WorldWideScience

Sample records for mg co2 m-2

  1. Understanding the H 2 Sorption Trends in the M-MOF-74 Series (M = Mg, Ni, Co, Zn)

    KAUST Repository

    Pham, Tony; Forrest, Katherine A.; Banerjee, Rahul; Orcajo, Gisela; Eckert, Juergen; Space, Brian

    2015-01-01

    © 2014 American Chemical Society. Electronic structure calculations and simulations of H2 sorption were performed in four members of the M-MOF-74 series: Mg-MOF-74, Ni-MOF-74, Co-MOF-74, and Zn-MOF-74. Notable differences were observed in the partial charge and polarizability of the metal ions derived from the electronic structure calculations. The modeling parameters obtained from the electronic structure calculations were found to influence certain features in the experimentally observed H2 sorption trends in the M-MOF-74 series. The simulations were performed with the inclusion of explicit many-body polarization, which was required to reproduce the experimental H2 sorption observables (i.e., sorption isotherms and isosteric heats of adsorption (Qst)) and the H2-metal interaction in all four MOFs using classical molecular simulation. Consistent with experimental measurements, the simulations captured the following trend for the H2-metal interaction strength: Ni-MOF-74 > Co-MOF-74 > Mg-MOF-74 > Zn-MOF-74. The calculations revealed that stronger H2-metal interactions within the M-MOF-74 series corresponded to shorter H2-metal distances and higher induced dipoles on the metal-sorbed H2 molecules. In addition, it was observed that there was a strong correlation between the H2-metal interaction and the polarization contribution. Although Mg-MOF-74 has the highest calculated partial charge for the metal ion within the series, the Mg2+ ion has a very low polarizability compared to the other M2+ ions; this explains why the H2-metal interaction in this MOF is weaker compared to those for Ni-MOF-74 and Co-MOF-74. The sterics interactions, reflected in the crystal structure for all four MOFs, also played a role for the observed H2 sorption trends. Zn-MOF-74 has the lowest H2 uptakes and Qst within the series due to an unfavorable geometric environment for the Zn2+ ions within the ZnO5 clusters. Lastly, the two-dimensional quantum rotational levels were calculated for the H

  2. Understanding the H 2 Sorption Trends in the M-MOF-74 Series (M = Mg, Ni, Co, Zn)

    KAUST Repository

    Pham, Tony

    2015-01-15

    © 2014 American Chemical Society. Electronic structure calculations and simulations of H2 sorption were performed in four members of the M-MOF-74 series: Mg-MOF-74, Ni-MOF-74, Co-MOF-74, and Zn-MOF-74. Notable differences were observed in the partial charge and polarizability of the metal ions derived from the electronic structure calculations. The modeling parameters obtained from the electronic structure calculations were found to influence certain features in the experimentally observed H2 sorption trends in the M-MOF-74 series. The simulations were performed with the inclusion of explicit many-body polarization, which was required to reproduce the experimental H2 sorption observables (i.e., sorption isotherms and isosteric heats of adsorption (Qst)) and the H2-metal interaction in all four MOFs using classical molecular simulation. Consistent with experimental measurements, the simulations captured the following trend for the H2-metal interaction strength: Ni-MOF-74 > Co-MOF-74 > Mg-MOF-74 > Zn-MOF-74. The calculations revealed that stronger H2-metal interactions within the M-MOF-74 series corresponded to shorter H2-metal distances and higher induced dipoles on the metal-sorbed H2 molecules. In addition, it was observed that there was a strong correlation between the H2-metal interaction and the polarization contribution. Although Mg-MOF-74 has the highest calculated partial charge for the metal ion within the series, the Mg2+ ion has a very low polarizability compared to the other M2+ ions; this explains why the H2-metal interaction in this MOF is weaker compared to those for Ni-MOF-74 and Co-MOF-74. The sterics interactions, reflected in the crystal structure for all four MOFs, also played a role for the observed H2 sorption trends. Zn-MOF-74 has the lowest H2 uptakes and Qst within the series due to an unfavorable geometric environment for the Zn2+ ions within the ZnO5 clusters. Lastly, the two-dimensional quantum rotational levels were calculated for the H

  3. Development of pure Mg open-cell foams as structured CO{sub 2} captor

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, I.A., E-mail: iafiguera@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Cd. Universitaria, C.P. 04510 México, D.F. (Mexico); Suarez, M.A.; Velasco-Castro, M.; Pfeiffer, H.; Alcántar-Vázquez, B.; González, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Cd. Universitaria, C.P. 04510 México, D.F. (Mexico); Alfonso, I. [Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Campus Morelia UNAM, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, C.P. 58190 Morelia, Michoacán (Mexico); Lara-Rodríguez, G.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Cd. Universitaria, C.P. 04510 México, D.F. (Mexico)

    2015-12-10

    Highlights: • The CO{sub 2} capture capacity of the open-cell Mg foams was studied at low temperatures. • Open-cell Mg foams with pore size of 350 μm were used for the CO{sub 2} capture study. • The highest amount of CO{sub 2} captured was obtained at 60 °C and 80% of relative humidity. • A CO{sub 2} capture capacity of 0.87 mmol/g was obtained for the open-cell Mg foams. • The oxidized open-cell Mg foams can be used as CO{sub 2} captors. - Abstract: The CO{sub 2} capture capacity of the superficial oxide layer formed in pure open-cell Mg foams was studied at low temperatures (40–60 °C) varying the relative humidity from 40 to 80%. Mg foam samples with pore size of 350 μm and surface area of 5.4 m{sup 2}/g were used for these analyses. Optical microscopy and X-ray diffraction techniques were used to characterize the cell structure and the superficial oxide formed in the cell-foams, respectively. The final products formed after the CO{sub 2}–H{sub 2}O capture experiments were identified by scanning electron microscopy and attenuated total reflexion-Fourier transform infrared spectroscopy (ATR-FTIR). The MgCO{sub 3} and other products, formed after CO{sub 2} + H{sub 2}O capture process, were thermally decomposed, to quantify the amount of CO{sub 2} captured by the superficial MgO layer using standard thermogravimetric analysis. The results showed that the highest amount of CO{sub 2} captured was obtained at 60 °C and 80% of relative humidity, with a CO{sub 2} capture capacity of 0.87 mmol/g, which is comparable with others CO{sub 2} MgO-based captors. The considerable CO{sub 2} capture capacity at low temperatures supports the potential of the pure open-cell Mg foams to be used as structured CO{sub 2} captors.

  4. Formation, stability and structural characterization of ternary MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun-Yeop; Yun, Jong-Il [KAIST, Daejeon (Korea, Republic of). Dept. of Nuclear and Quantum Engineering; Vespa, Marika; Gaona, Xavier; Dardenne, Kathy; Rothe, Joerg; Rabung, Thomas; Altmaier, Marcus [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Nuclear Waste Disposal

    2017-06-01

    The formation of ternary Mg-UO{sub 2}-CO{sub 3} complexes under weakly alkaline pH conditions was investigated by time-resolved laser fluorescence spectroscopy (TRLFS) and extended X-ray absorption fine structure (EXAFS) and compared to Ca-UO{sub 2}-CO{sub 3} complexes. The presence of two different Mg-UO{sub 2}-C{sub 3} complexes was identified by means of two distinct fluorescence lifetimes of 17±2 ns and 51±2 ns derived from the multi-exponential decay of the fluorescence signal. Slope analysis in terms of fluorescence intensity coupled with fluorescence intensity factor as a function of log [Mg(II)] was conducted for the identification of the Mg-UO{sub 2}-CO{sub 3} complexes forming. For the first time, the formation of both MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) species was confirmed and the corresponding equilibrium constants were determined as log β {sub 113}=25.8±0.3 and β {sub 213}=27.1±0.6, respectively. Complementarily, fundamental structural information for both Ca-UO{sub 2}-CO{sub 3} and Mg-UO{sub 2}-CO{sub 3} complexes was gained by extended EXAFS revealing very similar structures between these two species, except for the clearly shorter U-Mg distance (3.83 Aa) compared with U-Ca distance (4.15 Aa). These results confirmed the inner-sphere character of the Ca/Mg-UO{sub 2}-CO{sub 3} complexes. The formation constants determined for MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) species indicate that ternary Mg-UO{sub 2}-CO{sub 3} complexes contribute to the relevant uranium species in carbonate saturated solutions under neutral to weakly alkaline pH conditions in the presence of Mg(II) ions, which will induce notable influences on the U(VI) chemical species under seawater conditions.

  5. Hydrogenation of carbon monoxide on Co/MgAl2O4 and Ce-Co/MgAl2O4 catalysts

    International Nuclear Information System (INIS)

    Kondoh, S.; Muraki, H.; Fujitani

    1986-01-01

    It is well known that various hydrocarbons are obtained by hydrogenation of CO on Fischer-Tropsch catalysts, the products depending on the catalyst components such as Co, Ni, Fe and Ru: and the reaction conditions, particularly, temperature, pressure, space velocity and H 2 /CO ratio. Further, both reactivity and selectivity of catalysts may be improved by suitable selection of support and an additive. The main program of the present work is to develop a catalyst for producing C 5 + liquid hydrocarbons, as an automobile fuel, by the Fischer-Tropsch synthesis. The authors have studied unique CO catalyst systems consisting of various supports - such as Al 2 O 3 (γ, β, α), MgAl 2 O 4 (alumina magnesia spinel), MgO and additives selected from the lanthanoid elements (LE). The composition of spinel-based supports was altered in a range from 28 mol % excess Al 2 O 3 to 28 mol % excess MgO. Particularly, they found that a MgAl 2 O 4 support with 15-18 mol % excess Al 2 O 3 is the most preferable for our purpose and CeO 2 as the additive for Co/spinel catalyst remarkably improves C 5 + yield. Further, it was confirmed that the catalytic activity of Co-base catalysts agree with the oxidation state of Co-oxides on Co and Co-Ce/spinel catalysts. The performance of Co-based catalysts for the production of higher hydrocarbons from syn-gas were described elsewhere. The items described in this report include (a) selection of supports, (b) selection of optimum reaction conditions for Co-Ce/spinel catalyst, (c) redox characteristics of Co-oxides on a spinel surface, and (d) experimental observation of TPD profiles, adsorption capacities and IR spectra relating to adsorbed CO

  6. Radiation-induced defect production in MgF2-Co crystals

    International Nuclear Information System (INIS)

    Nuritdinov, I.; Turdanov, K.; Mirinoyatova, N.M.; Rejterov, V.M.

    1996-01-01

    Impact of Co-admixture on structural radiation defects formation in the MgF 2 crystals is studied. It is found that the Co admixture facilitates the probability of generating the F- and m-type centers of radiation defects as well as creation of the F- and M-centers, perturbed by admixtures. The availability of structural defects leads in its turn to the admixture ions perturbation. It is reflected in the removal of prohibition on spin-prohibited transitions of the Co 2 + ions. It is assumed that creation of the M-centers is the main cause for removal of the prohibition on the spin-prohibited transitions. 8 refs., 4 figs

  7. Magnetic and dielectric properties of the ruthenium double perovskites La2MRuO6 (M=Mg, Co, Ni, and Zn)

    International Nuclear Information System (INIS)

    Yoshii, Kenji; Ikeda, Naoshi; Mizumaki, Masaichiro

    2006-01-01

    Magnetic and dielectric properties of the ruthenium double perovskites La 2 MRuO 6 (M=Mg, Co, Ni, and Zn) were investigated. The magnetization measurements for M=Co and Ni showed the existence of magnetic order at 20-30 K. Though the oxides with M=Zn and Mg exhibit a deviation from the Curie-Weiss law, magnetic order was not clearly observed. The result of La 2 ZnRuO 6 was different from that previously reported, in which a ferromagnetic transition was found at around 165 K. The AC dielectric measurements for M = Co and Ni showed large dielectric constants (typically larger than 1000) at around room temperature, suggesting both the formation of short-ranged polar regions and the magnetic origin of large dielectric constant. In addition, two peaks were found for the temperature dependence of the tan δ component for La 2 NiRuO 6 . The behavior suggests the existence of two different polar regions. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  8. MgCo2-D2 and MgCoNi-D2 systems synthesized at high pressures and interaction mechanism during the HDDR processing

    Directory of Open Access Journals (Sweden)

    Chubin Wan

    2017-02-01

    MgCo2 is a new example of the hydrogen storage alloy, in which a successful HDDR processing results in the reversible formation of the initial intermetallic at much lower temperatures than in the equilibrium phase diagram of the Mg-Co system.

  9. Precipitation of hydrated Mg carbonate with the aid of carbonic anhydrase for CO2 sequestration

    Science.gov (United States)

    Power, I. M.; Harrison, A. L.; Dipple, G. M.

    2011-12-01

    Strategies for sequestering CO2 directly from the atmosphere are likely required to achieve the desired reduction in CO2 concentration and avoid the most damaging effects of climate change [1]. Numerous studies have demonstrated the accelerated precipitation of calcium carbonate minerals with the aid of carbonic anhydrase (CA) as a means of sequestering CO2 in solid carbonate form; however, no study has examined precipitation of magnesium carbonate minerals using CA. Precipitation of magnesite (MgCO3) is kinetically inhibited [2]; therefore, Mg2+ must be precipitated as hydrated carbonate minerals. In laboratory experiments, the uptake of atmospheric CO2 into brine solutions (0.1 M Mg) was rate-limiting for the precipitation of dypingite [Mg5(CO3)4(OH)2-5H2O] with initial precipitation requiring 15 days [3]. It was also found that dypingite precipitation outpaced the uptake of CO2 gas into solution. CO2 uptake is limited by the hydration of CO2 to form carbonate ions [4]. Carbonic anhydrase (CA) enzymes are among the fastest known in nature and are able to catalyze the hydration of CO2, i.e., converting CO2(aq) to CO32- and HCO3- [5]. CA plays an important role in the carbon concentrating mechanism of photoautotrophic, chemoautotrophic, and heterotrophic prokaryotes and is involved in pH homeostasis, facilitated diffusion of CO2, ion transport, and the interconversion of CO2 and HCO3- [6]. Introducing CA into buffered Mg-rich solutions should allow for more rapid precipitation of hydrated magnesium carbonate minerals. Batch experiments were conducted using 125 mL flasks containing 100 mL of Millipore deionized water with 0.2 M of MgCl2-6H2O. To buffer pH, 1.0 g of pulverized brucite [Mg(OH)2] or 1.0 g of NaOH was added to the systems, which were amended with Bovine carbonic anhydrase (BCA) (Sigma-Aldrich). Solutions were stirred continuously and kept at room temperature (~22°C) with laboratory air introduced by bubbling. Temperature and pH were measured routinely

  10. First-principles calculations on Mg/Al2CO interfaces

    International Nuclear Information System (INIS)

    Wang, F.; Li, K.; Zhou, N.G.

    2013-01-01

    The electronic structure, work of adhesion, and interfacial energy of the Mg(0 0 0 2)/Al 2 CO(0 0 0 1) interface were studied with the first-principles calculations to clarify the heterogeneous nucleation potential of Al 2 CO particles in Mg melt. AlO-terminated Al 2 CO(0 0 0 1) slabs with seven atomic layers were adopted for interfacial model geometries. Results show that the “Over O” stacking interface is more stable than the “Over Al” stacking interface due to the larger interfacial adhesion and stronger mixed ionic/metallic bond formed across the interface. The calculated interfacial energies of Mg/Al 2 CO depend on the value of Δμ Al + Δμ C , proving Al 2 CO particles can exist stably in Mg–Al alloys melt and become effective nucleation substrate for α-Mg grain under certain conditions. The above calculation and corresponding analysis provide strong theoretical support to the Al 2 CO nucleus hypothesis from interfacial atomic structure and atomic bonding energy considerations.

  11. Perovskites with noble metals of type Ba/sub 3/BM/sub 2/O/sub 9/; B = Mg, Fe, Co, Ni, Zn, Cd; M = Ru, Ir

    Energy Technology Data Exchange (ETDEWEB)

    Treiber, U; Kemmler-Sack, S; Ehmann, A [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1982-04-01

    The perovskites Ba/sub 3/BM/sub 2/O/sub 9/ crystallize in a hexagonal BaTiO/sub 3/ structure and could be prepared for M = Ru; B = Mg, Fe, Co, Ni, Zn, Cd and M = Ir; B = Co, Ni. According to intensity calculations on powder data of Ba/sub 3/MgRu/sub 2/O/sub 9/ and Ba/sub 3/NiIr/sub 2/O/sub 9/ (refined intensity related R' value 6.7% (Ba/sub 3/MgRu/sub 2/O/sub 9/) and 6.9% (Ba/sub 3/NiIr/sub 2/O/sub 9/)) an 1:2 order is present and both lattices contain face connected M/sub 2/O/sub 9/ double octahedra linked by another via common corners through BO/sub 6/ single octahedra. The occurrence of this typ of cationic order results for B = Mg, Co, Ni, Zn, Cd from the analysis of the vibrational spectra. For B = Mg, Zn, Cd and presumable with B = Ni the charge distribution is B/sup 2 +// 2 M/sup 5 +/; for B = Co deviation can not be excluded. On the opposite in Ba/sub 3/FeRu/sub 2/O/sub 9/ an electron delocalisation is present.

  12. Dendrimeric tweezers for recognition of fluorogenic Co{sup 2+}, Mg{sup 2+} and chromogenic Fe{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Chandana B.; Meshram, Jyotsna S., E-mail: drjsmeshram@gmail.com

    2016-03-15

    Dendrimers are the attractive candidature for the formation of metal complexes capable of performing varied application, owing to the presence of multiple terminal groups on the exterior of the molecule has received tremendous attention. Herein, we have synthesized novel dendritic macromolecule (N′E,N‴E,N″‴E,N‴‴′E)-3,3′,3″,3‴-(ethane-1,2-diylbis(azanetriyle)) tetrakis(N'-(2-hydroxybenzyllidene)propanehydrazide) chemosensor L and its metal complexes. In the present study the application in the optical sensing for chromogenic Fe{sup 2+} and fluorogenic Co{sup 2+} and Mg{sup 2+}cation is reported. The dendrimeric chemosensor L and its metal complexes are investigated with the help of FTIR spectroscopy, Nuclear magnetic resonance ({sup 1}H NMR and {sup 13}C NMR), FT Raman Microspectroscopy, fluorescence and UV–visible spectroscopy. Thermal properties are studied using thermal gravimetric analysis. - Highlights: • Dual effect – Chromogenic and fluorogenic. Chemosensor shows chromogenic effect towards Fe{sup 2+} as well as fluorogenic effect towards Co{sup 2+}and Mg{sup 2+} cation. • From Linear fitting calibration plot for computing LOD and LOQ, it was detected that – LOD=32.3 nM, LOQ=97.8 nM. • Jobs Plot – A graph plotted [HG]={(ΔF/Fo)[H]} Vs {[H]v/([H]v+[G]v)} has maxima at 0.33 which corresponds to 1:2 stoichiometry of chemosensor L:Co{sup 2+}.

  13. Magnetic characteristics of M2FeV3O11 (M = Mg, Zn, Pb, Co, Ni) compounds

    Science.gov (United States)

    Groń, T.; Blonska-Tabero, A.; Filipek, E.; Stokłosa, Z.; Duda, H.; Sawicki, B.

    2018-02-01

    The unusual physical characteristics of the multicomponent oxide systems renewed the interest as the potential cathode materials in high-energy cells. Since the earlier magnetic characteristics were not entirely conclusive, we report the results of dc magnetic measurements including higher harmonics of ac magnetic susceptibility of the M2FeV3O11 (M = Mg, Zn, Pb, Co, Ni) compounds. Ferrimagnetic long-range and antiferromagnetic short-range interactions for all compounds under study at low temperatures as well as superparamagnetic-like behavior with the blocking temperature of 29 K and the freezing parameter of 0.013 were observed. These effects are discussed within the framework of superexchange and double exchange magnetic interactions as well as the mixed valence band of iron ions.

  14. Nanocrystalline spinel ferrite (MFe2O4, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route

    International Nuclear Information System (INIS)

    Phumying, Santi; Labuayai, Sarawuth; Swatsitang, Ekaphan; Amornkitbamrung, Vittaya; Maensiri, Santi

    2013-01-01

    Graphical abstract: This figure shows the specific magnetization curves of the as-prepared MFe 2 O 4 (M = Ni, Co, Mn, Mg, Zn) powders obtained from room temperature VSM measurement. These curves are typical for a soft magnetic material and indicate hysteresis ferromagnetism in the field ranges of ±500 Oe, ±1000 Oe, and ±2000 Oe for the CoFe 2 O 4 , MgFe 2 O 4 and MnFe 2 O 4 respectively, whereas the samples of NiFe 2 O 4 and ZnFe 2 O 4 show a superparamagnetic behavior. Highlights: ► Nanocrystalline MFe 2 O 4 powders were synthesized by a novel hydrothermal method. ► Metal acetylacetonates and aloe vera plant-extracted solution are used. ► This biosynthetic route is very simple and provides high-yield oxide nanomaterials. ► XRD and TEM results indicate that the prepared samples have only spinel structure. ► The maximum M s of 68.9 emu/g at 10 kOe were observed for the samples of MnFe 2 O 4 . - Abstract: Nanocrystalline spinel ferrite MFe 2 O 4 (M = Ni, Co, Mn, Mg, Zn) powders were synthesized by a novel hydrothermal method using Fe(acac) 3 , M(acac) 3 (M = Ni, Co, Mn, Mg, Zn) and aloe vera plant extracted solution. The X-ray diffraction and selected-area electron diffraction results indicate that the synthesized nanocrystalline have only spinel structure without the presence of other phase impurities. The crystal structure and morphology of the spinel ferrite powders, as revealed by TEM, show that the NiFe 2 O 4 and CoFe 2 O 4 samples contain nanoparticles, whereas the MnFe 2 O 4 and MgFe 2 O 4 samples consist of many nanoplatelets and nanoparticles. Interestingly, the ZnFe 2 O 4 sample contains plate-like structure of networked nanocrystalline particles. Room temperature magnetization results show a ferromagnetic behavior of the CoFe 2 O 4 , MnFe 2 O 4 and MgFe 2 O 4 samples, whereas the samples of NiFe 2 O 4 and ZnFe 2 O 4 exhibit a superparamagnetic behavior

  15. MgO-based adsorbents for CO2 adsorption: Influence of structural and textural properties on the CO2 adsorption performance.

    Science.gov (United States)

    Elvira, Gutiérrez-Bonilla; Francisco, Granados-Correa; Víctor, Sánchez-Mendieta; Alberto, Morales-Luckie Raúl

    2017-07-01

    A series of MgO-based adsorbents were prepared through solution-combustion synthesis and ball-milling process. The prepared MgO-based powders were characterized using X-ray diffraction, scanning electron microscopy, N 2 physisorption measurements, and employed as potential adsorbents for CO 2 adsorption. The influence of structural and textural properties of these adsorbents over the CO 2 adsorption behaviour was also investigated. The results showed that MgO-based products prepared by solution-combustion and ball-milling processes, were highly porous, fluffy, nanocrystalline structures in nature, which are unique physico-chemical properties that significantly contribute to enhance their CO 2 adsorption. It was found that the MgO synthesized by solution combustion process, using a molar ratio of urea to magnesium nitrate (2:1), and treated by ball-milling during 2.5hr (MgO-BM2.5h), exhibited the maximum CO 2 adsorption capacity of 1.611mmol/g at 25°C and 1atm, mainly via chemisorption. The CO 2 adsorption behaviour on the MgO-based adsorbents was correlated to their improved specific surface area, total pore volume, pore size distribution and crystallinity. The reusability of synthesized MgO-BM2.5h was confirmed by five consecutive CO 2 adsorption-desorption times, without any significant loss of performance, that supports the potential of MgO-based adsorbent. The results confirmed that the special features of MgO prepared by solution-combustion and treated by ball-milling during 2.5hr are favorable to be used as effective MgO-based adsorbent in post-combustion CO 2 capture technologies. Copyright © 2016. Published by Elsevier B.V.

  16. A randomized comparison of daunorubicin 90 mg/m2 vs 60 mg/m2 in AML induction

    DEFF Research Database (Denmark)

    Burnett, A. K.; Russell, N. H.; Hills, R. K.

    2015-01-01

    Modifying induction therapy in acute myeloid leukemia (AML) may improve the remission rate and reduce the risk of relapse, thereby improving survival. Escalation of the daunorubicin dose to 90 mg/m(2) has shown benefit for some patient subgroups when compared with a dose of 45 mg/m(2), and has been...... = .15). In an exploratory subgroup analysis, there was no subgroup that showed significant benefit, although there was a significant interaction by FLT3 ITD mutation. This trial is registered at http://www.isrctn.com as #ISRCTN55675535....

  17. Co-hydrothermal synthesis of LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C nano-hybrid cathode material with enhanced electrochemical performance for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Jun; Luo, Shaohua; Chang, Longjiao; Hao, Aimin; Wang, Zhiyuan; Liu, Yanguo; Xu, Qian; Wang, Qing; Zhang, Yahui

    2017-01-01

    Highlights: • A co-hydrothermal approach to synthesize LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C composite material in water/PEG system is present. • The Mn_1_-_xMg_xPO_4 precursor is prepared by precipitation reaction. • Co-modified with Mg"2"+ doping and LiAlO_2 compositing strategies play an important role in improving the electronic conductivity and facilitating the diffusion of lithium ion. • LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C composite material exhibits a high specific discharge capacity of 151.8 mAh/g at 0.05C. - Abstract: LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C is synthesized by a co-hydrothermal method in water/PEG system using Li_2CO_3, AAO and Mn_1_-_xMg_xPO_4 as raw material. The electronic structure and micromorphology of multi-component compound LiMn_1_-_xMg_xPO_4/C (x = 0, 1/24, 1/12, 1/6) and nano-hybrid LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C cathode materials are studied by first-principles calculation and experimental research including XRD, SEM, TEM. The calculated band gap of LiMn_2_3_/_2_4Mg_1_/_2_4PO_4/C is 2.296 eV, which is lower than other percentages Mg"2"+ doping samples. Electrochemical tests exhibit LiMn_2_3_/_2_4Mg_1_/_2_4PO_4/C has better cycling performance and rate capability than other contents Mg"2"+ doping samples with the discharge capacity of 143.5 mAh/g, 141.5 mAh/g, 139.2 mAh/g and 136.3 mAh/g at 0.05C, 0.1C, 0.5C and 1C in order. After compositing and preparation of LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C composite material by co-hydrothermal route, the initial discharge capacity reaches up to 151.8 mAh/g, which suggests that co-modified with Mg"2"+ doping and LiAlO_2 compositing material can improve the electronic conductivity of LiMnPO_4/C by facilitating the lithium ion diffusion rate in the interior of the materials.

  18. Overcoming double-step CO2 adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg2(dobpdc).

    Science.gov (United States)

    Milner, Phillip J; Martell, Jeffrey D; Siegelman, Rebecca L; Gygi, David; Weston, Simon C; Long, Jeffrey R

    2018-01-07

    Alkyldiamine-functionalized variants of the metal-organic framework Mg 2 (dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are promising for CO 2 capture applications owing to their unique step-shaped CO 2 adsorption profiles resulting from the cooperative formation of ammonium carbamate chains. Primary , secondary (1°,2°) alkylethylenediamine-appended variants are of particular interest because of their low CO 2 step pressures (≤1 mbar at 40 °C), minimal adsorption/desorption hysteresis, and high thermal stability. Herein, we demonstrate that further increasing the size of the alkyl group on the secondary amine affords enhanced stability against diamine volatilization, but also leads to surprising two-step CO 2 adsorption/desorption profiles. This two-step behavior likely results from steric interactions between ammonium carbamate chains induced by the asymmetrical hexagonal pores of Mg 2 (dobpdc) and leads to decreased CO 2 working capacities and increased water co-adsorption under humid conditions. To minimize these unfavorable steric interactions, we targeted diamine-appended variants of the isoreticularly expanded framework Mg 2 (dotpdc) (dotpdc 4- = 4,4''-dioxido-[1,1':4',1''-terphenyl]-3,3''-dicarboxylate), reported here for the first time, and the previously reported isomeric framework Mg-IRMOF-74-II or Mg 2 (pc-dobpdc) (pc-dobpdc 4- = 3,3'-dioxidobiphenyl-4,4'-dicarboxylate, pc = para -carboxylate), which, in contrast to Mg 2 (dobpdc), possesses uniformally hexagonal pores. By minimizing the steric interactions between ammonium carbamate chains, these frameworks enable a single CO 2 adsorption/desorption step in all cases, as well as decreased water co-adsorption and increased stability to diamine loss. Functionalization of Mg 2 (pc-dobpdc) with large diamines such as N -( n -heptyl)ethylenediamine results in optimal adsorption behavior, highlighting the advantage of tuning both the pore shape and the diamine size for the development of

  19. Carbonation of Mg(OH){sub 2} in a pressurised fluidised bed for CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Fagerlund, J.

    2012-07-01

    , but unfortunately, Mg(OH){sub 2} dehydroxylation is also affected and seemingly to a higher extent than MgCO{sub 3} formation. Although MgCO{sub 3} is thermodynamically more stable than MgO at most of the conditions investigated for this thesis, the presence of MgO in the end product has not been avoided. In other words, not all the decomposing hydroxide is able to form carbonate and the formed MgO is unreactive towards CO{sub 2} in the absence of steam. In addition, the formation of a comparatively rare crystalline carbonate form, referred to as oxymagnesite, has been detected over a range of dry or mildly dry carbonation conditions. Most of the PFB carbonation experiments have been performed (for reasons of availability) using commercially available Mg(OH){sub 2} (Dead Sea Periclase Ltd., i.e. DSP), which is much less reactive than the hydroxide produced from serpentinite (a common Mg-silicate rock) according to the first two steps of the process addressed in this thesis. At similar conditions (< 15 min, 20 bar, 500 deg C), the carbonation of serpentinite derived Mg(OH){sub 2} exceeds that of DSP-Mg(OH){sub 2} by 100%. The low reactivity of DSPMg( OH){sub 2} is not only a result of low surface area (approx 5.5 m2/g), but also of low porosity (approx 0.024 cm3/g), which apparently prevents CO{sub 2} from entering the particle, but not H{sub 2}O (which is smaller than CO{sub 2}) from exiting. The importance of water for the carbonation reaction has been demonstrated, and the reactivity of MgO in the absence of H{sub 2}O is negligible even at comparatively high CO{sub 2} pressures (20 bar). Thus it is important that excessive dehydroxylation, i.e. dehydroxylation without sequential carbonate formation, is prevented. Preliminary kinetic modelling of the carbonation step, assuming an intermediate hydrated MgO-species is produced, showed that a delicate balance between the various factors (temperature, partial pressures, fluidisation velocity and particle properties

  20. CO{sub 2} capture in Mg oxides doped with Fe and Ni; Captura de CO{sub 2} en oxidos de Mg dopados con Fe y Ni

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez S, I. F.

    2016-07-01

    In this work the CO{sub 2} capture-desorption characteristics in Mg oxides doped with Fe and Ni obtained by the direct oxidation of Mg-Ni and Mg-Fe mixtures are presented. Mixtures of Mg-Ni and Mg-Fe in a different composition were obtained by mechanical milling in a Spex-type mill in a controlled atmosphere of ultra high purity argon at a weight / weight ratio of 4:1 powder using methanol as a lubricating agent, for 20 h. The powders obtained by mechanical milling showed as main phase, the Mg with nanocrystalline structure. Subsequently, the mixtures of Mg-Ni and Mg-Fe were oxidized within a muffle for 10 min at 600 degrees Celsius. By means of X-ray diffraction analysis, the Mg O with nano metric grain size was identified as the main phase, which was determined by the Scherrer equation. In the Mg O doped with Ni, was identified that as the Ni amount 1 to 5% by weight dispersed in the Mg O matrix was increased, the main peak intensity of the Ni phase increased, whereas in the Mg O doped with Fe was observed by XRD, that the Fe{sub 2}O{sub 3} phase was present and by increasing the amount of Fe (1 to 5% by weight) dispersed in the crystalline phase of Mg O, the intensity of this impurity also increased. Sem-EDS analysis showed that the Ni and Fe particles are dispersed homogeneously in the Mg O matrix, and the particles are porous, forming agglomerates. Through energy dispersive spectroscopy analysis, the elemental chemical composition obtained is very close to the theoretical composition. The capture of CO{sub 2} in the Mg O-1% Ni was carried out in a Parr reactor at different conditions of pressure, temperature and reaction time. Was determined that under the pressure of 0.2 MPa at 26 degrees Celsius for 1 h of reaction, the highest CO{sub 2} capture of 7.04% by weight was obtained, while in Mg O-1% Fe the CO{sub 2} capture was 6.32% by weight. The other magnesium oxides doped in 2.5 and 5% by weight Ni and Fe showed lower CO{sub 2} capture. The different stages

  1. Crystal structures of KM(AsF6)3 (M2+ = Mg, Co, Mn, Zn), KCu(SbF6)3 and [Co(HF)2]Sr[Sr(HF)]2-[Sr(HF)2]2[AsF6]12

    International Nuclear Information System (INIS)

    Mazej, Zoran; Goreshnik, Evgeny

    2015-01-01

    The KM(AsF 6 ) 3 (M 2+ = Mg, Co, Mn, Zn) and KCu(SbF 6 ) 3 compounds crystallize isotypically to previously known KNi(AsF 6 ) 3 . The main features of the structure of these compounds are rings of MF 6 octahedra sharing apexes with AsF 6 octahedra connected into infinite tri-dimensional frameworks. In this arrangement cavities are formed where K + cations are placed. Single crystals of CoSr 5 (AsF 6 ) 12 .8HF were obtained as one of the products after the crystallization of 3KF/CoF 2 /SrF 2 mixture in the presence of AsF 5 in anhydrous HF. The CoSr 5 (AsF 6 ) 12 .8HF is monoclinic, C/2c (No.15), with a = 26.773(5) Aa, b = 10.087(2) Aa, c = 21.141(5) Aa, β = 93.296(13) circle , V = 5699.9(19) Aa 3 at 200 K, and Z = 4. There are three crystallographically non-equivalent Sr 2+ cations in the crystal structure of CoSr 5 (AsF 6 ) 12 .8HF. The Sr1 is coordinated by ten fluorine atoms from eight different [AsF 6 ]- anions, meanwhile Sr2 and Sr3 are bound to nine fluorine atoms provided by one HF and eight AsF 6 units or by two HF and six AsF 6 units, respectively. The Co 2+ is coordinated distorted-octahedrally by six fluorine atoms from two HF molecules and four different AsF 6 units. All those moieties in the crystal structure of [Co(HF) 2 ]Sr[Sr(HF)] 2 [Sr(HF) 2 ] 2 [AsF 6 ] 12 are connected into tridimensional framework. The CoSr 5 (AsF 6 ) 12 .8HF is a unique example of compound where HF molecules are directly bound via fluorine atoms to two different metal centres.

  2. CO_2 capture in Mg oxides doped with Fe and Ni

    International Nuclear Information System (INIS)

    Sanchez S, I. F.

    2016-01-01

    In this work the CO_2 capture-desorption characteristics in Mg oxides doped with Fe and Ni obtained by the direct oxidation of Mg-Ni and Mg-Fe mixtures are presented. Mixtures of Mg-Ni and Mg-Fe in a different composition were obtained by mechanical milling in a Spex-type mill in a controlled atmosphere of ultra high purity argon at a weight / weight ratio of 4:1 powder using methanol as a lubricating agent, for 20 h. The powders obtained by mechanical milling showed as main phase, the Mg with nanocrystalline structure. Subsequently, the mixtures of Mg-Ni and Mg-Fe were oxidized within a muffle for 10 min at 600 degrees Celsius. By means of X-ray diffraction analysis, the Mg O with nano metric grain size was identified as the main phase, which was determined by the Scherrer equation. In the Mg O doped with Ni, was identified that as the Ni amount 1 to 5% by weight dispersed in the Mg O matrix was increased, the main peak intensity of the Ni phase increased, whereas in the Mg O doped with Fe was observed by XRD, that the Fe_2O_3 phase was present and by increasing the amount of Fe (1 to 5% by weight) dispersed in the crystalline phase of Mg O, the intensity of this impurity also increased. Sem-EDS analysis showed that the Ni and Fe particles are dispersed homogeneously in the Mg O matrix, and the particles are porous, forming agglomerates. Through energy dispersive spectroscopy analysis, the elemental chemical composition obtained is very close to the theoretical composition. The capture of CO_2 in the Mg O-1% Ni was carried out in a Parr reactor at different conditions of pressure, temperature and reaction time. Was determined that under the pressure of 0.2 MPa at 26 degrees Celsius for 1 h of reaction, the highest CO_2 capture of 7.04% by weight was obtained, while in Mg O-1% Fe the CO_2 capture was 6.32% by weight. The other magnesium oxides doped in 2.5 and 5% by weight Ni and Fe showed lower CO_2 capture. The different stages of mass loss and thermal

  3. Nanocrystalline spinel ferrite (MFe{sub 2}O{sub 4}, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Phumying, Santi; Labuayai, Sarawuth; Swatsitang, Ekaphan; Amornkitbamrung, Vittaya [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand); Maensiri, Santi, E-mail: santimaensiri@gmail.com [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand)

    2013-06-01

    Graphical abstract: This figure shows the specific magnetization curves of the as-prepared MFe{sub 2}O{sub 4} (M = Ni, Co, Mn, Mg, Zn) powders obtained from room temperature VSM measurement. These curves are typical for a soft magnetic material and indicate hysteresis ferromagnetism in the field ranges of ±500 Oe, ±1000 Oe, and ±2000 Oe for the CoFe{sub 2}O{sub 4}, MgFe{sub 2}O{sub 4} and MnFe{sub 2}O{sub 4} respectively, whereas the samples of NiFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} show a superparamagnetic behavior. Highlights: ► Nanocrystalline MFe{sub 2}O{sub 4} powders were synthesized by a novel hydrothermal method. ► Metal acetylacetonates and aloe vera plant-extracted solution are used. ► This biosynthetic route is very simple and provides high-yield oxide nanomaterials. ► XRD and TEM results indicate that the prepared samples have only spinel structure. ► The maximum M{sub s} of 68.9 emu/g at 10 kOe were observed for the samples of MnFe{sub 2}O{sub 4}. - Abstract: Nanocrystalline spinel ferrite MFe{sub 2}O{sub 4} (M = Ni, Co, Mn, Mg, Zn) powders were synthesized by a novel hydrothermal method using Fe(acac){sub 3}, M(acac){sub 3} (M = Ni, Co, Mn, Mg, Zn) and aloe vera plant extracted solution. The X-ray diffraction and selected-area electron diffraction results indicate that the synthesized nanocrystalline have only spinel structure without the presence of other phase impurities. The crystal structure and morphology of the spinel ferrite powders, as revealed by TEM, show that the NiFe{sub 2}O{sub 4} and CoFe{sub 2}O{sub 4} samples contain nanoparticles, whereas the MnFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4} samples consist of many nanoplatelets and nanoparticles. Interestingly, the ZnFe{sub 2}O{sub 4} sample contains plate-like structure of networked nanocrystalline particles. Room temperature magnetization results show a ferromagnetic behavior of the CoFe{sub 2}O{sub 4}, MnFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4} samples, whereas the

  4. Perpendicular magnetic anisotropy in Ta|Co40Fe40B20|MgAl2O4 structures and perpendicular CoFeB|MgAl2O4|CoFeB magnetic tunnel junction

    KAUST Repository

    Tao, B. S.

    2014-09-08

    Magnetic properties of Co40Fe40B20(CoFeB) thin films sandwiched between Ta and MgAl2O4layers have been systematically studied. For as-grown state, Ta/CoFeB/MgAl2O4structures exhibit good perpendicular magnetic anisotropy (PMA) with interface anisotropy Ki=1.22erg/cm2, which further increases to 1.30erg/cm2after annealing, while MgAl2O4/CoFeB/Ta multilayer shows in-plane magnetic anisotropy and must be annealed in order to achieve PMA. For bottom CoFeB layer, the thickness window for PMA is from 0.6 to 1.0nm, while that for top CoFeB layer is between 0.8 and 1.4nm. Perpendicular magnetic tunnel junctions (p-MTJs) with a core structure of CoFeB/MgAl2O4/CoFeB have also been fabricated and tunneling magnetoresistance ratio of about 36% at room temperature and 63% at low temperature have been obtained. The intrinsic excitations in the p-MTJs have been identified by inelastic electron-tunneling spectroscopy.

  5. Perpendicular magnetic anisotropy in Ta|Co40Fe40B20|MgAl2O4 structures and perpendicular CoFeB|MgAl2O4|CoFeB magnetic tunnel junction

    KAUST Repository

    Tao, B. S.; Li, D. L.; Yuan, Z. H.; Liu, H. F.; Ali, S. S.; Feng, J. F.; Wei, H. X.; Han, X. F.; Liu, Y.; Zhao, Y. G.; Zhang, Q.; Guo, Zaibing; Zhang, Xixiang

    2014-01-01

    Magnetic properties of Co40Fe40B20(CoFeB) thin films sandwiched between Ta and MgAl2O4layers have been systematically studied. For as-grown state, Ta/CoFeB/MgAl2O4structures exhibit good perpendicular magnetic anisotropy (PMA) with interface anisotropy Ki=1.22erg/cm2, which further increases to 1.30erg/cm2after annealing, while MgAl2O4/CoFeB/Ta multilayer shows in-plane magnetic anisotropy and must be annealed in order to achieve PMA. For bottom CoFeB layer, the thickness window for PMA is from 0.6 to 1.0nm, while that for top CoFeB layer is between 0.8 and 1.4nm. Perpendicular magnetic tunnel junctions (p-MTJs) with a core structure of CoFeB/MgAl2O4/CoFeB have also been fabricated and tunneling magnetoresistance ratio of about 36% at room temperature and 63% at low temperature have been obtained. The intrinsic excitations in the p-MTJs have been identified by inelastic electron-tunneling spectroscopy.

  6. Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface

    International Nuclear Information System (INIS)

    Sasani, Alireza; Baktash, Ardeshir; Mirabbaszadeh, Kavoos; Khoshnevisan, Bahram

    2016-01-01

    Highlights: • Formation energy of Mg and Mg-Nb co-doped TiO_2 anatase surface (101) is studied. • Effect of Mg defect to the TiO_2 anatase (101) surface and bond length distribution of the surface is studied and it is shown that Mg defects tend to stay far from each other. • Effect of Mg and Nb to the bond length distribution of the surface studied and it is shown that these defects tend to stay close to each other. • Effects of Mg and Mg-Nb defects on DSSCs using TiO_2 anatase hosting these defects are studied. - Abstract: In this paper, by using density functional theory, Mg and Nb-Mg co-doping of TiO_2 anatase (101) surfaces are studied. By studying the formation energy of the defects and the bond length distribution of the surface, it is shown that Mg defects tend to stay as far as possible to induce least possible lattice distortion while Nb and Mg defects stay close to each other to cause less stress to the surface. By investigating band structure of the surface and changes stemmed from the defects, potential effects of Mg and Mg-Nb co-doping of TiO_2 surface on dye-sensitized solar cells are investigated. In this study, it is shown that the Nb-Mg co-doping could increase J_S_C of the surface while slightly decreasing V_O_C compared to Mg doped surface, which might result in an increase in efficiency of the DSSCs compared to Nb or Mg doped surfaces.

  7. Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface

    Energy Technology Data Exchange (ETDEWEB)

    Sasani, Alireza [Department of Science, Karaj Islamic Azad University, Karaj, Alborz, P.O. Box 31485-313 (Iran, Islamic Republic of); Baktash, Ardeshir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Mirabbaszadeh, Kavoos, E-mail: mirabbas@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, P. O. Box 15875-4413 (Iran, Islamic Republic of); Khoshnevisan, Bahram [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of)

    2016-10-30

    Highlights: • Formation energy of Mg and Mg-Nb co-doped TiO{sub 2} anatase surface (101) is studied. • Effect of Mg defect to the TiO{sub 2} anatase (101) surface and bond length distribution of the surface is studied and it is shown that Mg defects tend to stay far from each other. • Effect of Mg and Nb to the bond length distribution of the surface studied and it is shown that these defects tend to stay close to each other. • Effects of Mg and Mg-Nb defects on DSSCs using TiO{sub 2} anatase hosting these defects are studied. - Abstract: In this paper, by using density functional theory, Mg and Nb-Mg co-doping of TiO{sub 2} anatase (101) surfaces are studied. By studying the formation energy of the defects and the bond length distribution of the surface, it is shown that Mg defects tend to stay as far as possible to induce least possible lattice distortion while Nb and Mg defects stay close to each other to cause less stress to the surface. By investigating band structure of the surface and changes stemmed from the defects, potential effects of Mg and Mg-Nb co-doping of TiO{sub 2} surface on dye-sensitized solar cells are investigated. In this study, it is shown that the Nb-Mg co-doping could increase J{sub SC} of the surface while slightly decreasing V{sub OC} compared to Mg doped surface, which might result in an increase in efficiency of the DSSCs compared to Nb or Mg doped surfaces.

  8. Thermoelectric Performance of the MXenes M2CO2 (M = Ti, Zr, or Hf)

    KAUST Repository

    Gandi, Appala; Alshareef, Husam N.; Schwingenschlö gl, Udo

    2016-01-01

    MXenes, M2CO2, where M = Ti, Zr, or Hf, in order to evaluate the effect of the metal M on the thermoelectric performance. The lattice contribution to the thermal conductivity, obtained from the phonon life times, is found to be lowest in Ti2CO2

  9. Anodic electrochemical performances of MgCo{sub 2}O{sub 4} synthesized by oxalate decomposition method and electrospinning technique for Li-ion battery application

    Energy Technology Data Exchange (ETDEWEB)

    Darbar, Devendrasinh [School of Mechanical and Building Science, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu (India); Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Department of Physics, National University of Singapore, 117542 (Singapore); Reddy, M.V., E-mail: phymvvr@nus.edu.sg [Department of Physics, National University of Singapore, 117542 (Singapore); Department of Materials Science and Engineering, National University of Singapore, 117546 (Singapore); Sundarrajan, S. [Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Pattabiraman, R. [School of Mechanical and Building Science, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu (India); Ramakrishna, S. [Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Chowdari, B.V.R. [Department of Physics, National University of Singapore, 117542 (Singapore)

    2016-01-15

    Highlights: • MgCo{sub 2}O{sub 4} was prepared by oxalate decomposition method and electrospinning technique. • Electrospun MgCo{sub 2}O{sub 4} shows the reversible capacity of 795 and 227 mAh g{sup −1} oxalate decomposition MgCo{sub 2}O{sub 4} after 50 cycle. • Electrospun MgCo{sub 2}O{sub 4} show good cycling stability and electrochemical performance. - Abstract: Magnesium cobalt oxide, MgCo{sub 2}O{sub 4} was synthesized by oxalate decomposition method and electrospinning technique. The electrochemical performances, structures, phase formation and morphology of MgCo{sub 2}O{sub 4} synthesized by both the methods are compared. Scanning electron microscope (SEM) studies show spherical and fiber type morphology, respectively for the oxalate decomposition and electrospinning method. The electrospun nanofibers of MgCo{sub 2}O{sub 4} calcined at 650 °C, showed a very good reversible capacity of 795 mAh g{sup −1} after 50 cycles when compared to bulk material capacity of 227 mAh g{sup −1} at current rate of 60 mA g{sup −1}. MgCo{sub 2}O{sub 4} nanofiber showed a reversible capacity of 411 mAh g{sup −1} (at cycle) at current density of 240 mA g{sup −1}. Improved performance was due to improved conductivity of MgO, which may act as buffer layer leading to improved cycling stability. The cyclic voltammetry studies at scan rate of 0.058 mV/s show main cathodic at around 1.0 V and anodic peaks at 2.1 V vs. Li.

  10. Examination of the magnetic hyperthermia and other magnetic properties of CoFe2O4@MgFe2O4 nanoparticles using external field Mössbauer spectroscopy

    Science.gov (United States)

    Park, Jeongho; Choi, Hyunkyung; Kim, Sam Jin; Kim, Chul Sung

    2018-05-01

    CoFe2O4@MgFe2O4 core/shell nanoparticles were synthesized by high temperature thermal decomposition with seed-mediated growth. The crystal structure and magnetic properties of the nanoparticles were investigated using X-ray diffractometry (XRD), vibrating sample magnetometry (VSM), and Mössbauer spectrometry. The magnetic hyperthermia properties were investigated using a MagneTherm device. Analysis of the XRD patterns showed that CoFe2O4@MgFe2O4 had a cubic spinel crystal structure with space group Fd-3m and a lattice constant (a0) of 8.3686 Å. The size and morphology of the CoFe2O4@MgFe2O4 nanoparticles were confirmed by HR-TEM. The VSM measurements showed that the saturation magnetization (MS) of CoFe2O4@MgFe2O4 was 77.9 emu/g. The self-heating temperature of CoFe2O4@MgFe2O4 was 37.8 °C at 112 kHz and 250 Oe. The CoFe2O4@MgFe2O4 core/shell nanoparticles showed the largest saturation magnetization value, while their magnetic hyperthermia properties were between those of the CoFe2O4 and MgFe2O4 nanoparticles. In order to investigate the hyperfine interactions of CoFe2O4, MgFe2O4, and CoFe2O4@MgFe2O4, we performed Mössbauer spectrometry at various temperatures. In addition, Mössbauer spectrometry of CoFe2O4@MgFe2O4 was performed at 4.2 K with applied fields of 0-4.5 T, and the results were analyzed with sextets for the tetrahedral A-site and sextets for the octahedral B-site.

  11. Co2+ adsorption in porous oxides Mg O, Al2O3 and Zn O

    International Nuclear Information System (INIS)

    Moreno M, J. E.; Granados C, F.; Bulbulian, S.

    2009-01-01

    The porous oxides Mg O, Al 2 O 3 and Zn O were synthesized by the chemical combustion in solution method and characterized be means of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The adsorption behavior of Co 2+ ions present in aqueous solution were studied on the synthesized materials by means of experiments lots type to ambient temperature. It was found that the cobalt ions removal was of 90% in Mg O, 65% in Zn O and 72% in Al 2 O 3 respectively, indicating that the magnesium oxide is the best material to remove Co 2+ presents in aqueous solution. (Author)

  12. Thermoelectric Performance of the MXenes M2CO2 (M = Ti, Zr, or Hf)

    KAUST Repository

    Gandi, Appala

    2016-02-21

    We present the first report in which the thermoelectric properties of two-dimensional MXenes are calculated by considering both the electron and phonon transport. Specifically, we solve the transport equations of the electrons and phonons for three MXenes, M2CO2, where M = Ti, Zr, or Hf, in order to evaluate the effect of the metal M on the thermoelectric performance. The lattice contribution to the thermal conductivity, obtained from the phonon life times, is found to be lowest in Ti2CO2 and highest in Hf2CO2 in the temperature range from 300 K to 700 K. The highest figure of merit is predicted for Ti2CO2 . The heavy mass of the electrons due to flat conduction bands results in a larger thermopower in the case of n-doping in these compounds.

  13. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+.

    OpenAIRE

    Duguid, J G; Bloomfield, V A; Benevides, J M; Thomas, G J

    1995-01-01

    Differential scanning calorimetry, laser Raman spectroscopy, optical densitometry, and pH potentiometry have been used to investigate DNA melting profiles in the presence of the chloride salts of Ba2+, Sr2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+. Metal-DNA interactions have been observed for the molar ratio [M2+]/[PO2-] = 0.6 in aqueous solutions containing 5% by weight of 160 bp mononucleosomal calf thymus DNA. All of the alkaline earth metals, plus Mn2+, elevate the melting temperature of ...

  14. Fabrication and spectroscopic properties of Co:MgAl2O4 transparent ceramics by the HIP post-treatment

    Science.gov (United States)

    Luo, Wei; Ma, Peng; Xie, Tengfei; Dai, Jiawei; Pan, Yubai; Kou, Huamin; Li, Jiang

    2017-07-01

    Cobalt-doped magnesium aluminate spinel (Co:MgAl2O4) is one of the most important saturable absorbers for the passive Q-switching of solid-state lasers operating at eye-safe wavelength of 1.5 μm. In this work, highly transparent Co:MgAl2O4 ceramics were fabricated by vacuum sintering combined with hot isostatic pressing (HIP) post-treatment, using the mixture of the commercial spinel and the lab-made Co:MgAl2O4 powder as the raw materials. The densification mechanism of Co:MgAl2O4 transparent ceramics was discussed. The microstructure and optical properties of the samples were investigated. The ground state absorption cross section (σGSA) was calculated from the fitted curve of the absorption coefficient spectrum. The results show that Co:MgAl2O4 ceramics fabricated by vacuum sintering at 1500 °C for 5 h and then HIP post-treatment at 1650 °C for 3 h perform good transparency, whose in-line transmittance exceeds 80% at 2500 nm. Moreover, the ground state absorption cross section of 0.02 at.% Co:MgAl2O4 ceramics is calculated to be 3.35 × 10-19 cm2 at the wavelength of 1540 nm, which is promising for the application to the passive Q-switching of solid-state laser operating in the near infrared region (NIR).

  15. Enhanced Selectivity and Uptake Capacity of CO2 and Toluene Adsorption in Co0.5 M0.33 MoS4 (M= Sb or Y) Chalcogels by Impregnated Metal Salts

    KAUST Repository

    Adhiam, Fatima Abdullah Ahmed

    2017-11-17

    The synthesis of metal chalcogenide aerogels Co0.5M0.33MoS4 (M= Sb or Y) by the sol-gel method is reported. In this system, the building blocks [MoS4]2− chelated with Co2+ and (Sb3+) or (Y3+) salts in nonaqueous solvents forming amorphous networks with a gel property. The chalcogels obtained after supercritical drying have BET surface areas of 176 m2 g−1 (Co0.5Sb0.33MoS4) and 145 m2 g−1 (Co0.5Y0.33MoS4). Electron microscopy and physisorption studies reveal that the new materials are porous with wide pore size distribution and average pore width of 16 nm. These chalcogels show higher adsorption capacity of toluene vapor (Co0.5Sb0.33MoS4: 387 mg g−1) and (Co0.5Y0.33MoS4: 304 mg g−1) over cyclohexane vapor and high selectivity of CO2 over CH4 or H2, Co0.5Sb0.33MoS4 (CO2/H2: 80 and CO2/CH4: 21), Co0.5Y0.33MoS4 (CO2/H2: 27 and CO2/CH4: 15). We also demonstrated that the impregnation of various metal species like Li+, Mg2+, and Ni2+ significantly enhanced the uptake capacity and selectivity of toluene and CO2 adsorptions in the chacogels.

  16. Catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Chmielarz, Lucjan; Kustrowski, Piotr; Rafalska-Lasocha, Alicja [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Majda, Dorota; Dziembaj, Roman [Regional Laboratory for Physicochemical Analyses and Structural Research, Ingardena 3, 30-060 Krakow (Poland)

    2002-01-10

    M-Mg-Al hydrotalcites (where M=Cu{sup 2+}, Co{sup 2+} and Cu{sup 2+}+Co{sup 2+}) with M ranging from 5 to 20% (as atomic ratio) were prepared by co-precipitation method. Obtained samples were characterised by XRD and TGA techniques. The influence of transition metal content on thermal decomposition of hydrotalcites was observed. Calcination of the hydrotalcites at 600C resulted in the formation of mixed oxides with surface areas in the range 71-154m{sup 2}/g. Calcined hydrotalcites were tested as catalysts in the selective reduction of NO with ammonia (NO-SCR). The catalytic activity depends on the kind of transition metal, as well as its content. For the NO-SCR the following reactivity order was found: Cu-Mg-Al>Cu-Co-Mg-Al>Co-Mg-Al. Temperature-programmed methods (TPD, TPSR, stop flow-TPD), as well as FT-IR spectroscopy have been applied to determine interaction of NO and NH{sub 3} molecules with the catalyst surface.

  17. Thin films of thermoelectric compound Mg2Sn deposited by co-sputtering assisted by multi-dipolar microwave plasma

    International Nuclear Information System (INIS)

    Le-Quoc, H.; Lacoste, A.; Hlil, E.K.; Bes, A.; Vinh, T. Tan; Fruchart, D.; Skryabina, N.

    2011-01-01

    Highlights: → Mg 2 Sn thin films deposited by plasma co-sputtering, on silicon and glass substrates. → Formation of nano-grained polycrystalline films on substrates at room temperature. → Structural properties vary with target biasing and target-substrate distance. → Formation of the hexagonal phase of Mg 2 Sn in certain deposition conditions. → Power factor ∼5.0 x 10 -3 W K -2 m -1 for stoichiometric Mg 2 Sn films doped with ∼1 at.% Ag. - Abstract: Magnesium stannide (Mg 2 Sn) thin films doped with Ag intended for thermoelectric applications are deposited on both silicon and glass substrates at room temperature by plasma assisted co-sputtering. Characterization by scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction confirms the formation of fine-grained polycrystalline thin films with thickness of 1-3 μm. Stoichiometry, microstructure and crystal structure of thin films are found to vary with target biasing and the distance from targets to substrate. Measurements of electrical resistivity and Seebeck coefficient at room temperature show the maximum power factor of ∼5.0 x 10 -3 W K -2 m -1 for stoichiometric Mg 2 Sn thin films doped with ∼1 at.% Ag.

  18. Photodissociation spectroscopy of the Mg + -CO2 complex and its isotopic analogs

    Science.gov (United States)

    Yeh, C. S.; Willey, K. F.; Robbins, D. L.; Pilgrim, J. S.; Duncan, M. A.

    1993-02-01

    Mg+-CO2 ion-molecule cluster complexes are produced by laser vaporization in a pulsed nozzle cluster source. The vibronic spectroscopy in these complexes is studied with mass-selected photodissociation spectroscopy in a reflectron time-of-flight mass spectrometer. Two excited electronic states are observed (2) 2Σ+ and 2Π. The 2Π state has a vibrational progression in the metal-CO2 stretching mode (ωe'=381.8 cm-1). The complexes are linear (Mg+-OCO) and are bound by the charge-quadrupole interaction. The dissociation energy (D0`) is 14.7 kcal/mol. Corresponding spectra are measured for each of the 24, 25, and 26 isotopes of magnesium. These results are compared to theoretical predictions made by Bauschlicher and co-workers.

  19. Homoleptic diphosphacyclobutadiene complexes [M(η(4)-P2C2R2)2]x- (M = Fe, Co; x = 0, 1).

    Science.gov (United States)

    Wolf, Robert; Ehlers, Andreas W; Khusniyarov, Marat M; Hartl, František; de Bruin, Bas; Long, Gary J; Grandjean, Fernande; Schappacher, Falko M; Pöttgen, Rainer; Slootweg, J Chris; Lutz, Martin; Spek, Anthony L; Lammertsma, Koop

    2010-12-27

    The preparation and comprehensive characterization of a series of homoleptic sandwich complexes containing diphosphacyclobutadiene ligands are reported. Compounds [K([18]crown-6)(thf)(2)][Fe(η(4)-P(2)C(2)tBu(2))(2)] (K1), [K([18]crown-6)(thf)(2)][Co(η(4)-P(2)C(2)tBu(2))(2)] (K2), and [K([18]crown-6)(thf)(2)][Co(η(4)-P(2)C(2)Ad(2))(2)] (K3, Ad = adamantyl) were obtained from reactions of [K([18]crown-6)(thf)(2)][M(η(4)-C(14)H(10))(2)] (M = Fe, Co) with tBuC[triple bond]P (1, 2), or with AdC[triple bond]P (3). Neutral sandwiches [M(η(4)-P(2)C(2)tBu(2))(2)] (4: M = Fe 5: M = Co) were obtained by oxidizing 1 and 2 with [Cp(2)Fe]PF(6). Cyclic voltammetry and spectro-electrochemistry indicate that the two [M(η(4)-P(2)C(2)tBu(2))(2)](-)/[M(η(4)-P(2)C(2)tBu(2))(2)] moieties can be reversibly interconverted by one electron oxidation and reduction, respectively. Complexes 1-5 were characterized by multinuclear NMR, EPR (1 and 5), UV/Vis, and Mössbauer spectroscopies (1 and 4), mass spectrometry (4 and 5), and microanalysis (1-3). The molecular structures of 1-5 were determined by using X-ray crystallography. Essentially D(2d)-symmetric structures were found for all five complexes, which show the two 1,3-diphosphacyclobutadiene rings in a staggered orientation. Density functional theory calculations revealed the importance of covalent metal-ligand π bonding in 1-5. Possible oxidation state assignments for the metal ions are discussed.

  20. Controlling Cooperative CO2 Adsorption in Diamine-Appended Mg2(dobpdc) Metal-Organic Frameworks.

    Science.gov (United States)

    Siegelman, Rebecca L; McDonald, Thomas M; Gonzalez, Miguel I; Martell, Jeffrey D; Milner, Phillip J; Mason, Jarad A; Berger, Adam H; Bhown, Abhoyjit S; Long, Jeffrey R

    2017-08-02

    In the transition to a clean-energy future, CO 2 separations will play a critical role in mitigating current greenhouse gas emissions and facilitating conversion to cleaner-burning and renewable fuels. New materials with high selectivities for CO 2 adsorption, large CO 2 removal capacities, and low regeneration energies are needed to achieve these separations efficiently at scale. Here, we present a detailed investigation of nine diamine-appended variants of the metal-organic framework Mg 2 (dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) that feature step-shaped CO 2 adsorption isotherms resulting from cooperative and reversible insertion of CO 2 into metal-amine bonds to form ammonium carbamate chains. Small modifications to the diamine structure are found to shift the threshold pressure for cooperative CO 2 adsorption by over 4 orders of magnitude at a given temperature, and the observed trends are rationalized on the basis of crystal structures of the isostructural zinc frameworks obtained from in situ single-crystal X-ray diffraction experiments. The structure-activity relationships derived from these results can be leveraged to tailor adsorbents to the conditions of a given CO 2 separation process. The unparalleled versatility of these materials, coupled with their high CO 2 capacities and low projected energy costs, highlights their potential as next-generation adsorbents for a wide array of CO 2 separations.

  1. Infrared spectroscopic investigation of M(H2PO4)2x2H2O (M=Mg, Mn, Cd) dehydration products

    International Nuclear Information System (INIS)

    Pechkovskij, V.V.; Dzyuba, E.D.; Mel'nikova, R.Ya.; Salonets, G.I.; Kovalishina, V.I.; Malashonok, I.E.

    1982-01-01

    Using the method of IR spectroscopy the composition of products separated at different stages of M(H 2 PO 4 ) 2 x2H 2 O dehydration, where M=Mg, Mn, Cd, has been investigated. It is shown that cation influence is expressed in strengthening of bond of proton-containing groups in the structure of initial compounds from magnesium to cadmium. A supposition is made that the difference in bond character of the groups more evidently expressed for partially dehydrated products of the composition M(H 2 PO 4 ) 2 , conditions a possibility of dehydration in two directions- with the formation of intermediate phase MH 2 P 2 O 7 or with separation of three phosphoric acid

  2. Contribution to the study of Li{sub x}(Co,M)O{sub 2} phases used as cathodes in Li-ion batteries. Combined effects of the lithium sur-stoichiometry and of the substitution (M = Ni, Mg); Contribution a l'etude des phases Li{sub x}(Co,M)O{sub 2} en tant que materiaux d'electrode positive des batteries Li-ion. Effets combines de la surstoechiometrie en lithium et de la substitution (M = Ni, Mg)

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, St.

    2001-12-01

    Li{sub x0}(Co,M)O{sub 2} (M = Ni, Mg; x0 {<=} 1.0) materials used as positive electrode for Li-ion batteries have been prepared at high temperature (900 degrees C) and characterized by X-ray diffraction, galvano-static measurements, {sup 7}Li MAS NMR spectroscopy and electrical properties measurements. If the results on the LiCoO{sub 2} phase agree with the literature, the adding of an excess of lithium during synthesis leads to the presence in the actual materials to the presence of oxygen vacancies and intermediate spin Co{sup 3+} ions (Co{sup 3+(IS)}) in a square-based environment. This defect suppresses all the phase transitions usually observed upon lithium de-intercalation in Li{sub x}CoO{sub 2}. The partial substitution by Ni ions allows us to separate the relative contribution of Ni(III) and Co{sup 3+(IS)} ions in the suppression of the various phase transitions upon cycling. Mg doping, even without any lithium excess, systematically induces some oxygen vacancies and Co{sup 3+(IS)} ions in the material. This observation had been correlated to the behaviour of the Li{sub x}(Co,Mg)O{sub 2} system upon cycling. (author)

  3. Photoluminescence and thermoluminescence properties of Eu2+ doped and Eu2+ ,Dy3+ co-doped Ba2 MgSi2 O7 phosphors.

    Science.gov (United States)

    Sao, Sanjay Kumar; Brahme, Nameeta; Bisen, D P; Tiwari, Geetanjali

    2016-11-01

    In this work, we report the preparation, characterization, comparison and luminescence mechanisms of Eu 2 + -doped and Eu 2 + ,Dy 3 + -co-doped Ba 2 MgSi 2 O 7 (BMSO) phosphors. Prepared phosphors were synthesized via a high temperature solid-state reaction method. All prepared phosphors appeared white. The phase structure, particle size, and elemental analysis were analyzed using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) analysis. The luminescence properties of the phosphors were investigated by thermoluminescence (TL) and photoluminescence (PL). The PL excitation and emission spectra of Ba 2 MgSi 2 O 7 :Eu 2 + showed the peak to be around 381 nm and 490 nm respectively. The PL excitation spectrum of Ba 2 MgSi 2 O 7 :Eu 2 + Dy 3 + showed the peak to be around 341 nm and 388 nm, and the emission spectrum had a broad band around 488 nm. These emissions originated from the 4f 6 5d 1 to 4f 7 transition of Eu 2 + . TL analysis revealed that the maximum TL intensity was found at 5 mol% of Eu 2 + doping in Ba 2 MgSi 2 O 7 phosphors after 15 min of ultraviolet (UV) light exposure. TL intensity was increased when Dy 3 + ions were co-doped in Ba 2 MgSi 2 O 7 :Eu 2 + and maximum TL intensity was observed for 2 mol% of Dy 3 + . TL emission spectra of Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors were found at 500 nm. TL intensity increased with UV exposure time up to 15 min, then decreased for the higher UV radiation dose for both Eu doping and Eu,Dy co-doping. The trap depths were calculated to be 0.54 eV for Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and 0.54 eV and 0.75 eV for Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors. It was observed that co-doping with small amounts of Dy 3 + enhanced the thermoluminescence properties of Ba 2 MgSi 2 O 7 phosphor. Copyright © 2016 John Wiley & Sons, Ltd. [Correction added on 5 April 2016, after first online publication: The

  4. Influence of Mg{sup 2+} doping on the structure and electrochemical performances of layered LiNi{sub 0.6}Co{sub 0.2-x}Mn{sub 0.2}Mg{sub x}O{sub 2} cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenjun; Wang, Zhixing, E-mail: zxwang.csu@hotmail.com; Guo, Huajun; Li, Xinhai

    2016-06-25

    Introducing the Mg ion into host lattice is applied to improving the electrochemical performance of LiNi{sub 0.6}Co{sub 0.2}Mn{sub 0.2}O{sub 2}. The effect of Mg substitution for Co on the structure, morphology, electrochemical properties and Li{sup +} diffusion coefficients are investigated in details. Rietveld refinement results reveal that Mg is incorporated into the bulk lattice, which results in reduced cation mixing and expand c-lattice parameter. All Mg-doped sample exhibit better cycle and rate performances, although the Mg substitution for Co led to decreasing a part of capacity. The Li diffusion coefficients obtained by galvanostatic intermittent titration technique (GITT) are increased with increases of Mg content. - Highlights: • Mg-doped sample exhibits better electrochemical performance. • The change of crystal structure by Mg doping are studied. • The Mg doping improves the lithium ion diffusion coefficient.

  5. Co{sup 2+} adsorption in porous oxides Mg O, Al{sub 2}O{sub 3} and Zn O;Adsorcion de Co{sup 2+} en oxidos porosos MgO, Al{sub 2}O{sub 3} y ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Moreno M, J. E.; Granados C, F. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Bulbulian, S., E-mail: francisco.granados@inin.gob.m [UNAM, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2009-07-01

    The porous oxides Mg O, Al{sub 2}O{sub 3} and Zn O were synthesized by the chemical combustion in solution method and characterized be means of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The adsorption behavior of Co{sup 2+} ions present in aqueous solution were studied on the synthesized materials by means of experiments lots type to ambient temperature. It was found that the cobalt ions removal was of 90% in Mg O, 65% in Zn O and 72% in Al{sub 2}O{sub 3} respectively, indicating that the magnesium oxide is the best material to remove Co{sup 2+} presents in aqueous solution. (Author)

  6. Structure and electrochemical properties of Mg2SnO4 nanoparticles synthesized by a facile co-precipitation method

    International Nuclear Information System (INIS)

    Tang, Hao; Cheng, Cuixia; Yu, Gaige; Liu, Haowen; Chen, Weiqing

    2015-01-01

    Nanosized Mg 2 SnO 4 has been synthesized by a facile co-precipitation method. The structure and morphology of the as-prepared samples are characterized by X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS), fourier Transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). It is found that Mg 2 SnO 4 sample is very sensitive to the aging time of the precursor. The single phase Mg 2 SnO 4 nanoparticles with ∼23 nm can be obtained at 900 °C using the aging 35 min percusor as source. The electrochemical properties of the powder obtained at 900 °C are investigated by galvanostatic discharge-charge tests and cyclic voltammograms (CVs). The initial specific discharge capacity reaches as high as 927.7 mAh g −1 at 0.2 mA cm −2 in 0.05–3.0 V, which indicates that Mg 2 SnO 4 nanoparticles could be a promising candidate of anode material for Li-ion batteries. - Highlights: • Nanosized Mg 2 SnO 4 has been synthesized by a facile co-precipitation method. • We find that Mg 2 SnO 4 sample is very sensitive to the ageing time of the precursor. • The single phase Mg 2 SnO 4 nanoparticles with about 23 nm can be obtained by calcining the ageing 35 min percusor at 900 °C. • The obtained powders show a better electrochemical performance

  7. Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5-x Mg x Fe2O4 nanoparticle ferrites

    Science.gov (United States)

    R, M. Rosnan; Z, Othaman; R, Hussin; Ali, A. Ati; Alireza, Samavati; Shadab, Dabagh; Samad, Zare

    2016-04-01

    In this study, nanocrystalline Co-Ni-Mg ferrite powders with composition Co0.5Ni0.5-x Mg x Fe2O4 are successfully synthesized by the co-precipitation method. A systematic investigation on the structural, morphological and magnetic properties of un-doped and Mg-doped Co-Ni ferrite nanoparticles is carried out. The prepared samples are characterized using x-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and vibrating sample magnetometry (VSM). The XRD analyses of the synthesized samples confirm the formation of single-phase cubic spinel structures with crystallite sizes in a range of ˜ 32 nm to ˜ 36 nm. The lattice constant increases with increasing Mg content. FESEM images show that the synthesized samples are homogeneous with a uniformly distributed grain. The results of IR spectroscopy analysis indicate the formation of functional groups of spinel ferrite in the co-precipitation process. By increasing Mg2+ substitution, room temperature magnetic measurement shows that maximum magnetization and coercivity increase from ˜ 57.35 emu/g to ˜ 61.49 emu/g and ˜ 603.26 Oe to ˜ 684.11 Oe (1 Oe = 79.5775 A·m-1), respectively. The higher values of magnetization M s and M r suggest that the optimum composition is Co0.5Ni0.4Mg0.1Fe2O4 that can be applied to high-density recording media and microwave devices. Project supported by the Ibnu Sina Institute for Scientific and Industrial Research, Physics Department of Universiti Teknologi Malaysia and the Ministry of Education Malaysia (Grant Nos. Q.J130000.2526.04H65).

  8. Enhanced hydrogen storage properties of MgH2 co-catalyzed with K2NiF6 and CNTs.

    Science.gov (United States)

    Sulaiman, N N; Ismail, M

    2016-12-06

    The composite of MgH 2 /K 2 NiF 6 /carbon nanotubes (CNTs) is prepared by ball milling, and its hydrogenation properties are studied for the first time. MgH 2 co-catalyzed with K 2 NiF 6 and CNTs exhibited an improvement in the onset dehydrogenation temperature and isothermal de/rehydrogenation kinetics compared with the MgH 2 -K 2 NiF 6 composite. The onset dehydrogenation temperature of MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs is 245 °C, which demonstrated a reduction of 25 °C compared with the MgH 2 + 10 wt% K 2 NiF 6 composite. In terms of rehydrogenation kinetics, MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs samples absorbed 3.4 wt% of hydrogen in 1 min at 320 °C, whereas the MgH 2 + 10 wt% K 2 NiF 6 sample absorbed 2.6 wt% of hydrogen under the same conditions. For dehydrogenation kinetics at 320 °C, the MgH 2 + 10 wt% K 2 NiF 6 + 5 wt% CNTs sample released 3.3 wt% hydrogen after 5 min of dehydrogenation. By contrast, MgH 2 doped with 10 wt% K 2 NiF 6 released 3.0 wt% hydrogen in the same time period. The apparent activation energy, E a , for the dehydrogenation of MgH 2 doped with 10 wt% K 2 NiF 6 reduced from 100.0 kJ mol -1 to 70.0 kJ mol -1 after MgH 2 was co-doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs. Based on the experimental results, the hydrogen storage properties of the MgH 2 /K 2 NiF 6 /CNTs composite is enhanced because of the catalytic effects of the active species of KF, KH and Mg 2 Ni that are formed in situ during dehydrogenation, as well as the unique structure of CNTs.

  9. Critical current density improvements in MgB2 superconducting bulk samples by K2CO3 additions  

    DEFF Research Database (Denmark)

    Grivel, J.-C.

    2018-01-01

    MgB2 bulk samples with potassium carbonate doping were made by means of reaction of elemental Mg and B powders mixed with various amounts of K2CO3. The Tc of the superconducting phase as well as its a-axis parameter were decreased as a result of carbon doping. Potassium escaped the samples during...... reaction. The critical current density of MgB2 was improved both in self field and under applied magnetic field for T ≤ 30 K, with optimum results for 1 mol% K2CO3 addition. The normalized flux pinning force (f(b)) shows that the flux pinning mechanism at low field is similar for all samples, following...

  10. Hierarchically porous MgCo2O4 nanochain networks: template-free synthesis and catalytic application

    Science.gov (United States)

    Guan, Xiangfeng; Yu, Yunlong; Li, Xiaoyan; Chen, Dagui; Luo, Peihui; Zhang, Yu; Guo, Shanxin

    2018-01-01

    In this work, hierarchically porous MgCo2O4 nanochain networks were successfully synthesized by a novel template-free method realized via a facile solvothermal synthesis followed by a heat treatment. The morphologies of MgCo2O4 precursor could be adjusted from nanosheets to nanobelts and finally to interwoven nanowires, depending on the volume ratio of diethylene glycol to deionized water in the solution. After calcination, the interwoven precursor nanowires were transformed to hierarchical MgCo2O4 nanochain networks with marco-/meso-porosity, which are composed of 10-20 nm nanoparticles connected one by one. Moreover, the relative formation mechanism of the MgCo2O4 nanochain networks was discussed. More importantly, when evaluated as catalytic additive for AP thermal decomposition, the MgCo2O4 nanochain networks show excellent accelerating effect. It is benefited from the unique hierarchically porous network structure and multicomponent effect, which effectively accelerates ammonia oxidation and {{{{ClO}}}4}- species dissociation. This approach opens the way to design other hierarchically porous multicomponent metal oxides.

  11. Elucidation of structural, vibrational and dielectric properties of transition metal (Co2+) doped spinel Mg-Zn chromites

    Science.gov (United States)

    Choudhary, Pankaj; Varshney, Dinesh

    2018-05-01

    Co2+ doped Mg-Zn spinel chromite compositions Mg0.5Zn0.5-xCoxCr2O4 (0.0 ≤ x ≤ 0.5) have been synthesized by the high-temperature solid state method. Synchrotron and X-ray diffraction (XRD) studies show single-phase crystalline nature. The structural analysis is validated by Rietveld refinement confirms the cubic structure with space group Fd3m. Crystallite size is estimated from Synchrotron XRD which was found to be 30-34 nm. Energy dispersive analysis confirms stoichiometric Mg0.5Zn0.5-xCoxCr2O4 composition. Average crystallite size distribution is estimated from imaging software (Image - J) of SEM is in the range of 100-250 nm. Raman spectroscopy reveals four active phonon modes, and a pronounced red shift is due to enhanced Co2+ concentration. Increased Co2+ concentration in Mg-Zn chromites shows a prominent narrowing of band gap from 3.46 to 2.97 eV. The dielectric response is attributed to the interfacial polarization, and the electrical modulus study supports non-Debye type of dielectric relaxation. Ohmic junctions (minimum potential drop) at electrode interface are active at lower levels of doping (x transformer applications at high frequencies.

  12. Raman-spectroscopic (Fe/Fe+Mg, CO2) and Structural studies of Mg-Fe cordierites

    International Nuclear Information System (INIS)

    Haefeker, U.

    2013-01-01

    In the course of this dissertation synthetic hexagonal and orthorhombic Mg-Fe-cordierites have been investigated with Raman-spectroscopy and XRD methods. Cordierite´s Mg- and Fe-end-members as well as their Mg-Fe solid solutions with the chemical formula (Mg, Fe 2+ ) 2 Al 4 Si 5 O 18 *nH 2 O have been synthesized. Raman-data of synthetic hydrous Mg- and Fe-cordierites have been obtained in the wavenumber-region 100-1250 cm-1 and the experimental data were then compared with the results of quantum-mechanical calculations. 86 theoretical bands could be related to specific vibrational modes of the tetrahedral and octahedral sites of the cordierite structure. Maximum and mean deviation between experimentally-derived bands and calculated modes were ±7 cm -1 for Mg-cordierite and ±19 cm -1 for Fe-cordierite. Spectra comparison revealed a trend of peak downshifting as a consequence of Fe-incorporation. The calculations now allow more accurate interpretation of the Raman spectra with respect to structural changes of cordierite, resulting from Al-Si ordering and Mg-Fe exchange. Atomic motions in cordierite have been compared with those of the structurally similar mineral beryl. Investigations of 16 H 2 O-bearing synthetic well-ordered Mg-Fe-cordierites (XFe =0-1) with micro-Raman spectroscopy revealed a linear correlation between the Fe/Mg ratio and the position of certain Raman peaks. The peaks (wave-number Mg-/Fe-cordierite) at 122/111, 262/257, 430/418, 579/571, 974/967, and 1012/1007 cm -1 were selected for a detailed deconvolution analysis . The shifts of these peaks were then plotted vs. XFe and regression of the data lead to the formulation of a set of linear equations. In addition, the effect of different H 2 O contents and the degree of Al-Si ordering on the Fe/Mg determination were also investigated. Testing the calibration against data from six well-characterized natural cordierite samples yielded excellent agreement. Existing calibration diagrams for CO 2

  13. Competition Between Co(NH3)63+ and Inner Sphere Mg2+ Ions in the HDV Ribozyme

    Science.gov (United States)

    Gong, Bo; Chen, Jui-Hui; Bevilacqua, Philip C.; Golden, Barbara L.; Carey, Paul R.

    2009-01-01

    Divalent cations play critical structural and functional roles in many RNAs. While the hepatitis delta virus (HDV) ribozyme can undergo self-cleavage in the presence of molar concentrations of monovalent cations, divalent cations such as Mg2+ are required for efficient catalysis under physiological conditions. Moreover, the cleavage reaction can be inhibited with Co(NH3)63+, an analog of Mg(H2O)62+. Here, the binding of Mg2+ and Co(NH3)63+ to the HDV ribozyme are studied by Raman microscopic analysis of crystals. Raman difference spectra acquired at different metal ion conditions reveal changes in the ribozyme. When Mg2+ alone is introduced to the ribozyme, inner sphere coordination of Mg(H2O)x2+ (x≤5) to non-bridging PO2− oxygen, and changes in base stretches and phosphodiester group conformation are observed. In addition, binding of Mg2+ induces deprotonation of a cytosine assigned to the general acid C75, consistent with solution studies. When Co(NH3)63+ alone is introduced, deprotonation of C75 is again observed, as are distinctive changes in base vibrational ring modes and phosphodiester backbone conformation. In contrast to Mg2+ binding, Co(NH3)63+ binding does not perturb PO2− group vibrations, consistent with its ability to make only outer sphere contacts. Surprisingly, competitive binding studies reveal that Co(NH3)63+ ions displace some inner sphere-coordinated magnesium species, including ions coordinated to PO2− groups or the N7 of a guanine, likely G1 at the active site. These observations contrast with the tenet that Co(NH3)63+ ions displace only outer sphere magnesium ions. Overall, our data support two classes of inner sphere Mg2+-PO2− binding sites: sites that Co(NH3)63+ can displace, and others it cannot. PMID:19888753

  14. Micropore Formation of [Zn2(Oxac) (Taz)2]·(H2O)2.5 via CO2 Adsorption.

    Science.gov (United States)

    Zubir, Moondra; Hamasaki, Atom; Iiyama, Taku; Ohta, Akira; Ohki, Hiroshi; Ozeki, Sumio

    2017-01-24

    As-synthesized [Zn 2 (Oxac) (Taz) 2 ]·(H 2 O) 2.5 , referred to as ZOTW 2.5 , was prepared from aqueous methanol solutions of Zn 5 (CO 3 ) 2 (OH) 6 and two kinds of ligands of 1,2,4-triazole (Taz) and oxalic acid (Oxac) at 453 K for 12 h. The crystal structure was determined by the Rietveld method. As-synthesized ZOTW 2.5 was pretreated at 383 K and 1 mPa for t pt h, ZOTW x (t pt h). ZOTW x (≥3h) showed a type I adsorption isotherm for N 2 at 77 K having a saturation amount (V s ) of 180 mg/g, but that pretreated shortly showed only 1/10 in V s . CO 2 was adsorbed at 303 K in sigmoid on nonporous ZOTW x (≤2h) and in Langmuir-type on ZOTW x (≥3h) to reach the adsorption amount of 120 mg/g at 700 Torr. N 2 adsorption on ZOTW x (≤2h)deCO 2 , degassed after CO 2 adsorption on ZOTW x (≤2h), was promoted 5-fold from 180 mg/g on ZOTW x (t pt h) and ZOTW x (≥3h)deCO 2 up to ca. 1000 mg/g. The interaction of CO 2 and H 2 O molecules in micropores may lead to a new route for micropore formation.

  15. N–Mg dual-acceptor co-doping in CuCrO{sub 2} studied by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ying, E-mail: 1080071@hnust.edu.cn [School of Physics, Hunan University of Science and Technology, Xiangtan 411201 (China); Nie, Guo-Zheng [School of Physics, Hunan University of Science and Technology, Xiangtan 411201 (China); Zou, Daifeng [School of Physics, Hunan University of Science and Technology, Xiangtan 411201 (China); Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Tang, Jing-Wu [School of Physics, Hunan University of Science and Technology, Xiangtan 411201 (China); Ao, Zhimin, E-mail: Zhimin.Ao@gdut.edu.cn [Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2016-11-25

    In this paper, N–Mg dual-acceptor co-doping in CuCrO{sub 2} is investigated by first-principles calculations. The electronic structure and formation energies of Mg substituting Cr-site, N substituting O-site, and co-doping of both Mg on Cr-site and N on O-site in CuCrO{sub 2} are calculated. It is found that the structure with N and Mg codoped at the nearest sites has the lowest energy due to a modest attractive interaction between the two dopants. Compared with single N or Mg doped CuCrO{sub 2}, the N–Mg codoped CuCrO{sub 2} has a lower formation energy and shallower transition level. In addition, the total density of states (DOS) analysis shows that more hole states appear above the Fermi level and higher DOS for N–Mg co-doping is obtained in the N–Mg codoped CuCrO{sub 2}, which is good to enhance the p-type conductivity in CuCrO{sub 2}. - Highlights: • N–Mg dual-acceptor co-doping in CuCrO{sub 2} is investigated. • N–Mg complex has a lower formation energy and shallower transition level. • More hole states appear above the Fermi level for N–Mg co-doping. • N–Mg co-doping in CuCrO{sub 2} can be expected to have more stable p-type conductivity.

  16. Isopiestic investigation of the osmotic coefficients of MgBr{sub 2}(aq) and study of bromide salts solubility in the (m{sub 1}KBr + m{sub 2}MgBr{sub 2})(aq) system at T = 323.15 K. Thermodynamic model of solution behaviour and (solid + liquid) equilibria in the MgBr{sub 2}(aq), and (m{sub 1}KBr + m{sub 2}MgBr{sub 2})(aq) systems to high concentration and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Christov, Christomir, E-mail: christov@svr.igic.bas.b [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, ul. ' Acad. G. Bonchev' , bl. 11, 1113 Sofia (Bulgaria)

    2011-03-15

    The isopiestic method has been used to determine the osmotic coefficients of the binary solutions MgBr{sub 2}(aq) (from 0.4950 to 2.5197 mol {center_dot} kg{sup -1}) at the temperature T = 323.15 K. Sodium chloride solutions have been used as isopiestic reference standards. The solubility of the bromide minerals in the mixed system (m{sub 1}KBr + m{sub 2}MgBr{sub 2})(aq) has been investigated at T = 323.15 K by the physico-chemical analysis method. In addition to simple salts {l_brace}KBr(cr) and MgBr{sub 2} . 6H{sub 2}O(cr){r_brace}, equilibrium crystallization of the highly incongruent double salt with stoichiometric composition 1:1:6 {l_brace}bromcarnallite: KBr . MgBr{sub 2} . 6H{sub 2}O(cr){r_brace} was also established. The results obtained from the isopiestic and solubility measurements have been combined with all other experimental thermodynamic quantities available in the literature (osmotic coefficients, and solubility of the bromide mineral) to construct a chemical model that calculates solute and solvent activities and (solid + liquid) equilibria in the MgBr{sub 2}(aq) binary, and (m{sub 1}KBr + m{sub 2}MgBr{sub 2})(aq) mixed systems from dilute to high solution concentration within the (273.15 to 438.15) K temperature range. The solubility modelling approach based on fundamental Pitzer specific interaction equations is employed. It was found, that the standard for 2-1 type of electrolytes approach with three ({beta}{sup (0)}, {beta}{sup (1)}, and C{sup {phi}}) single electrolyte ion interaction parameters gives excellent agreement with osmotic coefficients from T = (298.15 to 373.45) K; up to saturation at 298.15 K, and up to m(MgBr{sub 2}) = 5.83 mol {center_dot} kg{sup -1} at 373.45 K, and with MgBr{sub 2} {center_dot} 6H{sub 2}O(cr) equilibrium pure water solubility data within the (273.15 to 438.15) K temperature range and up to {approx}8.5 mol {center_dot} kg{sup -1} used in parameterization. The model for the ternary system gives very good

  17. Synthesis and mechanical properties of stabilized zirconia ceramics: MgO-ZrO_2 and Y_2O_3-MgO- ZrO_2

    International Nuclear Information System (INIS)

    Yamagata, C.; Mello-Castanho, S.R.H.; Paschoal, J.O.A.

    2014-01-01

    Precursor MgO-ZrO_2 and Y_2O_3-MgO-ZrO_2 ceramic powders were synthesized by the method of co-precipitation and characterized by techniques such as laser diffraction, QELS (Quasi Elastic Light Scattering), XRD, BET, and SEM. Nanoscale powders with specific surface area higher than 60 m"2. g"-"1 was achieved. Sintered ceramic obtained from the synthesized powders, were characterized to mechanical tests using Vickers indentation technique. The addition of Y_2O_3 promoted an increase in hardness of the ceramics and total cubic crystalline phase stabilization. (author)

  18. Description and crystal structure of albrechtschraufite, MgCa{sub 4}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]{sub 2}.17-18H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Mereiter, K. [Vienna Univ. of Technology (Austria). Inst. of Chemical Technologies and Analytics

    2013-04-15

    Albrechtschraufite, MgCa{sub 4}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]{sub 2}.17-18H{sub 2}O, triclinic, space group P anti 1, a = 13.569(2), b = 13.419(2), c = 11.622(2) Aa, α = 115.82(1), β = 107.61(1), γ = 92.84(1) (structural unit cell, not reduced), V = 1774.6(5) Aa{sup 3}, Z = 2, Dc = 2.69 g/cm{sup 3} (for 17.5 H{sub 2}O), is a mineral that was found in small amounts with schroeckingerite, NaCa{sub 3}F[UO{sub 2}(CO{sub 3}){sub 3}](SO{sub 4}).10H{sub 2}O, on a museum specimen of uranium ore from Joachimsthal (Jachymov), Czech Republic. The mineral forms small grain-like subhedral crystals (= 0.2 mm) that resemble in appearance liebigite, Ca{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]. ∝ 11H{sub 2}O. Colour pale yellow-green, luster vitreous, transparent, pale bluish green fluorescence under ultraviolet light. Optical data: Biaxial negative, nX = 1.511(2), nY = 1.550(2), nZ = 1.566(2), 2V = 65(1) (λ = 589 nm), r < v weak. After qualitative tests had shown the presence of Ca, U, Mg, CO{sub 2} and H{sub 2}O, the chemical formula was determined by a crystal structure analysis based on X-ray four-circle diffractometer data. The structure was later on refined with data from a CCD diffractometer to R1 = 0.0206 and wR2 = 0.0429 for 9,236 independent observed reflections. The crystal structure contains two independent [UO{sub 2}(CO{sub 3}){sub 3}]{sup 4-} anions of which one is bonded to two Mg and six Ca while the second is bonded to only one Mg and three Ca. Magnesium forms a MgF{sub 2}(O{sub carbonate}){sub 3}(H{sub 2}O) octahedron that is linked via the F atoms with three Ca atoms so as to provide each F atom with a flat pyramidal coordination by one Mg and two Ca. Calcium is 7- and 8-coordinate forming CaFO{sub 6}, CaF{sub 2}O{sub 2}(H{sub 2}O){sub 4}, CaFO{sub 3}(H{sub 2}O){sub 4} and CaO{sub 2}(H{sub 2}O){sub 6} coordination polyhedra. The crystal structure is built up from MgCa{sub 3}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}].8H{sub 2}O layers parallel to (001) which

  19. Efficient MgO-based mesoporous CO2 trapper and its performance at high temperature.

    Science.gov (United States)

    Han, Kun Kun; Zhou, Yu; Chun, Yuan; Zhu, Jian Hua

    2012-02-15

    A novel MgO-based porous adsorbent has been synthesized in a facile co-precipitation method for the first time, in order to provide a candidate for trapping CO(2) in flue gas at high temperature. The resulting composite exhibits a mesoporous structure with a wide pore size distribution, due to the even dispersion and distribution of microcrystalline MgO in the framework of alumina to form a concrete-like structure. These sorbents can capture CO(2) at high temperature (150-400°C), possessing high reactivity and stability in cyclic adsorption-desorption processes, providing competitive candidates to control CO(2) emission. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. 13CO2/12CO2 isotope ratio analysis in human breath using a 2 μm diode laser

    Science.gov (United States)

    Sun, Mingguo; Cao, Zhensong; Liu, Kun; Wang, Guishi; Tan, Tu; Gao, Xiaoming; Chen, Weidong; Yinbo, Huang; Ruizhong, Rao

    2015-04-01

    The bacterium H. pylori is believed to cause peptic ulcer. H. pylori infection in the human stomach can be diagnosed through a CO2 isotope ratio measure in exhaled breath. A laser spectrometer based on a distributed-feedback semiconductor diode laser at 2 μm is developed to measure the changes of 13CO2/12CO2 isotope ratio in exhaled breath sample with the CO2 concentration of ~4%. It is characterized by a simplified optical layout, in which a single detector and associated electronics are used to probe CO2 spectrum. A new type multi-passes cell with 12 cm long base length , 29 m optical path length in total and 280 cm3 volume is used in this work. The temperature and pressure are well controlled at 301.15 K and 6.66 kPa with fluctuation amplitude of 25 mK and 6.7 Pa, respectively. The best 13δ precision of 0.06o was achieved by using wavelet denoising and Kalman filter. The application of denoising and Kalman filter not only improved the signal to noise ratio, but also shorten the system response time.

  1. Influence of face-centered-cubic texturing of Co2Fe6B2 pinned layer on tunneling magnetoresistance ratio decrease in Co2Fe6B2/MgO-based p-MTJ spin valves stacked with a [Co/Pd](n)-SyAF layer.

    Science.gov (United States)

    Takemura, Yasutaka; Lee, Du-Yeong; Lee, Seung-Eun; Chae, Kyo-Suk; Shim, Tae-Hun; Lian, Guoda; Kim, Moon; Park, Jea-Gun

    2015-05-15

    The TMR ratio of Co2Fe6B2/MgO-based p-MTJ spin valves stacked with a [Co/Pd]n-SyAF layer decreased rapidly when the ex situ magnetic annealing temperature (Tex) was increased from 275 to 325 °C, and this decrease was associated with degradation of the Co2Fe6B2 pinned layer rather than the Co2Fe6B2 free layer. At a Tex above 325 °C the amorphous Co2Fe6B2 pinned layer was transformed into a face-centered-cubic (fcc) crystalline layer textured from [Co/Pd]n-SyAF, abruptly reducing the Δ1 coherence tunneling of perpendicular-spin-torque electrons between the (100) MgO tunneling barrier and the fcc Co2Fe6B2 pinned layer.

  2. Infrared emissions in MgSrAl10O17:Er3+ phosphor co-doped with Yb3+/Ba2+/Ca2+ obtained by solution combustion route

    International Nuclear Information System (INIS)

    Singh, Vijay; Kumar Rai, Vineet; Venkatramu, V.; Chakradhar, R.P.S.; Hwan Kim, Sang

    2013-01-01

    An intense infrared emitting MgSrAl 10 O 17 :Er 3+ phosphor co-doped with Yb 3+ , Ba 2+ and Ca 2+ ions have been prepared by a solution combustion method. Phase purity of the derived compounds was confirmed by X-ray diffraction technique. The vibrational properties of MgSrAl 10 O 17 phosphor was studied by Fourier transform infrared spectroscopy. The broad and strong infrared emission of Er 3+ ions at around 1.53 μm was observed upon excitation at 980 nm. Effect of co-doping with the Yb 3+ , Ba 2+ and Ca 2+ ions on the infrared luminescence intensity of Er 3+ ions and the mechanism responsible for the variation in the infrared intensity have been discussed. The results indicate that these materials may be suitable for the optical telecommunication window and wavelength division multiplexing applications. - Highlights: ► The hexagonal phase of MgSrAl 10 O 17 could be obtained by the low temperature combustion method. ► The broad and strong infrared emission of Er 3+ ions at around 1.53 μm was observed. ► Effect of co-doping with the Yb 3+ , Ba 2+ and Ca 2+ ions on the infrared luminescence intensity of Er 3+ were reported.

  3. Unusual electronic features and reactivity of the dipyridylazaallyl ligand: characterizations of (smif)2M [M = Fe, Co, Co+, Ni; smif = {(2-py)CH}2N] and [(TMS)2NFe]2(smif)2.

    Science.gov (United States)

    Frazier, Brenda A; Wolczanski, Peter T; Lobkovsky, Emil B; Cundari, Thomas R

    2009-03-18

    Application of the dipyridylazaallyl ligand (2-py)CHNCH(2-py) (smif) to a series of first-row transition metals afforded (smif)(2)M(n) [n = 0, M = Fe (1), Co (2), Ni (3); n = +1, M = Co (2+)] and {(TMS)(2)NFe}(2)(smif)(2) (4(2)) via metathetical procedures. The Mossbauer spectrum of 1 (S = 0) and TDDFT calculations, including a UV-vis spectral simulation, reveal it to be a covalent, strong-field system with Delta(o) estimated as approximately 18,000 cm(-1) and B approximately 470 cm(-1). (smif)(2)Co (2) has S = 1/2 according to SQUID data at 10 K. DFT calculations suggest that the odd electron is localized in a smif pi* orbital, i.e., smif is redox-active. EPR-silent (smif)(2)Ni (3) has S = 1 (SQUID), and calculations show that the unpaired spins reside in the d(z(2)) and d(x(2))(-y(2)) orbitals. X-ray structural parameters suggest that low-spin d(6) 1 and 2+ are relatively symmetric D(2d) species, but 2 and 3 manifest a distortion in which one smif is canted in the plane perpendicular to the other. (smif)FeN(TMS)(2) (4) is principally monomeric in solution, but reversibly dimerizes (K(eq) approximately 10(-4) M(-1)) via C-C bond formation in the azaallyl backbone to crystallize as {(TMS)(2)NFe}(2)(smif)(2) (4(2)). The azaallyl compounds possess extraordinary UV-vis absorptivities (epsilon approximately 18,000-52,000) at 580 +/- 15 nm and 406(25) nm that have been identified as intraligand bands with C(nb) --> smif pi* character.

  4. Improved CO_2 adsorption capacity and cyclic stability of CaO sorbents incorporated with MgO

    International Nuclear Information System (INIS)

    Farah Diana Mohd Daud; Kumaravel Vignesh; Srimala Sreekantan; Abdul Rahman Mohamed

    2016-01-01

    Calcium oxide (CaO) sorbents incorporated with magnesium oxide (MgO) were synthesized using a co-precipitation route. The sorbents were prepared with different MgO concentrations (from 5 wt% to 30 wt%). The as-prepared sorbents were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and BET surface area analysis techniques. The sintering effect of CaO sorbents was decreased after the incorporation of MgO. The sorbents with 5 wt% and 10 wt% of MgO retained their CO_2 adsorption capacity over multiple cycles. Most importantly, CaO with 10 wt% MgO showed constant CO_2 adsorption capacity over 30 carbonation cycles. The results revealed that CaO with 10 wt% MgO is sufficient to produce sorbents with high surface area, good structural stability and enhanced CO_2 adsorption capacity. (authors)

  5. Magnetic order in Pu2M3Si5 (M = Co, Ni)

    International Nuclear Information System (INIS)

    Bauer, E D; Tobash, P H; Mitchell, J N; Kennison, J A; Ronning, F; Scott, B L; Thompson, J D

    2011-01-01

    The physical properties including magnetic susceptibility, specific heat, and electrical resistivity of two new plutonium compounds Pu 2 M 3 Si 5 (M = Co, Ni) are reported. Pu 2 Ni 3 Si 5 crystallizes in the orthorhombic U 2 Co 3 Si 5 structure type, which can be considered a variant of the BaAl 4 tetragonal structure, while Pu 2 Co 3 Si 5 adopts the closely related monoclinic Lu 2 Co 3 Si 5 type. Magnetic order is observed in both compounds, with Pu 2 Ni 3 Si 5 ordering ferromagnetically at T C = 65 K then undergoing a transition into an antiferromagnetic state below T N = 35 K. Two successive magnetic transitions are also observed at T mag1 = 38 K and T mag2 = 5 K in Pu 2 Co 3 Si 5 . Specific heat measurements reveal that these two materials have a moderately enhanced Sommerfeld coefficient γ ∼ 100 mJ/mol Pu K 2 in the magnetic state with comparable RKKY and Kondo energy scales.

  6. Infrared Spectroscopy of Gas-Phase M+(CO2)n (M = Co, Rh, Ir) Ion-Molecule Complexes.

    Science.gov (United States)

    Iskra, Andreas; Gentleman, Alexander S; Kartouzian, Aras; Kent, Michael J; Sharp, Alastair P; Mackenzie, Stuart R

    2017-01-12

    The structures of gas-phase M + (CO 2 ) n (M = Co, Rh, Ir; n = 2-15) ion-molecule complexes have been investigated using a combination of infrared resonance-enhanced photodissociation (IR-REPD) spectroscopy and density functional theory. The results provide insight into fundamental metal ion-CO 2 interactions, highlighting the trends with increasing ligand number and with different group 9 ions. Spectra have been recorded in the region of the CO 2 asymmetric stretch around 2350 cm -1 using the inert messenger technique and their interpretation has been aided by comparison with simulated infrared spectra of calculated low-energy isomeric structures. All vibrational bands in the smaller complexes are blue-shifted relative to the asymmetric stretch in free CO 2 , consistent with direct binding to the metal center dominated by charge-quadrupole interactions. For all three metal ions, a core [M + (CO 2 ) 2 ] structure is identified to which subsequent ligands are less strongly bound. No evidence is observed in this size regime for complete activation or insertion reactions.

  7. Evaluation of Ca3(Co,M2O6 (M=Co, Fe, Mn, Ni as new cathode materials for solid-oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Fushao Li

    2015-10-01

    Full Text Available Series compounds Ca3(Co0.9M0.12O6 (M=Co, Fe, Mn, Ni with hexagonal crystal structure were prepared by sol–gel route as the cathode materials for solid oxide fuel cells (SOFCs. Effects of the varied atomic compositions on the structure, electrical conductivity, thermal expansion and electrochemical performance were systematically evaluated. Experimental results showed that the lattice parameters of Ca3(Co0.9Fe0.12O6 and Ca3(Co0.9Mn0.12O6 were both expanded to certain degree. Electron-doping and hole-doping effects were expected in Ca3(Co0.9Mn0.12O6 and Ca3(Co0.9Ni0.12O6 respectively according to the chemical states of constituent elements and thermal-activated behavior of electrical conductivity. Thermal expansion coefficients (TEC of Ca3(Co0.9M0.12O6 were measured to be distributed around 16×10−6 K−1, and compositional elements of Fe, Mn, and Ni were especially beneficial for alleviation of the thermal expansion problem of cathode materials. By using Ca3(Co0.9M0.12O6 as the cathodes operated at 800 °C, the interfacial area-specific resistance varied in the order of M=Co=Mn, and the over-potential increased in the order of M=Fe≈M=Co=Ni. Among all of these compounds, Ca3(Co0.9Fe0.12O6 showed the best electrochemical performance and the power density as high as ca. 500 mW cm−2 at 800 °C achieved in the single cell with La0.8Sr0.2Ga0.83Mg0.17O2.815 as electrolyte and Ni–Ce0.8Sm0.2O1.9 as anode. Ca3(Co0.9M0.12O6 (M=Co, Fe, Mn, Ni can be used as the cost-effective cathode materials for SOFCs.

  8. Alternative route for the preparation of CoSb3 and Mg2Si derivatives

    International Nuclear Information System (INIS)

    Godlewska, E.; Mars, K.; Zawadzka, K.

    2012-01-01

    An alternative manufacturing route has been developed for cobalt triantimonide and magnesium disilicide derivatives. Elemental powders were mixed in stoichiometric proportions, cold pressed into cylindrical preforms and heated in oxygen-free environment to initiate the exothermic reaction. According to DTA/TG measurements and observations under high-temperature microscope, the onset of reaction occurred at a temperature not exceeding the melting point of the more volatile component, i.e. antimony in the case of CoSb 3 and magnesium in the case of Mg 2 Si. The reaction products were additionally heat treated to secure homogenization. Dense sinters were obtained by hot uniaxial pressing of the obtained powders in moderate temperature-and-pressure conditions. Several advantages were identified in the proposed technology: absence of liquid phases, relatively short time of the synthesis, possibility of in-situ or ex-situ doping and grain size control. - Graphical abstract: (1) Manufacturing flow sheet for CoSb 3 (milling included) and Mg 2 Si (no milling). (2) Micrographs of CoSb 3 product. (3) Micrographs of Mg 2 Si product. Highlights: ► The combustion synthesis followed by HP was used for the manufacturing of CoSb 3 or Mg 2 Si. ► The time of reaction is shorter compared with many other synthesis methods. ► The process is scalable and practically wasteless.

  9. Synthesis and optical properties of SiO2–Al2O3–MgO–K2CO3–CaO ...

    Indian Academy of Sciences (India)

    Synthesis and optical properties of SiO 2 –Al 2 O 3 –MgO–K 2 CO 3 –CaO–MgF 2 –La 2 O 3 glasses. C R GAUTA. Volume 39 Issue 3 June 2016 pp 677-682 ... Author Affiliations. C R GAUTA1. Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, India ...

  10. Crystal structures of KM(AsF{sub 6}){sub 3} (M{sup 2+} = Mg, Co, Mn, Zn), KCu(SbF{sub 6}){sub 3} and [Co(HF){sub 2}]Sr[Sr(HF)]{sub 2}-[Sr(HF){sub 2}]{sub 2}[AsF{sub 6}]{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Mazej, Zoran; Goreshnik, Evgeny [Jozef Stefan Institute, Ljubljana (Slovakia). Dept. of Inorganic Chemisrty and Technology

    2015-05-01

    The KM(AsF{sub 6}){sub 3} (M{sup 2+} = Mg, Co, Mn, Zn) and KCu(SbF{sub 6}){sub 3} compounds crystallize isotypically to previously known KNi(AsF{sub 6}){sub 3}. The main features of the structure of these compounds are rings of MF{sub 6} octahedra sharing apexes with AsF{sub 6} octahedra connected into infinite tri-dimensional frameworks. In this arrangement cavities are formed where K{sup +} cations are placed. Single crystals of CoSr{sub 5}(AsF{sub 6}){sub 12}.8HF were obtained as one of the products after the crystallization of 3KF/CoF{sub 2}/SrF{sub 2} mixture in the presence of AsF{sub 5} in anhydrous HF. The CoSr{sub 5}(AsF{sub 6}){sub 12}.8HF is monoclinic, C/2c (No.15), with a = 26.773(5) Aa, b = 10.087(2) Aa, c = 21.141(5) Aa, β = 93.296(13) {sup circle}, V = 5699.9(19) Aa{sup 3} at 200 K, and Z = 4. There are three crystallographically non-equivalent Sr{sup 2+} cations in the crystal structure of CoSr{sub 5}(AsF{sub 6}){sub 12}.8HF. The Sr1 is coordinated by ten fluorine atoms from eight different [AsF{sub 6}]- anions, meanwhile Sr2 and Sr3 are bound to nine fluorine atoms provided by one HF and eight AsF{sub 6} units or by two HF and six AsF{sub 6} units, respectively. The Co{sup 2+} is coordinated distorted-octahedrally by six fluorine atoms from two HF molecules and four different AsF{sub 6} units. All those moieties in the crystal structure of [Co(HF){sub 2}]Sr[Sr(HF)]{sub 2}[Sr(HF){sub 2}]{sub 2}[AsF{sub 6}]{sub 12} are connected into tridimensional framework. The CoSr{sub 5}(AsF{sub 6}){sub 12}.8HF is a unique example of compound where HF molecules are directly bound via fluorine atoms to two different metal centres.

  11. STABILITY OF CO2 ATMOSPHERES ON DESICCATED M DWARF EXOPLANETS

    International Nuclear Information System (INIS)

    Gao, Peter; Hu, Renyu; Li, Cheng; Yung, Yuk L.; Robinson, Tyler D.

    2015-01-01

    We investigate the chemical stability of CO 2 -dominated atmospheres of desiccated M dwarf terrestrial exoplanets using a one-dimensional photochemical model. Around Sun-like stars, CO 2 photolysis by Far-UV (FUV) radiation is balanced by recombination reactions that depend on water abundance. Planets orbiting M dwarf stars experience more FUV radiation, and could be depleted in water due to M dwarfs’ prolonged, high-luminosity pre-main sequences. We show that, for water-depleted M dwarf terrestrial planets, a catalytic cycle relying on H 2 O 2 photolysis can maintain a CO 2 atmosphere. However, this cycle breaks down for atmospheric hydrogen mixing ratios <1 ppm, resulting in ∼40% of the atmospheric CO 2 being converted to CO and O 2 on a timescale of 1 Myr. The increased O 2 abundance leads to high O 3 concentrations, the photolysis of which forms another CO 2 -regenerating catalytic cycle. For atmospheres with <0.1 ppm hydrogen, CO 2 is produced directly from the recombination of CO and O. These catalytic cycles place an upper limit of ∼50% on the amount of CO 2 that can be destroyed via photolysis, which is enough to generate Earth-like abundances of (abiotic) O 2 and O 3 . The conditions that lead to such high oxygen levels could be widespread on planets in the habitable zones of M dwarfs. Discrimination between biological and abiotic O 2 and O 3 in this case can perhaps be accomplished by noting the lack of water features in the reflectance and emission spectra of these planets, which necessitates observations at wavelengths longer than 0.95 μm

  12. Comparative study on catalytic behavior of polynuclear Mg-Mo-complex and FeMo-co-factor of nitrogenase in reactions with C2H2, N2 and CO

    International Nuclear Information System (INIS)

    Bardina, N.V.; Bazhenova, T.A.; Petrova, G.N.; Shilova, A.K.; Shilov, A.E.

    2006-01-01

    Catalytic reduction kinetics of C 2 H 2 in the presence of the Mg-Mo-cluster {[Mg 2 Mo 8 O 22 (MeO) 6 (MeOH) 4 ] 2- [Mg(MeOH) 6 ] 2+ }·6MeOH 1 is studied. Several interdependent coordinating centers are active in reference to substrates and inhibitors in the polynuclear Mg-Mo-complex, as in the reduced by europium amalgam (μ 6 -N)MoFe 7 S 9 ·homocitrate (FeMoco, 2). Comparison of regularities in reduction mechanism of C 2 H 2 , N 2 and CO with the participation of synthetic polynuclear complex 1 and natural cluster 2 is conducted. Regularities of the studied reactions in the systems involving natural catalytic cluster FeMoco and the synthetic Mg-Mo-complex modelling of its effect are noted to be similar. The main variations the systems show as regards to the reaction with molecular nitrogen [ru

  13. Ruthenium and osmium carbonyl nitrosyl complexes: Matrix infrared spectra and density functional calculations for M(CO){sub 2}(NO){sub 2} and M(CO)(NO) (M = Ru, Os)

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zhenjun [Department of Chemistry, Tongji University, Shanghai 200092 (China); Wang, Xuefeng, E-mail: xfwang@tongji.edu.cn [Department of Chemistry, Tongji University, Shanghai 200092 (China); Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Laser-ablated ruthenium or osmium atom reactions with CO and NO mixtures in solid argon. Black-Right-Pointing-Pointer Metal carbonyl nitrosyls including M(CO)(NO) and 18-electron configuration M(CO){sub 2}(NO){sub 2} molecules (M = Ru, Os). Black-Right-Pointing-Pointer The observed absorption bands of reaction products are identified by isotopic substitution and DFT calculations. Black-Right-Pointing-Pointer The bonding and reaction mechanism are discussed in detail. -- Abstract: Laser-ablated ruthenium or osmium atom reactions with CO and NO mixtures in solid argon produce unsaturated metal carbonyl nitrosyls including M(CO)(NO) and 18-electron configuration M(CO){sub 2}(NO){sub 2} molecules (M = Ru, Os). The observed absorption bands of reaction products are identified by isotopic substitution, isotopic ratios and isotopic distributions ({sup 13}CO, {sup 15}NO, and mixtures). DFT (B3LYP and BP86) vibrational fundamental calculations reproduce observed frequencies and isotopic shifts very well. The bonding and reaction mechanism are discussed.

  14. Synthesis, Structure, Bonding, and Reactivity of Metal Complexes Comprising Diborane(4) and Diborene(2): [{Cp*Mo(CO)2 }2 {μ-η22 -B2 H4 }] and [{Cp*M(CO)2 }2 B2 H2 M(CO)4 ], M=Mo,W.

    Science.gov (United States)

    Mondal, Bijan; Bag, Ranjit; Ghorai, Sagar; Bakthavachalam, K; Jemmis, Eluvathingal D; Ghosh, Sundargopal

    2018-04-26

    The reaction of [(Cp*Mo) 2 (μ-Cl) 2 B 2 H 6 ] (1) with CO at room temperature led to the formation of the highly fluxional species [{Cp*Mo(CO) 2 } 2 {μ-η 22 -B 2 H 4 }] (2). Compound 2, to the best of our knowledge, is the first example of a bimetallic diborane(4) conforming to a singly bridged C s structure. Theoretical studies show that 2 mimics the Cotton dimolybdenum-alkyne complex [{CpMo(CO) 2 } 2 C 2 H 2 ]. In an attempt to replace two hydrogen atoms of diborane(4) in 2 with a 2e [W(CO) 4 ] fragment, [{Cp*Mo(CO) 2 } 2 B 2 H 2 W(CO) 4 ] (3) was isolated upon treatment with [W(CO) 5 ⋅thf]. Compound 3 shows the intriguing presence of [B 2 H 2 ] with a short B-B length of 1.624(4) Å. We isolated the tungsten analogues of 3, [{Cp*W(CO) 2 } 2 B 2 H 2 W(CO) 4 ] (4) and [{Cp*W(CO) 2 } 2 B 2 H 2 Mo(CO) 4 ] (5), which provided direct proof of the existence of the tungsten analogue of 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Dolomite decomposition under CO2

    International Nuclear Information System (INIS)

    Guerfa, F.; Bensouici, F.; Barama, S.E.; Harabi, A.; Achour, S.

    2004-01-01

    Full text.Dolomite (MgCa (CO 3 ) 2 is one of the most abundant mineral species on the surface of the planet, it occurs in sedimentary rocks. MgO, CaO and Doloma (Phase mixture of MgO and CaO, obtained from the mineral dolomite) based materials are attractive steel-making refractories because of their potential cost effectiveness and world wide abundance more recently, MgO is also used as protective layers in plasma screen manufacture ceel. The crystal structure of dolomite was determined as rhombohedral carbonates, they are layers of Mg +2 and layers of Ca +2 ions. It dissociates depending on the temperature variations according to the following reactions: MgCa (CO 3 ) 2MgO + CaO + 2CO 2 .....MgCa (CO 3 ) 2MgO + Ca + CaCO 3 + CO 2 .....This latter reaction may be considered as a first step for MgO production. Differential thermal analysis (DTA) are used to control dolomite decomposition and the X-Ray Diffraction (XRD) was used to elucidate thermal decomposition of dolomite according to the reaction. That required samples were heated to specific temperature and holding times. The average particle size of used dolomite powders is 0.3 mm, as where, the heating temperature was 700 degree celsius, using various holding times (90 and 120 minutes). Under CO 2 dolomite decomposed directly to CaCO 3 accompanied by the formation of MgO, no evidence was offered for the MgO formation of either CaO or MgCO 3 , under air, simultaneous formation of CaCO 3 , CaO and accompanied dolomite decomposition

  16. X-ray spectra, chemical bonding, and electron structure of ScM2Si2 (M = Fe, Co, Ni)

    International Nuclear Information System (INIS)

    Shcherba, I.D.; Kotur, B.Ya.

    1990-01-01

    In a study of the interaction of the components in the ternary systems Sc-M-Si (where M is a 3d transition metal) it was established that there are compounds of the empirical formula ScM 2 Si 2 (M = Fe, Co, Ni). They crystallize in two structural types, HfFe 2 Si 2 (the compound ScFe 2 Si 2 ) and CeGa 2 Al 2 (ScCo 2 Si 2 and ScNi 2 Si 2 ) (ref. 1), leading to different coordination environment of the atoms in the structures of the compounds. With the aim of investigating the electron structure and the type ofin these compounds, they authors made a systematic x-ray spectral investigation with simultaneous analysis of the crystal structures of ScM 2 Si 2

  17. Flux pinning behaviors of Ti and C co-doped MgB2 superconductors

    International Nuclear Information System (INIS)

    Yang, Y.; Zhao, D.; Shen, T.M.; Li, G.; Zhang, Y.; Feng, Y.; Cheng, C.H.; Zhang, Y.P.; Zhao, Y.

    2008-01-01

    Flux pinning behavior of carbon and titanium concurrently doped MgB 2 alloys has been studied by ac susceptibility and dc magnetization measurements. It is found that critical current density and irreversibility field of MgB 2 have been significantly improved by doping C and Ti concurrently, sharply contrasted to the situation of C-only-doped or Ti-only-doped MgB 2 samples. AC susceptibility measurement reveals that the dependence of the pinning potential on the dc applied field of Mg 0.95 Ti 0.05 B 1.95 C 0.05 has been determined to be U(B dc )∝B dc -1 compared to that of MgB 2 U(B dc )∝B dc -1.5 . As to the U(J) behavior, a relationship of U(J) ∝ J -0.17 is found fitting well for Mg 0.95 Ti 0.05 B 1.95 C 0.05 with respect to U(J) ∝ J -0.21 for MgB 2 . All the results reveal a strong enhancement of the high field pinning potential in C and Ti co-doped MgB 2

  18. Development of an MgO-based binder for stabilizing fine sediments and storing CO2.

    Science.gov (United States)

    Hwang, Kyung-Yup; Ahn, Jun-Young; Kim, Cheolyong; Seo, Jeong-Yun; Hwang, Inseong

    2015-12-01

    An MgO-based binder was developed that could stabilize fine dredged sediments for reuse and store CO2. Initially, a binder consisting of fly ash (FA) and blast furnace slag (BFS) was developed by using alkaline activators such as KOH, NaOH, and lime. The FA0.4-BFS0.6 binder (mixed at a FA-to-BFS weight ratio of 4:6) showed the highest compressive strength of 10.7 MPa among FA/BFS binders when 5 M KOH was used. When lime (L) was tested as an alkaline activator, the strength was comparable with those obtained when KOH or NaOH was used. The L0.1-(FA0.4BFS0.6)0.9 binder (10 % lime mixed with the FA/BFS binder) showed the highest strength of 11.0 MPa. Finally, by amending this L0.1-(FA0.4BFS0.6)0.9 binder with MgO, a novel MgO-based binder (MgO0.5-(L0.1-(FA0.4BFS0.6)0.9) 0.5) was developed, which demonstrated the 28th day strength of 11.9 MPa. The MgO-based binder was successfully applied to stabilize a fine sediment to yield a compressive strength of 4.78 MPa in 365 days, which was higher than that obtained by the Portland cement (PC) system (3.22 MPa). Carbon dioxide sequestration was evidenced by three observations: (1) the decrease in pH of the treated sediment from 12.2 to 11.0; (2) the progress of the carbonation front inward the treated sediment; and (3) the presence of magnesium carbonates. The thermogravimetric analysis (TGA) results showed that 67.2 kg of CO2 per ton of the treated sediment could be stored under the atmospheric condition during 1 year.

  19. Flooding-related increases in CO2 and N2O emissions from a temperate coastal grassland ecosystem

    Science.gov (United States)

    Gebremichael, Amanuel W.; Osborne, Bruce; Orr, Patrick

    2017-05-01

    Given their increasing trend in Europe, an understanding of the role that flooding events play in carbon (C) and nitrogen (N) cycling and greenhouse gas (GHG) emissions will be important for improved assessments of local and regional GHG budgets. This study presents the results of an analysis of the CO2 and N2O fluxes from a coastal grassland ecosystem affected by episodic flooding that was of either a relatively short (SFS) or long (LFS) duration. Compared to the SFS, the annual CO2 and N2O emissions were 1.4 and 1.3 times higher at the LFS, respectively. Mean CO2 emissions during the period of standing water were 144 ± 18.18 and 111 ± 9.51 mg CO2-C m-2 h-1, respectively, for the LFS and SFS sites. During the growing season, when there was no standing water, the CO2 emissions were significantly larger from the LFS (244 ± 24.88 mg CO2-C m-2 h-1) than the SFS (183 ± 14.90 mg CO2-C m-2 h-1). Fluxes of N2O ranged from -0.37 to 0.65 mg N2O-N m-2 h-1 at the LFS and from -0.50 to 0.55 mg N2O-N m-2 h-1 at the SFS, with the larger emissions associated with the presence of standing water at the LFS but during the growing season at the SFS. Overall, soil temperature and moisture were identified as the main drivers of the seasonal changes in CO2 fluxes, but neither adequately explained the variations in N2O fluxes. Analysis of total C, N, microbial biomass and Q10 values indicated that the higher CO2 emissions from the LFS were linked to the flooding-associated influx of nutrients and alterations in soil microbial populations. These results demonstrate that annual CO2 and N2O emissions can be higher in longer-term flooded sites that receive significant amounts of nutrients, although this may depend on the restriction of diffusional limitations due to the presence of standing water to periods of the year when the potential for gaseous emissions are low.

  20. Incorporation of Mg, Sr, Ba, U, and B in High-Mg Calcite Benthic Foraminifers Cultured Under Controlled pCO2

    Science.gov (United States)

    Not, C.; Thibodeau, B.; Yokoyama, Y.

    2018-01-01

    Measurement of elemental ratios (E/Ca) has been performed in two symbiont-bearing species of high-Mg calcite benthic foraminifers (hyaline, Baculogypsina sphaerulata and porcelaneous, Amphisorus hemprichii), cultured under five pCO2 levels, representing preindustrial, modern, and three predicted future values. E/Ca ratios were analyzed by Laser Ablation coupled with Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS). We measured several E/Ca, such as Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, and B/Ca simultaneously. We observed that high-Mg calcite benthic foraminifers possess higher E/Ca than low-Mg calcite foraminifers, irrespective of their calcification mode (hyaline or porcelaneous). In both modes of calcification, Mg, Sr, Ba, U, and B incorporation could be controlled by Rayleigh fractionation. However, more data are needed to validate and quantify the relative importance of this process and closely investigate the presence/absence of other mechanism. Therefore, it highlights the need for a multielemental approach when looking at trace element incorporation. Finally, no significant relationship was observed between the different ratios and the pCO2 of the water, suggesting that none of the Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, and B/Ca is sensitive to bottom water pCO2 or pH for these species.

  1. Molecular structures and excited states of CpM(CO)(2) (Cp = eta(5)-C(5)H(5); M = Rh, Ir) and [Cl(2)Rh(CO)(2)](-). Theoretical evidence for a competitive charge transfer mechanism.

    Science.gov (United States)

    Hu, Zhenming; Boyd, Russell J; Nakatsuji, Hiroshi

    2002-03-20

    Molecular structures and excited states of CpM(CO)(2) (Cp = eta(5)-C(5)H(5); M = Rh, Ir) and [Cl(2)Rh(CO)(2)](-) complexes have been investigated using the B3LYP and the symmetry-adapted cluster (SAC)/SAC-configuration interaction (SAC-CI) theoretical methods. All the dicarbonyl complexes have singlet ground electronic states with large singlet-triplet separations. Thermal dissociations of CO from the parent dicarbonyls are energetically unfavorable. CO thermal dissociation is an activation process for [Cl(2)Rh(CO)(2)](-) while it is a repulsive potential for CpM(CO)(2). The natures of the main excited states of CpM(CO)(2) and [Cl(2)Rh(CO)(2)](-) are found to be quite different. For [Cl(2)Rh(CO)(2)](-), all the strong transitions are identified to be metal to ligand CO charge transfer (MLCT) excitations. A significant feature of the excited states of CpM(CO)(2) is that both MLCT excitation and a ligand Cp to metal and CO charge transfer excitation are strongly mixed in the higher energy states with the latter having the largest oscillator strength. A competitive charge transfer excited state has therefore been identified theoretically for CpRh(CO)(2) and CpIr(CO)(2). The wavelength dependence of the quantum efficiencies for the photoreactions of CpM(CO)(2) reported by Lees et al. can be explained by the existence of two different types of excited states. The origin of the low quantum efficiencies for the C-H/S-H bond activations of CpM(CO)(2) can be attributed to the smaller proportion of the MLCT excitation in the higher energy states.

  2. Competition Between Co(NH3)63+ and Inner Sphere Mg2+ Ions in the HDV Ribozyme

    OpenAIRE

    Gong, Bo; Chen, Jui-Hui; Bevilacqua, Philip C.; Golden, Barbara L.; Carey, Paul R.

    2009-01-01

    Divalent cations play critical structural and functional roles in many RNAs. While the hepatitis delta virus (HDV) ribozyme can undergo self-cleavage in the presence of molar concentrations of monovalent cations, divalent cations such as Mg2+ are required for efficient catalysis under physiological conditions. Moreover, the cleavage reaction can be inhibited with Co(NH3)63+, an analog of Mg(H2O)62+. Here, the binding of Mg2+ and Co(NH3)63+ to the HDV ribozyme are studied by Raman microscopic ...

  3. Formation of Aqueous MgUO2(CO3)32- Complex and Uranium Anion Exchange Mechanism onto an Exchange Resin

    International Nuclear Information System (INIS)

    Dong, Wenming; Brooks, Scott C

    2008-01-01

    The formation of and stability constants for aqueous Mg-UO2-CO3 complexes were determined using an anion exchange method. Magnesium concentration was varied (up to 20 mmol/L) at constant ionic strength (I = 0.101, 0.202, 0.304, 0.406, and 0.509 mol/kg NaNO3), pH = 8.1, total [U(VI)] = 10.4 mol/L under equilibrium with atmospheric CO2. The results indicate that only the MgUO2(CO3)32- complex is formed. The cumulative formation constant extrapolated to zero ionic strength is similar regardless of the activity correction convention used: log = 25.8 b 0.5 using Davies equation and = 25.02 b 0.08 using specific ion interaction theory (SIT). Uranium sorption onto the exchange resin decreased in the presence of Mg putatively due to the formation of MgUO2(CO3)32- that had a lower affinity for the resin than UO2(CO3)34-. Uranium sorption results are consistent with an equivalent anion exchange reaction between NO3- and UO2(CO3)34- species to retain charge neutrality regardless of Mg concentration. No Mg was associated with the anion exchange resin indicating that the MgUO2(CO3)32- complex did not sorb

  4. Role of Mg{sub x}Ca{sub 1−x}CO{sub 3} on the physical–chemical properties and cyclic CO{sub 2} capture performance of dolomite by two-step calcination

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke; Han, Dongtai, E-mail: handongtai@cumt.edu.cn; Zhao, Pengfei, E-mail: zhaopfcumt@163.com; Hu, Xiumeng; Yin, Zeguang; Wu, Di

    2015-08-20

    Highlights: • Two-step calcination treated dolomite sorbent was prepared and characterized. • An intermediate phase (Mg{sub x}Ca{sub 1−x}CO{sub 3}) was observed by TG and XRD results. • Mg-calcite hindered the de-mixing of Ca and Mg. • Smaller grains, larger specific surface area and pore volume were obtained. • This favorable structure resulted in a high and stable CO{sub 2} capture performance. - Abstract: Two-step calcination (CO{sub 2} and N{sub 2} atmospheres) was used to modify the microstructure of natural dolomite for high-temperature CO{sub 2} capture. Two other one-step calcinations (CO{sub 2} or N{sub 2} atmosphere) were provided for comparison. Different morphological characterizations (thermal decomposition, phase composition, morphology, and nitrogen adsorption) were performed, followed by an analysis of 30 carbonation/calcination cycles in a fixed bed reactor. During primary calcination in a CO{sub 2} atmosphere, an intermediate phase (Mg{sub x}Ca{sub 1−x}CO{sub 3}) was observed by TG and XRD results, which hindered the de-mixing of CaO and MgO in the secondary calcination in a N{sub 2} atmosphere. Therefore, two-step calcination produced smaller grains (CaO: 45.2 nm; MgO: 32.6 nm), larger specific surface area (21.08 m{sup 2}/g) and pore volume (0.082 cm{sup 3}/g) and uniform distribution of CaO and MgO, which resulted in a higher and more stable uptake of CO{sub 2} compared to the results from one-step calcinations.

  5. Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a High-Voltage Cathode for Magnesium Batteries.

    Science.gov (United States)

    Kim, Dong-Min; Kim, Youngjin; Arumugam, Durairaj; Woo, Sang Won; Jo, Yong Nam; Park, Min-Sik; Kim, Young-Jun; Choi, Nam-Soon; Lee, Kyu Tae

    2016-04-06

    Thanks to the advantages of low cost and good safety, magnesium metal batteries get the limelight as substituent for lithium ion batteries. However, the energy density of state-of-the-art magnesium batteries is not high enough because of their low operating potential; thus, it is necessary to improve the energy density by developing new high-voltage cathode materials. In this study, nanosized Berlin green Fe2(CN)6 and Prussian blue Na(0.69)Fe2(CN)6 are compared as high-voltage cathode materials for magnesium batteries. Interestingly, while Mg(2+) ions cannot be intercalated in Fe2(CN)6, Na(0.69)Fe2(CN)6 shows reversible intercalation and deintercalation of Mg(2+) ions, although they have the same crystal structure except for the presence of Na(+) ions. This phenomenon is attributed to the fact that Mg(2+) ions are more stable in Na(+)-containing Na(0.69)Fe2(CN)6 than in Na(+)-free Fe2(CN)6, indicating Na(+) ions in Na(0.69)Fe2(CN)6 plays a crucial role in stabilizing Mg(2+) ions. Na(0.69)Fe2(CN)6 delivers reversible capacity of approximately 70 mA h g(-1) at 3.0 V vs Mg/Mg(2+) and shows stable cycle performance over 35 cycles. Therefore, Prussian blue analogues are promising structures for high-voltage cathode materials in Mg batteries. Furthermore, this co-intercalation effect suggests new avenues for the development of cathode materials in hybrid magnesium batteries that use both Mg(2+) and Na(+) ions as charge carriers.

  6. Perpendicular magnetic anisotropy in Co2FeAl0.5Si0.5/MgO bottom electrodes for magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Li, X.Q.; Wu, Y.; Gao, S.; Xu, X.G.; Miao, J.; Jiang, Y.

    2013-01-01

    Perpendicular magnetic anisotropy (PMA) was achieved in annealed Co 2 FeAl 0.5 Si 0.5 (CFAS)/MgO-based multilayers with good thermal stability up to 400 °C and a large anisotropy energy density K u over 2.0 × 10 5 J/m 3 . The thickness of the full-Heusler CFAS film to maintain PMA is up to 4.8 nm in which the co-existence of disordered A2, ordered B2 and fully ordered L2 1 structures is observed. X-ray photoelectron spectroscopy analysis demonstrates that the origin of the PMA is the hybridization between Co 3d and O 2p orbitals at the CFAS/MgO interface. - Highlights: • We achieved perpendicular magnetic anisotropy (PMA) in Co 2 FeAl 0.5 Si 0.5 (4.8 nm) film; • L2 1 , B2 and A2 phases coexist in perpendicular magnetic anisotropic Co 2 FeAl 0.5 Si 0.5 ; • Magnetic properties have strong dependence on the annealing temperature; • The PMA is induced by the hybridization between Co-3d and O-2p orbitals

  7. The Li–CO2 battery: a novel method for CO2 capture and utilization

    KAUST Repository

    Xu, Shaomao

    2013-01-01

    We report a novel primary Li-CO2 battery that consumes pure CO2 gas as its cathode. The battery exhibits a high discharge capacity of around 2500 mA h g-1 at moderate temperatures. At 100 °C the discharge capacity is close to 1000% higher than that at 40 °C, and the temperature dependence is significantly weaker for higher surface area carbon cathodes. Ex-situ FTIR and XRD analyses convincingly show that lithium carbonate (Li2CO3) is the main component of the discharge product. The feasibility of similar primary metal-CO2 batteries based on earth abundant metal anodes, such as Al and Mg, is demonstrated. The metal-CO2 battery platform provides a novel approach for simultaneous capturing of CO2 emissions and producing electrical energy. © 2013 The Royal Society of Chemistry.

  8. Studies on solid solutions based on layered honeycomb-ordered phases P2-Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn)

    Energy Technology Data Exchange (ETDEWEB)

    Berthelot, Romain; Schmidt, Whitney; Sleight, A.W. [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States); Subramanian, M.A., E-mail: mas.subramanian@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States)

    2012-12-15

    Three complete solid solutions between the layered phases P2-Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn) have been prepared by conventional solid state method and investigated through X-ray diffraction, magnetism and optical measurements. All compositions are characterized by a M{sup 2+}/X{sup 6+} honeycomb ordering within the slabs and crystallize in a hexagonal unit cell. However, a structural transition based on a different stacking is observed as nickel (space group P6{sub 3}/mcm) is substituted by zinc or cobalt (space group P6{sub 3}22). All compositions exhibit a paramagnetic Curie-Weiss behavior at high temperatures; and the magnetic moment values confirm the presence of Ni{sup 2+} and/or Co{sup 2+} cations. The low-temperature antiferromagnetic order of Na{sub 2}Ni{sub 2}TeO{sub 6} and Na{sub 2}Co{sub 2}TeO{sub 6} is suppressed by zinc substitution. The color of the obtained compositions varies from pink, to light green and white when M=Co, Ni, Zn, respectively. - Graphical abstract: The comparison between the structure of Na{sub 2}Ni{sub 2}TeO{sub 6} (left) and Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Zn) (right) evidences the stacking difference with distinct atom sequences along the hexagonal c-axis. Highlights: Black-Right-Pointing-Pointer Solid solutions between lamellar phases Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn) are investigated. Black-Right-Pointing-Pointer A M{sup 2+}/X{sup 6+} honeycomb ordering characterized all the compositions. Black-Right-Pointing-Pointer A structural transition is shown when Ni is replaced by Co or Zn. Black-Right-Pointing-Pointer The low-temperature AFM ordering of Na{sub 2}Ni{sub 2}TeO{sub 6} and Na{sub 2}Co{sub 2}TeO{sub 6} is suppressed by zinc substitution. Black-Right-Pointing-Pointer Color changes from pink to light green and white when M=Co, Ni, Zn, respectively.

  9. Measured Hugoniot states of a two-element fluid, O2 + N2, near 2 Mg/m3

    International Nuclear Information System (INIS)

    Schott, G.L.

    1983-01-01

    Measured single-shock Hugoniot quantities are reported for a 1:1 atomic mixture of the elements oxygen and nitrogen in each of two liquid initial states. One of these is the inert equimolar solution O 2 + N 2 , at T approx. = 85K, v approx. = 1.06 m 3 /Mg; the other is the pure explosive compound nitric oxide, NO, at T approx. = 122K, v approx. = 0.79 m 3 /Mg. First-shock pressures are in the range 10 to 30 GPa. The two Hugoniots have common values of specific volumes and energies near 20 GPa; that is, they intersect. This permits a novel test of attainment of steady waves with equilibrium composition, such that a single equation of state may describe the shocked reactive fluid. 5 figures

  10. Crystal structure of the cyclo-tetraphosphates pentahydrates: M/sup II/Ag/sub 2/P/sub 4/O/sub 12/. 5H/sub 2/O (M/sup II/=Co,Ni)

    Energy Technology Data Exchange (ETDEWEB)

    Soua, M.; Jouini, A.; Dabbabi, M.

    1989-03-15

    M/sub r/=680.84, monoclinic, P2/sub 1//n, a=15.712 (3), b=7.263 (1), c=12.619 (3) A, ..beta..=91.85 (1)/sup 0/, V=1439.3 A/sup 3/, Z=4, D/sub x/=3.141, D/sub m/=3.162 Mg m/sup -3/, lambda(MoK..cap alpha..)=0.7107 A, ..mu..=2.237 mm/sup -1/, F(000)=1308, room temperature, R=0.042 for 3551 independent reflexions. The Co atoms are octahedrally surrounded by two water molecules and four O atoms, forming infinite linear chains parallel to the c axis with a period (CoH/sub 2/O)/sub 2/P/sub 4/O/sub 12/vertical stroke/sup 2-/.Co(2)O/sub 6/ shares the O(E31), O(E41), O(W2) face with Ag(2)O/sub 6/ which is linked to Ag(1)O/sub 6/ by the corner O(E42). Co(1)O/sub 6/ is linked to Ag(1)O/sub 6/ by the edge O(E11)-O(E21). Indeed, polyhedra of associated cations form another infinite chain parallel with the a axis: CoO/sub 6/ octahedra are at the intersection of these two perpendicular infinite chains.

  11. Structural, magnetic, and dielectric properties of multiferroic Co{sub 1−x}Mg{sub x}Cr{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kamran, M.; Ullah, A. [Nanomagnetism and Nanotechnology Laboratory, International Islamic University, Islamabad 44000 (Pakistan); Rahman, S. [Department of Material Science and Engineering, University of Science and Technology of China Hefei, Anhui 230026 (China); Tahir, A. [Department of Physics, Quaid-e-Azam University, Islamabad 44000 (Pakistan); Nadeem, K., E-mail: kashif.nadeem@iiu.edu.pk [Nanomagnetism and Nanotechnology Laboratory, International Islamic University, Islamabad 44000 (Pakistan); Beijing National Laboratory for Condensed Matter Physics, National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190 (China); Anis ur Rehman, M. [Applied Thermal Physics Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Hussain, S. [Magnetism Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

    2017-07-01

    Highlights: • Properties of multiferroic Co{sub 1−x}Mg{sub x}Cr{sub 2}O{sub 4} nanoparticles have been studied. • XRD showed that CoCr{sub 2}O{sub 4} and MgCr{sub 2}O{sub 4} are cubic normal spinel structure. • Rietveld refinement of XRD showed no impurity phases. • T{sub c} and T{sub s} showed decreasing trend with increasing Mg concentration. • Dielectric properties were improved for x = 0.6 Mg concentration. - Abstract: We examined the structural, magnetic, and dielectric properties of Co{sub 1−x}Mg{sub x}Cr{sub 2}O{sub 4} nanoparticles with composition x = 0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1 in detail. X-ray diffraction (XRD) revealed normal spinel structure for all the samples. Rietveld refinement fitting results of the XRD showed no impurity phases which signifies the formation of single phase Co{sub 1−x}Mg{sub x}Cr{sub 2}O{sub 4} nanoparticles. The average crystallite size showed a peak behaviour with maxima at x = 0.6. Raman and Fourier transform infrared (FTIR) spectroscopy also confirmed the formation of single phase normal spinel for all the samples and exhibited dominant vibrational changes for x ≥ 0.6. For x = 0 (CoCr{sub 2}O{sub 4}), zero field cooled/field cooled (ZFC/FC) magnetization curves showed paramagnetic (PM) to ferrimagnetic (FiM) transition at T{sub c} = 97 K and a conical spiral magnetic order at T{sub s} = 30 K. The end members CoCr{sub 2}O{sub 4} (x = 0) and MgCr{sub 2}O{sub 4} (x = 1) are FiM and antiferromagnetic (AFM), respectively. T{sub c} and T{sub s} showed decreasing trend with increasing x, followed by an additional AFM transition at T{sub N} = 15 K for x = 0.6. The system finally stabilized and changed to highly frustrated AFM structure at x = 1 due to formation of pure MgCr{sub 2}O{sub 4}. High field FC curves (5T) depicted nearly no effect on spiral magnetic state, which is attributed to strong exchange B-B magnetic interactions at low temperatures. Dielectric parameters showed a non-monotonous behaviour with

  12. Low temperature synthesis of layered NaxCoO2 and KxCoO2 from ...

    Indian Academy of Sciences (India)

    Unknown

    Layered oxides have interesting chemical and physical properties. .... composition of these crystalline phases were obtained from scanning electron microscopy ... 2.2a Cobalt estimation: About 50 mg of the compound was dissolved in 10 ml of 6 M ... images of the parent Na0⋅2CoO2 and those ion exchanged with H+, Li+ ...

  13. Microporous metal organic framework [M2(hfipbb)2(ted)] (M=Zn, Co; H2hfipbb=4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted=triethylenediamine): Synthesis, structure analysis, pore characterization, small gas adsorption and CO2/N2 separation properties

    Science.gov (United States)

    Xu, William W.; Pramanik, Sanhita; Zhang, Zhijuan; Emge, Thomas J.; Li, Jing

    2013-04-01

    Carbon dioxide is a greenhouse gas that is a major contributor to global warming. Developing methods that can effectively capture CO2 is the key to reduce its emission to the atmosphere. Recent research shows that microporous metal organic frameworks (MOFs) are emerging as a promising family of adsorbents that may be promising for use in adsorption based capture and separation of CO2 from power plant waste gases. In this work we report the synthesis, crystal structure analysis and pore characterization of two microporous MOF structures, [M2(hfipbb)2(ted)] (M=Zn (1), Co (2); H2hfipbb=4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted=triethylenediamine). The CO2 and N2 adsorption experiments and IAST calculations are carried out on [Zn2(hfipbb)2(ted)] under conditions that mimic post-combustion flue gas mixtures emitted from power plants. The results show that the framework interacts with CO2 strongly, giving rise to relatively high isosteric heats of adsorption (up to 28 kJ/mol), and high adsorption selectivity for CO2 over N2, making it promising for capturing and separating CO2 from CO2/N2 mixtures.

  14. The magnetic Curie temperature and exchange coupling between cations in tetragonal spinel oxide Mn{sub 2.5}M{sub 0.5}O{sub 4} (M = Co, Ni, Mn, Cr, and Mg) films

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, K.; Cheng, C. W.; Chern, G. [Physics Department and SPIN Research Center, National Chung Cheng University, Chia-Yi, Taiwan, 621 (China)

    2012-04-01

    Mn{sub 3}O{sub 4} is a Jahn-Taller tetragonal ferrite that has a relatively low Curie temperature (T{sub c}) of {approx}43 K due to weak coupling between the canting spins. In this study, we fabricated a series of 100-nm-thick Mn{sub 2.5}M{sub 0.5}O{sub 4} (M = Co, Ni, Mn, Cr, and Mg) films via oxygen-plasma-assisted molecular beam epitaxy and measured the structural and magnetic properties of these films. These films show single phase quality, and the c-axis lattice parameter of pure Mn{sub 3}O{sub 4} is 0.944 nm, with a c/a ratio {approx}1.16, consistent with the bulk values. The replacement of Mn by M (M = Co, Ni, Cr, and Mg) changes the lattice parameters, and the c/a ratio varies between 1.16 and 1.06 depending upon the cation distribution of the films. The magnetic Curie temperatures of these films also vary in the range of 25-66 K in that Ni and Co enhance the T{sub c} whereas Mg reduces the T{sub c} (Cr shows no effect on the T{sub c}). These changes to the T{sub c} are related to both the element electronic state and the cation distributions in these compounds. As a non-collinear spin configuration can induce electrical polarization, the present study provides a systematic way to enhance the magnetic transition temperature in tetragonal spinel ferrites.

  15. Effect of Mg"2"+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd_3Al_2Ga_3O_1_2 crystals

    International Nuclear Information System (INIS)

    Lucchini, M.T.; Babin, V.; Bohacek, P.; Gundacker, S.; Kamada, K.; Nikl, M.; Petrosyan, A.; Yoshikawa, A.; Auffray, E.

    2016-01-01

    Inorganic scintillators with high density and high light yield are of major interest for applications in medical imaging and high energy physics detectors. In this work, the optical and scintillation properties of Mg co-doped Ce:Gd_3Al_2Ga_3O_1_2 crystals, grown using Czochralski technique, have been investigated and compared with Ce:Gd_3Al_2Ga_3O_1_2 ones prepared with identical technology. Improvements in the timing performance of the Mg co-doped samples with respect to Ce:Gd_3Al_2Ga_3O_1_2 ones have been measured, namely a substantial shortening of the rise time and scintillation decay components and lower afterglow were achieved. In particular, a significantly better coincidence time resolution of 233 ps FWHM, being a fundamental parameter for TOF-PET devices, has been observed in Mg co-doped crystals. The samples have also shown a good radiation tolerance under high doses of γ-rays, making them suitable candidates for applications in harsh radiation environments, such as detectors at future collider experiments.

  16. Mg/Ca- Δ CO3porewater2- -temperature calibration for Globobulimina spp.: A sensitive paleothermometer for deep-sea temperature reconstruction

    Science.gov (United States)

    Weldeab, Syee; Arce, Adam; Kasten, Sabine

    2016-03-01

    Existing benthic foraminiferal Mg/Ca-temperature calibrations are surrounded by substantial uncertainties mainly due to low temperature sensitivity of Mg/Ca in most benthic foraminifers and the effect of carbonate ion concentration on benthic foraminiferal Mg/Ca. Here we present Mg/Ca analysis of Rose Bengal stained and exceptionally well-preserved tests of the infaunal benthic foraminifer Globobulimina spp. from 39 eastern equatorial Atlantic core top samples. Mg/Ca in Globobulimina spp. varies between 2.5 mmol/mol and 9.1 mmol/mol corresponding to bottom water temperatures (BWT) between 1.8 °C and 19.1 °C and Δ CO3pore water2- between 33.7 ± 4 and - 34.3 ± 4 μmol /kg in sediment depths between 1 and 10 cm. Mg/Ca and BWT are linearly correlated with a best fit of Mg/Ca [mmol/mol] = (0.36 ± 0.02) * BWT [°C] + 2.22 ± 0.19 (r2 = 0.92, p-value: 11 *10-20, and n = 39). Using total alkalinity and pH data of pore water samples from 64 Atlantic multi-corer sites, we obtained Δ CO3pore water2- data from the depth habitat range of Globobulimina spp. (≥1 cm ≤ 10 cm below sediment surface). We show that Δ CO3pore waterSUP>2- is significantly lower than and linearly co-varies with the ΔCO2-3 of the overlying bottom water: Δ CO3pore water2- = (0.67 ± 0.05) * Δ CO3bottom water2- - (39.84 ± 1.98); r2 = 0.75, p-value: 6 *10-20, n = 64. We found a Mg/Ca sensitivity of 0.009 ± 0.0044 mmol /mol per μmol/kg Δ CO3pore water2- and Mg/Ca temperature sensitivity of 0.32 ± 0.06 mmol /mol / °C after a correction for the Δ CO3pore water2- effect. This study provides a robust Mg/Ca-temperature calibration, highlights that Δ CO3pore water2- is spatially and most likely temporally variable, and contradicts the notion that infaunal foraminiferal Mg/Ca is relatively immune from ΔCO2-3 changes in the overlying bottom water. Furthermore, comparison of down core Mg/Ca data of Cibicides pachyderma and Globobulimina spp. demonstrates that the high temperature sensitivity of

  17. Synergistic effect of Ti and F co-doping on dehydrogenation properties of MgH2 from first-principles calculations

    International Nuclear Information System (INIS)

    Zhang, J.; Huang, Y.N.; Mao, C.; Peng, P.

    2012-01-01

    Highlights: ► The co-incorporation of Ti and F into MgH 2 lattice is energetically favorable. ► The incorporated Ti and F in MgH 2 preferably generate TiH 2 and MgF 2 , respectively. ► The synergistic effect of Ti and F is superior to that of pure Ti. ► The weakened interactions of Mg–H explain enhanced dehydrogenation properties. - Abstract: The energetic and electronic properties of MgH 2 co-doped with Ti and F are investigated using first-principles calculations based on density functional theory. The calculation results show that incorporation of Ti combined with F atoms into MgH 2 lattice is energetically favorable relative to single incorporation of Ti atom. After dehydrogenation, the co-doped Ti and F in MgH 2 preferably generate TiH 2 and MgF 2 , respectively. Comparatively, the combined effect of Ti and F in improving the dehydrogenation properties of MgH 2 is superior to that of pure Ti. These results provide a reasonable explanation for experimental observations. Analysis of electronic structures suggests the enhanced dehydrogenation properties of doped MgH 2 can be attributed to the weakened bonding interactions between Mg and H due to foreign species doping.

  18. CO2 Absorption and Magnesium Carbonate Precipitation in MgCl2–NH3–NH4Cl Solutions: Implications for Carbon Capture and Storage

    Directory of Open Access Journals (Sweden)

    Chen Zhu

    2017-09-01

    Full Text Available CO2 absorption and carbonate precipitation are the two core processes controlling the reaction rate and path of CO2 mineral sequestration. Whereas previous studies have focused on testing reactive crystallization and precipitation kinetics, much less attention has been paid to absorption, the key process determining the removal efficiency of CO2. In this study, adopting a novel wetted wall column reactor, we systematically explore the rates and mechanisms of carbon transformation from CO2 gas to carbonates in MgCl2–NH3–NH4Cl solutions. We find that reactive diffusion in liquid film of the wetted wall column is the rate-limiting step of CO2 absorption when proceeding chiefly through interactions between CO2(aq and NH3(aq. We further quantified the reaction kinetic constant of the CO2–NH3 reaction. Our results indicate that higher initial concentration of NH4Cl ( ≥ 2 mol · L − 1 leads to the precipitation of roguinite [ ( NH 4 2 Mg ( CO 3 2 · 4 H 2 O ], while nesquehonite appears to be the dominant Mg-carbonate without NH4Cl addition. We also noticed dypingite formation via phase transformation in hot water. This study provides new insight into the reaction kinetics of CO2 mineral carbonation that indicates the potential of this technique for future application to industrial-scale CO2 sequestration.

  19. Regulated deficit irrigation can decrease soil CO2 emissions in fruit orchards

    Science.gov (United States)

    Zornoza, Raul; Acosta, José Alberto; Martínez-Martínez, Silvia; De la Rosa, Jose M.°; Faz, Angel; Pérez-Pastor, Alejandro

    2016-04-01

    Irrigation water restrictions in the Mediterranean area have created a growing interest in water conservation. Apart from environmental and economic benefits by water savings, regulated deficit irrigation (RDI) may contribute to reduce soil CO2 emissions and enhance C sequestration in soils, by decreasing microbial and root activity in response to decreased soil moisture levels. An experiment was established in four orchards (peach, apricot, Saturn peach and grape) to investigate the effects of regulated deficit irrigation (RDI) on soil CO2 emissions. Two irrigation treatments were assayed: full irrigation (FI), and RDI, irrigated as FI except for postharvest period (peach, apricot, Saturn peach) or post-veraison period (grape) were 50% of FI was applied. The application of deficit caused a significant decrease in CO2 emission rates, with rates in average of 90 mg CO2-C m-2 h-1, 120 mg CO2-C m-2 h-1, 60 mg CO2-C m-2 h-1 and 60 mg CO2-C m-2 h-1 lower than FI during the period when deficit was applied for peach, apricot, Saturn peach and grape. This confirms the high effectiveness of the RDI strategies not only to save water consumption but also to decrease soil CO2 emissions. However, monitoring during longer periods is needed to verify that this trend is long-term maintained, and assess if soil carbon stocks are increase or most CO2 emissions derive from root respiration. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).

  20. Flux pinning behaviors of Ti and C co-doped MgB{sub 2} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.; Zhao, D.; Shen, T.M.; Li, G.; Zhang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Feng, Y. [Northwest Institute for Nonferrous Metal Research, P.O. Box 51, Xian, Shaanxi 710016 (China); Western Superconductivity Technology Company, Xian (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia); Zhang, Y.P. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia)], E-mail: yzhao@swjtu.edu.cn

    2008-09-15

    Flux pinning behavior of carbon and titanium concurrently doped MgB{sub 2} alloys has been studied by ac susceptibility and dc magnetization measurements. It is found that critical current density and irreversibility field of MgB{sub 2} have been significantly improved by doping C and Ti concurrently, sharply contrasted to the situation of C-only-doped or Ti-only-doped MgB{sub 2} samples. AC susceptibility measurement reveals that the dependence of the pinning potential on the dc applied field of Mg{sub 0.95}Ti{sub 0.05}B{sub 1.95}C{sub 0.05} has been determined to be U(B{sub dc}){proportional_to}B{sub dc}{sup -1} compared to that of MgB{sub 2}U(B{sub dc}){proportional_to}B{sub dc}{sup -1.5}. As to the U(J) behavior, a relationship of U(J) {proportional_to} J{sup -0.17} is found fitting well for Mg{sub 0.95}Ti{sub 0.05}B{sub 1.95}C{sub 0.05} with respect to U(J) {proportional_to} J{sup -0.21} for MgB{sub 2}. All the results reveal a strong enhancement of the high field pinning potential in C and Ti co-doped MgB{sub 2}.

  1. Co2+-doped diopside: crystal structure and optical properties

    Science.gov (United States)

    Gori, C.; Tribaudino, M.; Mezzadri, F.; Skogby, H.; Hålenius, U.

    2018-05-01

    Synthetic clinopyroxenes along the CaMgSi2O6-CaCoSi2O6 join were investigated by a combined chemical-structural-spectroscopic approach. Single crystals were synthesized by flux growth methods, both from Ca-saturated and Ca-deficient starting compositions. Single crystal structure refinements show that the incorporation of Co2+ at the octahedrally coordinated cation sites of diopside, increases the unit-cell as well as the M1 and the M2 polyhedral volumes. Spectroscopic investigations (UV-VIS-NIR) of the Ca-rich samples reveal three main optical absorption bands, i.e. 4 T 1g → 4 T 2g( F), 4 T 1g → 4 A 2g( F) and 4 T 1g → 4 T 1g( P) as expected for Co2+ at a six-coordinated site. The bands arising from the 4 T 1g → 4 T 2g( F) and the 4 T 1g → 4 T 1g( P) electronic transitions, are each split into two components, due to the distortions of the M1 polyhedron from ideal Oh-symmetry. In spectra of both types, a band in the NIR range at ca 5000 cm-1 is caused by the 4 A 2g → 4 T 1g( F) electronic transition in Co2+ in a cubic field in the M2 site. Furthermore, an additional component to a band system at 14,000 cm-1, due to electronic transitions in Co2+ at the M2 site, is recorded in absorption spectra of Ca-deficient samples. No variations in Dq and Racah B parameters for Co2+ at the M1 site in response to compositional changes, were demonstrated, suggesting complete relaxation of the M1 polyhedron within the CaMgSi2O6-CaCoSi2O6 solid solution.

  2. Specific heat and thermodynamic functions of uranovanadates of the M2+(VUO6)2 · nH2O series (M2+ = Mg, Ca, Sr, Ba, Pb)

    International Nuclear Information System (INIS)

    Karyakin, N.V.; Chernorukov, N.G.; Sulejmanov, E.V.; Trostin, V.L.; Alimzhanov, M.I.; Razuvaeva, E.A.

    1999-01-01

    Isobaric specific heat of crystal uranovanadates Ca(VUO 6 ) 2 · 8H 2 O, Ba(VUO 6 ) 2 · 4H 2 O in the temperature range of 10 - 300 K and of M 1 (VUO 6 ) 2 · 5H 2 O, (M 1 = Mg, Ca, Sr, Pb) at 80 -300 K are measured by the method of adiabatic vacuum calorimetry. The functions H 0 (T) - H 0 (0), S 0 (T), G 0 (T) - H 0 (T) for all the above-mentioned compounds in the range of 0 - 300 K have been calculated, the standard entropies and Gibbs functions of uranovanadates formation at 298.15 K being calculated as well [ru

  3. The superconducting properties of co-doped polycrystalline MgB2

    International Nuclear Information System (INIS)

    Moore, J D; Perkins, G K; Branford, W; Yates, K A; Caplin, A D; Cohen, L F; Chen, Soo Kien; Rutter, N A; MacManus-Driscoll, Judith L

    2007-01-01

    In this study we compare the critical current density, the irreversibility line and the upper critical field of four MgB 2 polycrystalline samples, which are either undoped or have 5% carbon or 5% carbon plus either 1% aluminium or 2% zirconium. We discuss how care must be taken for the extraction of the irreversibility line in such samples. We also show how ac susceptibility and Hall probe imaging can be used to examine whether the samples remain fully connected to the highest available fields. Compared to simple 5% carbon doping we find that co-doping provides modest improvement in the pinning properties at intermediate fields in the carbon plus zirconium doped sample

  4. Synthesis of basalt fiber@Zn{sub 1-x}Mg{sub x}O core/shell nanostructures for selective photoreduction of CO{sub 2} to CO

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Byeong Sub; Kim, Kang Min [Department of Chemistry, College of Science, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of); Park, Sun-Min, E-mail: psm@kicet.re.kr [Korea Institute of Ceramic Engineering and Technology (KICET), Jinju, Gyeongnam 52851 (Korea, Republic of); Kang, Misook, E-mail: mskang@ynu.ac.kr [Department of Chemistry, College of Science, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of)

    2017-06-15

    Highlights: • ZnO and Zn{sub 1-x}Mg{sub x}O crystals were grown onto the BFs. • The core@shell structured BF@Zn{sub 1-x}Mg{sub x}O particles significantly increased the adsorption of CO{sub 2} gas. • The BF@ZnO or BF@Zn{sub 1-x}Mg{sub x}O particles selectively reduce the carbon dioxide to carbon monoxide. - Abstract: This study focused on the development of a catalyst for converting carbon dioxide, the main cause of global warming, into a beneficial energy source. Core@shell structured particles, BF@ZnO and BF@Zn{sub 1-x}Mg{sub x}O, are synthesized in order to selectively obtain CO gas from the photoreduction of CO{sub 2}. A modified sol-gel process is used to synthesize the core@shell structures with a three-dimensional microstructure, which are subsequently characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDAX), ultraviolet (UV)–vis absorption, photoluminescence (PL), and photocurrent density analysis. The CO{sub 2} adsorption abilities of the core@shell particles are estimated through CO{sub 2}-temperature programmed desorption (TPD). The core@shell structured BF@Zn{sub 1-x}Mg{sub x}O particles including the Mg ingredient significantly increased the adsorption of CO{sub 2} gas at the microfiber/nanoparticle interface. Both the BF@ZnO and BF@Zn{sub 1-x}Mg{sub x}O particles selectively reduce the carbon dioxide to carbon monoxide, with almost no other reduced products being observed. These results are attributed to the effective adsorption of CO{sub 2} gas and inhibited recombination of the photogenerated electron–hole pairs. BF@Zn{sub 0.75}Mg{sub 0.25}O exhibited superior photocatalytic behavior and selectively produced 5.0 μmolg{sub cat}{sup −1} L{sup −1} of CO gas after 8 h of reaction.

  5. Hydrogen storage properties of LaMgNi3.6M0.4 (M = Ni, Co, Mn, Cu, Al) alloys

    International Nuclear Information System (INIS)

    Yang, Tai; Zhai, Tingting; Yuan, Zeming; Bu, Wengang; Xu, Sheng; Zhang, Yanghuan

    2014-01-01

    Highlights: • La–Mg–Ni system AB 2 -type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi 3.6 M 0.4 (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi 4 and the secondary phase LaNi 5 . However, the secondary phase of the Al substitution alloy changes into LaAlNi 4 . The lattice parameters and cell volumes of the LaMgNi 4 phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi 4 phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi 4 phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between hydriding and dehydriding

  6. Emulsion-phase synthesis of honeycomb-like Mg{sub 5}(OH){sub 2}(CO{sub 3}){sub 4}.4H{sub 2}O micro-spheres and subsequent decomposition to MgO

    Energy Technology Data Exchange (ETDEWEB)

    Gao Guo, E-mail: gaogaoguoguo@yahoo.com.c [Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Xiang Lan, E-mail: xianglan@mail.tsinghua.edu.c [Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2010-04-09

    Herein we report a simple emulsion-phase route for the synthesis of honeycomb-like basic magnesium carbonate (BMC, Mg{sub 5}(OH){sub 2}(CO{sub 3}){sub 4}.4H{sub 2}O) micro-spheres at 80 {sup o}C. Magnesium(II) salts in water are precipitated by sodium carbonate in the presence of cetyltrimethylammonium bromide (CTAB). Scanning electron microscopy shows the obtained BMC samples are composed of a lot of micro-spheres (diameter ranging from 8 to 10 {mu}m) which are interweaved by a lot of nano-sized thin sheets (thickness of 20-30 nm and length >1 {mu}m). The BMC micro-spheres prepared by this approach are porous and appear to be hollow structures. The size and shape of BMC are related to the CTAB concentration and temperature. The lower concentration of CTAB resulted in the decrease of the micro-spheres sizes. When the temperature was elevated to 110 {sup o}C, hexagonal tablets (thickness of 20 nm, length of each side varies from 400 to 600 nm) can be prepared. After the calcinations for BMC at 600 {sup o}C for 2 h, BMC are almost completely converted to MgO. Transmission electron microscopy indicates that the obtained MgO samples have a poly-crystalline feature. The possible formation mechanism of BMC micro-spheres has been discussed.

  7. Sono-synthesis and characterization of bimetallic Ni-Co/Al2O3-MgO nanocatalyst: Effects of metal content on catalytic properties and activity for hydrogen production via CO2 reforming of CH4.

    Science.gov (United States)

    Abdollahifar, Mozaffar; Haghighi, Mohammad; Babaluo, Ali Akbar; Talkhoncheh, Saeed Khajeh

    2016-07-01

    Sono-dispersion of Ni, Co and Ni-Co over Al2O3-MgO with Al/Mg ratio of 1.5 was prepared and tested for dry reforming of methane. The samples were characterized by XRD, FESEM, PSD, EDX, TEM, BET and FTIR analyses. In order to assess the effect of ultrasound irradiation, Ni-Co/Al2O3-MgO with Co content of 8% prepared via sonochemistry and impregnation methods. The sono-synthesized sample showed better textural properties and higher activity than that of impregnated one. Comparison of XRD patterns indicated that the NiO peaks became broader by increasing Co content over the support. The FESEM images displayed the particles are small and well-dispersed as a result of sonochemistry method. Also, EDX analysis demonstrated better dispersion of Ni and Co as a result of sonochemistry method in confirmation of XRD analysis. The sono-synthesized Ni-Co/Al2O3-MgO as a superior nanocatalyst with Co content of 3% illustrates much higher conversions (97.5% and 99% for CH4 and CO2 at 850 °C), yields (94% and 96% for H2 and CO at 850 °C) and 0.97 of H2/CO molar ratio in all samples using an equimolar feed ratio at 850 °C. During the 1200 min stability test, H2/CO molar ratio remained constant for the superior nanocatalyst. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Enhanced luminescent properties of long-persistent Sr{sub 2}MgSi{sub 2}O{sub 7}:Eu{sup 2+}, Dy{sup 3+} phosphor prepared by the co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Pan Wen [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Zhongshan Road 158-43, Dalian Liaoning 116012 (China); Ning Guiling [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Zhongshan Road 158-43, Dalian Liaoning 116012 (China)], E-mail: ninggl@dlut.edu.cn; Zhang Xu; Wang Jing; Lin Yuan; Ye Junwei [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Zhongshan Road 158-43, Dalian Liaoning 116012 (China)

    2008-12-15

    Sr{sub 2}MgSi{sub 2}O{sub 7}:Eu{sup 2+}, Dy{sup 3+} phosphors were prepared by the (aminopropyl)-triethoxysilane (APTES) co-precipitation method. Effects of synthesis temperature on the crystal characteristics, luminescent properties and afterglow performance of Sr{sub 2}MgSi{sub 2}O{sub 7}:Eu{sup 2+}, Dy{sup 3+} phosphors have been discussed in detail and compared with the corresponding commercial product. The experimental results indicated that the sample could be synthesized at a relatively lower temperature and had better performance on the above-mentioned properties using the co-precipitation method.

  9. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Melling, Lulie; Hatano, Ryusuke

    2005-01-01

    Soil CO 2 flux was measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The soil CO 2 flux ranged from 100 to 533 mg C/m 2 /h for the forest ecosystem, 63 to 245 mg C/m 2 /h for the sago and 46 to 335 mg C/m 2 /h for the oil palm. Based on principal component analysis (PCA), the environmental variables over all sites could be classified into three components, namely, climate, soil moisture and soil bulk density, which accounted for 86% of the seasonal variability. A regression tree approach showed that CO 2 flux in each ecosystem was related to different underlying environmental factors. They were relative humidity for forest, soil temperature at 5 cm for sago and water-filled pore space for oil palm. On an annual basis, the soil CO 2 flux was highest in the forest ecosystem with an estimated production of 2.1 kg C/m 2 /yr followed by oil palm at 1.5 kg C/m 2 /yr and sago at 1.1 kg C/m 2 /yr. The different dominant controlling factors in CO 2 flux among the studied ecosystems suggested that land use affected the exchange of CO 2 between tropical peatland and the atmosphere

  10. Environmental Benign Synthesis of Lithium Silicates and Mg-Al Layered Double Hydroxide from Vermiculite Mineral for CO2 Capture

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-04-01

    Full Text Available This research introduces a completely new environmental benign synthesis route for obtaining two kinds of inter-mediate and high temperature CO2 sorbents, Mg-Al layered double hydroxide (LDH and Li4SiO4, from vermiculite. The mineral vermiculite was leached with acid, from which the obtained SiO2 was used for the synthesis of Li4SiO4 and the leaching waste water was used for the synthesis of Mg-Al LDH. Therefore, no waste was produced during the whole process. Both Li4SiO4 and Mg-Al LDH sorbents were carefully characterized using XRD, SEM, and BET analyses. The CO2 capturing performance of these two sorbents was comprehensively evaluated. The influence of the Li/Si ratio, calcination temperature, calcination time, and sorption temperature on the CO2 sorption capacity of Li4SiO4, and the sorption temperature on the CO2 sorption capacity of LDH, were investigated. The optimal leaching acid concentration for vermiculite and the CO2 sorption/desorption cycling performance of both the Li4SiO4 and Mg-Al LDH sorbents were determined. In sum, this demonstrated a unique and environment-friendly scheme for obtaining two CO2 sorbents from cheap raw materials, and this idea is applicable to the efficient utilization of other minerals.

  11. Influencia de la síntesis y del grado de dopaje en las propiedades morfológicas, estructurales y electroquímicas de óxidos LiCo1‑xMxO2 (M = Ni, Al, Mg

    Directory of Open Access Journals (Sweden)

    Castro‑Couceiro, A.

    2004-08-01

    Full Text Available In this work we have prepared, by a sol‑gel method, LiCo1‑ xMxO2 compounds (M= Ni, Al and Mg, in order to study the doping effect in their electrochemical behaviour as cathodes in lithium‑batteries. We have studied the influence of the synthesis conditions (using various chelating agents for the formation of the gel on their morphologic, structural and electrochemical properties. We have obtained monophasic materials: LiCo1‑xNixO2 (0≤x≤0.8, LiCo1‑xMgxO2 (0≤x≤0.05, LiCo1‑xAlxO2 (0≤x≤0.3 and LiCo0.5Ni0.5‑xAlxO2 (0≤x≤0.3. In general, the samples obtained with succinic acid have better ordered lithium layers than malic samples.The capacity of the Li//LiCo1‑ xMxO2 batteries decrease upon doping. However, more stable charge‑discharge cycling performances have been obtained as compared to those displayed by the native oxides. In LiCo1‑xMgxO2, small amounts of MgO appear as secondary phases for 0.05 En este trabajo preparamos, mediante un método sol‑gel, óxidos LiCo1‑xMxO2 dopando LiCoO2 con Ni, Al y Mg, con el fin de comprobar la influencia del catión dopante y del grado de dopaje en su comportamiento electroquímico como cátodos de baterías de litio. Estudiamos la influencia de las condiciones de síntesis (utilizando diferentes agentes quelatantes para la formación del gel en las propiedades morfológicas y estructurales de los materiales obtenidos, que condicionan, a su vez, su comportamiento electroquímico. Se obtuvieron muestras monofásicas para distintos grados de dopaje: LiCo1‑xNixO2 (0≤x≤0.8, LiCo1‑xMgxO2 (0≤x≤0.05, LiCo1‑xAlxO2 (0≤x≤0.3 y LiCo0.5Ni0.5‑xAlxO2 (0≤x≤0.3. En general, se logra un mejor orden catiónico en la estructura utilizando ácido succínico como agente quelatante que utilizando ácido málico. Los estudios electroquímicos muestran que los tres dopantes (Ni, Mg y Al provocan una disminución de la capacidad de las baterías, pero contribuyen a mantener

  12. Effect of Mg(2+), Ca(2+), Sr(2+) and Ba(2+) metal ions on the antifungal activity of ZnO nanoparticles tested against Candida albicans.

    Science.gov (United States)

    Haja Hameed, Abdulrahman Syedahamed; Karthikeyan, Chandrasekaran; Senthil Kumar, Venugopal; Kumaresan, Subramanian; Sasikumar, Seemaisamy

    2015-01-01

    The antifungal ability of pure and alkaline metal ion (Mg(2+), Ca(2+), Sr(2+) and Ba(2+)) doped ZnO nanoparticles (NPs) prepared by the co-precipitation method was tested against the pathogenic yeast, Candida albicans (C. albicans), and the results showed that the Mg-doped ZnO NPs possessed greater effect than the other alkaline metal ion doped ZnO NPs. The impact of the concentration of Mg doped ZnO sample on the growth of C. albicans was also studied. The Minimal Fungicidal Concentration (MFC) of the Mg doped ZnO NPs was found to be 2000 μg/ml for which the growth of C. albicans was completely inhibited. The ZnO:Mg sample (1.5mg/ml) with various concentrations of histidine reduced the fungicidal effect of the nanoparticles against C. albicans, which was deliberately explained by the role of ROS. The ZnO:Mg sample added with 5mM of histidine scavenged the ample amount of generated ROS effectively. The binding of the NPs with fungi was observed by their FESEM images and their electrostatic attraction is confirmed by the zeta potential measurement. Copyright © 2015. Published by Elsevier B.V.

  13. Effect of Mg substitution on crystal structure and hydrogenation of Ce{sub 2}Ni{sub 7}-type Pr{sub 2}Ni{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Iwase, Kenji, E-mail: fbiwase@mx.ibaraki.ac.jp [Department of Materials Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511 (Japan); Mori, Kazuhiro [Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Sennan, Osaka 590-0494 (Japan); Terashita, Naoyoshi [Japan Metals & Chemicals Co., Ltd., Nishiokitama-gun, Yamagata 999-1351 (Japan); Tashiro, Suguru; Suzuki, Tetsuya [Department of Materials Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511 (Japan)

    2017-03-15

    The effect of Pr being substituted by Mg in Pr{sub 2}Ni{sub 7} with a Ce{sub 2}Ni{sub 7}-type structure was investigated by X-ray diffraction (XRD) and pressure−composition (P−C) isotherm measurements. The maximum hydrogen capacity of Pr{sub 2}Ni{sub 7} reached 1.24 H/M in the first absorption process. However, 0.61 H/M hydrogen remained in the sample after the first desorption and the reversible hydrogen capacity decreased to 0.63 H/M. Severe peak broadening was observed in the XRD profile of Pr{sub 2}Ni{sub 7}H{sub 5.4} after the first P−C isotherm cycle. The metal sublattice of Pr{sub 2}Ni{sub 7}H{sub 5.4} is deformed and changes from the Ce{sub 2}Ni{sub 7}-type structure to a lower symmetry during hydrogenation, with no detection of an amorphous phase. Pr{sub 1.5}Mg{sub 0.5}Ni{sub 7} consists of two phases: 80% Gd{sub 2}Co{sub 7}-type and 20% PuNi{sub 3}-type phases. Mg substitution leads to the relative stability of the Gd{sub 2}Co{sub 7}-type and PuNi{sub 3}-type structures. The Gd{sub 2}Co{sub 7}-type and PuNi{sub 3}-type structures are retained after the P-C isotherm. The reversible hydrogen capacity reached 1.05 H/M. The structural change during the hydrogen absorption−desorption cycle and the hydrogenation characteristics are changed by Mg atoms replacing Pr in the MgZn{sub 2}-type cell. - Graphical abstract: The maximum hydrogen capacity is 1.2 H/M in the first absorption process and the reversible capacity is 0.63 H/M.

  14. CoO-doped MgO-Al2O3-SiO2-colored transparent glass-ceramics with high crystallinity

    Science.gov (United States)

    Tang, Wufu; Zhang, Qian; Luo, Zhiwei; Yu, Jingbo; Gao, Xianglong; Li, Yunxing; Lu, Anxian

    2018-02-01

    To obtain CoO-doped MgO-Al2O3-SiO2 (MAS)-colored transparent glass-ceramics with high crystallinity, the glass with the composition 21MgO-21Al2O3-54SiO2-4B2O3-0.2CoO (in mol %) was prepared by conventional melt quenching technique and subsequently thermal treated at several temperatures. The crystallization behavior of the glass, the precipitated crystalline phases and crystallinity were analyzed by X-ray diffraction (XRD). The microstructure of the glass-ceramics was characterized by field emission scanning electron microscopy (FSEM). The transmittance of glass-ceramic was measured by UV spectrophotometer. The results show that a large amount of α-cordierite (indianite) with nano-size was precipitated from the glass matrix after treatment at 1020 °C for 3 h. The crystallinity of the transparent glass-ceramic reached up to 97%. Meanwhile, the transmittance of the glass-ceramic was 74% at 400 nm with a complex absorption band from 450 nm to 700 nm. In addition, this colored transparent glass-ceramic possessed lower density (2.469 g/cm3), lower thermal expansion coefficient (1.822 × 10-6 /℃), higher Vickers hardness (9.1 GPa) and higher bending strength (198 MPa) than parent glass.

  15. Studies on bare and Mg-doped LiCoO2 as a cathode material for lithium ion batteries

    CSIR Research Space (South Africa)

    Reddy, MV

    2014-05-01

    Full Text Available at ScienceDirect Electrochimica Acta jo ur nal ho me p age: www.elsev ier .com/ locate /e lec tac ta Graphical Abstract Electrochimica Acta xxx (2013) xxx–xxx Studies on Bare and Mg-doped LiCoO2 as a cathode material for Lithium ion Batteries M.V. Reddy... for Lithium ion Batteries M.V. Reddy∗, Thor Wei Jie, Charl J. Jafta, Kenneth I. Ozoemena, Mkhulu K. Mathe, A. Sree Kumaran Nair, Soo Soon Peng, M. Sobri Idris, Geetha Balakrishna, Fabian I. Ezema, B.V.R. Chowdari • Layered compounds, Li...

  16. Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Dey, Sunita

    2016-01-01

    Generation of H 2 and CO by splitting H 2 O and CO 2 respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H 2 O or CO 2 over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H 2 O or CO 2 . While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln 1−x A x Mn 1−y M y O 3 (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H 2 and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y 0.5 Sr 0.5 MnO 3 which releases 483 µmol/g of O 2 at 1673 K and produces 757 µmol/g of CO from CO 2 at 1173 K. The production of H 2 from H 2 O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H 2 based on the Mn 3 O 4 /NaMnO 2 cycle briefly. - Graphical abstract: Ln 0.5 A 0.5 Mn 1−x M x O 3 (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO 2 and H 2 O for the generation of CO and H 2 . - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO 2 and H 2 O. • In Ln 1−x A x MnO 3 perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles in the thermochemical process. • H 2 O splitting is also achieved by the use of the Mn 3 O 4 -sodium carbonate system. • Thermochemical splitting of CO 2 and H

  17. ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.

    2011-04-01

    ECO2M is a fluid property module for the TOUGH2 simulator (Version 2.0) that was designed for applications to geologic storage of CO{sub 2} in saline aquifers. It includes a comprehensive description of the thermodynamics and thermophysical properties of H{sub 2}O - NaCl - CO{sub 2} mixtures, that reproduces fluid properties largely within experimental error for temperature, pressure and salinity conditions in the range of 10 C {le} T {le} 110 C, P {le} 600 bar, and salinity from zero up to full halite saturation. The fluid property correlations used in ECO2M are identical to the earlier ECO2N fluid property package, but whereas ECO2N could represent only a single CO{sub 2}-rich phase, ECO2M can describe all possible phase conditions for brine-CO{sub 2} mixtures, including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO{sub 2}. This allows for seamless modeling of CO{sub 2} storage and leakage. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO{sub 2}-rich) phase, as well as two-and three-phase mixtures of aqueous, liquid CO{sub 2} and gaseous CO{sub 2} phases. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. TOUGH2/ECO2M is upwardly compatible with ECO2N and accepts ECO2N-style inputs. This report gives technical specifications of ECO2M and includes instructions for preparing input data. Code applications are illustrated by means of several sample problems, including problems that had been previously solved with TOUGH2/ECO2N.

  18. Oxidation of cyclic amines by molybdenum(II and tungsten(II halocarbonyls, [M(CO4X2]2 (M = Mo, W; X = Cl, Br

    Directory of Open Access Journals (Sweden)

    H.M. Mbuvi

    2013-05-01

    Full Text Available The molybdenum(II and tungsten(II halocarbonyls, [M(CO4X2]2 (M = Mo, W; X = Cl, Br react with a large excess of the nitrogen bases, 1-methylpyrrolidine, 1-methylpiperidine, 1-ethylpiperidine and 2-ethylpiperidine to give aminecarbonyl complexes of the type M(CO3L3 (L= alkylamine. Excess piperidine reacts with the tungsten halocarbonyls, [W(CO4X2]2 (X = Cl, Br, to give the trans isomer of the complex, W(CO3(C5H11N3. The halogens were recovered as the amminium salts, amine, HX. The oxidized amine dimerized to form a yellow product which was recovered as an oily liquid but in very small amounts. However, in the reaction between Mo(CO4Br2 and 1-ethylpiperidine, a yellow crystalline solid, with a melting point of 224 oC was recovered in sufficient amounts for elemental analysis, melting point and spectral data. Its mass spectrum showed a molecular ion peak at m+/z = 222, a clear evidence that the oxidized amine dimerizes. The cyclic dibasic amine piperazine, C4H10N2 is not, however, oxidized by these halocarbonyls but rather it reacts by substituting some CO groups to form products of the type, M(CO3(C4H10N22X2 (M = Mo, W; X = Cl, Br. Products were characterized by elemental analysis, IR, UV, 1H NMR and mass spectrometry.

  19. Critical current density in MgB2 bulk samples after co-doping with nano-SiC and poly zinc acrylate complexes

    International Nuclear Information System (INIS)

    Zhang, Z.; Suo, H.; Ma, L.; Zhang, T.; Liu, M.; Zhou, M.

    2011-01-01

    SiC and poly zinc acrylate complexes co-doped MgB 2 bulk has been synthesized. Co-doping can cause higher carbon substitutions and the second phase particles. Co-doping can further increase the Jc value of MgB 2 bulk on the base of the SiC doping. The co-doped MgB 2 bulk samples have been synthesized using an in situ reaction processing. The additives is 8 wt.% SiC nano powders and 10 wt.% [(CH 2 CHCOO) 2 Zn] n poly zinc acrylate complexes (PZA). A systematic study was performed on samples doped with SiC or PZA and samples co-doped with both of them. The effects of doping and co-doping on phase formation, microstructure, and the variation of lattice parameters were studied. The amount of substituted carbon, the critical temperature (T c ) and the critical current density (J c ) were determined. The calculated lattice parameters show the decrease of the a-axis, while no obvious change was detected for c-axis parameter in co-doped samples. This indicates that the carbon was substituted by boron in MgB 2 . The amount of substituted carbon for the co-doped sample shows an enhancement compared to that of the both single doped samples. The co-doped samples perform the highest J c values, which reaches 3.3 x 10 4 A/cm 2 at 5 K and 7 T. It is shown that co-doping with SiC and organic compound is an effective way to further improve the superconducting properties of MgB 2 .

  20. Anti-Podocalyxin Monoclonal Antibody 47-mG2a Detects Lung Cancers by Immunohistochemistry.

    Science.gov (United States)

    Yamada, Shinji; Itai, Shunsuke; Kaneko, Mika K; Kato, Yukinari

    2018-04-01

    Lung cancer is one of the leading causes of cancer-related deaths in the world. Regardless of the advances in lung cancer treatments, the prognosis is still poor. Podocalyxin (PODXL) is a highly glycosylated type I transmembrane protein that is expressed in normal tissues, including the heart, pancreas, and breast. It is also found and used as a diagnostic marker in many cancers, such as renal, brain, breast, oral, and lung cancers. We previously developed specific and sensitive anti-PODXL monoclonal antibodies, PcMab-47 (mouse IgG 1 , kappa) and its mouse IgG 2a -type (47-mG 2a ), both of which were suitable for immunohistochemical analyses of oral cancers. In this study, we investigated the utility of PcMab-47 and 47-mG 2a for the immunohistochemical analyses of lung cancers. PcMab-47 stained 51/70 (72.9%) cases of lung cancer, whereas 47-mG 2a stained 59/70 (84.3%) cases, indicating that the latter antibody is more sensitive and is useful for detecting PODXL in lung cancers.

  1. Space-Based CO2 Active Optical Remote Sensing using 2m Triple-Pulse IPDA Lidar

    Science.gov (United States)

    Singh, Upendra; Refaat, Tamer; Ismail, Syed; Petros, Mulugeta

    2017-04-01

    Sustained high-quality column CO2 measurements from space are required to improve estimates of regional and global scale sources and sinks to attribute them to specific biogeochemical processes for improving models of carbon-climate interactions and to reduce uncertainties in projecting future change. Several studies show that space-borne CO2 measurements offer many advantages particularly over high altitudes, tropics and southern oceans. Current satellite-based sensing provides rapid CO2 monitoring with global-scale coverage and high spatial resolution. However, these sensors are based on passive remote sensing, which involves limitations such as full seasonal and high latitude coverage, poor sensitivity to the lower atmosphere, retrieval complexities and radiation path length uncertainties. CO2 active optical remote sensing is an alternative technique that has the potential to overcome these limitations. The need for space-based CO2 active optical remote sensing using the Integrated Path Differential Absorption (IPDA) lidar has been advocated by the Advanced Space Carbon and Climate Observation of Planet Earth (A-Scope) and Active Sensing of CO2 Emission over Nights, Days, and Seasons (ASCENDS) studies in Europe and the USA. Space-based IPDA systems can provide sustained, high precision and low-bias column CO2 in presence of thin clouds and aerosols while covering critical regions such as high latitude ecosystems, tropical ecosystems, southern ocean, managed ecosystems, urban and industrial systems and coastal systems. At NASA Langley Research Center, technology developments are in progress to provide high pulse energy 2m IPDA that enables optimum, lower troposphere weighted column CO2 measurements from space. This system provides simultaneous ranging; information on aerosol and cloud distributions; measurements over region of broken clouds; and reduces influences of surface complexities. Through the continual support from NASA Earth Science Technology Office

  2. The thermal behaviour and structural stability of nesquehonite, MgCO3.3H2O, evaluated by in situ laboratory parallel-beam X-ray powder diffraction: New constraints on CO2 sequestration within minerals.

    Science.gov (United States)

    Ballirano, Paolo; De Vito, Caterina; Ferrini, Vincenzo; Mignardi, Silvano

    2010-06-15

    In order to gauge the appropriateness of CO(2) reaction with Mg chloride solutions as a process for storing carbon dioxide, the thermal behaviour and structural stability of its solid product, nesquehonite (MgCO(3).3H(2)O), were investigated in situ using real-time laboratory parallel-beam X-ray powder diffraction. The results suggest that the nesquehonite structure remains substantially unaffected up to 373 K, with the exception of a markedly anisotropic thermal expansion acting mainly along the c axis. In the 371-390 K range, the loss of one water molecule results in the nucleation of a phase of probable composition MgCO(3).2H(2)O, which is characterized by significant structural disorder. At higher temperatures (423-483 K), both magnesite and MgO.2MgCO(3) coexist. Finally, at 603 K, periclase nucleation starts and the disappearance of carbonate phases is completed at 683 K. Consequently, the structural stability of nesquehonite at high temperatures suggests that it will remain stable under the temperature conditions that prevail at the Earth's surface. These results will help (a) to set constraints on the temperature conditions under which nesquehonite may be safely stored and (b) to develop CO(2) sequestration via the synthesis of nesquehonite for industrial application. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Transesterification of castor oil usingMgO/SiO2 catalyst and coconutoilas co-reactant

    OpenAIRE

    Kamisah D. Pandiangan; Novesar Jamarun; Syukri Arief; Wasinton Simanjuntak

    2016-01-01

    This paper describes the transesterification of castor oil with the use of coconut oil as co-reactant and MgO/SiO2as heterogeneous base catalyst. The catalyst was preparedfrom rice husk silica and magnesium nitrate by sol-gel method, with MgO load of 20% relative to silica, and then subjected to sintering treatment at 600 oC for 6 hours. A series of experiments was carried out, indicating that the use of coconut oil as co-reactant significantly promoted the conversion of castor oil into b...

  4. Mg2BIV: Narrow Bandgap Thermoelectric Semiconductors

    Science.gov (United States)

    Kim, Il-Ho

    2018-05-01

    Thermoelectric materials can convert thermal energy directly into electric energy and vice versa. The electricity generation from waste heat via thermoelectric devices can be considered as a new energy source. For instance, automotive exhaust gas and all industrial processes generate an enormous amount of waste heat that can be converted to electricity by using thermoelectric devices. Magnesium compound Mg2BIV (BIV = Si, Ge or Sn) has a favorable combination of physical and chemical properties and can be a good base for the development of new efficient thermoelectrics. Because they possess similar properties to those of group BIV elemental semiconductors, they have been recognized as good candidates for thermoelectric applications. Mg2Si, Mg2Ge and Mg2Sn with an antifluorite structure are narrow bandgap semiconductors with indirect band gaps of 0.77 eV, 0.74 eV, and 0.35 eV, respectively. Mg2BIV has been recognized as a promising material for thermoelectric energy conversion at temperatures ranging from 500 K to 800 K. Compared to other thermoelectric materials operating in the similar temperature range, such as PbTe and filled skutterudites, the important aspects of Mg2BIV are non-toxic and earth-abundant elements. Based on classical thermoelectric theory, the material factor β ( m* / m e)3/2μκ L -1 can be utilized as the criterion for thermoelectric material selection, where m* is the density-of-states effective mass, me is the mass of an electron, μ is the carrier mobility, and κL is the lattice thermal conductivity. The β for magnesium silicides is 14, which is very high compared to 0.8 for iron silicides, 1.4 for manganese silicides, and 2.6 for silicon-germanium alloys. In this paper, basic phenomena of thermoelectricity and transport parameters for thermoelectric materials were briefly introduced, and thermoelectric properties of Mg2BIV synthesized by using a solid-state reaction were reviewed. In addition, various Mg2BIV compounds were discussed

  5. Characteristics of CO2 release from forest soil in the mountains near Beijing.

    Science.gov (United States)

    Sun, Xiang Yang; Gao, Cheng Da; Zhang, Lin; Li, Su Yan; Qiao, Yong

    2011-04-01

    CO2 release from forest soil is a key driver of carbon cycling between the soil and atmosphere ecosystem. The rate of CO2 released from soil was measured in three forest stands (in the mountainous region near Beijing, China) by the alkaline absorption method from 2004 to 2006. The rate of CO2 released did not differ among the three stands. The CO2 release rate ranged from - 341 to 1,193 mg m(-2) h(-1), and the mean value over all three forests and sampling times was 286 mg m(-2) h(-1). CO2 release was positively correlated with soil water content and the soil temperature. Diurnally, CO2 release was higher in the day than at night. Seasonally, CO2 release was highest in early autumn and lowest in winter; in winter, negative values of CO2 release suggested that CO2 was absorbed by soil.

  6. Synthesis and lithium storage properties of Zn, Co and Mg doped SnO2 Nano materials

    CSIR Research Space (South Africa)

    Palaniyandy, Nithyadharseni

    2017-09-01

    Full Text Available In this paper, we show that magnesium and cobalt doped SnO2 (Mg-SnO2 and Co-SnO2) nanostructures have profound influence on the discharge capacity and coulombic efficiency of lithium ion batteries (LIBs) employing pure SnO2 and zinc doped SnO2 (Zn-Sn...

  7. Infrared emissions in MgSrAl{sub 10}O{sub 17}:Er{sup 3+} phosphor co-doped with Yb{sup 3+}/Ba{sup 2+}/Ca{sup 2+} obtained by solution combustion route

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vijay, E-mail: vijayjiin2006@yahoo.com [Physical Chemistry, Institute for Pure and Applied Chemistry and Center of Interface Science, University of Oldenburg, 26129 Oldenburg (Germany); Kumar Rai, Vineet [Department of Applied Physics, Indian School of Mines, Dhanbad 826 004 (India); Venkatramu, V. [Department of Physics, Yogi Vemana University, Kadapa 516 003 (India); Chakradhar, R.P.S. [CSIR-National Aerospace, Bangalore 560 017 (India); Hwan Kim, Sang [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2013-02-15

    An intense infrared emitting MgSrAl{sub 10}O{sub 17}:Er{sup 3+} phosphor co-doped with Yb{sup 3+}, Ba{sup 2+} and Ca{sup 2+} ions have been prepared by a solution combustion method. Phase purity of the derived compounds was confirmed by X-ray diffraction technique. The vibrational properties of MgSrAl{sub 10}O{sub 17} phosphor was studied by Fourier transform infrared spectroscopy. The broad and strong infrared emission of Er{sup 3+} ions at around 1.53 {mu}m was observed upon excitation at 980 nm. Effect of co-doping with the Yb{sup 3+}{sub ,} Ba{sup 2+} and Ca{sup 2+} ions on the infrared luminescence intensity of Er{sup 3+} ions and the mechanism responsible for the variation in the infrared intensity have been discussed. The results indicate that these materials may be suitable for the optical telecommunication window and wavelength division multiplexing applications. - Highlights: Black-Right-Pointing-Pointer The hexagonal phase of MgSrAl{sub 10}O{sub 17} could be obtained by the low temperature combustion method. Black-Right-Pointing-Pointer The broad and strong infrared emission of Er{sup 3+} ions at around 1.53 {mu}m was observed. Black-Right-Pointing-Pointer Effect of co-doping with the Yb{sup 3+}{sub ,} Ba{sup 2+} and Ca{sup 2+} ions on the infrared luminescence intensity of Er{sup 3+} were reported.

  8. Fabrication of fully epitaxial magnetic tunnel junctions with a Co2MnSi thin film and a MgO tunnel barrier

    International Nuclear Information System (INIS)

    Kijima, H.; Ishikawa, T.; Marukame, T.; Matsuda, K.-I.; Uemura, T.; Yamamoto, M.

    2007-01-01

    Fully epitaxial magnetic tunnel junctions (MTJs) were fabricated with a Co-based full-Heusler alloy Co 2 MnSi (CMS) thin film having the ordered L2 1 structure as a lower electrode, a MgO tunnel barrier, and a Co 50 Fe 50 upper electrode. Reflection high-energy electron diffraction patterns observed in situ for each layer in the MTJ layer structure during fabrication clearly indicated that all layers of the CMS lower electrode, MgO tunnel barrier, and Co 50 Fe 50 upper electrode grew epitaxially. The microfabricated fully epitaxial CMS/MgO/Co 50 Fe 50 MTJs demonstrated relatively high tunnel magnetoresistance ratios of 90% at room temperature and 192% at 4.2 K

  9. Gully hotspot contribution to landscape methane (CH4) and carbon dioxide (CO2) fluxes in a northern peatland

    International Nuclear Information System (INIS)

    McNamara, N.P.; Plant, T.; Oakley, S.; Ward, S.; Wood, C.; Ostle, N.

    2008-01-01

    Peatlands are long term carbon catchments that sink atmospheric carbon dioxide (CO 2 ) and source methane (CH 4 ). In the uplands of the United Kingdom ombrotrophic blanket peatlands commonly exist within Calluna vulgaris (L.) dominated moorland ecosystems. These landscapes contain a range of topographical features that influence local hydrology, climate and plant community composition. In this study we examined the variation in ecosystem CO 2 respiration and net CH 4 fluxes from typical plant-soil systems in dendritic drainage gullies and adjacent blanket peat during the growing season. Typically, Eriophorum spp., Sphagnum spp. and mixed grasses occupied gullies while C. vulgaris dominated in adjacent blanket peat. Gross CO 2 respiration was highest in the areas of Eriophorum spp. (650 ± 140 mg CO 2 m -2 h -1 ) compared to those with Sphagnum spp. (338 ± 49 mg CO 2 m -2 h -1 ), mixed grasses (342 ± 91 mg CO 2 m -2 h -1 ) and C. vulgaris (174 ± 63 mg CO 2 m -2 h -1 ). Measurements of the net CH 4 flux showed higher fluxes from the Eriophorum spp (2.2 ± 0.6 mg CH 4 m -2 h -1 ) locations compared to the Sphagnum spp. (0.6 ± 0.4 mg CH 4 m -2 h -1 ), mixed grasses (0.1 ±0.1 mg CH 4 m -2 h -1 ) and a negligible flux detected from C. vulgaris (0.0 ± 0.0 mg CH 4 m -2 h -1 ) locations. A GIS approach was applied to calculate the contribution of gullies to landscape scale greenhouse gas fluxes. Findings from the Moor House National Nature Reserve in the UK showed that although gullies occupied only 9.3% of the total land surface, gullies accounted for 95.8% and 21.6% of the peatland net CH 4 and CO 2 respiratory fluxes, respectively. The implication of these findings is that the relative contribution of characteristic gully systems need to be considered in estimates of landscape scale peatland greenhouse gas fluxes

  10. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation.

    Science.gov (United States)

    Gong, Fuyu; Liu, Guoxia; Zhai, Xiaoyun; Zhou, Jie; Cai, Zhen; Li, Yin

    2015-01-01

    Production of fuels from the abundant and wasteful CO2 is a promising approach to reduce carbon emission and consumption of fossil fuels. Autotrophic microbes naturally assimilate CO2 using energy from light, hydrogen, and/or sulfur. However, their slow growth rates call for investigation of the possibility of heterotrophic CO2 fixation. Although preliminary research has suggested that CO2 fixation in heterotrophic microbes is feasible after incorporation of a CO2-fixing bypass into the central carbon metabolic pathway, it remains unclear how much and how efficient that CO2 can be fixed by a heterotrophic microbe. A simple metabolic flux index was developed to indicate the relative strength of the CO2-fixation flux. When two sequential enzymes of the cyanobacterial Calvin cycle were incorporated into an E. coli strain, the flux of the CO2-fixing bypass pathway accounts for 13 % of that of the central carbon metabolic pathway. The value was increased to 17 % when the carbonic anhydrase involved in the cyanobacterial carbon concentrating mechanism was introduced, indicating that low intracellular CO2 concentration is one limiting factor for CO2 fixation in E. coli. The engineered CO2-fixing E. coli with carbonic anhydrase was able to fix CO2 at a rate of 19.6 mg CO2 L(-1) h(-1) or the specific rate of 22.5 mg CO2 g DCW(-1) h(-1). This CO2-fixation rate is comparable with the reported rates of 14 autotrophic cyanobacteria and algae (10.5-147.0 mg CO2 L(-1) h(-1) or the specific rates of 3.5-23.7 mg CO2 g DCW(-1) h(-1)). The ability of CO2 fixation was created and improved in E. coli by incorporating partial cyanobacterial Calvin cycle and carbon concentrating mechanism, respectively. Quantitative analysis revealed that the CO2-fixation rate of this strain is comparable with that of the autotrophic cyanobacteria and algae, demonstrating great potential of heterotrophic CO2 fixation.

  11. Analysis of (Ba,Ca,Sr)3MgSi2O8:Eu2+, Mn2+ phosphors for application in solid state lighting

    International Nuclear Information System (INIS)

    Han, J.K.; Piqutte, A.; Hannah, M.E.; Hirata, G.A.; Talbot, J.B.; Mishra, K.C.; McKittrick, J.

    2014-01-01

    The luminescence properties of Eu 2+ and Mn 2+ co-activated (Ba,Ca,Sr) 3 MgSi 2 O 8 phosphors prepared by combustion synthesis were studied. Eu 2+ -activated (Ba,Ca,Sr) 3 MgSi 2 O 8 has a broad blue emission band centered at 450–485 nm and Eu 2+ –Mn 2+ -activated (Ba,Ca,Sr) 3 MgSi 2 O 8 exhibits a red emission around 620–703 nm, depending on the relative concentrations of Ba, Ca and Sr. The particle size of Eu 2+ and Mn 2+ co-activated (Ba,Ca) 3 MgSi 2 O 8 ranges from 300 nm to 1 μm depending on the metal ion and are agglomerated due to post-synthesis, high temperature annealing. The green emission of Ba 3 MgSi 2 O 8 originates from secondary phases (Ba 2 SiO 4 and BaMgSiO 4 ) confirmed by emission spectra and X-ray diffraction patterns. The secondary phases of Ba 3 MgSi 2 O 8 are removed by the addition of Sr. The quantum efficiencies range from 45% to 70% under 400 nm excitation and the lifetime of red emission of Ba 3 MgSi 2 O 8 decreases significantly with increasing temperature, which is 54% at 400 K of that at 80 K compared to that of blue emission (90% at 400 K of that at 80 K). -- highlights: • (Ba,Ca,Sr) 3 MgSi 2 O 8 :Eu 2+ , Mn 2+ phosphors were prepared by a combustion synthesis method. • The emission spectra consist of broad blue-emission band and red-emission band. • The quantum efficiencies range between 45% and 70%, depending on the relative concentrations of Ba, Ca and Sr. • The secondary phases were eliminated by additions of Sr. • Lifetime of the red-emission decreases with increasing temperature, suggesting that these phosphors are not useful for solid state lighting applications

  12. Hydrogen storage properties of LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tai [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhai, Tingting; Yuan, Zeming; Bu, Wengang [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Xu, Sheng [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhang, Yanghuan, E-mail: zhangyh59@sina.com [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China)

    2014-12-25

    Highlights: • La–Mg–Ni system AB{sub 2}-type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi{sub 4} and the secondary phase LaNi{sub 5}. However, the secondary phase of the Al substitution alloy changes into LaAlNi{sub 4}. The lattice parameters and cell volumes of the LaMgNi{sub 4} phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi{sub 4} phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi{sub 4} phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between

  13. AAg2M[VO4]2 (A=Ba,Sr; M=Co,Ni): A series of ferromagnetic insulators

    Science.gov (United States)

    Möller, Angela; Amuneke, Ngozi E.; Daniel, Phillip; Lorenz, Bernd; de la Cruz, Clarina R.; Gooch, Melissa; Chu, Paul C. W.

    2012-06-01

    AAg2M[VO4]2 with A=Sr2+ or Ba2+ present a series of layered compounds featuring a triangular lattice of transition metal cations, M = Co2+ or Ni2+, connected via nonmagnetic ortho-vanadates, which provide the magnetic superexchange within the layers. For this series of insulating compounds, ferromagnetic long-range order below 10 K is suggested by magnetization and specific heat measurements and confirmed by neutron diffraction experiments. We have investigated the impact of the spacer size of A2+ separating the layers leading to a tilting of the vanadates and consequently inducing a change in the effective magnetic correlations. Magnetization and specific heat measurements corroborate the important dependence of the magnetic superexchange on the orientation of the vanadates and the respective spin system. Furthermore, the ground state properties of the spin systems, S=1 (Ni2+) and S=3/2 (Co2+) in their respective octahedral coordination of oxygen, are evaluated. Calculated magnetic moments of the single ion complexes agree well with the magnetic structure. We, furthermore, report the dependence of Tc on applied isotropic pressure suggestive of a pressure effect on the effective ferromagnetic exchange coupling constants. In addition spectroscopic investigations probing the electronic structure of the [MO6] complexes and the vibrational structure of the [VO4] units are given.

  14. Co-hydrothermal synthesis of LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}·LiAlO{sub 2}/C nano-hybrid cathode material with enhanced electrochemical performance for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [School of Metallurgy, Northeastern University, Shenyang, 110004 (China); Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, 066004 (China); Luo, Shaohua, E-mail: tianyanglsh@163.com [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004 (China); Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, 066004 (China); School of Materials Science and Engineering, Northeastern University, Shenyang, 110004 (China); Chang, Longjiao [School of New Energy, Bohai University, Jinzhou, 121013 (China); Hao, Aimin; Wang, Zhiyuan; Liu, Yanguo [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004 (China); Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, 066004 (China); School of Materials Science and Engineering, Northeastern University, Shenyang, 110004 (China); Xu, Qian [School of Materials Science and Engineering, Shanghai University, Shanghai, 200072 (China); Wang, Qing; Zhang, Yahui [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004 (China); Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, 066004 (China); School of Materials Science and Engineering, Northeastern University, Shenyang, 110004 (China)

    2017-02-01

    Highlights: • A co-hydrothermal approach to synthesize LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}·LiAlO{sub 2}/C composite material in water/PEG system is present. • The Mn{sub 1-x}Mg{sub x}PO{sub 4} precursor is prepared by precipitation reaction. • Co-modified with Mg{sup 2+} doping and LiAlO{sub 2} compositing strategies play an important role in improving the electronic conductivity and facilitating the diffusion of lithium ion. • LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}·LiAlO{sub 2}/C composite material exhibits a high specific discharge capacity of 151.8 mAh/g at 0.05C. - Abstract: LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}·LiAlO{sub 2}/C is synthesized by a co-hydrothermal method in water/PEG system using Li{sub 2}CO{sub 3}, AAO and Mn{sub 1-x}Mg{sub x}PO{sub 4} as raw material. The electronic structure and micromorphology of multi-component compound LiMn{sub 1-x}Mg{sub x}PO{sub 4}/C (x = 0, 1/24, 1/12, 1/6) and nano-hybrid LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}·LiAlO{sub 2}/C cathode materials are studied by first-principles calculation and experimental research including XRD, SEM, TEM. The calculated band gap of LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}/C is 2.296 eV, which is lower than other percentages Mg{sup 2+} doping samples. Electrochemical tests exhibit LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}/C has better cycling performance and rate capability than other contents Mg{sup 2+} doping samples with the discharge capacity of 143.5 mAh/g, 141.5 mAh/g, 139.2 mAh/g and 136.3 mAh/g at 0.05C, 0.1C, 0.5C and 1C in order. After compositing and preparation of LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}·LiAlO{sub 2}/C composite material by co-hydrothermal route, the initial discharge capacity reaches up to 151.8 mAh/g, which suggests that co-modified with Mg{sup 2+} doping and LiAlO{sub 2} compositing material can improve the electronic conductivity of LiMnPO{sub 4}/C by facilitating the lithium ion diffusion rate in the interior of the materials.

  15. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden

    Science.gov (United States)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy

    2016-04-01

    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal

  16. Structural determination of new solid solutions [Y2-x Mx ][Sn2-x Mx ]O7-3x/2 (M = Mg or Zn by Rietveld method

    Directory of Open Access Journals (Sweden)

    Mohamed Douma

    2010-12-01

    Full Text Available New [Y2-x Mx][Sn2-x Mx]O7-3x/2 (0 ≤x≤ 0.30 for M = Mg and 0 ≤x≤ 0.36 for M = Zn solid solutions with the pyrochlore structure were synthesized via high-temperature solid-state reaction method. Powder X-ray diffraction (PXRD patterns and Fourier transform infrared (FT-IR spectra showed that these materials are new non-stoichiometric solid solutions with the pyrochlore type structure. The structural parameters for the solids obtained were successfully determined by Rietveld refinement based on the analysis of the PXRD diagrams. Lattice parameter (a of these solid solutions decreases when x increases in both series. All samples obtained have the pyrochlore structure Fd-3m, no. 227 (origin at center -3m with M2+ (M = Mg2+ or Zn2+ cations in Y3+ and Sn4+ sites, thus creating vacancies in the anionic sublattice.

  17. Comparison of effects of ATP-MgCl2 and adenosine-MgCl2 on renal function following ischemia

    International Nuclear Information System (INIS)

    Sumpio, B.E.; Hull, M.J.; Baue, A.E.; Chaudry, I.H.

    1987-01-01

    ATO-MgCl 2 administration had been shown to accelerate the recovery of renal function following warm ischemia. However, since the major breakdown product of ATP is adenosine, the relative contribution of ATP vs. adenosine in improving renal function following ischemia remains to be determined. To study this, kidneys were subjected to 45 min of normothermic ischemia and then perfused at 100 mmHg with oxygenated Krebs-HCO 3 buffer containing albumin, [ 3 H]inulin, substrates, and either 0.3 mM ATP-MgCl 2 or adenosine-MgCl 2 for 110 min. Perfusate and timed urine samples were collected and analyzed for radioactivity and [Na + ]. The functional parameters indicated that although adenosine-MgCl 2 treatment provided a transient improvement, it failed to provided a sustained improvement in renal function or attain control valued compared with ATP-MgCl 2 treatment. Thus, the salutary effects of ATP-MgCl 2 following warm ischemia in the kidney are not mediated by adenosine

  18. Soil respiration in relation to photosynthesis of Quercus mongolica trees at elevated CO2.

    Science.gov (United States)

    Zhou, Yumei; Li, Mai-He; Cheng, Xu-Bing; Wang, Cun-Guo; Fan, A-Nan; Shi, Lian-Xuan; Wang, Xiu-Xiu; Han, Shijie

    2010-12-06

    Knowledge of soil respiration and photosynthesis under elevated CO(2) is crucial for exactly understanding and predicting the carbon balance in forest ecosystems in a rapid CO(2)-enriched world. Quercus mongolica Fischer ex Ledebour seedlings were planted in open-top chambers exposed to elevated CO(2) (EC = 500 µmol mol(-1)) and ambient CO(2) (AC = 370 µmol mol(-1)) from 2005 to 2008. Daily, seasonal and inter-annual variations in soil respiration and photosynthetic assimilation were measured during 2007 and 2008 growing seasons. EC significantly stimulated the daytime soil respiration by 24.5% (322.4 at EC vs. 259.0 mg CO(2) m(-2) hr(-1) at AC) in 2007 and 21.0% (281.2 at EC vs. 232.6 mg CO(2) m(-2) hr(-1) at AC) in 2008, and increased the daytime CO(2) assimilation by 28.8% (624.1 at EC vs. 484.6 mg CO(2) m(-2) hr(-1) at AC) across the two growing seasons. The temporal variation in soil respiration was positively correlated with the aboveground photosynthesis, soil temperature, and soil water content at both EC and AC. EC did not affect the temperature sensitivity of soil respiration. The increased daytime soil respiration at EC resulted mainly from the increased aboveground photosynthesis. The present study indicates that increases in CO(2) fixation of plants in a CO(2)-rich world will rapidly return to the atmosphere by increased soil respiration.

  19. Variations of force constants, M-O distances and bond order in solid solutions between Ba/sub 2/MgUO/sub 6/ and Ba/sub 2/MgWO/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S; Fadini, A [Tuebingen Univ. (Germany, F.R.). Inst. fuer Chemie

    1977-12-01

    In solid solutions between the 1:1 ordered perovskites Ba/sub 2/MgUO/sub 6/ and Ba/sub 2/MgWO/sub 6/ (system Ba/sub 2/MgUsub(1-x)Wsub(x)O/sub 6/) the force constants of the UO/sub 6/ and WO/sub 6/ octahedras are variied. The valence force constants fsub(MO) tend to adjust for each x. The bond order and the M-O distances are reported as well.

  20. Mechanosynthesis of MFe2O4 (M = Co, Ni, and Zn Magnetic Nanoparticles for Pb Removal from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    America R. Vazquez-Olmos

    2016-01-01

    Full Text Available Adsorption of Pb(II from aqueous solution using MFe2O4 nanoferrites (M = Co, Ni, and Zn was studied. Nanoferrite samples were prepared via the mechanochemical method and were characterized by X-ray powder diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, micro-Raman, and vibrating sample magnetometry (VSM. XRD analysis confirms the formation of pure single phases of cubic ferrites with average crystallite sizes of 23.8, 19.4, and 19.2 nm for CoFe2O4, NiFe2O4, and ZnFe2O4, respectively. Only NiFe2O4 and ZnFe2O4 samples show superparamagnetic behavior at room temperature, whereas CoFe2O4 is ferromagnetic. Kinetics and isotherm adsorption studies for adsorption of Pb(II were carried out. A pseudo-second-order kinetic describes the sorption behavior. The experimental data of the isotherms were well fitted to the Langmuir isotherm model. The maximum adsorption capacity of Pb(II on the nanoferrites was found to be 20.58, 17.76, and 9.34 mg·g−1 for M = Co, Ni, and Zn, respectively.

  1. Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system

    Science.gov (United States)

    Marion, Giles M.

    2001-06-01

    Carbonate minerals have played an important role in the geochemical evolution of Earth, and may have also played an important role in the geochemical evolution of Mars and Europa. Several models have been published in recent years that describe chloride and sulfate mineral solubilities in concentrated brines using the Pitzer equations. Few of these models are parameterized for subzero temperatures, and those that are do not include carbonate chemistry. The objectives of this work are to estimate Pitzer-equation bicarbonate-carbonate parameters and carbonate mineral solubility products and to incorporate them into the FREZCHEM model to predict carbonate mineral solubilities in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system at low temperatures (≤25°C) with a special focus on subzero temperatures. Most of the Pitzer-equation parameters and equilibrium constants are taken from the literature and extrapolated into the subzero temperature range. Solubility products for 14 sodium, potassium, magnesium, and calcium bicarbonate and carbonate minerals are included in the model. Most of the experimental data are at temperatures ≥ -8°C; only for the NaHCO 3-NaCl-H 2O and Na 2CO 3-NaCl-H 2O systems are there bicarbonate and carbonate data to temperatures as low as -21.6°C. In general, the fit of the model to the experimental data is good. For example, calculated eutectic temperatures and compositions for NaHCO 3, Na 2CO 3, and their mixtures with NaCl and Na 2SO 4 salts are in good agreement with experimental data to temperatures as low as -21.6°C. Application of the model to eight saline, alkaline carbonate waters give predicted pHs ranging from 9.2 to 10.2, in comparison with measured pHs that range from 8.7 to 10.2. The model suggests that the CaCO 3 mineral that precipitates during seawater freezing is probably calcite and not ikaite. The model demonstrates that a proposed salt assemblage for the icy surface of Europa consisting of highly hydrated MgSO 4

  2. La0⋅ 9Sr0⋅ 1Ga0⋅ 8M0⋅ 2O3–δ (M= Mn, Co, Ni, Cu or Zn ...

    Indian Academy of Sciences (India)

    Perovskite oxides of the general formula, La0.9Sr0.1Ga0.8M0.2O3– for M = Mn, Co, Ni, Cu and Zn, have been prepared and investigated. All the oxides exhibit high electrical conductivities ( ∼ 10–2 S/cm at 800°C) comparable to that of the best perovskite oxide ion conductor, La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) ( ...

  3. New metal-organic polygons involving MM quadruple bonds: M8(O2CtBu)4(mu-SC4H2-3,4-{CO2}2)6 (M=Mo, W).

    Science.gov (United States)

    Byrnes, Matthew J; Chisholm, Malcolm H; Patmore, Nathan J

    2005-12-12

    The reactions between M2(O2CtBu)4, where M=Mo or W, and thienyl-3,4-dicarboxylic acid (0.5-1.5 equiv) in toluene proceed via a series of detectable intermediates to the compounds M8(O2CtBu)4(mu-SC4H2-3,4-{CO2}2)6, which are isolated as air-sensitive yellow (M=Mo) or red (M=W) powders and show parent molecular ions in their mass spectra (MALDI). The structure of the molybdenum complex was determined by single-crystal X-ray crystallography and shown to contain an unusual M8 polygon involving four Mo2 quadruply bonded units linked via the agency of the six 3,4-thienylcarboxylate groups. The structure has crystallographically imposed S4 symmetry and may be described in terms of a highly distorted tetrahedron of Mo2 units or a bisphenoid in which two Mo2 units are linked by a thienyldicarboxylate such that intramolecular Mo2...O bonding is present, while the other thienylcarboxylate bridges merely serve to link these two [Mo2]...[Mo2] units together. The color of the compounds arises from intense M2 delta-to-thienyl pi transitions and, in THF, the complexes are redox-active and show four successive quasi-reversible oxidation waves. The [M8]+ radical cations, generated by one-electron oxidation with AgPF6, are shown to be valence-trapped (class II) by UV-vis-near-IR and electron paramagnetic resonance spectroscopy. These results are supported by the electronic structure calculations on model compounds M8(O2CH)4(mu-SC4H2-3,4-{CO}2)6 employing density functional theory that reveal only a small splitting of the M2 delta manifold via mixing with the 3,4-thienylcarboxylate pi system.

  4. How easy is CO2 fixation by M-C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?

    KAUST Repository

    Nolan, Steve; Cavallo, Luigi; Poater, Albert; Vummaleti, Sai V. C.; Talarico, Giovanni

    2015-01-01

    A comparison between different M–C bonds (M = Cu(I), Ni(II), Co(I), Rh(I) and Ir(I)) has been reported by using density functional theory (DFT) calculations to explore the role of the metal in the fixation or incorporation of CO2 into such complexes. The systems investigated are various metal based congeners of the Ir-complex 8 [(cod)(IiPr)Ir-CCPh], with a ligand scaffold based on cod and IiPr ligands (cod = 1,5-cyclooctadiene; IiPr = 1,3-bis(isopropyl)imidazol-2-ylidene). The results of this study show that the calculated CO2 insertion barriers follow the trend: Cu(I) (20.8 kcal mol−1) < Rh(I) (30.0 kcal mol−1) < Co(I) (31.3 kcal mol−1) < Ir(I) (37.5 kcal mol−1) < Ni(II) (45.4 kcal mol−1), indicating that the Cu(I) based analogue is the best CO2 fixer, while Ni(II) is the worst in the studied series.

  5. How easy is CO2 fixation by M-C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?

    KAUST Repository

    Nolan, Steve

    2015-11-27

    A comparison between different M–C bonds (M = Cu(I), Ni(II), Co(I), Rh(I) and Ir(I)) has been reported by using density functional theory (DFT) calculations to explore the role of the metal in the fixation or incorporation of CO2 into such complexes. The systems investigated are various metal based congeners of the Ir-complex 8 [(cod)(IiPr)Ir-CCPh], with a ligand scaffold based on cod and IiPr ligands (cod = 1,5-cyclooctadiene; IiPr = 1,3-bis(isopropyl)imidazol-2-ylidene). The results of this study show that the calculated CO2 insertion barriers follow the trend: Cu(I) (20.8 kcal mol−1) < Rh(I) (30.0 kcal mol−1) < Co(I) (31.3 kcal mol−1) < Ir(I) (37.5 kcal mol−1) < Ni(II) (45.4 kcal mol−1), indicating that the Cu(I) based analogue is the best CO2 fixer, while Ni(II) is the worst in the studied series.

  6. [H2en]2{La2M(SO4)6(H2O)2} (M=Co, Ni): First organically templated 3d-4f mixed metal sulfates

    International Nuclear Information System (INIS)

    Yuan Yanping; Wang Ruiyao; Kong Deyuan; Mao Jianggao; Clearfield, Abraham

    2005-01-01

    The first organically templated 3d-4f mixed metal sulfates, [H 2 en] 2 {La 2 M(SO 4 ) 6 (H 2 O) 2 } (M=Co 1, Ni 2) have been synthesized and structurally determined from non-merohedrally twinned crystals. The two compounds are isostructural and their structures feature a three-dimensional anionic network formed by the lanthanum(III) and nickel(II) ions bridged by sulfate anions. The La(III) ions in both compounds are 10-coordinated by four sulfate anions in bidentate chelating fashion, and two sulfate anions in a unidentate fashion. The transition metal(II) ion is octahedrally coordinated by six oxygens from four sulfate anions and two aqua ligands. The doubly protonated enthylenediamine cations are located at the tunnels formed by 8-membered rings (four La and four sulfate anions)

  7. Inositol phosphates influence the membrane bound Ca2+/Mg2+ stimulated ATPase from human erythrocyte membranes

    International Nuclear Information System (INIS)

    Kester, M.; Ekholm, J.; Kumar, R.; Hanahan, D.J.

    1986-01-01

    The modulation by exogenous inositol phosphates of the membrane Ca 2+ /Mg 2+ ATPase from saponin/EGTA lysed human erythrocytes was determined in a buffer (pH 7.6) containing histidine, 80 mM, MgCl 2 , 3.3 mM, NaCl, 74 mM, KCl, 30 mM, Na 2 ATP, 2.3 mM, ouabain, 0.83 mM, with variable amounts of CaCl 2 and EGTA. The ATPase assay was linear with time at 44 0 C. The inositol phosphates were commercially obtained and were also prepared from 32 P labeled rabbit platelet inositol phospholipids. Inositol triphosphate (IP 3 ) elevated the Ca 2+ /Mg 2+ ATPase activity over basal levels in a dose, time, and calcium dependent manner and were increased up to 85% of control values. Activities for the Na + /K + -ATPase and a Mg 2+ ATPase were not effected by IP 3 . Ca 2+ /Mg 2+ APTase activity with IP 2 or IP 3 could be synergistically elevated with calmodulin addition. The activation of the ATPase with IP 3 was calcium dependent in a range from .001 to .02 mM. The apparent Km and Vmax values were determined for IP 3 stimulated Ca 2+ /Mg 2+ ATPase

  8. YRh{sub 2}Ga. A new intergrowth variant of MgNi{sub 2} and CeCo{sub 3}B{sub 2} related slabs

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Rodewald, Ute C.; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-09-01

    The gallide YRh{sub 2}Ga was synthesized by melting of the elements in an arc-furnace followed by annealing in a sealed silica tube in an induction furnace. YRh{sub 2}Ga crystallizes with a new structure type: P6{sub 3}/mmc, a=552.2(1), c=3119.5(6) pm, wR=0.0957, 497 F{sup 2} values, and 34 variables. It is the n=1 member of the RE{sub 2+n}T{sub 3+3n}X{sub 1+2n} structure series with Laves phase (MgNi{sub 2} type in the present case) and CaCu{sub 5} (CeCo{sub 3}B{sub 2} type in the present case) related slabs in the Parthe intergrowth concept.

  9. The role of the [CpM(CO)2](-) chromophore in the optical properties of the [Cp2ThMCp(CO)2](+) complexes, where M = Fe, Ru and Os. A theoretical view.

    Science.gov (United States)

    Cantero-López, Plinio; Le Bras, Laura; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2015-12-14

    The chemical bond between actinide and the transition metal unsupported by bridging ligands is not well characterized. In this paper we study the electronic properties, bonding nature and optical spectra in a family of [Cp2ThMCp(CO)2](+) complexes where M = Fe, Ru, Os, based on the relativistic two component density functional theory calculations. The Morokuma-Ziegler energy decomposition analysis shows an important ionic contribution in the Th-M interaction with around 25% of covalent character. Clearly, charge transfer occurs on Th-M bond formation, however the orbital term most likely represents a strong charge rearrangement in the fragments due to the interaction. Finally the spin-orbit-ZORA calculation shows the possible NIR emission induced by the [FeCp(CO)2](-) chromophore accomplishing the antenna effect that justifies the sensitization of the actinide complexes.

  10. Comparative study on the adsorption of Co2+ on CaCO3 compounds used as adsorbents

    International Nuclear Information System (INIS)

    De Jesus V, S.

    2014-01-01

    The calcium carbonate (CaCO 3 ) was synthesized by methods of precipitation, calcination, sol-gel and trigonal/sol-gel. These materials were characterized by the techniques of X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, infrared spectroscopy and N 2 physisorption measurements in order to identify their textural, surface and structural properties. The results show that the material synthesized by sol-gel had the highest surface area of 39.5230 m 2 /g, and a total pore volume of 0.0484 m 3 /g and a pore diameter of 4.9050 nm. The synthesized materials were used to comparatively study their adsorption capacity of Co 2+ ions present in aqueous solutions, by experiments batch or batch type at an ambient temperature (25 grades C) and to 4 hours, balance time established previously under an adsorption kinetic study. They found as maximum adsorption capacities of Co 2+ in materials of 1.8582 mg/g for the calcium carbonate obtained by precipitation, of 0.8586 mg/g for the material obtained by calcining, of 3.1895 mg/g for the material obtained by sol-gel and finally of 2.5783 mg/g for the material obtained by the trigonal/sol-gel method, therefore it follows that the material having the highest adsorption capacity of Co 2+ ions was synthesized by the sol-gel method, because it showed better surface, textural and structural properties compared to other materials studied. (Author)

  11. Effect of Mg$^{2+}$ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd$_{3}$Al$_{2}$Ga$_{3}$O$_{12}$ crystals

    CERN Document Server

    Lucchini, M.T.; Bohacek, P.; Gundacker, S.; Kamada, K.; Nikl, M.; Petrosyan, A.; Yoshikawa, A.; Auffray, E.

    2016-01-01

    Inorganic scintillators with high density and high light yield are of major interest for applications in medical imaging and high energy physics detectors. In this work, the optical and scintillation properties of Mg co-doped Ce:Gd3Al2Ga3O12 crystals, grown using Czochralski technique, have been investigated and compared with Ce:Gd3Al2Ga3O12 ones prepared with identical technology. Improvements in the timing performance of the Mg co-doped samples with respect to Ce:Gd3Al2Ga3O12 ones have been measured, namely a substantial shortening of the rise time and scintillation decay components and lower afterglow were achieved. In particular, a significantly better coincidence time resolution of 233 ps FWHM, being a fundamental parameter for TOF-PET devices, has been observed in Mg co-doped crystals. The samples have also shown a good radiation tolerance under high doses of γ-rays, making them suitable candidates for applications in harsh radiation environments, such as detectors at future collider experiments.

  12. Evaluation of cross-section data from threshold to 40-60 MeV for specific neutron reactions important for neutron dosimetry applications. Part 1: Evaluation of the excitation functions for the 27Al(n,α)24Na, 55Mn(n,2n)54Mn, 59Co(n,p)59Fe, 59Co(n,2n)58m+gCo and 90Zr(n,2n)89m+gZr reactions

    International Nuclear Information System (INIS)

    Zolotarev, K.I.

    2009-04-01

    Evaluations of cross sections and their associated covariance matrices have been carried out for five dosimetry reactions: - excitation functions were re-evaluated for the 27 Al(n,α) 24 Na, 55 Mn(n,2n) 54 Mn and 90 Zr(n,2n) 89m+g Zr reactions over the neutron energy range from threshold to 40 MeV; - excitation functions were re-evaluated for the 59 Co(n,p) 59 Fe and 59 Co(n,2n) 58m+g Co reactions over the neutron energy range from threshold to 60 MeV. Uncertainties in the cross sections for all of those reactions were also derived in the form of relative covariance matrices. Benchmark calculations performed for 235 U thermal fission and 252 Cf spontaneous fission neutron spectra show that the integral cross sections calculated from the newly evaluated excitation functions exhibit improved agreement with related experimental data when compared with the equivalent data from the IRDF-2002 library. (author)

  13. Comparative study on the adsorption of Co{sup 2+} on CaCO{sub 3} compounds used as adsorbents; Estudio comparativo sobre la adsorcion de Co{sup 2+} sobre compuestos de CaCO{sub 3} utilizados como adsorbentes

    Energy Technology Data Exchange (ETDEWEB)

    De Jesus V, S.

    2014-07-01

    The calcium carbonate (CaCO{sub 3}) was synthesized by methods of precipitation, calcination, sol-gel and trigonal/sol-gel. These materials were characterized by the techniques of X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, infrared spectroscopy and N{sub 2} physisorption measurements in order to identify their textural, surface and structural properties. The results show that the material synthesized by sol-gel had the highest surface area of 39.5230 m{sup 2}/g, and a total pore volume of 0.0484 m{sup 3}/g and a pore diameter of 4.9050 nm. The synthesized materials were used to comparatively study their adsorption capacity of Co{sup 2+} ions present in aqueous solutions, by experiments batch or batch type at an ambient temperature (25 grades C) and to 4 hours, balance time established previously under an adsorption kinetic study. They found as maximum adsorption capacities of Co{sup 2+} in materials of 1.8582 mg/g for the calcium carbonate obtained by precipitation, of 0.8586 mg/g for the material obtained by calcining, of 3.1895 mg/g for the material obtained by sol-gel and finally of 2.5783 mg/g for the material obtained by the trigonal/sol-gel method, therefore it follows that the material having the highest adsorption capacity of Co{sup 2+} ions was synthesized by the sol-gel method, because it showed better surface, textural and structural properties compared to other materials studied. (Author)

  14. The Density and Compressibility of BaCO3-SrCO3-CaCO3-K2CO3-Na2CO3-Li2CO3 Liquids: New Measurements and a Systematic Trend with Cation Field Strength

    Science.gov (United States)

    Hurt, S. M.; Lange, R. A.; Ai, Y.

    2015-12-01

    The volumetric properties of multi-component carbonate liquids are required to extend thermodynamic models that describe partial melting of the deep mantle (e.g. pMELTS; Ghiorso et al., 2003) to carbonate-bearing lithologies. Carbonate in the mantle is an important reservoir of carbon, which is released to the atmosphere as CO2 through volcanism, and thus contributes to the carbon cycle. Although MgCO3 is the most important carbonate component in the mantle, it is not possible to directly measure the 1-bar density and compressibility of MgCO3 liquid because, like other alkaline-earth carbonates, it decomposes at a temperature lower than its melting temperature. Despite this challenge, Liu and Lange (2003) and O'Leary et al. (2015) showed that the one bar molar volume, thermal expansion and compressibility of the CaCO3 liquid component could be obtained by measuring the density and sound speeds of stable liquids in the CaCO3-Li2CO3-Na2CO3-K2CO3 quaternary system at one bar. In this study, this same strategy is employed on SrCO3- and BaCO3-bearing alkali carbonate liquids. The density and sound speed of seven liquids in the SrCO3-Li2CO3-Na2CO3-K2CO3 quaternary and three liquids in the BaCO3-Li2CO3-Na2CO3-K2CO3 quaternary were measured from 739-1367K, with SrCO3 and BaCO3 concentrations ranging from 10-50 mol%. The density measurements were made using the double-bob Archimedean method and sound speeds were obtained with a frequency-sweep acoustic interferometer. The molar volume and sound speed measurements were used to calculate the isothermal compressibility of each liquid, and the results show the volumetric properties mix ideally with composition. The partial molar volume and compressibility of the SrCO3 and BaCO3 components are compared to those obtained for the CaCO3 component as a function of cation field strength. The results reveal a systematic trend that allows the partial molar volume and compressibility of the MgCO3 liquid component to be estimated.

  15. Corrosion analysis of AlMg2 and AlMgSi using electrochemical method

    International Nuclear Information System (INIS)

    Dian A; Maman Kartaman; Rosika K; Yanlinastuti

    2014-01-01

    Corrosion test of cladding materials and structures of research reactor fuel, AlMgSi and AlMg2 have been performed in demineralized water of pH 2 and 6.7 using an electrochemical method. Corrosion phenomenon is affected by several factor such as composition and condition of solution. The purpose of this activity is to investigate the corrosion phenomena through the determination of the parameters of corrosion and polarization curve. The materials used are AlMg2 and AlMgSi alloy in circular dish shape with an area of 1 Cm"2. Preparation of the test sample is performed through several stages polishing, cleaning and drying procedures followed ASTM G3. The electrochemical method is done by measuring the open circuit potential (OCP), polarization resistance and potentiodynamic in demineralized water of pH 2 and pH 6.7 at temperature of 25°C. The results of the OCP is the corrosion potential (Ecorr) of AlMg2 and AlMgSi each of -906.1 mV and -619.8 mV at pH 2 and -868.6 and -756.7 mV at pH 6.7 mV. The results of measurements by polarization resistance technique showed that the corrosion rate of AlMg2 and AlMgSi in safe category (<2 mpy) at pH 6.7 and at pH 2 corrosion rate increased significantly, but still in the lightweight category (<20 mpy). Potentiodynamic curves showed that the passivation at pH 6.7 is very low while the passivation at pH 2 occurs within a relatively short range potential and followed events corroded. (author)

  16. Calcium phosphate/chitosan composite coating: Effect of different concentrations of Mg2+ in the m-SBF on its bioactivity

    International Nuclear Information System (INIS)

    Zhang, Jie; Dai, Changsong; Wei, Jie; Wen, Zhaohui; Zhang, Shujuan; Lin, Lemin

    2013-01-01

    The purpose of this study was to investigate the effect of different concentration of Mg 2+ in a modified simulated body fluid (m-SBF) on the bioactivity of calcium phosphate/chitosan composite coating. Calcium phosphate/chitosan composite coating was prepared on graphite substrate via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The obtained samples were soaked in the m-SBF containing different concentration of Mg 2+ for different times. And then, the composite coatings were assessed using X-ray diffractometer (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectra, and scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The soaking solution was evaluated by inductively coupled plasma optical emission spectrometer (ICP-OES) test. The analytical results showed that hydroxyapatite (HA) and bone-like apatite (HCA) grew on the surface of calcium phosphate/chitosan composite coating after incubation in different m-SBF. With Mg 2+ concentration in m-SBF increased from 1× Mg to 10× Mg, HA in the composite coating first presented a dissolving process and then a precipitating one slowly, while HCA presented a growing trend, continuously. The increasing of Mg 2+ concentration in the m-SBF inhibited the total growing process of HA and HCA as a whole. The structure of the composite coating changed from spherical into irregular morphology with the concentration of Mg 2+ increasing from 1× Mg to 10× Mg. Over all, with the Mg 2+ concentration increasing, the bioactivity of calcium phosphate/chitosan composite coating tended to decrease.

  17. Calcium phosphate/chitosan composite coating: Effect of different concentrations of Mg2+ in the m-SBF on its bioactivity

    Science.gov (United States)

    Zhang, Jie; Dai, Changsong; Wei, Jie; Wen, Zhaohui; Zhang, Shujuan; Lin, Lemin

    2013-09-01

    The purpose of this study was to investigate the effect of different concentration of Mg2+ in a modified simulated body fluid (m-SBF) on the bioactivity of calcium phosphate/chitosan composite coating. Calcium phosphate/chitosan composite coating was prepared on graphite substrate via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The obtained samples were soaked in the m-SBF containing different concentration of Mg2+ for different times. And then, the composite coatings were assessed using X-ray diffractometer (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectra, and scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The soaking solution was evaluated by inductively coupled plasma optical emission spectrometer (ICP-OES) test. The analytical results showed that hydroxyapatite (HA) and bone-like apatite (HCA) grew on the surface of calcium phosphate/chitosan composite coating after incubation in different m-SBF. With Mg2+ concentration in m-SBF increased from 1× Mg to 10× Mg, HA in the composite coating first presented a dissolving process and then a precipitating one slowly, while HCA presented a growing trend, continuously. The increasing of Mg2+ concentration in the m-SBF inhibited the total growing process of HA and HCA as a whole. The structure of the composite coating changed from spherical into irregular morphology with the concentration of Mg2+ increasing from 1× Mg to 10× Mg. Over all, with the Mg2+ concentration increasing, the bioactivity of calcium phosphate/chitosan composite coating tended to decrease.

  18. Patch testing with 2.0% (0.60 mg/cm2) formaldehyde instead of 1.0% (0.30 mg/cm2) detects significantly more contact allerg

    DEFF Research Database (Denmark)

    Pontén, Ann; Aalto-Korte, Kristiina; Agner, Tove

    2013-01-01

    .To validate earlier patch test results for comparison of 1% (wt/vol) and 2% (wt/vol) formaldehyde in water, and to investigate co-reactivity with quaternium-15. Materials and methods.In 12 dermatology clinics, 3591 patients were routinely patch tested simultaneously with 2.0% (wt/vol) (0.60 mg/cm(2) ) and 1.......0% (wt/vol) (0.30 mg/cm(2) ) formaldehyde. Micropipettes were used for delivering the exact dosage of the allergen. Results.Significantly more patients reacted to 2.0% formaldehyde than to 1.0% (3.4% versus 1.8%, p

  19. CH3CO + O2 + M (M = He, N2) Reaction Rate Coefficient Measurements and Implications for the OH Radical Product Yield.

    Science.gov (United States)

    Papadimitriou, Vassileios C; Karafas, Emmanuel S; Gierczak, Tomasz; Burkholder, James B

    2015-07-16

    The gas-phase CH3CO + O2 reaction is known to proceed via a chemical activation mechanism leading to the formation of OH and CH3C(O)OO radicals via bimolecular and termolecular reactive channels, respectively. In this work, rate coefficients, k, for the CH3CO + O2 reaction were measured over a range of temperature (241-373 K) and pressure (0.009-600 Torr) with He and N2 as the bath gas and used to characterize the bi- and ter-molecular reaction channels. Three independent experimental methods (pulsed laser photolysis-laser-induced fluorescence (PLP-LIF), pulsed laser photolysis-cavity ring-down spectroscopy (PLP-CRDS), and a very low-pressure reactor (VLPR)) were used to characterize k(T,M). PLP-LIF was the primary method used to measure k(T,M) in the high-pressure regime under pseudo-first-order conditions. CH3CO was produced by PLP, and LIF was used to monitor the OH radical bimolecular channel reaction product. CRDS, a complementary high-pressure method, measured k(295 K,M) over the pressure range 25-600 Torr (He) by monitoring the temporal CH3CO radical absorption following its production via PLP in the presence of excess O2. The VLPR technique was used in a relative rate mode to measure k(296 K,M) in the low-pressure regime (9-32 mTorr) with CH3CO + Cl2 used as the reference reaction. A kinetic mechanism analysis of the combined kinetic data set yielded a zero pressure limit rate coefficient, kint(T), of (6.4 ± 4) × 10(-14) exp((820 ± 150)/T) cm(3) molecule(-1) s(-1) (with kint(296 K) measured to be (9.94 ± 1.3) × 10(-13) cm(3) molecule(-1) s(-1)), k0(T) = (7.39 ± 0.3) × 10(-30) (T/300)(-2.2±0.3) cm(6) molecule(-2) s(-1), and k∞(T) = (4.88 ± 0.05) × 10(-12) (T/300)(-0.85±0.07) cm(3) molecule(-1) s(-1) with Fc = 0.8 and M = N2. A He/N2 collision efficiency ratio of 0.60 ± 0.05 was determined. The phenomenological kinetic results were used to define the pressure and temperature dependence of the OH radical yield in the CH3CO + O2 reaction. The

  20. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration.

    KAUST Repository

    Zhu, Xiuping; Hatzell, Marta C; Logan, Bruce E

    2014-01-01

    Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO2 absorbed and 4 mg of CO2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO2 fixed as insoluble carbonates. Considering the additional economic benefits of H2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO2 sequestration.

  1. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration.

    KAUST Repository

    Zhu, Xiuping

    2014-03-24

    Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO2 absorbed and 4 mg of CO2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO2 fixed as insoluble carbonates. Considering the additional economic benefits of H2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO2 sequestration.

  2. Fabrication of porous MgCo2O4 with rod-like morphology and its superb catalytic activity towards ammonium perchlorate thermal decomposition

    Science.gov (United States)

    Li, Gang; Liu, Xiaoli; Bai, Weiyang

    2018-03-01

    In this paper, porous MgCo2O4 with rod-like morphology was successfully synthesized through the thermal treatment of metal oxalates precursor originated by the reaction of metal sulfates and oxalic acid, without the addition of other additives. The porous rod-like MgCo2O4, with a diameter of several hundred nanometers and a length of several micrometers, was formed through the agglomeration of numerous crystalline grains sized in 10–25 nm. Its catalytic effect on ammonium perchlorate (AP) thermal decomposition was evaluated using differential scanning calorimetry (DSC) techniques. It was found that the pyrolysis temperature of AP reduced by 129 °C and the heat release increased more than 3.19-fold with a 2 wt% addition of MgCo2O4. Meanwhile, the addition of MgCo2O4 resulted in an AP decomposition activation energy reduction from 216 kJ mol‑1 to 155 kJ mol‑1, calculated using the Kissinger correlation. This study provides new insights into the design and development of high performance catalysts for AP thermal decomposition.

  3. Solid-liquid stable phase equilibria of the ternary systems MgCl2 + MgB6O10+ H2O AND MgSO4 + MgB6O10 + H2O at 308.15 K

    Directory of Open Access Journals (Sweden)

    Lingzong Meng

    2014-03-01

    Full Text Available The solubilities and the relevant physicochemical properties of the ternary systems MgCl2 + MgB6O10 + H2O and MgSO4 + MgB6O10 + H2O at 308.15 K were investigated using an isothermal dissolution method. It was found that there is one invariant point, two univariant curves, and two crystallization regions of the systems. The systems belong to a simple co-saturated type, and neither double salts nor solid solutions were found. Based on the extended HW model and its temperature-dependent equations, the single-salt Pitzer parameters β(0, β(1, β(2 and CØ for MgCl2, MgSO4, and Mg(B6O7(OH6, the mixed ion-interaction parameters θCl,B6O10, θSO4,B6O10, ΨMg,Cl,B6O10, ΨMg,SO4,B6O10 of the systems at 308.15 K were fitted, In addition, the average equilibrium constants of the stable equilibrium solids at 308.15 K were obtained by a method using the activity product constant. Then the solubilities of the ternary systems are calculated. The calculated solubilities agree well with the experimental values.

  4. Study of the behavior of the compound Mg2Ni0.5Co0.5 front to hydriding process

    International Nuclear Information System (INIS)

    Martinez, C; Ordonez, S; Serafini, D; Guzman, D; Bustos, O

    2012-01-01

    This paper study the behavior of the compound Mg 2 Ni 0,5 Co 0,5 during the hydriding process. Elemental powders of Mg, Ni and Co, with an atomic ratio of 2:0,5:0,5 were mechanically alloyed using a high energy mill SPEX 8000D for 36h. The amorphous and crystalline structure of the samples was characterized through X-ray diffraction The hydriding process was performed by the volumetric technique Sievert at 90 o C and a pressure of 20 bar H 2 . The desorption process was evaluated by differential scanning calorimetry. Based on the results we can conclude that the amorphous structure absorbs more hydrogen, reaching a maximum of 3.6 wt% H2, besides the incorporation of cobalt act as catalyst for the absorption of H2 obtaining values higher than those reported in the Mg-Ni system amorphous state. The desorption process is influenced by the type of structure that presents the alloy

  5. First identification and thermodynamic characterization of the ternary U(VI) species, UO2(O2)(CO3)2(4-), in UO2-H2O2-K2CO3 solutions.

    Science.gov (United States)

    Goff, George S; Brodnax, Lia F; Cisneros, Michael R; Peper, Shane M; Field, Stephanie E; Scott, Brian L; Runde, Wolfgang H

    2008-03-17

    In alkaline carbonate solutions, hydrogen peroxide can selectively replace one of the carbonate ligands in UO2(CO3)3(4-) to form the ternary mixed U(VI) peroxo-carbonato species UO2(O2)(CO3)2(4-). Orange rectangular plates of K4[UO2(CO3)2(O2)].H2O were isolated and characterized by single crystal X-ray diffraction studies. Crystallographic data: monoclinic, space group P2(1)/ n, a = 6.9670(14) A, b = 9.2158(10) A, c = 18.052(4) A, Z = 4. Spectrophotometric titrations with H 2O 2 were performed in 0.5 M K 2CO 3, with UO2(O2)(CO3)2(4-) concentrations ranging from 0.1 to 0.55 mM. The molar absorptivities (M(-1) cm(-1)) for UO2(CO3)3(4-) and UO2(O2)(CO3)2(4-) were determined to be 23.3 +/- 0.3 at 448.5 nm and 1022.7 +/- 19.0 at 347.5 nm, respectively. Stoichiometric analyses coupled with spectroscopic comparisons between solution and solid state indicate that the stable solution species is UO2(O2)(CO3)2(4-), which has an apparent formation constant of log K' = 4.70 +/- 0.02 relative to the tris-carbonato complex.

  6. Spectroscopic Observation of Water-Mediated Deformation of the CARBOXYLATE-M2+ (M= Mg, Ca) Contact Ion Pair

    Science.gov (United States)

    Kelleher, Patrick J.; DePalma, Joseph W.; Johnson, Mark

    2016-06-01

    The binding of alkaline earth dications to the biologically relevant carboxylate ligand has previously been studied using vibrational sum frequency generation (VSFG) spectroscopy of the air-water interface, infrared multiple photon dissociation (IRMPD) spectroscopy of clusters, and DFT methods. These results suggest the presence of both monodentate and bidentate binding motifs of the M2+ ions to the cayboxyl head groups depending on the extent of solvation. We revisit these systems using vibrational predissociation spectroscopy to measure the gas-phase vibrational spectra of the D2-tagged microhydrated [MgOAc(H2O)n=1-5]+ and [CaOAc(H2O)n=1-6]+ clusters. The spectra show that [MgOAc(H2O)n]+ switches from bidentate to monodentate binding promptly at n = 5, while [CaOAc(H2O)n]+ retains its bidentate attachment such that the sixth water molecule initiates the second solvation shell. The difference in binding behavior between these two divalent metal ions is analyzed in the context of the local acidity of the solvent water molecules and the strength of the metal-carboxylate and metal-water interactions. This cluster study provides insight into the chemical physics underlying the unique and surprising impacts of Mg2+ and Ca2+ on the chemistry mediated by sea spray aerosols. Funding for this work was provided by the NSF's Center for Aerosol Impacts on Climate and the Environment.

  7. SYNGAS PRODUCTION FROM CO2-REFORMING OF CH4 OVER SOL-GEL SYNTHESIZED Ni-Co/Al2O3-MgO-ZrO2 NANOCATALYST: EFFECT OF ZrO2 PRECURSOR ON CATALYST PROPERTIES AND PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Seyed Mehdi Sajjadi

    2015-05-01

    Full Text Available Ni-Co/Al2O3-MgO-ZrO2 nanocatalyst with utilization of two different zirconia precursors, namely, zirconyl nitrate hydrate (ZNH and zirconyl nitrate solution (ZNS, was synthesized via the sol-gel method. The physiochemical properties of nanocatalysts were characterized by XRD, FESEM, EDX, BET and FTIR analyses and employed for syngas production from CO2-reforming of CH4. XRD patterns, exhibiting proper crystalline structure and homogeneous dispersion of active phase for the nanocatalyst ZNS precursor employed (NCAMZ-ZNS. FESEM and BET results of NCAMZ-ZNS presented more uniform morphology and smaller particle size and consequently higher surface areas. In addition, average particle size of NCAMZ-ZNS was 15.7 nm, which is close to the critical size for Ni-Co catalysts to avoid carbon formation. Moreover, FESEM analysis indicated both prepared samples were nanoscale. EDX analysis confirmed the existence of various elements used and also supported the statements made in the XRD and FESEM analyses regarding dispersion. Based on the excellent physiochemical properties, NCAMZ-ZNS exhibited the best reactant conversion across all of the evaluated temperatures, e.g. CH4 and CO2 conversions were 97.2 and 99% at 850 ºC, respectively. Furthermore, NCAMZ-ZNS demonstrated a stable yield with H2/CO close to unit value during the 1440 min stability test.

  8. Parameters of thermoelectric power and electronic structure of Yb-based compounds of YbM2X2(M=Fe,Co,Ni,Cu; X=Si,Ge) type

    International Nuclear Information System (INIS)

    Levin, E.M.; Kuzhel', B.S.

    1990-01-01

    Thermoelectric power of Yb-based intermetallic alloys YbM 2 Si 2 (M-Co,Ni,Cu) and YbM 2 Ge 2 (M=Fe,Co,Ni) have been investigated and found to have anomalous low-temperature peaks conditioned by intermediate Yb valency. Calculation of electronic structure parameters performed in frames of the localized Fermi-liquid model using experimental data on the thermoelectric power is in good agreement with results of YbCu 2 Si 2 band structure calculation based on the experimental value of the electronic heat capacity with regard for the (2J+1) - fold Yb 2+ degeneration

  9. Amine–mixed oxide hybrid materials for carbon dioxide adsorption from CO2/H2 mixture

    Science.gov (United States)

    Ravi, Navin; Aishah Anuar, Siti; Yusuf, Nur Yusra Mt; Isahak, Wan Nor Roslam Wan; Shahbudin Masdar, Mohd

    2018-05-01

    Bio-hydrogen mainly contains hydrogen and high level of carbon dioxide (CO2). High concentration of CO2 lead to a limitation especially in fuel cell application. In this study, the amine-mixed oxide hybrid materials for CO2 separation from bio-hydrogen model (50% CO2:50% H2) have been studied. Fourier-transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) characterizations showed that the amine–mixed oxide hybrid materials successfully adsorbed CO2 physically with no chemical adsorption evidence. The dry gas of CO2/H2 mixture adsorbed physically on amine–CuO–MgO hybrid material. No carbonates were detected after several times of adsorption, which indicated the good recyclability of adsorbents. The adsorbent system of diethanolamine (DEA)/15% CuO–75% MgO showed the highest CO2 adsorption capacity of 21.2 wt% due to the presence of polar substance on MgO surface, which can adsorb CO2 at ambient condition. The alcohol group of DEA can enhance the CO2 solubility on the adsorbent surface. In the 20% CuO–50% MgO adsorbent system, DEA as amine type showed a high CO2 adsorption of 19.4 wt%. The 10% amine loading system showed that the DEA adsorption system provided high CO2 adsorption. The BET analysis confirmed that a high amine loading contributed to the decrease in CO2 adsorption due to the low surface area of the adsorbent system.

  10. Photoacoustic CO2 sensor based on a DFB diode laser at 2.7 μm

    Science.gov (United States)

    Wolff, M.; Germer, M.; Groninga, H. G.; Harde, H.

    2008-01-01

    We present a new detection scheme for carbon dioxide (CO{2}) based on a custom-made room temperature distributed feedback (DFB) diode laser at 2.7 μm, currently representing one of the lasers with the highest emission wavelength of its kind. The detector's especially compact and simple set-up is based on photoacoustic spectroscopy (PAS). This method makes use of the transformation of absorbed modulated radiation into a sound wave. The sensor enables a very high detection sensitivity for CO{2} in the ppb range. Furthermore, the carefully selected spectral region as well as the narrow bandwidth and wide tunability of the single-mode laser ensure an excellent selectivity. Even measurements of different CO{2} isotopes can be easily performed. This enables applications in industrial sensing and medical diagnostics (e.g. 13C-breath tests).

  11. ß-Adrenergic Stimulation Increases RyR2 Activity via Intracellular Ca2+ and Mg2+ Regulation

    Science.gov (United States)

    Li, Jiao; Imtiaz, Mohammad S.; Beard, Nicole A.; Dulhunty, Angela F.; Thorne, Rick; vanHelden, Dirk F.; Laver, Derek R.

    2013-01-01

    Here we investigate how ß-adrenergic stimulation of the heart alters regulation of ryanodine receptors (RyRs) by intracellular Ca2+ and Mg2+ and the role of these changes in SR Ca2+ release. RyRs were isolated from rat hearts, perfused in a Langendorff apparatus for 5 min and subject to 1 min perfusion with 1 µM isoproterenol or without (control) and snap frozen in liquid N2 to capture their phosphorylation state. Western Blots show that RyR2 phosphorylation was increased by isoproterenol, confirming that RyR2 were subject to normal ß-adrenergic signaling. Under basal conditions, S2808 and S2814 had phosphorylation levels of 69% and 15%, respectively. These levels were increased to 83% and 60%, respectively, after 60 s of ß-adrenergic stimulation consistent with other reports that ß-adrenergic stimulation of the heart can phosphorylate RyRs at specific residues including S2808 and S2814 causing an increase in RyR activity. At cytoplasmic [Ca2+] adrenergic stimulation increased luminal Ca2+ activation of single RyR channels, decreased luminal Mg2+ inhibition and decreased inhibition of RyRs by mM cytoplasmic Mg2+. At cytoplasmic [Ca2+] >1 µM, ß-adrenergic stimulation only decreased cytoplasmic Mg2+ and Ca2+ inhibition of RyRs. The Ka and maximum levels of cytoplasmic Ca2+ activation site were not affected by ß-adrenergic stimulation. Our RyR2 gating model was fitted to the single channel data. It predicted that in diastole, ß-adrenergic stimulation is mediated by 1) increasing the activating potency of Ca2+ binding to the luminal Ca2+ site and decreasing its affinity for luminal Mg2+ and 2) decreasing affinity of the low-affinity Ca2+/Mg2+ cytoplasmic inhibition site. However in systole, ß-adrenergic stimulation is mediated mainly by the latter. PMID:23533585

  12. Generation of H{sub 2} and CO by solar thermochemical splitting of H{sub 2}O and CO{sub 2} by employing metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Rao, C.N.R., E-mail: cnrrao@jncasr.ac.in; Dey, Sunita

    2016-10-15

    Generation of H{sub 2} and CO by splitting H{sub 2}O and CO{sub 2} respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H{sub 2}O or CO{sub 2} over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H{sub 2}O or CO{sub 2}. While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln{sub 1−x}A{sub x}Mn{sub 1−y}M{sub y}O{sub 3} (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H{sub 2} and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y{sub 0.5}Sr{sub 0.5}MnO{sub 3} which releases 483 µmol/g of O{sub 2} at 1673 K and produces 757 µmol/g of CO from CO{sub 2} at 1173 K. The production of H{sub 2} from H{sub 2}O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H{sub 2} based on the Mn{sub 3}O{sub 4}/NaMnO{sub 2} cycle briefly. - Graphical abstract: Ln{sub 0.5}A{sub 0.5}Mn{sub 1−x}M{sub x}O{sub 3} (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO{sub 2} and H{sub 2}O for the generation of CO and H{sub 2}. - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO{sub 2} and H{sub 2}O. • In Ln{sub 1−x}A{sub x}MnO{sub 3} perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles

  13. Fabrication of Polycrystalline Transparent Co+2: MgAl2O4 by a Combination of Spark Plasma Sintering (SPS and Hot Isostatic Pressing (HIP Processes

    Directory of Open Access Journals (Sweden)

    Sokol Maxim

    2017-01-01

    Full Text Available Transparent Co2+ doped MgAl2Ob4 spinel was fabricated by SPS consolidation followed by and HIP treatment. It was established that HIP treatment significantly improved transparency of the ceramic in a wide range of wavelengths, especially, in a range, which is relevant for Q-switching. Nonlinear absorption was demonstrated and the ground and excited state absorption cross sections were estimated. The positive effect of the HIP treatment on the optical properties is related to an elimination of extremely fine porosity and to the location of Co ions at Mg2+sites in the spinel ionic structure. The experimental results indicate that the fabricated specimens can be used as a passive laser Q-switching material.

  14. Structurally characterized 1,1,3,3-tetramethylguanidine solvated magnesium aryloxide complexes: [Mg(mu-OEt)(DBP)(H-TMG)]2, [Mg(mu-OBc)(DBP)(H-TMG)]2, [Mg(mu-TMBA)(DBP)(H-TMG)]2, [Mg(mu-DPP)(DBP)(H-TMG)]2, [Mg(BMP)2(H-TMG)2], [Mg(O-2,6-Ph2C6H3)2 (H-TMG)2].

    Science.gov (United States)

    Monegan, Jessie D; Bunge, Scott D

    2009-04-06

    The synthesis and structural characterization of several 1,1,3,3-tetramethylguanidine (H-TMG) solvated magnesium aryloxide complexes are reported. Bu(2)Mg was successfully reacted with H-TMG, HOC(6)H(3)(CMe(3))(2)-2,6 (H-DBP), and either ethanol, a carboxylic acid, or diphenyl phosphate in a 1:1 ratio to yield the corresponding [Mg(mu-L)(DBP)(H-TMG)](2) where L = OCH(2)CH(3) (OEt, 1), O(2)CC(CH(3))(3) (OBc, 2), O(2)C(C(6)H(2)-2,4,6-(CH(3))(3)) (TMBA, 3), or O(2)P(OC(6)H(5))(2) (DPP, 4). Bu(2)Mg was also reacted with two equivalents of H-TMG and HOC(6)H(3)(CMe(3))-2-(CH(3))-6 (BMP) or HO-2,6-Ph(2)C(6)H(3) to yield [Mg(BMP)(2)(H-TMG)(2)] (5) and [Mg(O-2,6-Ph(2)C(6)H(3))(2)(H-TMG)(2)] (6). Compounds 1-6 were characterized by single-crystal X-ray diffraction. Polymerization of l- and rac-lactide with 1 was found to generate polylactide (PLA). A discussion concerning the relevance of compounds 2 - 4 to the structure of Mg-activated phosphatase enzymes is also provided. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and (1)H, (13)C and (31)P NMR studies.

  15. CO2 line-mixing database and software update and its tests in the 2.1 μm and 4.3 μm regions

    International Nuclear Information System (INIS)

    Lamouroux, J.; Régalia, L.; Thomas, X.; Vander Auwera, J.; Gamache, R.R.; Hartmann, J.-M.

    2015-01-01

    An update of the former version of the database and software for the calculation of CO 2 –air absorption coefficients taking line-mixing into account [Lamouroux et al. J Quant Spectrosc Radiat Transf 2010;111:2321] is described. In this new edition, the data sets were constructed using parameters from the 2012 version of the HITRAN database and recent measurements of line-shape parameters. Among other improvements, speed-dependent profiles can now be used if line-mixing is treated within the first order approximation. This new package is tested using laboratory spectra measured in the 2.1 μm and 4.3 μm spectral regions for various pressures, temperatures and CO 2 concentration conditions. Despite improvements at 4.3 μm at room temperature, the conclusions on the quality of this update are more ambiguous at low temperature and in the 2.1 μm region. Further tests using laboratory and atmospheric spectra are thus required for the evaluation of the performances of this updated package. - Highlights: • High resolution infrared spectroscopy. • CO 2 in air. • Updated tools. • Line mixing database and software

  16. Immobilization of glucose oxidase using CoFe2O4/SiO2 nanoparticles as carrier

    Science.gov (United States)

    Wang, Hai; Huang, Jun; Wang, Chao; Li, Dapeng; Ding, Liyun; Han, Yun

    2011-04-01

    Aminated-CoFe2O4/SiO2 magnetic nanoparticles (NPs) were prepared from primary silica particles using modified StÖber method. Glucose oxidase (GOD) was immobilized on CoFe2O4/SiO2 NPs via cross-linking with glutaraldehyde (GA). The optimal immobilization condition was achieved with 1% (v/v) GA, cross-linking time of 3 h, solution pH of 7.0 and 0.4 mg GOD (in 3.0 mg carrier). The immobilized GOD showed maximal catalytic activity at pH 6.5 and 40 °C. After immobilization, the GOD exhibited improved thermal, storage and operation stability. The immobilized GOD still maintained 80% of its initial activity after the incubation at 50 °C for 25 min, whereas free enzyme had only 20% of initial activity after the same incubation. After kept at 4 °C for 28 days, the immobilized and free enzyme retained 87% and 40% of initial activity, respectively. The immobilized GOD maintained approximately 57% of initial activity after reused 7 times. The KM (Michaelis-Menten constant) values for immobilized GOD and free GOD were 14.6 mM and 27.1 mM, respectively.

  17. Pseudobrookite-type MgTi2O5 water purification filter with controlled particle morphology

    Directory of Open Access Journals (Sweden)

    Yuta Nakagoshi

    2015-09-01

    Full Text Available Pseudobrookite-type oxide-based ceramics, such as Al2TiO5 and MgTi2O5, have recently been studied as porous ceramic membranes. Here, the effect of LiF doping on the morphology of MgTi2O5 particles is presented in detail. Water purification filters were produced using porous MgTi2O5, with different particle morphologies. MgCO3 (basic and TiO2 powders with various LiF contents were wet-ball milled, dried, and then, calcined in air at 1100 °C to obtain the MgTi2O5 powders. The powder compacts were sintered at 1000–1200 °C to produce the MgTi2O5 disk filters. The 0.5 wt.% LiF-doped MgTi2O5 disk filter, with elongated grains, showed well-balanced performance removing boehmite particles with diameter of 0.7 μm. Non-doped MgTi2O5 disk filter with equiaxed grains was suitable for precise filtration.

  18. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+.

    Science.gov (United States)

    Duguid, J G; Bloomfield, V A; Benevides, J M; Thomas, G J

    1995-12-01

    Differential scanning calorimetry, laser Raman spectroscopy, optical densitometry, and pH potentiometry have been used to investigate DNA melting profiles in the presence of the chloride salts of Ba2+, Sr2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+. Metal-DNA interactions have been observed for the molar ratio [M2+]/[PO2-] = 0.6 in aqueous solutions containing 5% by weight of 160 bp mononucleosomal calf thymus DNA. All of the alkaline earth metals, plus Mn2+, elevate the melting temperature of DNA (Tm > 75.5 degrees C), whereas the transition metals Co2+, Ni2+, and Cd2+ lower Tm. Calorimetric (delta Hcal) and van't Hoff (delta HVH) enthalpies of melting range from 6.2-8.7 kcal/mol bp and 75.6-188.6 kcal/mol cooperative unit, respectively, and entropies from 17.5 to 24.7 cal/K mol bp. The average number of base pairs in a cooperative melting unit () varied from 11.3 to 28.1. No dichotomy was observed between alkaline earth and transition DNA-metal complexes for any of the thermodynamic parameters other than their effects on Tm. These results complement Raman difference spectra, which reveal decreases in backbone order, base unstacking, distortion of glycosyl torsion angles, and rupture of hydrogen bonds, which occur after thermal denaturation. Raman difference spectroscopy shows that transition metals interact with the N7 atom of guanine in duplex DNA. A broader range of interaction sites with single-stranded DNA includes ionic phosphates, the N1 and N7 atoms of purines, and the N3 atom of pyrimidines. For alkaline earth metals, very little interaction was observed with duplex DNA, whereas spectra of single-stranded complexes are very similar to those of melted DNA without metal. However, difference spectra reveal some metal-specific perturbations at 1092 cm-1 (nPO2-), 1258 cm-1 (dC, dA), and 1668 cm-1 (nC==O, dNH2 dT, dG, dC). Increased spectral intensity could also be observed near 1335 cm-1 (dA, dG) for CaDNA. Optical densitometry, employed to detect DNA

  19. Peculiarities of the intermediate valence state of Ce in CeM2Si2 (M = Fe, Co, Ni) compounds

    International Nuclear Information System (INIS)

    Koterlyn, M.; Shcherba, I.; Yasnitskii, R.; Koterlyn, G.

    2007-01-01

    The results of thermoelectric power and the electrical resistivity measurements connected with the intermediate valence (IV) of Ce are presented for the compounds CeM 2 Si 2 (M = Fe, Co, Ni) in the temperature range of 4-800 K. It is shown that CeM 2 Si 2 are Kondo-lattices with the coherence scale T coh ∼ 60-80 K and the so-called single-site Kondo temperature T K ∼ 10 3 K. On the example of CeNi 2 Si 2 we have studied the changes in the structure of density of f states (f-DOS) near the Fermi energy caused by atomic substitutions. The results of structural, transport, magnetic, and Ce L III X-ray absorption spectra measurements in the series Ce 1-x La x Ni 2 Si 2 (0 ≤ x ≤ 0.6), Ce(Ni 1-y Cu y ) 2 Si 2 (0 ≤ y ≤ 0.6) and CeNi 2 (Si 1-z Ge z ) 2 (0 ≤ z ≤ 0.5) are presented. We found that the IV state of Ce in the CeM 2 Si 2 is an evidence of possible opening a wide pseudogap Δ ∼ kT K within the f-DOS structure slightly above the Fermi energy

  20. Theoretical descriptions of novel triplet germylenes M1-Ge-M2-M3 (M1 = H, Li, Na, K; M2 = Be, Mg, Ca; M3 = H, F, Cl, Br).

    Science.gov (United States)

    Kassaee, Mohamad Zaman; Ashenagar, Samaneh

    2018-02-06

    In a quest to identify new ground-state triplet germylenes, the stabilities (singlet-triplet energy differences, ΔE S-T ) of 96 singlet (s) and triplet (t) M 1 -Ge-M 2 -M 3 species were compared and contrasted at the B3LYP/6-311++G**, QCISD(T)/6-311++G**, and CCSD(T)/6-311++G** levels of theory (M 1  = H, Li, Na, K; M 2  = Be, Mg, Ca; M 3  = H, F, Cl, Br). Interestingly, F-substituent triplet germylenes (M 3  = F) appear to be more stable and linear than the corresponding Cl- or Br-substituent triplet germylenes (M 3  = Cl or Br). Triplets with M 1  = K (i.e., the K-Ge-M 2 -M 3 series) seem to be more stable than the corresponding triplets with M 1  = H, Li, or Na. This can be attributed to the higher electropositivity of potassium. Triplet species with M 3  = Cl behave similarly to those with M 3  = Br. Conversely, triplets with M 3  = H show similar stabilities and linearities to those with M 3  = F. Singlet species of formulae K-Ge-Ca-Cl and K-Ge-Ca-Br form unexpected cyclic structures. Finally, the triplet germylenes M 1 -Ge-M 2 -M 3 become more stable as the electropositivities of the α-substituents (M 1 and M 2 ) and the electronegativity of the β-substituent (M 3 ) increase.

  1. Surface CO2 leakage during the first shallow subsurface CO2 release experiment

    OpenAIRE

    Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.

    2008-01-01

    A new field facility was used to study CO2 migration processes and test techniques to detect and quantify potential CO2 leakage from geologic storage sites. For 10 days starting 9 July 2007, and for seven days starting 5 August 2007, 0.1 and 0.3 t CO2 d-1, respectively, were released from a ~;100-m long, sub-water table (~;2.5-m depth) horizontal well. The spatio-temporal evolution of leakage was mapped through repeated grid measurements of soil CO2 flux (FCO2). The surface leakage onset...

  2. Extraction Of Cobalt From Spent CMB Catalyst Using Supercritical CO2

    Directory of Open Access Journals (Sweden)

    Joo S.-H.

    2015-06-01

    Full Text Available The metal extraction from spent CMB catalyst using supercritical CO2(scCO2 was investigated with single organic system, binary organic system and ternary organic system to extract metal ions. Leaching solution of spent CMB catalyst containing 389 mg L−1 Co2+, 187 mg L−1 Mn2+, 133 mg L−1 Na+, 14.97 mg L−1 Ca2+ and 13.2 mg L−1 Mg2+. The method consists of scCO2/ligands complexation process and metal extraction process at 60°C and 200bar. The result showed the Co and Mn was selectively extracted from Mg, Ca and Na in the ternary system of mixture of Cyanex272, DEA and Alamine304-I.

  3. Exploring the MIS M2 glaciation occurring during a warm and high atmospheric CO2 Pliocene background climate

    Science.gov (United States)

    Tan, Ning; Ramstein, Gilles; Dumas, Christophe; Contoux, Camille; Ladant, Jean-Baptiste; Sepulchre, Pierre; Zhang, Zhongshi; De Schepper, Stijn

    2017-08-01

    Prior to the Northern Hemisphere glaciation around ∼2.7 Ma, a large global glaciation corresponding to a 20 to 60 m sea-level drop occurred during Marine Isotope Stage (MIS) M2 (3.312-3.264 Ma), interrupted the period of global warmth and high CO2 concentration (350-450 ppmv) of the mid Piacenzian. Unlike the late Quaternary glaciations, the M2 glaciation only lasted 50 kyrs and occurred under uncertain CO2 concentration (220-390 ppmv). The mechanisms causing the onset and termination of the M2 glaciation remain enigmatic, but a recent geological hypothesis suggests that the re-opening and closing of the shallow Central American Seaway (CAS) might have played a key role. In this article, thanks to a series of climate simulations carried out using a fully coupled Atmosphere Ocean General Circulation Model (GCM) and a dynamic ice sheet model, we show that re-opening of the shallow CAS helps precondition the low-latitude oceanic circulation and affects the related northward energy transport, but cannot alone explain the onset of the M2 glaciation. The presence of a shallow open CAS, together with favourable orbital parameters, 220 ppmv of CO2 concentration, and the related vegetation and ice sheet feedback, led to a global ice sheet build-up producing a global sea-level drop in the lowest range of proxy-derived estimates. More importantly, our results show that the simulated closure of the CAS has a negligible impact on the NH ice sheet melt and cannot explain the MIS M2 termination.

  4. Investigation into the dehydration of selenate doped Na2M(SO4)2·2H2O (M = Mn, Fe, Co and Ni): Stabilisation of the high Na content alluaudite phases Na3M1.5(SO4)3-1.5x(SeO4)1.5x (M = Mn, Co and Ni) through selenate incorporation

    Science.gov (United States)

    Driscoll, L. L.; Kendrick, E.; Knight, K. S.; Wright, A. J.; Slater, P. R.

    2018-02-01

    In this paper we report an investigation into the phases formed on dehydration of Na2M(SO4)2-x(SeO4)x·2H2O (0 ≤ x ≤ 1; M = Mn, Fe, Co and Ni). For the Fe series, all attempts to dehydrate the samples doped with selenate resulted in amorphous products, and it is suspected that a side redox reaction involving the Fe and selenate may be occurring leading to phase decomposition and hence the lack of a crystalline product on dehydration. For M = Mn, Co, Ni, the structure observed was shown to depend upon the transition metal cation and level of selenate doping. An alluaudite phase, Na3M1.5(SO4)3-1.5x(SeO4)1.5x, was observed for the selenate doped compositions, with this phase forming as a single phase for x ≥ 0.5 M = Co, and x = 1.0 M = Ni. For M = Mn, the alluaudite structure is obtained across the series, albeit with small impurities for lower selenate content samples. Although the alluaudite-type phases Na2+2y(Mn/Co)2-y(SO4)3 have recently been reported [1,2], doping with selenate appears to increase the maximum sodium content within the structure. Moreover, the selenate doped Ni based samples reported here are the first examples of a Ni sulfate/selenate containing system exhibiting the alluaudite structure.

  5. Calcium phosphate/chitosan composite coating: Effect of different concentrations of Mg{sup 2+} in the m-SBF on its bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Pharmacy College, Jiamusi University, Jiamusi 154007 (China); Dai, Changsong, E-mail: changsd@hit.edu.cn [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Wei, Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Chemistry and Bioengineering, Suzhou Science Technology University, Suzhou 215009 (China); Wen, Zhaohui, E-mail: wenzhaohui1968@163.com [Department of neuro intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zhang, Shujuan; Lin, Lemin [Department of neuro intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)

    2013-09-01

    The purpose of this study was to investigate the effect of different concentration of Mg{sup 2+} in a modified simulated body fluid (m-SBF) on the bioactivity of calcium phosphate/chitosan composite coating. Calcium phosphate/chitosan composite coating was prepared on graphite substrate via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The obtained samples were soaked in the m-SBF containing different concentration of Mg{sup 2+} for different times. And then, the composite coatings were assessed using X-ray diffractometer (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectra, and scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The soaking solution was evaluated by inductively coupled plasma optical emission spectrometer (ICP-OES) test. The analytical results showed that hydroxyapatite (HA) and bone-like apatite (HCA) grew on the surface of calcium phosphate/chitosan composite coating after incubation in different m-SBF. With Mg{sup 2+} concentration in m-SBF increased from 1× Mg to 10× Mg, HA in the composite coating first presented a dissolving process and then a precipitating one slowly, while HCA presented a growing trend, continuously. The increasing of Mg{sup 2+} concentration in the m-SBF inhibited the total growing process of HA and HCA as a whole. The structure of the composite coating changed from spherical into irregular morphology with the concentration of Mg{sup 2+} increasing from 1× Mg to 10× Mg. Over all, with the Mg{sup 2+} concentration increasing, the bioactivity of calcium phosphate/chitosan composite coating tended to decrease.

  6. In situ preparation of MgCo2O4 nanosheets on Ni-foam as a binder-free electrode for high performance hybrid supercapacitors.

    Science.gov (United States)

    Vijayakumar, Subbukalai; Nagamuthu, Sadayappan; Ryu, Kwang-Sun

    2018-05-15

    A binder-free, MgCo2O4 nanosheet-like architecture was prepared on Ni-foam using a hydrothermal method. MgCo2O4/Ni-foam was characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), and transmission electron microscopy techniques. The FESEM image revealed a nanosheet array-like architecture. The MgCo2O4 nanosheets grown on Ni-foam exhibited the maximum specific capacity of 947 C g-1 at a specific current of 2 A g-1. Approximately 96% of the specific capacity was retained from the maximum specific capacity after 5000 continuous charge-discharge cycles. This hybrid device exhibited a maximum specific capacity of 52 C g-1 at a specific current of 0.5 A g-1, and also exhibited a maximum specific energy of 12.99 W h kg-1 at a specific power of 448.7 W kg-1. These results confirmed that the binder-free MgCo2O4 nanosheets grown on Ni-foam are a suitable positive electrode material for hybrid supercapacitors.

  7. Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co2Fe6B2 Free Layer Structure.

    Science.gov (United States)

    Lee, Du-Yeong; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2016-12-01

    For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %.

  8. Solubility of uranovanadates of the series A2+(VUO6)2 · nH2O (A2+ = Mg, Ca, Sr, Ba, Co, Ni, Cu, Pb) in water or aqueous solutions

    International Nuclear Information System (INIS)

    Chernorukov, N.G.; Sulejmanov, E.V.; Nipruk, O.V.; Lizunova, G.M.

    2001-01-01

    Solubility of uranovanadates of the series A 2+ (VUO 6 ) 2 · nH 2 O (A 2+ - Mg, Ca, Sr, Ba, Co, Ni, Cu, Pb) in water and aqueous solutions of inorganic acids at 25 deg C and different pH values was determined experimentally. The data obtained permitted calculation the Gibbs standard functions of formation and consideration of their state under conditions that were not studied experimentally, in the presence of carbon dioxide, in particular [ru

  9. Structural and optical studies of Mg doped nanoparticles of chromium oxide (Cr2O3) synthesized by co-precipitation method

    Science.gov (United States)

    Singh, Jarnail; Verma, Vikram; Kumar, Ravi

    2018-04-01

    We present here the synthesization, structural and optical studies of Mg doped nanoparticles of Chromium oxide (Cr2O3) prepared using co-precipitation method. These samples were characterized using powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Raman spectroscopy and UV-Vis spectroscopy techniques. We have demonstrated that there is negligible change in optical band gap with the Mg doping. The prepared Cr2O3 nanoparticles are spherical in shape, but they are transformed into platelets when doped with Mg. The XRD studies reveal that the Mg doping in Cr2O3 doesn't affect the structure of Chromium oxide (Cr2O3).

  10. Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material

    International Nuclear Information System (INIS)

    Wang, Dan; Huang, Yan; Huo, Zhenqing; Chen, Li

    2013-01-01

    Highlights: • Layered Li[Li 0.2 Ni 0.2−x Mn 0.6−x Mg 2x ]O 2 (2x = 0, 0.01, 0.02, 0.05) were synthetized. • Li[Li 0.2 Ni 0.2−x Mn 0.6−x Mg 2x ]O 2 exhibit enhanced electrochemical properties. • The improved performance is attributed to enhanced structure stability. -- Abstract: Mg-doped Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 as a Li-rich cathode material of lithium-ion batteries were prepared by co-precipitation method and ball-milling treatment using Mg(OH) 2 as a dopant. Scanning electron microscopy (SEM), ex situ X-ray powder diffraction (XRD), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvantatic charge/discharge were used to investigate the effect of Mg doping on structure and electrochemical performance. Compared with the bare material, Mg-doped materials exhibit better cycle stabilities and superior rate capabilities. Li[Li 0.2 Ni 0.195 Mn 0.595 Mg 0.01 ]O 2 displays a high reversible capacity of 226.5 mAh g −1 after 60 cycles at 0.1 C. The excellent cycle performance can be attributed to the improvement in structure stability, which is verified by XRD tests before and after 60 cycles. EIS results show that Mg doping decreases the charge-transfer resistance and enhances the reaction kinetics, which is considered to be the major factor for higher rate performance

  11. Development of the 1.6μm OPG/OPA system wavelength-controlled precisely for CO2 DIAL

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2010-12-01

    We developed an optical parametric oscillator (OPO) laser system for 1.6μm CO2 DIAL1). In order to improve the measurement accuracy of CO2 profiles, development of high power and wavelength stabilized laser system has been conducted. We report a new high-power 1.6μm laser transmitter based on a parametric master oscillator-power amplifier (MOPA) system pumped by a LD-pumped Q-switched Nd:YAG laser which has the injection seed laser locked to the iodine absorption line. The master oscillator is an optical parametric generator (OPG), based on an MgO-doped periodically poled LiTaO3 (PPMgLT) crystal. The OPOs require either active control of the cavity length or slight misalignment of the cavity. On the other hand, the OPGs do not require a cavity and instead rely on sufficient conversion efficiency to be obtained with a single pass through the crystal. The single-frequency oscillation of the OPG was achieved by injection seeding. The 1.6μm emission of the OPG is amplified by two-stage optical parametric amplifiers (OPAs). The each PPMgLT crystal was mounted on the copper holder, and the temperature control of the each holder was carried out within 0.01 K. The wavelength feedback system of the Nd:YAG seed laser is performed with the side locking of the iodine absorption spectrum (line No.1107) and the frequency stability is realized within 10 MHz rms. Stabilization of the 1.6μm DFB seed laser is estimated to within 4 MHz rms at the CO2 absorption line center and within 1.8 MHz rms at the CO2 absorption line slope using the wavelength control unit. We demonstrated single-longitudinal-mode emission with the OPG and two OPAs. The beam quality was TEM00 mode, the pulse energy was 12 mJ at 500 Hz repetition rate and the frequency stability was less than 10MHz rms. The unique performances of this optical parametric system make a relevant transmitter for CO2 DIAL. This work was financially supported by the System Development Program for Advanced Measurement and Analysis

  12. Structure of Na2O·MO·SiO2·CaF2 (M=Mg, Ca) oxyfluoride glasses

    International Nuclear Information System (INIS)

    Cheng Jinshu; Deng Wei; Wang Mitang

    2012-01-01

    (9-x)CaO·xMgO·15Na 2 O·60SiO 2 ·16CaF 2 (x=0, 2, 4, 6, and 9) oxyfluoride glasses were prepared. Utilizing the Raman scattering technique together with 29 Si and 19 F MAS NMR, the effect of alkaline metal oxides on the Q species of glass was characterized. Raman results show that as magnesia is added at the expense of calcium oxide, the disproportional reaction Q 3 →Q 4 +Q 2 (Q n is a SiO 4 tetrahedron with n bridging oxygens) prompted due to the high ionic field strength of magnesia, magnesium oxide entered into the silicate network as tetrahedral MgO 4 , and removed other modifying ions for charge compensation. This reaction was confirmed by 29 Si MAS NMR. 19 F MAS NMR results show that fluorine exists in the form of mixed calcium sodium fluoride species in all glasses and no Si-F bonds were formed. As CaO is gradually replaced by MgO (x=6, 9), a proportion of the magnesium ions combines with fluorine to form the MgF + species. Meanwhile, some part of Na + ions complex F - in the form of F-Na(6).

  13. Homoleptic Diphosphacyclobutadiene Complexes [M(η4-P2C2R2)2]x- (M=Fe, Co; x=0, 1)

    NARCIS (Netherlands)

    Wolf, Robert; Ehlers, A.W.; Khusniyarov, M.M.; Hartl, F.; de Bruin, B.; Long, G.J.; Grandjean, F.; Schappacher, F.M.; Pöttgen, R.; Slootweg, J.C.; Lutz, M.; Spek, A.L.; Lammertsma, K.

    2011-01-01

    The preparation and comprehensive characterization of a series of homoleptic sandwich complexes containing diphosphacyclobutadiene ligands are reported. Compounds [K([18]crown-6)ACHTUNGTRENUNG(thf)2][Fe(η4- P2C2tBu2)2] (K1), [K([18]crown-6)- ACHTUNGTRENUNG(thf)2][Co(h4-P2C2tBu2)2] (K2), and

  14. Homoleptic Diphosphacyclobutadiene Complexes [M(η(4)-P2C2R2)(2]x- (M = Fe, Co; x=0, 1)

    NARCIS (Netherlands)

    Wolf, R.; Ehlers, A.W.; Khusniyarov, M.M.; Hartl, F.; de Bruin, B.; Long, G.J.; Grandjean, F.; Schappacher, F.M.; Pöttgen, R.; Slootweg, J.C.; Lutz, M.; Spek, A.L.; Lammertsma, K.

    2010-01-01

    The preparation and comprehensive characterization of a series of homoleptic sandwich complexes containing diphosphacyclobutadiene ligands are reported. Compounds [K([18]crown-6)(thf)(2)[Fe(η(4)-P(2)C(2)tBu(2))(2)] (K1), [K([18]crown-6)(thf)(2)][Co(η(4)-P(2)C(2)tBu(2))(2)] (K2), and

  15. Excitation of the 4.3-μm bands of CO2 by low-energy electrons

    International Nuclear Information System (INIS)

    Bulos, R.R.; Phelps, A.V.

    1976-01-01

    Rate coefficients for the excitation of the 4.3-μm bands of CO 2 by low-energy electrons in CO 2 have been measured using a drift-tube technique. The CO 2 density [(1.5 to 7) x 10 17 molecules/cm 3 ] was chosen to maximize the radiation reaching the detector. Line-by-line transmission calculations were used to take into account the absorption of 4.3-μm radiation. A small fraction of the approximately 10 -8 W of the 4.3-μm radiation produced by the approximately 10 -7 -A electron current was incident on an InSb photovoltaic detector. The detector calibration and absorption calculations were checked by measuring the readily calculated excitation coefficients for vibrational excitation of N 2 containing a small concentration of CO 2 . For pure CO 2 the number of molecules capable of emitting 4.3-μm radiation produced per cm of electron drift and per CO 2 molecule varied from 10 -17 cm -2 at E/N = 6 x 10 -17 V cm 2 to 5.4 x 10 -16 cm -2 at E/N = 4 x 10 -16 V cm 2 . Here E is the electric field and N is total gas density. The excitation coefficients at lower E/N are much larger than estimated previously. A set of vibrational excitation cross sections is obtained for CO 2 which is consistent with the excitation coefficient data and with most of the published electron-beam data

  16. Structural, elastic and electronic properties of C14-type Al{sub 2}M (M=Mg, Ca, Sr and Ba) Laves phases

    Energy Technology Data Exchange (ETDEWEB)

    Lishi, Ma; Yonghua, Duan, E-mail: duanyh@kmust.edu.cn; Runyue, Li

    2017-02-15

    The structural and mechanical properties, Debye temperatures and anisotropic sound velocities of the Laves phases Al{sub 2}M (M=Mg, Ca, Sr and Ba) with C14-type structure were investigated using the first-principles corresponding calculations. The corresponding calculated structural parameters and formation enthalpies are in good agreement with the available theoretical values, and Al{sub 2}Ca has the best phase stability. The mechanical properties, including elastic constants, bulk modulus B, shear modulus G, Young’s modulus E, and Poisson ratio ν, were deduced within the Voigt-Reuss-Hill approximation. The brittleness and ductility were estimated by the values of Poisson ratio, B/G and Cauchy pressure. Moreover, the elastic anisotropy was investigated by calculating and discussing several anisotropy indexes. Finally, the electronic structures were used to illustrate the bonding characteristics of C14-Al{sub 2}M (M=Mg, Ca, Sr and Ba) phases.

  17. Mild hydrothermal synthesis, crystal structure, spectroscopic and magnetic properties of the [MxIIM2.5-xIII(H2O)2(HPIIIO3)y(PVO4)2-yF] [M=Fe, x=2.08, y=1.58; M=Co, Ni, x=2.5, y=2] compounds

    International Nuclear Information System (INIS)

    Orive, Joseba; Mesa, Jose L.; Legarra, Estibaliz; Plazaola, Fernando; Arriortua, Maria I.; Rojo, Teofilo

    2009-01-01

    The [M x II M 2.5-x III (H 2 O) 2 (HP III O 3 ) y (P V O 4 ) 2-y F] [M=Fe (1), x=2.08, y=1.58; M=Co (2), x=2.5, y=2; Ni (3), x=2.5, y=2] compounds have been synthesized using mild hydrothermal conditions at 170 deg. C during five days. Single-crystals of (1) and (2), and polycrystalline sample of (3) were obtained. These isostructural compounds crystallize in the orthorhombic system, space group Aba2, with a=9.9598(2), b=18.8149(4) and c=8.5751(2) A for (1), a=9.9142(7), b=18.570(1) and c=8.4920(5) A for (2) and a=9.8038(2), b=18.2453(2) and c=8.4106(1) A for (3), with Z=8 in the three phases. An X-ray diffraction study reveals that the crystal structure is composed of a three-dimensional skeleton formed by [MO 5 F] and [MO 4 F 2 ] (M=Fe, Co and Ni) octahedra and [HPO 3 ] tetrahedra, partially substituted by [PO 4 ] tetrahedra in phase (1). The IR spectra show the vibrational modes of the water molecules and those of the (HPO 3 ) 2- tetrahedral oxoanions. The thermal study indicates that the limit of thermal stability of these phases is 195 deg. C for (1) and 315 deg. C for (2) and (3). The electronic absorption spectroscopy shows the characteristic bands of the Fe(II), Co(II) and Ni(II) high-spin cations in slightly distorted octahedral geometry. Magnetic measurements indicate the existence of global antiferromagnetic interactions between the metallic centers with a ferromagnetic transition in the three compounds at 28, 14 and 21 K for (1), (2) and (3), respectively. Compound (1) exhibits a hysteresis loop with remnant magnetization and coercive field values of 0.72 emu/mol and 880 Oe, respectively. - Abstract: Polyhedral view of the crystal structure of the [M x II M 2.5-x III (H 2 O) 2 (HP III O 3 ) y (P IV O 4 ) 2-y F] [M=Fe, x=2.08, y=1.58; M=Co, Ni, x=2.5, y=2] compounds showing the sheets along the [001] direction.

  18. Strain and Ferroelectric-Field Effects Co-mediated Magnetism in (011)-CoFe2O4/Pb(Mg1/3Nb2/3)0.7Ti0.3O3Multiferroic Heterostructures

    KAUST Repository

    Wang, Ping; Jin, Chao; Zheng, Dongxing; Li, Dong; Gong, Junlu; Li, Peng; Bai, Haili

    2016-01-01

    Electric-field mediated magnetism was investigated in CoFe2O4 (CFO, deposited by reactive cosputtering under different Oxygen flow rates) films fabricated on (011)-Pb(Mg1/3Nb2/3)(0.7)Ti0.3O3 (PMN-PT) substrates. Ascribed to the volatile strain

  19. Advances in Geological CO{sub 2} Sequestration and Co-Sequestration with O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Verba, Circe A; O& #x27; Connor, William K.; Ideker, J.H.

    2012-10-28

    The injection of CO{sub 2} for Enhanced Oil Recovery (EOR) and sequestration in brine-bearing formations for long term storage has been in practice or under investigation in many locations globally. This study focused on the assessment of cement wellbore seal integrity in CO{sub 2}- and CO{sub 2}-O{sub 2}-saturated brine and supercritical CO{sub 2} environments. Brine chemistries (NaCl, MgCl{sub 2}, CaCl{sub 2}) at various saline concentrations were investigated at a pressure of 28.9 MPa (4200 psi) at both 50{degree}C and 85{degree}C. These parameters were selected to simulate downhole conditions at several potential CO{sub 2} injection sites in the United States. Class H portland cement is not thermodynamically stable under these conditions and the formation of carbonic acid degrades the cement. Dissociation occurs and leaches cations, forming a CaCO{sub 3} buffered zone, amorphous silica, and other secondary minerals. Increased temperature affected the structure of C-S-H and the hydration of the cement leading to higher degradation rates.

  20. Nano-structure formation of Fe-Pt perpendicular magnetic recording media co-deposited with MgO, Al2O3 and SiO2 additives

    International Nuclear Information System (INIS)

    Safran, G.; Suzuki, T.; Ouchi, K.; Barna, P.B.; Radnoczi, G.

    2006-01-01

    Perpendicular magnetic recording media samples were prepared by sputter deposition on sapphire with a layer sequence of MgO seed-layer/Cr under-layer/FeSi soft magnetic under-layer/MgO intermediate layer/FePt-oxide recording layer. The effects of MgO, Al 2 O 3 and SiO 2 additives on the morphology and orientation of the FePt layer were investigated by transmission electron microscopy. The samples exhibited (001) orientation of the L1 FePt phase with the mutual orientations of sapphire substrate//MgO(100)[001]//Cr(100)[11-bar0]//FeSi(100)[11-bar0]//MgO(100) [001]//FePt(001)[100]. The morphology of the FePt films varied due to the co-deposited oxides: The FePt layers were continuous and segmented by stacking faults aligned at 54 o to the surface. Films with SiO 2 addition, beside the oriented columnar FePt grains, exhibited a fraction of misoriented crystallites due to random repeated nucleation. Al 2 O 3 addition resulted in a layered structure, i.e. an initial continuous epitaxial FePt layer covered by a secondary layer of FePt-Al 2 O 3 composite. Both components (FePt and MgO) of the MgO-added samples were grown epitaxially on the MgO intermediate layer, so that a nano-composite of intercalated (001) FePt and (001) MgO was formed. The revealed microstructures and formation mechanisms may facilitate the improvement of the structural and magnetic properties of the FePt-oxide composite perpendicular magnetic recording media

  1. Structural features of AgCaCdMg2(PO4)3 and AgCd2Mg2(PO4)3, two new compounds with the alluaudite-type structure, and their catalytic activity in butan-2-ol conversion

    International Nuclear Information System (INIS)

    Kacimi, Mohammed; Ziyad, Mahfoud; Hatert, Frederic

    2005-01-01

    AgCaCdMg 2 (PO 4 ) 3 and AgCd 2 Mg 2 (PO 4 ) 3 , two new compounds with the alluaudite-type structure, were synthesized by a solid state reaction in air at 750 deg. C. The X-ray powder diffraction pattern of AgCaCdMg 2 (PO 4 ) 3 indicates the presence of small amounts of (Ca, Mg) 3 (PO 4 ) 2 with the whitlockite structure, as impurity, whereas AgCd 2 Mg 2 (PO 4 ) 3 is constituted by pure alluaudite. The Rietveld refinements of the X-ray powder diffraction patterns indicate an ordered cationic distribution for AgCd 2 Mg 2 (PO 4 ) 3 , with Ag on A(2)', Cd on A(1) and M(1), and Mg on M(2), whereas a disordered distribution of Cd and Ca between the A(1) and M(1) sites is observed for AgCaCdMg 2 (PO 4 ) 3 . The catalytic properties of these compounds has been measured in reaction of butan-2-ol dehydrogenation. In the absence of oxygen, both samples exhibit poor dehydrogenation activity. All samples displayed no dehydration activity. Introduction of oxygen into the feed changed totally the catalytic behavior of the catalysts. The production of methyl ethyl ketone increases with time on stream and the reaction temperature. AgCaCdMg 2 (PO 4 ) 3 is more efficient than AgCd 2 Mg 2 (PO 4 ) 3

  2. The microstructures and electrochemical performances of La0.6Gd0.2Mg0.2Ni3.0Co0.5-xAlx (x=0-0.5) hydrogen storage alloys as negative electrodes for nickel/metal hydride secondary batteries

    Science.gov (United States)

    Li, Rongfeng; Xu, Peizhen; Zhao, Yamin; Wan, Jing; Liu, Xiaofang; Yu, Ronghai

    2014-12-01

    La0.6Gd0.2Mg0.2Ni3.0Co0.5-xAlx (x = 0-0.5) hydrogen storage alloys were prepared by induction melting followed by annealing treatment at 1173 K for 8 h. The effects of substitution Al for Co on the microstructures and electrochemical performances were studied systematically. The structure analyses show that all alloys consist of multiphase structures such as (La, Mg)2Ni7 phase, (La, Mg) Ni3 phase and LaNi5 phase. The abundance of (La, Mg)2Ni7 phase decreases while the abundance of LaNi5 phase and (La, Mg)Ni3 phase increases directly as the Al content increasing. The electrochemical tests show that the maximum discharge capacity of alloy electrodes are almost unchanged when x ≤ 0.2 while the cyclic stability of the alloy electrode are improved significantly after proper amount of Al substitution for Co. The alloy electrode with x = 0.1 exhibits the better balance between discharge capacity and cycling life than any others. Moreover, at the discharge current density of 900 mA g-1, the high rate dischargeability (HRD) of the alloy electrodes decreases with increasing Al substitution and the relative analyses reveal that the charge transfer on alloy surface is more important than the hydrogen diffusion in alloy bulk for the kinetic properties of the alloy electrodes.

  3. Fracture toughness of MgCr2O4-ZrO2 composities

    International Nuclear Information System (INIS)

    Singh, J.P.

    1985-01-01

    The effect of unstabilized ZrO 2 inclusions on the fracture surface energy of MgCr 2 O 4 was studied as a function of ZrO 2 content. It was observed that fracture surface energy increases with increasing ZrO 2 content, and reaches the maximum value of 24.5 j/m 2 at 16.5 vol% ZrO 2 . This represents an approx. = fourhold increase in the fracture surface energy of Mg 2 O 4 as a result of ZrO 2 inclusions. It is proposed that this improvement results from the energy absorbed by the microcracks formed in the MgCr 2 O 4 matrix as a result of the tetragonal → monoclinic phase transormation of ZrO 2 and the associated volume expansion

  4. Solubility of NpO2 in Na2CO3 solutions

    International Nuclear Information System (INIS)

    Joe, Kih Soo; Yang, Han Beom; Lee, Eil Hee; Kim, Kwang Wook

    2010-03-01

    Solubilities of NpO 2 were measured in 0.1 M Na 2 CO 3 (pH 11.25) and 0.1 M Na 2 CO 3 -0.5M H 2 O 2 (pH 11.25), respectively, for two weeks. Three detection methods such as gas proportional counting (GPC), liquid scintillation counting (LSC) and ICP-MS were used for the measurement of dissolved NpO 2 in the solutions and the results by different methods were compared with each other. The solubility of NpO 2 increased as the contact time increased and those after 2 weeks showed 4.4 x 10 -9 M in 0.10 M Na 2 CO 3 (pH 11.25) and 2.4 x 10 -8 M in 0.10 M Na 2 CO 3 -0.5M H 2 O 2 (pH 11.25), respectively

  5. Multi-core MgO NPs(at)C core-shell nanospheres for selective CO2 capture under mild conditions

    International Nuclear Information System (INIS)

    Tae Kyung Kim; Kyung Joo Lee; Hoi Ri Moon; Junhan Yuh; Sang Kyu Kwak

    2014-01-01

    The core-shell structures have attracted attention in catalysis, because the outer shells isolate the catalytically active NP cores and prevent the possibility of sintering of core particles during catalytic reaction under physically and chemically harsh conditions. We aimed to adopt this core-shell system for CO 2 sorption materials. In this study, a composite material of multi-core 3 nm-sized magnesium oxide nanoparticles embedded in porous carbon nanospheres (MgO NPs(at)C) was synthesized by a gas phase reaction via a solvent-free process. It showed selective CO 2 adsorption capacity over N 2 under mild regeneration conditions. (authors)

  6. Oxidative Addition Reactions of I2 with [HIr4(CO10-n(PPh3 n(m-PPh2] (n = 1 and 2 and Crystal and Molecular Structure of [HIr4(m-I2(CO7 (PPh3(m-PPh2

    Directory of Open Access Journals (Sweden)

    Braga Dario

    2002-01-01

    Full Text Available The reactions of the cluster compounds [HIr4(CO10-n(PPh3 n(mu-PPh2] [n = 0, (1; 1, (2 and 2, (3] with I2 have been investigated. Compound 1 does not react, however, the presence of PPh3 in place of CO ligand(s activates the cluster. Both compounds 2 and 3 react with I2 under mild conditions to give [HIr4(mu-I2(CO7(PPh3(mu-PPh 2] (4, as the result of oxidative addition of I2 and dissociation of two CO ligands, or one CO and one PPh3 ligands, respectively. The molecular structure of 4, determined by an X-ray diffraction study, exhibits a butterfly arrangement of iridium atoms with the wings spanned by a mu-PPh2 ligand, the hinge bridged by a mu-H ligand, two hinge to wing tip edges bridged by iodine atoms and all metal atoms bearing two CO ligands, with the exception of one of the hinge atoms that contains a CO and a PPh3 ligands. This cluster exhibits the shortest average Irfraction three-quartersIr bond length [2.698(2 Å] observed so far for a derivative of 1 and this is in accord with the relatively high average oxidation state of its metal atoms (+1 for a carbonyl cluster compound.

  7. Electrochemical hydrogen-storage properties of La{sub 0.78}Mg{sub 0.22}Ni{sub 2.67}Mn{sub 0.11}Al{sub 0.11}Co{sub 0.52}-M1Ni{sub 3.5}Co{sub 0.6}Mn{sub 0.4}Al{sub 0.}-5 composites

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hongxia, E-mail: hhxhunan@126.com [Key Lab of New Processing Technology for Nonferrous Metals and Materials Ministry of Education, Guilin University of Technology, Guilin (China); Li, Guohui [Guangxi Scientific Experiment Center of Mining, Metallurgy and Environment, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin (China); Zhuang, Shuxin [School of Material Science and engineering, Xiamen University of Technology, Xiamen (China)

    2013-07-15

    For improving the electrochemical properties of nonstoichiometric AB{sub 3} -type La{sub 0.7}8Mg{sub 0.22}Ni{sub 2.67}Mn{sub 0.11}Al{sub 0.11}Co{sub 0.52} alloy as negative electrode of Ni-MH battery, its related composites La{sub 0.78}Mg{sub 0.22}Ni{sub 2.67}Mn{sub 0.11}Al{sub 0.11}Co{sub 0.52}-x wt.% M1Ni{sub 3.5}Co{sub 0.6}Mn{sub 0.4}Al{sub 0.5} (x = 0, 10, 20, 30) were prepared. Analysis by X-ray diffractometry (XRD) revealed that the composites consist mainly of LaNi{sub 5} and La{sub 2}Ni{sub 7} phases. Despite the small decrease in the maximum discharge capacity, the cycle performance was significantly enhanced. Linear polarization (LP), anodic polarization (AP) and potential step discharge experiments revealed that the electrochemical kinetics increases first and then decreases with increasing x. (author)

  8. Effects of inorganic acids and divalent hydrated metal cations (Mg(2+), Ca(2+), Co(2+), Ni(2+)) on γ-AlOOH sol-gel process.

    Science.gov (United States)

    Zhang, Jian; Xia, Yuguo; Zhang, Li; Chen, Dairong; Jiao, Xiuling

    2015-11-07

    In-depth understanding of the sol-gel process plays an essential role in guiding the preparation of new materials. Herein, the effects of different inorganic acids (HCl, HNO3 and H2SO4) and divalent hydrated metal cations (Mg(2+), Ca(2+), Co(2+), Ni(2+)) on γ-AlOOH sol-gel process were studied based on experiments and density functional theory (DFT) calculations. In these experiments, the sol originating from the γ-AlOOH suspension was formed only with the addition of HCl and HNO3, but not with H2SO4. Furthermore, the DFT calculations showed that the strong adsorption of HSO4(-) on the surface of the γ-AlOOH particles, and the hydrogen in HSO4(-) pointing towards the solvent lead to an unstable configuration of electric double layer (EDL). In the experiment, the gelation time sequence of γ-AlOOH sol obtained by adding metal ions changed when the ionic strength was equal to or greater than 0.198 mol kg(-1). The DFT calculations demonstrated that the adsorption energy of hydrated metal ions on the γ-AlOOH surface can actually make a difference in the sol-gel process.

  9. Synthesis of pigments of Fe2O3·SiO2 system, with Ca, Mg, or Co oxide additions

    Directory of Open Access Journals (Sweden)

    Tsvetan Dimitrov

    2017-03-01

    Full Text Available The present research work is based on the comparative evaluation of the Ca, Mg, and Co dopant impact on the properties of new ceramic pigments from the system Fe2O3·SiO2 obtained via classical ceramic technology. This approach enabled determination of the optimal temperature for the synthesis and the most appropriate mineralizer. The obtained specimens were submitted to systematical analysis, including X-ray Diffraction (XRD spectroscopy, Electron Paramagnetic Resonance (EPR analysis and Mössbauer spectroscopy for crystalline phase determination. The color characteristics are quantified by spectrophotometric measurements. The pigments particle size has been determined by Scanning Electron Microscopy (SEM, combined by Energy Dispersion X-ray spectroscopy (EDX. The obtained results enabled to determine the correlation between the calcination temperature and the phase compositions of the obtained pigments. In addition, some interesting magnetic properties were detected for the Co-doped composition.

  10. Synthesis of pigments of Fe2O3·SiO2 system, with Ca, Mg, or Co oxide additions

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrov, T.; Kozhukharov, S.; Velinov, N.

    2017-07-01

    The present research work is based on the comparative evaluation of the Ca, Mg, and Co dopant impact on the properties of new ceramic pigments from the system Fe2O3·SiO2 obtained via classical ceramic technology. This approach enabled determination of the optimal temperature for the synthesis and the most appropriate mineralizer. The obtained specimens were submitted to systematical analysis, including X-ray Diffraction (XRD) spectroscopy, Electron Paramagnetic Resonance (EPR) analysis and Mössbauer spectroscopy for crystalline phase determination. The color characteristics are quantified by spectrophotometric measurements. The pigments particle size has been determined by Scanning Electron Microscopy (SEM), combined by Energy Dispersion X-ray spectroscopy (EDX). The obtained results enabled to determine the correlation between the calcination temperature and the phase compositions of the obtained pigments. In addition, some interesting magnetic properties were detected for the Co-doped composition. (Author)

  11. CO(2) capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study.

    Science.gov (United States)

    Duan, Yuhua; Sorescu, Dan C

    2010-08-21

    By combining density functional theory and lattice phonon dynamics, the thermodynamic properties of CO(2) absorption/desorption reactions with alkaline earth metal oxides MO and hydroxides M(OH)(2) (where M=Be,Mg,Ca,Sr,Ba) are analyzed. The heats of reaction and the chemical potential changes of these solids upon CO(2) capture reactions have been calculated and used to evaluate the energy costs. Relative to CaO, a widely used system in practical applications, MgO and Mg(OH)(2) systems were found to be better candidates for CO(2) sorbent applications due to their lower operating temperatures (600-700 K). In the presence of H(2)O, MgCO(3) can be regenerated into Mg(OH)(2) at low temperatures or into MgO at high temperatures. This transition temperature depends not only on the CO(2) pressure but also on the H(2)O pressure. Based on our calculated results and by comparing with available experimental data, we propose a general computational search methodology which can be used as a general scheme for screening a large number of solids for use as CO(2) sorbents.

  12. Increasing brain serotonin corrects CO2 chemosensitivity in methyl-CpG-binding protein 2 (Mecp2)-deficient mice

    Science.gov (United States)

    Toward, Marie A.; Abdala, Ana P.; Knopp, Sharon J.; Paton, Julian F. R.; Bissonnette, John M.

    2013-01-01

    Mice deficient in the transcription factor methyl-CpG-binding protein 2 (Mecp2), a mouse model of Rett syndrome, display reduced CO2 chemosensitivity, which may contribute to their breathing abnormalities. In addition, patients with Rett syndrome and male mice that are null for Mecp2 show reduced levels of brain serotonin (5-HT). Serotonin is known to play a role in central chemosensitivity, and we hypothesized that increasing the availability of 5-HT in this mouse model would improve their respiratory response to CO2. Here we determined the apnoeic threshold in heterozygous Mecp2-deficient female mice and examined the effects of blocking 5-HT reuptake on the CO2 response in Mecp2-null male mice. Studies were performed in B6.129P2(C)-Mecp2τm1.1Bird null males and heterozygous females. In an in situ preparation, seven of eight Mecp2-deficient heterozygous females showed arrest of phrenic nerve activity when arterial CO2 was lowered to 3%, whereas the wild-types maintained phrenic nerve amplitude at 53 ± 3% of maximal. In vivo plethysmography studies were used to determine CO2 chemosensitivity in null males. These mice were exposed sequentially to 1, 3 and 5% CO2. The percentage increase in minute ventilation in response to increased inspired CO2 was less in Mecp2−/y than in Mecp2+/y mice. Pretreatment with citalopram, a selective 5-HT reuptake inhibitor (2.5 mg kg−1 I.P.), 40 min prior to CO2 exposure, in Mecp2−/y mice resulted in an improvement in CO2 chemosensitivity to wild-type levels. These results suggest that decreased 5-HT in Mecp2-deficient mice reduces CO2 chemosensitivity, and restoring 5-HT levels can reverse this effect. PMID:23180809

  13. Relativistic quasiparticle band structures of Mg2Si, Mg2Ge, and Mg2Sn: Consistent parameterization and prediction of Seebeck coefficients

    Science.gov (United States)

    Shi, Guangsha; Kioupakis, Emmanouil

    2018-02-01

    We apply density functional and many-body perturbation theory calculations to consistently determine and parameterize the relativistic quasiparticle band structures of Mg2Si, Mg2Ge, and Mg2Sn, and predict the Seebeck coefficient as a function of doping and temperature. The quasiparticle band gaps, including spin-orbit coupling effects, are determined to be 0.728 eV, 0.555 eV, and 0.142 eV for Mg2Si, Mg2Ge, and Mg2Sn, respectively. The inclusion of the semicore electrons of Mg, Ge, and Sn in the valence is found to be important for the accurate determination of the band gaps of Mg2Ge and Mg2Sn. We also developed a Luttinger-Kohn Hamiltonian and determined a set of band parameters to model the near-edge relativistic quasiparticle band structure consistently for all three compounds that can be applied for thermoelectric device simulations. Our calculated values for the Seebeck coefficient of all three compounds are in good agreement with the available experimental data for a broad range of temperatures and carrier concentrations. Our results indicate that quasiparticle corrections are necessary for the accurate determination of Seebeck coefficients at high temperatures at which bipolar transport becomes important.

  14. Investigation of Catalytic Effects and Compositional Variations in Desorption Characteristics of LiNH2-nanoMgH2

    Directory of Open Access Journals (Sweden)

    Sesha S. Srinivasan

    2017-07-01

    Full Text Available LiNH2 and a pre-processed nanoMgH2 with 1:1 and 2:1 molar ratios were mechano-chemically milled in a high-energy planetary ball mill under inert atmosphere, and at room temperature and atmospheric pressure. Based on the thermogravimetric analysis (TGA experiments, 2LiNH2-nanoMgH2 demonstrated superior desorption characteristics when compared to the LiNH2-nanoMgH2. The TGA studies also revealed that doping 2LiNH2-nanoMgH2 base material with 2 wt. % nanoNi catalyst enhances the sorption kinetics at lower temperatures. Additional investigation of different catalysts showed improved reaction kinetics (weight percentage of H2 released per minute of the order TiF3 > nanoNi > nanoTi > nanoCo > nanoFe > multiwall carbon nanotube (MWCNT, and reduction in the on-set decomposition temperatures of the order nanoCo > TiF3 > nanoTi > nanoFe > nanoNi > MWCNT for the base material 2LiNH2-nanoMgH2. Pristine and catalyst-doped 2LiNH2-nanoMgH2 samples were further probed by X-ray diffraction, Fourier transform infrared spectroscopy, transmission and scanning electron microscopies, thermal programmed desorption and pressure-composition-temperature measurements to better understand the improved performance of the catalyst-doped samples, and the results are discussed.

  15. Re-evaluation of microscopic and integral cross-section data for important dosimetry reactions. Re-evaluation of the excitation functions for the 24Mg(n,p)24Na, 32S(n,p)32P, 60Ni(n,p)60m+gCo, 63Cu(n,2n)62Cu, 65Cu(n,2n)64Cu, 64Zn(n,p)64Cu, 115In(n,2n)114mIn, 127I(n,2n)126I, 197Au(n,2n)196Au and 199Hg(n,n')199mHg reactions

    International Nuclear Information System (INIS)

    Zolotarev, K.I.

    2008-08-01

    Re-evaluations of cross sections and their associated covariance matrices have been carried out for ten dosimetry reactions: - excitation functions for the 63 Cu(n,2n) 62 Cu, 65 Cu(n,2n) 64 Cu, 64 Zn(n,p) 64 Cu, 115 In(n,2n) 114m In and 199 Hg(n,n') 199m Hg reactions were re-evaluated over the neutron energy range from threshold to 20 MeV; - excitation functions for the 24 Mg(n,p) 24 Na, 32 S(n,p) 32 P and 60 Ni(n,p) 60m+g Co were reevaluated in the energy range from threshold to 21 MeV; - excitation functions for the 127 I(n,2n) 126 I and 197 Au(n,2n) 196 Au reactions were reevaluated in the energy range from threshold to 32 and 40 MeV, respectively. Benchmark calculations performed for 235 U thermal fission and 252 Cf spontaneous fission neutron spectra show that the integral cross sections derived from the newly evaluated excitation functions exhibit improved agreement with related experimental data when compared with the equivalent data from the IRDF-2002 library. (author)

  16. Land use and rainfall effect on soil CO2 fluxes in a Mediterranean agroforestry system

    Science.gov (United States)

    Quijano, Laura; Álvaro-Fuentes, Jorge; Lizaga, Iván; Navas, Ana

    2017-04-01

    Soils are the largest C reservoir of terrestrial ecosystems and play an important role in regulating the concentration of CO2 in the atmosphere. The exchange of CO2 between the atmosphere and soil controls the balance of C in soils. The CO2 fluxes may be influenced by climate conditions and land use and cover change especially in the upper soil organic layer. Understanding C dynamics is important for maintaining C stocks to sustain and improve soil quality and to enhance sink C capacity of soils. This study focuses on the response of the CO2 emitted to rainfall events from different land uses (i.e. forest, abandoned cultivated soils and winter cereal cultivated soils) in a representative Mediterranean agroforestry ecosystem in the central part of the Ebro basin, NE Spain (30T 4698723N 646424E). A total of 30 measurement points with the same soil type (classified as Calcisols) were selected. Soil CO2 flux was measured in situ using a portable EGM-4 CO2 analyzer PPSystems connected to a dynamic chamber system (model CFX-1, PPSystems) weekly during autumn 2016. Eleven different rainfall events were measured at least 24 hours before (n=7) and after the rainfall event (n=4). Soil water content and temperature were measured at each sampling point within the first 5 cm. Soil samples were taken at the beginning of the experiment to determine soil organic carbon (SOC) content using a LECO RC-612. The mean SOC for forest, abandoned and cultivated soils were 2.5, 2.7 and 0.6 %, respectively. The results indicated differences in soil CO2 fluxes between land uses. The field measurements of CO2 flux show that before cereal sowing the highest values were recorded in the abandoned soils varying from 56.1 to 171.9 mg CO2-C m-2 h-1 whereas after cereal sowing the highest values were recorded in cultivated soils ranged between 37.8 and 116.2 mg CO2-C m-2 h-1 indicating the agricultural impact on CO2 fluxes. In cultivated soils, lower mean CO2 fluxes were measured after direct seeding

  17. Co-current Doping Effect of Nanoscale Carbon and Aluminum Nitride on Critical Current Density and Flux Pinning Properties of Bulk MgB2 Superconductors

    Science.gov (United States)

    Tripathi, D.; Dey, T. K.

    2018-05-01

    The effect of nanoscale aluminum nitride (n-AlN) and carbon (n-C) co-doping on superconducting properties of polycrystalline bulk MgB2 superconductor has been investigated. Polycrystalline pellets of MgB2, MgB2 + 0.5 wt% AlN (nano), MgB_{1.99}C_{0.01} and MgB_{1.99}C_{0.01} + 0.5 wt% AlN (nano) have been synthesized by a solid reaction process under inert atmosphere. The transition temperature (TC) estimated from resistivity measurement indicates only a small decrease for C (nano) and co-doped MgB2 samples. The magnetic field response of investigated samples has been measured at 4, 10, and 20 K in the field range ± 6 T. MgB2 pellets co-doped with 0.5 wt% n-AlN and 1 wt% n-C display appreciable enhancement in critical current density (J_C) of MgB2 in both low (≥ 3 times), as well as, high-field region (≥ 15 times). J_C versus H behavior of both pristine and doped MgB2 pellets is well explained in the light of the collective pinning model. Further, the normalized pinning force density f_p(= F_p/F_{pmax}) displays a fair correspondence with the scaling procedure proposed by Eisterer et al. Moreover, the scaled data of the pinning force density (i.e., f_p{-}h data) of the investigated pellets at different temperature are well interpreted by a modified Dew-Hughes expression reported by Sandu and Chee.

  18. Effect of ZnCl{sub 2} activation on CO{sub 2} adsorption of N-doped nanoporous carbons from polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Long-Yue [Department of Chemical Engineering, Yanbian University, Yanji 133002 (China); Department of Chemistry, Inha University, 253 Nam-gu, Incheon 402-751 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 253 Nam-gu, Incheon 402-751 (Korea, Republic of)

    2014-10-15

    In this study, N-doping nanoporous carbons (NNCs) were prepared from polypyrrole (PPY) by ZnCl{sub 2} activation. The activation process was carried out under set conditions (PPY/ZnCl{sub 2}=1/4) at 300–800 °C for 2 h. With increasing activation temperature, the specific surface area and total pore volume of the NNCs increased significantly from 539 m{sup 2}/g (300 °C) to 1268 m{sup 2}/g (700 °C) and from 0.245 cm{sup 3}/g (300 °C) to 0.561 cm{sup 3}/g (700 °C), respectively. In addition, the use of PPY carbon precursors allowed the integration of high N content (9.28 wt%) and resulted in a large narrow micropore distribution (<1 nm) in the prepared NNCs. The CO{sub 2} adsorption isotherms showed that PZ-600 exhibited the best CO{sub 2} adsorption capacity of 167 mg/g at 1 bar and 25 °C when the activation temperature was 600 °C. - Graphical abstract: CO{sub 2}/298 K adsorption/desorption isotherms of the N-enriched porous carbons. - Highlights: • N-doping nanoporous carbons were prepared from polypyrrole by ZnCl{sub 2} activation. • Through ZnCl{sub 2} activation, the specific surface area and total pore volume increased. • PZ-600 exhibited the best CO{sub 2} adsorption capacity of 167 mg/g at 1 bar and 25 °C.

  19. Magnetic ordering in Sc{sub 2}CoSi{sub 2}-type R{sub 2}FeSi{sub 2} (R=Gd, Tb) and R{sub 2}CoSi{sub 2} (R=Y, Gd–Er) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Knotko, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Geological Faculty, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Pani, M. [Department of Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova (Italy); Institute SPIN-CNR, C. Perrone 24, 16152 Genova (Italy); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600036 (India); Quezado, S.; Malik, S.K. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59082-970 (Brazil)

    2016-09-01

    Magnetic and magnetocaloric properties of Sc{sub 2}CoSi{sub 2}-type R{sub 2}TSi{sub 2} (R=Gd–Er, T=Fe, Co) compounds have been studied using magnetization data. These indicate the presence of mixed ferromagnetic and antiferromagnetic interactions in these compounds. One observes a ferromagnetic transition followed by an antiferromagnetic order and a further possible spin-reorientation transition at low temperatures. Compared to Gd{sub 2}{Fe, Co}Si{sub 2}, the Tb{sub 2}FeSi{sub 2} and {Tb–Er}{sub 2}CoSi{sub 2} compounds exhibit remarkable hysteresis (for e.g. Tb{sub 2}FeSi{sub 2} shows residual magnetization M{sub res}/Tb=2.45 μ{sub B}, coercive field H{sub coer}=14.9 kOe, and critical field H{sub crit}~5 kOe at 5 K) possibly due to the magnetocrystalline anisotropy of the rare earth. The R{sub 2}{Fe, Co}Si{sub 2} show relatively small magnetocaloric effect (i.e. isothermal magnetic entropy change, ΔS{sub m}) around the magnetic transition temperature: the maximal value of MCE is demonstrated by Ho{sub 2}CoSi{sub 2} (ΔS{sub m}=−8.1 J/kg K at 72 K and ΔS{sub m}=−9.4 J/kg K at 23 K in field change of 50 kOe) and Er{sub 2}CoSi{sub 2} (ΔS{sub m}=−13.6 J/kg K at 32 K and ΔS{sub m}=−8.4 J/kg K at 12 K in field change of 50 kOe). - Highlights: • {Gd–Er}{sub 2}{Fe, Co}Si{sub 2} show high-temperature ferromagnetic-type transitions. • {Gd–Er}{sub 2}{Fe, Co}Si{sub 2} show low-temperature spin-reorientation transitions. • Tb{sub 2}FeSi{sub 2} and {Tb–Er}{sub 2}CoSi{sub 2} compounds exhibit low-temperature hysteresis. • Tb{sub 2}FeSi{sub 2} shows M{sub res}/Tb=2.45 μ{sub B}, H{sub coer}=14.9 kOe and H{sub crit} ~5 kOe at 5 K • Considerable magnetocaloric effect is exhibited by Ho{sub 2}CoSi{sub 2} and Er{sub 2}CoSi{sub 2}.

  20. Preparation and electrochemical properties of La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 (x = 0, 0.30, 0.33, 0.36, 0.39) hydrogen storage alloys

    International Nuclear Information System (INIS)

    Tian, Xiao; Wei, Wei; Duan, Ruxia; Zheng, Xinyao; Zhang, Huaiwei; Tegus, O.; Li, Xingguo

    2016-01-01

    The as-cast alloy with the composition of La_0_._7_0Ni_2_._4_5Co_0_._7_5Al_0_._3_0 was prepared by vacuum arc melting. La–Mg–Ni-based La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 hydrogen storage alloy has been synthesized by high-energy vibratory milling blending of the La_0_._7_0Ni_2_._4_5Co_0_._7_5Al_0_._3_0 as-cast alloy and elemental Mg, followed by an isothermal annealing. The microstructures and electrochemical properties of the La_0_._7_0Ni_2_._4_5Co_0_._7_5Al_0_._3_0 and La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 alloys were investigated by XRD, SEM and electrochemical measurements. The XRD analysis and Rietveld refinement showed that the as-cast La_0_._7_0Ni_2_._4_5Co_0_._7_5Al_0_._3_0 alloy consists of single LaNi_5 phase, whereas the La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 alloys contain the LaNi_5 and (La, Mg)_2Ni_7. The electrochemical measurements indicated that the maximum discharge capacity and discharge potential characteristic of the La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 alloys increases first and then decreases with increasing x. The maximum discharge capacity and discharge potential characteristic of alloy reaches the optimum when x is 0.36. The cyclic stability of the La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 alloy with a smaller quantity of Mg is better than that of the alloy with a larger quantity of Mg. - Highlights: • La–Mg–Ni-based alloy was synthesized by melting, milling and subsequent annealing. • Mg atoms exist in the La_2Ni_7 phase prior to LaNi_5 phase. • The La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 alloys consist of the LaNi_5 and (La, Mg)_2Ni_7. • The more Mg element the alloys contain, the easier aggregation Mg atom is. • The C_m_a_x of La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 alloy first increases and then decreases with rising x.

  1. Analysis of (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8}:Eu{sup 2+}, Mn{sup 2+} phosphors for application in solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.K. [University of California, San Diego, Materials Science and Engineering Program, La Jolla, CA 92093 (United States); Piqutte, A.; Hannah, M.E. [OSRAM SYLVANIA Central Research, 71 Cherry Hill Drive Beverly, MA 01915 (United States); Hirata, G.A. [Centro de Nanociencias y Nanotecnolgía, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada Apdo, Ensenada MX CP 22860 (Mexico); Talbot, J.B. [University of California, San Diego, Materials Science and Engineering Program, La Jolla, CA 92093 (United States); University of California, San Diego, Department of Nanoengineering, La Jolla, CA 92093 (United States); Mishra, K.C. [OSRAM SYLVANIA Central Research, 71 Cherry Hill Drive Beverly, MA 01915 (United States); McKittrick, J., E-mail: jmckittrick@ucsd.edu [University of California, San Diego, Materials Science and Engineering Program, La Jolla, CA 92093 (United States); University of California, San Diego, Department of Mechanical and Aerospace Engineering, La Jolla, CA 92093 (United States)

    2014-04-15

    The luminescence properties of Eu{sup 2+} and Mn{sup 2+} co-activated (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8} phosphors prepared by combustion synthesis were studied. Eu{sup 2+}-activated (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8} has a broad blue emission band centered at 450–485 nm and Eu{sup 2+}–Mn{sup 2+}-activated (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8} exhibits a red emission around 620–703 nm, depending on the relative concentrations of Ba, Ca and Sr. The particle size of Eu{sup 2+} and Mn{sup 2+} co-activated (Ba,Ca){sub 3}MgSi{sub 2}O{sub 8} ranges from 300 nm to 1 μm depending on the metal ion and are agglomerated due to post-synthesis, high temperature annealing. The green emission of Ba{sub 3}MgSi{sub 2}O{sub 8} originates from secondary phases (Ba{sub 2}SiO{sub 4} and BaMgSiO{sub 4}) confirmed by emission spectra and X-ray diffraction patterns. The secondary phases of Ba{sub 3}MgSi{sub 2}O{sub 8} are removed by the addition of Sr. The quantum efficiencies range from 45% to 70% under 400 nm excitation and the lifetime of red emission of Ba{sub 3}MgSi{sub 2}O{sub 8} decreases significantly with increasing temperature, which is 54% at 400 K of that at 80 K compared to that of blue emission (90% at 400 K of that at 80 K). -- highlights: • (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8}:Eu{sup 2+}, Mn{sup 2+} phosphors were prepared by a combustion synthesis method. • The emission spectra consist of broad blue-emission band and red-emission band. • The quantum efficiencies range between 45% and 70%, depending on the relative concentrations of Ba, Ca and Sr. • The secondary phases were eliminated by additions of Sr. • Lifetime of the red-emission decreases with increasing temperature, suggesting that these phosphors are not useful for solid state lighting applications.

  2. Soil CO2 concentrations and efflux dynamics of a tree island in the Pantanal wetland

    Science.gov (United States)

    Lathuillière, Michael J.; Pinto, Osvaldo B.; Johnson, Mark S.; Jassal, Rachhpal S.; Dalmagro, Higo J.; Leite, Nei K.; Speratti, Alicia B.; Krampe, Daniela; Couto, Eduardo G.

    2017-08-01

    The Pantanal is the largest tropical wetland on the planet, and yet little information is available on the biome's carbon cycle. We used an automatic station to measure soil CO2 concentrations and oxidation-reduction potential over the 2014 and 2015 flood cycles of a tree island in the Pantanal that is immune to inundation during the wetland's annual flooding. The soil CO2 concentration profile was then used to estimate soil CO2 efflux over the two periods. In 2014, subsurface soil saturation at 0.30 m depth created conditions in that layer that led to CO2 buildup close to 200,000 ppm and soil oxidation-reduction potential below -300 mV, conditions that were not repeated in 2015 due to annual variability in soil saturation at the site. Mean CO2 efflux over the 2015 flood cycle was 0.023 ± 0.103 mg CO2-C m-2 s-1 representing a total annual efflux of 593 ± 2690 mg CO2-C m-2 y-1. Unlike a nearby tree island site that experiences full inundation during the wet season, here the soil dried quickly following repeated rain events throughout the year, which led to the release of CO2 pulses from the soil. This study highlights not only the complexity and heterogeneity in the Pantanal's carbon balance based on differences in topography, flood cycles, and vegetation but also the challenges of applying the gradient method in the Pantanal due to deviations from steady state conditions.

  3. Syngas production from CO{sub 2}-reforming of CH{sub 4} over sol-gel synthesized Ni-Co/Al{sub 2}O{sub 3}-MgOZrO{sub 2} nanocatalyst: effect of ZrO{sub 2} precursor on catalyst properties and performance

    Energy Technology Data Exchange (ETDEWEB)

    Sajjadi, Seyed Mehdi; Haghighi, Mohammad; Rahmani, Farhad, E-mail: haghighi@sut.ac.ir [Reactor and Catalysis Research Center, Sahand University of Technology, Tabriz (Iran, Islamic Republic of)

    2015-05-15

    Ni-Co/Al{sub 2}O{sub 3}-MgO-ZrO{sub 2} nanocatalyst with utilization of two different zirconia precursors, namely, zirconyl nitrate hydrate (ZNH) and zirconyl nitrate solution (ZNS), was synthesized via the sol-gel method. The physiochemical properties of nanocatalysts were characterized by XRD, FESEM, EDX, BET and FTIR analyses and employed for syngas production from CO{sub 2}-reforming of CH{sub 4}. XRD patterns, exhibiting proper crystalline structure and homogeneous dispersion of active phase for the nanocatalyst ZNS precursor employed (NCAMZ-ZNS). FESEM and BET results of NCAMZ-ZNS presented more uniform morphology and smaller particle size and consequently higher surface areas. In addition, average particle size of NCAMZ-ZNS was 15.7 nm, which is close to the critical size for Ni-Co catalysts to avoid carbon formation. Moreover, FESEM analysis indicated both prepared samples were nanoscale. EDX analysis confirmed the existence of various elements used and also supported the statements made in the XRD and FESEM analyses regarding dispersion. Based on the excellent physiochemical properties, NCAMZ-ZNS exhibited the best reactant conversion across all of the evaluated temperatures, e.g. CH{sub 4} and CO{sub 2} conversions were 97.2 and 99% at 850 °C, respectively. Furthermore, NCAMZZNS demonstrated a stable yield with H{sub 2}/CO close to unit value during the 1440 min stability test. (author)

  4. Influence of elemental diffusion on low temperature formation of MgH2 in TiMn1.3T0.2-Mg (T = 3d-transition elements)

    International Nuclear Information System (INIS)

    Yamamoto, K.; Tanioka, S.; Tsushio, Y.; Shimizu, T.; Morishita, T.; Orimo, S.; Fujii, H.

    1996-01-01

    In order to examine the influence of the elemental diffusion from the host compound into the Mg region on low temperature formation of MgH 2 , we have investigated the hydriding properties and the microstructures of the composite materials TiMn 1.3 T 0.2 -Mg (T = V, Cr, Mn, Fe, Co, Ni and Cu). MgH 2 is formed at 353 K in all composite materials. Of all the substitutions, the amount of MgH 2 is the largest in the case of the Cu substitution, which originates from the existence of the Mg-Mg 2 Cu eutectic formed by Cu diffusion from the host compound TiMn 1.3 Cu 0.2 into the Mg region during the liquid phase sintering. In addition, the hydrogen capacity of TiMn 1.3 Cu 0.2 -Mg (that is TiMn 1.3 Cu 0.1 -(Mg+Mg 2 Cu) after the sintering) easily saturates in comparison with TiMn 1.5 -(Mg+Mg 2 Cu) without Cu diffusion. It is concluded that Cu diffusion promotes the mobility of hydrogen atoms at the complex interface between the host compound and the Mg region. (orig.)

  5. 47-mG2a: A Mouse IgG2a-Type of PcMab-47 Useful for Detecting Podocalyxin in Esophageal Cancers by Immunohistochemistry.

    Science.gov (United States)

    Kaneko, Mika K; Itai, Shunsuke; Yamada, Shinji; Kato, Yukinari

    2018-04-09

    Esophageal cancer is one of the highly malignant cancers. It comprises two of the most common histological tumor types: squamous cell carcinoma (SCC) and adenocarcinoma. SCC accounts for about 90% of esophageal cancers. Despite developments in treatment strategies, the prognosis and survival rate remain poor. Podocalyxin (PODXL) is a highly glycosylated type-I transmembrane protein. It is expressed in normal tissues such as kidney, heart, breast, and pancreas. Upregulation of PODXL correlates with tumor progression, invasion, and metastasis. Therefore, this glycoprotein could be a potential biomarker for predicting the prognosis of some cancers, for instance, brain, colorectal, oral, lung, bladder, prostate, and ovarian cancers. We previously developed a specific and sensitive anti-PODXL monoclonal antibody (mAb), PcMab-47 (mouse IgG 1 , kappa) and its mouse IgG 2a -type (47-mG 2a ). We showed their utility in immunohistochemical analysis of oral cancers. Herein, we demonstrate that PcMab-47 and 47-mG 2a can also be used to detect esophageal squamous cell carcinoma (ESCC) with this technique. These two antibodies, respectively, stained 123/130 (94.6%) and 127/130 (97.7%) ESCC cases, indicating that they can detect PODXL with high sensitivity in this carcinoma. Of more than 3+ cases, 47-mG 2a was more effective than PcMab-47, respectively, staining 56/127 (44.1%) and 41/123 (33.3%). Therefore, 47-mG 2a can be used for the detection of PODXL in ESCC using immunohistochemical analysis.

  6. CO{sub 2} REFORMING OF METHANE TO SYNGAS OVER HYDROTALCITES DERRIVED CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Z. Abdelssadek; F. Touahra; A. Saadi; O. Cherifi; D. Halliche [Laboratoire de Chimie du Gaz Naturel, Faculte de Chimie, El-Alia, Alger (Algeria); K. Bachari [Centre de recherches scientifiques et techniques en analyses physico-chimiques, Alger (Algeria)

    2008-09-30

    Considerable attention has been paid to the catalytic reforming of CH4 with CO2 to synthesis gas (CH4 + CO2 - 2CO + 2H2 ) in recent years. This reaction has very important environmental implications since both CH4 and CO2 contribute to the green house effect. They are also two of the most important abundant carbon-containing materials. Therefore, converting these two gases into a valuable synthesis gas may not only reduce atmospheric emissions of CO2 and CH4 , but also satisfy the requirement of many synthesis processes. In addition, the synthesis gas produced by this reaction has a high CO content, it is more suitable for the synthesis of valuable oxygenated chemicals then that produced by conventional steam reforming. Great efforts have been focused on the development of catalysts which show high activity and stability. Layered double hydroxides (LDH), are a class of synthetic two-dimensional nanostructured anionic clays catalysts. The catalysts obtained are characterized by ICP method, DRX, FTIR and BET methods. The data obtained from chemical analysis of the calcined catalysts confirmed that the n (M2+) / n(M3+) ratio is close to the intended value of 2. Room temperature FT-IR spectra were recorded in the range 4000 - 400 cm-1 , on a Perkin Elmer spectrometer. Catalysts stability were carried out at 650 C and a 1:1 CO2 / CH4 feed ratio. It was found that performances of catalysts after 6 h in reaction indicates that within this period nor or little deactivation takes place over them: At 650 C, the NiMgAL-HDL, NiMgLa-LDH catalysts reach respectively 54.0%, 69.0%, of methane conversion versus 75.0% 79.3% respectively of CO2 conversion. However, Co- catalysts did not show any catalytic activity in these experiments conditions.

  7. Measurements of CO2 Column Abundance in the Low Atmosphere Using Ground Based 1.6 μm CO2 DIAL

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2017-12-01

    Changes in atmospheric carbon dioxide (CO2) concentration are believed to produce the largest radiative forcing for the current climate system. Accurate predictions of atmospheric CO2 concentration rely on the knowledge of its sinks and sources, transports, and its variability with time. Although this knowledge is currently unsatisfactory, numerical models use it as a way in simulating CO2 fluxes. Validating and improving the global atmospheric transport model, therefore, requires precise measurement of the CO2 concentration profile. There are two further variations on Lidar: the differential absorption Lidar (DIAL) and the integrated path differential absorption (IPDA) Lidar. DIAL/IPDA are basically for profile/total column measurement, respectively. IPDA is a special case of DIAL and can measure the total column-averaged mixing ratio of trace gases using return signals from the Earth's surface or from thick clouds based on an airborne or a satellite. We have developed a ground based 1.6 μm DIAL to measure vertical CO2 mixing ratio profiles from 0.4 to 2.5 km altitude. The goals of the CO2 DIAL are to produce atmospheric CO2 mixing ratio measurements with much smaller seasonal and diurnal biases from the ground surface. But, in the ground based lidar, return signals from around ground surface are usually suppressed in order to handle the large dynamic range. To receive the return signals as near as possible from ground surface, namely, the field of view (FOV) of the telescope must be wide enough to reduce the blind range of the lidar. While the return signals from the far distance are very weak, to enhance the sensitivity and heighten the detecting distance, the FOV must be narrow enough to suppress the sky background light, especially during the daytime measurements. To solve this problem, we propose a total column measurement method from the ground surface to 0.4 km altitude. Instead of strong signals from thick clouds such as the IPDA, the proposed method uses

  8. Ca(2+-dependent regulation of the Ca(2+ concentration in the myometrium mitochondria. II. Ca(2+ effects on mitochondria membranes polarization and [Ca(2+](m

    Directory of Open Access Journals (Sweden)

    L. G. Babich

    2017-06-01

    Full Text Available It is known that Ca2+ accumulation in the mitochondria undergoes complex regulation by Ca2+ itself. But the mechanisms of such regulation are still discussed. In this paper we have shown that Ca ions directly or indirectly regulate the level of myometrium mitochondria membranes polarization. The additions of 100 µM Ca2+ were accompanied by depolarization of the mitochondria membranes. The following experiments were designed to study the impact of Ca2+ on the myometrium mitochondria [Ca2+]m. Isolated myometrium mitochondria were preincubated without or with 10 μM Са2+ followed by 100 μM Са2+ addition. Experiments were conducted in three mediums: without ATP and Mg2+ (0-medium, in the presence of 3 mM Mg2+ (Mg-medium and 3 mM Mg2+ + 3 mM ATP (Mg,ATP-medium. It was shown that the effects of 10 μM Са2+ addition were different in different mediums, namely in 0- and Mg-medium the [Ca2+]m values increased, whereas in Mg,ATP-medium statistically reliable changes were not registered. Preincubation of mitochondria with 10 μM Са2+ did not affect the [Ca2+]m value after the addition of 100 μM Са2+. The [Ca2+]m values after 100 μM Са2+ addition were the same in 0- and Mg,ATP-mediums and somewhat lower in Mg-medium. Preliminary incubation of mitochondria with 10 μM Са2+ in 0- and Mg-mediums reduced changes of Fluo 4 normalized fluorescence values that were induced by 100 μM Са2+ additions, but in Mg,ATP-medium such differences were not recorded. It is concluded that Са2+ exchange in myometrium mitochondria is regulated by the concentration of Ca ions as in the external medium, so in the matrix of mitochondria. The medium composition had a significant impact on the [Са2+]m values in the absence of exogenous cation. It is suggested that light increase of [Са2+]m before the addition of 100 μM Са2+ may have a positive effect on the functional activity of the mitochondria.

  9. Defect structure of ultrafine MgB2 nanoparticles

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Repp, Sergej; Erdem, Emre; Thomann, Ralf; Acar, Selçuk

    2014-01-01

    Defect structure of MgB 2 bulk and ultrafine particles, synthesized by solid state reaction route, have been investigated mainly by the aid of X-band electron paramagnetic resonance spectrometer. Two different amorphous Boron (B) precursors were used for the synthesis of MgB 2 , namely, boron 95 (purity 95%–97%, <1.5 μm) and nanoboron (purity >98.5%, <250 nm), which revealed bulk and nanosized MgB 2 , respectively. Scanning and transmission electron microscopy analysis demonstrate uniform and ultrafine morphology for nanosized MgB 2 in comparison with bulk MgB 2 . Powder X-ray diffraction data show that the concentration of the by-product MgO is significantly reduced when nanoboron is employed as precursor. It is observed that a significant average particle size reduction for MgB 2 can be achieved only by using B particles of micron or nano size. The origin and the role of defect centers were also investigated and the results proved that at nanoscale MgB 2 material contains Mg vacancies. Such vacancies influence the connectivity and the conductivity properties which are crucial for the superconductivity applications

  10. Surface properties of Co-doped BaFe{sub 2}As{sub 2} thin films deposited on MgO with Fe buffer layer and CaF{sub 2} substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sobota, R. [Department of Experimental Physics, FMPI, Comenius University, 842 48 Bratislava (Slovakia); Plecenik, T., E-mail: tomas.plecenik@fmph.uniba.sk [Department of Experimental Physics, FMPI, Comenius University, 842 48 Bratislava (Slovakia); Gregor, M.; Truchly, M.; Satrapinskyy, L.; Vidis, M.; Secianska, K. [Department of Experimental Physics, FMPI, Comenius University, 842 48 Bratislava (Slovakia); Kurth, F.; Holzapfel, B.; Iida, K. [Institute for Metallic Materials, IFW Dresden, PO Box 270116, D-01171 Dresden (Germany); Kus, P.; Plecenik, A. [Department of Experimental Physics, FMPI, Comenius University, 842 48 Bratislava (Slovakia)

    2014-09-01

    Highlights: • Surfaces of Co-doped Ba-122 films on various substrates were studied. • Substrate influences topography and surface conductivity distribution of the films. • Surface conductivity of Co-doped Ba-122 is highly inhomogeneous. • Point contact spectroscopy results can be affected by the surface differences. - Abstract: Surface properties of Co-doped BaFe{sub 2}As{sub 2} (Ba-122) thin films prepared by pulsed laser deposition on MgO with Fe buffer layer and CaF{sub 2} substrates were inspected by atomic force microscopy, scanning spreading resistance microscopy, scanning tunneling microscopy, X-ray photoelectron spectroscopy, auger electron spectroscopy/microscopy and point contact spectroscopy (PCS). Selected PCS spectra were fitted by extended 1D BTK model. The measurements were done on as-received as well as ion beam etched surfaces. Our results show that the substrate is considerably influencing the surface properties of the films, particularly the topography and surface conductivity distribution, what can affect results obtained by surface-sensitive techniques like PCS.

  11. Magnesium hydroxide extracted from a magnesium-rich mineral for CO2 sequestration in a gas-solid system.

    Science.gov (United States)

    Lin, Pao-Chung; Huang, Cheng-Wei; Hsiao, Ching-Ta; Teng, Hsisheng

    2008-04-15

    Magnesium hydroxide extracted from magnesium-bearing minerals is considered a promising agent for binding CO2 as a carbonate mineral in a gas-solid reaction. An efficient extraction route consisting of hydrothermal treatment on serpentine in HCl followed by NaOH titration for Mg(OH)2 precipitation was demonstrated. The extracted Mg(OH)2 powder had a mean crystal domain size as small as 12 nm and an apparent surface area of 54 m2/g. Under one atmosphere of 10 vol% CO2/N2, carbonation of the serpentine-derived Mg(OH)2 to 26% of the stoichiometric limit was achieved at 325 degrees C in 2 h; while carbonation of a commercially available Mg(OH)2, with a mean crystal domain size of 33 nm and an apparent surface area of 3.5 m2/g, reached only 9% of the stoichiometric limit. The amount of CO2 fixation was found to be inversely proportional to the crystal domain size of the Mg(OH)2 specimens. The experimental data strongly suggested that only a monolayer of carbonates was formed on the crystal domain boundary in the gas-solid reaction, with little penetration of the carbonates into the crystal domain.

  12. MAu2GeS4-Chalcogel (M = Co, Ni): Heterogeneous Intra- and Intermolecular Hydroamination Catalysts

    KAUST Repository

    Davaasuren, Bambar

    2017-08-08

    High surface area macroporous chalcogenide aerogels (chalcogels) MAu2GeS4 (M = Co, Ni) were prepared from K2Au2GeS4 precursor and Co(OAc)2 or NiCl2 by one-pot sol-gel metathesis reactions in aqueous media. The MAu2GeS4-chalcogels were screened for catalytic intramolecular hydroamination of 4-pentyn-1-amine substrate at different temperatures. 87% and 58% conversion was achieved at 100 °C, using CoAu2GeS4- and NiAu2GeS4-chalcogels respectively, and the reaction kinetics follows the first order. It was established that the catalytic performance of the aerogels is associated with the M(2+) centers present in the structure. Intermolecular hydroamination of aniline with 1-R-4-ethynylbenzene (R = -H, -OCH3, -Br, -F) was carried out at 100 °C using CoAu2GeS4-chalcogel catalyst, due to its promising catalytic performance. The CoAu2GeS4-chalcogel regioselectively converted the pair of substrates to respective Markovnikov products, (E)-1-(4-R-phenyl)-N-phenylethan-1-imine, with 38% to 60% conversion.

  13. MAu2GeS4-Chalcogel (M = Co, Ni): Heterogeneous Intra- and Intermolecular Hydroamination Catalysts

    KAUST Repository

    Davaasuren, Bambar; Emwas, Abdul-Hamid M.; Rothenberger, Alexander

    2017-01-01

    High surface area macroporous chalcogenide aerogels (chalcogels) MAu2GeS4 (M = Co, Ni) were prepared from K2Au2GeS4 precursor and Co(OAc)2 or NiCl2 by one-pot sol-gel metathesis reactions in aqueous media. The MAu2GeS4-chalcogels were screened for catalytic intramolecular hydroamination of 4-pentyn-1-amine substrate at different temperatures. 87% and 58% conversion was achieved at 100 °C, using CoAu2GeS4- and NiAu2GeS4-chalcogels respectively, and the reaction kinetics follows the first order. It was established that the catalytic performance of the aerogels is associated with the M(2+) centers present in the structure. Intermolecular hydroamination of aniline with 1-R-4-ethynylbenzene (R = -H, -OCH3, -Br, -F) was carried out at 100 °C using CoAu2GeS4-chalcogel catalyst, due to its promising catalytic performance. The CoAu2GeS4-chalcogel regioselectively converted the pair of substrates to respective Markovnikov products, (E)-1-(4-R-phenyl)-N-phenylethan-1-imine, with 38% to 60% conversion.

  14. Solubility of NaNd(CO3)2.6H2O(c) in concentrated Na2CO3 and NaHCO3 solutions

    International Nuclear Information System (INIS)

    Rao, L.; Rai, D.; Felmy, A.R.; Fulton, R.W.; Novak, C.F.

    1996-01-01

    NaNd(CO 3 ) 2 x 6 H 2 O(c) was identified to be the final equilibrium solid phase in suspensions containing concentrated sodium carbonate (0.1 to 2.0 M) and sodium bicarbonate (0.1 to 1.0 M), with either NaNd(CO 3 ) 2 x 6 H 2 O(c) or Nd 2 (CO 3 ) 3 x xH 2 O(s) as initial solids. A thermodynamic model, based on Pitzer's specific into-interaction approach, was developed to interpret the solubility of NaNd(CO 3 ) 2 x 6 H 2 O(c) as functions of sodium carbonate and sodium bicarbonate concentrations. In this model, the solubility data of NaNd(CO 3 ) 2 x 6 H 2 O(c) were explained by assuming the formation of NdCO 3 + , Nd(CO 3 ) 2 - and Nd(CO 3 ) 3 3- species and invoking the specific ion interactions between Na + and Nd(CO 3 ) 3 3- . Ion interaction parameters for Na + -Nd(CO 3 ) 3 3- were developed to fit the solubility data. Based on the model calculations, Nd(CO 3 ) 3 3- was the predominant aqueous neodymium species in 0.1 to 2 M sodium carbonate and 0.1 to 1 M sodium bicarbonate solutions. The logarithm of the NaNd(CO 3 ) 2 x 6 H 2 O solubility product (NaNd(CO 3 ) 2 x 6 H 2 O(c)=Na + +Nd 3+ +2 CO 3 2- +6 H 2 O) was calculated to be -21.39. This model also provided satisfactory interpretation of the solubility data of the analogous Am(III) system in less concentrated carbonate and bicarbonate solutions. (orig.)

  15. Fabrication of sandwich-type MgB{sub 2}/Boron/MgB{sub 2} Josephson junctions with rapid annealing method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Song; Wang, Xu; Ma, Junli; Cui, Ruirui; Deng, Chaoyong, E-mail: cydeng@gzu.edu.cn

    2015-11-15

    Sandwich-type MgB{sub 2}/Boron/MgB{sub 2} Josephson junctions were fabricated using magnetron sputtering system. The rapid-anneal process was adopted to replace traditional way of annealing, trying to solve the problem of interdiffusion and oxidation with multilayer films. The boron film was used as barrier layer to avoid the introduction of impurities and improve reproducibility of the junctions. The bottom MgB{sub 2} thin films deposited on c-plane sapphire substrate exhibits a critical temperature T{sub C} of 37.5 K and critical current density J{sub C} at 5 K of 8.7 × 10{sup 6} A cm{sup −2}. From the XRD pattern, the bottom MgB{sub 2} thin film shows c-axis orientation, whereas the top MgB{sub 2} became polycrystalline as Boron barrier layer grown thicker. Therefore, all junction samples show lower T{sub C} than single MgB{sub 2} thin film. The junctions exhibit excellent quasiparticle characteristics with ideal dependence on temperature and Boron barrier thickness. Subharmonic gap structure was appeared in conductance characteristics, which was attributed to the multiple Andreev reflections (MAR). The result demonstrates great promise of this new fabrication technology for MgB{sub 2} Josephson junction fabrication. - Highlights: • Sandwich-type MgB{sub 2}/Boron/MgB{sub 2} Josephson junctions were fabricated. • The junctions were annealed after deposition with the rapid-anneal process. • The highest critical current is 25.3 mA at 5 K and remains non-zero near 25 K. • Subharmonic gap features can be observed in the dI/dV – V curves.

  16. A solid solution series of atacamite type Ni{sub 2x}Mg{sub 22x}Cl(OH){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bette, Sebastian [TU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Strasse 29, Freiberg 09596 (Germany); Dinnebier, Robert E. [Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569 (Germany); Röder, Christian [TU Bergakademie Freiberg, Institute of Theoretical Physics, Leipziger Strasse 23, Freiberg 09596 (Germany); Freyer, Daniela, E-mail: daniela.freyer@chemie.tu-freiberg.de [TU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Strasse 29, Freiberg 09596 (Germany)

    2015-08-15

    For the first time a complete solid solution series Ni{sub 2x}Mg{sub 22x}Cl(OH){sub 3} of an atacamite type alkaline main group metal chloride, Mg{sub 2}Cl(OH){sub 3}, and a transition group metal chloride, Ni{sub 2}Cl(OH){sub 3}, was prepared and characterized by chemical and thermal analysis as well as by Raman and IR spectroscopy, and high resolution laboratory X-ray powder diffraction. All members of the solid solution series crystallize in space group Pnam (62). The main building units of these crystal structures are distorted, edge-linked Ni/MgO{sub 4}Cl{sub 2} and Ni/MgO{sub 5}Cl octahedra. The distribution of Ni{sup 2+}- and Mg{sup 2+}-ions among these two metal-sites within the solid solution series is discussed in detail. The crystallization of the solid solution phases occurs via an intermediate solid solution series, (Ni/Mg)Cl{sub 2x}(OH){sub 22x}, with variable Cl: OH ratio up to the 1:3 ratio according to the formula Ni{sub 2x}Mg{sub 22x} Cl(OH){sub 3}. For one isolated intermediate solid solution member, Ni{sub 0.70}Mg{sub 0.30}Cl{sub 0.58}(OH){sub 1.42}, the formation and crystal structure is presented as well. - Graphical abstract: For the first time a complete solid solution series, Ni{sub 2x}Mg{sub 22x} Cl(OH){sub 3}, was synthesized and characterized. Structure solution by revealed that Ni{sup 2+} prefers to occupy the Jahn–Teller-like distorted hole, out of two available cation sites. Substitution of Ni{sup 2+} by Mg{sup 2+} in atacamite type Ni{sub 2}Cl(OH){sub 3} results in systematic band shifts in Raman and IR spectra as well as in systematic changes in thermal properties. The α-polymorphs M{sub 2}Cl(OH){sub 3} with M=Mg{sup 2+}, Ni{sup 2+} and other divalent transition metal ions, as described in literature, were identified as separate compounds. - Highlights: • First synthesis of solid solution series between main and transition metal chloride. • Ni{sup 2+} prefers to occupy Jahn–Teller-like distorted octahedral holes

  17. MgB sub 2 superconductor: a review

    CERN Document Server

    Mollah, S; Chaudhuri, B K

    2003-01-01

    Synthesis, structure and properties of the most intensively studied newly discovered intermetallic binary superconductor MgB sub 2 have been reviewed up to October, 2002. It has a hexagonal unit cell with cell parameters a approx 3.1432 A and c approx 3.5193 A. MgB sub 2 bulk samples synthesized under high pressure (approx 3.5 GPa) and high temperature (approx 1000 degC) has density approx 2.63 g/cm sup 3. The normal state carriers of MgB sub 2 are holes which have been established from the positive thermoelectric power and Hall coefficient measurements. The external pressure decreases the critical temperature (T sub c) with dT sub c /dP in the range of -1 to -2 K/GPa. The T sub c decreases rapidly by the doping of Mn, Li, Co, C, Al, Ni and Fe but increases slightly by Zn doping. However, no significant change of T sub c is observed by the doping of Si and Be. It is further noticed that the anisotropic ratio gamma(= H sub c sub 2 sup a sup b /H sub c sub 2 sup c) approx 1-5 with lower critical field (H sub c ...

  18. Structure and magnetic properties of Mg0.35Cu0.2Zn0.45Fe2O4 ferrite synthesized by co-precipitation method

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2017-05-01

    Full Text Available Mg0.35Cu0.2Zn0.45Fe2O4 nanosize particles have been synthesized by chemical co-precipitation method and characterized by X-ray diffraction (XRD and vibrating sample magnetometry (VSM. The XRD patterns confirmed the single phase spinel structure of the synthesized powder. The average crystallite size of the powder varied from 14 to 55 nm by changing annealing temperature. The activation energy for crystal growth was estimated as about 18.61KJ/mol. With the annealing temperature increasing, saturation magnetization (MS was successively increased while the coercivity (HC was first increased, passed through a maximum and then declined. The sintering temperature has significant influence on bulk density, initial permeability and Curie temperature of Mg0.35Cu0.2Zn0.45Fe2O4 ferrite.

  19. Diphosphine- and CO-Induced Fragmentation of Chloride-bridged Dinuclear Complex and Cp*Ir(mu-Cl)(3)Re(CO)(3) and Attempted Synthesis of Cp*Ir(mu-Cl)(3)Mn(CO)(3): Spectroscopic Data and X-ray Diffraction Structures of the Pentamethylcyclopentadienyl Compounds [Cp*IrCl{(Z)-Ph2PCH = CHPPh2}][Cl]center dot 2CHCl(3) and Cp*Ir(CO)Cl-2

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, Casey [University of North Texas; Wang, Xiaoping [ORNL; Nesterov, Vladimir [University of North Texas; Richmond, Michael G. [University of North Texas

    2010-01-01

    The confacial bioctahedral compound Cp*Ir(mu-Cl)(3)Re(CO)(3) (1) undergoes rapid fragmentation in the presence of the unsaturated diphosphine ligand (Z)-Ph2PCH = CHPPh2 to give the mononuclear compounds [Cp*IrCl {(Z)-Ph2PCH = CHPPh2}][Cl] (2) and fac-ClRe(CO)(3)[(Z)-Ph2PCH = CHPPh2] (3). 2 has been characterized by H-1 and P-31 NMR spectroscopy and X-ray diffraction analysis. 2 center dot 2CHCl(3) crystallizes in the monoclinic space group C2/c, a = 35.023 (8) angstrom, b = 10.189 (2) angstrom, c = 24.003 (6) angstrom, b = 103.340 (3), V = 8,335 (3) angstrom 3, Z = 8, and d(calc) = 1.647 Mg/m(3); R = 0.0383, R-w = 0.1135 for 8,178 reflections with I> 2 sigma(I). The Ir(III) center in 2 exhibits a six-coordinate geometry and displays a chelating diphosphine group. Compound 1 reacts with added CO with fragmentation to yield the known compounds Cp*Ir(CO)Cl-2 (4) and ClRe(CO)(5) (5) in near quantitative yield by IR spectroscopy. Using the protocol established by our groups for the synthesis of 1, we have explored the reaction of [Cp*IrCl2](2) with ClMn(CO)(5) as a potential route to Cp*Ir(mu-Cl)(3)Mn(CO)(3); unfortunately, 4 was the only product isolated from this reaction. The solid-state structure of 4 was determined by X-ray diffraction analysis. 4 crystallizes in the triclinic space group P-1, a = 7.4059 (4) angstrom, b = 7.8940 (4) angstrom, c = 11.8488 (7) angstrom, alpha = 80.020 (1), beta = 79.758 (1), gamma = 68.631 (1), V = 630.34 (6) angstrom(3), Z = 2, and d(calc) = 2.246 Mg/m(3); R = 0.0126, R-w = 0.0329 for 2,754 reflections with I> 2 sigma(I). The expected three-legged piano-stool geometry in 4 has been crystallographically confirmed.

  20. Frozen cropland soil in northeast China as source of N2O and CO2 emissions.

    Science.gov (United States)

    Miao, Shujie; Qiao, Yunfa; Han, Xiaozeng; Brancher Franco, Roberta; Burger, Martin

    2014-01-01

    Agricultural soils are important sources of atmospheric N2O and CO2. However, in boreal agro-ecosystems the contribution of the winter season to annual emissions of these gases has rarely been determined. In this study, soil N2O and CO2 fluxes were measured for 6 years in a corn-soybean-wheat rotation in northeast China to quantify the contribution of wintertime N2O and CO2 fluxes to annual emissions. The treatments were chemical fertilizer (NPK), chemical fertilizer plus composted pig manure (NPKOM), and control (Cont.). Mean soil N2O fluxes among all three treatments in the winter (November-March), when soil temperatures are below -7°C for extended periods, were 0.89-3.01 µg N m(-2) h(-1), and in between the growing season and winter (October and April), when freeze-thaw events occur, 1.73-5.48 µg N m(-2) h(-1). The cumulative N2O emissions were on average 0.27-1.39, 0.03-0.08 and 0.03-0.11 kg N2O_N ha(-1) during the growing season, October and April, and winter, respectively. The average contributions of winter N2O efflux to annual emissions were 6.3-12.1%. In all three seasons, the highest N2O emissions occurred in NPKOM, while NPK and Cont. emissions were similar. Cumulative CO2 emissions were 2.73-4.94, 0.13-0.20 and 0.07-0.11 Mg CO2-C ha(-1) during growing season, October and April, and winter, respectively. The contribution of winter CO2 to total annual emissions was 2.0-2.4%. Our results indicate that in boreal agricultural systems in northeast China, CO2 and N2O emissions continue throughout the winter.

  1. Crystal structure and phase transition studies in perovskite-type oxides using powder-diffraction techniques and symmetry-mode analysis : SrLnMRuO6 (Ln=La,Pr,Nd; M=Zn,Co,Mg,Ni,Fe) and ALn2CuTi2O9 (A=Ca,Ba; Ln=La,Pr,Nd,Sm)

    OpenAIRE

    Iturbe Zabalo, Edurne

    2013-01-01

    La tesis se ha centrado en la síntesis y caracterización estructural de materiales tipo perovskita: SrLnMRuO6 (Ln=La,Pr,Nd; M=Zn,Co,Mg,Ni,Fe) y ALn2CuTi2O9 (A=Ca,Ba; Ln=La,Pr,Nd,Sm). El estudio de las estructuras de los materiales se ha realizado mediante el análisis de los patrones de difracción en polvo de rayos-X, sincrotrón y/o neutrones. En el refinamiento por el método de Rietveld de las estructuras se han sustituido las coordenadas atómicas (el método más común), por coordenadas colect...

  2. Bulk and surface properties of magnesium peroxide MgO2

    Science.gov (United States)

    Esch, Tobit R.; Bredow, Thomas

    2016-12-01

    Magnesium peroxide has been identified in Mg/air batteries as an intermediate in the oxygen reduction reaction (ORR) [1]. It is assumed that MgO2 is involved in the solid-electrolyte interphase on the cathode surface. Therefore its structure and stability play a crucial role in the performance of Mg/air batteries. In this work we present a theoretical study of the bulk and low-index surface properties of MgO2. All methods give a good account of the experimental lattice parameters for MgO2 and MgO bulk. The reaction energies, enthalpies and free energies for MgO2 formation from MgO are compared among the different DFT methods and with the local MP2 method. A pronounced dependence from the applied functional is found. At variance with a previous theoretical study but in agreement with recent experiments we find that the MgO2 formation reaction is endothermic (HSE06-D3BJ: ΔH = 51.9 kJ/mol). The stability of low-index surfaces MgO2 (001) (Es = 0.96 J/m2) and (011) (Es = 1.98 J/m2) is calculated and compared to the surface energy of MgO (001). The formation energy of neutral oxygen vacancies in the topmost layer of the MgO2 (001) surface is calculated and compared with defect formation energies for MgO (001).

  3. Investigation of anti-corrosive properties of poly(aniline-co-2-pyridylamine-co-2,3-xylidine) and its nanocomposite poly(aniline-co-2-pyridylamine-co-2,3-xylidine)/ZnO on mild steel in 0.1 M HCl

    Science.gov (United States)

    Alam, Ruman; Mobin, Mohammad; Aslam, Jeenat

    2016-04-01

    A soluble terpolymer of aniline (AN), 2-pyridylamine (PA) and 2,3-xylidine (XY), poly(AN-co-PA-co-XY) and its nanocomposite with ZnO nanoparticles namely, poly(AN-co-PA-co-XY)/ZnO were synthesized by chemical oxidative polymerization employing ammonium persulfate as an oxidant. Nanocomposites of homopolymers, polyaniline/ZnO, poly(XY)/ZnO and poly(PA)/ZnO were also synthesized by following similar synthesis route. FTIR, XRD and SEM techniques were used to characterize the synthesized compounds. The synthesized compounds were chemically deposited on mild steel specimens by solvent evaporation method using N-methyl-2-pyrrolidone (NMP) as solvent and 10% epoxy resin (by weight) as binder. Anticorrosive properties of homopolymer nanocomposites, terpolymer and its nanocomposite coatings were studied in 0.1 M HCl by subjecting them to various corrosion tests which includes: free corrosion potential measurement (OCP), weight loss measurements, potentiodynamic polarization, and AC impedance technique. The surface morphology of the corroded and uncorroded coated steel specimens was evaluated using SEM. The corrosion protection performance of terpolymer nanocomposite coating was compared to the terpolymer and individual homopolymers nanocomposites coatings after 30 days immersion in corrosive medium.

  4. Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 μm laser applications

    Science.gov (United States)

    Wang, Shunbin; Li, Chengzhi; Yao, Chuanfei; Jia, Shijie; Jia, Zhixu; Qin, Guanshi; Qin, Weiping

    2017-02-01

    Intense ∼1.2 μm fluorescence is observed in Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses under 915 nm laser diode excitation. The 1.2 μm emission can be ascribed to the transition 5I6→5I8 of Ho3+. With the introducing of BaF2, the content of OH in the glasses drops markedly, and the 1.2 μm emission intensity increases gradually as increasing the concentration percentage of BaF2. Furthermore, microstructured fibers based on the TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method, and a relative positive gain of ∼9.42 dB at 1175.3 nm is obtained in a 5 cm long fiber.

  5. The MAP, M/G1,G2/1 queue with preemptive priority

    Directory of Open Access Journals (Sweden)

    Bong Dae Choi

    1997-01-01

    Full Text Available We consider the MAP, M/G1,G2/1 queue with preemptive resume priority, where low priority customers arrive to the system according to a Markovian arrival process (MAP and high priority customers according to a Poisson process. The service time density function of low (respectively: high priority customers is g1(x (respectively: g2(x. We use the supplementary variable method with Extended Laplace Transforms to obtain the joint transform of the number of customers in each priority queue, as well as the remaining service time for the customer in service in the steady state. We also derive the probability generating function for the number of customers of low (respectively, high priority in the system just after the service completion epochs for customers of low (respectively, high priority.

  6. Synthesized of PEG-6000 coated MgFe2O4 nanoparticles based on natural iron sand by co-precipitation method

    Science.gov (United States)

    Setiadi, E. A.; Simbolon, S.; Saputra, A. S. P.; Marlianto, E.; Djuhana; Kurniawan, C.; Yunus, M.; Sebayang, P.

    2018-02-01

    The polymer coated Magnesium Ferrite nanoparticles (MgFe2O4) based on natural iron sand, Mg(CH3COO)2.4H2O, and PEG-6000 have been successfully prepared by co-precipitation method. The mass variation of PEG-6000 content was from 0 to 12 gram. It was prepared at synthesize temperature of 70°C. The PEG coating reduced the effect of agglomeration, so the coercivity value can be closed to soft magnets. The nanoparticle of synthesized has MgFe2O4 single phase and cubic spinel structure. The bonding of MgFe2O4 and PEG-6000 as a coating material was confirmed by FTIR curve. The MgFe2O4 density decreased with the increasing of PEG 6000 content. On the other hand, the coercivity value was slightly reduced as the addition of PEG-6000, with the lowest value was obtained on 8 gram PEG content. The optimum condition is obtained at addition of 8 gram PEG 6000 to MgFe2O4, with coercivity, saturation, and remanence are 198.41 Oe, 52.53 emu/g, and 8.51 emu/g, respectively. So that, the sample is widely used as absorbance material of heavy metal.

  7. The High Accuracy Measurement of CO2 Mixing Ratio Profiles Using Ground Based 1.6 μm CO2-DIAL with Temperature Measurement Techniques in the Lower-Atmosphere

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2017-12-01

    We have developed a ground based direct detection three-wavelength 1.6 μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 concentration and temperature profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. Conventionally, we have obtained the vertical profile of absorption cross sections using the atmospheric temperature profile by the objective analysis and the atmospheric pressure profile calculated by the pressure height equation. Comparison of atmospheric pressure profiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan is consistent within 0.2 % below 3 km altitude. But the temperature dependency of the CO2 density is 0.25 %/°C near the surface. Moreover, the CO2 concentration is often evaluated by the mixing ratio. Because the air density is related by the ideal gas law, the mixing ratio is also related by the atmospheric temperature. Therefore, the temperature affects not only accuracy of CO2 concentration but the CO2 mixing ratio. In this paper, some experimental results of the simultaneous measurement of atmospheric temperature profiles and CO2 mixing ratio profiles are reported from 0.4 to 2.5 km altitude using the three-wavelength 1.6 μm DIAL system. Temperature profiles of CO2 DIAL measurement were sometimes different from those of objective analysis below 1.5 km altitude. These differences are considered to be due to regionality at the lidar site. The temperature difference of 5.0 °C corresponds to a CO2 mixing ratio difference of 8.0 ppm at 500 m altitude. This cannot be ignored in estimates of regional sources and sinks of CO2. This three-wavelength CO2 DIAL technique can estimate accurately temporal behavior of CO2 mixing ratio profiles in the lower atmosphere

  8. Release of CO{sub 2} and CH{sub 4} from small wetland lakes in western Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Repo, M.E.; Huttunen, J.T.; Martikainen, P.J. [Univ. of Kuopio, Dept. of Env ironmental Science, FI-70211 Kuopio (Finland); Naumov, A.V.; Chichulin, A.V. [I nst. of Soil Science and Agrochemistry, Russian Academy of Science, 630099 Novos ibirsk (Russian Federation); Lapshina, E.D. [Yugra State Univ., 628012, Khanty-Mansiysk (Russian Federation); Bleuten , W. [Utrecht Univ., Dept. of Physical Geography,3508 TC Utrecht (Netherlands)

    2007-11-15

    CO{sub 2} and CH{sub 4} fluxes were measured from three small wetland lakes located in the middle taiga and forest tundra zones on West Siberian Lowlands (WSL), the world's largest wetland area. Fluxes were measured during summer 2005 using floating chambers and were validated against the thin boundary layer model based on the relationship between gas exchange and wind speed. All studied lakes were supersaturated with CO{sub 2} and CH{sub 4}, and acted on a seasonal basis as sources of these greenhouse gases to the atmosphere. Daily mean CO{sub 2} fluxes measured with chambers ranged from near the zero to 3.1 g CO{sub 2}/m{sup 2}/d and corresponding CH{sub 4} fluxes from 1.1 to 120 mg CH{sub 4}/m{sup 2}/d. CH{sub 4} ebullition (0.65-11 mg CH{sub 4}/m{sup 2}/d) was detected in two of the lakes. Total carbon evasion from the studied lakes during the active season was 23-66 g C/m{sup 2}, of which more than 90% was released as CO{sub 2}-C. The carbon loss per unit area from the studied lakes was of similar magnitude as previously reported values of net carbon uptake of Siberian peatlands. This emphasizes the importance of small water-bodies in the carbon balance of West Siberian landscape.

  9. CO{sub 2} separation from exhaust gas; CO{sub 2} separasjon fra eksosgass

    Energy Technology Data Exchange (ETDEWEB)

    Magelssen, Paul Fr. [Saga Petroleum A/S, Forus (Norway)

    1998-07-01

    When Saga wanted to reduce the CO{sub 2} emissions from Snorre B, cleaning of CO{sub 2} from exhaust gas was one of several options considered. CO{sub 2} cleaning using membrane/amine technology is under development. Saga required that the technology should be qualified and that the yield of the Snorre B project should not be reduced. This presentation discusses qualification of combined membrane/amine technology, environmental issues, economic issues and implementation on the Snorre B platform. Flue gas from the gas turbine is passed to a CO{sub 2} absorption and desorption stage from which the CO{sub 2} is passed on for compression and disposal while the cleaned flue is let out. The membrane is situated between the flue gas and the absorbent liquid. The pores are large enough for the CO{sub 2} to pass through quickly and small enough to prevent the liquid from penetrating into the pores. The packing factor is high, 500 - 1000 m2/m3, there is no formation of froth, ducts or entrainment of the liquid. New technology implies 65 - 70% size reduction of the main equipment and 39 - 40% reduction of the energy consumption. Research on amines brings out new chemicals which imply 80% reduction in the consumption of chemicals and the quantity of special waste produced. If a CO{sub 2} cleaning plant is installed on a LM 2500, the CO{sub 2} emissions can be reduced by 97,200 ton/year given the right operational conditions. Although it was decided in 1998 not to install the module with the CO{sub 2} pilot cleaning plant, Snorre B is still a good environmental project having CO{sub 2} emission within the values set by Miljoesok.

  10. Superconducting tunnel junctions on MgB{sub 2} using MgO and CaF{sub 2} as a barrier

    Energy Technology Data Exchange (ETDEWEB)

    Sakoda, Masahito, E-mail: sakoda@cc.tuat.ac.jp [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16, Koganei, Tokyo 184-8588 (Japan); Aibara, Masato; Mede, Kazuya; Kikuchi, Motoyuki; Naito, Michio [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16, Koganei, Tokyo 184-8588 (Japan)

    2016-11-15

    Highlights: • We have revised the manuscript according to reviewer's comments. The details are in “Response to Reviewers”. • Superconducting junctions with MgO and CaF{sub 2} barrier were fabricated in order to improve the quality of junctions. • In SIN junctions with MgO barrier, clear superconducting gap was observed. (). • In SIS junctions with CaF2 barrier, Josephson current was observed over 30 K. (). • The compatibility of each barrier material at the upper and lower interfaces was clarified. (). - Abstract: We report the fabrication of superconducting tunnel junctions, both of superconductor–insulator-normal metal (SIN) and superconductor–insulator-superconductor (SIS), on MgB{sub 2} using MgO and CaF{sub 2} as a barrier. The SIN junctions fabricated using an MgO barrier showed excellent quasi-particle characteristics, including a large superconducting gap (Δ) of 2.5–3 meV and a low zero-bias conductance. We have also fabricated SIS junctions with an MgO barrier, but the quasi-particle characteristics of the SIS junctions are not as good as those of the SIN junctions, namely a reduced superconducting gap and a high zero-bias conductance. It appears that top MgB{sub 2} electrodes do not grow well on an MgO barrier, which is also suggested from in-situ RHEED observation. The SIN junctions fabricated using a CaF{sub 2} barrier showed less sharp quasi-particle characteristics than using an MgO barrier. However, the SIS junctions using a CaF{sub 2} barrier showed a fairly large I{sub c}R{sub N} value at 4.2 K over 1 mV and also exhibited finite Josephson current up to almost the film's T{sub c} (∼30 K). The RHEED observation revealed that top MgB{sub 2} electrodes grow well on a CaF{sub 2} barrier.

  11. Livestock induces strong spatial heterogeneity of soil CO2, N2O and CH4 emissions within a semi-arid sylvo-pastoral landscape in West Africa

    Institute of Scientific and Technical Information of China (English)

    Mohamed H ASSOUMA; Dominique SER(C)A; Frédéric GU(E)RIN; Vincent BLANFORT; Philippe LECOMTE; Ibra TOUR(E); Alexandre ICKOWICZ

    2017-01-01

    Greenhouse gas (GHG) emissions from the surface soils and surface water receiving animal excreta may be important components of the GHG balance of terrestrial ecosystems,but the associated processes are poorly documented in tropical environments,especially in tropical arid and semi-arid areas.A typical sylvo-pastoral landscape in the semi-arid zone of Senegal,West Africa,was investigated in this study.The study area (706 km2 of managed pastoral land) was a circular zone with a radius of 15 km centered on a borehole used to water livestock.The landscape supports a stocking rate ranging from 0.11 to 0.39 tropical livestock units per hectare depending on the seasonal movements of the livestock.Six landscape units were investigated (land in the vicinity of the borehole,natural ponds,natural rangelands,forest plantations,settlements,and enclosed plots).Carbon dioxide (CO2),nitrous oxide (N2O) and methane (CH4) fluxes were measured with static chambers set up at 13 sites covering the six landscape units,and the 13 sites are assumed to be representative of the spatial heterogeneity of the emissions.A total of 216 fluxes were measured during the one-year study period (May 2014 to April 2015).At the landscape level,soits and surface water emitted an average 19.8 t C-CO2 eq/(hm2·a) (CO2:82%,N2O:15%,and CH4:3%),but detailed results revealed notable spatial heterogeneity of GHG emissions.CO2 fluxes ranged from 1148.2 (±91.6) mg/(m2·d) in rangelands to 97,980.2 (±14,861.7) mg/(m2·d) in surface water in the vicinity of the borehole.N2O fluxes ranged from 0.6 (±0.1) mg/(m2·d) in forest plantations to 22.6 (±10.8) mg/(m2·d) in the vicinity of the borehole.CH4 fluxes ranged from-3.2 (±0.3) mg/(m2·d) in forest plantations to 8788.5 (±2295.9) mg/(m2·d) from surface water in the vicinity of the borehole.This study identified GHG emission "hot spots" in the landscape.Emissions from the surface soilts were significantly higher in the landscape units most frequently

  12. How much CO2 is trapped in carbonate minerals of a natural CO2 occurrence?

    Science.gov (United States)

    Király, Csilla; Szabó, Zsuzsanna; Szamosfalvi, Ágnes; Cseresznyés, Dóra; Király, Edit; Szabó, Csaba; Falus, György

    2017-04-01

    Carbon Capture and Storage (CCS) is a transitional technology to decrease CO2 emissions from human fossil fuel usage and, therefore, to mitigate climate change. The most important criteria of a CO2 geological storage reservoir is that it must hold the injected CO2 for geological time scales without its significant seepage. The injected CO2 undergoes physical and chemical reactions in the reservoir rocks such as structural-stratigraphic, residual, dissolution or mineral trapping mechanisms. Among these, the safest is the mineral trapping, when carbonate minerals such as calcite, ankerite, siderite, dolomite and dawsonite build the CO2 into their crystal structures. The study of natural CO2 occurrences may help to understand the processes in CO2 reservoirs on geological time scales. This is the reason why the selected, the Mihályi-Répcelak natural CO2 occurrence as our research area, which is able to provide particular and highly significant information for the future of CO2 storage. The area is one of the best known CO2 fields in Central Europe. The main aim of this study is to estimate the amount of CO2 trapped in the mineral phase at Mihályi-Répcelak CO2 reservoirs. For gaining the suitable data, we apply petrographic, major and trace element (microprobe and LA-ICP-MS) and stable isotope analysis (mass spectrometry) and thermodynamic and kinetic geochemical models coded in PHREEQC. Rock and pore water compositions of the same formation, representing the pre-CO2 flooding stages of the Mihályi-Répcelak natural CO2 reservoirs are used in the models. Kinetic rate parameters are derived from the USGS report of Palandri and Kharaka (2004). The results of petrographic analysis show that a significant amount of dawsonite (NaAlCO3(OH)2, max. 16 m/m%) precipitated in the rock due to its reactions with CO2 which flooded the reservoir. This carbonate mineral alone traps about 10-30 kg/m3 of the reservoir rock from the CO2 at Mihályi-Répcelak area, which is an

  13. Optical spectroscopy of Nd3+/Mg2+ co-doped LiTaO3 laser crystal

    International Nuclear Information System (INIS)

    Zhang, P X; Hang, Y; Gong, J; Zhao, C C; Yin, J G; Zhang, L H; Zhu, Y Y

    2013-01-01

    A Nd 3+ and Mg 2+ co-doped LiTaO 3 single crystal has been grown successfully by the Czochralski method. The polarized absorption spectra of the crystal were measured and investigated. The peak absorption cross-sections at 806 and 810 nm were 4.17 × 10 −20 cm 2 and 4.47 × 10 −20 cm 2 with a full width at half maximum of 29 and 17 nm for σ- and π-polarization, respectively. Based on the Judd–Ofelt theory, the spectral parameters of Nd 3+ in the as-grown crystal were investigated in detail. Moreover, the emission probabilities, branching ratio and radiative lifetime for the transitions from 4 F 3/2 were calculated. The radiative lifetime of 4 F 3/2 was calculated to be 159 μs and the luminescent quantum efficiency of the 4 F 3/2 manifold was about 81.13%. The results were also compared with other Nd 3+ doped crystals. (paper)

  14. Comparison of weekly administration of cisplatin versus three courses of cisplatin 100 mg/m2 for definitive radiochemotherapy of locally advanced head-and-neck cancers

    International Nuclear Information System (INIS)

    Rades, Dirk; Seidl, Daniel; Janssen, Stefan; Bajrovic, Amira; Karner, Katarina; Strojan, Primoz; Schild, Steven E

    2016-01-01

    To compare definitive radiochemotherapy with weekly administration of 30–40 mg/m 2 of cisplatin to 100 mg/m 2 of cisplatin on days 1, 22 and 43 for outcomes and toxicity in patients with squamous cell carcinoma of the head-and-neck. Seventy-five patients receiving radiochemotherapy with weekly cisplatin (30–40 mg/m 2 ) were compared to 58 patients receiving radiochemotherapy with 100 mg/m 2 cisplatin on days 1, 22 and 43. Radiochemotherapy regimen plus seven characteristics (age, gender, performance score, tumor site, T-/N-category, histologic grading) were evaluated for locoregional control (LRC), metastases-free survival (MFS) and overall survival (OS). Radiochemotherapy groups were compared for toxicity. On multivariate analysis, improved LRC was associated with cisplatin 100 mg/m 2 (hazard ratio [HR] 1.57; p = 0.008) and female gender (HR 4.37; p = 0.003). Radiochemotherapy regimen was not significantly associated with MFS on univariate analysis (p = 0.66). On multivariate analysis, better MFS was associated with ECOG performance score 0–1 (HR 5.63; p < 0.001) and histological grade 1–2 (HR 1.81; p = 0.002). On multivariate analysis, improved OS was associated with cisplatin 100 mg/m 2 (HR 1.33; p = 0.023), ECOG performance score 0–1 (HR 2.15; p = 0.029) and female gender (HR 1.98; p = 0.026). Cisplatin 100 mg/m 2 was associated with higher rates of grade ≥3 hematotoxicity (p = 0.004), grade ≥2 renal failure (p = 0.004) and pneumonia/sepsis (p = 0.033). Radiochemotherapy with 100 mg/m 2 of cisplatin every 3 weeks resulted in better LRC and OS than weekly doses of 30–40 mg/m 2 . Given the limitations of a retrospective study, 100 mg/m 2 of cisplatin appears preferable. Since this regimen was associated with considerable acute toxicity, patients require close monitoring

  15. Overcoming double-step CO2 adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg2(dobpdc)† †Electronic supplementary information (ESI) available: Additional experimental details, and full characterization (powder X-ray diffraction, infrared spectra, diamine loadings, dry N2 decomposition profiles, and CO2 adsorption data) for all new adsorbents. CCDC 1577354. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04266c

    Science.gov (United States)

    Milner, Phillip J.; Martell, Jeffrey D.; Siegelman, Rebecca L.; Gygi, David; Weston, Simon C.

    2017-01-01

    Alkyldiamine-functionalized variants of the metal–organic framework Mg2(dobpdc) (dobpdc4– = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) are promising for CO2 capture applications owing to their unique step-shaped CO2 adsorption profiles resulting from the cooperative formation of ammonium carbamate chains. Primary,secondary (1°,2°) alkylethylenediamine-appended variants are of particular interest because of their low CO2 step pressures (≤1 mbar at 40 °C), minimal adsorption/desorption hysteresis, and high thermal stability. Herein, we demonstrate that further increasing the size of the alkyl group on the secondary amine affords enhanced stability against diamine volatilization, but also leads to surprising two-step CO2 adsorption/desorption profiles. This two-step behavior likely results from steric interactions between ammonium carbamate chains induced by the asymmetrical hexagonal pores of Mg2(dobpdc) and leads to decreased CO2 working capacities and increased water co-adsorption under humid conditions. To minimize these unfavorable steric interactions, we targeted diamine-appended variants of the isoreticularly expanded framework Mg2(dotpdc) (dotpdc4– = 4,4′′-dioxido-[1,1′:4′,1′′-terphenyl]-3,3′′-dicarboxylate), reported here for the first time, and the previously reported isomeric framework Mg-IRMOF-74-II or Mg2(pc-dobpdc) (pc-dobpdc4– = 3,3′-dioxidobiphenyl-4,4′-dicarboxylate, pc = para-carboxylate), which, in contrast to Mg2(dobpdc), possesses uniformally hexagonal pores. By minimizing the steric interactions between ammonium carbamate chains, these frameworks enable a single CO2 adsorption/desorption step in all cases, as well as decreased water co-adsorption and increased stability to diamine loss. Functionalization of Mg2(pc-dobpdc) with large diamines such as N-(n-heptyl)ethylenediamine results in optimal adsorption behavior, highlighting the advantage of tuning both the pore shape and the diamine size for the development

  16. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration

    KAUST Repository

    Zhu, Xiuping

    2014-05-01

    Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis desalination and chemical-production cell (MEDCC) was examined to dissolve natural minerals rich in magnesium/calcium silicates (serpentine), and the alkali generated by the same process was used to absorb CO2 and precipitate magnesium/calcium carbonates. The concentrations of Mg2+ and Ca2+ dissolved from serpentine increased 20 and 145 times by using the acid solution. Under optimal conditions, 24mg of CO2 was absorbed into the alkaline solution and 13mg of CO2 was precipitated as magnesium/calcium carbonates over a fed-batch cycle (24h). Additionally, the MEDCC removed 94% of the COD (initially 822mg/L) and achieved 22% desalination (initially 35g/L NaCl). These results demonstrate the viability of this process for effective CO2 sequestration using renewable organic matter and natural minerals. © 2014 Elsevier Ltd.

  17. Investigations on FCAM-III (Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36): A new homologue of the aenigmatite structure-type in the system CaO-MgO-Fe2O3-Al2O3

    Science.gov (United States)

    Zöll, Klaus; Kahlenberg, Volker; Krüger, Hannes; Tropper, Peter

    2018-02-01

    In the course of a systematic study of a part of the quaternary system Fe2O3-CaO-Al2O3-MgO (FCAM) the previously unknown compound Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36 (FCAM-III) has been synthesized. By analogy with the so-called SFCA series [1-5], our investigation in the system of FCAM shows the existence of a stoichiometric homologous series M14+6nO20+8n, where M = Fe, Ca, Al, Mg and n = 1 or 2. In air, we can prove the formation of coexisting FCAM-III and FCAM-I solid solutions at 1400 °C. By increasing the temperature up to 1425 °C FCAM-I disappears completely and FCAM-III co-exists with magnesiumferrite and a variety of calcium iron oxides. At 1450 °C FCAM-III breaks down to a mixture of FCAM-I again as well as magnesioferrite and melt. Small single-crystals of FCAM-III up to 35 μm in size could be retrieved from the 1425 °C experiment and were subsequently characterized using electron microprobe analysis and synchroton X-ray single-crystal diffraction. Finally the Fe2+/Fetot ratio was calculated from the total iron content based on the crystal-chemical formula obtained from EMPA measurements and charge balance considerations. FCAM-III or Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36 has a triclinic crystal structure (space group P 1 ̅). The basic crystallographic data are: a = 10.223(22) Å, b = 10.316(21) Å, c = 14.203(15) Å, α = 93.473(50)°, β = 107.418(67)°, γ = 109.646(60)°, V = 1323.85(2) ų, Z = 1. Using Schreinemaker's technique to analyze the phase relations in the system Fe2O3-CaO-Al2O3-MgO it was possible to obtain the semi-quantitative stability relations between the participating phases and construct a topologically correct phase sequence as a function of T and fO2. The analysis shows that Ca2Al0.5Fe1.5O5 (C2A0.25F0.75) and CaAl1.5Fe2.5O7 (CA0.75F1.25) with higher calculated Fe2+ contents are preferably formed at lower oxygen fugacity and react to CaAl0.5Fe1.5O4 (CA0.25F0.75) by increasing fO2. Spinel-type magnesium

  18. Reactions between olivine and CO2-rich seawater at 300 °C: Implications for H2 generation and CO2 sequestration on the early Earth

    Directory of Open Access Journals (Sweden)

    Hisahiro Ueda

    2017-03-01

    Full Text Available To understand the influence of fluid CO2 on ultramafic rock-hosted seafloor hydrothermal systems on the early Earth, we monitored the reaction between San Carlos olivine and a CO2-rich NaCl fluid at 300 °C and 500 bars. During the experiments, the total carbonic acid concentration (ΣCO2 in the fluid decreased from approximately 65 to 9 mmol/kg. Carbonate minerals, magnesite, and subordinate amount of dolomite were formed via the water-rock interaction. The H2 concentration in the fluid reached approximately 39 mmol/kg within 2736 h, which is relatively lower than the concentration generated by the reaction between olivine and a CO2-free NaCl solution at the same temperature. As seen in previous hydrothermal experiments using komatiite, ferrous iron incorporation into Mg-bearing carbonate minerals likely limited iron oxidation in the fluids and the resulting H2 generation during the olivine alteration. Considering carbonate mineralogy over the temperature range of natural hydrothermal fields, H2 generation is likely suppressed at temperatures below approximately 300 °C due to the formation of the Mg-bearing carbonates. Nevertheless, H2 concentration in fluid at 300 °C could be still high due to the temperature dependency of magnetite stability in ultramafic systems. Moreover, the Mg-bearing carbonates may play a key role in the ocean-atmosphere system on the early Earth. Recent studies suggest that the subduction of carbonated ultramafic rocks may transport surface CO2 species into the deep mantle. This process may have reduced the huge initial amount of CO2 on the surface of the early Earth. Our approximate calculations demonstrate that the subduction of the Mg-bearing carbonates formed in komatiite likely played a crucial role as one of the CO2 carriers from the surface to the deep mantle, even in hot subduction zones.

  19. Anions Analysis in Ground and Tap Waters by Sequential Chemical and CO2-Suppressed Ion Chromatography

    Directory of Open Access Journals (Sweden)

    Glen Andrew D. De Vera

    2011-06-01

    Full Text Available An ion chromatographic method using conductivity detection with sequential chemical and CO2 suppression was optimized for the simultaneous determination of fluoride, chloride, bromide, nitrate,phosphate and sulfate in ground and tap water. The separation was done using an anion exchange column with an eluent of 3.2 mM Na2CO3 and 3.2 mM NaHCO3 mixture. The method was linear in the concentration range of 5 to 300 μg/L with correlation coefficients greater than 0.99 for the six inorganic anions. The method was also shown to be applicable in trace anions analysis as given by the low method detection limits (MDL. The MDL was 1μg/L for both fluoride and chloride. Bromide, nitrate, phosphate and sulfate had MDLs of 7 μg/L, 10 μg/L, 9 μg/L and 2 μg/L, respectively. Good precision was obtained as shown in the relative standard deviation of 0.1 to 12% for peak area and 0.1 to 0.3% for retention time. The sensitivity of the method improved with the addition of CO2 suppressor to chemical suppression as shown in the lower background conductivity and detection limits. The recoveries of the anions spiked in water at 300 μg/L level ranged from 100 to 104%. The method was demonstrated to be sensitive, accurate and precise for trace analysis of the six anions and was applied in the anions analysis in ground and tap waters in Malolos, Bulacan. The water samples were found to contain high concentrations of chloride of up to 476 mg/L followed by sulfate (38 mg/L, bromide (1 mg/L, phosphate (0.4 mg/L, fluoride (0.2 mg/L and nitrate (0.1 mg/L.

  20. Synthesis and Structural Characterisation of [Ir4(CO8(CH3(m4-h3-Ph2PCCPh(m-PPh2] and of the Carbonylation Product [Ir4(CO8{C(OCH3}(m4-h3-Ph2PCCPh(m-PPh2]; First Evidence for the Formation of a CO Cluster Adduct before CO Insertion

    Directory of Open Access Journals (Sweden)

    Braga Dario

    1999-01-01

    Full Text Available Deprotonation of [(mu-HIr4(CO10(mu-PPh2], 1, gives [Ir4(CO10(mu-PPh2]- that reacts with Ph2PCCPh and CH3I to afford [Ir4(CO8(CH3(mu4-eta³-Ph2PCCPh(mu-PPh2], 2 (34%, besides [Ir4(CO9(mu3-eta³-Ph2PC(HCPh(mu-PPh2] and [(mu-HIr4(CO9(Ph2PCºCPh(mu-PPh2]. Compound 2 was characterised by a single crystal X-ray diffraction analysis and exhibits a flat butterfly of metal atoms, with the Ph2PCCPh ligand interacting with all four Ir atoms and the methyl group bonded terminally to a wingtip Ir atom. Carbonylation of 2 yields initially (25 °C, 20 min a CO addition product that, according to VT 31P{¹H} and 13C{¹H} studies, exists in solution in the form of two isomers 4A and 4B (8:1, and then (40 °C, 7 h, the CO insertion product [Ir4(CO8{C(OCH3}(mu4-eta³-Ph2PCCPh(mu-PPh2], 5. The molecular structure of 5, established by an X-ray analysis, is similar to that of 2, except for the acyl group that remains bound to the same Ir atom. The process is reversible at both stages. Treatment of 2 with PPh3 and P(OMe3 affords the CO substitution products [Ir4(CO7L(CH3(mu4-eta³-Ph2PCCPh(mu-PPh2] (L = PPh3, 6 and P(OMe3, 7, instead of the expected CO inserted products. According to the ¹H and 31P{¹H} NMR studies, the PPh3 derivative 6 exists in the form of two isomers (1:1 that differ with respect to the position of this ligand.

  1. ß-Adrenergic stimulation increases RyR2 activity via intracellular Ca2+ and Mg2+ regulation.

    Directory of Open Access Journals (Sweden)

    Jiao Li

    Full Text Available Here we investigate how ß-adrenergic stimulation of the heart alters regulation of ryanodine receptors (RyRs by intracellular Ca(2+ and Mg(2+ and the role of these changes in SR Ca(2+ release. RyRs were isolated from rat hearts, perfused in a Langendorff apparatus for 5 min and subject to 1 min perfusion with 1 µM isoproterenol or without (control and snap frozen in liquid N2 to capture their phosphorylation state. Western Blots show that RyR2 phosphorylation was increased by isoproterenol, confirming that RyR2 were subject to normal ß-adrenergic signaling. Under basal conditions, S2808 and S2814 had phosphorylation levels of 69% and 15%, respectively. These levels were increased to 83% and 60%, respectively, after 60 s of ß-adrenergic stimulation consistent with other reports that ß-adrenergic stimulation of the heart can phosphorylate RyRs at specific residues including S2808 and S2814 causing an increase in RyR activity. At cytoplasmic [Ca(2+] 1 µM, ß-adrenergic stimulation only decreased cytoplasmic Mg(2+ and Ca(2+ inhibition of RyRs. The Ka and maximum levels of cytoplasmic Ca(2+ activation site were not affected by ß-adrenergic stimulation. Our RyR2 gating model was fitted to the single channel data. It predicted that in diastole, ß-adrenergic stimulation is mediated by 1 increasing the activating potency of Ca(2+ binding to the luminal Ca(2+ site and decreasing its affinity for luminal Mg(2+ and 2 decreasing affinity of the low-affinity Ca(2+/Mg(2+ cytoplasmic inhibition site. However in systole, ß-adrenergic stimulation is mediated mainly by the latter.

  2. Mineral CO2 sequestration by steel slag carbonation

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2005-12-01

    Mineral CO2 sequestration, i.e., carbonation of alkaline silicate Ca/Mg minerals, analogous to natural weathering processes, is a possible technology for the reduction of carbon dioxide emissions to the atmosphere. In this paper, alkaline Ca-rich industrial residues are presented as a possible feedstock for mineral CO2 sequestration. These materials are cheap, available near large point sources of CO2, and tend to react relatively rapidly with CO2 due to their chemical instability. Ground steel slag was carbonated in aqueous suspensions to study its reaction mechanisms. Process variables, such as particle size, temperature, carbon dioxide pressure, and reaction time, were systematically varied, and their influence on the carbonation rate was investigated. The maximum carbonation degree reached was 74% of the Ca content in 30 min at 19 bar pressure, 100C, and a particle size of <38 μm. The two must important factors determining the reaction rare are particle size (<2 mm to <38 μm) and reaction temperature (25-225C). The carbonation reaction was found to occur in two steps: (1) leaching of calcium from the steel slag particles into the solution; (2) precipitation of calcite on the surface of these particles. The first step and, more in particular, the diffusion of calcium through the solid matrix toward the surface appeared to be the rate-determining reaction step, The Ca diffusion was found to be hindered by the formation of a CaCO3-coating and a Ca-depleted silicate zona during the carbonation process. Research on further enhancement of the reaction rate, which would contribute to the development of a cost-effective CO2-sequestration process, should focus particularly on this mechanism

  3. Super-microporous solid base MgO-ZrO2 composite and their application in biodiesel production

    Science.gov (United States)

    Su, Jiaojiao; Li, Yongfeng; Wang, Huigang; Yan, Xiaoliang; Pan, Dahai; Fan, Binbin; Li, Ruifeng

    2016-10-01

    The super-microporous microcrystalline MgO-ZrO2 nanomaterials (pore size 1-2 nm) was prepared successfully via a facile one-pot evaporation-induced self-assembly (EISA) method and employed in the transesterification of soybean oil and methanol. X-ray diffraction, transmission electron microscope, temperature programmed desorption of CO2, and N2 adsorption porosimetry were employed to characterize the nanocomposites. Nitrogen sorption isotherms revealed that these materials had large surface areas of more than 200 m2/g. Moreover, the sample with a Mg/Zr molar ratio of 0.5 and calcined at 400 °C showed high biodiesel yield (around 99% at 150 °C).

  4. Live microbial cells adsorb Mg2+ more effectively than lifeless organic matter

    Science.gov (United States)

    Qiu, Xuan; Yao, Yanchen; Wang, Hongmei; Duan, Yong

    2018-03-01

    The Mg2+ content is essential in determining different Mg-CaCO3 minerals. It has been demonstrated that both microbes and the organic matter secreted by microbes are capable of allocating Mg2+ and Ca2+ during the formation of Mg-CaCO3, yet detailed scenarios remain unclear. To investigate the mechanism that microbes and microbial organic matter potentially use to mediate the allocation of Mg2+ and Ca2+ in inoculating systems, microbial mats and four marine bacterial strains ( Synechococcus elongatus, Staphylococcus sp., Bacillus sp., and Desulfovibrio vulgaris) were incubated in artificial seawater media with Mg/Ca ratios ranging from 0.5 to 10.0. At the end of the incubation, the morphology of the microbial mats and the elements adsorbed on them were analyzed using scanning electronic microscopy (SEM) and energy diffraction spectra (EDS), respectively. The content of Mg2+ and Ca2+ adsorbed by the extracellular polysaccharide substances (EPS) and cells of the bacterial strains were analyzed with atomic adsorption spectroscopy (AAS). The functional groups on the surface of the cells and EPS of S. elongatus were estimated using automatic potentiometric titration combined with a chemical equilibrium model. The results show that live microbial mats generally adsorb larger amounts of Mg2+ than Ca2+, while this rarely is the case for autoclaved microbial mats. A similar phenomenon was also observed for the bacterial strains. The living cells adsorb more Mg2+ than Ca2+, yet a reversed trend was observed for EPS. The functional group analysis indicates that the cell surface of S. elongatus contains more basic functional groups (87.24%), while the EPS has more acidic and neutral functional groups (83.08%). These features may be responsible for the different adsorption behavior of Mg2+ and Ca2+ by microbial cells and EPS. Our work confirms the differential Mg2+ and Ca2+ mediation by microbial cells and EPS, which may provide insight into the processes that microbes use to

  5. Electrical properties and structure of glasses in the Ba(PO3)2-MF2 systems, where M = Mg, Ca, Sr, Ba

    International Nuclear Information System (INIS)

    Sokolov, I.A.; Tarlakov, Yu.P.; Murin, I.V.; Pronkin, A.A.

    2000-01-01

    Using the methods of conductometry and IR spectroscopy the concentrational dependences of electric conductivity are studied, the nature of current carriers is determined, the concentrational dependence of transfer numbers is ascertained and structural changes in glasses of the system Ba(PO 3 ) 2 -MF 2 (M = Mg, Ca, Sr, Ba), depending on MF 2 content, are considered. It is shown that F - ions take part in electric current transfer. Influence of crystallochemical nature of alkaline-earth cations on physicochemical properties and structure of the glasses studied is analyzed [ru

  6. Strong Dependence of Hydration State of F-Actin on the Bound Mg(2+)/Ca(2+) Ions.

    Science.gov (United States)

    Suzuki, Makoto; Imao, Asato; Mogami, George; Chishima, Ryotaro; Watanabe, Takahiro; Yamaguchi, Takaya; Morimoto, Nobuyuki; Wazawa, Tetsuichi

    2016-07-21

    Understanding of the hydration state is an important issue in the chemomechanical energetics of versatile biological functions of polymerized actin (F-actin). In this study, hydration-state differences of F-actin by the bound divalent cations are revealed through precision microwave dielectric relaxation (DR) spectroscopy. G- and F-actin in Ca- and Mg-containing buffer solutions exhibit dual hydration components comprising restrained water with DR frequency f2 (fw). The hydration state of F-actin is strongly dependent on the ionic composition. In every buffer tested, the HMW signal Dhyme (≡ (f1 - fw)δ1/(fwδw)) of F-actin is stronger than that of G-actin, where δw is DR-amplitude of bulk solvent and δ1 is that of HMW in a fixed-volume ellipsoid containing an F-actin and surrounding water in solution. Dhyme value of F-actin in Ca2.0-buffer (containing 2 mM Ca(2+)) is markedly higher than in Mg2.0-buffer (containing 2 mM Mg(2+)). Moreover, in the presence of 2 mM Mg(2+), the hydration state of F-actin is changed by adding a small fraction of Ca(2+) (∼0.1 mM) and becomes closer to that of the Ca-bound form in Ca2.0-buffer. This is consistent with the results of the partial specific volume and the Cotton effect around 290 nm in the CD spectra, indicating a change in the tertiary structure and less apparent change in the secondary structure of actin. The number of restrained water molecules per actin (N2) is estimated to be 1600-2100 for Ca2.0- and F-buffer and ∼2500 for Mg2.0-buffer at 10-15 °C. These numbers are comparable to those estimated from the available F-actin atomic structures as in the first water layer. The number of HMW molecules is roughly explained by the volume between the equipotential surface of -kT/2e and the first water layer of the actin surface by solving the Poisson-Boltzmann equation using UCSF Chimera.

  7. Anthropogenic CO2 emissions from a megacity in the Yangtze River Delta of China.

    Science.gov (United States)

    Hu, Cheng; Liu, Shoudong; Wang, Yongwei; Zhang, Mi; Xiao, Wei; Wang, Wei; Xu, Jiaping

    2018-06-03

    Anthropogenic CO 2 emissions from cities represent a major source contributing to the global atmospheric CO 2 burden. Here, we examined the enhancement of atmospheric CO 2 mixing ratios by anthropogenic emissions within the Yangtze River Delta (YRD), China, one of the world's most densely populated regions (population greater than 150 million). Tower measurements of CO 2 mixing ratios were conducted from March 2013 to August 2015 and were combined with numerical source footprint modeling to help constrain the anthropogenic CO 2 emissions. We simulated the CO 2 enhancements (i.e., fluctuations superimposed on background values) for winter season (December, January, and February). Overall, we observed mean diurnal variation of CO 2 enhancement of 23.5~49.7 μmol mol -1 , 21.4~52.4 μmol mol -1 , 28.1~55.4 μmol mol -1 , and 29.5~42.4 μmol mol -1 in spring, summer, autumn, and winter, respectively. These enhancements were much larger than previously reported values for other countries. The diurnal CO 2 enhancements reported here showed strong similarity for all 3 years of the study. Results from source footprint modeling indicated that our tower observations adequately represent emissions from the broader YRD area. Here, the east of Anhui and the west of Jiangsu province contributed significantly more to the anthropogenic CO 2 enhancement compared to the other sectors of YRD. The average anthropogenic CO 2 emission in 2014 was 0.162 (± 0.005) mg m -2  s -1 and was 7 ± 3% higher than 2010 for the YRD. Overall, our emission estimates were significantly smaller (9.5%) than those estimated (0.179 mg m -2  s -1 ) from the EDGAR emission database.

  8. 2μm all fiber multi-wavelength Tm/Ho co-doped fiber laser

    Science.gov (United States)

    Zhang, Junhong; Jiang, Qiuxia; Wang, Xiaofa

    2017-10-01

    A 2 μm all fiber multi-wavelength Tm/Ho co-doped fiber laser based on a simple ring cavity is experimentally demonstrated. Compared with other 2 μm multi-wavelength Tm/Ho co-doped fiber lasers, the multi-wavelength fiber laser is obtained by the gain saturation effect and inhomogeneous broadening effect without any frequency selector component, filter component or polarization-dependent component. When the pump power is about 304 mW, the fiber laser enters into single-wavelength working state around 1967.76 nm. Further increasing the pump power to 455 mW, a stable dual-wavelength laser is obtained at room temperature. The bimodal power difference between λ1 and λ2 is 5.528 dB. The fluctuations of wavelength and power are less than 0.03 nm and 0.264 dB in an hour, which demonstrates that the multi-wavelength fiber laser works at a stable state. Furthermore, a research about the relationship between the pump power and the output spectra has been made.

  9. Synthesis of zeolites 'type A' for adsorption of CO{sub 2}; Sintese de zeolitas 'tipo A' para adsorcao de CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, L.O.; Madeira, A.C.; Merlini, A.; Melo, C.R.; Mendes, E.; Santos, M.G.S.; Angioletto, E., E-mail: elidio@unesc.net [Universidade do Extremo Sul Catarinense (IPARQUE/UNESC), Criciuma, SC (Brazil). Parque Cientifico e Tecnologico

    2012-07-01

    The separation of gases is a very expensive step in the chemical industry and unquestionable relevance. In this work it was found the effectiveness of using zeolites of type A in the separation of CO{sub 2} in a gas mixture containing 25% CO{sub 2}, 4% O{sub 2} and 71% N{sub 2} concentrations similar to exhaust gases from combustion processes. To this end, was synthesized using zeolites type A commercial kaolin and mounted to an adsorption column to test the efficiency of zeolites in the adsorption of CO{sub 2}. The synthesized zeolites showed surface area of 66.22m{sup 2}/g. The CO{sub 2} concentration was determined by gas chromatography with TCD detector. Adjusting the data to the Langmuir model, there was obtained the kinetics of adsorption. From these, we found the ability of zeolite to adsorb CO{sub 2} used in the column of 0.461285mg/g. The results of adsorption proved promising and showed maximum adsorption of 78.4% at a time of 10 seconds. (author)

  10. Mineralogical controls on porosity and water chemistry during O_2-SO_2-CO_2 reaction of CO_2 storage reservoir and cap-rock core

    International Nuclear Information System (INIS)

    Pearce, Julie K.; Golab, Alexandra; Dawson, Grant K.W.; Knuefing, Lydia; Goodwin, Carley; Golding, Suzanne D.

    2016-01-01

    -rocks could be expected to act as baffles to fluids preventing vertical fluid migration. Concentrations of dissolved elements including Ca, Fe, Mn, and Ni increased during reactions of several core samples, with Mn, Mg, Co, and Zn correlated with Ca from cap-rock cores. Precipitation of gypsum, Fe-oxides and clays on seal core samples sequestered dissolved elements including Fe through co-precipitation or adsorption. A conceptual model of impure CO_2-water-rock interactions for a siliciclastic reservoir is discussed. - Highlights: • O_2-SO_2-CO_2 experiments on CO_2 sequestration site reservoir and cap-rock cores. • Coupled micro CT and geochemical characterization before and after reactions. • Strong acidification with reservoir core, no change in porosity. • Formation of open porosity in calcite cemented core, with buffered pH. • Dissolved Mn, Mg, Co, and Zn correlated with Ca from cap-rocks.

  11. Magnesium hexafluoridozirconates MgZrF{sub 6}.5H{sub 2}O, MgZrF{sub 6}.2H{sub 2}O, and MgZrF{sub 6}. Structures, phase transitions, and internal mobility of water molecules

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimenko, Andrey V.; Gaivoronskaya, Kseniya A.; Slobodyuk, Arseny B.; Didenko, Nina A. [Institute of Chemistry, Russian Academy of Sciences, Vladivostok (Russian Federation)

    2017-12-04

    The MgZrF{sub 6}.nH{sub 2}O (n = 5, 2 and 0) compounds were studied by the methods of X-ray diffraction and {sup 19}F, MAS {sup 19}F, and {sup 1}H NMR spectroscopy. At room temperature, the compound MgZrF{sub 6}.5H{sub 2}O has a monoclinic C-centered unit cell and is composed of isolated chains of edge-sharing ZrF{sub 8} dodecahedra reinforced with MgF{sub 2}(H{sub 2}O){sub 4} octahedra and uncoordinated H{sub 2}O molecules and characterized by a disordered system of hydrogen bonds. In the temperature range 259 to 255 K, a reversible monoclinic <-> two-domain triclinic phase transition is observed. The phase transition is accompanied with ordering of hydrogen atoms positions and the system of hydrogen bonds. The structure of MgZrF{sub 6}.2H{sub 2}O comprises a three-dimensional framework consisting of chains of edge-sharing ZrF{sub 8} dodecahedra linked to each other through MgF{sub 4}(H{sub 2}O){sub 2} octahedra. The compound MgZrF{sub 6} belongs to the NaSbF{sub 6} type and is built from regular ZrF{sub 6} and MgF{sub 6} octahedra linked into a three-dimensional framework through linear Zr-F-Mg bridges. The peaks in {sup 19}F MAS spectra were attributed to the fluorine structural positions. The motions of structural water molecules were studied by variable-temperature {sup 1}H NMR spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Z-contrast imaging of ordered structures in Pb(Mg1/3Nb2/3)O3 and Ba(Mg1/3Nb2/3)O3

    International Nuclear Information System (INIS)

    Yan, Y.; Pennycook, S.J.; Xu, Z.; Viehland, D.

    1998-02-01

    Lead-based cubic perovskites such as Pb(B 1/3 2+ B 2/3 5+ )O 3 (B 2+ Mg, Co, Ni, Zn; B 5+ = Nb, Ta) are relaxor ferroelectrics. Localized order and disorder often occur in materials of this type. In the Pb(Mg 1/3 Nb 2/3 )O 3 (PMN) family, previous studies have proposed two models, space-charge and charge-balance models. In the first model, the ordered regions carry a net negative charge [Pb(Mg 1/2 Nb 1/2 )O 3 ], while in the second model it does not carry a net charge [Pb((Mg 2/3 Nb 1/3 ) 1/2 Nb 1/2 )O 3 ]. However, no direct evidence for these two models has appeared in the literature yet. In this paper the authors report the first direct observations of local ordering in undoped and La-doped Pb(Mg 1/3 Nb 2/3 )O 3 , using high-resolution Z-contrast imaging. Because the ordered structure in Ba(Mg 1/3 Nb 2/3 )O 3 is well known, the Z-contrast image from an ordered domain is used as a reference for this study

  13. Nanostructural origin of semiconductivity and large magnetoresistance in epitaxial NiCo2O4/Al2O3 thin films

    Science.gov (United States)

    Zhen, Congmian; Zhang, XiaoZhe; Wei, Wengang; Guo, Wenzhe; Pant, Ankit; Xu, Xiaoshan; Shen, Jian; Ma, Li; Hou, Denglu

    2018-04-01

    Despite low resistivity (~1 mΩ cm), metallic electrical transport has not been commonly observed in inverse spinel NiCo2O4, except in certain epitaxial thin films. Previous studies have stressed the effect of valence mixing and the degree of spinel inversion on the electrical conduction of NiCo2O4 films. In this work, we studied the effect of nanostructural disorder by comparing the NiCo2O4 epitaxial films grown on MgAl2O4 (1 1 1) and on Al2O3 (0 0 1) substrates. Although the optimal growth conditions are similar for the NiCo2O4 (1 1 1)/MgAl2O4 (1 1 1) and the NiCo2O4 (1 1 1)/Al2O3 (0 0 1) films, they show metallic and semiconducting electrical transport, respectively. Post-growth annealing decreases the resistivity of NiCo2O4 (1 1 1)/Al2O3 (0 0 1) films, but the annealed films are still semiconducting. While the semiconductivity and the large magnetoresistance in NiCo2O4 (1 1 1)/Al2O3 (0 0 1) films cannot be accounted for in terms of non-optimal valence mixing and spinel inversion, the presence of anti-phase boundaries between nano-sized crystallites, generated by the structural mismatch between NiCo2O4 and Al2O3, may explain all the experimental observations in this work. These results reveal nanostructural disorder as being another key factor for controlling the electrical transport of NiCo2O4, with potentially large magnetoresistance for spintronics applications.

  14. The magnetization reversal in CoFe{sub 2}O{sub 4}/CoFe{sub 2} granular systems

    Energy Technology Data Exchange (ETDEWEB)

    Jin, J.; Sun, X.; Wang, M.; Ding, Z.L.; Ma, Y.Q., E-mail: yqma@ahu.edu.cn [Anhui University, Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science (China)

    2016-12-15

    The temperature-dependent field cooling (FC) and zero-field cooling (ZFC) magnetizations, i.e., M{sub FC} and M{sub ZFC}, measured under different magnetic fields from 500 Oe to 20 kOe have been investigated on two exchange–spring CoFe{sub 2}O{sub 4}/CoFe{sub 2} composites with different relative content of CoFe{sub 2}. Two samples exhibit different magnetization reversal behaviors. With decreasing temperature, a progressive freezing of the moments in two composites occurs at a field-dependent irreversible temperature T{sub irr}. For the sample with less CoFe{sub 2}, the curves of −d(M{sub FC} − M{sub ZFC})/dT versus temperature T exhibit a broad peak at an intermediate temperature T{sub 2} below T{sub irr}, and the moments are suggested not to fully freeze till the lowest measuring temperature 10 K. However, for the −d(M{sub FC} − M{sub ZFC})/dT curves of the sample with more CoFe{sub 2}, besides a broad peat at an intermediate temperature T{sub 2}, a rapid rise around the low temperature T{sub 1}~15 K is observed, below which the moments are suggested to fully freeze. Increase of magnetic field from 2 kOe leads to the shift of T{sub 2} and T{sub irr} towards a lower temperature, and the shift of T{sub 2} is attributable to the moment reversal of CoFe{sub 2}O{sub 4}.

  15. CO{sub 2} capture using zeolite 13X prepared from bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chao [Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan Province 464000 (China); Park, Dong-Wha [Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Ahn, Wha-Seung, E-mail: whasahn@inha.ac.kr [Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751 (Korea, Republic of)

    2014-02-15

    Zeolite 13X was prepared using bentonite as the raw material by alkaline fusion followed by a hydrothermal treatment without adding any extra silica or alumina sources. The prepared zeolite 13X was characterized by X-ray powder diffraction, N{sub 2}-adsorption–desorption measurements, and scanning electron microscopy. The CO{sub 2} capture performance of the prepared zeolite 13X was examined under both static and flow conditions. The prepared zeolite 13X showed a high BET surface area of 688 m{sup 2}/g with a high micropore volume (0.30 cm{sup 3}/g), and exhibited high CO{sub 2} capture capacity (211 mg/g) and selectivity to N{sub 2} (CO{sub 2}/N{sub 2} = 37) at 25 °C and 1 bar. In addition, the material showed fast adsorption kinetics, and stable CO{sub 2} adsorption–desorption recycling performance at both 25 and 200 °C.

  16. Atmospheric CO2 enrichment effect on the Cu-tolerance of the C4 cordgrass Spartina densiflora.

    Science.gov (United States)

    Pérez-Romero, Jesús Alberto; Idaszkin, Yanina Lorena; Duarte, Bernardo; Baeta, Alexandra; Marques, João Carlos; Redondo-Gómez, Susana; Caçador, Isabel; Mateos-Naranjo, Enrique

    2018-01-01

    A glasshouse experiment was designed to investigate the effect of the co-occurrence of 400 and 700ppm CO 2 at 0, 15 and 45mM Cu on the Cu-tolerance of C 4 cordgrass species Spartina densiflora, by measuring growth, gas exchange, efficiency of PSII, pigments profiles, antioxidative enzyme activities and nutritional balance. Our results revealed that the rising atmospheric CO 2 mitigated growth reduction imposed by Cu in plants grown at 45mM Cu, leading to leaf Cu concentration bellow than 270mgKg -1 Cu, caused by an evident dilution effect. On the other hand, non-CO 2 enrichment plants showed leaf Cu concentration values up to 737.5mgKg -1 Cu. Furthermore, improved growth was associated with higher net photosynthetic rate (A N ). The beneficial effect of rising CO 2 on photosynthetic apparatus seems to be associated with a reduction of stomatal limitation imposed by Cu excess, which allowed these plants to maintain greater i WUE values. Also, plants grown at 45mM Cu and 700ppm CO 2 , showed higher ETR values and lower energy dissipation, which could be linked with an induction of Rubisco carboxylation and supported by the recorded amelioration of N imbalance. Furthermore, higher ETR values under CO 2 enrichment could lead to an additional consumption of reducing equivalents. Idea that was reflected in the lower values of ETR max /A N ratio, malondialdehyde (MDA) and ascorbate peroxidase (APx), guaiacol peroxidase (GPx) and superoxide dismutase (SOD) activities under Cu excess, which could indicate a lower production of ROS species under elevated CO 2 concentration, due to a better use of absorbed energy. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. MgB2 thin films on silicon nitride substrates prepared by an in situ method

    International Nuclear Information System (INIS)

    Monticone, Eugenio; Gandini, Claudio; Portesi, Chiara; Rajteri, Mauro; Bodoardo, Silvia; Penazzi, Nerino; Dellarocca, Valeria; Gonnelli, Renato S

    2004-01-01

    Large-area MgB 2 thin films were deposited on silicon nitride and sapphire substrates by co-deposition of Mg and B. After a post-annealing in Ar atmosphere at temperatures between 773 and 1173 K depending on the substrate, the films showed a critical temperature higher than 35 K with a transition width less than 0.5 K. The x-ray diffraction pattern suggested a c-axis preferential orientation in films deposited on amorphous substrate. The smooth surface and the good structural properties of these MgB 2 films allowed their reproducible patterning by a standard photolithographic process down to dimensions of the order of 10 μm and without a considerable degradation of the superconducting properties

  18. Synthesis of a ruthenium(II) bipyridyl complex coordinated by a functionalized Schiff base ligand: characterization, spectroscopic and isothermal titration calorimetry measurements of M2+ binding and sensing (M2+=Ca2+, Mg2+).

    Science.gov (United States)

    Dixit, Namrata; Mishra, Lallan; Mustafi, Sourajit M; Chary, Kandala V R; Houjou, Hirohiko

    2009-07-01

    Bis-[methylsalicylidine-4'benzoic acid]-ethylene (LH2) complexed with cis-Ru(bpy)2Cl(2).2H2O provides a complex of composition [Ru(bpy)2L].2NH4PF6 (1), which has been characterized spectroscopically. Its binding behaviour towards Mg2+ and Ca2+ ions is monitored using 1H NMR titration, isothermal titration calorimetry (ITC) and luminescence microscopy. The luminescent ruthenium complex binds Ca2+ in a more selective manner as compared to Mg2+.

  19. Pyrolysis and gasification of landfilled plastic wastes with Ni-Mg-La/Al2O3 catalyst.

    Science.gov (United States)

    Kaewpengkrow, Prangtip; Atong, Duangduen; Sricharoenchaikul, Viboon

    2012-12-01

    Pyrolysis and gasification processes were utilized to study the feasibility of producing fuels from landfilled plastic wastes. These wastes were converted in a gasifier at 700-900 degrees C. The equivalence ratio (ER) was varied from 0.4-0.6 with or without addition ofa Ni-Mg-La/Al2O3 catalyst. The pyrolysis and gasification of plastic wastes without catalyst resulted in relatively low H2, CO and other fuel gas products with methane as the major gaseous species. The highest lower heating value (LHV) was obtained at 800 degrees C and for an ER of 0.4, while the maximum cold gas efficiency occurred at 700 degrees C and for an ER of 0.4. The presence of the Ni-Mg-La/Al2O3 catalyst significantly enhanced H2 and CO production as well as increasing the gas energy content to 15.76-19.26 MJ/m3, which is suitable for further usage as quality fuel gas. A higher temperature resulted in more H2 and CO and other product gas yields, while char and liquid (tars) decreased. The maximum gas yield, gas calorific value and cold gas efficiency were achieved when the Ni-Mg-La/Al2O3 catalyst was used at 900 degrees C. In general, addition of prepared catalyst resulted in greater H2, CO and other light hydrocarbon yields from superior conversion of wastes to these gases. Thus, thermochemical treatment of these problematic wastes using pyrolysis and gasification processes is a very attractive alternative for sustainable waste management.

  20. Hydrogenation properties of Mg1-xM1xCu2 (M1=La and Nd) with larger interstitial sites than MgCu2

    International Nuclear Information System (INIS)

    Tsushio, Y.

    1998-01-01

    The hydrogenation properties of C15 compounds are controlled by crystal structure, the size of the interstitial hole being an especially important factor. Its effect on the hydrogenation properties of MgCu 2 substituted with rare earth elements of various radii is discussed and the limit in controlling the crystal structure by conventional substitution is explained. (orig.)

  1. A Conceptual Study on a Supercritical CO_2-cooled Micro Modular Reactor

    International Nuclear Information System (INIS)

    Yu, Hwanyeal; Hartanto, Donny; Kim, Yonghee

    2014-01-01

    A Micro Modular Reactor (MMR) using Supercritical-CO_2 (S-CO_2) as coolant has been investigated from the neutronics perspective. The MMR is designed to be transportable so it can reach the remote areas. The thermal power of the reactor is 36.2 M Wth. The size of the active core is limited to 1.2 m length and 93.16 cm width. The size of whole core is 2.8 m length and 166.9 cm width. The reactor lifetime design target is 20 years. To maximize the fuel volume fraction in the core, high density uranium nitride UN"1"5 was used. The PbO/MgO reflector was also utilized to improve the neutron economy. The S-CO_2 is chosen as the coolant because it offers a higher thermal efficiency. In this study, neutronics calculations and depletion using McCARD Monte Carlo code has been done to determine the lifetime and behavior of the core. Several important safety parameters such as Control Rod worth, Doppler reactivity coefficients and coolant void reactivity coefficient have also been analyzed. (author)

  2. Luminescence Properties of Self-Activated Mm(VO4)2 (M = Mg, Ca, Sr, and Ba) Phosphors Synthesized by Solid-State Reaction Method.

    Science.gov (United States)

    Min, Xin; Huang, Zhaohui; Fang, Minghao; Liu, Yan'gai; Tang, Chao; Wu, Xiaowen

    2016-04-01

    In this paper, M3(VO4)2 (M = Mg, Ca, Sr, and Ba) self-activated phosphors were prepared by a solid-state reaction method at 1,000 °C for 5 h. The phase formation and micrographs were analyzed by X-ray diffraction and scanning electron microscopy. The Ca3(VO4)2 phosphor does not show any emission peaks under excitation with ultraviolet (UV) light. However, the M3(VO4)2 (M = Mg, Sr, and Ba) samples are effectively excited by UV light chips ranging from 200 nm to 400 nm and exhibit broad emission bands due to the charge transfer from the oxygen 2p orbital to the vacant 3d orbital of the vanadium in the VO4. The color of these phosphors changes from yellow to light blue via blue-green with increasing ionic radius from Mg to Sr to Ba. The luminescence lifetimes and quantum yield decrease with the increasing unit cell volume and V-V distance, in the order of Mg3(VO4)2 to Sr3(VO4)2 to Ba3(VO4)2. The emission intensity decreases with the increase of temperatures, but presents no color shift. This confirms that these self-activated M3(VO4)2 phosphors can be suggested as candidates of the single-phase phosphors for light using UV light emitting diodes (LEDs).

  3. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    Science.gov (United States)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co2Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  4. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    International Nuclear Information System (INIS)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co 2 Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  5. Theoretical study for the reduction of N2O with CO Mediated by alkaline-earth metal oxide cations 2MO+(M=Ca, Sr, Ba)

    International Nuclear Information System (INIS)

    Zhang Jianhui; Leng Yanli; Wang Yongcheng

    2013-01-01

    The reaction mechanism of the reaction N 2 O( 0 Σ + ) + CO ( 1 Σ + )→N 2 ( 1 Σ g + ) + CO 2 ( 1 Σ g + ) mediated by alkaline-earth metal oxide cations 2 MO + (m=Ca, Sr, Ba) have been investigated by using the UB3LYP and CCSD (T) levels of theory. The O-atom affinities (OA) testified that only the 2 CaO + can capture O from N 2 O and transfer O to CO is thermodynamically allowed in three ions. The processes can be expressed as channels l and 2 for the reaction of N 2 O and CO mediated by 2 MO + (M=Ca, Sr, Ba). For the former, the main reaction processes in a two-step manner to products, the 2 MO + , as a catalyzer, transports an oxygen atom from N 2 O to CO. For the latter, firstly, the N 2 O interact with the 2 MO + to form IM1, then IM1 interact with the CO to form IM2', along the reaction pathway the intermediate species convert into products 2 1MO + , N 2 and CO 2 . From above results, the following conclusion was drawn. The channel 2 is kinetically and thermodynamically feasible. Our calculated results show the title reactions are accord with the experiment. (authors)

  6. Co2FeAl Heusler thin films grown on Si and MgO substrates: Annealing temperature effect

    International Nuclear Information System (INIS)

    Belmeguenai, M.; Tuzcuoglu, H.; Zighem, F.; Chérif, S. M.; Moch, P.; Gabor, M. S.; Petrisor, T.; Tiusan, C.

    2014-01-01

    10 nm and 50 nm Co 2 FeAl (CFA) thin films have been deposited on MgO(001) and Si(001) substrates by magnetron sputtering and annealed at different temperatures. X-rays diffraction revealed polycrystalline or epitaxial growth (according to CFA(001)[110]//MgO(001)[100] epitaxial relation) for CFA films grown on a Si and on a MgO substrate, respectively. For these later, the chemical order varies from the A2 phase to the B2 phase when increasing the annealing temperature (T a ), while only the A2 disorder type has been observed for CFA grown on Si. Microstrip ferromagnetic resonance (MS-FMR) measurements revealed that the in-plane anisotropy results from the superposition of a uniaxial and a fourfold symmetry term for CFA grown on MgO substrates. This fourfold anisotropy, which disappears completely for samples grown on Si, is in accord with the crystal structure of the samples. The fourfold anisotropy field decreases when increasing T a , while the uniaxial anisotropy field is nearly unaffected by T a within the investigated range. The MS-FMR data also allow for concluding that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with T a . Finally, the FMR linewidth decreases when increasing T a , due to the enhancement of the chemical order. We derive a very low intrinsic damping parameter (1.1×10 −3 and 1.3×10 −3 for films of 50 nm thickness annealed at 615 °C grown on MgO and on Si, respectively)

  7. Air-stable hydrogen generation materials and enhanced hydrolysis performance of MgH2-LiNH2 composites

    Science.gov (United States)

    Ma, Miaolian; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Shao, Huaiyu; Zhu, Min

    2017-08-01

    Hydrolysis of materials in water can be a promising solution of onsite hydrogen generation for realization of hydrogen economy. In this work, it was the first time that the MgH2-LiNH2 composites were explored as air-stable hydrolysis system for hydrogen generation. The MgH2-LiNH2 composites with different composition ratios were synthesized by ball milling with various durations and the hydrogen generation performances of the composite samples were investigated and compared. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy techniques were adopted to elucidate the performance improvement mechanisms. The hydrolysis properties of MgH2 were found to be significantly enhanced by the introduction of LiNH2. The 4MgH2-LiNH2 composite ball milled for 5 h can generate 887.2 mL g-1 hydrogen in 1 min and 1016 mL g-1 in 50 min, one of the best results so far for Mg based hydrolysis materials. The LiOH·H2O and NH4OH phases of hydrolysis products from LiNH2 may prevent formation of Mg(OH)2 passivation layer on the surface and supply enough channels for hydrolysis of MgH2. The MgH2-LiNH2 composites appeared to be very stable in air and no obvious negative effect on kinetics and hydrogen generation yield was observed. These good performances demonstrate that the studied MgH2-LiNH2 composites can be a promising and practicable hydrogen generation system.

  8. Electronic Structure and Bonding Situation in M2O2 (M=Be,Mg,Ca) Rhombic Clusters.

    Czech Academy of Sciences Publication Activity Database

    Li, W.-L.; Lu, J.-B.; Zhao, L.; Ponec, Robert; Cooper, D.L.; Li, J.; Frenking, G.

    Roč. 122, č. 10 ( 2018 ), s. 2816-2822 ISSN 1089-5639 Grant - others:NNSFCH(CN) 21590792; NNSFCH(CN) 21433005; NNSFCH(CN) 21703099; JPY NSF(CN) BK20170964; NTU(CN) 39837123 Institutional support: RVO:67985858 Keywords : electronic structures * M2O2n clustery * theoretical isnights Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.847, year: 2016

  9. Effect of Relative Humidity and CO2 Concentration on the Properties of Carbonated Reactive MgO Cement Based Materials

    Science.gov (United States)

    Bilan, Yaroslav

    Sustainability of modern concrete industry recently has become an important topic of scientific discussion, and consequently there is an effort to study the potential of the emerging new supplementary cementitious materials. This study has a purpose to investigate the effect of reactive magnesia (reactive MgO) as a replacement for general use (GU) Portland Cements and the effect of environmental factors (CO2 concentrations and relative humidity) on accelerated carbonation curing results. The findings of this study revealed that improvement of physical properties is related directly to the increase in CO2 concentrations and inversely to the increase in relative humidity and also depends much on %MgO in the mixture. The conclusions of this study helped to clarify the effect of variable environmental factors and the material replacement range on carbonation of reactive magnesia concrete materials, as well as providing an assessment of the optimal conditions for the effective usage of the material.

  10. Pb3O4 type antimony oxides MSb2O4 (M = Co, Ni) as anode for Li-ion batteries

    International Nuclear Information System (INIS)

    Jibin, A.K.; Reddy, M.V.; Subba Rao, G.V.; Varadaraju, U.V.; Chowdari, B.V.R.

    2012-01-01

    Graphical abstract: Isostructural Pb 3 O 4 type MSb 2 O 4 (M = Co, Ni) compounds were investigated as possible anodes for lithium ion batteries. The reversible capacity is due to electrochemically active Sb and the transition metal and Li 2 O form an inactive matrix which buffers volume variations associated with alloying-de-alloying of antimony. Highlights: ► Isostructural MSb 2 O 4 (M = Co, Ni) were studied as anode for LIBs for first time. ► Li/MSb 2 O 4 (M = Co, Ni) cells displayed reversibility due to electrochemically active Sb. ► CoSb 2 O 4 showed good reversibility compared to NiSb 2 O 4 . - Abstract: Polycrystalline samples of isostructural MSb 2 O 4 (M = Co, Ni) have been prepared by solid state synthesis and lithium-storage is investigated as possible anode materials for lithium-ion batteries. The reaction mechanism of lithium with MSb 2 O 4 (M = Co, Ni) is explored by galvanostatic cycling, cyclic voltammogram and ex situ studies. Both CoSb 2 O 4 and NiSb 2 O 4 exhibit similar electrochemical behavior and show reversible capacity of 490 and 412 mAh g −1 respectively in the first cycle. Reversible alloying de-alloying of Li x Sb takes place in an amorphous matrix of M (Co, Ni) and Li 2 O during electrochemical cycling.

  11. Dopant driven tunability of dielectric relaxation in MxCo(1-x)Fe2O4 (M: Zn2+, Mn2+, Ni2+) nano-ferrites

    Science.gov (United States)

    Datt, Gopal; Abhyankar, A. C.

    2017-07-01

    Nano-ferrites with tunable dielectric and magnetic properties are highly desirable in modern electronics industries. This work reports the effect of ferromagnetic (Ni), anti-ferromagnetic (Mn), and non-magnetic (Zn) substitution on cobalt-ferrites' dielectric and magnetic properties. The Rietveld analysis of XRD data and the Raman spectroscopic study reveals that all the samples are crystallized in the Fd-3m space group. The T2g Raman mode was observed to split into branches, which is due to the presence of different cations (with different vibrational frequencies) at crystallographic A and B-sites. The magnetization study shows that the MnCoFe2O4 sample has the highest saturation magnetization of 87 emu/g, which is attributed to the presence of Mn2+ cations at the B-site with a magnetic moment of 5 μB. The dielectric permittivity of these nanoparticles (NPs) obeys the modified Debye model, which is further supported by Cole-Cole plots. The dielectric constant of MnCoFe2O4 ferrite is found to be one order higher than that of the other two ferrites. The increased bond length of the Mn2+-O2- bond along with the enhanced d-d electron transition between Mn 2 +/Co 2 +⇋Fe 3 + cations at the B-site are found to be the main contributing factors for the enhanced dielectric constant of MnCoFe2O4 ferrite. We find evidence of variable-range hopping of localized polarons in these ferrite NPs. The activation energy, hopping range, and density of states N (" separators="|EF ), of these polarons were calculated using Motts' 1/4th law. The estimated activation energies of these polarons at 300 K were found to be 288 meV, 426 meV, and 410 meV, respectively, for the MnCoFe2O4, NiCoFe2O4, and ZnCoFe2O4 ferrite NPs, while the hopping range of these polarons were found to be 27.14 Å, 11.66 Å, and 8.17 Å, respectively. Observation of a low dielectric loss of ˜0.04, in the frequency range of 0.1-1 MHz, in these NPs makes them potential candidates for energy harvesting devices in

  12. Synthesis of zeolites 'type A' for adsorption of CO2

    International Nuclear Information System (INIS)

    Vieira, L.O.; Madeira, A.C.; Merlini, A.; Melo, C.R.; Mendes, E.; Santos, M.G.S.; Angioletto, E.

    2012-01-01

    The separation of gases is a very expensive step in the chemical industry and unquestionable relevance. In this work it was found the effectiveness of using zeolites of type A in the separation of CO 2 in a gas mixture containing 25% CO 2 , 4% O 2 and 71% N 2 concentrations similar to exhaust gases from combustion processes. To this end, was synthesized using zeolites type A commercial kaolin and mounted to an adsorption column to test the efficiency of zeolites in the adsorption of CO 2 . The synthesized zeolites showed surface area of 66.22m 2 /g. The CO 2 concentration was determined by gas chromatography with TCD detector. Adjusting the data to the Langmuir model, there was obtained the kinetics of adsorption. From these, we found the ability of zeolite to adsorb CO 2 used in the column of 0.461285mg/g. The results of adsorption proved promising and showed maximum adsorption of 78.4% at a time of 10 seconds. (author)

  13. Protection of G2 and G3 against CO{sub 2}; La protection contre le CO{sub 2} des ensembles G.2 et G.3

    Energy Technology Data Exchange (ETDEWEB)

    Chassany, J Ph; Rodier, J [Commissariat a l' Energie Atomique, Service de Protection contre les Radiations, Marcoule (France). Centre d' Etudes Nucleaires

    1961-07-01

    The presence of 60.000 m{sup 3} of CO{sub 2} at 15 kg/cm{sup 2} pressure has made necessary to set up a detection and protection system on a scale equal to that used for ionising radiations. Instruments to check CO and CO{sub 2} in the atmosphere carry out measurements continuously, alarm systems give warning if the CO{sub 2} content increases, and the working areas may be surveyed by a whole series of portable instruments. The order for evacuation is given by sirens, and respiratory units are placed at strategic points along the exit paths. (author) [French] La presence de 60000 m{sup 3} de CO{sub 2} a 15 kg/cm{sup 2} de pression a exige la mise en place d'un dispositif de detection et de protection aussi important que celui realise pour les radiations ionisantes. Des appareils de controle d'ambiance pour le CO et le CO{sub 2} effectuent des mesures en permanence, des appareils d'alarme donnent l'alerte en cas d'augmentation de la teneur en CO{sub 2} et tout une serie d'appareils portatifs permettant la surveillance des chantiers. L'evacuation est demandee par sirene et des appareils respiratoires autonomes jalonnent les trajets vers les sorties. (auteur)

  14. Structural, magnetic, and dielectric properties of multiferroic Co1−xMgxCr2O4 nanoparticles

    International Nuclear Information System (INIS)

    Kamran, M.; Ullah, A.; Rahman, S.; Tahir, A.; Nadeem, K.; Anis ur Rehman, M.; Hussain, S.

    2017-01-01

    Highlights: • Properties of multiferroic Co 1−x Mg x Cr 2 O 4 nanoparticles have been studied. • XRD showed that CoCr 2 O 4 and MgCr 2 O 4 are cubic normal spinel structure. • Rietveld refinement of XRD showed no impurity phases. • T c and T s showed decreasing trend with increasing Mg concentration. • Dielectric properties were improved for x = 0.6 Mg concentration. - Abstract: We examined the structural, magnetic, and dielectric properties of Co 1−x Mg x Cr 2 O 4 nanoparticles with composition x = 0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1 in detail. X-ray diffraction (XRD) revealed normal spinel structure for all the samples. Rietveld refinement fitting results of the XRD showed no impurity phases which signifies the formation of single phase Co 1−x Mg x Cr 2 O 4 nanoparticles. The average crystallite size showed a peak behaviour with maxima at x = 0.6. Raman and Fourier transform infrared (FTIR) spectroscopy also confirmed the formation of single phase normal spinel for all the samples and exhibited dominant vibrational changes for x ≥ 0.6. For x = 0 (CoCr 2 O 4 ), zero field cooled/field cooled (ZFC/FC) magnetization curves showed paramagnetic (PM) to ferrimagnetic (FiM) transition at T c = 97 K and a conical spiral magnetic order at T s = 30 K. The end members CoCr 2 O 4 (x = 0) and MgCr 2 O 4 (x = 1) are FiM and antiferromagnetic (AFM), respectively. T c and T s showed decreasing trend with increasing x, followed by an additional AFM transition at T N = 15 K for x = 0.6. The system finally stabilized and changed to highly frustrated AFM structure at x = 1 due to formation of pure MgCr 2 O 4 . High field FC curves (5T) depicted nearly no effect on spiral magnetic state, which is attributed to strong exchange B-B magnetic interactions at low temperatures. Dielectric parameters showed a non-monotonous behaviour with Mg concentration and were explained with the help of Maxwell-Wagner model and Koop’s theory. Dielectric properties were improved for

  15. Calculations of the magnetic properties of R2M14B intermetallic compounds (R=rare earth, M=Fe, Co)

    International Nuclear Information System (INIS)

    Ito, Masaaki; Yano, Masao; Dempsey, Nora M.; Givord, Dominique

    2016-01-01

    The hard magnetic properties of “R–M–B” (R=rare earth, M=mainly Fe) magnets derive from the specific intrinsic magnetic properties encountered in Fe-rich R 2 M 14 B compounds. Exchange interactions are dominated by the 3d elements, Fe and Co, and may be modeled at the macroscopic scale with good accuracy. Based on classical formulae that relate the anisotropy coefficients to the crystalline electric field parameters and exchange interactions, a simple numerical approach is used to derive the temperature dependence of anisotropy in various R 2 Fe 14 B compounds (R=Pr, Nd, Dy). Remarkably, a unique set of crystal field parameters give fair agreement with the experimentally measured properties of all compounds. This implies reciprocally that the properties of compounds that incorporate a mixture of different rare-earth elements may be predicted accurately. This is of special interest for material optimization that often involves the partial replacement of Nd with another R element and also the substitution of Co for Fe. - Highlights: • Anisotropy constants derived from CEF parameters of R 2 M 14 B compounds (M=Fe, Co). • Anisotropy constants of all R 2 Fe 14 B compounds using unique set of CEF parameters. • Moment non-collinearity in magnetization processes under B app along hard axis.

  16. Basic study of CO2 fixation using a combination of seaweed and shells; Kaiso to kairui wo kumiawaseta CO2 koteika kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, H. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1997-09-10

    CO2 fixed in organic matters return to the atmosphere after putrefication and decomposition, but it is also known that CO2 fixed in inorganic shells stays there permanently. A study is made in this report about the fixation of CO2 in organic matters by use of the ulva and anchored diatom known to be high in CO2 trapping capability, and the study also covers the raising of shells aiming at the fixation of CO2 in inorganic matters. The ulva is raised in a cylindrical raceway type culture water tank, and the anchored diatom in a cylindrical culture unit, and breeding conditions under which they multiply at the highest rate are determined. Their CO2 fixation rates are, respectively, 92.76mg/liter/day and 25.45mg/liter/day, which may be converted, respectively, into 147.1 ton and 5.8 ton of CO2 per hectare per year. Fixed CO2 amounts are tentatively calculated using the above-said figures combined with the raising of shells, and it is found that CO2 may be effectively fixed when the ulva is raised in a 1-hectare area and the shells in a 3.63-hectare area. In this case, the annual CO2 fixation amounts are estimated at 74.1 ton in inorganic matters and 3.9 ton in organic matters. 6 figs.

  17. Synthesis of Co/MFe(2)O(4) (M = Fe, Mn) Core/Shell Nanocomposite Particles.

    Science.gov (United States)

    Peng, Sheng; Xie, Jin; Sun, Shouheng

    2008-01-01

    Monodispersed cobalt nanoparticles (NPs) with controllable size (8-14 nm) have been synthesized using thermal decomposition of dicobaltoctacarbonyl in organic solvent. The as-synthesized high magnetic moment (125 emu/g) Co NPs are dispersible in various organic solvents, and can be easily transferred into aqueous phase by surface modification using phospholipids. However, the modified hydrophilic Co NPs are not stable as they are quickly oxidized, agglomerated in buffer. Co NPs are stabilized by coating the MFe(2)O(4) (M = Fe, Mn) ferrite shell. Core/shell structured bimagnetic Co/MFe(2)O(4) nanocomposites are prepared with tunable shell thickness (1-5 nm). The Co/MFe(2)O(4) nanocomposites retain the high magnetic moment density from the Co core, while gaining chemical and magnetic stability from the ferrite shell. Comparing to Co NPs, the nanocomposites show much enhanced stability in buffer solution at elevated temperatures, making them promising for biomedical applications.

  18. Natural analogue study of CO2 storage monitoring using probability statistics of CO2-rich groundwater chemistry

    Science.gov (United States)

    Kim, K. K.; Hamm, S. Y.; Kim, S. O.; Yun, S. T.

    2016-12-01

    For confronting global climate change, carbon capture and storage (CCS) is one of several very useful strategies as using capture of greenhouse gases like CO2 spewed from stacks and then isolation of the gases in underground geologic storage. CO2-rich groundwater could be produced by CO2 dissolution into fresh groundwater around a CO2 storage site. As consequence, natural analogue studies related to geologic storage provide insights into future geologic CO2 storage sites as well as can provide crucial information on the safety and security of geologic sequestration, the long-term impact of CO2 storage on the environment, and field operation and monitoring that could be implemented for geologic sequestration. In this study, we developed CO2 leakage monitoring method using probability density function (PDF) by characterizing naturally occurring CO2-rich groundwater. For the study, we used existing data of CO2-rich groundwaters in different geological regions (Gangwondo, Gyeongsangdo, and Choongchungdo provinces) in South Korea. Using PDF method and QI (quantitative index), we executed qualitative and quantitative comparisons among local areas and chemical constituents. Geochemical properties of groundwater with/without CO2 as the PDF forms proved that pH, EC, TDS, HCO3-, Ca2+, Mg2+, and SiO2 were effective monitoring parameters for carbonated groundwater in the case of CO2leakage from an underground storage site. KEY WORDS: CO2-rich groundwater, CO2 storage site, monitoring parameter, natural analogue, probability density function (PDF), QI_quantitative index Acknowledgement This study was supported by the "Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2013R1A1A2058186)" and the "R&D Project on Environmental Management of Geologic CO2 Storage" from KEITI (Project number: 2014001810003).

  19. Photoacoustic detection of CO2 based on LABVIEW at 10.303 μm.

    Science.gov (United States)

    Zhao, Junjuan; Zhao, Zhan; Du, Lidong; Geng, Daoqu; Wu, Shaohua

    2011-04-01

    A detailed study on a photoacoustic carbon dioxide detection system, through sound card based on virtual instrument, is presented in this paper. In this system, the CO(2) concentration was measured with the non-resonant photoacoustic cell technique through measuring the photoacoustic signal caused by the CO(2). In order to obtain small photoacoustic signals buried in noise, a measurement software was designed with LABVIEW. It has functions of Lock-in Amplifier, digital filter, and signal generator; can also be used to achieve spectrum analysis and signal recovery; has been provided with powerful function for data processing and communication with other measuring instrument. The test results show that the entire system has an outstanding measuring performance with the sensitivity of 10 μv between 10-44 KHz. The non-resonance test of the trace gas analyte CO(2) conducted at 100 Hz demonstrated large signals (15.89 mV) for CO(2) concentrations at 600 ppm and high signal-to-noise values (∼85:1). © 2011 American Institute of Physics

  20. Supported modified hydrotalcites as sorbent for CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Meis, N.

    2010-02-15

    The average concentration of CO2 in the atmosphere has been increasing since the start of the industrial revolution in the 18th century from 280 ppm to 385 ppm nowadays, and continues to increase because of the enormous human usage of fossil fuels (oil, gas, coal). This can strongly affect the climate, causing the Earth's surface to warm up, the so called 'amplified greenhouse effect'. To alleviate these environmental concerns regarding the current CO2 emissions into the atmosphere, Carbon Capture and Storage (CCS) is investigated as one of the possible routes. Due to the acidic character of CO2, basic oxides are expected to be suitable sorbents. Hydrotalcite, a natural clay, is specifically suitable for pre-combustion capture (250- 400{sup o}C), due to its acceptable sorption capacity and facile regeneration. The influence of lateral platelet size ({+-}40 nm - 2 {mu}m), the use of a support (carbon nanofibers, CNF) and addition of a promoter (alkali carbonate: K{sub 2}CO{sub 3}/Na{sub 2}CO{sub 3}) on the CO2 capture properties of HT was investigated. There was no significant difference in the CO2 sorption capacities at 523K for all unsupported HTs, regardless the platelet size of the HT precursor ({+-}0.1 mmol.g{sup -1}). The use of activated, promoted (alkali carbonate) hydrotalcites showed a much higher capacity ({+-}0.3 mmol.g{sup -1}) at 523K. In addition, the capacities of the activated supported HT at 523K were significantly increased compared to the activated unsupported HT (1.3-2.5 mmol.g{sup -1} HT). The alkali-loaded supported HTs showed capacities slightly higher than the capacity of supported unpromoted HT. The increase in capacity for the promoted and/or supported HTs points to a higher concentration of defects (low-coordination of oxygen sites) on the surface of the activated (alkali-)loaded HTs compared to the unloaded and unsupported HT. The higher concentration of adsorption for the promoted (supported) HTs, might be caused by the

  1. Study of chromites YbMIICr2O5,5 (MII - Mg, Ca, Sr, Ba by X-ray diffraction

    Directory of Open Access Journals (Sweden)

    B. Kasenov

    2012-03-01

    Full Text Available Compounds of composition YbMeMnFeO5,5 (Me – Mg, Ca, Sr, Ba are synthesized from Yb2O3, , Cr2O3 and MgCO3, CaCO3, SrCO3, BaCO3 by solid phase method. X-ray powder diffraction showed that the compound YbMgCr2O5,5, YbCaCr2O5,5, YbSrCr2O5,5, YbBaCr2O5,5 crystallizes in the tetragonal crystal system.

  2. Synthesis and Structural Characterization of [Ir4(m-CO(CO7{m4-h3-Ph2PC(HC(PhPCBut}(m-PPh2]: Alkyne-Phosphaalkyne Coupling and Formation of a Novel 2-phosphabutadienylphosphine Ligand

    Directory of Open Access Journals (Sweden)

    Araujo Maria Helena

    1998-01-01

    Full Text Available Reaction of [Ir4(mu-H(CO9(Ph2PCºCPh(mu-PPh2] 1 with PºCBu t in CH2Cl2, at 35 °C, for 4 h yields the novel compound [Ir4(mu-CO(CO7{mu4-eta³-Ph2PC(HC(PhPCBu t}(mu-PPh2] 2, which contains the 2-phosphabutadienylphosphine chain. Compound 2 is also formed upon thermolysis of [Ir4(CO10(Ph2PCºCPh(PPh2H] 3 in the presence of PºCBu t in thf, at 40 °C, for 48 h. Small amounts of [Ir4(mu-CO(CO7(mu3-eta²-HCCPh(mu-PPh22] 4 are always obtained from both reactions, because of the competing rates of the transformations of 1 and 3 into 4 and of their reactions with PºCBu t. Compound 2 was characterized by analytical and spectroscopic studies such as FAB ms, ¹H, 31P,13C, 2D31P-¹H HETCOR, nOe difference and DEPT NMR experiments, which led to its formulation and established the coupling between the coordinated Ph2PCºCPh and PºCBu t and the migration of the hydride to the Calpha of the Ph2PCºCPh ligand. However, it was impossible to establish unambiguously if cleavage of the P-Csp bond of the Ph2PCºCPh ligand had occurred and the mode of interaction of the organophosphorus chain. An X-ray diffraction study of compound 2 established a butterfly arrangement of iridium atoms with the new ligand interacting with the metal framework via four sigma bonds and the PPh2 phosphorus lone pair.

  3. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Directory of Open Access Journals (Sweden)

    C. Lac

    2013-05-01

    Full Text Available Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI with stronger urban–rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m, leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A

  4. Reactivity in the removal of SO{sub 2} and NO{sub x} on Co/Mg/Al mixed oxides derived from hydrotalcites

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, A.E. [Department of Chemical and Nuclear Engineering, Universidad Politecnica Valencia, Avda. de los Naranjos s/n, 46022 Valencia (Spain); Lopez-Nieto, J.M.; Corma, A. [Instituto de Tecnologia Quimica, UPV-CSIC, Universidad Politecnica de Valencia, Avenida de los Naranjos s/n., 46022 Valencia (Spain); Lazaro, F.J.; Lopez, A. [Instituto Ciencia de Materiales de Aragon (CSIC- Universidad de Zaragoza), 50015 Zaragoza (Spain)

    1999-04-05

    Metal containing hydrotalcites, where metal oxides present redox properties and hydrotalcite shows a basic character, appear to be new important environmental catalysts for the removal of SO{sub x} and NO{sub x}. Redox and basic properties of a mixed Co/Mg/Al oxide derived from hydrotalcites are tuned in order to achieve the optimal catalytic behavior required. This sample has been characterized showing that cobalt is present in two forms, as isolated and well dispersed paramagnetic ions, and as very small Co-containing particles (in the nanometric range), with an internal antiferromagnetic ordering at low temperature. The redox properties of cobalt allow the reduction of NO with propane at high temperatures and in presence of oxygen. The reduced cobalt species are proposed as the active sites. Nevertheless, for the removal of SO{sub 2} and contrary to the case of Cu/Mg/Al samples, the addition of an oxidant as cerium oxide on Co/Mg/Al is necessary in order to oxidize SO{sub 2} to SO{sub 3}. In this case, similar results than those obtained with previously reported catalyst, i.e. cerium or copper-cerium hydrotalcite, are obtained. These results indicate that this catalyst could be an adequate material for the simultaneous removal of SO{sub 2} and NO{sub x} in a FCC unit

  5. Environmental controls of temporal and spatial variability in CO2 and CH4 fluxes in a neotropical peatland.

    Science.gov (United States)

    Wright, Emma L; Black, Colin R; Turner, Benjamin L; Sjögersten, Sofie

    2013-12-01

    Tropical peatlands play an important role in the global storage and cycling of carbon (C) but information on carbon dioxide (CO2) and methane (CH4) fluxes from these systems is sparse, particularly in the Neotropics. We quantified short and long-term temporal and small scale spatial variation in CO2 and CH4 fluxes from three contrasting vegetation communities in a domed ombrotrophic peatland in Panama. There was significant variation in CO2 fluxes among vegetation communities in the order Campnosperma panamensis > Raphia taedigera > Cyperus. There was no consistent variation among sites and no discernible seasonal pattern of CH4 flux despite the considerable range of values recorded (e.g. -1.0 to 12.6 mg m(-2) h(-1) in 2007). CO2 fluxes varied seasonally in 2007, being greatest in drier periods (300-400 mg m(-2) h(-1)) and lowest during the wet period (60-132 mg m(-2) h(-1)) while very high emissions were found during the 2009 wet period, suggesting that peak CO2 fluxes may occur following both low and high rainfall. In contrast, only weak relationships between CH4 flux and rainfall (positive at the C. panamensis site) and solar radiation (negative at the C. panamensis and Cyperus sites) was found. CO2 fluxes showed a diurnal pattern across sites and at the Cyperus sp. site CO2 and CH4 fluxes were positively correlated. The amount of dissolved carbon and nutrients were strong predictors of small scale within-site variability in gas release but the effect was site-specific. We conclude that (i) temporal variability in CO2 was greater than variation among vegetation communities; (ii) rainfall may be a good predictor of CO2 emissions from tropical peatlands but temporal variation in CH4 does not follow seasonal rainfall patterns; and (iii) diurnal variation in CO2 fluxes across different vegetation communities can be described by a Fourier model. © 2013 John Wiley & Sons Ltd.

  6. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: : CO: CO2, N2O: CO2, CH4: CO2, O2: CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NARCIS (Netherlands)

    Popa, Maria Elena; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.; Rothe, M.; Röckmann, T.

    2014-01-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2/N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the Islisberg highway tunnel (Switzerland). The molar CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb:ppm, are lower than reported in

  7. Out-of-equilibrium nanocrystalline R1-s(Fe,M)5+2s alloys (R=Sm,Pr; M=Co,Si,Ga)

    International Nuclear Information System (INIS)

    Bessais, L.; Djega-Mariadassou, C.

    2005-01-01

    The out-of-equilibrium hexagonal P6/mmm R 1-s (Fe,M) 5+2s (R=Sm,Pr and M=Co, Si or Ga) intermetallics are obtained by controlled nanocrystallization. A model is presented to explain the structure of the hexagonal phases, which stoichiometry is consistent with Sm(Fe,M) 9 and R(Fe,Ti,Co) 10 . The Curie temperatures increase versus Ga, Si, Co content. The analysis of the Moessbauer spectra leads to monotonous variation of the hyperfine parameters. The refinement of the Moessbauer spectra was performed on the basis of the correlation between Wigner-Seitz cell volumes obtained from X-ray diffraction results and isomer shifts. The abundance of each magnetic site was calculated by the multinomial distribution law. For a given substituting Co, Si, Ga content, the sequence for the isomer shift in the hexagonal cell is 2e>3g>6l. With increasing M content, the isomer shift of the 3g site remains quasi-constant. Those approaches lead to the location of Si, Ga, Co in 3g site, Ti in 6l site. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Synthesis of some Mg/Co-Al type nano hydrotalcites and characterization

    Directory of Open Access Journals (Sweden)

    Khadijeh Shekoohi

    2017-01-01

    Full Text Available Hydrotalcites are quite prevalent in nature and their importance is growing more and more because of their very wide range of potential applications and uses. Because hydrotalcite does not exist in significant quantities in nature, coprecipitation methods are the most used for prepartion of hydrotalcite. In this study: Two types of Nano hydrotalcite compounds containing one divalent (Mg-Al and two divalent cation(Co-Mg-Al were synthesized based on aqueous solutions of corresponding nitrates by co-precipitation method. The molar ratio influences structure and performance of hydrotalcite largely. The crystallinity and crystallite size of the hydrotalcite were observed to varying with molar of M2+/M3+ ratio. The structure and morphology of the Nano hydrotalcites were characterized by powder X-ray diffraction, scanning electron microscopy, Fourier-transformed Infrared spectroscopy and thermal gravimetric analysis. The crystallite size of the hydrotalcite was observed to increase when the Mg/Al molar ratio increases and, more significantly, when a second divalent cation (cobalt was added.

  9. A molecular dual fluorescence-ON probe for Mg2+ and Zn2+: Higher selectivity towards Mg2+ over Zn2+ in a mixture

    International Nuclear Information System (INIS)

    Maity, Shubhra Bikash; Bharadwaj, Parimal K.

    2014-01-01

    A Schiff base incorporating a coumarin fluorophore has been synthesized from easily available materials and is characterized by X-ray crystallography and other techniques. The probe serves as a dual analyte sensor and quantifies Mg 2+ and Zn 2+ ions by emission enhancement at different wavelengths without interference from a host of biologically relevant alkali/alkaline earth and transition metal ions. In presence of Mg 2+ the light yellow color of the probe in methanol changes to yellow–orange while in presence of Zn 2+ ion it changes to orange and hence can be detected through naked eye. The probe selectively gives emission of Mg 2+ when Zn 2+ ion is also present. - Highlights: • A Schiff base incorporating a coumarin fluorophore has been synthesized. • It acts as a dual analyte sensor and quantifies Mg 2+ and Zn 2+ ions by emission enhancement at different wavelengths. • It shows excellent selectivity for Mg 2+ ion in presence of alkali, alkaline earth metals as well as first row transition metals

  10. Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Vanin, Marco; Karamad, Mohammedreza

    2013-01-01

    Porphyrin-like metal-functionalized graphene structures have been investigated as possible catalysts for CO2 and CO reduction to methane or methanol. The late transition metals (Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) and some p (B, Al, Ga) and s (Mg) metals comprised the center of the po......Porphyrin-like metal-functionalized graphene structures have been investigated as possible catalysts for CO2 and CO reduction to methane or methanol. The late transition metals (Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) and some p (B, Al, Ga) and s (Mg) metals comprised the center...... instead of CO2. Volcano plots were constructed on the basis of scaling relations of reaction intermediates, and from these plots the reaction steps with the highest overpotentials were deduced. The Rh-porphyrin-like functionalized graphene was identified as the most active catalyst for producing methanol...... from CO, featuring an overpotential of 0.22 V. Additionally, we have also examined the hydrogen evolution and oxidation reaction, and in their case, too, Rh-porphyrin turned out to be the best catalyst with an overpotential of 0.15 V. © 2013 American Chemical Society....

  11. Use of MgO to mitigate the effect of microbial CO2 production in the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Wang, Y.; Brush, L.H.

    1997-01-01

    The Waste Isolation Pilot Plant (WIPP), located in a salt bed in southern New Mexico, is designed by US Department of Energy to demonstrate the safe and permanent disposal of design-basis transuranic waste. WIPP performance assessment requires consideration of radionuclide release in brines in the event of inadvertent human intrusion. The mobility of radionuclides depends on chemical factors such as brine pmH (-log molality of H + ) and CO 2 fugacity. According to current waste inventory estimates, a large quantity (∼ 10 9 moles C) of organic materials will be emplaced in the WIPP. Those organic material will potentially be degraded by halophilic or halotolerant microorganisms in the presence of liquid water in the repository, especially if a large volume of brine is introduced into the repository by human intrusions. Organic material biodegradation will produce a large amount of CO 2 , which will acidify the WIPP brine and thus significantly increase the mobility of actinides. This communication addresses (1) the rate of organic material biodegradation and the quantity of CO 2 to be possibly generated, (2) the effect of microbial CO 2 production on overall WIPP performance, and (3) the mechanism of using MgO to mitigate this effect

  12. The Synergy Effect of Ni-M (M = Mo, Fe, Co, Mn or Cr Bicomponent Catalysts on Partial Methanation Coupling with Water Gas Shift under Low H2/CO Conditions

    Directory of Open Access Journals (Sweden)

    Xinxin Dong

    2017-02-01

    Full Text Available Ni-M (M = Mo, Fe, Co, Mn or Cr bicomponent catalysts were prepared through the co-impregnation method for upgrading low H2/CO ratio biomass gas into urban gas through partial methanation coupling with water gas shift (WGS. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction (XRD, H2 temperature programmed reduction (H2-TPR, H2 temperature programmed desorption (H2-TPD, scanning electron microscopy (SEM and thermogravimetry (TG. The catalytic performances demonstrated that Mn and Cr were superior to the other three elements due to the increased fraction of reducible NiO particles, promoted dispersion of Ni nanoparticles and enhanced H2 chemisorption ability. The comparative study on Mn and Cr showed that Mn was more suitable due to its smaller carbon deposition rate and wider adaptability to various H2/CO and H2O/CO conditions, indicating its better synergy effect with Ni. A nearly 100 h, the lifetime test and start/stop cycle test further implied that 15Ni-3Mn was stable for industrial application.

  13. Microstructural and domain effects in epitaxial CoFe2O4 films on MgO with perpendicular magnetic anisotropy

    International Nuclear Information System (INIS)

    Comes, Ryan; Gu Man; Khokhlov, Mikhail; Lu Jiwei; Wolf, Stuart A.

    2012-01-01

    CoFe 2 O 4 (CFO) epitaxial thin films of various thicknesses were grown on MgO substrates using the pulsed electron-beam deposition technique. The films have excellent in-plane coherence with the substrate, exhibit layer-by-layer growth and have well-defined thickness fringes in x-ray diffraction measurements. Atomic force microscopy (AFM) measurements indicate that misfit dislocations form in thicker films and the critical thickness for the dislocation formation is estimated. Perpendicular magnetic anisotropy in CFO due to epitaxial in-plane tensile strain from the substrate was found. A stripe-like domain structure in the demagnetized state is demonstrated using magnetic force microscopy (MFM), in agreement with previous predictions. Coercivity increased in thicker films, which is explained by domain wall pinning due to misfit dislocations at the CFO/MgO interface. - Highlights: → X-ray diffraction and rocking curves indicate films are amongst highest quality in the literature. → Domain structure of CoFe 2 O 4 films on MgO was found to be stripe-like using MFM. → Critical thickness for misfit dislocations estimated and agrees with experiment. → Effect of misfit dislocations on surface morphology explained. → Role of dislocations and antiphase boundaries in domain wall formation and motion explained.

  14. Box-Behnken design approach towards optimization of activated carbon synthesized by co-pyrolysis of waste polyester textiles and MgCl2

    Science.gov (United States)

    Yuan, Zhihang; Xu, Zhihua; Zhang, Daofang; Chen, Weifang; Zhang, Tianqi; Huang, Yuanxing; Gu, Lin; Deng, Haixuan; Tian, Danqi

    2018-01-01

    Pyrolysis activation of waste polyester textiles (WPT) was regarded as a sustainable technique to synthesize multi-pore activated carbons. MgO-template method of using MgCl2 as the template precursor was employed, which possessed the advantages of ideal pore-forming effect and efficient preparation process. The response surface methodology coupled with Box-Behnken design (BBD) was conducted to study the interaction between different variables and optimized preparation conditions of waste polyester textiles based activated carbons. Derived from BBD design results, carbonization temperature was the most significant individual factor. And the maximum specific surface area of 1364 m2/g, which presented a good agreement with the predicted response values(1315 m2/g), was obtained at mixing ratio in MgCl2/WPT, carbonization temperature and time of 5:1, 900 °C and 90 min, respectively. Furthermore, the physicochemical properties of the sample prepared under optimal conditions were carried on utilizing nitrogen adsorption/desorption isotherms, EA, XRD, SEM and FTIR. In addition, the pore-forming mechanism was mainly attributed to the tendency of carbon layer coating on MgO to form pore walls after elimination of MgO and the strong dehydration effect of MgCl2 on WPT.

  15. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; J.Tim Cullinane; Marcus Hilliard; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2004-07-29

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. CO{sub 2} mass transfer rates are second order in piperazine concentration and increase with ionic strength. Modeling of stripper performance suggests that 5 m K{sup +}/2.5 m PZ will require 25 to 46% less heat than 7 m MEA. The first pilot plant campaign was completed on June 24. The CO{sub 2} penetration through the absorber with 20 feet of Flexipac{trademark} 1Y varied from 0.6 to 16% as the inlet CO{sub 2} varied from 3 to 12% CO{sub 2} and the gas rate varied from 0.5 to 3 kg/m{sup 2}-s.

  16. Green Synthesis Methods of CoFe2O4 and Ag-CoFe2O4 Nanoparticles Using Hibiscus Extracts and Their Antimicrobial Potential

    Directory of Open Access Journals (Sweden)

    Dana Gingasu

    2016-01-01

    Full Text Available The cobalt ferrite (CoFe2O4 and silver-cobalt ferrite (Ag-CoFe2O4 nanoparticles were obtained through self-combustion and wet ferritization methods using aqueous extracts of Hibiscus rosa-sinensis flower and leaf. X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and magnetic measurements were used for the characterization of the obtained oxide powders. The antimicrobial activity of the cobalt ferrite and silver-cobalt ferrite nanoparticles against Gram-positive and Gram-negative bacteria, as well as fungal strains, was investigated by qualitative and quantitative assays. The most active proved to be the Ag-CoFe2O4 nanoparticles, particularly those obtained through self-combustion using hibiscus leaf extract, which exhibited very low minimal inhibitory concentration values (0.031–0.062 mg/mL against all tested microbial strains, suggesting their potential for the development of novel antimicrobial agents.

  17. Free-air CO2 enrichment (FACE) reduces the inhibitory effect of soil nitrate on N2 fixation of Pisum sativum.

    Science.gov (United States)

    Butterly, Clayton R; Armstrong, Roger; Chen, Deli; Tang, Caixian

    2016-01-01

    Additional carbohydrate supply resulting from enhanced photosynthesis under predicted future elevated CO2 is likely to increase symbiotic nitrogen (N) fixation in legumes. This study examined the interactive effects of atmospheric CO2 and nitrate (NO3(-)) concentration on the growth, nodulation and N fixation of field pea (Pisum sativum) in a semi-arid cropping system. Field pea was grown for 15 weeks in a Vertosol containing 5, 25, 50 or 90 mg NO3(-)-N kg(-1) under either ambient CO2 (aCO2; 390 ppm) or elevated CO2 (eCO2; 550 ppm) using free-air CO2 enrichment (SoilFACE). Under aCO2, field pea biomass was significantly lower at 5 mg NO3(-)-N kg(-1) than at 90 mg NO3(-)-N kg(-1) soil. However, increasing the soil N level significantly reduced nodulation of lateral roots but not the primary root, and nodules were significantly smaller, with 85% less nodule mass in the 90 NO3(-)-N kg(-1) than in the 5 mg NO3(-)-N kg(-1) treatment, highlighting the inhibitory effects of NO3(-). Field pea grown under eCO2 had greater biomass (approx. 30%) than those grown under aCO2, and was not affected by N level. Overall, the inhibitory effects of NO3(-) on nodulation and nodule mass appeared to be reduced under eCO2 compared with aCO2, although the effects of CO2 on root growth were not significant. Elevated CO2 alleviated the inhibitory effect of soil NO3(-) on nodulation and N2 fixation and is likely to lead to greater total N content of field pea growing under future elevated CO2 environments. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. The Li–CO2 battery: a novel method for CO2 capture and utilization

    KAUST Repository

    Xu, Shaomao; Das, Shyamal K.; Archer, Lynden A.

    2013-01-01

    We report a novel primary Li-CO2 battery that consumes pure CO2 gas as its cathode. The battery exhibits a high discharge capacity of around 2500 mA h g-1 at moderate temperatures. At 100 °C the discharge capacity is close to 1000% higher than

  19. THE THERMODYNAMIC PROPERTIES OF MELTS OF DOUBLE SYSTEM MgO – Al2O3, MgO – SiO2, MgO – CaF2, Al2O3 – SiO2, Al2O3 – CaF2, SiO2 – CaF2

    Directory of Open Access Journals (Sweden)

    В. Судавцова

    2012-04-01

    Full Text Available Methodology of prognostication of thermodynamics properties of melts is presented from the coordinatesof liquidus of diagram of the state in area of equilibria a hard component is solution, on which energies ofmixing of Gibbs are expected in the double border systems of MgO – Al2O3, MgO – SiO2, MgO – CaF2,Al2O3 – SiO2, Al2O3 - CaF2, SiO2 - CaF2. For the areas of equilibrium there is quasibinary connection(MgAl2O4, Mg2SiO4, Al6Si2O13 – a grout at calculations was used equalization of Hauffe-Wagner. Theobtained data comport with literary

  20. The structural, electronic, magnetic, and mechanical properties of perovskite oxides PbM1/2Nb1/2O3 (M = Fe, Co and Ni)

    Science.gov (United States)

    Erkisi, A.; Surucu, G.; Deligoz, E.

    2018-03-01

    In this study, the structural, electronic, magnetic, and mechanical properties of perovskite oxides PbM1/2Nb1/2O3 (M = Fe, Co and Ni) are investigated. The systems are treated in ferromagnetic order. The calculations are carried out in the framework of density functional theory (DFT) within the plane-wave pseudopotential method. The exchange-correlation potential is approximated by generalized-gradient spin approach (GGA). The intra-atomic Coulomb repulsion is also taken into account in calculations (GGA + U). We have considered two generalized-gradient spin approximation functionals, which are Perdew-Burke-Ernzerhof (PBE) and PBE for solids (PBEsol) for structural parameter calculations when it included Hubbard potential. Although the spin-polarized electronic band structures of PbCo1/2Nb1/2O3 and PbNi1/2Nb1/2O3 systems exhibit metallic property in ferromagnetic phase, a bandgap is observed in spin-down states of PbFe1/2Nb1/2O3 resulting in half-metallic behavior. The main reason for this behavior is attributed to the hybridization between d-states of transition metal atoms and p-states of oxygen atoms. The stability mechanically and the calculated mechanical properties by using elastic constants show that these compounds are mechanically stable in tetragonal phase and have anisotropic character mechanically.

  1. Removal of 14C-contaminated CO2 from simulated LWR fuel reprocessing off-gas by utilizing the reaction between CO2 and alkaline hydroxides in either slurry or solid form

    International Nuclear Information System (INIS)

    Holladay, D.W.; Haag, G.L.

    1979-01-01

    An important consideration in the design of a LWR fuel reprocessing plant is the removal of 14 C-contaminated CO 2 from the process off-gas. The separation and fixation of essentially all the CO 2 from the simulated off-gas can be accomplished by reaction with alkaline slurries in agitated tank-type contactors. Based on efficacy for CO 2 removal, consideration of reactant cost, and stability of the carbonate product as related to long-term storage requirements, the two most promising slurry reactants for CO 2 removal from low CO 2 -content feed gases are Ca(OH) 2 and Ba(OH) 2 . The removal of 14 C-contaminated CO 2 from simulated LWR off-gases was studied as a function of both operating conditions and varying sizes of bench-scale design. Parametrically, the effects on the CO 2 removal rate of feed composition (330 ppM - 4.47% CO 2 ), impeller speed (325 to 650 rpm), superficial velocity (5 to 80 cm/min), reactants [Mg(OH) 2 , NaOH], contactor size (20.3 cm and 27.3 cm ID), and type of operation (semibatch or continuous slurry) were deterined

  2. Monte Carlo and Ab-initio calculation of TM (Ti, V, Cr, Mn, Fe, Co, Ni) doped MgH{sub 2} hydride: GGA and SIC approximation

    Energy Technology Data Exchange (ETDEWEB)

    Salmani, E., E-mail: elmehdisalmani@gmail.com [LMPHE (URAC12), Faculty of Sciences, Mohammed V University in Rabat (Morocco); Laghrissi, A.; Lamouri, R. [LMPHE (URAC12), Faculty of Sciences, Mohammed V University in Rabat (Morocco); Benchafia, E. [Department of Materials Science and Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Ez-Zahraouy, H. [LMPHE (URAC12), Faculty of Sciences, Mohammed V University in Rabat (Morocco); Benyoussef, A. [Institute for Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2017-02-15

    MgH{sub 2}: TM (TM: V, Cr, Mn, Fe, Co, Ni) based dilute magnetic semiconductors (DMS) are investigated using first principle calculations. Our results show that the ferromagnetic state is stable when TM introduces magnetic moments as well as intrinsic carriers in TM: Co, V, Cr, Ti; Mg{sub 0.95}TM{sub 0.05}H{sub 2}. Some of the DMS Ferro magnets under study exhibit a half-metallic behavior, which make them suitable for spintronic applications. The double exchange is shown to be the underlying mechanism responsible for the magnetism of such materials. The exchange interactions obtained from first principle calculations and used in a classical Ising model by a Monte Carlo approach resulted in ferromagnetic states with Curie temperatures within the ambient conditions. - Highlights: • The half-metallic aspect was proven to take place for Ti, Cr, Co and Ni. • The TM impurities are shown to introduce the magnetic moment that makes MgH{sub 2} good candidates for spintronic applications.

  3. Comment on "Hydride, gold(i) and related derivatives of the unsaturated ditungsten anion [W2Cp2(μ-PCy2)(μ-CO)2]-" by M. A. Ruiz et al., Dalton Trans., 2014, 43, 16044.

    Science.gov (United States)

    Green, Malcolm L H

    2018-04-25

    Application of the covalent bond classification to the compounds [M2(η5-C5H5)2(μ-H)(μ-PCy2)(CO)2] (M = Mo, W) identifies the compounds as having two M-M bonds and a 2 electron 3 centre (2e-3c) bond incorporating the bridging hydrogen, in accord with density functional calculations, and assigns their class as ML4X4.

  4. Symmetrical synergy of hybrid CoS2-WS2 electrocatalysts for hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng; Yang, Xiulin; Li, Henan; Hedhili, Mohamed N.; Huang, Kuo-Wei; Li, Lain-Jong; Zhang, Wenjing

    2017-01-01

    A highly active and stable hybrid electrocatalyst 3D hierarchical CoS2 nanosheets incorporated with WS2 (CoS2@WS2) has been developed via a one-step sulfurization method for the first time, where the contents of WS2 can be adjusted easily. We first prove the addition of small amounts of WS2 enhances the hydrogen evolution reaction (HER) performance of CoS2, and vise versa. In other words, we validated the symmetric synergy for HER between the Co- and W-based sulfide hybrid catalysts. In addition, we confirmed that the formation of nanointerfaces of Co-S-W between CoS2 and WS2 was responsible for the excellent HER activity (an overpotential of -97.2 mV at -10 mA/cm2, a small Tafel slope of 66.0 mV/dec, and prominent electrochemical stability) of hybrid electrocatalyst CoS2@WS2.

  5. Symmetrical synergy of hybrid CoS2-WS2 electrocatalysts for hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng

    2017-06-05

    A highly active and stable hybrid electrocatalyst 3D hierarchical CoS2 nanosheets incorporated with WS2 (CoS2@WS2) has been developed via a one-step sulfurization method for the first time, where the contents of WS2 can be adjusted easily. We first prove the addition of small amounts of WS2 enhances the hydrogen evolution reaction (HER) performance of CoS2, and vise versa. In other words, we validated the symmetric synergy for HER between the Co- and W-based sulfide hybrid catalysts. In addition, we confirmed that the formation of nanointerfaces of Co-S-W between CoS2 and WS2 was responsible for the excellent HER activity (an overpotential of -97.2 mV at -10 mA/cm2, a small Tafel slope of 66.0 mV/dec, and prominent electrochemical stability) of hybrid electrocatalyst CoS2@WS2.

  6. Isopiestic Investigation of the Osmotic and Activity Coefficients of {yMgCl2 + (1 - y)MgSO4}(aq) and the Osmotic Coefficients of Na2SO4.MgSO4(aq) at 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Miladinovic, J; Ninkovic, R; Todorovic, M; Rard, J A

    2007-06-06

    Isopiestic vapor pressure measurements were made for {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) solutions with MgCl{sub 2} ionic strength fractions of y = 0, 0.1997, 0.3989, 0.5992, 0.8008, and (1) at the temperature 298.15 K, using KCl(aq) as the reference standard. These measurements for the mixtures cover the ionic strength range I = 0.9794 to 9.4318 mol {center_dot} kg{sup -1}. In addition, isopiestic measurements were made with NaCl(aq) as reference standard for mixtures of {l_brace}xNa{sub 2}SO{sub 4} + (1-x)MgSO{sub 4}{r_brace}(aq) with the molality fraction x = 0.50000 that correspond to solutions of the evaporite mineral bloedite (astrakanite), Na{sub 2}Mg(SO{sub 4}){sub 2} {center_dot} 4H{sub 2}O(cr). The total molalities, m{sub T} = m(Na{sub 2}SO{sub 4}) + m(MgSO{sub 4}), range from m{sub T} = 1.4479 to 4.4312 mol {center_dot} kg{sup -1} (I = 5.0677 to 15.509 mol {center_dot} kg{sup -1}), where the uppermost concentration is the highest oversaturation molality that could be achieved by isothermal evaporation of the solvent at 298.15 K. The parameters of an extended ion-interaction (Pitzer) model for MgCl2(aq) at 298.15 K, which were required for an analysis of the {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) mixture results, were evaluated up to I = 12.025 mol {center_dot} kg{sup -1} from published isopiestic data together with the six new osmotic coefficients obtained in this study. Osmotic coefficients of {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) solutions from the present study, along with critically-assessed values from previous studies, were used to evaluate the mixing parameters of the extended ion-interaction model.

  7. Pre-synaptic glycine GlyT1 transporter--NMDA receptor interaction: relevance to NMDA autoreceptor activation in the presence of Mg2+ ions.

    Science.gov (United States)

    Musante, Veronica; Summa, Maria; Cunha, Rodrigo A; Raiteri, Maurizio; Pittaluga, Anna

    2011-05-01

    Rat hippocampal glutamatergic terminals possess NMDA autoreceptors whose activation by low micromolar NMDA elicits glutamate exocytosis in the presence of physiological Mg(2+) (1.2 mM), the release of glutamate being significantly reduced when compared to that in Mg(2+)-free condition. Both glutamate and glycine were required to evoke glutamate exocytosis in 1.2 mM Mg(2+), while dizocilpine, cis-4-[phosphomethyl]-piperidine-2-carboxylic acid and 7-Cl-kynurenic acid prevented it, indicating that occupation of both agonist sites is needed for receptor activation. D-serine mimicked glycine but also inhibited the NMDA/glycine-induced release of [(3H]D-aspartate, thus behaving as a partial agonist. The NMDA/glycine-induced release in 1.2 mM Mg(2+) strictly depended on glycine uptake through the glycine transporter type 1 (GlyT1), because the GlyT1 blocker N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine hydrochloride, but not the GlyT2 blocker Org 25534, prevented it. Accordingly, [(3)H]glycine was taken up during superfusion, while lowering the external concentration of Na(+), the monovalent cation co-transported with glycine by GlyT1, abrogated the NMDA-induced effect. Western blot analysis of subsynaptic fractions confirms that GlyT1 and NMDA autoreceptors co-localize at the pre-synaptic level, where GluN3A subunits immunoreactivity was also recovered. It is proposed that GlyT1s coexist with NMDA autoreceptors on rat hippocampal glutamatergic terminals and that glycine taken up by GlyT1 may permit physiological activation of NMDA pre-synaptic autoreceptors. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  8. Chemistry of the oxophosphinidene ligand. 2. Reactivity of the anionic complexes [MCp{P(O)R*}(CO)(2)](-) (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3)) toward electrophiles based on elements different from carbon.

    Science.gov (United States)

    Alonso, María; Alvarez, M Angeles; García, M Esther; Ruiz, Miguel A; Hamidov, Hayrullo; Jeffery, John C

    2010-12-20

    The anionic oxophosphinidene complexes (H-DBU)[MCp{P(O)R*}(CO)(2)] (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3); Cp = η(5)-C(5)H(5), DBU = 1,8-diazabicyclo [5.4.0] undec-7-ene) displayed multisite reactivity when faced with different electrophilic reagents. The reactions with the group 14 organochloride compounds ER(4-x)Cl(x) (E = Si, Ge, Sn, Pb) led to either phosphide-like, oxophosphinidene-bridged derivatives [MCp{P(OE')R*}(CO)(2)] (E' = SiMe(3), SiPh(3), GePh(3), GeMe(2)Cl) or to terminal oxophosphinidene complexes [MCp{P(O)R*}(CO)(2)(E')] (E' = SnPh(3), SnPh(2)Cl, PbPh(3); Mo-Pb = 2.8845(4) Å for the MoPb compound). A particular situation was found in the reaction with SnMe(3)Cl, this giving a product existing in both tautomeric forms, with the phosphide-like complex [MCp{P(OSnMe(3))R*}(CO)(2)] prevailing at room temperature and the tautomer [MCp{P(O)R*}(CO)(2)(SnMe(3))] being the unique species present below 203 K in dichloromethane solution. The title anions also showed a multisite behavior when reacting with transition-metal based electrophiles. Thus, the reactions with the complexes [M'Cp(2)Cl(2)] (M' = Ti, Zr) gave phosphide-like derivatives [MCp{P(OM')R*}(CO)(2)] (M = Mo, M' = TiCp(2)Cl, ZrCp(2)Cl; M = W, M' = ZrCp(2)Cl), displaying a bridging κ(1),κ(1)-P,O- oxophosphinidene ligand connecting MCp(CO)(2) and M'Cp(2)Cl metal fragments (W-P = 2.233(1) Å, O-Zr = 2.016(4) Å for the WZr compound]. In contrast, the reactions with the complex [AuCl{P(p-tol)(3)}] gave the metal-metal bonded derivatives trans-[MCp{P(O)R*}(CO)(2){AuP(p-tol)(3)}] (M = Mo, W; Mo-Au = 2.7071(7) Å). From all the above results it was concluded that the terminal oxophosphinidene complexes are preferentially formed under conditions of orbital control, while charge-controlled reactions tend to give derivatives with the electrophilic fragment bound to the oxygen atom of the oxophosphinidene ligand (phosphide-like, oxophosphinidene-bridged derivatives).

  9. A comparative study of solvent and supercritical Co2 extraction of Simarouba gluaca seed oil; Estudio comparativo de la extracción con solvente y CO2 supercrítico de aceites de semillas de Simarouba glauca.

    Energy Technology Data Exchange (ETDEWEB)

    Anjaneyulu, B.; Satyannarayana, S.; Kanjilal, S.; Siddaiah, V.; Prasanna Rani, K.N.

    2017-07-01

    In the present study, the supercritical carbon dioxide (Co2) extraction of oil from Simarouba gluaca seeds was carried out at varying conditions of pressure (300–500 bar), temperature (50–70 °C) and CO2 flow rate (10–30 g·min-1). The extraction condition for maximum oil yield was obtained at 500 bar pressure, 70 °C and at 30 g·min-1 flow rate of CO2. The extracted oil was analyzed thoroughly for physico-chemical properties and compared with those of conventional solvent extracted oil. An interesting observation is a significant reduction in the phosphorus content of the oil (8.4 mg·kg-1) extracted using supercritical CO2 compared to the phosphorous content of the solvent extracted oil (97 mg·kg-1). Moreover, the content of total tocopherols in supercritically extracted oil (135.6 mg·kg-1) was found to be higher than the solvent extracted oil (111 mg·kg-1). The rest of the physico-chemical properties of the two differently extracted oils matched well with each other. The results indicated the possible benefits of supercritical CO2 extraction over solvent extraction of Simarouba gluaca seed oil. [Spanish] En el presente estudio se llevó a cabo la extracción con dióxido de carbono supercrítico (CO2) de aceites de semillas de Simarouba gluaca en diversas condiciones de presión (300–500 bar), temperatura (50–70 °C) y el caudal de CO2 (10–30 g·min-1). La condición de extracción para obtener el máximo rendimiento de aceite se obtuvo a una presión de 500 bares, una temperatura de 70 °C y un caudal de CO2 de 30 g·min-1. Al aceite extraido se determinó sus propiedades fisicoquímicas y se comparó con las del aceite extraído con disolvente convencional. Una observación interesante es la reducción significativa del contenido de fósforo (8,4 mg·kg-1) del aceite extraído utilizando CO2 supercrítico en comparación con el del aceite extraído con disolvente (97 mg·kg-1). Además, el contenido de tocoferol total en el aceite extra

  10. Physiological responses of Norway spruce trees to elevated CO2 and SO2

    NARCIS (Netherlands)

    Tausz, M.; De Kok, L.J.; Stulen, I.

    Young Norway spruce (Picea abies (L.) Karst.) trees were exposed to elevated CO2 (0.8 mL L(-1)), SO2 (0.06 mu L L(-1)), and elevated CO2 and SO2 (0.8 mL L(-1) and 0.06 mu L L(-1), respectively) for three months. Exposure to elevated CO2 resulted in an increased biomass production of the needles,

  11. First-principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    LIAO Fei

    2016-12-01

    Full Text Available Structural stabilities, mechanical properties and electronic structures of Al2Cu, Al2CuMg and MgZn2 intermetallics in Al-Zn-Mg-Cu aluminum alloys were determined from the first-principle calculations by VASP based on the density functional theory. The results show that the cohesive energy (Ecoh decreases in the order MgZn2 > Al2CuMg > Al2Cu, whereas the formation enthalpy (ΔH decreases in the order MgZn2 > Al2Cu > Al2CuMg. Al2Cu can act as a strengthening phase for its ductile and high Young's modulus. The Al2CuMg phase exhibits elastic anisotropy and may act as a crack initiation point. MgZn2 has good plasticity and low melting point, which is the main strengthening phase in the Al-Zn-Mg-Cu aluminum alloys. Metallic bonding mode coexists with a fractional ionic interaction in Al2Cu, Al2CuMg and MgZn2, and that improves the structural stability. In order to improve the alloys' performance further, the generation of MgZn2 phase should be promoted by increasing Zn content while Mg and Cu contents are decreased properly.

  12. Topotactic transition of α-Co(OH)2 to β-Co(OH)2 anchored on CoO nanoparticles during electrochemical water oxidation: synergistic electrocatalytic effects.

    Science.gov (United States)

    Kundu, Sumana; Malik, Bibhudatta; Prabhakaran, Amrutha; Pattanayak, Deepak K; Pillai, Vijayamohanan K

    2017-08-29

    Herein, we report a single step, anionic surfactant-assisted, low temperature-hydrothermal synthetic strategy of CoO nanoparticles anchored on β-Co(OH) 2 nanosheets which show a low overpotential (295 mV @ 10 mA cm -2 ) for the oxygen evolution reaction (OER). They also demonstrate much better kinetic parameters compared to the state-of-the-art RuO 2 . Interestingly, under the OER operational conditions (in alkaline medium), the topotactic transformation of α-Co(OH) 2 to a stable Brucite-like β-Co(OH) 2 phase leads to a synergistic interaction between the β-Co(OH) 2 sheets on the CoO nanoparticles for enhancing the OER electrocatalytic activity.

  13. Ab-initio calculations of semiconductor MgGeP{sub 2} and MgGeAs{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kocak, B.; Ciftci, Y.O., E-mail: yasemin@gazi.edu.tr

    2016-05-15

    Highlights: • MgGeP{sub 2} and MgGeAs{sub 2} are semiconductor compounds. • MgGeP{sub 2} and MgGeAs{sub 2} are energetically, mechanically and dynamically stable. • The electronic charge density contour plot shows that the nature of bonding is a mixture of ionic-covalent. - Abstract: In this study, we focus on structural, electronic, elastic, lattice dynamic and optic properties of MgGeP{sub 2} and MgGeAs{sub 2} using ab-initio density-functional theory (DFT) within Armiento-Mattson 2005 (AM05) scheme of the generalized gradient approximation (GGA) for the exchange-correlation potential. Our computed structural results are in reasonable agreement with the literature. The band gap of these compounds is predicted to be direct. Our elastic results prove that these compounds are mechanically stable. The obtained phonon spectra of MgGeP{sub 2} and MgGeAs{sub 2} do not exhibit any significant imaginary branches using GGA-AM05 for the exchange-correlation approximation. Further analysis of the optical response of the dielectric functions, optical reflectivity, refractive index, extinction coefficient and electron energy loss delves into for the energy range of 0–22.5 eV. It motivated that there exists an optical polarization anisotropy of these compounds for optoelectronic device applications.

  14. Coherent interface structures and intergrain Josephson coupling in dense MgO/Mg{sub 2}Si/MgB{sub 2} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Katsuya; Takahashi, Kazuyuki; Uchino, Takashi, E-mail: uchino@kobe-u.ac.jp [Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501 (Japan); Nagashima, Yukihito [Nippon Sheet Glass Co., Ltd., Konoike, Itami 664-8520 (Japan); Seto, Yusuke [Department of Planetology, Graduate School of Science, Kobe University, Nada, Kobe 657-8501 (Japan); Matsumoto, Megumi; Sakurai, Takahiro [Center for Support to Research and Education Activities, Kobe University, Nada, Kobe 657-8501 (Japan); Ohta, Hitoshi [Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-8501 (Japan)

    2016-07-07

    Many efforts are under way to control the structure of heterointerfaces in nanostructured composite materials for designing functionality and engineering application. However, the fabrication of high-quality heterointerfaces is challenging because the crystal/crystal interface is usually the most defective part of the nanocomposite materials. In this work, we show that fully dense insulator (MgO)/semiconductor(Mg{sub 2}Si)/superconductor(MgB{sub 2}) nanocomposites with atomically smooth and continuous interfaces, including epitaxial-like MgO/Mg{sub 2}Si interfaces, are obtained by solid phase reaction between metallic magnesium and a borosilicate glass. The resulting nanocomposites exhibit a semiconductor-superconducting transition at 36 K owing to the MgB{sub 2} nanograins surrounded by the MgO/Mg{sub 2}Si matrix. This transition is followed by the intergrain phase-lock transition at ∼24 K due to the construction of Josephson-coupled network, eventually leading to a near-zero resistance state at 17 K. The method not only provides a simple process to fabricate dense nanocomposites with high-quality interfaces, but also enables to investigate the electric and magnetic properties of embedded superconducting nanograins with good intergrain coupling.

  15. Catalytic mechanism of the dehydrogenation of ethylbenzene over Fe–Co/Mg(Al)O derived from hydrotalcites

    KAUST Repository

    Tope, Balkrishna B.

    2011-11-01

    Catalytic mechanism of ethylbenzene dehydrogenation over Fe-Co/Mg(Al)O derived from hydrotalcites has been studied based on the XAFS and XPS catalyst characterization and the FTIR measurements of adsorbed species. Fe-Co/Mg(Al)O showed synergy, whereas Fe-Ni/Mg(Al)O showed no synergy, in the dehydrogenation of ethylbenzene. Ni species were stably incorporated as Ni2+ in the regular sites in periclase and spinel structure in the Fe-Ni/Mg(Al)O. Contrarily, Co species exists as a mixture of Co3+/Co2+ in the Fe-Co/Mg(Al)O and was partially isolated from the regular sites in the structures with increasing the Co content. Co addition enhanced Lewis acidity of Fe3+ active sites by forming Fe3+-O-Co 3+/2+(1/1) bond, resulting in an increase in the activity. FTIR of ethylbenzene adsorbed on the Fe-Co/Mg(Al)O clearly showed formations of C-O bond and π-adsorbed aromatic ring. This suggests that ethylbenzene was strongly adsorbed on the Fe3+ acid sites via π-bonding and the dehydrogenation was initiated by α-H+ abstraction from ethyl group on Mg2+-O2- basic sites, followed by C-O-Mg bond formation. The α-H+ abstraction by O2-(-Mg 2+) was likely followed by β-H abstraction, leading to the formations of styrene and H2. Such catalytic mechanism by the Fe 3+ acid-O2-(-Mg2+) base couple and the Fe 3+/Fe2+ reduction-oxidation cycle was further assisted by Co3+/Co2+, leading to a good catalytic activity for the dehydrogenation of ethylbenzene. © 2011 Elsevier B.V. All rights reserved.

  16. Experimental Study Of Precipitation Competition Of Ca(OH)2 And Mg(OH)2 On MSF Desalination Condition

    International Nuclear Information System (INIS)

    Sumijanto

    2001-01-01

    Competition study has been carried out by using sea water simulation containing of 142 on deposit ppm of bicarbonate ion, 400 ppm of calcium ion and 1272 ppm of magnesium ion. Experiment was performed by heating sample at temperature 50, 60, 70, 80, and 90 C for 30 minutes. Precipitation competition of Ca(OHh and Mg(OHh was analyzed by reduction of calcium and magnesium ion. Experiment data showed information that at the temperature bellow 800 o C CaCO 3 precipitation was more dominant, meanwhile above than 80 o C precipitation Mg(OH) 2 was more dominant. This competition occurred because at temperature more than 80 o C rate of hydroxyl ion formation and Mg(OH) 2 recipitation was greater than CaCO 3 precipitation and at temperature bellow 80 o C rate of hydrolysis carbonate ion was less than thermal decomposition bicarbonates ion

  17. Porous carbon derived via KOH activation of a hypercrosslinked porous organic polymer for efficient CO_2, CH_4, H_2 adsorptions and high CO_2/N_2 selectivity

    International Nuclear Information System (INIS)

    Modak, Arindam; Bhaumik, Asim

    2015-01-01

    Microporous carbon having Brunauer-Emmett-Teller (BET) surface area of 2186 m"2 g"−"1 and micropore volume of 0.85 cm"3 g"−"1 has been synthesized via KOH induced high temperature carbonization of a non-conjugated hypercrosslinked organic polymer. Owing to the templating and activation by KOH, we have succeeded in making a microporous carbon from this porous polymer and the resultant carbon material showed high uptake for CO_2 (7.6 mmol g"−"1) and CH_4 (2.4 mmol g"−"1) at 1 atm, 273 K together with very good selectivity for the CO_2/N_2 (30.2) separation. Furthermore, low pressure (1 atm) H_2 (2.6 wt%, 77 K) and water uptake (57.4 wt%, 298 K) ability of this polymer derived porous activated carbon is noteworthy. - Graphical abstract: Microporous carbon with BET surface area of 2186 m"2 g"−"1 has been synthesized via KOH activation of a porous organic polymer and it showed high uptake for CO_2 (7.6 mmol g"−"1), CH_4 (2.4 mmol g"−"1) and H_2 (2.6 wt%) at 1 atm together with very good selectivity for CO_2. - Highlights: • Porous carbon from hypercrosslinked organic polymer. • KOH activated carbon with BET surface area 2186 m"2 g"−"1. • High CO2 uptake (7.6 mmol g"−"1) and CO_2/N_2 selectivity (30.2). • Porous carbon also showed high H_2 (2.6 wt%) and H_2O (57.4 wt%) uptakes.

  18. Synthesis and characterization of Sr{sub 2}Ir{sub 1-x}M{sub x}O{sub 4} (M=Ti, Fe, Co) solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gatimu, Alvin J.; Berthelot, Romain; Muir, Sean; Sleight, Arthur W. [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States); Subramanian, M.A., E-mail: mas.subramanian@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States)

    2012-06-15

    The effects of Ti, Fe and Co substitutions for Ir on the structure and on the physical properties of Sr{sub 2}IrO{sub 4} are investigated. A complete solid solution Sr{sub 2}Ir{sub 1-x}Ti{sub x}O{sub 4} is obtained while both Fe and Co doping are relatively limited. In each case however, the c-axis cell parameter and the initial IrO{sub 6} octahedra tilting decreases with substitution. Doping with Ti, Fe and Co results in a decrease of the magnetic susceptibility and in an increase in the paramagnetic effective moment for Co and Fe doped samples and a suppression of the weak ferromagnetic ordering observed for Sr{sub 2}IrO{sub 4}. - Graphical abstract: Solid solutions of Sr{sub 2}Ir{sub 1-x}M{sub x}O{sub 4} (M=Ti, Fe, Co) have been synthesized and characterized by powder X-ray diffraction, magnetism and electrical measurements. Changes in the a parameter and decreases in both the c-axis cell parameters and the initial IrO{sub 6} octahedra tilting are found to be correlated. Highlights: Black-Right-Pointing-Pointer Solid Solutions of Sr{sub 2}Ir{sub 1-x}M{sub x}O{sub 4} (M=Ti, Fe, Co) are synthesized. Black-Right-Pointing-Pointer The Sr{sub 2}Ir{sub 1-x}Ti{sub x}O{sub 4} solid solution is complete while those of Fe and Co are relatively limited. Black-Right-Pointing-Pointer The change in a cell parameter with substitution is much less than that of the c parameter. Black-Right-Pointing-Pointer Decreased tilting and the smaller size of the M cation contrastingly affect the a parameter. Black-Right-Pointing-Pointer Doping results in a suppression of the weak ferromagnetic ordering in Sr{sub 2}IrO{sub 4}.

  19. Modeling the night-time CO2 4.3 μm emissions in the mesosphere/lower thermosphere

    Science.gov (United States)

    Panka, Peter; Kutepov, Alexander; Feofilov, Artem; Rezac, Ladislav; Janches, Diego

    2016-04-01

    We present a detailed non-LTE model of the night-time CO2 4.3 μm emissions in the MLT. The model accounts for various mechanisms of the non-thermal excitation of CO2 molecules and both for inter- and intra-molecular vibrational-vibrational (VV) and vibrational-translational (VT) energy exchanges. In this model, we pay a specific attention to the transfer of vibrational energy of OH(ν), produced in the chemical reaction H + O3, to the CO2(ν3) vibrational mode. With the help of this model, we simulated a set of non-LTE 4.3 μm MLT limb emissions for typical atmospheric scenarios and compared the vertical profiles of integrated radiances with the corresponding SABER/TIMED observations. The implications, which follow from this comparison, for selecting non-LTE model parameters (rate coefficients), as well as for the night-time CO2 density retrieval in the MLT are discussed.

  20. The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (II) Self-absorption continuum

    Science.gov (United States)

    Mondelain, D.; Vasilchenko, S.; Čermák, P.; Kassi, S.; Campargue, A.

    2017-01-01

    The CO2 absorption continuum near 2.3 μm is determined for a series of sub atmospheric pressures (250-750 Torr) by high sensitivity Cavity Ring Down Spectroscopy. An experimental procedure consisting in injecting successively a gas flow of CO2 and synthetic air, keeping constant the gas pressure in the CRDS cell, has been developed. This procedure insures a high stability of the spectra baseline by avoiding changes of the optical alignment due to pressure changes. The CO2 continuum was obtained as the difference between the CO2 absorption coefficient and a local lines simulation using a Voigt profile truncated at ±25 cm-1. Following the results of the preceding analysis of the CO2 rovibrational lines (Vasilchenko S et al. J Quant Spectrosc Radiat Transfer 10.1016/j.jqsrt.2016.07.002, a CO2 line list with intensities obtained by variational calculations and empirical line positions was preferred to the HITRAN line list. A quadratic pressure dependence of the absorption continuum is observed, with an average binary absorption coefficient increasing from 2 to 4×10-8 cm-1 amagat-2 between 4320 and 4380 cm-1. The obtained continuum is found in good agreement with a previous measurement using much higher densities (20 amagat) and a low resolution grating spectrograph and is consistent with values currently used in the analysis of Venus spectra.

  1. Axial zero-field splitting in mononuclear Co(ii) 2-N substituted N-confused porphyrin: Co(2-NC3H5-21-Y-CH2C6H4CH3-NCTPP)Cl (Y = o, m, p) and Co(2-NC3H5-21-CH2C6H5-NCTPP)Cl.

    Science.gov (United States)

    Lai, Ya-Yuan; Chang, Yu-Chang; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu

    2016-03-21

    The inner C-benzyl- and C-o-xylyl (or m-xylyl, p-xylyl)-substituted cobalt(ii) complexes of a 2-N-substituted N-confused porphyrin were synthesized from the reaction of 2-NC3H5NCTPPH (1) and CoCl2·6H2O in toluene (or o-xylene, m-xylene, p-xylene). The crystal structures of diamagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-hydrogen-21-carbaporphyrinato-N,N',N'')zinc(ii) [Zn(2-NC3H5-21-H-NCTPP)Cl; 3 ] and paramagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-benzyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-CH2C6H5NCTPP)Cl; 7], and chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-Y-xylyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-Y-CH2C6H4CH3NCTPP)Cl] [Y = o (8), m (9), p (10)] were determined. The coordination sphere around the Zn(2+) (or Co(2+)) ion in 3 (or 7-10) is a distorted tetrahedron (DT). The free energy of activation at the coalescence temperature Tc for the exchange of phenyl ortho protons o-H (26) with o-H (22) in 3 in a CDCl3 solvent is found to be ΔG = 61.4 kJ mol(-1) through (1)H NMR temperature-dependent measurements. The axial zero-field splitting parameter |D| was found to vary from 35.6 cm(-1) in 7 (or 30.7 cm(-1) in 8) to 42.0 cm(-1) in 9 and 46.9 cm(-1) in 10 through paramagnetic susceptibility measurements. The magnitude of |D| can be related to the coordination sphere at the cobalt sites.

  2. Effect of Calcination at Synthesis of Mg-Al Hydrotalcite Using co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Niar Kurnia Julianti

    2017-01-01

    Full Text Available The use of hydrotalcite in catalysis has wide attention in academic research and industrial parties. Based on its utilization, hydrotalcite can be active catalyst or support. This research is focused on the investigation of characteristic like spesific surface area of Mg-Al hydrotalcite which is prepared with different temperature of calcination. Synthesis of Mg-Al hydrotalcites with Mg/Al molar ratio 3:1 were prepared by co-precipitation method. Mg(NO33.6H2O and Al(NO33.9H2O as precursors of Mg-Al hydrotalcite. Na2CO3 was used as precipitant agent and NaOH was used as buffer solution. The solution was mixed and aging for 5 hours at 650oC. The dried precipitate was calcined at 2500oC, 3500oC, 4500oC, 5500oC and 6500oC. The characterization of functional group was determined by Fourier Transform Infra Red (FT-IR. The Identical peaks diffractogram were analyzed by X-Ray Diffraction (XRD. The spesific surface area was determined by adsorption-desorption of nitrogen. The largest surface area that obtained from the calcination temperature of 650oC is 156.252 m2/g.

  3. Co{sub 2}FeAl Heusler thin films grown on Si and MgO substrates: Annealing temperature effect

    Energy Technology Data Exchange (ETDEWEB)

    Belmeguenai, M., E-mail: belmeguenai.mohamed@univ-paris13.fr; Tuzcuoglu, H.; Zighem, F.; Chérif, S. M.; Moch, P. [LSPM (CNRS-UPR 3407), 99 avenue Jean-Baptiste Clément, Université Paris 13, 93430 Villetaneuse (France); Gabor, M. S., E-mail: mihai.gabor@phys.utcluj.ro; Petrisor, T. [Center for Superconductivity, Spintronics and Surface Science, Technical University of Cluj-Napoca, Str. Memorandumului No. 28 RO-400114 Cluj-Napoca (Romania); Tiusan, C. [Center for Superconductivity, Spintronics and Surface Science, Technical University of Cluj-Napoca, Str. Memorandumului No. 28 RO-400114 Cluj-Napoca (Romania); Institut Jean Lamour, CNRS, Université de Nancy, BP 70239, F–54506 Vandoeuvre (France)

    2014-01-28

    10 nm and 50 nm Co{sub 2}FeAl (CFA) thin films have been deposited on MgO(001) and Si(001) substrates by magnetron sputtering and annealed at different temperatures. X-rays diffraction revealed polycrystalline or epitaxial growth (according to CFA(001)[110]//MgO(001)[100] epitaxial relation) for CFA films grown on a Si and on a MgO substrate, respectively. For these later, the chemical order varies from the A2 phase to the B2 phase when increasing the annealing temperature (T{sub a}), while only the A2 disorder type has been observed for CFA grown on Si. Microstrip ferromagnetic resonance (MS-FMR) measurements revealed that the in-plane anisotropy results from the superposition of a uniaxial and a fourfold symmetry term for CFA grown on MgO substrates. This fourfold anisotropy, which disappears completely for samples grown on Si, is in accord with the crystal structure of the samples. The fourfold anisotropy field decreases when increasing T{sub a}, while the uniaxial anisotropy field is nearly unaffected by T{sub a} within the investigated range. The MS-FMR data also allow for concluding that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with T{sub a}. Finally, the FMR linewidth decreases when increasing T{sub a}, due to the enhancement of the chemical order. We derive a very low intrinsic damping parameter (1.1×10{sup −3} and 1.3×10{sup −3} for films of 50 nm thickness annealed at 615 °C grown on MgO and on Si, respectively)

  4. Proteome of Salmonella enterica serotype Tyhimurium Grown in Low Mg2+/pH Medium

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Ansong, Charles; Smallwood, Heather S.; Rommereim, Leah M.; McDermott, Jason E.; Brewer, Heather M.; Norbeck, Angela D.; Taylor, Ronald C.; Gustin, Jean K.; Heffron, Fred; Smith, Richard D.; Adkins, Joshua N.

    2009-09-04

    To determine the impact of a low Mg2+/pH defined growth medium (MgM) on the proteome of Salmonella enterica serotype Typhimurium, we cultured S. Typhimurium cells in the medium under two different conditions termed MgM Shock and MgM Dilution and then comparatively analyzed the bacterial cells harvested from these conditions by a global proteomic approach. Proteomic results showed that MgM Shock and MgM Dilution differentially affected the S. Typhimurium proteome. MgM Shock induced a group of proteins whose induction usually occurred at low O2 level, while MgM Dilution induced those related to the type III secretion system (T3SS) of Salmonella Pathogenicity Island 2 (SPI2) and those involved in thiamine or biotin biosynthesis. The metabolic state of the S. Typhimurium cells grown under MgM Shock condition also differed significantly from that under MgM Dilution condition. Western blot analysis not only confirmed the proteomic results, but also showed that the abundances of SPI2-T3SS proteins SsaQ and SseE and biotin biosynthesis proteins BioB and BioD increased after S. Typhimurium infection of RAW 264.7 macrophages. Deletion of the gene encoding BioB reduced the bacterial ability to replicate inside the macrophages, suggesting a biotin-limited environment encountered by S. Typhimurium within RAW 264.7 macrophages.

  5. Luminescence of color centers in MgF{sub 2} crystals; Lyuminestsentsiya tsentrov okraski v kristallakh MgF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vakhidov, Sh A; Nuritdinov, I; Musaeva, M A [Inst. Yadernoj Fizili AN Uzbekistana, Tashkent (Uzbekistan)

    1999-08-01

    The photoluminescence characteristics of the proper radiation color centers of the MgF{sub 2} crystals are studied. The samples were irradiated by the {sup 60}Co source {gamma}-rays up to the dose 10{sup 7}Gy. The bands with the maxima in the area of 420, 460, 550 and 620 nm were identified, which are excited correspondingly in the bands with the maxima of 370, 320, 410 and 480 nm.

  6. Structural and magnetic properties of Ni0.8M0.2Fe2O4 (M = Cu, Co) nano-crystalline ferrites

    Science.gov (United States)

    Vijaya Babu, K.; Satyanarayana, G.; Sailaja, B.; Santosh Kumar, G. V.; Jalaiah, K.; Ravi, M.

    2018-06-01

    Nano-crystalline nickel ferrites are interesting materials due to their large physical and magnetic properties. In the present work, two kinds of spinel ferrites Ni0.8M0.2Fe2O4 (M = Cu, Co) are synthesized by using sol-gel auto-combustion method and the results are compared with NiFe2O4. The structural properties of synthesized ferrites are determined by using X-ray powder diffraction; scanning electron microscope and Fourier transform infrared spectroscopy. The cation distribution obtained from X-ray diffraction show that cobalt/copper occupies only tetrahedral site in spinel lattice. The lattice constant increases with the substitution of cobalt/copper. The structural parameters like bond lengths, tetrahedral and octahedral edges have been varied with the substitution. The microstructural study is carried out by using SEM technique and the average grain size is increased with nickel ferrite. The initial permeability (μi) is improving with the substitution. The observed g-value from ESR is approximately equal to standard value.

  7. Corrosion studies on casing steel in CO2 storage environments

    NARCIS (Netherlands)

    Zhang, X.; Zevenbergen, J.F.; Benedictus, T.

    2013-01-01

    The corrosion behavior of casing steel N80 in brine plus CO2 was studied in autoclave to simulate the CO2 storage environment. The brine solution used in the study contained 130 g/l NaCl, 22.2 g/l CaCl2 and 4 g/l MgCl2. The CO2 was charged in the autoclave at different pressures (60, 80 and 100 bar)

  8. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.

    Science.gov (United States)

    Oishi, A Christopher; Palmroth, Sari; Johnsen, Kurt H; McCarthy, Heather R; Oren, Ram

    2014-04-01

    Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and

  9. Mineral storage of CO2/H2S gas mixture injection in basaltic rocks

    Science.gov (United States)

    Clark, D. E.; Gunnarsson, I.; Aradottir, E. S.; Oelkers, E. H.; Sigfússon, B.; Snæbjörnsdottír, S. Ó.; Matter, J. M.; Stute, M.; Júlíusson, B. M.; Gíslason, S. R.

    2017-12-01

    Carbon capture and storage is one solution to reducing CO2 emissions in the atmosphere. The long-term geological storage of buoyant supercritical CO2 requires high integrity cap rock. Some of the risk associated with CO2 buoyancy can be overcome by dissolving CO2 into water during its injection, thus eliminating its buoyancy. This enables injection into fractured rocks, such as basaltic rocks along oceanic ridges and on continents. Basaltic rocks are rich in divalent cations, Ca2+, Mg2+ and Fe2+, which react with CO2 dissolved in water to form stable carbonate minerals. This possibility has been successfully tested as a part of the CarbFix CO2storage pilot project at the Hellisheiði geothermal power plant in Iceland, where they have shown mineralization occurs in less than two years [1, 2]. Reykjavik Energy and the CarbFix group has been injecting a mixture of CO2 and H2S at 750 m depth and 240-250°C since June 2014; by 1 January 2016, 6290 tons of CO2 and 3530 tons of H2S had been injected. Once in the geothermal reservoir, the heat exchange and sufficient dissolution of the host rock neutralizes the gas-charged water and saturates the formation water respecting carbonate and sulfur minerals. A thermally stable inert tracer was also mixed into the stream to monitor the subsurface transport and to assess the degree of subsurface carbonation and sulfide precipitation [3]. Water and gas samples have been continuously collected from three monitoring wells and geochemically analyzed. Based on the results, mineral saturation stages have been defined. These results and tracer mass balance calculations are used to evaluate the rate and magnitude of CO2 and H2S mineralization in the subsurface, with indications that mineralization of carbon and sulfur occurs within months. [1] Gunnsarsson, I., et al. (2017). Rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur. Manuscript submitted for publication. [2] Matter, J., et al. (2016). Rapid

  10. Geochemical Interaction of Middle Bakken Reservoir Rock and CO2 during CO2-Based Fracturing

    Science.gov (United States)

    Nicot, J. P.; Lu, J.; Mickler, P. J.; Ribeiro, L. H.; Darvari, R.

    2015-12-01

    This study was conducted to investigate the effects of geochemical interactions when CO2 is used to create the fractures necessary to produce hydrocarbons from low-permeability Middle Bakken sandstone. The primary objectives are to: (1) identify and understand the geochemical reactions related to CO2-based fracturing, and (2) assess potential changes of reservoir property. Three autoclave experiments were conducted at reservoir conditions exposing middle Bakken core fragments to supercritical CO2 (sc-CO2) only and to CO2-saturated synthetic brine. Ion-milled core samples were examined before and after the reaction experiments using scanning electron microscope, which enabled us to image the reaction surface in extreme details and unambiguously identify mineral dissolution and precipitation. The most significant changes in the reacted rock samples exposed to the CO2-saturated brine is dissolution of the carbonate minerals, particularly calcite which displays severely corrosion. Dolomite grains were corroded to a lesser degree. Quartz and feldspars remained intact and some pyrite framboids underwent slight dissolution. Additionally, small amount of calcite precipitation took place as indicated by numerous small calcite crystals formed at the reaction surface and in the pores. The aqueous solution composition changes confirm these petrographic observations with increase in Ca and Mg and associated minor elements and very slight increase in Fe and sulfate. When exposed to sc-CO2 only, changes observed include etching of calcite grain surface and precipitation of salt crystals (halite and anhydrite) due to evaporation of residual pore water into the sc-CO2 phase. Dolomite and feldspars remained intact and pyrite grains were slightly altered. Mercury intrusion capillary pressure tests on reacted and unreacted samples shows an increase in porosity when an aqueous phase is present but no overall porosity change caused by sc-CO2. It also suggests an increase in permeability

  11. Control of temperature and aqueous Mg2+/Ca2+ ratio on the (trans-)formation of ikaite

    Science.gov (United States)

    Purgstaller, B.; Dietzel, M.; Baldermann, A.; Mavromatis, V.

    2017-11-01

    The calcium carbonate hexahydrate mineral ikaite (CaCO3 ṡ 6 H2O) has been documented in aquatic environments at near-freezing temperatures. An increase of the prevailing temperature in the depositional environment, results in the transformation of natural ikaite into less soluble calcium carbonate phases occasionally leaving calcite pseudomorphs in the sediments, which are considered as an indicator for primary cold water temperatures. Detailed understanding on the physicochemical parameters controlling ikaite (trans-)formation however, such as temperature and reactive solution chemical composition, are still under debate. In order to study the formation of ikaite, we conducted precipitation experiments under controlled physicochemical conditions (pH = 8.3 ± 0.1; T = 6, 12, and 18 ± 0.1 °C) at defined aqueous molar Mg/Ca ratios. The transformation of ikaite into anhydrous calcium carbonate polymorphs was investigated in solution and at air exposure. The obtained results reveal the formation of ikaite at temperatures up to 12 °C, whereas Mg-rich amorphous calcium carbonate precipitated at 18 °C. In contact with the reactive solution ikaite transformed into aragonite at aqueous molar Mg2+/Ca2+ ratios of ≥14. In contrast, ikaite separated from the Mg-rich solution and exposed to air transformed in all cases into calcite/vaterite. The herein obtained temperature limit of ≤12 for ikaite formation is significantly higher than formerly expected and most probably caused by (i) the high saturation degree of the solution with respect to ikaite and (ii) the slow dehydration of the aqueous Ca2+ ion at low temperatures. This result questions the suitability of calcite pseudomorphs (i.e. glendonites) as a proxy for near-freezing temperatures. Moreover, our findings show that the CaCO3 polymorph formed from ikaite is strongly controlled by the physicochemical conditions, such as aqueous molar Mg2+/Ca2+ ratio of the reactive fluid and H2O availability throughout the

  12. Protection of G2 and G3 against CO2

    International Nuclear Information System (INIS)

    Chassany, J.Ph.; Rodier, J.

    1961-01-01

    The presence of 60.000 m 3 of CO 2 at 15 kg/cm 2 pressure has made necessary to set up a detection and protection system on a scale equal to that used for ionising radiations. Instruments to check CO and CO 2 in the atmosphere carry out measurements continuously, alarm systems give warning if the CO 2 content increases, and the working areas may be surveyed by a whole series of portable instruments. The order for evacuation is given by sirens, and respiratory units are placed at strategic points along the exit paths. (author) [fr

  13. Decontamination of solid matrices using supercritical CO2: study of contaminant-additives-CO2

    International Nuclear Information System (INIS)

    Galy, J.

    2006-11-01

    This work deals with the decontamination of solid matrices by supercritical CO 2 and more particularly with the study of the interactions between the surfactants and the CO 2 in one part, and with the interactions between the contaminant and the surfactants in another part. The first part of this study has revealed the different interactions between the Pluronics molecules and the supercritical CO 2 . The diagrams graphs have shown that the pluronics (PE 6100, PE 8100 and PE 10100) present a solubility in the supercritical CO 2 low but sufficient (0.1% m/m at 25 MPa and 313 K) for the studied application: the treatment of weak quantities of cerium oxide (or plutonium). An empirical approach based on the evolutions of the slops value and of the origin ordinates of the PT diagrams has been carried out to simulate the phase diagrams PT of the Pluronics. A modeling based on the state equations 'SAFT' (Statistical Associating Fluid Theory) has been studied in order to confirm the experimental results of the disorder points and to understand the role of the different blocks 'PEO' and 'PPO' in the behaviour of Pluronics; this modeling confirms the evolution of the slopes value with the 'CO 2 -phily' of the system. The measure of the surface tension in terms of the Pluronics concentration (PE 6100, 81000 and 10100) has shown different behaviours. For the PE 6100, the surface tension decreases when the surfactant concentration increases (at constant pressure and temperature); on the other hand, for the PE 8100 a slop rupture appears and corresponds to the saturation of the interface water/CO 2 and allows then to determine the Interface Saturation Concentration (ISC). The ISC value (at constant pressure and temperature) increases with an increase of the 'CO 2 -phily'). The model hydrophilous medium being an approximation, it has been replaced by a solid polar phase of CeO 2 . A parallel has been established between the evolution of the surface tension between the water and

  14. The heat capacity of a natural monticellite and phase equilibria in the system CaO-MgO-SiO2-CO2

    Science.gov (United States)

    Sharp, Z.D.; Essene, E.J.; Anovitz, Lawrence M.; Metz, G.W.; Westrum, E.F.; Hemingway, B.S.; Valley, J.W.

    1986-01-01

    The heat capacity of a natural monticellite (Ca1.00Mg.09Fe.91Mn.01Si0.99O3.99) measured between 9.6 and 343 K using intermittent-heating, adiabatic calorimetry yields Cp0(298) and S2980 of 123.64 ?? 0.18 and 109.44 ?? 0.16 J ?? mol-1 K-1 respectively. Extrapolation of this entropy value to end-member monticellite results in an S0298 = 108.1 ?? 0.2 J ?? mol-1 K-1. High-temperature heat-capacity data were measured between 340-1000 K with a differential scanning calorimeter. The high-temperature data were combined with the 290-350 K adiabatic values, extrapolated to 1700 K, and integrated to yield the following entropy equation for end-member monticellite (298-1700 K): ST0(J ?? mol-1 K-1) = S2980 + 164.79 In T + 15.337 ?? 10-3 T + 22.791 ?? 105 T-2 - 968.94. Phase equilibria in the CaO-MgO-SiO2 system were calculated from 973 to 1673 K and 0 to 12 kbar with these new data combined with existing data for akermanite (Ak), diopside (Di), forsterite (Fo), merwinite (Me) and wollastonite (Wo). The location of the calculated reactions involving the phases Mo and Fo is affected by their mutual solid solution. A best fit of the thermodynamically generated curves to all experiments is made when the S0298 of Me is 250.2 J ?? mol-1 K-1 less than the measured value of 253.2 J ?? mol-1 K-1. A best fit to the reversals for the solid-solid and decarbonation reactions in the CaO-MgO-SiO2-CO2 system was obtained with the ??G0298 (kJ ?? mole-1) for the phases Ak(-3667), Di(-3025), Fo(-2051), Me(-4317) and Mo(-2133). The two invariant points - Wo and -Fo for the solid-solid reactions are located at 1008 ?? 5 K and 6.3 ?? 0.1 kbar, and 1361 ?? 10 K and 10.2 ?? 0.2 kbar respectively. The location of the thermodynamically generated curves is in excellent agreement with most experimental data on decarbonation equilibria involving these phases. ?? 1986.

  15. Characteristics of LiMO2 (M = Co, Ni, Ni0.2Co0.8, Ni0.8Co0.2) powders prepared from solution of their acetates

    International Nuclear Information System (INIS)

    Arof, A.K.

    2008-01-01

    Stoichiometric quantities of the acetates of lithium, cobalt and nickel were dissolved in distilled water and stirred with a magnetic stirrer. After complete dissolution was obtained, the solutions were heated at 120 deg. C under continuous stirring until some dark colored powder materials were formed. These precursor materials were divided into three batches and heated at 250 deg. C (for 24 h), 370 deg. C (for 24 h) and 800 deg. C for 10 h. The precursor and calcined samples were X-rayed. The X-ray diffractograms for the prepared samples were compared to that of commercialized samples and those published in the literature. The Bragg peak with Miller indices (0 0 3) in the diffractogram of the LiNi 0.8 Co 0.2 O 2 prepared sample showed a lower intensity compared to the (1 0 4) peak. The ratio of the (0 0 3) to (1 0 4) peaks for the LiNi 0.2 Co 0.8 O 2 sample is 1.56. Lattice parameters showed that the LiCoO 2 and LiNi 0.2 Co 0.8 O 2 samples produced by the method in the present investigation have potential to exhibit good electrochemical performance when used as electrodes in lithium ion batteries

  16. The effects of Fe2O3 nanoparticles on MgB2 superconducting thin films

    International Nuclear Information System (INIS)

    Koparan, E.T.; Sidorenko, A.; Yanmaz, E.

    2013-01-01

    Full text: Since the discovery of superconductivity in binary MgB 2 compounds, extensive studies have been carried out because of its excellent properties for technological applications, such as high transition temperature (T c = 39 K), high upper critical field (H c2 ), high critical current density (J c ). Thin films are important for fundamental research as well as technological applications of any functional materials. Technological applications primarily depend on critical current density. The strong field dependence of J c for MgB 2 necessitates an enhancement in flux pinning performance in order to improve values in high magnetic fields. An effective way to improve the flux pinning is to introduce flux pinning centers into MgB 2 through a dopant having size comparable to the coherence length of MgB 2 . In this study, MgB 2 film with a thickness of about 600 nm was deposited on the MgO (100) single crystal substrate using a 'two-step' synthesis technique. Firstly, deposition of boron thin film was carried out by rf magnetron sputtering on MgO substrates and followed by a post deposition annealing at 850 degrees Celsius in magnesium vapour. In order to investigate the effect of Fe 2 O 3 nanoparticles on the structural and magnetic properties of films, MgB 2 films were coated with different concentrations of Fe 2 O 3 nanoparticles by a spin coating process. The effects of different concentrations of ferromagnetic Fe 2 O 3 nanoparticles on superconducting properties of obtained films were carried out by using structural (XRD, SEM, AFM), electrical (R-T) and magnetization (M-H, M-T and AC Susceptibility) measurements. It was calculated that anisotropic coefficient was about γ = 1.2 and coherence length of 5 nm for the uncoated film. As a result of coherence length, the appropriate diameters of Fe 2 O 3 nanoparticles were found to be 10 nm, indicating that these nanoparticles served as the pinning centers. Based on the data obtained from this study, it can be

  17. Luminescent properties of codoping Y{sub 2}O{sub 3}: Eu, Me (Me = Mg, Ca) nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhilong; Wang Qin; Yang Yuming; Tao Chunyan; Yang Hua, E-mail: huayang86@sina.co [Jilin University, College of Chemistry (China)

    2010-08-15

    Phosphors of nanorods Y{sub 2}O{sub 3}: Eu (Mg, Ca) have been prepared by the hydrothermal method. The effect of Mg, Ca co-dopants on the Y{sub 2}O{sub 3}: Eu phosphor photoluminescence (PL) property was investigated. Upon excitation with ultraviolet (UV) irradiation, it is shown that there is a strong emission at around 610 nm corresponding to the forced electric dipole {sup 5}D{sub 0}-{sup 7}F{sub 2} transition of Eu{sup 3+}. At a certain concentration, Mg, Ca ions' doping effectively enhanced the luminescent properties of Y{sub 2}O{sub 3}: Eu{sup 3+} nanorods and did not change the cubic phase of the host. The structure of Y{sub 2}O{sub 3}: Eu{sup 3+} (Mg, Ca) phosphors was characterized by X-Ray diffraction (XRD). From XRD patterns, it is indicated that the phosphor Y{sub 2}O{sub 3}:(Eu, Ca) forms without impurity phase. From SEM, TEM images, it is shown that the crystal size of the nanorods phosphors is about 1-2 {mu}m in length and 30-50 nm in diameter.

  18. Thermodynamics of HEDPA protonation in different media and complex formation with Mg2+ and Ca2+

    International Nuclear Information System (INIS)

    Foti, Claudia; Giuffrè, Ottavia; Sammartano, Silvio

    2013-01-01

    Highlights: • Acid–base properties of etidronic acid in different ionic media and at different ionic strengths. • Complex formation of etidronate with Na + , K + , Ca 2+ and Mg 2+ . • Dependence on ionic strength analysed by a Debye–Hückel type equation and the SIT approach. • Suggested protonation constants calculated at I = 0.1 mol · L −1 and t = 25 °C, in different ionic media. -- Abstract: Acid–base properties of etidronic acid [(1-Hydroxyethane-1,1-diyil)bis(phosphonic acid), HEDPA] in different ionic media and at different ionic strengths (NaCl, KCl: I ⩽ 2 mol · L −1 ; (C 2 H 5 ) 4 NI: I ⩽ 1 mol · L −1 ) were studied at t = 25 °C, determining, by potentiometric and calorimetric techniques, protonation constants and enthalpy changes. The differences in the protonation constants in the different supporting electrolytes were also interpreted in terms of weak complex formation with M i L (with i = 1, 2), MLH j (with j = 1, 2, 3) and M 2 LH species (with L = HEDPA; M = Na + , K + ). The formation constants for the species of Ca 2+ and Mg 2+ , were determined by potentiometric titrations at different ionic strengths (0.1 ⩽ I/mol · L −1 ⩽ 1) in NaCl at t = 25 °C. The stability of these species is fairly high, as an example, at I = 0.1 mol · L −1 and t = 25 °C, for ML species, log β = 6.52 and 6.86, for Ca 2+ and Mg 2+ , respectively, obtained by considering simultaneously HEDPA–Na + interactions. The dependence on ionic strength was analysed by a Debye–Hückel type equation and the SIT (Specific ion Interaction Theory) approach for protonation thermodynamic parameters and by a Debye–Hückel type equation for Mg 2+ and Ca 2+ complex formation. The sequestering ability of HEDPA toward Ca 2+ and Mg 2+ was also analysed. A comparison with literature data is given

  19. The relationship between transpiration and nutrient uptake in wheat changes under elevated atmospheric CO2.

    Science.gov (United States)

    Houshmandfar, Alireza; Fitzgerald, Glenn J; O'Leary, Garry; Tausz-Posch, Sabine; Fletcher, Andrew; Tausz, Michael

    2017-12-04

    The impact of elevated [CO 2 ] (e[CO 2 ]) on crops often includes a decrease in their nutrient concentrations where reduced transpiration-driven mass flow of nutrients has been suggested to play a role. We used two independent approaches, a free-air CO 2 enrichment (FACE) experiment in the South Eastern wheat belt of Australia and a simulation study employing the agricultural production systems simulator (APSIM), to show that transpiration (mm) and nutrient uptake (g m -2 ) of nitrogen (N), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg) and manganese (Mn) in wheat are correlated under e[CO 2 ], but that nutrient uptake per unit water transpired is higher under e[CO 2 ] than under ambient [CO 2 ] (a[CO 2 ]). This result suggests that transpiration-driven mass flow of nutrients contributes to decreases in nutrient concentrations under e[CO 2 ], but cannot solely explain the overall decline. © 2017 Scandinavian Plant Physiology Society.

  20. Ball-milling and AlB2 addition effects on the hydrogen sorption properties of the CaH2 + MgB2 system

    International Nuclear Information System (INIS)

    Schiavo, B.; Girella, A.; Agresti, F.; Capurso, G.; Milanese, C.

    2011-01-01

    Research highlights: → Calcium hydride + magnesium-aluminum borides as candidates for hydrogen storage. → Long time ball milling improves hydrogen sorption kinetics of the CaH 2 +MgB 2 system. → Coexistence of MgB 2 and AlB 2 does not improve hydrogen sorption performances. → Total substitution of MgB 2 with AlB 2 improves the system kinetics and reversibility. → Below 400 deg. C almost the full hydrogen capacity of the CaH 2 + AlB 2 system is reached. - Abstract: Among the borohydrides proposed for solid state hydrogen storage, Ca(BH 4 ) 2 is particularly interesting because of its favourable thermodynamics and relatively cheap price. Composite systems, where other species are present in addition to the borohydride, show some advantages in hydrogen sorption properties with respect to the borohydrides alone, despite a reduction of the theoretical storage capacity. We have investigated the milling time influence on the sorption properties of the CaH 2 + MgB 2 system from which Ca(BH 4 ) 2 and MgH 2 can be synthesized by hydrogen absorption process. Manometric and calorimetric measurements showed better kinetics for long time milled samples. We found that the total substitution of MgB 2 with AlB 2 in the starting material can improve the sorption properties significantly, while the co-existence of both magnesium and aluminum borides in the starting mixture did not cause any improvement. Rietveld refinements of the X-ray powder diffraction spectra were used to confirm the hypothesized reactions.

  1. Production of H2 from aluminium/water reaction and its potential for CO2 methanation

    Science.gov (United States)

    Khai Phung, Khor; Sethupathi, Sumathi; Siang Piao, Chai

    2018-04-01

    Carbon dioxide (CO2) is a natural gas that presents in excess in the atmosphere. Owing to its ability to cause global warming, capturing and conversion of CO2 have attracted much attention worldwide. CO2 methanation using hydrogen (H2) is believed to be a promising route for CO2 removal. In the present work, H2 is produced using aluminum-water reaction and tested for its ability to convert CO2 to methane (CH4). Different type of water i.e. tap water, distilled water, deionized water and ultrapure water, concentration of sodium hydroxide (NaOH) (0.2 M to 1.0 M) and particle size of aluminum (45 m to 500 μm) were varied as parameter study. It was found that the highest yield of H2 was obtained using distilled water, 1.0 M of NaOH and 45μm particle size of aluminium. However, the highest yield of methane was achieved using a moderate and progressive H2 production (distilled water, 0.6 M of NaOH and 45 μm particle size of aluminium) which allowed sufficient time for H2 to react with CO2. It was concluded that 1130 ml of H2 can produce about 560 ppm of CH4 within 25 min of batch reaction using nickel catalyst.

  2. Experimental Ion Mobility measurements in Ne-CO$_2$ and CO$_2$-N$_2$ mixtures

    CERN Document Server

    Encarnação, P.M.C.C.; Veenhof, R.; Neves, P.N.B.; Santos, F.P.; Trindade, A.M.F.; Borges, F.I.G.M.; Conde, C.A.N.

    2016-01-01

    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V−1s−1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V−1s−1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This secon...

  3. Interactions of a La{sub O.9}Sr{sub O.1}Ga{sub O.8}Mg{sub O.2}O{sub 3-{delta}} electrolyte with Fe{sub 2}O{sub 3}, Co{sub 2}O{sub 3} and NiO anode materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Ohara, S.; Okawa, H.; Maric, R.; Fukui, T. [Japan Fine Ceramics Center, 2-4-1 Mutsuo, Atsuta-ku, 456-8587 Nagoya (Japan)

    2001-01-02

    In this study, the interactions of a Sr- and Mg-doped lanthanum gallate (LSGM with composition La{sub O.9}Sr{sub O.1}Ga{sub O.8}Mg{sub O.2}O{sub 3-{delta}}) electrolyte with Fe{sub 2}O{sub 3}, Co{sub 2}O{sub 3} and NiO as the anode starting materials were investigated. It was found that the order of reactivity of the LSGM with the three oxides was Co{sub 2}O{sub 3}>NiO>Fe{sub 2}O{sub 3}, and La-containing oxides were detected in these binary powder mixtures after firing. The anode performance was greatly influenced by the interaction. The Fe{sub 2}O{sub 3}-LSGM anode, mixed with 40 vol.% LSGM powder and sintered at 1150C, exhibited the highest initial performance in comparison with NiO-LSGM and Co{sub 2}O{sub 3}-LSGM anodes. It seems that Fe{sub 2}O{sub 3} is a possible anode starting material for a LSGM-based solid oxide fuel cell.

  4. Microsecond enamel ablation with 10.6μm CO2 laser radiation

    Science.gov (United States)

    Góra, W. S.; McDonald, A.; Hand, D. P.; Shephard, J. D.

    2016-02-01

    Lasers have been previously been used for dental applications, however there remain issues with thermally-induced cracking. In this paper we investigate the impact of pulse length on CO2 laser ablation of human dental enamel. Experiments were carried in vitro on molar teeth without any modification to the enamel surface, such as grinding or polishing. In addition to varying the pulse length, we also varied pulse energy and focal position, to determine the most efficient ablation of dental hard tissue and more importantly to minimize or eradicate cracking. The maximum temperature rise during the multi pulse ablation process was monitored using a set of thermocouples embedded into the pulpal chamber. The application of a laser device in dental surgery allows removal of tissue with higher precision, which results in minimal loss of healthy dental tissue. In this study we use an RF discharge excited CO2 laser operating at 10.6μm. The wavelength of 10.6 μm overlaps with a phosphate band (PO3-4) absorption in dental hard tissue hence the CO2 laser radiation has been selected as a potential source for modification of the tissue. This research describes an in-depth analysis of single pulse laser ablation. To determine the parameters that are best suited for the ablation of hard dental tissue without thermal cracking, a range of pulse lengths (10-200 μs), and fluences (0-100 J/cm2) are tested. In addition, different laser focusing approaches are investigated to select the most beneficial way of delivering laser radiation to the surface (divergent/convergent beam). To ensure that these processes do not increase the temperature above the critical threshold and cause the necrosis of the tissue a set of thermocouples was placed into the pulpal chambers. Intermittent laser radiation was investigated with and without application of a water spray to cool down the ablation site and the adjacent area. Results show that the temperature can be kept below the critical threshold

  5. Alterations of Mg2+ After Hemorrhagic Shock.

    Science.gov (United States)

    Lee, Mun-Young; Yang, Dong Kwon; Kim, Shang-Jin

    2017-11-01

    Hemorrhagic shock is generally characterized by hemodynamic instability with cellular hypoxia and diminishing cellular function, resulting from an imbalance between systemic oxygen delivery and consumption and redistribution of fluid and electrolytes. Magnesium (Mg) is the fourth most abundant cation overall and second most abundant intracellular cation in the body and an essential cofactor for the energy production and cellular metabolism. Data for blood total Mg (tMg; free-ionized, protein-bound, and anion-bound forms) and free Mg 2+ levels after a traumatic injury are inconsistent and only limited information is available on hemorrhagic effects on free Mg 2+ as the physiologically active form. The aim of this study was to determine changes in blood Mg 2+ and tMg after hemorrhage in rats identifying mechanism and origin of the changes in blood Mg 2+ . Hemorrhagic shock produced significant increases in blood Mg 2+ , plasma tMg, Na + , K + , Cl - , anion gap, partial pressures of oxygen, glucose, and blood urea nitrogen but significant decreases in RBC tMg, blood Ca 2+ , HCO 3 - , pH, partial pressures of carbon dioxide, hematocrit, hemoglobin, total cholesterol, and plasma/RBC ATP. During hemorrhagic shock, K + , anion gap, and BUN showed significant positive correlations with changes in blood Mg 2+ level, while Ca 2+ , pH, and T-CHO correlated to Mg 2+ in a negative manner. In conclusion, hemorrhagic shock induced an increase in both blood-free Mg 2+ and tMg, resulted from Mg 2+ efflux from metabolic damaged cell with acidosis and ATP depletion.

  6. Workshop 14: CCS-CO{sub 2}; Atelier 14: CCS-CO{sub 2} (CO{sub 2} Capture and Sequestration)

    Energy Technology Data Exchange (ETDEWEB)

    Botte, J.M.

    2012-07-01

    Here are given summaries of the speeches concerning the methodology of the subsurface risk analysis, the carbon management in an industrial basin and the experiment of the Total Rousse firm: the CO{sub 2} storage in an onshore depleted field. (O.M.)

  7. Thermal conductivity of M-Si-N (M = Mg, Ca, Sr, Ba) compounds with varying M/Si ratio

    NARCIS (Netherlands)

    Hintzen, H.T.J.M.; Bruls, R.J.; Delsing, A.C.A.; Itatani, K.; Tanaka, S.; With, de G.; Metselaar, R.

    2002-01-01

    The thermal cond. of M-Si-N (M = Mg, Ca, Sr, Ba) compds. was examd. The emphasis is on MgSiN2 (a material which can be derived from AlN by replacing systematically 2Al3+ by Mg2+/Si4+), and Si3N4 (the well known b-modification as well as the recently discovered cubic modification with the spinel

  8. Microwave-assisted nitric acid treatment of sepiolite and functionalization with polyethylenimine applied to CO{sub 2} capture and CO{sub 2}/N{sub 2} separation

    Energy Technology Data Exchange (ETDEWEB)

    Vilarrasa-García, E., E-mail: enrique@gpsa.ufc.br [Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl. 709, 60455-760 Fortaleza (Brazil); Cecilia, J.A., E-mail: jacecilia@uma.es [Department of Inorganic Chemistry, Cristallography and Mineralogy, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga (Spain); Bastos-Neto, M., E-mail: mbn@ufc.br [Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl. 709, 60455-760 Fortaleza (Brazil); Cavalcante, C.L., E-mail: celio@gpsa.ufc.br [Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl. 709, 60455-760 Fortaleza (Brazil); Azevedo, D.C.S., E-mail: diana@gpsa.ufc.br [Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl. 709, 60455-760 Fortaleza (Brazil); Rodríguez-Castellón, E., E-mail: castellon@uma.es [Department of Inorganic Chemistry, Cristallography and Mineralogy, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga (Spain)

    2017-07-15

    Highlights: • Textural properties of sepiolite can be enhanced by microwave assisted acid treatment. • CO{sub 2} uptake of sepiolite improved significantly after amine modification. • The highest CO{sub 2}/N{sub 2} selectivity is 440 mol CO{sub 2}/mol N{sub 2} at 338 K and low pressures. - Abstract: Sepiolite was treated in HNO{sub 3} solutions with the assistance of microwave radiation. This treatment caused the progressive depletion of Mg{sup 2+}, the gradual degradation of the sepiolite structure and the formation of an amorphous silica phase, which contributes to a noticeable increase of the surface area. The use of microwaves during acid treatment, after few minutes, led to materials with similar S{sub BET} to those obtained after 48 h with conventional heating methods. The influence of mineralogical impurities, crystallinity and chemical composition in the reactivity of sepiolite to this treatment was also studied. The obtained materials were impregnated with polyethylenimine and assessed for CO{sub 2} capture and CO{sub 2}/N{sub 2} selectivity at different temperatures. Experimental equilibrium data were fitted to Langmuir and Sips models. The adsorption data revealed that sepiolite can be an interesting adsorbent for CO{sub 2} capture, achieving a capacity of 1.70 mmol g{sup −1} at 338 K and 1 bar, providing a high CO{sub 2}/N{sub 2} selectivity (440 mol CO{sub 2}/mol N{sub 2}).

  9. Attestation in self-propagating combustion approach of spinel AFe_2O_4 (A = Co, Mg and Mn) complexes bearing mixed oxidation states: Magnetostructural properties

    International Nuclear Information System (INIS)

    Bennet, J.; Tholkappiyan, R.; Vishista, K.; Jaya, N. Victor; Hamed, Fathalla

    2016-01-01

    Highlights: • Spinel type ferrite compounds AFe_2O_4 (A = Co, Mg and Mn) have been successfully prepared by self-propagating combustion method using glycine as fuel. • To investigate and confirms the presence of phases in the synthesized ferrite nanoparticles by XRD and FTIR analysis. • The formation of mixed oxidation state of cobalt (Co"2"+ and Co"3"+), iron (Fe"2"+ and Fe"3"+) and manganese (Mn"2"+ and Mn"3"+) ions were studied and confirmed from XPS analysis. • The magnetic properties of the synthesized ferrites were studied by VSM measurement. - Abstract: Spinel type nano-sized ferrite compounds AFe_2O_4 (A = Co, Mg and Mn) have been successfully prepared by self-propagating combustion method using glycine as fuel at 400 °C under air atmosphere for 4 h. The crystal structure, chemical composition, morphology and magnetic properties of the synthesized samples were characterized by X−ray diffraction, Fourier transform infrared spectroscopy, X−ray photoelectron spectroscopy, Energy dispersive X−ray, Scanning and Transmission electron microscopy and vibrating sample magnetometer. The chemical reaction and role of fuel on the nanoparticles formation were discussed. The XRD pattern of the synthesized samples shows the formation of pure phase with average crystallite size of 97, 57 and 98 nm from Scherrer formula and 86, 54 and 87 nm from Williamson and Hall (W–H) formula respectively. FTIR absorption spectra revealed that the presence of strong absorption peaks near 400–600 cm"−"1 corresponds to tetrahedral and octahedral complex of spinel ferrites. The relative concentrations of electronic states of elements such as cobalt (Co"2"+ and Co"3"+), iron (Fe"2"+ and Fe"3"+) and manganese (Mn"2"+ and Mn"3"+) oxidation states were studied from XPS and it is found that 55% of Fe ions are in Fe"2"+ state and the remaining is in Fe"3"+ state and thus the cationic distribution of Fe ions occurred in both tetrahedral and octahedral sites. SEM analysis

  10. Assembly of [Cu2(COO)4] and [M3(μ3-O)(COO)6] (M = Sc, Fe, Ga, and In) building blocks into porous frameworks towards ultra-high C2H2/CO2 and C2H2/CH4 separation performance.

    Science.gov (United States)

    Zhang, Jian-Wei; Hu, Man-Cheng; Li, Shu-Ni; Jiang, Yu-Cheng; Qu, Peng; Zhai, Quan-Guo

    2018-02-20

    A porous MOF platform (SNNU-65s) formed by creatively combining paddle-wheel-like [Cu 2 (COO) 4 ] and trigonal prismatic [M 3 (μ 3 -O)(COO) 6 ] building blocks was designed herein. The mixed and high-density open metal sites and the OH-functionalized pore surface promote SNNU-65s to exhibit ultra-high C 2 H 2 uptake and separation performance. Impressively, SNNU-65-Cu-Ga stands out for the highest C 2 H 2 /CO 2 (18.7) and C 2 H 2 /CH 4 (120.6) selectivity among all the reported MOFs at room temperature.

  11. Enhanced Selectivity and Uptake Capacity of CO2 and Toluene Adsorption in Co0.5 M0.33 MoS4 (M= Sb or Y) Chalcogels by Impregnated Metal Salts

    KAUST Repository

    Edhaim, Fatimah A.; Rothenberger, Alexander

    2017-01-01

    The synthesis of metal chalcogenide aerogels Co0.5M0.33MoS4 (M= Sb or Y) by the sol-gel method is reported. In this system, the building blocks [MoS4]2− chelated with Co2+ and (Sb3+) or (Y3+) salts in nonaqueous solvents forming amorphous networks

  12. Electrical conductivity of cobalt doped La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ

    Science.gov (United States)

    Wang, Shizhong; Wu, Lingli; Liang, Ying

    La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ (LSGM8282), La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ (LSGMC5) and La 0.8Sr 0.2Ga 0.8Mg 0.115Co 0.085O 3- δ (LSGMC8.5) were prepared using a conventional solid-state reaction. Electrical conductivities and electronic conductivities of the samples were measured using four-probe impedance spectrometry, four-probe dc polarization and Hebb-Wagner polarization within the temperature range of 973-1173 K. The electrical conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high (>10 -5 atm) and low oxygen partial pressure regions (lanthanum gallate samples increased with increasing concentration of cobalt, suggesting that the concentration of cobalt should be optimized carefully to maintain a high electrical conductivity and close to 1 oxygen ion transference number.

  13. Defect kinetics in spinels: Long-time simulations of MgAl2O4, MgGa2O4, and MgIn2O4

    International Nuclear Information System (INIS)

    Uberuaga, B. P.; Voter, A. F.; Sickafus, K. E.; Bacorisen, D.; Smith, Roger; Ball, J. A.; Grimes, R. W.

    2007-01-01

    Building upon work in which we examined defect production and stability in spinels, we now turn to defect kinetics. Using temperature accelerated dynamics (TAD), we characterize the kinetics of defects in three spinel oxides: magnesium aluminate MgAl 2 O 4 , magnesium gallate MgGa 2 O 4 , and magnesium indate MgIn 2 O 4 . These materials have varying tendencies to disorder on the cation sublattices. In order to understand chemical composition effects, we first examine defect kinetics in perfectly ordered, or normal, spinels, focusing on point defects on each sublattice. We then examine the role that cation disorder has on defect mobility. Using TAD, we find that disorder creates local environments which strongly trap point defects, effectively reducing their mobility. We explore the consequences of this trapping via kinetic Monte Carlo (KMC) simulations on the oxygen vacancy (V O ) in MgGa 2 O 4 , finding that V O mobility is directly related to the degree of inversion in the system

  14. Cofactor and CO2 donor regulation involved in reductive routes for polymalic acid production by Aureobasidium pullulans CCTCC M2012223.

    Science.gov (United States)

    Zou, Xiang; Tu, Guangwei; Zan, Zhanquan

    2014-10-01

    Polymalic acid (PMA) is a water-soluble polyester with many attractive properties for biomedical application. Its monomer L-malic acid is widely used in the food industry and also a potential C4 platform chemical. Cofactor and CO2 donor involved in the reductive routes were investigated for PMA production by Aureobasidium pullulans. Biotin as the key cofactor of pyruvate carboxylase was favor for the PMA biosynthesis. Na2CO3 as CO2 donor can obviously improved PMA titer when compared with no CO2 supplier NaOH, and also exhibit more advantages than the other donor CaCO3 because of its water-soluble characteristic. A combinational process with addition of biotin 70 mg/L and Na2CO3 as the CO2 donor was scaled-up in 50 L fermentor, achieving the high product 34.3 g/L of PMA and productivity of 0.41 g/L h. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application.

  15. Study of the reversible water vapour sorption process of MgSO{sub 4}.7H{sub 2}O and MgCl{sub 2}.6H{sub 2}O under the conditions of seasonal solar heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Ferchaud, C.J.; De Boer, R. [Eindhoven University of Technology, Department of Mechanical Engineering, Eindhoven (Netherlands); Zondag, H.A.; Veldhuis, J.B.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-08-15

    The characterization of the structural, compositional and thermodynamic properties of MgSO{sub 4}.7H{sub 2}O and MgCl{sub 2}.6H{sub O} has been done for seasonal heat storage using in-situ X-ray Diffraction and thermal analyses (TG/DSC) under practical conditions for seasonal heat storage (T{sub max} = 150C, p(H{sub 2}O)=13 mbar). This study showed that these two materials release heat after a dehydration/hydration cycle with energy densities of 0.38 GJ/m{sup 3} for MgSO{sub 4}.7H{sub 2}O and 0.71 GJ/m{sup 3} MgCl{sub 2}.6H{sub 2}O. The low heat release found for MgSO{sub 4}.7H2O is mainly attributed to the amorphization of the material during the dehydration performed at 13 mbar which reduces its sorption capacity during the rehydration. MgCl{sub 2}.6H{sub 2}O presents a high energy density which makes this material interesting for the seasonal heat storage in domestic applications. This material would be able to fulfil the winter heat demand of a passive house estimated at 6 GJ with a packed bed reactor of 8.5 m{sup 3}. However, a seasonal heat storage system based on the water vapour sorption process in MgCl{sub 2}.6H{sub 2}O should be carefully set with a restricted temperature of 40C for the hydration reaction to avoid the liquefaction of the material at ambient temperature which limits its performances for long term storage.

  16. Degradation kinetics of monoethanolamine during CO2 and H2 S absorption from biogas

    Directory of Open Access Journals (Sweden)

    Preecha Kasikamphaiboon

    2015-02-01

    Full Text Available The rate of degradation of MEA during CO2 and H2 S absorption in the biogas upgrading process was examined in four degradation systems, i.e., MEA-CO2 , MEA-CO2 -O2 , MEA-CO2 -H2 S and MEA-CO2 -O2 -H2 S. Degradation experiments were performed in a 800-ml stainless steel autoclave reactor, using MEA concentrations of 3 and 5 mol/L, CO2 loadings of 0.4 and 0.5 mol CO2 /mol MEA, O2 pressure of 200 kPa, and H2 S concentrations of 84 and 87 mg/L at temperatures of 120 and 140C. The results showed that, for the MEA-CO2 system, an increase in temperature or MEA concentration resulted in a higher rate of MEA degradation. In contrast, an increase in CO2 loading in the MEA-CO2 -O2 system led to a reduction of MEA degradation. The degradation rate of the system with O2 was with 8.3 times as high as that of the system without O2 . The presence of H2 S did not appear to affect the rate of degradation in the MEA-CO2 -H2 S system. However, for the system in which both H2 S and O2 were present, the MEA degradation was additionally induced by H2 S, thus, resulting in higher degradation rates than those of the system with O2 only. The extent of degradation under the same period of time increased in the order MEA-CO2 , MEA-CO2 -H2 S < MEA-CO2 -O2 < MEA-CO2 -O2 -H2 S.

  17. Geoelectric Monitoring of geological CO2 storage at Ketzin, Germany (CO2SINK project): Downhole and Surface-Downhole measurements

    Science.gov (United States)

    Kiessling, D.; Schuett, H.; Schoebel, B.; Krueger, K.; Schmidt-Hattenberger, C.; Schilling, F.

    2009-04-01

    Numerical models of the CO2 storage experiment CO2SINK (CO2 Storage by Injection into a Natural Saline Aquifer at Ketzin), where CO2 is injected into a deep saline aquifer at roughly 650 m depth, yield a CO2 saturation of approximately 50% for large parts of the plume. Archie's equation predicts an increase of the resistivity by a factor of approximately 3 to 4 for the reservoir sandstone, and laboratory tests on Ketzin reservoir samples support this prediction. Modeling results show that tracking the CO2 plume may be doable with crosshole resistivity surveys under these conditions. One injection well and two observation wells were drilled in 2007 to a depth of about 800 m and were completed with "smart" casings, arranged L-shaped with distances of 50 m and 100 m. 45 permanent ring-shaped steel electrodes were attached to the electrically insulated casings of the three Ketzin wells at 590 m to 735 m depth with a spacing of about 10 m. It is to our knowledge the deepest permanent vertical electrical resistivity array (VERA) worldwide. The electrodes are connected to the current power supply and data registration units at the surface through custom-made cables. This deep electrode array allows for the registration of electrical resistivity tomography (ERT) data sets at basically any desired repetition rate and at very low cost, without interrupting the injection operations. The installation of all 45 electrodes succeeded. The electrodes are connected to the electrical cable, and the insulated casing stood undamaged. Even after 2-odd years under underground conditions only 6 electrodes are in a critical state now, caused by corrosion effects. In the framework of the COSMOS project (CO2-Storage, Monitoring and Safety Technology), supported by the German "Geotechnologien" program, the geoelectric monitoring has been performed. The 3D crosshole time-laps measurements are taken using dipole-dipole configurations. The data was inverted using AGI EarthImager 3D to obtain 3D

  18. Catalisadores sol-gel de Ni-SiO2 e Ni-Al2O3 aplicados na reforma de metano com CO2 = Ni-SiO2 and Ni-Al2O3 sol-gel catalysts applied to methane reforming with CO2

    Directory of Open Access Journals (Sweden)

    Giane Gonçalves

    2005-01-01

    Full Text Available A reação de reforma do metano com CO2 apresenta-se como um processopromissor de geração de gás de síntese e hidrogênio. Neste sentido, foram preparados catalisadores de níquel-sílica e níquel-alumina pelo método sol-gel, com carga metálica nominal de 8% em massa. Os catalisadores foram caracterizados por redução à temperatura programada, análise termogravimétrica e determinação da área superficial específica. A reação de reforma do metano com CO2 foi realizada em um micro-reator contendo 500 mg de catalisador, previamente ativado em uma mistura redutora contendo hidrogênio. Osensaios de reforma a seco do metano foram realizados a 800°C, na pressão atmosférica, por um período de 12 horas, com uma razão molar de alimentação de [CO2:CH4] = 6. Os produtos da reação foram analisados por cromatografia gasosa. Dentre os catalisadoresavaliados, nas condições de reação estudadas, o catalisador de níquel suportado em sílica foi o que apresentou o melhor desempenho.The dry reforming reaction of methane comes as a promising process of syngas and hydrogen. Nickel catalysts on Al2O3 and SiO2 were synthesized by sol-gel method, with metalic load of 8% weight. The catalysts were characterized by temperature programmed reduction (TPR, termogravimetry analysis (TGA and specific surface area measurements (BET. The dry reforming reaction was performed in a micro reactor packed with 500 mg of catalyst, previously activated in atmosphere of hydrogen. The dry reforming tests were done at 800oC and atmospheric pressure by a period of 12 hours, with a molar ratio in the feeding of [CO2:CH4] = 6. The products of the reaction were analyzed by gas chromatograph. The Ni-SiO2 catalysts showed better performance.

  19. Superconductivity in dense Mg1–xMxB2 (M= Zr, Nb, Mo; x= 0⋅ 05 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 28; Issue 3. Superconductivity in dense Mg1–MB2 (M = Zr, Nb, Mo; = 0.05) materials sintered under pressure. S Kalavathi C Divakar. Superconductors Volume 28 Issue 3 June 2005 pp 249-252 ...

  20. Screening of Six Medicinal Plant Extracts Obtained by Two Conventional Methods and Supercritical CO2 Extraction Targeted on Coumarin Content, 2,2-Diphenyl-1-picrylhydrazyl Radical Scavenging Capacity and Total Phenols Content

    Directory of Open Access Journals (Sweden)

    Maja Molnar

    2017-02-01

    Full Text Available Six medicinal plants Helichrysum italicum (Roth G. Don, Angelica archangelica L., Lavandula officinalis L., Salvia officinalis L., Melilotus officinalis L., and Ruta graveolens L. were used. The aim of the study was to compare their extracts obtained by Soxhlet (hexane extraction, maceration with ethanol (EtOH, and supercritical CO2 extraction (SC-CO2 targeted on coumarin content (by high performance liquid chromatography with ultraviolet detection, HPLC-UV, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH scavenging capacity, and total phenols (TPs content (by Folin–Ciocalteu assay. The highest extraction yields were obtained by EtOH, followed by hexane and SC-CO2. The highest coumarin content (316.37 mg/100 g was found in M. officinalis EtOH extracts, but its SC-CO2 extraction yield was very low for further investigation. Coumarin was also found in SC-CO2 extracts of S. officinalis, R. graveolens, A. archangelica, and L. officinalis. EtOH extracts of all plants exhibited the highest DPPH scavenging capacity. SC-CO2 extracts exhibited antiradical capacity similar to hexane extracts, while S. officinalis SC-CO2 extracts were the most potent (95.7%. EtOH extracts contained the most TPs (up to 132.1 mg gallic acid equivalents (GAE/g from H. italicum in comparison to hexane or SC-CO2 extracts. TPs content was highly correlated to the DPPH scavenging capacity of the extracts. The results indicate that for comprehensive screening of different medicinal plants, various extraction techniques should be used in order to get a better insight into their components content or antiradical capacity.

  1. Structural, magnetic, and dielectric properties of multiferroic Co1-xMgxCr2O4 nanoparticles

    Science.gov (United States)

    Kamran, M.; Ullah, A.; Rahman, S.; Tahir, A.; Nadeem, K.; Anis ur Rehman, M.; Hussain, S.

    2017-07-01

    We examined the structural, magnetic, and dielectric properties of Co1-xMgxCr2O4 nanoparticles with composition x = 0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1 in detail. X-ray diffraction (XRD) revealed normal spinel structure for all the samples. Rietveld refinement fitting results of the XRD showed no impurity phases which signifies the formation of single phase Co1-xMgxCr2O4 nanoparticles. The average crystallite size showed a peak behaviour with maxima at x = 0.6. Raman and Fourier transform infrared (FTIR) spectroscopy also confirmed the formation of single phase normal spinel for all the samples and exhibited dominant vibrational changes for x ≥ 0.6. For x = 0 (CoCr2O4), zero field cooled/field cooled (ZFC/FC) magnetization curves showed paramagnetic (PM) to ferrimagnetic (FiM) transition at Tc = 97 K and a conical spiral magnetic order at Ts = 30 K. The end members CoCr2O4 (x = 0) and MgCr2O4 (x = 1) are FiM and antiferromagnetic (AFM), respectively. Tc and Ts showed decreasing trend with increasing x, followed by an additional AFM transition at TN = 15 K for x = 0.6. The system finally stabilized and changed to highly frustrated AFM structure at x = 1 due to formation of pure MgCr2O4. High field FC curves (5T) depicted nearly no effect on spiral magnetic state, which is attributed to strong exchange B-B magnetic interactions at low temperatures. Dielectric parameters showed a non-monotonous behaviour with Mg concentration and were explained with the help of Maxwell-Wagner model and Koop's theory. Dielectric properties were improved for nanoparticles with x = 0.6 and is attributed to their larger average crystallite size. In summary, Mg doping has significantly affects the structural, magnetic, and dielectric properties of CoCr2O4 nanoparticles, which can be attributed to variations in local magnetic exchange interactions and variation in average crystallite size of these chromite nanoparticles.

  2. Sodium-glucose co-transporter type 2 inhibitors reduce evening home blood pressure in type 2 diabetes with nephropathy.

    Science.gov (United States)

    Takenaka, Tsuneo; Kishimoto, Miyako; Ohta, Mari; Tomonaga, Osamu; Suzuki, Hiromichi

    2017-05-01

    The effects of sodium-glucose co-transporter type 2 inhibitors on home blood pressure were examined in type 2 diabetes with nephropathy. The patients with diabetic nephropathy were screened from medical records in our hospitals. Among them, 52 patients who measured home blood pressure and started to take sodium-glucose co-transporter type 2 inhibitors were selected. Clinical parameters including estimated glomerular filtration rate, albuminuria and home blood pressure for 6 months were analysed. Sodium-glucose co-transporter type 2 inhibitors (luseogliflozin 5 mg/day or canagliflozin 100 mg/day) reduced body weight, HbA1c, albuminuria, estimated glomerular filtration rate and office blood pressure. Although sodium-glucose co-transporter type 2 inhibitors did not alter morning blood pressure, it reduced evening systolic blood pressure. Regression analyses revealed that decreases in evening blood pressure predicted decrements in albuminuria. The present data suggest that sodium-glucose co-transporter type 2 inhibitors suppress sodium overload during daytime to reduce evening blood pressure and albuminuria.

  3. Energetic prediction on the stability of A2Mg12Si7, A2Mg4Si3, and AMgSi in the A2Si–Mg2Si system (A = Ca, Sr and Ba) and their calculated electronic structures

    International Nuclear Information System (INIS)

    Imai, Yoji; Mori, Yoshihisa; Nakamura, Shigeyuki; Takarabe, Ken-ichi

    2014-01-01

    Highlights: • Formation energies of A 2 Mg 4 Si 3 , A 2 Mg 12 Si 7 , and AMgSi (A = Ca,Sr,Ba) were calculated. • All AMgSi are quite stable compared to mixture of A 2 Si and Mg 2 Si. • Ba 2 Mg 4 Si 3 and Sr 2 Mg 4 Si 3 are predicted to be stable, but Ca 2 Mg 4 Si 3 is not. • Ca 2 Mg 12 Si 7 and Sr 2 Mg 12 Si 7 are energetically unstable. • Stability of Ba 2 Mg 12 Si 7 is a tender subject. -- Abstract: In order to evaluate the relative stability of A 2 Mg 4 Si 3 , A 2 Mg 12 Si 7 , and AMgSi (A = Ca, Sr, and Ba) in the A 2 Si–Mg 2 Si system, electronic energy changes in the formation of these compounds were calculated using a density-functional theory with the Perdew–Wang generalized gradient approximations. It was found that (1) AMgSi’s are quite stable compared to equi-molar mixture of A 2 Si and Mg 2 Si, (2) Ba 2 Mg 4 Si 3 and Sr 2 Mg 4 Si 3 are also stable, (3) Ca 2 Mg 4 Si 3 and Ca 2 Mg 12 Si 7 are less stable than the mixture of CaMgSi and Mg 2 Si, and (4) Stability of Ba 2 Mg 12 Si 7 is a tender subject and Sr 2 Mg 12 Si 7 is energetically unstable compared to the mixture of Sr 2 Mg 4 Si 3 (or, SrMgSi) and Mg 2 Si. The presence of Sr 2 Mg 12 Si 7 may be due to the vibrational and/or configurational entropy, which are not treated in the present study. From the calculated electronic densities of state, complex compounds of SrMgSi and Mg 2 Si have both p-type and n-type character, depending on the ratio of SrMgSi and Mg 2 Si in that compound

  4. Interaction of photoactive cis(CO)-trans(I)-Ru-(4,4‧-dicarboxylate-2,2‧-bipyridine)(CO)2I2 with anatase (1 0 1) surface

    Science.gov (United States)

    Haukka, Matti; Hirva, Pipsa

    2002-06-01

    The coordination of cis(CO)-trans(I)-Ru(4,4‧-dicarboxylate-2,2‧-bipyridine)(CO)2I2 on an anatase (1 0 1) surface was investigated using a computational density functional method. The adsorbate is able to interact with the anatase surface by one or two carboxylate substituents of the bipyridine ligand. Three of the studied coordination modes involved a single carboxylate as the binding group, including monodentate (1M), bidentate chelating (1BC) and bidentate bridging (1BB) modes. The possibility of monodentate binding via both carboxylate groups in (2M) was also studied. The results showed that the multidentate binding is clearly preferred over monodentate coordination. The stability of the modes increased in the order 1M, 1BC, 1BB and 2M. The flexibility of the bipyridine ligand was found to be the key factor in the binding via two carboxylate groups.

  5. Enhanced photocatalytic properties of the 3D flower-like Mg-Al layered double hydroxides decorated with Ag{sub 2}CO{sub 3} under visible light illumination

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Yanhui, E-mail: andyao@hhu.edu.cn; Wang, Dandan; Wang, Peifang; Wang, Chao; Hou, Jun; Qian, Jin

    2016-08-15

    Highlights: • 3D flower-like Ag{sub 2}CO{sub 3}/Mg-Al layered double hydroxide composite was prepared. • The nanocomposites exhibited high photocatalytic activities on different organic pollutants. • The mechanism of the enhanced activity were investigated. - Abstract: A facile anion-exchange precipitation method was employed to synthesize 3D flower-like Ag{sub 2}CO{sub 3}/Mg-Al layered double hydroxide composite photocatalyst. Results showed that Ag{sub 2}CO{sub 3} nanoparticles dispersed uniformly on the petals of the flower-like Mg-Al LDH. The obtained nanocomposites exhibited high photocatalytic activities on different organic pollutants (cationic and anionic dyes, phenol) under visible light illumination. The high photocatalytic activity can be ascribed to the special structure which accomplishes the wide-distribution of Ag{sub 2}CO{sub 3} nanoparticles on the surfaces of the 3D flower-like nanocomposites. Therefore, it can provide much more active sites for the degradation of organic pollutant. Then the photocatalytic mechanism was also verified by reactive species trapping experiments in detail. The work would pave a facile way to prepare LDHs based hierarchical photocatalysts with high activity for the degradation of wide range organic pollutants under visible light irradiation.

  6. Synthesis and optical properties of red/blue-emitting Sr2MgSi2O7:Eu3+/Eu2+ phosphors for white LED

    Directory of Open Access Journals (Sweden)

    Tong Thi Hao Tam

    2016-06-01

    Full Text Available Phosphor-converted white light emitting diodes (white LEDs have received great attention in recent years since they have several excellent features such as high lumen output, low power consumption, long lifetime and environmentally friendly. In this work, we report the co-precipitation synthesis of red/blue Sr2MgSi2O7:Eu3+/Eu2+ phosphors with various Eu doping concentration. The results show that the obtained Sr2MgSi2O7:Eu3+/Eu2+ phosphors have good crystallinity and emit strong red (Sr2MgSi2O7:Eu3+ and blue (Sr2MgSi2O7:Eu2+ emissions under near UV light excitation. The sharp emission peaks at 577, 590, 612, 653, and 701 nm corresponded to the typical 5D0 → 7Fj (j = 0,1,2,3,4 transitions of Eu3+, and the blue emission peaking at 460 nm is attributed to the typical 4f65d1-4f7 transition of Eu2+ in the same Sr2MgSi2O7 host lattice. Both phosphors can be well excited in the wavelength range of 260–400 nm where the near UV-LED is well matched. The above results suggest that the Sr2MgSi2O7:Eu3+/Eu2+ phosphors are promising red/blue-emitting phosphors for the application in near UV pumped phosphor-converted white LEDs.

  7. High temperature CO2 capture of hydroxyapatite extracted from tilapia scales

    Directory of Open Access Journals (Sweden)

    Oscar H. Ojeda-Niño

    2017-11-01

    Full Text Available Hydroxyapatite (HAp was obtained from tilapia scales by two extraction methods: direct calcination and acid-base treatment. The physicochemical characteristics of the obtained HAps were evaluated by thermogravimetric analysis, X-ray fluorescence, X-ray diffraction, scanning electron microscopy, surface area, infrared spectroscopy, and basicity measurement at 298 K by CO2-pulse titration. Furthermore, the CO2 capture capacity of the solids at high temperature was also determined. Both methods showed the presence of a HAp phase although significant differences in the properties of the solids were found. The HAp obtained by direct calcination exhibited a lower crystallinity and a greater surface area and basicity than the HAp obtained by the acid-base treatment. These features were correlated with the solid’s CO2 capture capacity. In this work, CO2 capture capacity values for HAp yielded by calcination ranged from 2.5 to 3.2 mg CO2 /g captured at 973 K, and for the acid-base treatment-derived HAp, CO2 capture capacity values between 1.2 to 2.5 mg CO2 /g were recorded. These results reveal the potential of HAps extracted from tilapia scales as solids with high CO2 capture capacity, thermal stability, and capture/release cycles reversibility.

  8. Production of hydrogen using the combination of water-gas shift and carbonatation reaction of a CO{sub 2} absorbent; Produccion de hidrogeno mediante la combinacion de las reacciones de desplazamiento de agua y carbonatacion de un absorbente de CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo-Bretado, M. A.; Ponce-Pena, P. [Facultad de Ciencias Quimicas, UJED, Durango, Durango (Mexico)]. E-mail: miguel.escobedo@ujed.mx; Delgado-Vigil, M. D.; Salinas-Gutierrez, J. M.; Lopez Ortiz, A.; Collins-Martinez, V.H. [Centro de Investigacion en Materiales Avanzados, S.C., Chihuahua, Chihuahua (Mexico)

    2009-09-15

    The production of hydrogen by the water-gas shift (WGS) normally requires multiple catalytic reactions followed by the separation of CO{sub 2} to obtain highly pure H{sub 2}. Nevertheless, using the combination of the WGS reaction and the solid-gas reaction between CO{sub 2} and an absorbent, the production of H{sub 2} and the separation of CO{sub 2} can be accomplished in a single step AEWGS (Absorption Enhanced Water Gas Shift). This combination of reactions was studied at the laboratory scale using a quartz fixed-bed reactor. The absorbents tested were calcined dolomite (CaO*MgO) and sodium zirconate (Na{sub 2}ZrO{sub 3}) in catalyst/absorbent mixtures (cat/abs) with weight ratios of 1/1, 1/2 and 2/1, using a high-temperature catalyst from the WGS reaction, synthesized in the laboratory (Fe-Cr). All the tests used 3cm{sup 3} of cat/abs, composed of 5% CO, 15% H{sub 2}O, 10.5% He and 69.5% N{sub 2}, with a spatial velocity (SV) of 1500h-1, 600 degrees Celsius and atmospheric pressure. The catalyst presented 100% conversion of CO to CO{sub 2}, maintaining its surface area after the reaction (12 m{sup 2}/g). The results with a dry base using the cat/abs mixture of 1/2 and CaO*MgO generated 95% H{sub 2} with 5% CO-free CO{sub 2}, while with Na{sub 2}ZrO{sub 3}, the maximum concentration of H{sub 2} was 70%, with 29% CO{sub 2} and 1% of CO without reacting. The results using only CaO*MgO (as a bifunctional material) presented a maximum H{sub 2} concentration of 96% and a minimum of 4% CO{sub 2}, as well as 7% CO without reaction, which was attributed to kinetic effects. [Spanish] La produccion de hidrogeno mediante la reaccion de desplazamiento de agua WGS (Water Gas Shift), normalmente requiere de multiples reacciones cataliticas seguidas por la separacion de CO{sub 2} para obtener H{sub 2} de alta pureza. Sin embargo mediante la combinacion de la reaccion WGS con la reaccion solido-gas entre el CO{sub 2} y un absorbente provee la oportunidad de producir H2 y

  9. Uncovering the Local Magnesium Environment in the Metal–Organic Framework Mg 2 (dobpdc) Using 25 Mg NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun; Blaakmeer, E. S. Merijn [Institute; Lipton, Andrew S. [Environmental; McDonald, Thomas M.; Liu, Yifei Michelle; Smit, Berend [Laboratory; Long, Jeffrey R. [Materials; Kentgens, Arno P. M. [Institute; Reimer, Jeffrey A. [Materials

    2017-09-06

    The incorporation of N,N'-dimethylethylenediamine into an expanded MOF-74 framework has yielded a material (mmen-Mg2(dobpdc)) exhibiting “step-shaped” CO2 adsorption isotherms. The coordination of mmen at the Mg open metal center is essential for the unique cooperative adsorption mechanism elucidated for this material. Despite its importance for carbon capture, there is as yet no experimental structure determination available for the underlying metal– organic framework Mg2(dobpdc). Our 25Mg solid-state NMR data unravel the local Mg environments in several Mg2(dobpdc) samples, unambiguously confirming the formation of fivecoordinate Mg centers in the activated material and six-coordinate Mg centers in the solvent- or diamine-loaded samples, such as mmen-Mg2(dobpdc). A fraction of the Mg centers are locally disordered due to the framework deformation accompanied by the guest distributions and dynamics.

  10. Hydrogen storage of Mg1−xMxH2 (M = Ti, V, Fe) studied using first-principles calculations

    International Nuclear Information System (INIS)

    Bhihi, M.; Lakhal, M.; Benyoussef, A.; El Kenz, A.; Labrim, H.; Mounkachi, O.; Hlil, E.K.

    2012-01-01

    In this work, the hydrogen storage properties of the Mg-based hydrides, i.e., Mg 1−x M x H 2 (M = Ti, V, Fe, 0 ≤ x ≤ 0.1), are studied using the Korringa—Kohn—Rostoker (KKR) calculation with the coherent potential approximation (CPA). In particular, the nature and concentrations of the alloying elements and their effects are studied. Moreover, the material's stability and hydrogen storage thermodynamic properties are discussed. In particular, we find that the stability and the temperature of desorption decrease without significantly affecting the storage capacities

  11. Carbon Monoxide (CO Released from Tricarbonyldichlororuthenium (II Dimer (CORM-2 in Gastroprotection against Experimental Ethanol-Induced Gastric Damage.

    Directory of Open Access Journals (Sweden)

    Katarzyna Magierowska

    Full Text Available The physiological gaseous molecule, carbon monoxide (CO becomes a subject of extensive investigation due to its vasoactive activity throughout the body but its role in gastroprotection has been little investigated. We determined the mechanism of CO released from its donor tricarbonyldichlororuthenium (II dimer (CORM-2 in protection of gastric mucosa against 75% ethanol-induced injury. Rats were pretreated with CORM-2 30 min prior to 75% ethanol with or without 1 non-selective (indomethacin or selective cyclooxygenase (COX-1 (SC-560 and COX-2 (celecoxib inhibitors, 2 nitric oxide (NO synthase inhibitor L-NNA, 3 ODQ, a soluble guanylyl cyclase (sGC inhibitor, hemin, a heme oxygenase (HO-1 inductor or zinc protoporphyrin IX (ZnPPIX, an inhibitor of HO-1 activity. The CO content in gastric mucosa and carboxyhemoglobin (COHb level in blood was analyzed by gas chromatography. The gastric mucosal mRNA expression for HO-1, COX-1, COX-2, iNOS, IL-4, IL-1β was analyzed by real-time PCR while HO-1, HO-2 and Nrf2 protein expression was determined by Western Blot. Pretreatment with CORM-2 (0.5-10 mg/kg dose-dependently attenuated ethanol-induced lesions and raised gastric blood flow (GBF but large dose of 100 mg/kg was ineffective. CORM-2 (5 mg/kg and 50 mg/kg i.g. significantly increased gastric mucosal CO content and whole blood COHb level. CORM-2-induced protection was reversed by indomethacin, SC-560 and significantly attenuated by celecoxib, ODQ and L-NNA. Hemin significantly reduced ethanol damage and raised GBF while ZnPPIX which exacerbated ethanol-induced injury inhibited CORM-2- and hemin-induced gastroprotection and the accompanying rise in GBF. CORM-2 significantly increased gastric mucosal HO-1 mRNA expression and decreased mRNA expression for iNOS, IL-1β, COX-1 and COX-2 but failed to affect HO-1 and Nrf2 protein expression decreased by ethanol. We conclude that CORM-2 released CO exerts gastroprotection against ethanol-induced gastric

  12. La0.8Sr0.2Co0.8Ni0.2O3-δ impregnated oxygen electrode for H2O/CO2 co-electrolysis in solid oxide electrolysis cells

    Science.gov (United States)

    Zheng, Haoyu; Tian, Yunfeng; Zhang, Lingling; Chi, Bo; Pu, Jian; Jian, Li

    2018-04-01

    High-temperature H2O/CO2 co-electrolysis through reversible solid oxide electrolysis cell (SOEC) provides potentially a feasible and eco-friendly way to convert electrical energy into chemicals stored in syngas. In this work, La0.8Sr0.2Co0.8Ni0.2O3-δ (LSCN) impregnated Gd0.1Ce0.9O1.95 (GDC)-(La0.8Sr0.2)0.95MnO3-δ (LSM) composite oxygen electrode is studied as high-performance electrode for H2O/CO2 co-electrolysis. The LSCN impregnated cell exhibits competitive performance with the peak power density of 1057 mW cm-2 at 800 °C in solid oxide fuel cell (SOFC) mode; in co-electrolysis mode, the current density can reach 1.60 A cm-2 at 1.5 V at 800 °C with H2O/CO2 ratio of 2/1. With LSCN nanoparticles dispersed on the surface of GDC-LSM to maximize the reaction active sites, the LSCN impregnated cell shows significant enhanced electrochemical performance at both SOEC and SOFC modes. The influence of feed gas composition (H2O-H2-CO2) and operating voltages on the performance of co-electrolysis are discussed in detail. The cell shows a very stable performance without obvious degradation for more than 100 h. Post-test characterization is analyzed in detail by multiple measurements.

  13. Enhanced Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg2Ni-type Alloy by Melt Spinning

    Directory of Open Access Journals (Sweden)

    Hui-Ping Ren

    2011-01-01

    Full Text Available Mg2Ni-type Mg2Ni1−xCox (x = 0, 0.1, 0.2, 0.3, 0.4 alloys were fabricated by melt spinning technique. The structures of the as-spun alloys were characterized by X-ray diffraction (XRD and transmission electron microscopy (TEM. The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys was tested by an automatic galvanostatic system. The results show that the as-spun (x = 0.1 alloy exhibits a typical nanocrystalline structure, while the as-spun (x = 0.4 alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni notably intensifies the glass forming ability of the Mg2Ni-type alloy. The melt spinning treatment notably improves the hydriding and dehydriding kinetics as well as the high rate discharge ability (HRD of the alloys. With an increase in the spinning rate from 0 (as-cast is defined as spinning rate of 0 m/s to 30 m/s, the hydrogen absorption saturation ratio ( of the (x = 0.4 alloy increases from 77.1 to 93.5%, the hydrogen desorption ratio ( from 54.5 to 70.2%, the hydrogen diffusion coefficient (D from 0.75 × 10−11 to 3.88 × 10−11 cm2/s and the limiting current density IL from 150.9 to 887.4 mA/g.

  14. Co-Production of Ethanol and 1,2-Propanediol via Glycerol Hydrogenolysis Using Ni/Ce–Mg Catalysts: Effects of Catalyst Preparation and Reaction Conditions

    Directory of Open Access Journals (Sweden)

    Russel N. Menchavez

    2017-09-01

    Full Text Available Crude glycerol from biodiesel production is a biobased material capable of co-producing biofuels and chemicals. This study aimed to develop a line of Ni catalysts supported on cerium–magnesium (Ce–Mg to improve the process efficiency of glycerol hydrogenolysis for ethanol and 1,2-propanediol (1,2-PDO. Results showed that catalytic activity was greatly improved by changing the preparation method from impregnation to deposition precipitation (DP, and by adjusting calcination temperatures. Prepared via DP, the catalysts of 25 wt % Ni supported on Ce–Mg (9:1 mol/mol greatly improved the effectiveness in glycerol conversion while maintaining the selectivities to ethanol and 1,2-PDO. Calcination at 350 °C provided the catalysts better selectivities of 15.61% to ethanol and 67.93% to 1,2-PDO. Increases in reaction temperature and time improved the conversion of glycerol and the selectivity to ethanol, but reduced the selectivity to 1,2-PDO. A lower initial water content led to a higher conversion of glycerol, but lower selectivities to ethanol and 1,2-PDO. Higher hydrogen application affected the glycerol conversion rate positively, but the selectivities to ethanol and 1,2-PDO negatively. A comparison to the commercial Raney® Ni catalyst showed that the Ni/Ce–Mg catalyst developed in this study showed a better potential for the selective co-production of ethanol and 1,2-PDO from glycerol hydrogenolysis.

  15. Co-existence of long-range order and spin fluctuation in a new geometric frustration series M2(OH)3Cl

    International Nuclear Information System (INIS)

    Zheng, X.G.; Hagihala, Masato; Toriyi, Takato

    2007-01-01

    Recently, we observed the co-existence of a long-range magnetic order and spin fluctuation in a clean compound of clinoatacamite, Cu 2 (OH) 3 Cl (PRL95 (2005) 057201). The present work reports magnetic studies on other compounds of this transition metal series M 2 (OH) 3 Cl, where M represents three-dimensional (3D)-electron magnetic ions of Co 2+ , Fe 2+ , etc., respectively. The present study shows that this co-existence is a common feature of the M 2 Cl(OH) 3 series, no matter whether it is anti-ferromagnetic, as in the case of Fe 2 (OH) 3 Cl (T N =15 K), or ferromagnetic, as in the case of Co 2 (OH) 3 Cl (T C =10.5 K). These compounds show a 3D network of corner-sharing tetrahedrons for the magnetic ions. The tetrahedron is slightly tilted with roughly 10% longer distance between the M-M bonded by Cl than those bonded by O and this distortion is suspected to be responsible for the partial order. This research suggests that the transition metal hydroxyhalide M 2 Cl(OH) 3 series are new geometric frustration system on tetrahedral lattice for d-electron spins

  16. Synthesis and characterization of Sr2Ir1−xMxO4 (M=Ti, Fe, Co) solid solutions

    International Nuclear Information System (INIS)

    Gatimu, Alvin J.; Berthelot, Romain; Muir, Sean; Sleight, Arthur W.; Subramanian, M.A.

    2012-01-01

    The effects of Ti, Fe and Co substitutions for Ir on the structure and on the physical properties of Sr 2 IrO 4 are investigated. A complete solid solution Sr 2 Ir 1−x Ti x O 4 is obtained while both Fe and Co doping are relatively limited. In each case however, the c-axis cell parameter and the initial IrO 6 octahedra tilting decreases with substitution. Doping with Ti, Fe and Co results in a decrease of the magnetic susceptibility and in an increase in the paramagnetic effective moment for Co and Fe doped samples and a suppression of the weak ferromagnetic ordering observed for Sr 2 IrO 4 . - Graphical abstract: Solid solutions of Sr 2 Ir 1−x M x O 4 (M=Ti, Fe, Co) have been synthesized and characterized by powder X-ray diffraction, magnetism and electrical measurements. Changes in the a parameter and decreases in both the c-axis cell parameters and the initial IrO 6 octahedra tilting are found to be correlated. Highlights: ► Solid Solutions of Sr 2 Ir 1−x M x O 4 (M=Ti, Fe, Co) are synthesized. ► The Sr 2 Ir 1−x Ti x O 4 solid solution is complete while those of Fe and Co are relatively limited. ► The change in a cell parameter with substitution is much less than that of the c parameter. ► Decreased tilting and the smaller size of the M cation contrastingly affect the a parameter. ► Doping results in a suppression of the weak ferromagnetic ordering in Sr 2 IrO 4 .

  17. Tracing high-pressure metamorphism in marbles: Phase relations in high-grade aluminous calcite-dolomite marbles from the Greek Rhodope massif in the system CaO-MgO-Al 2O 3-SiO 2-CO 2 and indications of prior aragonite

    Science.gov (United States)

    Proyer, A.; Mposkos, E.; Baziotis, I.; Hoinkes, G.

    2008-08-01

    Four different types of parageneses of the minerals calcite, dolomite, diopside, forsterite, spinel, amphibole (pargasite), (Ti-)clinohumite and phlogopite were observed in calcite-dolomite marbles collected in the Kimi-Complex of the Rhodope Metamorphic Province (RMP). The presence of former aragonite can be inferred from carbonate inclusions, which, in combination with an analysis of phase relations in the simplified system CaO-MgO-Al 2O 3-SiO 2-CO 2 (CMAS-CO 2) show that the mineral assemblages preserved in these marbles most likely equilibrated at the aragonite-calcite transition, slightly below the coesite stability field, at ca. 720 °C, 25 kbar and aCO 2 ~ 0.01. The thermodynamic model predicts that no matter what activity of CO 2, garnet has to be present in aluminous calcite-dolomite-marble at UHP conditions.

  18. ALUMINUM CHLORIDE EFFECT ON Ca2+,Mg(2+)-ATPase ACTIVITY AND DYNAMIC PARAMETERS OF SKELETAL MUSCLE CONTRACTION.

    Science.gov (United States)

    Nozdrenko, D M; Abramchuk, O M; Soroca, V M; Miroshnichenko, N S

    2015-01-01

    We studied enzymatic activity and measured strain-gauge contraction properties of the frog Rana temporaria m. tibialis anterior muscle fascicles during the action of aluminum chloride solution. It was shown that AlCl3 solutions did not affect the dynamic properties of skeletal muscle preparation in concentrations less than 10(-4) M Increasing the concentration of AlCl3 to 10(-2) M induce complete inhibition of muscle contraction. A linear correlation between decrease in Ca2+,Mg(2+)-ATPase activity of sarcoplasmic reticulum and the investigated concentrations range of aluminum chloride was observed. The reduction in the dynamic contraction performance and the decrease Ca2+,Mg(2+)-ATPase activity of the sarcoplasmic reticulum under the effect of the investigated AlCl3 solution were minimal in pre-tetanus period of contraction.

  19. Aluminum chloride effect on Ca(2+,Mg(2+-ATPase activity and dynamic parameters of skeletal muscle contraction

    Directory of Open Access Journals (Sweden)

    D. M. Nozdrenko

    2015-10-01

    Full Text Available We studied enzymatic activity and measured strain-gauge contraction properties of the frog Rana temporaria m. tibialis anterior muscle fascicles during the action of aluminum chloride solution. It was shown that AlCl3 solutions did not affect the dynamic properties of skeletal muscle preparation in concentrations less than 10-4 M. Increasing the concentration of AlCl3 to 10-2 M induce complete inhibition of muscle contraction. A linear correlation between decrease in Ca2+,Mg2+-ATPase activity of sarcoplasmic reticulum and the investigated concentrations range of aluminum chloride was observed. The reduction in the dynamic contraction performance and the decrease Ca2+,Mg2+-ATPase activity of the sarcoplasmic reticulum under the effect of the investigated AlCl3 solution were minimal in pre-tetanus period of contraction.

  20. The study on binary Mg-Co hydrogen storage alloys with BCC phase

    International Nuclear Information System (INIS)

    Zhang Yao; Tsushio, Yoshinori; Enoki, Hirotoshi; Akiba, Etsuo

    2005-01-01

    Novel Mg-Co binary alloys were successfully synthesized by mechanical alloying. These alloys were studied by X-ray diffraction (XRD), transmission electron micrograph (TEM), pressure-composition-isotherms measurements (P-C-T) and differential scanning calorimetry (DSC). Both XRD Rietveld analysis and TEM observation confirmed that these binary alloys contain BCC phase and that the BCC phase existed in the range from 37 to 80 at.% Co. The lattice parameter of the BCC phase increased with the increase of the Co content from 37 to 50 at.%. When the Co content reached 50 at.%, the lattice parameter reached a maximum value, and then turned to decrease gradually with further increase of the Co content. Most of Mg-Co BCC alloys absorbed hydrogen at 373 K under 6 MPa of hydrogen pressure. The Mg 60 Co 40 alloy showed the highest hydrogen absorption capacity, about 2.7 mass% hydrogen. However, all the Mg-Co alloys studied did not desorb hydrogen at 373 K. By means of DSC measurements and in situ XRD analysis, it was found that under 4 MPa hydrogen atmosphere, Mg 50 Co 50 alloy transformed from BCC solid solution to Mg 2 CoH 5 tetragonal hydride at 413 K

  1. Neutron diffraction study of the inverse spinels Co2TiO4 and Co2SnO4

    Science.gov (United States)

    Thota, S.; Reehuis, M.; Maljuk, A.; Hoser, A.; Hoffmann, J.-U.; Weise, B.; Waske, A.; Krautz, M.; Joshi, D. C.; Nayak, S.; Ghosh, S.; Suresh, P.; Dasari, K.; Wurmehl, S.; Prokhnenko, O.; Büchner, B.

    2017-10-01

    We report a detailed single-crystal and powder neutron diffraction study of Co2TiO4 and Co2SnO4 between the temperature 1.6 and 80 K to probe the spin structure in the ground state. For both compounds the strongest magnetic intensity was observed for the (111)M reflection due to ferrimagnetic ordering, which sets in below TN=48.6 and 41 K for Co2TiO4 and Co2SnO4 , respectively. An additional low intensity magnetic reflection (200)M was noticed in Co2TiO4 due to the presence of an additional weak antiferromagnetic component. Interestingly, from both the powder and single-crystal neutron data of Co2TiO4 , we noticed a significant broadening of the magnetic (111)M reflection, which possibly results from the disordered character of the Ti and Co atoms on the B site. Practically, the same peak broadening was found for the neutron powder data of Co2SnO4 . On the other hand, from our single-crystal neutron diffraction data of Co2TiO4 , we found a spontaneous increase of particular nuclear Bragg reflections below the magnetic ordering temperature. Our data analysis showed that this unusual effect can be ascribed to the presence of anisotropic extinction, which is associated to a change of the mosaicity of the crystal. In this case, it can be expected that competing Jahn-Teller effects acting along different crystallographic axes can induce anisotropic local strain. In fact, for both ions Ti3 + and Co3 +, the 2 tg levels split into a lower dx y level yielding a higher twofold degenerate dx z/dy z level. As a consequence, one can expect a tetragonal distortion in Co2TiO4 with c /a <1 , which we could not significantly detect in the present work.

  2. Unique edge-sharing sulfate-transition metal coordination in Na2M(SO4)2 (M=Ni and Co)

    International Nuclear Information System (INIS)

    Fry, Allyson M.; Sweeney, Owen T.; Adam Phelan, W.; Drichko, Natalia; Siegler, Maxime A.; McQueen, Tyrel M.

    2015-01-01

    Two compounds, Na 2 Ni(SO 4 ) 2 and Na 2 Co(SO 4 ) 2 , were synthesized and their structure and properties were characterized. They adopt a structure that contains a bidentate coordination of sulfate to the transition metal center, which was determined via single crystal X-ray diffraction combined with model refinements to both laboratory X-ray and time-of-flight neutron powder diffraction data. The compounds were both found to crystallize in the C2/c space group with Z=24 and a unit cell of a=23.3461(3) Å, b=10.3004(1) Å, c=17.4115(2) Å, β=98.8659(9)°, and V=4136.99(8) Å 3 for the cobalt analog and a=23.2253(1) Å, b=10.26155(6) Å, c=17.3353(1) Å, β=99.0376(5)°, and V=4080.20(5) Å 3 for the nickel analog. Magnetization measurements show that the transition metal centers have negligible interactions with neighboring sites. Infrared and Raman spectroscopies were used to further probe the unique sulfate-transition metal coordination, and confirm the bidentate binding motif. The resulting pseudo-trigonal bipyramidal coordination produces vivid violet, Na 2 Co(SO 4 ) 2 , and yellow, Na 2 Ni(SO 4 ) 2 , colors that were probed by diffuse reflectance. - Graphical abstract: Two blue distorted transition metal octahedra (oxygen in red) bridged by two sulfate tetrahedra are shown here. Each bridging sulfate tetrahedra shares an edge with one octahedron and a corner with the other. All of the remaining corners of the octahedra are corner sharing with four tetrahedra forming a polyhedral network. - Highlights: • Structure of Na2Ni(SO4)2 and Na2Co(SO4)2 is determined. • Unique sulfate-transition metal binding observed in the new structure. • Combined diffraction and spectroscopic techniques were used. • Magnetization measurements show negligible interactions between sites

  3. Electromagnetic and microwave absorption properties of BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Meng, Pingyuan [Huzhou Innovation Center of Advanced Materials, Shanghai Institute of Ceramics Chinese Academy of Sciences, Huzhou 215100 (China); Wang, Meiling [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Zhou, Guanchen [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Xinqing [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Xu, Guangliang, E-mail: xuguangliang@swust.edu.cn [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2016-09-15

    To improve the impedance matching and then achieve a better microwave absorption performance in electromagnetic absorber, the Mg{sup 2+} was added to occupy the sites of Co{sup 2+} in hexagonal-type ferrite BaCoTiFe{sub 10}O{sub 19}. BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19} were synthesized by a simple sol-gel combustion technique and the phase of BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19} was confirmed by X-ray diffraction analysis (XRD). The grain size of BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19} was in the range of 100–400 nm and crystal particles were refined with the augment of doped Mg{sup 2+}. Based on the static magnetic measurement, the coercivity (H{sub c}) increased and the saturation magnetization (M{sub s}) decreased as the x increased. Moreover, it was found that BaMg{sub 0.4}Co{sub 0.6}TiFe{sub 10}O{sub 19} possessed a maximum reflection loss of −33.7 dB with a matching thickness of 2.0 mm measured by the vector net-analyzer in the frequency of 0.5–18 GHz, which also had a bandwidth below −20 dB ranging from 11.5 GHz to 17.2 GHz. Meanwhile, the permeability of the prepared ferrites could be adjusted and a proper match was provided between dielectric and magnetic properties by controlling the doped content of Mg{sup 2+}, which would be significant to the application of BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19} in the field of the microwave absorbing materials. - Highlights: • The Mg{sup 2+} ions were first employed to occupy the place of Co{sup 2+} ions in BaCoTiFe{sub 10}O{sub 19}. • The grains were refined as Co substitution by Mg in ferrite. • The peaks of complex permeability shift to high frequency with Mg{sup 2+} substituted. • The coercivity increased and saturation magnetization slightly decreased. • Substitution of Mg{sup 2+} enhanced microwave absorption and broadened bandwidth.

  4. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2006-02-01

    The mechanisms of aqueous wollastonite carbonation as a possible carbon dioxide sequestration process were investigated experimentally by systematic variation of the reaction temperature, CO2 pressure, particle size, reaction time, liquid to solid ratio and agitation power. The carbonation reaction was observed to occur via the aqueous phase in two steps: (1) Ca leaching from the CaSiO3 matrix and (2) CaCO3 nucleation and growth. Leaching is hindered by a Ca-depleted silicate rim resulting from incongruent Ca-dissolution. Two temperature regimes were identified in the overall carbonation process. At temperatures below an optimum reaction temperature, the overall reaction rate is probably limited by the leaching rate of Ca. At higher temperatures, nucleation and growth of calcium carbonate is probably limiting the conversion, due to a reduced (bi)carbonate activity. The mechanisms for the aqueous carbonation of wollastonite were shown to be similar to those reported previously for an industrial residue and a Mg-silicate. The carbonation of wollastonite proceeds rapidly relative to Mg-silicates, with a maximum conversion in 15 min of 70% at 200C, 20 bar CO2 partial pressure and a particle size of <38 μm. The obtained insight in the reaction mechanisms enables the energetic and economic assessment of CO2 sequestration by wollastonite carbonation, which forms an essential next step in its further development

  5. How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs

    Science.gov (United States)

    Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart

    2014-05-01

    Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that

  6. [Effects of fertilization on soil CO2 flux in Castanea mollissima stand].

    Science.gov (United States)

    Zhang, Jiao-Jiao; Li, Yong-Fu; Jiang, Pei-Kun; Zhou, Guo-Mo; Shen, Zhen-Ming; Liu, Juan; Wang, Zhan-Lei

    2013-09-01

    In June 2011-June 2012, a fertilization experiment was conducted in a typical Castanea mollissima stand in Lin' an of Zhejiang Province, East China to study the effects of inorganic and organic fertilization on the soil CO2 flux and the relationships between the soil CO2 flux and environmental factors. Four treatments were installed, i. e., no fertilization (CK), inorganic fertilization (IF), organic fertilization (OF), half organic plus half inorganic fertilization (OIF). The soil CO2 emission rate was determined by the method of static closed chamber/GC technique, and the soil temperature, soil moisture content, and soil water-soluble organic carbon (WSOC) concentration were determined by routine methods. The soil CO2 emission exhibited a strong seasonal pattern, with the highest rate in July or August and the lowest rate in February. The annual accumulative soil CO2 emission in CK was 27.7 t CO2 x hm(-2) x a(-1), and that in treatments IF, OF, and OIF was 29.5%, 47.0%, and 50.7% higher than the CK, respectively. The soil WSOC concentration in treatment IF (105.1 mg kg(-1)) was significantly higher than that in CK (76.6 mg x kg(-1)), but was obviously lower than that in treatments OF (133.0 mg x kg(-1)) and OIF (121.2 mg x kg(-1)). The temperature sensitivity of respiration (Q10) in treatments CK, IF, OF, and OIF was 1.47, 1.75, 1.49, and 1.57, respectively. The soil CO2 emission rate had significant positive correlations with the soil temperature at the depth of 5 cm and the soil WSOC concentration, but no significant correlation with soil moisture content. The increase of the soil WSOC concentration caused by fertilization was probably one of the reasons for the increase of soil CO2 emission from the C. mollissima stand.

  7. Synthesis and properties of A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) materials for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Anderson, E-mail: anderson_dias@iceb.ufop.br [Departamento de Quimica, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, ICEB II, Sala 67, Ouro Preto-MG, 35400-000 (Brazil); Cunha, Lumena; Vieira, Andiara C. [Departamento de Quimica, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, ICEB II, Sala 67, Ouro Preto-MG, 35400-000 (Brazil)

    2011-09-15

    Highlights: {yields} A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) materials were synthesized. {yields} Chemical synthesis produced different levels of crystallinity and ordering degree. {yields} Structural investigation by Raman scattering revealed a complex band structure. {yields} A strong correlation between band structure and ionic radius was determined. -- Abstract: Double layered hydroxide materials of composition A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) were synthesized by chemical precipitation at 60 {sup o}C. Different levels of crystallinity and ordering degree were observed depending upon the chemical environment or the combination between divalent and trivalent cations. The results from high-resolution transmission electron microscopy revealed that nanostructured layered samples were obtained with interplanar spacing compatible with previous literature. Raman scattering was employed to investigate the complex band structure observed, particularly the lattice vibrations at lower frequencies, which is intimately correlated to the cationic radius of both divalent and trivalent ions. The results showed that strongly coordinated water and chloride ions besides highly structured hydroxide layers have a direct influence on the stability of the hydrotalcites. It was observed that transition and decomposition temperatures varied largely for different chemical compositions.

  8. An essential factor for high Mg2+ tolerance of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Joshua Armitano

    2016-11-01

    Full Text Available Internal bacterial concentration of Mg2+, the most abundant divalent cation in living cells, is estimated to be in the single millimolar range. However, many bacteria will thrive in media with only micromolars of Mg2+, by using a range of intensely studied and highly efficient import mechanisms, as well as in media with very high magnesium concentration, presumably mediated by currently unknown export mechanisms. Staphylococcus aureus has a particularly high Mg2+ tolerance for a pathogen, growing unimpaired in up to 770 mM Mg2+, and we here identify SA0657, a key factor in this tolerance. The predicted domain structure of SA0657 is shared with a large number of proteins in bacteria, archaea and even eukarya, for example CorB from Salmonella and the human CNNM protein family. One of the shared domains, a CBS pair potentially involved in Mg2+ sensing, contains the conserved Glycine326 which we establish to be a key residue for SA0657 function. In light of our findings, we propose the name MpfA, Magnesium Protection Factor A, for SA0657.

  9. Decontamination of solid matrices using supercritical CO{sub 2}: study of contaminant-additives-CO{sub 2}; Decontamination de matrices organiques solides par CO{sub 2} supercritique: etude des interactions contaminant-additifs-CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Galy, J

    2006-11-15

    This work deals with the decontamination of solid matrices by supercritical CO{sub 2} and more particularly with the study of the interactions between the surfactants and the CO{sub 2} in one part, and with the interactions between the contaminant and the surfactants in another part. The first part of this study has revealed the different interactions between the Pluronics molecules and the supercritical CO{sub 2}. The diagrams graphs have shown that the pluronics (PE 6100, PE 8100 and PE 10100) present a solubility in the supercritical CO{sub 2} low but sufficient (0.1% m/m at 25 MPa and 313 K) for the studied application: the treatment of weak quantities of cerium oxide (or plutonium). An empirical approach based on the evolutions of the slops value and of the origin ordinates of the PT diagrams has been carried out to simulate the phase diagrams PT of the Pluronics. A modeling based on the state equations 'SAFT' (Statistical Associating Fluid Theory) has been studied in order to confirm the experimental results of the disorder points and to understand the role of the different blocks 'PEO' and 'PPO' in the behaviour of Pluronics; this modeling confirms the evolution of the slopes value with the 'CO{sub 2}-phily' of the system. The measure of the surface tension in terms of the Pluronics concentration (PE 6100, 81000 and 10100) has shown different behaviours. For the PE 6100, the surface tension decreases when the surfactant concentration increases (at constant pressure and temperature); on the other hand, for the PE 8100 a slop rupture appears and corresponds to the saturation of the interface water/CO{sub 2} and allows then to determine the Interface Saturation Concentration (ISC). The ISC value (at constant pressure and temperature) increases with an increase of the 'CO{sub 2}-phily'). The model hydrophilous medium being an approximation, it has been replaced by a solid polar phase of CeO{sub 2}. A parallel has

  10. Probing Metal Carbonation Reactions of CO2 in a Model System Containing Forsterite and H2O Using Si-29, C-13 Magic Angle Sample Spinning NMR Spectroscopy

    Science.gov (United States)

    Hu, J.; Kwak, J.; Hoyt, D. W.; Sears, J. A.; Rosso, K. M.; Felmy, A. R.

    2009-12-01

    Ex situ solid state NMR have been used for the first time to study fundamental mineral carbonation processes and reaction extent relevant to geologic carbon sequestration using a model silicate mineral forsterite (Mg2SiO4)+scCO2 with and without H2O. Run conditions were 80C and 96 bar. Si-29 NMR clearly shows that in the absence of CO2, the role of H2O is to hydrolyze surface Mg-O-Si bonds to produce Mg2+, and mono- and oligomeric hydroxylated silica species. The surface hydrolysis products contain only Q0 (Si(OH)4) and Q1 (Si(OH)3OSi) species. An equilibrium between Q0, Q1 and Mg2+ with a saturated concentration equivalent to less than 3.2% of the Mg2SiO4 conversion is obtained at a reaction time of up to 7 days. Using scCO2 without H2O, no reaction is observed within 7 days. Using both scCO2 and H2O, the surface reaction products for silica are mainly Q3 (SiOH(OSi)3) species accompanied by a lesser amount of Q2 (Si(OH)2(OSi)2) and Q4 (Si(OSi)4). However, no Q0 and Q1 were detected, indicating the carbonic acid formation/deprotonation and magnesite (MgCO3) precipitation reactions are faster than the forsterite hydrolysis process. Thus it can be concluded that the Mg2SiO4 hydrolysis process is the rate limiting step of the overall mineral carbonation process. Si-29 NMR combined with XRD, TEM, SAED and EDX further reveal that the reaction is a surface reaction with the Mg2SiO4 crystallite in the core and with condensed Q2-Q4 species forming amorphous surface layers. C-13 MAS NMR identified a possible reaction intermediates as (MgCO3)4*Mg(OH)2*5H2O. However, at long reaction times only crystallite magnesite MgCO3 products are observed. This research is part of a broader effort at PNNL to develop experimental tools and fundamental insights into chemical transformations affecting subsurface CO2 reactive transport. Si-29 (left) and C-13 (right) MAS NMR spectra of Mg2SiO4 under various reaction conditions. Si-29 NMR reveals that in scCO2 without H2O, no reaction is

  11. Investigation into the MgF2-NiF2, CaF2-NiF2, SrF2-NiF2 systems

    International Nuclear Information System (INIS)

    Ikrami, D.D.; Petrov, S.V.; Fedorov, P.P.; Ol'khovaya, L.A.; Luginina, A.A.; AN SSSR, Moscow. Inst. Fizicheskikh Problem; AN SSSR, Moscow. Inst. Kristallografii)

    1984-01-01

    Using the methods of differential thermal and X-ray phase analyses the systems MgF 2 -NiF 2 , CaF 2 -NiF 2 , SrF 2 -NiF 2 have been studied. In the system SrF 2 -NiF 2 the only orthorhombic compounds SrNiF 4 (a=14.43; b=3.93; c=5.66 (+-0.01 A)) is formed. SrNiF 4 density constitutes: dsub(X-ray)=4.60+-0.01 g/cm 3 , dsub(exp.)=4.60+-0.03 g/cm 3 . Refraction indices are as follows SrNiF 4 :Ng=1.500; Nsub(m)=1.497; Nsub(p)=1.479. SrNiF 4 magnetic ordering temperature Tsub(N) approximately 100 K

  12. Theoretical study on the gas adsorption capacity and selectivity of CPM-200-In/Mg and CPM-200-In/Mg-X (-X = -NH2, -OH, -N, -F).

    Science.gov (United States)

    Liu, Xiao-le; Chen, Guang-Hui; Wang, Xiu-Jun; Li, Peng; Song, Yi-Bing; Li, Rui-Yan

    2017-11-15

    The adsorption capacities of a heterometallic metal-organic framework (CPM-200-In/Mg) to VOCs (HCHO, C 2 H 4 , CH 4 , C 2 H 2 , C 3 H 8 , C 2 H 6 , C 2 H 3 Cl, C 2 H 2 Cl 2 , CH 2 Cl 2 and CHCl 3 ) and some inorganic gas molecules (HCN, SO 2 , NO, CO 2 , CO, H 2 S and NH 3 ), as well as its selectivity in ternary mixture systems of natural gas and post-combustion flue gas are theoretically explored at the grand canonical Monte Carlo (GCMC) and density functional theory (DFT) levels. It is shown that CPM-200-In/Mg is suitable for the adsorption of VOCs, particularly for HCHO (up to 0.39 g g -1 at 298 K and 1 bar), and the adsorption capacities of some inorganic gas molecules such as SO 2 , H 2 S and CO 2 match well with the sequence of their polarizability (SO 2 > H 2 S > CO 2 ). The large adsorption capacities of HCN and HCHO in the framework result from the strong interaction between adsorbates and metal centers, based on analyzing the radial distribution functions (RDF). Comparing C 2 H 4 and CH 4 molecules interacting with CPM-200-In/Mg by VDW interaction, we speculate that the high adsorption capacities of their chlorine derivatives in the framework could be due to the existence of halogen bonding or strong electrostatic and VDW interactions. It is found that the basic groups, including -NH 2 , -N and -OH, can effectively improve both the adsorption capacities and selectivity of CPM-200-In/Mg for harmful gases. Note that the adsorption capacity of CPM-200-In/Mg-NH 2 (site 2) (245 cm 3 g -1 ) for CO 2 exceeded that of MOF-74-Mg (228 cm 3 g -1 ) at 273 K and 1 bar and that for HCHO can reach 0.41 g g -1 , which is almost twice that of 438-MOF and nearly 45 times of that in active carbon. Moreover, for natural gas mixtures, the decarburization and desulfurization abilities of CPM-200-In/Mg-NH 2 (site 2) have exceeded those of the MOF-74 series, while for post-combustion flue gas mixtures, the desulfurization ability of CPM-200-In/Mg-NH 2 (site 2) is still

  13. Humidity Sensitivity of MgCr2O4-TiO2-LiO2 Ceramics Sensor Prepared by Sol-Gel Routes

    Directory of Open Access Journals (Sweden)

    H. Y. He

    2010-05-01

    Full Text Available 79.5MgCr2O4–19.5TiO2–Li2O porous ceramics were investigated as a humidity sensor. The sensors obtain by a cold isostatic pressing and sintering of the fine MgCr2O4 and TiO2 and LiCO3 powders. The MgCr2O4 and TiO2 powders were respectively synthesized by sol-gel methods. The effects of sintering temperature on the humidity sensitivity of sensors were studied by measuring electrical resistance in different conditions of relative humidity (R.H. at 27 °C. The results indicated that the calcining temperature obviously affected the resistance variation of the sensor in range of 11.3-84.7 % RH. The resistance variation was small at the calcining temperature of 600 oC for 2 h. With increasing calcining temperature, the resistance variation increased to 5.4×104% and 7.0×104 % at 800 oC and 1000 oC for 2 h, but decreased to 3.1×104 % at 1200 oC for 2 h respectively. The response times are 25 s and 35 s respectively for humidity adsorption and humidity desorption between 11.3 %RH and 84.7 %RH.

  14. Solar kerosene from H2O and CO2

    Science.gov (United States)

    Furler, P.; Marxer, D.; Scheffe, J.; Reinalda, D.; Geerlings, H.; Falter, C.; Batteiger, V.; Sizmann, A.; Steinfeld, A.

    2017-06-01

    The entire production chain for renewable kerosene obtained directly from sunlight, H2O, and CO2 is experimentally demonstrated. The key component of the production process is a high-temperature solar reactor containing a reticulated porous ceramic (RPC) structure made of ceria, which enables the splitting of H2O and CO2 via a 2-step thermochemical redox cycle. In the 1st reduction step, ceria is endo-thermally reduced using concentrated solar radiation as the energy source of process heat. In the 2nd oxidation step, nonstoichiometric ceria reacts with H2O and CO2 to form H2 and CO - syngas - which is finally converted into kerosene by the Fischer-Tropsch process. The RPC featured dual-scale porosity for enhanced heat and mass transfer: mm-size pores for volumetric radiation absorption during the reduction step and μm-size pores within its struts for fast kinetics during the oxidation step. We report on the engineering design of the solar reactor and the experimental demonstration of over 290 consecutive redox cycles for producing high-quality syngas suitable for the processing of liquid hydrocarbon fuels.

  15. CO2 capture at low temperatures (30-80 °C) and in the presence of water vapor over a thermally activated Mg-Al layered double hydroxide.

    Science.gov (United States)

    Torres-Rodríguez, Daniela A; Lima, Enrique; Valente, Jaime S; Pfeiffer, Heriberto

    2011-11-10

    The carbonation process of a calcined Mg-Al layered double hydroxide (LDH) was systematically analyzed at low temperatures, varying the relative humidity. Qualitative and quantitative experiments were performed. In a first set of experiments, the relative humidity was varied while maintaining a constant temperature. Characterization of the rehydrated products by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and solid-state NMR revealed that the samples did not recover the LDH structure; instead hydrated MgCO(3) was produced. The results were compared with similar experiments performed on magnesium oxide for comparison purposes. Then, in the second set of experiments, a kinetic analysis was performed. The results showed that the highest CO(2) capture was obtained at 50 °C and 70% of relative humidity, with a CO(2) absorption capacity of 2.13 mmol/g.

  16. Calculations of the magnetic properties of R{sub 2}M{sub 14}B intermetallic compounds (R=rare earth, M=Fe, Co)

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Masaaki, E-mail: masaaki.ito@neel.cnrs.fr [CNRS, Institut Néel, 25 rue des Martyrs, BP166, 38042 Grenoble (France); University Grenoble Alpes, Institut Néel, 38042 Grenoble (France); Advanced Material Engineering Division, Toyota Motor Corporation, Susono 410-1193 (Japan); Yano, Masao [Advanced Material Engineering Division, Toyota Motor Corporation, Susono 410-1193 (Japan); Dempsey, Nora M. [CNRS, Institut Néel, 25 rue des Martyrs, BP166, 38042 Grenoble (France); University Grenoble Alpes, Institut Néel, 38042 Grenoble (France); Givord, Dominique [CNRS, Institut Néel, 25 rue des Martyrs, BP166, 38042 Grenoble (France); University Grenoble Alpes, Institut Néel, 38042 Grenoble (France); Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2016-02-15

    The hard magnetic properties of “R–M–B” (R=rare earth, M=mainly Fe) magnets derive from the specific intrinsic magnetic properties encountered in Fe-rich R{sub 2}M{sub 14}B compounds. Exchange interactions are dominated by the 3d elements, Fe and Co, and may be modeled at the macroscopic scale with good accuracy. Based on classical formulae that relate the anisotropy coefficients to the crystalline electric field parameters and exchange interactions, a simple numerical approach is used to derive the temperature dependence of anisotropy in various R{sub 2}Fe{sub 14}B compounds (R=Pr, Nd, Dy). Remarkably, a unique set of crystal field parameters give fair agreement with the experimentally measured properties of all compounds. This implies reciprocally that the properties of compounds that incorporate a mixture of different rare-earth elements may be predicted accurately. This is of special interest for material optimization that often involves the partial replacement of Nd with another R element and also the substitution of Co for Fe. - Highlights: • Anisotropy constants derived from CEF parameters of R{sub 2}M{sub 14}B compounds (M=Fe, Co). • Anisotropy constants of all R{sub 2}Fe{sub 14}B compounds using unique set of CEF parameters. • Moment non-collinearity in magnetization processes under B{sub app} along hard axis.

  17. Precipitation kinetics of Mg-carbonates, influence of organic ligands and consequences for CO2 mineral sequestration

    International Nuclear Information System (INIS)

    Gautier, Q.

    2012-01-01

    Forming magnesium carbonate minerals through carbonation of magnesium silicates has been proposed as a safe and durable way to store carbon dioxide, with a possibly high potential to offset anthropogenic CO 2 emissions. To date however, chemical reactions involved in this process are facing strong kinetic limitations, which originate in the low reactivity of both Mg-silicates and Mg-carbonates. Numerous studies have focused on the dissolution of Mg-silicates, under the questionable hypothesis that this step limits the whole process. This thesis work focuses instead on the mechanisms and rates of formation of magnesium carbonates, which are the final products of carbonation reactions. The first part of the work is dedicated to studying the influence on magnesite precipitation kinetics of three organic ligands known to accelerate Mg-silicates dissolution rates: oxalate, citrate and EDTA. With help of mixed-flow reactor experiments performed between 100 and 150 C, we show that these ligands significantly reduce magnesite growth rates, through two combined mechanisms: (1) complexation of Mg 2+ cations in aqueous solution, which was rigorously estimated from a thermodynamic database established through a critical review of the literature, and (2) adsorption of ligands to a limited number of surface sites, leading to a decrease of the precipitation rate constant. The observed growth inhibition is maximal with citrate. We then used hydrothermal atomic force microscopy to probe the origin of the documented growth inhibition. Our observations show that citrate and oxalate interact with the crystal growth process on magnesite surface, modifying the shape of growth hillocks as well as the step generation frequency through spiral growth. We also show that the ligands adsorb preferentially on different kink-sites, which is probably related to their different structures and chemical properties. We propose that the stronger magnesite growth inhibition caused by citrate is related

  18. Superconductivity of powder-in-tube MgB{sub 2} wires

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A; Evetts, J E [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Majoros, M [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); Institute of Electrical Engineering, Slovak Academy of Science, Dubravska Cesta 9, Bratislava (Slovakia); Vickers, M [Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Shi, Y [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); McDougall, I [Oxford Instruments Plc, Eynsham, OX8 ITL (United Kingdom)

    2001-04-01

    A new class of 'powder-in-tube' Mg-B superconducting conductors has been prepared using two different methods: an in situ technique where an Mg + 2B mixture was used as a central conductor core and reacted in situ to form MgB{sub 2}, and an ex situ technique where fully reacted MgB{sub 2} powder was used to fill the metal tube. Conductors were prepared using silver, copper and bimetallic silver/stainless steel tubes. Wires manufactured by the in situ technique, diffusing Mg to B particles experienced {approx}25.5% decrease in density from the initial value after cold deformation, due to the phase transformation from Mg + 2({beta}-B){yields}MgB{sub 2} all with hexagonal structure. A comparative study of the intergranular current and grain connectivity in wires was conducted by AC susceptibility measurements and direct four point transport measurements. Using a SQUID magnetometer, magnetization versus magnetic field (M-H) curves of the round wires before and after sintering and reactive diffusion were measured at 5 K and in magnetic fields up to 5 T to define the J{sub cmag}. The direct current measurements were performed in self field at 4.2 K. A comparison between zero-field-cooled (ZFC) and field-cooled (FC) susceptibility measurements for sintered Ag/MgB{sub 2}, and reacted Cu/Mg + 2B conductors revealed systematic differences in the flux pinning in the wires which is in very good agreement with direct high transport current measurements. (author)

  19. Superconductivity of powder-in-tube MgB{sub 2} wires

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B.A.; Evetts, J.E. [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Majoros, M. [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); Institute of Electrical Engineering, Slovak Academy of Science, Dubravska Cesta 9, Bratislava (Slovakia); Vickers, M. [Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Shi, Y. [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); McDougall, I. [Oxford Instruments Plc, Eynsham, OX8 ITL (United Kingdom)

    2001-04-01

    A new class of 'powder-in-tube' Mg-B superconducting conductors has been prepared using two different methods: an in situ technique where an Mg + 2B mixture was used as a central conductor core and reacted in situ to form MgB{sub 2}, and an ex situ technique where fully reacted MgB{sub 2} powder was used to fill the metal tube. Conductors were prepared using silver, copper and bimetallic silver/stainless steel tubes. Wires manufactured by the in situ technique, diffusing Mg to B particles experienced {approx}25.5% decrease in density from the initial value after cold deformation, due to the phase transformation from Mg + 2({beta}-B){yields}MgB{sub 2} all with hexagonal structure. A comparative study of the intergranular current and grain connectivity in wires was conducted by AC susceptibility measurements and direct four point transport measurements. Using a SQUID magnetometer, magnetization versus magnetic field (M-H) curves of the round wires before and after sintering and reactive diffusion were measured at 5 K and in magnetic fields up to 5 T to define the J{sub cmag}. The direct current measurements were performed in self field at 4.2 K. A comparison between zero-field-cooled (ZFC) and field-cooled (FC) susceptibility measurements for sintered Ag/MgB{sub 2}, and reacted Cu/Mg + 2B conductors revealed systematic differences in the flux pinning in the wires which is in very good agreement with direct high transport current measurements. (author)

  20. Quantitative electron microscopy and spectroscopy of MgB2 wires and tapes

    International Nuclear Information System (INIS)

    Birajdar, B; Peranio, N; Eibl, O

    2008-01-01

    In MgB 2 the correlation of microstructure with superconducting properties, in particular the critical current density, requires powerful analytical tools. Critical current densities and electrical resistivities of different MgB 2 superconductors differ by orders of magnitudes and the current limiting mechanisms have not been fully understood. Granularity of MgB 2 is one significant reason for reduced critical current densities and is introduced intrinsically by the anisotropy of B c2 but also extrinsically by the microstructure of the material. B c2 enhancement by doping is another important challenge for chemical analysis and, at present, doping levels are not well controlled on the sub-μm scale. In this paper the quantitative electron microscopy and spectroscopy methods essential for the microstructural analysis of MgB 2 are described. By quantitative electron microscopy and spectroscopy we mean a combined SEM and TEM analysis that covers various length scales from μm to nm. Contamination-free sample preparation, chemical mapping including B, and advanced chemical quantification using x-ray microanalysis were essential elements of the applied methodology. The methodology was applied to in situ and ex situ MgB 2 wires and tapes with and without SiC additives. Quantitative B analysis by EDX spectroscopy was applied quantitatively in the SEM and TEM, which is a major achievement. Although MgB 2 is a binary system, the thermodynamics of phase formation is complex, and the complexity is dramatically increased if additives like SiC are used. The small, sub-μm grain sizes of the matrix and secondary phases require TEM methods. However, granularity on the μm scale was also identified and underlines the importance of the combined SEM and TEM studies. Significant differences in the microstructure were observed for in situ and ex situ samples. This holds particularly if SiC was added and yielded Mg 2 Si for in situ samples annealed at 600-650 deg. C and Mg-Si-O phases

  1. Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.

    2012-12-01

    Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings

  2. Comparison of the photoluminescence properties of Eu2+, Mn2+ co-doped M5(PO4)3Cl (M = Ca, Sr, Ba)

    International Nuclear Information System (INIS)

    Yang, Fengli; An, Wei; Wei, Heng-Wei; Chen, Guantong; Zhuang, Weidong; Jing, Xi-Ping

    2014-01-01

    Highlights: • Good size match between the doped and host cations narrows the emission band. • Low phonon energy of the hosts enhances the luminescence intensity. • “Inverse bottleneck effect” related to Eu/Mn lifetime mismatch causes quenching. • “Charge transfer process” in the Eu–Mn clusters causes quenching. -- Abstract: Eu 2+ and Mn 2+ singly doped or co-doped M 5 (PO 4 ) 3 Cl (M = Ca, Sr and Ba) phosphors were synthesized by conventional solid state reactions and characterized by X-ray diffraction (XRD), photoluminescence (PL) spectra, PL decay curves, energy dispersive spectra (EDS) and Raman spectra. The results show that a better size match between the doped cation and the host cation allows a wider solid solution range (e.g. Ca 2+ /Mn 2+ ) and a narrower emission band (e.g. Sr 2+ /Eu 2+ and Ca 2+ /Mn 2+ ). A lower phonon energy of the host (e.g. the Sr phase) reduces the non-radiation probability and enhances the PL efficiency. The PL performance of the Ba phase is exceptional possibly because of the large size difference between the doped cations and the host cations. The transfer efficiency (η) and the emission quantum efficiency (Q) were analyzed. In the studied phosphors, superficially Eu 2+ efficiently transferred its absorbed energy to Mn 2+ but the Q of the Mn 2+ emission was not as high as expected. Two loss mechanisms are proposed: an “inverse bottleneck effect” and “charge transfer” between Eu 2+ and Mn 2+

  3. Ab initio study of MgH2 formation

    International Nuclear Information System (INIS)

    Novakovic, Nikola; Matovic, Ljiljana; Novakovic, Jasmina Grbovic; Manasijevic, Miodrag; Ivanovic, Nenad

    2009-01-01

    Even if there is considerable literature dealing with structure and properties of MgH 2 compound there are still some uncertain details about nature of bonding governing its formation and decomposition. In order to better understand the processes essential for absorption and desorption of MgH 2 , ab initio DFT based calculations of rutile MgH 2 compound, elemental hcp-Mg, and three different hypothetical hcp-Mg-derived hydrides are performed. Our findings show that all structures are unstable, and that MgH (Wurtzite) is a closest possible candidate for intermediate phase between the hcp-Mg and MgH 2 at 1:1 stoichiometry. An alternative hydration pathway is suggested, including promotion of hcp-Mg to bcc-Mg and consecutive transformation to rutile MgH 2 by means of hydrogen incorporation into Mg matrix. Rutile MgH 2 calculations with various hydrogen vacancies concentration are performed. Calculation shows that at high hydrogen concentration close to 1:2, stable substoichiometric hydride is possible. Calculation also shows that high vacancy (low hydrogen) concentration favors bcc-Mg 2 H over rutile Mg 2 H structure.

  4. One-pot synthetic method to prepare highly N-doped nanoporous carbons for CO2 adsorption

    International Nuclear Information System (INIS)

    Meng, Long-Yue; Park, Soo-Jin

    2014-01-01

    A one-pot synthetic method was used for the preparation of nanoporous carbon containing nitrogen from polypyrrole (PPY) using NaOH as the activated agent. The activation process was carried out under set conditions (NaOH/PPY = 2 and NaOH/PPY = 4) at different temperatures in 600–900 °C for 2 h. The effect of the activation conditions on the pore structure, surface functional groups and CO 2 adsorption capacities of the prepared N-doped activated carbons was examined. The carbon was analyzed by X-ray photoelectron spectroscopy (XPS), N2/77 K full isotherms, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The CO 2 adsorption capacity of the N-doped activated carbon was measured at 298 K and 1 bar. By dissolving the activation agents, the N-doped activated carbon exhibited high specific surface areas (755–2169 m 2 g −1 ) and high pore volumes (0.394–1.591 cm 3 g −1 ). In addition, the N-doped activated carbons contained a high N content at lower activation temperatures (7.05 wt.%). The N-doped activated carbons showed a very high CO 2 adsorption capacity of 177 mg g −1 at 298 K and 1 bar. The CO 2 adsorption capacity was found to be dependent on the microporosity and N contents. - Highlights: • A one-pot synthetic method was used for the preparation of N-doped nanoporous carbons. • Polypyrrole (PPY) were activated with NaOH under set conditions (NaOH/PPY = 2 and 4). • N-doped activated carbon exhibited high specific surface areas (2169 m 2 g −1 ). • The carbons showed a very high CO 2 adsorption capacity of 177 mg g −1 at 298 K

  5. Quantitative determination of phases in ZrO2 (MgO) (Y2O3) using the Rietveld method

    International Nuclear Information System (INIS)

    Castro, Antonio Carlos de

    2007-01-01

    The key objective of this work is the crystallographic characterization of the zircon co-doped with Yttria and magnesium with the application of the Rietveld method for quantitative phase analysis of zircon polymorph (zircon monoclinic, tetragonal, and cubic). Samples of zircon polymorph were obtained from zircon doped with Yttria and magnesium at defined molar concentrations. The zircon polymorph stability during subeutetoid aging at 1350 deg C were investigated to determine ZrO 2 - MgO - Y 2 0 3 phases degradation and to define the solid solutions stability environment. ZrO 2 powders doped with 8 mol por cent of MgO and 1 mol por cent of Y 2 O 3 , and 9 mol por cent of MgO and 0 mol por cent of Y 2 O 3 have been prepared by chemical route using the co-precipitation method. These samples have been calcinate at 550 deg C, sintered at 1500 deg C and characterized by the Rietveld method using the X-ray diffraction data. The variation of the lattice parameter, changes in the phase composition and their microstructures are discussed. The application of the Rietveld method for quantitative phase analysis of zircon polymorph (zircon tetragonal and cubic) reveals no formation of tetragonal phase and indicating that the matrix is the cubic phase with low concentration of monoclinic phase.(author)

  6. Modeling and stabilities of Mg/MgH2 interfaces: A first-principles investigation

    Directory of Open Access Journals (Sweden)

    Jia-Jun Tang

    2014-07-01

    Full Text Available We have theoretically investigated the modeling and the structural stabilities of various Mg/MgH2 interfaces, i.e. Mg(101¯0/MgH2(210, Mg(0001/MgH2(101 and Mg(101¯0/MgH2(101, and provided illuminating insights into Mg/MgH2 interface. Specifically, the main factors, which impact the interfacial energies, are fully considered, including surface energies of two phases, mutual lattice constants of interface model, and relative position of two phases. The surface energies of Mg and MgH2, on the one hand, are found to be greatly impacting the interfacial energies, reflected by the lowest interfacial energy of Mg(0001/MgH2(101 which is comprised of two lowest energy surfaces. On the other hand, it is demonstrated that the mutual lattice constants and the relative position of two phases lead to variations of interfacial energies, thus influencing the interface stabilities dramatically. Moreover, the Mg-H bonding at interface is found to be the determinant of Mg/MgH2 interface stability. Lastly, interfacial and strain effects on defect formations are also studied, both of which are highly facilitating the defect formations. Our results provide a detailed insight into Mg/MgH2 interface structures and the corresponding stabilities.

  7. Superconductivity, critical current density, and flux pinning in MgB2-x(SiC)x/2 superconductor after SiC nanoparticle doping

    Science.gov (United States)

    Dou, S. X.; Pan, A. V.; Zhou, S.; Ionescu, M.; Wang, X. L.; Horvat, J.; Liu, H. K.; Munroe, P. R.

    2003-08-01

    We investigated the effect of SiC nanoparticle doping on the crystal lattice structure, critical temperature Tc, critical current density Jc, and flux pinning in MgB2 superconductor. A series of MgB2-x(SiC)x/2 samples with x=0-1.0 were fabricated using an in situ reaction process. The contraction of the lattice and depression of Tc with increasing SiC doping level remained rather small most likely due to the counterbalancing effect of Si and C co-doping. The high level Si and C co-doping allowed the creation of intragrain defects and highly dispersed nanoinclusions within the grains which can act as effective pinning centers for vortices, improving Jc behavior as a function of the applied magnetic field. The enhanced pinning is mainly attributable to the substitution-induced defects and local structure fluctuations within grains. A pinning mechanism is proposed to account for different contributions of different defects in MgB2-x(SiC)x/2 superconductors.

  8. Seasonal and temporal CO2 dynamics in three tropical mangrove creeks - A revision of global mangrove CO2 emissions

    Science.gov (United States)

    Rosentreter, Judith A.; Maher, D. T.; Erler, D. V.; Murray, R.; Eyre, B. D.

    2018-02-01

    Continuous high-resolution surface water pCO2 and δ13C-CO2 and 222Rn (dry season only) were measured over two tidal cycles in the wet and dry season in three tropical tidal mangrove creeks on the north-eastern coast of Queensland, Australia. Mangrove surface water pCO2 followed a clear tidal pattern (ranging from 387 to 13,031 μatm) with higher pCO2-values in the wet season than in the dry season. The δ13C-CO2 in the mangrove waters ranged from -21.7 to -8.8‰ and was rather indicative of a mixed source than a distinct mangrove signature. Surface water CO2 was likely driven by a combination of mangrove and external carbon sources, e.g. exchange with groundwater/pore water enriched in 13C, or terrestrial carbon inputs with a significant contribution of C4-vegetation (sugar cane) source. The kinetic and equilibrium fractionation during the gas exchange at the water-atmosphere interface may have further caused a 13C-enrichment of the CO2 pool in the mangrove surface waters. Average CO2 evasion rates (58.7-277.6 mmol m-2 d-1) were calculated using different empirical gas transfer velocity models. Using our high-resolution time series data and previously published data, the average CO2 flux rate in mangrove ecosystems was estimated to be 56.5 ± 8.9 mmol m-2 d-1, which corresponds to a revised global mangrove CO2 emission of 34.1 ± 5.4 Tg C per year.

  9. Heat of Absorption of CO2 in Phase Change Solvents: 2-(Diethylamino)ethanol and 3-(Methylamino)propylamine

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas

    2013-01-01

    Heat of absorption of CO2 in phase change solvents containing 2-(diethylamino)ethanol (DEEA) and 3-(methylamino)propylamine (MAPA) were measured as a function of CO2 loading at different temperatures using a commercially available reaction calorimeter. The tested systems were aqueous single amines...... (5 M DEEA, 2 M MAPA, and 1 M MAPA) and aqueous amine mixtures (5 M DEEA + 2 M MAPA and 5 M DEEA + 1 M MAPA) which give two liquid phases on reacting with CO2. All parallel experiments have shown good repeatability. The measurements were taken isothermally at three different temperatures, (40, 80......, and 120) °C. The measured differential heat of absorption values were converted into integral values by integration. Heats of absorption of CO2 in aqueous single amines were affected by changing the solvent composition (large difference in concentrations) and CO2 feed pressure simultaneously. In addition...

  10. Thermoluminescence responses of photon- and electron-irradiated lithium potassium borate co-doped with Cu+Mg or Ti+Mg

    International Nuclear Information System (INIS)

    Alajerami, Y.S.M.; Hashim, S.; Ramli, A.T.; Saleh, M.A.; Saripan, M.I.; Alzimami, K.; Min Ung, Ngie

    2013-01-01

    New glasses Li 2 CO 3 –K 2 CO 3 –H 3 BO 3 (LKB) co-doped with CuO and MgO, or with TiO 2 and MgO, were synthesized by the chemical quenching technique. The thermoluminescence (TL) responses of LKB:Cu,Mg and LKB:Ti,Mg irradiated with 6 MV photons or 6 MeV electrons were compared in the dose range 0.5–4.0 Gy. The standard commercial dosimeter LiF:Mg,Ti (TLD-100) was used to calibrate the TL reader and as a reference in comparison of the TL properties of the new materials. The dependence of the responses of the new materials on 60 Co dose is linear in the range of 1–1000 Gy. The TL yields of both of the co-doped glasses and TLD-100 are greater for electron irradiation than for photon irradiation. The TL sensitivity of LKB:Ti,Mg is 1.3 times higher than the sensitivity of LKB:Cu,Mg and 12 times less than the sensitivity of TLD-100. The new TL dosimetric materials have low effective atomic numbers, good linearity of the dose responses, excellent signal reproducibility, and a simple glow curve structure. This combination of properties makes them suitable for radiation dosimetry. - Highlights: • Enhancement of about three times has been shown with the increment of MgO. • A comparison was carried out between the TL responses of the prepared dosimeters and TLD-100. • The prepared dosimeters show simple glow curve, low Z material and excellent reproducibility. • The TL measurements show a linear dose response in a long span of exposures. • The electron response shows 1.18 times greater than photon response for the prepared dosimeters

  11. Rechargeable Al-CO2 Batteries for Reversible Utilization of CO2.

    Science.gov (United States)

    Ma, Wenqing; Liu, Xizheng; Li, Chao; Yin, Huiming; Xi, Wei; Liu, Ruirui; He, Guang; Zhao, Xian; Luo, Jun; Ding, Yi

    2018-05-21

    The excessive emission of CO 2 and the energy crisis are two major issues facing humanity. Thus, the electrochemical reduction of CO 2 and its utilization in metal-CO 2 batteries have attracted wide attention because the batteries can simultaneously accelerate CO 2 fixation/utilization and energy storage/release. Here, rechargeable Al-CO 2 batteries are proposed and realized, which use chemically stable Al as the anode. The batteries display small discharge/charge voltage gaps down to 0.091 V and high energy efficiencies up to 87.7%, indicating an efficient battery performance. Their chemical reaction mechanism to produce the performance is revealed to be 4Al + 9CO 22Al 2 (CO 3 ) 3 + 3C, by which CO 2 is reversibly utilized. These batteries are envisaged to effectively and safely serve as a potential CO 2 fixation/utilization strategy with stable Al. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Utilizing Co2+/Co3+ Redox Couple in P2-Layered Na0.66Co0.22Mn0.44Ti0.34O2 Cathode for Sodium-Ion Batteries.

    Science.gov (United States)

    Wang, Qin-Chao; Hu, Enyuan; Pan, Yang; Xiao, Na; Hong, Fan; Fu, Zheng-Wen; Wu, Xiao-Jing; Bak, Seong-Min; Yang, Xiao-Qing; Zhou, Yong-Ning

    2017-11-01

    Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na 0.66 Co x Mn 0.66- x Ti 0.34 O 2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na + and vacancy ordering. An interesting structure change of Na 0.66 Co x Mn 0.66- x Ti 0.34 O 2 from orthorhombic to hexagonal is revealed when Co content increases from x = 0 to 0.33. In particular, Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 with a P2-type layered structure delivers a reversible capacity of 120 mAh g -1 at 0.1 C. When the current density increases to 10 C, a reversible capacity of 63.2 mAh g -1 can still be obtained, indicating a promising rate capability. The low valence Co 2+ substitution results in the formation of average Mn 3.7+ valence state in Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 , effectively suppressing the Mn 3+ -induced Jahn-Teller distortion, and in turn stabilizing the layered structure. X-ray absorption spectroscopy results suggest that the charge compensation of Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 during charge/discharge is contributed by Co 2.2+ /Co 3+ and Mn 3.3+ /Mn 4+ redox couples. This is the first time that the highly reversible Co 2+ /Co 3+ redox couple is observed in P2-layered cathodes for sodium-ion batteries. This finding may open new approaches to design advanced intercalation-type cathode materials.

  13. A novel malic enzyme gene, Mime2, from Mortierella isabellina M6-22 contributes to lipid accumulation.

    Science.gov (United States)

    Li, Shan; Li, Lingyan; Xiong, Xiangfeng; Ji, Xiuling; Wei, Yunlin; Lin, Lianbing; Zhang, Qi

    2018-05-18

    This study was aimed at cloning and characterizing a novel malic enzyme (ME) gene of Mortierella isabellina M6-22 and identifying its relation with lipid accumulation. Mime2 was cloned from strain M6-22. Plasmid pET32aMIME2 was constructed to express ME of MIME2 in Escherichia coli BL21. After purification, the optimal pH and temperature of MIME2, as well as K m and V max for NADP + were determined. The effects of EDTA or metal ions (Mn 2+ , Mg 2+ , Co 2+ , Cu 2+ , Ca 2+ , or Zn 2+ ) on the enzymatic activity of MIME2 were evaluated. Besides, plasmid pRHMIME2 was created to express MIME2 in Rhodosporidium kratochvilovae YM25235, and its cell lipid content was measured by the acid-heating method. The optimal pH and temperature of MIME2 are 5.8 and 30 °C, respectively. The act ivity of MIME2 was significantly increased by Mg 2+ , Ca 2+ , or Mn 2+ at 0.5 mM but inhibited by Cu 2+ or Zn 2+ (p M6-22 contributes to lipid accumulation in strain YM25235.

  14. Stability of 2 mg/mL Adenosine Solution in Polyvinyl Chloride and Polyolefin Infusion Bags.

    Science.gov (United States)

    DeAngelis, Michael; Ferrara, Alexander; Gregory, Kaleigh; Zammit, Kimberly; Zhao, Fang

    2018-04-01

    Adenosine is a potent endogenous mediator of vasodilation. Compounded sterile solutions of adenosine are used in cardiac catheterization lab to perform stress tests on the heart. These tests are used to determine the fractional flow reserve (FFR) and are commonly used in the management and diagnosis of cardiovascular conditions. The purpose of this study was to assess the physical and chemical stability of 2 mg/mL adenosine in 0.9% Sodium Chloride Injection, USP in polyvinyl chloride [PVC]) and polyolefin infusion bags stored at room temperature (20°C-25°C) and under refrigeration (2°C-8°C). The compounding and analytical methods used in this study were very similar to those described in the prior publications from the authors' laboratory. To ensure a uniform starting concentration of all stability samples, a batch of 2 mg/mL adenosine solution was prepared and then packaged into empty PVC and polyolefin infusion bags. These stability samples were prepared in triplicate for each bag type and storage temperature (a total of 12 samples). The infusion bag samples were assessed for stability immediately after preparation and after 1 day, 3 days, 7 days, and 14 days. At each time point, the infusion bags were first visually inspected against a light background for color change, clarity, and particulates. Aliquots were drawn from each sample at each time point for pH analysis and high-performance liquid chromatography (HPLC) analysis. Over 14 days of storage at room temperature or refrigeration, no considerable change in visual appearance or pH was observed in any bags. All samples retained 90% to 110% of the initial drug concentration. No significant degradation peaks were observed in the HPLC chromatograms.

  15. Catholyte-Free Electrocatalytic CO2 Reduction to Formate.

    Science.gov (United States)

    Lee, Wonhee; Kim, Young Eun; Youn, Min Hye; Jeong, Soon Kwan; Park, Ki Tae

    2018-04-16

    Electrochemical reduction of carbon dioxide (CO 2 ) into value-added chemicals is a promising strategy to reduce CO 2 emission and mitigate climate change. One of the most serious problems in electrocatalytic CO 2 reduction (CO 2 R) is the low solubility of CO 2 in an aqueous electrolyte, which significantly limits the cathodic reaction rate. This paper proposes a facile method of catholyte-free electrocatalytic CO 2 reduction to avoid the solubility limitation using commercial tin nanoparticles as a cathode catalyst. Interestingly, as the reaction temperature rises from 303 K to 363 K, the partial current density (PCD) of formate improves more than two times with 52.9 mA cm -2 , despite the decrease in CO 2 solubility. Furthermore, a significantly high formate concentration of 41.5 g L -1 is obtained as a one-path product at 343 K with high PCD (51.7 mA cm -2 ) and high Faradaic efficiency (93.3 %) via continuous operation in a full flow cell at a low cell voltage of 2.2 V. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Absorber Model for CO2 Capture by Monoethanolamine

    DEFF Research Database (Denmark)

    Faramarzi, Leila; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2010-01-01

    The rate-based steady-state model proposed by Gabrielsen et al. (Gabrielsen, J.; Michelsen, M. L.; Kontogeorgis, G. M.; Stenby, E. H. AIChE J. 2006, 52, 10, 3443-3451) for the design of the CO2-2-amino-2-methylpropanol absorbers is adopted and improved for the design of the CO2-monoethanolamine......, and their impact on the model's prediction is compared. The model has been successfully applied to CO2 absorber packed columns and validated against pilot plant data with good agreement....

  17. Ethanol reformation combined with CO{sub 2} absorption for the production of hydrogen; Reformacion de etanol combinada con absorcion de CO{sub 2} para produccion de hidrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Beltran-Pina, B.B.; Delgado-Vigil, M.D.; Salinas-Gutierrez, J.M.; Lopez-Ortiz, A.; Collins-Martinez, V. [Centro de Investigacion en Materiales Avanzados S. C, Chihuahua, Chihuahua (Mexico)]. E-mail: bogdan.beltran@cimav.edu.mx

    2009-09-15

    This work studied the ethanol reforming reaction combined with carbonatation of a metallic oxide to produce hydrogen with CO{sub 2} capture in one single step. A catalyst mixture was used composed of 10 %wt Ni/Al{sub 2}O{sub 3} with a CO{sub 2} absorbent material such as calcined dolomite (CaO*MgO) and sodium zirconate (Na{sub 2}ZrO{sub 3}). The materials synthesized were characterized with x-ray diffraction (XRD), sweep electron microscopy (SEM) and surface area (BET isotherma). A catalyst with a very dispersed active phase and surface area of 170 m{sup 2}/gr was obtained. The evaluation of the ethanol steam reforming reaction was conducted considering a transient system and a stainless steel fixed-bed reactor where catalyst mixtures and CO{sub 2} absorbents were introduced. The reaction was carried out at a temperature of 600 degrees Celsius, with a water/alcohol ratio of 6:1. The quantification of the gases produced during the reaction (H{sub 2}, CO{sub 2}, CO and CH{sub 4}) was performed with gas chromatography. An increase was observed in the hydrogen selectivity when adding absorbent to the catalytic bed from 85% to 98% with dolomite and 97% with sodium zirconate. In addition, a considerable decrease was observed in the selectivity to by-products such as CH{sub 4} and CO{sub 2}. The amount of carbon deposited on the surface of the materials was determined. This increase in the production of hydrogen is attributable to a shift in the thermal dynamic equilibrium of the reforming reaction, according to the Chatelier's principle. [Spanish] Se ha estudiado la reaccion de reformacion de etanol combinada con la carbonatacion de un oxido metalico para la produccion de hidrogeno con captura de CO{sub 2} en un solo paso. Se utilizo una mezcla de un catalizador compuesto de 10 %wt Ni/Al{sub 2}O{sub 3} con un material absorbente de CO{sub 2}, tal como: CaO*MgO (dolomita calcinada) y Na{sub 2}ZrO{sub 3} (zirconato de sodio). Los materiales sintetizados fueron

  18. Preparation and characterization of aminated graphite oxide for CO2 capture

    International Nuclear Information System (INIS)

    Zhao Yunxia; Ding Huiling; Zhong Qin

    2012-01-01

    Adsorption with solid sorbents is one of the most promising options for postcombustion carbon dioxide (CO 2 ) capture. In this study, aminated graphite oxide used for CO 2 adsorption was synthesized, based on the intercalation reaction of graphite oxide (GO) with amines, including ethylenediamine (EDA), diethylenetriamine (DETA) and triethylene tetramine (TETA). The structural information, surface chemistry and thermal behavior of the adsorbent samples were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), transmission electron microscope (TEM), elemental analysis, particle size analysis, nitrogen adsorption as well as differential thermal and thermogravimetric analysis (DSC-TGA). CO 2 capture was investigated by dynamic adsorption experiments with N 2 -CO 2 mixed gases at 30 °C. The three kinds of graphite oxide samples modified by excess EDA, DETA and TETA showed similar adsorption behaviors seen from their breakthrough curves. Among them, the sample aminated by EDA exhibited the highest adsorption capacity with the longest breakthrough time of CO 2 . Before saturation, its adsorption capacity was up to 53.62 mg CO 2 /g sample. In addition, graphite oxide samples modified by different amount of EDA (EDA/GO raw ratio 10 wt%, 50 wt% and 100 wt%) were prepared in the ethanol. Their CO 2 adsorption performance was investigated. The experimental results demonstrated that graphite oxide with 50 wt% EDA had the largest adsorption capacity 46.55 mg CO 2 /g sample.

  19. Electrical transport characterization of Al and Sn doped Mg 2 Si thin films

    KAUST Repository

    Zhang, Bo

    2017-05-22

    Thin-film Mg2Si was deposited using radio frequency (RF) magnetron sputtering. Al and Sn were incorporated as n-type dopants using co-sputtering to tune the thin-film electrical properties. X-ray diffraction (XRD) analysis confirmed that the deposited films are polycrystalline Mg2Si. The Sn and Al doping concentrations were measured using Rutherford backscattering spectroscopy (RBS) and energy dispersive X-ray spectroscopy (EDS). The charge carrier concentration and the charge carrier type of the Mg2Si films were measured using a Hall bar structure. Hall measurements show that as the doping concentration increases, the carrier concentration of the Al-doped films increases, whereas the carrier concentration of the Sn-doped films decreases. Combined with the resistivity measurements, the mobility of the Al-doped Mg2Si films is found to decrease with increasing doping concentration, whereas the mobility of the Sn-doped Mg2Si films is found to increase.

  20. Effects of CO(sub 2) and nitrogen fertilization on soils planted with ponderosa pine; FINAL

    International Nuclear Information System (INIS)

    Johnson, D.W.

    1996-01-01

    The effects of elevated CO(sub 2) (ambient, 525, and 700(micro)l l(sup -1))and N fertilization (0, 10, and 20 g N m(sup 2) yr(sup -1)) on soil pCO(sub 2), CO(sub 2) efflux, soil solution chemistry, and soil C and nutrients in an open-top chamber study with Pinus ponderosa are described. Soil pCO(sub 2) and CO(sub 2) efflux were significantly greater with elevated CO(sub 2), at first (second growing season) in the 525(micro)l l(sup -1) and later (fourth and fifth growing seasons) in the 700(micro)l l(sup -1) CO(sub 2) treatments. Soil solution HCO(sub 3)(sup -) concentrations were temporarily elevated in the 525(micro)l l(sup -1) CO(sub 2) treatment during the second growing season, consistent with the elevated pCO(sub 2). Nitrogen fertilization had no consistent effect on soil pCO(sub 2) or CO(sub 2) efflux, but did have the expected negative effect on exchangeable Ca(sup 2+), K(sup+), and Mg(sup 2+), presumed to be caused by increased nitrate leaching. Elevated CO(sub 2) had no consistent effects on exchangeable Ca(sup 2+), K(sup+), and Mg(sup 2+), but did cause temporary reductions in soil NO(sup 3(sup -)) (second growing season). Statistically significant negative effects of elevated CO(sub 2) on soil extractable P were noted in the third and sixth growing seasons. However, these patterns in extractable P reflected pre-treatment differences, which, while not statistically significant, followed the same pattern. Statistically significant effects of elevated CO(sub 2) on total C and N in soils were noted in the third and sixth growing seasons, but these effects were inconsistent among N treatments and years. The clearest effect of elevated CO(sub 2) was in the case of C/N ratio in year 6, where there was a consistent, positive effect. The increases in C/N ratio with elevated CO(sub 2) in year six were largely a result of reductions in soil N rather than increases in soil C. Future papers will assess whether this apparent reduction in soil N could have been

  1. MgB2 magnetometer with a directly coupled pick-up loop

    Science.gov (United States)

    Portesi, C.; Mijatovic, D.; Veldhuis, D.; Brinkman, A.; Monticone, E.; Gonnelli, R. S.

    2006-05-01

    In this work, we show the results obtained in the fabrication and characterization of an MgB2 magnetometer with a directly coupled pick-up loop. We used an all in situ technique for fabricating magnesium diboride films, which consists of the co-evaporation of B and Mg by means of an e-gun and a resistive heater respectively. Consequently, we realized the superconducting device, which incorporates two nanobridges as weak links in a superconducting loop. The nanobridges were realized by focused ion beam milling; they were 240 nm wide and had a critical current density of 107 A cm-2. The magnetometer was characterized at different temperatures and also measurements of the noise levels have been performed. The device shows Josephson quantum interference up to 20 K and the calculated effective area at low temperatures was 0.24 mm2. The transport properties of the magnetometer allow determining fundamental materials properties of the MgB2 thin films, such as the penetration depth.

  2. Lattice stability and formation energies of intrinsic defects in Mg2Si and Mg2Ge via first principles simulations

    International Nuclear Information System (INIS)

    Jund, Philippe; Viennois, Romain; Tédenac, Jean-Claude; Colinet, Catherine; Hug, Gilles; Fèvre, Mathieu

    2013-01-01

    We report an ab initio study of the semiconducting Mg 2 X (with X = Si, Ge) compounds and in particular we analyze the formation energies of the different point defects with the aim of understanding the intrinsic doping mechanisms. We find that the formation energy of Mg 2 Ge is 50% larger than that of Mg 2 Si, in agreement with the experimental tendency. From a study of the stability and the electronic properties of the most stable defects, taking into account the growth conditions, we show that the main cause of the n doping in these materials comes from interstitial magnesium defects. Conversely, since other defects acting like acceptors such as Mg vacancies or multivacancies are more stable in Mg 2 Ge than in Mg 2 Si, this explains why Mg 2 Ge can be of n or p type, in contrast to Mg 2 Si. The finding that the most stable defects are different in Mg 2 Si and Mg 2 Ge and depend on the growth conditions is important and must be taken into account in the search for the optimal doping to improve the thermoelectric properties of these materials.

  3. Radiation dosimetry of 15O-labeled O2, CO2 and CO gases administered continuously in the breath

    International Nuclear Information System (INIS)

    Bigler, R.E.; Sgouros, G.

    1982-01-01

    The ratio of activity per liter of air supplied to the activity concentration in the blood for oxygen-15 labeled carbon dioxide and carbon monoxide was found to show an approximate factor of 10 variation from study to study in dog experiments (Bigler and co-workers, unpublished data). Unless human measurement experience shows the lung extraction efficiency to be more constant and therefore predictable, radiation dose estimates should be empirically verified in each study by a rapid and early measurement of the exhaled and unused gas activities. Patient activity extraction would be obtained by difference of this measurement with the supplied activity. The results show calculations for a factor of 2 lower and higher than the extraction efficiency observed for barbiturate sedated dogs. The total-body cumulated activities can be converted into effective total administered doses by multiplying them by the decay constant for oxygen-15 (20.453 hr -1 ). This gives for O 2 , CO 2 and CO, respectively, 227, 98 and 95 mCi/hr or 3.79, 1.64 and 1.58 mCi/min. Assuming the patient inhales 7.4 liters/min., the extraction efficiencies from the 1 mCi/liter-air supplied to the patient amounts to for O 2 , CO 2 and CO, respectively 51, 22 and 21%

  4. Spatial variation of sediment mineralization supports differential CO2 emissions from a tropical hydroelectric reservoir

    Directory of Open Access Journals (Sweden)

    Simone Jaqueline Cardoso

    2013-04-01

    Full Text Available Substantial amounts of organic matter (OM from terrestrial ecosystems are buried as sediments in inland waters. It is still unclear to what extent this OM constitutes a sink of carbon, and how much of it is returned to the atmosphere upon mineralization to carbon dioxide (CO2. The construction of reservoirs affects the carbon cycle by increasing OM sedimentation at the regional scale. In this study we determine the OM mineralization in the sediment of three zones (river, transition and dam of a tropical hydroelectric reservoir in Brazil as well as identify the composition of the carbon pool available for mineralization. We measured sediment OC mineralization rates and related them to the composition of the OM, bacterial abundance and pCO2 of the surface water of the reservoir. Terrestrial OM was an important substrate for the mineralization. In the river and transition zones most of the OM was allochthonous (56 % and 48 %, respectively while the dam zone had the lowest allochthonous contribution (7 %. The highest mineralization rates were found in the transition zone (154.80 ± 33.50 mg C m-2 d-1 and the lowest in the dam (51.60 ± 26.80 mg C m-2 d-1. Moreover, mineralization rates were significantly related to bacterial abundance (r2 = 0.50, p < 0.001 and pCO2 in the surface water of the reservoir (r2 = 0.73, p < 0.001. The results indicate that allochthonous OM has different contributions to sediment mineralization in the three zones of the reservoir. Further, the sediment mineralization, mediated by heterotrophic bacteria metabolism, significantly contributes to CO2 supersaturation in the water column, resulting in higher pCO2 in the river and transition zones in comparison with the dam zone, affecting greenhouse gas emission estimations from hydroelectric reservoirs.

  5. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Amorvadee Veawab

    2006-04-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The final campaign of the pilot plant was completed in February 2006 with 5m K{sup +}/2.5m PZ and 6.4m K{sup +}/1.6m PZ using Flexipac AQ Style 20. The new cross-exchanger reduced the approach temperature to less than 9 C. Stripper modeling has demonstrated that a configuration with a ''Flashing Feed'' requires 6% less work that a simple stripper. The oxidative degradation of piperazine proceeds more slowly than that of monoethanolamine and produces ethylenediamine and other products. Uninhibited 5 m KHCO{sub 3}/2.5 m PZ corrodes 5 to 6 times faster that 30% MEA with 0.2 mol CO{sub 2}/mol MEA.

  6. Transport properties and exponential n-values of Fe/MgB2 tapes with various MgB2 particle sizes

    International Nuclear Information System (INIS)

    Lezza, P.; Abaecherli, V.; Clayton, N.; Senatore, C.; Uglietti, D.; Suo, H.L.; Fluekiger, R.

    2004-01-01

    Fe/MgB 2 tapes have been prepared starting with pre-reacted binary MgB 2 powders. As shown by resistive and inductive measurements, the reduction of particle size to a few microns by ball milling has little influence on B c2 , while the superconducting properties of the individual MgB 2 grains are essentially unchanged. Reducing the particle size causes an enhancement of B irr from 14 to 16 T, while J c has considerably increased at high fields, its slope J c (B) being reduced. At 4.2 K, values of 5.3 x 10 4 and 1.2 x 10 3 A/cm 2 were measured at 3.5 and 10 T, respectively, suggesting a dominant role of the conditions at the grain interfaces. A systematic variation of these conditions at the interfaces is undertaken in order to determine the limit of transport properties for Fe/MgB 2 tapes. The addition of 5% Mg to MgB 2 powder was found to affect neither J c nor B c2 . For the tapes with the highest J c values, very high exponential n factors were measured: n=148, 89 and 17 at 3.5, 5 and 10 T, respectively and measurements of critical current versus applied strain have been performed. The mechanism leading to high transport critical current densities of filamentary Fe/MgB 2 tapes based on MgB 2 particles is discussed

  7. Preparation and characterization of Bi2Sr2CaCu2O8+δ thin films on MgO single crystal substrates by chemical solution deposition

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Kepa, Katarzyna; Hlásek, T.

    2013-01-01

    Bi2Sr2CaCu2O8 thin films have been deposited on MgO single crystal substrates by spin-coating a solution based on 2-ethylhexanoate precursors. Pyrolysis takes place between 200°C and 450°C and is accompanied by the release of 2-ethylhexanoic acid, CO2 and H2O vapour. Highly c-axis oriented Bi2Sr2Ca...

  8. Sr{sub 2}CoMoO{sub 6} anode for solid oxide fuel cell running on H{sub 2} and CH{sub 4} fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [Engineering Research Center of Nano-GEO Materials of Education Ministry, China University of Geosciences, Wuhan 430074 (China); Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Huang, Yun-Hui [Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (China); Cheng, Jin-Guang; Goodenough, John B. [Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Mao, Zong-Qiang [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2011-02-15

    The double perovskite Sr{sub 2}CoMoO{sub 6-{delta}} was investigated as a candidate anode for a solid oxide fuel cell (SOFC). Thermogravimetric analysis (TGA) and powder X-ray diffraction (XRD) showed that the cation array is retained to 800 C in H{sub 2} atmosphere with the introduction of a limited concentration of oxide-ion vacancies. Stoichiometric Sr{sub 2}CoMoO{sub 6} has an antiferromagnetic Neel temperature T{sub N} {approx} 37 K, but after reduction in H{sub 2} at 800 C for 10 h, long-range magnetic order appears to set in above 300 K. In H{sub 2}, the electronic conductivity increases sharply with temperature in the interval 400 C < T < 500 C due to the onset of a loss of oxygen to make Sr{sub 2}CoMoO{sub 6-{delta}} a good mixed oxide-ion/electronic conductor (MIEC). With a 300-{mu}m-thick La{sub 0.8}Sr{sub 0.12}Ga{sub 0.83}Mg{sub 0.17}O{sub 2.815} (LSGM) as oxide-ion electrolyte and SrCo{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} as the cathode, the Sr{sub 2}CoMoO{sub 6-{delta}} anode gave a maximum power density of 1017 mW cm{sup -2} in H{sub 2} and 634 mW cm{sup -2} in wet CH{sub 4}. A degradation of power in CH{sub 4} was observed, which could be attributed to coke build up observed by energy dispersive spectroscopy (EDS). (author)

  9. Co2FeAl based magnetic tunnel junctions with BaO and MgO/BaO barriers

    Directory of Open Access Journals (Sweden)

    J. Rogge

    2015-07-01

    Full Text Available We succeed to integrate BaO as a tunneling barrier into Co2FeAl based magnetic tunnel junctions (MTJs. By means of Auger electron spectroscopy it could be proven that the applied annealing temperatures during BaO deposition and afterwards do not cause any diffusion of Ba neither into the lower Heusler compound lead nor into the upper Fe counter electrode. Nevertheless, a negative tunnel magnetoresistance (TMR ratio of -10% is found for Co2FeAl (24 nm / BaO (5 nm / Fe (7 nm MTJs, which can be attributed to the preparation procedure and can be explained by the formation of Co- and Fe-oxides at the interfaces between the Heusler and the crystalline BaO barrier by comparing with theory. Although an amorphous structure of the BaO barrier seems to be confirmed by high-resolution transmission electron microscopy (TEM, it cannot entirely be ruled out that this is an artifact of TEM sample preparation due to the sensitivity of BaO to moisture. By replacing the BaO tunneling barrier with an MgO/BaO double layer barrier, the electric stability could effectively be increased by a factor of five. The resulting TMR effect is found to be about +20% at room temperature, although a fully antiparallel state has not been realized.

  10. Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell

    Science.gov (United States)

    Meras, Patrick; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Spiers, Gary D.

    2010-04-01

    We have designed and built a hollow-core fiber frequency reference cell, filled it with CO2, and used it to demonstrate frequency stabilization of a 2.05 μm Tm:Ho:YLF laser using frequency modulation (FM) spectroscopy technique. The frequency reference cell is housed in a compact and robust hermetic package that contains a several meter long hollow-core photonic crystal fiber optically coupled to index-guiding fibers with a fusion splice on one end and a mechanical splice on the other end. The package has connectorized fiber pigtails and a valve used to evacuate, refill it, or adjust the gas pressure. We have demonstrated laser frequency standard deviation decreasing from >450MHz (free-running) to laser wavelength is of particular interest for spectroscopic instruments due to the presence of many CO2 and H20 absorption lines in its vicinity. To our knowledge, this is the first reported demonstration of laser frequency stabilization at this wavelength using a hollow-core fiber reference cell. This approach enables all-fiber implementation of the optical portion of laser frequency stabilization system, thus making it dramatically more lightweight, compact, and robust than the traditional free-space version that utilizes glass or metal gas cells. It can also provide much longer interaction length of light with gas and does not require any alignment. The demonstrated frequency reference cell is particularly attractive for use in aircraft and space coherent lidar instruments for measuring atmospheric CO2 profile.

  11. Ternary CoS{sub 2}/MoS{sub 2}/RGO electrocatalyst with CoMoS phase for efficient hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan-Ru; Shang, Xiao [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Gao, Wen-Kun [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Dong, Bin, E-mail: dongbin@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Chi, Jing-Qi; Li, Xiao; Yan, Kai-Li; Chai, Yong-Ming [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Yun-Qi, E-mail: liuyq@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Chen-Guang [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China)

    2017-08-01

    Highlights: • Ternary CoS{sub 2}/MoS{sub 2}/RGO with CoMoS phase as electrocatalyst for HER was prepared. • CoMoS phase have the metallic nature and highly intrinsic activity for HER. • RGO support ensures good distribution of CoMoS phase and enhances the conductivity. • The introduction of CoMoS and RGO may be a novel strategy for efficient HER of MoS{sub 2}. - Abstract: CoMoS phase with metallic character plays crucial role on enhancing the activity of MoS{sub 2} electrocatalysts for hydrogen evolution reaction (HER). However, only Co atoms located in the edges of MoS{sub 2} can create CoMoS phase, so it is a challenge to obtain CoMoS phase with homogeneous distribution limited by the layered MoS{sub 2} and doping method of Co. Herein, we reported a simple one-pot hydrothermal method to prepare novel ternary CoS{sub 2}/MoS{sub 2}/RGO with CoMoS phase for HER using reduced graphene oxide (RGO) as support. XPS proves the formation of CoMoS phase, implying the enhanced activity for HER. RGO support ensures the well distribution of CoMoS phase and enhances the conductivity of CoS{sub 2}/MoS{sub 2}/RGO. Compared to CoS{sub 2}/RGO, MoS{sub 2}/RGO and CoS{sub 2}/MoS{sub 2}, the obtained CoS{sub 2}/MoS{sub 2}/RGO shows superior activity for HER with an onset overpotential of −80 mV (vs. RHE), small Tafel slope of 56 mV dec{sup −1}, high exchange current density of 11.4 μA cm{sup −2} and rigid electrochemical durability. The enhanced performances for HER may be ascribed to the formation of CoMoS phase with high activity and the existence of RGO support with good electrical conductivitys in ternary CoS{sub 2}/MoS{sub 2}/RGO. Therefore, the introduction of CoMoS phase and RGO into MoS{sub 2} could effectively enhance electrocatalytic properties for HER.

  12. Development of TRPN dendrimer-modified disordered mesoporous silica for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoyun; Zhang, Sisi; Qin, Hongyan; Wu, Wei, E-mail: wuweiupc@upc.edu.cn

    2014-08-15

    Highlights: • A novel series of TRPN dendrimers are synthesized. • Structurally disordered mesoporous silica was used to develop the CO{sub 2} adsorbent. • The CO{sub 2} adsorption capacity is relatively high. • The sorbent exhibits a high stability after 12 cycling runs. • The sorbent achieves complete desorption at low temperature (60 °C). - Abstract: A novel series of tri(3-aminopropyl) amine (TRPN) dendrimers were synthesized and impregnated on structurally disordered mesoporous silica (DMS) to generate CO{sub 2} adsorbents (TS). The physicochemical and adsorption properties of the adsorbents before and after dendrimer modification were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and N{sub 2} adsorption–desorption (N{sub 2}-BET) techniques. CO{sub 2} adsorption–desorption tests indicated that the sorbent demonstrates high CO{sub 2} adsorption capacity (138.1 mg g{sup −1} for G1 sample TS-G1-3CN-50 and 91.7 mg g{sup −1} for G2 sample TS-G2-6CN-50), and can completely desorb CO{sub 2} under vacuum at 60 °C. Its CO{sub 2} adsorption capacity at 25 °C increases with the amine loading, achieving the highest adsorption capacity (140.6 mg g{sup −1} for TS-G1-3CN) at 60%. The developed TS materials exhibited excellent cycling stability. After 12 consecutive adsorption–desorption runs, TS-G1-3CN-50 shows an adsorption capacity of 136.0 mg g{sup −1}, retaining 98.5% of its original value.

  13. Studies on structural and magnetic properties of ternary cobalt magnesium zinc (CMZ) Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4} Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6) ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet, E-mail: manpreetchem@pau.edu; Jain, Palak; Singh, Mandeep

    2015-07-15

    In this paper we report the variation in structural and magnetic properties of ternary ferrite nanoparticles (NPs) having stoichiometery Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4} Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6) and pure spinel ferrites MFe{sub 2}O{sub 4} (M = Mg, Co). NPs with average particle diameter of 25–45 nm were synthesized employing self-propagating oxalyl dihydrazide - metal nitrate combustion method. The products were characterized using X-ray diffraction (XRD), Vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM) and FT-IR spectroscopy. FT-IR spectral analysis revealed two bands centered at 560 and 440 cm{sup −1} for tetrahedral and octahedral metal–oxygen bond stretching. Zinc doping caused red shift in the frequency band of tetrahedral M−O stretching. XRD powder diffraction patterns confirmed the formation of spinel ferrite nanoparticles, expansion of the lattice on zinc doping and enhancement of spinel phase purity in the doped ferrites. Cobalt ferrite displayed lowering of the magnetic parameters on zinc doping which further decreased in ternary ferrites Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4}Fe{sub 2}O{sub 4} on replacing cobalt ions with non-magnetic magnesium ions up to x = 0.4. At x = 0.6 reverse trend was observed and Ms was enhanced. Magnesium zinc ferrite Mg{sub 0.6}Zn{sub 0.4} Fe{sub 2}O{sub 4} with high value of Ms was obtained. Combustion process employed in the present studies serves as a low temperature facile route for the synthesis and structural analysis of ternary doped ferrite nanoparticles. - Highlights: • Ternary doped cobalt magnesium zinc ferrite nanoparticles are synthesized. • FT-IR displayed red shift in tetrahedral stretching band on Zinc doping. • Expansion of lattice and enhancement of spinel phase purity on zinc doping. • The variation in saturation magnetization (Ms) on doping is explained.

  14. Formation of ternary CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions.

    Science.gov (United States)

    Lee, Jun-Yeop; Yun, Jong-Il

    2013-07-21

    The chemical behavior of ternary Ca-UO2-CO3 complexes was investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) in combination with EDTA complexation at pH 7-9. A novel TRLFS revealed two distinct fluorescence lifetimes of 12.7 ± 0.2 ns and 29.2 ± 0.4 ns for uranyl complexes which were formed increasingly dependent upon the calcium ion concentration, even though nearly indistinguishable fluorescence peak shapes and positions were measured for both Ca-UO2-CO3 complexes. For identifying the stoichiometric number of complexed calcium ions, slope analysis in terms of relative fluorescence intensity versus calcium concentration was employed in a combination with the complexation reaction of CaEDTA(2-) by adding EDTA. The formation of CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) was identified under given conditions and their formation constants were determined at I = 0.1 M Na/HClO4 medium, and extrapolated to infinitely dilute solution using specific ion interaction theory (SIT). As a result, the formation constants for CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) were found to be log β113(0) = 27.27 ± 0.14 and log β213(0) = 29.81 ± 0.19, respectively, providing that the ternary Ca-UO2-CO3 complexes were predominant uranium(vi) species at neutral to weakly alkaline pH in the presence of Ca(2+) and CO3(2-) ions.

  15. An investigation on hydrogen storage kinetics of nanocrystalline and amorphous Mg2Ni1-xCox (x = 0-0.4) alloy prepared by melt spinning

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Li Baowei; Ren Huipin; Ding Xiaoxia; Liu Xiaogang; Chen Lele

    2011-01-01

    Research highlights: → The investigation of the structures of the Mg 2 Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) alloys indicates that a nanocrystalline and amorphous structure can be obtained in the experiment alloys by melt spinning technology. The substitution of Co for Ni facilitates the glass formation in the Mg 2 Ni-type alloy. And the amorphization degree of the alloys visibly increases with increasing Co content. → Both the melt spinning and Co substitution significantly improve the hydrogen storage kinetics of the alloys. The hydrogen absorption saturation ratio (R t a ) and hydrogen desorption ratio (R t d ) as well as the high rate discharge ability (HRD) increase with rising spinning rate and Co content. The hydrogen diffusion coefficient (D), the Tafel polarization curves and the electrochemical impedance spectra (EIS) measurements show that the electrochemical kinetics notably increases with rising spinning rate and Co content. → Furthermore, all the as-spun alloys, when the spinning rate reaches to 30 m/s, have nearly same hydrogen absorption kinetics, indicating that the hydrogen absorption kinetics of the as-spun alloy is predominately controlled by diffusion ability of hydrogen atoms. - Abstract: In order to improve the hydrogen storage kinetics of the Mg 2 Ni-type alloys, Ni in the alloy was partially substituted by element Co, and melt-spinning technology was used for the preparation of the Mg 2 Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) hydrogen storage alloys. The structures of the as-cast and spun alloys are characterized by XRD, SEM and TEM. The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys is tested by an automatic galvanostatic system. The hydrogen diffusion coefficients in the alloys are calculated by virtue of potential-step method. The electrochemical impedance spectrums (EIS) and the Tafel

  16. CO2 sequestration

    International Nuclear Information System (INIS)

    Favre, E.; Jammes, L.; Guyot, F.; Prinzhofer, A.; Le Thiez, P.

    2009-01-01

    This document presents the summary of a conference-debate held at the Academie des Sciences (Paris, France) on the topic of CO 2 sequestration. Five papers are reviewed: problems and solutions for the CO 2 sequestration; observation and surveillance of reservoirs; genesis of carbonates and geological storage of CO 2 ; CO 2 sequestration in volcanic and ultra-basic rocks; CO 2 sequestration, transport and geological storage: scientific and economical perspectives

  17. Influence of particle size of Mg powder on the microstructure and critical currents of in situ powder-in-tube processed MgB_2 wires

    International Nuclear Information System (INIS)

    Kumakura, Hiroaki; Ye, Shujun; Matsumoto, Akiyoshi; Nitta, Ryuji

    2016-01-01

    We fabricated in situ powder-in-tube(PIT) MgB_2 wires using three kinds of Mg powders with particle size of ∼45 μm, ∼150 μm and 212∼600 μm. Mg particles were elongated to filamentary structure in the wires during cold drawing process. Especially, long Mg filamentary structure was obtained for large Mg particle size of 212∼600 μm. Critical current density, J_c, increased with increasing Mg particle size for 1 mm diameter wires. This is due to the development of filamentary structure of high density MgB_2 superconducting layer along the wires. This MgB_2 structure is similar to that of the internal Mg diffusion (IMD) processed MgB_2 wires. However, J_c of the wires fabricated with 212∼600 μm Mg particle size decreased and the scattering of J_c increased with decreasing wire diameter, while the J_c of the wires with ∼45 μm Mg particle was almost independent of the wire diameter. The cross sectional area reduction of the Mg particles during the wire drawing is smaller than that of the wire. When using large size Mg particle, the number of Mg filaments in the wire cross section is small. These two facts statistically lead to the larger scattering of Mg areal fraction in the wire cross section with proceeding of wire drawing process, resulting in smaller volume fraction of MgB_2 in the wire and lower J_c with larger scattering along the wire. SiC nano powder addition is effective in increasing J_c for all Mg particle sizes. (author)

  18. Radon-calibrated emissions of CO2 from South Africa

    International Nuclear Information System (INIS)

    Gaudry, A.; Polian, G.; Ardouin, B.; Lambert, G.

    1990-01-01

    Atmospheric CO 2 and 222 Rn have been monitored at Amsterdam Island since 1980. Data were selected in order to eliminate any local influence. Typical CO 2 concentrations of the subantarctic marine atmosphere can be determined by selecting those values for which 222 Rn radioactivity was particularly low: less than 1 pCi m -3 . 222 Rn concentrations higher than 2 pCi m -3 are mainly due to injections into the subantarctic atmosphere from the continental source of South Africa. The passage of air masses under continental influence also shows typical CO 2 variations, well correlated with 222 Rn variations. From the knowledge of the global continental fluxes of 222 Rn, it has been possible to estimate CO 2 fluxes into the atmosphere from South Africa. The mean CO 2 flux corresponding to a 6-month period from May to October is about 5 millimole m -2 h -1 . Continental CO 2 emissions reach a maximum in August. (orig.)

  19. A distributed approach for secure M2M communications

    OpenAIRE

    BEN SAIED , Yosra; OLIVEREAU , Alexis; LAURENT , Maryline

    2012-01-01

    International audience; A key establishment solution for heterogeneous Machine to Machine (M2M) communications is proposed. Decentralization in M2M environment leads to situations where highly resource-constrained nodes have to establish end-to-end secured contexts with powerful remote servers, which would normally be impossible because of the technological gap between these classes of devices. This paper proposes a novel collaborative session key exchange method, wherein a highly resource-co...

  20. Existence of a solid solution from brucite to {beta}-Co(OH){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, F., E-mail: fabien.giovannelli@univ-tours.fr [LEMA, UMR 6157 CNRS - CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 Blois (France); Delorme, F.; Autret-Lambert, C. [LEMA, UMR 6157 CNRS - CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 Blois (France); Seron, A.; Jean-Prost, V. [BRGM, 3 Avenue Claude Guillemin, BP 36009, 45060 Orleans Cedex 2 (France)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A solid solution exist between Mg(OH){sub 2} and {beta}-Co(OH){sub 2}. Black-Right-Pointing-Pointer Synthesis has been performed through an easy and fast coprecipitation route. Black-Right-Pointing-Pointer No long range-ordering of the cations occurs. -- Abstract: This study shows that between brucite (Mg(OH){sub 2}) and {beta}-Co(OH){sub 2}, all the compositions are possible. The solid solution Mg{sub 1-x}Co{sub x}(OH){sub 2} has been synthesized by an easy and fast coprecipitation route and characterized by XRD and TEM. Single phase powders have been obtained. The particles exhibit platelets morphology with a size close to one hundred nanometers. XRD analysis shows an evolution of the cell parameters when x increases and demonstrates that no ordering of the cations occurs. However, extra reflections on TEM electron diffraction patterns seem to indicate that local ordering can exist. The compounds issued from this solid solution could be good candidates as precursors in order to obtain Mg-Co mixed oxide with all possible cationic ratios.

  1. Quantitative determination of phases in ZrO{sub 2} (MgO) (Y{sub 2}O{sub 3}) using the Rietveld method; Determinacao quantitativa de fases em ZrO{sub 2} - MgO - Y{sub 2}O{sub 3} utilizando o metodo de Rietveld

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Antonio Carlos de

    2007-07-01

    The key objective of this work is the crystallographic characterization of the zircon co-doped with Yttria and magnesium with the application of the Rietveld method for quantitative phase analysis of zircon polymorph (zircon monoclinic, tetragonal, and cubic). Samples of zircon polymorph were obtained from zircon doped with Yttria and magnesium at defined molar concentrations. The zircon polymorph stability during subeutetoid aging at 1350 deg C were investigated to determine ZrO{sub 2} - MgO - Y{sub 2}0{sub 3} phases degradation and to define the solid solutions stability environment. ZrO{sub 2} powders doped with 8 mol por cent of MgO and 1 mol por cent of Y{sub 2}O{sub 3}, and 9 mol por cent of MgO and 0 mol por cent of Y{sub 2}O{sub 3} have been prepared by chemical route using the co-precipitation method. These samples have been calcinate at 550 deg C, sintered at 1500 deg C and characterized by the Rietveld method using the X-ray diffraction data. The variation of the lattice parameter, changes in the phase composition and their microstructures are discussed. The application of the Rietveld method for quantitative phase analysis of zircon polymorph (zircon tetragonal and cubic) reveals no formation of tetragonal phase and indicating that the matrix is the cubic phase with low concentration of monoclinic phase.(author)

  2. Effects of Cp2Mg supply on MOVPE growth behavior of InN

    International Nuclear Information System (INIS)

    Sugita, K.; Sasamoto, K.; Hashimoto, A.; Yamamoto, A.

    2011-01-01

    This report shows the effect of Cp 2 Mg supply on MOVPE growth behavior of InN. At low growth temperature (∝600 C), the formation of adducts occurred, which degenerates the crystal quality. With increasing the growth temperature, the adduct formation was suppressed because the decomposition of Cp 2 Mg was enhanced and thus the incorporation of carbon into the film was suppressed. The use of Cp 2 Mg during InN growth increases the growth rate in the lateral direction. Non-doped InN film grown on GaN buffer has an In-face of the top side. On the other hand, the inversion domains seems to be formed in the highly Mg-doped InN. Tilt distribution decreases from 65 to 30 arcmin with the increase of Cp 2 Mg/TMI molar ratio 0 to 0.06. The donor is produced in highly Mg-doped MOVPE-grown InN (Cp 2 Mg/TMI molar ratio > 0.005). Therefore, the effect of Cp 2 Mg supply on MOVPE growth behavior of InN is found to improve a macro-scale crystal quality but also produces the donor (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Effect of CO2 Flow Rate on the Pinang Frond-Based Activated Carbon for Methylene Blue Removal

    Directory of Open Access Journals (Sweden)

    S. G. Herawan

    2013-01-01

    Full Text Available Activated carbons are regularly used the treatment of dye wastewater. They can be produced from various organics materials having high level of carbon content. In this study, a novel Pinang frond activated carbon (PFAC was produced at various CO2 flow rates in the range of 150–600 mL/min at activation temperature of 800°C for 3 hours. The optimum PFAC sample is found on CO2 flow rate of 300 mL/min which gives the highest BET surface area and pore volume of 958 m2/g and 0.5469 mL/g, respectively. This sample shows well-developed pore structure with high fixed carbon content of 79.74%. The removal of methylene blue (MB by 95.8% for initial MB concentration of 50 mg/L and 72.6% for 500 mg/L is achieved via this sample. The PFAC is thus identified to be a suitable adsorbent for removing MB from aqueous solution.

  4. Development of novel exchange spring magnet by employing nanocomposites of CoFe_2O_4 and CoFe_2

    International Nuclear Information System (INIS)

    Safi, Rohollah; Ghasemi, Ali; Shoja-Razavi, Reza; Tavoosi, Majid

    2016-01-01

    CoFe_2O_4−CoFe2 hard–soft nanocomposites were prepared via reduction of the cobalt ferrite CoFe_2O_4 in hydrogen atmosphere at different temperature. The structure and the room temperature magnetization of the samples were characterized by X-ray diffraction, field emission scanning electron microscope (FESEM) and vibrating sample magnetometer (VSM). It was found that the saturation magnetization of the nanocomposite powders increases by reduction temperature while their coercivity decreases. The highest M_r/M_s ratio of 0.52 was obtained for sample reduced at 550 °C. Single smooth hysteresis loops of nanocomposites show that these nanocomposites behave as the single-phase materials. This result indicates the presence of exchange coupling between two different hard and soft phases. - Highlights: • CoFe_2O_4–CoFe_2 was successfully synthesized by reduction diffusion process. • Two phases are effectively exchange coupled in nanocomposite. • Single smooth hysteresis loop was developed in nanocomposites.

  5. Comparison of Ca2+ and Mg2+ enhancing aerobic granulation in SBR

    International Nuclear Information System (INIS)

    Liu Lin; Gao Dawen; Zhang Min; Fu Yuan

    2010-01-01

    Two sequencing batch reactors (SBRs) were operated to investigate the effect of Ca 2+ and Mg 2+ augmentation on aerobic granulation. Reactor R1 was augmented with Ca 2+ at 40 mg/L, while Mg 2+ was added to the reactor R2 with 40 mg/L. Results showed that the reactor R1 had a faster granulation process compared with R2, and the mature granules in R1 showed better physical characteristics. However, the mature granules in R2 had the higher production yield of polysaccharides and proteins, and aerobic granules in R2 experienced a faster substrate biodegradation. Microbial and genetic characteristics in mature granules were analyzed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The results revealed that Mg 2+ addition led to higher microbial diversity in mature granules. In addition, an uncultured bacterium (AB447697) was major specie in R1, and β-proteobacterium was dominant in R2. It can be concluded that Ca 2+ had an important effect on physical properties of aerobic granules, while Mg 2+ played a key role on biological properties during the sludge granulation.

  6. Oxidation and Condensation of Zinc Fume From Zn-CO2-CO-H2O Streams Relevant to Steelmaking Off-Gas Systems

    International Nuclear Information System (INIS)

    Bronson, Tyler Mark; Ma, Naiyang; Zhu, Liang Zhu; Sohn, Hong Yong

    2017-01-01

    Here the objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO 2 -CO-H 2 O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H 2 O or CO 2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO 2 /CO = 40/7). Rate expressions that correlate CO 2 and H 2 O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows: Rate ((mol)/(m 2 s)) = 406 exp ((−50.2kJ/mol)/(RT)) (pZnpCO 2 − PCO/K eq CO 2 ) ((mol)/(m 2 xs)) Rate (((mol)/(m 2 s))) = 32.9 exp (((−13.7kJ/mol)/(RT))) (pZnPH 2 O − PH 2 /K eq H 2 O) ((mol)/(m 2 xs)). It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO 2 and H 2 O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the measured data. For the conditions used in this study, the rate equations for the oxidation of zinc by

  7. Development of New Potassium Carbonate Sorbent for CO2 Capture under Real Flue Gas Conditions

    Directory of Open Access Journals (Sweden)

    Javad Esmaili

    2014-07-01

    Full Text Available In this paper, the development of a new potassium carbonateon alumina support sorbent prepared by impregnating K2CO3 with an industrial grade of Al2O3 support was investigated. The CO2 capture capacity was measured using real flue gas with 8% CO2 and 12% H2O in a fixed-bed reactor at a temperature of 65 °C using breakthrough curves. The developed sorbent showed an adsorption capacity of 66.2 mgCO2/(gr sorbent. The stability of sorbent capture capacity was higher than the reference sorbent. The SO2 impurity decreased sorbent capacity about 10%. The free carbon had a small effect on sorbent capacity after 5 cycles. After 5 cycles of adsorption and regeneration, the changes in the pore volume and surface area were 0.020 cm3/gr and 5.5 m2/gr respectively. Small changes occurred in the pore size distribution and surface area of sorbent after 5 cycles.

  8. Synthesis, electrochemical investigation and structural analysis of doped Li[Ni0.6Mn0.2Co0.2-xMx]O2 (x = 0, 0.05; M = Al, Fe, Sn) cathode materials

    Science.gov (United States)

    Eilers-Rethwisch, Matthias; Winter, Martin; Schappacher, Falko Mark

    2018-05-01

    Layered Ni-rich Li[Ni0.6Mn0.2Co0.2-xMx]O2 cathode materials (x = 0, 0.05; M = Al, Fe, Sn) are synthesized via a co-precipitation synthesis route and the effect of dopants on the structure and electrochemical performance is investigated. All synthesized materials show a well-defined layered structure of the hexagonal α-NaFeO2 phase investigated by X-ray diffraction (XRD). Undoped LiNi0.6Mn0.2Co0.2O2 exhibits a discharge capacity of 170 mAh g-1 in Li-metal 2032 coin-type cells. Doped materials reach lower capacities between 145 mAh g-1 for Al and 160 mAh g-1 for Sn. However, all doped materials prolong the cycle life by up to 20%. Changes of the lattice parameter before and after delithiation yield information about structural stability. A smaller repulsion of the transition metal layer during delithiation in the Sn-doped material leads to a smaller expansion of the unit cell, which results in enhanced structural stability of the material. The improved structural stability of Sn-doped NMC cathode active material is proven by thermal investigations with the help of Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA).

  9. Supercritical CO2 Extraction of Lavandula angustifolia Mill. Flowers: Optimisation of Oxygenated Monoterpenes, Coumarin and Herniarin Content.

    Science.gov (United States)

    Jerković, Igor; Molnar, Maja; Vidović, Senka; Vladić, Jelena; Jokić, Stela

    2017-11-01

    Lavandula angustifolia is good source of oxygenated monoterpenes containing coumarins as well, which are all soluble in supercritical CO 2 (SC-CO 2 ). The study objective is to investigate SC-CO 2 extraction parameters on: the total yield; GC-MS profile of the extracts; relative content of oxygenated monoterpenes; the amount of coumarin and herniarin; and to determine optimal SC-CO 2 extraction conditions by response surface methodology (RSM). SC-CO 2 extraction was performed under different pressure, temperature and CO 2 flow rate determined by Box-Behnken design (BBD). The sample mass and the extraction time were kept constant. The chemical profiles and relative content of oxygenated monoterpenes (as coumarin equivalents, CE) were determined by GC-MS. Coumarin and herniarin concentrations were dosed by HPLC. SC-CO 2 extracts contained linalool (57.4-217.9 mg CE/100 g), camphor (10.6-154.4 mg CE/100 g), borneol (6.2-99.9 mg CE/100 g), 1,8-cineole (5.0-70.4 mg CE/100 g), linalyl acetate (86.1-267.9 mg CE/100 g), coumarin (0.95-18.16 mg/100 g), and herniarin (0.95-13.63 mg/100 g). The interaction between the pressure and CO 2 flow rate as well as between the temperature and CO 2 flow rate showed statistically significant influence on the extraction yield. Applying BBD, the optimum extraction conditions for higher monoterpenes and lower coumarin content were at 10 MPa, 41°C and CO 2 flow rate 2.3 kg/h, and at 30 MPa, 50°C and CO 2 flow rate 3 kg/h for higher monoterpenes and coumarin content. SC-CO 2 extraction is a viable technique for obtaining lavender extracts with desirable flavour components. The second-order model based on BBD predicts the results for SC-CO 2 extraction quite satisfactorily. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Mass transfer of ammonia escape and CO2 absorption in CO2 capture using ammonia solution in bubbling reactor

    International Nuclear Information System (INIS)

    Ma, Shuangchen; Chen, Gongda; Zhu, Sijie; Han, Tingting; Yu, Weijing

    2016-01-01

    Highlights: • Mass transfer coefficient models of ammonia escape were built. • Influences of temperature, inlet CO 2 and ammonia concentration were studied. • Mass transfer coefficients of ammonia escape and CO 2 absorption were obtained. • Studies can provide the basic data as a reference guideline for process application. - Abstract: The mass transfer of CO 2 capture using ammonia solution in the bubbling reactor was studied; according to double film theory, the mass transfer coefficient models and interface area model were built. Through our experiments, the overall volumetric mass transfer coefficients were obtained, while the interface areas in unit volume were estimated. The volumetric mass transfer coefficients of ammonia escaping during the experiment were 1.39 × 10 −5 –4.34 × 10 −5 mol/(m 3 s Pa), and the volumetric mass transfer coefficients of CO 2 absorption were 2.86 × 10 −5 –17.9 × 10 −5 mol/(m 3 s Pa). The estimated interface area of unit volume in the bubbling reactor ranged from 75.19 to 256.41 m 2 /m 3 , making the bubbling reactor a viable choice to obtain higher mass transfer performance than the packed tower or spraying tower.

  11. Current 2m dial measurements of atmospheric CO2 and expected results from space using new MCT APDS

    Science.gov (United States)

    Dumas, A.; Gibert, F.; Rothman, J.; Édouart, D.; Le Mounier, F.; Cénac, C.

    2017-11-01

    In the framework of CO2 monitoring in the Atmospheric Boundary Layer (ABL), a ground-based 2m Differential Absorption Lidar (DIAL) has been developed at the Laboratoire de Météorologie Dynamique (LMD) in Palaiseau. In order to derive flux information, this system has been set up with coherent detection, which allows to combine CO2 density measurements with wind velocity measurements. On the other hand, new advances in the field of Mercury Cadmium Tellure (MCT) Avalanche Photodiodes (APDs) open the way for high-precision measurements in direct detection ultimately from space. In this study, we first report on state of the art measurements obtained with the current coherent DIAL system before presenting expected results for a similar laser transmitter equipped with MCT APDs. For this latter part, we use a numerical model which relies on APDs performance data provided by the Laboratoire d'Électronique et de Technologie de l'Information (LETI).

  12. Potential environmental issues of CO2 storage in deep saline aquifers: Geochemical results from the Frio-I Brine Pilot test, Texas, USA

    Science.gov (United States)

    Kharaka, Yousif K.; Thordsen, James J.; Hovorka, Susan D.; Nance, H. Seay; Cole, David R.; Phelps, Tommy J.; Knauss, Kevin G.

    2009-01-01

    Sedimentary basins in general, and deep saline aquifers in particular, are being investigated as possible repositories for large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes. To investigate the potential for the long-term storage of CO2 in such aquifers, 1600 t of CO2 were injected at 1500 m depth into a 24-m-thick "C" sandstone unit of the Frio Formation, a regional aquifer in the US Gulf Coast. Fluid samples obtained before CO2 injection from the injection well and an observation well 30 m updip showed a Na–Ca–Cl type brine with ∼93,000 mg/L TDS at saturation with CH4 at reservoir conditions; gas analyses showed that CH4 comprised ∼95% of dissolved gas, but CO2 was low at 0.3%. Following CO2 breakthrough, 51 h after injection, samples showed sharp drops in pH (6.5–5.7), pronounced increases in alkalinity (100–3000 mg/L as HCO3) and in Fe (30–1100 mg/L), a slug of very high DOC values, and significant shifts in the isotopic compositions of H2O, DIC, and CH4. These data, coupled with geochemical modeling, indicate corrosion of pipe and well casing as well as rapid dissolution of minerals, especially calcite and iron oxyhydroxides, both caused by lowered pH (initially ∼3.0 at subsurface conditions) of the brine in contact with supercritical CO2.These geochemical parameters, together with perfluorocarbon tracer gases (PFTs), were used to monitor migration of the injected CO2 into the overlying Frio “B”, composed of a 4-m-thick sandstone and separated from the “C” by ∼15 m of shale and siltstone beds. Results obtained from the Frio “B” 6 months after injection gave chemical and isotopic markers that show significant CO2 (2.9% compared with 0.3% CO2 in dissolved gas) migration into the “B” sandstone. Results of samples collected 15 months after injection, however, are ambiguous, and can be interpreted to show no additional injected CO2 in the “B” sandstone

  13. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees; Andrew Sexton; Daniel Ellenberger

    2005-10-26

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Modeling of stripper performance suggests that vacuum stripping may be an attractive configuration for all solvents. Flexipac 1Y structured packing performs in the absorber as expected. It provides twice as much mass transfer area as IMTP No.40 dumped packing. Independent measurements of CO{sub 2} solubility give a CO{sub 2} loading that is 20% lower than that Cullinane's values with 3.6 m PZ at 100-120 C. The effective mass transfer coefficient (K{sub G}) in the absorber with 5 m K/2.5 m PZ appears to be 0 to 30% greater than that of 30 wt% MEA.

  14. Enhanced supercapacitor performance using hierarchical TiO2 nanorod/Co(OH)2 nanowall array electrodes

    International Nuclear Information System (INIS)

    Ramadoss, Ananthakumar; Kim, Sang Jae

    2014-01-01

    Graphical abstract: - Highlights: • TiO 2 /Co(OH) 2 hierarchical nanostructure was prepared by a combination of hydrothermal and cathodic electrodeposition method. • Hierarchical nanostructure electrode exhibited a maximum capacitance of 274.3 mF cm −2 at a scan rate of 5 mV s −1 . • Combination of Co(OH) 2 nanowall with TiO 2 NR into a single system enhanced the electrochemical behavior of supercapacitor electrode. - Abstract: We report novel hierarchical TiO 2 nanorod (NR)/porous Co(OH) 2 nanowall array electrodes for high-performance supercapacitors fabricated using a two-step process that involves hydrothermal and electrodeposition techniques. Field-emission scanning electron microscope images reveal a bilayer structure consisting of TiO 2 NR arrays with porous Co(OH) 2 nanowalls. Compared with the bare TiO 2 NRs, the hierarchical TiO 2 NRs/Co(OH) 2 electrodes showed improved pseudocapacitive performance in a 2-M KOH electrolyte solution, exhibiting an areal specific capacitance of 274.3 mF cm −2 at a scan rate of 5 mV s −1 . The electrodes exhibited good stability, retaining 82.5% of the initial capacitance after 4000 cycles. The good pseudocapacitive performance of the hierarchical nanostructures is mainly due to the porous structure, which provides fast ion and electron transfer, a large surface area, short ion diffusion paths, and a favourable volume change during the cycling process

  15. Retrieval of average CO2 fluxes by combining in situ CO2 measurements and backscatter lidar information

    Science.gov (United States)

    Gibert, Fabien; Schmidt, Martina; Cuesta, Juan; Ciais, Philippe; Ramonet, Michel; Xueref, IrèNe; Larmanou, Eric; Flamant, Pierre Henri

    2007-05-01

    The present paper deals with a boundary layer budgeting method which makes use of observations from various in situ and remote sensing instruments to infer regional average net ecosystem exchange (NEE) of CO2. Measurements of CO2 within and above the atmospheric boundary layer (ABL) by in situ sensors, in conjunction with a precise knowledge of the change in ABL height by lidar and radiosoundings, enable to infer diurnal and seasonal NEE variations. Near-ground in situ CO measurements are used to discriminate natural and anthropogenic contributions of CO2 diurnal variations in the ABL. The method yields mean NEE that amounts to 5 μmol m-2 s-1 during the night and -20 μmol m-2 s-1 in the middle of the day between May and July. A good agreement is found with the expected NEE accounting for a mixed wheat field and forest area during winter season, representative of the mesoscale ecosystems in the Paris area according to the trajectory of an air column crossing the landscape. Daytime NEE is seen to follow the vegetation growth and the change in the ratio diffuse/direct radiation. The CO2 vertical mixing flux during the rise of the atmospheric boundary layer is also estimated and seems to be the main cause of the large decrease of CO2 mixing ratio in the morning. The outcomes on CO2 flux estimate are compared to eddy-covariance measurements on a barley field. The importance of various sources of error and uncertainty on the retrieval is discussed. These errors are estimated to be less than 15%; the main error resulted from anthropogenic emissions.

  16. Existence of a solid solution from brucite to β-Co(OH)2

    International Nuclear Information System (INIS)

    Giovannelli, F.; Delorme, F.; Autret-Lambert, C.; Seron, A.; Jean-Prost, V.

    2012-01-01

    Highlights: ► A solid solution exist between Mg(OH) 2 and β-Co(OH) 2 . ► Synthesis has been performed through an easy and fast coprecipitation route. ► No long range-ordering of the cations occurs. -- Abstract: This study shows that between brucite (Mg(OH) 2 ) and β-Co(OH) 2 , all the compositions are possible. The solid solution Mg 1−x Co x (OH) 2 has been synthesized by an easy and fast coprecipitation route and characterized by XRD and TEM. Single phase powders have been obtained. The particles exhibit platelets morphology with a size close to one hundred nanometers. XRD analysis shows an evolution of the cell parameters when x increases and demonstrates that no ordering of the cations occurs. However, extra reflections on TEM electron diffraction patterns seem to indicate that local ordering can exist. The compounds issued from this solid solution could be good candidates as precursors in order to obtain Mg–Co mixed oxide with all possible cationic ratios.

  17. Hydrothermal Valorization of Steel Slags—Part I: Coupled H2 Production and CO2 Mineral Sequestration

    Directory of Open Access Journals (Sweden)

    Camille Crouzet

    2017-10-01

    Full Text Available A new process route for the valorization of BOF steel slags combining H2 production and CO2 mineral sequestration is investigated at 300°C (HT under hydrothermal conditions. A BOF steel slag stored several weeks outdoor on the production site was used as starting material. To serve as a reference, room temperature (RT carbonation of the same BOF steel slag has been monitored with in situ Raman spectroscopy and by measuring pH and PCO2 on a time-resolved basis. CO2 uptake under RT and HT are, respectively, 243 and 327 kg CO2/t of fresh steel slag, which add up with the 63 kg of atmospheric CO2 per ton already uptaken by the starting steel slag on the storage site. The CO2 gained by the sample at HT is bounded to the carbonation of brownmillerite. H2 yield decreased by about 30% in comparison to the same experiment performed without added CO2, due to sequestration of ferrous iron in a Mg-rich siderite phase. Ferric iron, initially present in brownmillerite, is partitioned between an Fe-rich clay mineral of saponite type and metastable hematite. Saponite is likely stabilized by the presence of Al, whereas hematite may represent a metastable product of brownmillerite carbonation. Mg-rich wüstite is involved in at least two competing reactions, i.e., oxidation into magnetite and carbonation into siderite. Results of both water-slag and water-CO2-slag experiments after 72 h are consistent with a kinetics enhancement of the former reaction when a CO2 partial pressure imposes a pH between 5 and 6. Three possible valorization routes, (1 RT carbonation prior to hydrothermal oxidation, (2 RT carbonation after hydrothermal treatment, and (3 combined HT carbonation and oxidation are discussed in light of the present results and literature data.

  18. Development of Double and Triple-Pulsed 2-micron IPDA Lidars for Column CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Reithmaier, Karl

    2015-01-01

    Carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and globalradiation budget on Earth. CO2 role on Earth’s climate is complicated due to different interactions with various climatecomponents that include the atmosphere, the biosphere and the hydrosphere. Although extensive worldwide efforts formonitoring atmospheric CO2 through various techniques, including in-situ and passive sensors, are taking place highuncertainties exist in quantifying CO2 sources and sinks. These uncertainties are mainly due to insufficient spatial andtemporal mapping of the gas. Therefore it is required to have more rapid and accurate CO2 monitoring with higheruniform coverage and higher resolution. CO2 DIAL operating in the 2-µm band offer better near-surface CO2measurement sensitivity due to the intrinsically stronger absorption lines. For more than 15 years, NASA LangleyResearch Center (LaRC) contributed in developing several 2-?m CO2 DIAL systems and technologies. This paperfocuses on the current development of the airborne double-pulsed and triple-pulsed 2-?m CO2 integrated pathdifferential absorption (IPDA) lidar system at NASA LaRC. This includes the IPDA system development andintegration. Results from ground and airborne CO2 IPDA testing will be presented. The potential of scaling suchtechnology to a space mission will be addressed.

  19. Effect of boron addition on the microstructure and electrochemical performance of La2Mg(Ni0.85Co0.15)9 hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Dong Xiaoping; Wang Guoqing; Guo Shihai; Ren Jiangyuan; Wang Xinlin

    2006-01-01

    In order to improve the electrochemical performances of La-Mg-Ni system (PuNi 3 -type) hydrogen storage alloy, a trace of boron was added in La 2 Mg(Ni 0.85 Co 0.15 ) 9 and rapid quenching techniques were used. La 2 Mg(Ni 0.85 Co 0.15 ) 9 B x (x = 0, 0.05, 0.1, 0.15, 0.2) hydrogen storage alloys were prepared by casting and rapid quenching. The microstructures and electrochemical performances of the as-cast and quenched alloys were determined and measured. The effects of the boron content and the quenching rate on the microstructures and electrochemical performances of the alloys were investigated in detail. The obtained results show that the as-cast and quenched alloys are composed of the (La, Mg)Ni 3 phase (PuNi 3 structure), the LaNi 5 phase and the LaNi 2 phase. A trace of the Ni 2 B phase exists in the as-cast alloys containing boron. The Ni 2 B phase in the alloys containing boron nearly disappears after rapid quenching and the relative amount of each phase in the alloys changes with the variety of the quenching rate. The addition of boron obviously enhances the cycle stability of the as-cast and quenched alloys. The effects of boron content on the capacities of the as-cast and quenched alloys are different. The capacities of the as-cast alloys monotonously decrease with the increase of boron content, whereas the capacities of the as-quenched alloys have a maximum value with the change of boron content. The as-cast and quenched alloys have an excellent activation performance

  20. Calcite Wettability in the Presence of Dissolved Mg2+ and SO42-

    DEFF Research Database (Denmark)

    Generosi, Johanna; Ceccato, Marcel; Andersson, Martin Peter

    2017-01-01

    that potential determining ions in seawater, Mg2+, Ca2+, and SO42–, are responsible for altering the wettability of calcite surfaces. In favorable conditions, e.g., elevated temperature, calcium at the calcite surface can be replaced by magnesium, making organic molecules bind more weakly and water molecules...... bind more strongly, rendering the surface more hydrophilic. We used atomic force microscopy in chemical force mapping mode to probe the adhesion forces between a hydrophobic CH3-terminated AFM tip and a freshly cleaved calcite {10.4} surface to investigate wettability change in the presence of Mg2...... with calcite even after rinsing with CaCO3-saturated deionized water, suggesting sorption on or in calcite. When the calcite-saturated solution of MgSO4 was replaced by calcite-saturated NaCl at the same ionic strength, adhesion force increased again, indicating that the effect is reversible and suggesting Mg...

  1. Comparative study of etched enamel and dentin for the adhesion of composite resins with the Er:YAG 2,94 μm laser and CO2 9,6 μm laser: morphological (SEM) and tensile bond strength analysis

    International Nuclear Information System (INIS)

    Marraccini, Tarso Mugnai

    2002-01-01

    The aim of this study was to evaluate and compare the tensile bond strength of a composite resin adhered to the enamel and dentin which have received superficial irradiation with an Er:YAG laser (2.94 μm) or with CO 2 laser ( 9.6 μm) and later on etched with the phosphoric acid at 35%. After the use of the adhesive system, resin cones were made on the etched surfaces by both lasers and tensile bond strength tests were performed. All samples were observed at the SEM - there was an increase of the degree of fusion and resolidification in the irradiated enamel and dentin samples with the CO 2 laser (9.6 μm), creating a vitrified layer with tiny craters. With the Er:YAG laser (2.94 μm) there were typical morphological explosive microablation with the exposition of the tubules in the dentin.The surface acquired by the association of the CO 2 laser ( 9.6 μm) plus acid etching no longer presented the aspect of fusion being this layer completely removed. There were statistical significant differences among ali three methods of etching in the treatment of the enamel and dentin surface. The tensile bond strength test showed that etching of these enamel and dentin surfaces with acid exclusively (control group) presented great values, surpassing the values of the etching acquired with the Er:YAG laser (2.94 μ) plus acid or the CO 2 laser (9.6 μm) plus acid. With the parameters used in this experiment the Er:YAG laser (2.94 μm) showed to be more effective than the CO 2 laser (9.6 μm) for the hard dental surfaces etching procedure. (author)

  2. Preparation of LiMO2(M=Co,Ni) cathode materials for intermediate temperature fuel cells by sol-gel processes

    DEFF Research Database (Denmark)

    Tao, S.W.; Wu, Q.Y.; Zhan, Z.L.

    1999-01-01

    LiMO2 (M = Co, Ni) was prepared by complexing sol-gel processes. The phase and thermal stability were characterized by XRD and TG analyses. LiCoO2 and LiNiO2 phases are formed around 400 degrees C and 700 degrees C respectively in our synthesis process. LiNiO2 exhibit higher electrical conductivity...

  3. Luminescence of color centers in MgF2 crystals

    International Nuclear Information System (INIS)

    Vakhidov, Sh.A.; Nuritdinov, I.; Musaeva, M.A.

    1999-01-01

    The photoluminescence characteristics of the proper radiation color centers of the MgF 2 crystals are studied. The samples were irradiated by the 60 Co source γ-rays up to the dose 10 7 Gy. The bands with the maxima in the area of 420, 460, 550 and 620 nm were identified, which are excited correspondingly in the bands with the maxima of 370, 320, 410 and 480 nm

  4. El CO2 como disolvente y como reactivo

    OpenAIRE

    La Franca Pitarresi, Vincenzo Rosario

    2016-01-01

    Existen numerosas ventajas asociada con el uso de CO2 , tanto como disolvente que como reactivo, y todas se pueden resumir en cuatro categorías generales: beneficios ambiental, beneficios de salud y seguridad, beneficios en el procedimiento y beneficios químicos. Los procesos que implican el CO2 como disolvente no aumentaría las emisiones de CO2, más bien proporcionaría una oportunidad para el reciclaje de CO2 residual. Además, los esfuerzos para secuestrar el CO2 producido de los gases de co...

  5. Improved hydrogen storage properties of MgH2 catalyzed with TiO2

    Science.gov (United States)

    Jangir, Mukesh; Meena, Priyanka; Jain, I. P.

    2018-05-01

    In order to improve the hydrogenation properties of the MgH2, various concentration of rutile Titanium Oxide (TiO2) (X wt%= 5, 10, 15 wt %) is added to MgH2 by ball milling and the catalytic effect of TiO2 on hydriding/dehydriding properties of MgH2 has been investigated. Result shows that the TiO2 significantly reduced onset temperature of desorption. Onset temperature as low as 190 °C were observed for the MgH2-15 wt% TiO2 sample which is 60 °C and 160 °C lower than the as-milled and as-received MgH2. Fromm the Kissinger plot the activation energy of 15 wt% TiO2 added sample is calculated to be -75.48 KJ/mol. These results indicate that the hydrogenation properties of MgH2-TiO2 have been improved compared to the as-milled and as-received MgH2. Furthermore, XRD and XPS were performed to characterize the structural evolution upon milling and dehydrogenation.

  6. Termites as a factor of spatial differentiation of CO2 fluxes from the soils of monsoon tropical forests in Southern Vietnam

    Science.gov (United States)

    Lopes de Gerenyu, Valentin; Anichkin, Alexander

    2016-04-01

    Termites play the key role in biogeochemical transformation of organic matter acting as "moderators" of fluxes of carbon and other nutrients. They destroy not only leave litter but also coarse woody debris. Termites translocate considerable masses of dead organic materials into their houses, which leads to significant accumulations of organic matter in termite mounds. We studied the impact of termite mounds on redistribution of CO2 fluxes from soils in semi-deciduous monsoon tropical forests of southern Vietnam. Field study was performed in the Cat Tien National Park (11°21'-11°48'N, 107°10'-107°34'E). The spatial and temporary dynamics of CO2 fluxes from soils (Andosols) populated by termites were studied in plain lagerstroemia (Lagerstroemia calyculata Kurz) monsoon tropical forests. The rate of CO2 emission from the soil surface was measured by closed chamber method two-three times per month from November 2010 to December 2011. Permanent cylindrical PVC chambers (9 cm in diameter and 15 cm in height) were installed beyond the areas occupied by termite mounds (5 replications). Litter was not removed from the soil surface before the measurements. To estimate the spatial heterogeneity of the CO2 emission fluxes from soils populated by termites, a special 'termite' plot (TerPl) was equipped. It was 10×10 m in size and included three termite mounds: one mound built up by Globitermes sulphureus and two mounds populated by termites of the Odontotermes genus. Overall, 52 PVC chambers were installed permanently on the 'termite' plot (ca. 1 m apart from one another). The CO2 emission rate from TerPl was also measured by chamber closed method once in the dry season (April) and twice through the wet season (July and August). The average rate of CO2 emission from termite mounds was two times higher than that from the surrounding area (SurAr). In the dry season, it comprised 91±7 mg C/m2/h from the surrounding soils and 196±16 mg C/m2/h from the termite mounds. In the

  7. Brine/CO2 Interfacial Properties and Effects on CO2 Storage in Deep Saline Aquifers Propriétés interfaciales saumure/CO2 et effets sur le stockage du CO2 dans des aquifères salins profonds

    Directory of Open Access Journals (Sweden)

    Chalbaud C.

    2010-05-01

    Full Text Available It has been long recognized that interfacial interactions (interfacial tension, wettability, capillarity and interfacial mass transfer govern fluid distribution and behaviour in porous media. Therefore the interfacial interactions between CO2, brine and reservoir oil and/or gas have an important influence on the effectiveness of any CO2 storage operation. There is a lack of experimental data related to interfacial properties for all the geological storage options (oil & gas reservoirs, coalbeds, deep saline aquifers. In the case of deep saline aquifers, there is a gap in data and knowledge of brine-CO2 interfacial properties at storage conditions. More specifically, experimental interfacial tension values and experimental tests in porous media are necessary to better understand the wettability evolution as a function of thermodynamic conditions and it’s effects on fluid flow in the porous media. In this paper, a complete set of experimental values of brine-CO2 Interfaciale Tension (IFT at pressure, temperature and salt concentration conditions representative of those of a CO2 storage operation. A correlation is derived from experimental data published in a companion paper [Chalbaud C., Robin M., Lombard J.-M., Egermann P., Bertin H. (2009 Interfacial Tension Measurements and Wettability Evaluation for Geological CO2 Storage, Adv. Water Resour. 32, 1, 1-109] to model IFT values. This paper pays particular attention to coreflooding experiments showing that the CO2 partially wets the surface in a Intermediate-Wet (IW or Oil-Wet (OW limestone rock. This wetting behavior of CO2 is coherent with observations at the pore scale in glass micromodels and presents a negative impact on the storage capacity of a given site. Il est admis depuis longtemps que les propriétés interfaciales (tension interfaciale, mouillabilité, capillarité et transfert de masse régissent la distribution et le comportement des fluides au sein des milieux poreux. Par cons

  8. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees; Andrew Sexton; Amorvadee Veawab

    2005-01-26

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. In Campaign 3 of the pilot plant, the overall mass transfer coefficient for the stripper with 7 m MEA decreased from 0.06 to 0.01 mol/(m{sup 3}.s.kPa) as the rich loading increased from 0.45 to 0.6 mol CO{sub 2}/mol MEA. Anion chromatography has demonstrated that nitrate and nitrite are major degradation products of MEA and PZ with pure oxygen. In measurements with the high temperature FTIR in 7 m MEA the MEA vapor pressure varied from 2 to 20 Pa at 35 to 70 C. In 2.5 m PZ the PZ vapor pressure varied from 0.2 to 1 Pa from 37 to 70 C.

  9. Production of Microalgal Lipids as Biodiesel Feedstock with Fixation of CO2 by Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Qiao Hu

    2014-01-01

    Full Text Available The global warming and shortage of energy are two critical problems for human social development. CO2 mitigation and replacing conventional diesel with biodiesel are effective routes to reduce these problems. Production of microalgal lipids as biodiesel feedstock by a freshwater microalga, Chlorella vulgaris, with the ability to fixate CO2 is studied in this work. The results show that nitrogen deficiency, CO2 volume fraction and photoperiod are the key factors responsible for the lipid accumulation in C. vulgaris. With 5 % CO2, 0.75 g/L of NaNO3 and 18:6 h of light/dark cycle, the lipid content and overall lipid productivity reached 14.5 % and 33.2 mg/(L·day, respectively. Furthermore, we proposed a technique to enhance the microalgal lipid productivity by activating acetyl-CoA carboxylase (ACCase with an enzyme activator. Citric acid and Mg2+ were found to be efficient enzyme activators of ACCase. With the addition of 150 mg/L of citric acid or 1.5 mmol/L of MgCl2, the lipid productivity reached 39.1 and 38.0 mg/(L·day, respectively, which was almost twofold of the control. This work shows that it is practicable to produce lipids by freshwater microalgae that can fixate CO2, and provides a potential route to solving the global warming and energy shortage problems.

  10. Effect of Ni/Al2O3-SiO2 and Ni/Al2O3-SiO2 with K2O Promoter Catalysts on H2, CO and CH4 Concentration by CO2 Gasification of Rosa Multiflora Biomass

    Directory of Open Access Journals (Sweden)

    Tursunov Obid

    2017-11-01

    Full Text Available The thermal behaviour of the Rosa mutiflora biomass by thermogravimetric analysis was studied at heating rate 3 K min−1 from ambient temperature to 950 °C. TGA tests were performed in high purity carbon dioxide (99 998% with a flow rate 200 ml/min and 100 mg of sample, milled and sieved to a particle size below 250 µm. Moreover, yields of gasification products such as hydrogen (H2, carbon monoxide (CO and methane (CH4 were determined based on the thermovolumetric measurements of catalytic (Ni/Al2O3-SiO2 and Ni/Al2O3-SiO2 with K2O promoter catalysts and non-catalytic gasification of the Rosa multiflora biomass. Additionally, carbon conversion degrees are presented. Calculations were made of the kinetic parameters of carbon monoxide and hydrogen formation reaction in the catalytic and non-catalytic CO2 gasification processes. A high temperature of 950 °C along with Ni/Al2O3-SiO2and Ni/Al2O3-SiO2 with K2O promoter catalysts resulted in a higher conversion of Rosa multiflora biomass into gaseous yield production with greatly increasing of H2 and CO contents. Consequently, H2 and CO are the key factors to produce renewable energy and bio-gases (synthesis gas. The parameters obtained during the experimental examinations enable a tentative assessment of plant biomasses for the process of large-scale gasification in industrial sectors.

  11. Dehydriding reaction of Mg(NH2)2-LiH system under hydrogen pressure

    International Nuclear Information System (INIS)

    Aoki, M.; Noritake, T.; Kitahara, G.; Nakamori, Y.; Towata, S.; Orimo, S.

    2007-01-01

    The dehydriding and structural properties of the 3Mg(NH 2 ) 2 + 12LiH system under hydrogen pressure were investigated using the pressure-composition (p-c) isotherm measurement and X-ray diffraction (XRD) analysis. Two distinct regions, a plateau region and a sloping region, can be seen on the p-c isotherms and the amount of the desorbed hydrogen at 523 K was 4.9 mass%. The enthalpy of hydrogenation calculated using a van't Hoff plot was -46 kJ/mol H 2 . The dehydriding reaction was proposed for the 3Mg(NH 2 ) 2 + 12LiH system based on the obtained p-c isotherms and XRD profiles and chemical valences of Li, Mg, N, and H. In the plateau region on the p-c isotherm, Mg(NH 2 ) 2 , Li 4 Mg 3 (NH 2 ) 2 (NH) 4 (tetragonal), and LiH phases coexist and the molar ratio of the Li 4 Mg 3 (NH 2 ) 2 (NH) 4 phase increases (while those of Mg(NH 2 ) 2 and LiH phases decrease) with the amount of the desorbed hydrogen. On the other hand, the mixture of Li 4+x Mg 3 (NH 2 ) 2-x (NH) 4+x + (8-x)LiH (0 ≤ x ≤ 2) is formed and the lattice volume of the Li 4+x Mg 3 (NH 2 ) 2-x (NH) 4+x phase continuously increases with the amount of the desorbed hydrogen in the sloping region on the p-c isotherm

  12. Connecting CO2. Feasibility study CO2 network Southwest Netherlands; Connecting CO2. Haalbaarheidsstudie CO2-netwerk Zuidwest-Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Rutten, M.

    2009-06-10

    An overview is given of supply and demand of CO2 in the region Southwest Netherlands and the regions Antwerp and Gent in Belgium. Also attention is paid to possible connections between these regions [Dutch] Een inventarisatie wordt gegeven van vraag en aanbod van CO2 in de regio Zuidwest- Nederland en de regios Antwerpen en Gent in Belgie. Ook worden mogelijke koppelingen tussen de regios besproken.

  13. Population pharmacokinetics of oxaliplatin (85 mg/m(2)) in combination with 5-fluorouracil in patients with advanced colorectal cancer

    NARCIS (Netherlands)

    Kho, Y.H.; Jansman, F.G.A.; Prins, N.H.; Neef, C.; Brouwers, J.R.B.J.

    Pharmacokinetic (PK) studies of oxaliplatin, using a dose regimen of 85mg/m(2) are lacking. A PK model may be used in future studies to investigate the relationship between pharmacokinetics and dose limiting toxicity. The purpose of this study was to construct a population PK model to describe

  14. Structural and optical properties of Ta{sub 2}O{sub 5}:Eu{sup 3+}: Mg{sup 2+} or Ca{sup 2+} phosphor prepared by molten salt method

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Naveen, E-mail: vermanaveen17@gmail.com; Singh, Krishan Chander; Jindal, Jitender [Department of chemistry, Maharshi Dayanand University, Rohtak-124001 – India (India); Mari, Bernabe; Mollar, Miguel; Manjón, F. J. [Institut de Disseny per la Fabricació Automatitzada - Departament de Física Aplicada, Universitat Politècnica de València, Camí de Vera s/n, 46022 València (Spain); Rana, Ravi [Department of Chemistry, SGT University, Gurgaon (India); Pereira, A. L. J. [Universitat Politècnica de València, 46022 València (Spain)

    2016-04-13

    Ta{sub 2}O{sub 5}:Eu{sup 3+}: Mg{sup 2+} or Ca{sup 2+} phosphor materials were prepared by molten salt method using KCl as flux. The X-ray diffraction (XRD) patterns illustrated that the well crystallized Ta{sub 2}O{sub 5}:Eu{sup 3+}: Mg{sup 2+} or Ca{sup 2+} were formed in the presence of flux under reduced temperature (800 °C) in contrast to conventional solid state method (1200-1500 °C). Scanning electron microscope (SEM) images indicate the achievement of well dispersed particles (hexagonal tablet and rod-like structures). Meanwhile, the photo-luminescent studies demonstrated that Ta{sub 2}O{sub 5} is an efficient host to sensitize europium red emissions. The addition of Mg{sup 2+} or Ca{sup 2+} as co-dopant enhanced the luminescent intensity of Ta{sub 2}O{sub 5}: Eu{sup 3+} compound.

  15. Efeito da adição de CO2 sobre o crescimento microbiano em macarrão tipo massa fresca Effect of CO2 addition on microbial growth in fresh pasta

    Directory of Open Access Journals (Sweden)

    Renato Souza Cruz

    2002-08-01

    Full Text Available O presente trabalho foi desenvolvido com o objetivo de avaliar o efeito da adição de CO2 sobre a qualidade do macarrão tipo massa fresca. O uso de atmosfera modificada no interior da embalagem, com concentrações mais elevadas de CO2, tem sido empregado comercialmente com a finalidade de inibir microrganismos, principalmente os aeróbios. Dessa forma, neste trabalho foi empregada uma nova técnica para a adição do CO2 no produto. Esta técnica consistiu em carbonatar a água que foi utilizada para a produção do macarrão tipo massa fresca, em substituição à injeção do gás CO2 na embalagem. Foram testadas as concentrações de 160 e 745mg/L de CO2. Os resultados mostraram, pelas análises microbiológicas, que o nível de 745mg/L de CO2 foi satisfatório para a inibição de bolores e leveduras durante os 50 dias de armazenamento a 7±1ºC. No entanto, não houve efeito na inibição de psicrotróficos e coliformes totais.The objective of this work was to evaluate CO2 addition on the inhibition of microbial growth in fresh pasta. Modified atmosphere packages using higher levels of CO2 have been commercially used to inhibit mainly aerobes microorganisms. Therefore, a new technique of adding CO2 directly to the product was tested promoting better contact between the dough and the gas. Carbon dioxide was dissolved in water at concentrations of 160 and 745mg/L and the carbonated water was mixed with the ingredients to produce the pasta. The results showed that 745mg/L of CO2 inhibited fungi and yeast growth in pasta stored at 7±1ºC up to 50 days, however, growth of psychrotrophics and coliforms was not affected.

  16. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2005-04-29

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Stripper modeling suggests the energy requirement with a simple stripper will be about the same for 5 m K{sup +}/2.5 m PZ and 7 m MEA. Modeling with a generic solvent shows that the optimum heat of CO{sub 2} desorption to minimize heat duty lies between 15 and 25 kcal/gmol. On-line pH and density measurements are effective indicators of loading and total alkalinity for the K+/PZ solvent. The baseline pilot plant campaign with 30% MEA has been started.

  17. Structural relaxation and colour in the spinel-magnesiochromite (MgAl2O4-MgCr2O4) and gahnite-zincochromite (ZnAl2O4-ZnCr2O4) solid solution series

    Science.gov (United States)

    Hålenius, U.; Andreozzi, G. B.; Skogby, H.

    2009-04-01

    .5 %, respectively, is determined. Based on a Cr-O bond distance for the CrO6 polyhedron in magnesiochromite and zincochromite of 1.995 and 1.991 Å respectively (O'Neill and Dollase, 1994) and applying the ligand field relationship 10Dq?C×R-5 (R equals the M-O distance of the MO6-polyhedron), Cr-O bond distances in gahnite and spinel with Cr-contents at trace levels are determined to 1.959 and 1.969 Å, respectively. These M-O bond distances are considerably longer than the M-O distances determined for end member gahnite and spinel by XRD-methods (1.9137 and 1.9280 Å, respectively; O'Neill and Dollase, 1994) and shows that there is considerable structural relaxation of M-O bonds in the two present spinel series. The relaxation parameter, ɛ, determined from the optical absorption spectra is 0.59 and 0.63 for the ZnAl2-2xCr2xO4 and MgAl2-2xCr2xO4 and series, respectively. These values are lower than those suggested from X-ray absorption spectroscopy (Juhin et al. 2007), which may be explained by second nearest neighbour interactions. In contrast to what may be expected, the interelectronic repulsion parameter, B, for V ICr3+ decreases with increasing Cr-content and apparent Cr-O bond length in both of the present spinel series . This indicates that interactions between Cr-atoms in neighbouring octahedra become important at increasing Cr-content and result in more covalent Cr-O bonds. This in turn suppresses the energy of 4A2g -4T2g (4F) transition (and calculated 10Dq-values) in octahedrally coordinated Cr3+. Consequently, the values of structural relaxation parameters determined from the optical absorption spectra must be regarded as minimum numbers. Literature Juhin, A., Calas, G., Cabaret, D. and Galoisy, L. (2007): Structural relaxation around Cr3+ in MgAl2O4. Physical Review, B76, 054105. O'Neill, H.St.C. and Dollase, W.A. (1994): Crystal structures and cation distributions in simple spinels from powder XRD structure refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature

  18. Preparation of activated carbon from fly ash and its application for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Alhamed, Yahia Abobakor; Rather, Sami Ullah; El-Shazly, Ahmad Hasan; Zaman, Sharif Fakhruz; Daous, Mohammad Abdulrhaman; Al-Zahrani, Abdulrahim Ahmad [King Abdulaziz University, Jeddah (Saudi Arabia)

    2015-04-15

    Power and desalination plants are one of the main anthropogenic sources for CO{sub 2} generation, which is one of the key elements to cause greenhouse gas effect and thus contribute to the global warming. Fly ash (FA) generated in desalination and power plants was converted into activated carbon (AC) treated with KOH at higher temperature and tested for CO{sub 2} capturing efficiency. Morphological characteristics of FA such as BET specific surface area (SSA), pore volume, pore diameter, and pore size distribution (PSD) were performed using N{sub 2} adsorption isotherm. CO{sub 2} adsorption capacity and adsorption isotherms of CO{sub 2} over AC were measured by performing thermogravimetric analysis at different temperatures. BET SSA of 161m{sup 2}g{sup -1} and adsorption capacity of 26mg CO{sub 2}/g AC can be obtained by activation at KOH/FA ratio of 5 at 700 .deg. C and activation time of 2 h. Therefore, great potential exists for producing AC from FA, which will have the positive effect of reducing the landfill problem and global warming.

  19. Microwave absorption studies of MgB 2 superconductor

    Indian Academy of Sciences (India)

    Microwave absorption studies have been carried out on MgB2 superconductor using a standard X-band EPR spectrometer. The modulated low-field microwave absorption signals recorded for polycrystalline (grain size ∼ 10m) samples suggested the absence of weak-link character. The field dependent direct microwave ...

  20. Perpendicular magnetic anisotropy in Mo/Co2FeAl0.5Si0.5/MgO/Mo multilayers with optimal Mo buffer layer thickness

    Science.gov (United States)

    Saravanan, L.; Raja, M. Manivel; Prabhu, D.; Pandiyarasan, V.; Ikeda, H.; Therese, H. A.

    2018-05-01

    Perpendicular Magnetic Anisotropy (PMA) was realized in as-deposited Mo(10)/Co2FeAl0.5Si0.5(CFAS)(3)/MgO(0.5)/Mo multilayer stacks with large perpendicular magnetic anisotropy energy (Keff). PMA of this multilayer is found to be strongly dependent on the thickness of the individual CFAS (tCFAS), Mo (tMo) and MgO (tMgO) layers and annealing temperatures. The interactions at the Mo/CFAS/MgO interfaces are critical to induce PMA and are tuned by the interfacial oxidation. The major contribution to PMA is due to iron oxide at the CFAS/MgO interface. X-ray diffraction (XRD) and infrared spectroscopic (FT-IR) studies further ascertain this. However, an adequate oxidation of MgO and the formation of (0 2 4) and (0 1 8) planes of α-Fe2O3 at the optimal Mo buffer layer thickness is mainly inducing PMA in Mo/CFAS/MgO/Mo stack. Microstructural changes in the films are observed by atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) demonstrates the oxidation of CFAS/MgO interface and the formation of Fe-O bonds confirming that the real origin of PMA in Mo/CFAS/MgO is due to hybridization of Fe (3dz2) and O (2pz) orbitals and the resulted spin-orbit interaction at their interface. The half-metallic nature CFAS with Mo layer exhibiting PMA can be a potential candidate as p-MTJs electrodes for the new generation spintronic devices.