammed A; Aboelross, Ehab M

    2013-06-01

    This study was carried out to evaluate the effect of varying implant position in immediately loaded implant-supported mandibular overdentures on peri-implant bone density, muscle activity, and patient satisfaction. Fourteen completely edentulous patients were selected for the study. After complete denture construction, patients were divided into 2 equal groups. Four dental implants were installed bilaterally in the interforaminal region in the first group, while in the second group, 4 dental implants were inserted bilaterally: 2 in the interforaminal region and 2 in the first molar area. Immediately after suturing, telescopic abutments were screwed to the implants, and the retaining caps were picked up into the fitting surface of the lower denture, which was delivered to the patient. Patients were recalled for radiographic bone density evaluation just after denture delivery and then at 3, 6, and 12 months thereafter. Muscle activities of masseter and temporalis muscles as well as patient satisfaction were also evaluated. The results of the study showed a high success rate approximating 98.2% of the immediately loaded implants. The electromyographic (EMG) records of both muscles in group 1 were significantly higher during chewing hard food after 3 months compared with group 2 (P overdentures through posterior placement beyond the interforaminal area results in a favorable response in terms of increased peri-implant bone density as well as decreased EMG activity of masseter and temporalis muscles.

  17. Diagnostic Principles of Peri-Implantitis: a Systematic Review and Guidelines for Peri-Implantitis Diagnosis Proposal

    Directory of Open Access Journals (Sweden)

    Ausra Ramanauskaite

    2016-09-01

    Full Text Available Objectives: To review and summarize the literature concerning peri-implantitis diagnostic parameters and to propose guidelines for peri-implantitis diagnosis. Material and Methods: An electronic literature search was conducted of the MEDLINE (Ovid and EMBASE databases for articles published between 2011 and 2016. Sequential screening at the title/abstract and full-text levels was performed. Systematic reviews/guidelines of consensus conferences proposing classification or suggesting diagnostic parameters for peri-implantitis in the English language were included. The review was recorded on PROSPERO system with the code CRD42016033287. Results: The search resulted in 10 articles that met the inclusion criteria. Four were papers from consensus conferences, two recommended diagnostic guidelines, three proposed classification of peri-implantitis, and one suggested an index for implant success. The following parameters were suggested to be used for peri-implantitis diagnosis: pain, mobility, bleeding on probing, probing depth, suppuration/exudate, and radiographic bone loss. In all of the papers, different definitions of peri-implantitis or implant success, as well as different thresholds for the above mentioned clinical and radiographical parameters, were used. Current evidence rationale for the diagnosis of peri-implantitis and classification based on consecutive evaluation of soft-tissue conditions and the amount of bone loss were suggested. Conclusions: Currently there is no single uniform definition of peri-implantitis or the parameters that should be used. Rationale for diagnosis and prognosis of peri-implantitis as well as classification of the disease is proposed.

  18. Surface characterization of titanium based dental implants; Caracterizacao de implantes odontologicos a base de titanio

    Energy Technology Data Exchange (ETDEWEB)

    Castilho, Guilherme Augusto Alcaraz

    2006-07-01

    Dental implantology uses metallic devices made of commercially pure titanium in order to replace lost teeth. Titanium presents favorable characteristics as bio material and modern implants are capable of integrate, witch is the union between bone and implant without fibrous tissue development. Three of the major Brazilian implant manufacturers were chosen to join the study. A foreign manufacturer participated as standard. The manufacturers had three specimens of each implant with two different surface finishing, as machined and porous, submitted to analysis. Surface chemical composition and implant morphology were analyzed by X-ray photoelectron spectroscopy (XP S), scanning electron microscopy (SEM) and microprobe. Implant surface is mainly composed of titanium, oxygen and carbon. Few contaminants commonly present on implant surface were found on samples. Superficial oxide layer is basically composed of titanium dioxide (TiO{sub 2}), another oxides as Ti O and Ti{sub 2}O{sub 3} were also found in small amount. Carbon on implant surface was attributed to manufacturing process. Nitrogen, Phosphorous and Silicon appeared in smaller concentration on surface. There was no surface discrepancy among foreign and Brazilian made implants. SEM images were made on different magnification, 35 X to 3500 X, and showed similarity among as machined implants. Porous surface finishing implants presented distinct morphology. This result was attributed to differences on manufacturing process. Implant bioactivity was accessed through immersion on simulated body solution (SBF) in order to verify formation of an hydroxyapatite (HA) layer on surface. Samples were divided on three groups according to immersion time: G1 (7 days), G2 (14 days), G3 (21 days), and deep in SBF solution at 37 deg C. After being removed from solution, XPS analyses were made and then implants have been submitted to microprobe analysis. XPS showed some components of SBF solution on sample surface but microprobe

  19. Influence of Palatal Coverage and Implant Distribution on Denture Strain in Maxillary Implant Overdentures.

    Science.gov (United States)

    Takahashi, Toshihito; Gonda, Tomoya; Tomita, Akiko; Mizuno, Yoko; Maeda, Yoshinobu

    2016-01-01

    As maxillary implant overdentures are being increasingly used in clinical practice, prosthodontic complications related to these dentures are also reported more often. The purpose of this study was to examine the influence of palatal coverage and implant distribution on the shear strain of maxillary implant overdentures. A maxillary edentulous model with implants inserted in the anterior, premolar, and molar areas was fabricated. Two kinds of experimental overdentures, with and without palatal coverage, were also fabricated, and two strain gauges were attached at the midline of the labial and palatal sides. A vertical occlusal load of 98 N was applied through a mandibular complete denture, and the shear strain in each denture was compared by analysis of variance (P = .05). In all situations, the shear strain in palateless dentures was significantly higher than in dentures with palate on both sides (P overdentures exhibited much higher strain than overdentures with palate regardless of the implant distribution; this may cause more prosthodontic and implant complications. The most favorable configuration to prevent complications in maxillary implant overdentures was palatal coverage that was supported by more than four widely distributed implants.

  20. Mechanical characterization and structural of Mg{sub 70}Zn{sub 28}Ca{sub 2} alloy for use as bioabsorbable implants; Caracterizacao mecanica e estrutural de uma liga Mg{sub 70}Zn{sub 28}Ca{sub 2} para uso como implante bioabsorvivel

    Energy Technology Data Exchange (ETDEWEB)

    Asato, G.H.; Matias, T.B.; Kiminami, C.S.; Botta, W.J.; Bolfarini, C., E-mail: asato.hitoshi@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2014-07-01

    A ternary magnesium-based alloy was studied for your biocompatibility, high mechanical properties, elastic modulus close to the bone and corrosion rate less than pure magnesium. The experimental conditions enabled to process a Mg70Zn28Ca2 ternary amorphous alloy by the fusion of eutectic binary alloys (Mg-Zn and Mg-Ca), which were obtained from pure elements in a induction furnace in an argon atmosphere. The characterization of alloy involved quantitative chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The results indicated that the actual composition was very close to the nominal, with the presence of amorphous up to 1.3 mm thick. The mechanical compression test was performed in the conventional cylindrical samples with a diameter of 3 mm on an Instron type machine, obtaining the compressive strength above 400 MPa. (author)

  1. Clinical use of LiF:Mg,Cu,P: Critical evaluation of an ultrasensitive material for thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Duggan, Lisa

    2002-01-01

    Radiation dosimetry is an essential part of optimization in medical exposures. However there are medical procedures that are particularly challenging for existing dosimetric techniques: neonatal radiography (low dose), mammography (low energy), cardiac catheterization (moving radiation fields), and brachytherapy using implanted radionuclides (steep dose gradients). Hence, the objectives of this thesis were to study the dosimetric characteristics of ultrasensitive LiF:Mg,Cu,P thermoluminescence dosimeters (TLDs) in radiation beams typical for both diagnostics and therapy, and develop procedures to implement this dosimeter into clinical practice for those selected scenarios. GR-200 (SDDML, China) and MCP-N (TLD Poland) TLDs were compared to other TLD materials (LiF:Mg,Ti, Al 2 O 3 :C) and tested for reproducibility, dose response (1 μGy to 500 Gy), photon energy response (10 keV to 18 MVp), light sensitivity (240-800 nm), long-term stability (6 months) using different annealing cycles and glow curve deconvolution. A miniaturized TLD form (MCP-Np) was developed by TLD Poland for the present investigations. Detection limit of GR-200 and MCP-Np was found to be less than 1 and 8 μGy, respectively, with dose response linear up to 18 Gy. To obtain adequate detection limits and precision, accurate temperature calibration of heating cycles and a dual-anneal technique with dose history monitoring was performed. Energy response was similar for both materials within 5% and essentially uniform except for a minimum of 0.82 at 185 keV. LiF:Mg,Cu,P proved to be more suitable than LiF:Mg,Ti for dosimetry in low dose medical applications particularly when kilovoltage photons are to be used. The high sensitivity and resulting scope for miniaturization provided the opportunity to perform unique in vivo measurements within brachytherapy implants and for mammography

  2. Implantation, recoil implantation, and sputtering

    International Nuclear Information System (INIS)

    Kelly, R.

    1984-01-01

    Underlying ion-beam modification of surfaces is the more basic subject of particle-surface interaction. The ideas can be grouped into forward and backward features, i.e. those affecting the interior of the target and those leading to particle expulsion. Forward effects include the stopping of the incident particles and the deposition of energy, both governed by integral equations which are easily set up but difficult to solve. Closely related is recoil implantation where emphasis is placed not on the stopping of the incident particles but on their interaction with target atoms with resulting implantation of these atoms. Backward effects, all of which are denoted as sputtering, are in general either of collisional, thermal, electronic, or exfoliational origin. (Auth.)

  3. Impact of dental implant insertion method on the peri-implant bone tissue: Experimental study

    Directory of Open Access Journals (Sweden)

    Stamatović Novak

    2013-01-01

    Full Text Available Background/Aim. The function of dental implants depends on their stability in bone tissue over extended period of time, i.e. on osseointegration. The process through which osseointegration is achieved depends on several factors, surgical insertion method being one of them. The aim of this study was to histopathologically compare the impact of the surgical method of implant insertion on the peri-implant bone tissue. Methods. The experiment was performed on 9 dogs. Eight weeks following the extraction of lower premolars implants were inserted using the one-stage method on the right mandibular side and two-stage method on the left side. Three months after implantation the animals were sacrificed. Three distinct regions of bone tissue were histopathologically analyzed, the results were scored and compared. Results. In the specimens of one-stage implants increased amount of collagen fibers was found in 5 specimens where tissue necrosis was also observed. Only moderate osteoblastic activity was found in 3 sections. The analysis of bone-to-implant contact region revealed statistically significantly better results regarding the amount of collagen tissue fibers for the implants inserted in the two-stage method (Wa = 59 105, α = 0.05. No necrosis and osteoblastic activity were observed. Conclusion. Better results were achieved by the two-stage method in bone-to-implant contact region regarding the amount of collagen tissue, while the results were identical regarding the osteoblastic activity and bone tissue necrosis. There was no difference between the methods in the bone-implant interface region. In the bone tissue adjacent to the implant the results were identical regarding the amount of collagen tissue, osteoblastic reaction and bone tissue necrosis, while better results were achieved by the two-stage method regarding the number of osteocytes.

  4. Bone-Implant Contact around Crestal and Subcrestal Dental Implants Submitted to Immediate and Conventional Loading

    Directory of Open Access Journals (Sweden)

    Ana Emília Farias Pontes

    2014-01-01

    Full Text Available The present study aims to evaluate the influence of apicocoronal position and immediate and conventional loading in the percentage of bone-implant contact (BIC. Thus, 36 implants were inserted in the edentulous mandible from six dogs. Three implants were installed in each hemimandible, in different positions in relation to the ridge: Bone Level (at crestal bone level, Minus 1 (one millimeter apical to crestal bone, and Minus 2 (two millimeters apical to crestal bone. In addition, each hemimandible was submitted to a loading protocol: immediate (prosthesis installed 24 hours after implantation or conventional (prosthesis installed 120 days after implantation. Ninety days after, animals were killed, and implant and adjacent tissues were prepared for histometric analysis. BIC values from immediate loaded implants were 58.7%, 57.7%, and 51.1%, respectively, while conventional loaded implants were 61.8%, 53.8%, and 68.4%. Differences statistically significant were not observed among groups (P=0.10, ANOVA test. These findings suggest that different apicocoronal positioning and loading protocols evaluated did not interfere in the percentage of bone-implant contact, suggesting that these procedures did not jeopardize osseointegration.

  5. Successful Rehabilitation of Partial Edentulous Maxilla and Mandible with New Type of Implants: Molecular Precision Implants

    Directory of Open Access Journals (Sweden)

    Matteo Danza

    2014-01-01

    Full Text Available The extraction of teeth results in rapid bone resorption both vertically and horizontally in the first month. The loss of alveolar ridge reduces the chance of implant rehabilitation. Atraumatic extraction, implant placement in extraction socket, and an immediate prosthesis have been proposed as alternative therapies to maintain the volume and contours tissue and reduce time and cost of treatment. The immediate load of implants is a universally practiced procedure; nevertheless a successful procedure requires expertise in both the clinical and the reconstructive stages using a solid implant system. Excellent primary stability and high bone-implant contact are only minimal requirements for any type of implant procedure. In this paper we present a case report using a new type of implants. The new type of implants, due to its sophisticated control system of production, provides to the implantologist a safe and reliable implant, with a macromorphology designed to ensure a close contact with the surrounding bone.

  6. Radioactive implants for medical applications; Radioaktive Implantate fuer medizinische Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, M.

    2008-07-01

    The long-term success of surgery is often diminished by excessive wound healing, which makes another intervention necessary. Locally applied radionuclides with short range radiation can prevent such benign hyperproliferation. As pure electron emitter with a half-life of 14.3 days and a mean energy of 694.9 keV (E{sub max}=1710.48 keV) {sup 32}P is a suitable radionuclide which can be produced from the stable {sup 31}P by the capture of thermal neutrons (1 x 10{sup 14} /s/cm{sup 2}) in a nuclear reactor. After a typical irradiation time (14 days) the ratio of {sup 32}P to {sup 31}P is 1.4 x 10{sup -5} to 1. Implants made of polymer and/or bioabsorbable material functioning as a carrier of the radioactive emitter allow - as opposed to metallic implants - for new applications for this type of radiotherapy. In this thesis a manufacturing method for previously not available organic, radioactive implants has been developed and a corresponding dosimetry system has been established. By means of ion implantation, {sup 32}P ions with up to 180 keV can be shot some 100 nm deep into organic implant materials. For a typical dose (15 Gy over 7 days, 1 mm distance from the implant) an activity of 75 kBq is needed corresponding to 1.3 x 10{sup 11} {sup 32}P ions. The sputter ion gun, which has been optimized for this application, creates an ion beam with high beam current (> 14 {mu}A P{sup -}) and low emittance (< 4 {pi} mm mrad {radical}(MeV)). Because of the good beam quality also small implants (<1 mm{sup 2}) can be manufactured with high efficiency. The unintentionally co-implanted portion of molecules and nuclides of the same mass (e.g. {sup 31}PH, {sup 16}O{sub 2} and {sup 32}S) could be reduced from approximately 500 to 50 by an improvement of the isotope selection at {sup 32}P beam creation. Hence, in comparison with the best hitherto existing implantation methods, the radiation dose of the implant could be reduced by an order of magnitude. With regard to the beta

  7. Reliability of implant placement with stereolithographic surgical guides generated from computed tomography: clinical data from 94 implants.

    Science.gov (United States)

    Ersoy, Ahmet Ersan; Turkyilmaz, Ilser; Ozan, Oguz; McGlumphy, Edwin A

    2008-08-01

    Dental implant placement requires precise planning with regard to anatomic limitations and restorative goals. The aim of this study was to evaluate the match between the positions and axes of the planned and placed implants using stereolithographic (SLA) surgical guides. Ninety-four implants were placed using SLA surgical guides generated from computed tomography (CT) between 2005 and 2006. Radiographic templates were used for all subjects during CT imaging. After obtaining three-dimensional CT images, each implant was virtually placed on the CT images. SLA surgical guides, fabricated using an SLA machine with a laser beam to polymerize the liquid photo-polymerized resin, were used during implant placement. A new CT scan was taken for each subject following implant placement. Special software was used to fuse the images of the planned and placed implants, and the locations and axes were compared. Compared to the planned implants, the placed implants showed angular deviation of 4.9 degrees+/-2.36 degrees, whereas the mean linear deviation was 1.22+/-0.85 mm at the implant neck and 1.51+/-1 mm at the implant apex. Compared to the implant planning, the angular deviation and linear deviation at the neck and apex of the placed maxillary implants were 5.31 degrees+/-0.36 degrees, 1.04+/-0.56 mm, and 1.57+/-0.97 mm, respectively, whereas corresponding figures for placed mandibular implants were 4.44 degrees+/-0.31 degrees, 1.42+/-1.05 mm, and 1.44+/-1.03 mm, respectively. SLA surgical guides using CT data may be reliable in implant placement and make flapless implant placement possible.

  8. Transcatheter aortic valve implantation of the direct flow medical aortic valve with minimal or no contrast

    Energy Technology Data Exchange (ETDEWEB)

    Latib, Azeem, E-mail: alatib@gmail.com [Interventional Cardiology Unit, San Raffaele Scientific Institute and EMO-GVM Centro Cuore Columbus, Milan (Italy); Maisano, Francesco; Colombo, Antonio [Interventional Cardiology Unit, San Raffaele Scientific Institute and EMO-GVM Centro Cuore Columbus, Milan (Italy); Klugmann, Silvio [Azienda Ospedaliera Niguarda Ca Granda, Piazza Ospedale Maggiore 3, Milan (Italy); Low, Reginald; Smith, Thomas [University of California Davis, Davis, CA 95616 (United States); Davidson, Charles [Northwestern Memorial Hospital, Chicago, IL 60611 (United States); Harreld, John H. [Clinical Imaging Analytics, Guerneville, CA (United States); Bruschi, Giuseppe; DeMarco, Federico [Azienda Ospedaliera Niguarda Ca Granda, Piazza Ospedale Maggiore 3, Milan (Italy)

    2014-06-15

    The 18F Direct Flow Medical (DFM) THV has conformable sealing rings, which minimizes aortic regurgitation and permits full hemodynamic assessment of valve performance prior to permanent implantation. During the DISCOVER trial, three patients who were at risk for receiving contrast media, two due to severe CKD and one due to a recent hyperthyroid reaction to contrast, underwent DFM implantation under fluoroscopic and transesophageal guidance without aortography during either positioning or to confirm the final position. Valve positioning was based on the optimal angiographic projection as calculated by the pre-procedural multislice CT scan. Precise optimization of valve position was performed to minimize transvalve gradient and aortic regurgitation. Prior to final implantation, transvalve hemodynamics were assessed invasively and by TEE. The post-procedure mean gradients were 7, 10, 11 mm Hg. The final AVA by echo was 1.70, 1.40 and 1.68 cm{sup 2}. Total aortic regurgitation post-procedure was none or trace in all three patients. Total positioning and assessment of valve performance time was 4, 6, and 12 minutes. Contrast was only used to confirm successful percutaneous closure of the femoral access site. The total contrast dose was 5, 8, 12 cc. Baseline eGFR and creatinine was 28, 22, 74 mL/min/1.73 m{sup 2} and 2.35, 2.98, and 1.03 mg/dL, respectively. Renal function was unchanged post-procedure: eGFR = 25, 35, and 96 mL/min/1.73 m{sup 2} and creatinine = 2.58, 1.99, and 1.03 mg/dL, respectively. In conclusion, the DFM THV provides the ability to perform TAVI with minimal or no contrast. The precise and predictable implantation technique can be performed with fluoro and echo guidance.

  9. Efficacy of intravitreal ranibizumab combined with Ahmed glaucoma valve implantation for the treatment of neovascular glaucoma.

    Science.gov (United States)

    Tang, Min; Fu, Yang; Wang, Ying; Zheng, Zhi; Fan, Ying; Sun, Xiaodong; Xu, Xun

    2016-01-09

    Neovascular glaucoma is a refractive glaucoma. Recently, anti-VEGF factors have been used alone or in combination for the treatment of neovascular glaucoma. However, the medium- and long-term efficacy of such drugs remains to be evaluated. This study was to determine the efficacy of intravitreal ranibizumab combined with Ahmed glaucoma valve implantation for the treatment of neovascular glaucoma. In this prospective non-randomized study, 43 neovascular glaucoma patients (43 eyes) were assigned to receive either 0.5 mg intravitreal ranibizumab for three to 14 days before Ahmed glaucoma valve implantation (injection group, n = 21) or Ahmed glaucoma valve implantation alone (control group, n = 22). The patients were followed up for six to 12 months. Differences in surgical success rate, intraocular pressure, best corrected visual acuity, anti-glaucoma medications and postoperative complications were compared between the two groups. Surgical success was defined as IOP > = 6 mm Hg and glaucoma medications, and without severe complications or reoperation. Of the 43 patients, 40 completed the 6-month follow-up and 37 completed the 1-year follow-up. Success rate was 73.7% vs. 71.4% at six months and 72.2% vs. 68.4% at 12 months in the injection group and the control group respectively. No significant difference was noted between the two groups (six months: P = 0.87, 12 months: P = 1.00). There were no significant differences in the two groups with respect to intraocular pressure, best corrected visual acuity, anti-glaucoma medications or postoperative complications at six months or 12 months. Single intravitreal ranibizumab (0.5 mg) before surgery has no significant effect on the medium- or long-term outcomes of neovascular glaucoma treated with Ahmed glaucoma valve implantation. Chinese Clinical Trial Registry ( ChiCTR-OOC-14005709, Trial registration date: 2014-12-01).

  10. Miniscrew implant applications in contemporary orthodontics

    Directory of Open Access Journals (Sweden)

    Hong-Po Chang

    2014-03-01

    Full Text Available The need for orthodontic treatment modalities that provide maximal anchorage control but with minimal patient compliance requirements has led to the development of implant-assisted orthodontics and dentofacial orthopedics. Skeletal anchorage with miniscrew implants has no patient compliance requirements and has been widely incorporated in orthodontic practice. Miniscrew implants are now routinely used as anchorage devices in orthodontic treatment. This review summarizes recent data regarding the interpretation of bone data (i.e., bone quantity and quality obtained by preoperative diagnostic computed tomography (CT or by cone-beam computed tomography (CBCT prior to miniscrew implant placement. Such data are essential when selecting appropriate sites for miniscrew implant placement. Bone characteristics that are indications and contraindications for treatment with miniscrew implants are discussed. Additionally, bicortical orthodontic skeletal anchorage, risks associated with miniscrew implant failure, and miniscrew implants for nonsurgical correction of occlusal cant or vertical excess are reviewed. Finally, implant stability is compared between titanium alloy and stainless steel miniscrew implants.

  11. Ion implantation for semiconductors

    International Nuclear Information System (INIS)

    Grey-Morgan, T.

    1995-01-01

    Full text: Over the past two decades, thousands of particle accelerators have been used to implant foreign atoms like boron, phosphorus and arsenic into silicon crystal wafers to produce special embedded layers for manufacturing semiconductor devices. Depending on the device required, the atomic species, the depth of implant and doping levels are the main parameters for the implantation process; the selection and parameter control is totally automated. The depth of the implant, usually less than 1 micron, is determined by the ion energy, which can be varied between 2 and 600 keV. The ion beam is extracted from a Freeman or Bernas type ion source and accelerated to 60 keV before mass analysis. For higher beam energies postacceleration is applied up to 200 keV and even higher energies can be achieved by mass selecting multiplycharged ions, but with a corresponding reduction in beam output. Depending on the device to be manufactured, doping levels can range from 10 10 to 10 15 atoms/cm 2 and are controlled by implanter beam currents in the range up to 30mA; continuous process monitoring ensures uniformity across the wafer of better than 1 % . As semiconductor devices get smaller, additional sophistication is required in the design of the implanter. The silicon wafers charge electrically during implantation and this charge must be dissipated continuously to reduce the electrical stress in the device and avoid destructive electrical breakdown. Electron flood guns produce low energy electrons (below 10 electronvolts) to neutralize positive charge buildup and implanter design must ensure minimum contamination by other isotopic species and ensure low internal sputter rates. The pace of technology in the semiconductor industry is such that implanters are being built now for 256 Megabit circuits but which are only likely to be widely available five years from now. Several specialist companies manufacture implanter systems, each costing around US$5 million, depending on the

  12. Operation of low-energy ion implanters for Si, N, C ion implantation into silicon and glassy carbon

    International Nuclear Information System (INIS)

    Carder, D.A.; Markwitz, A.

    2009-01-01

    This report details the operation of the low-energy ion implanters at GNS Science for C, N and Si implantations. Two implanters are presented, from a description of the components through to instructions for operation. Historically the implanters have been identified with the labels 'industrial' and 'experimental'. However, the machines only differ significantly in the species of ions available for implantation and sample temperature during implantation. Both machines have been custom designed for research purposes, with a wide range of ion species available for ion implantation and the ability to implant two ions into the same sample at the same time from two different ion sources. A fast sample transfer capability and homogenous scanning profiles are featured in both cases. Samples up to 13 mm 2 can be implanted, with the ability to implant at temperatures down to liquid nitrogen temperatures. The implanters have been used to implant 28 Si + , 14 N + and 12 C + into silicon and glassy carbon substrates. Rutherford backscattering spectroscopy has been used to analyse the implanted material. From the data a Si 30 C 61 N 9 layer was measured extending from the surface to a depth of about 77 ± 2 nm for (100) silicon implanted with 12 C + and 14 N + at multiple energies. Silicon and nitrogen ion implantation into glassy carbon produced a Si (40.5 %), C (38 %), N (19.5 %) and O (2%) layer centred around a depth of 50 ± 2 nm from the surface. (author). 8 refs., 20 figs

  13. High energy ion implantation

    International Nuclear Information System (INIS)

    Ziegler, J.F.

    1985-01-01

    High energy ion implantation offers the oppertunity for unique structures in semiconductor processing. The unusual physical properties of such implantations are discussed as well as the special problems in masking and damage annealing. A review is made of proposed circuit structures which involve deep implantation. Examples are: deep buried bipolar collectors fabricated without epitaxy, barrier layers to reduce FET memory sensitivity to soft-fails, CMOS isolation well structures, MeV implantation for customization and correction of completed circuits, and graded reach-throughs to deep active device components. (orig.)

  14. Cochlear implant magnet retrofit.

    Science.gov (United States)

    Cohen, N L; Breda, S D; Hoffman, R A

    1988-06-01

    An implantable magnet is now available for patients who have received the standard Nucleus 22-channel cochlear implant and who are not able to wear the headband satisfactorily. This magnet is attached in piggy-back fashion to the previously implanted receiver/stimulator by means of a brief operation under local anesthesia. Two patients have received this magnet retrofit, and are now wearing the headset with greater comfort and satisfaction. It is felt that the availability of this magnet will increase patient compliance in regard to hours of implant usage.

  15. Implant-retained maxillary overdentures.

    Science.gov (United States)

    Eckert, Steven E; Carr, Alan B

    2004-07-01

    Overdentures supported by osseointegrated implants overcome many of the complications observed with overdentures supported by natural teeth. Dental implants are free of biologic consequences associated with natural teeth, such as dental caries and periodontal disease. Bone undercuts adjacent to implants do not mimic those found adjacent to natural tooth roots. Implants are used to provide predictable retention, support, and stability for overdenture prostheses. When lip or facial support is required, the overdenture is the treatment of choice. Likewise the overdenture may improve phonetic deficiencies associated with alveolar bone loss.

  16. Cone-morse implant connection system significantly reduces bacterial leakage between implant and abutment: an in vitro study.

    Science.gov (United States)

    Baj, A; Bolzoni, A; Russillo, A; Lauritano, D; Palmieri, A; Cura, F; Silvestre, F J; Giannì, A B

    2017-01-01

    Osseointegrated implants are very popular dental treatments today in the world. In osseointegrated implants, the occlusal forces are transmitted from prosthesis through an abutment to a dental implant. The abutment is connected to the implant by mean of a screw. A screw is the most used mean for connecting an implant to an abutment. Frequently the screws break and are lost. There is an alternative to screw retained abutment systems: the cone-morse connection (CMC). The CMC, thanks to the absence of the abutment screw, guarantees no micro-gaps, no micro-movements, and a reduction of bacterial leakage between implant and abutment. As P. gingivalis and T. forsythia penetration might have clinical relevance, it was the purpose of this investigation to evaluate molecular leakage of these two bacteria in a new CMC implants systems (Leone Spa®, Florence, Italy). To identify the capability of the implant to protect the internal space from the external environment, the passage of genetically modified Escherichia coli across implant-abutment interface was evaluated. Four cone-morse Leone implants (Leone® Spa, Florence, Italy) were immerged in a bacterial culture for 24 h and bacteria amount was then measured inside implant-abutment interface with Real-time PCR. Bacteria were detected inside all studied implants, with a median percentage of 3% for P. gingivalis and 4% for T. forsythia. Cone-morse connection implant system has very low bacterial leakage percentage and is similar to one-piece implants.

  17. One-year results of maxillary overdentures supported by 2 titanium-zirconium implants - implant survival rates and radiographic outcomes.

    Science.gov (United States)

    Zembic, Anja; Tahmaseb, Ali; Jung, Ronald E; Wismeijer, Daniel

    2017-07-01

    To assess implant survival rates and peri-implant bone loss of 2 titanium-zirconium implants supporting maxillary overdentures at 1 year of loading. Twenty maxillary edentulous patients (5 women and 15 men) being dissatisfied with their complete dentures were included. In total, 40 diameter-reduced titanium-zirconium implants were placed in the anterior maxilla. Local guided bone regeneration (GBR) was allowed if the treatment did not compromise implant stability. Following 3 to 5 months of healing, implant-supported overdentures were inserted on two ball anchors. Implants and overdentures were assessed at 1, 2, 4, and 8 weeks after implant insertion and 2, 4, and 12 months after insertion of overdentures (baseline). Standardized radiographs were taken at implant loading and 1 year. Implant survival rates and bone loss were the primary outcomes. Nineteen patients (1 dropout) with 38 implants were evaluated at a mean follow-up of 1.1 years (range 1.0-1.7 years). One implant failed resulting in an implant survival rate of 97.3%. There was a significant peri-implant bone loss of the implants at 1 year of function (mean, 0.7 mm, SD = 1.1 mm; median: 0.48 mm, IQR = 0.56 mm). There was a high 1-year implant survival rate for edentulous patients receiving 2 maxillary implants and ball anchors as overdenture support. However, several implants exhibited an increased amount of bone loss of more than 2 mm. Overdentures supported by 2 maxillary implants should thus be used with caution as minimally invasive treatment for specific patients encountering problems with their upper dentures until more long-term data is available. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Microstructure, mechanical and corrosion properties of Mg-Dy-Gd-Zr alloys for medical applications.

    Science.gov (United States)

    Yang, L; Huang, Y; Feyerabend, F; Willumeit, R; Mendis, C; Kainer, K U; Hort, N

    2013-11-01

    In previous investigations, a Mg-10Dy (wt.%) alloy with a good combination of corrosion resistance and cytocompatibility showed great potential for use as a biodegradable implant material. However, the mechanical properties of Mg-10Dy alloy are not satisfactory. In order to allow the tailoring of mechanical properties required for various medical applications, four Mg-10(Dy+Gd)-0.2Zr (wt.%) alloys were investigated with respect to microstructure, mechanical and corrosion properties. With the increase in Gd content, the number of second-phase particles increased in the as-cast alloys, and the age-hardening response increased at 200°C. The yield strength increased, while the ductility reduced, especially for peak-aged alloys with the addition of Gd. Additionally, with increasing Gd content, the corrosion rate increased in the as-cast condition owing to the galvanic effect, but all the alloys had a similar corrosion rate (~0.5 mm year(-1)) in solution-treated and aged condition. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Biodegradation of Mg-14Li alloy in simulated body fluid: A proof-of-concept study

    Directory of Open Access Journals (Sweden)

    Xiao-Bo Chen

    2018-03-01

    Full Text Available High corrosion kinetics and localised corrosion progress are the primary concerns arising from the clinical implementation of magnesium (Mg based implantable devices. In this study, a binary Mg-lithium (Li alloy consisting a record high Li content of 14% (in weight was employed as model material aiming to yield homogenous and slow corrosion behaviour in a simulated body fluid, i.e. minimum essential medium (MEM, in comparison to that of generic Mg alloy AZ31 and biocompatible Mg-0.5Zn-0.5Ca counterparts. Scanning electron microscopy examination reveals single-phase microstructural characteristics of Mg-14Li (β-Li, whilst the presence of insoluble phases, cathodic to α-Mg matrix, in AZ31 and Mg-0.5Zn-0.5Ca. Though slight differences exist in the corrosion kinetics of all the specimens over a short-term time scale (no longer than 60 min, as indicated by potentiodynamic polarisation and electrochemical impedance spectroscopy, profound variations are apparent in terms of immersion tests, i.e. mass loss and hydrogen evolution measurements (up to 7 days. Cross-sectional micrographs unveil severe pitting corrosion in AZ31 and Mg-0.5Zn-0.5Ca, but not the case for Mg-14Li. X-ray diffraction patterns and X-ray photoelectron spectroscopy confirm that a compact film (25 μm in thickness consisting of lithium carbonate (Li2CO3 and calcium hydroxide was generated on the surface of Mg-14Li in MEM, which contributes greatly to its low corrosion rate. It is proposed therefore that the single-phase structure and formation of protective and defect-free Li2CO3 film give rise to the controlled and homogenous corrosion behaviour of Mg-14Li in MEM, providing new insights for the exploration of biodegradable Mg materials.

  20. Implantable Medical Devices

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Implantable Medical Devices Updated:Sep 16,2016 For Rhythm Control ... a Heart Attack Introduction Medications Surgical Procedures Implantable Medical Devices • Life After a Heart Attack • Heart Attack ...

  1. Finite Element Analysis of Bone Stress for Miniscrew Implant Proximal to Root Under Occlusal Force and Implant Loading.

    Science.gov (United States)

    Shan, Li-Hua; Guo, Na; Zhou, Guan-jun; Qie, Hui; Li, Chen-Xi; Lu, Lin

    2015-10-01

    Because of the narrow interradicular spaces and varying oral anatomies of individual patients, there is a very high risk of root proximity during the mini implants inserting. The authors hypothesized that normal occlusal loading and implant loading affected the stability of miniscrew implants placed in proximity or contact with the adjacent root. The authors implemented finite element analysis (FEA) to examine the effectiveness of root proximity and root contact. Stress distribution in the bone was assessed at different degrees of root proximity by generating 4 finite element models: the implant touches the root surface, the implant was embedded in the periodontal membrane, the implant touches the periodontal surface, and the implant touches nothing. Finite element analysis was then carried out with simulations of 2 loading conditions for each model: condition A, involving only tooth loading and condition B, involving both tooth and implant loading. Under loading condition A, the maximum stress on the bone for the implant touching the root was the distinctly higher than that for the other models. For loading condition B, peak stress areas for the implant touching the root were the area around the neck of the mini implant and the point of the mini implant touches the root. The results of this study suggest that normal occlusal loading and implant loading contribute to the instability of the mini implant when the mini implant touches the root.

  2. Influences of microgap and micromotion of implant-abutment interface on marginal bone loss around implant neck.

    Science.gov (United States)

    Liu, Yang; Wang, Jiawei

    2017-11-01

    To review the influences and clinical implications of micro-gap and micro-motion of implant-abutment interface on marginal bone loss around the neck of implant. Literatures were searched based on the following Keywords: implant-abutment interface/implant-abutment connection/implant-abutment conjunction, microgap, micromotion/micromovement, microleakage, and current control methods available. The papers were then screened through titles, abstracts, and full texts. A total of 83 studies were included in the literature review. Two-piece implant systems are widely used in clinics. However, the production error and masticatory load result in the presence of microgap and micromotion between the implant and the abutment, which directly or indirectly causes microleakage and mechanical damage. Consequently, the degrees of microgap and micromotion further increase, and marginal bone absorption finally occurs. We summarize the influences of microgap and micromotion at the implant-abutment interface on marginal bone loss around the neck of the implant. We also recommend some feasible methods to reduce their effect. Clinicians and patients should pay more attention to the mechanisms as well as the control methods of microgap and micromotion. To reduce the corresponding detriment to the implant marginal bone, suitable Morse taper or hybrid connection implants and platform switching abutments should be selected, as well as other potential methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A Retrospective Analysis of Ruptured Breast Implants

    Directory of Open Access Journals (Sweden)

    Woo Yeol Baek

    2014-11-01

    Full Text Available BackgroundRupture is an important complication of breast implants. Before cohesive gel silicone implants, rupture rates of both saline and silicone breast implants were over 10%. Through an analysis of ruptured implants, we can determine the various factors related to ruptured implants.MethodsWe performed a retrospective review of 72 implants that were removed for implant rupture between 2005 and 2014 at a single institution. The following data were collected: type of implants (saline or silicone, duration of implantation, type of implant shell, degree of capsular contracture, associated symptoms, cause of rupture, diagnostic tools, and management.ResultsForty-five Saline implants and 27 silicone implants were used. Rupture was diagnosed at a mean of 5.6 and 12 years after insertion of saline and silicone implants, respectively. There was no association between shell type and risk of rupture. Spontaneous was the most common reason for the rupture. Rupture management was implant change (39 case, microfat graft (2 case, removal only (14 case, and follow-up loss (17 case.ConclusionsSaline implants have a shorter average duration of rupture, but diagnosis is easier and safer, leading to fewer complications. Previous-generation silicone implants required frequent follow-up observation, and it is recommended that they be changed to a cohesive gel implant before hidden rupture occurs.

  4. Bone reactions at implants subjected to experimental peri-implantitis and static load. A study in the dog

    DEFF Research Database (Denmark)

    Gotfredsen, K; Berglundh, T; Lindhe, J

    2002-01-01

    during a 12-week interval, the screws were reactivated. Thus, the model included 3 different experimental sites of each surface group: group M+L (mucositis+load); group P (peri-implantitis); group P+L (peri-implantitis+load). Fluorochrome labels were injected and standardized radiographs obtained....... The animals were sacrificed and block biopsies of all implant sites dissected and prepared for histological analysis. RESULTS: It was demonstrated that the lateral static load failed to induce peri-implant bone loss at implants with mucositis and failed to enhance the bone loss at implants with experimental...... peri-implantitis. The proportion of bone labels and the bone density in the interface zone were significantly higher in group P+L than in group P. CONCLUSION: It is suggested that a lateral static load with controlled forces may not be detrimental to implants exhibiting mucositis or peri-implantitis....

  5. R&D on dental implants breakage

    Science.gov (United States)

    Croitoru, Sorin Mihai; Popovici, Ion Alexandru

    2017-09-01

    Most used dental implants for human dental prostheses are of two steps type: first step means implantation and, after several months healing and osseointegration, second step is prosthesis fixture. For sure, dental implants and prostheses are meant to last for a lifetime. Still, there are unfortunate cases when dental implants break. This paper studies two steps dental implants breakage and proposes a set of instruments for replacement and restoration of the broken implant. First part of the paper sets the input data of the study: structure of the studied two steps dental implants based on two Romanian patents and values of the loading forces found in practice and specialty papers. In the second part of the paper, using DEFORM 2D™ FEM simulation software, worst case scenarios of loading dental implants are studied in order to determine which zones and components of the dental implant set are affected (broken). Last part of the paper is dedicated to design and presentation of a set for extracting and cutting tools used to restore the broken implant set.

  6. Implantation, recoil implantation, and sputtering

    International Nuclear Information System (INIS)

    Kelly, R.

    1984-01-01

    The implantation and sputtering mechanisms which are relevant to ion bombardment of surfaces are described. These are: collision, thermal, electronic and photon-induced sputtering. 135 refs.; 36 figs.; 9 tabs

  7. Medical implants and methods of making medical implants

    Science.gov (United States)

    Shaw, Wendy J; Yonker, Clement R; Fulton, John L; Tarasevich, Barbara J; McClain, James B; Taylor, Doug

    2014-09-16

    A medical implant device having a substrate with an oxidized surface and a silane derivative coating covalently bonded to the oxidized surface. A bioactive agent is covalently bonded to the silane derivative coating. An implantable stent device including a stent core having an oxidized surface with a layer of silane derivative covalently bonded thereto. A spacer layer comprising polyethylene glycol (PEG) is covalently bonded to the layer of silane derivative and a protein is covalently bonded to the PEG. A method of making a medical implant device including providing a substrate having a surface, oxidizing the surface and reacting with derivitized silane to form a silane coating covalently bonded to the surface. A bioactive agent is then covalently bonded to the silane coating. In particular instances, an additional coating of bio-absorbable polymer and/or pharmaceutical agent is deposited over the bioactive agent.

  8. Implantation doping of GaN

    International Nuclear Information System (INIS)

    Zolper, J.C.

    1996-01-01

    Ion implantation has played an enabling role in the realization of many high performance photonic and electronic devices in mature semiconductor materials systems such as Si and GaAs. This can also be expected to be the case in III-Nitride based devices as the material quality continues to improve. This paper reviews the progress in ion implantation processing of the III-Nitride materials, namely, GaN, AlN, InN and their alloys. Details are presented of the successful demonstrations of implant isolation as well as n- and p-type implantation doping of GaN. Implant doping has required activation annealing at temperatures in excess of 1,000 C. The nature of the implantation induced damage and its response to annealing is addressed using Rutherford Backscattering. Finally, results are given for the first demonstration of a GaN device fabricated using ion implantation doping, a GaN junction field effect transistor (JFET)

  9. Short dental implants versus standard dental implants placed in the posterior jaws: A systematic review and meta-analysis.

    Science.gov (United States)

    Lemos, Cleidiel Aparecido Araujo; Ferro-Alves, Marcio Luiz; Okamoto, Roberta; Mendonça, Marcos Rogério; Pellizzer, Eduardo Piza

    2016-04-01

    The purpose of the present systematic review and meta-analysis was to compare short implants (equal or less than 8mm) versus standard implants (larger than 8mm) placed in posterior regions of maxilla and mandible, evaluating survival rates of implants, marginal bone loss, complications and prosthesis failures. This review has been registered at PROSPERO under the number CRD42015016588. Main search terms were used in combination: dental implant, short implant, short dental implants, short dental implants posterior, short dental implants maxilla, and short dental implants mandible. An electronic search for data published up until September/2015 was undertaken using the PubMed/Medline, Embase and The Cochrane Library databases. Eligibility criteria included clinical human studies, randomized controlled trials and/or prospective studies, which evaluated short implants in comparison to standard implants in the same study. The search identified 1460 references, after inclusion criteria 13 studies were assessed for eligibility. A total of 1269 patients, who had received a total of 2631 dental implants. The results showed that there was no significant difference of implants survival (P=.24; RR:1.35; CI: 0.82-2.22), marginal bone loss (P=.06; MD: -0.20; CI: -0.41 to 0.00), complications (P=.08; RR:0.54; CI: 0.27-1.09) and prosthesis failures (P=.92; RR:0.96; CI: 0.44-2.09). Short implants are considered a predictable treatment for posterior jaws. However, short implants with length less than 8 mm (4-7 mm) should be used with caution because they present greater risks to failures compared to standard implants. Short implants are frequently placed in the posterior area in order to avoid complementary surgical procedures. However, clinicians need to be aware that short implants with length less than 8mm present greater risk of failures. Copyright © 2016. Published by Elsevier Ltd.

  10. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO

    Science.gov (United States)

    Vilayurganapathy, S.; Devaraj, A.; Colby, R.; Pandey, A.; Varga, T.; Shutthanandan, V.; Manandhar, S.; El-Khoury, P. Z.; Kayani, Asghar; Hess, W. P.; Thevuthasan, S.

    2013-03-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  11. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO

    International Nuclear Information System (INIS)

    Vilayurganapathy, S; Devaraj, A; Colby, R; Pandey, A; Varga, T; Shutthanandan, V; Manandhar, S; Thevuthasan, S; El-Khoury, P Z; Hess, W P; Kayani, Asghar

    2013-01-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag + ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles. (paper)

  12. Implant-Abutment Contact Surfaces and Microgap Measurements of Different Implant Connections Under 3-Dimensional X-Ray Microtomography.

    Science.gov (United States)

    Scarano, Antonio; Valbonetti, Luca; Degidi, Marco; Pecci, Raffaella; Piattelli, Adriano; de Oliveira, P S; Perrotti, Vittoria

    2016-10-01

    The presence of a microgap between implant and abutment could produce a bacterial reservoir which could interfere with the long-term health of the periimplant tissues. The aim of this article was to evaluate, by x-ray 3-dimensional microtomography, implant-abutment contact surfaces and microgaps at the implant-abutment interface in different types of implant-abutment connections. A total of 40 implants were used in this in vitro study. Ten implants presented a screw-retained internal hexagon abutment (group I), 10 had a Morse Cone taper internal connection (group II), 10 another type of Morse Cone taper internal connection (group III), and 10 had a screwed trilobed connection (group IV). In both types of Morse Cone internal connections, there was no detectable separation at the implant-abutment in the area of the conical connection, and there was an absolute congruity without any microgaps between abutment and implant. No line was visible separating the implant and the abutment. On the contrary, in the screwed abutment implants, numerous gaps and voids were present. The results of this study support the hypothesis that different types of implant-abutment joints are responsible for the observed differences in bacterial penetration.

  13. [Bilateral cochlear implants].

    Science.gov (United States)

    Müller, J

    2017-07-01

    Cochlear implants (CI) are standard for the hearing rehabilitation of severe to profound deafness. Nowadays, if bilaterally indicated, bilateral implantation is usually recommended (in accordance with German guidelines). Bilateral implantation enables better speech discrimination in quiet and in noise, and restores directional and spatial hearing. Children with bilateral CI are able to undergo hearing-based hearing and speech development. Within the scope of their individual possibilities, bilaterally implanted children develop faster than children with unilateral CI and attain, e.g., a larger vocabulary within a certain time interval. Only bilateral implantation allows "binaural hearing," with all the benefits that people with normal hearing profit from, namely: better speech discrimination in quiet and in noise, as well as directional and spatial hearing. Naturally, the developments take time. Binaural CI users benefit from the same effects as normal hearing persons: head shadow effect, squelch effect, and summation and redundancy effects. Sequential CI fitting is not necessarily disadvantageous-both simultaneously and sequentially fitted patients benefit in a similar way. For children, earliest possible fitting and shortest possible interval between the two surgeries seems to positively influence the outcome if bilateral CI are indicated.

  14. Comparison of Persian Simple Vowels Production in Cochlear Implanted Children Based on Implantation Age

    Directory of Open Access Journals (Sweden)

    Peiman Zamani

    2008-07-01

    Full Text Available Objective: Age at implantation is one of the most important factors in improving speech and language skills in children with cochlear implants. Moreover, good vowel articulation is very important in the speech. So, the purpose of this research was to determine whether age at cochlear implantation influences the production of Persian simple vowels when cochlear implantation is undertaken below the age of 2 years as compared with cochlear implantation later in life. Materials & Methods: This research was a comparative and cross-sectional study. Based on inclusive and exclusive criteria (i.e., have physical and mental health, monolingual or bilingual, have 9±1 months post-surgery rehabilitation, no hearing handicapped parents and no medical problems history, 140 children who cochlear implanted in Amir-Alam and Hazrate Rasool hospital of Tehran city were selected by convenient sampling and assigned to two groups, children implanted under the age of 2 years and those implanted above the age of 2 years Also 238 normally hearing children were selected for control group by randomized sampling. The first and second formant frequency (F1 & F2 of the Persian simple vowels /i, e, æ, a, o, u/ were evaluated by the version of 1.2 of SFSwin software. Data were analyzed by Independent T test. Results: The findings indicated that there were significant differences between two groups in the mean of F2/i/ (P=0.046, F1/e/ (P=0.011, F2/e/ (P=0.005, F2/æ/ (P=0.039, F2/a/ (P=0.012, F2/o/ (P=0.012 and F2/u/ (P=0.006, but there was no significant difference between then in the mean of F1/i/, F1/æ/, F2/a/, F1/o/, F1/u/ (P>0.05. According to these results, no significant difference was seen between normal group and children who received their cochlear implants under the age of 2 years in the mean of variables (P>0.05. Conclusion: Observing significant differences in the quality of the production of Persian simple vowels between children implanted under the age of 2

  15. Azygos Vein Lead Implantation For High Defibrillation Thresholds In Implantable Cardioverter Defibrillator Placement

    Directory of Open Access Journals (Sweden)

    Naga VA Kommuri

    2010-01-01

    Full Text Available Evaluation of defibrillation threshold is a standard of care during implantation of implantable cardioverter defibrillator. High defibrillation thresholds are often encountered and pose a challenge to electrophysiologists to improve the defibrillation threshold. We describe a case series where defibrillation thresholds were improved after implanting a defibrillation lead in the azygos vein.

  16. An Unusual Bone Loss Around Implants

    Directory of Open Access Journals (Sweden)

    Amirreza Rokn

    2013-01-01

    Full Text Available AbstractPre-implant disease is an inflammatory process, which can affect the surrounding tissues of a functional Osseointegrated implant that is usually as a result of a disequilibrium between the micro-flora and the body defense system.This case reports a 57 years old male with unusual bone loss around dental implants.This was an unusual case of peri-implantitis which occurred only in the implants on one side of the mouth although they all were unloaded implants.

  17. Determining factors for implant referral rates.

    Science.gov (United States)

    Levin, Roger P

    2002-01-01

    The research findings indicate that the field of implant dentistry will only grow at a moderately low level unless certain changes are made. Findings indicated that the effort by the implant companies has been nothing short of dramatic, and yet almost 60% of restorative doctors do not participate annually in any implant case. There was no clear indication that younger restorative doctors will significantly increase the number of implant referrals, as their overall implant education has not dramatically differed from those dentists who graduated in earlier years. Once the research was completed, it became obvious to Levin Group that the driving force behind implant referral growth will be implant surgeons, because of their one-to-one relationship with restorative doctors. The Levin Group Implant Management and Marketing Consulting Program is based on approaching restorative doctors in several different levels, starting with awareness all the way through to case facilitation and long-term tracking and communication. Finally, a continuing marketing/education effort needs to be consistently in place with effective materials, not only to create a high level of awareness, but also to motivate restorative doctors to refer cases and then work through the case with the implant surgeon to a satisfactory completion for the restorative doctor, implant surgeon, and patient. While the surgical insertion of implants may seem to carry a high-profit margin relative to the restoration of implants, the truth is that the restoration of implants usually provides a 40% higher profit margin for the restorative doctor than traditional dental services. One of the key issues is that referring doctors have not necessarily learned how to set fees and present cases with regard to implant dentistry. The key factor here is to ensure that the patient understands that implant services involve higher fees than traditional services, because of the necessarily higher levels of experience, education

  18. Silicone implant incompatibility syndrome (SIIS) in a 57-year-old woman with unilateral silicone breast implant

    DEFF Research Database (Denmark)

    Schierbeck, Juliane; Davidsen, Jesper Rømhild; Grindsted Nielsen, Sanne

    2017-01-01

    implants can lead to different interstitial lung manifestations predominantly with granuloma evolvement, leading to the so-called silicone implant incompatibility syndrome (SIIS). This case describes a 57-year-old woman with multiple lung infiltrations and a left-sided breast implant. The implant had been...

  19. Implant Materials Generate Different Peri-implant Inflammatory Factors

    OpenAIRE

    Olivares-Navarrete, Rene; Hyzy, Sharon L.; Slosar, Paul J.; Schneider, Jennifer M.; Schwartz, Zvi; Boyan, Barbara D.

    2015-01-01

    Study Design. An in vitro study examining factors produced by human mesenchymal stem cells on spine implant materials. Objective. The aim of this study was to examine whether the inflammatory microenvironment generated by cells on titanium-aluminum-vanadium (Ti-alloy, TiAlV) surfaces is affected by surface microtexture and whether it differs from that generated on poly-ether-ether-ketone (PEEK). Summary of Background Data. Histologically, implants fabricated from PEEK have a fibrous connectiv...

  20. Wound Dehiscence and Device Migration after Subconjunctival Bevacizumab Injection with Ahmed Glaucoma Valve Implantation.

    Science.gov (United States)

    Miraftabi, Arezoo; Nilforushan, Naveed

    2016-01-01

    To report a complication pertaining to subconjunctival bevacizumab injection as an adjunct to Ahmed Glaucoma Valve (AGV) implantation. A 54-year-old woman with history of complicated cataract surgery was referred for advanced intractable glaucoma. AGV implantation with adjunctive subconjunctival bevacizumab (1.25 mg) was performed with satisfactory results during the first postoperative week. However, 10 days after surgery, she developed wound dehiscence and tube exposure. The second case was a 33-year-old man with history of congenital glaucoma and uncontrolled IOP who developed AGV exposure and wound dehiscence after surgery. In both cases, for prevention of endophthalmitis and corneal damage by the unstable tube, the shunt was removed and the conjunctiva was re-sutured. The potential adverse effect of subconjunctival bevacizumab injection on wound healing should be considered in AGV surgery.

  1. Laser irradiation of Mg-Al-Zn alloy: Reduced electrochemical kinetics and enhanced performance in simulated body fluid.

    Science.gov (United States)

    Florian, David C; Melia, Michael A; Steuer, Fritz W; Briglia, Bruce F; Purzycki, Michael K; Scully, John R; Fitz-Gerald, James M

    2017-05-11

    As a lightweight metal with mechanical properties similar to natural bone, Mg and its alloys are great prospects for biodegradable, load bearing implants. However, rapid degradation and H 2 gas production in physiological media has prevented widespread use of Mg alloys. Surface heterogeneities in the form of intermetallic particles dominate the corrosion response. This research shows that surface homogenization significantly improved the biological corrosion response observed during immersion in simulated body fluid (SBF). The laser processed Mg alloy exhibited a 50% reduction in mass loss and H 2 evolution after 24 h of immersion in SBF when compared to the wrought, cast alloy. The laser processed samples exhibited increased wettability as evident from wetting angle studies, further suggesting improved biocompatibility. Electrochemical analysis by potentiodynamic polarization measurements showed that the anodic and cathodic kinetics were reduced following laser processing and are attributed to the surface chemical homogeneity.

  2. Implants for orthodontic anchorage

    Science.gov (United States)

    Zheng, Xiaowen; Sun, Yannan; Zhang, Yimei; Cai, Ting; Sun, Feng; Lin, Jiuxiang

    2018-01-01

    Abstract Implantanchorage continues to receive much attention as an important orthodontic anchorage. Since the development of orthodontic implants, the scope of applications has continued to increase. Although multiple reviews detailing implants have been published, no comprehensive evaluations have been performed. Thus, the purpose of this study was to comprehensively evaluate the effects of implants based on data published in review articles. An electronic search of the Cochrane Library, Medline, Embase, Ebsco and Sicencedirect for reviews with “orthodontic” and “systematic review or meta analysis” in the title, abstract, keywords, or full text was performed. A subsequent manual search was then performed to identify reviews concerning orthodontic implants. A manual search of the orthodontic journals American Journal of Orthodontics and Dentofacial Orthopedics (AJODO), European Journal of Orthodontics (EJO), and Angle Othodontist was also performed. Such systematic reviews that evaluated the efficacy and safety of orthodontic implants were used to indicate success rates and molar movements. A total of 23 reviews were included in the analysis. The quality of each review was assessed using a measurement tool for Assessment of Multiple Systematic Reviews (AMSTAR), and the review chosen to summarize outcomes had a quality score of >6. Most reviews were less than moderate quality. Success rates of implants ranged in a broad scope, and movement of the maxillary first molar was superior with implants compared with traditional anchorage. PMID:29595673

  3. Maintenance in dental implants

    Directory of Open Access Journals (Sweden)

    Giselle Póvoa Gomes

    2008-01-01

    Full Text Available In implants, maintenance is a decisive factor for obtaining success when implant supported overdentures and dentures are used. The present stud presents, a clinical case of a patient, a 70 year-old white man, with a completely edentulous mandibular alveolar ridge, severe bone resorption with presence of basal bone only, and absence of vestibule. Initially, treatment consisted of the placement of a mandibular overdenture, supported on three implants in the anterior inter-foramen region, as the left implant was transfixed in the basal bone of 2 to 3 millimeters. Eleven years later, another two implants were placed in the anterior area and an immediate load was performed up to the first molars, for the placement of an implant supported fixed. Throughout the entire treatment, meticulous maintenance was carried out, with follow-up for fourteen years, interrupted by the patient’s death. From the third month after the opening the three implants initially placed, the presence of keratinized mucosa, definition of the vestibule, maturation of the alveolar ridge and bone formation in the mento region were observed. It was concluded that good planning, allied to mastery of the technique and adequate maintenance were the prerequisites necessary for obtaining favorable results, success of the present case, and for the patient to have a better quality of life.

  4. Customizable cap implants for neurophysiological experimentation.

    Science.gov (United States)

    Blonde, Jackson D; Roussy, Megan; Luna, Rogelio; Mahmoudian, Borna; Gulli, Roberto A; Barker, Kevin C; Lau, Jonathan C; Martinez-Trujillo, Julio C

    2018-04-22

    Several primate neurophysiology laboratories have adopted acrylic-free, custom-fit cranial implants. These implants are often comprised of titanium or plastic polymers, such as polyether ether ketone (PEEK). Titanium is favored for its mechanical strength and osseointegrative properties whereas PEEK is notable for its lightweight, machinability, and MRI compatibility. Recent titanium/PEEK implants have proven to be effective in minimizing infection and implant failure, thereby prolonging experiments and optimizing the scientific contribution of a single primate. We created novel, customizable PEEK 'cap' implants that contour to the primate's skull. The implants were created using MRI and/or CT data, SolidWorks software and CNC-machining. Three rhesus macaques were implanted with a PEEK cap implant. Head fixation and chronic recordings were successfully performed. Improvements in design and surgical technique solved issues of granulation tissue formation and headpost screw breakage. Primate cranial implants have traditionally been fastened to the skull using acrylic and anchor screws. This technique is prone to skin recession, infection, and implant failure. More recent methods have used imaging data to create custom-fit titanium/PEEK implants with radially extending feet or vertical columns. Compared to our design, these implants are more surgically invasive over time, have less force distribution, and/or do not optimize the utilizable surface area of the skull. Our PEEK cap implants served as an effective and affordable means to perform electrophysiological experimentation while reducing surgical invasiveness, providing increased strength, and optimizing useful surface area. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  5. Microstructural modification of pure Mg for improving mechanical and biocorrosion properties.

    Science.gov (United States)

    Ahmadkhaniha, D; Järvenpää, A; Jaskari, M; Sohi, M Heydarzadeh; Zarei-Hanzaki, A; Fedel, M; Deflorian, F; Karjalainen, L P

    2016-08-01

    In this study, the effect of microstructural modification on mechanical properties and biocorrosion resistance of pure Mg was investigated for tailoring a load-bearing orthopedic biodegradable implant material. This was performed utilizing the friction stir processing (FSP) in 1-3 passes to refine the grain size. Microstructure was examined in an optical microscope and scanning electron microscope with an electron backscatter diffraction unit. X-ray diffraction method was used to identify the texture. Mechanical properties were measured by microhardness and tensile testing. Electrochemical impedance spectroscopy was applied to evaluate corrosion behavior. The results indicate that even applying a single pass of FSP refined the grain size significantly. Increasing the number of FSP passes further refined the structure, increased the mechanical strength and intensified the dominating basal texture. The best combination of mechanical properties and corrosion resistance were achieved after three FSP passes. In this case, the yield strength was about six times higher than that of the as-cast Mg and the corrosion resistance was also improved compared to that in the as-cast condition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Role of clinician's experience and implant design on implant stability. An ex vivo study in artificial soft bones.

    Science.gov (United States)

    Romanos, Georgios E; Basha-Hijazi, Abdulaziz; Gupta, Bhumija; Ren, Yan-Fang; Malmstrom, Hans

    2014-04-01

    Clinical experience in implant placement is important in order to prevent implant failures. However, the implant design affects the primary implant stability (PS) especially in poor quality bones. Therefore, the aim of this study was to compare the effect of clinician surgical experience on PS, when placing different type of implant designs. A total of 180 implants (90 parallel walled-P and 90 tapered-T) were placed in freshly slaughtered cow ribs. Bone quality was evaluated by two examiners during surgery and considered as 'type IV' bone. Implants (ø 5 mm, length: 15 mm, Osseotite, BIOMET 3i, Palm Beach Gardens, FL, USA) were placed by three different clinicians (master/I, good/II, non-experienced/III, under direct supervision of a manufacturer representative; 30 implants/group). An independent observer assessed the accuracy of placement by resonance frequency analysis (RFA) with implant stability quotient (ISQ) values. Two-way analysis of variance (ANOVA) and Tukey's post hoc test were used to detect the surgical experience of the clinicians and their interaction and effects of implant design on the PS. All implants were mechanically stable. The mean ISQ values were: 49.57(± 18.49) for the P-implants and 67.07(± 8.79) for the T-implants. The two-way ANOVA showed significant effects of implant design (p bone. © 2012 Wiley Periodicals, Inc.

  7. Current status of grafts and implants in rhinoplasty: Part II. Homologous grafts and allogenic implants.

    Science.gov (United States)

    Sajjadian, Ali; Naghshineh, Nima; Rubinstein, Roee

    2010-03-01

    After reading this article, the participant should be able to: 1. Understand the challenges in restoring volume and structural integrity in rhinoplasty. 2. Identify the appropriate uses of various homologous grafts and allogenic implants in reconstruction, including: (a) freeze-dried acellular allogenic cadaveric dermis grafts, (b) irradiated cartilage grafts, (c) hydroxyapatite mineral matrix, (d) silicone implants, (e) high-density polyethylene implants, (f) polytetrafluoroethylene implants, and (g) injectable filler materials. 3. Identify the advantages and disadvantages of each of these biomaterials. 4. Understand the specific techniques that may aid in the use these grafts or implants. This review specifically addresses the use of homologous grafts and allogenic implants in rhinoplasty. It is important to stress that autologous materials remain the preferred graft material for use in rhinoplasty, owing to their high biocompatibility and low risk of infection and extrusion. However, concerns of donor-site morbidity, graft availability, and graft resorption have motivated the development and use of homologous and allogenic implants.

  8. Implantation temperature and thermal annealing behavior in H{sub 2}{sup +}-implanted 6H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Li, B.S., E-mail: b.s.li@impcas.ac.cn; Wang, Z.G.; Jin, J.F.

    2013-12-01

    The effects of hydrogen implantation temperature and annealing temperature in 6H-SiC are studied by the combination of Rutherford backscattering in channeling geometry (RBS/C), high-resolution X-ray diffraction (HRXRD) and scanning electron microscopy (SEM). 6H-SiC wafers were implanted with 100 keV H{sub 2}{sup +} ions to a fluence of 2.5 × 10{sup 16} H{sub 2}{sup +} cm{sup −2} at room temperature (RT), 573 K and 773 K. Post-implantation, the samples were annealing under argon gas flow at different temperatures from 973 K to 1373 K for isochronal annealing (15 min). The relative Si disorder at the damage peak for the sample implanted at RT decreases gradually with increasing annealing temperature. However, the reverse annealing effect is found for the samples implanted at 573 K and 773 K. As-implantation, the intensity of in-plane compressive stress is the maximum as the sample was implanted at RT, and is the minimum as the sample was implanted at 573 K. The intensity of in-plane compressive stress for the sample implanted at RT decreases gradually with increasing annealing temperature, while the intensities of in-plane compressive stress for the sample implanted at 573 K and 773 K show oscillatory changes with increasing annealing temperature. After annealing at 1373 K, blisters and craters occur on the sample surface and their average sizes increase with increasing implantation temperature.

  9. A first-principles and experimental study of helium diffusion in periclase MgO

    Science.gov (United States)

    Song, Zhewen; Wu, Henry; Shu, Shipeng; Krawczynski, Mike; Van Orman, James; Cherniak, Daniele J.; Bruce Watson, E.; Mukhopadhyay, Sujoy; Morgan, Dane

    2018-02-01

    The distribution of He isotopes is used to trace heterogeneities in the Earth's mantle, and is particularly useful for constraining the length scale of heterogeneity due to the generally rapid diffusivity of helium. However, such an analysis is challenging because He diffusivities are largely unknown in lower mantle phases, which can influence the He profiles in regions that cycle through the lower mantle. With this motivation, we have used first-principles simulations based on density functional theory to study He diffusion in MgO, an important lower mantle phase. We first studied the case of interstitial helium diffusion in perfect MgO and found a migration barrier of 0.73 eV at zero pressure. Then we used the kinetic Monte Carlo method to study the case of substitutional He diffusion in MgO, where we assumed that He diffuses on the cation sublattice through cation vacancies. We also performed experiments on He diffusion at atmospheric pressure using ion implantation and nuclear reaction analysis in both as-received and Ga-doped samples. A comparison between the experimental and simulation results are shown. This work provides a foundation for further studies at high-pressure.

  10. Quantification of ion or atom transfer phenomena in materials implanted by nuclear methods; Quantification de phenomenes de transferts ioniques ou atomiques dans des materiaux implantes par la mise en oeuvre de methodes nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Oudadesse, Hassane [Clermont-Ferrand-2 Univ., 63 - Aubiere (France)

    1998-05-18

    Knowledge of transfer of the constituents of a system from regions of higher to lower concentration is of interest for implanted bio-materials. It allows determining the rate at which this material is integrated in a living material. To evaluate the ossification kinetics and to study the bio-functionality in corals of Ca and Sr, irradiations with a 10{sup 13} n.cm{sup -2}.s{sup -1} was performed, followed by the examination of changes in the localization of these elements. By using PIXE analysis method the distribution of Ca, P, Sr, Zn and Fe in the implant, bone and bone-implant interfaces were determined. Thus, it was shown that resorption of coral in sheep is achieved in 5 months after implantation and is identical to the cortical tissues 4 months after implantation in animals as for instance in hares. We have analyzed the tissues from around the prostheses extracted from patients. The samples were calcined and reduced to powder weighting some milligrams. We have adopted for this study the PIXE analysis method. The samples were irradiated by a proton beam of 3 MeV and about 400 {mu}m diameter. The results show the presence of the elements Ti, Fe, Cr, Ni or Zn according to the type of the implanted prosthesis. This dispersal of the metallic ions and atoms contaminate the tissues. The transfer factors translate the exchanges between bone and the implanted material. The solvatation phenomenon and the electric charge equilibrium explain the transfer order of cations Mg{sup 2+}, Ca{sup 2+} and Sr{sup 2+} and of the anion PO{sub 4}{sup 3-}. We have also determined these factors for the elements Ti, Cr and Ni. An original technique to study the bone bio-functionality was used. Use of phosphate derivatives labelled by {sup 99m}Tc allows obtaining information about the fixation of radioactive tracer. It was found that only after the eighth month at the implantation the neo-formed bone fixes the MDP (methyl diphosphate) labelled by {sup 99m}Tc in a similar way as in the

  11. Implant experience with an implantable hemodynamic monitor for the management of symptomatic heart failure.

    Science.gov (United States)

    Steinhaus, David; Reynolds, Dwight W; Gadler, Fredrik; Kay, G Neal; Hess, Mike F; Bennett, Tom

    2005-08-01

    Management of congestive heart failure is a serious public health problem. The use of implantable hemodynamic monitors (IHMs) may assist in this management by providing continuous ambulatory filling pressure status for optimal volume management. The Chronicle system includes an implanted monitor, a pressure sensor lead with passive fixation, an external pressure reference (EPR), and data retrieval and viewing components. The tip of the lead is placed near the right ventricular outflow tract to minimize risk of sensor tissue encapsulation. Implant technique and lead placement is similar to that of a permanent pacemaker. After the system had been successfully implanted in 148 patients, the type and frequency of implant-related adverse events were similar to a single-chamber pacemaker implant. R-wave amplitude was 15.2 +/- 6.7 mV and the pressure waveform signal was acceptable in all but two patients in whom presence of artifacts required lead repositioning. Implant procedure time was not influenced by experience, remaining constant throughout the study. Based on this evaluation, permanent placement of an IHM in symptomatic heart failure patients is technically feasible. Further investigation is warranted to evaluate the use of the continuous hemodynamic data in management of heart failure patients.

  12. Comparative evaluation of peri-implant tissues in patients wearing mandibular overdenture with different implant platforms

    Directory of Open Access Journals (Sweden)

    Laércio Almeida de Melo

    2017-01-01

    Full Text Available Background: The poor hygiene of peri-implant tissues causes inflammation at tissue-implant interface, which may impair the rehabilitation success. The aim of this study was to evaluate the influence of external hexagon and Morse taper implants on peri-implant health in patients wearing mandibular overdentures for 1 year. Materials and Methods: A total of 46 implants were evaluated, 28 external hexagon and 18 Morse taper. Plaque index in the mini-abutment, bleeding index, peri-implant inflammation, keratinized mucosa zone, probing depth, and marginal mucosa level were evaluated after 3 months and 1 year of prostheses insertion. Results: Deeper probing was found in the external hexagon group compared with Morse taper (P = 0.024 after 1 year of rehabilitation. Although the Morse taper group exhibited worse scenario of peri-implant inflammation than the external hexagon group (P = 0.001, both groups showed reduced inflammation after 1 year. A larger keratinized mucosa zone was observed with external hexagon implants (P = 0.020. No significant difference was found between the groups for plaque index in the mini-abutment, bleeding index, and marginal mucosa level. Conclusion: In a follow-up period of 1 year, it was concluded that the external hexagon group had a larger probing depth than the Morse taper group. However, better periodontal conditions about inflammation and keratinized mucosa zone were found in external hexagon implants. It was found no influence of implant platform on plaque index in the mini-abutment, bleeding index, and marginal mucosa level.

  13. Preservation of keratinized mucosa around implants using a prefabricated implant-retained stent: a case-control study

    OpenAIRE

    Kim, Chang-Soon; Duong, Hieu Pham; Park, Jung-Chul; Shin, Hyun-Seung

    2016-01-01

    Purpose The aim of this study was to clinically assess the impact of a prefabricated implant-retained stent clipped over healing abutments on the preservation of keratinized mucosa around implants after implant surgery, and to compare it with horizontal external mattress sutures. Methods A total of 50 patients were enrolled in this study. In the test group, a prefabricated implant-retained stent was clipped on the healing abutment after implant surgery to replace the keratinized tissue bucco-...

  14. Magnesium nitride phase formation by means of ion beam implantation technique

    International Nuclear Information System (INIS)

    Hoeche, Daniel; Blawert, Carsten; Cavellier, Matthieu; Busardo, Denis; Gloriant, Thierry

    2011-01-01

    Nitrogen implantation technique (Hardion + ) has been applied in order to modify the surface properties of magnesium and Mg-based alloys (AM50, AZ31). Nitrogen ions with an energy of approximately 100 keV were used to form the Mg 3 N 2 phase leading to improved surface properties. The samples were investigated using various characterization methods. Mechanical properties have been tested by means of nanoindention, the electrochemical behavior was measured by potentiodynamic polarization and impedance spectroscopy, phase formation by using grazing incidence Xray diffraction, the chemical state was determined by means of Xray induced photoelectron spectroscopy (XPS) and depth profiling by using secondary ions mass spectroscopy (SIMS). Additionally, the results were compared to calculated depth profiles using SRIM2008. The correlation of the results shows the nitride formation behavior to a depth of about 600 nm.

  15. Comparative Clinical Study of Conventional Dental Implants and Mini Dental Implants for Mandibular Overdentures: A Randomized Clinical Trial.

    Science.gov (United States)

    Aunmeungtong, Weerapan; Kumchai, Thongnard; Strietzel, Frank P; Reichart, Peter A; Khongkhunthian, Pathawee

    2017-04-01

    Dental implant-retained overdentures have been chosen as the treatment of choice for complete mandibular removable dentures. Dental implants, such as mini dental implants, and components for retaining overdentures, are commercially available. However, comparative clinical studies comparing mini dental implants and conventional dental implants using different attachment for implant-retained overdentures have not been well documented. To compare the clinical outcomes of using two mini dental implants with Equator ® attachments, four mini dental implants with Equator attachments, or two conventional dental implants with ball attachments, by means of a randomized clinical trial. Sixty patients received implant-retained mandibular overdentures in the interforaminal region. The patients were divided into three groups. In Groups 1 and 2, two and four mini dental implants, respectively, were placed and immediately loaded by overdentures, using Equator ® attachments. In Group 3, conventional implants were placed. After osseointegration, the implants were loaded by overdentures, using ball attachments. The study distribution was randomized and double-blinded. Outcome measures included changes in radiological peri-implant bone level from surgery to 12 months postinsertion, prosthodontic complications and patient satisfaction. The cumulative survival rate in the three clinical groups after one year was 100%. There was no significant difference (p < 0.05) in clinical results regarding the number (two or four) of mini dental implants with Equator attachments. However, there was a significant difference in marginal bone loss and patient satisfaction between those receiving mini dental implants with Equator attachments and conventional dental implants with ball attachments. The marginal bone resorption in Group 3 was significantly higher than in Groups 1 and 2 (p < 0.05); there were no significant differences between Groups 1 and 2. There was no significant difference in

  16. Mandibular implant-supported overdentures: attachment systems, and number and locations of implants--Part I.

    Science.gov (United States)

    Warreth, Abdulhadi; Alkadhimi, Aslam Fadel; Sultan, Ahmed; Byrne, Caroline; Woods, Edel

    2015-01-01

    The use of dental implants in replacing missing teeth is an integral part of restorative dental treatment. Use of conventional complete dentures is associated with several problems such as lack of denture stability, support and retention. However, when mandibular complete dentures were used with two or more implants, an improvement in the patients' psychological and social well-being could be seen. There is general consensus that removable implant-supported overdentures (RISOs) with two implants should be considered as the first-choice standard of care for an edentulous mandible. This treatment option necessitates the use of attachment systems that connect the complete denture to the implant. Nevertheless, each attachment system has its inherent advantages and disadvantages, which should be considered when choosing a system. The first part of this article provides an overview on options available to restore the mandibular edentulous arch with dental implants. Different types of attachment systems, their features and drawbacks are also reviewed.

  17. A touch probe method of operating an implantable RFID tag for orthopedic implant identification.

    Science.gov (United States)

    Liu, Xiaoyu; Berger, J Lee; Ogirala, Ajay; Mickle, Marlin H

    2013-06-01

    The major problem in operating an implantable radio-frequency identification (RFID) tag embedded on an orthopedic implant is low efficiency because of metallic interference. To improve the efficiency, this paper proposes a method of operating an implantable passive RFID tag using a touch probe at 13.56 MHz. This technology relies on the electric field interaction between two pairs of electrodes, one being a part of the touch probe placed on the surface of tissue and the other being a part of the tag installed under the tissue. Compared with using a conventional RFID antenna such as a loop antenna, this method has a better performance in the near field operation range to reduce interference with the orthopedic implant. Properly matching the touch probe and the tag to the tissue and the implant reduces signal attenuation and increases the overall system efficiency. The experiments have shown that this method has a great performance in the near field transcutaneous operation and can be used for orthopedic implant identification.

  18. [Silastic implant and synovitis].

    Science.gov (United States)

    Sennwald, G

    1989-07-22

    The silastic implant based on siloxane polymere induces granulomatous synovitis in certain predisposed individuals, a reaction which may continue even after removal of the implant. This is also true of a prosthesis of the trapezium in two of our patients, though to a lesser degree. This is probably the reason why the problem has not yet been widely recognized. The hypothesis is put forward that an enzymatic predisposition may allow chemical degradation of the fragmented silastic implant into a toxic component responsible for the pathologic condition. The slow progression of the lesions is a challenge for the future and puts in question the further use of silastic implants.

  19. Implant volume as a prognostic variable in brachytherapy decision-making for malignant gliomas stratified by the RTOG recursive partitioning analysis

    International Nuclear Information System (INIS)

    Videtic, Gregory M.M.; Gaspar, Laurie E.; Zamorano, Lucia; Stitt, Larry W.; Fontanesi, James; Levin, Kenneth J.

    2001-01-01

    Purpose: When an initial retrospective review of malignant glioma patients (MG) undergoing brachytherapy was carried out using the Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis (RPA) criteria, it revealed that glioblastoma multiforme (GBM) cases benefit the most from implant. In the present study, we focused exclusively on these GBM patients stratified by RPA survival class and looked at the relationship between survival and implanted target volume, to distinguish the prognostic value of volume in general and for a given GBM class. Methods and Materials: Between 1991 and 1998, 75 MG patients were treated with surgery, external beam radiation, and stereotactic iodine-125 (I-125) implant. Of these, 53 patients (70.7%) had GBMs, with 52 (98%) having target volume (TV) data for analysis. Stratification by RPA criteria showed 12, 26, 13, and 1 patients in classes III to VI, respectively. For analysis purposes, classes V and VI were merged. There were 27 (51.9%) male and 25 (48.1%) female patients. Mean age was 57.5 years (range 14-79). Median Karnofsky performance status (KPS) was 90 (range 50-100). Median follow-up time was 11 months (range 2-79). Results: At analysis, 18 GBM patients (34.6%) were alive and 34 (65.4%) were dead. Two-year and 5-year survivals were 42% and 17.5%, respectively, with a median survival time (MST) of 16 months. Two-year survivals and MSTs for the implanted GBM patients compared to the RTOG database were as follows: 74% vs. 35% and 28 months vs. 17.9 months for class III; 32% vs. 15% and 16 months vs. 11.1 months for class IV; 29% vs. 6% and 11 months vs. 8.9 months for class V/VI. Mean implanted TV was 15.5 cc (range 0.8-78), which corresponds to a spherical implant diameter of 3.1 cm. Plotting survival as a function of 5-cc TV increments suggested a trend toward poorer survival as the implanted volume increases. The impact of incremental changes in TV on survival within a given RPA class of GBMs was compared to the

  20. Printing of Titanium implant prototype

    International Nuclear Information System (INIS)

    Wiria, Florencia Edith; Shyan, John Yong Ming; Lim, Poon Nian; Wen, Francis Goh Chung; Yeo, Jin Fei; Cao, Tong

    2010-01-01

    Dental implant plays an important role as a conduit of force and stress to flow from the tooth to the related bone. In the load sharing between an implant and its related bone, the amount of stress carried by each of them directly related to their stiffness or modulus. Hence, it is a crucial issue for the implant to have matching mechanical properties, in particular modulus, between the implant and its related bone. Titanium is a metallic material that has good biocompatibility and corrosion resistance. Whilst the modulus of the bulk material is still higher than that of bone, it is the lowest among all other commonly used metallic implant materials, such as stainless steel or cobalt alloy. Hence it is potential to further reduce the modulus of pure Titanium by engineering its processing method to obtain porous structure. In this project, porous Titanium implant prototype is fabricated using 3-dimensional printing. This technique allows the flexibility of design customization, which is beneficial for implant fabrication as tailoring of implant size and shape helps to ensure the implant would fit nicely to the patient. The fabricated Titanium prototype had a modulus of 4.8-13.2 GPa, which is in the range of natural bone modulus. The compressive strength achieved was between 167 to 455 MPa. Subsequent cell culture study indicated that the porous Titanium prototype had good biocompatibility and is suitable for bone cell attachment and proliferation.

  1. Cochlear implants in Waardenburg syndrome.

    Science.gov (United States)

    Cullen, Robert D; Zdanski, Carlton; Roush, Patricia; Brown, Carolyn; Teagle, Holly; Pillsbury, Harold C; Buchman, Craig

    2006-07-01

    Waardenburg syndrome is an autosomal-dominant syndrome characterized by dystopia canthorum, hyperplasia of the eyebrows, heterochromia irides, a white forelock, and sensorineural hearing loss in 20% to 55% of patients. This patient population accounts for approximately 2% of congenitally deaf children. The purpose of this retrospective case review was to describe the outcomes for those children with Waardenburg syndrome who have undergone cochlear implantation. Pediatric cochlear implant recipients with documented evidence of Waardenburg syndrome underwent retrospective case review. All patients received their cochlear implants at the study institution followed by outpatient auditory habilitation. Charts were reviewed for etiology and duration of deafness, age at time of cochlear implantation, perioperative complications, duration of use, and performance outcomes. Results of standard tests batteries for speech perception and production administered as a part of the patients' auditory habilitation were reviewed. Seven patients with Waardenburg syndrome and cochlear implants were identified. The average age at implantation was 37 months (range, 18-64 months) and the average duration of use was 69 months (range, 12-143 months). All of these patients are active users of their devices and perform very well after implantation. There were no major complications in this small group of patients. Children with congenital sensorineural hearing loss without other comorbidities (e.g., developmental delay, inner ear malformations) perform well when they receive cochlear implantation and auditory habilitation. Patients with Waardenburg syndrome can be expected to have above-average performance after cochlear implantation.

  2. Effect of Si, Mn, Sn on Tensile and Corrosion Properties of Mg-4Zn-0.5Ca Alloys for Biodegradable Implant Materials

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dae Hyun; Nam, Ji Hoon; Lee, Byeong Woo; Park, Ji Yong; Shin, Hyun Jung; Park, Ik Min [Pusan National University, Busan (Korea, Republic of)

    2015-03-15

    Effect of elements Si, Mn, Sn on tensile and corrosion properties of Mg-4Zn-0.5Ca alloys were investigated. The results of tensile properties show that the yield strength, ultimate tensile strength and elongation of Mg-4Zn-0.5Ca alloy increased significantly with the addition of 0.6 wt% Mn. This is considered the grain refinement effect due to addition of Mn. However addition of 0.6 wt% Si decreased yield strength, ultimate tensile strength and elongation. The bio-corrosion behavior of Mg-4Zn-0.5Ca-X alloys were investigated using immersion tests and potentiodynamic polarization test in Hank's solution. Immersion test showed that corrosion rate of Mg-4Zn-0.5Ca-0.6Mn alloy was the lowest rate and addition of 1.0 wt% Sn accelerated corrosion rate due to micro-galvanic effect in α-Mg/CaMgSn phases interface. And corrosion potential (E{sub c}orr) of Mg-4Zn-0.5Ca-0.6Mn alloy was the most noble among Mg-4Zn-0.5Ca-X alloys.

  3. Macro design morphology of endosseous dental implants.

    Science.gov (United States)

    Sahiwal, Indira G; Woody, Ronald D; Benson, Byron W; Guillen, Guillermo E

    2002-05-01

    The identification of dental implant bodies in patients without available records is a considerable problem due to increased patient mobility and to the large number of implant systems with different designs. The purpose of this study was to document the designs of selected implants to help clinicians identify these implants from their radiographic images. More than 50 implant manufacturers were contacted and asked to provide implants with dimensions as close as possible to 3.75 mm (diameter) x 10 mm (length). Forty-four implants were donated, separated into threaded and non-threaded categories, and further sorted into tapered and non-tapered categories. The implants were examined visually, and features on the entire circumference and length of each implant were recorded and categorized as coronal, midbody, or apical. A series of tables describe the 44 implants according to coronal, midbody, and apical features. The results of this project offer dentists basic knowledge of the design of selected dental implants. Such knowledge can aid the radiographic identification of these implants.

  4. Biodegradable Implants in Orthopaedics and Traumatology

    OpenAIRE

    YETKIN, Haluk

    2014-01-01

    Biodegradable implants are an alternative to metallic implants and have the advantage of not being necessary to remove once the fracture has healed. Twenty-two patients with fractures were treated with biodegradable implants. There were osteolysis in eleven patients; however, no serious complication was encountered. Although biodegradable implants are expensive, a second surgical procedure to remove the implants is not necessary, relieving the patient of the related costs and risks.

  5. Adapted preparation technique for screw-type implants: explorative in vitro pilot study in a porcine bone model.

    Science.gov (United States)

    Beer, Andreas; Gahleitner, André; Holm, Anders; Birkfellner, Wolfgang; Homolka, Peter

    2007-02-01

    The aim of this study was to quantify the effect of adapted preparation on the insertion torque of self-tapping implants in cancellous bone. In adapted preparation, bone condensation - and thus, insertion torque - is controlled by changing the diameter of the drilling. After preparation of cancellous porcine vertebral bone with drills of 2.85, 3, 3.15 or 3.35 mm final diameters, Brånemark sytem Mk III implants (3.75 x 11.5 mm) were inserted in 141 sites. During implantation, the insertion torque was recorded. Prior to implant insertion, bone mineralization (bone mineral density (BMD)) was measured with dental quantative computed tomography. The BMD values measured at the implant position were correlated with insertion torque for varying bone condensation. Based on the average torque recorded during implant insertion into the pre-drilled canals with a diameter of 3 mm, torque increased by approximately 17% on reducing the diameter of the drill by 5% (to 2.85 mm). On increasing the diameter of the osteotomy to 3.15 mm (5%) or 3.35 mm (12%), torque values decreased by approximately 21% and 50%, respectively. The results demonstrate a correlation between primary stability (average insertion torque) and the diameter of the implant bed on using a screw-shaped implant. Thus, using an individualized bone mineralization-dependent drilling technique, optimized torque values could be achieved in all tested bone qualities with BMDs ranging from 330 to 500 mg/cm(3). The results indicate that using a bone-dependent drilling technique, higher torque values can also be achieved in poor bone using an individualized drilling resulting in higher bone condensation. As immediate function is dependent on primary stability (high insertion torque), this indicates that primary stability can be increased using a modified drilling technique in lesser mineralized bone.

  6. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr

    Science.gov (United States)

    Li, H. F.; Xie, X. H.; Zheng, Y. F.; Cong, Y.; Zhou, F. Y.; Qiu, K. J.; Wang, X.; Chen, S. H.; Huang, L.; Tian, L.; Qin, L.

    2015-01-01

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals. PMID:26023878

  7. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr.

    Science.gov (United States)

    Li, H F; Xie, X H; Zheng, Y F; Cong, Y; Zhou, F Y; Qiu, K J; Wang, X; Chen, S H; Huang, L; Tian, L; Qin, L

    2015-05-29

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals.

  8. The effects of implant surface roughness and surgical technique on implant fixation in an in vitro model.

    NARCIS (Netherlands)

    Shalabi, M.M.; Wolke, J.G.C.; Jansen, J.A.

    2006-01-01

    OBJECTIVES: The aim of the present study was to determine the relationship between implant surface parameters, surgical approach and initial implant fixation. MATERIAL AND METHODS: Sixty tapered, conical, screw-shaped implants with machined or etched surface topography were implanted into the

  9. Finite element analysis of the stress distributions in peri-implant bone in modified and standard-threaded dental implants

    Directory of Open Access Journals (Sweden)

    Serkan Dundar

    2016-01-01

    Full Text Available The aim of this study was to examine the stress distributions with three different loads in two different geometric and threaded types of dental implants by finite element analysis. For this purpose, two different implant models, Nobel Replace and Nobel Active (Nobel Biocare, Zurich, Switzerland, which are currently used in clinical cases, were constructed by using ANSYS Workbench 12.1. The stress distributions on components of the implant system under three different static loadings were analysed for the two models. The maximum stress values that occurred in all components were observed in FIII (300 N. The maximum stress values occurred in FIII (300 N when the Nobel Replace implant is used, whereas the lowest ones, in the case of FI (150 N loading in the Nobel Active implant. In all models, the maximum tensions were observed to be in the neck region of the implants. Increasing the connection between the implant and the bone surface may allow more uniform distribution of the forces of the dental implant and may protect the bone around the implant. Thus, the implant could remain in the mouth for longer periods. Variable-thread tapered implants can increase the implant and bone contact.

  10. Magnesium implant alloy with low levels of strontium and calcium: The third element effect and phase selection improve bio-corrosion resistance and mechanical performance

    Energy Technology Data Exchange (ETDEWEB)

    Bornapour, M., E-mail: mandana.bornapour@mail.mcgill.ca [Light Metals and Advanced Magnesium Materials, Mining and Materials Engineering, McGill University, Montreal, QC H3A 2B2 (Canada); Biointerface Lab, Mining and Materials Engineering, McGill University, Montreal, QC H3A 2B2 (Canada); Celikin, M. [Light Metals and Advanced Magnesium Materials, Mining and Materials Engineering, McGill University, Montreal, QC H3A 2B2 (Canada); Cerruti, M. [Biointerface Lab, Mining and Materials Engineering, McGill University, Montreal, QC H3A 2B2 (Canada); Pekguleryuz, M. [Light Metals and Advanced Magnesium Materials, Mining and Materials Engineering, McGill University, Montreal, QC H3A 2B2 (Canada)

    2014-02-01

    Low density, non-toxicity, biodegradability and mechanical properties similar to human tissues such as bone make magnesium (Mg) alloys attractive for biomedical applications ranging from bone to cardiovascular implants. The most important challenge that still prevents the widespread use of Mg implants is their rapid degradation rate. In this study we investigate the combined effect of calcium (Ca) and strontium (Sr) on the corrosion behavior of Mg via in vitro immersion and electrochemical tests in simulated body fluid (SBF), and analyze changes in mechanical properties. We show that the combined addition of 0.3 wt.% Sr and 0.4 wt.% Ca decreases the corrosion rate of Mg both in terms of mass loss and hydrogen evolution more effectively than the single addition of either alloying element. We investigate the microstructure of as-cast specimens and the morphology of the corrosion products using optical microscopy, scanning electron microscopy, electron probe micro-analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. Tensile and three point bending tests reveal that the ternary alloy Mg–0.3Sr–0.3Ca has a good combination of mechanical properties and corrosion resistance with hydrogen evolution rates of 0.01 mL/cm{sup 2}/h in SBF. Higher concentrations of Sr and Ca alter the resulting microstructure leading to increased corrosion rates in SBF by promoting the micro-galvanic corrosion between the α-Mg matrix and intermetallic phases of Mg{sub 17}Sr{sub 2} and Mg{sub 2}Ca along the grain boundaries. These results indicate that the combined addition of optimal amounts of Ca and Sr is a promising approach to decrease the high degradation rate of Mg implants in physiological conditions, as well as attaining high ductility in the alloy. The better properties of the Mg–0.3Sr–0.3Ca alloy are related to the new intermetallic phases found in this sample. The optimum composition is attributed to the “third element effect”, as seen in the corrosion

  11. The team approach to managing dental implant complications: strategies for treating peri-implantitis.

    Science.gov (United States)

    Rosen, Paul S

    2013-10-01

    Practitioners who are knowledgeable about the risk factors identified by the Consensus Report of the Sixth European Workshop on Periodontology and who are trained in techniques to eliminate or reduce them may be able to significantly improve long-term implant outcomes. A careful review of the literature suggests that this will include treatment planning, restoring a patient to periodontal heath before initiating care, appropriate implant selection, complete cement removal, and diligent recordkeeping that will track changes and enable early intervention should complications arise. In the case of the biologic complication of peri-implantitis, recent reports suggest that regenerative care may restore implants back to health.

  12. Effects of ion-implanted C on the microstructure and surface mechanical properties of Fe alloys implanted with Ti

    International Nuclear Information System (INIS)

    Follstaedt, D.M.; Knapp, J.A.; Pope, L.E.; Yost, F.G.; Picraux, S.T.

    1984-01-01

    The microstructural and tribological effects of ion implanting C into Ti-implanted, Fe-based alloys are examined and compared to the influence of C introduced by vacuum carburization during Ti implantation alone. The amorphous surface alloy formed by Ti implantation of pure Fe increases in thickness when additional C is implanted at depths containing Ti but beyond the range of carburization. Pin-on-disc tests of 15-5 PH stainless steel show that implantation of both Ti and C reduces friction significantly under conditions where no reduction is obtained by Ti implantation alone; wear depths are also less when C is implanted. All available experimental results can be accounted for by consideration of the thickness and Ti concentration of the amorphous Fe-Ti-C alloy. The thicker amorphous layer on samples implanted with additional C extends tribological benefits to more severe wear regimes

  13. Ion implantation into iron

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1978-01-01

    The distribution of implanted ions in iron, the friction characteristics and the corrosion of iron were studied. The distribution of Ni or Cr ions implanted into mild steel was measured. The accelerated voltage was 150 keV, and the beam current density was about 2 microampere/cm 2 . The measurement was made with an ion microanalyzer. The measured distribution was compared with that of LSS theory. Deep invasion of Ni was seen in the measured distribution. The distribution of Cr ions was different from the distribution calculated by the LSS theory. The relative friction coefficient of mild steel varied according to the dose of implanted Cu or N ions, and to the accelerating voltage. Formation of compound metals on the surfaces of metals by ion-implantation was investigated for the purpose to prevent the corrosion of metals. The resistance of mild steel in which Ni ions were implanted was larger than that of mild steel without any treatment. (Kato, T.)

  14. Incidence of peri-implant mucositis and peri-implantitis in edentulous patients with an implant-retained mandibular overdenture during a 10-year follow-up period

    NARCIS (Netherlands)

    Meijer, Henny J. A.; Raghoebar, Gerry M.; de Waal, Yvonne C. M.; Vissink, Arjan

    2014-01-01

    Objectives: The aim of this sub-analysis of two prospective studies was to assess the incidence of peri-implant mucositis and peri-implantitis in fully edentulous patients with an implant-retained mandibular overdenture during a 10-year follow-up period. Material and Methods: One hundred and fifty

  15. Using individual two-posterior short implants with two-anterior standard implants in mandibular implant-supported-overdenture to enhance the patient satisfaction: A clinical report

    Directory of Open Access Journals (Sweden)

    Mehran Bahrami

    2017-01-01

    Full Text Available Introduction: Many clinical cases and the literature review have revealed implant-supported-overdentures’ (ISOs treatment success and predictability in elderly patients. According to the previous studies, all the mandibular ISOs used 2–4 implants anterior to mental foramen to retain the denture. Case Report: In this clinical report, two individual anterior standard implants and two individual posterior short implants were used to support the mandibular ISO, as well as to prevent further posterior bone resorption. This treatment option permits the patient to insert more implants in the future, and could be upgraded to implant-supported-fixed prosthesis. Discussion: The patient was completely satisfied about the final result, especially for upgrading the mastication efficiency. The patient was followed-up for more than 2 years without complication. The panoramic X-ray showed the preserved bone in the posterior region. This technique could be considered to be innovative, and more clinical cases are required to be documented as a predictable modality.

  16. Neutrophil Responses to Sterile Implant Materials.

    Directory of Open Access Journals (Sweden)

    Siddharth Jhunjhunwala

    Full Text Available In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcapsule implantation, we show 30-500 fold increased neutrophil presence in the peritoneal exudates in response to implants. We demonstrate that these neutrophils secrete increased amounts of a variety of inflammatory cytokines and chemokines. Further, we observe that they participate in the foreign body response through the formation of neutrophil extracellular traps (NETs on implant surfaces. Our results provide new insight into neutrophil function during a foreign body response to peritoneal implants which has implications for the development of biologically compatible medical devices.

  17. Behavior of PET implanted by Ti, Ag, Si and C ion using MEVVA implantation

    International Nuclear Information System (INIS)

    Wu Yuguang; Zhang Tonghe; Zhang Yanwen; Zhang Huixing; Zhang Xiaoji; Zhou Gu

    2001-01-01

    Polyethylene terephthalane (PET) has been modified with Ti, Ag, Si and C ions from a metal vapor arc source (MEVVA). Ti, Ag, Si and C ions were implanted with acceleration voltage 40 kV to fluences ranging from 1x10 16 to 2x10 17 cm -2 . The surface of implanted PET darkened with increasing ion dose, when the metal ion dose was greater than 1x10 17 cm -2 the color changed to metallic bright. The surface resistance decreases by 5-6 orders of magnitude with increasing dose. The resistivity is stable after long-term storage. The depth of Ti- and Ag-implanted layer is approximately 150 and 80 nm measured by Rutherford backscattering (RBS), respectively. TEM photos revealed the presence of Ti and Ag nano-meter particles on the surface resulting from the high-dose implantation. Ti and Ag ion implantations improved conductivity and wear resistance significantly. The phase and structural changes were obtained by X-ray diffraction (XRD). It can be seen that nano-meter particles of Ti precipitation, TiO 2 and Ti-carbides have been formed in implanted layer. Nano-hardness of implanted PET has been measured by a nano-indenter. The results show that the surface hardness, modulus and wear resistance could be increased

  18. Basic research on maxillofacial implants

    International Nuclear Information System (INIS)

    Matsui, Yoshiro

    2001-01-01

    Osseointegrated implants have begun to be used not only in general practice in dentistry but also in various clinical situations in the maxillofacial region. The process has yielded three problems: the spread of application, new materials and diagnostic methods, and management for difficult situations. This paper presents basic data and clinical guidelines for new applications, it investigates the characteristics of the materials and the usefulness of a new diagnostic method, and it studies effective techniques for difficult cases. The results obtained are as follows: Investigations into the spreading application. The lateral and superior orbital rim have sufficient bone thickness and width for the implant body to be placed. Osseointegrated implants, especially by the fixed bridge technique, are not recommended in the craniofacial bone and jaws of young children. Implant placement into bone after/before irradiation must be performed in consideration of impaired osteogenesis, the decrease of trabecular bone, and the time interval between implantation and irradiation. Investigations into materials and diagnostic methods. Hydroxyapatite-coated and titanium implants should be selected according to the characteristics of the materials. A dental simulating soft may also be applicable in the craniofacial region. Investigations into the management of difficult cases. Hyperbaric oxygen therapy (HBO), bone morphogenetic protein (BMP), and tissue engineering should be useful for improving the quality and increasing the quantity of bone where implants are placed. Soft tissue around implants placed in the reconstructed area should be replaced with mucosal tissue. The data obtained here should be useful for increasing the efficiency of osseointegrated implants, but further basic research is required in the future. (author)

  19. Basic research on maxillofacial implants

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Yoshiro [Showa Univ., Tokyo (Japan). School of Dentistry

    2001-11-01

    Osseointegrated implants have begun to be used not only in general practice in dentistry but also in various clinical situations in the maxillofacial region. The process has yielded three problems: the spread of application, new materials and diagnostic methods, and management for difficult situations. This paper presents basic data and clinical guidelines for new applications, it investigates the characteristics of the materials and the usefulness of a new diagnostic method, and it studies effective techniques for difficult cases. The results obtained are as follows: Investigations into the spreading application. The lateral and superior orbital rim have sufficient bone thickness and width for the implant body to be placed. Osseointegrated implants, especially by the fixed bridge technique, are not recommended in the craniofacial bone and jaws of young children. Implant placement into bone after/before irradiation must be performed in consideration of impaired osteogenesis, the decrease of trabecular bone, and the time interval between implantation and irradiation. Investigations into materials and diagnostic methods. Hydroxyapatite-coated and titanium implants should be selected according to the characteristics of the materials. A dental simulating soft may also be applicable in the craniofacial region. Investigations into the management of difficult cases. Hyperbaric oxygen therapy (HBO), bone morphogenetic protein (BMP), and tissue engineering should be useful for improving the quality and increasing the quantity of bone where implants are placed. Soft tissue around implants placed in the reconstructed area should be replaced with mucosal tissue. The data obtained here should be useful for increasing the efficiency of osseointegrated implants, but further basic research is required in the future. (author)

  20. Congenitally Deafblind Children and Cochlear Implants

    DEFF Research Database (Denmark)

    Dammeyer, Jesper Herup

    2008-01-01

    There has been much research conducted demonstrating the positive benefits of cochlear implantation (CI) in children who are deaf. Research on cochlear implantation in children who are both deaf and blind, however, is lacking. The purpose of this article is to present a study of 5 congenitally...... deafblind children who received cochlear implants between 2.2 and 4.2 years of age.  Ratings of video observations were used to measure the children's early communication development with and without the use of their cochlear implants. In addition, parental interviews were used to assess the benefits...... parents perceived regarding their children's cochlear implants. Two examples are included in this article to illustrate the parents' perspectives about cochlear implantation in their deafblind children. Benefits of cochlear implantation in this cohort of children included improved attention and emotional...