WorldWideScience

Sample records for mg al mn

  1. Grain refining mechanism of Al-containing Mg alloys with the addition of Mn-Al alloys

    International Nuclear Information System (INIS)

    Qin, Gaowu W.; Ren Yuping; Huang Wei; Li Song; Pei Wenli

    2010-01-01

    Graphical abstract: Display Omitted Research highlights: The ε-AlMn phase acts as the heterogeneous nucleus of α-Mg phase during the solidification of the AZ31 Mg alloy, not the γ-Al 8 Mn 5 phase. The grain refinement effect is very clear with the addition of only 0.5 wt% Mn-28Al alloy (pure ε-AlMn). The grain refinement does not deteriorate up to the holding time of 60 min at 740 o C. - Abstract: The effect of manganese on grain refinement of Al-containing AZ31 Mg alloy has been investigated by designing a series of Mn-Al alloys composed of either pure ε-AlMn, γ 2 -Al 8 Mn 5 or both of them using optical microscopy and X-ray diffraction. It is experimentally clarified that the grain refinement of the AZ31 Mg alloy is due to the existence of the ε-AlMn phase in the Mn-Al alloys, not the γ 2 -Al 8 Mn 5 phase. The grain size of AZ31 Mg alloy is about 91 μm without any addition of Mn-Al alloys, but remarkably decreases to ∼55 μm with the addition of either Mn-34 wt% Al or Mn-28 wt% Al. With a minor addition of 0.5 wt% Mn-28Al alloy, the grain size of AZ31 alloy decreases to ∼53 μm, and the Mn-28Al alloy can be active as grain refiner for holding time up to 60 min for the melt AZ31 alloy at 750 o C.

  2. Grain refining mechanism of Al-containing Mg alloys with the addition of Mn-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Gaowu W., E-mail: qingw@smm.neu.edu.c [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Wenhu Road 3-11, Heping District, Shenyang 110004, Liaoning Province (China); Ren Yuping; Huang Wei; Li Song; Pei Wenli [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Wenhu Road 3-11, Heping District, Shenyang 110004, Liaoning Province (China)

    2010-10-08

    Graphical abstract: Display Omitted Research highlights: The {epsilon}-AlMn phase acts as the heterogeneous nucleus of {alpha}-Mg phase during the solidification of the AZ31 Mg alloy, not the {gamma}-Al{sub 8}Mn{sub 5} phase. The grain refinement effect is very clear with the addition of only 0.5 wt% Mn-28Al alloy (pure {epsilon}-AlMn). The grain refinement does not deteriorate up to the holding time of 60 min at 740 {sup o}C. - Abstract: The effect of manganese on grain refinement of Al-containing AZ31 Mg alloy has been investigated by designing a series of Mn-Al alloys composed of either pure {epsilon}-AlMn, {gamma}{sub 2}-Al{sub 8}Mn{sub 5} or both of them using optical microscopy and X-ray diffraction. It is experimentally clarified that the grain refinement of the AZ31 Mg alloy is due to the existence of the {epsilon}-AlMn phase in the Mn-Al alloys, not the {gamma}{sub 2}-Al{sub 8}Mn{sub 5} phase. The grain size of AZ31 Mg alloy is about 91 {mu}m without any addition of Mn-Al alloys, but remarkably decreases to {approx}55 {mu}m with the addition of either Mn-34 wt% Al or Mn-28 wt% Al. With a minor addition of 0.5 wt% Mn-28Al alloy, the grain size of AZ31 alloy decreases to {approx}53 {mu}m, and the Mn-28Al alloy can be active as grain refiner for holding time up to 60 min for the melt AZ31 alloy at 750 {sup o}C.

  3. Evolution of Mg-5Al-0.4Mn microstructure after rare earth elements addition

    Directory of Open Access Journals (Sweden)

    A. Żydek

    2011-04-01

    Full Text Available Mg-5Al-0.4Mn-xRE (x = 0, 1, 2, 3 wt.% magnesium alloys were prepared successfully by casting method. The microstructure wasinvestigated by light microscopy. The influence of rare earth (RE elements on the area fraction of eutectic was analysed. The obtainedresults revealed that the as-cast Mg-5Al-0.4Mn alloy consist of α - Mg matrix and eutectic α + γ (where γ is Mg17Al12. However, whilerare earth elements were added to the Mg-Al type alloy, Al11RE3 precipitates were formed. The amount of the Al11RE3 precipitatesincreased with increasing addition of RE, but the amount of γ - Mg17Al12 decreased.

  4. Low cycle fatigue behavior of die cast Mg-Al-Mn-Ce magnesium alloy

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2013-11-01

    Full Text Available Fatigue failure is a main failure mode for magnesium and other alloys. It is beneficial for fatigue design and fatigue life improvement to investigate the low cycle fatigue behavior of magnesium alloys. In order to investigate the low cycle fatigue behavior of die cast Mg-Al-Mn-Ce magnesium alloy, the strain controlled fatigue experiments were performed at room temperature and fatigue fracture surfaces of specimens were observed with scanning election microscopy for the alloys under die-cast and aged states. Cyclic stress response curves, strain amplitude versus reversals to failure curve, total strain amplitude versus fatigue life curves and cyclic stress-strain curves of Mg-Al-Mn-Ce alloys were analyzed. The results show that the Mg-Al-Mn-Ce alloys under die-cast (F and aged (T5 states exhibit cyclic strain hardening under the applied total strain amplitudes, and aging treatment could greatly increase the cyclic stress amplitudes of die cast Mg-Al-Mn-Ce alloys. The relationships between the plastic strain amplitude, the elastic strain amplitude and reversals to failure of Mg-Al-Mn-Ce magnesium alloy under different treatment states could be described by Coffin-Manson and Basquin equations, respectively. Observations on the fatigue fracture surface of specimens reveal that the fatigue cracks initiate on the surface of specimens and propagate transgranularly.

  5. Effect of Copper on Corrosion of Forged AlSi1MgMn Automotive Suspension Components

    Science.gov (United States)

    Koktas, Serhan; Gokcil, Emre; Akdi, Seracettin; Birol, Yucel

    2017-09-01

    Recently, modifications in the alloy composition and the manufacturing process cycle were proposed to achieve a more uniform structure with no evidence of coarse grains across the section of the AlSi1MgMn alloys. Cu was added to the AlSi1MgMn alloy to improve its age hardening capacity without a separate solution heat treatment. However, Cu addition degrades the corrosion resistance of this alloy due to the formation of Al-Cu precipitates along the grain boundaries that are cathodic with respect to the aluminum matrix and thus encourage intergranular corrosion. The present work was undertaken to identify the impact of Cu addition on the corrosion properties of AlSi1MgMn alloys with different Cu contents. A series of AlSi1MgMn alloys with 0.06-0.89 wt.% Cu were tested in order to identify an optimum level of Cu addition.

  6. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al-5Mg-Mn Alloys Solidified Under Near-Rapid Cooling.

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-29

    Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (Al-5Mg-Mn alloy with low Fe content (Al₆(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al₆(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al-5Mg-Mn alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.

  7. Effect of Al and Mg Contents on Wettability and Reactivity of Molten Zn-Al-Mg Alloys on Steel Sheets Covered with MnO and SiO2 Layers

    Science.gov (United States)

    Huh, Joo-Youl; Hwang, Min-Je; Shim, Seung-Woo; Kim, Tae-Chul; Kim, Jong-Sang

    2018-05-01

    The reactive wetting behaviors of molten Zn-Al-Mg alloys on MnO- and amorphous (a-) SiO2-covered steel sheets were investigated by the sessile drop method, as a function of the Al and Mg contents in the alloys. The sessile drop tests were carried out at 460 °C and the variation in the contact angles (θc) of alloys containing 0.2-2.5 wt% Al and 0-3.0 wt% Mg was monitored for 20 s. For all the alloys, the MnO-covered steel substrate exhibited reactive wetting whereas the a-SiO2-covered steel exhibited nonreactive, nonwetting (θc > 90°) behavior. The MnO layer was rapidly removed by Al and Mg contained in the alloys. The wetting of the MnO-covered steel sheet significantly improved upon increasing the Mg content but decreased upon increasing the Al content, indicating that the surface tension of the alloy droplet is the main factor controlling its wettability. Although the reactions of Al and Mg in molten alloys with the a-SiO2 layer were found to be sluggish, the wettability of Zn-Al-Mg alloys on the a-SiO2 layer improved upon increasing the Al and Mg contents. These results suggest that the wetting of advanced high-strength steel sheets, the surface oxide layer of which consists of a mixture of MnO and SiO2, with Zn-Al-Mg alloys could be most effectively improved by increasing the Mg content of the alloys.

  8. Synthesis, structure, magnetic, electrical and electrochemical properties of Al, Cu and Mg doped MnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, Ahmed M., E-mail: ahmedh242@yahoo.com [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Abuzeid, Hanaa M. [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Narayanan, N. [Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Ehrenberg, Helmut [Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Materials Science, Technische Universitaet Darmstadt, Petersenstr. 23, D-64287 Darmstadt (Germany); Julien, C.M. [Universite Pierre et Marie Curie, Physicochimie des Electrolytes, Colloides et Sciences Analytiques (PECSA), 4 place Jussieu, 75005 Paris (France)

    2011-10-17

    Highlights: {yields} Al, Mg and Cu doped MnO{sub 2} as cathode in Li-ion batteries. {yields} Pure phase MnO{sub 2} for virgin and doped MnO{sub 2} were obtained. {yields} Doping elements improve the electrical conductivity of MnO{sub 2}. {yields} Electrochemical behaviour of MnO{sub 2} improved after doping by Al, Mg and Cu. - Abstract: Pure and doped manganese dioxides were prepared by wet-chemical method using fumaric acid and potassium permanganate as raw materials. X-ray diffraction patterns show that pure and Al, Cu and Mg doped manganese dioxides (d-MnO{sub 2}) crystallized in the cryptomelane-MnO{sub 2} structure. Thermal analysis show that, with the assistance of potassium ions inside the 2 x 2 tunnel, the presence of Al, Cu and Mg doping elements increases the thermal stability of d-MnO{sub 2}. The electrical conductivity of d-MnO{sub 2} increases in comparison with pure MnO{sub 2}, while Al-doped MnO{sub 2} exhibits the lower resistivity. As shown in the magnetic measurements, the value of the experimental effective magnetic moment of Mn ions decreases with introduction of dopants, which is attributed to the presence of a mixed valency of high-spin state Mn{sup 4+}/Mn{sup 3+}. Doped MnO{sub 2} materials show good capacity retention in comparison with virgin MnO{sub 2}. Al-doped MnO{sub 2} shows the best electrochemical results in terms of capacity retention and recharge efficiency.

  9. Enhanced luminescence in SrMgAl(x)O(17±δ):yMn4+ composite phosphors.

    Science.gov (United States)

    Cao, Renping; Sharafudeen, Kaniyarakkal N; Qiu, Jianrong

    2014-01-03

    Red-emitting SrMgAlxO17±δ:yMn(4+) composite phosphors (x=10-100; y=0.05-4.0 mol%) are synthesized by solid-state reaction method in air. Addition of Al2O3 leads to the formation of two concomitant phases, i.e., SrMgAl10O17 and Al2O3 phases in the composite phosphor. Red emission from Mn(4+) ions in the composite phosphors is greatly enhanced due to multiple scattering and absorption of excitation light between SrMgAl10O17 and Al2O3 phases. SrMgAlxO17±δ:yMn(4+) composite phosphors would be a promising candidate as red phosphor in the application of a 397 nm near UV-based W-LED. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Effect of minor Er and Zr on microstructure and mechanical properties of Al-Mg-Mn alloy (5083) welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Dongxia, Yang, E-mail: yangdongxia116@emails.bjut.edu.cn [Department of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Xiaoyan, Li; Dingyong, He; Hui, Huang [Department of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2013-01-20

    Samples of Al-Mg-Mn and Al-Mg-Mn-Er-Zr alloys were welded using the method of laser welding. The influence of Er and Zr on microstructure, microhardness and mechanical properties of the Al-Mg-Mn alloy welded joints were investigated. It has been found that addition of Er and Zr refines the grain size in the fusion zone, due to the formation of primary Al{sub 3}Zr and Al{sub 3}Er. Fine equiaxed grains are dominated near the fusion boundary of the Al-Mg-Mn-Er-Zr alloy joint, which is contrary with the columnar crystal in the Al-Mg-Mn alloy joint. Microhardness of the center of the fusion zone rises from 74HV{sub 0.1} to 84HV{sub 0.1} owing to the grain refinement by Er and Zr. The tensile test result shows that the ultimate tensile strength and yield strength are improved by adding Er and Zr. The main reason for this is related to grain refining strengthening.

  11. Influence of Iron in AlSi10MgMn Alloy

    Directory of Open Access Journals (Sweden)

    Žihalová M.

    2014-12-01

    Full Text Available Presence of iron in Al-Si cast alloys is common problem mainly in secondary (recycled aluminium alloys. Better understanding of iron influence in this kind of alloys can lead to reduction of final castings cost. Presented article deals with examination of detrimental iron effect in AlSi10MgMn cast alloy. Microstructural analysis and ultimate tensile strength testing were used to consider influence of iron to microstructure and mechanical properties of selected alloy.

  12. Microstructure and mechanical properties of Al-Cu-Mg-Mn-Zr alloy with trace amounts of Ag

    International Nuclear Information System (INIS)

    Liu Xiaoyan; Pan Qinglin; Lu Congge; He Yunbin; Li Wenbin; Liang Wenjie

    2009-01-01

    The microstructure and mechanical properties of Al-Cu-Mg-(Ag)-Mn-Zr alloys were studied by means of tensile testing, optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that small additions of Ag to Al-Cu-Mg-Mn-Zr alloy can accelerate the hardening effect of the aged alloy and reduce the time to peak-aged. The mechanical properties can be improved both at room temperature and at elevated temperatures, which is attributed to the fine and uniform plate-like Ω precipitates. Meanwhile the ductility of the studied alloys remains at relatively high level. The major strengthening phases of the Ag-free alloy are θ' and less S', while that of Al-Cu-Mg-Mn-Zr alloy containing trace amounts of Ag are Ω and less θ'.

  13. Thermodynamic description of the Al-Cu-Mg-Mn-Si quinary system and its application to solidification simulation

    International Nuclear Information System (INIS)

    Chang, Keke; Liu, Shuhong; Zhao, Dongdong; Du, Yong; Zhou, Liangcai; Chen, Li

    2011-01-01

    By means of the first-principles calculations, the enthalpy of formation for the quaternary phase in the Al-Cu-Mg-Si system was computed. A set of self-consistent thermodynamic parameters for the Al-Cu-Mg-Si and Al-Cu-Mn-Si systems was then obtained using CALPHAD approach taking into account the reliable experimental data and the first-principles calculations. The thermodynamic database for the Al-Cu-Mg-Mn-Si system was developed based on the constituent binary, ternary, and quaternary systems. Comprehensive comparisons between the calculated and measured phase diagrams and invariant reactions showed that the experimental information was satisfactorily accounted for by the present thermodynamic description. The obtained database was used to describe the solidification behavior of Al alloys B319.1 (90.2Al-6Si-3.5Cu-0.3Mg, in wt.%) and B319.1 + xMn (x = 0.5-2, in wt.%) under Gulliver-Scheil non-equilibrium condition. The reliability of the present thermodynamic database was also verified by the good agreement between calculation and experiment for Gulliver-Scheil non-equilibrium solidification.

  14. Effects of homogenization on microstructures and properties of a new type Al-Mg-Mn-Zr-Ti-Er alloy

    International Nuclear Information System (INIS)

    He, L.Z.; Li, X.H.; Liu, X.T.; Wang, X.J.; Zhang, H.T.; Cui, J.Z.

    2010-01-01

    Research highlights: These new type alloys are very potential for increased use in aerospace and automobile industries. However, most of published reports have focused on the effects of Cu, Sc, Zr, Ag, rare metals and Si additions, Portevin-LeChatelier effect, corrosion properties, friction stir welding and superplasticity in 5000-series aluminum alloy, few investigated on Er and stepped homogenization on the precipitation of dispersoids in Al-Mg-Mn alloy. The purpose of this work was to study the effects of Er and homogenization treatment on mechanical properties and microstructural evolution in new type Al-Mg-Mn-Er alloy. - Abstract: Microstructural evolutions and mechanical properties of Al-Mg-Mn-Zr-Ti-Er alloy after homogenization were investigated in detail by optical microscope (OM), scanning electronic microscope (SEM), transmission electronic microscope (TEM), energy dispersive spectrum (EDS) and tensile test. A maximum tensile strength is obtained when the alloy homogenized at 510 deg. C for 16 h. With increasing preheating temperature (200-400 deg. C), the strength of the alloy finial homogenized at 490 deg. C for 16 h increases. When the preheating temperature is ≥300 deg. C, the strengths of the two-step homogenized alloys are higher than those of the single homogenized alloys. The preheating stage plays an important role in the microstructures and properties of the final homogenized alloy. Many fine (Mn,Fe)Al 6 precipitates when the preheating temperature is 400 deg. C. ErAl 3 phase cannot be observed during preheating stage. Plenty of fine (Mn,Fe)Al 6 and ErAl 3 precipitate in finial homogenized alloy when the preheating temperature is ≥300 deg. C. The Al-Mg-Mn-Zr-Ti-Er alloy is effectively strengthened by substructure and dispersoids of (Mn,Fe)Al 6 and ErAl 3 .

  15. Effect of Mn on microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloy

    Directory of Open Access Journals (Sweden)

    Zhao Zhihao

    2012-11-01

    Full Text Available In order to improve the performances of the Al-Mg-Si-Cu-Cr-V alloy, various amounts of Mn (0-0.9wt.% were added. The effect of this Mn on the microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloys in different states, especially after hot extrution and solid solution treatment, was systematically studied using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS, and mechanical tests at room temperature. The results show that 0.2wt.% Mn can both refine the as-cast microstructure of the alloy and strengthen the extrusion+T6 state alloy without damaging the plasticity badly due to the formation of Al15(FeMn3Si2 and Al15Mn3Si2 dispersoids. Compared with the extrusion+T6 state alloy without Mn addition, the ultimate tensile strength and yield strength of the alloy with 0.2wt.% Mn addition are increased from 416.9 MPa to 431.4 MPa, 360.8 MPa to 372 MPa, respectively. The elongation of the extrusion+T6 state alloy does not show obvious change when the Mn addition is less than 0.5wt.%, and for the alloy with 0.2wt.% Mn addition its elongation is still as high as 15.6%. However, when over 0.7wt.% Mn is added to the alloy, some coarse, stable and refractory AlVMn and Al(VMnSi phases form. These coarse phases can reduce the effect of Mn on the inhibition of re-crystallization; and they retain the angular morphology permanently after the subsequent deformation process and heat treatment. This damages the mechanical properties of the alloy.

  16. Effect of CeLa addition on the microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy

    International Nuclear Information System (INIS)

    Du, Jiandi; Ding, Dongyan; Xu, Zhou; Zhang, Junchao; Zhang, Wenlong; Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua; Chen, Renzong; Huang, Yuanwei; Tang, Jinsong

    2017-01-01

    Development of high strength lithium battery shell alloy is highly desired for new energy automobile industry. The microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy with different CeLa additions were investigated through optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rietveld refinement and tensile testing. Experimental results indicate that Al 8 Cu 4 Ce and Al 6 Cu 6 La phases formed due to CeLa addition. Addition of 0.25 wt.% CeLa could promote the formation of denser precipitation of Al 20 Cu 2 Mn 3 and Al 6 (Mn, Fe) phases, which improved the mechanical properties of the alloy at room temperature. However, up to 0.50 wt.% CeLa addition could promote the formation of coarse Al 8 Cu 4 Ce phase, Al 6 Cu 6 La phase and Al 6 (Mn, Fe) phase, which resulted in weakened mechanical properties. - Highlights: •Al-Cu-Mn-Mg-Fe alloys with different CeLa addition were fabricated through casting and rolling. •Al 8 Cu 4 Ce and Al 6 Cu 6 La phases formed after CeLa addition. •Addition of 0.25 wt.% CeLa promoted formation of denser precipitates of Al 20 Cu 2 Mn 3 and Al 6 (Mn, Fe). •Mechanical properties of the alloy was improved after 0.25 wt.% CeLa addition.

  17. Synergistic effects of composition and heat treatment on microstructure and properties of vacuum die cast Al-Si-Mg-Mn alloys

    Directory of Open Access Journals (Sweden)

    Jun-jie Xu

    2018-03-01

    Full Text Available The purpose of this study was to prepare high-quality Al-Si-Mg-Mn alloy with a good combination of strength and ductility employing the vacuum-assisted high-pressure die cast process. An orthogonal study of heat treatments was conducted to design an optimized T6 heat treatment process for both Al-10%Si-0.3%Mg-Mn and Al-11%Si-0.6%Mg-Mn alloys. The results demonstrate that no obvious blisters and warpage were observed in these two alloys with solid solution treatment. After the optimal T6 heat treatment of 530°C×3h + 165°C×6h, Al-11%Si-0.6%Mg-Mn alloy has better mechanical properties, of which tensile strength, yield strength and elongation reached 377.3 MPa, 307.8 MPa and 9%, respectively. The improvement of mechanical properties can be attributed to the high density of needle-like β″(Mg5Si6 precipitation after aging treatment and the fine and spherical eutectic Si particles uniformly distributed in the α-Al matrix.

  18. Effect of CeLa addition on the microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jiandi [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ding, Dongyan, E-mail: dyding@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Xu, Zhou; Zhang, Junchao; Zhang, Wenlong [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua [Huafon NLM Al Co., Ltd, Shanghai 201506 (China); Chen, Renzong; Huang, Yuanwei; Tang, Jinsong [Shanghai Huafon Materials Technology Institute, Shanghai 201203 (China)

    2017-01-15

    Development of high strength lithium battery shell alloy is highly desired for new energy automobile industry. The microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy with different CeLa additions were investigated through optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rietveld refinement and tensile testing. Experimental results indicate that Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed due to CeLa addition. Addition of 0.25 wt.% CeLa could promote the formation of denser precipitation of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe) phases, which improved the mechanical properties of the alloy at room temperature. However, up to 0.50 wt.% CeLa addition could promote the formation of coarse Al{sub 8}Cu{sub 4}Ce phase, Al{sub 6}Cu{sub 6}La phase and Al{sub 6}(Mn, Fe) phase, which resulted in weakened mechanical properties. - Highlights: •Al-Cu-Mn-Mg-Fe alloys with different CeLa addition were fabricated through casting and rolling. •Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed after CeLa addition. •Addition of 0.25 wt.% CeLa promoted formation of denser precipitates of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe). •Mechanical properties of the alloy was improved after 0.25 wt.% CeLa addition.

  19. Synergetic effects of Sc and Zr microalloying and heat treatment on mechanical properties and exfoliation corrosion behavior of Al-Mg-Mn alloys

    International Nuclear Information System (INIS)

    Peng, Yongyi; Li, Shu; Deng, Ying; Zhou, Hua; Xu, Guofu; Yin, Zhimin

    2016-01-01

    Mechanical properties, exfoliation corrosion behavior and microstructure of Al-5.98Mg-0.47Mn and Al-6.01Mg-0.45Mn-0.25Sc-0.10Zr (wt%) alloy sheets under various homogenizing and annealing processes were investigated comparatively by tensile tests, electrochemical measurements, X-ray diffraction technique and microscopy methods. The as-cast alloys mainly consist of Fe and Mn enriched impurity phases, Mg and Mn enriched non-equilibrium aluminides and Mg 3 Al 2 phases. During homogenization treatment, solvable intermetallics firstly precipitate and then dissolve into matrix. The optimized homogenization processes for removing micro-segregation and obtaining maximum precipitation strengthening of secondary Al 3 (Sc, Zr) particles are 440 °C×8 h and 300 °C×8 h, respectively. Sc and Zr additions can make the yield strength of Al-Mg-Mn alloy increase by 21 MPa (6.9%), 120 MPa (61.2%) and 127 MPa (68.3%), when annealed at 270 °C, 300 °C and 330 °C, respectively, indicating that Orowan precipitation strengthening caused by secondary Al 3 (Sc, Zr) nano-particles is much greater than grain boundary strengthening from primary Al 3 (Sc, Zr) micro-particles. Increasing homogenization and annealing degrees and adding Sc and Zr all can decrease corrosion current density and improve exfoliation corrosion resistance. The exfoliation corrosion behavior is dominant by anodic dissolution occurring at the interface between intermetallics and α(Al) matrix. After homogenizing at 440 °C for 8 h and annealing at 300 °C for 1 h, yield strength, ultimate strength, elongation to failure and exfoliation corrosion rank are 196 MPa, 360 MPa, 20.2% and PA (slight pitting corrosion) in Al-Mg-Mn alloy, and reach to 316 MPa, 440 MPa, 17.0% and PA in Al-Mg-Mn-Sc-Zr alloy, respectively, revealing that high strength, high ductility and admirable corrosion resistance of Al-Mg-Mn alloys can be achieved by the synergetic effects of Sc and Zr microalloying and heat treatment.

  20. Hydrogen storage properties of LaMgNi3.6M0.4 (M = Ni, Co, Mn, Cu, Al) alloys

    International Nuclear Information System (INIS)

    Yang, Tai; Zhai, Tingting; Yuan, Zeming; Bu, Wengang; Xu, Sheng; Zhang, Yanghuan

    2014-01-01

    Highlights: • La–Mg–Ni system AB 2 -type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi 3.6 M 0.4 (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi 4 and the secondary phase LaNi 5 . However, the secondary phase of the Al substitution alloy changes into LaAlNi 4 . The lattice parameters and cell volumes of the LaMgNi 4 phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi 4 phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi 4 phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between hydriding and dehydriding

  1. Influence of silver addition on the microstructure and mechanical properties of squeeze cast Mg-6Al-1Sn-0.3Mn-0.3Ti

    International Nuclear Information System (INIS)

    Acikgoez, Sehzat; Sevik, Hueseyin; Kurnaz, S.Can

    2011-01-01

    Graphical abstract: Highlights: → X-ray diffractometry reveals that the main phases are α-Mg, α-Ti, β-Mg 17 Al 12 and Al 8 Mn 5 in the base alloy. → With addition of silver, Al 81 Mn 19 phase was found. → The mechanical properties of the base alloy are improved with addition of silver. → The fracture surface of base alloy shows relatively deeper and more amount of dimples than that of alloys containing silver. - Abstract: In this study, the effect of silver (0, 0.2, 0.5, and 1 wt.%) on the microstructure and mechanical properties of a magnesium-based alloy (Mg-Al 6 wt.%-Sn 1 wt.%-Mn 0.3 wt.%-Ti 0.3 wt.%) were investigated. The alloys were produced under a controlled atmosphere by a squeeze-casting process. X-ray diffractometry revealed that the main phases are α-Mg, α-Ti, β-Mg 17 Al 12 and Al 8 Mn 5 in the all of alloys. In addition to, Al 81 Mn 19 phase was found with Ag additive. Besides, the amount of β-Mg 17 Al 12 phase was decreased with increasing the amount of Ag. The strength of the base alloy was increased by solid solution mechanism and decreasing the amount of β-Mg 17 Al 12 phase with addition of Ag. Furthermore, existence of Al 81 Mn 19 phase can be acted an important role in the increase on the mechanical properties of the alloys.

  2. Nanosized spinel oxide catalysts for CO-oxidation prepared via CoMnMgAl quaternary hydrotalcite route

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtar, M., E-mail: mmoustafa@kau.edu.s [Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah, P.O. Box 80203 (Saudi Arabia); Basahel, S.N.; Al-Angary, Y.O. [Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah, P.O. Box 80203 (Saudi Arabia)

    2010-03-18

    Catalytic activity of the Co-Mn-Mg-Al mixed oxide spinel catalysts was examined in CO oxidation by O{sub 2}. The prepared catalysts were characterized by chemical analysis (ICP), infrared spectroscopy (FTIR), thermal analysis (TG, DTG), powder X-ray diffraction (XRD), surface area measurements, and scanning electron microscopy (SEM).The calcined hydrotalcite-like precursor was composed of spinel-like Co-Mn-Mg-Al mixed oxide as the only XRD crystalline phases. The nanosized spinel oxide catalysts produced by calcination of hydrotalcites showed higher S{sub BET} than CoMn-hydrotalcite samples as calcination led to dehydroxylation and carbonate decomposition of anions in interlayer spaces. All the catalysts showed 100% CO conversion at high temperature even those calcined at 800 {sup o}C. A catalyst with Co/Mn = 4 and calcined at 500 {sup o}C showed 100% CO conversion at 160 {sup o}C. Moreover, this catalyst exhibited quite good durability without deactivation in 60 h stability test.

  3. Luminescence property and emission enhancement of YbAlO3:Mn4+ red phosphor by Mg2+ or Li+ ions

    Science.gov (United States)

    Cao, Renping; Luo, Wenjie; Xu, Haidong; Luo, Zhiyang; Hu, Qianglin; Fu, Ting; Peng, Dedong

    2016-03-01

    YbAlO3:Mn4+, YbAlO3:Mn4+, Li+, and YbAlO3:Mn4+, Mg2+ phosphors are synthesized by high temperature solid-state reaction method in air. Their crystal structures and luminescence properties are investigated. Photoluminescence excitation (PLE) spectrum monitored at 677 nm contains broad PLE band with three PLE peaks located at ∼318, 395, and 470 nm within the range 220-600 nm. Emission spectra with excitation 318 and 470 nm exhibit three emission band peaks located at ∼645, 677, and 700 nm in the range of 610-800 nm and their corresponding chromaticity coordinates are about (x = 0.6942, y = 0.3057). The possible luminous mechanism of Mn4+ ion is analyzed by the simple energy level diagram of Mn4+ ion. The optimum Mn4+-doped concentration in YbAlO3:Mn4+ phosphor is about 0.4 mol% and the luminescence lifetime of YbAlO3:0.4%Mn4+ phosphor is ∼0.59 ms. Emission intensity of YbAlO3:0.4%Mn4+ phosphor can be enhanced ∼6 times after Mg2+ ion is co-doped and it is ∼2 times when Li+ ion is co-doped. The content in the paper is useful to research new Mn4+-doped luminescence materials and improve luminescence property of other Mn4+-doped phosphors.

  4. Deformation behavior of commercial Mg-Al-Zn-Mn type alloys under a hydrostatic extrusion process at elevated temperatures

    International Nuclear Information System (INIS)

    Yoon, Duk Jae; Lee, Sang Mok; Lim, Seong Joo; Kim, Eung Zu

    2010-01-01

    This paper presents the deformation behavior of commercial Mg-Al-Zn-Mn type alloys during hydrostatic extrusion process at elevated temperatures. In the current study commercial Mg-Al-Zn-Mn type alloys with different Al contents were subjected to hydrostatic extrusion process at a range of temperatures and at ram speeds of 4.5, 10 and 17 mm/sec. Under the hydrostatic condition at 518K, the alloy with Al contents of 2.9 wt% was successfully extruded at all applied speeds. The alloys with Al content of 5.89 and 7.86 wt% were successful up to 10mm/sec, and finally extrusion of alloy with Al content 8.46wt% was successful only at 4.5 mm/sec. These results show that the deformation limit in the Mg alloys in terms of extrusion speed greatly extended to higher value in the proximity of lower Al content. It is presumed that deformation becomes harder as Al content increases because of strengthening mechanism by solute drag to increase of supersaturated Mg 17 Al 12 precipitates. Also, microstructures of cast and extruded Mg alloys were compared. Defect-wide microstructure of cast alloy completely evolved into dense and homogeneous microstructure with equiaxed grains

  5. Mechanical Properties and Microstructure of TIG and FSW Joints of a New Al-Mg-Mn-Sc-Zr Alloy

    Science.gov (United States)

    Xu, Guofu; Qian, Jian; Xiao, Dan; Deng, Ying; Lu, Liying; Yin, Zhimin

    2016-04-01

    A new Al-5.8%Mg-0.4%Mn-0.25%Sc-0.10%Zr (wt.%) alloy was successfully welded by tungsten inert gas (TIG) and friction stir welding (FSW) techniques, respectively. The mechanical properties and microstructure of the welded joints were investigated by microhardness measurements, tensile tests, and microscopy methods. The results show that the ultimate tensile strength, yield strength, and elongation to failure are 358, 234 MPa, and 27.6% for TIG welded joint, and 376, 245 MPa and 31.9% for FSW joint, respectively, showing high strength and superior ductility. The TIG welded joint fails in the heat-affected zone and the fracture of FSW joint is located in stirred zone. Al-Mg-Mn-Sc-Zr alloy is characterized by lots of dislocation tangles and secondary coherent Al3(Sc,Zr) particles. The superior mechanical properties of the TIG and FSW joints are mainly derived from the Orowan strengthening and grain boundary strengthening caused by secondary coherent Al3(Sc,Zr) nano-particles (20-40 nm). For new Al-Mg-Mn-Sc-Zr alloy, the positive effect from secondary Al3(Sc, Zr) particles in the base metal can be better preserved in FSW joint than in TIG welded joint.

  6. Producing a particle-reinforced AlCuMgMn alloy by means of mechanical alloying; Herstellung einer partikelverstaerkten AlCuMgMn-Legierung durch mechanisches Legieren

    Energy Technology Data Exchange (ETDEWEB)

    Nestler, D.; Wielage, B. [TU Chemnitz, Institut fuer Werkstoffwissenschaft und Werkstofftechnik (Germany); Siebeck, S.

    2012-07-15

    High-energy ball milling (HEM) with subsequent consolidation is a suitable method to produce particle-reinforced aluminium materials. The task of HEM is to distribute the reinforcement particles as homogeneously as possible. A further application of HEM is mechanical alloying (MA). This paper deals with the combination of both applications. Pure metallic powders (Al, Cu, Mg, Mn) were milled together with SiC particles up to 10 h. The composition of the metallic powder corresponds to that of the alloy AA2017 (3.9% Cu, 0.7% Mg, 0.6% Mn). In previous experiments [1], this alloy was used in the form of atomized powder. The changes in microstructure during the formation of the composite powder have been studied by light microscopy, SEM, EDXS and XRD. The results show that the production of composite powders in a single step is possible. This not only allows the economical production of such powders, but also facilitates the use of alloy compositions that are not producible via the melting route, or only producible with difficulty via the melting route. It's possible to produce tailor-made-alloys. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Hydrogen storage properties of LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tai [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhai, Tingting; Yuan, Zeming; Bu, Wengang [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Xu, Sheng [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhang, Yanghuan, E-mail: zhangyh59@sina.com [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China)

    2014-12-25

    Highlights: • La–Mg–Ni system AB{sub 2}-type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi{sub 4} and the secondary phase LaNi{sub 5}. However, the secondary phase of the Al substitution alloy changes into LaAlNi{sub 4}. The lattice parameters and cell volumes of the LaMgNi{sub 4} phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi{sub 4} phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi{sub 4} phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between

  8. The Mechanism of Solid State Joining THA with AlMg3Mn Alloy

    Directory of Open Access Journals (Sweden)

    Kaczorowski M.

    2014-06-01

    Full Text Available The results of experimental study of solid state joining of tungsten heavy alloy (THA with AlMg3Mn alloy are presented. The aim of these investigations was to study the mechanism of joining two extremely different materials used for military applications. The continuous rotary friction welding method was used in the experiment. The parameters of friction welding process i.e. friction load and friction time in whole studies were changed in the range 10 to 30kN and 0,5 to 10s respectively while forging load and time were constant and equals 50kN and 5s. The results presented here concerns only a small part whole studies which were described elsewhere. These are focused on the mechanism of joining which can be adhesive or diffusion controlled. The experiment included macro- and microstructure observations which were supplemented with SEM investigations. The goal of the last one was to reveal the character of fracture surface after tensile test and to looking for anticipated diffusion of aluminum into THA matrix. The results showed that joining of THA with AlMg2Mn alloy has mainly adhesive character, although the diffusion cannot be excluded.

  9. Microstructural evolution during friction stir welding of AlSi1MgMn alloy

    Directory of Open Access Journals (Sweden)

    M. Janjić

    2012-01-01

    Full Text Available This paper provides the research of the infl uence of geometric and kinematic parameters on the microstructure and mechanical properties of welded joint of aluminum alloy AlSi1MgMn (6082-T6 obtained through the Friction Stir Welding (FSW process. The experiment parameters were welding speed, rotation speed, angle of pin slope, pin diameter and shoulder diameter. On the obtained welded workpieces the dynamic testing on the impact toughness, and determination of microstructural zones were carried out.

  10. Discharge capacity and microstructures of La Mg Pr Al Mn Co Ni alloys for nickel-metal hydride batteries

    International Nuclear Information System (INIS)

    Casini, J.C.S.; Galdino, G.S.; Ferreira, E.A.; Takiishi, H.; Faria, R.N.

    2010-01-01

    La 0.7-x Mg x Pr 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 (x = 0.0, 0.3 and 0.7) alloys have been investigated aiming the production of negative electrodes for nickel-metal hydride batteries. The alloys employed in this work were used in the as cast state. The results showed that the substitution of magnesium by lanthanum increased the discharge capacity of the Ni-MH batteries. A battery produced with the La 0.4 Mg 0.3 Pr 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy shown a high discharge capacity (380mAh/g) also good stability compared to other alloys. The electrode materials were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). (author)

  11. Oxygen Storage Capacity and Oxygen Mobility of Co-Mn-Mg-Al Mixed Oxides and Their Relation in the VOC Oxidation Reaction

    Directory of Open Access Journals (Sweden)

    María Haidy Castaño

    2015-05-01

    Full Text Available Co-Mn-Mg-Al oxides were synthesized using auto-combustion and co-precipitation techniques. Constant ratios were maintained with (Co + Mn + Mg/Al equal to 3.0, (Co + Mn/Mg equal to 1.0 and Co/Mn equal to 0.5. The chemical and structural composition, redox properties, oxygen storage capacity and oxygen mobility were analyzed using X-ray fluorescence (XRF, X-ray diffraction (XRD, Raman spectroscopy, scanning electron microscopy (SEM, temperature-programmed reduction of hydrogen (H2-TPR, oxygen storage capacity (OSC, oxygen storage complete capacity (OSCC and isotopic exchange, respectively. The catalytic behavior of the oxides was evaluated in the total oxidation of a mixture of 250 ppm toluene and 250 ppm 2-propanol. The synthesis methodology affected the crystallite size, redox properties, OSC and oxide oxygen mobility, which determined the catalytic behavior. The co-precipitation method got the most active oxide in the oxidation of the volatile organic compound (VOC mixture because of the improved mobility of oxygen and ability to favor redox processes in the material structure.

  12. Effect of Cr and Mn addition and heat treatment on AlSi3Mg casting alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tocci, Marialaura, E-mail: m.tocci@unibs.it [Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia (Italy); Donnini, Riccardo, E-mail: riccardo.donnini@cnr.it [National Research Council of Italy (CNR), Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Via R. Cozzi 53, 20125 Milan (Italy); Angella, Giuliano, E-mail: giuliano.angella@cnr.it [National Research Council of Italy (CNR), Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Via R. Cozzi 53, 20125 Milan (Italy); Pola, Annalisa, E-mail: annalisa.pola@unibs.it [Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia (Italy)

    2017-01-15

    In the present paper the effect of heat treatment on an AlSi3Mg alloy with and without Cr and Mn addition was investigated. Beside the well-known modification of the morphology of Fe-containing intermetallics, it was found that Cr and Mn allowed the formation of dispersoids in the aluminium matrix after solution heat treatment at 545 °C, as shown by scanning transmission electron microscope observations. These particles were responsible of the enhanced Vickers microhardness of the aluminium matrix in comparison with the base alloy after solution treatment and quenching, according to dispersion hardening mechanism. The presence of these particles was not affected by ageing treatment, which instead allowed the precipitation of β-Mg{sub 2}Si, as shown by the elaboration of differential scanning calorimeter curves. The formation of dispersoids and the study of their effect on mechanical properties can represent an interesting development for applications at high temperatures of casting alloys due to their thermal stability compared to other strengthening phases as β-Mg{sub 2}Si. - Highlights: •Cr and Mn successfully modified the morphology of Fe-containing intermetallics. •Cr- and Mn-dispersoids formed in the aluminium matrix during solution treatment. •Dispersion hardening was detected after solution treatment for Cr-containing alloy. •The dispersion hardening effect was maintained after ageing treatment.

  13. Discharge capacity and microstructures of La Mg Pr Al Mn Co Ni alloys for nickel-metal hydride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Casini, J.C.S.; Galdino, G.S.; Ferreira, E.A.; Takiishi, H.; Faria, R.N., E-mail: jcasini@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (DM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Dept. de Metalurgia

    2010-07-01

    La{sub 0.7-x}Mg{sub x}Pr{sub 0.3}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} (x = 0.0, 0.3 and 0.7) alloys have been investigated aiming the production of negative electrodes for nickel-metal hydride batteries. The alloys employed in this work were used in the as cast state. The results showed that the substitution of magnesium by lanthanum increased the discharge capacity of the Ni-MH batteries. A battery produced with the La{sub 0.4}Mg{sub 0.3}Pr{sub 0.3}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} alloy shown a high discharge capacity (380mAh/g) also good stability compared to other alloys. The electrode materials were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). (author)

  14. Photoluminescence properties of color-tunable SrMgAl10O17:Eu2+,Mn2+ phosphors for UV LEDs

    International Nuclear Information System (INIS)

    Ju Guifang; Hu Yihua; Chen Li; Wang Xiaojuan

    2012-01-01

    Aluminate phosphors SrMgAl 10 O 17 codoped with Eu 2+ and Mn 2+ ions were prepared by solid-state reaction. The phase structure and photoluminescence properties of the as-prepared phosphors were characterized by powder X-ray diffraction, photoluminescence excitation and emission spectra. Upon excitation of UV light, two broad emission bands centered at 470 and 515 nm were observed, and they were assigned to Eu 2+ and Mn 2+ emissions, respectively. The emission color of the phosphors can be tuned from blue to cyan and finally to green by adjusting the concentration ratios of Eu 2+ and Mn 2+ . Effective energy transfer occurs from Eu 2+ to Mn 2+ in the host due to the spectral overlap between the emission band of Eu 2+ and the excitation bands of Mn 2+ . The energy transfer mechanism was demonstrated to be electric dipole–quadrupole interaction. The energy transfer efficiency and critical distance were also calculated. The phosphors exhibit strong absorption in near UV spectral region and therefore they are potentially useful as UV-convertible phosphors for white LEDs. - Highlights: ► The strong absorption of phosphors matches well with the emission band of UV LED. ► The energy transfer from Eu 2+ to Mn 2+ in SrMgAl 10 O 17 was investigated in detail. ► The emission color can be tuned by adjusting the content of Eu 2+ and Mn 2+ . ► Two methods were employed to calculate the critical distance of energy transfer.

  15. Low Temperature Mechanical Properties of Scandium-Modified Al-Zn-Mg-Cu Alloys

    National Research Council Canada - National Science Library

    Senkov, O

    2002-01-01

    Tensile properties of three wrought alloys, (1) Al-10Zn-3Mg-1.2Cu-0.15Zr, (2) Al-10Zn-3Mg-1.2Cu-0.15Zr-0.39Mn-0.49Sc, and (3) Al-12Zn-3Mg-1.2Cu-0.15Zr-0.39Mn-0.49Sc were studied in T6 and T7 conditions at 298K and 77K...

  16. Improving the Elevated-Temperature Properties by Two-Step Heat Treatments in Al-Mn-Mg 3004 Alloys

    Science.gov (United States)

    Liu, K.; Ma, H.; Chen, X. Grant

    2018-05-01

    In the present work, two-step heat treatments with preheating at different temperatures (175 °C, 250 °C, and 330 °C) as the first step followed by the peak precipitation treatment (375 °C/48 h) as the second step were performed in Al-Mn-Mg 3004 alloys to study their effects on the formation of dispersoids and the evolution of the elevated-temperature strength and creep resistance. During the two-step heat treatments, the microhardness is gradually increased with increasing time to a plateau after 24 hours when first treated at 250 °C and 330 °C, while there is a minor decrease with time when first treated at 175 °C. Results show that both the yield strength (YS) and creep resistance at 300 °C reach the peak values after the two-step treatment of 250 °C/24 h + 375 °C/48 h. The formation of dispersoids is greatly related to the type and size of pre-existing Mg2Si precipitated during the preheating treatments. It was found that coarse rodlike β ' -Mg2Si strongly promotes the nucleation of dispersoids, while fine needle like β ″-Mg2Si has less influence. Under optimized two-step heat treatment and modified alloying elements, the YS at 300 °C can reach as high as 97 MPa with the minimum creep rate of 2.2 × 10-9 s-1 at 300 °C in Al-Mn-Mg 3004 alloys, enabling them as one of the most promising candidates in lightweight aluminum alloys for elevated-temperature applications.

  17. Microstructural and mechanical property characterization of Er modified Al-Mg-Mn alloy Tungsten Inert Gas welds

    International Nuclear Information System (INIS)

    Yang, Dongxia; Li, Xiaoyan; He, Dingyong; Nie, Zuoren; Huang, Hui

    2012-01-01

    Highlights: → The microstructural characterization of TIG welded Al-Mg-Mn-Zr-Er alloy is studied. → A typical equaixed zone (EQZ) with finer grains is observed in the weld metal at the fusion boundary. → The dissolution of non-primary Al 3 Er particles in Al matrix is one reason of the weakness of TIG welded joint. →The relationship between mechanical properties and microstructure of welded joints is evaluated. →Reasons for joint softening are given from work-hardening, precipitation strengthening and solution strengthening. -- Abstract: Samples of Al-Mg-Mn-Zr-Er alloys have been welded using the method of TIG welding. Microstructures characterization was performed by optical microscopy (OM), energy dispersive X-ray (EDX) and transmission electron microscopy (TEM), respectively. In addition, tensile and hardness test was conducted. The relationship between mechanical properties and microstructure of welded joints is evaluated. Results indicate that the ultimate tensile strength of the joints is 72% of that of the base metal. The base metal consists of a typical rolled structure, and the fusion zone (FZ) is mainly made up of dendrite grains. A characteristic equiaxed zone (EQZ) is obtained at the fusion boundary between the base metal and fusion zone. Fine dispersion of coherent Al 3 Er precipitates was found in the base metal, however, the quantity of these particles dropped significantly in the fusion zone. The hardness test results indicate that the microhardness in the fusion zone is lower than that of the base metal, due to the as-cast structure in this region. Based on the present work, it is concluded that TIG welding is the suitable welding procedure for joining this new type Er-containing aluminum alloy.

  18. Co-hydrothermal synthesis of LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C nano-hybrid cathode material with enhanced electrochemical performance for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Jun; Luo, Shaohua; Chang, Longjiao; Hao, Aimin; Wang, Zhiyuan; Liu, Yanguo; Xu, Qian; Wang, Qing; Zhang, Yahui

    2017-01-01

    Highlights: • A co-hydrothermal approach to synthesize LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C composite material in water/PEG system is present. • The Mn_1_-_xMg_xPO_4 precursor is prepared by precipitation reaction. • Co-modified with Mg"2"+ doping and LiAlO_2 compositing strategies play an important role in improving the electronic conductivity and facilitating the diffusion of lithium ion. • LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C composite material exhibits a high specific discharge capacity of 151.8 mAh/g at 0.05C. - Abstract: LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C is synthesized by a co-hydrothermal method in water/PEG system using Li_2CO_3, AAO and Mn_1_-_xMg_xPO_4 as raw material. The electronic structure and micromorphology of multi-component compound LiMn_1_-_xMg_xPO_4/C (x = 0, 1/24, 1/12, 1/6) and nano-hybrid LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C cathode materials are studied by first-principles calculation and experimental research including XRD, SEM, TEM. The calculated band gap of LiMn_2_3_/_2_4Mg_1_/_2_4PO_4/C is 2.296 eV, which is lower than other percentages Mg"2"+ doping samples. Electrochemical tests exhibit LiMn_2_3_/_2_4Mg_1_/_2_4PO_4/C has better cycling performance and rate capability than other contents Mg"2"+ doping samples with the discharge capacity of 143.5 mAh/g, 141.5 mAh/g, 139.2 mAh/g and 136.3 mAh/g at 0.05C, 0.1C, 0.5C and 1C in order. After compositing and preparation of LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C composite material by co-hydrothermal route, the initial discharge capacity reaches up to 151.8 mAh/g, which suggests that co-modified with Mg"2"+ doping and LiAlO_2 compositing material can improve the electronic conductivity of LiMnPO_4/C by facilitating the lithium ion diffusion rate in the interior of the materials.

  19. Co-hydrothermal synthesis of LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}·LiAlO{sub 2}/C nano-hybrid cathode material with enhanced electrochemical performance for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [School of Metallurgy, Northeastern University, Shenyang, 110004 (China); Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, 066004 (China); Luo, Shaohua, E-mail: tianyanglsh@163.com [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004 (China); Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, 066004 (China); School of Materials Science and Engineering, Northeastern University, Shenyang, 110004 (China); Chang, Longjiao [School of New Energy, Bohai University, Jinzhou, 121013 (China); Hao, Aimin; Wang, Zhiyuan; Liu, Yanguo [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004 (China); Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, 066004 (China); School of Materials Science and Engineering, Northeastern University, Shenyang, 110004 (China); Xu, Qian [School of Materials Science and Engineering, Shanghai University, Shanghai, 200072 (China); Wang, Qing; Zhang, Yahui [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004 (China); Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, 066004 (China); School of Materials Science and Engineering, Northeastern University, Shenyang, 110004 (China)

    2017-02-01

    Highlights: • A co-hydrothermal approach to synthesize LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}·LiAlO{sub 2}/C composite material in water/PEG system is present. • The Mn{sub 1-x}Mg{sub x}PO{sub 4} precursor is prepared by precipitation reaction. • Co-modified with Mg{sup 2+} doping and LiAlO{sub 2} compositing strategies play an important role in improving the electronic conductivity and facilitating the diffusion of lithium ion. • LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}·LiAlO{sub 2}/C composite material exhibits a high specific discharge capacity of 151.8 mAh/g at 0.05C. - Abstract: LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}·LiAlO{sub 2}/C is synthesized by a co-hydrothermal method in water/PEG system using Li{sub 2}CO{sub 3}, AAO and Mn{sub 1-x}Mg{sub x}PO{sub 4} as raw material. The electronic structure and micromorphology of multi-component compound LiMn{sub 1-x}Mg{sub x}PO{sub 4}/C (x = 0, 1/24, 1/12, 1/6) and nano-hybrid LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}·LiAlO{sub 2}/C cathode materials are studied by first-principles calculation and experimental research including XRD, SEM, TEM. The calculated band gap of LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}/C is 2.296 eV, which is lower than other percentages Mg{sup 2+} doping samples. Electrochemical tests exhibit LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}/C has better cycling performance and rate capability than other contents Mg{sup 2+} doping samples with the discharge capacity of 143.5 mAh/g, 141.5 mAh/g, 139.2 mAh/g and 136.3 mAh/g at 0.05C, 0.1C, 0.5C and 1C in order. After compositing and preparation of LiMn{sub 23/24}Mg{sub 1/24}PO{sub 4}·LiAlO{sub 2}/C composite material by co-hydrothermal route, the initial discharge capacity reaches up to 151.8 mAh/g, which suggests that co-modified with Mg{sup 2+} doping and LiAlO{sub 2} compositing material can improve the electronic conductivity of LiMnPO{sub 4}/C by facilitating the lithium ion diffusion rate in the interior of the materials.

  20. Microstructure and mechanical properties of Mg-Al-Mn-Ca alloy sheet produced by twin roll casting and sequential warm rolling

    International Nuclear Information System (INIS)

    Wang Yinong; Kang, Suk Bong; Cho, Jaehyung

    2011-01-01

    Research highlights: → This work, taking AM30 + 0.2Ca alloy as experimental material, will provide some new information as follows: one is microstructural difference between twin roll cast and ingot cast AM31-0.2Ca alloy. The other is the comparison of tensile properties after warm rolling and annealing. Suggesting the possibility of the development of wrought magnesium alloy sheets by strip casting. - Abstract: Microstructural evolution and mechanical properties of twin roll cast (TRC) Mg-3.3 wt.%Al-0.8 wt.%Mn-0.2 wt.%Ca (AM31 + 0.2Ca) alloy strip during warm rolling and subsequent annealing were investigated in this paper. The as-TRC alloy strip shows columnar dendrites in surface and equiaxed dendrites in center regions, as well as finely dispersed primary Al 8 Mn 5 particles on interdendritic boundaries which result in the beneficial effect on microstructural refinement of strip casting. The warm rolled sheets show intensively deformed band or shear band structures, as well as finely and homogeneously dispersed Al-Mn particles. No evident dynamic recrystallization (DRX) takes place during warm rolling process, which is more likely attributed to the finely dispersed particle and high solid solution of Al and Mn atoms in α-Mg matrix. After annealing at 350 deg. C for 1 h, the warm rolled TRC sheets show fine equiaxed grains around 7.8 μm in average size. It has been shown that the present TRC alloy sheet has superior tensile strength and comparative elongation compared to commercial ingot cast (IC) one, suggesting the possibility of the development of wrought magnesium alloy sheets by twin roll strip casting processing. The microstructural evolution during warm rolling and subsequent annealing as well as the resulting tensile properties were analyzed and discussed.

  1. Enhancement of Mechanical Properties of Extruded Mg-9Al-1Zn-1MM-0.7CaO-0.3Mn Alloy Through Pre-aging Treatment

    Science.gov (United States)

    Jeong, Seok Hoan; Kim, Yong Joo; Kong, Kyung Ho; Cho, Tae Hee; Kim, Young Kyun; Lim, Hyun Kyu; Kim, Won Tae; Kim, Do Hyang

    2018-03-01

    The effect of pre-aging treatment before extrusion has been investigated in Mg-9.0Al-1.0Zn-1MM-0.7CaO-0.3Mn alloy. The as-cast microstructure consists of α-Mg dendrite with secondary solidification phase particles, (Mg, Al)2Ca, β-Mg17Al12 and Al11RE3 at the inter-dendritic region. After extrusion, β-Mg17Al12 precipitates are present, but higher density and more homogeneous distribution in pre-aged alloy. In addition, μm-scale banded bulk β-Mg17Al12 particles are generated during extrusion. Al11RE3 particles are broken into small particles, and are aligned along the extrusion direction. (Mg, Al)2Ca particles are only slightly elongated along the extrusion direction, providing stronger particle stimulated nucleation (PSN) effect by severe deformation during extrusion. The mechanical properties can be significantly enhanced by introducing pre-aging treatment, i.e. β-Mg17Al12 precipitates provide grain refining and strengthening effects and (Mg, Al)2Ca particles provide PSN effect.

  2. Fate of half-metallicity near interfaces: The case of NiMnSb/MgO and NiMnSi/MgO

    KAUST Repository

    Zhang, Ruijing

    2014-08-27

    The electronic and magnetic properties of the interfaces between the half-metallic Heusler alloys NiMnSb, NiMnSi, and MgO have been investigated using first-principles density-functional calculations with projector augmented wave potentials generated in the generalized gradient approximation. In the case of the NiMnSb/MgO (100) interface, the half-metallicity is lost, whereas the MnSb/MgO contact in the NiMnSb/MgO (100) interface maintains a substantial degree of spin polarization at the Fermi level (∼60%). Remarkably, the NiMnSi/MgO (111) interface shows 100% spin polarization at the Fermi level, despite considerable distortions at the interface, as well as rather short Si/O bonds after full structural optimization. This behavior markedly distinguishes NiMnSi/MgO (111) from the corresponding NiMnSb/CdS and NiMnSb/InP interfaces. © 2014 American Chemical Society.

  3. Isothermal sections of Eu(Ca, Zr, Ba)-Mn-Al ternary phase diagrams at 770 K

    International Nuclear Information System (INIS)

    Manyako, N.B.; Yanson, T.I.; Zarechnyuk, O.S.

    1988-01-01

    Isothermal cross sections of Eu(Ca, Sr, Ba)-Mn-Al state diagrams at 770 K are plotted by means of X-ray structural analysis. EuMn 2.3-3.6 Al 9.7-8.4 (ThMn 12 structure type) and Eu 2 Mn 5 Al 12 (eigenstructure type) two compound are found within Eu-Mn-Al system. Existance of CaMn 0.16- 0 .32 Al 1.84-1.68 compound (MgNi 2 structure type) is proved and CaMn 3.2-2.1 Al 8.8-9.9 compound (ThMn 12 type partially ordered structure) is found within Ca-Mn-Al system. Ternary compounds are not formed within Sr(Ba)-Mn-Al systems. Regions of stratification, occurring within Eu(Ca, Sr, Ba)-Mn systems, penetrate in ternary system

  4. The Influence of Cu Addition on Dispersoid Formation and Mechanical Properties of Al-Mn-Mg 3004 Alloy

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2018-03-01

    Full Text Available The effect of Cu addition on dispersoid precipitation, mechanical properties and creep resistance was investigated in an Al-Mn-Mg 3004 alloy. The addition of Cu promoted dispersoid precipitation by increasing the number density and decreasing the size of dispersoids. Metastable β′-Mg2Si and Q-AlCuMgSi precipitates were observed during the heating process and both could provide favorable nucleation sites for dispersoid precipitation. The addition of Cu improved the thermal stability of dispersoids during a long-term thermal holding at 350 °C for 500 h. Results of mechanical testing show that the addition of Cu remarkably improved the hardness at room temperature, as well as the yield strength and creep resistance at 300 °C, which was mainly attributed to dispersoid strengthening and Cu solid solution strengthening. The yield strength contribution at 300 °C was quantitatively evaluated based on the dispersoid, solid solution and matrix contributions. It was confirmed that dispersoid strengthening is the main strengthening mechanism in the experimental alloys.

  5. Corrosion behaviors of Zn/Al-Mn alloy composite coatings deposited on magnesium alloy AZ31B (Mg-Al-Zn)

    International Nuclear Information System (INIS)

    Zhang Jifu; Zhang Wei; Yan Chuanwei; Du Keqin; Wang Fuhui

    2009-01-01

    After being pre-plated a zinc layer, an amorphous Al-Mn alloy coating was applied onto the surface of AZ31B magnesium alloy with a bath of molten salts. Then the corrosion performance of the coated magnesium alloy was examined in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the single Zn layer was active in the test solution with a high corrosion rate while the Al-Mn alloy coating could effectively protect AZ31B magnesium alloy from corrosion in the solution. The high corrosion resistance of Al-Mn alloy coating was ascribed to an intact and stable passive film formed on the coating. The performances of the passive film on Al-Mn alloy were further investigated by Mott-Schottky curve and X-ray photoelectron spectroscopy (XPS) analysis. It was confirmed that the passive film exhibited n-type semiconducting behavior in 3.5% NaCl solution with a carrier density two orders of magnitude less than that formed on pure aluminum electrode. The XPS analysis indicated that the passive film was mainly composed of AlO(OH) after immersion for long time and the content of Mn was negligible in the outer part of the passive film. Based on the EIS measurement, electronic structure and composition analysis of the passive film, a double-layer structure, with a compact inner oxide and a porous outer layer, of the film was proposed for understanding the corrosion process of passive film, with which the experimental observations might be satisfactorily interpreted.

  6. Electrodeposition of Al-Mn alloy on AZ31B magnesium alloy in molten salts

    International Nuclear Information System (INIS)

    Zhang Jifu; Yan Chuanwei; Wang Fuhui

    2009-01-01

    The Al-Mn alloy coatings were electrodeposited on AZ31B Mg alloy in AlCl 3 -NaCl-KCl-MnCl 2 molten salts at 170 deg. C aiming to improve the corrosion resistance. However, in order to prevent AZ31B Mg alloy from corrosion during electrodeposition in molten salts and to ensure excellent adhesion of coatings to the substrate, AZ31B Mg alloy should be pre-plated with a thin zinc layer as intermediate layer. Then the microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD). It was indicated that, by adjusting the MnCl 2 content in the molten salts from 0.5 wt% to 2 wt%, the Mn content in the alloy coating was increased and the phase constituents were changed from f.c.c Al-Mn solid solution to amorphous phase. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization measurements in 3.5% NaCl solution. It was confirmed that the Al-Mn alloy coatings exhibited good corrosion resistance with a chear passive region and significantly reduced corrosion current density at anodic potentiodynamic polarization. The corrosion resistance of the alloy coatings was also related with the microstructure and Mn content of the coatings.

  7. Preliminary study of the characteristics of a high Mg containing Al-Mg-Si alloy

    International Nuclear Information System (INIS)

    Yan, F; McKay, B J; Fan, Z; Chen, M F

    2012-01-01

    An Al-20Mg-4Si high Mg containing alloy has been produced and its characteristics investigated. The as-cast alloy revealed primary Mg 2 Si particles evenly distributed throughout an α-Al matrix with a β-Al 3 Mg 2 fully divorced eutectic phase observed in interdendritic regions. The Mg 2 Si particles displayed octahedral, truncated octahedral, and hopper morphologies. Additions of Sb, Ti and Zr had a refining influence reducing the size of the Mg 2 Si from 52 ± 4 μm to 25 ± 0.1 μm, 35 ± 1 μm and 34 ± 1 μm respectively. HPDC tensile test samples could be produced with a 0.6 wt.% Mn addition which prevented die soldering. Solution heating for 1 hr was found to dissolve the majority of the Al 3 Mg 2 eutectic phase with no evidence of any effect on the primary Mg 2 Si. Preliminary results indicate that the heat treatment has a beneficial effect on the elongation and the UTS.

  8. EPR and optical properties of Eu{sup 2+} and Mn{sup 2+} co-doped MgSrAl{sub 10}O{sub 17} blue–green light emitting powder phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N. [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Singh, Vijay, E-mail: vijayjiin2006@yahoo.com [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Sivaramaiah, G. [Department of Physics, Government College (M), Kadapa 516 004 (India); Rao, J.L. [Department of Physics, Sri Venkateswara University, Tirupati 517 502 (India); Singh, Pramod K. [Materials Research Laboratory, Sharda University, Greater Noida 201 310 (India); Pathak, M.S. [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Dhoble, S.J. [Department of Physics, RTM Nagpur University, Nagpur 440 033 (India); Mohapatra, M. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2016-10-15

    Strong blue–green light emitting MgSrAl{sub 10}O{sub 17}:Eu{sup 2+},Mn{sup 2+} phosphor was synthesized by a low-temperature initiated, self-propagating and gas producing combustion process in a very short time (<5 min). Structural characterization of the luminescent material was studied with X-ray diffraction analysis and energy-dispersive X-ray analysis. The absorption spectrum exhibits bands due to Eu{sup 2+} and Mn{sup 3+} ions. The excitation spectrum shows a peak at 337 nm. Upon excitation at 337 nm, the emission spectrum exhibits an intense band centered at 462 nm due to transitions from the 4f{sup 6}5d{sup 1} to the 4f{sup 7} configuration of the Eu{sup 2+} ions, whereas sharp peak at 513 nm attributed to {sup 4}T{sub 1}→{sup 6}A{sub 1} transition of Mn{sup 2+} ions. The X-band EPR spectra of MgSrAl{sub 10}O{sub 17}:Eu{sup 2+},Mn{sup 2+} showed the presence of Eu{sup 2+} and Mn{sup 2+} ions.

  9. Electrochemical hydrogen-storage properties of La{sub 0.78}Mg{sub 0.22}Ni{sub 2.67}Mn{sub 0.11}Al{sub 0.11}Co{sub 0.52}-M1Ni{sub 3.5}Co{sub 0.6}Mn{sub 0.4}Al{sub 0.}-5 composites

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hongxia, E-mail: hhxhunan@126.com [Key Lab of New Processing Technology for Nonferrous Metals and Materials Ministry of Education, Guilin University of Technology, Guilin (China); Li, Guohui [Guangxi Scientific Experiment Center of Mining, Metallurgy and Environment, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin (China); Zhuang, Shuxin [School of Material Science and engineering, Xiamen University of Technology, Xiamen (China)

    2013-07-15

    For improving the electrochemical properties of nonstoichiometric AB{sub 3} -type La{sub 0.7}8Mg{sub 0.22}Ni{sub 2.67}Mn{sub 0.11}Al{sub 0.11}Co{sub 0.52} alloy as negative electrode of Ni-MH battery, its related composites La{sub 0.78}Mg{sub 0.22}Ni{sub 2.67}Mn{sub 0.11}Al{sub 0.11}Co{sub 0.52}-x wt.% M1Ni{sub 3.5}Co{sub 0.6}Mn{sub 0.4}Al{sub 0.5} (x = 0, 10, 20, 30) were prepared. Analysis by X-ray diffractometry (XRD) revealed that the composites consist mainly of LaNi{sub 5} and La{sub 2}Ni{sub 7} phases. Despite the small decrease in the maximum discharge capacity, the cycle performance was significantly enhanced. Linear polarization (LP), anodic polarization (AP) and potential step discharge experiments revealed that the electrochemical kinetics increases first and then decreases with increasing x. (author)

  10. Influence of Pr in the microstructure and electrical properties in LaPrMgAlMnCoNi based alloys for using for Ni-MH batteries

    International Nuclear Information System (INIS)

    Galdino, Gabriel Souza

    2011-01-01

    The La 0.7-x Pr x Mg 0.3 Al 0.3 Mn- 0.4 Co 0.5 Ni 3.8 (x= 0 a 0.7) as-cast alloys to apply in negative electrodes for nickel-metal hydride batteries (Ni-MH). The characterizations of the alloys were realized by: scanning electron microscope (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction techniques. A study of hydrogen absorption capacity of the alloys realized. The hydrogenation of the material was performed in two processes: the low pressure (0.2 MPa of hydrogen and temperature of the 773 K) and high pressure (1 MPa of hydrogen and temperature of the 298 K). It was observed that with increasing Pr content occurred a decrease the hydrogen absorption capacity. The capacity of discharge of the batteries was determined utilizing an analyzer digital computerized composed of four channels. It was observed decreases of the discharge capacity of the batteries when increase praseodymium content in La 0.7- x Pr x Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni-3 .8 (x= 0 a 0.3) alloys. The highest discharge capacity (386 mAhg -1 ) and stability cyclic were obtained to La 0.2 Pr 0.5 Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy. This capacity can be related to the higher proportion of phase LaMg 2 Ni 9 in the alloy with the addition of 0.5 at.% Pr. (author)

  11. Thermal behaviour of Cu-Mg-Mn and Ni-Mg-Mn layered double hydroxides and characterization of formed oxides

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Grygar, Tomáš; Dorničák, V.; Rojka, T.; Bezdička, Petr; Jirátová, Květa

    2005-01-01

    Roč. 28, 1-4 (2005), s. 121-136 ISSN 0169-1317 Institutional research plan: CEZ:AV0Z40320502 Keywords : Cu-Mg-Mn basic carbonates * Ni-Mg-Mn hydrotalcite Subject RIV: CA - Inorganic Chemistry Impact factor: 1.324, year: 2005

  12. Quantitative analysis of sodium di-uranate for Al, Ca, Fe, Mg, Mn, Na by flame-atomic absorption spectrometric method

    International Nuclear Information System (INIS)

    Jat, J.R.; Balaji Rao, Y.; Subba Rao, Y.

    2015-01-01

    Nuclear Fuel Complex (NFC) receives Sodium Di-Uranate (SDU) from Uranium Corporation of India Limited (UCIL) for producing sinterable UO 2 pellets for manufacturing fuel sub assemblies. Several impurities present in ore find their way into SDU during its conversion. Stringent specification have been laid down by the reactor designs for achieving the optimum performance of the fuel and several impurity element like Al, Ca, Fe, Mg, Mn, Na among others affects severely performance of UO 2 fuel. Most of the impurity including the above mentioned elements are generally analysed by ICP-OES method. However, determination of Al, Ca, Fe, Mg, Mn and Na by ICP-OES requires lot of dilution as they are present at high levels in SDU. Apart from introducing dilution error, dilution process is very tedious and time consuming work and not a preferred choice in an industrial lab like control lab where large analytical load exists and time bound analysis is a requirement. To avoid these difficulties a simple and reliable Flame Atomic absorption spectrometric technique has been developed for regular analysis. Present method involves dissolution of SDU sample in Conc. HNO 3 and after the complete dissolution the sample solution has been evaporated to near dryness on a hot plate. Subsequently sample solution has been brought into 4N HNO 3 medium

  13. Structural, magnetic and Moessbauer spectral studies of aluminum substituted Mg-Mn-Ni ferrites (Mg{sub 0.2}Mn{sub 0.5}Ni{sub 0.3}Al{sub y}Fe{sub 2-y}O{sub 4})

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Satish, E-mail: satishapurva@gmail.com [Department of Physics, Govt. P.G. College, Solan-173212 (India); Chand, Jagdish [Department of Physics, Govt. P.G. College, Solan-173212 (India); Batoo, Khalid Mujasam [King Abdullah Institute of Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Singh, M. [Department of Physics, Himachal Pradesh University, Summer-Hill, Shimla-171005 (India)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Single phase nanocrystalline Al{sup 3+} ions doped Mg-Mn-Ni ferrite have been synthesized by citrate precursor method. Black-Right-Pointing-Pointer Particle size decreases as non-magnetic Al content increases. Black-Right-Pointing-Pointer The presence of doublets in the Moessbauer spectra can be attributed to superparamagnetic relaxation. - Abstract: Nanocrystalline Al{sup 3+} ions doped Mg{sub 0.2}Mn{sub 0.5}Ni{sub 0.3}Al{sub y}Fe{sub 2-y}O{sub 4} compositions, where y = 0.0, 0.05 and 0.10 have been synthesized by citrate precursor method. Crystal structure and magnetic properties have been investigated at 300 K by means of X-ray diffraction, transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and Moessbauer spectra measurements. XRD study reveals that particle size decreases from 102.25 nm to 41.65 nm. A decrease in lattice constant and saturation magnetization was attributed to smaller ionic radius of Al{sup 3+} ions and weakening of super exchange interaction. Experimental and X-ray density decrease with increasing aluminum concentration. Though Moessbauer spectra of y = 0.0 exhibit normal Zeeman split sextets, spectra of samples for y = 0.05 and 0.10 are characterized by simultaneous presence of a central paramagnetic doublet. Dependence of Moessbauer parameters such as isomer shift, quadrupole splitting, linewidth and hyperfine magnetic field on Al{sup 3+} ions concentration have been discussed. Initial permeability '{mu}{sub i}', saturation magnetization (4 {pi}M{sub S}), retentivity (M{sub R}), Bohr magneton number (n{sub B}{sup N}), magneto crystalline anisotropy constant (K{sub 1}) and magnetic loss decreases while coercivity (H{sub C}) increases with increasing substitution of Al{sup 3+} ions. Magnetic loss has very low value in the range of 10{sup -3} which is two orders of magnitude less than samples prepared by conventional method.

  14. Phenomenological-based kinetics modelling of dehydrogenation of ethylbenzene to styrene over a Mg 3 Fe 0.25 Mn 0.25 Al 0.5 hydrotalcite catalyst

    KAUST Repository

    Hossain, Mohammad M.; Atanda, Luqman; Al-Khattaf, Sulaiman

    2012-01-01

    This communication reports a mechanism-based kinetics modelling for the dehydrogenation of ethylbenzene to styrene (ST) using Mg3Fe0.25Mn0.25Al0.5 catalyst. Physicochemical characterisation of the catalyst indicates that the presence of basic sites

  15. The effect of high charging rates activation on the specific discharge capacity and efficiency of a negative electrode based on a LaMgAlMnCoNi alloy

    International Nuclear Information System (INIS)

    Ferreira, E.A.; Zarpelon, L.M.C.; Casini, J.C.S.; Takiishi, H.; Faria, R.N.

    2009-01-01

    A nickel-metal hydride (Ni-MH) rechargeable battery has been prepared using a La 0.7 Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy as the negative electrode. The maximum discharge capacity of the La 0.7 Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy has been determined (350 mAh/g). Using a high starting charging rate (2857 mAg -1 ) an efficiency of 49% has been achieved in the 4 th cycle. The alloy and powders have been characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD). (author)

  16. The influence of some additives to the highly carbohydrate diet on the distribution of Al, Ca, Mg, Mn and Na in teeth enamel and bones of experimental animals

    International Nuclear Information System (INIS)

    Bakyrdzhiev, P.

    1985-01-01

    An instrument neutron activation analysis had been used for the investigation of diets with different salt and permanent basic composition. The diets with MgCl 2 and methylene blue additives were used. Three groups of animals Wistar, Hamster and S. Dawley with different genetic reactivity had been fed on adlibidum for 45 days. After killing the animals the teeth enamel, mandibula and tibia had been sampled and content of Al, Mg, Mn, Na and Cl 2 was determined by means of INAA. The samples were irradiated for 1 min in the rabbit system of the experimental reactor IRT-2000. Two measurements were carried out - after a cooling time of 1 min for the determination of Al, Ca, Cl 2 , Mg, and after 2 h cooling time - for Na and Mn. The precision of the analysis was between 4 and 12%

  17. ⁵³Mn-⁵³Cr and ²⁶Al-²⁶Mg ages of a feldspathic lithology in polymict ureilites

    Energy Technology Data Exchange (ETDEWEB)

    Goodrich, Cyrena Anne [Planetary Science Institute. Tucson, AZ (United States); Hutcheon, Ian D. [Glenn T. Seaborg Institute. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kita, Noriko T. [Dept. of Geoscience. Univ. of Wisconsin, Madison, WI (United States); Huss, Gary R. [NASA Marshall Space Flight Center (MSFC), Huntsville, AL (United States); Cohen, Barbara Anne [Hawaii Institute of Geophysics and Planetology. Univ. of Hawaii, Honolulu, HI (United States); Keil, Klaus

    2010-07-01

    We report 53Mn–53Cr and 26Al–26Mg isotopic data, obtained by in-situ SIMS analysis, for feldspathic clasts in polymict ureilites DaG 319 and DaG 165. The analyzed clasts belong to the “albitic lithology,” the most abundant population of indigenous feldspathic materials in polymict ureilites, and are highly fractionated igneous assemblages of albitic plagioclase, Fe-rich pyroxenes, phosphates, ilmenite, silica, and Fe(Mn, K, P, Ti)-enriched glass. Glass in DaG 165 clast 19 has extremely high and variable 55Mn/52Cr ratios (500–58,000) and shows correlated 53Cr excesses up to ~ 1500‰, clearly indicating the presence of live 53Mn at the time of formation. The slope of the well-correlated isochron defined by glass and pyroxenes from this clast corresponds to (53Mn/55Mn) = (2.84 ± 0.10) × 10-6 (2σ). Data for less 55Mn/52Cr-enriched glasses from DaG 319 clast B1, as well as phosphates from several other clasts, are consistent with this isochron. The 53Mn/55Mn ratio obtained from the isochron implies that these clasts are 0.70 ± 0.18 Ma younger than the D'Orbigny angrite, corresponding to the absolute age of 4563.72 ± 0.22 Ma. Plagioclase in DaG 319 clast B1 has a fairly constant 27Al/24Mg ratio of ~ 900 and shows resolvable 26Mg excesses of ~ 2‰. The slope of the isochron defined by pyroxene and plagioclase in this clast is (3.0 ± 1.1) × 10-7 (2σ), corresponding to a time difference of 5.4 (-0.3/+0.5) Ma after CAI (assuming the canonical initial 26Al/27Al ratio of 5 × 10-5) and an age 0.5 (-0.3/+0.5) Ma younger than D'Orbigny. Its absolute age (relative to D'Orbigny) is 4563.9 (+ 0.4/-0.5) Ma, in agreement with the 53Mn–53Cr age from clast 19. These data provide the first

  18. Phase equilibria and stability of the B2 phase in the Ni-Mn-Al and Co-Mn-Al systems

    International Nuclear Information System (INIS)

    Kainuma, R.; Ise, M.; Ishikawa, K.; Ohnuma, I.; Ishida, K.

    1998-01-01

    The phase equilibria and ordering reactions in the composition region up to 50 at.% Al have been investigated in the Ni-Mn-Al and Co-Mn-Al systems at temperatures in the interval 850-1200 C mainly by the diffusion couple method. The compositions of the γ (A1: fcc-Ni, -Co, γ-Mn), γ' (L1 2 : Ni 3 Al), β (B2: NiAl, CoAl, NiMn), β-Mn (A13: β-Mn type), δ-Mn (A2: bcc-Mn) and ε (A3: hcp-(Mn, Al)) phases in equilibrium and the critical boundaries of the A2/B2 continuous ordering transition in the bcc phase region have been determined. It is shown that in the Mn-rich portion of the ternary systems both continuous and discontinuous A2 to B2 ordering transitions exist. The A2+B2 two-phase region in the isothermal sections has a lenticular shape and exists over a wide temperature range. The phase equilibria between the γ, γ', β, β-Mn, δ-Mn and ε phases are presented and the stability of the ordered bcc aluminides is discussed. (orig.)

  19. Laboratory study on the adsorption of Mn(2+) on suspended and deposited amorphous Al(OH)(3) in drinking water distribution systems.

    Science.gov (United States)

    Wang, Wendong; Zhang, Xiaoni; Wang, Hongping; Wang, Xiaochang; Zhou, Lichuan; Liu, Rui; Liang, Yuting

    2012-09-01

    Manganese (II) is commonly present in drinking water. This paper mainly focuses on the adsorption of manganese on suspended and deposited amorphous Al(OH)(3) solids. The effects of water flow rate and water quality parameters, including solution pH and the concentrations of Mn(2+), humic acid, and co-existing cations on adsorption were investigated. It was found that chemical adsorption mainly took place in drinking water with pHs above 7.5; suspended Al(OH)(3) showed strong adsorption capacity for Mn(2+). When the total Mn(2+) input was 3 mg/L, 1.0 g solid could accumulate approximately 24.0 mg of Mn(2+) at 15 °C. In drinking water with pHs below 7.5, because of H(+) inhibition, active reaction sites on amorphous Al(OH)(3) surface were much less. The adsorption of Mn(2+) on Al(OH)(3) changed gradually from chemical coordination to physical adsorption. In drinking water with high concentrations of Ca(2+), Mg(2+), Fe(3+), and HA, the removal of Mn(2+) was enhanced due to the effects of co-precipitation and adsorption. In solution with 1.0 mg/L HA, the residual concentration of Mn(2+) was below 0.005 mg/L, much lower than the limit value required by the Chinese Standard for Drinking Water Quality. Unlike suspended Al(OH)(3), deposited Al(OH)(3) had a much lower adsorption capacity of 0.85 mg/g, and the variation in flow rate and major water quality parameters had little effect on it. Improved managements of water age, pipe flushing and mechanical cleaning were suggested to control residual Mn(2+). Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Effect of annealing treatment on structure and electrochemical performance of quenched MmNi4.2Co0.3Mn0.4Al0.3Mg0.03 hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhou Zenglin; Song Yueqing; Cui Shun; Huang Changgeng; Qian Wenlian; Lin Chenguang; Zhang Yongjian; Lin Yulin

    2010-01-01

    MmNi 4.2 Co 0.3 Mn 0.4 Al 0.3 Mg 0.03 hydrogen storage alloy was prepared by single-roll rapid quenching followed by different annealing treatments for 8 h at 1133 K, 1173 K, 1213 K, and 1253 K, respectively. Alloy structure, phase composition, pressure-composition-temperature (PCT) properties, and electrochemical performance of different annealed alloys have been investigated by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), energy dispersion spectrometer (EDS), automatic Sieverts-type apparatus, and electrochemical experiments. Electrochemical experiments indicate that the annealing treatment at 1213 K extends cycle life from 193 cycles to 358 cycles, increases the maximum discharge capacity, and slightly decreases the activation behavior. Alloy structure analyses show that the improvement in cycle life is attributed to the formation of a single CaCu 5 -type structure or the relief of an Mg-containing AlMnNi 2 -type second phase. Pressure composition isotherms results illustrate that both the hydrogen absorption capability and the dehydriding equilibrium pressure go up with increased annealing temperature. For its good performance/cost ratio, the Mg-added low-Co alloy annealed at 1213 K would be a promising substitution for MmNi 4.05 Co 0.45 Mn 0.4 Al 0.3 alloy product.

  1. Investigation on the Effect of Sub-Zero Treatment on Micro-Hardness and Microstructure of GTAW Welded Al-Si-Mg-Mn Alloy

    Science.gov (United States)

    Devanathan, R.; Yuvarajan, D.; Christopher Selvam, D.; Venkatamuni, T.

    2018-02-01

    In this work, the effect of sub-zero treatment on the mechanical properties of an Al-Si-Mg-Mn alloy welded by GTAW (gas tungsten arc welding) leads to significant softening in the welded region. The latter is due to melting and resolidification in the welded region, which have resulted in decomposition of the strengthening precipitates. The experiments were performed on GTAW welded plates of 6 mm thickness by varying the heat inputs, namely, of 370, 317.1, 277.5, 246.4, and 222 J/mm, and sub-zero treatment time periods. The Sub-Zero treatment was performed at-45°C using dry ice; hardness and microstructure investigations were performed in the welded region of the Al‒Si-Mg-Mn alloy that was studied in two different conditions, namely, as-welded and in that formed after post weld sub-zero treatment with artificial aging. It was found that the post weld Sub-Zero treatment followed by artificial aging had led to realization of significantly higher hardness values in the welded region due to the recurrence of the precipitation sequence.

  2. Mechanical properties of the Mg-14Ti-1Al-0.9Mn (%Wt) synthesized by physical vapour

    International Nuclear Information System (INIS)

    Garces, G.; Cristina, M. C.; Torralba, M.; Adeva, P.

    2001-01-01

    The mechanical properties of the alloy Mg-14% Ti-1% Al-0.9 Mn obtained by PVD techniques have been evaluated up to 300 degree centigree. The alloy presents a columnar grain microstructure, typical of the zone 2 of the structure zone model of MD, where surface diffusion takes place. The alloy tested in compression at room temperature presented a high yield stress, 360 MPa. This resistance to the plastic deformation is principally due to a solid solution hardening and small grain size. The yield stress decrease with the compression temperature. However, the alloy showed low fracture resistance, especially at room temperature. The presence of pores at the grain boundaries, results in the crack formation, running fast along the grain boundary. (Author) 13 refs

  3. Microstructure and Mechanical Properties of Al-5Mg-0.8Mn Alloys with Various Contents of Fe and Si Cast under Near-Rapid Cooling

    Directory of Open Access Journals (Sweden)

    Yulin Liu

    2017-10-01

    Full Text Available Al-5Mg-0.8Mn alloys (AA5083 with various iron and silicon contents were cast under near-rapid cooling and rolled into sheets. The aim was to study the feasibility of minimizing the deteriorating level of the harmful Fe-rich phases on the mechanical properties through refining the intermetallics by significantly increasing the casting rate. The results showed that the size and density of the intermetallic particles that remained in the hot bands and the cold rolled sheets increased as the contents of iron and silicon in the alloys were increased. However, the increment of the particle sizes was limited due to the significant refinement of the intermetallics formed during casting under near-rapid cooling. The mechanical properties of the alloys reduced as the contents of iron and silicon in the alloys increased. However, the decrement of tensile strengths and ductility was quite small. Therefore, higher contents of iron and silicon could be used in the Al-5Mg-0.8Mn alloy (AA5083 alloy when the material is cast under near-rapid cooling, such as in the continuous strip casting process.

  4. Influence of phase composition on microstructure and properties of Mg-5Al-0.4Mn-xRE (x = 0, 3 and 5 wt.%) alloys

    International Nuclear Information System (INIS)

    Braszczyńska-Malik, K.N.; Grzybowska, A.

    2016-01-01

    The microstructure and mechanical properties investigations of two AME503 and AME505 experimental alloys in as-cast conditions were presented. The investigated materials were fabricated on the basis of the AM50 commercial magnesium alloy with 3 and 5 wt.% cerium rich mischmetal. In the as-cast condition, both experimental alloys were mainly composed of α-Mg, Al_1_1RE_3 and Al_1_0RE_2Mn_7 intermetallic phases. Additionally, due to non-equilibrium solidification conditions, a small amount of α + γ divorced eutectic and Al_2RE intermetallic phase were revealed. The obtained results also show a significant influence of rare earth elements on Brinell hardness, tensile and compression properties at ambient temperature and especially on creep properties at 473 K. Improved alloy properties with a rise in rare earth elements mass fraction results from an increase in Al_1_1RE_3 phase volume fraction and suppression of α + γ eutectic volume fraction in the alloy microstructure. Additionally, the influence of rare earth elements on the dendrite arm space value was discussed. The presented results also proved the thermal stability of the intermetallic phases during creep testing. - Highlights: • Two different Mg-5Al-0.4Mn alloys containing 3 and 5 wt.% of rare earth elements were fabricated. • Addition of rare earth elements leads to a reduction of dendrite arm spaces. • Mechanical properties depend on the phase composition of the alloys. • The increase of the rare earth elements content causes rise of the creep resistance.

  5. Effects of Al and Mn, alone and in combination, on growth and nutrient status of red pine seedlings hydroponically grown in nutrient culture solution; Suiko saibaishita akamatsunae no seicho oyobi eiyo jotai ni taisuru Al to Mn no tandoku oyobi fukugo eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Izuta, T.; Aoki, M.; Totsuka, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan). Faculty of Agriculture

    1997-09-10

    Experiments have made clear the effects of Al and Mn on growth of red pine seedlings hydroponically grown. Analysis was performed on components of plants grown in culture solution into which Al and Mn were added alone or in combination. Photosynthesis velocity and dark respiration velocity of the seedlings were measured when they have fully grown. The following results were obtained: the Al addition reduces dry seedling weight, the T/R ratio (T is dry weight of a seedling above the ground and R is that under the ground) decreases as the addition amount is increased, and the photosynthesis velocity decreases; Al accumulates in roots reducing physiological function of the roots and concentrations of Ca and Mg; the dry weight decreases with increasing Mn addition, but does not affect the T/R ratio; the Mn addition reduces the photosynthesis velocity lowering chlorophyll content in needle leaves; the dark respiration velocity decreases as the Mn amount is increased, but does not affect that for trunks; Ca and Mg concentrations decrease in the trunks and roots; no significant compound effects of Al and Mn are recognized, and the effects are additive; and the concentration at which growth decrease appears is 10 ppm or higher for Al and 60 ppm or higher for Mn. 32 refs., 2 figs., 11 tabs.

  6. Influences of alloying elements and oxygen on the stability and elastic properties of Mg17Al12

    International Nuclear Information System (INIS)

    Dai, Jianhong; Song, Yan; Yang, Rui

    2014-01-01

    Highlights: • Most alloying elements stabilize Mg 17 Al 12 with negative occupation energy. • The alloying element and oxygen co-existed Mg 17 Al 12 are stable. • Strong bonding interactions existed between alloying element and host atoms. - Abstract: Influence of alloying elements (Ca, Mn, Ni, Cu, Zn, Zr, Sn, and La) and oxygen on stability and elastic properties of Mg 17 Al 12 has been studied by first principles total energy calculations. The occupation preferences of oxygen and alloying elements in Mg 17 Al 12 are identified. Ca, Zr, and La tend to substitute for Mg atoms, Zn, Cu, and Ni prefer to occupy Al site, and Mn and Sn show positive occupation energy for substituting both Mg and Al atoms. The impurity oxygen prefers to occupy interstitial sites surrounded by four Mg atoms regardless the presence of alloying elements in this system. Elastic constants were estimated to evaluate the mechanical stability of alloyed systems. The results show that alloys which own negative occupation energy also satisfy the mechanical stability criteria. Electronic structures were analyzed to clarify the intrinsic mechanisms of how alloying elements and oxygen influence the stability of Mg 17 Al 12 . The stabilization effect of alloying elements and oxygen was found to originate from the strong bonding interaction with the matrix

  7. Ferromagnetic properties of Mn-doped AlN

    International Nuclear Information System (INIS)

    Li, H.; Bao, H.Q.; Song, B.; Wang, W.J.; Chen, X.L.; He, L.J.; Yuan, W.X.

    2008-01-01

    Mn-doped AlN polycrystalline powders with a wurtzite structure were synthesized by solid-state reactions. A red-orange band at 600 nm, due to Mn 3+ incorporated into the AlN lattice, is observed in the photoluminescence (PL) spectrum at room temperature (RT). Magnetic measurements show the samples possess hysteresis loops up to 300 K, indicating that the obtained powders are ferromagnetic at around RT. The Mn concentration-induced RT ferromagnetism is less than 1 at%. Our results confirm that the RT ferromagnetism can be realized in Mn-doped AlN

  8. Joining of Cu-Mg-Mn Aluminum Alloy with Linear Friction Welding

    OpenAIRE

    A. Medvedev; V. Bychkov; A. Selivanov; Yu. J. Ershova; B. Bolshakov; I.V. Alexаndrov; F. F. Musin

    2014-01-01

    Al-Cu-Mg-Mn alloy samples were joined together with linear friction welding in two conditions, as is, without pretreatment, and after etching the welding interface. The effect of the welding interface condition was evaluated based on microstructure analysis, microhardness and tensile testing at room temperature. Also, the temperature distribution during welding was estimated with an analytical one-dimensional heat conduction model of the welding process and welding process data

  9. The Enhancement of Mg Corrosion Resistance by Alloying Mn and Laser-Melting

    Directory of Open Access Journals (Sweden)

    Youwen Yang

    2016-03-01

    Full Text Available Mg has been considered a promising biomaterial for bone implants. However, the poor corrosion resistance has become its main undesirable property. In this study, both alloying Mn and laser-melting were applied to enhance the Mg corrosion resistance. The corrosion resistance, mechanical properties, and microstructure of rapid laser-melted Mg-xMn (x = 0–3 wt % alloys were investigated. The alloys were composed of dendrite grains, and the grains size decreased with increasing Mn. Moreover, Mn could dissolve and induce the crystal lattice distortion of the Mg matrix during the solidification process. Mn ranging from 0–2 wt % dissolved completely due to rapid laser solidification. As Mn contents further increased up to 3 wt %, a small amount of Mn was left undissolved. The compressive strength of Mg-Mn alloys increased first (up to 2 wt % and then decreased with increasing Mn, while the hardness increased continuously. The refinement of grains and the increase in corrosion potential both made contributions to the enhancement of Mg corrosion resistance.

  10. Enhanced elevated-temperature performance of LiAl_xSi_0_._0_5Mg_0_._0_5Mn_1_._9_0_-_xO_4 (0≤x≤0.08) cathode materials for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhao, Hongyuan; Liu, Shanshan; Wang, Zhenwei; Cai, Yu; Tan, Ming; Liu, Xingquan

    2016-01-01

    In order to significantly enhance the elevated-temperature performance of LiSi_0_._0_5Mg_0_._0_5Mn_1_._9_0O_4, the LiAl_xSi_0_._0_5Mg_0_._0_5Mn_1_._9_0_-_xO_4 (0 ≤ x ≤ 0.08) samples were firstly prepared via sol-gel technique. All the obtained samples showed the intrinsic spinel structure without any other detectable impurity phases. Among these samples, the LiAl_0_._0_5Si_0_._0_5Mg_0_._0_5Mn_1_._8_5O_4 sample was found to be optimal possessing regular crystal morphology with clean surfaces and presented much better elevated-temperature cycling stability and rate capability. When carried out at 55 °C, the LiAl_0_._0_5Si_0_._0_5Mg_0_._0_5Mn_1_._8_5O_4 sample exhibited the initial discharge capacity of 123.6 mAh g"−"1 at 0.5C between 3.20 and 4.35 V. After 100 cycles, the discharge capacity could still reach up to 115.9 mAh g"−"1 with capacity retention of 93.8%, which was much higher than that of LiSi_0_._0_5Mg_0_._0_5Mn_1_._9_0O_4. At the higher discharge rate of 10C, a high discharge capacity of 82.5 mAh g"−"1 could be obtained with capacity retention of 95.6% after 50 cycles at 55 °C. By contrast, the LiSi_0_._0_5Mg_0_._0_5Mn_1_._9_0O_4 sample only exhibited 43.7 mAh g"−"1 with lower capacity retention of 61.8%. These results indicate that the introduction of appropriate amount of aluminium ions in the magnesium and silicon co-doped spinel can make up for the shortage of co-doping with magnesium and silicon ions in term of the elevated-temperature performance.

  11. Effect of Pulse Laser Welding Parameters and Filler Metal on Microstructure and Mechanical Properties of Al-4.7Mg-0.32Mn-0.21Sc-0.1Zr Alloy

    Directory of Open Access Journals (Sweden)

    Irina Loginova

    2017-12-01

    Full Text Available The effect of pulse laser welding parameters and filler metal on microstructure and mechanical properties of the new heat-treatable, wieldable, cryogenic Al-4.7Mg-0.32Mn-0.21Sc-0.1Zr alloy were investigated. The optimum parameters of pulsed laser welding were found. They were 330–340 V in voltage, 0.2–0.25 mm in pulse overlap with 12 ms duration, and 2 mm/s speed and ramp-down pulse shape. Pulsed laser welding without and with Al-5Mg filler metal led to the formation of duplex (columnar and fine grains as-cast structures with hot cracks and gas porosity as defects in the weld zone. Using Al-5Ti-1B filler metal for welding led to the formation of the fine grain structure with an average grain size of 4 ± 0.2 µm and without any weld defects. The average concentration of Mg is 2.8%; Mn, 0.2%; Zr, 0.1%; Sc, 0.15%; and Ti, 2.1% were formed in the weld. The ultimate tensile strength (UTS of the welded alloy with AlTiB was 260 MPa, which was equal to the base metal in the as-cast condition. The UTS was increased by 60 MPa after annealing at 370 °C for 6 h that was 85% of UTS of the base alloy.

  12. Effect of Al and AlP on the microstructure of Mn-30 wt.%Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yuying [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jing Shi Road 73, Jinan 250061 (China); Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jing Shi Road 73, Jinan 250061 (China)], E-mail: xfliu@sdu.edu.cn

    2008-04-15

    Effect of Al and AlP particles on the microstructure of near eutectic Mn-Si alloy (Mn-30 wt.%Si) was studied by Electron Probe Micro-analyzer (EPMA) and Differential Scanning Calorimeter (DSC). Crystal lattice correspondence analyses show that both Al and AlP have good lattice matching coherence relationships with MnSi phase, and the addition of Al and AlP particles results in an abnormal eutectic structure, i.e. the eutectic constitution MnSi and Mn{sub 5}Si{sub 3} precipitate separately: MnSi precipitates firstly, and then the Mn{sub 5}Si{sub 3} phase.

  13. Uptake of soil P, Al, Fe, Mn, Mg and Ca by Italian rye grass (Lolium multiflorum Lam. induced by synthetic chelating agent

    Directory of Open Access Journals (Sweden)

    Helinä Hartikainen

    1981-05-01

    Full Text Available The effect of a synthetic chelating compound on the dry matter yield and the uptake of soil P, Al, Fe, Mn, Mg and Ca by Italian rye grass was studied in a pot experiment with three mineral soil samples irrigated with water or 0.001 M Na2-EDTA(dinatrium salt of ethylenediaminetetraacetic acid solution. The Na2-EDTA treatment seemed not to affect the quantity of the dry matter yields, but it affected markedly their chemical composition. Increased contents of P, Al and Fe were found in all the harvests. In two soil samples the P supply was improved by 35—45 %. The accumulation of Al, Fe and Mn induced by Na2-EDTA tended to be the more effective the greater the stability constant for the corresponding metal-EDTA chelate was. Thus, the iron uptake increased most intensively, i.e. by 217—458 %, and that of aluminium by 33—120 %. On the basis of the first two harvests the manganese absorption by the rye grass seemed to decrease probably due to the enormous accumulation of iron. The results also suggested that the addition of Na2-EDTA to the soil was not able essentially to affect the magnesium and calcium supply to the plants.

  14. Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery

    International Nuclear Information System (INIS)

    Wang, Naiguang; Wang, Richu; Peng, Chaoqun; Peng, Bing; Feng, Yan; Hu, Chengwang

    2014-01-01

    Highlights: • We investigate the effect of indium on the discharge behaviour of Mg-Al-Pb alloy. • We evaluate the performance of Mg-air batteries with Mg-Al-Pb and Mg-Al-Pb-In anodes. • We analyze the activation mechanism of Mg-Al-Pb-In alloy in the discharge process. - Abstract: The discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys in 3.5 wt.% NaCl solution is investigated by electrochemical techniques, and compared with that of pure magnesium. The results show that Mg-Al-Pb-In alloy provides a more negative potential and exhibits a higher utilization efficiency in contrast with Mg-Al-Pb alloy and pure magnesium during the half-cell test at a large current density, and gives desirable discharge performance when used as anode for Mg- air battery. The peak power density of the Mg-air battery with Mg-Al-Pb-In anode is 94.5 mW cm −2 , which is comparable with those of Mg-H 2 O 2 semi-fuel batteries. Moreover, the activation mechanism of Mg-Al-Pb-In alloy during the discharge process is also analyzed

  15. τ-MnAl with high coercivity and saturation magnetization

    Directory of Open Access Journals (Sweden)

    J. Z. Wei

    2014-12-01

    Full Text Available In this paper, high purity τ-Mn54Al46 and Mn54−xAl46Cxalloys were successfully prepared using conventional arc-melting, melt-spinning, and heat treatment process. The magnetic and the structural properties were examined using x-ray diffraction (XRD, powder neutron diffraction and magnetic measurements. A room temperature saturation magnetization of 650.5 kAm-1, coercivity of 0.5 T, and a maximum energy product of (BHmax = 24.7 kJm-3 were achieved for the pure Mn54Al46 powders without carbon doping. The carbon substituted Mn54−xAl46Cx, however, reveals a lower Curie temperature but similar saturation magnetization as compared to the carbon-free sample. The electronic structure of MnAl shows that the Mn atom possesses a magnetic moment of 2.454 μB which results from strong hybridization between Mn-Al and Mn-Mn. We also investigated the volume and c/a ratio dependence of the magnetic moments of Mn and Al. The results indicate that an increase in the intra-atomic exchange splitting due to the cell volume expansion, leads to a large magnetic moment for the Mn atom. The Mn magnetic moment can reach a value of 2.9 μB at a volume expansion rate of ΔV/V ≈ 20%.

  16. Structural, optical and magnetic characterizations of Mn-doped MgO nanoparticles

    International Nuclear Information System (INIS)

    Azzaza, S.; El-Hilo, M.; Narayanan, S.; Judith Vijaya, J.; Mamouni, N.; Benyoussef, A.; El Kenz, A.; Bououdina, M.

    2014-01-01

    Structural, optical and room temperature magnetic properties of Mn-doped MgO nanoparticles with Mn fractions (5–50 at.%), were investigated. The as-prepared pure MgO, with grain size of about 15 nm, exhibits two magnetization components, one is diamagnetic and another is superparamagnetic. After removing the diamagnetic contribution, the magnetization curve exhibits superparamagnetic behavior which may be attributed to vacancy defects. As the Mn content increases, the lattice parameter decreases, the ferromagnetism appears and the emission bands were considerably blue shifted. First principle electronic structure calculations reveal the decrease of both the gap and the Curie temperature with increasing Mn concentration. The obtained results suggest that both Mn doping and oxygen vacancies play an important role in the development of room temperature ferromagnetism. - Graphical abstract: The measured room temperature magnetization curve for the Mn doped MgO with 5 at.%, 10 at.% and 20 at.%. - Highlights: • Combination of experimental and calculation methods. • Decrease of both the gap and the Curie temperature with increasing Mn content. • Ferromagnetism in MgO originate from interactions between defects

  17. Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid

    International Nuclear Information System (INIS)

    Wen Zhaohui; Wu Changjun; Dai Changsong; Yang Feixia

    2009-01-01

    The corrosion behaviors of pure magnesium (Mg) and three Mg alloys with different Al contents were investigated in a modified simulated body fluid (m-SBF) through immersion tests, Tafel experiments, and electrochemical impedance spectroscopic (EIS) experiments. The immersion results show that the corrosion rates (CRs) of the four samples were in an order of AZ91D ct ) of the three magnesium alloys initially increased and then decreased while the R ct of pure Mg was kept lower within 24 h. The results of a scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) show that pure Mg and three alloys were heterogeneously corroded in the m-SBF. The corrosion of pure Mg, which showed a more uniform corrosion appearance, resulted from localized corrosion over the entire surface. Alloy AZ91D (of 8.5-9.5 wt.% Al) showed relatively uniform corrosion morphology and the β-Mg 12 Al 17 precipitates in alloy AZ91D were more homogeneously and continuously distributed along the grain boundaries. Obvious corrosion pits were found on the surface of alloy AZ61 and AZ31. The corrosion pits of alloy AZ61 were shallower than those of alloy AZ31. Alloy AZ61 (of 5.8-7.2 wt.% Al) possessed more Al 8 Mn 5 and a little β-Mg 12 Al 17 presented along the grain boundary heterogeneously and discontinuously. Al 8 Mn 5 was the main phase of the AZ31 alloy (of 2.5-3.5 wt.% Al) dispersed into the matrix. In conclusion, the microstructure and the Al content in the α-Mg (Al) matrix significantly affected the corrosion properties of the alloys in the m-SBF. With the increase in Al content, the corrosion resistances of the samples were improved.

  18. FRACTIONAL RECRYSTALLIZATION KINETICS IN DIRECTLY COLD ROLLED Al-Mg, Al-Mg-Sc AND Al-Mg-Sc-Zr ALLOY

    Directory of Open Access Journals (Sweden)

    M. S. Kaiser

    2014-12-01

    Full Text Available The evaluation of texture as a function of recrystallization has been characterized for directly cold rolled Al-6Mg, Al-6Mg-0.4Sc and Al-6Mg-0.4Sc-0.2Zr alloys. Samples were annealed isothermally at 400 °C for 1 to 240 minutes to allow recrystallization. Recrystallization kinetics of the alloys is analyzed from the micro-hardness variation. Isothermally annealed samples of aluminum alloys were also studied using JMAK type analysis to see if there exists any correlation between the methods. Recrystallization fraction behavior between two methods the scandium added alloys show the higher variation due to precipitation hardening and higher recrystallization behavior. The scandium and zirconium as a combined shows the more variation due to formation of Al3(Sc, Zr precipitate. From the microstructure it is also observed that the base Al-Mg alloy attained almost fully re-crystallized state after annealing at 400 °C for 60 minutes

  19. Mn induced 1 × 2 reconstruction in the τ-MnAl(0 0 1) surface

    Science.gov (United States)

    Guerrero-Sánchez, J.; Takeuchi, Noboru

    2018-05-01

    We report on first principles total energy calculations to describe the structural, electronic and magnetic properties of MnAl(0 0 1) surfaces. We have concentrated in structural models having 1 × 1 and 1 × 2 periodicities, since recent experiments of the similar MnGa(0 0 1) surface have found 1 × 1 and 1 × 2 reconstructions. Our calculations show the existence of two stable structures for different ranges of chemical potential. A 1 × 1 surface is stable for Al-rich conditions, whereas a Mn-induced 1 × 2 reconstruction appears after increasing the Mn chemical potential up to Mn-rich conditions. It is important to notice that experimentally, Mn rich conditions are important for improved magnetic properties. The Mn layers in both structures have ferromagnetic arrangements, but they are aligned antiferromagnetically with the almost no magnetic Al atoms. Moreover, the on top Mn atoms, which produce the 1 × 2 reconstruction, align antiferromagnetically with the second layer Mn atoms. These findings are similar to those obtained experimentally in MnGa thin films grown by molecular beam epitaxy. Therefore, this method could also be used to grow the proposed MnAl films.

  20. Thermodynamic properties of multiferroic Mg doped YbMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sattibabu, Bhumireddi, E-mail: bsb.satti@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Bhatnagar, A.K., E-mail: anilb42@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); School of Physics, University of Hyderabad, Hyderabad 500046 (India); Samatham, S. Shanmukharao; Singh, D. [Low Temperature Laboratory, UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, M.P. (India); Rayaprol, S. [UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC Campus, Mumbai 400085 (India); Das, D. [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Siruguri, V. [UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC Campus, Mumbai 400085 (India); Ganesan, V. [Low Temperature Laboratory, UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, M.P. (India)

    2015-09-25

    Highlights: • Specific heat data shows that T{sub N} increases for Mg doped YbMnO{sub 3} from 83 K to 86 K. • Yb{sub 1−x}Mg{sub x}MnO{sub 3} (x = 0.0 and 0.05) shows multiple magnetic transitions. • RCP are found to be 26.1 J/mol and 27.2 J/mol for YbMnO{sub 3} and Yb{sub 0.95}Mg{sub 0.05}MnO{sub 3}. - Abstract: Calorimetric studies of polycrystalline samples Yb{sub 1−x}Mg{sub x}MnO{sub 3} with x = 0.0 and 0.05 are reported. It is revealed that the Mg doping raises the antiferromagnetic ordering temperature, T{sub N,} from 83 K for x = 0.0 to 86 K for x = 0.05. A ferromagnetic ordering is also observed around 3 K. The broad feature in the specific heat data just above ferromagnetic ordering, is attributed to the Schottky anomaly. The estimated effective molecular fields from the Schottky analysis are H{sub mf} = 3.0 and 3.5 T for YbMnO{sub 3} and Yb{sub 0.95}Mg{sub 0.05}MnO{sub 3}, respectively. High temperature shift of Schottky anomaly with Mg doping indicates increase in effective molecular field of Mn at the Yb 4b site. The data supports that the idea that although molecular field is mainly responsible for the Schottky anomaly in Yb{sub 1−x}Mg{sub x}MnO{sub 3} and Mn{sup 3+} spin ordering also affects it. Magnetic part of the specific heat is obtained by subtracting the lattice contribution estimated using two Debye temperatures. The magnetic entropy change (ΔS{sub mag}) for pure and doped samples are 2.0 J mol{sup −1} K{sup −1} and 2.1 J mol{sup −1} K{sup −1} respectively, while the relative cooling power (RCP) calculate 26.1 J/mol, 27.2 J/mol for a field change of 10 T.

  1. Experimental investigation and thermodynamic calculation of the Fe-Mg-Mn and Fe-Mg-Ni systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peisheng; Zhao, Jingrui; Xu, Honghui; Liu, Shuhong; Ouyang, Hongwu [Central South Univ., Hunan (China). State Key Lab. of Powder Metallurgy; Du, Yong [Central South Univ., Hunan (China). State Key Lab. of Powder Metallurgy; Harbin Institute of Technology (China). State Key Lab. of Advanced Welding Production Technology; Gang, Tie; Fen, Jicai [Harbin Institute of Technology (China). State Key Lab. of Advanced Welding Production Technology; Zhang, Lijun [Central South Univ., Hunan (China). State Key Lab. of Powder Metallurgy; Bochum Univ. (Germany). ICAMS Inst.; He, Cuiyun [Guangxi Univ. (China). College of Physical Science and Technology

    2011-01-15

    Based on the thermodynamic calculations extrapolated from the corresponding binary sub-systems, four decisive alloys in the Fe-Mg-Mn system and three in the Fe-Mg-Ni system were selected and prepared using a powder metallurgy method to measure the isothermal sections at 500 C in both systems. The prepared samples were annealed at 500 C, and then subjected to X-ray diffraction, optical microscopy, scanning electron microscopy with energy-dispersive X-ray spectrometry as well as electron probe microanalysis. Taking into account the presently obtained experimental data and the experimental data available in the literature, thermodynamic modeling was performed for the above systems. It was found that a direct extrapolation from the corresponding three binary systems can well reproduce all the experimental data in the Fe-Mg-Mn system, while two thermodynamic parameters are needed in the Fe-Mg-Ni system to fit all the experimental data. The liquidus projections and reaction schemes for the Fe-Mg-Mn and Fe-Mg-Ni systems are also presented. (orig.)

  2. Gd3+-ESR and magnetic susceptibility of GdCu4Al8 and GdMn4Al8

    International Nuclear Information System (INIS)

    Coldea, R.; Coldea, M.; Pop, I.

    1994-01-01

    Gd ESR of GdCu 4 Al 8 and GdMn 4 Al 8 and magnetic susceptibility of GdCu 4 Al 8 , GdMn 4 Al 8 , and YMn 4 Al 8 were measured in the temperature range of 290K--460K and 90K--1050K, respectively. The occurrence of the Mn moment in YMn 4 Al 8 and GdMn 4 Al 8 is strongly correlated with the critical value of d∼2.6 angstrom of the Mn-Mn distance below which the Mn moment is not stable. The experimental data for GdMn 4 Al 8 , compared with the data for the isostructural compounds GdCu 4 Al 8 and YMn 4 Al 8 , show that near the critical value of d, the existence of Mn moment depends not only on the value of d, but also on the local magnetic surroundings. It has been revealed that the magnetic character of Mn moment in YMn 4 Al 8 and GdMn 4 Al 8 changes from an itinerant electron type to a local-moment type with increasing temperature

  3. The Al-rich region of the Al–Fe–Mn alloy system

    International Nuclear Information System (INIS)

    Balanetskyy, S.; Pavlyuchkov, D.; Velikanova, T.; Grushko, B.

    2015-01-01

    Highlights: • Constitution of Al–Fe–Mn was studied above 50 at.% Al at 650–1070 °C. • AlMn (A2) and AlFe (B2) phases form a continuous compositional region. • Al 8 Mn 5 and Al 8 Fe 5 γ-brass type phases form a continuous compositional region. • Al 13 Fe 4 , Al 5 Fe 2 , Al 2 Fe, Al 6 Mn, Al 11 Mn 4 , γ 2 exhibit wide ternary extensions. • Four ternary intermetallics were revealed. - Abstract: Phase equilibria in the Al-rich region of the Al–Fe–Mn alloy system were studied at 1070, 1020, 950, 875, 800, 740, 695 and 650 °C. The continuous region of the bcc solid solution was estimated between the Al–Mn and Al–Fe terminals. Also the isostructural high-temperature Al–Mn and Al–Fe γ 1 -phases (γ-brass type structure) form continuous regions. The Al 6 Mn, high-temperature T-Al 11 Mn 4 and low-temperature γ 2 phases dissolve up to 9.0, 14.5 and 31.0 at.% Fe, respectively, while the M-Al 13 Fe 4 , Al 5 Fe 2 and Al 2 Fe phases dissolve up to 15.5, 11.5 and 10.0 at.% Mn, respectively. The thermodynamically stable decagonal D 3 -phase with periodicity of 1.25 nm in the specific direction and two periodic intermetallics designated φ (P6 3 /mmc; a = 0.7554, c = 0.7872 nm) and κ (P6 3 /m; a = 1.7630, c = 1.2506 nm) were identified. An additional ternary phase of unknown structure was also revealed

  4. The effect of welding process and shielding atmosphere on the AlMg4.5Mn weld metal properties

    Energy Technology Data Exchange (ETDEWEB)

    Prokic Cvetkovic, Radica; Popovic, Olivera [Belgrade Univ. (Serbia). Faculty of Mechanical Engineering; Burzic, Meri; Jovicic, Radomir [Belgrade Univ. (Serbia). Innovation Center; Kastelec Macura, Sandra [Technikum Taurunum, Zemun (Serbia); Buyukyildirim, Galip [IWE, Istanbul (Turkey)

    2013-01-15

    In this paper, the AlMg4.5Mn alloy has been welded using tungsten inert gas (TIG) and metal inert gas (MIG) processes with different gas shielding atmospheres. Tensile strength, hardness, impact and fracture toughness, fatigue crack growth parameters ({Delta}K{sub th}, da/dN), as well as microstructure were determined. By comparing results for different gas mixtures, the main conclusion for TIG welding was that increased helium content has an important effect on toughness and fatigue crack growth parameters, whereas its effect on other mechanical properties is not significant. On the other hand, in the case of MIG welding, adding helium does not affect mechanical properties, except the fatigue crack growth rate. It was also established that adding nitrogen (TIG welding) and oxygen (MIG welding) reduces toughness and increases crack growth rate, so their use in shielding mixtures is not recommended. (orig.)

  5. Preparation and electrical properties of Mn{sub 1.05−y}Co{sub 1.95−x−z−w}Ni{sub x}Mg{sub y}Al{sub z}Fe{sub w}O{sub 4} NTC ceramic derived from microemulsion method

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Junbo [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Qing, E-mail: zhaoq@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); Gao, Bo [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chang, Aimin, E-mail: changam@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); Zhang, Bo; Ma, Renjun [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-04-05

    Highlights: • The NTC thermister nano-powders Mn{sub 1.05−y}Co{sub 1.95−x−z−w}Ni{sub x}Mg{sub y}Al{sub z}Fe{sub w}O{sub 4} were prepared by microemulsion method. • The metal ions were subsided after twice sediment reaction. • The specimens show good electrical properties by doping some nontransition metals. -- Abstract: The NTC thermistor nano-powders of Mn{sub 1.05−y}Co{sub 1.95−x−z−w}Ni{sub x}Mg{sub y}Al{sub z}Fe{sub w}O{sub 4} were prepared by microemulsion method. Scanning electron microscope (SEM) image showed that the particles were well distributed. The mean particle-size was 72 nm. The structure of the precursor was investigated with Fourier infrared spectrometer (FI). The compositions of the powder and the as-sintered ceramic were evaluated by Energy Disperse Spectroscopy (EDS). X-ray diffraction (XRD) result indicated that the sintered samples were in the spinel structure. The room temperature resistivity ρ{sub 25}, material constant B{sub 25/85} and activation energies of the NTC thermistor are in the range of 1173–19,059 Ω cm, 3169–3771 k, 0.2672–0.3136 eV. The room temperature resistivity and B{sub 25/85} constant were found to increase with Al{sub 2}O{sub 3} content. The Mn{sub 0.9}Co{sub 1.2}Ni{sub 0.21}Mg{sub 0.15}Al{sub 0.09}Fe{sub 0.45}(A2) and Mn{sub 0.9}Co{sub 1.2}Ni{sub 0.27}Mg{sub 0.15}Al{sub 0.03}Fe{sub 0.45}(A3) specimens both showed a 200 °C resistance drift (ΔR/R) within 10% after aging at 910 °C for 600 h.

  6. Corrosion behaviour of Mg/Al alloys in high humidity atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Arrabal, R.; Pardo, A.; Merino, M.C.; Mohedano, M.; Casajus, P. [Facultad de Quimicas, Departamento de Ciencia de Materiales, Universidad Complutense, 28040 Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, Villanueva de la Canada, 28691 Madrid (Spain)

    2011-04-15

    The influence of relative humidity (80-90-98% RH) and temperature (25 and 50 C) on the corrosion behaviour of AZ31, AZ80 and AZ91D magnesium alloys was evaluated using gravimetric measurements. The results were compared with the data obtained for the same alloys immersed in Madrid tap water. The corrosion rates of AZ alloys increased with the RH and temperature and were influenced by the aluminium content and alloy microstructure for RH values above 90%. The initiation of corrosion was localised around the Al-Mn inclusions in the AZ31 alloy and at the centre of the {alpha}-Mg phase in the AZ80 and AZ91D alloys. The {beta}-Mg{sub 17}Al{sub 12} phase acted as a barrier against corrosion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Corrosion analysis of AlMg2 and AlMgSi using electrochemical method

    International Nuclear Information System (INIS)

    Dian A; Maman Kartaman; Rosika K; Yanlinastuti

    2014-01-01

    Corrosion test of cladding materials and structures of research reactor fuel, AlMgSi and AlMg2 have been performed in demineralized water of pH 2 and 6.7 using an electrochemical method. Corrosion phenomenon is affected by several factor such as composition and condition of solution. The purpose of this activity is to investigate the corrosion phenomena through the determination of the parameters of corrosion and polarization curve. The materials used are AlMg2 and AlMgSi alloy in circular dish shape with an area of 1 Cm"2. Preparation of the test sample is performed through several stages polishing, cleaning and drying procedures followed ASTM G3. The electrochemical method is done by measuring the open circuit potential (OCP), polarization resistance and potentiodynamic in demineralized water of pH 2 and pH 6.7 at temperature of 25°C. The results of the OCP is the corrosion potential (Ecorr) of AlMg2 and AlMgSi each of -906.1 mV and -619.8 mV at pH 2 and -868.6 and -756.7 mV at pH 6.7 mV. The results of measurements by polarization resistance technique showed that the corrosion rate of AlMg2 and AlMgSi in safe category (<2 mpy) at pH 6.7 and at pH 2 corrosion rate increased significantly, but still in the lightweight category (<20 mpy). Potentiodynamic curves showed that the passivation at pH 6.7 is very low while the passivation at pH 2 occurs within a relatively short range potential and followed events corroded. (author)

  8. Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Wen Zhaohui [Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Wu Changjun, E-mail: wucj163@126.co [Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Dai Changsong, E-mail: changsd@hit.edu.c [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Yang Feixia [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2009-11-20

    The corrosion behaviors of pure magnesium (Mg) and three Mg alloys with different Al contents were investigated in a modified simulated body fluid (m-SBF) through immersion tests, Tafel experiments, and electrochemical impedance spectroscopic (EIS) experiments. The immersion results show that the corrosion rates (CRs) of the four samples were in an order of AZ91D < AZ61 < AZ31 < pure Mg after immersion for 1 day. With an increase in immersion time, their corrosion rates decreased and then a stable stage was reached after 16 days. The order of CRs of the four samples changed to AZ91D < pure Mg < AZ61 < AZ31 after immersion for 24 days. The results of EIS experiments indicate that the charge transfer resistance (R{sub ct}) of the three magnesium alloys initially increased and then decreased while the R{sub ct} of pure Mg was kept lower within 24 h. The results of a scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) show that pure Mg and three alloys were heterogeneously corroded in the m-SBF. The corrosion of pure Mg, which showed a more uniform corrosion appearance, resulted from localized corrosion over the entire surface. Alloy AZ91D (of 8.5-9.5 wt.% Al) showed relatively uniform corrosion morphology and the {beta}-Mg{sub 12}Al{sub 17} precipitates in alloy AZ91D were more homogeneously and continuously distributed along the grain boundaries. Obvious corrosion pits were found on the surface of alloy AZ61 and AZ31. The corrosion pits of alloy AZ61 were shallower than those of alloy AZ31. Alloy AZ61 (of 5.8-7.2 wt.% Al) possessed more Al{sub 8}Mn{sub 5} and a little {beta}-Mg{sub 12}Al{sub 17} presented along the grain boundary heterogeneously and discontinuously. Al{sub 8}Mn{sub 5} was the main phase of the AZ31 alloy (of 2.5-3.5 wt.% Al) dispersed into the matrix. In conclusion, the microstructure and the Al content in the {alpha}-Mg (Al) matrix significantly affected the corrosion properties of the alloys in the m-SBF. With the increase

  9. Fabrication and mechanical properties of quasicrystal-reinforced Al-Mn-Mm alloys

    International Nuclear Information System (INIS)

    Jun, Joong-Hwan; Kim, Jeong-Min; Kim, Ki-Tae; Jung, Woon-Jae

    2007-01-01

    Microstructures and room temperature mechanical properties of quasicrystal-reinforced Al 94-x Mn 6 Mm x (Mm: misch metal, x = 0-6 at.%) alloys have been studied systematically. Cylindrical rod samples with 3 mm in diameter were synthesized by injection-casting into a Cu mould and analyzed by means of X-ray diffractometry, differential scanning calorimetry, optical microscopy and scanning electron microscopy with energy-dispersive X-ray spectrometry. Mechanical properties of the cylindrical rods were measured at room temperature by compression tests. The Al 94 Mn 6 alloy contains hexagonal-shape particles and long needle-shape Al 6 Mn precipitates surrounded by α-Al matrix. An addition of Mm into the Al 94 Mn 6 alloy generates icosahedral quasicrystalline phase (IQC) with an extinction of hexagonal and Al 6 Mn phases, and the fraction of IQC increases continuously with an increase in Mm content. Compressive yield strength (σ cys ) and ultimate compressive strength (σ ucs ) of the Al-Mn-Mm alloys are improved with Mm content up to 4%, whereas elongation is steeply deteriorated by the Mm addition. The Al 90 Mn 6 Mm 4 alloy exhibits the highest 570 and 783 MPa of σ cys and σ ucs , respectively, both of which are comparable to those of Al 90 Mn 6 Ce 4 alloy

  10. Synthesis, characterization and electrochemical performance of Al-substituted Li_2MnO_3

    International Nuclear Information System (INIS)

    Torres-Castro, Loraine; Shojan, Jifi; Julien, Christian M.; Huq, Ashfia; Dhital, Chetan; Paranthaman, Mariappan Parans; Katiyar, Ram S.; Manivannan, Ayyakkannu

    2015-01-01

    Graphical abstract: Comparison of the cycling performances for pure Li_2MnO_3 and Al-substituted Li_2MnO_3 compounds at a current density of 10 mAh g"−"1 for 100 cycles. Al-substitution increases the spinel phase and hence improves the cycling behavior. - Highlights: • Pure and Al-doped Li_2MnO_3 compounds were synthesized by a Pechini method. • Presence of monoclinic and spinel phases confirmed by Raman and Neutron diffraction. • Al substitution occurs at both Mn and Li sites in Li_2MnO_3 structure. • Al substitution reduces Mn valence state and promotes spinel phase formation. • Stable cycling capacity of 70 mAh g"−"1 was observed for nominal Li_0_._5Al_0_._5MnO_3. - Abstract: Li_2MnO_3 is known to be electrochemically inactive due to Mn in tetravalent oxidation state. Several compositions such as Li_2MnO_3, Li_1_._5Al_0_._1_7MnO_3, Li_1_._0Al_0_._3_3MnO_3 and Li_0_._5Al_0_._5MnO_3 were synthesized by a sol–gel Pechini method. All the samples were characterized with XRD, Raman, XPS, SEM, Tap density and BET analyzer. XRD patterns indicated the presence of monoclinic phase for pristine Li_2MnO_3 and mixed monoclinic/spinel phases (Li_2_−_xMn_1_−_yAl_x_+_yO_3_+_z) for Al-substituted Li_2MnO_3 compounds. The Al substitution seems to occur both at Li and Mn sites, which could explain the presence of spinel phase. XPS analysis for Mn 2p orbital reveals a significant decrease in binding energy for Li_1_._0Al_0_._3_3MnO_3 and Li_0_._5Al_0_._5MnO_3 compounds. Cyclic voltammetry, charge/discharge cycles and electrochemical impedance spectroscopy were also performed. A discharge capacity of 24 mAh g"−"1 for Li_2MnO_3, 68 mAh g"−"1 for Li_1_._5Al_0_._1_7MnO_3, 58 mAh g"−"1 for Li_1_._0Al_0_._3_3MnO_3 and 74 mAh g"−"1 for Li_0_._5Al_0_._5MnO_3 were obtained. Aluminum substitutions increased the formation of spinel phase which is responsible for cycling.

  11. Growth kinetics of cellular precipitation in a Mg-8.5Al-0.5Zn-0.2Mn (wt.%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Piedras, Edgar [Instituto Politecnico Nacional-ESIQIE-DIMM-ESFM, Apartado Postal 118-430, Admon. GAM, Mexico, D.F. 07051 (Mexico); Esquivel-Gonzalez, Ramon [Universidad del Valle de Mexico, Depto. Ingenierias, Paseo de las Aves 1, Col. San Mateo Nopala, Lomas Verdes, Naucalpan de Juarez, Edo. Mex. 53220 (Mexico); Lopez-Hirata, Victor M.; Saucedo-Munoz, M.L.; Paniagua-Mercado, Ana M. [Instituto Politecnico Nacional-ESIQIE-DIMM-ESFM, Apartado Postal 118-430, Admon. GAM, Mexico, D.F. 07051 (Mexico); Dorantes-Rosales, Hector J., E-mail: hectordorantes@yahoo.com [Instituto Politecnico Nacional-ESIQIE-DIMM-ESFM, Apartado Postal 118-430, Admon. GAM, Mexico, D.F. 07051 (Mexico)

    2010-11-15

    Research highlights: {yields} The growth kinetics of lamellar spacing follows the behavior predicted by Turnbull theory. {yields} The growth kinetics of cellular precipitation is a process controlled by grain boundary diffusion. {yields} The presence of two types of morphology for cellular precipitation depends on the aging temperature. {yields} The highest hardness peak is associated to a fine continuous precipitation at the lowest temperature. {yields} The lowest hardness is attributed to the fast coarsening process of both precipitations. - Abstract: Microstructural evolution and growth kinetics were studied in an isothermally aged Mg-8.5Al-0.5Zn-0.2Mn (wt.%) alloy by means of X-ray diffraction, scanning electron microscopy, Vickers hardness measurements and transmission electron microscopy. Specimens were solution-treated and then aged at 373, 473 and 573 K for different time period. The characterization results indicated the presence of both continuous and discontinuous precipitations of the Mg{sub 17}Al{sub 12}-{gamma} phase in a Mg-rich matrix. The discontinuous or cellular precipitation was present with a lamellar structure, and the growth kinetics was evaluated using the Johnson-Mehl-Avrami-Kolmogorov equation analysis, which gives a time exponent close to 1. This value confirms that cellular precipitation takes place on the saturation sites corresponding to grain boundaries. In addition, the activation energy for cellular precipitation was determined to be about 64.6 kJ mol{sup -1}. This also indicates a grain boundary diffusion process. The variation of cellular spacing with temperature follows the behavior expected by Turnbull theory. The highest hardness peak corresponded to the lowest aging temperature and it is associated with a fine continuous precipitation; while the lowest hardness peak was detected at the highest aging temperature and it is attributed to the rapid coarsening process of both precipitations.

  12. Growth kinetics of cellular precipitation in a Mg-8.5Al-0.5Zn-0.2Mn (wt.%) alloy

    International Nuclear Information System (INIS)

    Contreras-Piedras, Edgar; Esquivel-Gonzalez, Ramon; Lopez-Hirata, Victor M.; Saucedo-Munoz, M.L.; Paniagua-Mercado, Ana M.; Dorantes-Rosales, Hector J.

    2010-01-01

    Research highlights: → The growth kinetics of lamellar spacing follows the behavior predicted by Turnbull theory. → The growth kinetics of cellular precipitation is a process controlled by grain boundary diffusion. → The presence of two types of morphology for cellular precipitation depends on the aging temperature. → The highest hardness peak is associated to a fine continuous precipitation at the lowest temperature. → The lowest hardness is attributed to the fast coarsening process of both precipitations. - Abstract: Microstructural evolution and growth kinetics were studied in an isothermally aged Mg-8.5Al-0.5Zn-0.2Mn (wt.%) alloy by means of X-ray diffraction, scanning electron microscopy, Vickers hardness measurements and transmission electron microscopy. Specimens were solution-treated and then aged at 373, 473 and 573 K for different time period. The characterization results indicated the presence of both continuous and discontinuous precipitations of the Mg 17 Al 12 -γ phase in a Mg-rich matrix. The discontinuous or cellular precipitation was present with a lamellar structure, and the growth kinetics was evaluated using the Johnson-Mehl-Avrami-Kolmogorov equation analysis, which gives a time exponent close to 1. This value confirms that cellular precipitation takes place on the saturation sites corresponding to grain boundaries. In addition, the activation energy for cellular precipitation was determined to be about 64.6 kJ mol -1 . This also indicates a grain boundary diffusion process. The variation of cellular spacing with temperature follows the behavior expected by Turnbull theory. The highest hardness peak corresponded to the lowest aging temperature and it is associated with a fine continuous precipitation; while the lowest hardness peak was detected at the highest aging temperature and it is attributed to the rapid coarsening process of both precipitations.

  13. AlMn Transition Edge Sensors for Advanced ACTPol

    Science.gov (United States)

    Li, Dale; Austermann, Jason E.; Beall, James A.; Becker, Daniel T.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hilton, Gene C.; Ho, Shuay-Pwu; Hubmayr, Johannes; Koopman, Brian J.; McMahon, Jeffrey J.; Nati, Federico; Niemack, Michael D.; Pappas, Christine G.; Salatino, Maria; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Van Lanen, Jeff; Ward, Jonathan T.; Wollack, Edward J.

    2016-07-01

    Advanced ACTPol (AdvACT) will use an array of multichroic polarization-sensitive AlMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.

  14. A study on preparation and hydriding of β-Mg2Al3 and γ-Mg17Al12

    International Nuclear Information System (INIS)

    Hadi Suwarno

    2009-01-01

    The mechanism of the synthetic formation of β-Mg 2 Al 3 and γ-Mg 17 Al 12 has been studied. Mechanical alloying of Mg and Al powders with the atomic ratio of Mg:Al = 2:3 in toluene solution yields β-Mg 2 Al 3 compound after milling for 30 h. The γ-Mg 17 Al 12 can be formed by heating the β-Mg 2 Al 3 at 430°C under high vacuum. The measured hydrogen capacities of β-Mg 2 Al 3 and γ-Mg 17 Al 12 as hydride at 300°C are 3.2 and 4.9 wt%, respectively. Microstructure of the Mg-Al specimen shows that on hydriding at 300°C the polygonal shape of the γ-Mg 17 Al 12 changes into irregular shapes which are composed of γ-MgH 2 and Al. (author)

  15. Phase diagrams of aluminium alloys of Al-Cu-Mg, Al-Mg-Si-Cu, and Al-Mg-Li system

    International Nuclear Information System (INIS)

    Ber, L.B.; Kaputkin, E.Ya.

    2001-01-01

    Isothermal diagrams of phase transformations (DPT) and temperature-time charts (TTC) of variation of electric conductivity and of mechanical features at tension were plotted following thermal treatment according to the pattern of direct hardening and ageing and according to the pattern of normal aging for D16 commercial alloy, Al-Cu-Mg model alloy of the same system, AD37 commercial alloys of Al-Mg-Si-Cu and 1424 one of Al-Li-Mg system. Phase transformations were studied by means of fluorescence electron microscopy, micro-X-ray spectral analysis, X-ray phase analysis of single crystals and polycrystals and differential scanning calorimetry. For every alloy comparison of TTC and DPT enables to clarity the mechanism of phase composition effect on features and to optimize conditions of hardening cooling and ageing [ru

  16. Texture and structure contribution to low-temperature plasticity enhancement of Mg-Al-Zn-Mn Alloy MA2-1hp after ECAP and annealing

    Science.gov (United States)

    Serebryany, V. N.; D'yakonov, G. S.; Kopylov, V. I.; Salishchev, G. A.; Dobatkin, S. V.

    2013-05-01

    Equal channel angular pressing (ECAP) in magnesium alloys due to severe plastic shear deformations provides both grain refinement and the slope of the initial basal texture at 40°-50° to the pressing direction. These changes in microstructure and texture contribute to the improvement of low-temperature plasticity of the alloys. Quantitative texture X-ray diffraction analysis and diffraction of backscattered electrons are used to study the main textural and structural factors responsible for enhanced low-temperature plasticity based on the example of magnesium alloy MA2-1hp of the Mg-Al-Zn-Mn system. The possible mechanisms of deformation that lead to this positive effect are discussed.

  17. CHARACTERIZATION OF PHASES IN SECONDARY AlZn10Si8Mg CAST ALLOY

    Directory of Open Access Journals (Sweden)

    Eva Tillová

    2011-04-01

    Full Text Available Using recycled aluminium cast alloys is profitable in many aspects. Requiring only 5 % of the energy to produce secondary metal as compared to primary metal and generates only 5 % of the green house gas emissions, the recycling of aluminium is therefore beneficial of both environmental and economical point of view. Secondary AlZn10Si8Mg (UNIFONT® - 90 cast alloy are used for engine and vehicle constructions, hydraulic unit and mouldmaking without heat treatment. Properties include good castability, very good mechanical strength and elongation, light weight, good wear resistance, low thermal expansion and very good machining. Improved mechanical properties are strongly dependent upon the morphologies, type and distribution of the secondary phases, which are in turn a function of alloy composition and cooling rate. The presence of additional elements as Mg, Mn, Fe, or Cu allows many complex intermetallic phases to form, which make characterisation non-trivial. These include, for example, Mg2Si, Al2CuMg and AlFeMn phases, all of which may have some solubility for additional elements. Phase’s identification in aluminium alloys is often non-trivial due to the fact that some of the phases have either similar crystal structures or only subtle changes in their chemistries. A combination different analytical techniques (light microscopy upon black-white and colour etching, scanning electron microscopy (SEM upon deep etching, energy dispersive X-ray analysis (EDX and HV 0.01 microhardness measurement were therefore been used for the identification of the various phase.

  18. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression

    OpenAIRE

    Qian, Suxin; Geng, Yunlong; Wang, Yi; Pillsbury, Thomas E.; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-01-01

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s−1 (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hystere...

  19. A study on the composition optimization and mechanical properties of Al-Mg-Si cast alloys

    International Nuclear Information System (INIS)

    Zhang, X.H.; Su, G.C.; Han, Y.Y.; Ai, X.H.; Yan, W.L.

    2010-01-01

    The mechanical properties of Al-Mg-Si cast alloys with different chemical compositions were investigated using an orthogonal test method. The optimized chemical compositions of Al alloy are given in wt% as follows: 7.0%Si-0.35%Mg-2.0%Cu-0.2%Mn-0.2%Ni-0.1%V-0.8%RE-89.35%Al. The optimized Al-Mg-Si alloy with metal mold casting had excellent mechanical properties. The softening resistance of the optimized alloy was better than that of ZL101 at elevated temperatures. The scanning electron microscopy fractographs of the tensile samples of ZL101 and optimized Al alloy at different magnifications revealed that all the specimens were fractured in a ductile manner, consisting of well-developed dimples over the entire surface. The alloys failed in a mixed-mode fracture, comprised predominantly of transgranular shears and a small amount of quasi-cleavages.

  20. Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives

    International Nuclear Information System (INIS)

    Li, Shuo; Bhushan, Bharat

    2016-01-01

    Highlights: • Mg/Al-, Zn/Al- and Zn/Mg/Al-layered double hydroxide were synthesized. • Mg/Al-LDH had superior tribological performance compared to other LDHs. • The best thermal stability of Mg/Al-LDH was responsible for its friction property. - Abstract: Solid lubricant particles are commonly used as oil additives for low friction and wear. Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxides (LDH) were synthesized by coprecipitation method. The benefits of LDH nanoparticles are that they can be synthesized using chemical methods where size and shape can be controlled, and can be modified organically to allow dispersal in fluids. The LDH nanoparticles were characterized by X-ray diffraction, scanning electron microscope, thermogravimetry, and differential scanning calorimetry. A pin-on-disk friction and wear tester was used for evaluating the friction and wear properties of LDH nanoparticles as lubricant additives. LDH nanoparticles have friction-reducing and anti-wear properties compared to oil without LDHs. Mg/Al-LDH has the best lubrication, possibly due to better thermal stability in severe conditions.

  1. Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo [School of Materials Science and Technology, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian Distract, Beijing 100083 (China); Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue Columbus, OH 43210-1142 (United States); Bhushan, Bharat, E-mail: bhushan.2@osu.edu [Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue Columbus, OH 43210-1142 (United States)

    2016-08-15

    Highlights: • Mg/Al-, Zn/Al- and Zn/Mg/Al-layered double hydroxide were synthesized. • Mg/Al-LDH had superior tribological performance compared to other LDHs. • The best thermal stability of Mg/Al-LDH was responsible for its friction property. - Abstract: Solid lubricant particles are commonly used as oil additives for low friction and wear. Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxides (LDH) were synthesized by coprecipitation method. The benefits of LDH nanoparticles are that they can be synthesized using chemical methods where size and shape can be controlled, and can be modified organically to allow dispersal in fluids. The LDH nanoparticles were characterized by X-ray diffraction, scanning electron microscope, thermogravimetry, and differential scanning calorimetry. A pin-on-disk friction and wear tester was used for evaluating the friction and wear properties of LDH nanoparticles as lubricant additives. LDH nanoparticles have friction-reducing and anti-wear properties compared to oil without LDHs. Mg/Al-LDH has the best lubrication, possibly due to better thermal stability in severe conditions.

  2. Formation of Al3Ti/Mg composite by powder metallurgy of Mg-Al-Ti system.

    Science.gov (United States)

    Yang, Zi R; Qi Wang, Shu; Cui, Xiang H; Zhao, Yu T; Gao, Ming J; Wei, Min X

    2008-07-01

    An in situ titanium trialuminide (Al 3 Ti)-particle-reinforced magnesium matrix composite has been successfully fabricated by the powder metallurgy of a Mg-Al-Ti system. The reaction processes and formation mechanism for synthesizing the composite were studied by differential scanning calorimetry (DSC), x-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). Al 3 Ti particles are found to be synthesized in situ in the Mg alloy matrix. During the reaction sintering of the Mg-Al-Ti system, Al 3 Ti particles are formed through the reaction of liquid Al with as-dissolved Ti around the Ti particles. The formed intermetallic particles accumulate at the original sites of the Ti particles. As sintering time increases, the accumulated intermetallic particles disperse and reach a relatively homogeneous distribution in the matrix. It is found that the reaction process of the Mg-Al-Ti system is almost the same as that of the Al-Ti system. Mg also acts as a catalytic agent and a diluent in the reactions and shifts the reactions of Al and Ti to lower temperatures. An additional amount of Al is required for eliminating residual Ti and solid-solution strengthening of the Mg matrix.

  3. Numerical analysis of residual stress of Al-Mg-Mn-Sc-Zr alloy subjected to surface strengthening by shot peening

    Directory of Open Access Journals (Sweden)

    Mariusz Stegliński

    2015-03-01

    Full Text Available In this paper, we presented the results of the analysis of the stresses in the Al-Mg5%-Mn1,5%-Sc0,8%-Zr0,4% alloy after shot peening process using solver ANSYSANSYSANSYS LS-Dyna. The computational model illustrates the phenomena occurring as a result of plastic deformation caused by hitting a steel ball on the surface of the analyzed aluminium alloy. We analyzed two input variables: diameter and speed of a ball. The resulting normal stress distribution centred exposes the minimum compressive stress at a position located at a depth point of Belayev 0.125 mm with a value of σ = –345 MPa. Variable parameter shows the correlation of the boundary conditions of minimum stress increase with increasing ball’s diameter and its speed. Selected points of numerical analysis were verified with experimental results.[b]Keywords[/b]: materials science, numerical analysis, metal forming, shot peening, aluminium

  4. Precipitation in cold-rolled Al-Sc-Zr and Al-Mn-Sc-Zr alloys prepared by powder metallurgy

    KAUST Repository

    Vlach, Martin

    2013-12-01

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al3Sc and/or Al3(Sc,Zr) particles precipitated during extrusion at 350 C in the alloys studied. Additional precipitation of the Al3Sc and/or Al3(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 C. The precipitation of the Al6Mn- and/or Al 6(Mn,Fe) particles of a size ~ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al3Sc particles formation and/or coarsening and that of the Al6Mn and/or Al 6(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al3Sc-phase and the Al 6Mn-phase precipitation. © 2013 Elsevier Inc.

  5. Precipitation in cold-rolled Al-Sc-Zr and Al-Mn-Sc-Zr alloys prepared by powder metallurgy

    KAUST Repository

    Vlach, Martin; Stulí ková , Ivana; Smola, Bohumil; Kekule, Tomá š; Kudrnová , Hana; Daniš, Stanislav; Gemma, Ryota; Očená šek, Vladivoj; Má lek, Jaroslav; Tanprayoon, Dhritti; Neubert, Volkmar

    2013-01-01

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al3Sc and/or Al3(Sc,Zr) particles precipitated during extrusion at 350 C in the alloys studied. Additional precipitation of the Al3Sc and/or Al3(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 C. The precipitation of the Al6Mn- and/or Al 6(Mn,Fe) particles of a size ~ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al3Sc particles formation and/or coarsening and that of the Al6Mn and/or Al 6(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al3Sc-phase and the Al 6Mn-phase precipitation. © 2013 Elsevier Inc.

  6. Formation and structure of nanocrystalline Al-Mn-Ni-Cu alloys

    International Nuclear Information System (INIS)

    Latuch, J.; Krasnowski, M.; Ciesielska, B.

    2002-01-01

    This paper reports the results of the short investigation on the effect of Cu additions upon the nanocrystallization behaviour of an Al-Mn-Ni alloy. 2 at.% Cu added to the base alloy of Al 85 Mn 10 Ni 5 alloy by substitution for Mn(mischmetal). The control of cooling rate did not cause the formation of nanocrystals of fcc-Al phase. The nanocrystalline structure fcc-Al + amorphous phase in quarternary alloy was obtained by isothermal annealing and continuous heating method, but the last technique is more effective. The volume fraction, lattice parameter, and size of Al-phase were calculated. (author)

  7. XPS and EELS characterization of Mn{sub 2}SiO{sub 4}, MnSiO{sub 3} and MnAl{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Grosvenor, A.P., E-mail: andrew.grosvenor@usask.ca [Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9 (Canada); Bellhouse, E.M., E-mail: erika.bellhouse@arcelormittal.com [Global R & D—Hamilton, ArcelorMittal Dofasco, 1330 Burlington St. E, Hamilton, ON L8N 3J5 (Canada); Korinek, A., E-mail: korinek@mcmaster.ca [Canadian Centre for Electron Microscopy, Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1 (Canada); Bugnet, M., E-mail: bugnetm@mcmaster.ca [Canadian Centre for Electron Microscopy, Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1 (Canada); McDermid, J.R., E-mail: mcdermid@mcmaster.ca [Steel Research Centre, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1 (Canada)

    2016-08-30

    Graphical abstract: XPS and EELS spectra were acquired from Mn2Al2O4, MnSiO3 and Mn2SiO4 standards and unique features identified that will allow unambiguous identification of these compounds when studying the selective oxidation of advanced steels. - Highlights: • Mn2Al2O4, MnSiO3 and Mn2SiO4 standards were synthesized and characterized using both XPS and EELS. • Unique features in both the XPS high resolution and EELS spectra were identified for all compounds. • The spectra can be used to identify these compounds when studying the selective oxidation of steels. - Abstract: X-ray Photoelectron Spectroscopy (XPS) and Electron Energy Loss Spectroscopy (EELS) are strong candidate techniques for characterizing steel surfaces and substrate-coating interfaces when investigating the selective oxidation and reactive wetting of advanced high strength steels (AHSS) during the continuous galvanizing process. However, unambiguous identification of ternary oxides such as Mn{sub 2}SiO{sub 4}, MnSiO{sub 3}, and MnAl{sub 2}O{sub 4} by XPS or EELS, which can play a significant role in substrate reactive wetting, is difficult due to the lack of fully characterized standards in the literature. To resolve this issue, samples of Mn{sub 2}SiO{sub 4}, MnSiO{sub 3} and MnAl{sub 2}O{sub 4} were synthesized and characterized by XPS and EELS. The unique features of the XPS and EELS spectra for the Mn{sub 2}SiO{sub 4}, MnSiO{sub 3} and MnAl{sub 2}O{sub 4} standards were successfully derived, thereby allowing investigators to fully differentiate and identify these oxides at the surface and subsurface of Mn, Si and Al alloyed AHSS using these techniques.

  8. Amorphous Al-Mn coating on NdFeB magnets: Electrodeposition from AlCl{sub 3}-EMIC-MnCl{sub 2} ionic liquid and its corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jing; Xu Bajin [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Ling Guoping, E-mail: linggp@zju.edu.cn [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2012-06-15

    Amorphous Al-Mn coating was electrodeposited on NdFeB magnets from AlCl{sub 3}-EMIC-MnCl{sub 2} ionic liquid with the pretreatment of anodic electrolytic etching in AlCl{sub 3}-EMIC ionic liquid at room temperature. The microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The corrosion resistance of the coatings was tested by means of potentiodynamic polarization and immersion test in 3.5 wt. % NaCl solution. The results show that anodic electrolytic etching in AlCl{sub 3}-EMIC ionic liquid is a satisfactory pretreatment to remove the surface oxide film and favor the adhesion of the Al-Mn alloy coating to the NdFeB substrate. The amorphous Al-Mn alloy coating provides sacrificial anodic protection for NdFeB. It exhibited good corrosion resistance and significantly reduced the corrosion current density of NdFeB by three orders of magnitude at potentiodynamic polarization. - Highlights: Black-Right-Pointing-Pointer Amorphous Al-Mn alloy coating was electrodeposited on NdFeB magnet from ionic liquid. Black-Right-Pointing-Pointer To remove the surface oxides of NdFeB, anodic etching pretreatment is used. Black-Right-Pointing-Pointer The deposited Al-Mn alloy coating shows high adhesion to the NdFeB substrate. Black-Right-Pointing-Pointer Corrosion tests show that amorphous Al-Mn alloy coating is anodic coating for NdFeB magnet.

  9. Strength properties and structure of a submicrocrystalline Al-Mg-Mn alloy under shock compression

    Science.gov (United States)

    Petrova, A. N.; Brodova, I. G.; Razorenov, S. V.

    2017-06-01

    The results of studying the strength of a submicrocrystalline aluminum A5083 alloy (chemical composition was 4.4Mg-0.6Mn-0.11Si-0.23Fe-0.03Cr-0.02Cu-0.06Ti wt % and Al base) under shockwave compression are presented. The submicrocrystalline structure of the alloy was produced in the process of dynamic channel-angular pressing at a strain rate of 104 s-1. The average size of crystallites in the alloy was 180-460 nm. Hugoniot elastic limit σHEL, dynamic yield stress σy, and the spall strength σSP of the submicrocrystalline alloy were determined based on the free-surface velocity profiles of samples during shock compression. It has been established that upon shock compression, the σHEL and σy of the submicrocrystalline alloy are higher than those of the coarse-grained alloy and σsp does not depend on the grain size. The maximum value of σHEL reached for the submicrocrystalline alloy is 0.66 GPa, which is greater than that in the coarse-crystalline alloy by 78%. The dynamic yield stress is σy = 0.31 GPa, which is higher than that of the coarse-crystalline alloy by 63%. The spall strength is σsp = 1.49 GPa. The evolution of the submicrocrystalline structure of the alloy during shock compression was studied. It has been established that a mixed nonequilibrium grain-subgrain structure with a fragment size of about 400 nm is retained after shock compression, and the dislocation density and the hardness of the alloy are increased.

  10. Microstructure and in vitro degradation performance of Mg-Zn-Mn alloys for biomedical application.

    Science.gov (United States)

    Rosalbino, F; De Negri, S; Scavino, G; Saccone, A

    2013-03-01

    Manganese and zinc were selected as alloying elements to develop a Mg-based ternary alloy for biomedical applications, taking into account the good biocompatibility of these metals. The microstructures of Mg-Zn-Mn alloys containing 0.5 or 1.0 mass% of manganese and 1.0 or 1.5 mass% of zinc were investigated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. Their corrosion properties were assessed by means of potentiodynamic polarization and electrochemical impedance spectroscopy measurements performed in Ringer's physiological solution that simulates bodily fluids. All tested samples are two-phase alloys formed by a Mg-based matrix, consisting of a Mg-Zn-Mn solid solution, and a Mg-Zn binary phase. The electrochemical results show an improvement of the corrosion behavior of the investigated alloys with increasing Zn and Mn content. This is attributed to the formation of a partially protective Mg(OH)(2) surface film whose protective capabilities are increased by the alloying elements. The reduced influence of the Mg-Zn intermetallic compound on the corrosion rate of Mg-Zn-Mn alloys in the presence of a partially protective surface layer can be ascribed to an increasing resistance between the Mg-Zn-Mn solid solution and the second phase, thereby decreasing the effective driving force for microgalvanic corrosion. Owing to its highest corrosion protective ability, the Mg-1.5Zn-1Mn alloy is a promising candidate for the development of degradable implants, such as screws, plates, and rods. Copyright © 2012 Wiley Periodicals, Inc.

  11. Effect of Ni content on microwave absorbing properties of MnAl powder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen-zhong; Lin, Pei-hao, E-mail: gllph2002@163.com; Huang, Wei-chao; Pan, Shun-kang; Liu, Ye; Wang, Lei

    2016-09-01

    MnAlNi powder was prepared by the process of vacuum levitation melting and high-energy ball milling, The morphology and phase structure of the powder were analyzed by Scanning Electron Microscope(SEM), X-ray diffraction(XRD) and the effect of the Ni content on microwave absorbing properties of MnAl powder was investigated by an vector network analyzer. The addition of Ni, which improved the microwave absorbing properties of MnAl powder but not changed the composition of Al{sub 8}Mn{sub 5} alloy. The minimum reflectivity of (Al{sub 8}Mn{sub 5}){sub 0.95}Ni{sub 0.05} powder with a coating thickness (d) of 1.8 mm was about −40.8 dB and has better bandwidth effect, the absorbing mechanism of AlMnNi powders on the electromagnetic was related to the electromagnetic loss within the absorbing coatings and the effect of coating thickness on the interference loss of electromagnetic wave. - Highlights: • The grain size and cell volume of Al{sub 8}Mn{sub 5} alloy phase were decreased with the increasing of Ni. • ε″ and μ″ of powder moves toward low frequency region at the beginning then moves high. • The minimum reflectivity of (Al{sub 8}Mn{sub 5}){sub 0.95}Ni{sub 0.05} powder was −40.8 dB with 1.8 mm thickness. • The lowest reflection loss peak of (Al{sub 8}Mn{sub 5}){sub 0.95}Ni{sub 0.05} was −46.3 dB with 2.2 mm thickness.

  12. Influence of elemental diffusion on low temperature formation of MgH2 in TiMn1.3T0.2-Mg (T = 3d-transition elements)

    International Nuclear Information System (INIS)

    Yamamoto, K.; Tanioka, S.; Tsushio, Y.; Shimizu, T.; Morishita, T.; Orimo, S.; Fujii, H.

    1996-01-01

    In order to examine the influence of the elemental diffusion from the host compound into the Mg region on low temperature formation of MgH 2 , we have investigated the hydriding properties and the microstructures of the composite materials TiMn 1.3 T 0.2 -Mg (T = V, Cr, Mn, Fe, Co, Ni and Cu). MgH 2 is formed at 353 K in all composite materials. Of all the substitutions, the amount of MgH 2 is the largest in the case of the Cu substitution, which originates from the existence of the Mg-Mg 2 Cu eutectic formed by Cu diffusion from the host compound TiMn 1.3 Cu 0.2 into the Mg region during the liquid phase sintering. In addition, the hydrogen capacity of TiMn 1.3 Cu 0.2 -Mg (that is TiMn 1.3 Cu 0.1 -(Mg+Mg 2 Cu) after the sintering) easily saturates in comparison with TiMn 1.5 -(Mg+Mg 2 Cu) without Cu diffusion. It is concluded that Cu diffusion promotes the mobility of hydrogen atoms at the complex interface between the host compound and the Mg region. (orig.)

  13. Effect of Ce addition on microstructure of Al20Cu2Mn3 twin phase in an Al–Cu–Mn casting alloy

    International Nuclear Information System (INIS)

    Chen Zhongwei; Chen Pei; Li Shishun

    2012-01-01

    Highlights: ► Rare earth element Ce can retard the formation of the Al 20 Cu 2 Mn 3 twin phase in an Al–Cu–Mn casting alloy. ► Patterns of the particles of the Al 20 Cu 2 Mn 3 phase in Al–Cu–Mn free Ce alloy are more diverse. ► The symmetry of neighboring components of twins is characterized by glide reflection and reflection. ► The twins of Al 20 Cu 2 Mn 3 phase can enhance the mechanical properties of the Al–Cu–Mn casting alloys. - Abstract: Effects of Ce addition on microstructure of Al 20 Cu 2 Mn 3 twin phase and mechanical properties of an Al–Cu–Mn casting alloy were investigated by transmission electron microscopy, selected area electron diffraction, high resolution transmission electron microscopy and tensile test. The results show that rare earth element Ce can retard the formation of the Al 20 Cu 2 Mn 3 phase in the Al–Cu–Mn alloy. Compared with the Ce containing alloy, patterns of particles of the Al 20 Cu 2 Mn 3 phase in the Al–Cu–Mn free Ce alloy are more diverse. The symmetry of neighboring components of twins is characterized by glide reflection and reflection. In addition, twins of the Al 20 Cu 2 Mn 3 phase can enhance the mechanical properties of the Al–Cu–Mn alloy.

  14. Synthesis of Al₂Ca Dispersoids by Powder Metallurgy Using a Mg-Al Alloy and CaO Particles.

    Science.gov (United States)

    Fujita, Junji; Umeda, Junko; Kondoh, Katsuyoshi

    2017-06-28

    The elemental mixture of Mg-6 wt %Al-1 wt %Zn-0.3 wt %Mn (AZ61B) alloy powder and CaO particles was consolidated by an equal-channel angular bulk mechanical alloying (ECABMA) process to form a composite precursor. Subsequently, the precursor was subjected to a heat treatment to synthesize fine Al₂Ca particles via a solid-state reaction between the Mg-Al matrix and CaO additives. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and electron probe micro-analysis on the precursor indicated that 4.7-at % Al atoms formed a supersaturated solid solution in the α-Mg matrix. Transmission electron microscopy-EDS and X-ray diffraction analyses on the AZ61B composite precursor with 10-vol % CaO particles obtained by heat treatment confirmed that CaO additives were thermally decomposed in the Mg-Al alloy, and the solid-soluted Ca atoms diffused along the α-Mg grain boundaries. Al atoms also diffused to the grain boundaries because of attraction to the Ca atoms resulting from a strong reactivity between Al and Ca. As a result, needle-like (Mg,Al)₂Ca intermetallics were formed as intermediate precipitates in the initial reaction stage during the heat treatment. Finally, the precipitates were transformed into spherical Al₂Ca particles by the substitution of Al atoms for Mg atoms in (Mg,Al)₂Ca after a long heat treatment.

  15. The influence of laser alloying on the structure and mechanical properties of AlMg5Si2Mn surface layers

    Science.gov (United States)

    Pakieła, W.; Tański, T.; Brytan, Z.; Labisz, K.

    2016-04-01

    The goal of this paper was focused on investigation of microstructure and properties of surface layer produced during laser surface treatment of aluminium alloy by high-power fibre laser. The performed laser treatment involves remelting and feeding of Inconel 625 powder into the aluminium surface. As a base metal was used aluminium alloy AlMg5Si2Mn. The Inconel powder was injected into the melt pool and delivered by a vacuum feeder at a constant rate of 4.5 g/min. The size of Inconel alloying powder was in the range 60-130 µm. In order to remelt the aluminium alloy surface, the fibre laser of 3 kW laser beam power has been used. The linear laser scan rate of the beam was set 0.5 m/min. Based on performed investigations, it was possible to obtain the layer consisting of heat-affected zone, transition zone and remelted zone, without cracks and defects having much higher hardness value compared to the non-alloyed material.

  16. Ductile shape memory alloys of the Cu-Al-Mn system

    International Nuclear Information System (INIS)

    Kainuma, R.; Takahashi, S.; Ishida, K.

    1995-01-01

    Cu-Al-Mn shape memory alloys with enhanced ductility have been developed by decreasing the degree of order in the β parent phase. Cu-Al-Mn alloys with Al contents lower than 18% exhibit good ductility with elongations of about 15% and excellent cold-workability arising from a lower degree of order in the Heusler (L21) β 1 parent phase, without any loss in their shape memory behavior. In this paper the mechanical and shape memory characteristics, such as the cold-workability, the Ms temperatures, the shape memory effect and the pseudo-elasticity of such ductile Cu-Al-Mn alloys are presented. (orig.)

  17. Precipitation processes in DC-cast AlMn(Fe,Si) alloys

    International Nuclear Information System (INIS)

    Voeroes, G.; Kovacs, I.

    1990-01-01

    The precipitation processes in DC cast Al-Mn alloys were investigated by electrical resistivity measurements. It was obtained that the addition of Fe or Fe and Si influences basically the precipitation of Mn. In pure Al-Mn alloys a phase transition like behaviour was observed at about 550 degC, which can be related to the formation of two different precipitate particles below and above this temperature

  18. Synthesizing (ZrAl3 + AlN)/Mg-Al composites by a 'matrix exchange' method

    Science.gov (United States)

    Gao, Tong; Li, Zengqiang; Hu, Kaiqi; Han, Mengxia; Liu, Xiangfa

    2018-06-01

    A method named 'matrix exchange' to synthesize ZrAl3 and AlN reinforced Mg-Al composite was developed in this paper. By inserting Al-10ZrN master alloy into Mg matrix and reheating the cooled ingot to 550 °C, Al and Mg atoms diffuse to the opposite side. As a result, liquid melt occurs once the interface areas reach to proper compositions. Then dissolved Al atoms react with ZrN, leading to the in-situ formation of ZrAl3 and AlN particles, while the Al matrix is finally replaced by Mg. This study provides a new insight for preparing Mg composites.

  19. Sorption of selenium on Mg-Al and Mg-Al-Eu layered double hydroxides

    International Nuclear Information System (INIS)

    Curtius, H.; Paparigas, Z.; Kaiser, G.

    2008-01-01

    Salt domes represent deep geological formations which are under consideration as final repositories for irradiated research reactor fuel elements. For long-term safety aspects the mobilisation of the radionuclides due to a water ingress is intensively investigated. At the Institute of Energy Research (IEF-6), leaching experiments were performed in a hot cell facility with UAl x -Al and U 3 Si 2 -Al dispersed research reactor fuel elements in repository-relevant MgCl 2 -rich salt brines under anaerobic conditions. The fuel plates corroded completely within one year and a Mg-Al-layered double hydroxide (LDH) with chloride as interlayer anion was identified as one crystalline phase component of the corrosion products (secondary phases). This Mg-Al-LDH was synthesized, characterized, and the ability to retard europium by an incorporation process was investigated. Europium, as a representative for lanthanides, was identified to be one of the radionuclides which were found in the corrosion products. We could show that europium was incorporated in the lattice structure. LDHs have high anion exchange capacities that enhance their potential to remove anionic contaminants from aqueous systems. In this work the sorption behaviour of selenium in the chemical form as selenite (SeO 3 2- ) on Mg-Al-LDH and on Mg-Al-Eu-LDH was investigated. Especially the influence of the larger europium-III ion was of interest. It represents in the Mg-Al-Eu-LDH about 10% of the molar aluminium amount. The sorption has been experimentally studied in a wide range of pH, ionic strength, radionuclide and sorbent concentration. Both LDHs with chloride as interlayer anion were synthesized by a coprecipitation method under controlled conditions, and their main physico-chemical properties were analyzed prior to the sorption experiments. The sorption kinetics of selenite on the LDHs in water and in MgCl 2 -rich brine were rapid using a LDH concentration of 10 g/L. Equilibrium, indicated by stable p

  20. Ionizing radiation effects in MgAl sub 2 O sub 4. Efecto de la radiacion ionizante en MgAl2 O4

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, A.

    1990-11-01

    The effect of ionizing radiation in MgAl{sub 2}O{sub 4} has been studied, paying special interest to the influence of the high concentration of intrinsic defects of this material. Optical absorption, ESR, photoluminescence, radioluminescence, and thermoluminescence are the main techniques used. The ionizing radiation induces formation of V centres. During the work its characteristics (structure, thermal stability, absorption spectra, etc.) has been studied. The thermoluminescence spectra allowed the discovery of several charge release processes between 85 and 650 K, all of them associated to electron release. The V-centres and several impurities (Cr, Mn,...) appear as recombination centres. The obtained data show that the kinetic of these charge release processes is regulated by the presence of a point defect with a very high concentration. This defect is an electron trap and its structure is an Al ion in a lattice site of tetrahedral symmetry. (Author)

  1. L1{sub 0} stacked binaries as candidates for hard-magnets. FePt, MnAl and MnGa

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Yu-ichiro [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Department of Applied Physics, The University of Tokyo (Japan); Madjarova, Galia [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University (Bulgaria); Flores-Livas, Jose A. [Department of Physics, Universitaet Basel (Switzerland); Dewhurst, J.K.; Gross, E.K.U. [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Felser, C. [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Sharma, S. [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Department of Physics, Indian Institute of Technology, Roorkee, Uttarkhand (India)

    2017-08-15

    We present a novel approach for designing new hard magnets by forming stacks of existing binary magnets to enhance the magneto crystalline anisotropy. This is followed by an attempt at reducing the amount of expensive metal in these stacks by replacing it with cheaper metal with similar ionic radius. This strategy is explored using examples of FePt, MnAl and MnGa. In this study a few promising materials are suggested as good candidates for hard magnets: stacked binary FePt{sub 2}MnGa{sub 2} in structure where each magnetic layer is separated by two non-magnetic layers, FePtMnGa and FePtMnAl in hexagonally distorted Heusler structures and FePt{sub 0.5}Ti{sub 0.5}MnAl. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Effects of Mn and Al on the Intragranular Acicular Ferrite Formation in Rare Earth Treated C-Mn Steel

    Science.gov (United States)

    Song, Mingming; Song, Bo; Yang, Zhanbing; Zhang, Shenghua; Hu, Chunlin

    2017-07-01

    The influence of Al, Mn and rare earth (RE) on microstructure of C-Mn steel was investigated. The capacities of different RE inclusions to induce intragranular acicular ferrite (AF) formation were compared. Result shows that RE treatment could make C-Mn steel from large amounts of intragranular AF. Al killed is detrimental to the formation of intragranular AF in RE-treated C-Mn steel. An upper bainite structure would replace the AF when Al content increased to 0.027 mass %. The optimal Mn content to form AF is about 0.75-1.31 mass %. The effective RE inclusion which could induce AF nucleation is La2O2S. When patches of MnS are attached on the surface of La2O2S inclusion, AF nucleation capacity of RE-containing inclusion could enlarge obviously. The existence of manganese-depleted zone and low lattice misfit would be the main reason of La-containing inclusion inducing AF nucleation in C-Mn steel.

  3. Mn-AlInN: a new diluted magnetic semiconductor

    International Nuclear Information System (INIS)

    Majid, Abdul; Ali, Akbar; Sharif, Rehana; Zhu, J.J.

    2009-01-01

    Mn ions have been incorporated into MOCVD grown Al 1-x In x N/GaN thin films by ion implantation to achieve the room temperature ferromagnetism in the samples. Magnetic characterizations revealed the presence of two ferromagnetic transitions: one has Curie points at ∝260 K and the other above room temperature. In-diffusion of indium caused by the Mn implantation leads to the partition of AlInN epilayer into two diluted magnetic semiconductor sub-layers depending on the Mn concentration. The Curie temperature of 260 K is assigned to the layer having lower concentration, whereas T c above room temperature is assumed to be associated to the layer having higher Mn concentration. (orig.)

  4. Effects of Mn addition on microstructure and hardness of Al-12.6Si alloy

    Science.gov (United States)

    Biswas, Prosanta; Patra, Surajit; Mondal, Manas Kumar

    2018-03-01

    In this work, eutectic Al-12.6Si alloy with and without manganese (Mn) have been developed through gravity casting route. The effect of Mn concentration (0.0 wt.%, 1 wt%, 2 wt% and 3 wt%) on microstructural morphology and hardness property of the alloy has been investigated. The eutectic Al-12.6 Si alloy exhibits the presence of combine plate, needle and rod-like eutectic silicon phase with very sharp corners and coarser primary silicon particles within the α-Al phase. In addition of 1wt.% of Mn in the eutectic Al-12.6Si alloy, sharp corners of the primary Si and needle-like eutectic Si are became blunt and particles size is reduced. Further, increase in Mn concentration (2.0 wt.%) in the Al-12.6Si alloy, irregular plate shape Al6(Mn,Fe) intermetallics are formed inside the α-Al phase, but the primary and eutectic phase morphology is similar to the eutectic Al-12.6Si alloy. The volume fraction of Al6(Mn,Fe) increases and Al6(Mn,Fe) particles appear as like chain structure in the alloy with 3 wt.% Mn. An increase in Mn concentration in the Al-12.6Si alloys result in the increase in bulk hardness of the alloy as an effects of microstructure modification as well as the presence of harder Al6(Mn,Fe) phase in the developed alloy.

  5. Corrosion and Discharge Behaviors of Mg-Al-Zn and Mg-Al-Zn-In Alloys as Anode Materials

    Directory of Open Access Journals (Sweden)

    Jiarun Li

    2016-03-01

    Full Text Available The Mg-6%Al-3%Zn and Mg-6%Al-3%Zn-(1%, 1.5%, 2%In alloys were prepared by melting and casting. Their microstructures were investigated via metallographic and energy-dispersive X-ray spectroscopy (EDS analysis. Moreover, hydrogen evolution and electrochemical tests were carried out in 3.5 wt% NaCl solution aiming at identifying their corrosion mechanisms and discharge behaviors. The results suggested that indium exerts an improvement on both the corrosion rate and the discharge activity of Mg-Al-Zn alloy via the effects of grain refining, β-Mg17Al12 precipitation, dissolving-reprecipitation, and self-peeling. The Mg-6%Al-3%Zn-1.5%In alloy with the highest corrosion rate at free corrosion potential did not perform desirable discharge activity indicating that the barrier effect caused by the β-Mg17Al12 phase would have been enhanced under the conditions of anodic polarization. The Mg-6%Al-3%Zn-1.0%In alloy with a relative low corrosion rate and a high discharge activity is a promising anode material for both cathodic protection and chemical power source applications.

  6. Validation of FNAA method for testing the elements of Mn, Cr and Mg on the Gajahwong river sediment sample

    International Nuclear Information System (INIS)

    Wisjachudin Faisal; Elin Nuraini

    2010-01-01

    Validation of elements of Mn, Cr and Mg by using FNAA method has been performed. NBS SRM 8704 (Bufallo River Sediment), was used as the standard reference material, with the neutrons generator operating condition at the optimum voltage of 110 kV. Energy and channel number of calibration lines obtained with the standard equation as y = 1.034 x + 151.21. From the analysis of SRM, the results show that only Mg can be analyzed, because Cr and Mn are located at the same peak point (interferences), so that they can not be analyzed. From the analysis for Mg element (SRM), the precision and the accuration obtained are 95.53 % and 94.88%, while the average price of expanded uncertainty for the various locations is 0.233 ± 0.012. Mg content analysis result at various locations along the river Gajahwong ranging from 85.41 – 103.55 ppm. When compared with previous studies showing the elements content of Fe, Al and Si is much higher than Mg content. (author)

  7. Removal of aqueous Pb(II) by adsorption on Al{sub 2}O{sub 3}-pillared layered MnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haipeng; Gu, Liqin; Zhang, Ling; Zheng, Shourong; Wan, Haiqin; Sun, Jingya [State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023 (China); Zhu, Dongqiang [School of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Xu, Zhaoyi, E-mail: zhaoyixu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2017-06-01

    Highlights: • Al{sub 2}O{sub 3}-pillared layered MnO{sub 2} (p-MnO{sub 2}) was prepared from δ-MnO{sub 2} precursor. • p-MnO{sub 2} showed markedly higher Pb(II) adsorption capacity than pristine δ-MnO{sub 2.}. • Pillaring of Al{sub 2}O{sub 3} into the layer of δ-MnO{sub 2} enhanced the Pb(II) adsorption. - Abstract: In the present study, Al{sub 2}O{sub 3}-pillared layered MnO{sub 2} (p-MnO{sub 2}) was synthesized using δ-MnO{sub 2} as precursor and Pb(II) adsorption on p-MnO{sub 2} and δ-MnO{sub 2} was investigated. To clarify the adsorption mechanism, Al{sub 2}O{sub 3} was also prepared as an additional sorbent. The adsorbents were characterized by X-ray fluorescence analysis, powder X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and N{sub 2} adsorption-desorption. Results showed that in comparison with pristine δ-MnO{sub 2}, Al{sub 2}O{sub 3} pillaring led to increased BET surface area of 166.3 m{sup 2} g{sup −1} and enlarged basal spacing of 0.85 nm. Accordingly, p-MnO{sub 2} exhibited a higher adsorption capacity of Pb(II) than δ-MnO{sub 2}. The adsorption isotherms of Pb(II) on δ-MnO{sub 2} and Al{sub 2}O{sub 3} pillar fitted well to the Freundlich model, while the adsorption isotherm of Pb(II) on p-MnO{sub 2} could be well described using a dual-adsorption model, attributed to Pb(II) adsorption on both δ-MnO{sub 2} and Al{sub 2}O{sub 3}. Additionally, Pb(II) adsorption on δ-MnO{sub 2} and p-MnO{sub 2} followed the pseudo second-order kinetics, and a lower adsorption rate was observed on p-MnO{sub 2} than δ-MnO{sub 2}. The Pb(II) adsorption capacity of p-MnO{sub 2} increased with solution pH and co-existing cation concentration, and the presence of dissolved humic acid (10.2 mg L{sup −1}) did not markedly impact Pb(II) adsorption. p-MnO{sub 2} also displayed good adsorption capacities for aqueous Cu(II) and Cd(II). Findings in this study indicate that p-MnO{sub 2} could be used as a highly effective

  8. Structural and magnetic properties of Mg doped YbMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sattibabu, Bhumireddi, E-mail: bsb.satti@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Bhatnagar, Anil K., E-mail: anilb42@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); School of Physics, University of Hyderabad, Hyderabad 500046 (India); Rayaprol, Sudhindra [UGC-DAE CSR, Mumbai Centre, R-5 Shed, BARC, Mumbai 400085 (India); Mohan, Dasari; Das, Dibakar; Sundararaman, Mahadevan [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Siruguri, Vasudeva [UGC-DAE CSR, Mumbai Centre, R-5 Shed, BARC, Mumbai 400085 (India)

    2014-09-01

    We have studied the effect of Mg doping on structure and magnetism of multiferroic YbMnO{sub 3}. Room temperature neutron diffraction studies were carried out on polycrystalline Yb{sub 1−x}Mg{sub x}MnO{sub 3} (x=0.00 and 0.05) samples to determine phase formation as well as cation distribution and structural properties such as bond length and bond angles. The structural analysis shows that with Mg substitution, there is a marginal change in a and c parameters of the hexagonal unit cell, c/a ratio remains constant for x=0 and 0.05 samples. Due to changes in bond angle and bond lengths on substituting Mg, there is a slight decrease in the distortion of MnO{sub 5} polyhedra. Magnetic measurements show that the Néel temperature (T{sub N}) increases marginally from 85 K for x=0.00 to 89 K for x=0.05 sample.

  9. Thermodynamic modelling and Gulliver-Scheil simulation of multi-component Al alloys

    International Nuclear Information System (INIS)

    Du Yong; Liu Shuhong; Chang, Keke; Hu Biao; Bu Mengjie; Jie Wanqi; Huang Weidong; Wang Jincheng

    2012-01-01

    Based on critical review for the available experimental phase diagram data of the Al-Cu-Fe-Mn, Al-Cu-Fe-Ni, Al-Cu-Fe-Si, Al-Fe-Mg-Si, Al-Fe-Mn-Si, and Al-Mg-Mn-Zn systems, a set of self-consistent thermodynamic parameters for these systems has been established using CALPHAD approach. In combination with the constituent binary, ternary, and quaternary systems, a thermodynamic database for the Al-Cu-Fe-Mg-Mn-Ni-Si-Zn system is developed. The calculated phase diagrams and invariant reactions agree well with the experimental data. The obtained database has been used to describe the solidification behaviour of Al alloys: Al365.1(91.95Al-0.46Fe-0.3Mg-0.32Mn-6.97Si, in wt.%) and Al365.2 (92.77Al-0.08Fe-0.35Mg-6.8Si, in wt.%) under both equilibrium and Gulliver-Scheil non-equilibrium conditions. The reliability of the present thermodynamic database is verified by the good agreement between calculation and measurement for both equilibrium and Gulliver–Scheil non-equilibrium solidification.

  10. Electromigration in Cu(Al) and Cu(Mn) damascene lines

    Science.gov (United States)

    Hu, C.-K.; Ohm, J.; Gignac, L. M.; Breslin, C. M.; Mittal, S.; Bonilla, G.; Edelstein, D.; Rosenberg, R.; Choi, S.; An, J. J.; Simon, A. H.; Angyal, M. S.; Clevenger, L.; Maniscalco, J.; Nogami, T.; Penny, C.; Kim, B. Y.

    2012-05-01

    The effects of impurities, Mn or Al, on interface and grain boundary electromigration (EM) in Cu damascene lines were investigated. The addition of Mn or Al solute caused a reduction in diffusivity at the Cu/dielectric cap interface and the EM activation energies for both Cu-alloys were found to increase by about 0.2 eV as compared to pure Cu. Mn mitigated and Al enhanced Cu grain boundary diffusion; however, no significant mitigation in Cu grain boundary diffusion was observed in low Mn concentration samples. The activation energies for Cu grain boundary diffusion were found to be 0.74 ± 0.05 eV and 0.77 ± 0.05 eV for 1.5 μm wide polycrystalline lines with pure Cu and Cu (0.5 at. % Mn) seeds, respectively. The effective charge number in Cu grain boundaries Z*GB was estimated from drift velocity and was found to be about -0.4. A significant enhancement in EM lifetimes for Cu(Al) or low Mn concentration bamboo-polycrystalline and near-bamboo grain structures was observed but not for polycrystalline-only alloy lines. These results indicated that the existence of bamboo grains in bamboo-polycrystalline lines played a critical role in slowing down the EM-induced void growth rate. The bamboo grains act as Cu diffusion blocking boundaries for grain boundary mass flow, thus generating a mechanical stress-induced back flow counterbalancing the EM force, which is the equality known as the "Blech short length effect."

  11. Mn-AlInN: a new diluted magnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul; Ali, Akbar [Quaid-i-Azam University, Advance Materials Physics Laboratory, Physics Department, Islamabad (Pakistan); Sharif, Rehana [University of Engineering and Technology, Department of Physics, Lahore (Pakistan); Zhu, J.J. [Chinese Academy of Sciences, State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Beijing (China)

    2009-09-15

    Mn ions have been incorporated into MOCVD grown Al{sub 1-x}In{sub x}N/GaN thin films by ion implantation to achieve the room temperature ferromagnetism in the samples. Magnetic characterizations revealed the presence of two ferromagnetic transitions: one has Curie points at {proportional_to}260 K and the other above room temperature. In-diffusion of indium caused by the Mn implantation leads to the partition of AlInN epilayer into two diluted magnetic semiconductor sub-layers depending on the Mn concentration. The Curie temperature of 260 K is assigned to the layer having lower concentration, whereas T{sub c} above room temperature is assumed to be associated to the layer having higher Mn concentration. (orig.)

  12. Ionizing radiation effects in MgAl2O4

    International Nuclear Information System (INIS)

    Ibarra Sanchez, A.

    1990-01-01

    The effect of ionizing radiation in MgAl2O4 has been studied, paying special interest to the influence of the high concentration of intrinsic dsefects of this material. Optical absorption, ESR, photoluminiscence, radioluminiscence, and thermoluminiscence are the main techniques used. The ionizing radiation induces to formation of V centres. During the work its characteristics (structure, thermal stability, absorption spectra, etc.) has been studied. The thermoluminiscence spectra allowed the discovery of several charge release processes between 85 and 650 K, all of them associated to electron release. The V-centres and several impurities (Cr, Mn,...) appear as recombination centres. The obtained data show that the kinetic of these charge release processes is regulated by the presence of a point defect with a very high concentration. This defect is an electron trap and its structure is an Al ion in a lattice site of tetraedral symmetry. (Author)

  13. Hydrogen storage and microstructure investigations of La0.7-xMg0.3PrxAl0.3Mn0.4Co0.5Ni3.8 alloys

    International Nuclear Information System (INIS)

    Galdino, G.S.; Casini, J.C.S.; Ferreira, E.A.; Faria, R.N.; Takiishi, H.

    2010-01-01

    The effects of substitution of Pr for La in the hydrogen storage capacity and microstructures of La 0.7-x Pr x Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 (x=0, 0.1, 0.3, 0.5, 0.7) alloys electrodes have been studied. X-ray diffraction (XRD), scanning electron microscopy, energy dispersive spectrometry (EDS) and electrical tests were carried out in a the alloys and electrodes. Cycles of charge and discharge have also been carried out in the Ni/MH (Metal hydride) batteries based on the alloys negative electrodes. (author)

  14. AlMn Transition Edge Sensors for Advanced ACTPol

    Science.gov (United States)

    Li, Dale; Austermann, Jason E.; Beall, James A.; Tucker, Daniel T.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hilton, Gene C.; Ho, Shuay-Pwu; Hubmayr, Johannes; hide

    2016-01-01

    Advanced ACTPol (Adv ACT) will use an array of multichroic polarization sensitive AIMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.

  15. Formation of Al15Mn3Si2 Phase During Solidification of a Novel Al-12%Si-4%Cu-1.2%Mn Heat-Resistant Alloy and Its Thermal Stability

    Science.gov (United States)

    Suo, Xiaojing; Liao, Hengcheng; Hu, Yiyun; Dixit, Uday S.; Petrov, Pavel

    2018-02-01

    The formation of Al15Mn3Si2 phase in Al-12Si-4Cu-1.2Mn (wt.%) alloy during solidification was investigated by adopting CALPHAD method and microstructural observation by optical microscopy, SEM-EDS, TEM-EDS/SAD and XRD analysis; SEM fixed-point observation method was applied to evaluate its thermal stability. As-cast microstructural observation consistently demonstrates the solidification sequence of the studied alloy predicted by phase diagram calculation. Based on the phase diagram calculation, SEM-EDS, TEM-EDS/SAD and XRD analysis, as well as evidences on Al-Si-Mn-Fe compounds from the literature, the primary and eutectic Mn-rich phases with different morphologies in the studied alloy are identified to be Al15Mn3Si2 that has a body-centered cubic (BCC) structure with a lattice constant of a = 1.352 nm. SEM fixed-point observation and XRD analysis indicate that Al15Mn3Si2 phase has more excellent thermal stability at high temperature than that of CuAl2 phase and can serve as the major strengthening phase in heat-resistant aluminum alloy that has to face a high-temperature working environment. Results of tension test show that addition of Mn can improve the strength of Al-Si-Cu alloy, especially at elevated temperature.

  16. Ethylbenzene dehydrogenation over binary FeOx–MeOy/Mg(Al)O catalysts derived from hydrotalcites

    KAUST Repository

    Balasamy, Rabindran J.; Khurshid, Alam; Al-Ali, Ali A S; Atanda, Luqman A.; Sagata, Kunimasa; Asamoto, Makiko; Yahiro, Hidenori; Nomura, Kiyoshi; Sano, Tsuneji; Takehira, Katsuomi; Al-Khattaf, Sulaiman S.

    2010-01-01

    A series of FeOx-MeOy/Mg(Al)O catalysts were prepared from hydrotalcite-like compounds as precursors and were tested in the ethylbenzene dehydrogenation to styrene in He atmosphere at 550 °C. The hydrotalcite-like precursors of the metal compositions of Mg3Fe 0.25Me0.25Al0.5 (Me = Cu, Zn, Cr, Mn, Fe, Co and Ni) were coprecipitated from the nitrates of metal components and calcined to mixed oxides at 550 °C. After the calcination, the mixed oxides showed high surface area of 150-200 m2 gcat -1, and were mainly composed of (MgMe)(Fe3+Al)O periclase in the bulk, whereas the surface was enriched by (MgMe)(Fe3+Al)2O 4 pinel. Among the Me species tested, Co2+ was the most effective, followed by Ni2+. Co2+ addition increased the activity of original FeOx/Mg(Al)O catalyst, whereas Ni2+ increased the activity at the beginning of reaction, but deactivated the catalyst during the reaction. The other metals formed isolated MeOx species in the catalyst, resulting in a decrease in the activity compared to the original FeOx/Mg(Al)O catalyst. The active Fe species exists as metastable Fe3+ on the FeOx/Mg(Al)O catalyst. By the addition of Co2+, the reduction-oxidation between Fe3+ and Fe2+ was facilitated and, moreover, the active Fe3+ species was stabilized. It is likely that the dehydrogenation proceeds on the active Fe3+ species via its reduction-oxidation assisted by Co 2+. © 2010 Elsevier B.V.

  17. Ethylbenzene dehydrogenation over binary FeOx–MeOy/Mg(Al)O catalysts derived from hydrotalcites

    KAUST Repository

    Balasamy, Rabindran J.

    2010-12-20

    A series of FeOx-MeOy/Mg(Al)O catalysts were prepared from hydrotalcite-like compounds as precursors and were tested in the ethylbenzene dehydrogenation to styrene in He atmosphere at 550 °C. The hydrotalcite-like precursors of the metal compositions of Mg3Fe 0.25Me0.25Al0.5 (Me = Cu, Zn, Cr, Mn, Fe, Co and Ni) were coprecipitated from the nitrates of metal components and calcined to mixed oxides at 550 °C. After the calcination, the mixed oxides showed high surface area of 150-200 m2 gcat -1, and were mainly composed of (MgMe)(Fe3+Al)O periclase in the bulk, whereas the surface was enriched by (MgMe)(Fe3+Al)2O 4 pinel. Among the Me species tested, Co2+ was the most effective, followed by Ni2+. Co2+ addition increased the activity of original FeOx/Mg(Al)O catalyst, whereas Ni2+ increased the activity at the beginning of reaction, but deactivated the catalyst during the reaction. The other metals formed isolated MeOx species in the catalyst, resulting in a decrease in the activity compared to the original FeOx/Mg(Al)O catalyst. The active Fe species exists as metastable Fe3+ on the FeOx/Mg(Al)O catalyst. By the addition of Co2+, the reduction-oxidation between Fe3+ and Fe2+ was facilitated and, moreover, the active Fe3+ species was stabilized. It is likely that the dehydrogenation proceeds on the active Fe3+ species via its reduction-oxidation assisted by Co 2+. © 2010 Elsevier B.V.

  18. Microstructure features and mechanical properties of a UFG Al-Mg-Si alloy produced via SPD

    International Nuclear Information System (INIS)

    Bobruk, E; Kazykhanov, V; Valiev, R; Murashkin, M; Sabirov, I

    2014-01-01

    The effect of equal channel angular pressing in parallel channels (ECAP-PC) and subsequient artificial ageing on the microstructure and room temperature mechanical properties of the commercial aluminum alloys 6063 (Al-0.6Mg-0.5Si, wt.%) and 6010 (Al-0.8Mg-1.0Si-0.15Cu-0.25Mn, wt.%) was investigated. It was shown that mechanical strength of the ECAP-PC processed Al alloys is higher compared to that achieved in these alloys after conventional thermo-mechanical processing. Prior ECAP- PC solution treatment and post-ECAP-PC artificial aging can additionally increase the mechanical strength of both Al alloys. Under optimal artificial ageing conditions, the yield strength (YS) of 299 MPa and ultimate tensile strength (UTS) of 308 MPa was achieved in the 6063 alloy, whereas YS of 423 MPa and UTS of 436 MPa was achieved in the 6010 alloy

  19. Electrochemical properties of the ball-milled LaMg10NiMn alloy with Ni powders

    International Nuclear Information System (INIS)

    Wang Yi; Wang Xin; Gao Xueping; Shen Panwen

    2008-01-01

    The electrochemical characteristics of the ball-milled LaMg 10 NiMn alloys with Ni powders were investigated. It was found that the ball-milled LaMg 10 NiMn + 150 wt.% Ni composite exhibited higher first discharge capacity and better cycle performance. By means of the analysis of electrochemical impedance spectra (EIS), it was shown that the existence of manganese in LaMg 10 NiMn alloy increased the electrocatalytic activity due to its catalytic effect, and destabilized metal hydrides, and so reduced the hydrogen diffusion resistance. These contributed to the higher discharge capacity of the ball-milled LaMg 10 NiMn-Ni composite. According to the analytical results of X-ray diffraction (XRD), EIS and steady-state polarization (SSP) experiments, the inhibition of metal corrosion is not the main reason for the better cycle performance. The main reason is that the electrochemical reaction resistance of the ball-milled LaMg 10 NiMn-Ni composite is always lower than that of the ball-milled LaMg 10 Ni 2 -Ni composite because the former one contains manganese, which is a catalyst for the electrode reaction

  20. Influence of Mn on the tensile properties of SSM-HPDC Al-Cu-Mg-Ag alloy A201

    CSIR Research Space (South Africa)

    Müller, H

    2011-03-01

    Full Text Available A201 aluminium alloy is a high strength casting alloy with a nominal composition of Al-4.6Cu-0.3Mg-0.6Ag. It is strengthened by the O(Al2Cu) phase and the ’(Al2Cu) phase during heat treatment. Further strengthening of this alloy system can...

  1. Separation of Mn(II) in presence of Al(III) in acid drainage from an Uranium mine with the use of chelating resins

    International Nuclear Information System (INIS)

    Soares, Eliane Pavesi B.; Gomes, Viviane T.; Vaitsman, Delmo S.

    2011-01-01

    The acid drainage of Osamu Utsumi mine is the main environmental impact from mining activities in Pocos de Caldas - MG - Brazil. The water produced in this process is characterized by high acidity and heavy metal concentration. To minimize this environmental impact, new technologies directed towards treatment of acid drainage of mine (ADM) have been studied. However, due to the presence of Al 3+ (which has a high charge) in the ADM, these resins get quickly saturated, preventing stripping of divalent cations like Mn 2+ . This study proposes the synthesis of chelating resins that provide preferential retention of Mn 2+ instead of Al 3+ . It was synthesized resins functionalized with amidoxime and dithiocarbamate. The capacity of retention of Mn 2+ e Al 3+ ions at different pH values was assessed for each resin. The stripping of Mn 2+ at 2, 3 and 4 (pH ADM range) by studied resins was not preferential for Mn 2+ in relation to Al 3+ , probably due to the strong electrostatic interaction between this last type of high charge density and the active sites from extractor agents and resins. However at pH 6 (stated by environmental norms for liquid effluents discharge) the synthesized resins had a good retention capacity for Mn 2+ . So it is proposed that the extraction technique using chelating resins could be employed to strip Mn 2+ from ADM at pH 6,0, since at this condition , Al 3+ is precipitated as Al(OH) 3 . (author)

  2. Effects of Alloying Elements on Room and High Temperature Tensile Properties of Al-Si Cu-Mg Base Alloys =

    Science.gov (United States)

    Alyaldin, Loay

    In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a

  3. Bio-corrosion characterization of Mg-Zn-X (X = Ca, Mn, Si) alloys for biomedical applications.

    Science.gov (United States)

    Rosalbino, F; De Negri, S; Saccone, A; Angelini, E; Delfino, S

    2010-04-01

    The successful applications of magnesium-based alloys as biodegradable orthopedic implants are mainly inhibited due to their high degradation rates in physiological environment. This study examines the bio-corrosion behaviour of Mg-2Zn-0.2X (X = Ca, Mn, Si) alloys in Ringer's physiological solution that simulates bodily fluids, and compares it with that of AZ91 magnesium alloy. Potentiodynamic polarization and electrochemical impedance spectroscopy results showed a better corrosion behaviour of AZ91 alloy with respect to Mg-2Zn-0.2Ca and Mg-2Zn-0.2Si alloys. On the contrary, enhanced corrosion resistance was observed for Mg-2Zn-0.2Mn alloy compared to the AZ91 one: Mg-2Zn-0.2Mn alloy exhibited a four-fold increase in the polarization resistance than AZ91 alloy after 168 h exposure to the Ringer's physiological solution. The improved corrosion behaviour of the Mg-2Zn-0.2Mn alloy with respect to the AZ91 one can be ascribed to enhanced protective properties of the Mg(OH)(2) surface layer. The present study suggests the Mg-2Zn-0.2Mn alloy as a promising candidate for its applications in degradable orthopedic implants, and is worthwhile to further investigate the in vivo corrosion behaviour as well as assessed the mechanical properties of this alloy.

  4. The in vitro biocompatibility and macrophage phagocytosis of Mg17Al12 phase in Mg-Al-Zn alloys.

    Science.gov (United States)

    Liu, Chen; He, Peng; Wan, Peng; Li, Mei; Wang, Kehong; Tan, Lili; Zhang, Yu; Yang, Ke

    2015-07-01

    Mg alloys are gaining interest for applications as biodegradable medical implant, including Mg-Al-Zn series alloys with good combination of mechanical properties and reasonable corrosion resistance. However, whether the existence of second phase particles in the alloys exerts influence on the biocompatibility is still not clear. A deeper understanding of how the particles regulate specific biological responses is becoming a crucial requirement for their subsequent biomedical application. In this work, the in vitro biocompatibility of Mg17Al12 as a common second phase in biodegradable Mg-Al-Zn alloys was investigated via hemolysis, cytotoxicity, cell proliferation, and cell adhesion tests. Moreover, osteogenic differentiation was evaluated by the extracellular matrix mineralization assay. The Mg17Al12 particles were also prepared to simulate the real situation of second phase in the in vivo environment in order to estimate the cellular response in macrophages to the Mg17Al12 particles. The experimental results indicated that no hemolysis was found and an excellent cytocompatibility was also proved for the Mg17Al12 second phase when co-cultured with L929 cells, MC3T3-E1 cells and BMSCs. Macrophage phagocytosis co-culture test revealed that Mg17Al12 particles exerted no harmful effect on RAW264.7 macrophages and could be phagocytized by the RAW264.7 cells. Furthermore, the possible inflammatory reaction and metabolic way for Mg17Al12 phase were also discussed in detail. © 2014 Wiley Periodicals, Inc.

  5. Fabrication and Magnetic Properties of Co₂MnAl Heusler Alloys by Mechanical Alloying.

    Science.gov (United States)

    Lee, Chung-Hyo

    2018-02-01

    We have applied mechanical alloying (MA) to produce nanocrystalline Co2MnAl Heusler alloys using a mixture of elemental Co50Mn25Al25 powders. An optimal milling and heat treatment conditions to obtain a Co2MnAl Heusler phase with fine microstructure were investigated by X-ray diffraction, differential scanning calorimeter and vibrating sample magnetometer measurements. α-(Co, Mn, Al) FCC phases coupled with amorphous phase are obtained after 3 hours of MA without any evidence for the formation of Co2MnAl alloys. On the other hand, a Co2MnAl Heusler alloys can be obtained by the heat treatment of all MA samples up to 650 °C. X-ray diffraction result shows that the average grain size of Co2MnAl Heusler alloys prepared by MA for 5 h and heat treatment is in the range of 95 nm. The saturation magnetization of MA powders decreases with MA time due to the magnetic dilution by alloying with nonmagnetic Mn and Al elements. The magnetic hardening due to the reduction of the grain size with ball milling is also observed. However, the saturation magnetization of MA powders after heat treatment increases with MA time and reaches to a maximum value of 105 emu/g after 5 h of MA. It can be also seen that the coercivity of 5 h MA sample annealed at 650 °C is fairly low value of 25 Oe.

  6. Large enhancement of Blocking temperature by control of interfacial structures in Pt/NiFe/IrMn/MgO/Pt multilayers

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2015-09-01

    Full Text Available The Blocking temperature (TB of Pt/NiFe/IrMn/MgO/Pt multilayers was greatly enhanced from far below room temperature (RT to above RT by inserting 1 nm thick Mg layer at IrMn/MgO interface. Furthermore, the exchange bias field (Heb was increased as well by the control of interfacial structures. The evidence for a significant fraction of Mn-O bonding at IrMn/MgO interface without Mg insertion layer was provided by X-ray photoelectron spectroscopy. The bonding between Mn and O can decrease the antiferromagnetism of IrMn film, leading to lower value of TB in Pt/NiFe/IrMn/MgO/Pt multilayers. Ultrathin Mg film inserted at IrMn/MgO interface acting as an oxygen sinking layer can suppress the oxidation reactions between Mn and O and reduce the formation of Mn-O bonding greatly. The oxidation suppression results in the recovery of the antiferromagnetism of IrMn film, which can enhance TB and Heb. Furthermore, the high resolution transmission electron microscopy demonstrates that the Mg insertion layer can efficiently promote a high-quality MgO (200 texture. This study will enhance the understanding of physics in antiferromagnet-based spintronic devices.

  7. Iron Intermetallic Phases in the Alloy Based on Al-Si-Mg by Applying Manganese

    Directory of Open Access Journals (Sweden)

    Podprocká R.

    2017-09-01

    Full Text Available Manganese is an effective element used for the modification of needle intermetallic phases in Al-Si alloy. These particles seriously degrade mechanical characteristics of the alloy and promote the formation of porosity. By adding manganese the particles are being excluded in more compact shape of “Chinese script” or skeletal form, which are less initiative to cracks as Al5FeSi phase. In the present article, AlSi7Mg0.3 aluminium foundry alloy with several manganese content were studied. The alloy was controlled pollution for achieve higher iron content (about 0.7 wt. % Fe. The manganese were added in amount of 0.2 wt. %, 0.6 wt. %, 1.0 wt. % and 1.4 wt. %. The influence of the alloying element on the process of crystallization of intermetallic phases were compared to microstructural observations. The results indicate that increasing manganese content (> 0.2 wt. % Mn lead to increase the temperature of solidification iron rich phase (TAl5FeSi and reduction this particles. The temperature of nucleation Al-Si eutectic increase with higher manganese content also. At adding 1.4 wt. % Mn grain refinement and skeleton particles were observed.

  8. Internal Friction of Austenitic Fe-Mn-C-Al Alloys

    Science.gov (United States)

    Lee, Young-Kook; Jeong, Sohee; Kang, Jee-Hyun; Lee, Sang-Min

    2017-12-01

    The internal friction (IF) spectra of Fe-Mn-C-Al alloys with a face-centered-cubic (fcc) austenitic phase were measured at a wide range of temperature and frequency ( f) to understand the mechanisms of anelastic relaxations occurring particularly in Fe-Mn-C twinning-induced plasticity steels. Four IF peaks were observed at 346 K (73 °C) (P1), 389 K (116 °C) (P2), 511 K (238 °C) (P3), and 634 K (361 °C) (P4) when f was 0.1 Hz. However, when f increased to 100 Hz, whereas P1, P2, and P4 disappeared, only P3 remained without the change in peak height, but with the increased peak temperature. P3 matches well with the IF peak of Fe-high Mn-C alloys reported in the literature. The effects of chemical composition and vacancy (v) on the four IF peaks were also investigated using various alloys with different concentrations of C, Mn, Al, and vacancy. As a result, the defect pair responsible for each IF peak was found as follows: a v-v pair for P1, a C-v pair for P2, a C-C pair for P3, and a C-C-v complex (major effect) + a Mn-C pair (minor effect) for P4. These results showed that the IF peaks of Fe-Mn-C-Al alloys reported previously were caused by the reorientation of C in C-C pairs, not by the reorientation of C in Mn-C pairs.

  9. On the origin of the giant magnetic moment of the Al-Mn quasicrystals

    Directory of Open Access Journals (Sweden)

    Bocharov P.V.

    2011-05-01

    Full Text Available Ab initio calculations of magnetic moments for icosahedral clusters contained in crystal structures Al10Mn3, Al5Co2, Al17Mn4 (Al13Cr4Si4-type fulfilled in the framework of Density Functional Theory. The AlMn cluster having the trigonal D3h symmetry with the triangle of Mn ions in the interior has the moment being equal to three magnetic moments of a single manganese ion (4.4 μB, the moment of the tetrahedral Td cluster with the Mn tetrahedron in the interior is equal approximately to twelve magnetic moments of the single manganese ion (15.5 μB. The magnetic moment of icosahedral Al-Co clusters having the same configuration is equal to zero. The magnetic moments of the rod assembled from the icosahedral clusters with the sequence Td D3h - Td was found to be 20.5 μB. This value permits to explain the giant magnetic moment of icosahedral and decagonal Al-Mn quasicrystals and gives the indirect evidence to the hierarchical model of the quasicrystals structure proposed by the authors recently. An arrangement of magnetic moment carriers in the interior of the aluminum shell of icosahedral clusters permits to suggest the interaction between contacting manganese ions as the main origin of the giant magnetic moment of the Al-Mn quasicrystals.

  10. Influence of sulfate ion concentration and pH on the corrosion of Mg-Al-Zn-Mn (GA9 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Sudarshana Shetty

    2015-09-01

    Full Text Available The corrosion behavior of Mg-Al-Zn-Mn (GA9 alloy in sodium sulfate solutions was studied over a range of concentrations and solution temperatures at different pH conditions by electrochemical techniques like Tafel extrapolation and electrochemical impedance spectroscopy (EIS. The studies were carried out in solutions with sodium sulfate concentrations 0.1M, 0.5M, 1M, 1.5M and 2M; and at five different temperatures of 30, 35, 40, 45 and 50 °C in a pH range of 3–12. As per the experimental data, the corrosion rate of the alloy increased with the increase in temperature, and also with the increase in concentration of sodium sulfate in the medium. It was observed that the rate of corrosion decreased with the increase in pH. The activation parameters like activation energy, enthalpy of activation and entropy of activation for the corrosion process were calculated. The surface morphology of the alloy was examined before and after corrosion using scanning electron microscopy (SEM.

  11. Catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Chmielarz, Lucjan; Kustrowski, Piotr; Rafalska-Lasocha, Alicja [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Majda, Dorota; Dziembaj, Roman [Regional Laboratory for Physicochemical Analyses and Structural Research, Ingardena 3, 30-060 Krakow (Poland)

    2002-01-10

    M-Mg-Al hydrotalcites (where M=Cu{sup 2+}, Co{sup 2+} and Cu{sup 2+}+Co{sup 2+}) with M ranging from 5 to 20% (as atomic ratio) were prepared by co-precipitation method. Obtained samples were characterised by XRD and TGA techniques. The influence of transition metal content on thermal decomposition of hydrotalcites was observed. Calcination of the hydrotalcites at 600C resulted in the formation of mixed oxides with surface areas in the range 71-154m{sup 2}/g. Calcined hydrotalcites were tested as catalysts in the selective reduction of NO with ammonia (NO-SCR). The catalytic activity depends on the kind of transition metal, as well as its content. For the NO-SCR the following reactivity order was found: Cu-Mg-Al>Cu-Co-Mg-Al>Co-Mg-Al. Temperature-programmed methods (TPD, TPSR, stop flow-TPD), as well as FT-IR spectroscopy have been applied to determine interaction of NO and NH{sub 3} molecules with the catalyst surface.

  12. Thermodynamic properties of Al-Mn, Al-Cu, and Al-Fe-Cu melts and their relations to liquid and quasicrystal structure

    International Nuclear Information System (INIS)

    Zaitsev, A I; Zaitseva, N E; Shimko, R Yu; Arutyunyan, N A; Dunaev, S F; Kraposhin, V S; Lam, Ha Thanh

    2008-01-01

    Thermodynamic properties of molten Al-Mn, Al-Cu and Al-Fe-Cu alloys in a wide temperature range of 1123-1878 K and the whole range of concentrations have been studied using the integral effusion method and Knudsen mass spectrometry. Thermodynamic functions of melts were described by the associated solution model. The possibility of icosahedral quasicrystal (i-QC) precipitation from liquid Al-Mn and Al-Cu-Fe alloys was found to be a consequence of the existence in liquid associates (clusters). A geometric model is suggested for the structure of associates in liquid

  13. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-11-30

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  14. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  15. Differences in structure and magnetic behavior of Mn-AlN films due to substrate material

    International Nuclear Information System (INIS)

    Sato, Takanobu; Nakatani, Ryoichi; Endo, Yasushi; Kirino, Fumiyoshi

    2009-01-01

    The structure and magnetic behavior of Mn-AlN (Al 1-x Mn x N, x = 0.03, 0.04) films deposited on thermally oxidized Si (001) substrates and sapphire (0001) substrates were studied. Mn-AlN films deposited on each substrate had a wuertzite-type AlN phase with a preferentially oriented c-axis. Mn-AlN films that were deposited on Si (001) substrate exhibited paramagnetic behavior. In addition to paramagnetic behavior, weak ferromagnetic behavior with curie temperatures higher than room temperature were observed for Mn-AlN films deposited on sapphire (0001) substrates.

  16. 27Al, 63Cu NMR spectroscopy and electrical transport in Heusler Cu-Mn-Al alloy powders

    Science.gov (United States)

    Nadutov, V. M.; Perekos, A. O.; Kokorin, V. V.; Trachevskii, V. V.; Konoplyuk, S. M.; Vashchuk, D. L.

    2018-02-01

    The ultrafine powder of the Heusler Cu-13,1Mn-12,6Al (wt.%) alloy produced by electrical spark dispersion (ESD) in ethanol and the pellets prepared by pressing of the powders and aged in various gas environment (air, Ar, vacuum) were studied by XRD, nuclear magnetic resonance, magnetic and electric transport methods. The constituent phases were identified as b.c.c. α-Cu-Mn-Al, f.c.c. γ-Cu-Mn-Al, Cu2MnAl, and oxides. The sizes of the coherently scattering domains (CSD) and the saturation magnetizations were in the range of 4-90 nm and 0-1.5 Am2/kg, respectively. 27Al and 63Cu NMR spectra of the powders and pellets have shown hyperfine structure caused by contributions from atomic nuclei of the constituent phases. The aging of pellets in different gas environments had effect on their phase composition but no effect on dispersion of the phases. In contrast to the as-cast alloy, electrical resistance of the pellets evidenced semiconducting behavior at elevated temperatures due to the presence of metal oxides formed on the surfaces of nanoparticles.

  17. Mixed oxides obtained from Co and Mn containing layered double hydroxides: Preparation, characterization, and catalytic properties

    International Nuclear Information System (INIS)

    Kovanda, Frantisek; Rojka, Tomas; Dobesova, Jana; Machovic, Vladimir; Bezdicka, Petr; Obalova, Lucie; Jiratova, Kveta; Grygar, Tomas

    2006-01-01

    Co-Mn-Al layered double hydroxides (LDHs) with various Co:Mn:Al molar ratios (4:2:0, 4:1.5:0.5, 4:1:1, 4:0.5:1.5, and 4:0:2) were prepared and characterized. Magnesium containing LDHs Co-Mg-Mn (2:2:2), Co-Mg-Mn-Al (2:2:1:1), and Co-Mg-Al (2:2:2) were also studied. Thermal decomposition of prepared LDHs and formation of related mixed oxides were studied using high-temperature X-ray powder diffraction and thermal analysis. The thermal decomposition of Mg-free LDHs starts by their partial dehydration accompanied by shrinkage of the lattice parameter c from ca. 0.76 to 0.66 nm. The dehydration temperature of the Co-Mn-Al LDHs decreases with increasing Mn content from 180 deg. C in Co-Al sample to 120 deg. C in sample with Co:Mn:Al molar ratio of 4:1.5:0.5. A subsequent step is a complete decomposition of the layered structure to nanocrystalline spinel, the complete dehydration, and finally decarbonation of the mixed oxide phase. Spinel-type oxides were the primary crystallization products. Mg-containing primary spinels had practically empty tetrahedral cationic sites. A dramatic increase of the spinel cell size upon heating and analysis by Raman spectroscopy revealed a segregation of Co-rich spinel in Co-Mn and Co-Mn-Al specimens. In calcination products obtained at 500 deg. C, the spinel mean coherence length was 5-10 nm, and the total content of the X-ray diffraction crystalline portion was 50-90%. These calcination products were tested as catalysts in the total oxidation of ethanol and decomposition of N 2 O. The catalytic activity in ethanol combustion was enhanced by increasing (Co+Mn) content while an optimum content of reducible components was necessary for high activity in N 2 O decomposition, where the highest conversions were found for calcined Co-Mn-Al sample with Co:Mn:Al molar ratio of 4:1:1

  18. Interaction in the NaIn(MoO4)2 - AMoO4 (A = Mg, Mn) systems

    International Nuclear Information System (INIS)

    Kotova, I.Yu.; Kozhevnikova, N.M.

    2001-01-01

    The results of investigation into NaIn(MoO 4 ) 2 - AMoO 4 (A = Mg, Mn) quasibinary cross-sections by means of X-ray diffraction and differential thermal analysis are presented. Conducted researches revealed that compounds NaMg 3 In(MoO 4 ) and NaMn 3 In(MoO 4 ) melting incongruently at 990 Deg C and 940 Deg C accordingly were formed in the NaIn(MoO 4 ) - AMoO 4 (A = Mg, Mn) systems. The data of initiation of X-ray diffraction pattern of NaMg 3 In(MoO 4 ) 5 are presented. The temperature dependences of conductivity, dielectric permeability and tangent of dielectric losses indicative on ionic-electronic nature conductivity are determined. Activation energy of conductivity in the Mg - Mn row changes moderately - from 9.91 till 5.71 eV [ru

  19. Microstructure, Tensile and Fatigue Properties of Al-5 wt.%Mg Alloy Manufactured by Twin Roll Strip Casting

    Science.gov (United States)

    Heo, Joon-Young; Baek, Min-Seok; Euh, Kwang-Jun; Lee, Kee-Ahn

    2018-04-01

    This study investigated the microstructure, tensile and fatigue properties of Al-5 wt.%Mg alloy manufactured by twin roll strip casting. Strips cast as a fabricated (F) specimen and a specimen heat treated (O) at 400 °C/5 h were produced and compared. In the F specimen, microstructural observation discovered clustered precipitates in the center area, while in the O specimen precipitates were relatively more evenly distributed. Al, Al6(Mn, Fe), Mg2Al3 and Mg2Si phases were observed. However, most of the Mg2Al3 phase in the heat-treated O specimen was dissolved. A room temperature tensile test measured yield strength of 177.7 MPa, ultimate tensile strength of 286.1 MPa and elongation of 11.1% in the F specimen and 167.7 MPa (YS), 301.5 MPa (UTS) and 24.6% (EL) in the O specimen. A high cycle fatigue test measured a fatigue limit of 145 MPa in the F specimen and 165 MPa in the O specimen, and the O specimen achieved greater fatigue properties in all fatigue stress conditions. The tensile and fatigue fracture surfaces of the above-mentioned specimens were observed, and this study attempted to investigate the tensile and fatigue deformation behavior of strip cast Al-5 wt.%Mg based on the findings.

  20. Magnetic properties of melt-spun FeMnAlB alloys

    International Nuclear Information System (INIS)

    Betancourt, I.; Nava, F.

    2007-01-01

    Magnetic properties of melt spun Fe 89-x Mn 11 Al x (x=2,4,8,15) and Fe 87-y Mn 11 Al 2 By(y=6,8,10) alloy series were studied by vibrating sample magnetometry and complex permeability measurements. The saturation magnetization exhibited an initial high value of 210emu/g followed by a decreasing tendency with increasing Al and B additions (up to 139emu/g). On the other hand, the initial permeability showed variations within the range 1000-2000, whereas the relaxation frequency displayed a maximum of 2MHz for the 4at% Al alloy

  1. Emission spectra of phosphor MgSO4 doped with Dy and Mn

    International Nuclear Information System (INIS)

    Zhang Chunxiang; Chen Lixin; Tang Qiang; Luo Daling; Qiu Zhiren

    2001-01-01

    Emission spectra of phosphor MgSO 4 doped with Dy and Dy/Mn were measured with an optical multichannel analyzer and a linear heating system whose temperature was controlled by a microcomputer. The emission spectrum bands at 480 nm and 580 nm of phosphor MgSO 4 doped with Dy were observed in the three dimensional (3D) glow curves. Compared with the 3D spectrum of CaSO 4 :Dy and the spectrum bands of MgSO 4 :Dy shows the same wavelengths which resulted from the quantum transitions among the energy levels of Dy 3 '+ ions. The intensities of the glow peaks in both spectrum bands (480 nm and 580 nm) of phosphor MgSO 4 doped with Dy/Mn were dramatically reduced except the 380 degree C glow peak

  2. Microstructure and properties of Mg-Al binary alloys

    Directory of Open Access Journals (Sweden)

    ZHENG Wei-chao

    2006-11-01

    Full Text Available The effects of different amounts of added Al, ranging from 1 % to 9 %, on the microstructure and properties of Mg-Al binary alloys were investigated. The results showed that when the amount of added Al is less than 5%, the grain size of the Mg-Al binary alloys decreases dramatically from 3 097 μm to 151 μm with increasing addition of Al. Further addition of Al up to 9% makes the grain size decrease slowly to 111 μm. The α-Mg dendrite arms are also refined. Increasing the amount of added Al decreases the hot cracking susceptibility of the Mg-Al binary alloys remarkably, and enhances the micro-hardness of the α-Mg matrix.

  3. TL and OSL properties of Mn2+-doped MgGa2O4 phosphor

    Science.gov (United States)

    Luchechko, A.; Zhydachevskyy, Ya; Maraba, D.; Bulur, E.; Ubizskii, S.; Kravets, O.

    2018-04-01

    The oxide MgGa2O4 spinel ceramics doped with Mn2+ ions was synthesized by a solid-state reaction at 1200 °C in air. The activator concentration was equal 0.05 mol% of MnO. Phase purity of the synthesized samples was analyzed by X-ray diffraction technique. This spinel ceramics show efficient green emission in the range from 470 to 550 nm with a maximum at about 505 nm under UV or X-ray excitations, which is due to Mn2+ ions. MgGa2O4: Mn2+ exhibits intense thermoluminescence (TL) and optically stimulated luminescence (OSL) after influence of ionizing radiation. Are complex nature of the TL glow curves is associated with a significant number of structural defects that are responsible for the formation of shallow and deep electron traps. In this work, time-resolved OSL characteristics of the samples exposed to beta particles are reported for the first time. A light from green LED was used for optical stimulation. Obtained TL and OSL results suggest MgGa2O4:Mn2+ as perspective material for further research and possible application in radiation dosimetry.

  4. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.

    Science.gov (United States)

    Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A

    2010-03-01

    This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.

  5. Electrochemical Corrosion Behavior of Oxidation Layer on Fe30Mn5Al Alloy

    Directory of Open Access Journals (Sweden)

    ZHU Xue-mei

    2017-08-01

    Full Text Available The Fe30Mn5Al alloy was oxidized at 800℃ in air for 160h, the oxidation-induced layer about 15μm thick near the scale-metal interface was induced to transform to ferrite and become enriched in Fe and depletion in Mn. The effect of the oxidation-induced Mn depletion layer on the electrochemical corrosion behavior of Fe30Mn5Al alloy was evaluated. The results show that in 1mol·L-1 Na2SO4 solution, the anodic polarization curve of the Mn depletion layer exhibits self-passivation, compared with Fe30Mn5Al austenitic alloy, and the corrosion potential Evs SCE is increased to -130mV from -750mV and the passive current density ip is decreased to 29μA/cm2 from 310μA/cm2. The electrochemical impedance spectroscopy(EIS of the Mn depletion layer has the larger diameter of capacitive arc, the higher impedance modulus|Z|, and the wider phase degree range, and the fitted polarization resistant Rt is increased to 9.9kΩ·cm2 from 2.7kΩ·cm2 by using an equivalent electric circuit of Rs-(Rt//CPE. The high insulation of the Mn depletion layer leads to an improved corrosion resistance of Fe30Mn5Al austenitic alloy.

  6. α-MnO2 Nanowires/Graphene Composites with High Electrocatalytic Activity for Mg-Air Fuel Cell

    International Nuclear Information System (INIS)

    Jiang, Min; He, Hao; Huang, Chen; Liu, Bo; Yi, Wen-Jun; Chao, Zi-Sheng

    2016-01-01

    Highlights: • α-MnO 2 NWs/graphene was synthesized and studied in Mg-air fuel cell. • The performance of α-MnO 2 NWs/graphene is close to the Pt/C. • The ORR mechanism involves a one-step, quasi-4-electron pathway. • A large area (5 cm*5 cm) cathode was prepared and tested in a full cell. - Abstract: This paper reports the preparation of α-MnO 2 NWs/graphene composites as the cathode catalyst for magnesium-air fuel cell and its excellent electrochemistry performance. The composites are synthesized by self-assembly of α-MnO 2 nan α-MnO 2 NWs/graphene was synthesized and studied in Mg-air fuel cell. α-MnO 2 NWs/graphene was synthesized and studied in Mg-air fuel cell. owires (NWs) on the surface of graphene via a simple hydrothermal method. The α-MnO 2 NWs/graphene composites showed a higher electrochemical activity than the commercial MnO 2 . The oxygen reduction peak of the α-MnO 2 NWs/graphene composites catalyst is tested in a 0.1 M KOH solution at −0.252 V, which is more positive than the commercial MnO 2 (−0.287 V). The ORR limit current density for 28% α-MnO2 NWs/graphene composite is approximately 2.74 mA/cm 2 , which is similar to that of the 20% Pt/C(2.79 mA/cm 2 ) in the same conditions. Based on the Koutecky–Levich plot, the ORR mechanism of the composite involves a one-step, quasi-4-electron pathway. In addition, magnesium-air fuel cell with α-MnO 2 NWs/graphene as catalyst possesses higher current density (140 mA/cm 2 ) and power density (96 mW/cm 2 ) compared to the commercial MnO 2 . This study proves that the cost-effective α-MnO 2 NWs/graphene with higher power generation ability make it possible for the substitute of the noble metals catalyst in the Mg-air fuel cell.

  7. Ultrasonic spot welding of Al/Mg/Al tri-layered clad sheets

    International Nuclear Information System (INIS)

    Macwan, A.; Patel, V.K.; Jiang, X.Q.; Li, C.; Bhole, S.D.; Chen, D.L.

    2014-01-01

    Highlights: • The optimal welding condition is achieved at 100 J and 0.1 s. • Failure load first increases and then decreases with increasing welding energy. • The highest failure load after welding is close to that of the clad sheets. • At low energy levels failure occurs in the mode of interfacial failure. • At high energy levels failure takes place at the edge of nugget region. - Abstract: Solid-state ultrasonic spot welding (USW) was used to join Al/Mg/Al tri-layered clad sheets, aiming at exploring weldability and identifying failure mode in relation to the welding energy. It was observed that the application of a low welding energy of 100 J was able to achieve the optimal welding condition during USW at a very short welding time of 0.1 s for the tri-layered clad sheets. The optimal lap shear failure load obtained was equivalent to that of the as-received Al/Mg/Al tri-layered clad sheets. With increasing welding energy, the lap shear failure load initially increased and then decreased after reaching a maximum value. At a welding energy of 25 J, failure occurred in the mode of interfacial failure along the center Al/Al weld interface due to insufficient bonding. At a welding energy of 50 J, 75 J and 100 J, failure was also characterized by the interfacial failure mode, but it occurred along the Al/Mg clad interface rather than the center Al/Al weld interface, suggesting stronger bonding of the Al/Al weld interface than that of the Al/Mg clad interface. The overall weld strength of the Al/Mg/Al tri-layered clad sheets was thus governed by the Al/Mg clad interface strength. At a welding energy of 125 J and 150 J, thinning of weld nugget and extensive deformation at the edge of welding tip caused failure at the edge of nugget region, leading to a lower lap shear failure load

  8. Electronic Topological Transitions in CuNiMnAl and CuNiMnSn under pressure from first principles study

    Science.gov (United States)

    Rambabu, P.; Kanchana, V.

    2018-06-01

    A detailed study on quaternary ordered full Heusler alloys CuNiMnAl and CuNiMnSn at ambient and under different compressions is presented using first principles electronic structure calculations. Both the compounds are found to possess ferromagnetic nature at ambient with magnetic moment of Mn being 3.14 μB and 3.35 μB respectively in CuNiMnAl and CuNiMnSn. The total magnetic moment for both the compounds is found to decrease under compression. Fermi surface (FS) topology change is observed in both compounds under pressure at V/V0 = 0.90, further leading to Electronic Topological Transitions (ETTs) and is evidenced by the anomalies visualized in density of states and elastic constants under compression.

  9. Solid solution inhomogeneity in DC-cast AlMn(Fe,Si) ingots

    International Nuclear Information System (INIS)

    Lakner, J.; Kovacs-Csetenyi, E.; Lal, K.

    1990-01-01

    The aim of this work was to characterize the structure in cast state of the AlMn1 alloy containing different Fe and Si concentration. The casting parameters were intended to keep constant and the effect of impurities was studied. The inhomogeneity along the diameter of cast billet was characterized by the dendrite arm spacing and by the solid solution content. To explain the results the model developed for binary AlFe and AlMn alloys was applied

  10. Thermal properties and kinetics of Al/α-MnO{sub 2} nanostructure thermite

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jia-Xing; Fang, Xiang; Guo, Tao; Ding, Wen; Zhang, Xiao-Nan; Yao, Miao, E-mail: 1023855857@qq.com [PLA University of Science and Technology, Nanjing (China); Bei, Feng-Li; Yu, Hong-Jun [Nanjing University of Science and Technology (China)

    2018-05-01

    In this work, thermal properties and kinetics of Al-nanoparticles/α-MnO{sub 2} nanorods thermite were reported. The α-MnO{sub 2} nanorods were synthesized using a hydrothermal method and were characterized by X-ray powder diffraction (XRD) and X-ray photoelectron spectra (XPS), then combined with Al nanoparticles based on the ultrasonic mixing method to prepare the nanostructure thermite. Besides, both pure components and mixture were characterized by field emission scanning electron microscopy (FE-SEM) to observe their morphologies and structures. Subsequently, the thermal properties of Al/α-MnO{sub 2} nanostructure thermite were studied on the basis of thermogravimetric-differential scanning calorimetry (TG-DSC). According to the TG-DSC tests, the calculation results of activation energy for kinetics of Al/α-MnO{sub 2} thermite were obtained using different isoconversional methods. It was found that Al/α-MnO{sub 2} nanostructure thermite has high heat release and low onset temperature, and the heat release of the nanostructure thermite was approximately 1146.6 J g{sup -1}. (author)

  11. First-principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    LIAO Fei

    2016-12-01

    Full Text Available Structural stabilities, mechanical properties and electronic structures of Al2Cu, Al2CuMg and MgZn2 intermetallics in Al-Zn-Mg-Cu aluminum alloys were determined from the first-principle calculations by VASP based on the density functional theory. The results show that the cohesive energy (Ecoh decreases in the order MgZn2 > Al2CuMg > Al2Cu, whereas the formation enthalpy (ΔH decreases in the order MgZn2 > Al2Cu > Al2CuMg. Al2Cu can act as a strengthening phase for its ductile and high Young's modulus. The Al2CuMg phase exhibits elastic anisotropy and may act as a crack initiation point. MgZn2 has good plasticity and low melting point, which is the main strengthening phase in the Al-Zn-Mg-Cu aluminum alloys. Metallic bonding mode coexists with a fractional ionic interaction in Al2Cu, Al2CuMg and MgZn2, and that improves the structural stability. In order to improve the alloys' performance further, the generation of MgZn2 phase should be promoted by increasing Zn content while Mg and Cu contents are decreased properly.

  12. Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys

    Science.gov (United States)

    Kainuma, R.; Takahashi, S.; Ishida, K.

    1996-08-01

    Ductile shape memory (SM) alloys of the Cu-AI-Mn system have been developed by controlling the degree of order in the β phase. Additions of Mn to the binary Cu-Al alloy stabilize the β phase and widen the single-phase region to lower temperature and lower Al contents. It is shown that Cu-Al-Mn alloys with low Al contents have either the disordered A2 structure or the ordered L21 structure with a lower degree of order and that they exhibit excellent ductility. The disordered A2 phase martensitically transforms to the disordered Al phase with a high density of twins. The martensite phase formed from the ordered L21 phase has the 18R structure. The SM effect accompanies both the A2 → Al and L21 → 18R martensitic transformations. These alloys exhibit 15 pct strain to failure, 60 to 90 pct rolling reduction without cracking, and 80 to 90 pct recovery from bend test in the martensitic condition. Experimental results on the microstructure, crystal structure, mechanical properties, and shape memory behavior in the ductile Cu-AI-Mn alloys are presented and discussed.

  13. Development and characterization of Mn2+-doped MgO nanoparticles by solution combustion synthesis

    Science.gov (United States)

    Basha, Md. Hussain; Gopal, N. O.; Rao, J. L.; Nagabhushana, H.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2015-06-01

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å3. SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn2+ ions with S=I=5/2.The observed g value and the hyperfine value reveal the ionic bonding between Mn2+ and its surroundings.

  14. Development and characterization of Mn2+-doped MgO nanoparticles by solution combustion synthesis

    International Nuclear Information System (INIS)

    Basha, Md. Hussain; Gopal, N. O.; Rao, J. L.; Nagabhushana, H.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2015-01-01

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å 3 . SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn 2+ ions with S=I=5/2.The observed g value and the hyperfine value reveal the ionic bonding between Mn 2+ and its surroundings

  15. Optical features of C, N, Mn implanted MgO films

    International Nuclear Information System (INIS)

    Dorosinets, V.A.; Dobrinets, I.A.; Wieck, A.

    2013-01-01

    Optical absorption and Raman spectra investigations of C/ N/ Mn implanted MgO films have been investigated. The spectra reveal a surface modification and a dependence of the defect formation mechanism on the ion type and the annealing regime. (authors)

  16. Performance of Mg-14Li-1Al-0.1Ce as anode for Mg-air battery

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yibin; Li, Deyu [School of Chemical Engineering and Technology, Harbin Institute of Technology, West Street No. 92, Harbin 150001 (China); Li, Ning [School of Chemical Engineering and Technology, Harbin Institute of Technology, West Street No. 92, Harbin 150001 (China); Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001 (China); Zhang, Milin; Huang, Xiaomei [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001 (China)

    2011-02-15

    In this research, a new Mg-air battery based on Mg-14Li-1Al-0.1Ce was prepared and the battery performance was investigated by constant current discharge test. The corrosion behavior of Mg, AZ31 and Mg-Li-Al-Ce were studied by self-corrosion rate measurement and potentiodynamic polarization measurement. The characteristics of Mg-Li-Al-Ce after discharge were investigated by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that Mg-Li-Al-Ce is more active than Mg and AZ31. The self-corrosion rate is found to be in the order: Mg-Li-Al-Ce < Mg < AZ31. It has been observed that the Mg-air battery based on Mg-Li-Al-Ce offers higher operating voltage, anodic efficiency and capacity than those with Mg and AZ31. SEM and EIS results show that the discharge product of Mg-Li-Al-Ce is loosely adhered to the alloy surface, and thus Mg-Li-Al-Ce could keep high discharge activity during discharge. (author)

  17. Transfer of U, Al and Mn in the water–soil–plant (Solanum tuberosum L.) system near a former uranium mining area (Cunha Baixa, Portugal) and implications to human health

    International Nuclear Information System (INIS)

    Neves, M.O.; Figueiredo, V.R.; Abreu, M.M.

    2012-01-01

    Knowledge about metals in crops, grown in contaminated soils around mine sites, is limited and concerns about exposure to hazardous elements through the consumption of contaminated foodstuff, are high. In this study a field experiment was carried out in two agricultural soils located near a former uranium mine area (Cunha Baixa, Portugal). The purpose of the study was to assess the effect of irrigation water quality on soil–potato (Solanum tuberosum L.) crop system and to evaluate if the consumption of the crop represents health risk to the local villagers. The soils were divided in two plots: one irrigated with contaminated water (U: 1.03–1.04 mg/L; Al: 7.5–8.00 mg/L; Mn: 4.52 mg/L) and the other with uncontaminated water (U: 14–10 μg/L; Al: 17–23 μg/L; Mn: 2.4–5.7 μg/L). After irrigation and potato growth, only soil characteristics, as salinity and total U and Mn concentrations were significantly different from those measured at the beginning of the experiment. Within the potato plants, elements were mostly translocated and concentrated in the aerial part: stems and leaves (U: 73–87%; Al: 85–96%; Mn: 85–94%), which minimize the risk of contamination of the edible tissue. In potato tubers, the highest average concentrations (121–590 μg U/kg; 25–64 mg Al/kg; 12–13 mg Mn/kg dry weight) were registered at soil plots irrigated with contaminated water. Uranium and Al were mostly concentrated in the potato peel (88–96 and 76–85%, respectively), and Mn (67–78%) in the pulp, which reinforces the importance of removing peel to minimize human exposure. The risk analysis calculated for non-cancer health effects (hazard quotient), related only to the exposure through the consumption of this basic foodstuff, revealed safety for Cunha Baixa village residents (adults and children) even when potato crop was grown on U enriched soils and irrigated with contaminated water. - Highlights: ► Field experiment with potato in agricultural soils near a

  18. Transfer of U, Al and Mn in the water-soil-plant (Solanum tuberosum L.) system near a former uranium mining area (Cunha Baixa, Portugal) and implications to human health

    Energy Technology Data Exchange (ETDEWEB)

    Neves, M.O., E-mail: orquidia.neves@ist.utl.pt [Centro de Petrologia e Geoquimica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa (TULisbon), Av. Rovisco Pais 1049-001 Lisboa (Portugal); Figueiredo, V.R., E-mail: vera.figueiredo@ist.utl.pt [Instituto Superior Tecnico, Universidade Tecnica de Lisboa (TULisbon), Av. Rovisco Pais 1049-001 Lisboa (Portugal); Abreu, M.M., E-mail: manuelaabreu@isa.utl.pt [Unidade de Investigacao de Quimica Ambiental, Instituto Superior de Agronomia, Universidade Tecnica de Lisboa (TULisbon), Tapada da Ajuda, 1349-017 Lisboa (Portugal)

    2012-02-01

    Knowledge about metals in crops, grown in contaminated soils around mine sites, is limited and concerns about exposure to hazardous elements through the consumption of contaminated foodstuff, are high. In this study a field experiment was carried out in two agricultural soils located near a former uranium mine area (Cunha Baixa, Portugal). The purpose of the study was to assess the effect of irrigation water quality on soil-potato (Solanum tuberosum L.) crop system and to evaluate if the consumption of the crop represents health risk to the local villagers. The soils were divided in two plots: one irrigated with contaminated water (U: 1.03-1.04 mg/L; Al: 7.5-8.00 mg/L; Mn: 4.52 mg/L) and the other with uncontaminated water (U: 14-10 {mu}g/L; Al: 17-23 {mu}g/L; Mn: 2.4-5.7 {mu}g/L). After irrigation and potato growth, only soil characteristics, as salinity and total U and Mn concentrations were significantly different from those measured at the beginning of the experiment. Within the potato plants, elements were mostly translocated and concentrated in the aerial part: stems and leaves (U: 73-87%; Al: 85-96%; Mn: 85-94%), which minimize the risk of contamination of the edible tissue. In potato tubers, the highest average concentrations (121-590 {mu}g U/kg; 25-64 mg Al/kg; 12-13 mg Mn/kg dry weight) were registered at soil plots irrigated with contaminated water. Uranium and Al were mostly concentrated in the potato peel (88-96 and 76-85%, respectively), and Mn (67-78%) in the pulp, which reinforces the importance of removing peel to minimize human exposure. The risk analysis calculated for non-cancer health effects (hazard quotient), related only to the exposure through the consumption of this basic foodstuff, revealed safety for Cunha Baixa village residents (adults and children) even when potato crop was grown on U enriched soils and irrigated with contaminated water. - Highlights: Black-Right-Pointing-Pointer Field experiment with potato in agricultural soils near

  19. Origin of the 20-electron structure of Mg3 MnH7 : Density functional calculations

    Science.gov (United States)

    Gupta, M.; Singh, D. J.; Gupta, R.

    2005-03-01

    The electronic structure and stability of the 20-electron complex hydride, Mg3MnH7 is studied using density functional calculations. The heat of formation is larger in magnitude than that of MgH2 . The deviation from the 18-electron rule is explained by the predominantly ionic character of the band structure and a large crystal-field splitting of the Mn d bands. In particular, each H provides one deep band accomodating two electrons, while the Mn t2g bands hold an additional six electrons per formula unit.

  20. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    Science.gov (United States)

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-03-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN.

  1. Microstructure and corrosion resistance of Sm-containing Al-Mn-Si-Fe-Cu alloy

    Directory of Open Access Journals (Sweden)

    Han Yuyin

    2017-12-01

    Full Text Available Optimizing alloy composition is an effective way to improve physical and chemical properties of automobile heat exchanger materials.A Sm-containing Al-Mn-Si-Fe-Cu alloy was investigated through transmission electron microscopy,scanning electron microscopy,and electrochemical measurement.Experimental results indicated that main phases distributed in the alloy wereα-Al(Mn,FeSi,Al2Sm and Al10Cu7Sm2.Alloying with Sm element could refine the precipitated α-Al(Mn,FeSi phase.Polarization testing results indicated that the corrosion surfacewas mainly composed of pitting pits and corrosion products.Sea water acetic acid test(SWAAT showed that corrosion loss increased first and then slowed downwith increase of the corrosion time.

  2. Effect of Mn and AlTiB Addition and Heattreatment on the Microstructures and Mechanical Properties of Al-Si-Fe-Cu-Zr Alloy.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-09-01

    The microstructure and mechanical properties of as-extruded Al-0.1 wt%Si-0.2 wt%Fe- 0.4 wt%Cu-0.04 wt%Zr-xMn-xAlTiB (x = 1.0 wt%) alloys under various annealing processes were investigated and compared. After the as-cast billets were kept at 400 °C for 1 hr, hot extrusion was carried out with a reduction ratio of 38:1. In the case of the as-extruded Al-Si-Fe-Cu-Zr alloy at annealed at 620 °C, large equiaxed grain was observed. When the Mn content is 1.0 wt%, the phase exhibits a skeleton morphology, the phase formation in which Mn participated. Also, the volume fraction of the intermetallic compounds increased with Mn and AlTiB addition. For the Al-0.1Si-0.2Fe-0.4Cu-0.04Zr alloy with Mn and AlTiB addition from 1.0 wt%, the ultimate tensile strength increased from 100.47 to 119.41 to 110.49 MPa. The tensile strength of the as-extruded alloys improved with the addition of Mn and AlTiB due to the formation of Mn and AlTiB-containing intermetallic compounds.

  3. Diffusivities and atomic mobilities in Cu-rich fcc Al-Cu-Mn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming; Du, Yong; Cui, Senlin; Xu, Honghui; Liu, Shuhong [Central South Univ., Changsha (China). State Key Laboratory of Powder Metallurgy; Zhang, Lijun [Bochum Univ. (DE). Interdisciplinary Centre for Advanced Materials Simulation (ICAMS)

    2012-07-15

    Via solid-solid diffusion couples, electron probe microanalysis and the Whittle and Green method, interdiffusivities in fcc Al-Cu-Mn alloys at 1 123 K were measured. The reliability of the obtained diffusivities is validated by comparing the computed diffusivities with literature data plus constraints among the diffusivities. Through assessments of experimentally determined diffusion coefficients by means of a diffusion-controlled transformations simulation package, the atomic mobilities of Al, Cu, and Mn in fcc Al-Cu-Mn alloys are obtained. Comprehensive comparisons between the model-predicted and the experimental data indicate that the presently obtained atomic mobilities can reproduce most of the diffusivities, concentration profiles, and diffusion paths reasonably. (orig.)

  4. Fabrication of Mg-X-O (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn) barriers for magnetic tunnel junctions

    Science.gov (United States)

    Yakushiji, K.; Kitagawa, E.; Ochiai, T.; Kubota, H.; Shimomura, N.; Ito, J.; Yoda, H.; Yuasa, S.

    2018-05-01

    We fabricated magnetic tunnel junctions with a 3d-transition material(X)-doped MgO (Mg-X-O) barrier, and evaluated the effect of the doping on magnetoresistance (MR) and microstructure. Among the variations of X (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn), X = Fe and Mn showed a high MR ratio of more than 100%, even at a low resistance-area product of 3 Ωμm2. The microstructure analysis revealed that (001) textured orientation formed for X = Fe and Mn despite substantial doping (about 10 at%). The elemental mappings indicated that Fe atoms in the Mg-Fe-O barrier were segregated at the interfaces, while Mn atoms were evenly involved in the Mg-Mn-O barrier. This suggests that MgO has high adaptability for Fe and Mn dopants in terms of high MR ratio.

  5. Microstructures and Properties Evolution of Al-Cu-Mn Alloy with Addition of Vanadium

    Directory of Open Access Journals (Sweden)

    Fansheng Meng

    2016-12-01

    Full Text Available The effect of the vanadium addition on the microstructure, the precipitation behavior, and the mechanical properties of the Al-5.0Cu-0.4Mn alloy has been studied. The as-cast Al-5.0Cu-0.4Mn alloy was produced by squeeze casting and the heat treatment was carried out following the standard T6 treatment. It is shown that, with the addition of V, grain refinement of aluminum occurred. During heat treatment, the addition of V accelerates the precipitation kinetics of θ′ (Al2Cu phase along the grain boundaries, and promotes the growth rate of the θ′ in the α(Al matrix. Meanwhile, the addition of V retards the precipitation of T (Al20Cu2Mn3 phase. The tensile strength of the Al-5.0Cu-0.4Mn alloy increases with the increase of V content, which can be explained by combined effects of the solid solution strengthening and precipitate strengthening. However, excessively high V addition deteriorates the mechanical properties by forming brittle coarse intermetallic phases.

  6. Segregation Behaviour of Third Generation Advanced High-Strength Mn-Al Steels

    Directory of Open Access Journals (Sweden)

    A. Grajcar

    2012-04-01

    Full Text Available The paper addresses the macro- and microsegregation of alloying elements in the new-developed Mn-Al TRIP steels, which belong to the third generation of advanced high-strength steels (AHSS used in the automotive industry. The segregation behaviour both in the as-cast state and after hot forging was assessed in the macro scale by OES and by EDS measurements in different structural constituents. The structural investigations were carried out using light and scanning electron microscopy. A special attention was paid to the effect of Nb microaddition on the structure and the segregation of alloying elements. The tendency of Mn and Al to macrosegregation was found. It is difficult to remove in Nb-free steels. Microsegregation of Mn and Al between austenite and ferritic structural constituents can be removed.

  7. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    OpenAIRE

    Xiao Wang; Wei Wang; Jingli Wang; Hao Wu; Chang Liu

    2017-01-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgG...

  8. Low-energy mechanically milled τ-phase MnAl alloys with high coercivity and magnetization

    International Nuclear Information System (INIS)

    Lu, Wei; Niu, Junchao; Wang, Taolei; Xia, Kada; Xiang, Zhen; Song, Yiming; Zhang, Hong; Yoshimura, Satoru; Saito, Hitoshi

    2016-01-01

    The high cost of rare earth elements makes the use of high-performance permanent magnets commercially very expensive. MnAl magnetic material is one of the most promising Rare-Earth-free permanent magnets due to its obvious characteristics. However, the coercivity of MnAl alloys produced by melt spinning followed by appropriate treatment is relatively low. In this investigation, a high coercivity up to 5.3 kOe and saturation magnetization of ∼62 emu/g (with an applied magnetic field of 19.5 kOe) were obtained in the mechanically milled τ-phase Mn_5_7Al_4_3 alloy. As milling time goes on, the coercivity firstly increases and then decreases, leading to the formation of knee-point coercivity, while the saturation magnetization decreases simultaneously. The structural imperfections such as disordering and defects play the most important role in the changes of magnetic properties of τ-phase MnAl alloys processed by low-energy mechanical milling. The present results will be helpful for the development of processing protocols for the optimization of τ-phase MnAl alloys as high performance Rare-Earth-free permanent magnets. - Highlights: • Successful fabrication of pure τ-phase Mn_5_7Al_4_3 alloy by melt spinning and low-energy ball milling processes. • High coercivity (~5.3 kOe) and magnetization (~62 emu/g) were obtained in τ-phase Mn_5_7Al_4_3 alloy. • Disordering and defects play the most important role in the changes of magnetic properties.

  9. Low-energy mechanically milled τ-phase MnAl alloys with high coercivity and magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei, E-mail: weilu@tongji.edu.cn [School of Materials Science and Engineering, Shanghai Key Lab. of D& A for Metal-Functional Materials, Tongji University, Shanghai 200092 (China); Research Center for Engineering Science, Akita University, Akita 010-8502 Japan (Japan); Niu, Junchao; Wang, Taolei; Xia, Kada; Xiang, Zhen; Song, Yiming [School of Materials Science and Engineering, Shanghai Key Lab. of D& A for Metal-Functional Materials, Tongji University, Shanghai 200092 (China); Zhang, Hong; Yoshimura, Satoru; Saito, Hitoshi [Research Center for Engineering Science, Akita University, Akita 010-8502 Japan (Japan)

    2016-08-05

    The high cost of rare earth elements makes the use of high-performance permanent magnets commercially very expensive. MnAl magnetic material is one of the most promising Rare-Earth-free permanent magnets due to its obvious characteristics. However, the coercivity of MnAl alloys produced by melt spinning followed by appropriate treatment is relatively low. In this investigation, a high coercivity up to 5.3 kOe and saturation magnetization of ∼62 emu/g (with an applied magnetic field of 19.5 kOe) were obtained in the mechanically milled τ-phase Mn{sub 57}Al{sub 43} alloy. As milling time goes on, the coercivity firstly increases and then decreases, leading to the formation of knee-point coercivity, while the saturation magnetization decreases simultaneously. The structural imperfections such as disordering and defects play the most important role in the changes of magnetic properties of τ-phase MnAl alloys processed by low-energy mechanical milling. The present results will be helpful for the development of processing protocols for the optimization of τ-phase MnAl alloys as high performance Rare-Earth-free permanent magnets. - Highlights: • Successful fabrication of pure τ-phase Mn{sub 57}Al{sub 43} alloy by melt spinning and low-energy ball milling processes. • High coercivity (~5.3 kOe) and magnetization (~62 emu/g) were obtained in τ-phase Mn{sub 57}Al{sub 43} alloy. • Disordering and defects play the most important role in the changes of magnetic properties.

  10. Analysis of the local structure of AlN:Mn using X-ray absorption fine structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Takao [Materials Laboratories, Sony Corporation, 4-14-1 Asahi-cho, Atsugi-shi, Kanagawa 243-0014 (Japan); Kudo, Yoshihiro [Materials Analysis Lab., Sony Corporation, 4-18-1 Okada, Atsugi-shi, Kanagawa 243-0021 (Japan); Uruga, Tomoya [Japan Synchrotron Radiation Institute, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hara, Kazuhiko [Research Inst. of Electronics, Shizuoka Univ., 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan)

    2006-06-15

    The local structure around the Mn atoms in MOCVD-grown AlN:Mn films which show Mn-related red-orange photoluminescence with a 600nm-peak at room temperature was investigated using the X-ray absorption fine structure (XAFS) measurements. We found that Mn atoms occupy Al lattice sites in the AlN film and that the Mn ions have a charge between +2 and +3. From these results, we think that the red-orange luminescence is caused by the transition of d-electrons in the Mn ions. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Photoluminescence study in solid solutions of CdMgMnTe semimagnetic semiconductors

    International Nuclear Information System (INIS)

    Kusraev, Yu.G.; Averkieva, G.K.

    1993-01-01

    Luminescence and resonant Raman scattering in quaternary solid solutions of CdMgMnTe semimagnetic semiconductors are investigated. It is shown that the intensity and position of the luminescence band, conditioned by the 4 T 1 --> 6 A 1 optical transitions in the Mn d-shell, depend on the local crystal environment. Temperature variations of the photoluminescence spectra are interpreted on the base of a model of electron excitation energy transport from Mn 2+ to different recombination centers. In the resonant Raman scattering spectrum were observed three longitudinal vibrational modes with energies near to phonon energies of corresponding binary compounds

  12. Structural characterization of Mn implanted AlInN

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul; Ali, Akbar [Advance Materials Physics Laboratory, Quaid-i-Azam University, Islamabad (Pakistan); Zhu, J J; Wang, Y T [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083 (China)], E-mail: abdulmajid40@yahoo.com, E-mail: akbar@qau.edu.pk

    2008-06-07

    AlInN/GaN thin films were implanted with Mn ions and subsequently annealed isochronically at 750 and 850 deg. C. X-ray diffraction and Rutherford backscattering spectroscopy (RBS) techniques were employed to study the microstructural properties of the implanted/annealed samples. The effect of annealing on implantation-induced strain in thin films has been studied in detail. The strain was found to increase with dose until it reached a saturation value and after that it started decreasing with a further increase in the dose. RBS measurements indicated the atomic diffusion of In, Al, Ga and Mn in implanted samples. The in- and out-diffusion of atoms has been observed after annealing at 750 deg. C and 850 deg. C, respectively. Strong decomposition of the samples took place when annealed at 850 deg. C.

  13. Structural characterization of Mn implanted AlInN

    International Nuclear Information System (INIS)

    Majid, Abdul; Ali, Akbar; Zhu, J J; Wang, Y T

    2008-01-01

    AlInN/GaN thin films were implanted with Mn ions and subsequently annealed isochronically at 750 and 850 deg. C. X-ray diffraction and Rutherford backscattering spectroscopy (RBS) techniques were employed to study the microstructural properties of the implanted/annealed samples. The effect of annealing on implantation-induced strain in thin films has been studied in detail. The strain was found to increase with dose until it reached a saturation value and after that it started decreasing with a further increase in the dose. RBS measurements indicated the atomic diffusion of In, Al, Ga and Mn in implanted samples. The in- and out-diffusion of atoms has been observed after annealing at 750 deg. C and 850 deg. C, respectively. Strong decomposition of the samples took place when annealed at 850 deg. C

  14. IMPACT OF A REVISED {sup 25}Mg(p, {gamma}){sup 26}Al REACTION RATE ON THE OPERATION OF THE Mg-Al CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Straniero, O.; Cristallo, S. [INAF-Osservatorio Astronomico di Collurania, Teramo (Italy); Imbriani, G.; DiLeva, A.; Limata, B. [INFN Sezione di Napoli, Napoli (Italy); Strieder, F. [Institut fuer Experimentalphysik, Ruhr-Universitaet Bochum, Bochum (Germany); Bemmerer, D. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400 (Germany); Broggini, C.; Caciolli, A. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, via Marzolo 8, I-35131 Padova (Italy); Corvisiero, P.; Costantini, H.; Lemut, A. [Universita di Genova and INFN Sezione di Genova, Genova (Italy); Formicola, A.; Gustavino, C.; Junker, M. [INFN, Laboratori Nazionali del Gran Sasso (LNGS), Assergi (AQ) (Italy); Elekes, Z.; Fueloep, Zs.; Gyuerky, Gy. [Institute of Nuclear Research (ATOMKI), Debrecen (Hungary); Gervino, G. [Dipartimento di Fisica Universita di Torino and INFN Sezione di Torino, Torino (Italy); Guglielmetti, A., E-mail: straniero@oa-teramo.inaf.it [Universita degli Studi di Milano and INFN, Sezione di Milano (Italy); and others

    2013-02-15

    Proton captures on Mg isotopes play an important role in the Mg-Al cycle active in stellar H-burning regions. In particular, low-energy nuclear resonances in the {sup 25}Mg(p, {gamma}){sup 26}Al reaction affect the production of radioactive {sup 26}Al{sup gs} as well as the resulting Mg/Al abundance ratio. Reliable estimations of these quantities require precise measurements of the strengths of low-energy resonances. Based on a new experimental study performed at the Laboratory for Underground Nuclear Astrophysics, we provide revised rates of the {sup 25}Mg(p, {gamma}){sup 26}Al{sup gs} and the {sup 25}Mg(p, {gamma}){sup 26}Al {sup m} reactions with corresponding uncertainties. In the temperature range 50-150 MK, the new recommended rate of {sup 26}Al {sup m} production is up to five times higher than previously assumed. In addition, at T = 100 MK, the revised total reaction rate is a factor of two higher. Note that this is the range of temperature at which the Mg-Al cycle operates in a H-burning zone. The effects of this revision are discussed. Due to the significantly larger {sup 25}Mg(p, {gamma}){sup 26}Al {sup m} rate, the estimated production of {sup 26}Al{sup gs} in H-burning regions is less efficient than previously obtained. As a result, the new rates should imply a smaller contribution from Wolf-Rayet stars to the galactic {sup 26}Al budget. Similarly, we show that the asymptotic giant branch (AGB) extra-mixing scenario does not appear able to explain the most extreme values of {sup 26}Al/{sup 27}Al, i.e., >10{sup -2}, found in some O-rich presolar grains. Finally, the substantial increase of the total reaction rate makes the hypothesis of self-pollution by massive AGBs a more robust explanation for the Mg-Al anticorrelation observed in globular-cluster stars.

  15. Synthesis and properties of A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) materials for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Anderson, E-mail: anderson_dias@iceb.ufop.br [Departamento de Quimica, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, ICEB II, Sala 67, Ouro Preto-MG, 35400-000 (Brazil); Cunha, Lumena; Vieira, Andiara C. [Departamento de Quimica, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, ICEB II, Sala 67, Ouro Preto-MG, 35400-000 (Brazil)

    2011-09-15

    Highlights: {yields} A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) materials were synthesized. {yields} Chemical synthesis produced different levels of crystallinity and ordering degree. {yields} Structural investigation by Raman scattering revealed a complex band structure. {yields} A strong correlation between band structure and ionic radius was determined. -- Abstract: Double layered hydroxide materials of composition A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) were synthesized by chemical precipitation at 60 {sup o}C. Different levels of crystallinity and ordering degree were observed depending upon the chemical environment or the combination between divalent and trivalent cations. The results from high-resolution transmission electron microscopy revealed that nanostructured layered samples were obtained with interplanar spacing compatible with previous literature. Raman scattering was employed to investigate the complex band structure observed, particularly the lattice vibrations at lower frequencies, which is intimately correlated to the cationic radius of both divalent and trivalent ions. The results showed that strongly coordinated water and chloride ions besides highly structured hydroxide layers have a direct influence on the stability of the hydrotalcites. It was observed that transition and decomposition temperatures varied largely for different chemical compositions.

  16. Ferromagnetism and transport in Mn and Mg co-implanted GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Kulbachinskii, V A [Moscow State University, Low Temperature Physics Department, 119992, GSP-2, Moscow (Russian Federation); Gurin, P V [Moscow State University, Low Temperature Physics Department, 119992, GSP-2, Moscow (Russian Federation); Danilov, Yu A [Physico-Technical Research Institute, University of Nizhny Novgorod, 603950, Nizhny Novgorod (Russian Federation); Malysheva, E I [Physico-Technical Research Institute, University of Nizhny Novgorod, 603950, Nizhny Novgorod (Russian Federation); Horikoshi, Y [School of science and engineering, Waseda university, 3-4-1, Okubo, Tokyo 169-8555 (Japan); Onomitsu, K [School of science and engineering, Waseda university, 3-4-1, Okubo, Tokyo 169-8555 (Japan)

    2007-03-15

    We investigated the influence of Mn and Mg co-implantation accompanied by rapid thermal annealing on magnetic and galvanomagnetic properties of p-GaAs. We characterized the samples with SQUID magnetometry and magnetotransport measurements in the temperature interval 4.2 KMn{sub x}As solid solution on galvanomagnetic properties of holes. Above this temperature, ferromagnetism survives due to the MnAs and Ga{sub 1-x}Mn{sub x} clusters. The magnetoresistance changes from colossal negative to enhanced positive with increasing temperature near T = 35 K.

  17. Predictive calculation of phase formation in Al-rich Al-Zn-Mg-Cu-Sc-Zr alloys using a thermodynamic Mg-alloy database

    International Nuclear Information System (INIS)

    Groebner, J.; Rokhlin, L.L.; Dobatkina, T.V.; Schmid-Fetzer, R.

    2007-01-01

    Three series of Al-rich alloys in the system Al-Zn-Mg-Cu-Sc-Zr and the subsystems Al-Zn-Mg-Cu-Sc and Al-Zn-Mg-Sc were studied by thermodynamic calculations. Phase formation was compared with experimental data obtained by DTA and microstructural analysis. Calculated phase diagrams, phase amount charts and enthalpy charts together with non-equilibrium calculations under Scheil conditions reveal significant details of the complex phase formation. This enables consistent and correct interpretation of thermal analysis data. Especially the interpretation of liquidus temperature and primary phase is prone to be wrong without using this tool of computational thermodynamics. All data are predictions from a thermodynamic database developed for Mg-alloys and not a specialized Al-alloy database. That provides support for a reasonable application of this database for advanced Mg-alloys beyond the conventional composition ranges

  18. Predictive calculation of phase formation in Al-rich Al-Zn-Mg-Cu-Sc-Zr alloys using a thermodynamic Mg-alloy database

    Energy Technology Data Exchange (ETDEWEB)

    Groebner, J. [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch Strasse 42, D-38678 Clausthal-Zellerfeld (Germany); Rokhlin, L.L. [Baikov Institute of Metallurgy and Materials Science, Leninsky prosp. 49, 119991 GSP-1, Moscow (Russian Federation); Dobatkina, T.V. [Baikov Institute of Metallurgy and Materials Science, Leninsky prosp. 49, 119991 GSP-1, Moscow (Russian Federation); Schmid-Fetzer, R. [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch Strasse 42, D-38678 Clausthal-Zellerfeld (Germany)]. E-mail: schmid-fetzer@tu-clausthal.de

    2007-05-16

    Three series of Al-rich alloys in the system Al-Zn-Mg-Cu-Sc-Zr and the subsystems Al-Zn-Mg-Cu-Sc and Al-Zn-Mg-Sc were studied by thermodynamic calculations. Phase formation was compared with experimental data obtained by DTA and microstructural analysis. Calculated phase diagrams, phase amount charts and enthalpy charts together with non-equilibrium calculations under Scheil conditions reveal significant details of the complex phase formation. This enables consistent and correct interpretation of thermal analysis data. Especially the interpretation of liquidus temperature and primary phase is prone to be wrong without using this tool of computational thermodynamics. All data are predictions from a thermodynamic database developed for Mg-alloys and not a specialized Al-alloy database. That provides support for a reasonable application of this database for advanced Mg-alloys beyond the conventional composition ranges.

  19. Development and characterization of Mn{sup 2+}-doped MgO nanoparticles by solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Basha, Md. Hussain; Gopal, N. O., E-mail: nogopal@yahoo.com [Department of Physics, Vikrama Simhapuri University Post Graduate Center, Kavali-524201 (India); Rao, J. L. [Department of physics, Sri Venkateswara University, Tirupati-517502 (India); Nagabhushana, H. [Prof. C.N.R. Rao Centre for Nano Research, Tumkur University, Tumkur-572103 (India); Nagabhushana, B. M. [Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore - 560054 (India); Chakradhar, R. P. S. [CSIR- National Aerospace Laboratories, Bangalore -560017 (India)

    2015-06-24

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å{sup 3}. SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn{sup 2+} ions with S=I=5/2.The observed g value and the hyperfine value reveal the ionic bonding between Mn{sup 2+} and its surroundings.

  20. Thin films on icosahedral AlPdMn quasicrystal

    Energy Technology Data Exchange (ETDEWEB)

    Longchamp, J.N.

    2007-07-01

    In this project, the oxidation at high temperature of the fivefold-symmetry surface of an icosahedral Al{sub 70}Pd{sub 20}M{sub 10} quasicrystal was principally investigated. The stoichiometry of the near-surface region was investigated by means of Auger electron spectroscopy and X-ray photoelectron spectroscopy and both confirmed the oxidation of only the Al atoms of the quasicrystalline substrate. The affinity of the two structures is illustrated by the CsCl-like AlPd domains observed, by means of secondary-electron imaging, after Ar{sup +}-sputtering of the quasicrystalline surface. In this project, we used the oxidized fivefold-symmetry surface of i-AlPdMn as substrate for the deposition of PbTe and CdTe. Diffraction patterns obtained from thin films of both materials exhibit, instead of the usual spots, diffraction rings. They are characteristics of nanocrystallites having a random azimuthal orientations but a well-defined polar orientation; the (001) face and the (111) face in case of PbTe and CdTe, respectively. From the diffraction patterns, average domain sizes of 35 Aa were deduced. Face-centered-cubic Al(111) domains with a similar average size are observed in this case. Angle-resolved photoemission spectroscopy investigations on the PbTe films were performed. We also performed angle-resolved photoemission spectroscopy measurements on Ag films deposited onto the fivefold-symmetry surface of icosahedral AlPdMn and onto the tenfold-symmetry surface of decagonal AlCoNi as model for confinement effects occurring due to the incompatible symmetries between the crystalline films and the quasicrystalline surfaces. By analyzing the Ag sp-derived quantum-well states, we assert that the interface with the quasiperiodic material constitutes an efficient barrier for electron propagation, due to lack of common point-group symmetries between Bloch-like and critical wave functions. Finally, the depositions of Si and Ge onto the fivefold-symmetry surface of icosahedral

  1. Formation and Corrosion Resistance of Mg-Al Hydrotalcite Film on Mg-Gd-Zn Alloy

    Science.gov (United States)

    Ba, Z. X.; Dong, Q. S.; Kong, S. X.; Zhang, X. B.; Xue, Y. J.; Chen, Y. J.

    2017-06-01

    An environment-friendly technique for depositing a Mg-Al hydrotalcite (HT) (Mg6Al2(OH)16-CO3ṡ4H2O) conversion film was developed to protect the Mg-Gd-Zn alloy from corrosion. The morphology and chemical compositions of the film were analyzed by scanning electronic microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and Raman spectroscopy (RS), respectively. The electrochemical test and hydrogen evolution test were employed to evaluate the biocorrosion behavior of Mg-Gd-Zn alloy coated with the Mg-Al HT film in the simulated body fluid (SBF). It was found that the formation of Mg-Al HT film was a transition from amorphous precursor to a crystalline HT structure. The HT film can effectively improve the corrosion resistance of magnesium alloy. It indicates that the process provides a promising approach to modify Mg-Gd-Zn alloy.

  2. Effect of Pre-Aging Conditions on Bake-Hardening Response of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn Alloy Sheets

    International Nuclear Information System (INIS)

    Lee, Kwang-jin; Woo, Kee-do

    2011-01-01

    Pre-aging heat treatment after solution heat treatment (SHT) of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn alloy sheets for auto-bodies was carried out to investigate the effect of pre-aging and its conditions on the bake-hardening response. Mechanical properties were evaluated by a tensile and Vickers hardness test. Microstructural observation was also performed using a transmission electron microscope (TEM). It was revealed that pre-aging treatments play a great role in the bake-hardening response. In addition, it was found that the sphere-shaped nanosized clusters that can directly transit to the needle-shaped β” phase during the paint-bake process, not being dissolved into the matrix, are formed at 343 K. The result, reveals that the dominant factor of the bake-hardening response is the pre-aging temperature rather than the pre-aging time.

  3. Comparative assessment of microstructure and texture in the Fe-30.5Mn-8.0Al-1.2C and Fe-30.5Mn-2.1Al-1.2C steels under cold rolling

    Directory of Open Access Journals (Sweden)

    Fabrício Mendes Souza

    Full Text Available Abstract Investigation of microstructure and texture has been done for cold rolled Fe-30.5Mn-8.0Al-1.2C (8Al and Fe-30.5Mn-2.1Al-1.2C (2Al (wt.% steels. They were rolled to a strain of ~0.70. Refinement of a crystallographic slip band substructure in low to medium rolling strain and nucleation of twins on the mature slip bands at a higher strain were suggested as deformation mechanisms in the 8Al steel. Mainly shear banding contributed to the formation of a Copper texture in such steel. Brass-texture development in the 2Al steel is mainly due to deformation twinning and shear banding formation. Detailed images of KAM maps showed that the stored deformation energy was mainly localized in the twinned areas and shear bands, which generated the inhomogeneous deformation microstructures in both steels at a higher strain. Goss and Brass texture intensity decreases and Cu-texture intensity increases as the Al wt.% increases in different cold rolled High-Mn (Mn ~30 wt.% steels.

  4. Spectro-photometric determinations of Mn, Fe and Cu in aluminum master alloys

    Science.gov (United States)

    Rehan; Naveed, A.; Shan, A.; Afzal, M.; Saleem, J.; Noshad, M. A.

    2016-08-01

    Highly reliable, fast and cost effective Spectro-photometric methods have been developed for the determination of Mn, Fe & Cu in aluminum master alloys, based on the development of calibration curves being prepared via laboratory standards. The calibration curves are designed so as to induce maximum sensitivity and minimum instrumental error (Mn 1mg/100ml-2mg/100ml, Fe 0.01mg/100ml-0.2mg/100ml and Cu 2mg/100ml-10mg/ 100ml). The developed Spectro-photometric methods produce accurate results while analyzing Mn, Fe and Cu in certified reference materials. Particularly, these methods are suitable for all types of Al-Mn, Al-Fe and Al-Cu master alloys (5%, 10%, 50% etc. master alloys).Moreover, the sampling practices suggested herein include a reasonable amount of analytical sample, which truly represent the whole lot of a particular master alloy. Successive dilution technique was utilized to meet the calibration curve range. Furthermore, the workout methods were also found suitable for the analysis of said elements in ordinary aluminum alloys. However, it was observed that Cush owed a considerable interference with Fe, the later one may not be accurately measured in the presence of Cu greater than 0.01 %.

  5. The effect of disorder on the electronic and magnetic properties of Mn2CoAl/GaAs heterostructures

    International Nuclear Information System (INIS)

    Feng, Yu; Tian, Chun-lin; Yuan, Hong-kuan; Kuang, An-long; Chen, Hong

    2015-01-01

    We study the effect of disorder, including swap and antisite, on the electronic and magnetic properties of heterostructures by using extensive first-principles calculations within density functional theory. Thirteen kinds of swap disorders and sixteen kinds of antisite disorders are proposed and studied comprehensively. Our calculation reveals that disorders at the interface have low formation energies, indicating that disorders are most likely to appear at the interface instead of the deep layer. Among all kinds of disorders, Mn 1 (Al) (where the interface Mn is occupied by an Al atom) and Mn 1 (As) (where the interface Mn is occupied by an As atom from a GaAs slab) antisite disorders possess the lowest formation energies. This shows that the interface Mn has a higher probability of being replaced by an Al atom, and that an As atom from a GaAs slab easily diffuses into a Mn 2 CoAl slab and occupies the position of the interface Mn. Moreover, further study on the interface electronic structure reveals that interface spin polarization suffers dramatic reduction due to Mn 1 (Al) and Mn 1 (As) antisite disorders. It can be deduced that the interface state, together with Mn 1 (Al) and Mn 1 (As) antisite disorders, may be the main causes of the low TMR ratio of Mn 2 CoAl/GaAs heterostructures. (paper)

  6. Influence of secondary ageing temperature on hardening and residual elastic stresses in AlMgSi and AlMgSiCu alloys

    International Nuclear Information System (INIS)

    Milosavlevich, A.Ya.; Shiyachki-Zheravchich; Rogulin, M.Ya.; Milenkovich, V.M.; Prokich-Tsvetkovich, R.M.

    1993-01-01

    The investigations were conducted on samples of AlMgSi and AlMgSiCu alloys quenched, aged and cold worked with 20, 40, 60 and 85 % reduction in area. Secondary ageing was carried out at 200 and 250 deg C. Residual stresses wee determined by X-ray diffraction method. It was shown that cold deformation effect on hardness and residual stresses is dependent on alloy composition. The hardening due to secondary ageing is more pronounced for AlMgSi alloy at 200 deg C and for AlMgSiCu alloy at 250 deg C. Positive residual stresses increase with secondary ageing temperature

  7. Improving the characteristics of foundry alloys AlSiCuMg during manufacturing

    Science.gov (United States)

    Fragoso, Bruno Filipe Marques

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de

  8. Effect of tellurium on machinability and mechanical property of CuAlMnZn shape memory alloy

    International Nuclear Information System (INIS)

    Liu Na; Li Zhou; Xu Genying; Feng Ze; Gong Shu; Zhu Lilong; Liang Shuquan

    2011-01-01

    Highlights: → A novel free-machining Cu-7.5Al-9.7Mn-3.4Zn-0.3Te (wt.%) shape memory alloy has been developed. → The size of dispersed particles with richer Te is 2-5 μm. → The CuAlMnZnTe alloy has good machinability which approached that of BZn15-24-1.5 due to the addition of Te. → Its shape memory property keeps the same as that of CuAlMnZn alloy with free Te. → The CuAlMnZn shape memory alloy with and without Te both have good ductile as annealed at 700 deg. C for 15 min. - Abstract: The microstructure transition, shape memory effect, machinability and mechanical property of the CuAlMnZn alloy with and without Te have been studied using X-ray diffraction analysis, chips observation and scanning electron microscopy (SEM), tensile strength test and differential scanning calorimeter (DSC), and semi-quantitative shape memory effect (SME) test. The particles with richer Te dispersedly distributed in grain interior and boundary with size of 2-5 μm. After the addition of Te, the CuAlMnZnTe alloy machinability has been effectively increased to approach that of BZn15-24-1.5 and its shape memory property remains the same as the one of CuAlMnZn alloy. The CuAlMnZn shape memory alloys with and without Te both have good ductility as annealed at 700 deg. C for 15 min.

  9. Developing prospects of NiAlMn high temperature shape memory alloy

    International Nuclear Information System (INIS)

    Zou Min

    1999-01-01

    The reason and information on high temperature shape memory alloy research are introduced briefly Also, referring to some experimental reports on NiAlMn high temperature shape memory alloy, it is pointed out that ductility and memory property of this alloy can be improved by adapting proper composition and procedure to control its microstructure. Meanwhile, the engineering details must be considered when NiAlMn high temperature shape memory alloy being developed so as to resolve the problems of its practical use

  10. The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)

    International Nuclear Information System (INIS)

    Schuon, S.R.

    1982-01-01

    The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life

  11. Evaluation of erosion-corrosion resistance in Fe-Mn-Al austenitic steels

    Directory of Open Access Journals (Sweden)

    William Arnulfo Aperador

    2013-04-01

    Full Text Available In this paper, the effects of Mn and Al against corrosion/errosion resistance of three samples of the Fe-Mn-Al austenitic alloys are evaluated. The samples have composition Fe-(4,9 ~ 11,0 wt. (% Al-(17,49 ~ 34,3 wt. (% Mn-(0,43 ~ 1,25 wt. (%C, those were prepared in an induction furnace from high purity materials. The alloys were evaluated in a composed solution of NaCl 0,5 M and Silica in a special chamber and AISI 316 stainless steel as reference material. The electrochemical characterization was performed by Tafel curve polarizations technique. This microstructural characterization was by Scanning Electron Microscopy (SEM. It was observed the significant decrease in the corrosion rate for steels Fermanal with a lower percentage of aluminum and manganese under conditions of dynamic corrosion and erosion-corrosion. SEM allows assessment of the dominant damage mechanisms and corroborated the results obtained by electrochemical measurements.

  12. Synthesis and photoluminescence properties of LaAlO3:Mn4+, Na+ deep red-emitting phosphor

    Science.gov (United States)

    Cao, Renping; Ceng, Dong; Liu, Pan; Yu, Xiaoguang; Guo, Siling; Zheng, Guotai

    2016-04-01

    LaAlO3:Mn4+ and LaAlO3:Mn4+, Na+ deep red-emitting phosphors are synthesized by a solid-state reaction method in air. Their crystal structures, lifetimes, and luminescence properties are investigated, respectively. PLE spectrum monitored at 730 nm contains three PLE bands peaking at ~276, 325, and 500 nm within the range 200-550 nm, and PL spectrum with excitation 325 nm exhibits two PL band peaks located at ~703 and 730 nm owing to anti-stokes vibronic sidebands associated with the excited state 2E of Mn4+ ion and the 2E → 4A2 transition of Mn4+ ion, respectively. The optimal Mn4+ doping concentration is ~0.8 mol%. Lifetime of LaAl0.992O3:0.8 %Mn4+ phosphor is ~0.92 ms. Na+ ion as charge compensator can improve obviously the luminescence properties of LaAlO3:Mn4+ phosphor due to the charge compensation. The luminous mechanism of Mn4+ ion is explained by using Tanabe-Sugano diagram of Mn4+ ion in octahedral crystal field. The contents of this paper will be helpful to develop novel Mn4+-doped materials and improve their luminescence properties.

  13. The Influence of T6 Heat Treatment to Hardness and Microstructure of Al-Si-Mg Alloys Materials

    International Nuclear Information System (INIS)

    Eddy Djatmiko; Budiarto

    2008-01-01

    Al-Si-Mg alloy is one of aluminium alloys that is suitable to be used as a car piston material. This is because it has some benefits such as light weight, corrosion resistance and interesting color but its mechanical properties do not meet criteria of JIS H5201. For that reason, to meet the standard, its mechanical properties need to be improved. Mechanical properties of this alloy can be improved using many ways. In this research the alloy was T6 heat treated (holding times 4 hour with treatment temperature variation of 30, 150, 180, 210, and 240 o C). Some tests were conducted to these new alloys including hardness test, impact test, phase identification and micro structural analysis. Test results showed that the change mechanical properties occurs due to increasing temperature during T6 heat treatment to these alloys. The optimum mechanical properties were obtained at treatment temperature of 210 o C. In this condition, the alloy has hardness of 93.30 HVN and impact strength of 5.13 J/cm 2 and these results fulfil JIS H5201 standard. The alloy microstructure showed hypoeutectic structure comprising primary aluminium dendrite and Al-Si-Mg eutectic mixture. The result of phase identification after T6 heat treatment showed that Al-Si-Mg alloys have α-Al phase, Si phase and MnAl 6 phase. (author)

  14. Microstructure and mechanical properties of an extruded Mg-8Bi-1Al-1Zn (wt%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Shuaiju [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Yu, Hui, E-mail: yuhuidavid@gmail.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Materials Commercialization Center, Korea Institute of Materials Science, Changwon 51508 (Korea, Republic of); Zhang, Huixing [Mechanical and Material School, Tianjin Sino-German University of Applied Sciences, Tianjin 300350 (China); Cui, Hongwei [School of Materials Science and Engineering, Shangdong University of Technology, Zibo 255049 (China); Park, Sung Hyuk [School of Materials Science and Engineering, Kyungpook National University, Daegu 702701 (Korea, Republic of); Zhao, Weiming [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); You, Bong Sun [Materials Commercialization Center, Korea Institute of Materials Science, Changwon 51508 (Korea, Republic of)

    2017-04-06

    In this study, the microstructural evolution and mechanical properties of a newly developed rare earth free Mg-8Bi-1Al-1Zn (BAZ811, in wt%) alloy were investigated and compared with those of a commercial AZ31 alloy. The as-extruded BAZ811 alloy with much finer grain size shows more homogeneous dynamical recrystallized (DRXed) microstructure and weaker basal texture than those of AZ31 alloy. In addition, compared with bimodal structure AZ31 alloy containing only relatively coarse and sparse Al{sub 8}Mn{sub 5} phases, the coexistence of strip-like fragmented Mg{sub 3}Bi{sub 2} precipitate and nano-size Mg{sub 3}Bi{sub 2} particles in the microstructure was observed in BAZ811 alloy. Moreover, the BAZ811 alloy exhibits a tensile yield stress of 291 MPa, an ultimate tensile strength of 331 MPa, an elongation to failure of 14.6% as well as a reduction in yield asymmetry, which is mainly attributed to the combined effects of grain refinement and micro-scale broken Mg{sub 3}Bi{sub 2} particles together with nano-scale spherical Mg{sub 3}Bi{sub 2} precipitates. The strain hardening behavior of both BAZ811 and AZ31 alloys were also discussed in terms of microstructure variation.

  15. Catalytic Combustion of Low Concentration Methane over Catalysts Prepared from Co/Mg-Mn Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Hongfeng Liu

    2014-01-01

    Full Text Available A series of Co/Mg-Mn mixed oxides were synthesized through thermal decomposition of layered double hydroxides (LDHs precursors. The resulted catalysts were then subjected for catalytic combustion of methane. Experimental results revealed that the Co4.5Mg1.5Mn2LDO catalyst possessed the best performance with the T90=485°C. After being analyzed via XRD, BET-BJH, SEM, H2-TPR, and XPS techniques, it was observed that the addition of cobalt had significantly improved the redox ability of the catalysts whilst certain amount of magnesium was essential to guarantee the catalytic activity. The presence of Mg was helpful to enhance the oxygen mobility and, meanwhile, improved the dispersion of Co and Mn oxides, preventing the surface area loss after calcination.

  16. Application of rapid solidification powder metallurgy to the fabrication of high-strength, high-ductility Mg-Al-Zn-Ca-La alloy through hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Ayman, Elsayed, E-mail: ayman@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Junko, Umeda; Katsuyoshi, Kondoh [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2011-01-15

    The microstructure and mechanical properties of hot extruded Mg-7Al-1Zn-1Ca powder alloys with an addition of 1.5% La or 3.3% La were investigated. Both rapidly solidified powders, produced via spinning water atomization process, and cast billets were extruded at 573, 623 and 673 K to optimize the processing conditions for obtaining better mechanical response. Powders were consolidated using both cold compaction and spark plasma sintering. The tensile properties of the extruded alloys were then evaluated and correlated to their microstructures. The results showed that the use of rapidly solidified Mg-7Al-1Zn-1Ca alloy powders with La additions could lead to effective grain refinement and super saturation of alloying elements, which in turn resulted in the improved mechanical response. The Mg-7Al-1Zn-1Ca-1.5La alloy extruded at 573 K attained ultimate tensile strength of 450 {+-} xx MPa and elongation of 17 {+-} xx%, superior to the Mg-7Al-1Zn-1Ca-3.3La alloy and other Mg alloys like Mg-Al-Mn-Ca. This may help extend the application of Mg alloys to higher load-carrying parts while maintaining the excellent advantage of light weight.

  17. Covalent bonds and their crucial effects on pseudogap formation in α-Al(Mn,Re)Si icosahedral quasicrystalline approximant

    International Nuclear Information System (INIS)

    Kirihara, K.; Nagata, T.; Kimura, K.; Kato, K.; Takata, M.; Nishibori, E.; Sakata, M.

    2003-01-01

    X-ray charge densities of Al-based icosahedral quasicrystalline approximant crystals α-AlReSi, α-AlMnSi, and Al 12 Re were observed by a combination of the maximum entropy method with the Rietveld method. We successfully obtained the clear images of interatomic covalent bonds between Al and transition metals (Mn, Re) and those in the Al (or Si) icosahedron in Mackay icosahedral clusters of both α-AlReSi and α-AlMnSi approximant crystals. The bonding nature of the three kinds of glue atom sites connecting Mackay icosahedral clusters was also clarified. This covalent bonding nature should strongly relate with the enhancement of the electron density-of-states pseudogap near the Fermi level. In addition, the interatomic covalent bonds of α-AlReSi are stronger than those of α-AlMnSi. This fact leads to the low effective carrier density of α-AlReSi in comparison with that of α-AlMnSi. Unlike the covalent bonding nature of an icosahedron in α-AlReSi and α-AlMnSi crystals, the Al icosahedron with an Re center atom exhibits no Al-Al interatomic covalent bonds in the Al 12 Re crystal. The tendency for metallic-covalent bonding conversion in the Al icosahedron, which is related to the atom site occupancy of the icosahedral cluster center, is also strongly supported

  18. Phase transformation and magnetic properties of MnAl powders prepared by elemental-doping and salt-assisted ball milling

    Science.gov (United States)

    Qian, Hui-Dong; Si, Ping-Zhan; Choi, Chul-Jin; Park, Jihoon; Cho, Kyung Mox

    2018-05-01

    The effects of elemental doping of Si and Fe on the ɛ→τ phase transformation and the magnetic properties of MnAl were studied. The magnetic powders of Si- and Fe-doped MnAl were prepared by using induction melting followed by water-quenching, annealing, and salt-assisted ball-milling. The Fe-doped MnAl powders are mainly composed of the L10-structured τ-phase, while the Si-doped MnAl are composed of τ-phase and a small fraction of γ2- and β-phases. A unique thin leaves-like morphology with thickness of several tens of nanometers and diameter size up to 500 nm were observed in the Si-doped MnAl powders. The Fe-doped MnAl powders show irregular shape with much larger dimensions in the range from several to 10 μm. The morphology difference of the samples was ascribed to the variation of the mechanical properties affected by different doping elements. The phase transformation temperatures of the ɛ-phase of the samples were measured. The doping of Fe decreases the onset temperature of the massive phase transformation in MnAl, while the Si-doping increases the massive phase transformation temperature. Both Fe and Si increase the Curie temperature of MnAl. A substantially enhanced coercivity up to 0.45 T and 0.42 T were observed in the ball-milled MnAl powders doped with Si and Fe, respectively.

  19. Study on Mg/Al Weld Seam Based on Zn–Mg–Al Ternary Alloy

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2014-02-01

    Full Text Available Based on the idea of alloying welding seams, a series of Zn–xAl filler metals was calculated and designed for joining Mg/Al dissimilar metals by gas tungsten arc (GTA welding. An infrared thermography system was used to measure the temperature of the welding pool during the welding process to investigate the solidification process. It was found that the mechanical properties of the welded joints were improved with the increasing of the Al content in the Zn–xAl filler metals, and when Zn–30Al was used as the filler metal, the ultimate tensile strength could reach a maximum of 120 MPa. The reason for the average tensile strength of the joint increasing was that the weak zone of the joint using Zn–30Al filler metal was generated primarily by α-Al instead of MgZn2. When Zn–40Al was used as the filler metal, a new transition zone, about 20 μm-wide, appeared in the edge of the fusion zone near the Mg base metal. Due to the transition zones consisting of MgZn2- and Al-based solid solution, the mechanical property of the joints was deteriorated.

  20. Applications of thermodynamic calculations to Mg alloy design: Mg-Sn based alloy development

    International Nuclear Information System (INIS)

    Jung, In-Ho; Park, Woo-Jin; Ahn, Sang Ho; Kang, Dae Hoon; Kim, Nack J.

    2007-01-01

    Recently an Mg-Sn based alloy system has been investigated actively in order to develop new magnesium alloys which have a stable structure and good mechanical properties at high temperatures. Thermodynamic modeling of the Mg-Al-Mn-Sb-Si-Sn-Zn system was performed based on available thermodynamic, phase equilibria and phase diagram data. Using the optimized database, the phase relationships of the Mg-Sn-Al-Zn alloys with additions of Si and Sb were calculated and compared with their experimental microstructures. It is shown that the calculated results are in good agreement with experimental microstructures, which proves the applicability of thermodynamic calculations for new Mg alloy design. All calculations were performed using FactSage thermochemical software. (orig.)

  1. Mössbauer spectroscopic studies of Al{sup 3+} ions substitution effects in superparamagnetic Mg{sub 0.2}Mn{sub 0.5}Ni{sub 0.3}Al{sub y}Fe{sub 2−y}O{sub 4} compositions

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Satish, E-mail: satishapurva@gmail.com [Department of Physics, Govt. P.G. College, Solan (India); Chand, Jagdish; Singh, M. [Department of Physics, Himachal Pradesh University, Summer-Hill, Shimla, 171005 (India)

    2016-09-15

    Nanoparticles of Al{sup 3+} ions substituted Mg−Mn−Ni materials with compositions Mg{sub 0.2}Mn{sub 0.5}Ni{sub 0.3}Al{sub y}Fe{sub 2−y}O{sub 4} (y = 0.15–0.25) were synthesized by citrate precursor technique. Samples were characterized by X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer and room temperature {sup 57}Fe Mössbauer spectroscopy. Saturation magnetization decreases with increasing Al{sup 3+} ions concentration because replacement of Fe{sup 3+} ions by Al{sup 3+} ions at octahedral B-site weaken sublattice interaction and lowers magnetic moments. Mössbauer spectral studies show that as-prepared nano-sized samples are superparamagnetic at room temperature. Superparamagnetic relaxation was observed for small crystallite in samples with higher Al content, which is attributed to weakening of A–B exchange interaction. Mössbauer spectra at 300 K show a gradual collapse of magnetic hyperfine splitting typical for superparamagnetic relaxation. An increase in inversion parameter is observed with increasing Al{sup 3+} ions substitution, which is attributed to decrease in crystallite size. - Highlights: • Single phase nanocrystalline samples were synthesized by citrate precursor method. • Particle size decreases as non-magnetic Al{sup 3+} ions concentration increase. • Presence of doublet in Mössbauer spectra was due to superparamagnetic relaxation. • Study shows collapse of long range magnetic order and quenching of magnetic moment.

  2. Real-time tracking of hydrogen peroxide secreted by live cells using MnO{sub 2} nanoparticles intercalated layered doubled hydroxide nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Asif, Muhammad; Aziz, Ayesha [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Dao, Anh Quang [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Hue Industrial College, 70 Nguyen Hue, Hue, Thua Thien Hue, 531081 (Viet Nam); Hakeem, Abdul; Wang, Haitao; Dong, Shuang; Zhang, Guoan [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Xiao, Fei [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Shenzhen Institute of Huazhong University of Science & Technology, Shenzhen, 518000 (China); Liu, Hongfang, E-mail: liuhf@hust.edu.cn [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Shenzhen Institute of Huazhong University of Science & Technology, Shenzhen, 518000 (China)

    2015-10-22

    We report a facile and green method for the fabrication of new type of electrocatalysts based on MnO{sub 2} nanoparticles incorporated on MgAl LDH P-type semiconductive channel and explore its practical applications as high-performance electrode materials for electrochemical biosensor. A series of MgAl layered doubled hydroxide (LDH) nanohybrids with fixed Mg/Al (M{sup 2+}/M{sup 3+} atomic ratio of 3) and varied amount of MnCl{sub 2}.4H{sub 2}O are fabricated by a facile co-precipitation method. This approach demonstrates the combination of distinct properties including excellent intercalation features of LDH for entrapping nanoparticles and high loading of MnO{sub 2} nanoparticles in the host layers of LDH. Among all samples, Mn5–MgAl with 0.04% loaded manganese has a good crystalline morphology. A well-dispersed MnO{sub 2} nanoparticles encapsulated into the host matrix of hydrotalcite exhibit enhanced electrocatalytic activity towards the reduction of H{sub 2}O{sub 2} as well as excellent stability, selectivity and reproducibility due to synergistic effect of good catalytic ability of MnO{sub 2} and conductive MgAl LDH. Glass carbon electrode (GCE) modified with Mn5–MgAl possesses a wide linear range of 0.05–78 mM, lowest detection limit 5 μM (S/N = 3) and detection sensitivity of 0.9352 μAmM{sup −1}. This outstanding performance enables it to be used for real-time tracking of H{sub 2}O{sub 2} secreted by live HeLa cells. This work may provide new insight in clinical diagnosis, on-site environmental analysis and point of care testing devices. - Highlights: • MnO{sub 2}MgAl nanohybrids have been fabricated by a facile and robust co-precipitation approach. • MgAl layered doubled hydroxide can be used for the intercalation of MnO{sub 2} nanoparticles. • MgAl layered doubled hydroxide nanohybrid serves as p-type semiconductive channel for efficient electrocatalysis. • The nanohybrid electrode demonstrates excellent electrochemical performance

  3. The Al-rich region of the Al-Mn-Ni alloy system. Part II. Phase equilibria at 620-1000 oC

    International Nuclear Information System (INIS)

    Balanetskyy, S.; Meisterernst, G.; Grushko, B.; Feuerbacher, M.

    2011-01-01

    Research highlights: → Phase equilibria in the Al-rich region of the Al-Mn-Ni alloy system were studied at 1000, 950, 850, 750, 700, 645 and 620 deg. C by means of SEM, TEM, powder XRD and DTA. → Three ternary thermodynamically stable intermetallics, the φ-phase (Al 5 Co 2 -type, hP26, P63/mmc; a = 0.76632(16), c = 0.78296(15) nm), the κ-phase (κ-Al 14.4 Cr 3.4 Ni l.1 -type, hP227, P63/m; a = 1.7625(10), c = 1.2516(10) nm), and the O-phase (O-Al 77 Cr 14 Pd 9 -type, Pmmn, oP650,: a = 2.3316(16), b = 1.2424(15), c = 3.2648(14) nm), as well as three ternary metastable phases, the decagonal D 3 -phase with periodicity about 1.25 nm, the Al 9 (Mn,Ni) 2 -phase (Al 9 Co 2 -type, P1121/a, mP22; a = 0.8585(16), b = 0.6269(9), c = 0.6205(11) nm, β = 95.34(10) o ) and the O 1 -phase (basecentered orthorhombic, a ∼ 23.8, b ∼ 12.4, c ∼ 32.2 nm) were revealed. → The existence of a thermodynamically stable R-phase of stoichiometry Al 60 Mn 11 Ni 4 , reported earlier in literature, was not confirmed in the present study. - Abstract: Phase equilibria in the Al-rich region of the Al-Mn-Ni alloy system were studied at 1000, 950, 850, 750, 700, 645 and 620 o C. Three ternary thermodynamically stable intermetallics, the φ-phase (Al 5 Co 2 -type, hP26, P6 3 /mmc; a = 0.76632(16), c = 0.78296(15) nm), the κ-phase (κ-Al 14.4 Cr 3.4 Ni l.1 -type, hP227, P6 3 /m; a = 1.7625(10), c = 1.2516(10) nm), and the O-phase (O-Al 77 Cr 14 Pd 9 -type, Pmmn, oP650,: a = 2.3316(16), b = 1.2424(15), c = 3.2648(14) nm), as well as three ternary metastable phases, the decagonal D 3 -phase with periodicity about 1.25 nm, the Al 9 (Mn,Ni) 2 -phase (Al 9 Co 2 -type, P112 1 /a, mP22; a = 0.8585(16), b = 0.6269(9), c = 0.6205(11) nm, β = 95.34(10) o ) and the O 1 -phase (base-centered orthorhombic, a ∼ 23.8, b ∼ 12.4, c ∼ 32.2 nm) were revealed. Their physicochemical behaviour in the Al-Mn-Ni alloy system was studied.

  4. Microstructure and Phase Analysis in Mn-Al and Zr-Co Permanent Magnets

    Science.gov (United States)

    Lucis, Michael J.

    In America's search for energy independence, the development of rare-earth free permanent magnets is one hurdle that still stands in the way. Permanent magnet motors provide a higher efficiency than induction motors in applications such as hybrid vehicles and wind turbines. This thesis investigates the ability of two materials, Mn-Al and Zr-Co, to fill this need for a permanent magnet material whose components are readily available within the U.S. and whose supply chain is more stable than that of the rare-earth materials. This thesis focuses on the creation and optimization of these two materials to later be used as the hard phase in nanocomposites with high energy products (greater than 10 MGOe). Mn-Al is capable of forming the pure L10 structure at a composition of Mn54Al43C3. When Mn is replaced by Fe or Cu using the formula Mn48Al43C3T6 the anisotropy constant is lowered from 1.3·107 ergs/cm3 to 1.0·107 ergs/cm3 and 0.8·10 7 ergs/cm3 respectively. Previous studies have reported a loss in magnetization in Mn-Al alloys during mechanical milling. The reason for this loss in magnetization was investigated and found to be due to the formation of the equilibrium beta-Mn phase of the composition Mn3Al2 and not due to oxidation or site disorder. It was also shown that fully dense Mn-Al permanent magnets can be created at hot pressing temperatures at or above 700°C and that the epsilon-phase to tau-phase transition and consolidation can be combined into a single processing step. The addition of small amounts of Cu to the alloy, 3% atomic, can increase the compaction density allowing high densities to be achieved at lower pressing temperatures. While the structure is still under debate, alloys at the composition Zr2Co11 in the Zr-Co system have been shown to have hard magnetic properties. This thesis shows that multiple structures exist at this Zr2Co11 composition and that altering the cooling rate during solidification of the alloy affects the ratio of the phase

  5. Trapping of self-interstitials at manganese atoms in electron-irradiated dilute AlMn alloys

    International Nuclear Information System (INIS)

    Bartels, A.; Dworschak, F.

    1985-01-01

    Dilute AlMn alloys were irradiated isothermally at different temperatures in stage II with 1.8 MeV electrons and the resistivity damage rates were measured as a function of the residual resistivity increase. The results demonstrate that Mn atoms provide deep traps at least up to 150 K for mobile interstitials. A quantitative evaluation of the data with respect to trapping radii is somewhat handicapped by the fact that the resistivity contribution of a Mn-Al interstitial complex was found to be considerably less than the sum of the resistivity contributions of an isolated solute Mn atom and an Al self-interstitial. The results can be explained by a model which assumes that both the trapping radius and the resistivity contribution of solute-self-interstitial complexes increase with the number of trapped interstitials. (author)

  6. Directly obtained τ-phase MnAl, a high performance magnetic material for permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Hailiang, E-mail: hailiang.fang@kemi.uu.se [Inorganic Chemistry, Department of Chemistry – Ångström Laboratory, Uppsala University (Sweden); Kontos, Sofia [Solid State Physics, Department of Engineering Sciences, Uppsala University (Sweden); Ångström, Jonas; Cedervall, Johan [Inorganic Chemistry, Department of Chemistry – Ångström Laboratory, Uppsala University (Sweden); Svedlindh, Peter; Gunnarsson, Klas [Solid State Physics, Department of Engineering Sciences, Uppsala University (Sweden); Sahlberg, Martin [Inorganic Chemistry, Department of Chemistry – Ångström Laboratory, Uppsala University (Sweden)

    2016-05-15

    The metastable tetragonal τ-phase has been directly obtained from casting Mn{sub 0.54}Al{sub 0.46} and (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2} using the drop synthesis method. The as-casted samples were ball milled to decrease the particle size and relaxed at 500 °C for 1 h. The phase composition, crystallographic parameters, magnetic properties and microstructure were systematically studied. The results reveal that the τ-phase could be directly obtained from drop synthesis. The highest M{sub s} of 117 emu/g was achieved in the (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2} where the τ-phase was stabilized by doping with carbon. Carbon doping increased the c/a ratio of the τ-phase as it occupies specific interstitial positions (½, ½, 0) in the structure. Furthermore, ball milling increases the coercivity (H{sub c}) at the expense of a decrease in magnetic saturation (M{sub s}). The increase in coercivity is explained by a decrease of grain size in conjunction with domain wall pinning due to defects introduced during the ball milling process. - Graphical abstract: The tetragonal τ-phase has been directly obtained from casting Mn{sub 0.54}Al{sub 0.46} and (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2} using the drop synthesis method. The phase composition, crystallographic parameters, magnetic properties and microstructure were systematically studied. The highest M{sub s} of 117 emu/g was achieved for (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2} ball milling increases the coercivity (H{sub c}) at the expense of a decrease in magnetic saturation (M{sub s}). - Highlights: • The ferromagnetic τ-phase has been directly obtained from casting. • The highest M{sub s} of 117 emu/g was achieved for (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2}. • Ball milling increases the coercivity but decreases the magnetic saturation.

  7. A study of stability of MgH{sub 2} in Mg-8at%Al alloy powder

    Energy Technology Data Exchange (ETDEWEB)

    Tanniru, Mahesh; Ebrahimi, Fereshteh [Materials Science and Engineering Department, University of Florida, Gainesville, FL 32611 (United States); Slattery, Darlene K. [Florida Solar Energy Center (FSEC), Cocoa, FL (United States)

    2010-04-15

    To investigate the effect of Al addition on the stability of magnesium hydride, the hydrogenation characteristics of a Mg-8at%Al alloy powder synthesized using the electrodeposition technique were evaluated. The characterization of the hydrogenation behavior within the 180 C-280 C temperature range and the subsequent microstructural analysis elucidated that the amount of Al present in the hydride decreased with increasing temperature. This observation suggests that Al has very low solubility in magnesium hydride but Al can be accommodated in MgH{sub 2} by processing under non-equilibrium conditions. Pressure-composition isotherms were developed at different temperatures for the Mg-Al powder as well as pure Mg powder. The results indicate that the enthalpy of formation was slightly lower for the Mg-8at%Al powder while the enthalpy of dissociation did not change. The absence of noticeable influence of Al addition on the stability of magnesium hydride is attributed to its lack of solubility. (author)

  8. Development of Al-Mg-Li alloys for fusion reactor

    International Nuclear Information System (INIS)

    Shoji, Yoshifusa; Yoshida, Hideo; Uno, Teruo; Baba, Yoshio; Kamada, Koji.

    1985-01-01

    Aluminum-magnesium-lithium alloys featuring low residual induced radioactivity and high electrical resistivity have been developed for fusion reactor structural materials. The addition of lithium in aluminum and Al-Mg alloys markedly increases electrical resistivity and tensile strength of them. However the elongation of Al-Mg-Li alloys containing more than 2 mass% lithium are less than 10 %. The Al-4--5 mass%Mg-1 mass%Li alloys are optimum for fusion reactor materials, and exhibit high resistivity (86 nΩm: 20 %IACS), medium strength (300 MPa) and good formability (22 % elongation). The variation of electrical resistivity of Al-Li and Al-Mg-Li alloys in solid solution can be approximated by the Matthiessen's rule. (author)

  9. Strong sp-d exchange coupling in ZnMnTe/ZnMgTe core/shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wojnar, Piotr; Janik, Elzbieta; Szymura, Malgorzata; Zaleszczyk, Wojciech; Kret, Slawomir; Klopotowski, Lukasz; Wojciechowski, Tomasz; Baczewski, Lech T.; Wiater, Maciej; Karczewski, Grzegorz; Wojtowicz, Tomasz; Kossut, Jacek [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Suffczynski, Jan; Papierska, Joanna [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland)

    2014-07-15

    In this work, our recent progress in the growth and optical studies of telluride nanowire heterostructures containing a small molar fraction of magnetic Mn-ions of only a few percent is overviewed. ZnMnTe/ZnMgTe core/shell nanowires (NWs) are grown by molecular beam epitaxy by employing the vapor-liquid-solid growth mechanism assisted with gold catalyst. The structures are studied by means of photoluminescence and microphotoluminescence in an external magnetic field. In the first step, however, an activation of the near band edge emission from ZnTe and ZnMnTe nanowires is described, which is achieved by coating the nanowires with shells made of ZnMgTe. The role of these shells is to passivate Zn(Mn)Te surface states. The incorporation of Mn ions into the crystalline lattice of ZnMnTe nanowires is manifested as a considerable blue shift of near band edge emission with increasing Mn concentration inside the nanowire cores, which reflects directly the increase of their energy gap. In an external magnetic field the near band edge emission exhibits a giant spectral redshift accompanied by an increase of the circular polarization of the emitted light. Both effect are fingerprints of giant Zeeman splitting of the band edges due to sp-d exchange interaction between the band carriers and magnetic Mn-ions. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Synthesis and electrochemical study of Mg{sub 1.5}MnO{sub 3}: A defect spinel cathode for rechargeable magnesium battery

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Partha [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Jampani, Prashanth H., E-mail: pjampani@pitt.edu [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Hong, DaeHo [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Gattu, Bharat [Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Poston, James A.; Manivannan, Ayyakkannu [US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Datta, Moni Kanchan [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); School of Dental Medicine, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2015-12-15

    Graphical abstract: Mg{sub 1.5}MnO{sub 3}, a defect oxide spinel derived by the Pechini route, was tested as cathode for rechargeable magnesium battery. TEM and XRD analyses of Mg{sub 1.5}MnO{sub 3} shows the formation of ∼100 nm sized nano particles in the cubic defect spinel structure (space group: Fd3m; unit cell: 0.833294 nm). Cyclic voltammetry illustrates a reversible reaction occurring between 0.3 and 1.5 V versus magnesium. Galvanostatic cycling of the Mg{sub 1.5}MnO{sub 3} cathode exhibits a low capacity of ∼12.4 mAh/g up to 20 cycle with ∼99.9% Coulombic efficiency when cycled at a current rate of ∼C/27. XPS (X-ray photoelectron spectroscopy) surface probe of magnesiated/de-magnesiated electrodes confirm a change in the redox center of Mn-ions during intercalation/de-intercalation of Mg-ion from the Mg{sub 1.5}MnO{sub 3} electrode. The low capacity of Mg{sub 1.5}MnO{sub 3} electrode mainly stem from the kinetic limitation of Mg-ion removal from the defect oxide spinel as the electrochemical impedance spectroscopy results of electrodes after 1st and 2nd cycle show that charge transfer resistance, R{sub e}, increases post charge state whereas interfacial resistance, R{sub i}, increases after discharge state, respectively. - Highlights: • Pechini process yields 100 nm sized particles of the defect cubic spinel Mg{sub 1.5}MnO{sub 3}. • Stable capacity of ∼12.4 mAh/g obtained at C/27 rate and 99.9% Coulombic efficiency. • XPS shows change in valence state of Mn{sup 3+}/Mn{sup 4+} center with cycling. • Low capacity stems from increase in charge-transfer and interfacial resistances with cycling. - Abstract: Mg{sub 1.5}MnO{sub 3}, a defect oxide spinel (space group: Fd3m; unit cell: 0.833294 nm) of particle size ∼100 nm derived by the Pechini route was tested as a cathode for rechargeable magnesium battery. Cyclic voltammetry illustrates a reversible reaction occurring in the 0.3–2.0 V potential window versus magnesium. The spinel however

  11. Effect of post-annealing on the magnetic properties of sputtered Mn56Al44 thin films

    Science.gov (United States)

    Gupta, Nanhe Kumar; Husain, Sajid; Barwal, Vineet; Behera, Nilamani; Chaudhary, Sujeet

    2018-05-01

    Mn56Al44 (MnAl) thin films of constant thickness (˜30nm) were grown on naturally oxidized Si substrates using DC-magnetron sputtering. Effect of deposition parameters such as sputtering power, substrate temperature (Ts), and post-annealing temperature have been systematically invstigated. X-ray diffraction patterns revealed the presence of mixed phases, namely the τ- and β-MnAl. The highest saturation magnetization (MS) was found to be 65emu/cc using PPMS-VSM in film grown at Ts=500°C. The magnetic ordering was found to get significantly improved by performing post-annealing of these as-grwon at 400°C for 1 hr in the presence of out-of-plane magnetic field of ˜1500Oe in vacuum. In particular, at room temperature (RT), the MS got enhanced after magnetic annealing from 65emu/cc to 500 emu/cc in MnAl films grown at Ts=500°C. This sample exhibited a magneto-resistance of ˜1.5% at RT. The tuning of the structural and magnetic properties of MnAl binary alloy thin films as established here by varying the growth parameters is critical with regards to the prospective applications of MnAl, a metastable ferromagnetic system which possesses the highest perpendicular magnetic anisotropy at RT till date.

  12. Interaction of hydrogen with an Mg-Al alloy

    International Nuclear Information System (INIS)

    Andreasen, A.; Sorensen, M.B.; Burkarl, R.; Moller, B.; Molenbroek, A.M.; Pedersen, A.S.; Andreasen, J.W.; Nielsen, M.M.; Jensen, T.R.

    2005-01-01

    The interaction of hydrogen with an Mg-Al alloy pre-exposed to air have been studied with in situ time resolved X-ray powder diffraction. Phase fractions as a function of time are derived from series of consecutive diffraction patterns allowing kinetic analysis. The apparent activation energy for dehydrogenation of the Mg-Al alloy is found to be 160 kJ/mol. This is not significantly higher than for pure and fully activated Mg. It is suggested that the addition of Al improves the resistance towards oxygen contamination

  13. Interplay of structural instability and lattice dynamics in Ni{sub 2}MnAl shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mehaddene, T.

    2007-02-12

    The work presented here is devoted to investigate the interplay of lattice dynamics and structural instability in Ni{sub 2}MnAl shape memory alloys. Inelastic neutron scattering is used to get more insight on the dynamic precursors of structural instability in Ni{sub 2}MnAl. Differential Scanning Calorimetry was used to characterise the martensitic transition in Ni{sub 2}MnAl alloys. Effects of composition and heat treatments have been investigated. The measured martensitic transition temperature in Ni-Mn-Al alloys depends linearly on the valence electron concentration. Two single crystals with different compositions have been succesfully grown using the Czochralski technique. Acoustic and optical phonon modes have been measured at room temperature in the high symmetry directions of the cubic B2 phase. The force constants have been fitted to the measured data using the Born-von Karman model. The character of the phonon softening measured in Ni{sub 2}MnAl corresponds to the pattern of atomic displacements of the modulations 2M, 10M, 12M and 14M observed in bulk and thin-films of Ni{sub 2}MnAl. The effect of the composition on the lattice instability has been investigated by measuring normal modes of vibration in two different crystals, Ni{sub 51}Mn{sub 18}Al{sub 31} and Ni{sub 53}Mn{sub 22}Al{sub 25}, with e/a ratios of 7.29 and 7.59 respectively. The stabilisation of a single L2{sub 1} phase in Ni{sub 2}MnAl by annealing a Ni{sub 51}Mn{sub 18}Al{sub 31} single crystal at 673 K during 45 days has been attempted. Despite of the long-time annealing, a single L2{sub 1} phase could not be stabilised because of either a slow diffusion kinetics or the establishment of an equilibrium between the L2{sub 1} and the B2 phases. Phonon measurements of the TA{sub 2}[{xi}{xi}0] branch in the annealed sample revealed a substantial effect. The wiggle, associated with the anomalous softening, is still present but the degree of softening is smaller below 673 K and changes

  14. Elemental moment variation of bcc Fe{sub x}Mn{sub 1−x} on MgO(001)

    Energy Technology Data Exchange (ETDEWEB)

    Bhatkar, H.; Snow, R.J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Arenholz, E. [Advanced Light Source, Lawrence Berkeley National Laboratories, Berkeley, CA 94720 (United States); Idzerda, Y.U., E-mail: idzerda@montana.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2017-02-01

    We report the growth, structural characterization, and electronic structure evolution of epitaxially grown bcc Fe{sub x}Mn{sub 1−x} on MgO(001). It is observed that the 20 nm thick Fe{sub x}Mn{sub 1−x} alloy films remained bcc from 0.65≤x≤1, much beyond the bulk stability range of 0.88≤x≤1. X-ray absorption spectroscopy and X-ray magnetic circular dichroism show that both the Fe and Mn L{sub 3} binding energies slightly increase with Mn incorporation and that the elemental moment of Fe in the 20 nm crystalline bcc alloy film remain nearly constant, then shows a dramatic collapse near x~0.84. The Mn MCD intensity is found to be small at all compositions that exhibit ferromagnetism - Highlights: • Bcc Fe{sub x}Mn{sub 1−x} films were stabilized beyond bulk range by epitaxial growth on MgO. • XMCD shows negligible moment in Mn regardless of composition. • Fe moment stays constant until 84% Mn concentration. • Magnetic moment suddenly collapses before any structural change seen in RHEED.

  15. First-principles calculations on Mg/Al2CO interfaces

    International Nuclear Information System (INIS)

    Wang, F.; Li, K.; Zhou, N.G.

    2013-01-01

    The electronic structure, work of adhesion, and interfacial energy of the Mg(0 0 0 2)/Al 2 CO(0 0 0 1) interface were studied with the first-principles calculations to clarify the heterogeneous nucleation potential of Al 2 CO particles in Mg melt. AlO-terminated Al 2 CO(0 0 0 1) slabs with seven atomic layers were adopted for interfacial model geometries. Results show that the “Over O” stacking interface is more stable than the “Over Al” stacking interface due to the larger interfacial adhesion and stronger mixed ionic/metallic bond formed across the interface. The calculated interfacial energies of Mg/Al 2 CO depend on the value of Δμ Al + Δμ C , proving Al 2 CO particles can exist stably in Mg–Al alloys melt and become effective nucleation substrate for α-Mg grain under certain conditions. The above calculation and corresponding analysis provide strong theoretical support to the Al 2 CO nucleus hypothesis from interfacial atomic structure and atomic bonding energy considerations.

  16. Effect of Si, Mn, Sn on Tensile and Corrosion Properties of Mg-4Zn-0.5Ca Alloys for Biodegradable Implant Materials

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dae Hyun; Nam, Ji Hoon; Lee, Byeong Woo; Park, Ji Yong; Shin, Hyun Jung; Park, Ik Min [Pusan National University, Busan (Korea, Republic of)

    2015-03-15

    Effect of elements Si, Mn, Sn on tensile and corrosion properties of Mg-4Zn-0.5Ca alloys were investigated. The results of tensile properties show that the yield strength, ultimate tensile strength and elongation of Mg-4Zn-0.5Ca alloy increased significantly with the addition of 0.6 wt% Mn. This is considered the grain refinement effect due to addition of Mn. However addition of 0.6 wt% Si decreased yield strength, ultimate tensile strength and elongation. The bio-corrosion behavior of Mg-4Zn-0.5Ca-X alloys were investigated using immersion tests and potentiodynamic polarization test in Hank's solution. Immersion test showed that corrosion rate of Mg-4Zn-0.5Ca-0.6Mn alloy was the lowest rate and addition of 1.0 wt% Sn accelerated corrosion rate due to micro-galvanic effect in α-Mg/CaMgSn phases interface. And corrosion potential (E{sub c}orr) of Mg-4Zn-0.5Ca-0.6Mn alloy was the most noble among Mg-4Zn-0.5Ca-X alloys.

  17. Epitaxial growth of manganese oxide films on MgAl2O4 (001) substrates and the possible mechanism

    Science.gov (United States)

    Ren, Lizhu; Wu, Shuxiang; Zhou, Wenqi; Li, Shuwei

    2014-03-01

    Three types of manganese oxide films were grown on MgAl2O4 (001) substrates by plasma-assisted molecular beam epitaxy (PA-MBE) under different growth rates and substrate temperatures. The structural characteristics and chemical compositions of the films were investigated by using in-situ reflection high-energy electron diffraction (RHEED), ex-situ X-ray diffraction, Raman, and X-ray photoelectron spectra (XPS). At a lower substrate temperature (730 K), the epitaxial film tends to form mixed phases with a coexistence of Mn3O4 and Mn5O8 in order to relieve the mismatch-strain. However, at a higher substrate temperature (750 K), all of the films crystallize into Mn3O4; the critical thickness of the film grown under a lower growth rate (7 Å/min) is much larger than that under a high growth rate (10 Å/min). When the film reaches a certain critical thickness, the surface will become fairly rough, and another oriented phase Mn3O4 would crystallize on such a surface.

  18. Influence of processing on structure property correlations in τ-MnAl rare-earth free permanent magnet material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nidhi; Mudgil, Varun; Anand, Kanika; Srivastava, A.K.; Kotnala, R.K.; Dhar, Ajay, E-mail: adhar@nplindia.org

    2015-06-05

    Highlights: • The reported magnetic properties of τ-MnAl show a significant scatter in their data. • We report the synthesis of τ-MnAl employing different processing routes. • The observed magnetic properties were correlated with the synthesis route. • The resulting microstructure has been correlated with the magnetic properties. - Abstract: In order to understand the genesis of the magnetic τ-phase of MnAl alloy, which due to its multiphase nature is generally difficult to synthesize as a single-phase, we have synthesized it employing three different materials processing routes, namely, arc melting, mechanical alloying, and a combination of these two. Structural and microstructural characterizations employing X-ray diffraction and high resolution transmission electron microscopy demonstrate that irrespective of the material processing route employed, the formation of τ-MnAl phase was always accompanied by other non-magnetic phases, e.g., β-MnAl and γ-MnAl. However, the relative fraction of these phases was found to be dependent on the materials processing route and hence on the grain size of the parent phase. The arc melted alloy had the largest grain size and the highest fraction of the τ-MnAl phase, while the alloy prepared by mechanical alloying showed the smallest grain size and the lowest fraction of the magnetic phase. The largest value of Curie temperature, magnetic moment, coercivity and remanence were observed in the sample prepared by a combination of arc melting and mechanical alloying. Our results suggest that in addition to the τ-MnAl phase fraction the magnetic properties could be related to the density of structural defects.

  19. Influence of processing on structure property correlations in τ-MnAl rare-earth free permanent magnet material

    International Nuclear Information System (INIS)

    Singh, Nidhi; Mudgil, Varun; Anand, Kanika; Srivastava, A.K.; Kotnala, R.K.; Dhar, Ajay

    2015-01-01

    Highlights: • The reported magnetic properties of τ-MnAl show a significant scatter in their data. • We report the synthesis of τ-MnAl employing different processing routes. • The observed magnetic properties were correlated with the synthesis route. • The resulting microstructure has been correlated with the magnetic properties. - Abstract: In order to understand the genesis of the magnetic τ-phase of MnAl alloy, which due to its multiphase nature is generally difficult to synthesize as a single-phase, we have synthesized it employing three different materials processing routes, namely, arc melting, mechanical alloying, and a combination of these two. Structural and microstructural characterizations employing X-ray diffraction and high resolution transmission electron microscopy demonstrate that irrespective of the material processing route employed, the formation of τ-MnAl phase was always accompanied by other non-magnetic phases, e.g., β-MnAl and γ-MnAl. However, the relative fraction of these phases was found to be dependent on the materials processing route and hence on the grain size of the parent phase. The arc melted alloy had the largest grain size and the highest fraction of the τ-MnAl phase, while the alloy prepared by mechanical alloying showed the smallest grain size and the lowest fraction of the magnetic phase. The largest value of Curie temperature, magnetic moment, coercivity and remanence were observed in the sample prepared by a combination of arc melting and mechanical alloying. Our results suggest that in addition to the τ-MnAl phase fraction the magnetic properties could be related to the density of structural defects

  20. Study of polarization curves from AlSi12, AlSi5Mg and AlMg5 alloys due to corrosion problems in telecomunication equipment

    International Nuclear Information System (INIS)

    Silva, J.R.A. da

    1984-01-01

    The corrosion behaviour of three aluminium based alloys (AlSi 12, AlMg5 and AlSi 5Mg) when exposed to aqueous media containing chloride is investigated; these alloys are used in the manufacturing of telecomunication equipment. Accelerated corrosion testing and salt spray tests were carried out. The results include polarization curves obtained with three kinds of aqueous solutions (the first containing only 3% NaCl and the others, 3% NaCl and small amounts of Fe 3+ and Cu 2+ ions). (C.L.B.) [pt

  1. L-J phase in a Cu2.2Mn0.8Al alloy

    Science.gov (United States)

    Jeng, S. C.; Liu, T. F.

    1995-06-01

    A new type of precipitate (designated L-J phase) with two variants was observed within the (DO3 + L21) matrix in a Cu2.2Mn0.8Al alloy. Transmission electron microscopy examinations indicated that the L-J phase has an orthorhombic structure with lattice parameters a = 0.413 nm, b = 0.254 nm and c = 0.728 nm. The orientation relationship between the L-J phase and the matrix is (100)L-J//(011) m , (010)L-J//(111) m and (001)L-J//(211) m . The rotation axis and rotation angle between two variants of the L-J phase are [021] and 90 deg. The L-J phase has never been observed in various Cu-Al, Cu-Mn, and Cu-Al-Mn alloy systems before.

  2. Thermodynamic calculation on the stability of (Fe,Mn)3AlC carbide in high aluminum steels

    International Nuclear Information System (INIS)

    Chin, Kwang-Geun; Lee, Hyuk-Joong; Kwak, Jai-Hyun; Kang, Jung-Yoon; Lee, Byeong-Joo

    2010-01-01

    A CALPHAD type thermodynamic description for the Fe-Mn-Al-C quaternary system has been constructed by combining a newly assessed Mn-Al-C ternary description and a partly modified Fe-Al-C description to an existing thermodynamic database for steels. A special attention was paid to reproduce experimentally reported phase stability of κ carbide in high Al and high Mn steels. This paper demonstrates that the proposed thermodynamic description makes it possible to predict phase equilibria in corresponding alloys with a practically acceptable accuracy. The applicability of the thermodynamic calculation is also demonstrated for the interpretation of microstructural and constitutional evolution during industrial processes for high Al steels.

  3. Effect of AlB2-Mg interaction on the mechanical properties of Al-based composites

    International Nuclear Information System (INIS)

    Calderon, Hermes E.; Hidalgo, Ruth G.I.; Melgarejo, Z. Humberto; Suarez, O. Marcelo

    2010-01-01

    A series of Al-based composites with a matrix containing 2.5 wt.%Cu and 1 wt.%Mg, and reinforced with Al diborides was manufactured and characterized via microscopy and mechanical testing. The impact resistance of the composites revealed interaction between AlB 2 dispersoids and Mg originally present in the Al matrix. An unexpected increase in the absorbed impact energy of composites with diborides prompted complementary experiments leading to this finding. Hardness tests were correlated to those results and provided further evidence of the interaction between Mg and the dispersoids. Additional energy dispersive spectroscopy (EDS) analysis and X-ray diffraction tests supported with crystal modeling demonstrated that Mg effectively diffused into the AlB 2 crystal producing a doped structure with an Al 1-x Mg x B 2 formula where x lies between 0.08 and 0.15.

  4. Corrosion effect on the electrochemical properties of LaNi3.55Mn0.4Al0.3Co0.75 and LaNi3.55Mn0.4Al0.3Fe0.75 negative electrodes used in Ni-MH batteries

    International Nuclear Information System (INIS)

    Khaldi, Chokri; Boussami, Sami; Rejeb, Borhene Ben; Mathlouthi, Hamadi; Lamloumi, Jilani

    2010-01-01

    The thermodynamic parameters, electrochemical capacity, equilibrium potential and the equilibrium pressure, of LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 and LaNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 alloys have been evaluated from the electrochemical isotherms (C/30 and OCV methods) and CV technique. A comparative study has been done between the parameter values deduced from the electrochemical methods and the solid-gas method. The parameter values deduced from the electrochemical methods are influenced by the electrochemical corrosion of the alloys in aqueous KOH electrolyte. The corrosion behaviour of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 and LaNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 electrodes after activation was investigated using the method of the potentiodynamic polarization. The variation of current and potential corrosion values with the state of charge (SOC) show that the substitution of cobalt by iron accentuates the corrosion process. The high-rate dischargeability (HRD) of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 and LaNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 alloys was examined. By increasing the discharge current the (HRD) decrease linearly for both the alloys and for the LaNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 compound is greater then for the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 one.

  5. Development and Characterisation of Aluminium Matrix Nanocomposites AlSi10Mg/MgAl2O4 by Laser Powder Bed Fusion

    Directory of Open Access Journals (Sweden)

    Giulio Marchese

    2018-03-01

    Full Text Available Recently, additive manufacturing techniques have been gaining attention for the fabrication of parts from aluminium alloys to composites. In this work, the processing of an AlSi10Mg based composite reinforced with 0.5% in weight of MgAl2O4 nanoparticles through laser powder bed fusion (LPBF process is presented. After an initial investigation about the effect of process parameters on the densification levels, the LPBF materials were analysed in terms of microstructure, thermo-mechanical and mechanical properties. The presence of MgAl2O4 nanoparticles involves an increment of the volumetric energy density delivered to the materials, in order to fabricate samples with high densification levels similar to the AlSi10Mg samples. However, the application of different building parameters results in modifying the size of the cellular structures influencing the mechanical properties and therefore, limiting the strengthening effect of the reinforcement.

  6. RBS characterization of Al2O3 films doped with Ce and Mn

    International Nuclear Information System (INIS)

    Martinez-Martinez, R.; Rickards, J.; Garcia-Hipolito, M.; Trejo-Luna, R.; Martinez-Sanchez, E.; Alvarez-Fregoso, O.; Ramos-Brito, F.; Falcony, C.

    2005-01-01

    Rutherford backscattering (RBS) with 4 He energies from 2 to 6 MeV has been used to study the properties of thin amorphous photoluminescent Al 2 O 3 :Ce,Mn films grown by spray pyrolysis on Corning 7059 glass substrates. The source solutions were AlCl 3 , CeCl 3 and MnCl 2 dissolved in deionized water. Different molar concentrations (Ce 10%; Mn 1%, 3%, 5%, 7% and 10%) were investigated under the same deposition conditions at a substrate temperature of 300 deg. C. The RBS spectra show a homogeneous depth profile of both Ce and Mn within the films, and the measured quantities are consistent with the original solution concentrations. An important amount of Cl, which plays a significant role in luminescent properties, was detected, in both the doped and undoped samples

  7. Strength of Al and Al-Mg/alumina bonds prepared using ultrahigh vacuum diffusion bonding

    International Nuclear Information System (INIS)

    King, W.E.; Campbell, G.H.; Wien, W.L.; Stoner, S.L.

    1994-01-01

    The authors have measured the cross-breaking strength of Al and Al-Mg alloys bonded with alumina. Diffusion bonding of Al and Al-Mg alloys requires significantly more bonding time than previously thought to obtain complete bonding. In contrast to previous diffusion bonding studies, fracture morphologies are similar to those obtained in bonds formed by liquid phase reaction; i.e., bonds are as strong or stronger than the ceramic; and fracture tends to propagate in the metal for pure Al and near the interface in the ceramic for the alloys. There are indications that the fracture morphology depends on Mg content and therefore on plasticity in the metal

  8. Irradiation behavior of U 6Mn-Al dispersion fuel elements

    Science.gov (United States)

    Meyer, M. K.; Wiencek, T. C.; Hayes, S. L.; Hofman, G. L.

    2000-02-01

    Irradiation testing of U 6Mn-Al dispersion fuel miniplates was conducted in the Oak Ridge Research Reactor (ORR). Post-irradiation examination showed that U 6Mn in an unrestrained plate configuration performs similarly to U 6Fe under irradiation, forming extensive and interlinked fission gas bubbles at a fission density of approximately 3×10 27 m-3. Fuel plate failure occurs by fission gas pressure driven `pillowing' on continued irradiation.

  9. Microstructural and mechanical properties of Al-Mg/Al{sub 2}O{sub 3} nanocomposite prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Safari, J., E-mail: safari.jam@gmail.com [Department of Material Science and Engineering, Shahid Bahonar University of Kerman, P.O. Box No. 76135-133, Kerman (Iran, Islamic Republic of); Akbari, G.H. [Department of Material Science and Engineering, Shahid Bahonar University of Kerman, P.O. Box No. 76135-133, Kerman (Iran, Islamic Republic of); Research Center for Mineral Industries, Shahid Bahonar University of Kerman, P.O. Box No. 76135-133, Kerman (Iran, Islamic Republic of); Shahbazkhan, A. [Islamic Azad University, Saveh Branch, Saveh (Iran, Islamic Republic of); Delshad Chermahini, M. [Materials and Energy Research Center, Karaj (Iran, Islamic Republic of)

    2011-09-29

    Highlights: > The presence of Mg has remarkable effects on crystallite size and lattice strain. > The solution of Mg in the Al matrix accelerates the mechanical milling stages. > The microhardness increased in the presence of Mg. > The presence of Mg has significant effect on lattice parameter. > Steady-state situation was occurred in presence of Mg. - Abstract: The effect of milling time on the microstructure and mechanical properties of Al and Al-10 wt.% Mg matrix nanocomposites reinforced with 5 wt.% Al{sub 2}O{sub 3} during mechanical alloying was investigated. Steady-state situation was occurred in Al-10Mg/5Al{sub 2}O{sub 3} nanocomposite after 20 h, due to solution of Mg into Al matrix, while the situation was not observed in Al/5Al{sub 2}O{sub 3} nanocomposite at the same time. For the binary Al-Mg matrix, after 10 h, the predominant phase was an Al-Mg solid solution with an average crystallite size 34 nm. Up to 10 h, the lattice strain increased to about 0.4 and 0.66% for Al and Al-Mg matrix, respectively. The increasing of lattice parameter due to dissolution of Mg atom into Al lattice during milling was significant. By milling for 10 h the dramatic increase in microhardness (155 HV) for Al-Mg matrix nanocomposite was caused by grain refinement and solid solution formation. From 10 to 20 h, slower rate of increasing in microhardness may be attributed to the completion of alloying process, and dynamic and static recovery of powders.

  10. The Paramagnetism of Small Amounts of Mn Dissolved in Cu-Al and Cu-Ge Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Myers, H P; Westin, R

    1963-06-15

    Previous measurements of the valency of Mn in Cu-Zn alloys have been confirmed by measurements with the isoelectronic Cu-Al and Cu-Ge alloys as matrices for Mn. The valency, having the value i in pure copper, decreases slightly with increasing electron to atom ratio attaining the values 0. 9 and 0. 8 at the limiting composition in the Al and Ge alloys respectively. The apparent size of Mn in these alloys is discussed.

  11. The Paramagnetism of Small Amounts of Mn Dissolved in Cu-Al and Cu-Ge Alloys

    International Nuclear Information System (INIS)

    Myers, H.P.; Westin, R.

    1963-06-01

    Previous measurements of the valency of Mn in Cu-Zn alloys have been confirmed by measurements with the isoelectronic Cu-Al and Cu-Ge alloys as matrices for Mn. The valency, having the value i in pure copper, decreases slightly with increasing electron to atom ratio attaining the values 0. 9 and 0. 8 at the limiting composition in the Al and Ge alloys respectively. The apparent size of Mn in these alloys is discussed

  12. Cu-segregation at the Q'/α-Al interface in Al-Mg-Si-Cu alloy

    International Nuclear Information System (INIS)

    Matsuda, Kenji; Teguri, Daisuke; Uetani, Yasuhiro; Sato, Tatsuo; Ikeno, Susumu

    2002-01-01

    Cu segregation was detected at the Q ' /α-Al interface in an Al-Mg-Si-Cu alloy by energy-filtered transmission electron microscopy. By contrast, in a Cu-free Al-Mg-Si alloy no segregation was observed at the interface between the matrix and Type-C precipitate

  13. Phenomenological-based kinetics modelling of dehydrogenation of ethylbenzene to styrene over a Mg 3 Fe 0.25 Mn 0.25 Al 0.5 hydrotalcite catalyst

    KAUST Repository

    Hossain, Mohammad M.

    2012-05-18

    This communication reports a mechanism-based kinetics modelling for the dehydrogenation of ethylbenzene to styrene (ST) using Mg3Fe0.25Mn0.25Al0.5 catalyst. Physicochemical characterisation of the catalyst indicates that the presence of basic sites Mg2+O2- on the catalysts along with Fe3+ is responsible for the catalytic activity. The kinetics experiments are developed using a CREC Fluidised Riser Simulator. Based on the experimental observations and the possible mechanism of the various elementary steps, Langmuir-Hinshelwood type kinetics model are developed. To take into account of the possible catalyst deactivation a reactant conversion-based deactivation function is also introduced into the model. Parameters are estimated by fitting of the experimental data implemented in MATLAB. Results show that one site type Langmuir-Hinshelwood model appropriately describes the experimental data, with adequate statistical fitting indicators and also satisfied the thermodynamic restraints. The estimated heat of adsorptions of EB (64kJ/mole) is comparable to the values available in the literature. The activation energy for the formation of ST (85.5kJ/mole) found to be significantly lower than that of the cracking product benzene (136.6kJ/mole). These results are highly desirable in order to achieve high selectivity of the desired product ST. © 2012 Canadian Society for Chemical Engineering.

  14. Superplasticity in a lean Fe-Mn-Al steel.

    Science.gov (United States)

    Han, Jeongho; Kang, Seok-Hyeon; Lee, Seung-Joon; Kawasaki, Megumi; Lee, Han-Joo; Ponge, Dirk; Raabe, Dierk; Lee, Young-Kook

    2017-09-29

    Superplastic alloys exhibit extremely high ductility (>300%) without cracks when tensile-strained at temperatures above half of their melting point. Superplasticity, which resembles the flow behavior of honey, is caused by grain boundary sliding in metals. Although several non-ferrous and ferrous superplastic alloys are reported, their practical applications are limited due to high material cost, low strength after forming, high deformation temperature, and complicated fabrication process. Here we introduce a new compositionally lean (Fe-6.6Mn-2.3Al, wt.%) superplastic medium Mn steel that resolves these limitations. The medium Mn steel is characterized by ultrafine grains, low material costs, simple fabrication, i.e., conventional hot and cold rolling, low deformation temperature (ca. 650 °C) and superior ductility above 1300% at 850 °C. We suggest that this ultrafine-grained medium Mn steel may accelerate the commercialization of superplastic ferrous alloys.Research in new alloy compositions and treatments may allow the increased strength of mass-produced, intricately shaped parts. Here authors introduce a superplastic medium manganese steel which has an inexpensive lean chemical composition and which is suited for conventional manufacturing processes.

  15. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    International Nuclear Information System (INIS)

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-01

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: ► The microstructure of Cu-Al alloy is modified in the Ag presence. ► (α + γ) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. ► Ag-rich phase modifies the magnetic characteristics of Cu–Al–Mn alloy.

  16. A background subtraction routine for enhancing energy-filtered plasmon images of MgAl2O4 implanted with Al+ and Mg+ ions

    International Nuclear Information System (INIS)

    Evans, N.D.; Kenik, E.A.; Bentley, J.; Zinkle, S.J.

    1995-01-01

    MgAl 2 O 4 , a candidate fusion reactor material, was irradiated with Al + or Mg + ions; electron energy-loss spectra and energy-filtered plasmon images showed that metallic Al colloids are present in the ion-irradiated regions. This paper shows the subtraction of the spinel plasmon component in images using 15-eV-loss electrons in some detail

  17. Low-energy resonances in sup 25 Mg(p,. gamma. ) sup 26 Al, sup 26 Mg(p,. gamma. ) sup 27 Al and sup 27 Al(p,. gamma. ) sup 28 Si

    Energy Technology Data Exchange (ETDEWEB)

    Iliadis, C; Schange, T; Rolfs, C; Schroeder, U; Somorjai, E; Trautvetter, H P; Wolke, K [Muenster Univ. (Germany, F.R.). Inst. fuer Kernphysik; Endt, P M; Kikstra, S W [Rijksuniversiteit Utrecht (Netherlands). Robert van de Graaff Lab.; Champagne, A E [Princeton Univ., NJ (USA). Dept. of Physics; Arnould, M; Paulus, G [Universite Libre de Bruxelles (Belgium). Inst. d' Astronomie et d' Astrophysique

    1990-06-11

    Gamma-ray decay schemes have been measured with bare and Compton-suppressed Ge detectors at low-energy resonances (E{sub p}<340 keV) in the (p, {gamma}) reactions on {sup 25}Mg, {sup 26}Mg and {sup 27}Al. Althogether 58 new decay branches have been observed and a new {sup 26}Mg(p, {gamma}){sup 27}Al resonance has been found at E{sub p}=154.5{plus minus}1.0 keV. The new branchings lead to J{sup {pi}}; T determinations (or limitations) for two states in {sup 26}Al and four states in {sup 28}Si. The absolute strengths of the {sup 25}Mg(p, {gamma}){sup 26}Al and {sup 26}Mg(p, {gamma}){sup 27}Al resonances have also been obtained, and the uncertainties of the stellar rates, deduced from the available data for both reactions, are significantly reduced. Some astrophysical consequences are discussed. (orig.).

  18. Microstructures, mechanical and corrosion properties and biocompatibility of as extruded Mg-Mn-Zn-Nd alloys for biomedical applications.

    Science.gov (United States)

    Zhou, Ying-Long; Li, Yuncang; Luo, Dong-Mei; Ding, Yunfei; Hodgson, Peter

    2015-04-01

    Extruded Mg-1Mn-2Zn-xNd alloys (x=0.5, 1.0, 1.5 mass %) have been developed for their potential use as biomaterials. The extrusion on the alloys was performed at temperature of 623K with an extrusion ratio of 14.7 under an average extrusion speed of 4mm/s. The microstructure, mechanical property, corrosion behavior and biocompatibility of the extruded Mg-Mn-Zn-Nd alloys have been investigated in this study. The microstructure was examined using X-ray diffraction analysis and optical microscopy. The mechanical properties were determined from uniaxial tensile and compressive tests. The corrosion behavior was investigated using electrochemical measurement. The biocompatibility was evaluated using osteoblast-like SaOS2 cells. The experimental results indicate that all extruded Mg-1Mn-2Zn-xNd alloys are composed of both α phase of Mg and a compound of Mg7Zn3 with very fine microstructures, and show good ductility and much higher mechanical strength than that of cast pure Mg and natural bone. The tensile strength and elongation of the extruded alloys increase with an increase in neodymium content. Their compressive strength does not change significantly with an increase in neodymium content. The extruded alloys show good biocompatibility and much higher corrosion resistance than that of cast pure Mg. The extruded Mg-1Mn-2Zn-1.0Nd alloy shows a great potential for biomedical applications due to the combination of enhanced mechanical properties, high corrosion resistance and good biocompatibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Calcioferrite with composition (Ca3.94Sr0.06Mg1.01(Fe2.93Al1.07(PO46(OH4·12H2O

    Directory of Open Access Journals (Sweden)

    Barbara Lafuente

    2014-03-01

    Full Text Available Calcioferrite, ideally Ca4MgFe3+4(PO46(OH4·12H2O (tetracalcium magnesium tetrairon(III hexakis-phosphate tetrahydroxide dodecahydrate, is a member of the calcioferrite group of hydrated calcium phosphate minerals with the general formula Ca4AB4(PO46(OH4·12H2O, where A = Mg, Fe2+, Mn2+ and B = Al, Fe3+. Calcioferrite and the other three known members of the group, montgomeryite (A = Mg, B = Al, kingsmountite (A = Fe2+, B = Al, and zodacite (A = Mn2+, B = Fe3+, usually occur as very small crystals, making their structure refinements by conventional single-crystal X-ray diffraction challenging. This study presents the first structure determination of calcioferrite with composition (Ca3.94Sr0.06Mg1.01(Fe2.93Al1.07(PO46(OH4·12H2O based on single-crystal X-ray diffraction data collected from a natural sample from the Moculta quarry in Angaston, Australia. Calcioferrite is isostructural with montgomeryite, the only member of the group with a reported structure. The calcioferrite structure is characterized by (Fe/AlO6 octahedra (site symmetries 2 and -1 sharing corners (OH to form chains running parallel to [101]. These chains are linked together by PO4 tetrahedra (site symmetries 2 and 1, forming [(Fe/Al3(PO43(OH2] layers stacking along [010], which are connected by (Ca/Sr2+ cations (site symmetry 2 and Mg2+ cations (site symmetry 2; half-occupation. Hydrogen-bonding interactions involving the water molecules (one of which is equally disordered over two positions and OH function are also present between these layers. The relatively weaker bonds between the layers account for the cleavage of the mineral parallel to (010.

  20. High performance LiNi0.5Mn1.5O4 cathode by Al-coating and Al3+-doping through a physical vapor deposition method

    International Nuclear Information System (INIS)

    Sun, Peng; Ma, Ying; Zhai, Tianyou; Li, Huiqiao

    2016-01-01

    Highlights: • Metal Al was used as an electrical conductive coating material for LiNi 0.5 Mn 1.5 O 4 . • The uniform surface coating layer of metal Al was successfully achieved with adjusted thickness through a physical vapor deposition technology. • Al 3+ -doped LiNi 0.5 Mn 1.5 O 4 can be easily obtained by further directly annealing of Al-coated LiNi 0.5 Mn 1.5 O 4 in air. • The conductive Al-coating layer can greatly improve the rate performance and cycle stability of LiNi 0.5 Mn 1.5 O 4 . - Abstract: In this work, spinel LiNi 0.5 Mn 1.5 O 4 (LNMO) hollow microspheres are synthesized by an impregnation method using microsphere MnO 2 as both the precursor and template. To enhance the electrical conductivity of LNMO, metal Al was employed for the first time as a coating material for LNMO. Though an Electron-beam Vapor Deposition approach, the surface of LNMO can be easily coated by a tight layer of Al nanoparticles with adjusted thickness. Further annealing the Al-coated sample at 800 °C in air, the Al 3+ -doped LNMO can be obtained. The effects of Al-coating and Al 3+ -doping on the sample morphology and structure are investigated by SEM, TEM, XRD and FT-IR. The electrochemical properties of Al-coated LNMO and Al 3+ -doped LNMO are measured with comparison of bare LNMO by charge/discharge tests and electrochemical impedance spectroscopy (EIS). The results show that both Al-coating and Al 3+ -doping can greatly enhance the cycle performance and rate capability of LNMO. Especially for Al-coated LNMO, it shows the lowest battery impedance due to the existence of conductive Al coating layer, thus delivers the best rate performance among the three. The physical coating procedure used in this work may provide a new facile modification approach for other cathode materials.

  1. Single-crystalline MgAl2O4 spinel nanotubes using a reactive and removable MgO nanowire template

    International Nuclear Information System (INIS)

    Fan Hongjin; Knez, Mato; Scholz, Roland; Nielsch, Kornelius; Pippel, Eckhard; Hesse, Dietrich; Goesele, Ulrich; Zacharias, Margit

    2006-01-01

    Using MgO nanowires as a reactive template, we fabricated for the first time single-crystal MgAl 2 O 4 spinel nanotubes through an interfacial solid-state reaction of MgO-Al 2 O 3 core-shell nanowires. Single-crystal MgO nanowires are coated with a conformal thin layer of amorphous Al 2 O 3 via atomic layer deposition. Subsequent annealing at 700 deg. C activates the interfacial reaction between MgO and Al 2 O 3 , transforming the alumina shell into a spinel shell. Finally, after etching away the remaining MgO core in ammonia sulfuric solution, MgAl 2 O 4 spinel nanotubes are obtained. As a transition from conventional planar spinel layers via thin-film interface reactions, our result might open a window for the fabrication of a wide variety of MgO-based spinel one-dimensional nanostructures

  2. Effect of Y on the bio-corrosion behavior of extruded Mg-Zn-Mn alloy in Hank's solution

    International Nuclear Information System (INIS)

    He Weiwei; Zhang Erlin; Yang Ke

    2010-01-01

    The bio-corrosion properties of Mg-Zn-Mn alloys with and without Y in Hank's solution at 37 deg. C were investigated by using electrochemical test and electrochemical impedance spectra (EIS). The results of open circuit potential (OCP) and polarization tests indicated that Y could reduce the cathodic current density. A passivative stage appeared in the Tafel curve of the Y containing magnesium alloy, indicating that a passivative film was formed on the surface of the Y containing magnesium alloy. EIS results showed that the Y containing alloy had higher charge transfer resistance and film resistance, but lower double layer capacity than the alloy without the Y element. The surface reaction product identification by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) showed that the surface corrosion products were hydroxide and phosphate (Mg 3 Ca 3 (PO 4 ) 4 ) for Mg-Zn-Mn alloy and phosphate (MgNaPO 4 ) for the Y containing Mg-Zn-Mn alloys. The XPS results also showed that a Y 2 O 3 protective film was formed on the surface of the Y containing magnesium alloy which contributed mainly to the low cathodic current density and the high resistance.

  3. Optimization of ageing conditions of Al-Mg system alloy with the aim to stabilize structure and mechanical properties

    International Nuclear Information System (INIS)

    Goncharenko, E.S.; Mel'nikov, A.V.; Cherkasov, V.V.; Parkhomenko, N.A.

    1997-01-01

    A study of microstructure and mechanical properties in Al-10%Mg alloy with additions of Zn, Mn, Sb and Zr after various heat treatments was made with the aim of optimization of artificial ageing regimes. Using the method of experiment planning the regime of two-stage ageing was analyzed. It is shown that two-stage ageing (85 deg C, 10h + 150 deg C, 3h) permits to attain mechanical properties similar to those after long-term one-stage ageing

  4. Simultaneous stabilization/solidification of Mn2+ and NH4+-N from electrolytic manganese residue using MgO and different phosphate resource.

    Science.gov (United States)

    Shu, Jiancheng; Wu, Haiping; Liu, Renlong; Liu, Zuohua; Li, Bing; Chen, Mengjun; Tao, Changyuan

    2018-02-01

    This study examined simultaneous stabilization and solidification (S/S) of Mn 2+ and NH 4 + -N from electrolytic manganese residue (EMR) using MgO and different phosphate resource. The characteristics of EMR NH 4 + -N and Mn 2+ S/S behavior, S/S mechanisms, leaching test and economic analysis, were investigated. The results show that the S/S efficiency of Mn 2+ and NH 4 + -N could reach 91.58% and 99.98%, respectively, and the pH value is 8.75 when the molar ratio of Mg:P is 3:1 and the dose of PM (MgO and Na 3 PO 4 ·12H 2 O) is 8wt%. In this process, Mn 2+ could mainly be stabilized in the forms of Mn(H 2 PO 4 ) 2 ·2H 2 O, Mn 3 (PO 4 ) 2 ·3H 2 O, Mn(OH) 2 , and MnOOH, and NH 4 + -N in the form of NH 4 MgPO 4 ·6H 2 O. Economic evaluation indicates that using PM process has a lower cost than HPM and HOM process for the S/S of Mn 2+ and NH 4 + -N from EMR at the same stabilization agent dose. Leaching test values of all the measured metals are within the permitted level for the GB8978-1996 test suggested when the dose of PM, HPM and HOM is 8wt%. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Neutron diffraction on CeMnAlD{sub x} (0{<=}x{<=}2.5)

    Energy Technology Data Exchange (ETDEWEB)

    Spatz, P.; Gross, K.; Schlapbach, L. [Fribourg Univ. (Switzerland); Fischer, P.; Fauth, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    CeMnAl was found to absorb considerable amounts of hydrogen. Part of the totally stored hydrogen is absorbed at low pressures (< 10 mbar). Additional hydrogen can be absorbed and desorbed reversible in a wide pressure range (10 mbar to 10 bar) at room temperature. In order to a better understanding of this new metal-hydride system, we performed neutron diffraction on deuterated CeMnAl samples with different D-concentrations. (author) 1 fig., 2 refs.

  6. Magnetic properties of ball-milled Fe0.6Mn0.1Al0.3 alloys

    International Nuclear Information System (INIS)

    Rebolledo, A.F.; Romero, J.J.; Cuadrado, R.; Gonzalez, J.M.; Pigazo, F.; Palomares, F.J.; Medina, M.H.; Perez Alcazar, G.A.

    2007-01-01

    The FeMnAl-disordered alloy system exhibits, depending on the composition and the temperature, a rich variety of magnetic phases including the occurrence of ferromagnetism, antiferromagnetism, paramagnetism and spin-glass and reentrant spin glass behaviors. These latter phases result from the presence of atomic disorder and magnetic dilution and from the competing exchange interactions taking place between an Fe atom and its Mn and Fe first neighbors. The use of mechanical alloying in order to prepare these alloys is specially interesting since it allows to introduce in a progressive way large amounts of disorder. In this work, we describe the evolution with the milling time of the temperature dependence of the magnetic properties of mechanically alloyed Fe 0.6 Mn 0.1 Al 0.3 samples. The materials were prepared in a planetary ball mill using a balls-to-powder mass ratio of 15:1 and pure (99.95 at%) Fe, Mn and Al powders for times up to 19 h. The X-rays diffraction (XRD) spectra show the coexistence of three phases at short milling times. For milling times over 6 h, only the FeMnAl ternary alloy BCC phase is observed. Moesbauer spectroscopy reveals the complete formation of the FeMnAl alloy after 9 h milling time. The magnetic characterization showed that all the samples were ferromagnetic at room temperature with coercivities decreasing from 105 Oe (3 h milled sample) down to 5 Oe in the case of the sample milled for 19 h

  7. Thermodynamic calculation on the stability of (Fe,Mn){sub 3}AlC carbide in high aluminum steels

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Kwang-Geun [Automotive Steel Products Research Group, POSCO Technical Research Laboratories, POSCO, Jeonnam 545-090 (Korea, Republic of); School of Materials Science and Engineering, Pusan National University, Pusan, 609-735 (Korea, Republic of); Lee, Hyuk-Joong [Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Kwak, Jai-Hyun [Automotive Steel Products Research Group, POSCO Technical Research Laboratories, POSCO, Jeonnam 545-090 (Korea, Republic of); Kang, Jung-Yoon [School of Materials Science and Engineering, Pusan National University, Pusan, 609-735 (Korea, Republic of); Lee, Byeong-Joo, E-mail: calphad@postech.ac.k [Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of)

    2010-08-27

    A CALPHAD type thermodynamic description for the Fe-Mn-Al-C quaternary system has been constructed by combining a newly assessed Mn-Al-C ternary description and a partly modified Fe-Al-C description to an existing thermodynamic database for steels. A special attention was paid to reproduce experimentally reported phase stability of {kappa} carbide in high Al and high Mn steels. This paper demonstrates that the proposed thermodynamic description makes it possible to predict phase equilibria in corresponding alloys with a practically acceptable accuracy. The applicability of the thermodynamic calculation is also demonstrated for the interpretation of microstructural and constitutional evolution during industrial processes for high Al steels.

  8. Structural, morphological and interfacial characterization of Al-Mg/TiC composites

    International Nuclear Information System (INIS)

    Contreras, A.; Angeles-Chavez, C.; Flores, O.; Perez, R.

    2007-01-01

    Morphological and structural characterization of Al-Mg/TiC composites obtained by infiltration process and wetting by the sessile drop technique were studied. Focusing at the interface, wetting of TiC substrates by molten Al-Mg-alloys at 900 deg. C was investigated. Electron probe microanalysis (EPMA) indicated that aluminum carbide (Al 4 C 3 ) is formed at the interface and traces of TiAl 3 in the wetting assemblies were detected. Scanning Electron Microscopy (SEM) observations show that TiC particles do not appear to be uniformly attacked to produce a continuous layer of Al 4 C 3 at the interface. Molten Al-Mg-alloys were infiltrated into TiC preforms with flowing argon at a temperature of 900 deg. C. In the composites no reaction phase was observed by SEM. Quantification of the Al phase in the composite was carried out by X-ray diffraction (XRD) and Rietveld analysis. Chemical mapping analyzed by SEM shows that the Al-Mg alloy surrounds TiC particles. In the composites with 20 wt.% of Mg the Al-Mg-β phase was detected through XRD

  9. Investigation of blue luminescence in Mg doped AlN films

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiliang; Xiong, Juan, E-mail: xiongjuana@163.com; Zhang, Weihai; Liu, Lei; Gu, Haoshuang, E-mail: guhsh@hubu.edu.cn

    2015-02-05

    Highlights: • AlN films doped with 0.8–4.4 at.% Mg were deposited by magnetron sputtering. • Structural and photoluminescence properties of Mg-doped AlN films were synthesized in detailed. • A broad blue band centered at 420 nm and 440 nm was observed in Mg-doped AlN films. • An enhancement of A1 (TO) mod and a slightly blue-shift of E2 (high) mode were observed. - Abstract: The Al{sub 1−x}Mg{sub x}N thin films were deposited on (1 0 0) silicon substrates by magnetron sputtering. The structural and photoluminescence properties of the films with varying Mg concentrations were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman spectra and photoluminescence (PL), respectively. The results clearly showed that the Mg atoms successfully incorporated into AlN, while the crystal structure of the films was maintained. The Raman spectra of Al{sub 1−x}Mg{sub x}N films reveals the enhancement of A{sub 1} (TO) mode, a slightly blue-shift and an augment in FWHM for E{sub 2} (high) phonon mode with increasing Mg content, which can be associated with the deterioration of (0 0 2) orientation and the appearance of (1 0 0) orientation. A broad blue band centered at 420 nm and 440 nm was observed in Mg-doped AlN films. It was suggested that the transitions from the shallow donor level not only to the ground state but also to the excited states of the deep level was responsible for the broad blue emission band. This work indicates the AlN film for the application in lighting emission devices.

  10. Kinetic studies of oxidation of MgAlON and a comparison of the oxidation behaviour of AlON, MgAlON, O'SiAlON-ZrO{sub 2}, and BN-ZCM ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xidong; Seetharaman, S. [Div. of Metallurgy, Royal Inst. of Tech., Stockholm (Sweden); Li Wenchao [Dept. of Physical Chemistry, Univ. of Science and Technology Beijing (USTB), Beijing, BJ (China)

    2002-06-01

    The kinetics and morphology of the oxidation process of magnesium-aluminium oxynitride (MgAlON), aluminium oxynitride (AlON), O'SiAlON-ZrO{sub 2}, and BN-ZCM have been studied in the temperature range 1373-1773 K (ZCM=30 wt% ZrO{sub 2}, 52 wt% Al{sub 2}O{sub 3} and 18 wt% 3 Al{sub 2}O{sub 3}.2 SiO{sub 2}). Oxidation experiments with powder and plate samples of the above materials have been carried out in air. MgAlON shows the best resistance to oxidation at lower temperatures (< 1473 K), whereas at higher temperatures ({proportional_to} 773 K), AlON shows the best resistance. O'SiAlON-ZrO{sub 2} shows very good oxidation resistance up to 1673 K. But its oxidation rate increases strongly above 1673 K, presumably due to the formation of liquid phase. BN-ZCM has the poorest oxidation resistance due to the evaporation of B{sub 2}O{sub 3}. The activation energies for the chemical oxidation reaction of AlON, MgAlON, and O'SiAlON-ZrO{sub 2} are 214, 330 and 260 kJ/mol, respectively. The overall diffusion activation energies for AlON, MgAlON, O'SiAlON-ZrO{sub 2} and BN-ZCM are 227, 573, 367 and 289 kJ/mol, respectively. (orig.)

  11. Effects of Al-Mn-Ti-P-Cu master alloy on microstructure and properties of Al-25Si alloy

    Directory of Open Access Journals (Sweden)

    Xu Chunxiang

    2013-09-01

    Full Text Available To obtain a higher microstructural refining efficiency, and improve the properties and processing ability of hypereutectic Al-25Si alloy, a new environmentally friendly Al-20.6Mn-12Ti-0.9P-6.1Cu (by wt.% master alloy was fabricated; and its modification and strengthening mechanisms on the Al-25Si alloy were studied. The mechanical properties of the unmodified, modified and heat treated alloys were investigated. Results show that the optimal addition amount of the Al-20.6Mn-12Ti-0.9P-6.1Cu master alloy is 4wt.%. In this case, primary Si and eutectic Si as well as メ-Al phase were clearly refined, and this refining effect shows an excellent long residual action as it can be heat-retained for at least 5 h. After being T6 heat treated, the morphology of primary and eutectic Si in the Al-25Si alloys with the addition of 4wt.% Al-20.6Mn-12Ti-0.9P-6.1Cu alloy changes into particles and short rods. The average grain size of the primary and eutectic Si decreases from 250 レm (unmodified to 13.83 レm and 35 レm (unmodified to 7 レm; the メ-Al becomes obviously finer and the distribution of Si phases tends to be uniform and dispersed. Meanwhile, the tensile properties are improved obviously; the tensile strengths at room temperature and 300 ìC reach 241 MPa and 127 MPa, increased by 153.7% and 67.1%, respectively. In addition, the tensile fracture mechanism changes from brittle fracture for the alloy without modification to ductile fracture after modification. Modifying the morphology of Si phase and strengthening the matrix can effectively block the initiation and propagation of cracks, thus improving the strength of the hypereutectic Al-25Si alloy.

  12. Transmission electron microscopy study of dislocation motion in icosahedral Al-Pd-Mn

    International Nuclear Information System (INIS)

    Mompiou, F.; Caillard, D.

    2005-01-01

    Perfect and imperfect dislocations trailing phason faults in quasi-crystals are introduced using a simplified two-dimensional aperiodic structure. Then, on the basis of observations of deformed specimens as well as in situ experiments in a transmission electron microscope, the motion of dislocations in icosahedral Al-Pd-Mn is shown to take place exclusively by climb. Under such conditions, the very high brittleness of Al-Pd-Mn at low and medium temperatures is proposed to be a consequence of the difficulty of glide, which itself appears to be an intrinsic property of the quasi-crystalline structure

  13. Microstructural Influence on Dynamic Properties of Age Hardenable FeMnAl Alloys

    Science.gov (United States)

    2011-04-01

    strain amplitude on a wrought Fe-28Mn-9Al-0.86C-0.7W-0.43Mo-0.49Nb alloy and on a martensitic stainless steel of composition Fe-12Cr-1.25Ni-0.2V-1.8W...the martensite and loss of strength was used to explain the lower cyclic life of the stainless steel at elevated temperatures. Within the Fe-Mn-Al-C...through F in Table 2), 1010 carbon steel and 304 stainless steel as functions of exposure time in 1 atm flowing oxygen at 700°C (a) and 500°C (b).56

  14. First-principles investigation of the structure and synergistic chemical bonding of Ag and Mg at the Al | Ω interface in a Al-Cu-Mg-Ag alloy

    International Nuclear Information System (INIS)

    Sun Lipeng; Irving, Douglas L.; Zikry, Mohammed A.; Brenner, D.W.

    2009-01-01

    Density functional theory was used to characterize the atomic structure and bonding of the Al | Ω interface in a Al-Cu-Mg-Ag alloy. The most stable interfacial structure was found to be connected by Al-Al bonds with a hexagonal Al lattice on the surface of the Ω phase sitting on the vacant hollow sites of the Al {1 1 1} matrix plane. The calculations predict that when substituted separately for Al at this interface, Ag and Mg do not enhance the interface stability through chemical bonding. Combining Ag and Mg, however, was found to chemically stabilize this interface, with the lowest-energy structure examined being a bi-layer with Ag atoms adjacent to the Al matrix and Mg adjacent to the Ω phase. This study provides an atomic arrangement for the interfacial bi-layer observed experimentally in this alloy.

  15. Phase stability of CuAlMn shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Zárubová, Niva; Novák, Václav

    2004-01-01

    Roč. 378, - (2004), s. 216-221 ISSN 0921-5093 Institutional research plan: CEZ:AV0Z1010914 Keywords : CuAlMn * shape memory alloys * martensitic transformation * - stress -strain tests * tension-compression cycling * history dependent phenomena Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.445, year: 2004

  16. Diffusion-induced quadrupole relaxation of 27Al nuclei in dilute Al-Ti, Al-Cr, Al-Mn, and Al-Cu alloys at high temperatures

    International Nuclear Information System (INIS)

    Bottyan, L.; Beke, D.L.; Tompa, K.

    1983-01-01

    The temperature dependence of the laboratory frame spin-lattice relaxation time of 27 Al nuclei is measured in 5N Al and in dilute Al-Ti, Al-Cr, Al-Mn, and Al-Cu alloys at 5.7 and 9.7 MHz resonance frequencies. The relaxation in pure aluminium is found to be purely due to the conduction electrons. An excess T 1 -relaxation contribution is detected in all Al-3d alloys investigated above 670 K. The excess relaxation rate is proportional to the impurity content and the temperature dependence of the excess contribution is of Arrhenius-type with an activation energy of (1.3 +- 0.3) eV for all of the investigated alloys. The relaxation contribution is found to be quadrupolar in origin and is caused by the relative diffusional jumps of solute atoms and Al atoms relatively far from the impurity. (author)

  17. Synthesis and identification of substituted Mg-Al-Cl double hydroxide compounds with a focus on infrared spectroscopy; Synthese und Identifizierung von substituierten Mg-Al-Cl Doppelhydroxidverbindungen mit Schwerpunkt IR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Birte

    2011-07-01

    by coprecipitation methods (Miyata, 1975; Cavani et al., 1991). In a repository it is assumed that during water ingress beside the pure Mg-Al-Cl LDH different solid solution-LDH-compounds might be found, because of the fuel element container being additional present beside the RR-FE. In this study the incorporation of cadmium (contained in control rods), iron and manganese (FE container materials) into the structure of a Mg-Al-Cl LDH was therefore investigated. Synthesis of several LDHs by a coprecipitation method was performed. In these LDHs some molar amounts of the magnesium cations were replaced successfully by other divalent cations (Cd{sup 2+}, Fe{sup 2+} or Mn{sup 2+}). Even cations in the size of Cd{sup 2+} (Cd{sup 2+}: 95 pm, Mg{sup 2+}: 72 pm, Shannon, 1976) can be incorporated. In order to determine, if these substituted LDHs have better retention properties for radionuclides, the sorption behavior of selenium (selenium is a long-living fission product and was employed here as selenite) on the Mg-Cd-Al-Cl LDH was investigated in water, clay pore water (Mont-Terri-type) and brine 2. Using a LDH concentration of 10g/L the sorption kinetics were very rapid and equilibrium was reached within 12 hours. The sorption of selenite decreased with increasing amount of competing chloride anions in the solutions. The energies were in the range of ion exchange reactions. During investigations of the pH dependency a high buffer capacity of the Mg-Cd-Al-Cl LDH was observed. It could be shown, that even in repository-relevant solutions the Mg-Al-Cl LDH with cadmium has slightly better retention properties for the mobile selenite as an unmodified Mg-Al-Cl LDH. Another aim was to demonstrate the incorporation of di-, tri- and tetravalent cations into the structure of a Mg-Al-Cl LDH by infrared spectroscopy. Before measurement the LDHs were converted from the chloride-form into the carbonate-form. The demonstation should be accomplished on the basis of shifts of the band

  18. Reducing Mg acceptor activation-energy in Al(0.83)Ga(0.17)N disorder alloy substituted by nanoscale (AlN)₅/(GaN)₁ superlattice using Mg(Ga) δ-doping: Mg local-structure effect.

    Science.gov (United States)

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-10-23

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al(0.83)Ga(0.17)N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al(0.83)Ga(0.17)N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 10(19) cm(-3) can be obtained in (AlN)5/(GaN)1 SL by Mg(Ga) δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  19. Reducing Mg Acceptor Activation-Energy in Al0.83Ga0.17N Disorder Alloy Substituted by Nanoscale (AlN)5/(GaN)1 Superlattice Using MgGa δ-Doping: Mg Local-Structure Effect

    Science.gov (United States)

    Zhong, Hong-Xia; Shi, Jun-Jie; Zhang, Min; Jiang, Xin-He; Huang, Pu; Ding, Yi-Min

    2014-10-01

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al0.83Ga0.17N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 1019 cm-3 can be obtained in (AlN)5/(GaN)1 SL by MgGa δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  20. The role of Si and Ca on new wrought Mg-Zn-Mn based alloy

    International Nuclear Information System (INIS)

    Ben-Hamu, G.; Eliezer, D.; Shin, K.S.

    2007-01-01

    The development of new wrought magnesium alloys for automotive industry has increased in recent years due to their high potential as structural materials for low density and high strength/weight ratio demands. However, the poor mechanical properties of the magnesium alloys have led to search a new kind of magnesium alloys for better strength and ductility. Magnesium alloys show strong susceptibility to localized corrosion in chlorides solutions due to their inhomogeneous microstructure. The existence of intermetallics in the microstructure of magnesium alloys might represent initiation sites for localized corrosion. This is due to the formation of galvanic couples between the intermetallics and the surrounding matrix. The main objective of this research is to investigate the corrosion behavior of new magnesium alloys; Mg-Zn-Mn-Si-Ca (ZSMX) alloys. The ZSM6X1 + YCa alloys were prepared by using hot extrusion method. AC and DC polarization tests were carried out on the extruded rods, which contain different amounts of silicon or calcium. The potential difference in air between different phases and the matrix was examined using scanning Kelvin probe force microscopy (SKPFM). The phases present in the alloys have been identified by optical microscopy and scanning electron microscopy/energy dispersive X-ray spectroscopy. Four different phases were found, i.e. intermetallics containing Si-Mn, Mg-Si, Mg-Zn and Mg-Si-Ca phase. All phases exhibited higher potential differences relative to magnesium matrix indicating a cathodic behavior. The potential difference revealed significant dependence on the chemical composition of the phases. Based on the results obtained from the scanning Kelvin probe force microscopy, the cathodic phases are effective sites for the initiation of localized corrosion in Mg-Zn-Mn-Si-Ca alloys

  1. The Effectiveness of Al-Si Coatings for Preventing Interfacial Reaction in Al-Mg Dissimilar Metal Welding

    Science.gov (United States)

    Wang, Yin; Al-Zubaidy, Basem; Prangnell, Philip B.

    2018-01-01

    The dissimilar welding of aluminum to magnesium is challenging because of the rapid formation of brittle intermetallic compounds (IMC) at the weld interface. An Al-Si coating interlayer was selected to address this problem, based on thermodynamic calculations which predicted that silicon would change the reaction path to avoid formation of the normally observed binary Al-Mg IMC phases ( β-Al3Mg2 and γ-Al12Mg17). Long-term static heat treatments confirmed that a Si-rich coating will preferentially produce the Mg2Si phase in competition with the less stable, β-Al3Mg2 and γ-Al12Mg17 binary IMC phases, and this reduced the overall reaction layer thickness. However, when an Al-Si clad sheet was tested in a real welding scenario, using the Refill™ friction stir spot welding (FSSW) technique, Mg2Si was only produced in very small amounts owing to the much shorter reaction time. Surprisingly, the coating still led to a significant reduction in the IMC reaction layer thickness and the welds exhibited enhanced mechanical performance, with improved strength and fracture energy. This beneficial behavior has been attributed to the softer coating material both reducing the welding temperature and giving rise to the incorporation of Si particles into the reaction layer, which toughened the brittle interfacial IMC phases during crack propagation.

  2. Hydrogen storage and microstructure investigations of La{sub 0.7-x}Mg{sub 0.3}Pr{sub x}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Galdino, G.S.; Casini, J.C.S.; Ferreira, E.A.; Faria, R.N.; Takiishi, H., E-mail: agsgaldino@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (DM/IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Dept. de Metalurgia

    2010-07-01

    The effects of substitution of Pr for La in the hydrogen storage capacity and microstructures of La{sub 0.7-x}Pr{sub x}Mg{sub 0.3}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} (x=0, 0.1, 0.3, 0.5, 0.7) alloys electrodes have been studied. X-ray diffraction (XRD), scanning electron microscopy, energy dispersive spectrometry (EDS) and electrical tests were carried out in a the alloys and electrodes. Cycles of charge and discharge have also been carried out in the Ni/MH (Metal hydride) batteries based on the alloys negative electrodes. (author)

  3. Characterization of microstructure and mechanical properties of friction stir welded AlMg5- Al_2O_3 nanocomposites

    International Nuclear Information System (INIS)

    Babu, N. Kishore; Kallip, Kaspar; Leparoux, Marc; AlOgab, Khaled A.; Reddy, G.M.; Talari, M.K.

    2016-01-01

    In the present study, powder metallurgy processed unmilled AlMg5, milled AlMg5 and milled AlMg5-0.5 vol% Al_2O_3 nanocomposite have been successfully friction stir welded (FSW). The effect of friction stir welding on the evolution of weld microstructures; hardness and tensile properties were studied and discussed in detail. FSW of unmilled AlMg5 resulted in significant grain refinement and strain hardening in the nugget zone induced by the thermo-mechanical processing, thereby increasing the stir zone hardness and tensile strengths to 100 HV and 324 MPa when compared to 80 HV and 300 MPa of base metal, respectively. In contrast, the FSW of milled AlMg5 and milled AlMg5-0.5 vol% Al_2O_3 samples showed a reduction in UTS values to 375 MPa and 401 MPa in the stir zone compared to 401 MPa and 483 MPa of respective base metal values. Transmission electron microscopic (TEM) investigation of weld stir zones revealed the homogenous distribution of Al_4C_3 nanophases in milled AlMg5 and Al_2O_3 nanoparticles in milled AlMg5-0.5 vol% Al_2O_3 samples throughout the aluminium matrix. It was revealed that the pre-stored energy from the prior ball milling and hot pressing processes, higher deformation energy and grain boundary pinning effect due to the presence of reinforcement particles has resulted in a higher recrystallization tendency and retarded grain growth during FSW of milled samples. The welds prepared with milled AlMg5-0.5 vol% Al_2O_3 exhibited higher hardness and tensile strength in the stir zone when compared to all other conditions which was attributed to Hall Petch effect due to fine grain size and Orowan strengthening effect due to Al_2O_3 reinforcements.

  4. Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8), a cation solid solution in a bimetallic borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Cerny, Radovan, E-mail: radovan.cerny@unige.ch [Laboratory of Crystallography, University of Geneva, 1211 Geneva (Switzerland); Penin, Nicolas [Laboratory of Crystallography, University of Geneva, 1211 Geneva (Switzerland); CNRS, Universite de Bordeaux 1, ICMCB, 87 Avenue du Docteur Albert Schweitzer, F-33608 Pessac Cedex (France); D' Anna, Vincenza; Hagemann, Hans [Department of Physical Chemistry, University of Geneva, 1211 Geneva (Switzerland); Durand, Etienne [CNRS, Universite de Bordeaux 1, ICMCB, 87 Avenue du Docteur Albert Schweitzer, F-33608 Pessac Cedex (France); Ruzicka, Jakub [Charles University, Faculty of Science, Department of Inorganic Chemistry, Hlavova 2030, 128 40, Prague 2 (Czech Republic)

    2011-08-15

    Highlights: {yields} The magnesium and manganese borohydrides form a solid solution Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8) which conserves the trigonal structure of Mn{sub (}(BH{sub 4}){sub 2}. {yields} Coexistence of both trigonal and hexagonal borohydrides occurs within nominal composition ranging from x{sub Mg} = 0.8-0.9. {yields} The decomposition temperature of trigonal Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8) does not vary significantly with magnesium content (433-453 K). {yields} The desorbed gas contains mostly hydrogen and 3-7.5 mol.% of diborane B{sub 2}H{sub 6}. - Abstract: A solid solution of magnesium and manganese borohydrides was studied by in situ synchrotron radiation X-ray powder diffraction and infrared spectroscopy. A combination of thermogravimetry, mass and infrared spectroscopy, and atomic emission spectroscopy were applied to clarify the thermal gas desorption of pure Mn(BH{sub 4}){sub 2} and a solid solution of composition Mg{sub 0.5}Mn{sub 0.5}(BH{sub 4}){sub 2}. Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8) conserves the trigonal structure of Mn(BH{sub 4}){sub 2} at room temperature. Manganese is dissolved in the hexagonal structure of {alpha}-Mg(BH{sub 4}){sub 2}, with the upper solubility limit not exceeding 10 mol.% at room temperature. There exists a two-phase region of trigonal and hexagonal borohydrides within the compositional range x = 0.8-0.9 at room temperature. Infrared spectra show splitting of various vibrational modes, indicating the presence of two cations in the trigonal Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} solid solutions, as well as the appearance of a second phase, hexagonal {alpha}-Mg(BH{sub 4}){sub 2}, at higher magnesium contents. All vibrational frequencies are shifted to higher values with increasing magnesium content. The decomposition temperature of the trigonal Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8) does not vary significantly as a function of the magnesium

  5. Interface reactions in the Al-Si-SiC and Mg-Al-Al{sub 2}O{sub 3} composite systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.K. [Commission of the European Communities, Petten (Netherlands). Inst. for Advanced Materials; Fazal-Ur-Rehman [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials; Fox, S. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials; Flower, H.M. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials; West, D.R.F.

    1995-12-31

    Structural and compositional observations are reported on the influence of the interfaces on the mechanisms and kinetics of liquid metal-ceramic reactions in Al-SiC, Al-Si-SiC, Mg-Al{sub 2}O{sub 3} and Mg-Al-Al{sub 2}O{sub 3} composites. The aluminium based materials contained up to 20 vol% SiC in particulate form, and were produced by a spray casting process; subsequently the interface reactions were studied in samples heated to temperatures up to 1100 C. The reaction product was Al{sub 4}C{sub 3} in both Al-SiC and Al-Si-SiC composites. The influence of the crystallography and topology of the SiC particle surfaces on the nucleation of the Al{sub 4}C{sub 3} has been demonstrated; surface asperities play an important role. Growth of nuclei proceeds to form continuous reaction product layers which control the subsequent kinetics. The magnesium based composites contained 5 vol% Al{sub 2}O{sub 3} fibres (3 {mu}m in diameter), and were produced by a liquid infiltration process. SD Safimax fibres with relatively low and high porosity, and also RF Saffil fibres, with a silica binder, were investigated. Fibre porosity plays a major role in accelerating the penetration of Mg into the fibres with reaction to form MgO. Silica binder on the fibre surface transforms to MgO. The reaction rate was reduced by the presence of aluminium in the matrix. The factors controlling the reactions in the aluminium and magnesium based composites are compared. (orig.)

  6. The Effectiveness of Al-Si Coatings for Preventing Interfacial Reaction in Al - Mg Dissimilar Metal Welding

    OpenAIRE

    Wang, Yin; Al-Zubaidy, Basem; Prangnell, Philip

    2017-01-01

    The dissimilar welding of aluminum to magnesium is challenging because of the rapid formation of brittle intermetallic compounds (IMC) at the weld interface. An Al-Si coating interlayer was selected to address this problem, based on thermodynamic calculations that predicted silicon would change the reaction path to avoid formation of the normally observed binary Al-Mg IMC phases (-Al3Mg2 and -Al12Mg17). Long-term static heat treatments confirmed that a Si-rich coating will preferentially pr...

  7. Novel Montmorillonite/TiO₂/MnAl-Mixed Oxide Composites Prepared from Inverse Microemulsions as Combustion Catalysts.

    Science.gov (United States)

    Napruszewska, Bogna D; Michalik-Zym, Alicja; Rogowska, Melania; Bielańska, Elżbieta; Rojek, Wojciech; Gaweł, Adam; Wójcik-Bania, Monika; Bahranowski, Krzysztof; Serwicka, Ewa M

    2017-11-19

    A novel design of combustion catalysts is proposed, in which clay/TiO₂/MnAl-mixed oxide composites are formed by intermixing exfoliated organo-montmorillonite with oxide precursors (hydrotalcite-like in the case of Mn-Al oxide) obtained by an inverse microemulsion method. In order to assess the catalysts' thermal stability, two calcination temperatures were employed: 450 and 600 °C. The composites were characterized with XRF (X-ray fluorescence), XRD (X-ray diffraction), HR SEM (high resolution scanning electron microscopy, N₂ adsorption/desorption at -196 °C, and H₂ TPR (temperature programmed reduction). Profound differences in structural, textural and redox properties of the materials were observed, depending on the presence of the TiO₂ component, the type of neutralization agent used in the titania nanoparticles preparation (NaOH or NH₃ (aq)), and the temperature of calcination. Catalytic tests of toluene combustion revealed that the clay/TiO₂/MnAl-mixed oxide composites prepared with the use of ammonia showed excellent activity, the composites obtained from MnAl hydrotalcite nanoparticles trapped between the organoclay layers were less active, but displayed spectacular thermal stability, while the clay/TiO₂/MnAl-mixed oxide materials obtained with the aid of NaOH were least active. The observed patterns of catalytic activity bear a direct relation to the materials' composition and their structural, textural, and redox properties.

  8. Evolution of magnetostructural transition and magnetocaloric effect with Al doping in MnCoGe1-xAlx compounds

    KAUST Repository

    Bao, Lifu; Hu, Fengxia; Wu, Rongrong; Wang, Jianping; Chen, Liming; Sun, Jirong; Shen, Baogen; Li, Lain-Jong; Zhang, Bei; Zhang, Xixiang

    2014-01-01

    The effect of Al doping in MnCoGe1-xAlx compounds has been investigated. The substitution of Al for Ge enhances Mn-Mn covalent bonding by shortening the distance of nearest Mn atom layers, and thus stabilizes the hexagonal structure. As a result, first-order magnetostructural transition between ferromagnetic martensite and paramagnetic austenite takes place for the optimized compositions (x = 0.01, 0.02). Accompanied with the magnetostructural transition, large magnetocaloric effect (MCE) is observed. More doping of Al(x = 0.03, 0.04) leads to the separation of magnetic and structural transitions and remarkable reduction of MCE. © 2014 IOP Publishing Ltd.

  9. Evolution of magnetostructural transition and magnetocaloric effect with Al doping in MnCoGe1-xAlx compounds

    KAUST Repository

    Bao, Lifu

    2014-01-03

    The effect of Al doping in MnCoGe1-xAlx compounds has been investigated. The substitution of Al for Ge enhances Mn-Mn covalent bonding by shortening the distance of nearest Mn atom layers, and thus stabilizes the hexagonal structure. As a result, first-order magnetostructural transition between ferromagnetic martensite and paramagnetic austenite takes place for the optimized compositions (x = 0.01, 0.02). Accompanied with the magnetostructural transition, large magnetocaloric effect (MCE) is observed. More doping of Al(x = 0.03, 0.04) leads to the separation of magnetic and structural transitions and remarkable reduction of MCE. © 2014 IOP Publishing Ltd.

  10. Irradiation behavior of U{sub 6}Mn-Al dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.K. E-mail: mitchell.meyer@anl.gov; Wiencek, T.C.; Hayes, S.L.; Hofman, G.L

    2000-04-01

    Irradiation testing of U{sub 6}Mn-Al dispersion fuel miniplates was conducted in the Oak Ridge Research Reactor (ORR). Post-irradiation examination showed that U{sub 6}Mn in an unrestrained plate configuration performs similarly to U{sub 6}Fe under irradiation, forming extensive and interlinked fission gas bubbles at a fission density of approximately 3x10{sup 27} m{sup -3}. Fuel plate failure occurs by fission gas pressure driven 'pillowing' on continued irradiation.

  11. The Age-Precipitations Structure Of Al-Mg-Ge Alloy Aged At 473K

    Directory of Open Access Journals (Sweden)

    Kawai A.

    2015-06-01

    Full Text Available The Al-Mg-Ge alloy is one of the age-hardening aluminum alloy after solution heat treatment. It has been proposed that the age-precipitation behavior of Al-Mg-Ge alloy is different from that of Al-Mg-Si alloy according to our previous works about the microstructure on Al-Mg-Ge alloy over-aged at 523K. For example, The hardness of peak aged Al-1.0mass%Mg2Ge alloy is higher than that of Al-1.0mass%Mg2Si alloy. The precipitates in the over-aged samples have been classified as some metastable phases, such as the β’-phase and Type-A precipitates and equilibrium phase of β-Mg2Ge by TEM observation. There a few reports about microstructure on Al-Mg-Ge alloys observed by TEM for different aging times. The age-precipitations structure of Al-Mg-Ge alloy has not been became clear. In this work, TEM observation was investigated the microstructure on Al-1.0mass%Mg2Ge alloy for difference aging times aged at 473K.

  12. Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles

    International Nuclear Information System (INIS)

    Jiao, Z.B.; Luan, J.H.; Miller, M.K.; Yu, C.Y.; Liu, C.T.

    2015-01-01

    The critical role of Mn partitioning in the formation of ordered NiAl nanoparticles in ferritic steels has been examined through a combination of atom probe tomography (APT) and thermodynamic and first-principles calculations. Our APT study reveals that Mn partitions to the NiAl nanoparticles, and dramatically increases the particle number density by more than an order of magnitude, leading to a threefold enhancement in strengthening. Atomistic structural analyses reveal that Mn is energetically favored to partition to the NiAl nanoparticles by preferentially occupying the Al sublattice, which not only increases the driving force, but also reduces the strain energy for nucleation, thereby significantly decreasing the critical energy for formation of the NiAl nanoparticles in ferritic steels. In addition, the effects of Mn on the precipitation strengthening mechanisms were quantitatively evaluated in terms of chemical strengthening, coherency strengthening, modulus strengthening and order strengthening

  13. Neural network potential for Al-Mg-Si alloys

    Science.gov (United States)

    Kobayashi, Ryo; Giofré, Daniele; Junge, Till; Ceriotti, Michele; Curtin, William A.

    2017-10-01

    The 6000 series Al alloys, which include a few percent of Mg and Si, are important in automotive and aviation industries because of their low weight, as compared to steels, and the fact their strength can be greatly improved through engineered precipitation. To enable atomistic-level simulations of both the processing and performance of this important alloy system, a neural network (NN) potential for the ternary Al-Mg-Si has been created. Training of the NN uses an extensive database of properties computed using first-principles density functional theory, including complex precipitate phases in this alloy. The NN potential accurately reproduces most of the pure Al properties relevant to the mechanical behavior as well as heat of solution, solute-solute, and solute-vacancy interaction energies, and formation energies of small solute clusters and precipitates that are required for modeling the early stage of precipitation and mechanical strengthening. This success not only enables future detailed studies of Al-Mg-Si but also highlights the ability of NN methods to generate useful potentials in complex alloy systems.

  14. Phase control of Mn-based spinel films via pulsed laser deposition

    International Nuclear Information System (INIS)

    Feng, Zhenxing; Chen, Xiao; Fister, Timothy T.; Bedzyk, Michael J.; Fenter, Paul

    2016-01-01

    Phase transformations in battery cathode materials during electrochemical-insertion reactions lead to capacity fading and low cycle life. One solution is to keep the same phase of cathode materials during cation insertion-extraction processes. Here, we demonstrate a novel strategy to control the phase and composition of Mn-based spinel oxides for magnesium-ion battery applications through the growth of thin films on lattice-matched substrates using pulsed laser deposition. Materials at two extreme conditions are considered: fully discharged cathode MgMn_2O_4 and fully charged cathode Mn_2O_4. The tetragonal MgMn_2O_4 (MMO) phase is obtained on MgAl_2O_4 substrates, while the cubic MMO phase is obtained on MgO substrates. Similarly, growth of the empty Mn_2O_4 spinel in the cubic phase is obtained on an MgO substrate. These results demonstrate the ability to control separately the phase of spinel thin films (e.g., tetragonal vs. cubic MMO) at nominally fixed composition, and to maintain a fixed (cubic) phase while varying its composition (MgxMn_2O_4, for x = 0, 1). As a result, this capability provides a novel route to gain insights into the operation of battery electrodes for energy storage applications.

  15. Sorption of phosphates and thiocyanates on isomorphic substituted Mg/Zn–Al-type hydrotalcites

    Directory of Open Access Journals (Sweden)

    RODICA PODE

    2008-08-01

    Full Text Available The sorption equilibriums of phosphate and thiocyanate anions on isomorphic substituted Mg/Zn–Al-type hydrotalcites were investigated in this study. Langmuir and Freundlich isotherms were used to interpret the equilibrium data for phosphate. The sorption equilibriums of phosphate on Mg3Al, Mg2ZnAl and Mg1.5Zn1.5Al hydrotalcites were well described by the Langmuir isotherm. The highest maximum sorption capacities for these adsorbents were as follows: 111, 101 and 95 mg g-1. The equilibrium constant and standard Gibbs energy changes were also calculated from the sorption data. Standard Gibbs energy changes of about –20 kJ mol-1 indicated that the process might be considered as physical adsorption. The sorption equilibriums of phosphate on isomorphic substituted samples of MgZn2Al and Zn3Al were well described by the Freundlich isotherm. Thiocyanate showed a relative low affinity for the studied materials, as indicated by both the “S”-shaped isotherms and low sorption capacities. The sorption of phosphate and thiocyanate on the investigated hydrotalcites showed a continuous decrease of the sorption capacity in the following order: Mg3Al > Mg2ZnAl > Mg1.5Zn1.5Al > MgZn2Al > Zn3Al.

  16. Calculation of phase equilibria in Ti-Al-Cr-Mn quaternary system for developing lower cost titanium alloys

    International Nuclear Information System (INIS)

    Lu, X.G.; Li, C.H.; Chen, L.Y.; Qiu, A.T.; Ding, W.Z.

    2011-01-01

    Highlights: → This paper is about the concept of designing the lower cost titanium alloy. → The thermodynamic database of Ti-Al-Cr-Mn system is built up by Calphad method. → The pseudobinary sections with Cr: Mn = 3:1 and Al = 3, 4.5 and 6.0 wt% are calculated. → This may provide the theoretical support for designing the lower cost titanium alloy. - Abstract: The Ti-Al-Cr-Mn system is a potentially useful system for lower cost titanium alloy development; however, there are few reports about the experimental phase diagrams and the thermodynamical assessment for this system. In this study, the previous investigations for the thermodynamic descriptions of the sub-systems in the Ti-Al-Cr-Mn system are reviewed, our previous assessment for the related sub-systems in this quaternary system is summarized, the thermodynamical database of this quaternary system is built up by directly extrapolating from all sub-systems assessed by means of the Calphad method, then the pseudobinary sections with Cr:Mn = 3:1 and Al = 0.0, 3.0, 4.5 and 6.0 wt% are calculated, respectively. These pseudobinary phase diagrams may provide the theoretical support for designing the lower cost titanium alloys with different microstructures (α, α + β, and β titanium alloy).

  17. Thermomechanical Treatments on High Strength Al-Zn-Mg(-Cu) Alloys

    National Research Council Canada - National Science Library

    Di Russo, E; Conserva, M; Gatto, F

    1974-01-01

    An investigation was carried out to determine the metallurgical properties of Al-Zn-Mg and Al-Zn-Mg-Cu alloy products processed according to newly developed Final Thermomechanical Treatments (FTMT) of T-AHA type...

  18. Electronic and magnetic properties of the Co{sub 2}MnAl/Au interface: Relevance of the Heusler alloy termination

    Energy Technology Data Exchange (ETDEWEB)

    Makinistian, L., E-mail: lmakinistian@santafe-conicet.gov.ar [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, 3000 Santa Fe (Argentina); Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Albanesi, E.A. [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, 3000 Santa Fe (Argentina); Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina)

    2015-07-01

    We present ab initio calculations of electronic and magnetic properties of the ferromagnetic metal/normal metal (F/N) interface of the Heusler alloy Co{sub 2}MnAl and gold. Two structural models are implemented: one with the ferromagnet slab terminated in a pure cobalt plane (“Co{sub 2}-t”), and the other with it terminated with a plane of MnAl (“MnAl-t”). The relaxed optimum distance between the slabs is determined for the two models before densities of states, magnetic moments, and the electric potential are resolved and analyzed layer by layer through the interface. Complementary, calculations for the free surfaces of gold and the Heusler alloy (for both models, Co{sub 2}-t and MnAl-t) are performed for a better interpretation of the physics of the interface. We predict important differences between the two models, suggesting that both terminations are to be expected to display sensibly different spin injection performances. - Highlights: • Ab initio electronic and magnetic properties of the interface Co{sub 2}MnAl/Au. • Two terminations were studied: Co{sub 2} and MnAl terminated. • The termination of the Heusler alloy sensibly determines the interface properties. • The Co{sub 2} terminated interface displays a higher spin polarization.

  19. Amorphous Al–Mn coating on NdFeB magnets: Electrodeposition from AlCl3–EMIC–MnCl2 ionic liquid and its corrosion behavior

    International Nuclear Information System (INIS)

    Chen Jing; Xu Bajin; Ling Guoping

    2012-01-01

    Amorphous Al–Mn coating was electrodeposited on NdFeB magnets from AlCl 3 –EMIC–MnCl 2 ionic liquid with the pretreatment of anodic electrolytic etching in AlCl 3 –EMIC ionic liquid at room temperature. The microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The corrosion resistance of the coatings was tested by means of potentiodynamic polarization and immersion test in 3.5 wt. % NaCl solution. The results show that anodic electrolytic etching in AlCl 3 –EMIC ionic liquid is a satisfactory pretreatment to remove the surface oxide film and favor the adhesion of the Al–Mn alloy coating to the NdFeB substrate. The amorphous Al–Mn alloy coating provides sacrificial anodic protection for NdFeB. It exhibited good corrosion resistance and significantly reduced the corrosion current density of NdFeB by three orders of magnitude at potentiodynamic polarization. - Highlights: ► Amorphous Al–Mn alloy coating was electrodeposited on NdFeB magnet from ionic liquid. ► To remove the surface oxides of NdFeB, anodic etching pretreatment is used. ► The deposited Al–Mn alloy coating shows high adhesion to the NdFeB substrate. ► Corrosion tests show that amorphous Al–Mn alloy coating is anodic coating for NdFeB magnet.

  20. Thermodynamic calculation of Al-Gd and Al-Gd-Mg phase equilibria checked by key experiments

    International Nuclear Information System (INIS)

    Groebner, J.; Kevorkov, D.; Schmid-Fetzer, R.

    2001-01-01

    The binary Al-Gd and the ternary Al-Gd-Mg systems were calculated using the Calphad method. It is demonstrated that previous interpretation of ternary liquidus temperatures below 700 C must be related to other phase equilibria. The actual ternary liquidus temperatures are much higher, up to some 600 C above the previous interpretation in literature. They are widely governed by the high-melting compounds Al 2 Gd and Al 3 Gd with liquidus surfaces stretching far into the ternary system. A small number of key experiments in this work confirmed the calculated liquidus temperature and the phase relations. The available experimental data in literature fit excellently with the calculation in the binary Al-Gd system. In the ternary Al-Gd-Mg system, which is shown in several sections of the phase diagram, a good agreement can be observed too, considering the necessary reinterpretation of the liquidus temperatures suggested by Rokhlin et al. Ternary solubilities were not found experimentally. The ternary compound Al 4 GdMg (τ) forms in a ternary peritectic reaction at 761 C. (orig.)

  1. Instability of TiC and TiAl3 compounds in Al-10Mg and Al-5Cu alloys by addition of Al-Ti-C master alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The performance of Al-Ti-C master alloy in refining Al-10Mg and A1-5Cu alloys was studied by using electron probe micro-analyzer (EPMA) and X-ray diffractometer (XRD) analysis.The results indicate that there are obvious fading phenomena in both Al-10Mg and Al-5Cu alloys with the addition of Al-5Ti-0.4C refiner which contains TiC and TiAl3 compounds.Mg element has no influence on the stability of TiC and TiAl3, while TiC particles in Al-10Mg alloy react with Al to form Al4C3 particles, resulting in the refinement fading.However, TiC particles are relatively stable in Al-5Cu alloy, while TiAl3 phase reacts with Al2Cu to produce a new phase Ti(Al, Cu)2, which is responsible for the refinement fading in Al-5Cu alloy.These indicate that the refinement fading will not occur only when both the TiC particles and TiAl3 compound of Al-Ti-C refiner are stable in Al alloys.

  2. Microstructural Analysis of AM50/Mg2Si Cast Magnesium Composites

    Directory of Open Access Journals (Sweden)

    Malik M.A.

    2012-12-01

    Full Text Available AM50/Mg2Si composites containing 5.7 wt. % and 9.9 wt. %. of Mg2Si reinforcing phase were prepared successfully by casting method. The microstructure of the cast AM50/Mg2Si magnesium matrix composites was investigated by light microscopy and X-ray diffractometry (XRD. The microstructure of these composites was characterized by the presence of α-phase (a solid solution of aluminium in magnesium, Mg17Al12 (γ-phase, Al8Mn5 and Mg2Si. It was demonstrated that the Mg2Si phase was formed mainly as primary dendrites and eutectic.

  3. Influence of Microstructure on Corrosion Property of Mg-Al-Zn Alloy

    International Nuclear Information System (INIS)

    Lee, Jeong Ja; Na, Seung Chan; Yang, Won Seong; Hwang, WoonSuk; Jang, Si Sung; Yoo, Hwang Ryong

    2006-01-01

    Influence of microstructure on the corrosion property of Mg-Al-Zn Alloy was investigated using potentiodynamic polarization experiments, galvanic coupling experiments, and scanning electron microscopy in sodium chloride solutions. Pitting was the mot common form of attack in chloride solution, and filiform corrosion was also occurred in AZ91D-T4 alloy. On the contrary, filiform attack in the bulk matrix was predominant corrosion form in AZ91D-T6 alloy, and the number and size of pit were decreased than those of AZ91D-T4 alloy. Galvanic coupling effect between Mg 17 Al 12 and matrix was existed, but the propagation of galvanic corrosion was localized only near the Mg 17 Al 12 phase in AZ91D-6T alloy. The corrosion resistance of Mg-Al matrix increased with decreasing Al content in the matrix. And, it could be regarded that Al content in the matrix is decreased by precipitation of Mg 17 Al 12 curing the aging treatment and it decreases the anodic reaction rate of the matrix and galvanic effect in AZ91D-T6 alloy. It could be considered that the composition and macrostructure of surface protective layer would be varied by precipitation of Mg 17 Al 12 and subsequent decreasing of Al content in the matrix. And it would contribute the corrosion resistance of AZ91D-T6 aging alloy

  4. Investigation on electronic and magnetic properties of Mn2NiAl by ab initio calculations and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Masrour, R.; Jabar, A.; Hlil, E.K.; Hamedoun, M.; Benyoussef, A.; Hourmatallah, A.; Rezzouk, A.; Bouslykhane, K.; Benzakour, N.

    2017-01-01

    Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full potential Linear Augmented Plane Wave (FLAPW) method, are performed to investigate both electronic and magnetic properties of the Mn 2 NiAl. Magnetic moment considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for Monte Carlo simulations to compute other magnetic parameters. Also, the magnetic properties of Mn 2 NiAl are studied using the Monte Carlo simulations. The variation of magnetization and magnetic susceptibility with the reduced temperature of Mn 2 NiAl are investigated. The transition temperature of this system is deduced for different values exchange interaction and crystal field. The thermal total magnetization has been obtained, and the magnetic hysteresis cycle is established. The total magnetic moment is superior to those obtained by the other method and is mainly determined by the antiparallel aligned Mn I , Mn II and Ni spin moments. The superparamagnetic phase is found at the neighborhood of transition temperature. - Highlights: • Ab initio calculations are used to study magnetic and electronic properties of Mn 2 NiX. • The transition temperature of Mn 2 NiX is established. • The magnetic hysteresis cycle of M n2 NiX (X = Al, Ga, In, Sn) is deduced. • The magnetic coercive field of Mn 2 NiX (X = Al, Ga, In, Sn) is given.

  5. Hydrodeoxygenation of furfuryl alcohol over Cu/MgAl and Cu/ZnAl catalysts derived from hydrotalcite-like precursors

    Directory of Open Access Journals (Sweden)

    Natalia Andrea Pino

    2017-01-01

    Full Text Available The aqueous phase hydrodeoxygenation (HDO of furfuryl alcohol over Cu/MgAl and Cu/ZnAl catalysts with different Mg/Al and Zn/Al molar ratios, were investigated. Mg-Al and Zn-Al mixed oxides derived from hydrotalcites precursors were used as supports, which were impregnated with an aqueous solution of copper nitrate by incipient wetness impregnation. The HDO reaction was carried out in a typical batch reactor at 5 MPa of H2 and 200 °C for 4 h. Among the catalysts studied, the Cu/MgAl-0.5 catalyst exhibited the higher furfuryl alcohol conversion (86% and yield of cyclopentanol (35%, which is the reaction product with the highest hydrogen-carbon (H/C ratio. With the Cu/MgAl-3 catalyst a high cyclopentanone yield (67% was achieved. The results obtained, showed that copper supported on mixed oxides catalysts derived from hydrotalcite precursors are a promising alternative to improve the bio-oil quality.

  6. Evolution of a novel Si-18Mn-16Ti-11P alloy in Al-Si melt and its influence on microstructure and properties of high-Si Al-Si alloy

    Directory of Open Access Journals (Sweden)

    Xiao-Lu Zhou

    Full Text Available A novel Si-18Mn-16Ti-11P master alloy has been developed to refine primary Si to 14.7 ± 1.3 μm, distributed uniformly in Al-27Si alloy. Comparing with traditional Cu-14P and Al-3P, Si-18Mn-16Ti-11P provided a much better refining effect, with in-situ highly active AlP. The refined Al-27Si alloy exhibited a CTE of 16.25 × 10−6/K which is slightly higher than that of Sip/Al composites fabricated by spray deposition. The UTS and elongation of refined Al-27Si alloy were increased by 106% and 235% comparing with those of unrefined alloy. It indicates that the novel Si-18Mn-16Ti-11P alloy is more suitable for high-Si Al-Si alloys and may be a candidate for refining hypereutectic Al-Si alloy for electronic packaging applications. Moreover, studies showed that TiP is the only P-containing phase in Si-18Mn-16Ti-11P master alloy. A core-shell reaction model was established to reveal mechanism of the transformation of TiP to AlP in Al-Si melts. The transformation is a liquid-solid diffusion reaction driven by chemical potential difference and the reaction rate is controlled by diffusion. It means sufficient holding time is necessary for Si-18Mn-16Ti-11P master alloy to achieve better refining effect. Keywords: Hypereutectic Al-Si alloy, Primary Si, Refinement, AlP, Thermal expansion behavior, Si-18Mn-16Ti-11P master alloy

  7. The Influence of the Asymmetric Arb Process on the Properties of Al-Mg-Al Multi-Layer Sheets / Wpływ Asymetrii W Procesie Arb Na Właściwości Wielowarstwowych Blach Al-Mg-Al

    Directory of Open Access Journals (Sweden)

    Wierzba A.

    2015-12-01

    Full Text Available The paper presents the results of the experimental study of the three-layer Al-Mg-Al sheets rolling process by the ARB method. The tests carried out were limited to single-pass symmetric and asymmetric rolling processes. An Al-Mg-Al package with an initial thickness of 4 mm (1-2-1 mm was subjected to the process of rolling with a relative reduction of 50%. To activate the shear band in the strip being deformed, an asymmetry factor of av=2 was applied. From the test results, an increase in the tensile strength of the multi-layer Al-Mg-Al sheets obtained from the asymmetric process was observed. Microhardness tests did not show any significant differences in aluminium layer between respective layers of sheets obtained from the symmetric and the asymmetric process. By contrast, for the magnesium layer, an increase in microhardness from 72 HV to 79 HV could be observed for the asymmetric rolling. The analysis of the produced Al-Mg-Al sheets shows that the good bond between individual layers and grain refinement in the magnesium layer contributed to the obtaining of higher mechanical properties in the multi-layer sheets produced in the asymmetric process compared to the sheets obtained from the symmetric process.

  8. Martensitic Transformation and Superelasticity in Fe-Mn-Al-Based Shape Memory Alloys

    Science.gov (United States)

    Omori, Toshihiro; Kainuma, Ryosuke

    2017-12-01

    Ferrous shape memory alloys showing superelasticity have recently been obtained in two alloy systems in the 2010s. One is Fe-Mn-Al-Ni, which undergoes martensitic transformation (MT) between the α (bcc) parent and γ' (fcc) martensite phases. This MT can be thermodynamically understood by considering the magnetic contribution to the Gibbs energy, and the β-NiAl (B2) nanoprecipitates play an important role in the thermoelastic MT. The temperature dependence of critical stress for the MT is very small (about 0.5 MPa/°C) due to the small entropy difference between the parent and martensite phases in the Fe-Mn-Al-Ni alloy, and consequently, superelasticity can be obtained in a wide temperature range from cryogenic temperature to about 200 °C. Microstructural control is of great importance for obtaining superelasticity, and the relative grain size is among the most crucial factors.

  9. Direct observations of grain boundary phenomena during indentation of Al and Al-Mg thin films

    NARCIS (Netherlands)

    Soer, WA; De Hosson, JTM; Minor, AM; Stach, EA; Morris, Joan K.; Corcoran, SG; Joo, YC; Moody, NR; Suo, Z

    2004-01-01

    The deformation behaviour of Al and Al-Mg thin films has been studied with the unique experimental approach of in-situ nanoindentation in a transmission electron microscope. This paper concentrates on the role of solute Mg additions in the transfer of plasticity across grain boundaries. The

  10. Age hardening in mechanically alloyed Al-Mg-Li-C-O

    Energy Technology Data Exchange (ETDEWEB)

    Papazian, J.M. (Corporate Research Center, Grumman Corporation, Bethpage, NY (USA)); Gilman, P. (Allied-Signal Inc., Morristown, NJ (USA))

    1990-05-01

    The age-hardening behavior of a series of mechanically alloyed Al-Mg-Li-C-O alloys containing 3.0-4.0 wt.% Mg and 1.3-1.75 wt.% Li was studied using hardness tests, differential scanning calorimetry (DSC) and transmission electron microscopy. The hardness tests showed an increased hardness after 100degC aging in all the alloys containing at least 1.5 at.% Li. Likewise, the calorimetry results showed the presence of pronounced precipitate dissolution peaks in these same alloys after 100degC aging. The volume fraction of precipitates formed (as measured by the dissolution enthalpies of the DSC peaks) increased systematically with increasing solute content. Transmission electron microscopy after 100 and 190degC aging showed images and diffraction spots similar to those of {delta}' (Al{sub 3}Li). Comparison of the DSC results with results from binary Al-Li and Al-Mg alloys indicated that the precipitates formed in the Al-Mg-Li-C-O alloys were similar to those formed in binary Al-Li alloys, and that the primary role of the magnesium was to lower the solid solubility of lithium. (orig.).

  11. Atomic bonding and mechanical properties of Al-Mg-Zr-Sc alloy

    Institute of Scientific and Technical Information of China (English)

    高英俊; 班冬梅; 韩永剑; 钟夏平; 刘慧

    2004-01-01

    The valence electron structures of Al-Mg alloy with minor Sc and Zr were calculated according to the empirical electron theory(EET) in solid. The results show that because of the strong interaction of Al atom with Zr and Sc atom in melting during solidification, the Al3 Sc and Al3 (Sc1-xZrx) particles which act as heterogeneous nuclear are firstly crystallized in alloy to make grains refine. In progress of solidification, the Al-Sc, Al-Zr-Sc segregation regions are formed in solid solution matrix of Al-Mg alloy owing to the strong interaction of Al atom with Zr, Scatoms in bulk of alloy, so in the following homogenization treatment, the finer dispersed Al3 Sc and Al3 (Sc1-x Zrx) second-particles which are coherence with the matrix are precipitated in the segregation region. These finer second particles with the strong Al-Zr, Al-Sc covalent bonds can strengthen the covalent bonds in matrix of the alloy, and also enhance the hardness and strength of Al-Mg alloy. Those finer second-particles precipitated in interface of sub-grains can also strengthen the covalence bonds there, and effectively hinder the interface of sub-grains from migrating and restrain the sub-grains from growing, and cause better thermal stability of Al-Mg alloy.

  12. Effect of solution concentration on sealing treatment of Mg-Al hydrotalcite film on AZ91D Mg alloy

    Directory of Open Access Journals (Sweden)

    Qiangsheng Dong

    2017-09-01

    Full Text Available Cerium-based sealing treatment was developed for Mg-Al hydrotalcite film on AZ91D Mg alloy, and the influence of cerium salt solution was investigated to modify the surface integrity and corrosion resistance. Scanning electron microscope (SEM and X-ray diffraction (XRD measurements were carried out to analyze the surface morphology and phase composition. The corrosion resistance of Mg-Al hydrotalcite film after sealing treatment was evaluated by the polarization curve and electrochemical impedance spectroscopy (EIS tests. The results showed that lower concentration of Ce-containing solution was beneficial to seal the micro-cracks on Mg-Al hydrotalcite film, and improve the surface integrity and corrosion resistance; higher concentration of Ce-containing solution could seal fewer micro-cracks, and the corrosion resistance was decreased owing to the disintegration of Mg-Al hydrotalcite film.

  13. Hydrogenation of carbon monoxide on Co/MgAl2O4 and Ce-Co/MgAl2O4 catalysts

    International Nuclear Information System (INIS)

    Kondoh, S.; Muraki, H.; Fujitani

    1986-01-01

    It is well known that various hydrocarbons are obtained by hydrogenation of CO on Fischer-Tropsch catalysts, the products depending on the catalyst components such as Co, Ni, Fe and Ru: and the reaction conditions, particularly, temperature, pressure, space velocity and H 2 /CO ratio. Further, both reactivity and selectivity of catalysts may be improved by suitable selection of support and an additive. The main program of the present work is to develop a catalyst for producing C 5 + liquid hydrocarbons, as an automobile fuel, by the Fischer-Tropsch synthesis. The authors have studied unique CO catalyst systems consisting of various supports - such as Al 2 O 3 (γ, β, α), MgAl 2 O 4 (alumina magnesia spinel), MgO and additives selected from the lanthanoid elements (LE). The composition of spinel-based supports was altered in a range from 28 mol % excess Al 2 O 3 to 28 mol % excess MgO. Particularly, they found that a MgAl 2 O 4 support with 15-18 mol % excess Al 2 O 3 is the most preferable for our purpose and CeO 2 as the additive for Co/spinel catalyst remarkably improves C 5 + yield. Further, it was confirmed that the catalytic activity of Co-base catalysts agree with the oxidation state of Co-oxides on Co and Co-Ce/spinel catalysts. The performance of Co-based catalysts for the production of higher hydrocarbons from syn-gas were described elsewhere. The items described in this report include (a) selection of supports, (b) selection of optimum reaction conditions for Co-Ce/spinel catalyst, (c) redox characteristics of Co-oxides on a spinel surface, and (d) experimental observation of TPD profiles, adsorption capacities and IR spectra relating to adsorbed CO

  14. NMR study on the low-temperature state of LaMn4Al8

    International Nuclear Information System (INIS)

    Muro, Y.; Nakamura, H.; Kohara, T.

    2007-01-01

    The ground state of the quasi-one-dimensional itinerant electron magnet LaMn 4 Al 8 with strong electron correlation has been investigated by NMR. The presence of weak and broad zero-field 55 Mn resonance, corresponding to internal field of 8-11T, indicates slowing down of spins partially released from the spin-singlet-like state in the spin chains

  15. Friction Stir Welding-assisted Diffusion Bond of Al/Zn/Mg Lap Joint

    Directory of Open Access Journals (Sweden)

    JIN Yu-hua

    2018-03-01

    Full Text Available Dissimilar materials welding between 2mm-thick AZ31B Mg alloy and 6061 Al alloy plates in overlap form was performed using the friction stir-induced diffusion bond with zinc foil as the interlayer. The microstructure and mechanical properties of the Al/Zn/Mg lap joints were analyzed by means of SEM, EPMA, XRD, tensile experiment and Vickers hardness test. The results show that diffusion layer consists of Al enrichment zone, Al5Mg11Zn4 layer and Mg-Zn eutectic zone at proper rotation speed; however, when rotation speed is low, the residual zinc interlayer remains in the diffusion layer; when rotation speed is high, the Al-Mg intermetallic compounds are present again. Due to the existence of intermetallic compounds in diffusion layer, its microhardness is significantly higher than that of base metal. The addition of zinc foil can improve the mechanical properties of Al/Mg lap joints. According to analysis on the fracture, joint failure occurs in the diffusion layer near to Al side.

  16. Synthesis and structural transformations of hydrotalcite-like materials Mg-Al and Zn-Al

    NARCIS (Netherlands)

    Prihod'ko, R.V.; Sychev, M.V.; Astrelin, I.M.; Erdmann, K.; Mangel, A.; Santen, van R.A.

    2001-01-01

    Mg-Al and Zn-Al hydrotalcite-like layered double hydroxides of various compositions were synthesized and characterized. A detailed comparative analysis of the structure and composition of starting and reconstructed layered double hydroxides was made

  17. Fabrication of BN/Al(-Mg) metal matrix composite (MMC) by pressureless infiltration technique

    Energy Technology Data Exchange (ETDEWEB)

    Jung, W.G.; Kwon, H. [School of Advanced Materials Eng., Kookmin Univ., Seoul (Korea)

    2004-07-01

    BN/Al(-Mg) metal matrix composite (MMC) was fabricated by the pressureless infiltration technique. The phase characterizations of the composites were analyzed using the SEM, TEM, EDS and EPMA on reaction products after the electrochemical dissolution of the matrix. It is confirmed that aluminum nitride (AlN) was formed by the reaction of Mg{sub 3}N{sub 2} and Al alloy melt. Plate type AlN and polyhedral type Mg(-Al) boride were formed by the reaction between Mg{sub 3}N{sub 2}, BN and molten Al in the composite. The reaction mechanism in the fabrication of BN/Al(-Mg) MMC was derived from the phase analysis results and the thermodynamic investigation. (orig.)

  18. Magnetic properties of multiferroic TbMnO{sub 3} doped with Al

    Energy Technology Data Exchange (ETDEWEB)

    Perez, F. [Centro de Ciencias de la Materia Condensada, Universidad Nacional Autonoma de Mexico, Km. 107.5 Carretera Tijuana-Ensenada, Ensenada, B.C. (Mexico); Escudero, R. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A. Postal 70-360, Mexico, D.F. 04510 (Mexico); Heiras, J.

    2007-07-01

    The synthesis, characterization, and magnetic properties of polycrystalline Tb{sub 1-x}Al{sub x}MnO{sub 3} with x=0.05 and 0.1 is reported. Samples were synthesized by the conventional solid state reaction method producing single phase compounds. Rietveld refinements indicate that Al substitutes Tb in the structure. Samples were highly porous with grain sizes up to {proportional_to}10 {mu}m. The magnetic measurements show a magnetic ordering, starting from antiferromagnetism, for the undoped sample, to a weak ferromagnetic phase coexisting with the antiferromagnetic phase for the two x values. The magnetic ordering is attributed to two different contributions of Mn and Tb sublattices. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Solid solution limits and selected mechanical properties of the quaternary L12 trialuminide Al-Ti-Mn-Mo

    International Nuclear Information System (INIS)

    Schneibel, J.H.

    1994-01-01

    Intermetallics based on the trialuminide Al 3 Ti, or on Al 11 Ti 5 , have been extensively researched in recent years. Alloying with approximately 10 at.% of first-row transition elements, such as Cr or Mn, converts the DO 22 structure of Al 3 Ti to L1 2 . Although this transition to the L1 2 structure increases the number of independent slip systems to five and causes substantial softening, room-temperature tensile ductilities and fracture toughnesses remain low. Typical values for the room-temperature ductilities of Al-25Ti-8Cr and Al-25Ti-9Mn are 0.2% and room-temperature fracture toughnesses of trialuminides range from 2 to 5 MPa m 1/2 . Reasons for the low fracture toughness of trialuminides have been discussed by Turner et al. and George et al. On a phenomenological basis, it appears that fracture toughnesses might improve, if either Poisson's ratio or the ratio of the bulk and shear moduli can be increased. In principle, this might be achieved by macroalloying ternary L1 2 trialuminides, while at the same time maintaining the L1 2 crystal structure. Focusing on first-row transition elements, Kumar and Brown investigated a range of such quaternary compounds. They did not observe any improvement in ductility, as compared to the ternary compounds. In the present work, it was decided to focus on a second-row transition element, namely, 2 molybdenum. As compared to Cr and Mn, which are only slightly soluble in Al 3 Ti, up to 20 at. % Mo dissolves in Al 3 Ti at 1,198 K. This raises the question whether substantial amounts of Mo also dissolve in the cubic ternary trialuminides such as Al-Ti-Mn. In order to verify this possibility, the extent of the single-phase region of cubic Al-Ti-Mn-Mo intermetallic was mapped out at 1,473 K. In addition, a limited characterization of room-temperature mechanical properties was carried out

  20. Effect of Thermomagnetic Treatment on Structure and Properties of Cu-Al-Mn Alloy.

    Science.gov (United States)

    Titenko, A N; Demchenko, L D; Perekos, A O; Gerasimov, O Yu

    2017-12-01

    The paper studies the influence of magnetic field on magnetic and mechanical properties of Cu-Mn-Al alloy under annealing. The comparative analysis of the magnetic field orientation impact on solid solution decomposition processes in a fixed annealing procedure is held using the methods of low-field magnetic susceptibility, specific magnetization, and microhardness test. The paper highlights changes in the magnetic and mechanical properties of Cu-Al-Mn alloy as the result of change in a critical size of forming precipitated ferromagnetic phase and determines correlation in the behavior of magnetic and mechanical properties of the alloy, depending on a critical nucleus size of forming precipitated ferromagnetic phase.

  1. Susceptibility testing for welding of AlMg alloys intended for extrusion

    Directory of Open Access Journals (Sweden)

    J. Borowski

    2016-07-01

    Full Text Available The objective of research was to determine the weldability, using Tungsten Inert Gas (TIG of extruded sections made of hard-deformable 5xxx series aluminum alloys with differing magnesium content, i.e. AlMg3, AlMg4,5, AlMg5, AlMg7. Welded joints were obtained as a result of a welding process consisting of several steps. Only welds characterized by very good appearance and quality were selected for tests. As a result of conducted research, TIG welding parameters were determined for sections with a thickness of 8 mm. It was observed that alloys of differing Mg content are characterized by high weldability and do not exhibit a significant reduction of the yield point. Moreover, joints exhibit uniform hardness distribution in the welded joint and heat-affected zone. Tensile strength is reduced.

  2. Mg/Al HYDROTALCITE-LIKE SYNTHESIZED FROM BRINE WATER FOR EOSIN YELLOW REMOVAL

    Directory of Open Access Journals (Sweden)

    Eddy Heraldy

    2011-11-01

    Full Text Available Attempts to synthesis of Mg/Al HTlc using magnesium from several raw material resources are widely investigated. One of raw material would purpose as source of magnesium to synthesis of Mg/Al HTlc is brine water which is well known as the desalination process wastewater. Mg/Al HTlc are widely investigated for their potential applications in research and industrial processes as adsorbents, anionic exchange, catalysts and /or catalyst precursors for the preparation of inorganic materials and pharmaceutical industry excipients. As adsorbents, Mg/Al HTlc are receiving greater interests in the environmental community due to their high adsorption capacity. However, there is no literature available on the synthesis of Mg/Al HTlc from brine water except from artificial seawater. The objective of this research is to synthesis of Mg/Al HTlc from brine water and its ability tested for eosin yellow (EY removal. Characterization of the Mg/Al HTlc synthesized was confirmed through X-ray Diffraction and FT-IR Spectroscopy. The effect of various experimental parameters was investigated using a batch adsorption technique. In this manner, the adsorption isotherms, adsorption kinetics, and pH effects upon EY adsorption on Mg/Al HTlc were examined. The result showed that EY data fit well with the pseudo-second order kinetic model. The isothermal data could be well described by the Freundlich equation. The adsorption capacity was 2.41 × 10-1 mol g-1, and adsorption energy of EY was 24.89 kJ mol-1.

  3. Corrosion behavior of die-cast Mg-4Al-2Sn-xCa alloy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Chul; Kim, Byeong Ho; Kim, Kyung Ro [Defence Agency for Technology and Quality, Jinju (Korea, Republic of); Cho, Dae Hyun; Park, Ik Min [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    In the present work, the effect of Ca additions on microstructure and corrosion characteristics of high pressure die-cast Mg-4Al-2Sn alloy has been investigated. Mg-4Al-2Sn-xCa (x= 0, 0.3 and 0.7wt.%) alloy was prepared by using a high pressure die-casting method. Results indicated that the microstructure of Mg-4Al-2Sn alloy consisted of α-Mg, Mg{sub 17}Al{sub 12} and Mg{sub 2}Sn phase. With increase of Ca additions, CaMgSn phase was newly formed and grain size was sharply decreased. From the test results, the corrosion resistance of die-cast Mg-4Al-2Sn alloy was significantly improved by Ca addition. It is considered that stabilization of Mg(OH){sub 2} layer and refinements of microstructure with increase of Ca additions.

  4. Al-Cu-Li and Al-Mg-Li alloys: Phase composition, texture, and anisotropy of mechanical properties (Review)

    Science.gov (United States)

    Betsofen, S. Ya.; Antipov, V. V.; Knyazev, M. I.

    2016-04-01

    The results of studying the phase transformations, the texture formation, and the anisotropy of the mechanical properties in Al-Cu-Li and Al-Mg-Li alloys are generalized. A technique and equations are developed to calculate the amounts of the S1 (Al2MgLi), T1 (Al2CuLi), and δ' (Al3Li) phases. The fraction of the δ' phase in Al-Cu-Li alloys is shown to be significantly higher than in Al-Mg-Li alloys. Therefore, the role of the T1 phase in the hardening of Al-Cu-Li alloys is thought to be overestimated, especially in alloys with more than 1.5% Li. A new model is proposed to describe the hardening of Al-Cu-Li alloys upon aging, and the results obtained with this model agree well with the experimental data. A texture, which is analogous to that in aluminum alloys, is shown to form in sheets semiproducts made of Al-Cu-Li and Al-Mg-Li alloys. The more pronounced anisotropy of the properties of lithium-containing aluminum alloys is caused by a significant fraction of the ordered coherent δ' phase, the deformation mechanism in which differs radically from that in the solid solution.

  5. Microstructure and magnetic behavior studies of processing-controlled and composition-modified Fe-Ni and Mn-Al alloys

    Science.gov (United States)

    Geng, Yunlong

    L10-type (Space group P4/mmm) magnetic compounds, including FeNi and MnAl, possess promising technical magnetic properties of both high magnetization and large magnetocrystalline anisotropy energy, and thus offer potential in replacing rare earth permanent magnets in some applications. In equiatomic Fe-Ni, the disorder-order transformation from fcc structure to the L10 structure is a diffusional transformation, but is inhibited by the low ordering temperature. The transformation could be enhanced through the creation of vacancies. Thus, mechanical alloying was employed to generate more open-volume defects. A decrease in grain size and concomitant increase in grain boundary area resulted from the mechanical alloying, while an initial increase in internal strain (manifested through an increase in dislocation density) was followed by a subsequent decrease with further alloying. However, a decrease in the net defect concentration was determined by Doppler broadening positron annihilation spectroscopy, as open volume defects utilized dislocations and grain boundaries as sinks. An alloy, Fe32Ni52Zr3B13, formed an amorphous structure after rapid solidification, with a higher defect concentration than crystalline materials. Mechanical milling was utilized in an attempt to generate even more defects. However, it was observed that Fe32Ni52Zr3B13 underwent crystallization during the milling process, which appears to be related to enhanced vacancy-type defect concentrations allowing growth of pre-existing Fe(Ni) nuclei. The milling and enhanced vacancy concentration also de-stabilizes the glass, leading to decreased crystallization temperatures, and ultimately leading to complete crystallization. In Mn-Al, the L10 structure forms from the parent hcp phase. However, this phase is slightly hyperstoichiometric relative to Mn, and the excess Mn occupies Al sites and couples antiparallel to the other Mn atoms. In this study, the Zr substituted preferentially for the Mn atoms in the

  6. Application of Al-2La-1B Grain Refiner to Al-10Si-0.3Mg Casting Alloy

    Science.gov (United States)

    Jing, Lijun; Pan, Ye; Lu, Tao; Li, Chenlin; Pi, Jinhong; Sheng, Ningyue

    2018-05-01

    This paper reports the application and microstructure refining effect of an Al-2La-1B grain refiner in Al-10Si-0.3Mg casting alloy. Compared with the traditional Al-5Ti-1B refiner, Al-2La-1B refiner shows better performances on the grain refinement of Al-10Si-0.3Mg alloy. Transmission electron microscopy analysis suggests that the crystallite structure features of LaB6 are beneficial to the heterogeneous nucleation of α-Al grains. Regarding the mechanical performances, tensile properties of Al-10Si-0.3Mg casting alloy are prominently improved, due to the refined microstructures.

  7. 26Mg(p,n)26Al and 23Na(α,n)26Al reactions

    International Nuclear Information System (INIS)

    Skelton, R.T.

    1985-01-01

    Cross sections for the 26 Mg(p,n) 26 Al reaction were measured from threshold at 4.988 MeV to 5.820 MeV. Cross sections for the 23 Na(α,n) 26 Al reaction were measured from threshold at 3.483 MeV to 4.597 MeV. In each case, separate measurements were to the ground state and to the first and second excited states of 26 Al. Cross sections for the inverse reactions were calculated and reaction rate factors relating to the destruction of 26 Al in a supernova environment were determined. Astrophysical implications relating to the observation of live and extinct 26 Al are discussed. Excitation functions for several additional exit channels for the 26 Mg + rho and 23 Na + α reactions are reported

  8. Identification of Intermetallic Compounds and Its Formation Mechanism in Boron Steel Hot-Dipped in Al-7 wt.% Mn Alloy

    Directory of Open Access Journals (Sweden)

    Sung-Yun Kwak

    2017-12-01

    Full Text Available In laser welding and hot stamping Al-Si-coated boron steel, there is a problem that the strength of the joint is lowered due to ferrite formation in the fusion zone. The purpose of this study is to develop an Al-7 wt.% Mn hot-dip coating in which Mn, an austenite stabilizing element, replaces the ferrite stabilizing element Si. The nucleation and formation mechanism of the reaction layer was studied in detail by varying the dipping time between 0 and 120 s at 773 °C. The microstructure and phase constitution of the reaction layer were investigated by various observational methods. Phase formation is discussed using a phase diagram calculated by Thermo-CalcTM. Under a 30 s hot-dipping process, no reaction occurred due to the formation of a Fe3O4 layer on the steel surface. The Fe3O4 layer decomposed by a reduction reaction with Al-Mn molten alloy, constituent elements of steel dissolved into a liquid, and the reaction-layer nucleus was formed toward the liquid phase. A coated layer consists of a solidified layer of Al and Al6Mn and a reactive layer formed beneath it. The reaction layer is formed mainly by inter-diffusion of Al and Fe in the solid state, which is arranged on the steel in the order of Al11Mn4 → FeAl3 (θ → Fe2Al5 (η phases, and the Fe3AlC (κ in several nm bands formed at the interface between the η-phase and steel.

  9. Soldering of Mg Joints Using Zn-Al Solders

    Science.gov (United States)

    Gancarz, Tomasz; Berent, Katarzyna; Skuza, Wojciech; Janik, Katarzyna

    2018-04-01

    Magnesium has applications in the automotive and aerospace industries that can significantly contribute to greater fuel economy and environmental conservation. The Mg alloys used in the automotive industry could reduce mass by up to 70 pct, providing energy savings. However, alongside the advantages there are limitations and technological barriers to use Mg alloys. One of the advantages concerns phenomena occurring at the interface when joining materials investigated in this study, in regard to the effect of temperature and soldering time for pure Mg joints. Eutectic Zn-Al and Zn-Al alloys with 0.05 (wt pct) Li and 0.2 (wt pct) Na were used in the soldering process. The process was performed for 3, 5, and 8 minutes of contact, at temperatures of 425 °C, 450 °C, 475 °C, and 500 °C. Selected, solidified solder-substrate couples were cross-sectioned, and their interfacial microstructures were investigated by scanning electron microscopy. The experiment was designed to demonstrate the effect of time, temperature, and the addition of Li and Na on the kinetics of the dissolving Mg substrate. The addition of Li and Na to eutectic Zn-Al caused to improve mechanical properties. Higher temperatures led to reduced joint strength, which is caused by increased interfacial reaction.

  10. Magnetic properties and EXAFS study of nanocrystalline Fe2Mn0.5Cu0.5Al synthesized using mechanical alloying technique

    International Nuclear Information System (INIS)

    Nanto, Dwi; Yang, Dong-Seok; Yu, Seong-Cho

    2014-01-01

    Nanocrystalline Fe 2 Mn 0.5 Cu 0.5 Al has been synthesized by the mechanical alloying technique and studied as a function of milling time. Alloy nature of Fe 2 Mn 0.5 Cu 0.5 Al was observed in a sample milled for 96 h. The magnetic saturation is 4.0 μ B /f.u., which coincidently follows Slater–Pauling rule at 5 K. Nanocrystalline Fe 2 Mn 0.5 Cu 0.5 Al has enhanced saturate magnetization compared to any other fabrication of Fe 2 MnAl reported. Cu element plays an important role in site competes with other elements and may result in the enhancement of saturate magnetization. In accordance to the magnetic results and EXAFS pattern, it was revealed that the dynamics of magnetic properties were confirmed as structural changes of nanocrystalline Fe 2 Mn 0.5 Cu 0.5 Al

  11. Investigation on electronic and magnetic properties of Mn{sub 2}NiAl by ab initio calculations and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000 Safi (Morocco); Jabar, A. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000 Safi (Morocco); Hlil, E.K. [Institut Néel, CNRS, Université Grenoble Alpes, BP 166, F-38042 Grenoble cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hourmatallah, A. [Equipe de Physique du Solide, Laboratoire LIPI, Ecole Normale Supérieure, BP 5206, Bensouda, Fes (Morocco); Rezzouk, A.; Bouslykhane, K.; Benzakour, N. [Laboratoire de Physique du Solide, Université Sidi Mohammed Ben Abdellah, Faculté des sciences DharMahraz, BP 1796, Fes (Morocco)

    2017-04-15

    Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full potential Linear Augmented Plane Wave (FLAPW) method, are performed to investigate both electronic and magnetic properties of the Mn{sub 2}NiAl. Magnetic moment considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for Monte Carlo simulations to compute other magnetic parameters. Also, the magnetic properties of Mn{sub 2}NiAl are studied using the Monte Carlo simulations. The variation of magnetization and magnetic susceptibility with the reduced temperature of Mn{sub 2}NiAl are investigated. The transition temperature of this system is deduced for different values exchange interaction and crystal field. The thermal total magnetization has been obtained, and the magnetic hysteresis cycle is established. The total magnetic moment is superior to those obtained by the other method and is mainly determined by the antiparallel aligned Mn{sub I}, Mn{sub II} and Ni spin moments. The superparamagnetic phase is found at the neighborhood of transition temperature. - Highlights: • Ab initio calculations are used to study magnetic and electronic properties of Mn{sub 2}NiX. • The transition temperature of Mn{sub 2}NiX is established. • The magnetic hysteresis cycle of M{sub n2}NiX (X = Al, Ga, In, Sn) is deduced. • The magnetic coercive field of Mn{sub 2}NiX (X = Al, Ga, In, Sn) is given.

  12. Mechanical clinching process stress and strain in the clinching of EN-AW5754 (AlMg3, and EN AW-5019 (AlMg5 metal plates

    Directory of Open Access Journals (Sweden)

    J. Cumin

    2018-01-01

    Full Text Available This paper presents the results of Finite Element Method numerical simulation performed onEN-AW5754(AlMg3, EN AW-5019 (AlMg5 plates subjected to mechanical clinching. The goal was to observe differences between aluminum plates in the same tool; and to determine the possibility of using the constructed tool for the clinching of Al-Al material combinations. This tool construction is to be produced and tested in laboratory conditions, to elaborate prospective results, and reach additional conclusions.

  13. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-01

    Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (Al–5Mg–Mn alloy with low Fe content (Al6(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe), intermetallic Al6(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn) to become the primary phase at a lower Mn content. PMID:28787888

  14. Effects of Manganese Content on Solidification Structures, Thermal Properties, and Phase Transformation Characteristics in Fe-Mn-Al-C Steels

    Science.gov (United States)

    Yang, Jian; Wang, Yu-Nan; Ruan, Xiao-Ming; Wang, Rui-Zhi; Zhu, Kai; Fan, Zheng-Jie; Wang, Ying-Chun; Li, Cheng-Bin; Jiang, Xiao-Fang

    2015-04-01

    To assist developments of the continuous-casting technology of Fe-Mn-Al-C steels, the solidification structures and the thermal properties of Fe-Mn-Al-C steel ingots with different manganese contents have been investigated and the phase transformation characteristics have been revealed by FactSage (CRCT-ThermFact Inc., Montréal, Canada). The results show that the thermal conductivity of the 0Mn steel is the highest, whereas the thermal conductivity of the 8Mn steel is slightly higher than that of the 17Mn steel. Increasing the manganese content promotes a columnar solidification structure and coarse grains in steel. With the increase of manganese content, the mass fraction of austenite phase is increased. Finally, a single austenite phase is formed in the 17Mn steel. The mean thermal expansion coefficients of the steels are in the range from 1.3 × 10-5 to 2.3 × 10-5 K-1, and these values increase with the increase of manganese content. The ductility of the 17Mn steel and the 8Mn steel are higher than 40 pct in the temperature range from 873 K to 1473 K (600 °C to 1200 °C), and the cracking during the straightening operation should be avoided. However, the ductility of the 0Mn steel is lower than 40 pct at 973 K and 1123 K (700 °C and 850 °C), which indicates that the temperature of the straightening operation during the continuous-casting process should be above 1173 K (900 °C). Manganese has the effect of enlarging the austenite phase region and reducing the δ-ferrite phase region and α-ferrite phase region. At the 2.1 mass pct aluminum level, the precipitate temperature of AlN is high. Thus, the formed AlN is too coarse to deteriorate the hot ductility of steel.

  15. Novel Montmorillonite/TiO2/MnAl-Mixed Oxide Composites Prepared from Inverse Microemulsions as Combustion Catalysts

    Directory of Open Access Journals (Sweden)

    Bogna D. Napruszewska

    2017-11-01

    Full Text Available A novel design of combustion catalysts is proposed, in which clay/TiO2/MnAl-mixed oxide composites are formed by intermixing exfoliated organo-montmorillonite with oxide precursors (hydrotalcite-like in the case of Mn-Al oxide obtained by an inverse microemulsion method. In order to assess the catalysts’ thermal stability, two calcination temperatures were employed: 450 and 600 °C. The composites were characterized with XRF (X-ray fluorescence, XRD (X-ray diffraction, HR SEM (high resolution scanning electron microscopy, N2 adsorption/desorption at −196 °C, and H2 TPR (temperature programmed reduction. Profound differences in structural, textural and redox properties of the materials were observed, depending on the presence of the TiO2 component, the type of neutralization agent used in the titania nanoparticles preparation (NaOH or NH3 (aq, and the temperature of calcination. Catalytic tests of toluene combustion revealed that the clay/TiO2/MnAl-mixed oxide composites prepared with the use of ammonia showed excellent activity, the composites obtained from MnAl hydrotalcite nanoparticles trapped between the organoclay layers were less active, but displayed spectacular thermal stability, while the clay/TiO2/MnAl-mixed oxide materials obtained with the aid of NaOH were least active. The observed patterns of catalytic activity bear a direct relation to the materials’ composition and their structural, textural, and redox properties.

  16. Study of preferential sputtering and segregation effects on the surface composition of Al-Pd-Mn quasi-crystals

    Energy Technology Data Exchange (ETDEWEB)

    Samavat, F.; Gladys, M.; Jenks, C.; Lograsso, T.; King, M.; O' Connor, D.

    2008-02-25

    Using 2 keV He+ and Ne+ low-energy ion scattering (LEIS), it was found that the Al/Pd concentration ratio at the surface of a nominally Al69.9Pd20.5Mn9.6 quasi-crystal decreases to a steady-state value under bombardment as a result of preferential sputtering. Sputtering of an annealed surface results in a significant increase in Mn concentration on the surface which remained at annealing temperatures below 575 K. Variations of the Mn/Pd and Al/Pd ratios have been measured by LEIS as a function of temperature in the range 295-975 K for clean-annealed and sputtered surfaces. The results show that Al/Pd ratio does not significantly change from 295 to 575 K for both He+ and Ne+ but increases with sample temperatures up to 875 K.

  17. Effect of polymorphism of Al2O3 on the sintering and microstructure of transparent MgAl2O4 ceramics

    Science.gov (United States)

    Han, Dan; Zhang, Jian; Liu, Peng; Wang, Shiwei

    2017-09-01

    Transparent MgAl2O4 ceramics were fabricated by reactive sintering in air followed by hot isostatic press treatment using commercial Al2O3 powder (γ-Al2O3 or α-Al2O3) and MgO powder as raw materials. The densification rate, microstructure and optical properties of the ceramics were investigated. Densification temperature of the sample from γ-Al2O3/MgO was lower than that from α-Al2O3/MgO. However, in-line transmission (2 mm thick) of the sample from α-Al2O3/MgO at the wavelength of 600 nm and 1100 nm were respectively 77.7% and 84.3%, higher than those (66.7%, 81.4%) of the sample from γ-Al2O3/MgO. SEM observation revealed that the sample from α-Al2O3/MgO exhibited a homogeneous and pore-free microstructure, while, the sample from γ-Al2O3/MgO showed an apparent bimodal microstructure containing pores.

  18. Gerichtete Erstarrung von Al-Si und Al-Si-Mn Legierungen unter dem Einfluss von magnetischen Wechselfeldern

    OpenAIRE

    Orth, Andreas

    2013-01-01

    In this work, samples of two alloys, Al-Si7 and Al-Si7-Mn1, are directionally solidified and their structure microscopically analysed. Thereby, the combined influence of induced current flow and intermetallic precipitates is of particular interest. A newly modified "Artemis" setup at the institute of material physics at the DLR in Cologne allows controlled solidification velocities of 30 to 240 micron/s under a constant temperature gradient of 3 K/mm. In using silica aerogels as part of the c...

  19. High Temperature Deformation of Twin-Roll Cast Al-Mn-Based Alloys after Equal Channel Angular Pressing.

    Science.gov (United States)

    Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav

    2015-11-12

    Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed-the strain rate dependence of the parameter m , the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range.

  20. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities.

    Science.gov (United States)

    Bakhsheshi-Rad, H R; Hamzah, E; Low, H T; Kasiri-Asgarani, M; Farahany, S; Akbari, E; Cho, M H

    2017-04-01

    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg 2 (Zn, Al) 11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5MgAl-0.3MgAl-0.1MgAl. The cytotoxicity tests exhibited that the Zn-0.5Al-0.5Mg alloy presents higher viability of MC3T3-E1 cell compared to the Zn-0.5Al alloy, which suggested good biocompatibility. The antibacterial activity result of both Zn-0.5Al and Zn-0.5Al-Mg alloys against Escherichia coli presented some antibacterial activity, while the Zn-0.5Al-0.5Mg significantly prohibited the growth of Escherichia coli. Thus, Zn-0.5Al-0.5Mg alloy with appropriate mechanical properties, low corrosion rate, good biocompatibility and antibacterial activities was believed to be a good candidate as a biodegradable implant material. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Band gap depiction of quaternary FeMnTiAl alloy using Hubbard (U) potential

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Yousuf, Saleem; Khandy, Shakeel Ahmad; Gupta, Dinesh C.

    2018-05-01

    We have employed self-consistent ab-initio calculations to investigate new quaternary alloy FeMnTiAl by applying Hubbard potential (U). The alloy is found to be stable in ferromagnetic phase with cubic structure. The alloy shows half-metallic (HM) ferromagnet character. The values of minority band gap FeMnTiAl are found to be 0.33 eV respectively. Electronic charge density reveals that both types of bonds covalent as well as ionic are present in the alloy. Thus the new quaternary alloy can be proved as vital contender for spin valves and spin generator devices.

  2. Effect of AlP coating on electrochemical properties of LiMn{sub 2}O{sub 4} cathode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiaoyu; Zhang, Jianxin, E-mail: jianxin@sdu.edu.cn; Yin, Longwei

    2016-02-15

    Highlights: • Modified LiMn{sub 2}O{sub 4} surface with AlP successfully. • AlP coating surface modification enhances the cycling stability of LiMn{sub 2}O{sub 4} at both room temperature and 60 °C. • AlP coating surface modification improves the rate capability of LiMn{sub 2}O{sub 4}. - Abstract: AlP-modified LiMn{sub 2}O{sub 4} has been synthesized via a simple chemical deposition method followed by high-temperature heating. The X-ray diffraction patterns, SEM images and Energy Dispersive Spectrometer show the successful surface coating of LiMn{sub 2}O{sub 4} by F-43 m crystal form AlP. AlP-modified LiMn{sub 2}O{sub 4} has a high discharge capacity of 125.7 mAh g{sup −1} with retention of 87% at a current density of 1C between 3.3 V and 4.3 V after 100 cycles at 60 °C, while bare LiMn{sub 2}O{sub 4} has more than 28% capacity loss. At 10 rates, the coated sample delivers capacity of 100 mAh g{sup −1}, which is much higher than bare LiMn{sub 2}O{sub 4}. Based on the EIS (electrochemical impedance spectroscopy) result, AlP coating can effectively inhibit the increase of the charge transfer resistance during charging and discharging cycles.

  3. Revisiting 26Al-26Mg systematics of plagioclase in H4 chondrites

    Science.gov (United States)

    Telus, M.; Huss, G. R.; Nagashima, K.; Ogliore, R. C.

    2014-06-01

    Zinner and Göpel found clear evidence for the former presence of 26Al in the H4 chondrites Ste. Marguerite and Forest Vale. They assumed that the 26Al-26Mg systematics of these chondrites date "metamorphic cooling of the H4 parent body." Plagioclase in these chondrites can have very high Al/Mg ratios and low Mg concentrations, making these ion probe analyses susceptible to ratio bias, which is inversely proportional to the number of counts of the denominator isotope (Ogliore et al.). Zinner and Göpel used the mean of the ratios to calculate the isotope ratios, which exacerbates this problem. We analyzed the Al/Mg ratios and Mg isotopic compositions of plagioclase grains in thin sections of Ste. Marguerite, Forest Vale, Beaver Creek, and Sena to evaluate the possible influence of ratio bias on the published initial 26Al/27Al ratios for these meteorites. We calculated the isotope ratios using total counts, a less biased method of calculating isotope ratios. The results from our analyses are consistent with those from Zinner and Göpel, indicating that ratio bias does not significantly affect 26Al-26Mg results for plagioclase in these chondrites. Ste. Marguerite has a clear isochron with an initial 26Al/27Al ratio indicating that it cooled to below 450 °C 5.2 ± 0.2 Myr after CAIs. The isochrons for Forest Vale and Beaver Creek also show clear evidence that 26Al was alive when they cooled, but the initial 26Al/27Al ratios are not well constrained. Sena does not show evidence that 26Al was alive when it cooled to below the Al-Mg closure temperature. Given that metallographic cooling rates for Ste. Marguerite, Forest Vale, and Beaver Creek are atypical (>5000 °C/Myr at 500 °C) compared with most H4s, including Sena, which have cooling rates of 10-50 °C/Myr at 500 °C (Scott et al.), we conclude that the Al-Mg systematics for Ste. Marguerite, Forest Vale, and Beaver Creek are the result of impact excavation of these chondrites and cooling at the surface of the

  4. Air permeability of the artificially synthesized Zn-Al-Mg alloy rusts

    International Nuclear Information System (INIS)

    Ishikawa, Tatsuo; Ueda, Masato; Kandori, Kazuhiko; Nakayama, Takenori

    2007-01-01

    The rust particles of Zn-Al-Mg alloys were synthesized from aqueous solutions dissolving ZnCl 2 , AlCl 3 , and MgCl 2 at different atomic ratios of the metal ions. The crystal phase and particle morphology of the products depended on the composition of the starting solutions. The compactness of the layers of the products was estimated by measuring their air permeability. The layer of mixed metal hydroxide chloride formed at Zn:Al:Mg = 1:1:1 showed a highest compactness, that was ascribed to the preferred orientation of the fine plate particles. The addition of Mg(II) made plate particles smaller to give more compact layers

  5. Thermodynamic analysis of 6xxx series Al alloys: Phase fraction diagrams

    Directory of Open Access Journals (Sweden)

    Cui S.

    2018-01-01

    Full Text Available Microstructural evolution of 6xxx Al alloys during various metallurgical processes was analyzed using accurate thermodynamic database. Phase fractions of all the possible precipitate phases which can form in the as-cast and equilibrium states of the Al-Mg-Si-Cu-Fe-Mn-Cr alloys were calculated over the technically useful composition range. The influence of minor elements such as Cu, Fe, Mn, and Cr on the amount of each type of precipitate in the as-cast and equilibrium conditions were analyzed. Phase fraction diagrams at 500 °C were mapped in the composition range of 0-1.1 wt.% Mg and 0-0.7 wt.% Si to investigate the as-homogenized microstructure. In addition, phase fraction diagram of Mg2Si at 177 °C was mapped to understand the microstructure after final annealing of 6xxx Al alloy. Based on the calculated diagrams, the design strategy of 6xxx Al alloy to produce highest strength due to Mg2Si is discussed.

  6. Substitution studies of Mn and Fe in Ln{sub 6}W{sub 4}Al{sub 43} (Ln=Gd, Yb) and the structure of Yb{sub 6}Ti{sub 4}Al{sub 43}

    Energy Technology Data Exchange (ETDEWEB)

    Treadwell, LaRico J.; Watkins-Curry, Pilanda [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Department of Chemistry, University of Texas at Dallas, Richardson, TX 75080 (United States); McAlpin, Jacob D. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Prestigiacomo, Joseph; Stadler, Shane [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Chan, Julia Y., E-mail: Julia.Chan@utdallas.edu [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Department of Chemistry, University of Texas at Dallas, Richardson, TX 75080 (United States)

    2014-02-15

    The synthesis and characterization of Mn- and Fe-substituted Ln{sub 6}W{sub 4}Al{sub 43} (Ln=Gd, Yb) and Yb{sub 6}Ti{sub 4}Al{sub 43} are reported. The compounds adopt the Ho{sub 6}Mo{sub 4}Al{sub 43} structure type with lattice parameters of a∼11 Å and c∼17.8 Å with structural site preferences for Mn and Fe. The magnetization of Yb{sub 6}W{sub 4}Al{sub 43} is sensitive to Mn and Fe doping, which is evident by an increase in the field dependent magnetization. Gd{sub 6}W{sub 4}Al{sub 43}, Gd{sub 6}W{sub 4}Al{sub 42.31(11)}Mn{sub 0.69(11)}, and Gd{sub 6}W{sub 4}Al{sub 41.69(12)}Fe{sub 1.30(12)} order antiferromagnetically in the ab- and c-directions at 15, 14, and 13 K, respectively, with positive Weiss constants, suggesting the presence of ferromagnetic exchange interactions. Anisotropic magnetization data of Gd{sub 6}W{sub 4}Al{sub 43−y}T{sub y} (T=Mn, Fe) analogs are discussed. - Graphical abstract: The magnetic susceptibility of Ln{sub 6}W{sub 4−x}Al{sub 43−y}T{sub x+y} (Ln = Gd, Yb; T= Mn, Fe). Display Omitted - Highlights: • Single crystals of Ln{sub 6}W{sub 4−x}Al{sub 43−y}T{sub x+y} were grown with Al-flux. • Anisotropic magnetic behavior were determined on single crystals. • Gd{sub 6}W{sub 4−x}Al{sub 43−y}T{sub x+y} (T=Mn, Fe) analogs order antiferromagnetically.

  7. Role of 3d-ions for radiation defect production in MgO and MgAl2O4

    International Nuclear Information System (INIS)

    Mironova, N.A.; Grinvald, G.A.; Skvortsova, V.N.

    1985-01-01

    Optical properties of MgO and MgAl 2 O 4 crystals containing chromium and manganese impurity ions were studied by exposure to but all types of radiation. Complicated defects of the ''impurity-intrinsic matrix defect'' type were preferably considered. It has been shown that different symmetry center forming chromium ions in MgO:Crsup(3+) change their valency with various efficiency being exposed to external action. Besides, the compensating vacancy does not participate in the hole center formation. For MgOxAl 2 O 3 single crystals the presence of octahedrally coordinated manganese ions suppresses the hole center creation by gamma-irradiation. Studying luminescence spectra of Crsup(3+) ions in MgAl 2 O 4 it has been states that neutron irradiation increases the degree of inversion for the magnesium-aluminium spinel

  8. Effects of MnO-Al2O3 on the grain growth and high-temperature deformation strain of UO2 fuel pellets

    International Nuclear Information System (INIS)

    Kang, Ki Won; Yang, Jae Ho; Kim, Jong Hun; Rhee, Young Woo; Kim, Dong Joo; Kim, Keon Sik; Song, Kun Woo

    2010-01-01

    The fabrication and high-temperature deformation strain of MnO-Al 2 O 3 -doped UO 2 pellets were studied. The effects of additive composition and amount on the microstructure evolution of a UO 2 pellet were investigated. The compressive creep behaviors of MnO-Al 2 O 3 -doped UO 2 pellets were examined. The results indicated that a MnO-Al 2 O 3 binary additive can effectively promote the grain growth of UO 2 pellets. In addition, the high-temperature deformation strain of the UO 2 pellet can be improved significantly with 1,000 ppm 95MnO-5Al 2 O 3 (mol%). The developed MnO-Al 2 O 3 -additive-containing UO 2 pellets can be a potential candidate for a high-burn-up fuel and a pellet-cladding interaction (PCI) remedy. (author)

  9. Adsorption of procion red using layer double hydroxide Mg/Al

    Directory of Open Access Journals (Sweden)

    Muhammad Imron

    2017-07-01

    Full Text Available Layer double hydroxide Mg/Al was synthesized by inorganic synthetic method. Material was characterized using FTIR and XRD analyses and used as adsorbent of procion red dye in aqueous medium.  Factors that affect the adsorption process are adsorption time as the kinetic parameter; and the temperature and concentration of procion red as the thermodynamic parameter. FTIR spectra of layer double hydroxides showed unique vibration at wavenumber 1300 cm-1 and 1600 cm-1. Characterization using XRD shows diffraction angles at 29o, 27o, and 28o, which are typical of Mg/Al double layer hydroxides. Adsorption of procion red using layer double hydroxide Mg/Al resulted adsorption rate 7.1 minutes-1, maximum adsorption capacity 111.1 mg/g at 60 oC with increasing energy by increasing adsorption temperature.   Keywords: Layered double hydroxides, adsorption, procion red.

  10. Mechanical, dynamical and thermodynamic properties of Al-3wt%Mg from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rong [Chongqing Jiaotong Univ., Chongqing (China). College of Materials Science and Engineering; Tang, Bin [Chongqing City Management College, Chongqing (China). Inst. of Finance and Trade; Gao, Tao [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics

    2017-09-01

    The mechanical, dynamical and thermodynamic properties of Al-3wt%Mg have been investigated using the first-principles method. The calculated structural parameter is in good agreement with previous works. Results for the elastic modulus, stress-strain relationships, ideal tensile and shear strengths are presented. Al-3wt%Mg is found to have larger moduli and higher strengths than Al, which is consistent with its exploitation in Al precipitate-hardening mechanisms. The partial density of states (PDOS) show that the partly covalent-like bonding through Al p-Mg s hybridization is the origin of excellent mechanical properties of Al-3wt%Mg. The phonon dispersion curves indicate that Al-3wt%Mg is dynamically stable at ambient pressure and 0 K. Furthermore, the Helmholtz free energy ΔF, the entropy S, the constant-volume specific heat C{sub V} and the phonon contribution to the internal energy ΔE are predicted using the phonon density of states. We expect that our work can provide useful guidance to help with the performance of Al-3wt%Mg.

  11. Mechanical, dynamical and thermodynamic properties of Al-3wt%Mg from first principles

    International Nuclear Information System (INIS)

    Yang, Rong; Tang, Bin; Gao, Tao

    2017-01-01

    The mechanical, dynamical and thermodynamic properties of Al-3wt%Mg have been investigated using the first-principles method. The calculated structural parameter is in good agreement with previous works. Results for the elastic modulus, stress-strain relationships, ideal tensile and shear strengths are presented. Al-3wt%Mg is found to have larger moduli and higher strengths than Al, which is consistent with its exploitation in Al precipitate-hardening mechanisms. The partial density of states (PDOS) show that the partly covalent-like bonding through Al p-Mg s hybridization is the origin of excellent mechanical properties of Al-3wt%Mg. The phonon dispersion curves indicate that Al-3wt%Mg is dynamically stable at ambient pressure and 0 K. Furthermore, the Helmholtz free energy ΔF, the entropy S, the constant-volume specific heat C_V and the phonon contribution to the internal energy ΔE are predicted using the phonon density of states. We expect that our work can provide useful guidance to help with the performance of Al-3wt%Mg.

  12. Experiment-based modelling of grain boundary β-phase (Mg2Al3) evolution during sensitisation of aluminium alloy AA5083.

    Science.gov (United States)

    Zhang, R; Steiner, M A; Agnew, S R; Kairy, S K; Davies, C H J; Birbilis, N

    2017-06-07

    An empirical model for the evolution of β-phase (Mg 2 Al 3 ) along grain boundaries in aluminium alloy AA5083 (Al-Mg-Mn) during isothermal exposures is proposed herein. Developing a quantitative understanding of grain boundary precipitation is important to interpreting intergranular corrosion and stress corrosion cracking in this alloy system. To date, complete ab initio models for grain boundary precipitation based upon fundamental principles of thermodynamics and kinetics are not available, despite the critical role that such precipitates play in dictating intergranular corrosion phenomena. Empirical models can therefore serve an important role in advancing the understanding of grain boundary precipitation kinetics, which is an approach applicable beyond the present context. High resolution scanning electron microscopy was to quantify the size and distribution of β-phase precipitates on Ga-embrittled intergranular fracture surfaces of AA5083. The results are compared with the degree of sensitisation (DoS) as judged by nitric acid mass loss testing (ASTM-G67-04), and discussed with models for sensitisation in 5xxx series Al-alloys. The work herein allows sensitisation to be quantified from an unambiguous microstructural perspective.

  13. Dual-scale phase-field simulation of Mg-Al alloy solidification

    International Nuclear Information System (INIS)

    Monas, A; Shchyglo, O; Tegeler, M; Steinbach, I; Höche, D

    2015-01-01

    Phase-field simulations of the nucleation and growth of primary α-Mg phase as well as secondary, β-phase of a Mg-Al alloy are presented. The nucleation model for α- and β-Mg phases is based on the “free growth model” by Greer et al.. After the α-Mg phase solidification we study a divorced eutectic growth of α- and β-Mg phases in a zoomed in melt channel between α-phase dendrites. The simulated cooling curves and final microstructures of α-grains are compared with experiments. In order to further enhance the resolution of the interdendritic region a high-performance computing approach has been used allowing significant simulation speed gain when using supercomputing facilities. (paper)

  14. INFLUENCE OF THE HOMOGENIZATION TEMPERATURE ON THE MICROSTRUCTURE AND PROPERTIES OF AlSi10CuNiMgMn ALLOY

    Directory of Open Access Journals (Sweden)

    Jaromir Cais

    2017-03-01

    Full Text Available The article examines the impact of changes in homogenization temperature in the hardening process on the microstructure of aluminum alloys. Samples where the research was conducted were cast from AlSi10CuNiMn alloy produced by gravity casting technology in metal mold. Subsequently, the castings were subjected to a heat treatment. In an experiment with changing temperature and staying time in the process of homogenization. The microstructure of the alloy was investigated by methods of light and electron microscopy. Examination of the microstructure has focused on changing the morphology of separated particles of eutectic silicon and intermetallic phases. Analysis of intermetallic phases was supplemented by an analysis of the chemical composition - EDS analysis. Effect of heat treatment on the properties investigated alloy was further complemented by Vickers microhardness. Investigated alloy is the result of longtime research conducted at Faculty of Production Technology and Management.

  15. Circadian rhythm in concentrations of Mg, K, Ca and Mn in Japanese morning glory during flowering process

    International Nuclear Information System (INIS)

    Ikeue, Natsuko; Tanoi, Keitaro; Furukawa, Jun; Yokota, Harumi; Okuni, Yoko; Nakanishi, Tomoko M.

    2001-01-01

    Concentrations of 4 trace elements, Mg, K, Ca and Mn, in each tissues of Japanese morning glory were analyzed during the flower development. To determine the element amount, neutron activation analysis with gamma-ray spectroscopy was performed. In this study, we focused on the movement of the trace elements especially with short-day treatment. Each element showed its specific distribution in the parts of a plant. The concentration of each element was changed rhythmically within a day. It was noted that, in the apical bud, concentrations of Mg, Ca and Mn were decreased from 5 h (2 h before light was on) to 7 h and increased again after 9 h. (author)

  16. Circadian rhythm in concentrations of Mg, K, Ca and Mn in Japanese morning glory during flowering process

    Energy Technology Data Exchange (ETDEWEB)

    Ikeue, Natsuko; Tanoi, Keitaro; Furukawa, Jun; Yokota, Harumi; Okuni, Yoko; Nakanishi, Tomoko M. [Tokyo Univ. (Japan). Graduate School of Agricultural and Life Sciences

    2001-06-01

    Concentrations of 4 trace elements, Mg, K, Ca and Mn, in each tissues of Japanese morning glory were analyzed during the flower development. To determine the element amount, neutron activation analysis with gamma-ray spectroscopy was performed. In this study, we focused on the movement of the trace elements especially with short-day treatment. Each element showed its specific distribution in the parts of a plant. The concentration of each element was changed rhythmically within a day. It was noted that, in the apical bud, concentrations of Mg, Ca and Mn were decreased from 5 h (2 h before light was on) to 7 h and increased again after 9 h. (author)

  17. Characterization of microstructure and mechanical properties of friction stir welded AlMg5- Al{sub 2}O{sub 3} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Babu, N. Kishore, E-mail: kishorebabu.nagumothu@empa.ch [Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Kallip, Kaspar; Leparoux, Marc [Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); AlOgab, Khaled A. [King Abdulaziz City for Science and Technology (KACST), National Centers for Advanced Materials, P O Box 6086, Riyadh, 11442 (Saudi Arabia); Reddy, G.M. [Defence Metallurical Research Laboratory, Hyderabad-500 058 (India); Talari, M.K. [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia)

    2016-03-21

    In the present study, powder metallurgy processed unmilled AlMg5, milled AlMg5 and milled AlMg5-0.5 vol% Al{sub 2}O{sub 3} nanocomposite have been successfully friction stir welded (FSW). The effect of friction stir welding on the evolution of weld microstructures; hardness and tensile properties were studied and discussed in detail. FSW of unmilled AlMg5 resulted in significant grain refinement and strain hardening in the nugget zone induced by the thermo-mechanical processing, thereby increasing the stir zone hardness and tensile strengths to 100 HV and 324 MPa when compared to 80 HV and 300 MPa of base metal, respectively. In contrast, the FSW of milled AlMg5 and milled AlMg5-0.5 vol% Al{sub 2}O{sub 3} samples showed a reduction in UTS values to 375 MPa and 401 MPa in the stir zone compared to 401 MPa and 483 MPa of respective base metal values. Transmission electron microscopic (TEM) investigation of weld stir zones revealed the homogenous distribution of Al{sub 4}C{sub 3} nanophases in milled AlMg5 and Al{sub 2}O{sub 3} nanoparticles in milled AlMg5-0.5 vol% Al{sub 2}O{sub 3} samples throughout the aluminium matrix. It was revealed that the pre-stored energy from the prior ball milling and hot pressing processes, higher deformation energy and grain boundary pinning effect due to the presence of reinforcement particles has resulted in a higher recrystallization tendency and retarded grain growth during FSW of milled samples. The welds prepared with milled AlMg5-0.5 vol% Al{sub 2}O{sub 3} exhibited higher hardness and tensile strength in the stir zone when compared to all other conditions which was attributed to Hall Petch effect due to fine grain size and Orowan strengthening effect due to Al{sub 2}O{sub 3} reinforcements.

  18. Solubility and release of fenbufen intercalated in Mg, Al and Mg, Al, Fe layered double hydroxides (LDH): The effect of Eudragit S 100 covering

    International Nuclear Information System (INIS)

    Arco, M. del; Fernandez, A.; Martin, C.; Rives, V.

    2010-01-01

    Following different preparation routes, fenbufen has been intercalated in the interlayer space of layered double hydroxides with Mg 2+ and Al 3+ or Mg 2+ , Al 3+ and Fe 3+ in the layers. Well crystallized samples were obtained in most of the cases (intercalation was not observed by reconstruction of the MgAlFe matrix), with layer heights ranging between 16.1 and 18.8 A. The presence of the LDH increases the solubility of fenbufen, especially when used as a matrix. The dissolution rate of the drug decreases when the drug is intercalated, and is even lower in those systems containing iron; release takes place through ionic exchange with phosphate anions from the solution. Preparation of microspheres with Eudragit S 100 leads to solids with an homogeneous, smooth surface with efficient covering of the LDH surface, as drug release was not observed at pH lower than 7. - Graphical abstract: LDHs containing Mg, Al, Fe increase fenbufen solubility, release takes place through ionic exchange with phosphate anions from the medium. Spherical solids with homogeneous, smooth surface are formed when using Eudragit S 100, efficiently covering the LDH surface. Display Omitted

  19. Coupling catalytic hydrolysis and oxidation on Mn/TiO2-Al2O3 for HCN removal

    Science.gov (United States)

    Wang, Langlang; Wang, Xueqian; Cheng, Jinhuan; Ning, Ping; Lin, Yilong

    2018-05-01

    The manganese-modified titania-alumina (Mn/TiO2-Al2O3) catalyst synthesized by sol-gol method was used to remove hydrogen cyanide (HCN) from simulated flue gas. Further, effects of the mass ratios of Ti/Al, Mn loading, calcination temperature, and relative humidity on HCN conversion efficiency and catalytic activity were systematically investigated. The results indicated that the Mn/TiO2-Al2O3 catalyst exhibited significantly enhanced HCN removal efficiency, and the maximum yield of N2 increased to 68.02% without the participation of water vapor. When water vapor was added into the flue gas, the yield of N2 decreased and the formation of NOx was also inhibited. The XRD and XPS results indicated that Mn was mainly present in the form of Mn2+, Mn3+, and Mn4+ on the surface of catalyst and chemisorbed oxygen played a major role in the HCN catalytic oxidation process. The results of DSC-TGA analysis and H2-TPR indicated that the catalyst also exhibited a good thermal and chemical stability. NH3-TPD and CO2-TPD indicated that the surface of the catalyst mainly contained acidic sites. During the reaction, part of NH3 was adsorbed by Brönsted and Lewis acid sites. NH3 adsorbed on Lewis acid sites participated in NH3-SCR, which reduced the amount of NOx produced and resulted in a high N2 yield.

  20. Alizarin red S dye removal from contaminated water on calcined [Mg/Al, Zn/Al and MgZn/Al]-LDH

    Science.gov (United States)

    Aissat, Miloud; Hamouda, Sara; Benhadria, Naceur; Chellali, Rachid; Bettahar, Noureddine

    2018-05-01

    The waste water rejected by the textile industries is loaded with organic dyes, responsible for the high color present in the effluents. Some dyes and / or their degradation products could be carcinogenic and may have mutagenic properties. The rapid growth of the global economy has caused many environmental problems with a huge pollution problem. The abuse use of chemicals product is an environmental toxicological problem. The consequences can be serious for water resources. In this perspective, our study comes to participate with new means of depollution using new materials with interesting properties in the treatment of pollution. Among these materials, LDHs whose synthesis is easy and inexpensive can be a tool in the treatment of water Polluted [1]. Our contribution consists in using HDL as a means of sorption of dyes which are considered as polluting agents of waters especially for the industry textile. This study considers the removal of the Alizarine Red S (AR) from water on calcined MgAl,ZnAL and MgZnAL-layered double hydroxides. The different LDH was prepared by copreprecipation method. The materials was obtained for molar ratios R =2 for the different LDH. The carbonated layered Calcination of these solids leads to the formation of mixed oxides which have the property of being able to be regenerated by adsorbing new anionic entities. Adsorbents and adsorption products were characterized by physicochemical techniques. The structural characterization of the material was carried out by X-ray diffraction, infrared spectroscopy (FTIR). Dosages of the polluted solutions were monitored by UV-Visible spectrometry.

  1. Investigation of fluorine adsorption on nitrogen doped MgAl_2O_4 surface by first-principles

    International Nuclear Information System (INIS)

    Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng

    2016-01-01

    Graphical abstract: First-principles calculations indicate that MgAl_2O_4 surface is fluorine-loving, but hydrophobic. N doped MgAl_2O_4 (100) surface structure shows the highest fluorine adsorption performance and fluorine atom is more preferentially adsorbed on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: N doped MgAl_2O_4 (100) > Al_2O_3 (0001) > MgAl_2O_4 (100) > MgO (100). N doped MgAl_2O_4 is a promising candidate for fluorine removal. - Highlights: • MgAl_2O_4 surface is fluorine-loving, not hydrophilic. • Fluorine preferentially adsorbs on the Mg-Al bridge site. • Adsorption intensity follow this order: N doped MgAl_2O_4 > Al_2O_3 > MgAl_2O_4 > MgO. • Excellent adsorption performance attributes to electron compensation of N atom. • Nitrogen doped MgAl_2O_4 is a promising candidate for fluorine removal. - Abstract: The nature of fluorine adsorption on pure and N doped MgAl_2O_4 surface has been investigated by first-principles calculations based on the density functional theory. Calculated results indicate that MgAl_2O_4 surface is fluorine-loving, not hydrophilic. Nitrogen doped MgAl_2O_4 (100) surface shows the highest fluorine adsorption performance and fluorine atom preferentially adsorbs on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: Nitrogen doped MgAl_2O_4 (100) > Al_2O_3 (0001) > MgAl_2O_4 (100) > MgO (100). In-depth PDOS analysis suggested that 2p orbitals of F atom strongly hybridized with 3s- and 3p-orbitals of Al atom contribute to its high adsorption intensity. According to the analysis of Hirshfeld charge, the excellent fluorine adsorption performance of nitrogen doped MgAl_2O_4 attributes to the electron compensation effect of nitrogen atom and strong electrostatic interactions. All these evidences demonstrate a fact nitrogen doped MgAl_2O_4 is a promising candidate for fluorine removal.

  2. The microstructure and mechanical properties of Mg-3Al-3RE alloys

    International Nuclear Information System (INIS)

    Tian, X.; Wang, L.M.; Wang, J.L.; Liu, Y.B.; An, J.; Cao, Z.Y.

    2008-01-01

    The Mg-3Al-3RE alloys (RE, the cerium-rich or the yttrium-rich misch metal) were smelted in a resistance furnace under the protective flux from the Mg-RE master alloys and pure magnesium ingots. The microstructure and mechanical properties of samples prepared by steel mould casting method were investigated. Results show that the main phases of the alloys are α-Mg, Mg 17 Al 12 and Al-RE compounds, and the grain size reduced with the increasing content of the cerium-rich misch metal. Mg-3Al-2Ymm-1Cemm (Ymm, the yttrium-rich misch metal; Cemm, the Cerium-rich misch metal) exhibited the highest mechanical properties, that is UTS = 201 MPa and YS = 75 MPa, and ε = 8.2% at room temperature; UTS = 146 MPa, and YS = 70 MPa, ε = 18.2% at the temperature of 150 deg. C, respectively. Fracture surface analysis revealed that the Mg-3Al-2Ymm-1Cemm alloy has a mixed fracture feature at room temperature but ductile fracture at elevated temperature (150 deg. C)

  3. A first-principle investigation of spin-gapless semiconductivity, half-metallicity, and fully-compensated ferrimagnetism property in Mn{sub 2}ZnMg inverse Heusler compound

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaotian [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China); Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Cheng, Zhenxiang, E-mail: cheng@uow.edu.au [Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Khenata, Rabah [Laboratoire de Physique Quantique, de la Matière et de la Modélisation Mathématique (LPQ3M), Université de Mascara, Mascara 29000 (Algeria); Rozale, Habib [Condensed Matter and Sustainable Development Laboratory, Physics Department, University of Sidi-Bel-Abbès, 22000 Sidi-Bel-Abbès (Algeria); Wang, Jianli [Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Wang, Liying; Guo, Ruikang [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China); Liu, Guodong, E-mail: gdliu1978@126.com [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2017-02-01

    Recently, spin-gapless semiconductors (SGSs) and half-metallic materials (HMMs) have received considerable interest in the fields of materials sciences and solid-state physics because they can provide a high degree of spin polarization in electron transport. The results on band structure calculations reveal that the metallic fully-compensated ferrimagnet (M-FCF) Mn{sub 2}ZnMg becomes half-metallic fully-compensated ferrimagnet (HM-FCF), fully-compensated ferrimagnetic semiconductor (FCF-S) and fully-compensated ferrimagnetic spin-gapless semiconductor (FCF-SGS) if the uniform strain applied. However, the metallic fully-compensated ferrimagnetism property of the Mn{sub 2}ZnMg is robust to the tetragonalization. The structure stability based on the calculations of the cohesion energy and the formation energy of this compound has been tested. Furthermore, a magnetic state transition from antiferromagentic (AFM) state to non-magnetic (NM) state can be observed at the lattice constant of 5.20 Å. - Highlights: • Mn{sub 2}ZnMg is a M-FCF at its equilibrium lattice constant. • We study the effect of uniform strain on the physical nature transition of Mn{sub 2}ZnMg. • The M-FCF property of the Mn{sub 2}ZnMg is robust to the tetragonalization. • A magnetic phase transition occurs at 5.20 Å.

  4. Reduction of CaO and MgO Slag Components by Al in Liquid Fe

    Science.gov (United States)

    Mu, Haoyuan; Zhang, Tongsheng; Fruehan, Richard J.; Webler, Bryan A.

    2018-05-01

    This study documents laboratory-scale observations of reactions between Fe-Al alloys (0.1 to 2 wt pct Al) with slags and refractories. Al in steels is known to reduce oxide components in slag and refractory. With continued development of Al-containing Advanced High-Strength Steel (AHSS) grade, the effects of higher Al must be examined because reduction of components such as CaO and MgO could lead to uncontrolled modification of non-metallic inclusions. This may lead to castability or in-service performance problems. In this work, Fe-Al alloys and CaO-MgO-Al2O3 slags were melted in an MgO crucible and samples were taken at various times up to 60 minutes. Inclusions from these samples were characterized using an automated scanning electron microscope equipped with energy dispersive x-ray analysis (SEM/EDS). Initially Al2O3 inclusions were modified to MgAl2O4, then MgO, then MgO + CaO-Al2O3-MgO liquid inclusions. Modification of the inclusions was faster at higher Al levels. Very little Ca modification was observed except at 2 wt pct Al level. The thermodynamic feasibility of inclusion modification and some of the mass transfer considerations that may have led to the differences in the Mg and Ca modification behavior were discussed.

  5. Moment mapping of body-centered-cubic Fe{sub x}Mn{sub 1−x} alloy films on MgO(001)

    Energy Technology Data Exchange (ETDEWEB)

    Idzerda, Y. U., E-mail: idzerda@physics.montana.edu; Bhatkar, H. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Arenholz, E. [Advanced Light Source, Lawrence Berkeley National Laboratories, Berkeley, California 59717 (United States)

    2015-05-07

    The alloy composition and elemental magnetic moments of bcc single crystal films of compositionally graded Fe{sub x}Mn{sub 1−x} films (20 nm thick films with 0.8 ≤ x ≤ 0.9) grown on MgO(001) are spatially mapped using X-ray absorption spectroscopy and magnetic circular dichroism. Electron diffraction measurements on single composition samples confirmed that the structure of Fe{sub x}Mn{sub 1−x} films remained epitaxial and in the bcc phase from 0.65 ≤ x ≤ 1, but rotated 45° with respect to the MgO(001) surface net. This is beyond the bulk bcc stability limit of x = 0.88. The Fe moment is found to gradually reduce with increasing Mn content with a very abrupt decline at x = 0.85, a slightly higher composition than observed in the bulk. Surprisingly, the Mn exhibits a very small net moment (<0.1 μ{sub B}) at all compositions, suggesting a complex Mn spin structure.

  6. Karakterisasi Paduan AlMgSi Untuk Kelongsong Bahan Bakar U3Si2/Al Dengan Densitas Uranium 5,2 gU/cm3

    Directory of Open Access Journals (Sweden)

    Aslina Br. Ginting

    2018-03-01

    Full Text Available Meningkatnya densitas uranium dari 2,96 gU/cm3 menjadi 5,2 gU/cm3 bahan bakar U3Si2/Al harus diikuti dengan penggunaan kelongsong yang kompatibel. Bahan bakar berdensitas tinggi mempunyai kekerasan yang tinggi, sehingga bila menggunakan paduan AlMg2 sebagai kelongsong dapat menyebabkan terjadi dogbone pada saat perolan. Selain fenomena dogbone, pada saat bahan bakar tersebut digunakan di reaktor dapat terjadi swelling karena meningkatnya hasil fisi maupun burn up. Oleh karena itu, perlu dicari pengganti bahan kelongsong untuk bahan bakar U3Si2/Al densitas tinggi. Pada penelitian ini telah dilakukan karakterisasi paduan AlMgSi sebagai kandidat pengganti kelongsong AlMg2. Karakterisasi yang dilakukan meliputi analisis termal, kekerasan, mikrostruktur dan laju korosi. Analisis termal dilakukan menggunakan DTA (Differential Thermal Analysis dan DSC (Differential Scanning Calorimetry. Analisis kekerasan menggunakan alat uji kekerasan mikro, mikrostruktur menggunakan SEM (Scanning Electron Microscope dan analisis laju korosi dilakukan dengan pemanasan pada temperatur 150 oC selama 77 jam di dalam autoclave. Hasil analisis menunjukkan bahwa kelongsong AlMgSi maupun AlMg2 mempunyai kompatibilitas panas dengan bahan bakar U3Si2/Al cukup stabil hingga temperatur 650 oC. Kelongsong AlMgSi mempunyai kekerasan sebesar 115 HVN dan kelongsong AlMg2 sebesar 70,1 HVN. Sementara itu, analisis mikrostruktur menunjukkan bahwa morfologi ikatan antarmuka (interface bonding kelongsong AlMgSi lebih baik dari kelongsong AlMg2, demikian halnya dengan laju korosi bahwa kelongsong AlMgSi mempunyai laju korosi lebih kecil dibanding kelongsong AlMg2. Hasil karakterisasi termal, kekerasan, mikrostruktur dan laju korosi menunjukkan bahwa PEB U3Si2/Al densitas 5,2 gU/cm3 menggunakan kelongsong AlMgSi lebih baik dibanding PEB U3Si2/Al  densitas 5,2 gU/cm3  menggunakan kelongsong AlMg2. Kata kunci: U3Si2/Al, densitas 5,2 gU/cm3, kelongsong AlMgSi dan AlMg2.

  7. A comparative study of metabolism and concentration factors of Fe, Cu, Zn, Mn, Co and Mg in Carcinus maenas and Cancer irroratus ovaries during ovogenesis

    International Nuclear Information System (INIS)

    Martin, J.-L.M.

    1975-01-01

    Fe, Cu, Zn, Mn, Co, and Mg were analysed in the ovary of Carcinus maenas and Cancer irroratus during ovogenesis. In both ovaries, the relatives rates, expressed as parts per millions as a ratio of wet and dry weight, are the following: Mg>Zn>Fe>Cu>Mn>Co, while in the hemolymph of Cancer irroratus these relative rates are the following: Mg>Cu>Zn>Fe>Mn>Co. Compared to concentrations of these metals in sea water, Mg expected, all metals in the ovary of Cancer irroratus have a concentration factor upper than 1. Compared to the concentration of metals in the hemolymph is, for Fe, Mn, and Co, the concentration factor upper than 1, and for Cu, Zn and Mg, the concentration factor lower than 1. A study of correlations was done between the concentrations of metals considered in pairs, and between the concentrations of metals and the parameters: water content and gonad index [fr

  8. Determination of the Cl, Mg, Mn and Na, in samples of Tradescantia pallida

    International Nuclear Information System (INIS)

    Rossi, Joao Guilherme G.A.; Saiki, Mitiko

    2009-01-01

    The growing number of industries and automotive vehicles are causing the increase of the air pollution. Less expensive methodologies are been studying for the evaluation of these pollution levels. This work evaluates the concentrations of Cl, Mg, Mn and Na, present in the leaves of Tradescantia pallida viewing validation of the specie for use in the bio monitoring of the air pollution. Those leaves were collected and analysed using the short irradiation of the neutron activation analysis technique. The certified reference material INCT-MPH-2 Mixed Polish Herbs were analysed for the quality control of the results and presented very good accuracy, with relative errors less than 4.2 %, and good precision less than 8.7 %. The element concentrations (in μg g -1 ) obtained in the T. pallida samples analysed showed variation from 2324 to 33897 for Cl, from 3602 to 14450 for Mg, from 132 to 314 for Mn, and 21 to 615 for Na. Values obtained in the analyses of Tradescantia present great variability in the element concentrations. The short irradiation showed to be appropriated for determination of the elements studied in the bio monitoring of air pollution

  9. Converting hcp Mg-Al-Zn alloy into bcc Mg-Li-Al-Zn alloy by electrolytic deposition and diffusion of reduced lithium atoms in a molten salt electrolyte LiCl-KCl

    International Nuclear Information System (INIS)

    Lin, M.C.; Tsai, C.Y.; Uan, J.Y.

    2007-01-01

    A body-centered cubic (bcc) Mg-12Li-9Al-1Zn (wt.%) alloy was fabricated in air by electrolysis from LiCl-KCl molten salt at 500 deg. C. Electrolytic deposition of Li atoms on cathode (Mg-Al-Zn alloy) and diffusion of the Li atoms formed the bcc Mg-Li-Al-Zn alloy with 12 wt.% Li and only 0.264 wt.% K. Low K concentration in the bcc Mg alloy strip after the electrolysis process resulted from 47% atomic size misfit between K and Mg atoms and low solubility of K in Mg matrix

  10. Study on synthesizing Mg/Al layered double hydroxides at different pHs

    Directory of Open Access Journals (Sweden)

    E Otgonjargal

    2014-12-01

    Full Text Available Mg/Al layered double hydroxide (LDH was successfully synthesized at different pHs values. The Mg/AL LDH was well characterized by X-Ray diffraction and Fourier transform infrared analysis. The morphology of the LDH was observed using Scanning electron microscopy with energy dispersive X-ray spectroscopy. The influence of pH values on the morphology of the Mg/Al LDHs were studied. The result showed that the well-synthesized Mg/Al LDHs could be obtained when the pH value was about 10.0 at room temperature.DOI: http://doi.dx.org/10.5564/mjc.v15i0.319 Mongolian Journal of Chemistry 15 (41, 2014, p36-39

  11. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Directory of Open Access Journals (Sweden)

    Yulin Liu

    2016-01-01

    Full Text Available Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt % to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %, intermetallic Al6(Fe,Mn was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe, intermetallic Al6(Fe,Mn became the dominant phase, even in the alloy with low Mn content (0.39 wt %. Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn to become the primary phase at a lower Mn content.

  12. Sputter-deposited Mg-Al-O thin films: linking molecular dynamics simulations to experiments

    International Nuclear Information System (INIS)

    Georgieva, V; Bogaerts, A; Saraiva, M; Depla, D; Jehanathan, N; Lebelev, O I

    2009-01-01

    Using a molecular dynamics model the crystallinity of Mg x Al y O z thin films with a variation in the stoichiometry of the thin film is studied at operating conditions similar to the experimental operating conditions of a dual magnetron sputter deposition system. The films are deposited on a crystalline or amorphous substrate. The Mg metal content in the film ranged from 100% (i.e. MgO film) to 0% (i.e. Al 2 O 3 film). The radial distribution function and density of the films are calculated. The results are compared with x-ray diffraction and transmission electron microscopy analyses of experimentally deposited thin films by the dual magnetron reactive sputtering process. Both simulation and experimental results show that the structure of the Mg-Al-O film varies from crystalline to amorphous when the Mg concentration decreases. It seems that the crystalline Mg-Al-O films have a MgO structure with Al atoms in between.

  13. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    Science.gov (United States)

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-06-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  14. Luminescence properties and energy transfer of site-sensitive Ca(6-x-y)Mg(x-z)(PO(4))(4):Eu(y)(2+),Mn(z)(2+) phosphors and their application to near-UV LED-based white LEDs.

    Science.gov (United States)

    Kwon, Ki Hyuk; Im, Won Bin; Jang, Ho Seong; Yoo, Hyoung Sun; Jeon, Duk Young

    2009-12-21

    On the basis of the structural information that the host material has excellent charge stabilization, blue-emitting Ca(6-x-y)Mg(x)(PO(4))(4):Eu(y)(2+) (CMP:Eu(2+)) phosphors were synthesized and systematically optimized, and their photoluminescence (PL) properties were evaluated. Depending upon the amount of Mg added, the emission efficiency of the phosphors could be enhanced. The substitution of Eu(2+) affected their maximum wavelength (lambda(max)) and thermal stability because the substitution site of Eu(2+) could be varied. To obtain single-phase two-color-emitting phosphors, we incorporated Mn(2+) into CMP:Eu(2+) phosphors. Weak red emission resulting from the forbidden transition of Mn(2+) could be enhanced by the energy transfer from Eu(2+) to Mn(2+) that occurs because of the spectral overlap between the photoluminescence excitation (PLE) spectrum of Mn(2+) and the PL spectrum of Eu(2+). The energy transfer process was confirmed by the luminescence spectra, energy transfer efficiency, and decay curve of the phosphors. Finally, the optimized Ca(6-x-y)Mg(x-z)(PO(4))(4):Eu(y)(2+),Mn(z)(2+) (CMP:Eu(2+),Mn(2+)) phosphors were applied with green emitting Ca(2)MgSi(2)O(7):Eu(2+) (CMS:Eu(2+)) phosphors to ultraviolet (UV) light emitting diode (LED)-pumped white LEDs. The CMS:Eu(2+)-mixed CMP:Eu(2+), Mn(2+)-based white LEDs showed an excellent color rendering index (CRI) of 98 because of the broader emission band and more stable color coordinates than those of commercial Y(3)Al(5)O(12):Ce(3+) (YAG:Ce(3+))-based white LEDs under a forward bias current of 20 mA. The fabricated white LEDs showed very bright natural white light that had the color coordinate of (0.3288, 0.3401), and thus CMP:Eu(2+),Mn(2+) could be regarded as a good candidate for UV LED-based white LEDs.

  15. Optical properties of white organic light-emitting devices fabricated utilizing a mixed CaAl12O19:Mn4+ and Y3Al5O12:Ce3+ color conversion layer.

    Science.gov (United States)

    Jeong, H S; Kim, S H; Lee, K S; Jeong, J M; Yoo, T W; Kwon, M S; Yoo, K H; Kim, T W

    2013-06-01

    White organic light-emitting devices (OLEDs) were fabricated by combining a blue OLED with a color conversion layer made of mixed Y3Al5O12:Ce3+ green and Ca2AlO19:Mn4+ red phosphors. The X-ray diffraction patterns showed that Ce3+ ions in the Y3Al5O12:Ce3+ phosphors completely substituted for the Y3+ ions and the Mn4+ ions in the CaAl12O19:Mn4+ phosphors completely substituted for the Ca2+ ions. Electroluminescence spectra at 11 V for the OLEDs fabricated utilizing a color conversion layer showed that the Commission Internationale de l'Eclairage coordinates for the Y3Al5O12:Ce3+ and CaAl12O19:Mn4+ phosphors mixed at the ratio of 1:5 and 1:10 were (0.31, 0.34) and (0.32, 0.37), respectively, indicative of a good white color.

  16. Al-doped MgB_2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Erdem, Emre; Repp, Sergej; Weber, Stefan

    2016-01-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB_2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB_2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB_2. Above a certain level of Al doping, enhanced conductive properties of MgB_2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  17. Effect of the Heusler phase formation on the magnetic behavior of the Cu–10 wt.%Mn alloy with Al and Ag additions

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, T.M., E-mail: thaisa.mary@gmail.com [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Adorno, A.T.; Santos, C.M.A. [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Silva, R.A.G. [Departamento de Ciências Exatas e da Terra – UNIFESP, 09972-270 Diadema, SP (Brazil); Magnani, M. [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil)

    2015-09-15

    Highlights: • The presence of the Cu{sub 2}MnAl phase was observed in annealed alloys. • Al and Ag additions shift the equilibrium concentration to higher Al values. • There is a correlation between the Ag-rich phase and the Cu{sub 2}MnAl phase. - Abstract: In this work, the formation of the Cu{sub 2}AlMn Heusler phase and its influence on the magnetic behavior of the Cu–Mn–Al–Ag alloys in the range of 8–10 wt.% of aluminum and 2–4 wt.% of silver were studied using differential scanning calorimetry (DSC), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and saturation magnetization measurements at 4 K. The results showed that there is a correlation between the presence of the Ag-rich phase and the formation of the Cu{sub 2}MnAl phase.

  18. The effect of MgO doping on the structure, magnetic and magnetotransport properties of La0.8Sr0.2MnO3 composite

    International Nuclear Information System (INIS)

    Aezami, A.; Eshraghi, M.; Kameli, P.; Salamati, H.

    2007-01-01

    Full text: The recent observation of anomalously Colossal Magnetoresistance (CMR) in the La 1-x A x MnO 3 (A = Sr, Ca, Ba or vacancies) system, has spurred renewed interest in studying these doped perovskite manganites. The properties of these materials are explained by double exchange theory of Zener and electron lattice interaction. However, the intrinsic CMR effect in the perovskite manganites is found on a magnetic field scale of several teslas and a narrow temperature range. It was found that, the presence of grain boundaries in polycrystalline samples leads to a large Low Field Magnetoresistance (LFMR) effect over a wide temperature range below the Curie temperature Tc. To achieve LFMR, different properties are considered. One of them is mixing of these CMR materials with secondary insulator phases. In this work, La 0.8 Sr 0.2 MnO 3 (LSMO) was selected as matrix material and MgO as a dopant. The La 0.8 Sr 0.2 MnO 3/x MgO samples with x= 0, 1, 2, 3, 5 and 7.5 Wt.% were prepared by Solid State Reaction method. Studies show that most part of the MgO goes into the perovskite lattice and Mg substituted Mn in LSMO and remainder segregates as a separate phase at the grain boundaries. Results also show that the value of MR decreases for all the doping levels. It seems that, due to the almost same ionic radii of Mg2+ and Mn2+, and at the higher sintering temperature, Mg2+ mostly replaced Mn3+ and weakens double exchange interaction. This speculation has been confirmed by XRD, SEM, susceptibility, resistivity and magnetoresistance analysis and measurements. (authors)

  19. Static and dynamic magnetic properties of B2 ordered Co2MnAl film epitaxially grown on GaAs

    International Nuclear Information System (INIS)

    Liu, Jihong; Qiao, Shuang

    2015-01-01

    Co 2 MnAl, considering its potential 100% spin polarization and high Curie temperature, is expected to be one of the most promising materials for realizing half metallicity. However, on the premise of high polarization, the optimization of the magnetic damping constant is directly determined the critical current density for spin torque transfer switching and also the stability of spin polarization for spin injection transfer, thus research on damping constant is also very important. In this paper, we have systematically investigated the magnetic damping constant in Co 2 MnAl film epitaxially grown on GaAs(100) substrate by FMR and TR-MOKE measurements, and found that the damping constant of 0.023 extracted by FMR is comparable with that of TR-MOKE at low field. While, considering field-dependent spin orientation, we think that the field-dependent damping constant deduced by TR-MOKE may provide important information for Co 2 MnAl/GaAs heterostructure and its potential application in spintronics. - Graphical abstract: Co 2 MnAl, considering its potential 100% spin polarization and high Curie temperature, is expected to be one of the most promising materials for realizing half metallicity. In this paper, we have successfully grown the B2-ordered Co 2 MnAl film on GaAs (100) substrate and systematically investigated the magnetic damping constant in Co 2 MnAl film epitaxially grown on GaAs(100) substrate by employing both FMR and TR-MOKE measurements. Our results show that the damping constant of 0.023 extracted by FMR is comparable with that of TR-MOKE at low field. However, considering field-dependent spin orientation, we think that the field-dependent damping constant deduced by TR-MOKE may be more useful for Co 2 MnAl/GaAs heterostructure and its possible application in spintronics. - Highlights: • B2 ordered Co 2 MnAl was successfully prepared and studied by LMOKE and ROT-MOKE. • Static magnetic measurements show clear cubic anisotropy with K C of 5.0 × 10 4

  20. Grain Refinement of Al-Si-Fe-Cu-Zn-Mn Based Alloy by Al-Ti-B Alloy and Its Effect on Mechanical Properties.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-03-01

    We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.

  1. Simplified sample treatment for the determination of total concentrations and chemical fractionation forms of Ca, Fe, Mg and Mn in soluble coffees.

    Science.gov (United States)

    Pohl, Pawel; Stelmach, Ewelina; Szymczycha-Madeja, Anna

    2014-11-15

    A simpler, and faster than wet digestion, sample treatment was proposed prior to determination of total concentrations for selected macro- (Ca, Mg) and microelements (Fe, Mn) in soluble coffees by flame atomic absorption spectrometry. Samples were dissolved in water and acidified with HNO3. Precision was in the range 1-4% and accuracy was better than 2.5%. The method was used in analysis of 18 soluble coffees available on the Polish market. Chemical fractionation patterns for Ca, Fe, Mg and Mn in soluble coffees, as consumed, using a two-column solid-phase extraction method, determined Ca, Mg and Mn were present predominantly as cations (80-93% of total content). This suggests these elements are likely to be highly bioaccessible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Magnetovolume effects of quasi-one-dimensional itinerant electron magnets (La{sub 1-x}Y{sub x})Mn{sub 4}Al{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Muro, Y. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan)]. E-mail: rk04j052@stkt.u-hyogo.ac.jp; Motoyama, G. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Nakamura, H. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Kohara, T. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan)

    2006-05-01

    Magnetovolume effects of 3d heavy-electron compounds with linear spin chains, (La{sub 1-x}Y{sub x})Mn{sub 4}Al{sub 8} with x=<0.15 and =1, have been investigated to get information on the ground state of LaMn{sub 4}Al{sub 8} and the nature of spin fluctuations in this system. The negative thermal expansion observed for LaMn{sub 4}Al{sub 8} is suppressed by the substitution of a small amount of Y for La. Together with the field-cooled effect in the susceptibility, the magnetovolume effect suggests the development of short-range magnetic correlation in LaMn{sub 4}Al{sub 8} at low temperatures.

  3. Microstructure evolution and texture development in thermomechanically processed Mg-Li-Al based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod [Department of Materials Science and Engineering, IIT Kanpur (India); Govind [Vikram Sarabhai Space Center, Trivandrum (India); Shekhar, Rajiv; Balasubramaniam, R. [Department of Materials Science and Engineering, IIT Kanpur (India); Balani, Kantesh, E-mail: kbalani@iitk.ac.in [Department of Materials Science and Engineering, IIT Kanpur (India)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Thermomechanical processing of novel LAT 971 and LATZ 9531 Mg-Al-Li based alloys. Black-Right-Pointing-Pointer Microstructural deviation from the equilibrium phase diagram. Black-Right-Pointing-Pointer Disparity in texture of these alloys after hot-rolling (recrystallization and grain growth). Black-Right-Pointing-Pointer Role of alloying and phase distribution in affecting the texture/interplaner spacing. - Abstract: In the present study, the influence of alloying and thermomechanical processing on the microstructure and texture evolution on the two Mg-Li-Al based alloys, namely Mg-9 wt% Li-7 wt% Al-1 wt% Sn (LAT971) and Mg-9 wt% Li-5 wt% Al-3 wt% Sn-1 wt% Zn (LATZ9531) has been elicited. Novel Mg-Li-Al based alloys were cast (induction melting under protective atmosphere) followed by hot rolling at {approx}573 K with a cumulative reduction of five. A contrary dual phase dendritic microstructure rich in {alpha}-Mg, instead of {beta}-Li phase predicted by equilibrium phase diagram of Mg-Li binary alloy was observed. Preferential presence of Mg-Li-Sn primary precipitates (size 4-10 {mu}m) within {alpha}-Mg phase and Mg-Li-Al secondary precipitates (<3 {mu}m) interspersed in {beta}-Li indicated their degree of dissolution during hot-rolling and homogenization in the dual phase matrix. Presence of Al, Sn and Zn alloying elements in the Mg-Li based alloy has resulted an unusual dual-phase microstructure, change in the lattice parameter, and intriguing texture evolution after hot-rolling of cast LAT 971 and LATZ9531 alloy. Strong texture was absent in the as-cast samples whereas texture development after hot-rolling revealed an increased activity of the non-basal (101{sup Macron }0) slip planes. The quantification of the grain average misorientation (less than 2 Degree-Sign ) using electron backscattered diffraction confirmed the presence of strain free grains in majority of the grains (fraction >0.75) after hot-rolling of Mg-Li-Al

  4. Facile synthesis of LiAl0.1Mn1.9O4 as cathode material for lithium ion batteries: towards rate and cycling capabilities at an elevated temperature

    International Nuclear Information System (INIS)

    Guo, Donglei; Li, Bao; Chang, Zhaorong; Tang, Hongwei; Xu, Xinhong; Chang, Kun; Shangguan, Enbao; Yuan, Xiao-Zi; Wang, Haijiang

    2014-01-01

    To improve the cycling performance of spinel LiMn 2 O 4 , Al-doped LiMn 2 O 4 , LiAl 0.1 Mn 1.9 O 4 , is synthesized using Mn 1.9 Al 0.1 O 3 precursor and LiOH·H 2 O via a low temperature solid-phase reaction. The Mn 1.9 Al 0.1 O 3 precursor, prepared from the electrolytic manganese dioxide (EMD) and Al(OH) 3 , is composed of spherical particles with an average diameter of 300 nm, and has a large interspace. Energy dispersive spectrometer (EDS) indicates the Al element is well distributed in Mn 1.9 Al 0.1 O 3 and LiAl 0.1 Mn 1.9 O 4 . The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images show that the LiAl 0.1 Mn 1.9 O 4 sample has a high crystallinity with sizes ranging from 300 to 500 nm. Electrochemical properties of LiAl 0.1 Mn 1.9 O 4 are studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge. The results show that LiAl 0.1 Mn 1.9 O 4 possesses better rate and cycling capabilities than LiMn 2 O 4 at both 25 °C and 55 °C. At a rate of 5 C, the capacity retention ratio of the LiMn 1.9 Al 0.1 O 4 electrode after 100 cycles is about 95% at 25 °C and about 90% at 55 °C

  5. Grain refining effect of magnetic field on Mg2Ni0.8Mn0.2 hydrogen storage alloys during rapid quenching

    International Nuclear Information System (INIS)

    Jiang, Chenxi; Wang, Haiyan; Chen, Xiangrong; Tang, Yougen; Lu, Zhouguang; Wang, Yazhi; Liu, Zuming

    2013-01-01

    The effect of static magnetic field treatment for synthesis of Mg 2 Ni 0.8 Mn 0.2 alloys during rapid quenching was investigated in this paper. X-ray diffraction (XRD) and scanning electron microscope (SEM) results show that the transversal static magnetic field can effectively refine the grain size, producing nanocrystalline inside. This distinct phenomenon is probably attributed to the Lorentz force suppressing the crystallization of the hydrogen storage alloys and the thermoelectric effect. Mainly due to the grain refinement, the discharge capacity of Mg 2 Ni 0.8 Mn 0.2 alloy is raised from 79 to about 200 mA h g −1 . It is confirmed that Mg 2 Ni 0.8 Mn 0.2 alloy by magnetic field assisted approach possesses enhanced electrochemical kinetics and relatively high corrosion resistance against the alkaline solution, thus resulting in higher electrochemical properties

  6. Thermodynamic analysis and experimental study on the oxidation of the Zn-Al-Mg coating baths

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xuping, E-mail: sxping@cczu.edu.cn [Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, 213164 Jiangsu (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, 213164 Jiangsu (China); Zhou, Jie; Wang, Jianhua; Wu, Changjun; Liu, Ya; Tu, Hao; Peng, Haoping [Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, 213164 Jiangsu (China)

    2017-02-28

    Highlights: • The surface oxidation products of the Zn-Al-Mg melt were analyzed with XPS. • Certain Al must be added in bath containing Mg to get stable galvanizing melts. • The oxidation products vary with the bath composition. • Oxidation can be predicted in galvanizing by using the calculated phase diagrams. • The thermodynamic analysis can be used to design the practical bath melts. - Abstract: Surface oxidation of molten Zn-6Al baths containing 0.0, 3.0 and 6.0 wt. % Mg were analyzed using X-ray photoelectron spectroscopy. γ-Al{sub 2}O{sub 3} is formed on the surface of the Zn-6Al bath, while MgAl{sub 2}O{sub 4} and MgO occur at 460 °C in the Zn-6Al-3Mg and Zn-6Al-6Mg baths, respectively. Thermodynamic analysis on the oxidation of the Zn-Al-Mg baths was performed. Calculated phase diagrams at 460 °C and 560 °C show good agreements with the experimental results. MgO or MgAl{sub 2}O{sub 4} exists in almost the entire composition range of the calculated oxidation diagrams. According to the calculation, oxidation products depend on the composition and temperature of the baths. The primary and secondary oxidation products of the Zn-Al-Mg baths can be reasonably explained by oxidation phase diagrams. Utilizing these results, the favorable practical bath melts and operating conditions can be designed.

  7. THE THERMODYNAMIC PROPERTIES OF MELTS OF DOUBLE SYSTEM MgO – Al2O3, MgO – SiO2, MgO – CaF2, Al2O3 – SiO2, Al2O3 – CaF2, SiO2 – CaF2

    Directory of Open Access Journals (Sweden)

    В. Судавцова

    2012-04-01

    Full Text Available Methodology of prognostication of thermodynamics properties of melts is presented from the coordinatesof liquidus of diagram of the state in area of equilibria a hard component is solution, on which energies ofmixing of Gibbs are expected in the double border systems of MgO – Al2O3, MgO – SiO2, MgO – CaF2,Al2O3 – SiO2, Al2O3 - CaF2, SiO2 - CaF2. For the areas of equilibrium there is quasibinary connection(MgAl2O4, Mg2SiO4, Al6Si2O13 – a grout at calculations was used equalization of Hauffe-Wagner. Theobtained data comport with literary

  8. Fracture resistance and fatigue crack growth characteristics of two Al-Cu-Mg-Zr alloys

    Science.gov (United States)

    Sarkar, Bhaskar; Lisagor, W. B.

    1992-01-01

    The dependence of strength, fracture resistance, and fatigue crack growth rate on the aging conditions of two alloy compositions based on Al-3.7Cu-1.85Mg-0.2Mn is investigated. Mechanical properties were evaluated in two heat treatment conditions and in two orientations (longitudinal and transverse). Compact tension specimens were used to determine fatigue crack growth characteristics and fracture resistance. The aging response was monitored on coupons using hardness measurements determined with a standard Rockwell hardness tester. Fracture resistance is found to increase with increasing yield strength during artificial aging of age-hardenable 2124-Zr alloys processed by powder metallurgy techniques. Fatigue crack growth rate increases with increasing strength. It is argued that these changes are related to deformation modes of the alloys; a homogeneous deformation mode tends to increase fracture resistance and to decrease the resistance to the fatigue crack propagation rate.

  9. A first principle study of phase stability, electronic structure and magnetic properties for Co{sub 2−x}Cr{sub x}MnAl Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rached, H. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences exactes, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Rached, D., E-mail: rachdj@yahoo.fr [Laboratoire des Matériaux Magnétiques, Faculté des Sciences exactes, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique de la Matière, (LPQ3M), Université de Mascara, Mascara 29000 (Algeria); Abidri, B.; Rabah, M.; Benkhettou, N. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences exactes, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Omran, S. Bin [Department of Physics and Astronomy, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451 (Saudi Arabia)

    2015-04-01

    The structural stabilities, electronic and magnetic properties of Co{sub 2−x}Cr{sub x}MnAl alloys with (x=0,1 and 2) were investigated using the full-potential linear muffin-tin orbital (FP-LMTO) method, in the framework of the density functional theory (DFT) within the generalized gradient approximation (GGA) for the exchange correlation functional. The ground state properties including lattice parameter, bulk modulus for the two considered crystal structures Hg{sub 2}CuTi-Type (X-Type) and Cu{sub 2}MnAl-Type (L2{sub 1}-Type) are calculated. The half-metallicity within ferromagnetic ground state starts to appear in CoCrMnAl and Cr2MnAl. In the objective for the proposition of the new HM-FM in the Full-Heusler alloys, our results classified CoCrMnAl as new HM-FM material with high spin polarization. - Highlights: • Based on DFT calculations, Co2-xCrxMnAl Heusler alloys have been investigated. • The magnetic phase stability was determined from the total energy calculations. • The LMTO calculations have classified CoCrMnAl as new HM-FM material with high spin polarization.

  10. Structure of as cast L12 compounds in Al3Zr-base alloys containing Cu and Mn

    International Nuclear Information System (INIS)

    Virk, I.S.; Varin, R.A.

    1991-01-01

    It was first shown that the low symmetry, tetragonal DO 23 crystal structure of Al 3 Zr intermetallic can be changed to the related cubic L1 2 crystal structure by alloying with Ni (Al 5 NiZr 2 ) and Cu(Al 5 CuZr 2 ). It has been reported that previous work has successfully modified Al 3 Zr with Fe, Cu, Cr and Ni obtaining nearly single phase materials with L1 2 structure. However, they only studied the microstructure and mechanical properties of Fe - modified intermetallic (Al-6at% Fe-25at% Zr). The purpose of the paper is to describe and interpret experimental observations on the microstructure of Al 5 CuZr 2 and Al 66 Mn 9 Zr 25 (at.%) modifications of base Al 3 Zr intermetallic. The one modified with Mn has not been reported in literature although its Al 3 Ti - base counterpart has recently been successfully produced (3, 4)

  11. Influencia de la adición de galio en las propiedades estructurales y texturales de óxidos de Mn y Al

    Directory of Open Access Journals (Sweden)

    Fernández, E.

    2004-04-01

    Full Text Available Mn-Ga and Al-Ga mixed oxides have been prepared in all compositional range by a conventional co precipitation method and subsequent thermal treatments. In the Al-Ga mixed oxide system, solid solutions are observed for samples up to 50% Ga content, identifying only the γ-Al2O3 phase below 800 ºC and the α-Al2O3 phase for temperatures above 800 ºC. BET specific surface decreases significantly as Ga addition increases. Ga-addition to manganese oxide produce phases no thermodynamically stable, but very interesting from the catalytic point of view, i.e. MnO2 in samples with 10% Ga content and treated at 400 ºC. Increasing the temperature, biphasic materials composed by Mn3O4 (hausmannita y Mn2O3 (bixbyita phases are identified in the X-ray patterns for Ga contents > 20%. These data are complemented by the evolution of FT-IR and electronic spectra.

    Se han obtenido óxidos mixtos de los sistemas Mn-Ga y Al-Ga en todo el intervalo de composiciones mediante un método de coprecipitación convencional y posteriores tratamientos térmicos. En el sistema Al-Ga, se observan soluciones sólidas hasta el 50% de Ga3+ identificándose la fase γ-Al2O3 por debajo de 800 ºC y la fase α-Al2O3 para temperaturas superiores. Las superficies específicas BET disminuyen con el incremento del contenido de Ga. La adición de Ga (10% en moles y 400 ºC al óxido de manganeso origina la obtención de fases termodinámicamente inestables, como el MnO2 (pirolusita, interesantes desde el punto de vista catalítico. El aumento de temperatura conduce a mezclas de fases Mn3O4 (hausmannita y Mn2O3 (bixbyita para contenidos de Ga mayores del 20%. Estos datos se complementan por las variaciones observadas en los espectros FT-IR y electrónicos.

  12. Newly synthesized MgAl2Ge2: A first-principles comparison with its silicide and carbide counterparts

    Science.gov (United States)

    Tanveer Karim, A. M. M.; Hadi, M. A.; Alam, M. A.; Parvin, F.; Naqib, S. H.; Islam, A. K. M. A.

    2018-06-01

    Using plane-wave pseudopotential density functional theory (DFT), the first-principle calculations are performed to investigate the structural aspects, mechanical behaviors and electronic features of the newly synthesized CaAl2Si2-prototype intermetallic compound, MgAl2Ge2 for the first time and the results are compared with those calculated for its silicide and carbide counterparts MgAl2Si2 and MgAl2C2. The calculated lattice constants agree fairly well with their corresponding experimental values. The estimated elastic tensors satisfy the mechanical stability conditions for MgAl2Ge2 along with MgAl2Si2 and MgAl2C2. The level of elastic anisotropy increases following the sequence of X-elements Ge → Si → C. MgAl2Ge2 and MgAl2Si2 are expected to be ductile and damage tolerant, while MgAl2C2 is a brittle one. MgAl2Ge2 and MgAl2Si2 should exhibit better thermal shock resistance and low thermal conductivity and accordingly these can be used as thermal barrier coating (TBC) materials. The Debye temperature of MgAl2Ge2 is lowest among three intermetallic compounds. MgAl2Ge2 and MgAl2Si2 should exhibit metallic conductivity; while the dual characters of weak-metals and semiconductors are expected for MgAl2C2. The values of theoretical Vickers hardness for MgAl2Ge2, MgAl2Si2, and MgAl2C2 are 3.3, 2.7, and 7.7 GPa, respectively, indicating that these three intermetallics are soft and easily machinable.

  13. Divorced Eutectic Solidification of Mg-Al Alloys

    Science.gov (United States)

    Monas, Alexander; Shchyglo, Oleg; Kim, Se-Jong; Yim, Chang Dong; Höche, Daniel; Steinbach, Ingo

    2015-08-01

    We present simulations of the nucleation and equiaxed dendritic growth of the primary hexagonal close-packed -Mg phase followed by the nucleation of the -phase in interdendritic regions. A zoomed-in region of a melt channel under eutectic conditions is investigated and compared with experiments. The presented simulations allow prediction of the final properties of an alloy based on process parameters. The obtained results give insight into the solidification processes governing the microstructure formation of Mg-Al alloys, allowing their targeted design for different applications.

  14. Kinetics of bainite precipitation in the Cu{sub 69.3}Al{sub 18.8}Mn{sub 10.3}Ag{sub 1.6} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Motta, M.B.J.L. [Departamento de Ciências Exatas e da Terra, UNIFESP, Diadema, SP (Brazil); Adorno, A.T.; Santos, C.M.A. [Departamento de Físico-Química, IQ-UNESP, Araraquara, SP (Brazil); Silva, R.A.G., E-mail: galdino.ricardo@gmail.com [Departamento de Ciências Exatas e da Terra, UNIFESP, Diadema, SP (Brazil)

    2017-02-15

    In this work the kinetics of bainite precipitation in the Cu{sub 69.3}Al{sub 18.8}Mn{sub 10.3}Ag{sub 1.6} alloy was studied using measurements of microhardness change with aging time, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analyses, measurements of magnetization change with applied field and high-resolution transmission electron microscopy (HRTEM). The results showed that the bainite precipitation is responsible for the hardness increase in the Cu{sub 69.3}Al{sub 18.8}Mn{sub 10.3}Ag{sub 1.6} alloy. The activation energy value obtained for the bainite precipitation is lower than that found in the literature. This was attributed to the presence of Ag dissolved in matrix and the occurrence of the Cu{sub 3}Al(DO{sub 3}) → Cu{sub 2}AlMn(L2{sub 1}) ordering reaction together with the bainite precipitation. - Highlights: • The activation energy for the bainite precipitation in the Cu{sub 69.3}Al{sub 18.8}Mn{sub 10.3}Ag{sub 1.6} alloy is around 33 kJ/mol. • During bainite precipitation the Cu{sub 2}AlMn phase formation occurs. • The Cu{sub 3}Al(DO{sub 3}) → Cu{sub 2}AlMn(L2{sub 1}) ordering reaction interferes in the activation energy value.

  15. Creep behaviour of a casting titanium carbide reinforced AlSi12CuNiMg piston alloy at elevated temperatures; Hochtemperaturkriechverhalten der schmelzmetallurgisch hergestellten dispersionsverstaerkten Kolbenlegierung AlSi12CuNiMg

    Energy Technology Data Exchange (ETDEWEB)

    Michel, S.; Scholz, A. [Zentrum fuer Konstruktionswerkstoffe, TU Darmstadt (Germany); Tonn, B. [Institut fuer Metallurgie, TU Clausthal (Germany); Zak, H.

    2012-03-15

    This paper deals with the creep behaviour of the titanium carbide reinforced AlSi12CuNiMg piston alloy at 350 C and its comparison to the conventional AlSi12Cu4Ni2MgTiZr piston alloy. With only 0,02 vol-% TiC reinforcement the creep strength and creep rupture strength of the AlSi12CuNiMg piston alloy are significantly improved and reach the level of the expensive AlSi12Cu4Ni2MgTiZr alloy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Heavy Metals (Mg, Mn, Ni and Sn contamination in Soil Samples of Ahvaz II Industrial Estate of Iran in 2013

    Directory of Open Access Journals (Sweden)

    Soheil l Sobhanardakani

    2016-04-01

    Full Text Available Background & Aims of the Study: Due to the rapid industrial development in Khuzestan province of Iran during recent years, this study was performed to analyze the variation of metals concentrations (Mg, Mn, Ni, and Sn in soil samples of Ahvaz II Industrial estate during the spring season of 2013. Materials & Methods: In this experimental study, 27 topsoil samples were collected from nine stations. The intensity of the soil contamination was evaluated, using a contamination factor (Cf and geo-accumulation index (I-geo. Results:  The mean soil concentrations (in mg kg-1 (dry weight were in ranged within 870-1144 (Mg, 188-300 (Mn, 93-199 (Ni and 9-15 (Sn. The data indicated that the I-geo value for all metals falls in class ‘1’. Also the Cf value for Mg and Mn falls in class ‘0’, the Cf value for Sn falls in class ‘1’ and the Cf value for Ni falls in the classes of ‘1’ and ‘2’. The result of the Pearson correlation showed that there were significant positive associations between all metals. Conclusions: According to the results which were achieved by a cluster analysis, there were significant positive associations among all metals based on Pearson correlation coefficient, especially between Ni and Sn; also both of them with Mn. Because the Ni originates from oil sources it can be resulted that Mn and Sn originate from oil sources, too. Therefore, industrial activities and exploitation of oil reservoirs are the main cause of pollution in that area. Also, it can be concluded that, with increasing the distance from the source of pollution, the accumulation of contaminants in the soil samples decreased.

  17. Plaster Covering of Octagonal MnSiAl Quasicrystals

    International Nuclear Information System (INIS)

    Ben-Abraham, S.; Gahlert, F.

    1999-01-01

    A likely mechanism for the formation of quasicrystals is by maximally covering space with overlapping stable atomic clusters. This presumably minimizes the energy and also creates long-range correlations and order. The purely geometric aspect was studied by Gummelt who proved that the Penrose tiling could be produced by covering the plane with overlapping copies of a single decagonal patch. Octagonal quasicrystalline phases closely related to the β-Mn structure have been observed in the CrNiSi, VNiSi, MoCrNi and MnsiAl systems. Jiang, Hovmoller and Zou have experimentally determined the structure of Mn 80 Si 15 Al 5 . It is a layer structure composed of octagonal layers A alternating with tetragonal layers B' and B'' (mutually rotated by 450 with an 84 screw axis. The layers can be described as decorations of the octagonal Ammann-Beenker tiling (ABT). The edge decoration is imposed by the structure itself in a natural way, thus, together with the maximal covering condition, enforcing the ABT. We represent the decoration abstractly by a novel two-color version of ABT, which, incidentally, has also considerable aesthetic appeal. The covering atomic cluster of the quasicrystal corresponds to an octagonal patch of the colored tiling. The pitch appears in two variants with complementary colors. Our construction yields in a natural way also the translation module (the generalization of the lattice concept) and the correct space group of the complete 3D quasicrystal. They are the centered octagonal module and the space group I8 4 /mcm, respectively

  18. Comparative kinetic studies of Mn2+-activated and fructose-1,6-P-modified Mg2+-activated pyruvate kinase from Concholepas concholepas.

    Science.gov (United States)

    Carvajal, N; González, R; Morán, A; Oyarce, A M

    1985-01-01

    Initial velocity and product inhibition studies of Mn2+-activated and FDP-modified Mg2+-activated pyruvate kinase from Concholepas concholepas, were performed. Evidence is presented to show that the Mn2+-enzyme catalyzes an ordered sequential mechanism, with ADP being the first substrate and pyruvate the last product. The results presented are consistent with a random combination of reactants with the FDP-modified Mg2+-activated enzyme and the formation of the dead-end complexes enzyme ADP-ATP and enzyme-PEP-ATP.

  19. Enhanced moments in bcc Co{sub 1−x}Mn{sub x} on MgO(001)

    Energy Technology Data Exchange (ETDEWEB)

    Snow, R.J.; Bhatkar, H. [Department of Physics, Montana State University, Bozeman, MT 59715 (United States); N' Diaye, A.T.; Arenholz, E. [Advanced Light Source, Lawrence Berkeley Nat. Labs, Berkeley, CA 94720 (United States); Idzerda, Y.U., E-mail: Idzerda@montana.edu [Department of Physics, Montana State University, Bozeman, MT 59715 (United States)

    2016-12-01

    A 40% enhancement of the Co magnetic moment has been found for thin films of bcc Co{sub 1−x}Mn{sub x} grown by molecular beam epitaxy on a 2 nm bcc Fe buffer layer on MgO(001). Although the bcc phase cannot be stabilized in the bulk, we confirm that it is stable as an epitaxial film in the composition range x=0–0.7. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism, we show that the Co moment is a maximum of 2.38 μ{sub B} at x=0.24, while the net Mn moment remains roughly constant until x=0.24, then drops steadily. Mn is found to align parallel with Co for all ferromagnetic concentrations, up to x=0.7, where the total moment of the film abruptly collapses to zero, most likely due to the onset of the observed structural instability. - Highlights: • Stabilization of bcc Co{sub 1−x}Mn{sub x} films in the composition range of x=0 to 0.7. • Enhancement of Co moment by 40% from pure bcc Co. • Parallel alignment of Mn moment and Co moment. • Measured the elemental moment of Co and Mn as a function of composition.

  20. Morphologies and growth mechanisms of the eutectic particles in as-cast Al-Mg-Sc alloy; Morphologien und Wachstumsmechanismen eutektischer Partikel in Al-Mg-Sc-Legierung im Gusszustand

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Dejiang; Zhou, Shi' ang; Li, Heng [Hefei Univ. of Technology (China); Zhang, Zhen; Wu, Yucheng [Laboratories of Nonferrous Metal Material and Processing Engineering of Anhui Province, Hefei (China); Li, Ming [Anhui Jianghuai Automobile Co., Ltd, Hefei (China)

    2017-04-15

    Primary particles with faceted cubic morphology were produced in as-cast Al-Mg alloy due to the addition of Sc. The cross-section of the particles revealed some eutectic structure composed of multilayer of 'Al{sub 3}Sc + α-Al + Al{sub 3}Sc..'. At the cooling rate of 200 - 300 K/s, Al{sub 3}Sc primary phase nucleated initially on oxides within the melt and developed to a cubic structure with a 'cellular-dendritic' mode of growth. The formation of α-Al structural shells was attributed as a reason for the segregation of Mg-rich lamellar dendrites at later stages. A growth mechanism for multilayer structure was proposed using the results presented.

  1. Effect of Ni on eutectic structural evolution in hypereutectic Al-Mg2Si cast alloys

    International Nuclear Information System (INIS)

    Li Chong; Wu Yaping; Li Hui; Wu Yuying; Liu Xiangfa

    2010-01-01

    Research highlights: → By the injection of rod-like NiAl 3 phase in Al-Mg 2 Si alloys, Al-Mg 2 Si binary eutectic structure gradually evolves into Al-Mg 2 Si-NiAl 3 ternary eutectic. → The ternary eutectic presents a unique double rod structure that rod-like NiAl 3 and Mg 2 Si uniformly distribute in Al matrix. → The mechanism of structural evolution was analyzed in terms of the detailed microstructural observations. → The high temperature (350 deg. C) tensile strength of the alloy increases by 23% due to the eutectic structural evolution. - Abstract: The aim of this work is to investigate the eutectic structural evolution of hypereutectic Al-20% Mg 2 Si with Ni addition under a gravity casting process. Three-dimensional morphologies of eutectic phases were observed in detail using field emission scanning electron microscopy, after Al matrix was removed by deep etching or extraction. The results show that Al-Mg 2 Si binary eutectic gradually evolves into Al-Mg 2 Si-NiAl 3 ternary eutectic with the increase of Ni content, and flake-like eutectic Mg 2 Si transforms into rods. The ternary eutectic presents a unique double rod structure that rod-like NiAl 3 and Mg 2 Si uniformly distribute in Al matrix. Further, the high temperature (350 deg. C) tensile strength of the alloy increases by 23% due to the eutectic structure evolution, and the mechanism of structural evolution was discussed and analyzed in terms of the detailed microstructural observations.

  2. Grain Growth in Nanocrystalline Mg-Al Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kruska, Karen; Rohatgi, Aashish; Vemuri, Venkata Rama Ses; Kovarik, Libor; Moser, Trevor H.; Evans, James E.; Browning, Nigel D.

    2017-10-05

    An improved understanding of grain growth kinetics in nanocrystalline materials, and in metals and alloys in general, is of continuing interest to the scientific community. In this study, Mg - Al thin films containing ~10 wt.% Al and with 14.5 nm average grain size were produced by magnetron-sputtering and subjected to heat-treatments. The grain growth evolution in the early stages of heat treatment at 423 K (150 °C), 473 K (200 °C) and 573K (300 °C) was observed with transmission electron microscopy and analyzed based upon the classical equation developed by Burke and Turnbull. The grain growth exponent was found to be 7±2 and the activation energy for grain growth was 31.1±13.4 kJ/mol, the latter being significantly lower than in bulk Mg-Al alloys. The observed grain growth kinetics are explained by the Al supersaturation in the matrix and the pinning effects of the rapidly forming beta precipitates and possibly shallow grain boundary grooves. The low activation energy is attributed to the rapid surface diffusion which is dominant in thin film systems.

  3. The effect of Mn and B on the magnetic and structural properties of nanostructured Fe60Al40 alloys produced by mechanical alloying.

    Science.gov (United States)

    Rico, M M; Alcázar, G A Pérez; Zamora, L E; González, C; Greneche, J M

    2008-06-01

    The effect of Mn and B on the magnetic and structural properties of nanostructured samples of the Fe60Al40 system, prepared by mechanical alloying, was studied by 57Fe Mössbauer spectrometry, X-ray diffraction and magnetic measurements. In the case of the Fe(60-x)Mn(x)Al40 system, 24 h milling time is required to achieve the BCC ternary phase. Different magnetic structures are observed according to the temperature and the Mn content for alloys milled during 48 h: ferromagnetic, antiferromagnetic, spin-glass, reentrant spin-glass and superparamagnetic behavior. They result from the bond randomness behaviour induced by the atomic disorder introduced by the MA process and from the competitive interactions of the Fe-Fe ferromagnetic interactions and the Mn-Mn and Fe-Mn antiferromagnetic interactions and finally the presence of Al atoms acting as dilutors. When B is added in the Fe60Al40 alloy and milled for 12 and 24 hours, two crystalline phases were found: a prevailing FeAl BCC phase and a Fe2B phase type. In addition, one observes an additional contribution attributed to grain boundaries which increases when both milling time and boron composition increase. Finally Mn and B were added to samples of the Fe60Al40 system prepared by mechanical alloying during 12 and 24 hours. Mn content was fixed to 10 at.% and B content varied between 0 and 20 at.%, substituting Al. X-ray patterns show two crystalline phases, the ternary FeMnAl BCC phase, and a (Fe,Mn)2B phase type. The relative proportion of the last phase increases when the B content increases, in addition to changes of the grain size and the lattice parameter. Such behavior was observed for both milling periods. On the other hand, the magnetic hyperfine field distributions show that both phases exhibit chemical disorder, and that the contribution attributed to the grain boundaries is less important when the B content increases. Coercive field values of about 10(2) Oe slightly increase with boron content

  4. Synthesis and effect of Ce and Mn co-doping on photoluminescence characteristics of Ca6AlP5O20:Eu novel phosphors.

    Science.gov (United States)

    Shinde, K N; Dhoble, S J

    2013-01-01

    A series of Ca6AlP5O20 doped with rare earths (Eu and Ce) and co-doped (Eu, Ce and Eu,Mn) were prepared by combustion synthesis. Under Hg-free excitation, Ca6AlP5O20:Eu exhibited Eu(2+) (486 nm) emission in the blue region of the spectrum and under near Hg excitation (245 nm), Ca6AlP5O20:Ce phosphor exhibited Ce(3+) emission (357 nm) in the UV range. Photoluminescence (PL) peak intensity increased in Ca6AlP5O20:Eu,Ce and Ca6AlP5O20:Eu, Mn phosphors due to co-activators of Ce(3+) and Mn(2+) ions. As a result, these ions played an important role in PL emission in the present matrix. Ca6AlP5O20:Eu, Ce and Ca6AlP5O20:Eu, Mn phosphors provided energy transfer mechanisms via Ce(3+) → Eu(2+) and Eu(2+) → Mn(2+), respectively. Eu ions acted as activators and Ce ions acted as sensitizers. Ce emission energy was well matched with Eu excitation energy in the case of Ca6AlP5O20:Eu, Ce and Eu ions acted as activators and Mn ions acted as sensitizers in Ca6AlP5O20:Eu, Mn. This study included synthesis of new and efficient phosphate phosphors. The impact of doping and co-doping on photoluminescence properties and energy transfer mechanisms were investigated and we propose a feasible interpretation. Copyright © 2012 John Wiley & Sons, Ltd.

  5. TEM Nanostructural Study of Al-6Si-3Cu-Mg Melt-Spun Ribbons

    Directory of Open Access Journals (Sweden)

    Ismeli Alfonso López

    2008-01-01

    Full Text Available Three quaternary Al-6Si-3Cu-xMg (x = 0.59, 3.80, and 6.78 wt.% alloys were produced by melt-spun and characterized using X-ray diffractometry (XRD, transmission electron microscopy (TEM, and microhardness techniques. Obtained second phases were Al2Cu( for the alloy with 0.59% Mg and Al5Cu2Mg8Si6 (Q for the alloys with 3.80 and 6.78% Mg. These phases are present as 30–50 nm or as 5–10 nm nanoparticles. Alloying elements content in solid solution increased, mainly for Si and Mg. The high alloying elements content in solid solution and the small -Al cell size for melt-spun alloys leads to microhardness values about 2 times higher than those of ingot counterparts. The microhardness increase for melt-spun alloys with 3.80 and 6.78% Mg depends on Mg content in solid solution.

  6. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2.

    Science.gov (United States)

    Maitra, Urmimala; House, Robert A; Somerville, James W; Tapia-Ruiz, Nuria; Lozano, Juan G; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A; Massel, Felix; Pickup, David M; Ramos, Silvia; Lu, Xingye; McNally, Daniel E; Chadwick, Alan V; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C; Roberts, Matthew R; Bruce, Peter G

    2018-03-01

    The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li + -O(2p)-Li + interactions). Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg 2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg 2+ remains in Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 , which stabilizes oxygen.

  7. Centrifugally cast Zn-27Al-xMg-ySi alloys and their in situ (Mg2Si + Si)/ZA27 composites

    International Nuclear Information System (INIS)

    Wang Qudong; Chen Yongjun; Chen Wenzhou; Wei Yinhong; Zhai Chunquan; Ding Wenjiang

    2005-01-01

    Effects of composition, mold temperature, rotating rate and modification on microstructure of centrifugally cast Zn-27Al-xMg-ySi alloys have been investigated. In situ composites of Zn-27Al-6.3Mg-3.7Si and Zn-27Al-9.8Mg-5.2Si alloys were fabricated by centrifugal casting using heated permanent mold. These composites consist of three layers: inner layer segregates lots of blocky primary Mg 2 Si and a litter blocky primary Si, middle layer contains without primary Mg 2 Si and primary Si, outer layer contains primary Mg 2 Si and primary Si. The position, quantity and distribution of primary Mg 2 Si and primary Si in the composites are determined jointly by alloy composition, solidification velocity under the effect of centrifugal force and their floating velocity inward. Na salt modifier can refine grain and primary Mg 2 Si and make primary Mg 2 Si distribute more evenly and make primary Si nodular. For centrifugally cast Zn-27Al-3.2Mg-1.8Si alloy, the microstructures of inner layer, middle layer and outer layer are almost similar, single layer materials without primary Mg 2 Si and primary Si are obtained, and their grain sizes increased with the mold temperature increasing

  8. Effects of minor Zr and Sr on as-cast microstructure and mechanical properties of Mg-3Ce-1.2Mn-0.9Sc (wt.%) magnesium alloy

    International Nuclear Information System (INIS)

    Pan Fusheng; Yang Mingbo; Shen Jia; Wu Lu

    2011-01-01

    Research highlights: → Minor Zr and/or Sr additions can effectively refine the grains of the Mg-3Ce-1.2Mn-0.9Sc alloy. → Minor Zr and/or Sr additions can improve the tensile properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. → Minor Zr and/or Sr additions can improve the creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. - Abstract: The effects of minor Zr and Sr on the as-cast microstructure and mechanical properties of the Mg-3Ce-1.2Mn-0.9Sc (wt.%) alloy were investigated by using optical and electron microscopies, differential scanning calorimetry (DSC) analysis, and tensile and creep tests. The results indicate that adding minor Zr and/or Sr to the Mg-3Ce-1.2Mn-0.9Sc alloy does not cause an obvious change in the morphology and distribution of the Mg 12 Ce phase. However, the grains of the Zr and/or Sr-containing alloys are effectively refined. Among the Zr and/or Sr-containing alloys, the grains of the alloy with the addition of 0.5 wt.%Zr + 0.1 wt.%Sr are the finest, followed by the alloys with the additions of 0.5 wt.%Zr and 0.1 wt.%Sr, respectively. In addition, small additions of Zr and/or Sr can improve the tensile and creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. Among the Zr and/or Sr-containing alloys, the alloy with the addition of 0.5 wt.%Zr + 0.1 wt.%Sr obtains the optimum tensile and creep properties.

  9. Core and valence level photoemission and photoabsorption study of icosahedral Al-Pd-Mn quasicrystals

    International Nuclear Information System (INIS)

    Horn, K; Theis, W; Paggel, J J; Barman, S R; Rotenberg, E; Ebert, Ph; Urban, K

    2006-01-01

    The electronic structure of quasicrystalline Al-Pd-Mn is investigated by means of valence and core level photoelectron spectroscopy. Variations of the photoionization cross section in the constituents' valence electronic levels as a function of photon energy are used to identify contributions from the different atomic species, in particular near the Pd 4d Cooper minimum. Resonant photoemission at the Mn 2p absorption edge shows the contribution of the Mn 3d states to the density of states in a region near the Fermi level. The asymmetry of Pd 3d and Mn 2p core level photoemission lines, and its difference for emission from metallic and quasicrystalline phases, are utilized to infer the contributions of the different constituents to the density of states at the Fermi level

  10. Electronic structure and x-ray spectroscopy of Cu2MnAl1-xGax

    Science.gov (United States)

    Rai, D. P.; Ekuma, C. E.; Boochani, A.; Solaymani, S.; Thapa, R. K.

    2018-04-01

    We explore the electronic and related properties of Cu2MnAl1-xGax with a first-principles, relativistic multiscattering Green function approach. We discuss our results in relation to existing experimental data and show that the electron-core hole interaction is essential for the description of the optical spectra especially in describing the X-ray absorption and magnetic circular dichroism spectra at the L2,3 edges of Cu and Mn.

  11. Effect of Al on Grain Refinement and Mechanical Properties of Mg-3Nd Casting Alloy

    Science.gov (United States)

    Wang, Lei; Feng, Yicheng; Wang, Liping; Chen, Yanhong; Guo, Erjun

    2018-05-01

    The effect of Al on the grain refinement and mechanical properties of as-cast Mg-3Nd alloy was investigated systematically by a series of microstructural analysis, solidification analysis and tensile tests. The results show that Al has an obvious refining effect on the as-cast Mg-3Nd alloy. With increasing Al content, the grain size of the as-cast Mg-3Nd alloy decreases firstly, then increases slightly after the Al content reaching 3 wt.%, and the minimum grain size of the Mg-3Nd alloy is 48 ± 4.0 μm. The refining mechanism can be attributed to the formation of Al2Nd particles, which play an important role in the heterogeneous nucleation. The strength and elongation of the Mg-3Nd alloy refined by Al also increase with increasing Al content and slightly decrease when the Al content is more than 3 wt.%, and the strengthening mechanism is attributed to the grain refinement as well as dispersed intermetallic particles. Furthermore, the microstructural thermal stability of the Mg-3Nd-3Al alloy is higher than that of the Mg-3Nd-0.5Zr alloy. Overall, the Mg-3Nd alloy with Al addition is a novel alloy with wide and potential application prospects.

  12. Self-learning kinetic Monte Carlo simulations of Al diffusion in Mg

    International Nuclear Information System (INIS)

    Nandipati, Giridhar; Govind, Niranjan; Andersen, Amity; Rohatgi, Aashish

    2016-01-01

    Vacancy-mediated diffusion of an Al atom in the pure Mg matrix is studied using the atomistic, on-lattice self-learning kinetic Monte Carlo (SLKMC) method. Activation barriers for vacancy-Mg and vacancy-Al atom exchange processes are calculated on the fly using the climbing image nudged-elastic-band method and binary Mg–Al modified embedded-atom method interatomic potential. Diffusivities of an Al atom obtained from SLKMC simulations show the same behavior as observed in experimental and theoretical studies available in the literature; that is, an Al atom diffuses faster within the basal plane than along the c-axis. Although the effective activation barriers for an Al atom diffusion from SLKMC simulations are close to experimental and theoretical values, the effective prefactors are lower than those obtained from experiments. We present all the possible vacancy-Mg and vacancy-Al atom exchange processes and their activation barriers identified in SLKMC simulations. A simple mapping scheme to map an HCP lattice onto a simple cubic lattice is described, which enables simulation of the HCP lattice using the on-lattice framework. We also present the pattern recognition scheme which is used in SLKMC simulations to identify the local Al atom configuration around a vacancy. (paper)

  13. Texture development in Al-Mg alloys during high temperature annealing

    International Nuclear Information System (INIS)

    Saitou, T.; Inagaki, H.

    2001-01-01

    To clarify the effect of Mg content on annealing textures developed in Al-Mg alloys during high temperature annealing, Al-Mg alloys containing up to 9 wt.% Mg in supersaturated solid solution were cold rolled 95% and isothermally annealed at 450 C. Their textures were investigated with the orientation distribution function analysis. It was found that, in the recrystallization textures observed at complete recrystallization, addition of more than 1 wt.% Mg was sufficient to suppress the development of {100} left angle 001 right angle. With increasing Mg content, {100} left angle 001 right angle decreased remarkably, whereas {100} left angle 013 right angle and {103} left angle 321 right angle increased. Thus, {100} left angle 013 right angle and {103} left angle 321 right angle were found to be the main orientations of the recrystallization textures of Al-Mg alloys annealed at high temperatures. {100} left angle 013 right angle developed most remarkably at 4 wt.% Mg, while {103} left angle 321 right angle showed the maximum development at 7 wt.% Mg. During subsequent grain growth at 450 C, remarkable texture changes were observed only in the alloys containing Mg in the range between 2 and 4 wt.%. In these alloys, {100} left angle 013 right angle developed at the expense of {100} left angle 001 right angle at earlier stages of grain growth, whereas {103} left angle 321 right angle increased independently of these two orientations at later stages of grain growth. Reflecting these texture changes, grain growth occurred in these alloys discontinuously. Such a discontinuous grain growth with large texture changes is expected, if strong textures are already present before grain growth, and if recrystallized grains having similar orientations are distributed by forming large clusters before grain growth. (orig.)

  14. TL and OSL studies of carbon doped magnesium aluminate (MgAl2O4:C)

    Science.gov (United States)

    Raj, Sanu S.; Mishra, D. R.; Soni, Anuj; Grover, V.; Polymeris, G. S.; Muthe, K. P.; Jha, S. K.; Tyagi, A. K.

    2016-10-01

    The MgAl2O4:C has been synthesized by using two different methods by electron gun and vacuum assisted melting of MgAl2O4 in presence of graphite. The MgAl2O4:C phosphor thus developed by these two different methods have similar types of the TL/OSL defects with multiple overlapping TL glow peaks from 100 °C to 400 °C. The Computerized Curve De-convolution Analysis (CCDA) has been used to measure TL parameters such as thermal trap depth, frequency factor and order of kinetic associated with charge transfer process in TL phenomenon. The investigated TL/OSL results show that these two methods of incorporating carbon in MgAl2O4 have generated closely resemble the defects of similar types in MgAl2O4:C lattice. However, the MgAl2O4:C synthesized by electron gun shows relatively larger concentration of the TL/OSL defects as compared to MgAl2O4:C synthesized using vacuum assisted melting method. The photo-ionization cross-section (PIC) associated with fastest OSL component of MgAl2O4: C is found to be ∼ 0.5 times than that of fastest OSL component of commercially available dosimetric grade α-Al2O3:C. The MgAl2O4:C thus developed shows good dynamic OSL dose linearity from few mGy to 1 Gy. This work reveals that MgAl2O4:C could be developed as potential tissue equivalent OSL / TL material.

  15. High-Throughput Investigation of a Lead-Free AlN-Based Piezoelectric Material, (Mg,Hf)xAl1-xN.

    Science.gov (United States)

    Nguyen, Hung H; Oguchi, Hiroyuki; Van Minh, Le; Kuwano, Hiroki

    2017-06-12

    We conducted a high-throughput investigation of the fundamental properties of (Mg,Hf) x Al 1-x N thin films (0 piezoelectric materials. For the high-throughput investigation, we prepared composition-gradient (Mg,Hf) x Al 1-x N films grown on a Si(100) substrate at 600 °C by cosputtering AlN and MgHf targets. To measure the properties of the various compositions at different positions within a single sample, we used characterization techniques with spatial resolution. X-ray diffraction (XRD) with a beam spot diameter of 1.0 mm verified that Mg and Hf had substituted into the Al sites and caused an elongation of the c-axis of AlN from 5.00 Å for x = 0 to 5.11 Å for x = 0.24. In addition, the uniaxial crystal orientation and high crystallinity required for piezoelectric materials to be used as application devices were confirmed. The piezoelectric response microscope indicated that this c-axis elongation increased the piezoelectric coefficient almost linearly from 1.48 pm/V for x = 0 to 5.19 pm/V for x = 0.24. The dielectric constants of (Mg,Hf) x Al 1-x N were investigated using parallel plate capacitor structures with ∼0.07 mm 2 electrodes and showed a slight increase by substitution. These results verified that (Mg,Hf) x Al 1-x N is a promising material for piezoelectric-based application devices, especially for vibrational energy harvesters.

  16. Thermo-mechanical treatment of low-cost alloy Ti-4.5Al-6.9Cr-2.3Mn and microstructure and mechanical characteristics

    Science.gov (United States)

    Chen, Guangyao; Kang, Juyun; Wang, Shusen; Wang, Shihua; Lu, Xionggang; Li, Chonghe

    2018-04-01

    In this study, the thermo-mechanical treatment process for low-cost Ti-4.5Al-6.9Cr-2.3Mn alloy were designed on the basis of assessment of Ti-Al-Cr-Mn thermodynamic system. The microstructure and mechanical properties of Ti-4.5Al-6.9Cr-2.3Mn forging and sheet were investigated by using the OM, SEM and universal tensile testing machine. The results show that both the forging and sheet were consisted of α + β phase, which is consistent with the expectation, and no element Cr and Mn existed in the grain boundaries of the sheet after quenching, and the C14 laves phase was not detected. The average ultimate tensile strength (σ b), 0.2% proof strength (σ 0.2) and elongation (EI) of alloy sheet after quenching can reach 1059 MPa, 1051 MPa and 24.6 Pct., respectively. Moreover, the average ultimate tensile strength of Ti-4.5Al-6.9Cr-2.3Mn forgings can reach 1599 MPa and the average elongation can reach 11.2 Pct., and a more excellent property of Ti-4.5Al-6.9Cr-2.3Mn forging is achieved than that of TC4 forging. It provides a theoretical support for further developing this low-cost alloy.

  17. Enhanced glass forming ability and refrigerant capacity of a Gd55Ni22Mn3Al20 bulk metallic glass

    International Nuclear Information System (INIS)

    Xia, L.; Chan, K.C.; Tang, M.B.

    2011-01-01

    Highlights: → A new Gd 55 Ni 22 Mn 3 Al 20 bulk metallic glass (BMG) was synthesized by minor Mn addition. → The BMG has enhanced glass forming ability and excellent refrigerant capacity (RC). → The RC of the BMG reaches a high value of 825 J kg -1 under a field of 3979 kA/m. → Its excellent RC is related to its large effective magnetic moment. - Abstract: In this work, a small amount of Mn was added to a Gd 55 Ni 25 Al 20 glass forming alloy, as a replacement for Ni, and a Gd 55 Ni 22 Mn 3 Al 20 bulk metallic glass (BMG) was obtained by suction casting. Its glass forming ability (GFA) was characterized by X-ray diffraction and differential scanning calorimetry, and its magnetic properties were measured using a magnetic property measurement system. It is found that the minor Mn addition can significantly improve both the GFA and the magnetocaloric effect (MCE) of the alloy. The refrigerant capacity (RC) of the BMG can reach a high value of 825 J kg -1 under a field of 3979 kA/m, which is about 29% larger than that of a Gd 55 Ni 25 Al 20 BMG. The effect of the minor Mn addition on the GFA and MCE of the BMG was investigated in the study.

  18. Effect of alloying elements on the shape memory properties of ductile Cu-Al-Mn alloys

    International Nuclear Information System (INIS)

    Sutou, Y.; Kainuma, R.; Ishida, K.

    1999-01-01

    The effect of alloying elements on the M s temperature, ductility and the shape memory properties of Cu-Al-Mn ductile shape memory (SM) alloys was investigated by differential scanning calorimetry, cold-rolling and tensile test techniques. It was found that the addition of Au, Si and Zn to the Cu 73 -Al 17 -Mn 10 alloy stabilized the martensite (6M) phase increasing the M s temperature, while the addition of Ag, Co, Cr, Fe, Ni, Sn and Ti decreased the stability of the martensite phase, decreasing the M s temperature. The SM properties were improved by the addition of Co, Ni, Cr and Ti. (orig.)

  19. The Effect of Mg Addition and Manufacturing Conditions on the Interfacial Reactions between Al and CNT in Al-CNT Pellets

    International Nuclear Information System (INIS)

    Lim, Jung-Kyu; Choi, Soon-Yool; Choe, Kyong-Hwan; Cho, Gue-Serb; Kim, Sang-Sub

    2013-01-01

    In the present study, Al-CNT pellets were investigated to understand the effect of Mg addition and manufacturing conditions on the interfacial reactions between Al and CNTs in Al-CNT pellets. The pellets were heated and held at 700 °C and 800 °C for 2 hours under nitrogen (N_2) atmosphere. To confirm the reactions between Al and CNT in the pellets under different manufacturing conditions, the microstructures were observed by optical microscopy (OM) and field emission scanning electro microscopy (FESEM). And, the composition and reaction phases were analyzed by energy dispersive X-ray spectroscory (EDXS) and X-ray diffractometry (XRD). The presence of oxidation products and Mg on the surface of Al powder in the pellets appeared to prevent the formation of Al_4C_3. But, Al_4C_3 reaction products were increased due to the high temperature of 800 °C, which produced a high amount of reduced aluminium and increased the reaction areas between Al and CNT. The Al-CNT pellets compacted under air atmosphere prohibited the reaction between Al and CNT because of the high amount of oxidation products, such as MgO and MgAl_2O_4.

  20. Fabrication of Spherical AlSi10Mg Powders by Radio Frequency Plasma Spheroidization

    Science.gov (United States)

    Wang, Linzhi; Liu, Ying; Chang, Sen

    2016-05-01

    Spherical AlSi10Mg powders were prepared by radio frequency plasma spheroidization from commercial AlSi10Mg powders. The fabrication process parameters and powder characteristics were investigated. Field emission scanning electron microscope, X-ray diffraction, laser particle size analyzer, powder rheometer, and UV/visible/infrared spectrophotometer were used for analyses and measurements of micrographs, phases, granulometric parameters, flowability, and laser absorption properties of the powders, respectively. The results show that the obtained spherical powders exhibit good sphericity, smooth surfaces, favorable dispersity, and excellent fluidity under appropriate feeding rate and flow rate of carrier gas. Further, acicular microstructures of the spherical AlSi10Mg powders are composed of α-Al, Si, and a small amount of Mg2Si phase. In addition, laser absorption values of the spherical AlSi10Mg powders increase obviously compared with raw material, and different spectra have obvious absorption peaks at a wavelength of about 826 nm.

  1. Thermoelectric properties of Al doped Mg{sub 2}Si material

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Kulwinder, E-mail: kulwindercmp@gmail.com; Kumar, Ranjan [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India); Rani, Anita [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India); Guru Nanak College for Girls, Sri Muktsar Sahib, Punjab (India)

    2015-08-28

    In the present paper we have calculated thermoelectric properties of Al doped Mg{sub 2}Si material (Mg{sub 2−x}Al{sub x}Si, x=0.06) using Pseudo potential plane wave method based on DFT and Semi classical Boltzmann theory. The calculations showed n-type conduction, indicating that the electrical conduction are due to electron. The electrical conductivity increasing with increasing temperature and the negative value of Seebeck Coefficient also show that the conduction is due to electron. The thermal conductivity was increased slightly by Al doping with increasing temperature due to the much larger contribution of lattice thermal conductivity over electronic thermal conductivity.

  2. Synthesis of high-surface-area spinel-type MgAl2O4 nanoparticles ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1. Synthesis of high-surface-area spinel-type MgAl 2 O 4 nanoparticles by [Al(sal) 2 (H 2 O) 2 ] 2 [Mg(dipic) 2 ] and [Mg(H 2 O) 6 ][Al(ox) 2 (H 2 O) 2 ] 2 ·5H 2 O: influence of inorganic precursor type. Volume 40 Issue 1 February 2017 pp 45-53 ...

  3. The magnetic Curie temperature and exchange coupling between cations in tetragonal spinel oxide Mn{sub 2.5}M{sub 0.5}O{sub 4} (M = Co, Ni, Mn, Cr, and Mg) films

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, K.; Cheng, C. W.; Chern, G. [Physics Department and SPIN Research Center, National Chung Cheng University, Chia-Yi, Taiwan, 621 (China)

    2012-04-01

    Mn{sub 3}O{sub 4} is a Jahn-Taller tetragonal ferrite that has a relatively low Curie temperature (T{sub c}) of {approx}43 K due to weak coupling between the canting spins. In this study, we fabricated a series of 100-nm-thick Mn{sub 2.5}M{sub 0.5}O{sub 4} (M = Co, Ni, Mn, Cr, and Mg) films via oxygen-plasma-assisted molecular beam epitaxy and measured the structural and magnetic properties of these films. These films show single phase quality, and the c-axis lattice parameter of pure Mn{sub 3}O{sub 4} is 0.944 nm, with a c/a ratio {approx}1.16, consistent with the bulk values. The replacement of Mn by M (M = Co, Ni, Cr, and Mg) changes the lattice parameters, and the c/a ratio varies between 1.16 and 1.06 depending upon the cation distribution of the films. The magnetic Curie temperatures of these films also vary in the range of 25-66 K in that Ni and Co enhance the T{sub c} whereas Mg reduces the T{sub c} (Cr shows no effect on the T{sub c}). These changes to the T{sub c} are related to both the element electronic state and the cation distributions in these compounds. As a non-collinear spin configuration can induce electrical polarization, the present study provides a systematic way to enhance the magnetic transition temperature in tetragonal spinel ferrites.

  4. Casting defects and mechanical properties of high pressure die cast Mg-Zn-Al-RE alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Wenlong; Easton, Mark A.; Zhu, Suming; Nie, Jianfeng [CAST Cooperative Research Centre, Department of Materials Engineering Monash University, Melbourne, VIC (Australia); Dargusch, Matthew S. [School of Mechanical and Mining Engineering, University of Queensland, Brisbane, QLD (Australia); Gibson, Mark A. [CSIRO Process Science and Engineering, Melbourne, VIC (Australia); Jia, Shusheng [Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering Jilin University, Changchun (China)

    2012-02-15

    The die casting defects and tensile properties of high pressure die cast (HPDC) Mg-Zn-Al-RE alloys with various combinations of Zn and Al were studied. The results show that die casting defects in Mg-Zn-Al-RE alloys are affected by the percentage of Zn and Al contents. The hot tearing susceptibility (HTS) of Mg-Zn-Al-RE alloys tends to increase with increasing Zn content up to 6 wt%, while a further increase of Al and/or Zn content reduces the HTS. In tensile tests, the yield strength (YS) is generally improved by increasing Zn or Al content, whereas the tensile strength (TS) and ductility appear to depend largely on the presence of casting defects. Compared with Mg-Zn-Al alloys, the mechanical properties of the Mg-Zn-Al-RE alloy are significantly improved. The Mg-4Zn-4Al-4RE alloy is found to have few casting defects and the optimal tensile properties. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Regularities in structure formation of magnesium-yttrium alloy of Mg-Y-Mn-Cd system in relation to temperature and hot working rate

    International Nuclear Information System (INIS)

    Ovechkin, B.I.; Miklina, N.V.; Blokhin, N.N.; Sorokin, A.F.

    1981-01-01

    Problems of the structure formation of magnesium-yttrium alloy of Mg-G-Mn-Cd system with 7.8 % G in a wide range of temperature-rate parameters of hot working are studied. On the basis of X-ray analysis results ascertained with metallographic and electron microscopic investigations, a diagram of structural states after hot working of Mg-G-Mn-Cd system alloy has been plotted. A change in grain size in relation to temperature-rate conditions of hot working

  6. Precipitation kinetics of Al-1.12 Mg{sub 2}Si-0.35 Si and Al-1.07 Mg{sub 2}Si-0.33 Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Gaffar, M.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)]. E-mail: mgaafar@aucegypt.edu; Mostafa, M.S. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Zeid, E.F. Abo [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2007-02-21

    The kinetics of hardening precipitates of Al-1.12 wt.% Mg{sub 2}Si-0.35 wt.% Si (excess Si) and Al-1.07 wt.% Mg{sub 2}Si-0.33 wt.% Cu (balanced + Cu) alloys have been investigated by means of differential scanning calorimetry and hardness measurements. The excess Si enhances the precipitation kinetics and improves the strength of the material. On the other hand, however addition of Cu assist formation of the Q' phase which positively changed the alloy strength. The high binding energy between vacancies and solute atoms (Si and Mg) enhances the combination of Si, Mg and vacancies to form Si-Mg-vacancy clusters. These clusters act as nucleation sites for GP-zones. The coexistence of the {beta}'- and Q'-precipitates in the balanced + Cu alloy results in a higher peak age hardening compared to the alloy with Si in excess.

  7. Total Diet Study. Mg and Mn content estimation of a Market Basket of Sao Paulo state (Brazil) by Instrumental Neutron Activation

    International Nuclear Information System (INIS)

    Roseane Pagliaro Avegliano; Vera Akiko Maihara

    2014-01-01

    Total Diet Studies (TDS) have been carried out to estimate dietary intakes of the essential and toxic elements for a large-scale population over a specific period of time. In this study, the TDS was based on the evaluation of food representing a Market Basket (MB), which reflected the dietary habits of the Sao Paulo State population, corresponding to 72 % of the average food consumption for the state of Sao Paulo. In the present Total Diet Study, magnesium and manganese concentrations were determined in 30 of the most consumed food groups of a MB of Sao Paulo State, Brazil. Instrumental Neutron Activation Analysis (INAA) has been successfully used on a regularly basis in several areas of nutrition and foodstuffs. Element concentrations were determined by INAA in freeze-dried samples and ranged in mg kg -1 . Mg 41.4 (fats)-5287 (coffee) and Mn 0.12 (prime grade beef)-32.9 (coffee). The average daily Mg and Mn intake was calculated by multiplying the concentration of each element in each table-ready food group by the respective weight (g day -1 ) of the food group in the MB and adding the products from all food groups. The results of daily dietary intakes in this study were: Mg 174.8 and Mn 1.34 mg day -1 . Theses values were lower than the adequate intake (AI) proposed by the Food and Nutrition Board of the Institute of Medicine (USA National Academy) for adults. The low levels of Mg and Mn intakes presented in this TDS are probably due to the fact that MB of this study represented only 72 % of the weight of the most consumed household foods of Sao Paulo State. (author)

  8. Al-doped MgB{sub 2} materials studied using electron paramagnetic resonance and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bateni, Ali; Somer, Mehmet, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr [Department of Chemistry, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul (Turkey); Erdem, Emre, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr; Repp, Sergej [Institut für Physikalische Chemie, Universität Freiburg, Albertstr. 21, Freiburg (Germany); Weber, Stefan [Institut für Physikalische Chemie, Universität Freiburg, Albertstr. 21, Freiburg (Germany); Freiburg Institute for Advanced Studies (FRIAS), Universität Freiburg, Albertstr. 19, Freiburg (Germany)

    2016-05-16

    Undoped and aluminum (Al) doped magnesium diboride (MgB{sub 2}) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB{sub 2} samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB{sub 2}. Above a certain level of Al doping, enhanced conductive properties of MgB{sub 2} disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  9. Adsorption of Na, Mg, and Al atoms on BN nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Beheshtian, Javad [Department of Chemistry, Shahid Rajaee Teacher Training University, P.O. Box: 16875-163, Tehran (Iran, Islamic Republic of); Peyghan, Ali Ahmadi, E-mail: ahmadi.iau@gmail.com [Young Researchers Club, Islamic Azad University, Islamshahr Branch, Tehran (Iran, Islamic Republic of); Bagheri, Zargham [Physics group, Science department, Islamic Azad University, Islamshahr Branch, P.O. Box: 33135-369, Islamshahr, Tehran (Iran, Islamic Republic of)

    2012-12-30

    Adsorption of three metals (Na, Mg, and Al) on the surface of BN nanotubes (BNNT) has been investigated by using density functional theory. Adsorption energies for Na and Al atoms have been calculated to be about - 0.22 to - 0.61 eV, respectively. Upon the metal adsorption, energy gap between highest occupied and lowest unoccupied orbitals of the tube is dramatically decreased, resulting in enhanced electrical conductivity. However, in the case of Mg atom, the low adsorption energy cannot change electronic property of the tube. The semi-conductive BNNT transform to n-type semiconductor after adsorption of Na atom. The metal adsorption modifies work function of the BNNT and consequently the field-emission current densities of metal-BNNT may be significantly enhanced. - Highlights: Black-Right-Pointing-Pointer Adsorption of Na, Mg, and Al atoms on the BN nanotubes (BNNT) was studied. Black-Right-Pointing-Pointer Adsorption energies for Na and Al atoms are about - 0.22 to - 0.61 eV, respectively. Black-Right-Pointing-Pointer Energy gap of the tube dramatically decreases upon the metals adsorption. Black-Right-Pointing-Pointer Semiconductor BNNT transform to n-type ones upon adsorption of Na and Al atoms. Black-Right-Pointing-Pointer The field-emission current densities of metal-BNNT may be significantly enhanced.

  10. Radioactivity of β / γ and the Content of Ca, Fe, Mn, Mg, Na on the Spring of Ponorogo East Java Lime Area

    International Nuclear Information System (INIS)

    Sutjipto

    2002-01-01

    Radioactivity of β / γ and the content of Ca, Fe, Mn, Mg, Na on the source of Ponorogo East-Java lime area has been studied. This research was carried out to know radioactivity of β / γ and the content of Ca, Fe, Mn, Mg, Na on the spring of different three places were Ngebel-lake source, Ngembak source and Gonggang source. Samples taken, preparation and analysis based on the procedures of environmental radioactivity analysis and water sampling guidelines. The instrument used for the analysis radioactivity were low level β counter modified P3TM-BATAN Yogyakarta with detector GM and spectrometer γ with detector Ge(Li). Radioactivity of β (gross) from the source of different three places (β ≤ 1 Bq/L) are lower than the value of PPRI No. 20/1990. Radioactivity of γ comes from the natural radionuclides of Tl-208 and K-40 are lower than 1 Bq/L for the different of three places, respectively. The metals concentration of Ngebel-lake source were Ca ≤ 14.34 ppm; Fe ≤ 0.04 ppm; Mn ≤ 0.02 ppm; Mg ≤ 6.75 ppm; Na ≤ 14.63 ppm, Ngembak source were Ca ≤ 11.6 ppm; Fe ≤ 0.04 ppm; Mn ≤ 0.02 ppm; Mg ≤ 11.13 ppm; Na ≤ 16.75 ppm and Gonggang source were Ca ≤ 13.78 ppm; Fe ≤ 0.26 ppm; Mn ≤ 0.02 ppm; Mg ≤ 6.13 ppm; Na ≤ 15.00 ppm. The water of Ngebel-lake source, Ngembak source and Gonggang source can be classified as B category water based on radioactivity and the content of the metals concentration in its. (author)

  11. NMR study on the low-temperature state of LaMn{sub 4}Al{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Muro, Y. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan)]. E-mail: rk04j052@stkt.u-hyogo.ac.jp; Nakamura, H. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Kohara, T. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan)

    2007-03-15

    The ground state of the quasi-one-dimensional itinerant electron magnet LaMn{sub 4}Al{sub 8} with strong electron correlation has been investigated by NMR. The presence of weak and broad zero-field {sup 55}Mn resonance, corresponding to internal field of 8-11T, indicates slowing down of spins partially released from the spin-singlet-like state in the spin chains.

  12. Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material

    International Nuclear Information System (INIS)

    Wang, Dan; Huang, Yan; Huo, Zhenqing; Chen, Li

    2013-01-01

    Highlights: • Layered Li[Li 0.2 Ni 0.2−x Mn 0.6−x Mg 2x ]O 2 (2x = 0, 0.01, 0.02, 0.05) were synthetized. • Li[Li 0.2 Ni 0.2−x Mn 0.6−x Mg 2x ]O 2 exhibit enhanced electrochemical properties. • The improved performance is attributed to enhanced structure stability. -- Abstract: Mg-doped Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 as a Li-rich cathode material of lithium-ion batteries were prepared by co-precipitation method and ball-milling treatment using Mg(OH) 2 as a dopant. Scanning electron microscopy (SEM), ex situ X-ray powder diffraction (XRD), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvantatic charge/discharge were used to investigate the effect of Mg doping on structure and electrochemical performance. Compared with the bare material, Mg-doped materials exhibit better cycle stabilities and superior rate capabilities. Li[Li 0.2 Ni 0.195 Mn 0.595 Mg 0.01 ]O 2 displays a high reversible capacity of 226.5 mAh g −1 after 60 cycles at 0.1 C. The excellent cycle performance can be attributed to the improvement in structure stability, which is verified by XRD tests before and after 60 cycles. EIS results show that Mg doping decreases the charge-transfer resistance and enhances the reaction kinetics, which is considered to be the major factor for higher rate performance

  13. Enhanced Optical Performance of BaMgAl

    NARCIS (Netherlands)

    Yin, L.J.; Dong, Juntao; Wang, Yinping; Zhang, Bi; Zhou, Zheng Yang; Jian, Xian; Wu, Mengqiang; Xu, Xin; van Ommen, J.R.; Hintzen, H.T.J.M.

    2016-01-01

    Many strategies have been adopted to improve thermal degradation of phosphors. Because of the stability and high transmittance of graphene, here we report a novel method of carbon coating on BaMgAl10O17:Eu2+ (BAM) phosphor particles through chemical vapor

  14. First Principles Study of Adsorption of Hydrogen on Typical Alloying Elements and Inclusions in Molten 2219 Al Alloy

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2017-07-01

    Full Text Available To better understand the effect of the components of molten 2219 Al alloy on the hydrogen content dissolved in it, the H adsorption on various positions of alloying element clusters of Cu, Mn and Al, as well as the inclusion of Al2O3, MgO and Al4C3, were investigated by means of first principles calculation, and the thermodynamic stability of H adsorbed on each possible site was also studied on the basis of formation energy. Results show that the interaction between Al, MgO, Al4C3 and H atoms is mainly repulsive and energetically unfavorable; a favorable interaction between Cu, Mn, Al2O3 and H atoms was determined, with H being more likely to be adsorbed on the top of the third atomic layer of Cu(111, the second atomic layer of Mn(111, and the O atom in the third atomic layer of Al2O3, compared with other sites. It was found that alloying elements Cu and Mn and including Al2O3 may increase the hydrogen adsorption in the molten 2219 Al alloy with Al2O3 being the most sensitive component in this regard.

  15. Equilibrium studies of the adsorption of aromatic disulfonates by Mg-Al oxide

    Science.gov (United States)

    Kameda, Tomohito; Umetsu, Mami; Kumagai, Shogo; Yoshioka, Toshiaki

    2018-03-01

    The removal of m-benzenedisulfonate (BDS2-) and 2,6-naphthalenedisulfonate (NDS2-) anions by Mg-Al oxide was investigated. Langmuir model best describes the adsorption of both aromatic disulfonate anions, with the maximum amount of uptake higher for BDS2-. Mg-Al oxide reacts easier with the aromatic disulfonate anion with higher charge density, a trend that is the opposite of that observed in aromatic sulfonate anions. After increasing the charge from -1 to -2, the removal of aromatic disulfonates by Mg-Al oxide is controlled by electrostatic interactions, instead of hydrophobic interactions that are dominant for aromatic sulfonate anions.

  16. Synthesis and mechanical properties of conventionally cast icosahedral particle-reinforced Al-Mn(-Cu)-Be-Si alloys

    International Nuclear Information System (INIS)

    Fleury, E.; Chang, H.J.; Kim, D.H.; Kim, D.H.; Kim, W.T.

    2005-01-01

    The microstructure of the Al-Mn(-Cu)-Be-Si alloys analyzed by X-ray diffraction and TEM consisted of icosahedral (i) quasicrystal particles embedded in α Al matrix. The conjoint addition of Si and Be elements enabled the i-phase formation in diameter 10 mm specimens prepared by conventional casting technique. The size, volume fraction and stability of the i-phase were found to be dependent on the Mn content. The addition of 2 at.% Cu did not affect the formation and stability of the i-phase but contributed significantly to the enhancement of the mechanical properties. (orig.)

  17. Analysis of (Ba,Ca,Sr)3MgSi2O8:Eu2+, Mn2+ phosphors for application in solid state lighting

    International Nuclear Information System (INIS)

    Han, J.K.; Piqutte, A.; Hannah, M.E.; Hirata, G.A.; Talbot, J.B.; Mishra, K.C.; McKittrick, J.

    2014-01-01

    The luminescence properties of Eu 2+ and Mn 2+ co-activated (Ba,Ca,Sr) 3 MgSi 2 O 8 phosphors prepared by combustion synthesis were studied. Eu 2+ -activated (Ba,Ca,Sr) 3 MgSi 2 O 8 has a broad blue emission band centered at 450–485 nm and Eu 2+ –Mn 2+ -activated (Ba,Ca,Sr) 3 MgSi 2 O 8 exhibits a red emission around 620–703 nm, depending on the relative concentrations of Ba, Ca and Sr. The particle size of Eu 2+ and Mn 2+ co-activated (Ba,Ca) 3 MgSi 2 O 8 ranges from 300 nm to 1 μm depending on the metal ion and are agglomerated due to post-synthesis, high temperature annealing. The green emission of Ba 3 MgSi 2 O 8 originates from secondary phases (Ba 2 SiO 4 and BaMgSiO 4 ) confirmed by emission spectra and X-ray diffraction patterns. The secondary phases of Ba 3 MgSi 2 O 8 are removed by the addition of Sr. The quantum efficiencies range from 45% to 70% under 400 nm excitation and the lifetime of red emission of Ba 3 MgSi 2 O 8 decreases significantly with increasing temperature, which is 54% at 400 K of that at 80 K compared to that of blue emission (90% at 400 K of that at 80 K). -- highlights: • (Ba,Ca,Sr) 3 MgSi 2 O 8 :Eu 2+ , Mn 2+ phosphors were prepared by a combustion synthesis method. • The emission spectra consist of broad blue-emission band and red-emission band. • The quantum efficiencies range between 45% and 70%, depending on the relative concentrations of Ba, Ca and Sr. • The secondary phases were eliminated by additions of Sr. • Lifetime of the red-emission decreases with increasing temperature, suggesting that these phosphors are not useful for solid state lighting applications

  18. Role of Cu-Mg-Al mixed oxide catalysts in lignin depolymerization in supercritical ethanol

    NARCIS (Netherlands)

    Huang, X.; Ceylanpinar, A.; Koranyi, T.I.; Boot, M.D.; Hensen, E.J.M.

    2015-01-01

    We investigate the role of Cu-Mg-Al mixed oxides in depolymerization of soda lignin in supercritical ethanol. A series of mixed oxides with varying Cu content and (Cu+Mg)/Al ratio were prepared. The optimum catalyst containing 20 wt% Cu and having a (Cu+Mg)/Al ratio of 4 yielded 36 wt% monomers

  19. Synthesis of Spherical Al-Doping LiMn2O4 via a High-Pressure Spray-Drying Method as Cathode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Zhang, Yannan; Zhang, Yingjie; Zhang, Mingyu; Xu, Mingli; Li, Xue; Yu, Xiaohua; Dong, Peng

    2018-05-01

    Uniform and spherical LiAl0.075Mn1.925O4 particles have been successfully synthesized by the high-pressure spray-drying method. The structures and electrochemical properties of the particles were characterized by various techniques. Benefiting from the sphere-like morphology and Al-doping, LiAl0.075Mn1.925O4 delivers a capacity retention of 81.6% after 1000 cycles at 2°C, while LiMn2O4 exhibits a capacity retention of only 32.2%. The rate capability and reversible cycling performance are also improved. Furthermore, this work significantly alleviates the dissolution of Mn in LiMn2O4 materials, and effectively improves the transfer rate of lithium ions at the electrode/electrolyte interface. The spherical LiAl0.075Mn1.925O4 prepared by a facile method shows great potential for practical application in low-cost and long-life lithium-ion batteries.

  20. Characterization of Inclusion Populations in Mn-Si Deoxidized Steel

    Science.gov (United States)

    García-Carbajal, Alfonso; Herrera-Trejo, Martín; Castro-Cedeño, Edgar-Ivan; Castro-Román, Manuel; Martinez-Enriquez, Arturo-Isaias

    2017-12-01

    Four plant heats of Mn-Si deoxidized steel were conducted to follow the evolution of the inclusion population through ladle furnace (LF) treatment and subsequent vacuum treatment (VT). The liquid steel was sampled, and the chemical composition and size distribution of the inclusion populations were characterized. The Gumbel generalized extreme-value (GEV) and generalized Pareto (GP) distributions were used for the statistical analysis of the inclusion size distributions. The inclusions found at the beginning of the LF treatment were mostly fully liquid SiO2-Al2O3-MnO inclusions, which then evolved into fully liquid SiO2-Al2O3-CaO-MgO and partly liquid SiO2-CaO-MgO-(Al2O3-MgO) inclusions detected at the end of the VT. The final fully liquid inclusions had a desirable chemical composition for plastic behavior in subsequent metallurgical operations. The GP distribution was found to be undesirable for statistical analysis. The GEV distribution approach led to shape parameter values different from the zero value hypothesized from the Gumbel distribution. According to the GEV approach, some of the final inclusion size distributions had statistically significant differences, whereas the Gumbel approach predicted no statistically significant differences. The heats were organized according to indicators of inclusion cleanliness and a statistical comparison of the size distributions.

  1. Synthesis and luminescence properties of NaAl{sub 11}O{sub 17}:Mn{sup 2+} green phosphor for white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Renping, E-mail: jxcrp@163.com [College of Mathematics and Physics, Jinggangshan University, Ji’an 343009 (China); Peng, Dedong; Xu, Haidong [College of Mathematics and Physics, Jinggangshan University, Ji’an 343009 (China); Jiang, Shenhua [College of pharmacology and Life Science, Jiujiang University, Jiujiang 332000 (China); Luo, Zhiyang [College of Mechanical Manufacture and Automation, Jinggangshan University, Ji’an 343009 (China); Ao, Hui [College of Mathematics and Physics, Jinggangshan University, Ji’an 343009 (China); Liu, Pan [Scientific Research Office, Jinggangshan University, Ji’an 343009 (China)

    2016-10-15

    Novel NaAl{sub 11}O{sub 17}:Mn{sup 2+} green phosphor is synthesized by solid-state reaction method in air. The emission band peaking at ~508 nm is observed owing to the {sup 4}T{sub 1}→{sup 6}A{sub 1}({sup 6}S) transition of Mn{sup 2+} ion, and the chromaticity coordinates are (0.0725, 0.6468). The excitation band peaking at ~360, 382, 424, 450, and 490 nm are attributed to {sup 6}A{sub 1}({sup 6}S)→{sup 4}E({sup 4}D), {sup 4}T{sub 2}({sup 4}D), [{sup 4}A{sub 1}({sup 4}G), {sup 4}E({sup 4}G)], {sup 4}T{sub 2}({sup 4}G), and {sup 4}T{sub 1}({sup 4}G) transitions of Mn{sup 2+} ion, respectively, which indicate that NaAl{sub 11}O{sub 17}:Mn{sup 2+} phosphor may be excited by (near) ultraviolet and blue LED chip. The luminous mechanism is explained by Tanabe–Sugano diagram of Mn{sup 2+} ion. The optimal Mn{sup 2+} doping concentration is ~3.5 mol%. The NaAl{sub 11}O{sub 17}:3.5%Mn{sup 2+} phosphor shows high quantum efficiency of ~67.84% with excitation 424 nm. The lifetime decreases from 6.72 to 6.0 ms with increasing Mn{sup 2+} concentration in the range of 0–4 mol%.

  2. Preparation and Properties of Mg-Cu-Y-Al bulk Amorphous Alloys

    DEFF Research Database (Denmark)

    Pryds, Nini; Eldrup, Morten Mostgaard; Ohnuma, M.

    2000-01-01

    Bulk amorphous (Mg(1-gamma)Al(gamma))(60)CU(30)Y(10) alloys were prepared using a relatively simple technique of rapid cooling of the melt in a copper wedge mould. The temperature vs, time was recorded during the cooling and solidification process of the melt and compared with a spacial and tempo......Bulk amorphous (Mg(1-gamma)Al(gamma))(60)CU(30)Y(10) alloys were prepared using a relatively simple technique of rapid cooling of the melt in a copper wedge mould. The temperature vs, time was recorded during the cooling and solidification process of the melt and compared with a spacial...... temperatures in specimens containing a few percent Al. The alloy with no Al crystallises apparently without the formation of nanoparticles. The critical cooling rate for the formation of an amorphous Mg(60)CU(30)Y(10) specimen was determined experimentally by a combination of DSC data and temperature vs, time...

  3. Fabrication of hierarchical core-shell polydopamine@MgAl-LDHs composites for the efficient enrichment of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Kairuo [Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy Sciences, P.O. Box 1126, Hefei, 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 (China); Lu, Songhua; Gao, Yang; Zhang, Rui; Tan, Xiaoli [Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy Sciences, P.O. Box 1126, Hefei, 230031 (China); Chen, Changlun, E-mail: clchen@ipp.ac.cn [Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy Sciences, P.O. Box 1126, Hefei, 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 (China); AAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2017-02-28

    Highlights: • Novel hierarchical core/shell structured PDA@MgAl-LDHs were prepared. • PDA@MgAl-LDHs exhibited higher sorption ability for U(VI) and Eu(III). • PDA@MgAl-LDHs were promising materials for the enrichment of radionuclides. - Abstract: Novel hierarchical core/shell structured polydopamine@MgAl-layered double hydroxides (PDA@MgAl-LDHs) composites involving MgAl-layered double hydroxide shells and PDA cores were fabricated thought one-pot coprecipitation assembly and methodically characterized by X-ray diffraction, Fourier transformed infrared spectroscopy, scanning/transmission electron microscopy, selected area electron diffraction, elemental mapping, thermogravimetric analysis and X-ray photoelectron spectroscopy technologies. U(VI) and Eu(III) sorption experiments showed that the PDA@MgAl-LDHs exhibited higher sorption ability with a maximum sorption capacity of 142.86 and 76.02 mg/g at 298 K and pH 4.5, respectively. More importantly, according to XPS analyses, U(VI) and Eu(III) were sorbed on PDA@MgAl-LDHs via oxygen-containing functional groups, and the chemical affinity of U(VI) by oxygen-containing functional groups is higher than that of Eu(III). These observations show great expectations in the enrichment of radionuclides from aquatic environments by PDA@MgAl-LDHs.

  4. The Microstructure and Tensile Properties of a Newly Developed Mg-Al/Mg3Sb2 In Situ Composite in As-Cast and Extruded Conditions

    Science.gov (United States)

    Montajabnia, A.; Pourbahari, B.; Emamy, M.

    2018-04-01

    The microstructures and tensile properties of Mg-x wt%Al-y wt%Sb alloys have been studied where x/y ratio was 1 and Sb(Al) contents were 5, 10, 15 and 20 wt%, respectively. The results indicated that by increasing Sb(Al) content, not only the crystals of primary Mg3Sb2 alter from small flake-like particles to polygonal or needle-like morphology, but also the eutectic structure changes from semi-continuous network in Mg-5Al-5Sb to continuous network in Mg-20Sb-20Al alloy. The results obtained from thermal analysis revealed different peaks related to the formation of Mg3Sb2 as primary phase and eutectic structure containing Mg17Al12 + Al3Mg2 intermetallic phases. Further results also revealed that Sb(Al) additions change the solidification performance of the material by depressing the Mg3Sb2 nucleation temperature, reducing solidification range and widening eutectic area. Tensile testing results showed that with the increase in Sb (Al) content, ultimate tensile strength (UTS) and elongation values of the alloys are decreased in as-cast condition. But, significant improvement in the UTS and elongation values of the extruded specimens was attributed to the severe fragmentation of intermetallic phases and well distributed fine particles in the matrix which provided proper obstacles for dislocation motion. It was interesting to note that the fracture behavior of intermetallic particles was found to be different, while Mg3Sb2 was ductile, intermetallic compounds in eutectic regions were brittle.

  5. Enhanced persistent red luminescence in Mn2+-doped (Mg,Zn)GeO3 by electron trap and conduction band engineering

    Science.gov (United States)

    Katayama, Yumiko; Kayumi, Tomohiro; Ueda, Jumpei; Tanabe, Setsuhisa

    2018-05-01

    The effect of Zn substitution on the persistent luminescence properties of MgGeO3:Mn2+-Ln3+ (Ln = Eu and Yb) red phosphors was investigated. The intensity of the persistent luminescence of the Eu3+ co-doped phosphors increased with increasing Zn content, whereas that of the Yb3+ co-doped samples decreased. For both series of lanthanide co-doped samples, the thermoluminescence (TL) glow peak shifted to the lower temperature side with increasing Zn content. These persistent luminescence properties were well explained in terms of lowering of the bottom of the conduction band relative to the ground state of the divalent lanthanide ions. Especially, in Eu3+ co-doped system, TL peak shifted from 520 K to 318 K by 50% Zn substitution. The persistent radiance of the (Mg0.5 Zn0.5)GeO3: Mn2+-Eu3+ sample at 1 h after ceasing UV light was 46 times stronger than that of MgGeO3:Mn2+-Eu3+, and 11 times stronger than that of ZnGa2O4: Cr3+ standard deep red persistent phosphor.

  6. Synthesis of MgO nanoparticle loaded mesoporous Al2O3 and its defluoridation study

    International Nuclear Information System (INIS)

    Dayananda, Desagani; Sarva, Venkateswara R.; Prasad, Sivankutty V.; Arunachalam, Jayaraman; Parameswaran, Padmanabhan; Ghosh, Narendra N.

    2015-01-01

    Highlights: • Simple and cost effective preparation of MgO nanoparticles loaded mesoporous Al 2 O 3 . • Adsorbents possess high surface area and mesoporous structure. • Higher fluoride removal capacity of MgO loaded Al 2 O 3 than that of pure Al 2 O 3 . • Faster fluoride adsorption kinetics of MgO loaded Al 2 O 3 from water. - Abstract: MgO nanoparticle loaded mesoporous alumina has been synthesized using a simple aqueous solution based cost effective method for removal of fluoride from water. Wide angle powder X-ray diffraction, nitrogen adsorption desorption analysis, transmission electron microscopy techniques and energy dispersive X-ray spectroscopy were used to characterize the synthesized adsorbents. Synthesized adsorbents possess high surface area with mesoporous structure. The adsorbents have been thoroughly investigated for the adsorption of F − using batch adsorption method. MgO nanoparticle loading on mesoporous Al 2 O 3 enhances the F − adsorption capacity of Al 2 O 3 from 56% to 90% (initial F − concentration = 10 mg L −1 ). Kinetic study revealed that adsorption kinetics follows the pseudo-second order model, suggesting the chemisorption mechanism. The F − adsorption isotherm data was explained by both Langmuir and Freundlich model. The maximum adsorption capacity of 40MgO@Al 2 O 3 was 37.35 mg g −1 . It was also observed that, when the solutions having F − concentration of 5 mg L −1 and 10 mg L −1 was treated with 40MgO@Al 2 O 3 , the F − concentration in treated water became <1 mg L −1 , which is well below the recommendation of WHO

  7. KETAHANAN KOROSI PADUAN Al-Mg 5052 DI DALAM AIR PENDINGIN NETRAL MENGANDUNG KLORIDA

    Directory of Open Access Journals (Sweden)

    Dicky Tri Jatmiko

    2015-07-01

    Full Text Available KETAHANAN KOROSI PADUAN Al-Mg 5052 DI DALAM AIR PENDINGIN NETRAL MENGANDUNG KLORIDA. Paduan Al-Mg 5052 adalah material yang biasa digunakan untuk kelongsong elemen bakar nuklir karena serapan fluks netronnya rendah dan tahan korosi di dalam air demineralisasi pada kondisi operasi reaktor. Makalah ini difokuskan untuk mengetahui ketahanan korosi paduan Al-Mg 5052 di dalam air dengan pH netral dan mengandung klorida sebagai pengganti air demineralisasi pendingin primer Reaktor Serba Guna GA Siwabessy (RSG-GAS. Penelitian mencakup pengukuran laju korosi menggunakan metode Tafel, prediksi mekanisme korosi menggunakan metode voltametri siklik dan analisa produk korosi dengan metode difraksi sinar X. Percobaan dilakukan dengan variasi temperatur 30°C, 35°C, 40°C, dan 45°C, serta variasi konsentrasi larutan natrium  klorida 0,05 M, 0,25 M, dan 0,5 M. Hasil penelitian ini menunjukkan bahwa paduan Al-Mg 5052 terkorosi dengan kategori “dapat diabaikan” hingga “sedang” dalam larutan natrium klorida menjadi produk yang larut dalam air pada satu tahap reaksi oksidasi irreversible.   CORROSION RESISTANCE OF Al-Mg ALLOY 5052 IN CHLORIDE CONTAINING NEUTRAL COOLING WATER. Al-Mg alloy 5052 is a material used as nuclear fuel element cladding due to its low neutron flux absorption and high corrosion resistance in demineralized water. This research is focused to know of the corrosion resistance of Al-Mg alloy 5052 in chloride containing neutral water used as demineralized primary cooling water substitute in GA Siwabessy Multi Purpose Reactor (RSG-GAS. This research covers the corrosion rate measurement using the Tafel method, corrosion process prediction using cyclic voltammetry method and corrosion product analysis using X-Ray Diffraction method. The experiments are carried out at temperature variation of 30°C, 35°C, 40°C and 45°C, as well as sodium chloride concentration of 0.05 M, 0.25 M and 0.5 M. The research results show that Al-Mg alloy 5052

  8. Synthesis and identification of substituted Mg-Al-Cl double hydroxide compounds with a focus on infrared spectroscopy

    International Nuclear Information System (INIS)

    Hansen, Birte

    2011-01-01

    coprecipitation methods (Miyata, 1975; Cavani et al., 1991). In a repository it is assumed that during water ingress beside the pure Mg-Al-Cl LDH different solid solution-LDH-compounds might be found, because of the fuel element container being additional present beside the RR-FE. In this study the incorporation of cadmium (contained in control rods), iron and manganese (FE container materials) into the structure of a Mg-Al-Cl LDH was therefore investigated. Synthesis of several LDHs by a coprecipitation method was performed. In these LDHs some molar amounts of the magnesium cations were replaced successfully by other divalent cations (Cd 2+ , Fe 2+ or Mn 2+ ). Even cations in the size of Cd 2+ (Cd 2+ : 95 pm, Mg 2+ : 72 pm, Shannon, 1976) can be incorporated. In order to determine, if these substituted LDHs have better retention properties for radionuclides, the sorption behavior of selenium (selenium is a long-living fission product and was employed here as selenite) on the Mg-Cd-Al-Cl LDH was investigated in water, clay pore water (Mont-Terri-type) and brine 2. Using a LDH concentration of 10g/L the sorption kinetics were very rapid and equilibrium was reached within 12 hours. The sorption of selenite decreased with increasing amount of competing chloride anions in the solutions. The energies were in the range of ion exchange reactions. During investigations of the pH dependency a high buffer capacity of the Mg-Cd-Al-Cl LDH was observed. It could be shown, that even in repository-relevant solutions the Mg-Al-Cl LDH with cadmium has slightly better retention properties for the mobile selenite as an unmodified Mg-Al-Cl LDH. Another aim was to demonstrate the incorporation of di-, tri- and tetravalent cations into the structure of a Mg-Al-Cl LDH by infrared spectroscopy. Before measurement the LDHs were converted from the chloride-form into the carbonate-form. The demonstation should be accomplished on the basis of shifts of the band positions in the infrared spectra of these

  9. CALPHAD simulation of the Mg–(Mn, Zr)–Fe system and experimental comparison with as-cast alloy microstructures as relevant to impurity driven corrosion of Mg-alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gandel, D.S., E-mail: darren.gandel@monash.edu [CAST Cooperative Research Centre (Australia); Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia); Easton, M.A. [CAST Cooperative Research Centre (Australia); Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia); Gibson, M.A. [CAST Cooperative Research Centre (Australia); CSIRO Process Science and Engineering, Clayton, VIC 3168 (Australia); Birbilis, N. [CAST Cooperative Research Centre (Australia); Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2014-02-14

    Four Mg alloys with variations in the ratio of Mn, Zr and Fe additions were cast and their microstructures analysed via electron microscopy. Thermodynamic calculations of the expected phases using PANDAT were evaluated with actual as-cast microstructures. Some of the as-cast alloys did appear to form phases similar to those anticipated from the PANDAT calculations. Furthermore, there was a new Mn–Fe particle interaction observed that was not predicted, but which is posited to be responsible for the increase in corrosion resistance among Mn containing Mg alloys with Fe impurities. The experimental work herein has been shown to be invaluable in the understanding of this practically important system with sparingly soluble Fe and its potential influence on the corrosion of Mg alloys. - Highlights: • Alloy microstructure of the Mg-(Mn,Zr, Fe) system was analysed and reported. • CALPHAD analysis was used in conjunction with traditional SEM analysis techniques in this study. • A proposed Mn–Fe interaction within Mg has been observed for the first time. • Experimental validation of calculated phases is required to understand the effect of Mn and Zr on Mg.

  10. Preparation of Al-Mg Alloy Electrodes by Using Powder Metallurgy and Their Application for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Wen-Nong Hsu

    2014-01-01

    Full Text Available The choice of an electrode is the most critical parameter for water electrolysis. In this study, powder metallurgy is used to prepare aluminum-magnesium (Al-Mg alloy electrodes. In addition to pure Mg and Al electrodes, five Al-Mg alloy electrodes composed of Al-Mg (10 wt%, Al-Mg (25 wt%, Al-Mg (50 wt%, and Al-Mg (75 wt% were prepared. In water electrolysis experiments, the pure Al electrode exhibited optimal electrolytic efficiency. However, the Al-Mg (25 wt% alloy was the most efficient when the anticorrosion effect and materials costs were considered. In this study, an ultrasonic field was applied to the electrolysis cell to improve its efficiency. The results revealed that the current increased by approximately 23.1% when placed in a 30 wt% KOH solution under the ultrasonic field. Electrochemical polarization impedance spectroscopy (EIS was employed to evaluate the effect of the ultrasonic field on the reduction of polarization resistance. The results showed that the concentration impedance in the 30 wt% KOH electrolyte decreased markedly by 44%–51% Ω.

  11. Aminobenzoate modified MgAl hydrotalcites as a novel smart additive of reinforced concrete for anticorrosion applications

    NARCIS (Netherlands)

    Yang, Z.; Fischer, H.R.; Cerezo, J.; Mol, J.M.C.; Polder, R.B.

    2013-01-01

    A carbonate form of MgAl hydrotalcite, Mg(2)Al-CO3 and its p-aminobenzoate (pAB) modified derivative, Mg(2)Al-pAB, were synthesized and characterized by means of XRD, FT-IR and TG/DSC. The anticorrosion behavior of Mg(2)Al-pAB was evaluated based on open circuit potential (OCP) of carbon steel in

  12. Investigation of fluorine adsorption on nitrogen doped MgAl{sub 2}O{sub 4} surface by first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xiaojun; Xu, Zhenming [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Li, Jie, E-mail: 15216105346@163.com [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Chen, Jiangan [Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Liu, Qingsheng [Faculty of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 (China)

    2016-07-15

    Graphical abstract: First-principles calculations indicate that MgAl{sub 2}O{sub 4} surface is fluorine-loving, but hydrophobic. N doped MgAl{sub 2}O{sub 4} (100) surface structure shows the highest fluorine adsorption performance and fluorine atom is more preferentially adsorbed on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: N doped MgAl{sub 2}O{sub 4} (100) > Al{sub 2}O{sub 3} (0001) > MgAl{sub 2}O{sub 4} (100) > MgO (100). N doped MgAl{sub 2}O{sub 4} is a promising candidate for fluorine removal. - Highlights: • MgAl{sub 2}O{sub 4} surface is fluorine-loving, not hydrophilic. • Fluorine preferentially adsorbs on the Mg-Al bridge site. • Adsorption intensity follow this order: N doped MgAl{sub 2}O{sub 4} > Al{sub 2}O{sub 3} > MgAl{sub 2}O{sub 4} > MgO. • Excellent adsorption performance attributes to electron compensation of N atom. • Nitrogen doped MgAl{sub 2}O{sub 4} is a promising candidate for fluorine removal. - Abstract: The nature of fluorine adsorption on pure and N doped MgAl{sub 2}O{sub 4} surface has been investigated by first-principles calculations based on the density functional theory. Calculated results indicate that MgAl{sub 2}O{sub 4} surface is fluorine-loving, not hydrophilic. Nitrogen doped MgAl{sub 2}O{sub 4} (100) surface shows the highest fluorine adsorption performance and fluorine atom preferentially adsorbs on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: Nitrogen doped MgAl{sub 2}O{sub 4} (100) > Al{sub 2}O{sub 3} (0001) > MgAl{sub 2}O{sub 4} (100) > MgO (100). In-depth PDOS analysis suggested that 2p orbitals of F atom strongly hybridized with 3s- and 3p-orbitals of Al atom contribute to its high adsorption intensity. According to the analysis of Hirshfeld charge, the excellent fluorine adsorption performance of nitrogen doped MgAl{sub 2}O{sub 4} attributes to the electron compensation effect of nitrogen atom and strong electrostatic interactions. All these

  13. Electrical transport characterization of Al and Sn doped Mg 2 Si thin films

    KAUST Repository

    Zhang, Bo

    2017-05-22

    Thin-film Mg2Si was deposited using radio frequency (RF) magnetron sputtering. Al and Sn were incorporated as n-type dopants using co-sputtering to tune the thin-film electrical properties. X-ray diffraction (XRD) analysis confirmed that the deposited films are polycrystalline Mg2Si. The Sn and Al doping concentrations were measured using Rutherford backscattering spectroscopy (RBS) and energy dispersive X-ray spectroscopy (EDS). The charge carrier concentration and the charge carrier type of the Mg2Si films were measured using a Hall bar structure. Hall measurements show that as the doping concentration increases, the carrier concentration of the Al-doped films increases, whereas the carrier concentration of the Sn-doped films decreases. Combined with the resistivity measurements, the mobility of the Al-doped Mg2Si films is found to decrease with increasing doping concentration, whereas the mobility of the Sn-doped Mg2Si films is found to increase.

  14. Mesoporous mixed metal oxides derived from P123-templated Mg-Al layered double hydroxides

    International Nuclear Information System (INIS)

    Wang Jun; Zhou Jideng; Li Zhanshuang; He Yang; Lin Shuangshuang; Liu Qi; Zhang Milin; Jiang Zhaohua

    2010-01-01

    We report the preparation of mesoporous mixed metal oxides (MMOs) through a soft template method. Different amounts of P123 were used as structure directing agent to synthesize P123-templated Mg-Al layered double hydroxides (LDHs). After calcination of as-synthesized LDHs at 500 o C, the ordered mesopores were obtained by removal of P123. The mesoporous Mg-Al MMOs fabricated by using 2 wt% P123 exhibited a high specific surface area of 108.1 m 2 /g, and wide distribution of pore size (2-18 nm). An investigation of the 'memory effect' of the mesoporous MMOs revealed that they were successfully reconstructed to ibuprofen intercalated LDHs having different gallery heights, which indicated different intercalation capacities. Due to their mesoporosity these unique MMOs have particular potential as drug or catalyst carriers. - Graphical abstract: Ordered mesoporous Mg-Al MMOs can be obtained through the calcination of P123-templated Mg-Al-CO 3 LDHs. The pore diameter is 2.2 nm. At the presence of ibuprofen, the Mg-Al MMOs can recover to Mg-Al-IBU LDHs, based on its 'remember effect'. Display Omitted

  15. Effect of ageing time 200 °C on microstructure behaviour of Al-Zn-Cu-Mg cast alloys

    Directory of Open Access Journals (Sweden)

    Pratiwi Diah Kusuma

    2017-01-01

    Full Text Available Al-Zn-Cu-Mg is heat treatable alloy that can be used in many hightech applications, such as aerospace and military. The main objective of this study is to investigate the influence of ageing process in microstrucure behaviour of Al-9Zn-5Cu-4Mg cast alloy by performing SEM analysis and its correlation with hardness tests of as-cast Al-9Zn-5Cu-4Mg alloy and heat treated Al-9Zn-5Cu-4Mg cast alloy. The results show the deployment of precipitation spread over the dendrite and also the presence of second phases Mg3Zn3Al2 , Cu2FeAl7 , CuAl2, and CuMgAl2 in as-cast Al-9Zn-5Cu-4Mg alloy. The presence of all these second phases are affecting to the toughness of aluminium alloy and the presence of MgZn2 leads the impairment of hardness value of heat-treated Al-9Zn-5Cu-5Mg cast alloy.

  16. Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al nanocomposites

    Science.gov (United States)

    Hai-Yang, Song; Yu-Long, Li

    2016-02-01

    The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous (C/A) Mg/Mg-Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg-Al nanocomposites, the ‘double hump’ behavior can be observed in all the stress-strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372256 and 11572259), the 111 Project (Grant No. B07050), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1046), and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).

  17. A new class of ultra-hard materials based on AlMgB14

    International Nuclear Information System (INIS)

    Cook, B.A.; Harringa, J.L.; Lewis, T.L.; Russell, A.M.

    2000-01-01

    In this study, aluminum magnesium boride combined with 5 to 30 mol.% additives (AlMgB 14 :X where X = Si, P, C, AlN, TiB 2 , or BN), were prepared by mechanical alloying and consolidated by vacuum hot pressing. Matkovich and Economy first reported the orthorhombic AlMgB 14 intermetallic compound (oI64, space group Imam, a - 0.5848 nm, b = 0.8112 nm, c = 1.0312 nm), and the structure determination was later refined by Higashi and Ito. The unit cell is based on four B 12 icosahedral units centered at (0, 0, 0), (0, 0.5, 0.5), (0.5, 0, 0), and (0.5, 0.5, 0.5) within the unit cell. The remaining eight B atoms lie outside the icosahedra, bonding to the icosahedral B atoms and to the Al and Mg atoms. The Al atoms occupy a four-fold position at (0.250, 0.750, 0.250), and the Mg atoms occupy a four-fold position at (0.250, 0.359, 0). The icosahedra are arranged in distorted, close-packed layers. The unique electronic, optical, and mechanical properties of this material are due to a complex icosahedra (intericosahedral bonding). The highest hardness was observed in the AlMgB 14 + 30%TiB 2 material, which possesses a multi-phase microstructure. Here again, an increase in hardness accompanying the introduction of additional phases is somewhat surprising and difficult to explain. The possible compounds that may form at the AlMgB 14 -TiB 2 interface during hot pressing are numerous

  18. Behavior of methyl orange and orange 10 (orange G) in the presence of hydrotalcite type compounds of Mg/Al and Mg/Fe; Comportamiento de naranja de metilo y naranja 10 (orange G) en presencia de compuestos tipo hidrotalcita de mg/Al y Mg/Fe

    Energy Technology Data Exchange (ETDEWEB)

    Cruz N, G.

    2015-07-01

    This work is focused on studying the sorption capacity of methyl orange dye (Nm) and orange 10 (N-10) in the presence of hydrotalcite type compounds of Mg/Al and Mg/Fe uncalcined and calcined previously at 500 degrees Celsius. Sorption isotherms were determined and the study of the kinetics of sorption was performed. The materials were characterized before and after sorption processes of these dyes by X-ray diffraction, scanning electron microscopy, the specific surface area determination by the Brunauer-Emmett-Teller method, thermogravimetry coupled to mass and infrared spectrometry. The hydrotalcite type compounds reported in this paper were prepared in the laboratory and their acronyms are: HTMgAlG1, HTMgAlMO, HTMgFeG1 and HTMgFeG2. Note that in this work the best conditions for preparing compounds of Mg/Fe were found. From patterns of X-ray diffraction was identified the typical crystal structure of the hydrotalcite type compounds. By scanning electron microscopy the morphology could be determined in the form of flakes characteristics of these compounds. Likewise with elemental analysis of energy dispersive X-ray spectroscopy the presence of Mg, Al, Fe and C, elements of interest for this study was determined. The compounds presented a specific surface area relatively high from 80 to 120 m{sup 2}/g. Thermogravimetry results presented spectra of mass loss very characteristic associated to water losses, dehydroxylation and decarboxylation. The characteristic bands of water and carbonate were assigned by infrared spectroscopy and the bands corresponding to the dyes sulfonates were identified only for the calcined materials. The sorption capacities found of these compounds were as follows: for Nm in the compound HTMgAlG1 uncalcined was 17.82 mg/g for an initial concentration of 200 mg/L and for calcined (HTMgAlMOcal) of 99.8 mg/g with and initial concentration of 1000 mg/L. Moreover, the sorption capacity of the dye N-10 in this same material was 17.92 mg/g and 99

  19. Correlation between electron work functions of multiphase Cu-8Mn-8Al and de-alloying corrosion

    Science.gov (United States)

    Punburi, P.; Tareelap, N.; Srisukhumbowornchai, N.; Euaruksakul, C.; Yordsri, V.

    2018-05-01

    Low energy electron emission microscopy (LEEM) was used to measure local transition energy that was directly correlated to electron work function (EWF) of multiphase manganese-aluminum bronze alloys. We developed color mapping to distinguish the EWF of multiple phases and clarified that the EWF were in the following order: EWF of α > EWF of β > EWF of κ (EWFα > EWFβ > EWFκ). De-alloying corrosion took place due to the micro-galvanic cell at grain boundaries before it propagated into the β phase that had lower EWF than the α phase. The α phase was a stable phase because it contained high Cu while the β phase contained high Al and Mn. In addition, XRD analysis showed that the texture coefficient of the β phase revealed that almost all of the grains had (2 2 0) orientation, the lowest EWF compared to (1 1 1) and (2 0 0). Furthermore, transmission electron microscopy illustrated that there were fine Cu3Mn2Al precipitates in the Cu2MnAl matrix of the β phase. These precipitates formed micro-galvanic cells which played an important role in accelerating de-alloying corrosion.

  20. Synthesis and characterization of hard ternary AlMgB composite films prepared by sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yan Ce [Department of Physics and Materials Science and Center of Super-Diamond and Advanced Films, City University of Hong Kong (Hong Kong); Zhou, Z.F. [Department of Manufacturing Engineering and Engineering Management and Advanced Coatings Applied Research Laboratory, City University of Hong Kong (Hong Kong); Chong, Y.M.; Liu, C.P.; Liu, Z.T. [Department of Physics and Materials Science and Center of Super-Diamond and Advanced Films, City University of Hong Kong (Hong Kong); Li, K.Y., E-mail: mekyli@cityu.edu.h [Department of Manufacturing Engineering and Engineering Management and Advanced Coatings Applied Research Laboratory, City University of Hong Kong (Hong Kong); Bello, I., E-mail: apibello@cityu.edu.h [Department of Physics and Materials Science and Center of Super-Diamond and Advanced Films, City University of Hong Kong (Hong Kong); Kutsay, O.; Zapien, J.A.; Zhang, W.J. [Department of Physics and Materials Science and Center of Super-Diamond and Advanced Films, City University of Hong Kong (Hong Kong)

    2010-07-30

    Hard and superlight thin films laminated with boron carbide have been proposed as candidates for strategic use such as armor materials in military and space applications. Aluminum magnesium boride (AlMgB) films are excellent candidates for these purposes. We prepared AlMgB films by sputter deposition using multiple unbalanced planar magnetrons equipped with two boron and one AlMg targets. The film morphology changed and the film's root mean square (rms) roughness varied from 1.0 to 18 nm as the power density of the AlMg target increased from 0.2 to 1.0 W/cm{sup 2} while the power density of each boron target was maintained at 2 W/cm{sup 2}. Chemical analyses show dominating Al, Mg, B and trace elements of oxygen, carbon and argon. The film composition also varies with altering the power density supplied to the AlMg target. The film with an atomic ratio of Al:Mg:B = 1.38:0.64:1 exhibits the highest hardness ({approx} 30 GPa). This value surpasses the hardness of hydrogenated diamond-like carbon films (24-28 GPa) prepared by plasma enhanced chemical vapor deposition.

  1. Synthesis and characterization of hard ternary AlMgB composite films prepared by sputter deposition

    International Nuclear Information System (INIS)

    Yan Ce; Zhou, Z.F.; Chong, Y.M.; Liu, C.P.; Liu, Z.T.; Li, K.Y.; Bello, I.; Kutsay, O.; Zapien, J.A.; Zhang, W.J.

    2010-01-01

    Hard and superlight thin films laminated with boron carbide have been proposed as candidates for strategic use such as armor materials in military and space applications. Aluminum magnesium boride (AlMgB) films are excellent candidates for these purposes. We prepared AlMgB films by sputter deposition using multiple unbalanced planar magnetrons equipped with two boron and one AlMg targets. The film morphology changed and the film's root mean square (rms) roughness varied from 1.0 to 18 nm as the power density of the AlMg target increased from 0.2 to 1.0 W/cm 2 while the power density of each boron target was maintained at 2 W/cm 2 . Chemical analyses show dominating Al, Mg, B and trace elements of oxygen, carbon and argon. The film composition also varies with altering the power density supplied to the AlMg target. The film with an atomic ratio of Al:Mg:B = 1.38:0.64:1 exhibits the highest hardness (∼ 30 GPa). This value surpasses the hardness of hydrogenated diamond-like carbon films (24-28 GPa) prepared by plasma enhanced chemical vapor deposition.

  2. [Emission spectrum temperature sensitivity of Mg4FGeO6 : mn induced by laser].

    Science.gov (United States)

    Wang, Sheng; Liu, Jing-Ru; Shao, Jun; Hu, Zhi-Yun; Tao, Bo; Huang, Mei-Sheng

    2013-08-01

    In order to develop a new sort of thermally sensitive phosphor coating, the emission spectrum thermally sensitivity of Mg4FGeO6 : Mn induced by laser was studied. The spectrum measurement system with heating function was set up, and the emission spectrum of Mg4FGeO6 : Mn at various temperatures were measured. Absorption spectrum was measured, and the mechanism of formation of the structure of double peak was analyzed with the perturbation theory of crystal lattice. The group of peaks around 630 nm is represented by the transitions 4F"2 to 4A2, whereas the group of peaks around 660 nm is due to the transitions 4F'2 to 4A2. The occupancy of both excited states 4F'2 and 4F"2 is in thermal equilibrium. Thus increasing temperature causes the intensity of the emission in the group around 630 nm to increase at the expense of the emission intensity of the group around 660 nm. The various spectral regions in emission differ with temperature, which could be used to support the intensity-ratio measurement method. The intensity-ratio change curve as a function of temperature was fitted, which shows that the range of temperature measurement is between room temperature and 800 K.

  3. Reduction of the Mg acceptor activation energy in GaN, AlN, Al0.83Ga0.17N and MgGa δ-doping (AlN)5/(GaN)1: the strain effect

    Science.gov (United States)

    Jiang, Xin-He; Shi, Jun-Jie; Zhang, Min; Zhong, Hong-Xia; Huang, Pu; Ding, Yi-Min; He, Ying-Ping; Cao, Xiong

    2015-12-01

    To resolve the p-type doping problem of Al-rich AlGaN alloys, we investigate the influence of biaxial and hydrostatic strains on the activation energy, formation energy and band gap of Mg-doped GaN, AlN, Al0.83Ga0.17N disorder alloy and (AlN)5/(GaN)1 superlattice based on first-principles calculations by combining the standard DFT and hybrid functional. We find that the Mg acceptor activation energy {{E}\\text{A}} , the formation energy {{E}\\text{f}} and the band gap {{E}\\text{g}} decrease with increasing the strain ɛ. The hydrostatic strain has a more remarkable impact on {{E}\\text{g}} and {{E}\\text{A}} than the biaxial strain. Both {{E}\\text{A}} and {{E}\\text{g}} have a linear dependence on the hydrostatic strain. For the biaxial strain, {{E}\\text{g}} shows a parabolic dependence on ɛ if \\varepsilon ≤slant 0 while it becomes linear if \\varepsilon ≥slant 0 . In GaN and (AlN)5/(GaN)1, {{E}\\text{A}} parabolically depends on the biaxial compressive strain and linearly depends on the biaxial tensible strain. However, the dependence is approximately linear over the whole biaxial strain range in AlN and Al0.83Ga0.17N. The Mg acceptor activation energy in (AlN)5/(GaN)1 can be reduced from 0.26 eV without strain to 0.16 (0.22) eV with the hydrostatic (biaxial) tensible strain 3%.

  4. Linear thermal expansion coefficient of MgAl2O4(s)

    International Nuclear Information System (INIS)

    Dash, A.; Samui, P.; Naik, Y.P.; Chaudhary, Z.S.

    2011-01-01

    The coefficient of linear thermal expansion (α av ) of MgAl 2 O 4 (s) has been determined using a Netzsch 402 PC dilatometer with Al 2 O 3 (s) as the push-rod. The change in length per unit length was recorded as a function of temperature between room temperature to 1273 K at a heating rate of 8 K.min /1 , in argon flowing atmosphere. The average of three measurements was quoted as the α av for MgAl 2 O 4 (s). The linear thermal expansion was measured to an accuracy of ±3%. (author)

  5. Influence of Sr, Fe and Mn content and casting process on the microstructures and mechanical properties of AlSi7Cu3 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zaidao [Laboratoire de Mécanique de Lille (LML), FRE 3723, Ecole Centrale de Lille, 59651 Villeneuve d' Ascq (France); Unité Matériaux et Transformations, UMR CNRS 8207, Univ. Lille 1, 59655 Villeneuve d' Ascq (France); Limodin, Nathalie; Tandjaoui, Amina; Quaegebeur, Philippe [Laboratoire de Mécanique de Lille (LML), FRE 3723, Ecole Centrale de Lille, 59651 Villeneuve d' Ascq (France); Osmond, Pierre [PSA Peugeot Citröen, Direction de la Recherche et de l' Innovation Automobile, Route de Gisy-78943, Vélizy-Villacoublay Cedex (France); Balloy, David [Unité Matériaux et Transformations, UMR CNRS 8207, Univ. Lille 1, 59655 Villeneuve d' Ascq (France)

    2017-03-24

    The effects of Strontium (Sr), Iron (Fe) and Manganese (Mn) additions, casting process (i.e., cooling rate) on the microstructures and mechanical properties of AlSi7Cu3 alloy were investigated. 2D and 3D metallographic and image analysis have been performed to measure the microstructural changes occurring at different Sr, Fe and Mn levels and casting process. The evolution of mechanical properties of the alloys has been monitored by Brinell and Vickers hardness measurement and tensile tests. Addition of Sr slightly refines the eutectic silicon particles but it also introduces more pores. The combined addition of Fe and Mn induces an increase of Fe-rich intermetallic compounds which include both α-Al{sub 15}(Fe,Mn){sub 3}Si{sub 2} and β-Al{sub 5}FeSi phase, while the volume fraction of porosity decreases with the Fe and Mn content increase. The secondary dendrite arm spacing slightly decreases with the addition of Sr, Fe and Mn alloying elements.

  6. Development of medical guide wire of Cu-Al-Mn-base superelastic alloy with functionally graded characteristics.

    Science.gov (United States)

    Sutou, Yuji; Omori, Toshihiro; Furukawa, Akihisa; Takahashi, Yukinori; Kainuma, Ryosuke; Yamauchi, Kiyoshi; Yamashita, Shuzo; Ishida, Kiyohito

    2004-04-15

    A new type of medical guide wire with functionally graded hardness from the tip to the end was developed with the use of Cu-Al-Mn-based alloys. The superelasticity (SE) of the Cu-Al-Mn-based alloys in the tip is drastically improved by controlling the grain size, whereas the end of the wire is hardened using bainitic transformation by aging at around 200-400 degrees C. Therefore, the tip of the guide wire shows a superelasticity and its end has high stiffness. This guide wire with functionally graded characteristics shows excellent pushability and torquability, superior to that of the Ni-Ti guide wire. Copyright 2004 Wiley Periodicals, Inc.

  7. Role of Al in Zn bath on the formation of the inhibition layer during hot-dip galvanizing for a 1.2Si-1.5Mn transformation-induced plasticity steel

    Science.gov (United States)

    Wang, Kuang-Kuo; Hsu, Chiung-Wen; Chang, Liuwen; Gan, Dershin; Yang, Kuo-Cheng

    2013-11-01

    This study investigated the interaction between the Al in the Zn bath and the surface oxides formed by selective oxidation on a 1.2Si-1.5Mn TRIP steel during hot-dip galvanizing. XPS and TEM were employed for characterization. The results indicated that the amorphous xMnO·SiO2 oxide could react with Al to form a Si-Mn-Al-containing oxide. The crystalline MnSiO3 and Mn2SiO4 oxides could be largely reduced by Al to form holes in the oxide film. Consequently, the steel covered by a layer of mixed xMnO·SiO2 and MnSiO3 could form a continuous Fe2Al5 inhibition layer and showed the highest galvanizability among the three samples examined.

  8. Effect of Ce on Casting Structure of Near-rapidly Solidified Al-Zn-Mg-Cu Alloy

    Directory of Open Access Journals (Sweden)

    HUANG Gao-ren

    2017-11-01

    Full Text Available Through using XRD,DSC,SEM,EDS and other modern analysis methods, the effects of rare earth element Ce on microstructure and solidification temperature of Al-Zn-Mg-Cu under different cooling rates were studied, the principle of Ce on grain refining and melt cleaning of alloys was analyzed and discussed. The results show that MgZn2 phase and α-Al matrix are the main precipitations, Al,Cu,Mg and other elements dissolve in MgZn2 phase, a new phase Mg(Zn, Cu, Al2 is formed, solute elements in the grain boundary have higher concentration, eutectic reaction takes place between MgZn2 and α-Al, lamellar eutectic structure is generated. The addition of Ce decreases the dendritic arm spacing,reduces the layer spacing between eutectic phases and refines the eutectic structure and the grain significantly, and inhibits the appearance of the impurity phase Al7Cu2Fe in aluminum alloys. The addition of Ce also reduces the precipitation temperature of α-Al matrix and eutectic phase by 6.4℃ and 5.6℃ respectively.

  9. Mecanismo de corrosión a refractarios de MgO-C y MgO-C-Al en horno eléctrico

    Directory of Open Access Journals (Sweden)

    Guerrero Barranco, M.

    2010-06-01

    Full Text Available This article presents the results of a post-mortem study of various MgO-C and MgO-C-Al pieces that are used in the electric furnaces at the Acerinox factory in Cádiz. From the chemical, thermal, mineralogical and microstructural characterization of the materials prior to use and post-mortem it has been established that, in both types of refractories, the corrosion has lead to the formation of reaction layers with different chemical and mineralogical composition, as a function of temperature and oxygen partial pressure, ranging from the hot to the cold face and strongly depending on the zone of the electric furnace where the piece is situated. Changes in graphite content have been observed in both types of materials by X-ray diffraction. These changes have been quantified by Differential Thermal Analysis. In MgO-C-Al refractories it has been observed the formation of small amounts of C3Al4 inside the pieces and MgAl2O4 in the refractories’ hot face. Keeping in mind the obtained results and the phase equilibrium diagram of Mg-C-Al-O it has been established a corrosion mechanism for both types of materials. It cannot be established by the present results that additions of Al (≈ 2 % in weight improve the performance of MgO-C materials.

    Se describen los resultados del estudio post-mortem de diversas piezas de MgO-C y MgO-C-Al utilizadas en los hornos eléctricos de la factoría de Acerinox en Cádiz. De la caracterización química, térmica, mineralógica y microestructural de los materiales sin usar y post-mortem se ha establecido que la corrosión ha dado lugar, en ambos tipos de refractarios, a la formación de capas de reacción con distinta composición química y mineralógica, en función de la temperatura y presión parcial de oxígeno en la pieza, que varían desde la cara caliente a la cara fría y dependen fuertemente de la zona del horno eléctrico en que está situada la pieza. En

  10. Mixed methanol/ethanol on transesterification of waste cooking oil using Mg/Al hydrotalcite catalyst

    International Nuclear Information System (INIS)

    Ma, Yingqun; Wang, Qunhui; Zheng, Lu; Gao, Zhen; Wang, Qiang; Ma, Yuhui

    2016-01-01

    Biodiesel production from waste cooking oil using calcined Mg/Al HT (hydrotalcite) as heterogeneous catalyst was investigated. This study describes the calcined Mg/Al HT prepared under optimal conditions to catalyse waste cooking oil for biodiesel preparation and proposes a plausible catalysis mechanism. The catalysts were characterised by Fourier Transform-Infrared, X-ray diffraction, Thermal Gravity Analysis-Differential thermal gravity and Brunner−Emmet−Teller measurements. Hydrotalcite with Mg/Al ratio of 3:1 showed a uniform mesoporous structure, excellent crystallinity, high surface area (270.5 m 2 /g) and good catalytic activity (at 500 °C calcination). The highest biodiesel yield obtained was 95.2% under optimised conditions of alcohol/oil molar ratio of 6:1, methanol/ethanol molar ratio of 4:2, catalyst content of 1.5%, reaction time of 2.5 h, reaction temperature of 80 °C. Mixed methanol/ethanol showed good synergistic effects as an ester exchange agent, and the catalyst was easily separated and recycled. Therefore, Mg/Al hydrotalcite can effectively catalyse waste cooking oil for biodiesel preparation with mixed methanol/ethanol. - Highlights: • Mg/Al hydrotalcite filtered and stirred with acetone has the better dispersion. • Mg/Al hydrotalcite used as catalyst to prepare biodiesel. • Catalytic mechanism of Mg/Al hydrotalcite was investigated. • Mixed Methanol/Ethanol used as transesterification agent to prepare biodiesel. • Regenerative catalyst was assessed to make catalyst reuse well.

  11. Mechanical Properties and Fabrication of Nanostructured Mg_2SiO_4-MgAl_2O_4 Composites by High-Frequency Induction Heated Combustion

    International Nuclear Information System (INIS)

    Shon, In-Jin; Kang, Hyun-Su; Hong, Kyung-Tae; Doh, Jung-Mann; Yoon, Jin-Kook

    2011-01-01

    Nanopowders of MgO, Al_2O_3 and SiO_2 were made by high energy ball milling. The rapid sintering of nanostructured MgAl_2O_4-Mg_2SiO_4 composites was investigated by a high-frequency induction heating sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition of grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. Highly dense nanostructured MgAl_2O_4-Mg_2SiO_4 composites were produced with simultaneous application of 80 MPa pressure and induced output current of total power capacity (15 kW) within 2 min. The sintering behavior, gain size and mechanical properties of MgAl_2O_4-Mg_2SiO_4 composites were investigated.

  12. Hot cracks formation nature in welds Al-Mg-Li and Al-Cu-Li alloy systems

    International Nuclear Information System (INIS)

    Ryazantsev, V.I.; Fedoseev, V.A.

    1997-01-01

    Mechanism of cleavage formation in alloy systems Al-Mg-Li and Al-Cu-Li welds at thermal test is proposed. This mechanism is connected with stitching spacing and stretching in direction of main deformation of intermetallic compounds inclusions and with active gases movement into the liquid phase [ru

  13. Effect of co-addition of RE, Fe and Mn on the microstructure and performance of A390 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Yunguo; Wu Yuying; Qian Zhao [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Liu Xiangfa, E-mail: xfliu@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2009-12-15

    The co-addition effect of RE, Mn and Fe on the microstructure and high-temperature strength of A390 has been conducted. The alloying effect of RE has also been explored. Formation of detrimental long-acicular RE-rich phase is not observed. The AlSiCuCeLa phase, {alpha}-Al(Mn,Fe)-Si phase and another complex phase composed of Al, Si, Mn, Fe, Cu and RE are observed to form after addition. RE can decrease the diffusion rates of Cu, Mg in the aging process and the intermetallics nucleate on a localized scale, but could not become coarse during heat-treatment. The electronegativity differences between RE and Al or Si are larger than those between Cu and Al or Si, so the RE-rich intermetallic compounds in Al-Si alloys are more stable. The co-addition of RE, Mn and Fe proves to be an effective method to enhance the high-temperature strength of A390. The high-temperature strength of A390 is increased by 25% in this article using this method.

  14. Effect of co-addition of RE, Fe and Mn on the microstructure and performance of A390 alloy

    International Nuclear Information System (INIS)

    Li Yunguo; Wu Yuying; Qian Zhao; Liu Xiangfa

    2009-01-01

    The co-addition effect of RE, Mn and Fe on the microstructure and high-temperature strength of A390 has been conducted. The alloying effect of RE has also been explored. Formation of detrimental long-acicular RE-rich phase is not observed. The AlSiCuCeLa phase, α-Al(Mn,Fe)-Si phase and another complex phase composed of Al, Si, Mn, Fe, Cu and RE are observed to form after addition. RE can decrease the diffusion rates of Cu, Mg in the aging process and the intermetallics nucleate on a localized scale, but could not become coarse during heat-treatment. The electronegativity differences between RE and Al or Si are larger than those between Cu and Al or Si, so the RE-rich intermetallic compounds in Al-Si alloys are more stable. The co-addition of RE, Mn and Fe proves to be an effective method to enhance the high-temperature strength of A390. The high-temperature strength of A390 is increased by 25% in this article using this method.

  15. Comparison of Efficiencies and Mechanisms of Catalytic Ozonation of Recalcitrant Petroleum Refinery Wastewater by Ce, Mg, and Ce-Mg Oxides Loaded Al2O3

    Directory of Open Access Journals (Sweden)

    Chunmao Chen

    2017-02-01

    Full Text Available The use of catalytic ozonation processes (COPs for the advanced treatment of recalcitrant petroleum refinery wastewater (RPRW is rapidly expanding. In this study, magnesium (Mg, cerium (Ce, and Mg-Ce oxide-loaded alumina (Al2O3 were developed as cost efficient catalysts for ozonation treatment of RPRW, having performance metrics that meet new discharge standards. Interactions between the metal oxides and the Al2O3 support influence the catalytic properties, as well as the efficiency and mechanism. Mg-Ce/Al2O3 (Mg-Ce/Al2O3-COP reduced the chemical oxygen demand by 4.7%, 4.1%, 6.0%, and 17.5% relative to Mg/Al2O3-COP, Ce/Al2O3-COP, Al2O3-COP, and single ozonation, respectively. The loaded composite metal oxides significantly increased the hydroxyl radical-mediated oxidation. Surface hydroxyl groups (–OHs are the dominant catalytic active sites on Al2O3. These active surface –OHs along with the deposited metal oxides (Mg2+ and/or Ce4+ increased the catalytic activity. The Mg-Ce/Al2O3 catalyst can be economically produced, has high efficiency, and is stable under acidic and alkaline conditions.

  16. On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy

    International Nuclear Information System (INIS)

    Mondal, Chandan; Mukhopadhyay, A.K.

    2005-01-01

    Aluminum alloys, encompassed by AA 7055 alloy composition, having the nominal zinc content (i.e. 8 wt.%) but varying copper and magnesium contents across the alloy composition range were examined in the as-cast form by a combination of light microscopy, scanning electron microscopy (SEM), electron probe micro analysis (EPMA) and X-ray diffraction (XRD). It is observed that for all compositions, the second phases based on η(MgZn 2 ), T(Al 2 Mg 3 Zn 3 ) and S(Al 2 CuMg) are present. The T phase dissolves copper up to 28 wt.%, whilst the S phase shows metastable solubility of zinc that may range up to 30 wt.%. In alloys with magnesium at the lower limit and the copper contents approaching the upper limit of the alloy composition, the θ phase (Al 2 Cu) of the constituent binary Al-Cu system is further observed. The θ phase (Al 2 Cu) does not dissolve either zinc or magnesium. Below the nominal composition, the alloys could be homogenized substantially using a commercially viable homogenization treatment leaving small amounts of undissolved S phase that does not contain any zinc

  17. Synthesis and optical properties of Mg-Al layered double hydroxides precursor powders

    Directory of Open Access Journals (Sweden)

    Chia-Hsuan Lin

    2017-12-01

    Full Text Available The synthesis and optical properties of Mg-Al layered double hydroxide (LDH precursor powders were investigated using X-ray diffraction (XRD, Fourier transform-infrared (FT-IR spectroscopy, transmission electron microscopy (TEM, selected area electron diffraction (SAED, high-resolution TEM (HRTEM, UV-transmission spectrometer, and fluorescence spectrophotometer. The FT-IR results show that the intense absorption at around 1363–1377 cm-1 can be assigned to the antisymmetric ν3 mode of interlayer carbonate anions because the LDH phase contains some CO32-. The XRD results show that all of the Mg-Al LDH precursor powders contain only a single phase of [Mg0.833Al0.167(OH2](CO30.083·(H2O0.75 but have broad and weak intensities of peaks. All of Mg-Al LDHs precursor powders before calcination have the same photoluminescence (PL spectra. Moreover, these spectra were excited at λex = 235 nm, and the broad emission band was in the range 325-650 nm. In the range, there were relatively strong intensity at around 360, 407 and 510 nm, respectively.

  18. Effect of Zr on the Corrosion Properties of Mg-Li-Al Alloy

    International Nuclear Information System (INIS)

    Kim, Soon Ho; Choi, Sang Hyun; Kim, In Bae; Kim, Kyung Hyun

    1994-01-01

    Effect of Zr on the electrochemical corrosion characteristics of Mg-Li-Al alloy has been investigated by means of potentiodynamic polarization study. The electrochemical behaviors were evaluated in 0.03% NaCl solution and the solution buffered with KH 2 PO 5 · NaOH at room temperature. It was found that the addition of very small quantity of Zr (0.03wt%) in Mg-Li-Al alloy increased corrosion rates and amount of corrosion products and decreased the pitting resistance of the alloy. From the results it was concluded that Zr which is added to increase the strength of Mg-Li-Al alloy is harmful to corrosion properties of the alloy

  19. Radiation-induced electrical conductivity in MgAl2O4 spinel

    International Nuclear Information System (INIS)

    Pells, G.P.

    1990-12-01

    The d.c. electrical conductivity of high purity, polycrystalline MgAl 2 O 4 spinel of 99.5% theoretical density has been measured during irradiation by 18 MeV protons at reactor relevant ionization dose rates. The radiation-induced conductivity (RIC) at 200 C varied in a slightly sub-linear manner with dose rate. At temperatures between 250-350 C the RIC varied in a complex manner with the dose rate dependence being itself dose rate dependent. At higher temperatures the RIC reverted to an essentially linear variation with dose rate. The complex dose rate dependence is ascribed to the magnesium vacancy concentration introduced by the small Al 2 O 3 excess (MgO:Al 2 O = 1:1.05) and the presence of anti-structure defects producing large concentrations of intrinsic electron and hole traps. There was no evidence that the accumulation of radiation damage influenced the details of radiation-induced conductivity and MgAl 2 O 4 retained reasonable insulating properties at the highest dose rate and temperature. (author)

  20. Nanocrystalline spinel ferrite (MFe2O4, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route

    International Nuclear Information System (INIS)

    Phumying, Santi; Labuayai, Sarawuth; Swatsitang, Ekaphan; Amornkitbamrung, Vittaya; Maensiri, Santi

    2013-01-01

    Graphical abstract: This figure shows the specific magnetization curves of the as-prepared MFe 2 O 4 (M = Ni, Co, Mn, Mg, Zn) powders obtained from room temperature VSM measurement. These curves are typical for a soft magnetic material and indicate hysteresis ferromagnetism in the field ranges of ±500 Oe, ±1000 Oe, and ±2000 Oe for the CoFe 2 O 4 , MgFe 2 O 4 and MnFe 2 O 4 respectively, whereas the samples of NiFe 2 O 4 and ZnFe 2 O 4 show a superparamagnetic behavior. Highlights: ► Nanocrystalline MFe 2 O 4 powders were synthesized by a novel hydrothermal method. ► Metal acetylacetonates and aloe vera plant-extracted solution are used. ► This biosynthetic route is very simple and provides high-yield oxide nanomaterials. ► XRD and TEM results indicate that the prepared samples have only spinel structure. ► The maximum M s of 68.9 emu/g at 10 kOe were observed for the samples of MnFe 2 O 4 . - Abstract: Nanocrystalline spinel ferrite MFe 2 O 4 (M = Ni, Co, Mn, Mg, Zn) powders were synthesized by a novel hydrothermal method using Fe(acac) 3 , M(acac) 3 (M = Ni, Co, Mn, Mg, Zn) and aloe vera plant extracted solution. The X-ray diffraction and selected-area electron diffraction results indicate that the synthesized nanocrystalline have only spinel structure without the presence of other phase impurities. The crystal structure and morphology of the spinel ferrite powders, as revealed by TEM, show that the NiFe 2 O 4 and CoFe 2 O 4 samples contain nanoparticles, whereas the MnFe 2 O 4 and MgFe 2 O 4 samples consist of many nanoplatelets and nanoparticles. Interestingly, the ZnFe 2 O 4 sample contains plate-like structure of networked nanocrystalline particles. Room temperature magnetization results show a ferromagnetic behavior of the CoFe 2 O 4 , MnFe 2 O 4 and MgFe 2 O 4 samples, whereas the samples of NiFe 2 O 4 and ZnFe 2 O 4 exhibit a superparamagnetic behavior

  1. Band structure of the quaternary Heusler alloys ScMnFeSn and ScFeCoAl

    Science.gov (United States)

    Shanthi, N.; Teja, Y. N.; Shaji, Shephine M.; Hosamani, Shashikala; Divya, H. S.

    2018-04-01

    In our quest for materials with specific applications, a theoretical study plays an important role in predicting the properties of compounds. Heusler alloys or compounds are the most studied in this context. More recently, a lot of quaternary Heusler compounds are investigated for potential applications in fields like Spintronics. We report here our preliminary study of the alloys ScMnFeSn and ScFeCoAl, using the ab-initio linear muffin-tin orbital method within the atomic sphere approximation (LMTO-ASA). The alloy ScMnFeSn shows perfect half-metallicity, namely, one of the spins shows a metallic behaviour and the other spin shows semi-conducting behaviour. Such materials find application in devices such as the spin-transfer torque random access memory (STT-MRAM). In addition, the alloy ScMnFeSn is found to have an integral magnetic moment of 4 µB, as predicted by the Slater-Pauling rule. The alloy ScFeCoAl does not show half-metallicity.

  2. Characterization of Al-Cu-Mg-Ag Alloy RX226-T8 Plate

    Science.gov (United States)

    Lach, Cynthia L.; Domack, Marcia S.

    2003-01-01

    Aluminum-copper-magnesium-silver (Al-Cu-Mg-Ag) alloys that were developed for thermal stability also offer attractive ambient temperature strength-toughness combinations, and therefore, can be considered for a broad range of airframe structural applications. The current study evaluated Al-Cu-Mg-Ag alloy RX226-T8 in plate gages and compared performance with sheet gage alloys of similar composition. Uniaxial tensile properties, plane strain initiation fracture toughness, and plane stress tearing resistance of RX226-T8 were examined at ambient temperature as a function of orientation and thickness location in the plate. Properties were measured near the surface and at the mid-plane of the plate. Tensile strengths were essentially isotropic, with variations in yield and ultimate tensile strengths of less than 2% as a function of orientation and through-thickness location. However, ductility varied by more than 15% with orientation. Fracture toughness was generally higher at the mid-plane and greater for the L-T orientation, although the differences were small near the surface of the plate. Metallurgical analysis indicated that the microstructure was primarily recrystallized with weak texture and was uniform through the plate with the exception of a fine-grained layer near the surface of the plate. Scanning electron microscope analysis revealed Al-Cu-Mg second phase particles which varied in composition and were primarily located on grain boundaries parallel to the rolling direction. Fractography of toughness specimens for both plate locations and orientations revealed that fracture occurred predominantly by transgranular microvoid coalescence. Introduction High-strength, low-density Al-Cu-Mg-Ag alloys were initially developed to replace conventional 2000 (Al-Cu-Mg) and 7000 (Al-Zn-Cu-Mg) series aluminum alloys for aircraft structural applications [1]. During the High Speed Civil Transport (HSCT) program, improvements in thermal stability were demonstrated for candidate

  3. Optical properties of Ni2+ and radiation defects in MgF sub 2 and MnF sub 2

    Science.gov (United States)

    Feuerhelm, L. N.

    1980-03-01

    The radiation defects in pure MgF2 were made by observating the polarized absorption, luminescence, and excitation spectra in electron-irradiated MgF2. Additionally, studies of the absorption, emission, excitation, and temperature dependence of the lifetimes of transitions in nickel-doped MgF2 and MnF2 were accomplished, as well as the observation of radiation effects on these crystals. The absorption band at about 320 nm in irradiated MgF2 is identified to be due to the F2(D2b) center, and to have an emission at about 450 nm. Analysis of the temperature dependence of this band indicates a dominant phonon mode of 255 cm(-1) for the excited state. The F2(C1) center is identified with an absorption of about 360 nm and an emission of 410 nm. An absorption peak at 300 nm, for which no corresponding emission was found, is tentatively identified to be the F3-center, and to have a dominant phonon mode of 255 cm(-1). The temperature dependence of the lifetimes of transitions in nickel-doped MgF2 is analyzed by the quantum mechanical single configuration coordinate model of Struck and Fonger, and a complete configuration coordinate model is made for this crystal. Similar studies are made in MnF2:Ni.

  4. Effects of helical GNF on improving the dehydrogenation behavior of LiMg(AlH{sub 4}){sub 3} and LiAlH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Leo Hudson, M. Sterlin; Raghubanshi, Himanshu; Pukazhselvan, D.; Srivastava, O.N. [Hydrogen Energy Center, Department of Physics, Banaras Hindu University, Varanasi-221005 (India)

    2010-03-15

    The present paper reports the effect of graphitic nanofibres (GNFs) for improving the desorption kinetics of LiMg(AlH{sub 4}){sub 3} and LiAlH{sub 4}. LiMg(AlH{sub 4}){sub 3} has been synthesized by mechano-chemical metathesis reaction involving LiAlH{sub 4} and MgCl{sub 2}. The enhancement in dehydrogenation characteristics of LiMg(AlH{sub 4}){sub 3} has been shown to be higher when graphitic nanofibres (GNFs) were used as catalyst. Out of two different types of nanofibres namely planar graphitic nanofibre (PGNF) and helical graphitic nanofibre (HGNF), the latter has been found to act as better catalyst. We observed that helical morphology of fibres improves the desorption kinetics and decreases the desorption temperature of both LiMg(AlH{sub 4}){sub 3} and LiAlH{sub 4}. The desorption temperature for 8 mol% HGNF admixed LiAlH{sub 4} gets lowered from 159 C to 128 C with significantly faster kinetics. In 8 mol% HGNF admixed LiMg(AlH{sub 4}){sub 3} sample, the desorption temperature gets lowered from 105 C to {proportional_to}70 C. The activation energy calculated for the first step decomposition of LiAlH{sub 4} admixed with 8 mol% HGNF is {proportional_to}68 kJ/mol, where as that for pristine LiAlH{sub 4} it is 107 kJ/mol. The activation energy calculated for as synthesized LiMg(AlH{sub 4}){sub 3} is {proportional_to}66 kJ/mol. Since the first step decomposition of LiMg(AlH{sub 4}){sub 3} occurs during GNF admixing, the activation energy for initial step decomposition of GNF admixed LiMg(AlH{sub 4}){sub 3} could not be estimated. (author)

  5. Studies on Al-Mg solid solutions using electrical resistivity and microhardness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A.; Afify, N.; El-Halawany, S.M.; Mossad, A. [Assiut Univ. (Egypt). Dept. of Physics

    1999-08-01

    Al-C at% Mg alloys (C = 0.82, 1.84, 3.76, 5.74 and 12.18) have been selected for this study. From the electrical resistivity measurements it is concluded that the resistivity increment of Al-Mg alloys (in a solid solution state) is proportional to the atomic fractional constituents (Mg and Al) as {delta}{rho}{sub all} = 64.66 c(1-c) {mu}{omega} cm. In addition, both the temperature coefficient of resistivity, {alpha}{sub all} and the relaxation time of the free electrons {tau}{sub all} in the alloys diminish with increasing the solute Mg concentration. The increase of the scattering power, {eta}, with increasing C is interpreted to be due to the contribution of electron-impurity scattering. The percentage increase due to electron-impurity scattering per one atomic percent Mg has been determined as 12.99%. The Debye temperature {theta} decreases as the Mg concentration increases. The microhardness results showed that the solid solution hardening obeys the relation {delta}HV{sub s} = 135.5C{sup 0.778} MPa which is comparable to the theory of solid solution hardening for all alloys; {delta}HV{sub s} {approx} C{sup 0.5-0.67} MPa. (orig.)

  6. Structure of spinel at high temperature using in-situ XANES study at the Al and Mg K-edge

    Energy Technology Data Exchange (ETDEWEB)

    Ligny, D de [Universite Claude Bernard Lyon 1, LPCML, 69622 Villeurbanne (France); Neuville, D R [Physique des Mineraux et Magmas, Geochimie-Cosmochimie, CNRS-IPGP, 4 place Jussieu, 75005 Paris (France); Flank, A-M; Lagarde, P, E-mail: deligny@pcml.univ-lyon1.f [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 France (France)

    2009-11-15

    We present structural information obtained on spinel at high temperature (298-2400 K) using in situ XANES at the Mg and Al K-edge. Spinel, {sup [4]}(Al{sub x},Mg{sub 1-x}){sup [6]}(Al{sub 2-x},Mg{sub x})O{sub 4}, with increasing temperature, show a substitution of Mg by Al and Al by Mg in their respective sites. This substitution corresponds to an inversion of the Mg and Al sites. Furthermore, both experiments at the Al and Mg K-edges are in good agreement with XANES calculation made using FDMNES code.

  7. MICROSTRUCTURAL ANALYSIS OF Al-Mg-Si-Zn ALLOY

    Directory of Open Access Journals (Sweden)

    SERGIO VALADEZ

    2010-01-01

    Full Text Available En un esfuerzo por desarrollar una nueva aleación con aplicación estructural, se ha desarrollado una aleación base Aluminio aleada con magnesio, silicio y zinc. La investigación pretende correlacionar la microestructura y con el tratamiento térmico. La aleación AlMgSiZn, fue elegida para ese propósito debido a la presencia de precipitados tanto en la matriz del aAl, como en los límites de grano, los cuales permiten una excelente relación entre la dureza y la resistencia mecánica. En lo que respecta a la microestructura, esta fue caracterizada bajo condición de colada y después de ser tratada térmicamente por envejecimiento. Este tratamiento fue realizado en dos etapas, la primera a 450ºC durante 3 horas que corresponde al tratamiento de homogeneización: y la segunda al proceso de envejecimiento artificial llevado a cabo a 160ºC durante 1hr. Los resultados indican la presencia de dendritas de aAl, además un eutéctico binario y partículas de Mg7Zn3 adentro de las regiones interdendríticas. El eutéctico y las partículas fueron modificados por el tratamiento de envejecido. Las observaciones realizadas con el microscopio electrónico de transmisión en especímenes con y sin tratamientos térmicos, demostraron una distribución uniforme de precipitados con diversas morfologías, tales como cúbico, esférico y plaqueta: para la matriz de aAl, los cuales no fueron detectados durante las observaciones en el microscopio electrónico de barrido.

  8. Compréhension de la stabilité thermique des alliages d'aluminium Al-Cu-Mg Understanding of the thermal stability of Al-Cu-Mg aluminum alloys

    Directory of Open Access Journals (Sweden)

    Pouget Gaëlle

    2013-11-01

    Full Text Available Les alliages d'aluminium 2xxx (Al-Cu-Mg sont connus pour être performants à chaud et sont par exemple utilisés pour certaines pièces de structure des avions. L'effet de la composition en Cu et Mg sur leur stabilité thermique, ainsi que celui de la précipitation durcissante associée ont été étudiés. Des comportements différents sont observés et trois zones de composition (en poids % identifiées: 3,1–3,7Cu et 1,6–2,0Mg : durcissement par la phase S' (Al2CuMg, limite d'élasticité ∼ 465 MPa à l'état T8 et bonne stabilité thermique jusqu'à 200 ∘C. 4,8–5,4Cu et 0–0,4Mg : durcissement par la phase θ' (Al2Cu, limite d'élasticité ∼ 380 MPa à l'état T8 et bonne stabilité thermique jusqu'à 300 ∘C. 3,7–4,3Cu et 0,9–1,3Mg : durcissement par S'+ θ', limite d'élasticité ∼ 470 MPa à l'état T8 mais stabilité thermique insuffisante à 150 ∘C et au delà; ce vieillissement important est associé à une concentration en Cu en solution solide élevée, ce qui accélère la cinétique de coalescence des précipités. La première zone de composition est donc recommandée pour des applications à température intermédiaire, typiquement 150 ∘C, et la seconde pour des applications à plus haute température, entre 250 et 300 ∘C. La troisième zone est à éviter pour des applications à 150 ∘C et au-delà. 2xxx aluminum alloys (Al-Cu-Mg have a good behaviour at elevated temperature and are used for some aircraft's structural parts. In this study, the effect of Cu and Mg content on the thermal stability and strengthening precipitation has been investigated. Three different behaviours are observed depending on the alloy composition: 3.1–3.7Cu, 1.6–2.0Mg: strengthening by S' (Al2CuMg, yield strength ∼ 465 MPa in T8 temper and good thermal stability up to 200 ∘C. 4.8–5.4Cu, 0–0.4Mg: strengthening by θ' (Al2Cu, yield strength ∼ 380 MPa in T8 and good thermal stability up to

  9. Microstructure and mechanical properties of Mg-6Al magnesium alloy with yttrium and neodymium

    Directory of Open Access Journals (Sweden)

    Chen Jun

    2009-05-01

    Full Text Available The effects of rare earth (RE elements Y and Nd on the microstructure and mechanical properties of Mg-6Al magnesium alloy were investigated. The results show that a proper level of RE elements can obviously refi ne the microstructure of Mg-6Al magnesium alloys, reduce the quantity of β-Mg17Al12 phase and form Al2Y and Al2Nd phases. The combined addition of Y and Nd dramatically enhances the tensile strength of the alloys in the temperature range of 20-175℃. When the content of RE elements is up to 1.8%, the values of tensile strength at room temperature and at 150℃ simultaneously reach their maximum of 253 MPa and 196 MPa, respectively. The main mechanisms of enhancement in the mechanical properties of Mg-6Al alloy with Y and Nd are the grain refi ning strengthening and the dispersion strengthening.

  10. Aluminium alleviates manganese toxicity to rice by decreasing root symplastic Mn uptake and reducing availability to shoots of Mn stored in roots.

    Science.gov (United States)

    Wang, Wei; Zhao, Xue Qiang; Hu, Zhen Min; Shao, Ji Feng; Che, Jing; Chen, Rong Fu; Dong, Xiao Ying; Shen, Ren Fang

    2015-08-01

    Manganese (Mn) and aluminium (Al) phytotoxicities occur mainly in acid soils. In some plant species, Al alleviates Mn toxicity, but the mechanisms underlying this effect are obscure. Rice (Oryza sativa) seedlings (11 d old) were grown in nutrient solution containing different concentrations of Mn(2+) and Al(3+) in short-term (24 h) and long-term (3 weeks) treatments. Measurements were taken of root symplastic sap, root Mn plaques, cell membrane electrical surface potential and Mn activity, root morphology and plant growth. In the 3-week treatment, addition of Al resulted in increased root and shoot dry weight for plants under toxic levels of Mn. This was associated with decreased Mn concentration in the shoots and increased Mn concentration in the roots. In the 24-h treatment, addition of Al resulted in decreased Mn accumulation in the root symplasts and in the shoots. This was attributed to higher cell membrane surface electrical potential and lower Mn(2+) activity at the cell membrane surface. The increased Mn accumulation in roots from the 3-week treatment was attributed to the formation of Mn plaques, which were probably related to the Al-induced increase in root aerenchyma. The results show that Al alleviated Mn toxicity in rice, and this could be attributed to decreased shoot Mn accumulation resulting from an Al-induced decrease in root symplastic Mn uptake. The decrease in root symplastic Mn uptake resulted from an Al-induced change in cell membrane potential. In addition, Al increased Mn plaques in the roots and changed the binding properties of the cell wall, resulting in accumulation of non-available Mn in roots. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Direct observation of grafting interlayer phosphate in Mg/Al layered double hydroxides

    International Nuclear Information System (INIS)

    Shimamura, Akihiro; Kanezaki, Eiji; Jones, Mark I.; Metson, James B.

    2012-01-01

    The grafting of interlayer phosphate in synthetic Mg/Al layered double hydroxides with interlayer hydrogen phosphate (LDH-HPO 4 ) has been studied by XRD, TG/DTA, FT-IR, XPS and XANES. The basal spacing of crystalline LDH-HPO 4 decreases in two stages with increasing temperature, from 1.06 nm to 0.82 nm at 333 K in the first transition, and to 0.722 nm at 453 K in the second. The first stage occurs due to the loss of interlayer water and rearrangement of the interlayer HPO 4 2− . In the second transition, the interlayer phosphate is grafted to the layer by the formation of direct bonding to metal cations in the layer, accompanied by a change in polytype of the crystalline structure. The grafted phosphate becomes immobilized and cannot be removed by anion-exchange with 1-octanesulfonate. The LDH is amorphous at 743 K but decomposes to Mg 3 (PO 4 ) 2 , AlPO 4 , MgO and MgAl 2 O 4 after heated to 1273 K. - Graphical abstract: The cross section of the synthetic Mg, Al layered double hydroxides in Phase 1, with interlayer hydrogen phosphate Phase 2, and with grafted phosphate, Phase 3. Highlights: ► The grafting of hydrogen phosphate intercalated Mg/Al-LDH has been studied. ► The basal spacing of crystalline LDH-HPO 4 decreases in two stages with increasing temperature. ► The first decrease is due to loss of interlayer water, the second is attributed to phosphate grafting. ► The grafted interlayer phosphate becomes immobilized and cannot be removed by anion-exchange.

  12. Development of powder metallurgy 2XXX series Al alloys for high temperature aircraft structural applications

    Science.gov (United States)

    Chellman, D. J.

    1984-01-01

    The objective of the present investigation was to improve the strength and fracture toughness combination of P/M 2124 Al alloys in accordance with NASA program goals for damage tolerance and fatigue resistance. Two (2) P/M compositions based on Al-3.70 Cu-1.85 Mg-0.20 Mn with 0.12 and 0.60 wt. pct. Zr were selected for investigation. The rapid solidification rates produced by atomization were observed to prohibit the precipitation of coarse, primary Al3Zr in both alloys. A major portion of the Zr precipitated as finely distributed, coherent Al3Zr phases during vacuum preheating and solution heat treatment. The proper balance between Cu and Mg contents eliminated undissolved, soluble constituents such as Al2CuMg and Al2Cu during atomization. The resultant extruded microstructures produced a unique combination of strength and fracture toughness. An increase in the volume fraction of coherent Al3Zr, unlike incoherent Al20Cu2Mn3 dispersoids, strengthened the P/M Al base alloy either directly by dislocation-precipitate interactions, indirectly by a retardation of recrystallization, or a combination of both mechanisms. Furthermore, coherent Al3Zr does not appear to degrade toughness to the extent that incoherent Al20Cu2Mn3 does. Consequently, the addition of 0.60 wt. pct. Zr to the base alloy, incorporated with a 774K (935 F) solution heat treatment temperature, produces an alloy which exceeds all tensile property and fracture toughness goals for damage tolerant and fatigue resistant applications in the naturally aged condition.

  13. Thermodynamic analysis of 6xxx series Al alloys: Phase fraction diagrams

    OpenAIRE

    Cui S.; Mishra R.; Jung I.-H.

    2018-01-01

    Microstructural evolution of 6xxx Al alloys during various metallurgical processes was analyzed using accurate thermodynamic database. Phase fractions of all the possible precipitate phases which can form in the as-cast and equilibrium states of the Al-Mg-Si-Cu-Fe-Mn-Cr alloys were calculated over the technically useful composition range. The influence of minor elements such as Cu, Fe, Mn, and Cr on the amount of each type of precipitate in the as-cast and equilibrium conditions were analyzed...

  14. Ferromagnetic Peierls insulator state in A Mg4Mn6O15(A =K ,Rb ,Cs )

    Science.gov (United States)

    Yamaguchi, T.; Sugimoto, K.; Ohta, Y.; Tanaka, Y.; Sato, H.

    2018-04-01

    Using the density-functional-theory-based electronic structure calculations, we study the electronic state of recently discovered mixed-valent manganese oxides A Mg4Mn6O15(A =K ,Rb ,Cs ) , which are fully spin-polarized ferromagnetic insulators with a cubic crystal structure. We show that the system may be described as a three-dimensional arrangement of the one-dimensional chains of a 2 p orbital of O and a 3 d orbital of Mn running along the three axes of the cubic lattice. We thereby argue that in the ground state the chains are fully spin polarized due to the double-exchange mechanism and are distorted by the Peierls mechanism to make the system insulating.

  15. Hydrothermal synthesis and corrosion behavior of the protective coating on Mg-2Zn-Mn-Ca-Ce alloy

    Directory of Open Access Journals (Sweden)

    Dan Song

    2016-12-01

    Full Text Available Protective coatings were synthesized on the Mg-2Zn-Mn-Ca-Ce Mg alloy through the hydrothermal method with de-ionized water as the reagent. The coatings were composed of Mg hydroxide, generally uniform and compact. Hydrogen evolution tests and electrochemical tests in the Hanks’ solution demonstrated that the Mg(OH2 coatings effectively decreased the bio-degradation rate of the Mg alloy substrate. Microstructure observation showed that the coating formation on the secondary phases was more difficult than that on the α-Mg matrix, which led to micro cracks and pores on the secondary phases after drying. Over synthesizing time, the coating layer on secondary phases gradually becomes more compact and uniform. Meanwhile, owing to the thicker and more compact coatings, the corrosion resistance and protective efficiency were significantly improved with longer synthesizing time as well.

  16. Eutectic Al-Si-Cu-Fe-Mn alloys with enhanced mechanical properties at room and elevated temperature

    International Nuclear Information System (INIS)

    Wang, E.R.; Hui, X.D.; Chen, G.L.

    2011-01-01

    Highlights: → Fabricated a kind of high performance Al-Si alloy with low production costs. → Clarified two different morphologies of α-Fe and corresponding crystal structures. → Analyzed the crystallography of Cu-rich phases before and after T6 treatment. → Fracture mechanism of precipitates in experimental alloys during tensile process. -- Abstract: In this paper, we report a novel kind of eutectic Al-Si-Cu-Fe-Mn alloy with ultimate tensile strength up to 336 MPa and 144.3 MPa at room temperature and 300 o C, respectively. This kind of alloy was prepared by metal mold casting followed by T6 treatment. The microstructure is composed of eutectic and primary Si, α-Fe, Al 2 Cu and α-Al phases. Iron-rich phases, which were identified as BCC type of α-Fe (Al 15 (Fe,Mn) 3 Si 2 ), exist in blocky and dendrite forms. Tiny blocky Al 2 Cu crystals disperse in α-Fe dendrites or at the grain boundaries of α-Al. During T6 treatment, Cu atoms aggregate from the super-saturation solid solution to form GP zones, θ'' or θ'. Further analysis found that the enhanced mechanical properties of the experimental alloy are mainly attributed to the formation of α-Fe and copper-rich phases.

  17. Structural and critical current properties in Al-doped MgB2

    International Nuclear Information System (INIS)

    Zheng, D.N.; Xiang, J.Y.; Lang, P.L.; Li, J.Q.; Che, G.C.; Zhao, Z.W.; Wen, H.H.; Tian, H.Y.; Ni, Y.M.; Zhao, Z.X.

    2004-01-01

    A series of Al-doped Mg 1-x Al x B 2 samples have been fabricated and systematic study on structure and superconducting properties have been carried out for the samples. In addition to a structural transition observed by XRD, TEM micrographs showed the existence of a superstructure of double c-axis lattice constant along the direction perpendicular to the boron honeycomb sheet. In order to investigate the effect of Al doping on flux pinning and critical current properties in MgB 2 , measurements on the superconducting transition temperature T c , irreversible field B irr and critical current density J c were performed too, for the samples with the doping levels lower than 0.15 in particular. These experimental observations were discussed in terms of Al doping induced changes in carrier concentration

  18. Structural and critical current properties in Al-doped MgB 2

    Science.gov (United States)

    Zheng, D. N.; Xiang, J. Y.; Lang, P. L.; Li, J. Q.; Che, G. C.; Zhao, Z. W.; Wen, H. H.; Tian, H. Y.; Ni, Y. M.; Zhao, Z. X.

    2004-08-01

    A series of Al-doped Mg 1- xAl xB 2 samples have been fabricated and systematic study on structure and superconducting properties have been carried out for the samples. In addition to a structural transition observed by XRD, TEM micrographs showed the existence of a superstructure of double c-axis lattice constant along the direction perpendicular to the boron honeycomb sheet. In order to investigate the effect of Al doping on flux pinning and critical current properties in MgB 2, measurements on the superconducting transition temperature Tc, irreversible field Birr and critical current density Jc were performed too, for the samples with the doping levels lower than 0.15 in particular. These experimental observations were discussed in terms of Al doping induced changes in carrier concentration.

  19. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Song, R.G.; Dietzel, W.; Zhang, B.J.; Liu, W.J.; Tseng, M.K.; Atrens, A.

    2004-01-01

    The age hardening, stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of an Al-Zn-Mg-Cu 7175 alloy were investigated experimentally. There were two peak-aged states during ageing. For ageing at 413 K, the strength of the second peak-aged state was slightly higher than that of the first one, whereas the SCC susceptibility was lower, indicating that it is possible to heat treat 7175 to high strength and simultaneously to have high SCC resistance. The SCC susceptibility increased with increasing Mg segregation at the grain boundaries. Hydrogen embrittlement (HE) increased with increased hydrogen charging and decreased with increasing ageing time for the same hydrogen charging conditions. Computer simulations were carried out of (a) the Mg grain boundary segregation using the embedded atom method and (b) the effect of Mg and H segregation on the grain boundary strength using a quasi-chemical approach. The simulations showed that (a) Mg grain boundary segregation in Al-Zn-Mg-Cu alloys is spontaneous, (b) Mg segregation decreases the grain boundary strength, and (c) H embrittles the grain boundary more seriously than does Mg. Therefore, the SCC mechanism of Al-Zn-Mg-Cu alloys is attributed to the combination of HE and Mg segregation induced grain boundary embrittlement

  20. Effect of Calcination at Synthesis of Mg-Al Hydrotalcite Using co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Niar Kurnia Julianti

    2017-01-01

    Full Text Available The use of hydrotalcite in catalysis has wide attention in academic research and industrial parties. Based on its utilization, hydrotalcite can be active catalyst or support. This research is focused on the investigation of characteristic like spesific surface area of Mg-Al hydrotalcite which is prepared with different temperature of calcination. Synthesis of Mg-Al hydrotalcites with Mg/Al molar ratio 3:1 were prepared by co-precipitation method. Mg(NO33.6H2O and Al(NO33.9H2O as precursors of Mg-Al hydrotalcite. Na2CO3 was used as precipitant agent and NaOH was used as buffer solution. The solution was mixed and aging for 5 hours at 650oC. The dried precipitate was calcined at 2500oC, 3500oC, 4500oC, 5500oC and 6500oC. The characterization of functional group was determined by Fourier Transform Infra Red (FT-IR. The Identical peaks diffractogram were analyzed by X-Ray Diffraction (XRD. The spesific surface area was determined by adsorption-desorption of nitrogen. The largest surface area that obtained from the calcination temperature of 650oC is 156.252 m2/g.