WorldWideScience

Sample records for mftf magnet diagnostics

  1. Design of a magnetic field alignment diagnostic for the MFTF-B magnet system

    International Nuclear Information System (INIS)

    Deadrick, F.J.; House, P.A.; Frye, R.W.

    1985-01-01

    Magnet alignment in tandem mirror fusion machines plays a crucial role in achieving and maintaining plasma confinement. Various visual alignment tools have been described by Post et al. to align the Tara magnet system. We have designed and installed a remotely operated magnetic field alignment (MFA) diagnostic system as a part of the Mirror Fusion Test Facility (MFTF-B). It measures critical magnetic field alignment parameters of the MFTF-B coil set while under full-field operating conditions. The MFA diagnostic employs a pair of low-energy, electron beam guns on a remotely positionable probe to trace and map selected magnetic field lines. An array of precision electrical detector paddles locates the position of the electron beam, and thus the magnetic field line, at several critical points. The measurements provide a means to compute proper compensating currents to correct for mechanical misalignments of the magnets with auxiliary trim coils if necessary. This paper describes both the mechanical and electrical design of the MFA diagnostic hardware

  2. MFTF-B plasma-diagnostic system

    International Nuclear Information System (INIS)

    Throop, A.L.; Goerz, D.A.; Thomas, S.R.

    1981-01-01

    This paper describes the current design status of the plasma diagnostic system for MFTF-B. In this paper we describe the system requirement changes which have occurred as a result of the funded rescoping of the original MFTF facility into MFTF-B. We outline the diagnostic instruments which are currently planned, and present an overview of the diagnostic system

  3. Manufacturing the MFTF magnet

    International Nuclear Information System (INIS)

    Dalder, E.N.C.; Hinkle, R.E.; Hodges, A.J.

    1980-01-01

    The Mirror Fusion Test Facility (MFTF) is a large mirror program experiment for magnetic fusion energy. It will combine and extend the near-classical plasma confinement achieved in 2XIIB with advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime

  4. Thermal performance of the MFTF magnets

    International Nuclear Information System (INIS)

    VanSant, J.H.

    1983-01-01

    A yin-yang pair of liquid-helium (LHe) cooled, superconducting magnets were tested last year at the Lawrence Livermore National Laboratory (LLNL) as part of a series of tests with the Mirror Fusion Test Facility (MFTF). These tests were performed to determine the success of engineering design used in major systems of the MFTF and to provide a technical base for rescoping from a single-mirror facility to the large tandem-mirror configuration (MFTF-B) now under construction. The magnets were cooled, operated at their design current and magnetic field, and warmed to atmospheric temperature. In this report, we describe their thermal behavior during these tests

  5. Design of the electromagnetic fluctuations diagnostic for MFTF-B

    International Nuclear Information System (INIS)

    House, P.A.; Goerz, D.A.; Martin, R.

    1983-01-01

    The Electromagnetic Fluctuations (EMF) diagnostic will be used to monitor ion fluctuations which could be unstable in MFTF-B. Each probe assembly includes a high impedance electrostatic probe to measure potential fluctuations, and a group of nested, single turn loops to measure magnetic fluctuations in three directions. Eventually, more probes and loops will be added to each probe assembly for making more detailed measurements. The sensors must lie physically close to the plasma edge and are radially positionable. Also, probes at separate axial locations can be positioned to connect along the same magnetic field line. These probes are similar in concept to the rf probes used on TMX, but the high thermal load for 30-second shots on MFTF-B requires a water-cooled design along with temperature monitors. Each signal channel has a bandwidth of .001 to 150 MHz and is monitored by up to four different data channels which obtain amplitude and frequency information. This paper describes the EMF diagnostic and presents the detailed mechanical and electrical designs

  6. Magnetic shielding tests for MFTF-B neutral beamlines

    International Nuclear Information System (INIS)

    Kerns, J.; Fabyan, J.; Wood, R.; Koger, P.

    1983-01-01

    A test program to determine the effectiveness of various magnetic shielding designs for MFTF-B beamlines was established at Lawrence Livermore National Laboratory (LLNL). The proposed one-tenth-scale shielding-design models were tested in a uniform field produced by a Helmholtz coil pair. A similar technique was used for the MFTF source-injector assemblies, and the model test results were confirmed during the Technology Demonstration in 1982. The results of these tests on shielding designs for MFTF-B had an impact on the beamline design for MFTF-B. The iron-core magnet and finger assembly originally proposed were replaced by a simple, air-core, race-track-coil, bending magnet. Only the source injector needs to be magnetically shielded from the fields of approximately 400 gauss

  7. MFTF-α+T end plug magnet design

    International Nuclear Information System (INIS)

    Srivastava, V.C.; O'Toole, J.A.

    1983-01-01

    The conceptual design of the end-plug magnets for MFTF-α+T is described. MFTF-α+ T is a near-term upgrade of MFTF-B, which features new end plugs to improve performance. The Fusion Engineering Design Center has performed the engineering design of MFTF-α+T under the overall direction of Lawrence Livermore National Laboratory. Each end plug consists of two Yin-Yang pairs, each with approx.2.5:1 mirror ratio and approx.5-T peak field on axis; two transition coils; and a recircularizing solenoid. This paper describes the end-plug magnet system functional requirements and presents a conceptual design that meets them. The peak field at the windings of the end-plug coils is approx.6-T. These coils are designed using the NbTi MFTF-B conductor and cooled by a 4.2K liquid helium bath. All the end-plug magnets are designed to operate in the cryostable mode with adequate quench protection for safety. Shielding requirements are stated and a summary of heat loads is provided. Field and force calculations are discussed. The field on axis is shown to meet the functional requirements. Force resultants are reported in terms of winding running loads and resultant coil forces are also given. The magnet structural support is described. A trade study to determine the optimum end-cell coil internal nuclear shield thickness and the resulting coil size based on minimizing the end-cell life cycle cost is summarized

  8. Axicell MFTF-B superconducting-magnet system

    International Nuclear Information System (INIS)

    Wang, S.T.; Bulmer, R.; Hanson, C.; Hinkle, R.; Kozman, T.; Shimer, D.; Tatro, R.; VanSant, J.; Wohlwend, J.

    1982-01-01

    The Axicell MFTF-B magnet system will provide the field environment necessary for tandem mirror plasma physics investigation with thermal barriers. The performance of the device will stimulate DT to achieve energy break-even plasma conditions. Operation will be with deuterium only. There will be 24 superconducting coils consisting of 2 sets of yin-yang pairs, 14 central-cell solenoids, 2 sets of axicell mirror-coil pairs, and 2 transition coils between the axicell mirror coil-pairs and the yin-yang coils. This paper describes the progress in the design and construction of MFTF-B Superconducting-Magnet System

  9. MFTF magnet cryostability

    International Nuclear Information System (INIS)

    VanSant, J.H.

    1979-01-01

    A pair of large superconducting magnets will be installed in the Mirror Fusion Test Facility (MFTF), which is to begin operation in 1981. To ensure a stable superconducting state for the niobium-titanium (Nb-Ti) conductor, special consideration has been given to certain aspects of the magnet system design. These include the conductor, joints, coil assembly, vapor plenums, liquid-helium (LHe) supply system, and current leads. Heat transfer is the main consideration; i.e., the helium quality and temperature are limited so that the superconductor will perform satisfactorily in the magnet environment

  10. Performance of the MFTF magnet cryogenic power leads

    International Nuclear Information System (INIS)

    VanSant, J.H.

    1983-01-01

    The cryogenic power lead system for the MFTF superconducting magnets has been acceptance tested and operated with the magnets. This system, which includes 5-m-long superconducting buses, 1.5-m-long vapor-cooled transition leads, external warm buses, and a cryostack, can conduct up to 6000 A (dc) and operate adiabatically for long periods. We present both design details and performance data; our MFTF version is an example of a reliable lead system for large superconducting magnets contained in a much larger vacuum vessel

  11. Liquid helium cooling of the MFTF superconducting magnets

    International Nuclear Information System (INIS)

    VanSant, J.H.; Zbasnik, J.P.

    1986-09-01

    During acceptance testing of the Mirror Fusion Test Facility (MFTF), we measured these tests: liquid helium heat loads and flow rates in selected magnets. We used the data from these tests to estimate helium vapor quality in the magnets so that we could determine if adequate conductor cooling conditions had occurred. We compared the measured quality and flow with estimates from a theoretical model developed for the MFTF magnets. The comparison is reasonably good, considering influences that can greatly affect these values. This paper describes the methods employed in making the measurements and developing the theoretical estimates. It also describes the helium system that maintained the magnets at required operating conditions

  12. Review of MFTF yin-yang magnet displacement and magnetic field measurements and calculations

    International Nuclear Information System (INIS)

    Hanson, C.L.; Myall, J.O.; Wohlwend, J.W.

    1983-01-01

    During the recent testing of the MFTF yin-yang magnet, measurements of coil position, structural case strain, and magnetic field were made to verify calculated values. Measurements to detect magnet movement were taken throughout cooldown and during the operation of the magnet. The magnetic field at the mirror points was measured by Hall-effect probes. The magnet position, structural case strain, and magnetic field measurements indicated a reasonably close correlation with calculated values. Information obtained from the yin-yang test has been very useful in setting realistic mechanical alignment values for the new MFTF-B magnet system

  13. Review of MFTF yin-yang magnet displacement and magnetic field measurements and calculations

    International Nuclear Information System (INIS)

    Hanson, C.L.; Myall, J.O.; Wohlwend, J.W.

    1983-01-01

    During the recent testing of the MFTF yin-yang magnet, measurements of coil position, structural case strain, and magnetic field were made to verify calculated values. Measurements to detect magnet movement were taken throughout cooldown and during the operation of the magnet. The magnetic field at the mirror points was measured by Hall-effect probes. The magnet position, structural case strain, and magntic field measurements indicated a reasonably close correlation with calculated values. Information obtained from the yin-yang test has been very useful in setting realistic mechanical alignment values for the new MFTF-B magnet system

  14. Control and diagnostic data structures for the MFTF

    International Nuclear Information System (INIS)

    Wade, J.A.; Choy, J.H.

    1979-01-01

    A Data Base Management System (DBMS) is being written as an integral part of the Supervisory Control and Diagnostics System (SCDS) of programs for control of the Mirror Fusion Test Facility (MFTF). The data upon which the DBMS operates consist of control values and evaluative information required for facilities control, along with control values and disgnostic data acquired as a result of each MFTF shot. The user interface to the DBMS essentially consists of two views: a computer program interface called the Program Level Interface (PLI) and a stand-alone interactive program called the Query Level Interface to support terminal-based queries. This paper deals specifically with the data structure capabilities from the viewpoint of the PLI user

  15. Structural analysis interpretation task for the magnet system for Mirror Fusion Test Facility (MFTF)

    International Nuclear Information System (INIS)

    Baldi, R.W.

    1979-11-01

    The primary objective of this study was to develop recommendations to improve and substantiate the structural integrity of the highly stresses small radius region of the MFTF magnet. The specific approach is outlined: (1) Extract detail stress/strain data from General Dynamics Convair Finite-Element Refinement Analysis. (2) Diagram local plate stress distribution and its relationship to the adjacent weldment. (3) Update the parametric fracture mechanics analysis using most recent MFTF related data developed by National Bureau of Standards. (4) Review sequence and assembly as modified by Chicago Bridge and Iron for adaptability to refinements. (5) Investigate the need for fillet radii weldments to reduce stress concentrations at critical corners. (6) Review quality assurance plan for adequacy to insure structural quality in the small radius region. (7) Review instrumentation plan for adequacy of structural diagnostics in small radius region. (8) Participate in planning a small-scale fatigue test program of a typical MFTF weldment

  16. MFTF sensor verification computer program

    International Nuclear Information System (INIS)

    Chow, H.K.

    1984-01-01

    The design, requirements document and implementation of the MFE Sensor Verification System were accomplished by the Measurement Engineering Section (MES), a group which provides instrumentation for the MFTF magnet diagnostics. The sensors, installed on and around the magnets and solenoids, housed in a vacuum chamber, will supply information about the temperature, strain, pressure, liquid helium level and magnet voltage to the facility operator for evaluation. As the sensors are installed, records must be maintained as to their initial resistance values. Also, as the work progresses, monthly checks will be made to insure continued sensor health. Finally, after the MFTF-B demonstration, yearly checks will be performed as well as checks of sensors as problem develops. The software to acquire and store the data was written by Harry Chow, Computations Department. The acquired data will be transferred to the MFE data base computer system

  17. Testing of the MFTF magnets

    International Nuclear Information System (INIS)

    Kozman, T.A.; Chang, Y.; Dalder, E.N.C.

    1982-01-01

    This paper describes the cooldown and testing of the first yin-yang magnet for the Mirror Fusion Test Facility. The introduction describes the superconducting magnet; the rest of the paper explains the tests prior to and including magnet cooldown and final acceptance testing. The MFTF (originally MX) was proposed in 1976 and the project was funded for construction start in October 1977. Construction of the first large superconducting magnet set was completed in May 1981 and testing started shortly thereafter. The acceptance test procedures were reviewed in May 1981 and the cooldown and final acceptance test were done by the end of February 1982. During this acceptance testing the magnet achieved its full design current and field

  18. Local area network for the plasma diagnostics system of MFTF-B

    International Nuclear Information System (INIS)

    Lau, N.H.; Minor, E.G.

    1983-01-01

    The MFTF-B Plasma Diagnostics System will be implemented in stages, beginning with a start-up set of diagnostics and evolving toward a basic set. The start-up set contains 12 diagnostics which will acquire a total of about 800 Kbytes of data per machine pulse; the basic set contains 23 diagnostics which will acquire a total of about 8 Mbytes of data per pulse. Each diagnostic is controlled by a Foundation System consisting of a DEC LSI-11/23 microcomputer connected to CAMAC via a 5 Mbits/second serial fiber-optic link and connected to a supervisory computer (Perkin-Elmer 3250) via a 9600 baud RS232 link. The Foundation System is a building block used throughout MFTF-B for control and status monitoring. However, its 9600 baud link to the supervisor presents a bottleneck for the large data transfers required by diagnostics. To overcome this bottleneck the diagnostics Foundation Systems will be connected together with an additional LSI-11/23 called the master to form a Local Area Network (LAN) for data acquisition

  19. Mechanical considerations for MFTF-B plasma-diagnostic system

    International Nuclear Information System (INIS)

    Thomas, S.R. Jr.; Wells, C.W.

    1981-01-01

    The reconfiguration of MFTF to a tandem mirror machine with thermal barriers has caused a significant expansion in the physical scope of plasma diagnostics. From a mechanical perspective, it complicates the plasma access, system interfaces, growth and environmental considerations. Conceptual designs characterize the general scope of the design and fabrication which remains to be done

  20. Progress on axicell MFTF-B superconducting magnet systems

    International Nuclear Information System (INIS)

    Wang, S.T.; Kozman, T.A.; Hanson, C.L.; Shimer, D.W.; VanSant, J.H.; Zbasnik, J.

    1983-01-01

    Since the entire Mirror Fusion Test Facility (MFTF-B) Magnet System was reconfigured from the original A-cell to an axicell design, much progress has been made on the design, fabrication, and installation planning. The axicell MFTF-B magnet array consists of a total of 26 large superconducting main coils. This paper provides an engineering overview of the progress of these coils. Recent studies on the effects of field errors on the plasma at the recircularizing region (transition coils) show that small field errors will generate large displacements of the field lines. These field errors might enhance radial electron heat transport and deteriorate the plasma confinement. Therefore, 16 superconducting trim coils have been designed to correct the coil misalignments. Progress of the trim coils are reported also

  1. User interface on networked workstations for MFTF plasma diagnostic instruments

    International Nuclear Information System (INIS)

    Renbarger, V.L.; Balch, T.R.

    1985-01-01

    A network of Sun-2/170 workstations is used to provide an interface to the MFTF-B Plasma Diagnostics System at Lawrence Livermore National Laboratory. The Plasma Diagnostics System (PDS) is responsible for control of MFTF-B plasma diagnostic instrumentation. An EtherNet Local Area Network links the workstations to a central multiprocessing system which furnishes data processing, data storage and control services for PDS. These workstations permit a physicist to command data acquisition, data processing, instrument control, and display of results. The interface is implemented as a metaphorical desktop, which helps the operator form a mental model of how the system works. As on a real desktop, functions are provided by sheets of paper (windows on a CRT screen) called worksheets. The worksheets may be invoked by pop-up menus and may be manipulated with a mouse. These worksheets are actually tasks that communicate with other tasks running in the central computer system. By making entries in the appropriate worksheet, a physicist may specify data acquisition or processing, control a diagnostic, or view a result

  2. Quench Detection and Magnet Protection Study for MFTF. LLL final review

    International Nuclear Information System (INIS)

    1979-06-01

    The results of a Quench Detection and Magnet Protection Study for MFTF are summarized. The study was directed toward establishing requirements and guidelines for the electronic package used to protect the MFTF superconducting magnets. Two quench detection schemes were analyzed in detail, both of which require a programmable quench detector. Hardware and software recommendations for the quench detector were presented as well as criteria for dumping the magnet energy in the event of a quench. Overall magnet protection requirements were outlined in a detailed Failure Mode Effects and Criticality analysis, (FMECA). Hardware and software packages compatible with the FMECA were recommended, with the hardware consisting of flexible, dedicated intelligent modules specifically designed for magnet protection

  3. Field-reversal experiments in the mirror fusion test facility (MFTF)

    International Nuclear Information System (INIS)

    Shearer, J.W.; Condit, W.C.

    1977-01-01

    Detailed consideration of several aspects of a field-reversal experiment was begun in the Mirror Fusion Test Facility (MFTF): Model calculations have provided some plausible parameters for a field-reversed deuterium plasma in the MFTF, and a buildup calculation indicates that the MFTF neutral-beam system is marginally sufficient to achieve field reversal by neutral injection alone. However, the many uncertainties indicate the need for further research and development on alternate buildup methods. A discussion of experimental objectives is presented and important diagnostics are listed. The range of parameter space accessible with the MFTF magnet design is explored, and we find that with proper aiming of the neutral beams, meaningful experiments can be performed to advance toward these objectives. Finally, it is pointed out that if we achieve enhanced n tau confinement by means of field reversal, then quasi-steady-state operation of MFTF is conceivable

  4. Report on the experience with the Supervisory Control and Diagnostics System (SCDS) of MFTF-B

    International Nuclear Information System (INIS)

    Wyman, R.H.

    1983-01-01

    The Supervisory Control and Diagnostics System (SCDS) of MFTF is a multiprocessor computer system using graphics oriented displays with touch sensitive panels as the primary operator interface. Late in the calendar year 1981 the system was used to control an integrated test of the vacuum vessel, vacuum system, cryogenics system and the superconducting magnet of MFTF. Since the completion of those tests and starting in early calendar 1983 the system has been used for control of the neutral beam test facility at LLNL. This paper presents a short overview of SCDS for the purpose of orientation and then proceeds to describe the difficulties encountered in these preliminary encounters with reality. The band-aids used to hold things together as disaster threatened as well as the long-term solutions to the problems will be discussed. Finally, we will present some comments on system costs and management philosophy

  5. MFTF plasma diagnostics data acquisition system

    International Nuclear Information System (INIS)

    Davis, G.E.; Coffield, F.E.

    1979-01-01

    The initial goal of the Data Acquisition System (DAS) is to control 11 instruments chosen as the startup diagnostic set and to collect, process, and display the data that these instruments produce. These instruments are described in a paper by Stan Thomas, et. al. entitled ''MFTF Plasma Diagnostics System.'' The DAS must be modular and flexible enough to allow upgrades in the quantity of data taken by an instrument, and also to allow new instruments to be added to the system. This is particularly necessary to support a research project where needs and requirements may change rapidly as a result of experimental findings. Typically, the startup configuration of the diagnostic instruments will contain only a fraction of the planned detectors, and produce approximately one half the data that the expanded version is designed to generate. Expansion of the system will occur in fiscal year 1982

  6. The local area network for the plasma Diagnostics System of MFTF-B

    International Nuclear Information System (INIS)

    Lau, N.H.; Minor, E.G.

    1983-01-01

    The MFTF-B Plasma Diagnostics System will be implemented in stages, beginning with a start-up set of diagnostics and evolving toward a basic set. The start-up set contains 12 diagnostics which will acquire a total of about 800 Kbytes of data per machine pulse; the basic set contains 23 diagnostics which will acquire a total of about 8 Mbytes of data per pulse. Each diagnostic is controlled by a ''Foundation System'' consisting of a DEC LSI-11/23 microcomputer connected to CAMAC via a 5 Mbits/second serial fiber-optic link and connected to a supervisory computer (Perkin-Elmer 3250) via a 9600 baud RS232 link. The Foundation System is a building block used throughout MFTF-B for control and status monitoring. However, its 9600 baud link to the supervisor presents a bottleneck for the large data transfers required by diagnostics. To overcome this bottleneck the diagnostics Foundation Systems will be connected together with an additional LSI-11/23 called the ''master'' to form a Local Area Network (LAN) for data acquisition. The Diagnostics LAN has a ring architecture with token passing arbitration

  7. Electrical supply for MFTF-B superconducting magnet system

    International Nuclear Information System (INIS)

    Shimer, D.W.; Owen, E.W.

    1985-01-01

    The MFTF-B magnet system consists of 42 superconducting magnets which must operate continuously for long periods of time. The magnet power supply system is designed to meet the operational requirements of accuracy, flexibility, and reliability. The superconducting magnets require a protection system to protect against critical magnet faults of quench, current lead overtemperature, and overcurrent. The protection system is complex because of the large number of magnets, the strong coupling between magnets, and the high reliability requirement. This paper describes the power circuits and the components used in the design

  8. New kind of user interface for controlling MFTF diagnostics

    International Nuclear Information System (INIS)

    Preckshot, G.G.; Saroyan, R.A.; Mead, J.E.

    1983-01-01

    The Mirror Fusion Test Facility (MFTF) at Lawrence Livermore National Laboratory is faced with the problem of controlling a multitude of plasma diagnostics instruments from a central, multiprocessor computer facility. A 16-bit microprocessor-based workstation allows each physicist entree into the central multiprocessor, which consists of nine Perkin-Elmer 32-bit minicomputers. The workstation provides the user interface to the larger system, with display graphics, windowing, and a physics notebook. Controlling a diagnostic is now equivalent to making entries into a traditional physics notebook

  9. A user interface on networked workstations for MFTF-B plasma diagnostic instruments

    International Nuclear Information System (INIS)

    Balch, T.R.; Renbarger, V.L.

    1986-01-01

    A network of Sun-2/170 workstations is used to provide an interface to the MFTF-B Plasma Diagnostics System at Lawrence Livermore National Laboratory. The Plasma Diagnostics System (PDS) is responsible for control of MFTF-B plasma diagnostic instrumentation. An EtherNet Local Area Network links the workstations to a central multiprocessing system which furnishes data processing, data storage and control services for PDS. These workstations permit a physicist to command data acquisition, data processing, instrument control, and display of results. The interface is implemented as a metaphorical desktop, which helps the operator form a mental model of how the system works. As on a real desktop, functions are provided by sheets of paper (windows on a CRT screen) called worksheets. The worksheets may be invoked by pop-up menus and may be manipulated with a mouse. These worksheets are actually tasks that communicate with other tasks running in the central computer system. By making entries in the appropriate worksheet, a physicist may specify data acquisition or processing, control a diagnostic, or view a result

  10. A new kind of user interface for controlling MFTF diagnostics

    International Nuclear Information System (INIS)

    Preckshot, G.; Mead, J.; Saroyan, R.

    1983-01-01

    The Mirror Fusion Test Facility (MFTF) at Lawrence Livermore National Laboratory is faced with the problem of controlling a multitude of plasma diagnostics instruments from a central, multiprocessor computer facility. A 16-bit microprocessor-based workstation allows each physicist entree into the central multiprocessor, which consists of nine Perkin-Elmer 32-bit minicomputers. The workstation provides the user interface to the larger system, with display graphics, windowing, and a physics notebook. Controlling a diagnostic is now equivalent to making entries into a traditional physics notebook

  11. Overview of the data acquisition and control system for plasma diagnostics on MFTF-B

    International Nuclear Information System (INIS)

    Wyman, R.H.; Deadrick, F.J.; Lau, N.H.; Nelson, B.C.; Preckshot, G.G.; Throop, A.L.

    1983-01-01

    For MFTF-B, the plasma diagnostics system is expected to grow from a collection of 12 types of diagnostic instruments, initially producing about 1 Megabyte of data per shot, to an expanded set of 22 diagnostics producing about 8 Megabytes of data per shot. To control these diagnostics and acquire and process the data, a system design has been developed which uses an architecture similar to the supervisory/local-control computer system which is used to control other MFTF-B subsystems. This paper presents an overview of the hardware and software that will control and acquire data from the plasma diagnostics system. Data flow paths from the instruments, through processing, and into final archived storage will be described. A discussion of anticipated data rates, including anticipated software overhead at various points of the system, is included, along with the identification of possible bottlenecks. A methodology for processing of the data is described, along with the approach to handle the planned growth in the diagnostic system. Motivations are presented for various design choices which have been made

  12. Overview of the MFTF electrical systems

    International Nuclear Information System (INIS)

    Lindquist, W.B.; Eckard, R.D.; Holdsworth, T.; Mooney, L.J.; Moyer, D.R.; Peterson, R.L.; Shimer, D.W.; Wyman, R.H.; VanNess, H.W.

    1979-01-01

    The Mirror Fusion Test Facility, scheduled for completion in October 1981, will contain a complex, state-of-the-art array of electrical and electronics equipment valued at over 60 M$. Three injector systems will be employed to initiate and sustain the MFTF deuterium plasma. A plasma streaming system and a startup neutron beam system will be used to establish a target plasma. A sustaining neutral beam system will be used to fuel and sustain the MFTF plasma for 0.5 s. Additional power supply systems required on MFTF include two magnet power supplies with quench protection circuitry for powering the superconducting YIN/YANG magnet pair and eight 10 KHz power supplies for powering the Ti gettering system. Due to the complexity, physical size, and multiple systems of MFTF, a distributed, hierarchial, computer control and instrumentation system will be used. Color graphic, touch-panel, control consoles will provide the man-machine interface. The MFTF will have the capability of conducting an experiment every five minutes

  13. Design features of the solenoid magnets for the central cell of the MFTF-B

    International Nuclear Information System (INIS)

    Wohlwend, J.W.; Tatro, R.E.; Ring, D.S.

    1981-01-01

    The 14 superconducting solenoid magnets which form the central cell of the MFTF-B are being designed and fabricated by General Dynamics for the Lawrence Livermore National Laboratory. Each solenoid coil has a mean diameter of five meters and contains 600 turns of a proven conductor type. Structural loading resulting from credible fault events, cooldown and warmup requirements, and manufacturing processes consistent with other MFTF-B magnets have been considered in the selection of 304 LN as the structural material for the magnet. The solenoid magnets are connected by 24 intercoil beams and 20 solid struts which resist the longitudinal seismic and electromagnetic attractive forces and by 24 hanger/side supports which react magnet dead weight and seismic loads. A modular arrangement of two solenoid coils within a vacuum vessel segment allow for sequential checkout and installation

  14. D-T axicell magnet system for MFTF-α+T

    International Nuclear Information System (INIS)

    Srivastava, V.C.

    1983-01-01

    The configuration and design of the deuterium-tritium (D-T) axicell superconducting magnets for the Mirror Fusion Test Facility (MFTF-α+T) are described. The MFTF-α+T is an upgrade of the MFTF-B, with new end-plug magnets and a neutron-producing central D-T axicell section. The 4-m long axicell - its length defined by the 12-T peaks in the mirror field - is beam fueled and heated by two beam lines, each with four neutral beam injection ports. Two large superconducting coils (means diameter approx. 3.8 m) located at Z = +-2.40 m, in conjunction with a small copper coil located outside the test volume region, produce the 4.5-T mirror midplane field. This background field is augmented by two copper coils to create the 12-T peak mirror fields at Z = +-2 m. The central region of the axicell accommodates a 1-m-long, replaceable blanket test module. The length (4 m) of the axicell was chosen to provide relatively uniform neutron wall loading over the test module. In many respects, this axicell is less than full scale, but it could be viewed as a short section of a reactor, complete with the support systems and technologies associated with a mirror reactor. The peak field at the superconducting coils is 10.8 T. The coils employ hybrid superconducting winding - Nb 3 Sn conductor in the 8- to 12-T region and NbTi in the 0- to 8-T region. The winding is cryostable and is cooled by a 4.2 K liquid helium bath. The conductor design, the winding design, and the performance analyses for these superconducting coils are described

  15. Design and fabrication of the MFTF-B magnet system

    International Nuclear Information System (INIS)

    Tatro, R.E.; Kozman, T.A.

    1985-09-01

    The MFTF-B superconducting magnet system consists of 40 NbTi magnets and two Nb 3 Sn magnets. General Dynamics (GD) designed all magnets except for the small trim coils. GD then fabricated 20 NbTi magnets, while LLNL fabricated 20 NbTi magnets and two Nb 3 Sn magnets. The design phase was completed in February 1984 and included the competitive procurement of magnet structural fabrication, superconductor, G-10CR insulation, support struts and bearings, vapor-cooled leads, and thermal shields for all magnets. Fabrication of all magnets was completed in March 1985. At GD, dual assembly lines were necessary during fabrication in order to meet the aggressive LLNL schedule. The entire magnet system has been installed and aligned at LLNL, and Tech Demo tests will be performed during September-November 1985

  16. Computer circuit analysis of induced currents in the MFTF-B magnet system

    International Nuclear Information System (INIS)

    Magnuson, G.D.; Woods, E.L.

    1981-01-01

    An analysis was made of the induced current behavior of the MFTF-B magnet system. Although the magnet system consists of 22 coils, because of its symmetry we considered only 11 coils in the analysis. Various combinations of the coils were dumped either singly or in groups, with the current behavior in all magnets calculated as a function of time after initiation of the dump

  17. Overview of MFTF supervisory control and diagnostics system software

    International Nuclear Information System (INIS)

    Ng, W.C.

    1979-01-01

    The Mirror Fusion Test Facility (MFTF) at the Lawrence Livermore Laboratory (LLL) is currently the largest mirror fusion research project in the world. Its Control and Diagnostics System is handled by a distributed computer network consisting of nine Interdata minicomputer systems and about 65 microprocessors. One of the design requirements is tolerance of single-point failure. If one of the computer systems becomes inoperative, the experiment can still be carried out, although the system responsiveness to operator command may be degraded. In a normal experiment cycle, the researcher can examine the result of the previous experiment, change any control parameter, fire a shot, collect four million bytes of diagnostics data, perform intershot analysis, and have the result presented - all within five minutes. The software approach adopted for the Supervisory Control and Diagnostics System features chief programmer teams and structured programming. Pascal is the standard programming language in this project

  18. Thermal control for the MFTF magnet

    International Nuclear Information System (INIS)

    Vansant, J.H.; Russ, R.M.

    1980-01-01

    The external dimensions of the Yin-Yang magnet of the Mirror Fusion Test Facility will be 7.8 by 8.5 by 8.5 m, and it will weigh approximately 300 tons. More than 8000 liters of circulating liquid helium will be required to maintain the nearly 50 km of superconductor at below 5.0 K while the latter carries almost 6000 A in a magnetic field of up to nearly 7.7 T. This paper describes several features of the thermal control plans for the Yin-Yang: (1) the proposed cooldown and warmup schedules for the MFTF and the procedure for regenerating external cooling surfaces (2) the design of an external quench resistor based on an estimate of the superconductor's maximum temperature and (3) the use of a computer model of liquid helium circulation in choosing pipe size for the liquid helium lines

  19. Design and fabrication of the superconducting-magnet system for the Mirror Fusion Test Facility (MFTF-B)

    International Nuclear Information System (INIS)

    Tatro, R.E.; Wohlwend, J.W.; Kozman, T.A.

    1982-01-01

    The superconducting magnet system for the Mirror Fusion Test Facility (MFTF-B) consists of 24 magnets; i.e. two pairs of C-shaped Yin-Yang coils, four C-shaped transition coils, four solenoidal axicell coils, and a 12-solenoid central cell. General Dynamics Convair Division has designed all the coils and is responsible for fabricating 20 coils. The two Yin-Yang pairs (four coils) are being fabricated by the Lawrence Livermore National Laboratory. Since MFTF-B is not a magnet development program, but rather a major physics experiment critical to the mirror fusion program, the basic philosophy has been to use proven materials and analytical techniques wherever possible. The transition and axicell coils are currently being analyzed and designed, while fabrication is under way on the solenoid magnets

  20. Evaluating and tuning system response in the MFTF-B control and diagnostics computers

    International Nuclear Information System (INIS)

    Palasek, R.L.; Butner, D.N.; Minor, E.G.

    1983-01-01

    The software system running on the Supervisory Control and Diagnostics System (SCDS) of MFTF-B is, for the major part, an event driven one. Regular, periodic polling of sensors' outputs takes place only at the local level, in the sensors' corresponding local control microcomputers (LCC's). An LCC reports a sensor's value to the supervisory computer only if there was a significant change. This report is passed as a message, routed among and acted upon by a network of applications and systems tasks within the supervisory computer (SCDS). Commands from the operator's console are similarly routed through a network of tasks, but in the oppostie direction to the experiment's hardware. In a network such as this, response time is partialy determined by system traffic. Because the hardware of MFTF-B will not be connected to the computer system for another two years, we are using the local control computers to simulate the event driven traffic that we expect to see during MFTF-B operation. In this paper we show how we are using the simulator to measure and evaluate response, loading, throughput, and utilization of components within the computer system. Measurement of the system under simulation allows us to identify bottlenecks and verify their unloosening. We also use the traffic simulators to evaluate prototypes of different algorithms for selected tasks, comparing their responses under the spectrum of traffic intensities

  1. Use of spreadsheets for interactive control of MFTF-B plasma diagnostic instruments

    International Nuclear Information System (INIS)

    Preckshot, G.G.; Goldner, A.L.; Kobayashi, A.

    1986-01-01

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory has a variety of highly individualized plasma diagnostic instruments attached to the experiment. These instruments are controlled through graphics workstations networked to a central computer system. A distributed spreadsheet-like program runs in both the graphics workstations and in the central computer system. An interface very similar to a commercial spreadsheet program is presented to the user at a workstation. In a commercial spreadsheet program, the user may attach mathematical calculation functions to spreadsheet cells. At MFTF-B, hardware control functions, hardware monitoring functions, and communications functions, as well as mathematical functions, may be attached to cells. Both the user and feedback from instrument hardware may make entries in spreadsheet cells; any entry in a spreadsheet cell may cause reevaluation of the cell's associated functions. The spreadsheet approach makes the addition of a new instrument a matter of designing one or more spreadsheet tables with associated meta-language-defined control and communication function strings. This paper describes the details of the spreadsheets and the implementation experience

  2. Use of spreadsheets for interactive control of MFTF-B plasma diagnostic instruments

    International Nuclear Information System (INIS)

    Preckshot, G.G.; Goldner, A.; Kobayashi, A.

    1985-01-01

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory has a variety of highly individualized plasma diagnostic instruments attached to the experiment. These instruments are controlled through graphics workstations networked to a central computer system. A distributed spreadsheet-like program runs in both the graphics workstations and in the central computer system. An interface very similar to a commercial spreadsheet program is presented to the user at a workstation. In a commercial spreadsheet program, the user may attach mathematical calculation functions to spreadsheet cells. At MFTF-B, hardware control functions, hardware monitoring functions, and communications functions, as well as mathematical functions, may be attached to cells. Both the user and feedback from instrument hardware may make entries in spreadsheet cells; any entry in a spreadsheet cell may cause reevaluation of the cell's associated functions. The spreadsheet approach makes the addition of a new instrument a matter of designing one or more spreadsheet tables with associated meta-language-defined control and communication function strings. We report here details of our spreadsheets and our implementation experience

  3. MFTF supervisory control and diagnostics system hardware

    International Nuclear Information System (INIS)

    Butner, D.N.

    1979-01-01

    The Supervisory Control and Diagnostics System (SCDS) for the Mirror Fusion Test Facility (MFTF) is a multiprocessor minicomputer system designed so that for most single-point failures, the hardware may be quickly reconfigured to provide continued operation of the experiment. The system is made up of nine Perkin-Elmer computers - a mixture of 8/32's and 7/32's. Each computer has ports on a shared memory system consisting of two independent shared memory modules. Each processor can signal other processors through hardware external to the shared memory. The system communicates with the Local Control and Instrumentation System, which consists of approximately 65 microprocessors. Each of the six system processors has facilities for communicating with a group of microprocessors; the groups consist of from four to 24 microprocessors. There are hardware switches so that if an SCDS processor communicating with a group of microprocessors fails, another SCDS processor takes over the communication

  4. Design of the MFTF external vacuum system

    International Nuclear Information System (INIS)

    Holl, P.M.

    1979-01-01

    As a result of major experiment success in the LLL mirror program on start-up and stabilization of plasmas in minimum-B magnetic geometry, a Mirror Fusion Test Facility (MFTF) is under construction. Completion is scheduled for September, 1981. MFTF will be used to bridge the gap between present day small mirror experiments and future fusion-reactor activity based on magnetic mirrors. The focal point of the Mirror Fusion Test Facility is the 35 foot diameter by 60 foot long vacuum vessel which encloses the superconducting magnets. High vacuum conditions in the vessel are required to establish and maintain a plasma, and to create and deliver energetic neutral atoms to heat the plasma at the central region

  5. Low-level-signal data acquisition for the MFTF superconducting-magnet system

    International Nuclear Information System (INIS)

    Montoya, C.R.

    1981-01-01

    Acquisition of low level signals from sensors mounted on the superconducting yin-yang magnet in the Mirror Fusion Test Facility (MFTF) imposes very strict requirements on the magnet signal conditioning and data acquisition system. Of the various types of sensors required, thermocouples, strain gages, and voltage taps produce very low level outputs. These low level outputs must be accurately measured in the harsh environment of slowly varying magnetic fields, cryogenic temperatures, high vacuum, pulse power and 60 Hz electrical noise, possible neutron radiation, and high common mode voltage resulting from superconducting magnet quench. Successful measurements require careful attention to grounding, shielding, signal handling and processing in the data acquisition system. The magnet instrumentation system provides a means of effectively measuring both low level signals and high level signals from all types of sensors

  6. 1000 kW ICRH amplifiers for MFTF-B

    International Nuclear Information System (INIS)

    Boksberger, U.

    1986-01-01

    For the startup of the MFTF-B ICRH heating will be applied. Two commercial amplifiers derived from standard broadcast transmitters provide 1000 kW RF power each into a matching system for any VSWR as high as 1.5. Emphasis is put on the specific environment of magnetic fields and seismic loads as well as to the particular RF power control requirements and remote operation. Also addressed is the amplifier's performance into a typical load. The load variations due to the MFTF-B plasma coupling were calculated by TRW

  7. Results of studies performed on the model of the MFTF Supervisory Control and Diagnostics System (SCDS)

    International Nuclear Information System (INIS)

    Wyman, R.H.

    1979-01-01

    The design and implementation of the SCDS is a relatively complex problem involving a nine-computer network coupled with a unique color graphics control console system, 50 local control minicomputers, and the usual array of drives, printers, magnetic tapes, etc. Four million bytes of data are to be collected on each MFTF cycle with a repetition rate of five minutes per shot, and the associated data processing and storing load is a major concern. Crude paper studies were made initially to try to size the various components of the system and various configurations were proposed and analyzed prior to the solicitation for the computer system. However, once the hardware was purchased and a preliminary software design was completed, it became essential and feasible to do an analysis of the system to considerably greater depth in order to identify bottlenecks and other system problems and to verify those parts of the design that met the MFTF requirements

  8. Application of structural mechanics methods to the design of large tandem mirror fusion devices (MFTF-B)

    International Nuclear Information System (INIS)

    Karpenko, V.N.; Ng, D.S.

    1985-01-01

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory requires state-of-the-art structural-mechanics methods to deal with access constraints for plasma heating and diagnostics, alignment requirements, and load complexity and variety. Large interactive structures required an integrated analytical approach to achieve a resonable level of overall system optimization. The Tandem Magnet Generator (TMG) creates a magnet configuration for the EFFI calculation of electromagnetic-field forces that, coupled with other loads, form the input loading to magnetic and vessel finite-element models. The anlytical results provide the data base for detailed design of magnet, vessel, foundation, and interaction effects. (orig.)

  9. MFTF-progress and promise

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1980-01-01

    The Mirror Fusion Test Facility (MFTF) has been in construction at Lawrence Livermore National Laboratory (LLNL) for 3 years, and most of the major subsystems are nearing completion. Recently, the scope of this project was expanded to meet new objectives, principally to reach plasma conditions corresponding to energy break-even. To fulfill this promise, the single-cell minimum-B mirror configuration will be replaced with a tandem mirror configuration (MFTF-B). The facility must accordingly be expanded to accomodate the new geometry. This paper briefly discusses the status of the major MFTF subsystems and describes how most of the technological objectives of MFTF will be demonstrated before we install the additional systems necessary to make the tandem. It also summarizes the major features of the expanded facility

  10. Low level signal data acquisition for the MFTF-B superconducting magnet system

    International Nuclear Information System (INIS)

    Montoya, C.R.

    1984-01-01

    Acquisition of low level signals from sensors mounted on the superconducting magnets in the Tandem Mirror Fusion Test Facility (MFTF-B) impose very strict requirements on the magnet signal conditioning and data acquisition system. Of the various types of sensors required, thermocouples and strain gages produce very low level outputs. These low level outputs must be accurately measured in the harsh environment of slowly varying magnetic fields, cryogenic temperatures, high vacuum, 80 kV pulse power, 60 Hz, 17 MHz and 28, 35, and 56 GHz electrical noise and possible neutron radiation. Successful measurements require careful attention to grounding, shielding, signal handling and processing in the data acquisition system. The magnet instrumentation system provides a means of effectively measuring both low level signals and high level signals from all types of sensors. Various methods involved in the design and implementation of the system for signal conditioning and data gathering will be presented

  11. Application of structural-mechanics methods to the design of large tandem-mirror fusion devices (MFTF-B). Revision 1

    International Nuclear Information System (INIS)

    Karpenko, V.N.; Ng, D.S.

    1985-01-01

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory requires state-of-the-art structural-mechanics methods to deal with access constraints for plasma heating and diagnostics, alignment requirements, and load complexity and variety. Large interactive structures required an integrated analytical approach to achieve a reasonable level of overall system optimization. The Tandem Magnet Generator (TMG) creates a magnet configuration for the EFFI calculation of electromagnetic-field forces that, coupled with other loads, form the input loading to magnet and vessel finite-element models. The analytical results provide the data base for detailed design of magnet, vessel, foundation, and interaction effects. 13 refs

  12. Dynamic testing of MFTF containment-vessel structural system

    International Nuclear Information System (INIS)

    Weaver, H.J.; McCallen, D.B.; Eli, M.W.

    1982-01-01

    Dynamic (modal) testing was performed on the Magnetic Fusion Test Facility (MFTF) containment vessel. The seismic design of this vessel was heavily dependent upon the value of structural damping used in the analysis. Typically for welded steel vessels, a value of 2 to 3% of critical is used. However, due to the large mass of the vessel and magnet supported inside, we felt that the interaction between the structure and its foundation would be enhanced. This would result in a larger value of damping because vibrational energy in the structure would be transferred through the foundation into the surrounding soil. The dynamic test performed on this structure (with the magnet in place) confirmed this later theory and resulted in damping values of approximately 4 to 5% for the whole body modes. This report presents a brief description of dynamic testing emphasizing the specific test procedure used on the MFTF-A system. It also presents an interpretation of the damping mechanisms observed (material and geometric) based upon the spatial characteristics of the modal parameters

  13. MFTF TOTAL benchmark

    International Nuclear Information System (INIS)

    Choy, J.H.

    1979-06-01

    A benchmark of the TOTAL data base management system as applied to the Mirror Fusion Test Facility (MFTF) data base was implemented and run in February and March of 1979. The benchmark was run on an Interdata 8/32 and involved the following tasks: (1) data base design, (2) data base generation, (3) data base load, and (4) develop and implement programs to simulate MFTF usage of the data base

  14. Date base management system for the MFTF

    International Nuclear Information System (INIS)

    Choy, J.H.; Wade, J.A.

    1979-01-01

    The data base management system (DBMS) for the Mirror Fusion Test Facility (MFTF) is described as relational in nature and distributed across the nine computers of the supervisory control and diagnostics system. This paper deals with a reentrant runtime package of routines that are used to access data items, the data structures to support the runtime package, and some of the utilities in support of the DBMS

  15. MFTF-α + T progress report

    International Nuclear Information System (INIS)

    Nelson, W.D.

    1985-04-01

    Early in FY 1983, several upgrades of the Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) were proposed to the fusion community. The one most favorably received was designated MFTF-α+T. The engineering design of this device, guided by LLNL, has been a principal activity of the Fusion Engineering Design Center during FY 1983. This interim progress report represents a snapshot of the device design, which was begun in FY 1983 and will continue for several years. The report is organized as a complete design description. Because it is an interim report, some parts are incomplete; they will be supplied as the design study proceeds. As described in this report, MFTF-α+T uses existing facilities, many MFTF-B components, and a number of innovations to improve on the physics parameters of MFTF-B. It burns deuterium-tritium and has a central-cell Q of 2, a wall loading GAMMA/sub n/ of 2 MW/m 2 (with a central-cell insert module), and an availability of 10%. The machine is fully shielded, allows hands-on maintenance of components outside the vacuum vessel 24 h after shutdown, and has provisions for repair of all operating components

  16. Fusion blanket testing in MFTF-α + T

    International Nuclear Information System (INIS)

    Kleefeldt, K.

    1985-01-01

    The Mirror Fusion Test Facility-α + T (MFTF-α + T) is an upgraded version of the current MFTF-B test facility at Lawrence Livermore National Laboratory, and is designed for near-term fusion-technology-integrated tests at a neutron flux of 2 MW/m 2 . Currently, the fusion community is screening blanket and related issues to determine which ones can be addressed using MFTF-α + T. In this work, the minimum testing needs to address these issues are identified for the liquid-metal-cooled blanket and the solid-breeder blanket. Based on the testing needs and on the MFTF-α + T capability, a test plan is proposed for three options; each option covers a six to seven year testing phase. The options reflect the unresolved question of whether to place the research and development (R and D) emphasis on liquid-metal or solid-breeder blankets. In each case, most of the issues discussed can be addressed to a reasonable extent in MFTF-α+T

  17. Ion trajectories of the MFTF unshielded 80-keV neutral-beam sources

    International Nuclear Information System (INIS)

    Ling, R.C.; Bulmer, R.H.; Cutler, T.A.; Foote, J.H.; Horvath, J.A.

    1978-01-01

    The trajectories of ions from the Magnetic Fusion Test Facility (MFTF) 80-keV neutral-beam sources are calculated to obtain a preliminary understanding of the ion-beam paths and the magnitude of the power densities. This information will be needed for locating and designing thermal (kinetic-energy) absorbers for the ions. The calculations are made by employing a number of previously written computer codes. The TIBRO code is used to calculate the trajectories of the ions in the fringe magnetic field of the MFTF machine, which can operate with a center-field intensity of up to 2 T. The SAMPP code gives three-dimensional views of the ion beams for better visualization of the ion-beam paths. Also used are the codes MIG, XPICK, and MERGE, which were all previously written for manipulating data

  18. MFTF-. cap alpha. + T progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.D. (ed.)

    1985-04-01

    Early in FY 1983, several upgrades of the Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) were proposed to the fusion community. The one most favorably received was designated MFTF-..cap alpha..+T. The engineering design of this device, guided by LLNL, has been a principal activity of the Fusion Engineering Design Center during FY 1983. This interim progress report represents a snapshot of the device design, which was begun in FY 1983 and will continue for several years. The report is organized as a complete design description. Because it is an interim report, some parts are incomplete; they will be supplied as the design study proceeds. As described in this report, MFTF-..cap alpha..+T uses existing facilities, many MFTF-B components, and a number of innovations to improve on the physics parameters of MFTF-B. It burns deuterium-tritium and has a central-cell Q of 2, a wall loading GAMMA/sub n/ of 2 MW/m/sup 2/ (with a central-cell insert module), and an availability of 10%. The machine is fully shielded, allows hands-on maintenance of components outside the vacuum vessel 24 h after shutdown, and has provisions for repair of all operating components.

  19. Start-up neutral-beam power supply system for MFTF

    International Nuclear Information System (INIS)

    Mooney, L.J.

    1979-01-01

    This paper describes some of the design features and considerations of the MFTF start-up neutral-beam power supplies. In particular, we emphasize features of the system that will ensure MFTF compatibility and achieve the required reliability/availability for the MFTF to be successful

  20. Structural analysis of the magnet system for Mirror Fusion Test Facility (MFTF). Addendum I

    International Nuclear Information System (INIS)

    Loss, K.R.; Wohlwend, J.W.

    1979-09-01

    The stress analysis refinement of the MFTF magnet system using GDSAP (General Dynamics Structural Analysis Program) and NASTRAN finite element computer models has been completed. The objective of this analysis was to calculate a more refined case and jacket stress distribution. The GDSAP model was refined in the minor radius area to yield a more detailed prediction of the stress distributions in critical areas identified by the previous analysis. Modifications in the case plate thickness (from 3.0 inches to 3.2 inches) and in the conductor pack load distribution and stiffness were included. The GDSAP model was converted to an identical NASTRAN model to determine the influence on stress results using higher order elements

  1. Supervisory control software for MFTF neutral beams

    International Nuclear Information System (INIS)

    Woodruff, J.P.

    1981-01-01

    We describe the software structures that control the operation of MFTF Sustaining Neutral Beam Power Supplies (SNBPS). These components of the Supervisory Control and Diagnostics System (SCDS) comprise ten distinct tasks that exist in the SCDS system environment. The codes total about 16,000 lines of commented Pascal code and occupy 240 kbytes of memory. The controls have been running since March 1981, and at this writing are being integrated to the Local Control System and to the power supply Pulse Power Module Controller

  2. Physics basis for an axicell design for the end plugs of MFTF-B

    International Nuclear Information System (INIS)

    Baldwin, D.E.; Logan, B.G.

    1982-01-01

    The primary motivation for conversion of MFTF-B to an axicell configuration lies in its engineering promise as a reactor geometry based on circular high-magnetic-field coils. In comparing this configuration to the previous A-cell geometry, we find a number of differences that might significantly affect the physics performance. The purpose of the present document is to examine those features and to assess their impact on the performance of the axicell, as compared to the A-cell configuration, for MFTF-B. In so doing, we address only those issues thought to be affected by the change in geometry and refer to the original report Physics Basis for MFTF-B, for discussion of those issues thought not to be affected. In Sec. 1, we summarize these physics issues. In Sec. 2, we describe operating scenarios in the new configuration. In the Appendices, we discuss those physics issues that require more detailed treatment

  3. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Design and analysis summary. Volume 1

    International Nuclear Information System (INIS)

    Heathman, J.H.; Wohlwend, J.W.

    1985-05-01

    This report summarizes the designs and analyses produced by General Dynamics Convair for the four Axicell magnets (A1 and A20, east and west), the four Transition magnets (T1 and T2, east and west), and the twelve Solenoid magnets (S1 through S6, east and west). Over four million drawings and specifications, in addition to detailed stress analysis, thermal analysis, electrical, instrumentation, and verification test reports were produced as part of the MFTF-B design effort. Significant aspects of the designs, as well as key analysis results, are summarized in this report. In addition, drawing trees and lists off detailed analysis and test reports included in this report define the locations of the detailed design and analysis data

  4. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Design and analysis summary. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Heathman, J.H.; Wohlwend, J.W.

    1985-05-01

    This report summarizes the designs and analyses produced by General Dynamics Convair for the four Axicell magnets (A1 and A20, east and west), the four Transition magnets (T1 and T2, east and west), and the twelve Solenoid magnets (S1 through S6, east and west). Over four million drawings and specifications, in addition to detailed stress analysis, thermal analysis, electrical, instrumentation, and verification test reports were produced as part of the MFTF-B design effort. Significant aspects of the designs, as well as key analysis results, are summarized in this report. In addition, drawing trees and lists off detailed analysis and test reports included in this report define the locations of the detailed design and analysis data.

  5. Design features of the A-cell and transition coils of MFTF-B

    International Nuclear Information System (INIS)

    Tatro, R.E.; Wohlwend, J.W.; Ring, D.S.

    1981-01-01

    The MFTF-B transition coil and A-cell magnet designs use variations of the copper-stabilized NbTi conductor developed by LLNL for the MFTF Yin-Yang magnets. This conductor will be wound on the one inch thick (12.7 mm) stainless steel coil forms using a two-axis winding machine similar to the existing LLNL Yin-Yang winding machine. After winding, covers will be placed over the coil and welded to the coil form to form a helium-tight jacket around the conductor. These jacketed coils are then enclosed in thick structural cases that react the large Lorentz forces on the magnets. The space between the coil jacket and case will be filled by a stainless steel bladder that will be injected with urethane. The injection bladder will provide cooling passages during cooldown as well as transmitting the Lorentz forces between the jacket and the case. The large self-equilibrating lobe-spreading forces on the magnets (29.10 6 lb, 127.0 MN) for the A-cell are reacted primarily through the thick 304 LN case into the external superstructure. The net Lorentz forces and the inertial forces on the magnet are reacted through support systems into the LLNL vacuum vessel structure

  6. Plasma modeling of MFTF-B and the sensitivity to vacuum conditions

    International Nuclear Information System (INIS)

    Porter, G.D.; Rensink, M.

    1984-01-01

    The Mirror Fusion Test Facility (MFTF-B) is a large tandem mirror device currently under construction at Lawrence Livermore National Laboratory. The completed facility will consist of a large variety of components. Specifically, the vacuum vessel that houses the magnetic coils is basically a cylindrical vessel 60 m long and 11 m in diameter. The magnetics system consists of some 28 superconducting coils, each of which is located within the main vacuum vessel. Twenty of these coils are relatively simple solenoidal coils, but the remaining eight are of a more complicated design to provide an octupole component to certain regions of the magnetic field. The vacuum system is composed of a rough vacuum chain, used to evacuate the vessel from atmospheric pressure, and a high vacuum system, used to maintain good vacuum conditions during a plasma shot. High vacuum pumping is accomplished primarily by cryogenic panels cooled to 4.5 0 K. The MFTF-B coil set is shown together with typical axial profiles of magnetic field (a), electrostatic potential (b), and plasma density (c). The plasma is divided into nine regions axially, as labelled on the coil set in Figure 1. The central cell, which is completely azimuthally symmetric, contains a large volume plasma that is confined by a combination of the magnetic fields and the electrostatic potentials in the yin-yang cell

  7. Physics conceptual design for the MFTF-B transition coil

    International Nuclear Information System (INIS)

    Baldwin, D.E.; Bulmer, R.H.

    1982-01-01

    The physics constraints related to finite-β equilibria, β limits due to curvature-driven MHD modes, and ion transport in the central cell. These physics constraints had to be satisfied subject to certain non-physics constraints. Principal among these were the geometric and structural features of the existing MFTF-B magnet set and the required access for neutral beams for pumping. These constraints and their origins are discussed

  8. Assessment of stability characteristics of MFTF coils

    International Nuclear Information System (INIS)

    1979-03-01

    Certain aspects of the MFTF (Mirror Fusion Test Facility) conductor performance were investigated. Recovery analysis of the MFTF conductor was studied using GA's stability code. The maximum length of uncooled, unsoldered composite core which can recover from a thermal excursion was determined analytically. A maximum credible mechanical disturbance in terms of energy deposition, conductor motion and length, and time duration, was postulated. 5 references, 4 figures

  9. Mirror Fusion Test Facility magnet

    International Nuclear Information System (INIS)

    Henning, C.H.; Hodges, A.J.; Van Sant, J.H.; Hinkle, R.E.; Horvath, J.A.; Hintz, R.E.; Dalder, E.; Baldi, R.; Tatro, R.

    1979-01-01

    The Mirror Fusion Test Facility (MFTF) is the largest of the mirror program experiments for magnetic fusion energy. It seeks to combine and extend the near-classical plasma confinement achieved in 2XIIB with the most advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from the 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime. Design specifics of the magnet are given

  10. MFTF-α + T shield design

    International Nuclear Information System (INIS)

    Gohar, Y.

    1985-01-01

    MFTF-α+T is a DT upgrade option of the Tandem Mirror Fusion Test Facility (MFTF-B) to study better plasma performance, and test tritium breeding blankets in an actual fusion reactor environment. The central cell insert, designated DT axicell, has a 2-MW/m 2 neutron wall loading at the first wall for blanket testing. This upgrade is completely shielded to protect the reactor components, the workers, and the general public from the radiation environment during operation and after shutdown. The shield design for this upgrade is the subject of this paper including the design criteria and the tradeoff studies to reduce the shield cost

  11. Options for axisymmetric operation of MFTF-B

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Devoto, R.S.; Thomassen, K.I.

    1986-01-01

    The flexibility of MFTF-B for axisymmetric experiments has been investigated. Interhcanging the axicell coils and increasing their separation results in an axisymmetric plug cell with 12:1 and 6:1 inner and outer mirror ratios, respectively. For axisymmetric operation, the sloshing-ion neutral beams, ECRH gyrotrons, and the pumping system would be moved to the axicell. Stabilization by E-rings could be explored in this configuration. With the addition of octopole magnets, off-axis multipole stabilization could also be tested. Operating points for octopole and E-ring-stabilized configurations with properties similar to those of the quadrupole MFTF-B, namely T/sub ic/ = 10 - 15 keV and n/sub c/ approx. = 3 x 10 13 cm -3 , have been obtained. Because of the negligible radial transport of central-cell ions, the required neutral-beam power in the central cell has been dramatically reduced. In addition, because MHD stabilization is achieved by off-axis hot electrons in both cases, much lower barrier beta is possible, which aids in reducing the barrier ECRH power. Total ECRH power in the end cell is projected to be approx. =1 MW. Possible operating points for both octopole and E-ring configurations are described along with the stability considerations involved

  12. 12-T solenoid-design options for the MFTF-B Upgrade

    International Nuclear Information System (INIS)

    Schultz, J.H.; Diatchenko, N.

    1983-01-01

    The major options for the 12 T magnets examined here are the selection of normal, superconducting or hybrid normal/superconducting magnet systems. The tradeoffs are those between the higher initial cost of superconducting magnet system, the need for thick shielding of superconducting magnets, higher recirculating power in the normal magnets and poorly characterized reliability of lightly shielded normal magnets. The size and shielding tradeoffs among these options are illustrated. The design concepts presented here are evaluated only for the first design iteration of MFTF-B + T, mentioned above. In particular, all concepts now being considered have made topological improvements in the center cell, so that neutral beam power is no longer a strong function of choke coil size. This function was strongly favorable to the use of normal magnets over superconducting magnets and its absence will be discussed qualitatively in the cost comparisons

  13. Maintenance and availability considerations for MFTF-B upgrade

    International Nuclear Information System (INIS)

    Spampinato, P.T.

    1983-01-01

    The upgrade of the Mirror Fusion Test Facility (MFTF-B) tandem mirror device incorporates the operation of advanced systems plus the requirement for remote maintenance. To determine if the operating availability goal of this device is achievable, an assessment of component lifetimes was made, along with estimates of device downtime. Key subsystem components were considered from the magnet, heating, impurity control, pumping, and test module systems. Component replacements were grouped into three categories, and a lifetime operating plan, including component replacements, was developed. It was determined that this device could achieve a 10% operating availability

  14. Confirmatory analysis and detail design of the magnet system for mirror fusion test facility (MFTF)

    International Nuclear Information System (INIS)

    Tatro, R.E.; Baldi, R.W.

    1978-10-01

    This summary covers the six individual reports delivered to the LLL MFTF program staff. They are: (1) literature survey (helium heat transfer), (2) thermodynamic analysis, (3) structural analysis, (4) manufacturing/producibility study, (5) instrumentation plan and (6) quality assurance report

  15. Plasma potential formation and measurement in TMX-U and MFTF-B

    International Nuclear Information System (INIS)

    Grubb, D.P.

    1984-01-01

    Tandem mirrors control the axial variation of the plasma potential to create electrostatic plugs that improve the axial confinement of central cell ions and, in a thermal barrier tandem mirror, control the electron axial heat flow. Measurements of the spatial and temporal variations of the plasma potential are, therefore, important to the understanding of confinement in a tandem mirror. In this paper we discuss potential formation in a thermal barrier tandem mirror and examine the diagnostics and data obtained on the TMX-U device, including measurements of the thermal barrier potential profile using a diagnostic neutral beam and charged particle energy-spectroscopy. We then describe the heavy ion beam probe and other new plasma potential diagnostics that are under development for TMX-U and MFTF-B and examine problem areas where additional diagnostic development is desirable

  16. MFTF-B quasi-optical ECRH transmission system

    International Nuclear Information System (INIS)

    Yugo, J.J.; Shearer, J.W.; Ziolkowski, R.W.

    1983-01-01

    The microwave transmission system for ERCH on MFTF-B will utilize quasi-optical transmission techniques. The system consists of ten gyrotron oscillators: two gyrotrons at 28 GHz, two at 35 GHz, and six at 56 GHz. The 28 and 35 GHz gyrotrons both heat the electrons in the end plug (potential peak) while the 56 GHz sources heat the minimum-B anchor region (potential minimum). Microwaves are launched into a pair of cylindrical mirrors that form a pseudo-cavity which directs the microwaves through the plasma numerous times before they are lost out of the cavity. The cavity allows the microwave beam to reach the resonance zone over a wide range of plasma densities and temperatures. The fundamental electron cyclotron resonance moves to higher axial positions as a result of beta-depression of the magnetic field, doppler shifting of the resonance, and relativistic mass corrections for the electrons. With this system the microwave beam will reach the resonance surface at the correct angle of incidence for any density or temperature without active aiming of the antennas. The cavity also allows the beam to make multiple passes through the plasma to increase the heating efficiency at low temperatures and densities when the single pass absorption is low. In addition, neutral beams and diagnostics have an unobstructed view of the plasma

  17. MFTF test coil construction and performance

    International Nuclear Information System (INIS)

    Cornish, D.N.; Zbasnik, J.P.; Leber, R.L.; Hirzel, D.G.; Johnston, J.E.; Rosdahl, A.R.

    1978-01-01

    A solenoid coil, 105 cm inside the 167 cm outside diameter, has been constructed and tested to study the performance of the stabilized Nb--Ti conductor to be used in the Mirror Fusion Test Facility (MFTF) being built at Lawrence Livermore Laboratory. The insulation system of the test coil is identical to that envisioned for MFTF. Cold-weld joints were made in the conductor at the start and finish of each layer; heaters were fitted to some of these joints and also to the conductor at various locations in the winding. This paper gives details of the construction of the coil and the results of the tests carried out to determine its propagation and recovery characteristics

  18. Improvement in MFTF data base system response times

    International Nuclear Information System (INIS)

    Lang, N.C.; Nelson, B.C.

    1983-01-01

    The Supervisory Control and Diagnostic System for the Mirror Fusion Test Facility (MFTF) has been designed as an event driven system. To this end we have designed a data base notification facility in which a task can request that it be loaded and started whenever an element in the data base is changed beyond some user defined range. Our initial implementation of the notify facility exhibited marginal response times whenever a data base table with a large number of outstanding notifies was written into. In this paper we discuss the sources of the slow response and describe in detail a new structure for the list of notifies which minimizes search time resulting in significantly faster response

  19. Computer language evaluation for MFTF SCDS

    International Nuclear Information System (INIS)

    Anderson, R.E.; McGoldrick, P.R.; Wyman, R.H.

    1979-01-01

    The computer languages available for the systems and application implementation on the Supervisory Control and Diagnostics System (SCDS) for the Mirror Fusion Test Facility (MFTF) were surveyed and evaluated. Four language processors, CAL (Common Assembly Language), Extended FORTRAN, CORAL 66, and Sequential Pascal (SPASCAL, a subset of Concurrent Pascal [CPASCAL]) are commercially available for the Interdata 7/32 and 8/32 computers that constitute the SCDS. Of these, the Sequential Pascal available from Kansas State University appears best for the job in terms of minimizing the implementation time, debugging time, and maintenance time. This improvement in programming productivity is due to the availability of a high-level, block-structured language that includes many compile-time and run-time checks to detect errors. In addition, the advanced data-types in language allow easy description of the program variables. 1 table

  20. Operation of cold-cathode gauges in high magnetic fields

    International Nuclear Information System (INIS)

    Thomas, S.R. Jr.; Goerz, D.A.; Pickles, W.L.

    1985-01-01

    The Mirror Fusion Test Facility (MFTF-B), under construction at LLNL, requires measurement of the neutral gas density in high magnetic fields near the plasma at several axial regions. This Background Gas Pressure (BGP) diagnostic will help us understand the role of background neutrals in particle and power balance, particularly in the maintenance of the cold halo plasma that shields the hot core plasma from the returning neutrals. It consists of several cold-cathode, magnetron-type gauges stripped of their permanent magnets, and utilizes the MFTF-B ambient B-field in strengths of 5 to 25 kG. Similar gauges have operated in TMX-U in B-fields up to 3 kG. To determine how well the gauges will perform, we assembled a test stand which operated magnetron gauges in an external, uniform magnetic field of up to 30 kG, over a pressure range of 1E-8 T to 1E-5 T, at several cathode voltages. This paper describes the test stand and presents the results of the tests

  1. Neutral-beam aiming and calorimetry for MFTF-B

    International Nuclear Information System (INIS)

    Goldner, A.I.; Margolies, D.

    1981-01-01

    The vessel for the Tandem Mirror Fusion Test Facility (MFTF-B) will have up to eleven 0.5-s-duration neutral-beam injectors for the initial heating of the MFTF-B plasma. Knowing the exact alignment of the beams and their total power is critical to the performance of the experiment. Using prototype aiming and calorimetry systems on the High Voltage Test Stand (HVTS) at Lawrence Livermore National Laboratory (LLNL), we hope to prove our ability to obtain an aiming accuracy of +-1 cm at the plasma and a calorimetric accuracy of +-5% of the actual total beam energy

  2. Mirror fusion test facility plasma diagnostics system

    International Nuclear Information System (INIS)

    Thomas, S.R. Jr.; Coffield, F.E.; Davis, G.E.; Felker, B.

    1979-01-01

    During the past 25 years, experiments with several magnetic mirror machines were performed as part of the Magnetic Fusion Energy (MFE) Program at LLL. The latest MFE experiment, the Mirror Fusion Test Facility (MFTF), builds on the advances of earlier machines in initiating, stabilizing, heating, and sustaining plasmas formed with deuterium. The goals of this machine are to increase ion and electron temperatures and show a corresponding increase in containment time, to test theoretical scaling laws of plasma instabilities with increased physical dimensions, and to sustain high-beta plasmas for times that are long compared to the energy containment time. This paper describes the diagnostic system being developed to characterize these plasma parameters

  3. MFTF magnet cryogenics

    International Nuclear Information System (INIS)

    VanSant, J.H.

    1981-07-01

    The prime requirement of the cryogenics of the magnets is to assure a superconducting state for the magnet coils, a large task considering their enormous size. The following presentation addresses the principal topics that have been considered in this cryogenic design

  4. Data triggered data processing at MFTF-B

    International Nuclear Information System (INIS)

    Jackson, R.J.; Balch, T.R.; Preckshot, G.G.

    1985-01-01

    A primary characteristic of most batch systems is that the input data files must exist before jobs are scheduled. On the Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory we schedule jobs to process experimental data to be collected during a five minute shot cycle. Our data-driven processing system emulates a coarsely granular data flow architecture. Processing jobs are scheduled before the experimental data is collected. Processing jobs ''fire'', or execute, as input data becomes available. Similar to UNIX ''pipes'', data produced by upstream processing nodes may be used as inputs by following nodes. Users, working on our networked SUN workstations, specify data processing templates which define processes and their data dependencies. Data specifications indicate the source of data; actual associations with specific data instantiations are made when the jobs are scheduled. We report here on details of diagnostic data processing and our experiences

  5. Mirror Fusion Test Facility magnet system

    International Nuclear Information System (INIS)

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  6. Drift orbits in the TMX and MFTF-B tandem mirrors

    International Nuclear Information System (INIS)

    Byers, J.A.

    1982-01-01

    Drift orbits for the TMX and MFTF-B tandem-mirror designs are followed by using a long-thin expansion of the drift equations. Unexpected asymmetries in the field-line curvatures in the yin-yang end-mirror traps, caused by the transition coils between the solenoid and the yin-yang, result in an elliptical distortion of the drift surface with a/b=1.5 at most, a perhaps tolerable deviation from omnigenity. Yushmanov-trapped particles are no worse than the bulk hot particles. Finite-beta plasma fields, coupled to the asymmetric curvature, produce sizeable banana orbits with widths comparable to the plasma radius, but these orbits are possible for only a few of the particles. Details of the transition through resonance in the solenoid are shown, including the banana shapes of the drift surfaces and the disruption of the surface in the stochastic regime. The orbits in the original design for the A-cell of MFTF-B are the most extreme; in the vacuum fields they all have an extended peanut shape that finally closes only at about 3m. This shape is strongly non-omnigenous and suggests a hollow plasma-density profile. Finite-beta B vectorxnablaB drifts can help to minimize the radial extent of these orbits, but the strength of the vacuum curvatures makes omnigenity only marginally possible. Including B vectorxnablaphi drifts makes omnigenity even more unlikely for the ions, for which the B vectorxnablaB and B vectorxnablaphi drifts are of opposite sign, and conversely helps to omnigenize the drift surfaces of the ECRH 200-keV electrons. It is argued that not every class of particles can have good, i.e. near-omnigenous drifts, regardless of the ability of phi(r) to adjust to limit the radial extent of the orbits. This lack of omnigenity leaves one with no theoretical base for describing the MHD equilibrium in the original designs, but a new magnetic field design for MFTF-B A-cell has apparently completely restored omnigenous orbits. (author)

  7. Man-machine interface for the MFTF

    International Nuclear Information System (INIS)

    Speckert, G.C.

    1979-01-01

    In any complex system, the interesting problems occur at the interface of dissimilar subsystems. Control of the Mirror Fusion Test Facility (MFTF) begins with the US Congress, which controls the dollars, which control the people, who control the nine top-level minicomputers, which control the 65 microprocessors, which control the hardware that controls the physics experiment. There are many interesting boundaries across which control must pass, and the one that this paper addresses is the man-machine one. For the MFTF, the man-machine interface consists of a system of seven control consoles, each allowing one operator to communicate with one minicomputer. These consoles are arranged in a hierarchical manner, and both hardware and software were designed in a top-down fashion. This paper describes the requirements and the design of the console system as a whole, as well as the design and operation of the hardware and software of each console, and examines the possible form of a future man-machine interface

  8. Man-machine interface for the MFTF

    Energy Technology Data Exchange (ETDEWEB)

    Speckert, G.C.

    1979-11-09

    In any complex system, the interesting problems occur at the interface of dissimilar subsystems. Control of the Mirror Fusion Test Facility (MFTF) begins with the US Congress, which controls the dollars, which control the people, who control the nine top-level minicomputers, which control the 65 microprocessors, which control the hardware that controls the physics experiment. There are many interesting boundaries across which control must pass, and the one that this paper addresses is the man-machine one. For the MFTF, the man-machine interface consists of a system of seven control consoles, each allowing one operator to communicate with one minicomputer. These consoles are arranged in a hierarchical manner, and both hardware and software were designed in a top-down fashion. This paper describes the requirements and the design of the console system as a whole, as well as the design and operation of the hardware and software of each console, and examines the possible form of a future man-machine interface.

  9. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Manufacturing/producibility final report. Volume 2

    International Nuclear Information System (INIS)

    Ritschel, A.J.; White, W.L.

    1985-05-01

    This Final MFTF-B Manufacturing/Producibility Report covers facilities, tooling plan, manufacturing sequence, schedule and performance, producibility, and lessons learned for the solenoid, axicell, and transition coils, as well as a deactivation plan, conclusions, references, and appendices

  10. Ion cyclotron resonance heating (ICRH) start-up antenna for the mirror fusion test facility (MFTF-B)

    International Nuclear Information System (INIS)

    McCarville, T.M.; Romesser, T.E.

    1985-01-01

    The purpose of the ICRH start-up antenna on MFTF-B is to heat the plasma and control the ion distribution as the density increases during start-up. The antenna, consisting of two center fed half turn loops phased 180 0 apart, has been designed for 1 MW of input power, with a goal of coupling 400 kW into the ions. To vary the heating frequency relative to the local ion cyclotron frequency, the antenna is tunable over a range from 7.5 to 12.5 MHz. The thermal requirements common to low duty cycle ICRH antennas are especially severe for the MFTF-B antenna. The stress requirements are also unique, deriving from the possibility of seismic activity or JxB forces if the magnets unexpectedly quench. Considerable attention has been paid to contact control at high current bolt-up joints, and arranging geometries so as to minimize the possibility of voltage breakdown

  11. Superconducting (radiation hardened) magnets for mirror fusion devices

    International Nuclear Information System (INIS)

    Henning, C.D.; Dalder, E.N.C.; Miller, J.R.; Perkins, J.R.

    1983-01-01

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 10 10 to 10 11 rads, while magnet stability must be retained after the copper has been exposed to fluence above 10 19 neutrons/cm 2

  12. Mirror Fusion Test Facility (MFTF)

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1978-01-01

    A large, new Mirror Fusion Test Facility is under construction at LLL. Begun in FY78 it will be completed at the end of FY78 at a cost of $94.2M. This facility gives the mirror program the flexibility to explore mirror confinement principles at a signficant scale and advances the technology of large reactor-like devices. The role of MFTF in the LLL program is described here

  13. Static and dynamic analyses on the MFTF [Mirror Fusion Test Facility]-B Axicell Vacuum Vessel System: Final report

    International Nuclear Information System (INIS)

    Ng, D.S.

    1986-09-01

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) is a large-scale, tandem-mirror-fusion experiment. MFTF-B comprises many highly interconnected systems, including a magnet array and a vacuum vessel. The vessel, which houses the magnet array, is supported by reinforced concrete piers and steel frames resting on an array of foundations and surrounded by a 7-ft-thick concrete shielding vault. The Pittsburgh-Des Moines (PDM) Corporation, which was awarded the contract to design and construct the vessel, carried out fixed-base static and dynamic analyses of a finite-element model of the axicell vessel and magnet systems, including the simulation of various loading conditions and three postulated earthquake excitations. Meanwhile, LLNL monitored PDM's analyses with modeling studies of its own, and independently evaluated the structural responses of the vessel in order to define design criteria for the interface members and other project equipment. The assumptions underlying the finite-element model and the behavior of the axicell vessel are described in detail in this report, with particular emphasis placed on comparing the LLNL and PDM studies and on analyzing the fixed-base behavior with the soil-structure interaction, which occurs between the vessel and the massive concrete vault wall during a postulated seismic event. The structural members that proved sensitive to the soil effect are also reevaluated

  14. Technology of mirror machines: LLL facilities for magnetic mirror fusion experiments

    International Nuclear Information System (INIS)

    Batzer, T.H.

    1977-01-01

    Significant progress in plasma confinement and temperature has been achieved in the 2XIIB facility at Livermore. These encouraging results, and their theoretical corroboration, have provided a firm basis for the design of a new generation of magnetic mirror experiments, adding support to the mirror concept of a fusion reactor. Two new mirror experiments have been proposed to succeed the currently operating 2XIIB facility. The first of these called TMX (Tandem Mirror Experiment) has been approved and is currently under construction. TMX is designed to utilize the intrinsic positive plasma potential of two strong, and relatively small, minimum B mirror cells to enhance the confinement of a much larger, magnetically weaker, centrally-located mirror cell. The second facility, MFTF (Mirror Fusion Test Facility), is currently in preliminary design with line item approval anticipated for FY 78. MFTF is designed primarily to exploit the experimental and theoretical results derived from 2XIIB. Beyond that, MFTF will develop the technology for the transition from the present small mirror experiments to large steady-state devices such as the mirror FERF/FTR. The sheer magnitude of the plasma volume, magnetic field, neutral beam power, and vacuum pumping capacity, particularly in the case of MFTF, has placed new and exciting demands on engineering technology. An engineering overview of MFTF, TMX, and associated MFE activities at Livermore will be presented

  15. Alternative connections for the large MFTF-B solenoids

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.; Wang, S.T.

    1983-01-01

    The MFTF-B central-cell solenoids are a set of twelve closely coupled, large superconducting magnets with similar but not exactly equal currents. Alternative methods of connecting them to their power supplies and dump resistors are investigated. The circuits are evaluated for operating conditions and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the current induced in coils that remain superconducting when one or more coils quench. The alternative connections include separate power supplies, combined power supplies, individual dump resistors, series dump resistors and combinations of these. A new circuit that contains coupling resistors is proposed. The coupling resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed in detail

  16. Report on the engineering test of the LBL 30 second neutral beam source for the MFTF-B project

    International Nuclear Information System (INIS)

    Vella, M.C.; Pincosy, P.A.; Hauck, C.A.; Pyle, R.V.

    1984-08-01

    Positive ion based neutral beam development in the US has centered on the long pulse, Advanced Positive Ion Source (APIS). APIS eventually focused on development of 30 second sources for MFTF-B. The Engineering Test was part of competitive testing of the LBL and ORNL long pulse sources carried out for the MFTF-B Project. The test consisted of 500 beam shots with 80 kV, 30 second deuterium, and was carried out on the Neutral Beam Engineering Test Facility (NBETF). This report summarizes the results of LBL testing, in which the LBL APIS demonstrated that it would meet the requirements for MFTF-B 30 second sources. In part as a result of this test, the LBL design was found to be suitable as the baseline for a Common Long Pulse Source design for MFTF-B, TFTR, and Doublet Upgrade

  17. Magnet and conductor developments for the Mirror Fusion Program

    International Nuclear Information System (INIS)

    Cornish, D.N.

    1981-01-01

    The conductor development and the magnet design and construction for the MFTF are described. Future plans for the Mirror Program and their influence on the associated superconductor development program are discussed. Included is a summary of the progress being made to develop large, high-field, multifilamentary Nb 3 Sn superconductors and the feasibility of building a 12-T yin-yang set of coils for the machine to follow MFTF. In a further look into the future, possible magnetic configurations and requirements for mirror reactors are surveyed

  18. Magnets for the Mirror Fusion Test Facility: testing of the first Yin-Yang and the design and development of other magnets

    International Nuclear Information System (INIS)

    Kozman, T.A.; Wang, S.T.; Chang, Y.

    1983-01-01

    Completed in May 1981, the first Yin-Yang magnet for the tandem Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) was successfully tested in February 1982 to its full design field (7.68 T) and current (5775 A). Since that time, the entire magnet array has been reconfigured - from the original A-cell to an axicell design. The MFTF-B magnet array now contains a total of 26 large superconducting coils: 2 sets of yin-yang pairs, 2 sets of transition magnets (each containing two coils), 2 sets of axicell magnets (each containing three coils), and 12 central-cell solenoids. This paper chronicles recent magnet history - from te testing of the initial yin-yang set, through the design of the axicell configuration, to the planned development of the system

  19. Structural design considerations in the Mirror Fusion Test Facility (MFTF-B) vacuum vessel

    International Nuclear Information System (INIS)

    Vepa, K.; Sterbentz, W.H.

    1981-01-01

    In view of favorable results from the Tandem Mirror Experiment (TMX) also at LLNL, the MFTF project is now being rescoped into a large tandem mirror configuration (MFTF-B), which is the mainline approach to a mirror fusion reactor. This paper concerns itself with the structural aspects of the design of the vessel. The vessel and its intended functions are described. The major structural design issues, especially those influenced by the analysis, are described. The objectives of the finite element analysis and their realization are discussed at length

  20. Model approach for simulating the thermodynamic behavior of the MFTF cryogenic cooling systems - a status report

    International Nuclear Information System (INIS)

    Sutton, S.B.; Stein, W.; Reitter, T.A.; Hindmarsh, A.C.

    1983-01-01

    A numerical model for calculating the thermodynamic behavior of the MFTF-B cryogenic cooling system is described. Nine component types are discussed with governing equations given. The algorithm for solving the coupled set of algebraic and ordinary differential equations is described. The model and its application to the MFTF-B cryogenic cooling system has not been possible due to lack of funding

  1. MFTF-B PACE tests and final cost report

    International Nuclear Information System (INIS)

    Krause, K.H.; Kozman, T.A.; Smith, J.L.; Horan, R.J.

    1986-10-01

    The Mirror Fusion Test Facility (MFTF-B) construction project was successfully completed in February 1986, with the conclusion of the Plant and Capital Equipment (PACE) Tests. This series of tests, starting in September 1985 and running through February 1986, demonstrated the overall machine capabilities and special facilities accomplishments for the Mirror Fusion Test Facility Project

  2. MFTF exception handling system

    International Nuclear Information System (INIS)

    Nowell, D.M.; Bridgeman, G.D.

    1979-01-01

    In the design of large experimental control systems, a major concern is ensuring that operators are quickly alerted to emergency or other exceptional conditions and that they are provided with sufficient information to respond adequately. This paper describes how the MFTF exception handling system satisfies these requirements. Conceptually exceptions are divided into one of two classes. Those which affect command status by producing an abort or suspend condition and those which fall into a softer notification category of report only or operator acknowledgement requirement. Additionally, an operator may choose to accept an exception condition as operational, or turn off monitoring for sensors determined to be malfunctioning. Control panels and displays used in operator response to exceptions are described

  3. Mechanical behavior of the mirror fusion test Facility superconducting magnet coils

    International Nuclear Information System (INIS)

    Horvath, J.A.

    1980-01-01

    The mechanical response to winding and electromagnetic loads of the Mirror Fusion Test Facility (MFTF) superconducting coil pack is presented. The 375-ton (3300 N) MFTF Yin-Yang magnet, presently the world's largest superconducting magnet, is scheduled for acceptance cold-testing in May of 1981. The assembly is made up of two identical coils which together contain over 15 miles (24 km) of superconductor wound in 58 consecutive layers of 24 turns each. Topics associated with mechanical behavior include physical properties of the coil pack and its components, winding pre-load effects, finite element analysis, magnetic load redistribution, and the design impact of predicted conductor motion

  4. Design and prototype results of a far-infrared interferometer for MFTF-B

    International Nuclear Information System (INIS)

    Monjes, J.A.; Throop, A.L.; Thomas, S.R.; Peebles, A.; Zu, Qin-Zin.

    1983-01-01

    A Far-Infrared (FIR) Laser Interferometer (FLI), operating at 185 μm wavelength is planned as part of the initial start-up set of plasma diagnostics for the Mirror Fusion Test Facility (MFTF-B). The FLI will consist of a heterodyne, three-chord laser interferometer which will be used initially to measure line-integrated plasma density in the high-density, center cell region of the machine. The conceptual system design and analysis has been completed. There are several unique environmental/physical constraints and performance requirements for this system which have required that technology-evaluation and prototyping experiments be completed to support the design effort and confirm the expected performance parameters. Issues which have been addressed include extensive use of long-path dielectric waveguide, coupling and control of free-space propagation of the beam, and polarization control. The results and conclusions of the design analysis and experimental measurements will be presented

  5. Central cell confinement in MFTF-B

    International Nuclear Information System (INIS)

    Jong, R.A.

    1981-01-01

    The point code TANDEM has been used to survey the range of plasma parameters which can be attained in MFTF-B. The code solves for the electron and ion densities and temperatures in the central cell, yin-yang, barrier, and A-cell regions as well as the plasma potential in each region. In these studies, the A-cell sloshing ion beams were fixed while the neutral beams in the yin-yang and central cell, the gas feed in the central cell, and the applied ECRH power β, central cell ion density and temperature, and the confining potential are discussed

  6. Axicell design for the end plugs of MFTF-B

    International Nuclear Information System (INIS)

    Thomassen, K.I.; Karpenko, V.N.

    1982-01-01

    Certain changes in the end-plug design in the Mirror Fusion Test Facility (MFTF-B) are described. The Laboratory (LLNL) proposes to implement these changes as soon as possible in order to construct the machine in an axicell configuration. The present physics and technology goals as well as the project cost and schedule will not be affected by these changes

  7. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    Science.gov (United States)

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  8. Magnetic diagnostics for the proto-eta Tokamak

    International Nuclear Information System (INIS)

    Ferreira, J.L.; Aso, Y.; Ueda, M.; Ferreira, J.G.

    1991-04-01

    This work gives a general view of the magnetic diagnostics rat will be used in the Proto-Eta Tokamak. These diagnostics will be useful tools to measure currents, electric and magnetic fields involved in the plasma magnetic confinement. (author)

  9. Directions for possible upgrades of the Mirror Fusion Test Facility (MFTF)

    International Nuclear Information System (INIS)

    Damm, C.C.; Coensgen, F.H.; Devoto, R.S.; Molvik, A.W.; Porter, G.D.; Shearer, J.W.; Stallard, B.W.

    1977-01-01

    The Mirror Fusion Test Facility (MFTF) may be upgraded by extending the time of plasma sustenance in an approach to steady-state operation and/or by increasing the neutral-beam injection energy. Some parameter bounds for these upgrades are discussed as they relate to a definition of the required neutral-beam development

  10. A spheromak ignition experiment reusing Mirror Fusion Test Facility (MFTF) equipment

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1993-01-01

    Based on available experimental results and theory, a scenario is presented to achieve ohmic ignition in a spheromak by slow (∼ 10 sec.) helicity injection using power from the Mirror Fusion Test Facility (MFTF) substation. Some of the other parts needed (vacuum vessel, coils, power supplies, pumps, shielded building space) might also be obtained from MFTF or other salvage, as well as some components needed for intermediate experiments for additional verification of the concept (especially confinement scaling). The proposed ignition experiment would serve as proof-of-principle for the spheromak DT fusion reactor design published by Hagenson and Krakowski, with a nuclear island cost about ten times less than a tokamak of comparable power. Designs at even higher power density and lower cost might be possible using Christofilos' concept of a liquid lithium blanket. Since all structures would be protected from neutrons by the lithium blanket and the tritium inventory can be reduced by continuous removal from the liquid blanket, environmental and safety characteristics appear to be favorable

  11. Changing MFTF vacuum environment

    International Nuclear Information System (INIS)

    Margolies, D.; Valby, L.

    1982-12-01

    The Mirror Fusion Test Facility (MFTF) vacuum vessel will be about 60m long and 10m in diameter at the widest point. The allowable operating densities range from 2 x 10 9 to 5 x 10 10 particles per cc. The maximum leak rate of 10 - 6 tl/sec is dominated during operation by the deliberately injected cold gas of 250 tl/sec. This gas is pumped by over 1000 square meters of cryopanels, external sorption pumps and getters. The design and requirements have changed radically over the past several years, and they are still not in final form. The vacuum system design has also changed, but more slowly and less radically. This paper discusses the engineering effort necessary to meet these stringent and changing requirements. Much of the analysis of the internal systems has been carried out using a 3-D Monte Carlo computer code, which can estimate time dependent operational pressures. This code and its use will also be described

  12. Changing MFTF vacuum environment

    International Nuclear Information System (INIS)

    Margolies, D.; Valby, L.

    1982-01-01

    The Mirror Fusion Test Facility (MFTF) vaccum vessel will be about 60m long and 10m in diameter at the widest point. The allowable operating densities range from 2 x 10 9 to 5 x 10 10 particles per cc. The maximum leak rate of 10 -6 tl/sec is dominated during operation by the deliberately injected cold gas of 250 tl/sec. This gas is pumped by over 1000 square meters of cryopanels, external sorbtion pumps and getters. The design and requirements have changed radically over the past several years, and they are still not in final form. The vacuum system design has also changed, but more slowly and less radically. This paper discusses the engineering effort necessary to meet these stringent and changing requirements. Much of the analysis of the internal systems has been carried out using a 3-D Monte Carlo computer code, which can estimate time dependent operational pressures. This code and its use will also be described

  13. Manufacturing and quality assurance for the MFTF superconductor core

    International Nuclear Information System (INIS)

    Scanlan, R.M.; Johnston, J.E.; Waide, P.A.; Zeitlin, B.A.; Smith, G.B.; Nelson, C.T.

    1979-01-01

    A total of 55,000 m of multifilamentary Nb-Ti superconductor in minimum lengths of 380 m are required for the Mirror Fusion Test Facility. This conductor is a large cross-section monolith and, as such, has presented several new manufacturing challenges. In addition, a monolith requires more stringent quality assurance procedures than braids or cables. This paper describes the manufacturing steps and the quality assurance program which have been developed for the MFTF superconductor core

  14. Startup experience with the MFTF-B ECRH 100 kV dc power supply

    International Nuclear Information System (INIS)

    Bishop, S.R.; Goodman, R.A.; Wilson, J.H.

    1983-01-01

    One of the 24 Accel dc Power Supplies (ADCPS) originally intended for the Mirror Fusion Test Facility (MFTF-B) Neutral Beam Power Supply (NBPS) System has been converted to provide negative polarity output at 90 kV with a load current of 64 A dc. The load duty cycle is a pulse of 30-seconds duration with a pulse repetition period of five minutes. A new control system has been built which will serve as a prototype for the MFTF-B ADCPS controls, and a test setup was built which will be used to test the ADCPS. The Electron Cyclotron Resonance Heating (ECRH) dc Power Supply (DCPS) has been tested under both no-load and dummy-load conditions, under remote control, without notable problems. Test results indicate that the power supply should be reliable and safe to operate, and will meet the load duty requirements

  15. Startup experience with the MFTF-B ECRH 100 kV dc power supply

    International Nuclear Information System (INIS)

    Bishop, S.R.; Goodman, R.A.; Wilson, J.H.

    1983-01-01

    One of the 24 Accel DC Power Supplies (ADCPS) originally intended for the Mirror Fusion Test Facility (MFTF-B) Neutral Beam Power Supply (NBPS) System has been converted to provide negative polarity output at 90 kV with a load current of 64 A dc. The load duty cycle is a pulse of 30-seconds duration with a pulse repetition period of five minutes. A new control system has been built which will serve as a prototype for the MFTF-B ADCPS controls, and a test setup was built which will be used to test the ADCPS. The Electron Cyclotron Resonance Heating (ECRH) DC Power Supply (DCPS) has been tested under both no-load and dummy-load conditions, under remote control, without notable problems. Test results indicate that the power supply should be reliable and safe to operate, and will meet the load duty requirements

  16. Display-management system for MFTF

    International Nuclear Information System (INIS)

    Nelson, D.O.

    1981-01-01

    The Mirror Fusion Test Facility (MFTF) is controlled by 65 local control microcomputers which are supervised by a local network of nine 32-bit minicomputers. Associated with seven of the nine computers are state-of-the-art graphics devices, each with extensive local processing capability. These devices provide the means for an operator to interact with the control software running on the minicomputers. It is critical that the information the operator views accurately reflects the current state of the experiment. This information is integrated into dynamically changing pictures called displays. The primary organizational component of the display system is the software-addressable segment. The segments created by the display creation software are managed by display managers associated with each graphics device. Each display manager uses sophisticated storage management mechanisms to keep the proper segments resident in the local graphics device storage

  17. Supervisory control and diagnostics system for the mirror fusion test facility: overview and status 1980

    International Nuclear Information System (INIS)

    McGoldrick, P.R.

    1981-01-01

    The Mirror Fusion Test Facility (MFTF) is a complex facility requiring a highly-computerized Supervisory Control and Diagnostics System (SCDS) to monitor and provide control over ten subsystems; three of which require true process control. SCDS will provide physicists with a method of studying machine and plasma behavior by acquiring and processing up to four megabytes of plasma diagnostic information every five minutes. A high degree of availability and throughput is provided by a distributed computer system (nine 32-bit minicomputers on shared memory). Data, distributed across SCDS, is managed by a high-bandwidth Distributed Database Management System. The MFTF operators' control room consoles use color television monitors with touch sensitive screens; this is a totally new approach. The method of handling deviations to normal machine operation and how the operator should be notified and assisted in the resolution of problems has been studied and a system designed

  18. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Magnetic resonance diagnostic device. 892.1000 Section 892.1000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance diagnostic...

  19. Seismic analysis of the MFTF facility

    International Nuclear Information System (INIS)

    Maslenikov, O.R.; Johnson, J.J.; Tiong, L.W.; Mraz, M.J.

    1985-01-01

    Seismic analyses were performed on the Mirror Fusion Test Facility (MFTF-B) located at the Lawrence Livermore National Laboratory, Livermore, CA. The three major structures studied were the vacuum vessel, the concrete shielding vault, and the steel frame enclosure building. The analyses performed on these structures ranged from fixed-base response spectrum analyses to soil-structure interaction analyses including the effects of structure-to-structure interaction and foundation flexibility. The results of these studies showed that the presence of the vault significantly affects the response of the vessel; that modeling the flexibility of the vault footing is important when studying forces near the base of the wall; and that the vault had very little effect on the building response. (orig.)

  20. Design of the drift pumping system for MFTF-α+T

    International Nuclear Information System (INIS)

    Metlzer, D.H.

    1983-01-01

    Drift pumping in mirrors is a new concept (less than one year old). If it works, compared to charge-exchange pumping, it will simplify the MFTF-α+T interface and possibly reduce the circulating power required. From an engineering standpoint, it has some very demanding requirements in terms of power and bandwidth. This paper describes a design which satisfies these requirements. It also identifies a number of promising alternatives requiring investigation and verification

  1. Alternatives for contaminant control during MFTF plasma buildup

    International Nuclear Information System (INIS)

    Khan, J.M.; Valby, L.E.

    1979-01-01

    The MFTF mirror device considers all low-energy species to be contaminants, since their primary effect is to erode the plasma boundary by charge-exchange reactions. Confinement for other than hydrogen isotypes is far from complete and confinement time is hardly more than transit time from the source to the end wall. The brevity of the confinement time makes it all the more necessary to prevent any contamination which might further reduce it. At Livermore, the historical solution to contaminant control has been to evaporate titanium onto cold surfaces. An alternative to this approach and its implications are considered

  2. MFTF 230 kV pulsed power substation

    International Nuclear Information System (INIS)

    Wilson, J.H.

    1979-01-01

    The Mirror Fusion Test Facility (MFTF) currently under construction at the Lawrence Livermore Laboratory includes a Sustaining Neutral Beam Power Supply System (SNBPSS) consisting of 24 power-supply sets. The System will operate in long pulses (initially .5 seconds and eventually 30 seconds) at high power (200 MW), which will necessitate a large source of ac power. To meet this requirement, a new 230-kV substation is also being built at LLL. The constraints of cost, equipment protection, short operating lifetime (10 years), and reliability dictated a unique substation design. Its unusual features include provisions for fast fault detection and tripping, a capability for limiting ground fault current, low impedance, and economical design

  3. Design lessons from using programmable controllers in the MFTF-B personnel safety and interlocks system

    International Nuclear Information System (INIS)

    Branum, J.D.

    1983-01-01

    Applying programmable controllers in critical applications such as personnel safety and interlocks systems requires special considerations in the design of both hardware and software. All modern programmable controller systems feature extensive internal diagnostic capabilities to protect against problems such as program memory errors; however most, if not all present designs lack an intrinsic capability for detecting and countering failures on the field-side of their I/O modules. Many of the most common styles of I/O modules can also introduce potentially dangerous sneak circuits, even without component failure. This paper presents the most significant lessons learned to date in the design of the MFTF-B Personnel Safety and Interlocks System, which utilizes two non-redundant programmable controllers with over 800 I/O points each. Specific problems recognized during the design process as well as those discovered during initial testing and operation are discussed along with their specific solutions in hardware and software

  4. MAST magnetic diagnostics

    Science.gov (United States)

    Edlington, T.; Martin, R.; Pinfold, T.

    2001-01-01

    The mega-ampere spherical tokamak (MAST) experiment is a new, large, low aspect ratio device (R=0.7-0.8 m, a=0.5-0.65 m, maximum BT˜0.63 T at R=0.7 m) operating its first experimental physics campaign. Designed to study a wide variety of plasma shapes with up to 2 MA of plasma current with an aspect ratio down to 1.3, the poloidal field (PF) coils used for plasma formation, equilibrium and shaping are inside the main vacuum vessel. For plasma control and to investigate a wide range of plasma phenomena, an extensive set of magnetic diagnostics have been installed inside the vacuum vessel. More than 600 vacuum compatible, bakeable diagnostic coils are configured in a number of discrete arrays close to the plasma edge with about half the coils installed behind the graphite armour tiles covering the center column. The coil arrays measure the toroidal and poloidal variation in the equilibrium field and its high frequency fluctuating components. Internal coils also measure currents in the PF coils, plasma current, stored energy and induced currents in the mechanical support structures of the coils and graphite armour tiles. The latter measurements are particularly important when halo currents are induced following a plasma termination, for example, when the plasma becomes vertically unstable. The article describes the MAST magnetic diagnostic coil set and their calibration. The way in which coil signals are used to control the plasma equilibrium is described and data from the first MAST experimental campaign presented. These coil data are used as input to the code EFIT [L. Lao et al., Nucl. Fusion 25, 1611 (1985)], for measurement of halo currents in the vacuum vessel structure and for measurements of the structure of magnetic field fluctuations near the plasma edge.

  5. High field Nb3Sn Axicell insert coils for the Mirror Fusion Test Facility-B (MFTF-B) axicell configuration. Final report

    International Nuclear Information System (INIS)

    Baldi, R.W.; Tatro, R.E.; Scanlan, R.M.

    1984-03-01

    Two 12-tesla superconducting insert coils are being designed by General Dynamics Convair Division for the axicell regions of MFTF-B for Lawrence Livermore National Laboratory. A major challenge of this project is to ensure that combined fabrication and operational strains induced in the conductor are within stringent limitations of the relatively brittle Nb 3 Sn superconductor filaments. These coils are located in the axicell region of MFTF-B. They have a clear-bore diameter of 36.195cm (14.25 inches) and consist of 27 double pancakes (i.e., 54 pancakes per coil) would on an electrically insulated 304LN stainless steel/bobbin helium vessel. Each pancake has 57 turns separated by G-10CR insulation. The complete winding bundle has 4.6 million ampere-turns and uniform current density of 2007 A/cm 2 . In conjunction with the other magnets in the system, they produce a 12-tesla central field and a 12.52-tesla peak field. A multifilamentary Nb 3 Sn conductor was selected to meet these requirements. The conductor consists of a monolithic insert soldered into a copper stabilizer. Sufficient cross-sectional area and work-hardening of the copper stabilizer has been provided for the conductor to self-react the electromagnetic Lorentz force induced hoop stresses with normal operational tensile strains less than 0.07 percent

  6. Construction and testing of the Mirror Fusion Test Facility magnets

    International Nuclear Information System (INIS)

    Kozman, T.; Shimer, D.; VanSant, J.; Zbasnik, J.

    1986-08-01

    This paper describes the construction and testing of the Mirror Fusion Test Facility superconducting magnet set. Construction of the first Yin Yang magnet was started in 1978. And although this particular magnet was later modified, the final construction of these magnets was not completed until 1985. When completed these 42 magnets weighed over 1200 tonnes and had a maximum stored energy of approximately 1200 MJ at full field. Together with power supplies, controls and liquid nitrogen radiation shields the cost of the fabrication of this system was over $100M. General Dynamics/Convair Division was responsible for the system design and the fabrication of 20 of the magnets. This contract was the largest single procurement action at the Lawrence Livermore National Laboratory. During the PACE acceptance tests, the 26 major magnets were operated at full field for more than 24 hours while other MFTF subsystems were tested. From all of the data, the magnets operated to the performance specifications. For physics operation in the future, additional helium and nitrogen leak checking and repair will be necessary. In this report we will discuss the operation and testing of the MFTF Magnet System, the world's largest superconducting magnet set built to date. The topics covered include a schedule of the major events, summary of the fabrication work, summary of the installation work, summary of testing and test results, and lessons learned

  7. High field Nb/sub 3/Sn Axicell insert coils for the Mirror Fusion Test Facility-B (MFTF-B) axicell configuration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, R.W.; Tatro, R.E.; Scanlan, R.M.; Agarwal, K.L.; Bailey, R.E.; Burgeson, J.E.; Kim, I.K.; Magnuson, G.D.; Mallett, B.D.; Pickering, J.L.

    1984-03-01

    Two 12-tesla superconducting insert coils are being designed by General Dynamics Convair Division for the axicell regions of MFTF-B for Lawrence Livermore National Laboratory. A major challenge of this project is to ensure that combined fabrication and operational strains induced in the conductor are within stringent limitations of the relatively brittle Nb/sub 3/Sn superconductor filaments. These coils are located in the axicell region of MFTF-B. They have a clear-bore diameter of 36.195cm (14.25 inches) and consist of 27 double pancakes (i.e., 54 pancakes per coil) would on an electrically insulated 304LN stainless steel/bobbin helium vessel. Each pancake has 57 turns separated by G-10CR insulation. The complete winding bundle has 4.6 million ampere-turns and uniform current density of 2007 A/cm/sup 2/. In conjunction with the other magnets in the system, they produce a 12-tesla central field and a 12.52-tesla peak field. A multifilamentary Nb/sub 3/Sn conductor was selected to meet these requirements. The conductor consists of a monolithic insert soldered into a copper stabilizer. Sufficient cross-sectional area and work-hardening of the copper stabilizer has been provided for the conductor to self-react the electromagnetic Lorentz force induced hoop stresses with normal operational tensile strains less than 0.07 percent.

  8. Diagnostics of vector magnetic fields

    Science.gov (United States)

    Stenflo, J. O.

    1985-01-01

    It is shown that the vector magnetic fields derived from observations with a filter magnetograph will be severely distorted if the spatially unresolved magnetic structure is not properly accounted for. Thus the apparent vector field will appear much more horizontal than it really is, but this distortion is strongly dependent on the area factor and the temperature line weakenings. As the available fluxtube models are not sufficiently well determined, it is not possible to correct the filter magnetograph observations for these effects in a reliable way, although a crude correction is of course much better than no correction at all. The solution to this diagnostic problem is to observe simultaneously in suitable combinations of spectral lines, and/or use Stokes line profiles recorded with very high spectral resolution. The diagnostic power of using a Fourier transform spectrometer for polarimetry is shown and some results from I and V spectra are illustrated. The line asymmetries caused by mass motions inside the fluxtubes adds an extra complication to the diagnostic problem, in particular as there are indications that the motions are nonstationary in nature. The temperature structure appears to be a function of fluxtube diameter, as a clear difference between plage and network fluxtubes was revealed. The divergence of the magnetic field with height plays an essential role in the explanation of the Stokes V asymmetries (in combination with the mass motions). A self consistent treatment of the subarcsec field geometry may be required to allow an accurate derivation of the spatially averaged vector magnetic field from spectrally resolved data.

  9. US superconducting magnet data base assessment for INTOR

    International Nuclear Information System (INIS)

    Schultz, J.H.; Montgomery, D.B.

    1984-01-01

    Because of its size, performance requirements and exposure to neutron and gamma irradiation, the superconducting magnet system for INTOR would represent a significant advance in superconducting magnet technology. US programs such as LCP, MFTF-B and others provide a significant data base for the INTOR application. The assessment of the adequacy of the US data base for the INTOR magnets is largely generic, and applies to the superconducting magnet systems for other magnetic confinement fusion reactors. Assessments of the data base generated by other national magnet technology programs are being prepared by the other INTOR participants

  10. Research and development of an aimed magnetic lead current density-magnetic field diagnostic. Final report

    International Nuclear Information System (INIS)

    1985-01-01

    A diagnostics survey was made to provide a clear definition of advanced diagnostic needs and the limitations of current approaches in addressing those needs. Special attention was given to the adequacy with which current diagnostics are interfaced to signal processing/data acquisition devices and systems. Critical evaluations of selected alternative diagnostic techniques for future R and D activities are presented. The conceptual basis of the Aimed Magnetic Lead Gradiometric system as a current density/magnetic field diagnostic is established

  11. Energy and technology review

    International Nuclear Information System (INIS)

    1981-05-01

    Research programs at LLNL are reviewed. This issue discusses validation of the pulsed-power design for FXR, the NOVA plasma shutter, thermal control of the MFTF superconducting magnet, a low-energy x-ray spectrometer for pulsed-source diagnostics, micromachining, the electronics engineer's design station, and brazing with a laser microtorch

  12. Acoustic detection in superconducting magnets for performance characterization and diagnostics

    OpenAIRE

    Marchevsky, M.; Wang, X.; Sabbi, G.; Prestemon, S.

    2014-01-01

    Quench diagnostics in superconducting accelerator magnets is essential for understanding performance limitations and improving magnet design. Applicability of the conventional quench diagnostics methods such as voltage taps or quench antennas is limited for long magnets or complex winding geometries, and alternative approaches are desirable. Here, we discuss acoustic sensing technique for detecting mechanical vibrations in superconducting magnets. Using LARP high-field Nb3Sn quadrupole HQ01 [...

  13. Design and test of-80 kV snubber core assemblies for MFTF sustaining-neutral-beam power supplies

    International Nuclear Information System (INIS)

    Bishop, S.R.; Mayhall, D.J.; Wilson, J.H.; De Vore, K.R.; Ross, R.I.; Sears, R.G.

    1981-01-01

    Core snubbers, located near the neutral beam source ends of the Mirror Fusion Test Facility (MFTF) Sustaining Neutral Beam Power Supply System (SNBPSS) source cables, protect the neutral beam source extractor grid wires from overheating and sputtering during internal sparkdowns. The snubbers work by producing an induced counter-emf which limits the fault current and by absorbing the capacitive energy stored on the 80 kV source cables and power supplies. A computer program STACAL was used in snubber magnetic design to choose appropriate tape wound cores to provide 400 Ω resistance and 25 J energy absorption. The cores are mounted horizontally in a dielectric structure. The central source cable bundle passes through the snubber and terminates on three copper buses. Multilam receptacles on the buses connect to the source module jumper cables. Corona rings and shields limit electric field stresses to allow close clearances between snubbers

  14. Estimation of neutral-beam-induced field reversal in MFTF by an approximate scaling law

    International Nuclear Information System (INIS)

    Shearer, J.W.

    1980-01-01

    Scaling rules are derived for field-reversed plasmas whose dimensions are common multiples of the ion gyroradius in the vacuum field. These rules are then applied to the tandem MFTF configuration, and it is shown that field reversal appears to be possible for neutral beam currents of the order of 150 amperes, provided that the electron temperature is at least 500 eV

  15. Stability and disturbance of large dc superconducting magnets

    International Nuclear Information System (INIS)

    Wang, S.T.

    1981-01-01

    This paper addresses the stability aspects of several successful dc superconducting magnets such as large bubble chamber magnets, and magnets for the Mirror Fusion Test Facility and MHD Research Facility. Specifically, it will cover Argonne National Laboratory 12-Foot Bubble Chamber magnets, the 15-foot Bubble Chamber magnets at Fermi National Laboratory, the MFTF-B Magnet System at Lawrence Livermore National Laboratory, the U-25B Bypass MHD Magnet, and the CFFF Superconducting MHD magnet built by Argonne National Laboratory. All of these magnets are cooled in pool-boiling mode. Magnet design is briefly reviewed. Discussed in detail are the adopted stability critera, analyses of stability and disturbance, stability simulation, and the final results of magnet performance and the observed coil disturbances

  16. Development of a magnetic diagnostic suitable for the ITER radiation environment

    International Nuclear Information System (INIS)

    Moreau, P.; Le-Luyer, A.; Malard, P.; Pastor, P.; Fournier, Y.; Lister, J. B.; Moret, J. M.; Testa, D.; Toussaint, M.; Chitarin, G.; Delogu, R.; Galo, A.; Peruzzo, S.; Romero, J.; Vila, R.; Brichard, B.; Bolshakova, I.; Duran, I.; Encheva, A.; Vayakis, G.

    2009-01-01

    Magnetic diagnostics of the ITER tokamak must fulfill demanding specifications, because their accuracy and reliability affects margins to the machine engineering limits and therefore operational flexibility. This paper describes the challenging issues related to the implementation of the magnetic diagnostics in a tokamak environment. We focus on nuclear radiations as they can significantly affect the measurement through Radiation Induced Electromotive Force (RIEMF) or Thermally Induced Electromotive Force (TIEMF). Thermal modeling of magnetic sensors and associated design studies are also reported as the thermal gradient in the sensors must be reduced to avoid TIEMF. Alternative magnetic sensors such as fiber optic current sensors (FOCS) or steady state magnetic field sensors are also discussed because they serve as a backup to the usual inductive magnetic measurements. We conclude by a brief review of the development needs for magnetic diagnostics. (authors)

  17. Acoustic detection in superconducting magnets for performance characterization and diagnostics

    International Nuclear Information System (INIS)

    Marchevsky, M; Wang, X; Sabbi, G; Prestemon, S

    2013-01-01

    Quench diagnostics in superconducting accelerator magnets is essential for understanding performance limitations and improving magnet design. Applicability of the conventional quench diagnostics methods such as voltage taps or quench antennas is limited for long magnets or complex winding geometries, and alternative approaches are desirable. Here, we discuss acoustic sensing technique for detecting mechanical vibrations in superconducting magnets. Using LARP high-field Nb3Sn quadrupole HQ01, we show how acoustic data is connected with voltage instabilities measured simultaneously in the magnet windings during provoked extractions and current ramps to quench. Instrumentation and data analysis techniques for acoustic sensing are reviewed. (author)

  18. Acoustic detection in superconducting magnets for performance characterization and diagnostics

    CERN Document Server

    Marchevsky, M.; Sabbi, G.; Prestemon, S.

    2013-01-01

    Quench diagnostics in superconducting accelerator magnets is essential for understanding performance limitations and improving magnet design. Applicability of the conventional quench diagnostics methods such as voltage taps or quench antennas is limited for long magnets or complex winding geometries, and alternative approaches are desirable. Here, we discuss acoustic sensing technique for detecting mechanical vibrations in superconducting magnets. Using LARP high-field Nb$_{3}$Sn quadrupole HQ01 [1], we show how acoustic data is connected with voltage instabilities measured simultaneously in the magnet windings during provoked extractions and current ramps to quench. Instrumentation and data analysis techniques for acoustic sensing are reviewed.

  19. Leak testing and repair of fusion devices

    International Nuclear Information System (INIS)

    Kozman, T.A.

    1983-01-01

    The leak testing, reporting and vacuum leak repair techniques of the MFTF yin-yang number one magnet system, the world's largest superconducting magnet system, are discussed. Based on this experience, techniques will be developed for testing and repairing leaks on the 42 MFTF-B magnets. The leak-hunting techniques for the yin-yang magnet systems were applied to two helium circuits (the coil bundle and guard vacuum; both require helium flow for magnet cooldown), their associated piping, liquid nitrogen radiation shields, and piping. Additionally, during MFTF-B operation there will be warm water plasma shields and piping that require leak checking

  20. Nuclear magnetic resonance diagnostic apparatus

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1985-01-01

    Nuclear magnetic resonance diagnostic apparatus including a coil for generating a gradient field in a plane perpendicular to a static magnetic field, means for controlling the operation of the coil to rotationally shift in angular steps the gradient direction of the gradient field at an angle pitch of some multiple of the unit index angle through a plurality of rotations to assume all the shift positions of the gradient direction, a rough image reconstructor for reconstructing a rough tomographic image on the basis of nuclear magnetic resonance signals acquired during a rotation of the second gradient magnetic field, a rough image display for depicting the rough tomographic image, a final image reconstructor for reconstructing a final tomographic image on the basis of all nuclear magnetic resonance signals corresponding to all of the expected rotation shift positions acquired during a plurality of rotations and a final image display for depicting the final tomographic image

  1. Diagnostic apparatus employing nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Hoshino, K.; Yamada, N.; Yoshitome, E.; Matsuura, H.

    1987-01-01

    An NMR diagnostic apparatus is described comprising means for applying a primary magnetic field to a subject; means for applying RF pulses to the subject to give nuclear magnetic resonance to the nuclei of atoms in the subject; means for applying gradient magnetic fields to project an NMR signal of the nuclei at least in one direction; means for observing the NMR signal projected by the gradient magnetic fields applying means; and arithmetic means for constructing a distribution of information on resonance energy as an image from an output signal from the observing means; wherein the gradient magnetic fields applying means comprises means for applying the gradient magnetic fields at a predetermined time and for not applying the gradient magnetic fields at another predetermined time, during the time period of one view; and wherein the gradient magnetic fields applying means further comprises means for measuring the NMR signal during the predetermined time when the gradient magnetic fields are applied, and means for measuring the intensity of the primary magnetic field during the other predetermined time when no gradient magnetic fields are applied

  2. Protection of the MFTF accel power supplies

    International Nuclear Information System (INIS)

    Wilson, J.H.; Wood, J.C.

    1979-01-01

    The MFTF experiment's Sustaining Neutral Beam Power Supply System (SNBPSS) includes twenty-four 95 kV, 80 A accel dc power supplies (ADCPS). Each power supply includes a relatively high-impedance (20 percent) rectifier transformer and a step voltage regulator with a 50-100 percent voltage range. With this combination, the fault current for some postulated faults may be lower than the supply's full load current at maximum voltage. A design has been developed which uses protective relays and current-limiting fuses coordinated to detect phase and ground faults, DC faults, incorrect voltage conditions, rectifier faults, power factor correction capacitor faults, and overloads. This unusual solution ensures fast tripping on potentially destructive high-current faults and long-time delays at lower currents to allow 30 second pulse operation. The ADCPS meets the LLL specification that all major assemblies be self-protecting, that is, able to sustain external faults without damage to minimize damage due to internal faults

  3. Particle diagnostics for magnetic fusion experiments

    International Nuclear Information System (INIS)

    Post, D.E.

    1983-01-01

    This chapter summarizes the subset of diagnostics that relies primarily on the use of particles, and attempts to show how atomic and molecular data play a role in these diagnostics. Discusses passive charge-exchange ion temperature measurements; hydrogen beams for density, ion temperature, q and ZEFF measurements; impurity diagnostics using charge-exchange recombination; plasma electric and magnetic measurements using beams heavier than hydrogen; and alpha particle diagnostics. Points out that as fusion experiments become larger and hotter, most traditional particle diagnostics become difficult because large plasmas are difficult for neutral atoms to penetrate and the gyro-orbits of charged particles need to be larger than typically obtained with present beams to be comparable with the plasma size. Concludes that not only does the current profile affect the plasma stability, but there is a growing opinion that any serious fusion reactor will have to be steady state

  4. Superconducting magnet development capability of the LLNL [Lawrence Livermore National Laboratory] High Field Test Facility

    International Nuclear Information System (INIS)

    Miller, J.R.; Shen, S.; Summers, L.T.

    1990-02-01

    This paper discusses the following topics: High-Field Test Facility Equipment at LLNL; FENIX Magnet Facility; High-Field Test Facility (HFTF) 2-m Solenoid; Cryogenic Mechanical Test Facility; Electro-Mechanical Conductor Test Apparatus; Electro-Mechanical Wire Test Apparatus; FENIX/HFTF Data System and Network Topology; Helium Gas Management System (HGMS); Airco Helium Liquefier/Refrigerator; CTI 2800 Helium Liquefier; and MFTF-B/ITER Magnet Test Facility

  5. Vent rate of superconducting magnets during quench in the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.

    1979-01-01

    When a superconducting magnet goes normal, resistive heating in the conductor evaporates surrounding LHe, which must be vented. The nature and speed at which the magnet goes normal and He is vented are not subject to rigorous analysis. This paper presents vent data from an existing magnet. An approximate mathematical model is derived and fitted to the data to permit scaling of vent requirements to larger size magnets. The worst case models of the vent employed in Mirror Fusion Test Facility (MFTF) cryogenic system design are also presented

  6. Magnetic diagnostic plasma position in the TCA/BR tokamak

    International Nuclear Information System (INIS)

    Galvao, R.M.O.; Kuznetsov, Yu.K.; Nascimento, I.C.

    1996-01-01

    The cross-section of the plasma column is TCA/BR has a nearly circular plasma shape. This allows implementation of simplified methods of magnetic diagnostics. Although these methods were in may tokamaks and are well described, their accuracies are not clearly defined because the very simplified theoretical model of plasma equilibrium on which they are based differs from the real conditions in tokamaks like TCA/BR. In this paper we present the methods of plasma position diagnostics in TCA/BR from external magnetic measurements with an error analysis. (author). 4 refs., 3 figs

  7. Optical diagnostics on the Magnetized Shock Experiment (MSX)

    Science.gov (United States)

    Boguski, J. C.; Weber, T. E.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.; Hutchinson, T. M.; Gao, K. W.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high Alfvén Mach number, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. A suite of optical diagnostics has recently been fielded on MSX to characterize plasma conditions during the formation, acceleration, and stagnation phases of the experiment. CCD-backed streak and framing cameras, and a fiber-based visible light array, provide information regarding FRC shape, velocity, and instability growth. Time-resolved narrow and broadband spectroscopy provides information on pre-shock plasma temperature, impurity levels, shock location, and non-thermal ion distributions within the shock region. Details of the diagnostic design, configuration, and characterization will be presented along with initial results. This work is supported by the Center for Magnetic Self Organization, DoE OFES and NNSA under LANS contract DE-AC52-06NA25369. Approved for public release: LA-UR- 13-25190.

  8. Magnetic resonance imaging of the wrist: Diagnostic performance statistics

    International Nuclear Information System (INIS)

    Hobby, Jonathan L.; Tom, Brian D.M.; Bearcroft, Philip W.P.; Dixon, Adrian K.

    2001-01-01

    AIM: To review the published diagnostic performance statistics for magnetic resonance imaging (MRI) of the wrist for tears of the triangular fibrocartilage complex, the intrinsic carpal ligaments, and for osteonecrosis of the carpal bones. MATERIALS AND METHODS: We used Medline and Embase to search the English language literature. Studies evaluating the diagnostic performance of MRI of the wrist in living patients with surgical confirmation of MR findings were identified. RESULTS: We identified 11 studies reporting the diagnostic performance of MRI for tears of the triangular fibrocartilage complex for a total of 410 patients, six studies for the scapho-lunate ligament (159 patients), six studies for the luno-triquetral ligament (142 patients) and four studies (56 patients) for osteonecrosis of the carpal bones. CONCLUSIONS: Magnetic resonance imaging is an accurate means of diagnosing tears of the triangular fibrocartilage and carpal osteonecrosis. Although MRI is highly specific for tears of the intrinsic carpal ligaments, its sensitivity is low. The diagnostic performance of MRI in the wrist is improved by using high-resolution T2* weighted 3D gradient echo sequences. Using current imaging techniques without intra-articular contrast medium, magnetic resonance imaging cannot reliably exclude tears of the intrinsic carpal ligaments. Hobby, J.L. (2001)

  9. Molecular diagnostics based on clustering dynamics of magnetic nanobeads

    DEFF Research Database (Denmark)

    Donolato, Marco; Bejhed, Rebecca S.; de la Torre, Teresa Zardán Gómez

    2014-01-01

    transmission modulation caused by the AC magnetic field-stimulated reversible formation and disruption of elongated MNB supra-structures during a cycle of the uniaxial applied magnetic field. As a specific clinically relevant diagnostic case, we detect DNA coils formed via padlock probe recognition...

  10. Magnetic systems for fusion devices

    International Nuclear Information System (INIS)

    Henning, C.D.

    1985-02-01

    Mirror experiments have led the way in applying superconductivity to fusion research because of unique requirements for high and steady magnetic fields. The first significant applications were Baseball II at LLNL and IMP at ORNL. More recently, the MFTF-B yin-yang coil was successfully tested and the entire tandem configuration is nearing completion. Tokamak magnets have also enjoyed recent success with the large coil project tests at ORNL, preceded by single coil tests in Japan and Germany. In the USSR, the T-7 Tokamak has been operational for many years and the T-15 Tokamak is under construction, with the TF coils nearing completion. Also the Tore Supra is being built in France

  11. Some theoretical problems of magnetic diagnostics in tokamaks and stellarators

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    1993-12-01

    The main problem of magnetic diagnostics is discussed here: which plasma characteristics can be determined from magnetic measurements in tokamaks and stellarators. The reasons are elucidated why diamagnetic measurements are reliable and easily interpreted. We discuss also the capabilities of diagnostics based on the measurements of poloidal fields outside the plasma. This article is based on a lecture delivered at the Third International School on Plasma Physics and Controlled Fusion, held 15-22 June 1993 at St. Petersburg - Kizhi, Russia. (author)

  12. Some theoretical problems of magnetic diagnostics in tokamaks and stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Pustovitov, V.D.

    1993-12-01

    The main problem of magnetic diagnostics is discussed here: which plasma characteristics can be determined from magnetic measurements in tokamaks and stellarators. The reasons are elucidated why diamagnetic measurements are reliable and easily interpreted. We discuss also the capabilities of diagnostics based on the measurements of poloidal fields outside the plasma. This article is based on a lecture delivered at the Third International School on Plasma Physics and Controlled Fusion, held 15-22 June 1993 at St. Petersburg - Kizhi, Russia. (author).

  13. Tandem mirror magnet system for the mirror fusion test facility

    International Nuclear Information System (INIS)

    Bulmer, R.H.; Van Sant, J.H.

    1980-01-01

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper

  14. An infrared diagnostic for magnetism in hot stars

    Science.gov (United States)

    Oksala, M. E.; Grunhut, J. H.; Kraus, M.; Borges Fernandes, M.; Neiner, C.; Condori, C. A. H.; Campagnolo, J. C. N.; Souza, T. B.

    2015-06-01

    Magnetospheric observational proxies are used for indirect detection of magnetic fields in hot stars in the X-ray, UV, optical, and radio wavelength ranges. To determine the viability of infrared (IR) hydrogen recombination lines as a magnetic diagnostic for these stars, we have obtained low-resolution (R~ 1200), near-IR spectra of the known magnetic B2V stars HR 5907 and HR 7355, taken with the Ohio State Infrared Imager/Spectrometer (OSIRIS) attached to the 4.1 m Southern Astrophysical Research (SOAR) Telescope. Both stars show definite variable emission features in IR hydrogen lines of the Brackett series, with similar properties as those found in optical spectra, including the derived location of the detected magnetospheric plasma. These features also have the added advantage of a lowered contribution of stellar flux at these wavelengths, making circumstellar material more easily detectable. IR diagnostics will be useful for the future study of magnetic hot stars, to detect and analyze lower-density environments, and to detect magnetic candidates in areas obscured from UV and optical observations, increasing the number of known magnetic stars to determine basic formation properties and investigate the origin of their magnetic fields. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  15. Industrialization and production of neutral beam ion sources for MFTF

    International Nuclear Information System (INIS)

    Lynch, W.S.

    1981-01-01

    The existing LLNL designs of the 20 and 80kV deuterium fueled Neutral Beam Ion Source Modules (NBSM) have been industrialized and are being produced successfully for the MFTF. Industrialization includes value engineering, production engineering, cost reduction, fixturing, facilitation and procurement of components. Production assembly, inspection and testing is being performed in a large electronics manufacturing plant. Decades of experience in high voltage, high vacuum power tubes is being applied to the procedures and processes. Independent quality and reliability assurance criteria are being utilized. Scheduling of the various engineering, procurement and manufacturing task is performed by the use of a Critical Path Method (CPM) computer code, Innovative, computerized grid alignment methods were also designed and installed specifically for this project. New jointing and cleaning techniques were devised for the NBSMs. Traceability and cost control are also utilized

  16. Advancements of microwave diagnostics in magnetically confined plasmas

    NARCIS (Netherlands)

    Mase, A.; Kogi, Y.; Ito, N.; Yokota, Y.; Akaki, K.; Kawahata, K.; Nagayama, Y.; Tokuzawa, T.; Yamaguchi, S.; Hojo, H.; Oyama, N.; N C Luhmann Jr.,; Park, H. K.; Donne, A. J. H.

    2009-01-01

    Microwave to millimeter-wave diagnostic techniques such as interferometry, reflectometry, scattering and radiometry have been powerful tools for diagnosing magnetically confined plasmas. Recent advances in electronic devices and components together with computer technology have enabled the

  17. Coherence imaging spectro-polarimetry for magnetic fusion diagnostics

    International Nuclear Information System (INIS)

    Howard, J

    2010-01-01

    This paper presents an overview of developments in imaging spectro-polarimetry for magnetic fusion diagnostics. Using various multiplexing strategies, it is possible to construct optical polarization interferometers that deliver images of underlying physical parameters such as flow speed, temperature (Doppler effect) or magnetic pitch angle (motional Stark and Zeeman effects). This paper also describes and presents first results for a new spatial heterodyne interferometric system used for both Doppler and polarization spectroscopy.

  18. Design of 12-T Yin-Yang magnets operating in subcooled, superfluid helium

    International Nuclear Information System (INIS)

    Cornish, D.N.; Hoard, R.W.; Baldi, R.

    1981-01-01

    A conceptual design study of a large 12-T yin-yang pair of coils, typical of the plug coils envisioned for a tandem-mirror facility to follow MFTF, has been completed. Because of its larger size and field strength, the magnetic forces are much greater than those experienced on MFTF. The main purpose of this study, therefore, is to assess the feasibility of such a device, paying particular attention to mechanical stress and conductor strain. The conductor proposed operates at 15.6 kA and consists of a rectangular half-hard copper stabilizer with a Nb-Ti insert in the low-field regions and Nb 3 Sn in the high field. The coil is divided into four sections in the longitudinal direction, with steel substructure to limit the winding stress to an acceptable level. The conductor is cryostatically stabilized in superfluid He at 1.8K and 1.2 atm, with an operating heat flux of 0.8 W.cm -2

  19. Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume II. Integrated operations plan

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    This document defines an integrated plan for the operation of the Lawrence Livermore National Laboratory (LLNL) Mirror Fusion Test Facility (MFTF-B). The plan fulfills and further delineates LLNL policies and provides for accomplishing the functions required by the program. This plan specifies the management, operations, maintenance, and engineering support responsibilities. It covers phasing into sustained operations as well as the sustained operations themselves. Administrative and Plant Engineering support, which are now being performed satisfactorily, are not part of this plan unless there are unique needs.

  20. Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume II. Integrated operations plan

    International Nuclear Information System (INIS)

    1981-12-01

    This document defines an integrated plan for the operation of the Lawrence Livermore National Laboratory (LLNL) Mirror Fusion Test Facility (MFTF-B). The plan fulfills and further delineates LLNL policies and provides for accomplishing the functions required by the program. This plan specifies the management, operations, maintenance, and engineering support responsibilities. It covers phasing into sustained operations as well as the sustained operations themselves. Administrative and Plant Engineering support, which are now being performed satisfactorily, are not part of this plan unless there are unique needs

  1. Noise filtering algorithm for the MFTF-B computer based control system

    International Nuclear Information System (INIS)

    Minor, E.G.

    1983-01-01

    An algorithm to reduce the message traffic in the MFTF-B computer based control system is described. The algorithm filters analog inputs to the control system. Its purpose is to distinguish between changes in the inputs due to noise and changes due to significant variations in the quantity being monitored. Noise is rejected while significant changes are reported to the control system data base, thus keeping the data base updated with a minimum number of messages. The algorithm is memory efficient, requiring only four bytes of storage per analog channel, and computationally simple, requiring only subtraction and comparison. Quantitative analysis of the algorithm is presented for the case of additive Gaussian noise. It is shown that the algorithm is stable and tends toward the mean value of the monitored variable over a wide variety of additive noise distributions

  2. Magnetic resonance tomography of renal allografts - Diagnostic possibilities

    International Nuclear Information System (INIS)

    Dewey, C.; Luening, M.

    1988-01-01

    It is the aim of the use of magnetic resonance tomography (MRT) to reduce the existing insufficiency in imaging diagnostics of complications after kidney transplantation. The topical status of examination technique is presented and the criteria of normal and pathological MRT findings are described in detail. (author)

  3. Safety procedures for the MFTF sustaining-neutral-beam power supply

    International Nuclear Information System (INIS)

    Wilson, J.H.

    1981-01-01

    The MFTF SNBPSS comprises a number of sources of potentially hazardous electrical energy in a small physical area. Power is handled at 80 kV dc, 80 A; 70 V dc, 4000 A; 25 V dc, 5500 A; 3 kV dc, 10 A; and 2 kV dc, 10 A. Power for these systems is furnished from two separate 480 V distribution systems and a 13.8 kV distribution system. A defense in depth approach is used; interlocks are provided in the hardware to make it difficult to gain access to an energized circuit, and the operating procedure includes precautions which would protect personnel even if no interlocks were working. The complexity of the system implies a complex operating procedure, and this potential complexity is controlled by presenting the procedure in a modular form using 37 separate checklists for specific operations. The checklists are presented in flowchart form, so contingencies can be handled at the lowest possible level without compromising safety

  4. Basic artefacts of diagnostic imaging by the magnetic resonance method

    International Nuclear Information System (INIS)

    Vitak, T.; Seidl, Z.; Obenberger, J.; Vaneckova, M.; Danes, J.; Krasensky, J.; Peterkova, V

    2000-01-01

    Artefacts in diagnostic imaging are defined as a geometric or anatomic misrepresentation of the reality by the image formed. The article deals with artefacts due to field and frequency shifts, in particular due to the water-fat chemical shift and due to magnetic susceptibility. The physical nature of the artefacts is explained and their diagnostic significance is discussed. (P.A.)

  5. Engineering study of the neutral beam and rf heating systems for DIII-D, MFTF-B, JET, JT-60 and TFTR

    International Nuclear Information System (INIS)

    Lindquist, W.B.; Staten, S.H.

    1987-01-01

    An engineering study was performed on the rf and neutral beam heating systems implemented for DIII-D, MFTF-B, JET, JT-60 and TFTR. Areas covered include: methodology used to implement the systems, technology, cost, schedule, performance, problems encountered and lessons learned. Systems are compared and contrasted in the areas studied. Summary statements were made on common problems and lessons learned. 3 refs., 6 tabs

  6. Magnetic diagnostics at Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Rahbarnia, K.; Andreeva, T.; Endler, M.; Hathiramani, D.; Grulke, O.; Neuner, U.; Svensson, J.; Thomsen, H.; Geiger, J.; Werner, A. [Max Planck Institute for Plasma Physics, Greifswald (Germany); Cardella, A. [JT-60SA project, F4E c/o IPP, Garching (Germany); Carvalho, B. [Instituto de Plasmas e Fusao Nuclear Instituto Superior Tecnico, Lisbon (Portugal)

    2016-07-01

    An arrangement of magnetic sensors has been installed at the stellarator Wendelstein 7-X (W7-X) including over 300 individual 3D shaped sensors like diamagnetic loops, Rogowski, Saddle and Mirnov coils. Future long pulse operation of up to 1800 s demands an optimization of materials, thermal shielding and signal integration accuracy. The main objectives are the reconstruction of magnetic equilibria and monitoring the diamagnetic plasma energy. Generally, in stellarators a toroidal current drive is not necessary to maintain confinement. Minimization of toroidal currents is in fact one of the major optimization criteria of W7-X. It will be investigated by continuous and segmented Rogowski coils and Saddle coils measuring e.g. bootstrap and Pfirsch-Schlueter currents and their spatial distributions. A set of 125 toroidally and poloidally arranged Mirnov coils will give information on MHD and Alfven mode activity and edge localized modes (ELMs). A detailed overview of the magnetic diagnostic system is outlined, and initial results obtained during the first operation phase of W7-X are presented.

  7. Safety and protection for large scale superconducting magnets. FY 1984 report

    International Nuclear Information System (INIS)

    Thome, R.J.; Pillsbury, R.D. Jr.; Minervini, J.V.

    1984-11-01

    The Fusion Program is moving rapidly into design and construction of systems using magnets with stored energies in the range of hundreds of megajoules to gigajoules. For example, the toroidal field coil system alone for TFCX would store about 4 GJ and the mirror system MFTF-B would store about 1.6 GJ. Safety and protection analyses of the magnet subsystems become progressively more important as the size and complexity of the installations increase. MIT has been carrying out a program for INEL oriented toward safety and protection in large scale superconducting magnet systems. The program involves collection and analysis of information on actual magnet failures, analyses of general problems associated with safety and protection, and performance of safety oriented experiments. This report summarizes work performed in FY 1984

  8. Engineering challenges and solutions for the ITER magnetic diagnostics flux loops

    International Nuclear Information System (INIS)

    Clough, M.; Casal, N.; Suarez Diaz, A.; Vayakis, G.; Walsh, M.

    2014-01-01

    The Magnetic Diagnostics Flux Loops (MDFL) are a key diagnostic for the ITER tokamak, providing important information about the shape of the plasma boundary, instabilities and magnetic error fields. In total, 237 flux loops will be installed on ITER, on the inside and outside walls of the Vacuum Vessel, and will range in area from 1 m 2 to 250 m 2 . This paper describes the detailed engineering design of the MDFL, explaining the solutions developed to maintain measurement accuracy within their difficult operating environment and other requirements: ultra-high vacuum conditions, strong magnetic fields, high gamma and neutron radiation doses, challenging installation, very high reliability and no maintenance during the 20 year machine lifetime. In addition, the paper discusses testing work undertaken to validate the design and outlines the remaining tasks to be performed. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. (authors)

  9. Sparking protection for MFTF-B Neutral Beam Power Supplies

    International Nuclear Information System (INIS)

    Cummings, D.B.

    1983-01-01

    This paper describes the upgrade of MFTF-B Neutral Beam Power Supplies for sparking protection. High performance ion sources spark repeatedly so ion source power supplies must be insensitive to sparking. The hot deck houses the series tetrode, arc and filament supplies, and controls. Hot deck shielding has been upgraded and a continuous shield around the arc, filament, gradient grid, and control cables now extends from the hot deck, through the core snubber, to the source. The shield carries accelerating current and connects only to the source. Shielded source cables go through an outer duct which now connects to a ground plane under the hot deck. This hybrid transmission line is a low inductance path for sparks discharging the stray capacitance of the hot deck and isolation transformers, reducing coupling to building steel. Parallel DC current return cables inside the duct lower inductance to reduce inductive turn-off transients. MOVs to ground further limit surges in the remote power supply return. Single point grounding is at the source. No control or rectifier components have been damaged nor are there any known malfunctions due to sparking up to 80 kV output

  10. Sparking protection for MFTF-B neutral beam power supplies

    International Nuclear Information System (INIS)

    Cummings, D.B.

    1983-01-01

    This paper describes the upgrade of MFTF-B Neutral Beam Power Supplies for sparking protection. High performance ion sources spark repeatedly so ion source power supplies must be insensitive to sparking. The hot deck houses the series tetrode, arc and filament supplies, and controls. Hot deck shielding has been upgraded and a continuous shield around the arc, filament, gradient grid, and control cables now extends from the hot deck, through the core snubber, to the source. The shield carries accelerating current and connects only to the source. Shielded source cables go through an outer duct which now connects to a ground plane under the hot deck. This hybrid transmission line is a low inductance path for sparks discharging the stray capacitance of the hot deck and isolation transformers, reducing coupling to building steel. Parallel dc current return cables inside the duct lower inductance to reduce inductive turn-off transients. MOVs to ground further limit surges in the remote power supply return. Single point grounding is at the source. No control or rectifier components have been damaged nor are there any known malfunctions due to sparking up to 80 kV output

  11. Economic potential of magnetic fusion energy

    International Nuclear Information System (INIS)

    Henning, C.D.

    1981-01-01

    Scientific feasibility of magnetic fusion is no longer seriously in doubt. Rapid advances have been made in both tokamak and mirror research, leading to a demonstration in the TFTR tokamak at Princeton in 1982 and the tandem mirror MFTF-B at Livermore in 1985. Accordingly, the basis is established for an aggressive engineering thrust to develop a reactor within this century. However, care must be taken to guide the fusion program towards an economically and environmentally viable goal. While the fusion fuels are essentially free, capital costs of reactors appear to be at least as large as current power plants. Accordingly, the price of electricity will not decline, and capital availability for reactor constructions will be important. Details of reactor cost projections are discussed and mechanisms suggested for fusion power implementation. Also discussed are some environmental and safety aspects of magnetic fusion

  12. Technology requirements for fusion--fission reactors based on magnetic-mirror confinement

    International Nuclear Information System (INIS)

    Moir, R.W.

    1978-01-01

    Technology requirements for mirror hybrid reactors are discussed. The required 120-keV neutral beams can use positive ions. The magnetic fields are 8 T or under and can use NbTi superconductors. The value of Q (where Q is the ratio of fusion power to injection power) should be in the range of 1 to 2 for economic reasons relating to the cost of recirculating power. The wall loading of 14-MeV neutrons should be in the range of 1 to 2 MW/m 2 for economic reasons. Five-times higher wall loading will likely be needed if fusion reactors are to be economical. The magnetic mirror experiments 2XIIB, TMX, and MFTF are described

  13. Currents and voltages in the MFTF coils during the formation of a normal zone

    International Nuclear Information System (INIS)

    Owen, E.W.

    1980-08-01

    Expressions are obtained for the currents and voltages in a pair of inductively coupled superconducting coils under two conditions: formation of a normal zone and during a change in the level of the current in one coil. A dump resistor of low resistance and a detector bridge is connected across each coil. Calculated results are given for the MFTF coils. The circuit equations during formation of a normal zone are nonlinear and time-varying, consequently, only a series solution is possible. The conditions during a change in current are more easily found. After the transient has died away, the voltages in the coil associated with the changing source are all self-inductive, while the voltages in the other coil are all mutually inductive

  14. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    International Nuclear Information System (INIS)

    Stratton, B.C.; Bitter, M.; Hill, K.W.; Hillis, D.L.; Hogan, J.T.

    2007-01-01

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  15. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  16. The use of magnetic resonance tomography in gastrointestinal diagnostics

    International Nuclear Information System (INIS)

    Geitung, Jonn Terje

    2000-01-01

    Background: Magnetic resonance imaging (MRI) is a promising method for examination of the gastrointestinal tract. In this article we present the present status and potential of MRI. Material and method: The review is based on personal experience and selected published, international papers. Results: Magnetic resonance cholangio-pancreatography (MRCP) and MRI of the liver are well documented examinations which are widely performed. These examinations partly replace existing modalities such as CT and ERCP and represent additional possibilities for examining this anatomic area. MRI is not as yet accepted as the standard examination of the pancreas, but it is regarded as comparable to CT. The adrenals may be examined even more accurately with MRI than with CT. MRI examinations of the oesophagus and gastric ventricle seem promising, but it should be said that they are in an early and not well document phase. MRI of the small and large bowels is not common. With the exception of preoperative staging of rectal cancers, it is still experimental. MR angiography, functional MRI studies and perfusion studies are not yet common in abdominal diseases. We may, however, believe that they will become important diagnostic tools. Interpretation: MRI is rapidly increasing its share of gastrointestinal imaging examinations. This is mainly due to the increased speed of newer machines. The diagnostic quality has improved and will improve more. It is thus likely that MRI will, in a large amount of abdominal imaging, replace CT and to some extent other diagnostic modalities. It is, however, not possible to replace CT for emergencies and we will probably look forward to more and better imaging with more diagnostic modalities in the future

  17. Magnetic resonance spectroscopy as a diagnostic modality for carcinoma thyroid

    International Nuclear Information System (INIS)

    Gupta, Nikhil; Kakar, Arun K.; Chowdhury, Veena; Gulati, Praveen; Shankar, L. Ravi; Vindal, Anubhav

    2007-01-01

    Aim: The aim of this study was to observe the findings of magnetic resonance spectroscopy of solitary thyroid nodules and its correlation with histopathology. Materials and methods: In this study, magnetic resonance spectroscopy was carried out on 26 patients having solitary thyroid nodules. Magnetic resonance spectroscopy (MRS) was performed on a 1.5 T super conductive system with gradient strength of 33 mTs. Fine needle aspiration cytology was done after MRS. All 26 patients underwent surgery either because of cytopathologically proven malignancy or because of cosmetic reasons. Findings of magnetic resonance spectroscopy were compared with histopathology of thyroid specimens. Results and conclusion: It was seen that presence or absence of choline peak correlates very well with presence or absence of malignant foci with in the nodule (sensitivity = 100%; specificity = 88.88%). These results indicate that magnetic resonance spectroscopy may prove to be an useful diagnostic modality for carcinoma thyroid

  18. Design of the ITER high-frequency magnetic diagnostic coils

    International Nuclear Information System (INIS)

    Toussaint, M.; Testa, D.; Baluc, N.; Chavan, R.; Fournier, Y.; Lister, J.B.; Maeder, T.; Marmillod, P.; Sanchez, F.; Stoeck, M.

    2011-01-01

    This paper is an overview of work carried out on the design of the ITER high-frequency magnetic diagnostic coil (HF sensor). In the first part, the ITER requirements for the HF sensor are presented. In the second part, the ITER reference design of the HF sensor has been assessed and showed some potential weaknesses, which led us to the conclusion that alternative designs could usefully be examined. Several options have been explored, and are presented in the third part: (a) direct laser cutting a metallic tube, (b) stacking of plane windings manufactured from a tungsten plate by electrical discharge machining, (c) coil using the conventional spring manufacture. In the fourth part, sensors using the low temperature co-fired ceramic technology (LTCC) are presented: (d) monolithic 1D magnetic flux sensors based on LTCC technology, and (e) monolithic 3D magnetic flux sensors based on the same LTCC technology. The solution which showed the best results is the monolithic 3D magnetic flux sensor based on LTCC.

  19. Fast and sensitive medical diagnostic protocol based on integrating circular current lines for magnetic washing and optical detection of fluorescent magnetic nanobeads

    Directory of Open Access Journals (Sweden)

    Jaiyam Sharma

    2016-07-01

    Full Text Available Magnetic nanoparticles (MNPs are increasingly being used as ‘magnetic labels’ in medical diagnostics. Practical applications of MNPs necessitate reducing their non-specific interactions with sensor surfaces that result in noise in measurements. Here we describe the design and implementation of a sensing platform that incorporates circular shaped current lines that reduce non-specific binding by enabling the “magnetic washing” of loosely attached MNPs attached to the senor surface. Generating magnetic fields by passing electrical currents through the circular shaped current lines enabled the capture and collection of fluorescent MNPs that was more efficient and effective than straight current lines reported to-date. The use of fluorescent MNPs allows their optical detection rather than with widely used magnetoresistive sensors. As a result our approach is not affected by magnetic noise due to the flow of currents. Our design is expected to improve the speed, accuracy, and sensitivity of MNPs based medical diagnostics. Keywords: Biosensors, Magnetic beads, Fluorescent magnetic nanoparticles, Lab on chip, Point of care testing

  20. Laser diagnostics on magnetically insulated flashover pulsed ion diodes

    International Nuclear Information System (INIS)

    Horioka, K.; Tazima, N.; Fukui, T.; Kasuya, K.

    1989-01-01

    Our recent experimental results on the characteristics of a flashover-type applied-B magnetically insulated pulsed ion diode are described. The main issues are to investigate the cause of impurity of the extracted beam and to examine the effect of neutral particles on the diode characteristics. In the experiment, our main efforts were placed on laser diagnostics of the diode gap behavior. (author)

  1. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices.

    Science.gov (United States)

    Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G

    2013-12-01

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  2. Magnetic Field Diagnostics and Spatio-Temporal Variability of the Solar Transition Region

    Science.gov (United States)

    Peter, H.

    2013-12-01

    Magnetic field diagnostics of the transition region from the chromosphere to the corona faces us with the problem that one has to apply extreme-ultraviolet (EUV) spectro-polarimetry. While for the coronal diagnostics techniques already exist in the form of infrared coronagraphy above the limb and radio observations on the disk, one has to investigate EUV observations for the transition region. However, so far the success of such observations has been limited, but various current projects aim to obtain spectro-polarimetric data in the extreme UV in the near future. Therefore it is timely to study the polarimetric signals we can expect from these observations through realistic forward modeling. We employ a 3D magneto-hydrodynamic (MHD) forward model of the solar corona and synthesize the Stokes I and Stokes V profiles of C iv (1548 Å). A signal well above 0.001 in Stokes V can be expected even if one integrates for several minutes to reach the required signal-to-noise ratio, and despite the rapidly changing intensity in the model (just as in observations). This variability of the intensity is often used as an argument against transition region magnetic diagnostics, which requires exposure times of minutes. However, the magnetic field is evolving much slower than the intensity, and therefore the degree of (circular) polarization remains rather constant when one integrates in time. Our study shows that it is possible to measure the transition region magnetic field if a polarimetric accuracy on the order of 0.001 can be reached, which we can expect from planned instrumentation.

  3. The magnetic diagnostics subsystem of the LISA Technology Package

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Aguilo, M; Garcia-Berro, E [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, c/Esteve Terrades, 5, 08860 Castelldefels (Spain); Lobo, A; Mateos, N; Sanjuan, J, E-mail: marc.diaz.aguilo@fa.upc.ed [Institut d' Estudis Espacials de Catalunya, c/Gran Capita 2-4, Edif. Nexus 104, 08034 Barcelona (Spain)

    2010-05-01

    The Magnetic Diagnostics Subsystem of the LISA Technology Package (LTP) on board the LISA Pathfinder (LPF) spacecraft includes a set of four tri-axial fluxgate magnetometers, intended to measure with high precision the magnetic field at the positions they occupy. However, their readouts do not provide a direct measurement of the magnetic field at the positions of the test masses. Therefore, an interpolation method must be implemented to obtain this information. However, such interpolation process faces serious difficulties. Indeed, the size of the interpolation region is excessive for a linear interpolation to be reliable, and the number of magnetometer channels does not provide sufficient data to go beyond that poor approximation. Recent research points to a possible alternative to address the magnetic interpolation problem by means of neural network algorithms. The key point of this approach is the ability neural networks have to learn from suitable training data representing the magnetic field behaviour. Despite the large distance to the test masses and the insufficient magnetic readings, artificial neural networks are able to significantly reduce the estimation error to acceptable levels. The learning efficiency can be best improved by making use of data obtained from on-ground measurements prior to mission launch in all relevant satellite locations and under real operation conditions. Reliable information on that appears to be essential for a meaningful assessment of magnetic noise in the LTP.

  4. The magnetic diagnostics subsystem of the LISA Technology Package

    International Nuclear Information System (INIS)

    Diaz-Aguilo, M; Garcia-Berro, E; Lobo, A; Mateos, N; Sanjuan, J

    2010-01-01

    The Magnetic Diagnostics Subsystem of the LISA Technology Package (LTP) on board the LISA Pathfinder (LPF) spacecraft includes a set of four tri-axial fluxgate magnetometers, intended to measure with high precision the magnetic field at the positions they occupy. However, their readouts do not provide a direct measurement of the magnetic field at the positions of the test masses. Therefore, an interpolation method must be implemented to obtain this information. However, such interpolation process faces serious difficulties. Indeed, the size of the interpolation region is excessive for a linear interpolation to be reliable, and the number of magnetometer channels does not provide sufficient data to go beyond that poor approximation. Recent research points to a possible alternative to address the magnetic interpolation problem by means of neural network algorithms. The key point of this approach is the ability neural networks have to learn from suitable training data representing the magnetic field behaviour. Despite the large distance to the test masses and the insufficient magnetic readings, artificial neural networks are able to significantly reduce the estimation error to acceptable levels. The learning efficiency can be best improved by making use of data obtained from on-ground measurements prior to mission launch in all relevant satellite locations and under real operation conditions. Reliable information on that appears to be essential for a meaningful assessment of magnetic noise in the LTP.

  5. High-density-plasma diagnostics in magnetic-confinement fusion

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1982-01-01

    The lectures will begin by defining high density in the context of magnetic confinement fusion research and listing some alternative reactor concepts, ranging from n/sub e/ approx. 2 x 10 14 cm -3 to several orders of magnitude greater, that offer potential advantages over the main-line, n/sub e/ approx. 1 x 10 14 cm -3 , Tokamak reactor designs. The high density scalings of several major diagnostic techniques, some favorable and some disadvantageous, will be discussed. Special emphasis will be given to interferometric methods, both electronic and photographic, for which integral n/sub e/dl measurements and associated techniques are accessible with low wavelength lasers. Reactor relevant experience from higher density, smaller dimension devices exists. High density implies high β, which implies economies of scale. The specialized features of high β diagnostics will be discussed

  6. Synchrotron radiation from magnetic undulators as a prospective diagnostic tool

    International Nuclear Information System (INIS)

    Barbini, R.; Ciocci, F.; Dattoli, G.; Torre, A.; Ginnessi, L.

    1989-01-01

    The brightness of the radiation emitted by an ultrarelativistic e-beam passing through a magnetic undulator is sensitive to the beam quality (namely, energy spread and emittances) and to the undulator characteristics (i.e., possible random errors both in intensity and direction of magnetization, etc.) The spectrum distortion induced by the above effects and the possibility of using the undulator radiation as a diagnostic tool is discussed. Finally the importance of near-field effects when the radiation is detectedunfocussed off-axis and how they can combine with the effects induced by the beam emittances to produced a larger on-axis inhomogeneous broadening

  7. Debugging in a multi-processor environment

    International Nuclear Information System (INIS)

    Spann, J.M.

    1981-01-01

    The Supervisory Control and Diagnostic System (SCDS) for the Mirror Fusion Test Facility (MFTF) consists of nine 32-bit minicomputers arranged in a tightly coupled distributed computer system utilizing a share memory as the data exchange medium. Debugging of more than one program in the multi-processor environment is a difficult process. This paper describes what new tools were developed and how the testing of software is performed in the SCDS for the MFTF project

  8. Diagnostic imaging of psoriatic arthritis. Part II: magnetic resonance imaging and ultrasonography

    Directory of Open Access Journals (Sweden)

    Iwona Sudoł-Szopińska

    2016-06-01

    Full Text Available Plain radiography reveals specific, yet late changes of advanced psoriatic arthritis. Early inflammatory changes are seen both on magnetic resonance imaging and ultrasound within peripheral joints (arthritis, synovitis, tendons sheaths (tenosynovitis, tendovaginitis and entheses (enthesitis, enthesopathy. In addition, magnetic resonance imaging enables the assessment of inflammatory features in the sacroiliac joints (sacroiliitis, and the spine (spondylitis. In this article, we review current opinions on the diagnostics of some selective, and distinctive features of psoriatic arthritis concerning magnetic resonance imaging and ultrasound and present some hypotheses on psoriatic arthritis etiopathogenesis, which have been studied with the use of magnetic resonance imaging. The following elements of the psoriatic arthritis are discussed: enthesitis, extracapsular inflammation, dactylitis, distal interphalangeal joint and nail disease, and the ability of magnetic resonance imaging to differentiate undifferentiated arthritis, the value of whole-body magnetic resonance imaging and dynamic contrast-enhanced magnetic resonance imaging.

  9. Continuous data acquisition with online analysis for the Wendelstein 7-X magnetic diagnostics

    International Nuclear Information System (INIS)

    Hennig, Ch.; Werner, A.; Marquardt, M.; Bluhm, T.; Kroiss, H.; Kuehner, G.; Heimann, P.; Maier, J.; Riemann, H.; Zilker, M.

    2008-01-01

    The coupling of continuous data acquisition and continuous online analysis keeping up with the acquisition is one of the features the W7-X data acquisition system is designed for. As proof of principle of this concept the magnetic diagnostics have been implemented. The magnetic diagnostics measure time derivatives of the magnetic fluxes and the signals have to be time integrated accordingly. Both measurement and analysis tasks are executed on a single PC based system. The configuration of both hard- and software of the system is presented. Special focuses are the task of software integration of a user supplied online analysis function into the data acquisition system and the incorporation of the complete system into the W7-X segment concept in use by the control system. The complete installation has been tested at the WEGA Stellarator experiment. Because WEGA is capable of continuous steady state plasma operation the practical suitability of the installation for W7-X could be demonstrated successfully

  10. The design of magnetic diagnostics for reconstructing of NCSX stellarator equilibria

    International Nuclear Information System (INIS)

    Lazarus, E.A.; Pomphrey, N.

    2005-01-01

    In previous work we have demonstrated that NCSX (National Compact Stellarator Experiment) will require active control of the helical and poloidal field coils in order to remain on a stable trajectory to high beta while retaining quasi-axisymmetry. We require a set of magnetic diagnostics that will be sensitive to changes in the equilibrium that represent departures from such a trajectory. That is, we will need to control features of the plasma boundary shape to a specification; that specification itself will vary with the current and pressure profiles. We need to determine a satisfactory set of magnetic sensors for this task To address this we have postulated a diagnostic set of 443 sensors that we believe is overly complete. A data base of ∼2500 free-boundary equilibria is created with variation of coil currents, plasma pressure and toroidal current profiles, plasma size, total pressure and total current. The signals expected on this array of diagnostics are calculated using a response function formalism. These are used in a linear regression to predict the magnetic field on a smallest vacuum surface that encompasses all the equilibria in the database. We have extended a standard 'variable selection' method of multivariate statistics to determine a complete ranking of the sensors. The ranking scheme is based on properties of the null space of the matrix of diagnostic signals for all equilibria in the database. Subsets are chosen according to this ranking and we judge adequacy by our ability to reconstruct the equilibrium with STELLOPT. While the ability to reconstruct the equilibrium in free boundary does not yield information on optimal control algorithms, it does show whether a particular set of sensors contains the necessary information to allow control of the plasma. Results will be reported. It is yet to be determined just how much information about the profiles can be known from external measurements. We will present results of a study that addresses this

  11. Computer control and data acquisition system for the Mirror Fusion Test Facility Ion Cyclotron Resonant Heating System (ICRH)

    International Nuclear Information System (INIS)

    Cheshire, D.L.; Thomas, R.A.

    1985-01-01

    The Lawrence Livermore National Laboratory (LLNL) large Mirror Fusion Test Facility (MFTF-B) will employ an Ion Cyclotron Resonant Heating (ICRH) system for plasma startup. As the MFTF-B Industrial Participant, TRW has responsibility for the ICRH system, including development of the data acquisition and control system. During the MFTF-B Supervisory Control and Diagnostic System (SCDS). For subsystem development and checkout at TRW, and for verification and acceptance testing at LLNL, the system will be run from a stand-alone computer system designed to simulate the functions of SCDS. The ''SCDS Simulator'' was developed originally for the MFTF-B ECRH System; descriptions of the hardware and software are updated in this paper. The computer control and data acquisition functions implemented for ICRH are described, including development status, and test schedule at TRW and at LLNL. The application software is written for the SCDS Simulator, but it is programmed in PASCAL and designed to facilitate conversion for use on the SCDS computers

  12. High voltage diagnostics on electrical insulation of supersonducting magnets

    International Nuclear Information System (INIS)

    Irmisch, M.

    1995-12-01

    The high voltage (HV) performance of superconducting magnets of large dimensions, e.g. as needed in fusion reactors, is a challange in the field of high voltage technology, i.e. especially in the field of cryogenic high voltage components and with respect to questions of HV insulation diagnostics at low temperature. By using the development of POLO - a superconducting prototype coil of a tokamak poloidal field coil - as an example, this work deals with special problems of how to get use of conventional HV test techniques for diagnostics under special cryogenic boundary conditions. As a first approach to gain experience in the field of phase resolved partial discharge (PRPD) measurements during operation of a superconductive coil, the POLO coil was subject to several high voltage tests. Compared with DC insulation resistance measurements and capacitive impulse voltage discharges to the coil, the AC PD measurements have been the only way to observe special characteristics of the electrical insulation with respect to the cooling down of the coil from 300 K to 4.2 K. The PRPD measurement technique thereby has proofed as a suitable diagnostic tool. This work can serve as basic data to be comparable within further projects of electrical insulation diagnostics at cryogenic temperatures. (orig.)

  13. Electron ring diagnostics with magnetic probes during roll-out and acceleration

    International Nuclear Information System (INIS)

    Schumacher, U.; Ulrich, M.

    1976-03-01

    Different methods using magnetic field probes to determine the properties of electron rings during their compression, roll-out and acceleration are presented. The results of the measurements of the electron number and the axial velocity and acceleration of the rings, as obtained with the various diagnostic devices, are discussed and compared. (orig.) [de

  14. Device configuration-management system

    International Nuclear Information System (INIS)

    Nowell, D.M.

    1981-01-01

    The Fusion Chamber System, a major component of the Magnetic Fusion Test Facility, contains several hundred devices which report status to the Supervisory Control and Diagnostic System for control and monitoring purposes. To manage the large number of diversity of devices represented, a device configuration management system was required and developed. Key components of this software tool include the MFTF Data Base; a configuration editor; and a tree structure defining the relationships between the subsystem devices. This paper will describe how the configuration system easily accomodates recognizing new devices, restructuring existing devices, and modifying device profile information

  15. The diagnostic accuracy of 1.5T magnetic resonance imaging for detecting root avulsions in traumatic adult brachial plexus injuries.

    Science.gov (United States)

    Wade, Ryckie G; Itte, Vinay; Rankine, James J; Ridgway, John P; Bourke, Grainne

    2018-03-01

    Identification of root avulsions is of critical importance in traumatic brachial plexus injuries because it alters the reconstruction and prognosis. Pre-operative magnetic resonance imaging is gaining popularity, but there is limited and conflicting data on its diagnostic accuracy for root avulsion. This cohort study describes consecutive patients requiring brachial plexus exploration following trauma between 2008 and 2016. The index test was magnetic resonance imaging at 1.5 Tesla and the reference test was operative exploration of the supraclavicular plexus. Complete data from 29 males was available. The diagnostic accuracy of magnetic resonance imaging for root avulsion(s) of C5-T1 was 79%. The diagnostic accuracy of a pseudomeningocoele as a surrogate marker of root avulsion(s) of C5-T1 was 68%. We conclude that pseudomeningocoles were not a reliable sign of root avulsion and magnetic resonance imaging has modest diagnostic accuracy for root avulsions in the context of adult traumatic brachial plexus injuries. III.

  16. Case fault analysis for the mirror fusion test facility (MFTF) magnet system

    International Nuclear Information System (INIS)

    Baldi, R.W.; Poniktera, C.D.

    1979-03-01

    This report describes the stress analysis performed to determine the criticality of selected failures in the magnet case, jacket, and intercoil member. The selected faults were idealized by adding additional nodes coincidental to existing nodes in the baseline finite element model and changing fault boundary plate connectivities. No attempt was made to alter the analysis mesh size adjacent to any fault as this degree of effort was beyond the intent and scope of this task. Results of this analysis indicated that two of the five faults analyzed would be catastrophic in nature. Faults of this cateogry were: Fault No. 1 - A weld joint failure in the minor radius 3 to 5 inch plate inter section in the chamfer region at the centerline of symmetry. Fault No. 5 - Failuree of the 3 to 5 inch transition butt weld joint at the major to minor radius transition on the magnet case top plate

  17. Development of transient internal probe (TIP) magnetic field diagnostic

    International Nuclear Information System (INIS)

    Galambos, J.P.; Bohnet, M.A.; Jarboe, T.R.; Mattick, A.T.

    1994-01-01

    The Transient Internal Probe (TIP) is designed to permit measurement of internal magnetic fields, in hot, high density plasmas. The concept consists of accelerating a probe to high velocities (2.2 Km/s) in order to minimize probe exposure time to plasma. Faraday rotation within the probe is used to measure the local magnetic field. An Argon laser illuminates the probe consisting of a Faraday-rotator material with a retro-reflector that returns the incident light to the detection system. Performance results of the light gas gun and optical detection system will be shown. To date, the gas gun has been extensively tested consistently achieving velocities between 2 and 3 km/s. The probe and detection scheme have been tested by dropping the probe through a static magnetic field. Magnetic field resolution of 20 gauss and spatial resolution of 5 mm has been achieved. System frequency response is 10Mhz. Work is currently being conducted to integrate the diagnostic system with laboratory plasma experiments. Specifically a gas interfaced system has been developed to prevent helium muzzle gas from entering the plasma chamber with the probe. Additionally the probe must be separated from the sabot which protects the probe during acceleration in the gas gun. Data will be presented showing the results of various separation techniques

  18. Fat infiltration on magnetic resonance imaging of the sacroiliac joints has limited diagnostic utility in nonradiographic axial spondyloarthritis

    DEFF Research Database (Denmark)

    Weber, Ulrich; Pedersen, Susanne J; Zubler, Veronika

    2014-01-01

    To explore whether morphological features of fat infiltration (FI) on sacroiliac joint (SIJ) magnetic resonance imaging (MRI) contribute to diagnostic utility in 2 inception cohorts of patients with nonradiographic axial spondyloarthritis (nr-axSpA).......To explore whether morphological features of fat infiltration (FI) on sacroiliac joint (SIJ) magnetic resonance imaging (MRI) contribute to diagnostic utility in 2 inception cohorts of patients with nonradiographic axial spondyloarthritis (nr-axSpA)....

  19. Influence of patellar type and localization on chondromaliacia of patella, magnetic resonanse diagnostics

    OpenAIRE

    Žukauskas, Tomas

    2017-01-01

    Tomas Žukauskas Master’s thesis – influence of patellar type and localization on chondromaliacia of patella, magnetic resonanse diagnostics. Academic supervisor Prof. Eglė Monastyreckienė. Place of study was Lithuanian University of Health Sciences, Radiology department. The aim of study: to investigate the link between patellar type and localization with chondromaliacia of the patella using magnetic resonanse imaging. The objectives were: to investigate patellar type’s influence on its ch...

  20. Magnetic shielding for FEL microwave electric field diagnostic in MTX tokamak

    International Nuclear Information System (INIS)

    Yamada, Shinichi; Odajima, Kazuo; Ishida, Hiroyasu

    1991-07-01

    A diagnostic system for measurement of microwave electric field from free electron laser (FEL) is in preparation at JAERI under JAERI-DOE collaborative program in the Microwave Tokamak Experiment (MTX) being held at Lawrence Livermore National Laboratory in U.S.A.. That is called LAPPS (Laser Aided Particle Probe Spectroscopy). This is consist of helium neutral beam source, a dye laser and viewing optics. It is required that 1000 gauss of the magnetic field must be shielded to less than 1 gauss in order to operate these LAPPS components. New high performance soft ferrous magnetic material 'FERROPERM' and PERMALLOY are used on this purpose. This paper proposes a new method to estimate a required thickness of the magnetic shielding in a saturated region of B-H curve, that is, 'magnetic shielding calculation by Virtual Divided Layers Method (VDLM)', where the shielding layer is virtually divided in many layers in the calculation. The results are compared with a computer simulation using 'three dimensional static magnetic field code' and with experimental results in a uniform static field. (author)

  1. Design of a Magnetic Resonance-Safe Haptic Wrist Manipulator for Movement Disorder Diagnostics

    NARCIS (Netherlands)

    Bode, Dyon; Mugge, Winfred; Schouten, Alfred C.; van Rootselaar, Anne-Fleur; Bour, Lo J.; van der Helm, Frans C. T.; Lammertse, Piet

    2017-01-01

    Tremor, characterized by involuntary and rhythmical movements, is the most common movement disorder. Tremor can have peripheral and central oscillatory components which properly assessed may improve diagnostics. A magnetic resonance (MR)-safe haptic wrist manipulator enables simultaneous measurement

  2. Transport medicine, osteochondrosis, diagnostic, preventions of complications, physiotherapy, impulse magnetic stimulation

    Directory of Open Access Journals (Sweden)

    V. V. Loboiko

    2017-01-01

      Summary Offered us medical and rehabilitation complex using pulsed magnetic stimulation for the prevention and treatment of complications of destructive-degenerative disorders of the spine in patients with low back pain lumbar zone greatly increases the effectiveness sanogenetic mechanisms to improve trophic processes in the spinal segments, both in the area of formation of pathological disorders and in areas distal lower extremities. The positive dynamics of functioning structures spinal nerve under the influence of pulsed magnetic stimulation provides improved hemodynamic performance throughout the vascular bed in the lower extremities. It was established that the basis sanogenetic improve the mechanisms of blood vessels, are processes that define their tone, elasticity and adequacy of response to treatment and rehabilitation influence factors. High efficiency pulsed magnetic stimulation achieved by potentiating its effect on biological effects, which are formed in the body using standard treatments for osteoarthritis. Key words. Transport medicine, osteochondrosis, diagnostic, preventions of complications, physiotherapy, impulse magnetic stimulation.

  3. Mirror fusion test facility

    International Nuclear Information System (INIS)

    Post, R.F.

    1978-01-01

    The MFTF is a large new mirror facility under construction at Livermore for completion in 1981--82. It represents a scaleup, by a factor of 50 in plasma volume, a factor of 5 or more in ion energy, and a factor of 4 in magnetic field intensity over the Livermore 2XIIB experiment. Its magnet, employing superconducting NbTi windings, is of Yin-Yang form and will weigh 200 tons. MFTF will be driven by neutral beams of two levels of current and energy: 1000 amperes of 20 keV (accelerating potential) pulsed beams for plasma startup; 750 amperes of 80 keV beams of 0.5 second duration for temperature buildup and plasma sustainment. Two operating modes for MFTF are envisaged: The first is operation as a conventional mirror cell with n/sup tau/ approximately equal to 10 12 cm -3 sec, W/sub i/ = 50 keV, where the emphasis will be on studying the physics of mirror cells, particularly the issues of improved techniques of stabilization against ion cyclotron modes and of maximization of the electron temperature. The second possible mode is the further study of the Field Reversed Mirror idea, using high current neutral beams to sustain the field-reversed state. Anticipating success in the coming Livermore Tandem Mirror Experiment (TMX) MFTF has been oriented so that it could comprise one end cell of a scaled up TM experiment. Also, if MFTF were to succeed in achieving a FR state it could serve as an essentially full-sized physics prototype of one cell of a FRM fusion power plant

  4. Measurements with magnetic field in the National Spherical Torus Experiment using the motional Stark effect with laser induced fluorescence diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Foley, E. L.; Levinton, F. M. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)

    2013-04-15

    The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.

  5. Measurements with magnetic field in the National Spherical Torus Experiment using the motional Stark effect with laser induced fluorescence diagnostic

    Science.gov (United States)

    Foley, E. L.; Levinton, F. M.

    2013-04-01

    The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.

  6. Mirror Fusion Test Facility data compression study. Final report

    International Nuclear Information System (INIS)

    1979-11-01

    This report is organized as follows. Discussions are given of three of the most important data compression methods that have been developed and studied over the years: coding, transforms, and redundancy reduction. (A brief discussion of how to combine and synthesize these ideas, and others, into a system is given). Specific ideas for compressing MFTF diagnostics and control data are developed. Listings and instructions for using FORTRAN programs that were compiled on the Livermore MFTF computers during the course of the study are also given

  7. Development of a Plasma Streaming System for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Holdsworth, T.; Clark, R.N.; McCotter, R.E.; Rossow, T.L.; Cruz, G.E.

    1979-01-01

    The Plasma Streaming System (PSS) is an essential portion of the Mirror Fusion Test Facility (MFTF), scheduled for completion in October 1981. The PSS will develop a plasma density of at least 2 x 10 12 particles/cm 3 at the MFTF magnet centerline by injecting particles along the field lines. The plasma will have a midplane plasma radius as large as 40 cm with variable plasma particle energy and beam geometry. Minimum amounts of impurities will be injected, with emphasis on minimizing high Z materials. Each of the 60 PSS units will consist of a gun magnet assembly (GMA) and a power supply. Each GMA consists of a plasma streaming gun, a pulse magnet that provides variable beam shaping, and a fast reaction pulse gas valve

  8. Features of laser spectroscopy and diagnostics of plasma ions in high magnetic fields

    International Nuclear Information System (INIS)

    Semerok, A F; Fomichev, S V

    2003-01-01

    Laser induced fluorescence and laser absorption spectroscopies of plasma ions in high magnetic fields have been investigated. Both the high degree of Zeeman splitting of the resonant transitions and the ion rotational movement drastically change the properties of the resonance interaction of the continuous wave laser radiation with ions in highly magnetized plasma. Numerical solution of the density matrix equation for a dissipative two-level system with time-dependent detuning from resonance was used to analyse this interaction. A theoretical simulation was performed and compared with the experimental results obtained from the laser spectroscopy diagnostics of barium plasma ions in high magnetic fields in the several tesla range

  9. Mirror Fusion Test Facility: an intermediate device to a mirror fusion reactor

    International Nuclear Information System (INIS)

    Karpenko, V.N.

    1983-01-01

    The Mirror Fusion Test Facility (MFTF-B) now under construction at Lawrence Livermore National Laboratory represents more than an order-of-magnitude step from earlier magnetic-mirror experiments toward a future mirror fusion reactor. In fact, when the device begins operating in 1986, the Lawson criteria of ntau = 10 14 cm -3 .s will almost be achieved for D-T equivalent operation, thus signifying scientific breakeven. Major steps have been taken to develop MFTF-B technologies for tandem mirrors. Steady-state, high-field, superconducting magnets at reactor-revelant scales are used in the machine. The 30-s beam pulses, ECRH, and ICRH will also introduce steady-state technologies in those systems

  10. Assessment of structural lesions in sacroiliac joints enhances diagnostic utility of magnetic resonance imaging in early spondylarthritis

    DEFF Research Database (Denmark)

    Weber, Ulrich; Lambert, Robert G W; Pedersen, Susanne J

    2010-01-01

    To compare the diagnostic utility of T1-weighted and STIR magnetic resonance imaging (MRI) sequences in early spondylarthritis (SpA) using a standardized approach to the evaluation of sacroiliac (SI) joints, and to test whether systematic calibration of readers directed at recognition of abnormal......To compare the diagnostic utility of T1-weighted and STIR magnetic resonance imaging (MRI) sequences in early spondylarthritis (SpA) using a standardized approach to the evaluation of sacroiliac (SI) joints, and to test whether systematic calibration of readers directed at recognition...

  11. Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume I. Organization plan

    International Nuclear Information System (INIS)

    1981-12-01

    This plan and the accompanying MFTF-B Integrated Operations Plan are submitted in response to UC/LLNL Purchase Order 3883801, dated July 1981. The organization plan also addresses the specific tasks and trade studies directed by the scope of work. The Integrated Operations Plan, which includes a reliability, quality assurance, and safety plan and an integrated logistics plan, comprises the burden of the report. In the first section of this volume, certain underlying assumptions and observations are discussed setting the requirements and limits for organization. Section B presents the recommended structure itself. Section C Device Availability vs Maintenance and Support Efforts and Section D Staffing Levels and Skills provide backup detail and justification. Section E is a trade study on maintenance and support by LLNL staff vs subcontract and Section F is a plan for transitioning from the construction phase into operation. A brief summary of schedules and estimated costs concludes the volume

  12. Lectures in plasma diagnostics

    International Nuclear Information System (INIS)

    Hutchinson, I.H.

    1990-06-01

    This paper discusses the following topics on plasma diagnostics: Electric probes in flowing and magnetized plasmas; Electron cyclotron emission absorption; Magnetic diagnostics; Spectroscopy; and Thomson Scattering

  13. Diagnostic yield of lumbosacral magnetic resonance imaging requested by paediatric urology consultations.

    Science.gov (United States)

    Fernández-Ibieta, M; Rojas Ticona, J; Villamil, V; Guirao Piñera, M J; López García, A; Zambudio Carmona, G

    2017-11-01

    In the historical series, the diagnostic yield of lumbosacral magnetic resonance imaging to rule out occult spinal dysraphism (or occult myelodysplasia), requested by paediatric urology, ranged from 2% to 15%. The aim of this study was to define our cost-effectiveness in children with urinary symptoms and to define endpoints that increase the possibility of finding occult spinal dysraphism. A screening was conducted on patients with urinary dysfunction for whom an magnetic resonance imaging was requested by the paediatric urology clinic, for persistent symptoms after treatment, voiding dysfunction or other clinical or urodynamic findings. We analysed clinical (UTI, daytime leaks, enuresis, voiding dysfunction, urgency, renal ultrasonography, lumbosacral radiography, history of acute urine retention, skin stigma and myalgia) and urodynamic endpoints (hyperactivity or areflexia, voiding dysfunction, interrupted pattern, accommodation value and maximum flow). A univariate analysis was conducted with SPSS 20.0. We analysed 21 patients during the period 2011-2015. The median age was 6 years (3-10). Three patients (14.3%) had occult spinal dysraphism: one spinal lipoma, one filum lipomatosus and one caudal regression syndrome with channel stenosis. The endpoints with statistically significant differences were the myalgias and the history of acute urine retention (66.7% vs. 5.6%, P=.04; OR= 34; 95%CI: 1.5-781 for both endpoints). The diagnostic yield of magnetic resonance imaging requested for children with urinary dysfunctions without skin stigma or neuro-orthopaedic abnormalities is low, although nonnegligible. In this group, the patients with a history of acute urine retention and muscle pain (pain, «cramps») can experience a greater diagnostic yield or positive predictive value. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Magnetic diagnostic of SOL-filaments generated by type I ELMs on JET and ASDEX Upgrade

    DEFF Research Database (Denmark)

    Naulin, Volker; Vianello, N.; Schrittwieser, R.

    2011-01-01

    to a simple model, motivated by observations. A new diagnostic in the form of a reciprocating probe with three magnetic pickup loops was developed for ASDEX Upgrade (AUG). Measurements during the passage of type-I ELM filaments determine the filaments to be in the scrape off layer (SOL) and to carry currents......This contribution is focused on the magnetic signatures of type I ELM filaments. On JET a limited number of high time resolution magnetic coils were used to derive essential ELM filament parameters. The method uses forward modelling and simultaneous fitting of magnetic pickup coil signals...

  15. ICTP-IAEA Workshop on Dense Magnetized Plasma and Plasma Diagnostics: an executive summary

    Science.gov (United States)

    Gribkov, V. A.; Mank, G.; Markowicz, A.; Miklaszewski, R.; Tuniz, C.; Crespo, M. L.

    2011-12-01

    The Workshop on Dense Magnetized Plasma and Plasma Diagnostics was held from 15 to 26 November 2010 at the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. It was attended by 60 participants, including 15 lecturers, 2 tutors and 37 trainees, representing 25 countries.

  16. ICTP-IAEA Workshop on Dense Magnetized Plasma and Plasma Diagnostics: an executive summary

    International Nuclear Information System (INIS)

    Gribkov, V.A.; Mank, G.; Markowicz, A.; Miklaszewski, R.; Tuniz, C.; Crespo, M.L.

    2011-01-01

    The Workshop on Dense Magnetized Plasma and Plasma Diagnostics was held from 15 to 26 November 2010 at the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. It was attended by 60 participants, including 15 lecturers, 2 tutors and 37 trainees, representing 25 countries. (conference report)

  17. Computer model of the MFTF-B neutral beam Accel dc power supply

    International Nuclear Information System (INIS)

    Wilson, J.H.

    1983-01-01

    Using the SCEPTRE circuit modeling code, a computer model was developed for the MFTF Neutral Beam Power Supply System (NBPSS) Accel dc Power Supply (ADCPS). The ADCPS provides 90 kV, 88 A, to the Accel Modulator. Because of the complex behavior of the power supply, use of the computer model is necessary to adequately understand the power supply's behavior over a wide range of load conditions and faults. The model developed includes all the circuit components and parameters, and some of the stray values. The model has been well validated for transients with times on the order of milliseconds, and with one exception, for steady-state operation. When using a circuit modeling code for a system with a wide range of time constants, it can become impossible to obtain good solutions for all time ranges at once. The present model concentrates on the millisecond-range transients because the compensating capacitor bank tends to isolate the power supply from the load for faster transients. Attempts to include stray circuit elements with time constants in the microsecond and shorter range have had little success because of huge increases in computing time that result. The model has been successfully extended to include the accel modulator

  18. MAGNETIC DIAGNOSTICS OF THE SOLAR CHROMOSPHERE WITH THE Mg II h–k LINES

    Energy Technology Data Exchange (ETDEWEB)

    Del Pino Alemán, T.; Casini, R. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Manso Sainz, R. [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-10-20

    We investigated the formation of the Mg ii h–k doublet in a weakly magnetized atmosphere (20–100 G) using a newly developed numerical code for polarized radiative transfer in a plane-parallel geometry, which implements a recent formulation of partially coherent scattering by polarized multi-term atoms in arbitrary magnetic-field regimes. Our results confirm the importance of partial redistribution effects in the formation of the Mg ii h and k lines, as pointed out by previous work in the non-magnetic case. We show that the presence of a magnetic field can produce measurable modifications of the broadband linear polarization even for relatively small field strengths (∼10 G), while the circular polarization remains well represented by the classical magnetograph formula. Both these results open an important new window for the weak-field diagnostics of the upper solar atmosphere.

  19. Structural support of a yin-yang magnet for a tandem mirror reactor with thermal barriers

    International Nuclear Information System (INIS)

    Erickson, J.L.; Ojalvo, I.U.; Myall, J.O.

    1980-01-01

    This report contains a comprehensive summary covering work performed by Grumman Aerospace Corporation, in conjunction with the Lawrence Livermore National Laboratory, on the TMP yin-yang coils. The yin-yang coil pair used for our analysis has a major arc radius of 2.7 m and a minor arc radius of 1.18 m, compared with 2.5 m and 0.75 m for the MFTF. The maximum field on the present conductor is 9.05 Tesla. This magnetic field is created by, and interacts with, a conductor current which produces a 360 million Newton total force, tending to separate the parallel lobes of the major arcs

  20. Neutral beams for magnetic fusion

    International Nuclear Information System (INIS)

    Hooper, B.

    1977-01-01

    Significant advances in forming energetic beams of neutral hydrogen and deuterium atoms have led to a breakthrough in magnetic fusion: neutral beams are now heating plasmas to thermonuclear temperatures, here at LLL and at other laboratories. For example, in our 2XIIB experiment we have injected a 500-A-equivalent current of neutral deuterium atoms at an average energy of 18 keV, producing a dense plasma (10 14 particles/cm 3 ) at thermonuclear energy (14 keV or 160 million kelvins). Currently, LLL and LBL are developing beam energies in the 80- to 120-keV range for our upcoming MFTF experiment, for the TFTR tokamak experiment at Princeton, and for the Doublet III tokamak experiment at General Atomic. These results increase our long-range prospects of producing high-intensity beams of energies in the hundreds or even thousands of kilo-electron-volts, providing us with optimistic extrapolations for realizing power-producing fusion reactors

  1. Plasma diagnostics for tokamaks and stellarators. Proceedings of the IV Course and Workshop on Magnetic Confinement Fusion. UIMP Santander (Spain), June 1992

    International Nuclear Information System (INIS)

    Stott, P. E.; Sanchez, J.

    1994-01-01

    A collection of papers on plasma diagnostics is presented. The papers show the state of the art developments in a series of techniques: Magnetic diagnostics, Edge diagnostics, Langmuir probes, Spectroscopy, Microwave and FIR diagnostics as well as Thomson Scattering. Special interest was focused on those diagnostics oriented to fluctuations measurements in the plasma. (Author) 451 refs

  2. Light extinction method for diagnostics of particles sizes formed in magnetic field

    Science.gov (United States)

    Myshkin, Vyacheslav; Izhoykin, Dmitry; Grigoriev, Alexander; Gamov, Denis; Leonteva, Daria

    2018-03-01

    The results of laser diagnostics of dispersed particles formed upon cooling of Zn vapor are presented. The radiation attenuation in the wavelength range 420-630 nm with a step of 0.3 nm was registered. The attenuation coefficients spectral dependence was processed using known algorithms for integral equation solving. The 10 groups of 8 attenuation coefficients were formed. Each group was processed taking with considering of previous decisions. After processing of the 10th group of data, calculations were repeated from the first one. Data of the particles sizes formed in a magnetic field of 0, 44 and 76 mT are given. A model of physical processes in a magnetic field is discussed.

  3. High magneticfield test of Bismuth Hall sensors for ITER steady state magnetic diagnostic

    Czech Academy of Sciences Publication Activity Database

    Ďuran, Ivan; Entler, Slavomír; Kohout, Michal; Kocan, M.; Vayakis, G.

    2016-01-01

    Roč. 87, č. 11 (2016), č. článku 11D446. ISSN 0034-6748. [Topical Conference on High-Temperature Plasma Diagnostics (HTPD2016) /21./. Madison, Wisconsin, 05.06.2016-09.06.2016] R&D Projects: GA MŠk LG14002 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : Hall sensors * ITER * Hall effect * magnetic diagnostic Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: 2.11 Other engineering and technologies; 2.11 Other engineering and technologies (FZU-D) Impact factor: 1.515, year: 2016 http://scitation.aip.org/content/aip/journal/rsi/87/11/10.1063/1.4964435

  4. Reversed field pinch diagnostics

    International Nuclear Information System (INIS)

    Weber, P.G.

    1986-01-01

    The Reversed Field Pinch (RFP) is a toroidal, axisymmetric magnetic confinement configuration characterized by a magnetic field configuration in which the toroidal magnetic field is of similar strength to the poloidal field, and is reversed at the edge compared to the center. The RFP routinely operates at high beta, and is a strong candidate for a compact fusion device. Relevant attributes of the configuration will be presented, together with an overview of present and planned experiments and their diagnostics. RFP diagnostics are in many ways similar to those of other magnetic confinement devices (such as tokamaks); these lectures will point out pertinent differences, and will present some diagnostics which provide special insights into unique attributes of the RFP

  5. The diagnostic accuracy of acetabular labral tears using magnetic resonance imaging and magnetic resonance arthrography: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Toby O. [University of East Anglia, Faculty of Health, Queen' s Building, Norwich (United Kingdom); Hilton, Gemma [Norfolk and Norwich University Hospital, Norwich (United Kingdom); Toms, Andoni P.; Donell, Simon T. [Norfolk and Norwich University Hospital, University of East Anglia, Norwich (United Kingdom); Hing, Caroline B. [St. George' s Hospital, London (United Kingdom)

    2011-04-15

    Magnetic resonance imaging (MRI) and magnetic resonance arthrography (MRA) have been advocated for the diagnosis of acetabular labral tears. The purpose of this study was to determine the sensitivity and specificity of MRI and MRA in diagnosing acetabular labral tears using meta-analysis. Pertinent published and unpublished literature databases were reviewed. A two-by-two table was constructed to calculate the sensitivity and specificity of MRI or MRA investigations against surgical outcomes. Pooled sensitivity and specificity and Receiver Operating Characteristic curve (ROC) evaluations were performed. Methodological quality of each study was assessed using the QUADAS (Quality Assessment of Diagnostic Accuracy Studies) tool. Nineteen papers assessing 881 hips were reviewed. Conventional MRI was assessed in 13 studies and MRA was assessed in 16 studies. Whilst both MRI (0.5-3T) and MRA (0.5-3T) presented with a moderate sensitivity and specificity (sensitivity 66%, 87%; specificity 79%, 64%), diagnostic accuracy of MRA appeared to be superior to MRI in detecting acetabular labral tears on ROC curve interpretation. The literature poorly described population characteristics, assessor blinding, with limited sample sizes. MRI and MRA may be useful adjuncts in the diagnosis of acetabular labral tears in adults. MRA appears to be superior to conventional MRI. (orig.)

  6. A computer model of the MFTF-B neutral beam accel dc power supply

    International Nuclear Information System (INIS)

    Wilson, J.H.

    1983-01-01

    Using the SCEPTRE circuit modeling code, a computer model was developed for the MFTF Neutral Beam Power Supply System (NBPSS) Accel DC Power Supply (ADCPS). The ADCPS provides 90 kV, 88 A, to the Accel Modulator. Because of the complex behavior of the power supply, use of the computer model is necessary to adequately understand the power supply's behavior over a wide range of load conditions and faults. The model developed includes all the circuit components and parameters, and some of the stray values. The model has been well validated for transients with times on the order of milliseconds, and with one exception, for steady-state operation. When using a circuit modeling code for a system with a wide range of time constants, it can become impossible to obtain good solutions for all time ranges at once. The present model concentrates on the millisecond-range transients because the compensating capacitor bank tends to isolate the power supply from the load for faster transients. Attempts to include stray circuit elements with time constants in the microsecond and shorter range have had little success because of hugh increases in computing time that result. The model has been successfully extended to include the accel modulator

  7. Diagnostics of Coronal Magnetic Fields through the Hanle Effect in UV and IR Lines

    Energy Technology Data Exchange (ETDEWEB)

    Raouafi, Nour E. [The John Hopkins University Applied Physics Laboratory, Laurel, MD (United States); Riley, Pete [Predictive Science Inc., San Diego, CA (United States); Gibson, Sarah [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Fineschi, Silvano [The Astrophysical Observatory of Turin, National Institute for Astrophysics, Turin (Italy); Solanki, Sami K., E-mail: noureddine.raouafi@jhuapl.edu [Max-Planck-Institut für Sonnensystemforschung, Göttingen (Germany); School of Space Research, Kyung Hee University, Yongin, South (Korea, Republic of)

    2016-06-22

    The plasma thermodynamics in the solar upper atmosphere, particularly in the corona, are dominated by the magnetic field, which controls the flow and dissipation of energy. The relative lack of knowledge of the coronal vector magnetic field is a major handicap for progress in coronal physics. This makes the development of measurement methods of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV and IR spectral lines is a largely unexplored diagnostic. We use magnetohydrodynamic (MHD) simulations to study the magnitude of the signal to be expected for typical coronal magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely the H i Ly-α and the He i 10,830 Å lines. We show that the selected lines are useful for reliable diagnosis of coronal magnetic fields. The results show that the combination of polarization measurements of spectral lines with different sensitivities to the Hanle effect may be most appropriate for deducing coronal magnetic properties from future observations.

  8. Magnetic resonance imaging and spectroscopy- emerging trends in medical diagnostics and therapy

    International Nuclear Information System (INIS)

    Deshmukh, Sudha

    1997-01-01

    A dramatic acceleration in the application of magnetic resonance techniques in the field of medical sciences has been witnessed over the past decade. Magnetic Resonance Imaging (MRI) has been called the most significant development since the discovery of x-rays. As a method of visualizing cross-sectional anatomy, MRI is without peer. MRI images can now provide in-vivo anatomical details that were earlier available only with invasive procedures. Yet, despite its extraordinary potential, MRI has had limited success, if any, in tissue characterization using the three image parameters T 1 , T 2 and proton density ρ. MR spectroscopy has however bridged this gap to a large extent and opened up the possibility of studying in vivo chemistry. In the present article an attempt has been made to give a brief account of the application of magnetic resonance imaging and spectroscopy in medical diagnostics and therapy. The basic principles pertaining to MRI and MRS are also discussed in brief. (author)

  9. The operator interface for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Lang, N.C.

    1986-12-01

    The uncertain and most likely changing nature of a large experimental facility like MFTF, as well as its large number of control and monitor points, ruled against the traditional hardware approach involving walls of knobs, dials, oscilloscopes, and strip chart recorders. Rather, from the beginning, project management specified computer control of all systems, and operation of the complete MFTF under an integrated computer control system became a major engineering goal. The Integrated Controls and Diagnostics (ICADS) group was charged with the design and implementation of this control system. We designed a control system with an extremely flexible operator interface which uses computer generated CRT displays for output and pointing devices such as touch sensitive CRT overlays, mice, and joysticks for input. Construction of MFTF was completed at the end of 1985 within the project budget of $241.6M and was followed immediately by a 5 month long acceptance test. During this period (known as PACE test) operators, engineers, and physicists successfully used our computer control system daily to test MFTF. Much of their willingness to forsake the traditional hands-on hardware approach to testing was a result of the powerful and flexible operator interface to the MFTF control system. In this paper, we describe the operator interface with emphasis on the displays, the touch screens, and the mouse. We also report the experiences of users and, in particular, stress those aspects of the user interface they strongly liked and disliked

  10. Magnetic Field Considerations for the Design and Location of a Diagnostic Neutral Beam Injector for the TJ-II Stellarator

    International Nuclear Information System (INIS)

    McCarthy, K. J.; Lopez Fraguas, A.; Balbin, R.

    2004-01-01

    A diagnostic neutral beam injection system is being developed for the TJ-II stellarator. The principal goal is to increase the signal-to-noise ratio and to provide spatial resolution along the plasma minor radius in Charge Exchange Recombination Spectroscopy and Neutral Particle Analysis diagnostics, while also opening up new opportunities for physics studies. After summarizing the compact diagnostic neutral beam injector system selected as well as the TJ-II vacuum vessel and coil geometry, we address the sensitivity of TJ-II magnetic configurations to the ferromagnetic materials that shield the ion source and neutralizer tubing of the neutral beam injection system using a popular approach in which the field is approximated via magnetic dipole moments, finally, the scientific and design trade-offs made to minimize the impact are discussed. (Author) 24 refs

  11. Clinical diagnostic criteria of multiple sclerosis: the role of magnetic resonance imaging

    International Nuclear Information System (INIS)

    Belair, M.; Girard, M.

    2004-01-01

    The objective of this article is to summarize the diagnostic criteria recommended by the International Panel on the Diagnosis of Multiple Sclerosis in 2001. The recommendations of another working group, the Consortium of Multiple Sclerosis Centers Consensus Meeting, which met in Vancouver in 2001, concerning the diagnosis and follow-up of patients with multiple sclerosis are also presented in an effort to standardize the protocols for magnetic resonance imaging of these patients. (author)

  12. Development of Bismuth Hall sensors for ITER steady state magnetic diagnostics.

    Czech Academy of Sciences Publication Activity Database

    Ďuran, Ivan; Entler, Slavomír; Kočan, M.; Kohout, Michal; Viererbl, L.; Mušálek, Radek; Chráska, Tomáš; Vayakis, G.

    2017-01-01

    Roč. 123, November (2017), s. 690-694 ISSN 0920-3796. [SOFT 2016: Symposium on Fusion Technology /29./. Prague, 05.09.2016-09.09.2016] R&D Projects: GA MŠk LG14002 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : ITER * Magnetic diagnostic * Hall sensor * Bismuth * Neutron irradiation * Radiation hardness Subject RIV: JF - Nuclear Energetics; JF - Nuclear Energetics (FZU-D) OBOR OECD: Nuclear related engineering; Nuclear related engineering (FZU-D) Impact factor: 1.319, year: 2016 http://www.sciencedirect.com/science/article/pii/S0920379617306956

  13. Internal plasma diagnostic with a multichannel magnetic probe system using automatic data acquisition

    International Nuclear Information System (INIS)

    Korten, M.; Carolan, P.G.; Sand, F.; Waelbroeck, F.

    1975-04-01

    A 20-channel magnetic probe system inserted into the plasma is used to measure spatial distributions of poloidal and toroidal magnetic fields in the pulsed toroidal high β-experiment TEE. Plasma parameters, e.g. the β-value, toroidal current density and radial pressure distribution were derived applying static equilibrium theory and can be calculated from the measurements. A data acquisition system used in conjuction with a process computer was operated to obtain the experimental data automatically and to perform the multiple computational tasks. The program system described was built to serve as a first stage of a more common software system applicable for computational data handling for different diagnostics of a plasma physics confinement experiment. (orig.) [de

  14. Local control station for development, testing and maintenance of mirror fusion facility subsystem controls

    International Nuclear Information System (INIS)

    Ables, E.; Kelly, M.F.

    1985-01-01

    A Local Control Station (LCS) was designed and built to provide a simplified ad easily configurable means of controlling any Mirror Fusion Test Facility (MFTF-B) subsystem for the purpose of development, testing and maintenance of the subsystem. All MFTF-B Subsystems incorporate at least one Local Control Computer (LCC) that is connected to and accepts high level commands from one of the Supervisory Control and Diagnostic System (SCDS) computers. The LCS connects directly to the LCC in place of SCDS. The LCS communicates with the subsystem hardware using the same SCDS commands that the local control computer recognizes and as such requires no special configuration of the LCC

  15. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    Science.gov (United States)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  16. Long-pulse beamlines for the mirror fusion test facility

    International Nuclear Information System (INIS)

    Stone, R.R.; Goldner, A.I.; Poulsen, P.

    1984-01-01

    We have recently obtained test results indicating that a beam of pure full-energy deuterium particles can be delivered to the plasma targets in MFTF-B. We used a close-coupled separator magnet with the ion source to separate the impurities from the full-energy deuterium particles. Our completed studies show that the usual iron-core sweep magnet and shielding used in neutral beamlines can be eliminated and the gas flow out of the beamline decreased. This design also reduces beam losses. We will use smooth-bore OFHC tube arrays brazed to manifolds for the active heat transfer surfaces. Tests indicate that both burnout and life requirements are met by this design. In this paper, we present test results and discuss the MFTF-B long-pulse beamline configuration

  17. Magnetic Diagnostics on the Magnetized Shock Experiment (MSX)

    Science.gov (United States)

    Hutchinson, T. M.; Weber, T. E.; Boguski, J. C.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high-Alfvénic, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. An array of high-bandwidth, multi-axis, robust, internal magnetic probes has been constructed to characterize flux compression ratios, instability formation, and turbulent macro-scale features of the post-shock plasma. The mirror magnet is mounted on a linear translation stage, providing a capability to axially move the shock layer through the probe field of view. An independent, external probe array also provides conventional information on the FRC shape, velocity, and total pressure during the formation and acceleration phases. Probe design, characterization, configuration, and initial results are presented. This work is supported by the DOE OFES and NNSA under LANS contract DE-AC52-06NA25369. LA-UR-13-25189.

  18. Faraday-effect polarimeter diagnostic for internal magnetic field fluctuation measurements in DIII-D.

    Science.gov (United States)

    Chen, J; Ding, W X; Brower, D L; Finkenthal, D; Muscatello, C; Taussig, D; Boivin, R

    2016-11-01

    Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ∼ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbations have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.

  19. Faraday-effect polarimeter diagnostic for internal magnetic field fluctuation measurements in DIII-D

    International Nuclear Information System (INIS)

    Chen, J.; Ding, W. X.; Brower, D. L.; Finkenthal, D.; Muscatello, C.; Taussig, D.; Boivin, R.

    2016-01-01

    Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ∼ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbations have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.

  20. Diagnostic utility of candidate definitions for demonstrating axial spondyloarthritis on magnetic resonance imaging of the spine

    DEFF Research Database (Denmark)

    Weber, Ulrich; Zhao, Zheng; Rufibach, Kaspar

    2015-01-01

    OBJECTIVE: A recent consensus statement has suggested ≥3 corner inflammatory lesions (CILs) or several corner fatty lesions (CFLs) as candidate criteria indicative of axial spondyloarthritis (SpA) on magnetic resonance imaging (MRI) of the spine. The aim of this study was to evaluate the diagnostic...

  1. The diagnostic value of three sacroiliac joint pain provocation tests for sacroiliitis identified by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Arnbak, B; Jurik, A G; Jensen, R K

    2017-01-01

    OBJECTIVES: The aim of the current study was to investigate the diagnostic value of three sacroiliac (SI) joint pain provocation tests for sacroiliitis identified by magnetic resonance imaging (MRI) and stratified by gender. METHOD: Patients without clinical signs of nerve root compression were...

  2. Magnetic resonance imaging for diagnostic evaluation of hernia of an invertebral disk

    International Nuclear Information System (INIS)

    Beyer, H.K.; Oppel, G.; Bluemm, R.; Uhlenbrock, D.

    1988-01-01

    The article reports experience gained within three years with diagnostic NMR imaging of the lumbar spine. On the basis of results obtained by almost 500 examinations, an optimisation concept with regard to measuring sequences and orientation of sectional cuts is presented. Imaging of the spine in three planes, with sectional layer thickness between 3 and 5 mm, using a 1.5 Tesla system, seems to yield the diagnostic optimum, and in our opinion is superior over invasive myelography and CT scanning. A prospective study we made indicates a hit rate of 97.2%, and of 100% for evaluation of the results obtained with the 1.5 Tesla system together with an evaluation of the paraxial sections. The magnetic field intensity of 1.5 Tesla especially improves the quality of images of paraxial cuts as compared with the 0.5 Tesla field system, due to the better contrast-to-noise ratio, and thinner sections. (orig.) [de

  3. IPCS user's manual

    International Nuclear Information System (INIS)

    McGoldrick, P.R.

    1980-01-01

    The Interprocess Communications System (IPCS) was written to provide a virtual machine upon which the Supervisory Control and Diagnostic System (SCDS) for the Mirror Fusion Test Facility (MFTF) could be built. The hardware upon which the IPCS runs consists of nine minicomputers sharing some common memory

  4. The interpretation of tokamak magnetic diagnostics: Status and prospects

    International Nuclear Information System (INIS)

    Braams, B.J.

    1985-09-01

    The analytical theory and the computational methods that are available for the determination of MHD equilibrium characteristics from magnetic measurements on axisymmetric systems are reviewed and developed. The interpretation of these measurements relies to a large extent on two classes of integral relations due to L.E. Zakharov and V.D. Shafranov. Following and extending their work we provide an inventory of useful integral relations, including the contributions due to pressure anisotropy and plasma rotation. Effective methods to evaluate the required integrals from imperfect measurements are considered. A full equilibrium analysis of the magnetic diagnostics implies a determination of the current profile, consistent with the equations of MHD equilibrium, aiming at an optimal fit between the corresponding calculated magnetic field and the measured data. Published approaches to this problem are evaluated, and a novel fast algorithm is proposed. Instead of the full equilibrium analysis several more limited problems are often considered, for which faster methods are available. The determination of only the plasma boundary requires the solution of a Cauchy problem, or similar, for an elliptic equation. The published approaches are compared. Analytical theory provides approximations that are suitable for the rapid estimation of characteristic parameters, related to the plasma current, position, shape of the cross-section, pressure and internal inductance. Very efficient algorithms may be obtained when this theory is employed in conjunction with the method of function parametrization. These algorithms are well suited to real-time control of the plasma. Appendices present a discussion of the boundary conditions for the MHD equilibrium problem, a compendium of analytical solutions to the homogeneous equilibrium equation, and a re-examination of the possibility of determining the current distribution from knowledge of only the shape of the flux surfaces. (orig.)

  5. Pre-ionization and spectroscopic diagnostic of plasma generated and confined by magnetic fields

    International Nuclear Information System (INIS)

    Honda, R.Y.

    1980-01-01

    A θ-pinch system has been constructed with pre-heating devices with a total energy of 2 kJ. During this experiment a He Plasma was studied using the following three different diagnostics. a) Magnetic Probes b) Visible Spectroscopy using the Optical Multichannel Analyser - OMA c) Image Converter Camera. The experimental results have been checked with existing theoretical models. The electrical characteristics of the system were determined with the magnetic probe. The Doppler and Stark broadening effects of the λ o = 4686 (angstrom) (HeII) have been used to determine the ionic temperature and electronic density respectively. The time evolution of these parameters was obtained using the OMA. The dynamics of the plasma were observed by high speed photography. Instabilities in the plasma columm have been observed. Good agreement between the experimental and theoretical values was obtained. (author) [pt

  6. Magnetic Fusion Advisory Committee report on recommended fusion program priorities and strategy

    International Nuclear Information System (INIS)

    1983-09-01

    The Magnetic Fusion Advisory Committee recommends a new program strategy with the following principal features: (1) Initiation in FY86 of the Tokamak Fusion Core Experiment (TFCX), a moderate-cost tokamak reactor device (less than $1 B PACE) designed to achieve ignition and long-pulse equilibrium burn. Careful trade-off studies are needed before making key design choices in interrelated technology areas. Cost reductions relative to earlier plans can be realized by exploiting new plasma technology, by locating the TFCX at the TFTR site, and by assigning responsibility for complementary reactor engineering tasks to other sectors of the fusion program. (2) Potential utilization of the MFTF Upgrade to provide a cost-effective means for quasi-steady-state testing of blanket and power-system components, complementary to TFCX. This will depend on future assessments of the data base for tandem mirrors. (3) Vigorous pursuit of the broad US base program in magnetic confinement, including new machine starts, where appropriate, at approximately the present total level of support. (4) Utilization of Development and Technology programs in plasma and magnet technology in support of specific hardware requirements of the TFCX and of other major fusion facilities, so as to minimize overall program cost

  7. Magnetic Diagnostics for Equilibrium Reconstructions in the Presence of Nonaxisymmetric Eddy Current Distributions in Tokamaks

    International Nuclear Information System (INIS)

    Kaita, R.; Kozub, T.; Logan, N.; Majeski, R.; Menard, J.; Zakharov, L.

    2010-01-01

    The lithium tokamak experiment (LTX) is a modest-sized spherical tokamak (R 0 = 0.4 m and a = 0.26 m) designed to investigate the low-recycling lithium wall operating regime for magnetically confined plasmas. LTX will reach this regime through a lithium-coated shell internal to the vacuum vessel, conformal to the plasma last-closed-flux surface, and heated to 300-400 C. This structure is highly conductive and not axisymmetric. The three-dimensional nature of the shell causes the eddy currents and magnetic fields to be three-dimensional as well. In order to analyze the plasma equilibrium in the presence of three-dimensional eddy currents, an extensive array of unique magnetic diagnostics has been implemented. Sensors are designed to survive high temperatures and incidental contact with lithium and provide data on toroidal asymmetries as well as full coverage of the poloidal cross-section. The magnetic array has been utilized to determine the effects of nonaxisymmetric eddy currents and to model the start-up phase of LTX. Measurements from the magnetic array, coupled with two-dimensional field component modeling, have allowed a suitable field null and initial plasma current to be produced. For full magnetic reconstructions, a three-dimensional electromagnetic model of the vacuum vessel and shell is under development.

  8. Plasma diagnostics for tokamaks and stellarators

    International Nuclear Information System (INIS)

    Stott, P.E.; Sanchez, J.

    1994-01-01

    A collection of papers on plasma diagnostics is presented. The papers show the state of the art developments in a series of techniques: magnetic diagnostics, Edge diagnostics, Langmuir probes, Spectroscopy, Microwave and FIR diagnostics as well as Thomson Sattering. Special interest was focused on those diagnostics oriented to fluctuations measurements in the plasma

  9. Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    Science.gov (United States)

    Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul

    2017-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  10. Self-calibrating magnetic field diagnostics in beam emission spectroscopy

    International Nuclear Information System (INIS)

    Voslamber, D.

    1995-01-01

    Magnetic field diagnostics in tokamaks using the motional Stark effect in fast neutral beams have been based on two kinds of polarimetry which we call ''static'' and ''dynamic.'' A detailed analysis shows that static polarimetry presents a number of advantages over dynamic polarimetry, provided it is made complete in the sense that a sufficient number of polarization analyzers are installed and different parts of the spectrum are explored to yield full information on the set of unknowns inherent in the problem. A detailed scheme of complete static polarimetry is proposed, including the case where an in-vessel mirror with changing characteristics (coating by impurities) is placed in front of the optical detection system. The main merit of this scheme relies on the fact that it is self-calibrating with respect to both the characteristics of the mirror and the transmission of the different polarization channels, the latter item implying that it is uniquely based on relative measurements of spectra. Further advantages are a greater flexibility with regard to different kinds of diagnostics and the circumstance that the technical equipment is less involved. The above scheme is based on a detection system of moderate etendue exploiting a large spectral domain, which is the regime where static polarimetry usually operates. It is also possible, however, to work with large etendue and a small spectral domain, such as commonly adopted in dynamic polarimetry. Using such a regime, static polarimetry loses the advantages mentioned above but gains, as a new advantage, the benefit of a comparatively lower level of photon noise. copyright 1995 American Institute of Physics

  11. Plasma diagnostics for tokamaks and stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Stott, P E; Sanchez, J

    1994-07-01

    A collection of papers on plasma diagnostics is presented. The papers show the state of the art developments in a series of techniques: Magnetic diagnostics, Edge diagnostics, Langmuir probes, Spectroscopy, Microwave and FIR diagnostics as well as Thomson Scattering. Special interest was focused on those diagnostics oriented to fluctuations measurements in the plasma. (Author) 451 refs.

  12. Laser-aided plasma diagnostics

    NARCIS (Netherlands)

    Donne, A. J. H.; Barth, C. J.

    2008-01-01

    This paper will focus on two types of laser-aided diagnostics: Thomson scattering and laser-induced fluorescence. Thomson scattering is a very powerful diagnostic, which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can

  13. Magnetic diagnostics: General principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    2001-01-01

    Restrictions on magnetic diagnostics are discussed. Being related to the integral nature of the measurable quantities, these follow from the fundamental laws of electromagnetism. A series of examples demonstrating the strength of these restrictions is analysed. The general rule is emphasized that information obtained from external magnetic measurements is insufficient for reliable evaluation of plasma current and pressure profiles in tokamaks and in stellarators. The underlying reason is that outside the plasma the self-field of the equilibrium plasma currents is determined by the boundary conditions on the plasma surface alone. (author)

  14. Magnetic resonance imaging by using nano-magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Khorramdin, A. [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Isapour, Gh. [Department of Materials and Engineering, Hakim Sabzevari University (Iran, Islamic Republic of)

    2014-11-15

    Magnetism and magnetic materials play a major role in various biological applications, such as magnetic bioseparation, magnetic resonance imaging (MRI), hyperthermia treatment of cancer and drug delivery. Among these techniques, MRI is a powerful method not only for diagnostic radiology but also for therapeutic medicine that utilizes a magnetic field and radio waves. Recently, this technique has contributed greatly to the promotion of the human quality life. Thus, this paper presents a short review of the physical principles and recent advances of MRI, as well as providing a summary of the synthesis methods and properties of contrast agents, like different core materials and surfactants. - Highlights: • This paper studies the physics of MRI as a powerful diagnostic technique. • MRI uses the differentiation between healthy and pathological tissues. • The relaxation times can be shortened by the use of a magnetic contrast agent. • The magnetic nanoparticles act as contrast agents, helping to increase the resolution. • Different synthesis methods can influence the magnetic resonance behavior.

  15. Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics

    International Nuclear Information System (INIS)

    Sandhu, Adarsh; Handa, Hiroshi; Abe, Masanori

    2010-01-01

    Functionalized magnetic nanoparticles are important components in biorecognition and medical diagnostics. Here, we present a review of our contribution to this interdisciplinary research field. We start by describing a simple one-step process for the synthesis of highly uniform ferrite nanoparticles (d = 20-200 nm) and their functionalization with amino acids via carboxyl groups. For real-world applications, we used admicellar polymerization to produce 200 nm diameter 'FG beads', consisting of several 40 nm diameter ferrite nanoparticles encapsulated in a co-polymer of styrene and glycidyl methacrylate for high throughput molecular screening. The highly dispersive FG beads were functionalized with an ethylene glycol diglycidyl ether spacer and used for affinity purification of methotrexate-an anti-cancer agent. We synthesized sub-100 nm diameter magnetic nanocapsules by exploiting the self-assembly of viral capsid protein pentamers, where single 8, 20, and 27 nm nanoparticles were encapsulated with VP1 pentamers for applications including MRI contrast agents. The FG beads are now commercially available for use in fully automated bio-screening systems. We also incorporated europium complexes inside a polymer matrix to produce 140 nm diameter fluorescent-ferrite beads (FF beads), which emit at 618 nm. These FF beads were used for immunofluorescent staining for diagnosis of cancer metastases to lymph nodes during cancer resection surgery by labeling tumor cell epidermal growth factor receptor (EGFRs), and for the detection of brain natriuretic peptide (BNP)-a hormone secreted in excess amounts by the heart when stressed-to a level of 2.0 pg ml -1 . We also describe our work on Hall biosensors made using InSb and GaAs/InGaAs/AlGaAs 2DEG heterostructures integrated with gold current strips to reduce measurement times. Our approach for the detection of sub-200 nm magnetic bead is also described: we exploit the magnetically induced capture of micrometer sized 'probe beads

  16. Magnetic resonance cholangiopancreaticography as a diagnostic tool for common bile duct stones - A comparison with ERCP and clinical follow-up

    NARCIS (Netherlands)

    Kats, J; Kraai, M; Dijkstra, AJ; Koster, K; ter Borg, F; Hazenberg, HJA; Schattenkerk, ME; des Plantes, BGZ; Eddes, EH

    2003-01-01

    Background/Aims: The diagnostic potential of magnetic resonance cholangiopancreaticography (MRCP) has improved as a result of evolving technique. MRCP has the advantage of negligible morbidity and mortality in contrast to endoscopic retrograde cholangiopancreatography (ERCP). This study was

  17. A stand alone computer system to aid the development of mirror fusion test facility RF heating systems

    International Nuclear Information System (INIS)

    Thomas, R.A.

    1983-01-01

    The Mirror Fusion Test Facility (MFTF-B) control system architecture requires the Supervisory Control and Diagnostic System (SCDS) to communicate with a LSI-11 Local Control Computer (LCC) that in turn communicates via a fiber optic link to CAMAC based control hardware located near the machine. In many cases, the control hardware is very complex and requires a sizable development effort prior to being integrated into the overall MFTF-B system. One such effort was the development of the Electron Cyclotron Resonance Heating (ECRH) system. It became clear that a stand alone computer system was needed to simulate the functions of SCDS. This paper describes the hardware and software necessary to implement the SCDS Simulation Computer (SSC). It consists of a Digital Equipment Corporation (DEC) LSI-11 computer and a Winchester/Floppy disk operating under the DEC RT-11 operating system. All application software for MFTF-B is programmed in PASCAL, which allowed us to adapt procedures originally written for SCDS to the SSC. This nearly identical software interface means that software written during the equipment development will be useful to the SCDS programmers in the integration phase

  18. Magnetic resonance colonography versus colonoscopy as a diagnostic investigation for colorectal cancer: a meta-analysis

    International Nuclear Information System (INIS)

    Purkayastha, S.; Tekkis, P.P.; Athanasiou, T.; Aziz, O.; Negus, R.; Gedroyc, W.; Darzi, A.W.

    2005-01-01

    AIMS: Magnetic resonance colonography (MRC) is emerging as a potential complementary investigation for the diagnosis of colorectal cancer (CRC) and also for benign pathology such as diverticular disease. A meta-analysis reporting the use of MRC is yet to be performed. The aim of this study was to evaluate the diagnostic accuracy of MRC compared with the gold-standard investigation, conventional colonoscopy (CC). METHODS: A literature search was carried out to identify studies containing comparative data between MRC findings and CC findings. Quantitative meta-analysis for diagnostic tests was performed, which included the calculation of independent sensitivities, specificities, diagnostic odds ratios, the construction of summary receiver operating characteristic (SROC) curves, pooled analysis and sensitivity analysis. The study heterogeneity was evaluated by the Q-test using a random-effect model to accommodate the cluster of outcomes between individual studies. RESULTS: In all, 8 comparative studies were identified, involving 563 patients. The calculated pooled sensitivity for all lesions was 75% (95% CI: 47% to 91%), the specificity was 96% (95% CI: 86% to 98%) and the area under the ROC curve was 90% (weighted). On sensitivity analysis, MRC had a better diagnostic accuracy for CRC than for polyps, with a sensitivity of 91% (95% CI: 97% to 91%), a specificity of 98% (95% CI: 66% to 99%) and an area under the ROC curve of 92%. There was no significant heterogeneity between the studies with regard to the diagnostic accuracy of MRC for CRC. CONCLUSION: This meta-analysis suggests that MRC is an imaging technique with high discrimination for cases presenting with colorectal cancer. The exact diagnostic role of MRC needs to be clarified (e.g. suitable for an elderly person with suspected CRC). Further evaluation is necessary to refine its applicability and diagnostic accuracy in comparison with other imaging methods such as computed tomography colonography

  19. Comparison between different methods of magnetic field diagnostics in beam emission spectroscopy

    International Nuclear Information System (INIS)

    Voslamber, D.

    1995-01-01

    Magnetic field diagnostics in tokamaks using the motional Stark effect in fast neutral beams have been based on two kinds of polarimetry which are called 'static' and 'dynamic'. It is shown that static polarimetry presents a number of advantages over dynamic polarimetry, provided it is made complete in the sense that a sufficient number of polarisation analysers is installed and different parts of the spectrum are explored to yield full information on the set of unknowns inherent in the problem. A detailed scheme of self-calibrating static polarimetry is proposed, including the case where an in-vessel mirror with changing characteristics (coating by impurities) is placed in front of the optical detection system. (author) 5 refs.; 2 figs

  20. Functional magnetic resonance imaging of the truncus pulmonalis. Principles of magnetic resonance flux measurements for pulmonal hypertension diagnostics

    International Nuclear Information System (INIS)

    Abolmaali, N.

    2006-01-01

    This book gives a detailed introduction into the use of magnetic resonance flux measurements for the examination of pulmonal circulation. It presents the results of phantom experiments and evaluates and verifies sequence techniques optimised for the examination of the pulmonary circulation. This is followed by a description of an elegant experimental design for the quantification of pulmonal hypertension which is unique in its kind. The model can predict the consequences of acute, resistance-related pulmonal hypertension in a reproducible and reversible manner. It thus provides a means of evaluating pulmonal applications of magnetic resonance imaging. The idea for these studies and its implementation are an outstanding example of teamwork and interdisciplinary cooperation. Applying the results to the patient after the statistical analysis is only a small step. The book presents the results of extensive normal value studies which will make it possible to use the measurement technology in paediatric cardiology. Its range of application also includes congenital heart defects, especially ventricular septal defects and primary as well as secondary forms of pulmonal hypertension. It is not only suitable for primary diagnostics but also for post-treatment follow-up and assessment of patients' progress

  1. Computer code determination of tolerable accel current and voltage limits during startup of an 80 kV MFTF sustaining neutral beam source

    International Nuclear Information System (INIS)

    Mayhall, D.J.; Eckard, R.D.

    1979-01-01

    We have used a Lawrence Livermore Laboratory (LLL) version of the WOLF ion source extractor design computer code to determine tolerable accel current and voltage limits during startup of a prototype 80 kV Mirror Fusion Test Facility (MFTF) sustaining neutral beam source. Arc current limits are also estimated. The source extractor has gaps of 0.236, 0.721, and 0.155 cm. The effective ion mass is 2.77 AMU. The measured optimum accel current density is 0.266 A/cm 2 . The gradient grid electrode runs at 5/6 V/sub a/ (accel voltage). The suppressor electrode voltage is zero for V/sub a/ < 3 kV and -3 kV for V/sub a/ greater than or equal to 3 kV. The accel current density for optimum beam divergence is obtained for 1 less than or equal to V/sub a/ less than or equal to 80 kV, as are the beam divergence and emittance

  2. Magnetic microfluidic platform for biomedical applications using magnetic nanoparticles

    KAUST Repository

    Stipsitz, Martin

    2015-05-01

    Microfluidic platforms are well-suited for biomedical analysis and usually consist of a set of units which guarantee the manipulation, detection and recognition of bioanalyte in a reliable and flexible manner. Additionally, the use of magnetic fields for perfoming the aforementioned tasks has been steadily gainining interest. This is due to the fact that magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the diagnostic system. In combination with these applied magnetic fields, magnetic nanoparticles are used. In this paper, we present some of our most recent results in research towards a) microfluidic diagnostics using MR sensors and magnetic particles and b) single cell analysis using magnetic particles. We have successfully manipulated magnetically labeled bacteria and measured their response with integrated GMR sensors and we have also managed to separate magnetically labeled jurkat cells for single cell analysis. © 2015 Trans Tech Publications, Switzerland.

  3. Magnetic microfluidic platform for biomedical applications using magnetic nanoparticles

    KAUST Repository

    Stipsitz, Martin; Kokkinis, Georgios; Gooneratne, Chinthaka Pasan; Kosel, Jü rgen; Cardoso, Susana; Cardoso, Filipe; Giouroudi, Ioanna

    2015-01-01

    Microfluidic platforms are well-suited for biomedical analysis and usually consist of a set of units which guarantee the manipulation, detection and recognition of bioanalyte in a reliable and flexible manner. Additionally, the use of magnetic fields for perfoming the aforementioned tasks has been steadily gainining interest. This is due to the fact that magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the diagnostic system. In combination with these applied magnetic fields, magnetic nanoparticles are used. In this paper, we present some of our most recent results in research towards a) microfluidic diagnostics using MR sensors and magnetic particles and b) single cell analysis using magnetic particles. We have successfully manipulated magnetically labeled bacteria and measured their response with integrated GMR sensors and we have also managed to separate magnetically labeled jurkat cells for single cell analysis. © 2015 Trans Tech Publications, Switzerland.

  4. Magnetic diagnostics: general principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems

    Energy Technology Data Exchange (ETDEWEB)

    Pustovitov, V.D.

    2000-04-01

    The restrictions of the magnetic diagnostics are discussed. Being related to the integral nature of the measurable quantities, they follow from the fundamental laws of electromagnetism. A series of particular examples demonstrating the strength of these restrictions is given and analyzed. A general rule is emphasized that the information obtained from external magnetic measurements is obviously insufficient for the reliable evaluation of plasma current and pressure profiles in tokamaks or in stellarators. The underlying reason is that outside the plasma the own field of the equilibrium plasma currents is determined by the boundary conditions on the plasma surface only. (author)

  5. 1-channel wireless acquisition system for magnetic diagnostics of Aditya-U Tokamak

    International Nuclear Information System (INIS)

    Dash, Suvendu Kumar; Mahapatra, Sakuntala; Ali, Shaik Mohammad; Raju, Daniel

    2017-01-01

    In recent years Data Acquisition Systems have proficient advances mainly due to the reduction in cost and gaining functionally of systems based on microcontrollers and microcomputers. This paper invites a prototype model of one channel wireless data acquisition system. The system contains a ratiometric linear Hall Effect sensor, embedded system with Atmeg328 microcontroller for both transmitter and receiver and wireless transceiver module NRF24L01+. The readings from the ratiometric linear Hall Effect sensor, IC - A1301KUA-T are digitized by in built A/D converter present in the embedded system then they are sent to the wireless transceiver NRF24L01+. NRF24L01+ performs GFSK modulation technique for transmission of the digital data. When the bar magnet is kept close to the sensor we found 448 gauss (0.0448Tesla). We received the same transmitted data without any error. Moreover we show the results from Hall Effect sensors mounted in 3-axis perpendicular to each other and observations of Hall Effect sensor in presence of High voltage. Helmholtz coil experimental results validated the Hall Effect Sensor used it for magnetic diagnostics. (author)

  6. Diagnostic transcranial magnetic stimulation in children with acute inflammatory demyelinating polyneuropathy

    Directory of Open Access Journals (Sweden)

    V. B. Voitenkov

    2016-01-01

    Full Text Available Objective of our work was to evaluate MEPs characteristics in children with acute inflammatory demyelinating polyneuropathy and evaluate usefulness of TMS as an additional diagnostic method in this disorder.Methods. 20 healthy children (7–14 years old, average 12 years, 7 females, 13 males without any signs of neurological disorders were enrolled as controls and 37 patients (8–13 years old, average 11 years, 19 females, 18 males with AIDP were enrolled as the main group. EMG and TMS were performed on 3–7 day from the onset of the first symptoms. Cortical and lumbar MEP`s latencies, shapes and amplitudes and CMCT were averaged and analyzed.Results. Significant differences between children with AIDP and controls on latencies of both cortical and lumbar MEPs were registered. Cortical MEPs shapes were disperse in 100% of the cases, and lumbar MEPs were disperse in 57% of the cases. Amplitudes changes for both lumbar and cortical MEPs were not significant.Conclusions. Diagnostic transcranial magnetic stimulation on the early stage of the acute demyelinating polyneuropathy in children may be implemented as the additional tool. Main finding in this population is lengthening of the latency of cortical and lumbar motor evoked potentials. Disperse shape of the lumbar MEPs may also be used as the early sign of the acute demyelization of the peripheral nerves.

  7. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade.

    Science.gov (United States)

    Viezzer, E; Dux, R; Dunne, M G

    2016-11-01

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D α . The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  8. Magnetic resonance imaging in local staging of endometrial carcinoma: diagnostic performance, pitfalls, and literature review.

    Science.gov (United States)

    Zandrino, Franco; La Paglia, Ernesto; Musante, Francesco

    2010-01-01

    To assess the diagnostic accuracy of magnetic resonance imaging in local staging of endometrial carcinoma, and to review the results and pitfalls described in the literature. Thirty women with a histological diagnosis of endometrial carcinoma underwent magnetic resonance imaging. Unenhanced T2-weighted and dynamic contrast-enhanced Ti-weighted sequences were obtained. Hysterectomy and salpingo-oophorectomy was performed in all patients. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated for the detection of deep myometrial and cervical infiltration. For deep myometrial infiltration T2-weighted sequences reached a sensitivity of 85%, specificity of 76%, PPV of 73%, NVP of 87%, and accuracy of 80%, while contrast-enhanced scans reached a sensitivity of 90%, specificity of 80%, PPV of 82%, NPV of 89%, and accuracy of 85%. For cervical infiltration T2-weighted sequences reached a sensitivity of 75%, specificity of 88%, PPV of 50%, NPV of 96%, and accuracy of 87%, while contrast-enhanced scans reached a sensitivity of 100%, specificity of 94%, PPV of 75%, NPV of 100%, and accuracy of 95%. Unenhanced and dynamic gadolinium-enhanced magnetic resonance allows accurate assessment of myometrial and cervical infiltration. Information provided by magnetic resonance imaging can define prognosis and management.

  9. Role of 3.0 Tesla magnetic resonance hysterosalpingography in the diagnostic work-up of female infertility.

    Science.gov (United States)

    Cipolla, Valentina; Guerrieri, Daniele; Pietrangeli, Daniela; Santucci, Domiziana; Argirò, Renato; de Felice, Carlo

    2016-09-01

    Imaging evaluation plays a crucial role in the diagnostic work-up of female infertility. In recent years, the possibility to evaluate tubal patency using 1.5 Tesla magnetic resonance (1.5T MR) has been studied. To assess the feasibility of 3.0 Tesla magnetic resonance (3.0T MR) hysterosalpingography and its role in the diagnostic work-up of female infertility and to evaluate if this fast "one-stop-shop" imaging approach should be proposed as a first-line examination. A total of 116 infertile women were enrolled in this prospective study; all underwent 3.0T MR hysterosalpingography. After standard imaging of the pelvis, tubal patency was assessed by acquiring 3D dynamic time-resolved T1-weighted (T1W) sequences during manual injection of 4-5 mL of contrast solution consisting of gadolinium and normal sterile saline. Images were evaluated by two radiologists with different experience in MR imaging (MRI). The examination was successfully completed in 96.5% of cases, failure rate was 3.5%. Dynamic sequences showed bilateral tubal patency in 64.3%, unilateral tubal patency in 25.9%, and bilateral tubal occlusion in 9.8%. Extratubal abnormalities were found in 69.9% of patients. Comprehensive analysis of morphological and dynamic sequences showed extratubal abnormalities in 43.1% of patients with bilateral tubal patency. 3.0T MR hysterosalpingography is a feasible, simple, fast, safe, and well-tolerated examination, which allows evaluation of tubal patency and other pelvic causes of female infertility in a single session, and it may thus represent a "one-stop-shop" solution in female infertility diagnostic work-up. © The Foundation Acta Radiologica 2015.

  10. Neutral Beam Injection for Plasma and Magnetic Field Diagnostics

    International Nuclear Information System (INIS)

    Vainionpaa, Jaakko Hannes; Leung, Ka Ngo; Kwan, Joe W.; Levinton, Fred

    2007-01-01

    At the Lawrence Berkeley National Laboratory (LBNL) a diagnostic neutral beam injection system for measuring plasma parameters, flow velocity, and local magnetic field is being developed. High proton fraction and small divergence is essential for diagnostic neutral beams. In our design, a neutral hydrogen beam with an 8 cm x 11 cm (or smaller) elliptical beam spot at 2.5 m from the end of the extraction column is produced. The beam will deliver up to 5 A of hydrogen beam to the target with a pulse width of ∼1 s, once every 1-2 min. The H1+ ion species of the hydrogen beam will be over 90 percent. For this application, we have compared two types of RF driven multicusp ion sources operating at 13.56MHz. The first one is an ion source with an external spiral antenna behind a dielectric RF-window. The second one uses an internal antenna in similar ion source geometry. The source needs to generate uniform plasma over a large (8 cm x 5 cm) extraction area. We expect that the ion source with internal antenna will be more efficient at producing the desired plasma density but might have the issue of limited antenna lifetime, depending on the duty factor. For both approaches there is a need for extra shielding to protect the dielectric materials from the backstreaming electrons. The source walls will be made of insulator material such as quartz that has been observed to generate plasma with higher atomic fraction than sources with metal walls. The ion beam will be extracted and accelerated by a set of grids with slits, thus forming an array of 6 sheet-shaped beamlets. The multiple grid extraction will be optimized using computer simulation programs. Neutralization of the beam will be done in neutralization chamber, which has over 70 percent neutralization efficiency

  11. Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, Adarsh [Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi 441-8580 (Japan); Handa, Hiroshi [Integrated Research Institute, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Abe, Masanori [Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2010-11-05

    Functionalized magnetic nanoparticles are important components in biorecognition and medical diagnostics. Here, we present a review of our contribution to this interdisciplinary research field. We start by describing a simple one-step process for the synthesis of highly uniform ferrite nanoparticles (d = 20-200 nm) and their functionalization with amino acids via carboxyl groups. For real-world applications, we used admicellar polymerization to produce 200 nm diameter 'FG beads', consisting of several 40 nm diameter ferrite nanoparticles encapsulated in a co-polymer of styrene and glycidyl methacrylate for high throughput molecular screening. The highly dispersive FG beads were functionalized with an ethylene glycol diglycidyl ether spacer and used for affinity purification of methotrexate-an anti-cancer agent. We synthesized sub-100 nm diameter magnetic nanocapsules by exploiting the self-assembly of viral capsid protein pentamers, where single 8, 20, and 27 nm nanoparticles were encapsulated with VP1 pentamers for applications including MRI contrast agents. The FG beads are now commercially available for use in fully automated bio-screening systems. We also incorporated europium complexes inside a polymer matrix to produce 140 nm diameter fluorescent-ferrite beads (FF beads), which emit at 618 nm. These FF beads were used for immunofluorescent staining for diagnosis of cancer metastases to lymph nodes during cancer resection surgery by labeling tumor cell epidermal growth factor receptor (EGFRs), and for the detection of brain natriuretic peptide (BNP)-a hormone secreted in excess amounts by the heart when stressed-to a level of 2.0 pg ml{sup -1}. We also describe our work on Hall biosensors made using InSb and GaAs/InGaAs/AlGaAs 2DEG heterostructures integrated with gold current strips to reduce measurement times. Our approach for the detection of sub-200 nm magnetic bead is also described: we exploit the magnetically induced capture of micrometer

  12. Magnetic resonance imaging of the shoulder: a review of potential sources of diagnostic errors

    International Nuclear Information System (INIS)

    Carroll, K.W.; Helms, C.A.

    2002-01-01

    Shoulder magnetic resonance (MR) imaging and MR arthrography are frequently utilized in the evaluation of shoulder pain and instability. The clinical scenario and imaging findings may be confusing to clinicians and radiologists and may present diagnostic challenges for those involved in evaluating and treating shoulder pathology. Often rotator cuff and labral abnormalities may be coexistent, clinical manifestations of denervation syndromes may be confusing to clinicians, and normal anatomic variations, imaging pitfalls, and various artifacts may cause dilemmas for the radiologist. This article will review the most frequently encountered mimickers and pitfalls of MR imaging of the shoulder. (orig.)

  13. Magnetic field pitch angle diagnostic using the motional Stark effect (invited)

    International Nuclear Information System (INIS)

    Levinton, F.M.; Gammel, G.M.; Kaita, R.; Kugel, H.W.; Roberts, D.W.

    1990-01-01

    The Stark effect has been employed in a novel technique for obtaining the pitch angle profile and q(r) using polarimetry measurements of the Doppler shifted H α emission from a hydrogen diagnostic neutral beam. As a neutral beam propagates through a plasma, collisions of the beam particles with the background ions and electrons will excite beam atoms, leading to emission of radiation. The motional Stark effect, which arises from the electric field induced in the atom's rest frame due to the beam motion across the magnetic field (E=V beam xB), causes a wavelength splitting of several angstroms and polarization of the emitted radiation. The Δm=±1 transitions, or σ components, from the beam fluorescence are linearly polarized parallel to the direction of the local magnetic field when viewed transverse to the fields. Since the hydrogen beam provides good spatial localization and penetration, the pitch angle can be obtained anywhere in the plasma. A photoelastic modulator (PEM) is used to modulate the linearly polarized light. Depending on the orientation of the PEM, it can measure the sine or cosine of the angle of polarization. Two PEM's are used to measure both components simultaneously. Results of q(r) for both Ohmic and NBI heated discharges have been obtained in the Princeton Beta Experiment (PBX-M) tokamak, with an uncertainty of ∼6% for q(0)

  14. Microwave imaging for plasma diagnostics and its applications

    International Nuclear Information System (INIS)

    Mase, A.; Kogi, Y.; Ito, N.

    2007-01-01

    Microwave to millimeter-wave diagnostic techniques such as interferometry, reflectometry, scattering, and radiometry have been powerful tools for diagnosing magnetically confined plasmas. Important plasma parameters were measured to clarify the physics issues such as stability, wave phenomena, and fluctuation-induced transport. Recent advances in microwave and millimeter-wave technology together with computer technology have enabled the development of advanced diagnostics for visualization of 2D and 3D structures of plasmas. Microwave/millimeter-wave imaging is expected to be one of the most promising diagnostic methods for this purpose. We report here on the representative microwave diagnostics and their industrial applications as well as application to magnetically-confined plasmas. (author)

  15. Full-wave feasibility study of anti-radar diagnostic of magnetic field based on O-X mode conversion and oblique reflectometry imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meneghini, Orso [General Atomics, San Diego, California 92121 (United States); Volpe, Francesco A., E-mail: fvolpe@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2016-11-15

    An innovative millimeter wave diagnostic is proposed to measure the local magnetic field and edge current as a function of the minor radius in the tokamak pedestal region. The idea is to identify the direction of minimum reflectivity at the O-mode cutoff layer. Correspondingly, the transmissivity due to O-X mode conversion is maximum. That direction, and the angular map of reflectivity around it, contains information on the magnetic field vector B at the cutoff layer. Probing the plasma with different wave frequencies provides the radial profile of B. Full-wave finite-element simulations are presented here in 2D slab geometry. Modeling confirms the existence of a minimum in reflectivity that depends on the magnetic field at the cutoff, as expected from mode conversion physics, giving confidence in the feasibility of the diagnostic. The proposed reflectometric approach is expected to yield superior signal-to-noise ratio and to access wider ranges of density and magnetic field, compared with related radiometric techniques that require the plasma to emit electron Bernstein waves. Due to computational limitations, frequencies of 10-20 GHz were considered in this initial study. Frequencies above the edge electron-cyclotron frequency (f > 28 GHz here) would be preferable for the experiment, because the upper hybrid resonance and right cutoff would lie in the plasma, and would help separate the O-mode of interest from spurious X-waves.

  16. Measurements of the internal magnetic field using the B-Stark motional Stark effect diagnostic on DIII-D (inivited)

    Energy Technology Data Exchange (ETDEWEB)

    Pablant, N. A. [University of California-San Diego, La Jolla, California 92093 (United States); Burrell, K. H.; Groebner, R. J.; Kaplan, D. H. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Holcomb, C. T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2010-10-15

    Results are presented from the B-Stark diagnostic installed on the DIII-D tokamak. This diagnostic provides measurements of the magnitude and direction of the internal magnetic field. The B-Stark system is a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of the Stark split D{sub {alpha}} emission from injected neutral beams. This technique may have advantages over MSE polarimetry based diagnostics in future devices, such as the ITER. The B-Stark diagnostic technique and calibration procedures are discussed. The system is shown to provide accurate measurements of B{sub {theta}}/B{sub T} and |B| over a range of plasma conditions. Measurements have been made with toroidal fields in the range of 1.2-2.1 T, plasma currents in the range 0.5-2.0 MA, densities between 1.7 and 9.0x10{sup 19} m{sup -3}, and neutral beam voltages between 50 and 81 keV. The viewing direction and polarization dependent transmission properties of the collection optics are found using an in situ beam into gas calibration. These results are compared to values found from plasma equilibrium reconstructions and the MSE polarimetry system on DIII-D.

  17. Measurements of the internal magnetic field using the B-Stark motional Stark effect diagnostic on DIII-D (inivited).

    Science.gov (United States)

    Pablant, N A; Burrell, K H; Groebner, R J; Holcomb, C T; Kaplan, D H

    2010-10-01

    Results are presented from the B-Stark diagnostic installed on the DIII-D tokamak. This diagnostic provides measurements of the magnitude and direction of the internal magnetic field. The B-Stark system is a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of the Stark split D(α) emission from injected neutral beams. This technique may have advantages over MSE polarimetry based diagnostics in future devices, such as the ITER. The B-Stark diagnostic technique and calibration procedures are discussed. The system is shown to provide accurate measurements of B(θ)/B(T) and ∣B∣ over a range of plasma conditions. Measurements have been made with toroidal fields in the range of 1.2-2.1 T, plasma currents in the range 0.5-2.0 MA, densities between 1.7 and 9.0×10(19) m(-3), and neutral beam voltages between 50 and 81 keV. The viewing direction and polarization dependent transmission properties of the collection optics are found using an in situ beam into gas calibration. These results are compared to values found from plasma equilibrium reconstructions and the MSE polarimetry system on DIII-D.

  18. Complications in diagnostic imaging. 2. ed.

    International Nuclear Information System (INIS)

    Ansell, G.; Wilkins, R.A.; Medical Research Council, Harrow

    1987-01-01

    Thirty-seven chapters review various complications which may arise for patients and staff in medical diagnostic imaging. Five of these chapters are indexed separately covering topics on the complications of using radiopharmaceuticals, safety considerations in magnetic resonance imaging, radiation hazards of diagnostic radiology and medico-legal problems involving diagnostic radiology in both the UK and the USA. (UK)

  19. The new Ex-Vessel Magnetic Diagnostics System for JET

    International Nuclear Information System (INIS)

    Coccorese, V.; Artaserse, G.; Quercia, A.; Chitarin, G.; Peruzzo, S.; Edlington, T.; Gerasimov, S.; Sowden, C.

    2006-01-01

    A new system of magnetic probes was installed during the 2005 shutdown and was commissioned during the 2005/06 restart phase of JET. The system has been developed in the framework of the JET enhancement project on Magnetic Diagnostics, which aims to improve the equilibrium reconstruction and the real time control in JET, by means of 98 new field measurements as well as of new software tools. The subsystem presented in the paper includes probes located outside the vessel and it is made of 8 pickup coils, 8 Hall probes and 6 flux loops. The objective of this subsystem is twofold: i) provide experimental data for a better modelling of the iron in the axisymmetric codes for plasma equilibrium reconstruction; ii) test the reliability of direct field measurements. The new sensors are located very near to the iron structure, so to provide useful information for the online tuning of the code parameters representing the iron characteristics. Direct field measurements from Hall probes are used to correct the drift of the integrators of the pickup coils signals. This feature will be crucial for future ITER-like devices, where long lasting flat top phases are expected, in a high neutron yield and a high temperature environment. After a general overview of the system, the paper describes the major manufacturing and installation issues, including the construction of the supports and probes as well as the acceptance tests before and after installation. The functional commissioning of the system, which was successfully concluded during the restart phase, is also illustrated. It includes the integration of the new signals in the JET CODAS system and the analysis of several discharges with and without plasma. The critical aspects of the assessment of the reliability of the signals are shown and commented on. (author)

  20. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Rinderknecht, H. G., E-mail: hgr@mit.edu; Sio, H.; Frenje, J. A.; Gatu Johnson, M.; Zylstra, A. B.; Sinenian, N.; Rosenberg, M. J.; Li, C. K.; Sèguin, F. H.; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Magoon, J.; Agliata, A.; Shoup, M.; Glebov, V. U.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Ayers, S.; Bailey, C. G.; Rygg, J. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D{sup 3}He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D{sup 3}He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D{sup 3}He-filled surrogate implosions at the NIF.

  1. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited).

    Science.gov (United States)

    Rinderknecht, H G; Sio, H; Frenje, J A; Magoon, J; Agliata, A; Shoup, M; Ayers, S; Bailey, C G; Gatu Johnson, M; Zylstra, A B; Sinenian, N; Rosenberg, M J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; House, A; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Robey, H; Glebov, V U; Hohenberger, M; Stoeckl, C; Sangster, T C; Li, C; Parat, J; Olson, R; Kline, J; Kilkenny, J

    2014-11-01

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D(3)He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D(3)He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions at the NIF.

  2. Magnetic resonance imaging and magnetic resonance arthrography of the shoulder: dependence on the level of training of the performing radiologist for diagnostic accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Theodoropoulos, John S. [University of Toronto, Division of Orthopaedics, Mount Sinai Hospital and the University Health Network, Toronto, ON (Canada); Andreisek, Gustav [University of Toronto, Department of Medical Imaging, Mount Sinai Hospital and the University Health Network, Toronto, ON (Canada); University Hospital Zuerich, Institute for Diagnostic Radiology, Zuerich (Switzerland); Harvey, Edward J. [McGill University, Division of Orthopaedics, MUHC - Montreal General Hospital, Montreal, Quebec (Canada); Wolin, Preston [Center for Athletic Medicine, Chicago, IL (United States)

    2010-07-15

    Discrepancies were identified between magnetic resonance (MR) imaging and clinical findings in patients who had MR imaging examinations evaluated by community-based general radiologists. The purpose of this study was to evaluate the diagnostic performance of MR imaging examinations of the shoulder with regard to the training level of the performing radiologist. A review of patient charts identified 238 patients (male/female, 175/63; mean age, 40.4 years) in whom 250 arthroscopies were performed and who underwent MR imaging or direct MR arthrography in either a community-based or hospital-based institution prior to surgery. All MR imaging and surgical reports were reviewed and the diagnostic performance for the detection of labral, rotator cuff, biceps, and Hill-Sachs lesions was determined. Kappa and Student's t test analyses were performed in a subset of cases in which initial community-based MR images were re-evaluated by hospital-based musculoskeletal radiologists, to determine the interobserver agreement and any differences in image interpretation. The diagnostic performance of community-based general radiologists was lower than that of hospital-based sub-specialized musculoskeletal radiologists. A sub-analysis of re-evaluated cases showed that musculoskeletal radiologists performed better. {kappa} values were 0.208, 0.396, 0.376, and 0.788 for labral, rotator cuff, biceps, and Hill-Sachs lesions (t test statistics: p =<0.001, 0.004, 0.019, and 0.235). Our results indicate that the diagnostic performance of MR imaging and MR arthrography of the shoulder depends on the training level of the performing radiologist, with sub-specialized musculoskeletal radiologists having a better diagnostic performance than general radiologists. (orig.)

  3. Positivity of magnetic resonance imaging the GIROIMAG-01: Diagnostic tools in injuries of the central nervous system

    International Nuclear Information System (INIS)

    Noda Guerra, Manuel Ernesto; Corujo Torres, Pedro A.; Gonzalez Ferro, Idalia; Daudinot Gomez, Barbara; Montoya Pedron, Arquimedes

    2001-01-01

    A study was made to compare the positivity of magnetic resonance imaging with that of other imaging and neuropsychological diagnostic tools in injuries of the central nervous system in order to determine the sensitivity, specificity, strength and the test error with the GIROIMAG-01 Cuban tomograph in the diagnostic of these injuries. An intentional sample of 398 patients was selected. Only those patients who had undergone computed axial tomography, electroencephalogram or evoked multimodal potentials or both, whose results were registered in the study requests, could be selected. The most representative injuries among the diagnoses made were the degenerative diseases, the brain and cerebellar tumors, the cerebrovascular accidents, the demyelinizating diseases and hydrocephalous. It was demonstrated that this tomograph has an elevated sensitivity and specificity for the detection of injuries of the central nervous system

  4. Nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Ethier, R.; Melanson, D.; Peters, T.M.

    1983-01-01

    Ten years following computerized tomography, a new technique called nuclear magnetic resonance revolutionizes the field of diagnostic imaging. A major advantage of nuclear magnetic resonance is that the danger of radiation is non-existent as compared to computerized tomography. When parts of the human body are subject to radio-frequencies while in a fixed magnetic field, its most detailed structures are revealed. The quality of images, the applications, as well as the indications are forever increasing. Images obtained at the level of the brain and spinal cord through nuclear magnetic resonance supercede those obtained through computerized tomography. Hence, it is most likely that myelography, along with pneumoencephalography will be eliminated as a diagnostic means. It is without a doubt that nuclear magnetic resonance is tomorrow's computerized tomography [fr

  5. Rock-Magnetic Method for Post Nuclear Detonation Diagnostics

    Science.gov (United States)

    Englert, J.; Petrosky, J.; Bailey, W.; Watts, D. R.; Tauxe, L.; Heger, A. S.

    2011-12-01

    A magnetic signature characteristic of a Nuclear Electromagnetic Pulse (NEMP) may still be detectable near the sites of atmospheric nuclear tests conducted at what is now the Nevada National Security Site. This signature is due to a secondary magnetization component of the natural remanent magnetization of material containing traces of ferromagnetic particles that have been exposed to a strong pulse of magnetic field. We apply a rock-magnetic method introduced by Verrier et al. (2002), and tested on samples exposed to artificial lightning, to samples of rock and building materials (e.g. bricks, concrete) retrieved from several above ground nuclear test sites. The results of magnetization measurements are compared to NEMP simulations and historic test measurements.

  6. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Robertson, Angus

    1990-01-01

    An assessment is made of the clinical benefits of expensive diagnostic technology, such as the magnetic resonance imaging. It is concluded that to most radiologists, magnetic resonance imaging has a definite place in the diagnostic scenario, especially for demonstrating central nervous system lesions in multiple sclerosis. While it is recognized that medical and financial resources are limited, it is emphasised that the cost to society must be balanced against the patient benefit. 17 refs

  7. Diagnostic sensitivity of radiography, ultrasonography, and magnetic resonance imaging for detecting shoulder osteochondrosis/osteochondritis dissecans in dogs.

    Science.gov (United States)

    Wall, Corey R; Cook, Cristi R; Cook, James L

    2015-01-01

    Radiography, magnetic resonance imaging (MRI), and ultrasonography are commonly used for diagnosis of shoulder osteochondrosis and osteochondritis dissecans (OC/OCD) in dogs, however there is a lack of published information on the relative diagnostic sensitivities of these modalities. The purpose of this prospective study was to compare diagnostic sensitivities of these modalities for detecting shoulder OC/OCD in a group of dogs, using arthroscopy as the reference standard. Inclusion criteria were history and clinical findings consistent with osteochondrosis and/or osteochondritis dissecans involving at least one shoulder. With informed client consent, both shoulders for all included dogs were examined using standardized radiography, ultrasonography, MRI, and arthroscopy protocols. One of three veterinary surgeons recorded clinical and arthroscopic findings without knowledge of diagnostic imaging findings. One of two veterinary radiologists recorded diagnostic imaging findings without knowledge of clinical and arthroscopic findings. Eighteen client-owned dogs (n = 36 shoulders) met inclusion criteria. Diagnostic sensitivity, specificity, and accuracy (correct classification rate) values for detecting presence or absence of shoulder osteochondrosis/osteochondritis dissecans were as follows: radiography (88.5%, 90%, 88.9%), ultrasonography (92%, 60%, 82.6%), and MRI (96%, 88.9%, 94.4%). Odds of a correct diagnosis for MRI were 3.2 times more than ultrasonography and two times more than radiography. For MRI detection of lesions, the sagittal T2 or PD-FAT SAT sequences were considered to be most helpful. For radiographic detection of lesions, the additional supinated-mediolateral and pronated-mediolateral projections were considered to be most helpful. Findings from the current study support more evidence-based diagnostic imaging recommendations for dogs with clinically suspected shoulder osteochondrosis or osteochondritis dissecans. © 2014 American College of

  8. Diagnostic nerve ultrasonography

    International Nuclear Information System (INIS)

    Baeumer, T.; Grimm, A.; Schelle, T.

    2017-01-01

    For the diagnostics of nerve lesions an imaging method is necessary to visualize peripheral nerves and their surrounding structures for an etiological classification. Clinical neurological and electrophysiological investigations provide functional information about nerve lesions. The information provided by a standard magnetic resonance imaging (MRI) examination is inadequate for peripheral nerve diagnostics; however, MRI neurography is suitable but on the other hand a resource and time-consuming method. Using ultrasonography for peripheral nerve diagnostics. With ultrasonography reliable diagnostics of entrapment neuropathies and traumatic nerve lesions are possible. The use of ultrasonography for neuropathies shows that a differentiation between different forms is possible. Nerve ultrasonography is an established diagnostic tool. In addition to the clinical examination and clinical electrophysiology, structural information can be obtained, which results in a clear improvement in the diagnostics. Ultrasonography has become an integral part of the diagnostic work-up of peripheral nerve lesions in neurophysiological departments. Nerve ultrasonography is recommended for the diagnostic work-up of peripheral nerve lesions in addition to clinical and electrophysiological investigations. It should be used in the clinical work-up of entrapment neuropathies, traumatic nerve lesions and spacy-occupying lesions of nerves. (orig.) [de

  9. Diagnostic needs for fluctuations and transport studies

    International Nuclear Information System (INIS)

    Carreras, B.A.

    1992-01-01

    The identification of fundamental transport mechanisms in magnetically confined plasmas is a critical issue for the magnetic fusion program. Recent progress in understanding fluctuations and transport is well correlated with the development and use of new diagnostics, but there a great deal of information is still missing. Some of the required measurements are well beyond our present diagnostic capabilities, but some are within reach and could answer critical questions in this area of research. Some of these critical issues are discussed

  10. Towards diagnostics for a fusion reactor

    International Nuclear Information System (INIS)

    Costley, A. E.

    2009-01-01

    The requirements for measurements on modern tokamak fusion plasmas are outlined, and the techniques and systems used to make the measurements, usually referred to as 'diagnostics', are introduced. The basics of three particular diagnostics - magnetics, neutron systems and a laser based optical system - are outlined as examples of modern diagnostic systems, and the implementation of these diagnostics on a current tokamak (JET) are described. The next major step in magnetic confinement fusion is the construction and operation of the International Thermonuclear Experimental Reactor (ITER), which is a joint project of China, Europe, Japan, India, Korea, the Russian Federation, and the United States. Construction has begun in Cadarache, France. It is expected that ITER will operate at the 500 MW level. Because of the harsh environment in the vacuum vessel where many diagnostic components are located, the development of diagnostics for ITER is a major challenge - arguably the most difficult challenge ever undertaken in the field of diagnostics. The main elements in the diagnostic step are outlined using the three chosen techniques as examples. Finally, the step beyond ITER to a demonstration reactor, DEMO, that is expected to produce several GWs of fusion power is considered and the impact on diagnostics outlined. It is shown that the applicability and development steps needed for the individual diagnostics techniques will differ. The challenges for DEMO diagnostics are substantial and a dedicated effort should be made to find and develop new techniques, and especially techniques appropriate to the DEMO environment. It is argued that the limitations and difficulties in diagnostics should be a consideration in the optimization and designs of DEMO. (author)

  11. Additional diagnostic value of systolic dysfunction induced by dipyridamole stress cardiac magnetic resonance used in detecting coronary artery disease.

    Science.gov (United States)

    Husser, Oliver; Bodí, Vicente; Sanchís, Juan; Mainar, Luis; Núñez, Julio; López-Lereu, María P; Monmeneu, José V; Ruiz, Vicente; Rumiz, Eva; Moratal, David; Chorro, Francisco J; Llácer, Angel

    2009-04-01

    Dipyridamole stress perfusion cardiovascular magnetic resonance (CMR) is used to detect coronary artery disease (CAD). However, few data are available on the diagnostic value of the systolic dysfunction induced by dipyridamole. This study investigated whether the induction of systolic dysfunction supplements the diagnostic information provided by perfusion imaging in the detection of CAD. Overall, 166 patients underwent dipyridamole CMR and quantitative coronary angiography, with CAD being defined as a stenosis > or =70%. Systolic dysfunction at rest, systolic dysfunction with dipyridamole, induced systolic dysfunction, and stress first-pass perfussion deficit (PD) and delayed enhancement were quantified. In the multivariate analysis, PD (hazard ratio [HR]=1.6; 95% confidence interval [CI], 1.33-1.91;Pstatistic for predicting CAD (0.81 vs. 0.87; P=.02). Combining induced systolic dysfunction with perfusion imaging increases the diagnostic accuracy of detecting CAD and enables patients with severe ischemia and a high probability of CAD to be identified.

  12. Efficacy of diagnostic magnetic resonance imaging for articular cartilage lesions of the glenohumeral joint in patients with instability

    International Nuclear Information System (INIS)

    Hayes, Meredith L.; Collins, Mark S.; Wenger, Doris E.; Morgan, Joseph A.; Dahm, Diane L.

    2010-01-01

    The purpose of this study was primarily to assess the diagnostic performance of magnetic resonance imaging (MRI) in detecting articular cartilage injuries in patients with glenohumeral instability. A secondary purpose was to assess the diagnostic performance of MRI for detection of Hill-Sachs and Bankart lesions. A cohort of 87 consecutive patients who underwent diagnostic MRI and shoulder arthroscopy for instability from 1997 to 2006 were identified. Fifty-five patients (63.2%) underwent MRI with intra-articular contrast medium and 32 patients (36.8%) underwent MRI without contrast medium. MR images were reviewed by two radiologists and interpreted by consensus for the presence of articular cartilage lesions (including Hill-Sachs and Bankart lesions), which were then confirmed by reviewing the operative report and images recorded at arthroscopy. Mean patient age was 27.0 ± 10.2 years with a mean clinical and radiographic follow-up of 29 (range 3-72) months. Cartilage injuries were detected arthroscopically in 55 patients (63%). Bankart and Hill-Sachs lesions were identified arthroscopically in 66 patients (75.9%) and 55 patients (63.2%) respectively. The overall sensitivity and specificity for detection of glenohumeral articular cartilage lesions by MRI were 87.2% and 80.6% respectively. The sensitivity and specificity of MRI in detecting Bankart lesions was 98.4% (95% CI 91.9, 99.7) and 95.2% (95% CI 77.3, 99.2) respectively. The sensitivity and specificity of MRI in detecting Hill-Sachs lesions was 96.3% (95% CI 87.6, 98.9%) and 90.6% (95% CI 75.7, 96.9) respectively. No statistically significant difference was found between MRI examinations with and without intra-articular gadolinium (p = 0.89). Magnetic resonance imaging demonstrates high sensitivity and specificity for the diagnosis of articular cartilage injuries in patients with glenohumeral instability. MRI with or without intra-articular contrast medium in this study were equally reliable as a non

  13. Efficacy of diagnostic magnetic resonance imaging for articular cartilage lesions of the glenohumeral joint in patients with instability

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Meredith L.; Collins, Mark S.; Wenger, Doris E. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Morgan, Joseph A.; Dahm, Diane L. [Mayo Clinic, Department of Orthopaedic Surgery, Rochester, MN (United States)

    2010-12-15

    The purpose of this study was primarily to assess the diagnostic performance of magnetic resonance imaging (MRI) in detecting articular cartilage injuries in patients with glenohumeral instability. A secondary purpose was to assess the diagnostic performance of MRI for detection of Hill-Sachs and Bankart lesions. A cohort of 87 consecutive patients who underwent diagnostic MRI and shoulder arthroscopy for instability from 1997 to 2006 were identified. Fifty-five patients (63.2%) underwent MRI with intra-articular contrast medium and 32 patients (36.8%) underwent MRI without contrast medium. MR images were reviewed by two radiologists and interpreted by consensus for the presence of articular cartilage lesions (including Hill-Sachs and Bankart lesions), which were then confirmed by reviewing the operative report and images recorded at arthroscopy. Mean patient age was 27.0 {+-} 10.2 years with a mean clinical and radiographic follow-up of 29 (range 3-72) months. Cartilage injuries were detected arthroscopically in 55 patients (63%). Bankart and Hill-Sachs lesions were identified arthroscopically in 66 patients (75.9%) and 55 patients (63.2%) respectively. The overall sensitivity and specificity for detection of glenohumeral articular cartilage lesions by MRI were 87.2% and 80.6% respectively. The sensitivity and specificity of MRI in detecting Bankart lesions was 98.4% (95% CI 91.9, 99.7) and 95.2% (95% CI 77.3, 99.2) respectively. The sensitivity and specificity of MRI in detecting Hill-Sachs lesions was 96.3% (95% CI 87.6, 98.9%) and 90.6% (95% CI 75.7, 96.9) respectively. No statistically significant difference was found between MRI examinations with and without intra-articular gadolinium (p = 0.89). Magnetic resonance imaging demonstrates high sensitivity and specificity for the diagnosis of articular cartilage injuries in patients with glenohumeral instability. MRI with or without intra-articular contrast medium in this study were equally reliable as a non

  14. The Diagnostic Role of Magnetic Resonance Enterography as a Complementary Test to Colonoscopy in Active Crohn?s Disease

    OpenAIRE

    Aryan, Arvin; Azizi, Zahra; Teimouri, Azam; Ebrahimi Daryani, Nasser; Aletaha, Najme; Jahanbakhsh, Ali; Nouritaromlou, Mohammad Kazem; Alborzi, Forough; Mami, Masoud; Basirat, Vahid; Javid Anbardan, Sanam

    2016-01-01

    BACKGROUND According to recent studies comparing magnetic resonance enterography (MRE) with ileocolonoscopy for assessing inflammation of small bowel and colonic segments in adults with active Crohn?s disease (CD), we aimed to compare the accuracy of these two diagnostic methods in Iranian population. METHODS During 2013-2014 a follow-up study was done on 30 patients with active CD in a gastroenterology clinic affiliated to Tehran University of Medical Sciences. MRE and ileocolonoscopy were p...

  15. Plasma diagnostics on large tokamaks

    International Nuclear Information System (INIS)

    Orlinskij, D.V.; Magyar, G.

    1988-01-01

    The main tasks of the large tokamaks which are under construction (T-15 and Tore Supra) and of those which have already been built (TFTR, JET, JT-60 and DIII-D) together with their design features which are relevant to plasma diagnostics are briefly discussed. The structural features and principal characteristics of the diagnostic systems being developed or already being used on these devices are also examined. The different diagnostic methods are described according to the physical quantities to be measured: electric and magnetic diagnostics, measurements of electron density, electron temperature, the ion components of the plasma, radiation loss measurements, spectroscopy of impurities, edge diagnostics and study of plasma stability. The main parameters of the various diagnostic systems used on the six large tokamaks are summarized in tables. (author). 351 refs, 44 figs, 22 tabs

  16. Novel readout method for molecular diagnostic assays based on optical measurements of magnetic nanobead dynamics.

    Science.gov (United States)

    Donolato, Marco; Antunes, Paula; Bejhed, Rebecca S; Zardán Gómez de la Torre, Teresa; Østerberg, Frederik W; Strömberg, Mattias; Nilsson, Mats; Strømme, Maria; Svedlindh, Peter; Hansen, Mikkel F; Vavassori, Paolo

    2015-02-03

    We demonstrate detection of DNA coils formed from a Vibrio cholerae DNA target at picomolar concentrations using a novel optomagnetic approach exploiting the dynamic behavior and optical anisotropy of magnetic nanobead (MNB) assemblies. We establish that the complex second harmonic optical transmission spectra of MNB suspensions measured upon application of a weak uniaxial AC magnetic field correlate well with the rotation dynamics of the individual MNBs. Adding a target analyte to the solution leads to the formation of permanent MNB clusters, namely, to the suppression of the dynamic MNB behavior. We prove that the optical transmission spectra are highly sensitive to the formation of permanent MNB clusters and, thereby to the target analyte concentration. As a specific clinically relevant diagnostic case, we detect DNA coils formed via padlock probe recognition and isothermal rolling circle amplification and benchmark against a commercial equipment. The results demonstrate the fast optomagnetic readout of rolling circle products from bacterial DNA utilizing the dynamic properties of MNBs in a miniaturized and low-cost platform requiring only a transparent window in the chip.

  17. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  18. Mammary carcinoma diagnostics and therapy

    International Nuclear Information System (INIS)

    Fischer, Uwe; Baum, Friedemann

    2014-01-01

    The book on mammary carcinoma diagnostics and therapy covers the following issues: development, anatomy and physiology of the mammary glands, pathology of benign and malign mammary gland changes, non-imaging diagnostics; mammography; ultrasonic mammography; magnetic resonance tomography of the mammary glands; imaging diagnostics findings; mammary interventions; examination concepts; operative therapy of the mammary carcinoma; chemotherapy of the mammary carcinoma; radio-oncological therapy of the mammary carcinoma; logistics in a medical center for mammary gland diseases; logistics in an interdisciplinary center for mammary diseases; dialogue conduction and psycho-social attendance.

  19. Diagnostic Accuracy of Diffusion Weighted Magnetic Resonance Imaging in the Detection of Myometrial Invasion in Endometrial Carcinoma

    International Nuclear Information System (INIS)

    Masroor, I.; Hussain, Z.; Taufiq, M.

    2016-01-01

    Objective: To determine the diagnostic accuracy of Diffusion-Weighted Magnetic Resonance Imaging (DWMRI) in the detection of myometrial invasion in endometrial cancer taking histopathology as gold standard. Study Design: Cross-sectional validation study. Place and Duration of Study: Department of Radiology, The Aga Khan University Hospital, Karachi, from January to December 2012. Methodology: DWMRI (b-value = 50,400 and 800 s/mm2) was performed in 85 patients of biopsy-proven endometrial carcinoma before hysterectomy using body and spine coil at 1.5 Tesla. DWI was evaluated for presence of myometrial invasion by tumor with histopathology as gold standard. Sensitivity, specificity, the negative predictive value and positive predictive value and accuracy of DWI were assessed against the gold standard. Results: On DWI, superficial myometrial invasion was found in 42 patients and deep myometrial invasion in 43. On histopathology, superficial myometrial invasion was found in 53 patients and deep myometrial invasion in 32. Hence sensitivity, specificity, positive predictive value, negative predictive value and accuracy for the assessment of myometrial invasion by endometrial tumor on DW images was 90 percentage, 73 percentage, 67 percentage, 92 percentage and 80 percentage, respectively. Diagnostic accuracy of diffusion-weighted magnetic resonance imaging in detection of myometrial invasion in endometrial cancer was 80 percentage. Conclusion: DWI is highly accurate in assessing myometrial invasion and can be used as an adjunct to routine MRI for pre-operative evaluation of myometrial invasion of endometrial cancer. (author)

  20. Diagnostics and structure

    International Nuclear Information System (INIS)

    Vial, J.C.

    1986-01-01

    The structure of prominences and the diagnostic techniques used to evaluate their physical parameters are discussed. These include electron temperature, various densities (n sub p, n sub e, n sub l), ionization degree, velocities, and magnetic field vector. UV and radio measurements have already evidenced the existence of different temperature regions, corresponding to different geometrical locations, e.g., the so called Prominence-Corona (P-C) interface. Velocity measurements are important for considering formation and mass balance of prominences but there are conflicting velocity measurements which have led to the basic question: what structure is actually observed at a given wavelength; what averaging is performed within the projected slit area during the exposure time? In optically thick lines, the question of the formation region of the radiation along the line of sight is also not a trivial one. The same is true for low resolution measurements of the magnetic field. Coupling diagnostics with structure is now a general preoccupation

  1. How doctors generate diagnostic hypotheses: a study of radiological diagnosis with functional magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Marcio Melo

    Full Text Available In medical practice, diagnostic hypotheses are often made by physicians in the first moments of contact with patients; sometimes even before they report their symptoms. We propose that generation of diagnostic hypotheses in this context is the result of cognitive processes subserved by brain mechanisms that are similar to those involved in naming objects or concepts in everyday life.To test this proposal we developed an experimental paradigm with functional magnetic resonance imaging (fMRI using radiological diagnosis as a model. Twenty-five radiologists diagnosed lesions in chest X-ray images and named non-medical targets (animals embedded in chest X-ray images while being scanned in a fMRI session. Images were presented for 1.5 seconds; response times (RTs and the ensuing cortical activations were assessed. The mean response time for diagnosing lesions was 1.33 (SD ±0.14 seconds and 1.23 (SD ±0.13 seconds for naming animals. 72% of the radiologists reported cogitating differential diagnoses during trials (3.5 seconds. The overall pattern of cortical activations was remarkably similar for both types of targets. However, within the neural systems shared by both stimuli, activation was significantly greater in left inferior frontal sulcus and posterior cingulate cortex for lesions relative to animals.Generation of diagnostic hypotheses and differential diagnoses made through the immediate visual recognition of clinical signs can be a fast and automatic process. The co-localization of significant brain activation for lesions and animals suggests that generating diagnostic hypotheses for lesions and naming animals are served by the same neuronal systems. Nevertheless, diagnosing lesions was cognitively more demanding and associated with more activation in higher order cortical areas. These results support the hypothesis that medical diagnoses based on prompt visual recognition of clinical signs and naming in everyday life are supported by similar

  2. Diagnostics of E x B-driven gliding discharges

    International Nuclear Information System (INIS)

    Gossye, G.; Leys, C.

    2001-01-01

    The concept of magnetic stabilization is investigated as a means to obtain non-thermal plasmas at elevated pressures. Electrical and optical diagnostics are deployed to measure the magnetic drift velocity and the plasma column width

  3. ISTTOK plasma control with the tomography diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, H.; Caralho, P.J.; Duarte, P.; Pereira, T.; Coelho, R.; Silva, C. [Association Euratom/IST, Institute of Plasmas and Nuclear Fusion, Technology Graduate Institute, P-1049-001 Lisbon (Portugal)

    2011-07-01

    A real-time plasma position control system is mandatory to achieve long duration (up to 250 ms), Alternating Current (AC) discharges on the ISTTOK tokamak. Such a system has been used for some time supported only on magnetic field diagnostic data. However, this system does not function accurately when the plasma current is low, rendering it inoperative during the plasma current reversal. A tomography diagnostic with 3 pinhole cameras and 8 silicone photodiode channels per camera was installed and customized to supply alternative plasma position to be used for plasma position control. As no filtering is applied, most of the radiation detected is in the visible/near-UV range. This system (i) executes a tomographic reconstruction, (ii) determines the average emissivity position from it, (iii) calculates the shift from the required position and (iv) supplies the vertical field power supply unit with the desired current value, all in less than 100 {mu}s. The horizontal magnetic field power supply unit is expected to be included in the system and will have no impact in the process time. This paper presents the tomography diagnostic architecture together with results of its scientific exploitation in ISTTOK AC discharges, where it has proven to be capable of supplying an accurate plasma position during the current reversal. The use of the tomography diagnostic for plasma position overcomes some limitations of the magnetic diagnostics, but poses challenges of its own such as blindness to plasma current direction. (authors)

  4. EMERGENCE OF GRANULAR-SIZED MAGNETIC BUBBLES THROUGH THE SOLAR ATMOSPHERE. II. NON-LTE CHROMOSPHERIC DIAGNOSTICS AND INVERSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Jaime de la Cruz [Institute for Solar Physics, Department of Astronomy, Stockholm University, Albanova University Center, SE-10691 Stockholm (Sweden); Hansteen, Viggo; Ortiz, Ada [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Bellot-Rubio, Luis, E-mail: jaime@astro.su.se [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain)

    2015-09-10

    Magnetic flux emergence into the outer layers of the Sun is a fundamental mechanism for releasing energy into the chromosphere and the corona. In this paper, we study the emergence of granular-sized flux concentrations and the structuring of the corresponding physical parameters and atmospheric diagnostics in the upper photosphere and in the chromosphere. We make use of a realistic 3D MHD simulation of the outer layers of the Sun to study the formation of the Ca ii 8542 line. We also derive semi-empirical 3D models from non-LTE inversions of our observations. These models contain information on the line-of-sight stratifications of temperature, velocity, and the magnetic field. Our analysis explains the peculiar Ca ii 8542 Å profiles observed in the flux emerging region. Additionally, we derive detailed temperature and velocity maps describing the ascent of a magnetic bubble from the photosphere to the chromosphere. The inversions suggest that, in active regions, granular-sized bubbles emerge up to the lower chromosphere where the existing large-scale field hinders their ascent. We report hints of heating when the field reaches the chromosphere.

  5. Brain Atlas Fusion from High-Thickness Diagnostic Magnetic Resonance Images by Learning-Based Super-Resolution.

    Science.gov (United States)

    Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian

    2017-03-01

    It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.

  6. Towards an improved magnetic diagnostic system for LISA

    International Nuclear Information System (INIS)

    Mateos, I; Lobo, A; Sanjuan, J; Ramos-Castro, J; Nofrarias, M

    2009-01-01

    The current design, and material implementation of the magnetic field sensing in the LISA Technology Package (LTP) on board LISA Pathfinder (LPF), is based on a set of 4 high-precision 3-axis fluxgate magnetometers. In order to avoid magnetic disturbances on the LTP proof masses (TM 's), originated by the sensors themselves, these are placed somewhat far from the TM's, which results in partial field information losses. We are currently investigating alternative magnetic sensing techniques, based on AMR (Anisotropic Magnetoresistive) devices. These are much smaller in size than fluxgates, therefore a more numerous array can be thought of for flight. In addition, there is a chance that they may be attached closer to the TM's, thereby enhancing magnetic field sensing spacial resolution. Several issues need to be addressed, such as real sensitivity (including electronics noise) and set/reset trigger procedures. A brief overview about the stability of the magnetic fields and gradients generated in the LTP by means of the coil will also be given. This paper show the latest results of our research.

  7. Diagnostic development for current density profile control at KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J., E-mail: jinseok@nfri.re.kr [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); University of Science and Technology, Daejeon 34113 (Korea, Republic of); Chung, J. [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Messmer, M.C.C. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands)

    2016-11-01

    Highlights: • The motional Stark effect (MSE) diagnostic installed at KSTAR. • Engineering challenges and solutions on the design and fabrication of the front optics housing and filter modules. • Characterization of the bandpass filters and the responses to polarized light. - Abstract: The current density profile diagnostics are critical for the control of the steady-state burning plasma operations. A multi-channel motional Stark effect (MSE) diagnostic system has been implemented for the measurements of the internal magnetic field structures that constrain the magnetic equilibrium reconstruction to accurately produce the tokamak safety factor and current density profiles for the Korea Superconducting Tokamak Advanced Research (KSTAR). This work presents the design and fabrication of the front optics and the filter modules and the calibration activities for the MSE diagnostic at KSTAR.

  8. Imaging systems for medical diagnostics

    International Nuclear Information System (INIS)

    Krestel, E.

    1990-01-01

    This book provides physicians and clinical physicists with detailed information on today's imaging modalities and assists them in selecting the optimal system for each clinical application. Physicists, engineers and computer specialists engaged in research and development and sales departments will also find this book to be of considerable use. It may also be employed at universities, training centers and in technical seminars. The physiological and physical fundamentals are explained in part 1. The technical solutions contained in part 2 illustrate the numerous possibilities available in X-ray diagnostics, computed tomography, nuclear medical diagnostics, magnetic resonance imaging, sonography and biomagnetic diagnostics. (orig.)

  9. A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN committee

    Science.gov (United States)

    Groppa, S.; Oliviero, A.; Eisen, A.; Quartarone, A.; Cohen, L.G.; Mall, V.; Kaelin-Lang, A.; Mima, T.; Rossi, S.; Thickbroom, G.W.; Rossini, P.M.; Ziemann, U.; Valls-Solé, J.; Siebner, H.R.

    2016-01-01

    Transcranial magnetic stimulation (TMS) is an established neurophysiological tool to examine the integrity of the fast-conducting corticomotor pathways in a wide range of diseases associated with motor dysfunction. This includes but is not limited to patients with multiple sclerosis, amyotrophic lateral sclerosis, stroke, movement disorders, disorders affecting the spinal cord, facial and other cranial nerves. These guidelines cover practical aspects of TMS in a clinical setting. We first discuss the technical and physiological aspects of TMS that are relevant for the diagnostic use of TMS. We then lay out the general principles that apply to a standardized clinical examination of the fast-conducting corticomotor pathways with single-pulse TMS. This is followed by a detailed description of how to examine corticomotor conduction to the hand, leg, trunk and facial muscles in patients. Additional sections cover safety issues, the triple stimulation technique, and neuropediatric aspects of TMS. PMID:22349304

  10. Tools and methods for implementing the control systems on the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Minor, E.G.; Labiak, W.G.

    1981-01-01

    Installation of the major hardware subsystems for MFTF is nearing completion. These subsystems include the Fusion Chamber System, the eighty KV Neutral Beam System, the Superconducting Magnet System, and the Personnel Safety System. The Local Controls group has undertaken a uniform aproach to implementing the control systems for all of these hardware subsystems. This approach has two major aspects: (1) to provide a stand-alone computer control system with a remote, portable terminal so that computer control can be provided at the site of the hardware for initial testing, (2) to provide hardware simulators so that the complicated MFTF computer control system can be tested independent of the hardware. The software and hardware tools which were developed to carry out this plan will be described. Our experiences with bringing up subsystems containing up to 900 separate channels of control and status will also be described

  11. Review of current status of high flux heat transfer techniques. Volume I. Text + Appendix A

    International Nuclear Information System (INIS)

    Bauer, W.H.; Gordon, H.S.; Lackner, H.; Mettling, J.R.; Miller, J.E.

    1980-09-01

    The scope of this work comprised two tasks. The first was to review high heat flux technology with consideration given to heat transfer panel configuration, diagnostics techniques and coolant supply. The second task was to prepare a report describing the findings of the review, to recommend the technology offering the least uncertainty for scale-up for the MFTF-B requirement and to recommend any new or perceived requirements for R and D effort

  12. Review of current status of high flux heat transfer techniques. Volume I. Text + Appendix A

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, W.H.; Gordon, H.S.; Lackner, H.; Mettling, J.R.; Miller, J.E.

    1980-09-01

    The scope of this work comprised two tasks. The first was to review high heat flux technology with consideration given to heat transfer panel configuration, diagnostics techniques and coolant supply. The second task was to prepare a report describing the findings of the review, to recommend the technology offering the least uncertainty for scale-up for the MFTF-B requirement and to recommend any new or perceived requirements for R and D effort.

  13. Prostate carcinoma: current diagnostic strategy

    International Nuclear Information System (INIS)

    Schwarzschild, Monica Maria Agata Stiepcich; Ferraz, Maria Lucia Cardoso Gomes; Oliveira, Jose Marcelo Amatuzzi; Andriolo, Adagmar

    2001-01-01

    Prostate cancer is the second cause of cancer death in men in the Western world. Despite progress in the treatment of advanced disease, it is recognized that the only possibility of reduction in prostate cancer death is nearly diagnosis when the disease is localized. In the present study our aim was to review the current strategy for diagnosis of prostate carcinoma. Prostate-specific antigen (PSA) is a valuable tumor marker and has demonstrated effectiveness in detecting prostate carcinoma, monitoring therapeutic efficacy, and disclosing disease recurrence. However, alternative methods are been proposed just as the free to total PSA ratio, PSA density, PSA velocity, which could improve the diagnostic sensibility and the specificity. Image diagnostic methods include transrectal ultra sound, computerized tomography, magnetic resonance image, and bone cintigraphy. The ultra sound is the best approach to guide the prostate biopsy and, together with the magnetic resonance is still useful for loco regional graduation. Computerized tomography as magnetic resonance image can be used for identification of linfonodal involvement. Bone cintigraphy is the best method for the identification of metastatic disease. (author)

  14. Diagnostic value of 3D time-of-flight magnetic resonance angiography for detecting intracranial aneurysm: a meta-analysis.

    Science.gov (United States)

    HaiFeng, Liu; YongSheng, Xu; YangQin, Xun; Yu, Dou; ShuaiWen, Wang; XingRu, Lu; JunQiang, Lei

    2017-11-01

    This meta-analysis is to comprehensively evaluate the diagnostic performance of three-dimensional time-of-flight magnetic resonance angiography (3D-TOF-MRA) for detecting intracranial aneurysm (IA). PubMed, Embase, Web of Science, and the Cochrane library were systematically searched for retrieving eligible studies. Study inclusion, data extraction, and risk of bias assessment were performed by two researchers independently. Pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were calculated to assess the diagnostic value. In addition, heterogeneity and subgroup analysis were carried out. In total, 18 studies comprising 3463 patients were selected. The results of 3D-TOF-MRA for diagnosing IA were SEN 0.89 (95% CI 0.82-0.94), SPE 0.94 (0.86-0.97), PLR 13.79 (5.92-32.12), NLR 0.11 (0.07-0.19), DOR 121.90 (38.81-382.94), and AUC 0.96 (0.94-0.98), respectively. In the subgroup analysis, studies without subarachnoid hemorrhage (SAH) tend to perform statistical significantly better (P 3D-TOF-MRA had better SEN in aneurysms > 3 mm than the aneurysms ≤ 3 mm in diameter: 0.89 (0.87-0.92) vs. 0.78 (0.71-0.84) with P 3D-TOF-MRA has an excellent diagnostic performance for the overall assessment of IA and may serve as an alternative for further patient management with IA.

  15. Drift-free equilibrium reconstruction using magnetic probes

    International Nuclear Information System (INIS)

    Lister, J.B.; Saint-Laurent, F.; Moreau, Ph.; Lukash, V.E.

    2004-01-01

    Tore Supra has recently demonstrated the existence of a new effect, causing magnetic diagnostic drift and not previously taken into consideration, which is slight rotation of the magnetic probes by thermo-mechanical distortion during 300 second pulses absorbing more than 1 GJ into the plasma, resulting in time-dependent pick-up of the toroidal magnetic field. The Tore Supra control system tracks these offsets and displaces the last closed flux surface from its reference location. This new effect of long high-power pulses has the properties of a drift, generating a slowly evolving unmeasured offset to the integrated magnetic signals. For this reason, we have decided to take another look at methods of reconstructing an offset-free equilibrium from magnetic diagnostics, whereas most proposed approaches to drift compensation rely on non-magnetic, non-integrated measurements of plasma emission or reflectometry. We note that a similar approach was tested on HT-7 using the induction in the poloidal field coils as the sole measurement of the radial position, modulating in a similar way. Although this present work uses magnetic diagnostics, we are extending this idea to include the vertical position and the deformation of highly shaped plasmas

  16. Transverse phase space diagnostics for ionization injection in laser plasma acceleration using permanent magnetic quadrupoles

    Science.gov (United States)

    Li, F.; Nie, Z.; Wu, Y. P.; Guo, B.; Zhang, X. H.; Huang, S.; Zhang, J.; Cheng, Z.; Ma, Y.; Fang, Y.; Zhang, C. J.; Wan, Y.; Xu, X. L.; Hua, J. F.; Pai, C. H.; Lu, W.; Mori, W. B.

    2018-04-01

    We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Numerical simulations that are in qualitative agreement with the experimental results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.

  17. Diagnostic confidence analysis in the magnetic resonance imaging of ovarian and deep endometriosis: comparison with surgical results

    Energy Technology Data Exchange (ETDEWEB)

    Saba, Luca; Sulcis, Rosa; Ibba, Giannina; Piga, Mario [Azienda Ospedaliero Universitaria, Department of Radiology, Monserrato (Italy); Melis, Gian Benedetto; Guerriero, Stefano [Azienda Ospedaliero Universitaria, Department of Gynecology, Monserrato (Italy); Alcazar, Juan Luis [University of Navarra, Department of Obstetrics and Gynecology, Clinica Universidad de Navarra, Pamplona (Spain)

    2014-02-15

    To assess the diagnostic confidence of multiple readers in the magnetic resonance imaging (MRI) diagnosis of endometriosis. Sixty-five patients (mean age 33; range 19-45 years) who had undergone MRI were retrospectively evaluated. Five regions were analysed and the presence of endometriosis was scored on a five-point scale in order to assess the diagnostic confidence. Statistical analysis included receiver operating characteristic (ROC) curve analysis, the Cohen weighted test and sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, positive likelihood ratio (LR+) and negative likelihood ratio (LR-). The areas under the curve (AUC) in the detection of ovarian endometrioma were 0.942, 0.893 and 0.883 for readers 1, 2 and 3, respectively; in the uterosacral ligament (USL) AUCs were 0.907, 0.804 and 0.842; in the vaginal fornix (VF) 0.819, 0.733 and 0.69; in the anterior compartment 0.916, 0.833 and 0.873; and in the rectum/sigma/pouch of Douglas (RSD) 0.936, 0.856 and 0.834. Diagnostic confidence of the observers is different according to the region of the nodules of endometriosis and it can be challenging in the VF and for the less experience readers also in the AC and RSD. Moreover the degree of uncertain diagnosis for the less expert readers may reach up to one third of the examinations. (orig.)

  18. Diagnostic confidence analysis in the magnetic resonance imaging of ovarian and deep endometriosis: comparison with surgical results

    International Nuclear Information System (INIS)

    Saba, Luca; Sulcis, Rosa; Ibba, Giannina; Piga, Mario; Melis, Gian Benedetto; Guerriero, Stefano; Alcazar, Juan Luis

    2014-01-01

    To assess the diagnostic confidence of multiple readers in the magnetic resonance imaging (MRI) diagnosis of endometriosis. Sixty-five patients (mean age 33; range 19-45 years) who had undergone MRI were retrospectively evaluated. Five regions were analysed and the presence of endometriosis was scored on a five-point scale in order to assess the diagnostic confidence. Statistical analysis included receiver operating characteristic (ROC) curve analysis, the Cohen weighted test and sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, positive likelihood ratio (LR+) and negative likelihood ratio (LR-). The areas under the curve (AUC) in the detection of ovarian endometrioma were 0.942, 0.893 and 0.883 for readers 1, 2 and 3, respectively; in the uterosacral ligament (USL) AUCs were 0.907, 0.804 and 0.842; in the vaginal fornix (VF) 0.819, 0.733 and 0.69; in the anterior compartment 0.916, 0.833 and 0.873; and in the rectum/sigma/pouch of Douglas (RSD) 0.936, 0.856 and 0.834. Diagnostic confidence of the observers is different according to the region of the nodules of endometriosis and it can be challenging in the VF and for the less experience readers also in the AC and RSD. Moreover the degree of uncertain diagnosis for the less expert readers may reach up to one third of the examinations. (orig.)

  19. Diagnostic usefulness of endorectal magnetic resonance imaging with dynamic contrast-enhancement in patients with localized prostate cancer. Mapping studies with biopsy specimens

    International Nuclear Information System (INIS)

    Tanaka, Nobumichi; Samma, Shoji; Joko, Masanori; Akiyama, Tatsuya; Takewa, Megumi; Kitano, Satoru; Okajima, Eigoro

    1999-01-01

    New diagnostic criteria for dynamic magnetic resonance (MR) imaging in prostate cancer are presented. The diagnostic usefulness of endorectal MR imaging with dynamic contrast-enhancement in localized prostate cancer and the validity of these criteria were evaluated. Eighteen untreated patients who were suspected of localized prostate cancer were included in the study. They received endorectal dynamic MR imaging before systematic sextant needle biopsy. First, a mapping study with the findings of MR images and histopathology of biopsy specimens was performed in eight patients out of 18 to compare the difference in T2-weighted images with the endorectal coil and the body coil in the same individuals. Second, another mapping study was performed in all 18 patients by analyzing the findings of endorectal dynamic MR images. For the diagnosis of prostate cancer in MR imaging, we offered diagnostic criteria from our experience in addition to those in plain T2-weighted images from the literature. The overall diagnostic rates of endorectal dynamic MR imaging were 88.9% in accuracy, 100% in sensitivity, and 81.8% in specificity. In the comparison of the endorectal and body coils in T2-weighted images in eight patients, there was no difference in the diagnostic rates except for one more histopathologic false positive portion in endorectal MR imaging. In the second mapping study in 18 patients, the diagnostic rates were 92.6% in accuracy, 88.9% in sensitivity and 93.3% in specificity. Endorectal dynamic imaging raised the diagnostic sensitivity from 77.8 to 88.9%. The data demonstrated the validity of this diagnostic criteria and the diagnostic usefulness of endorectal dynamic MR imaging in localized prostate cancer. (author)

  20. Safety guidelines for magnetic resonance diagnostic facilities (1991)

    International Nuclear Information System (INIS)

    1992-01-01

    These guidelines provide information on levels and health effects of exposure to magnetic and radiofrequency electromagnetic fields associated with magnetic resonance (MR) devices, and on precautions to minimize effects on patients, staff, and the general public. The guidelines are for use by regulatory authorities, MR users and health professionals. 22 refs., 1 tab

  1. On the possibility of laser diagnostics of anisotropically superheated electrons in magnetic fusion systems

    International Nuclear Information System (INIS)

    Kukushkin, A.B.

    1990-01-01

    The anisotropically superheated electrons (ASE) are known to be generated by a resonance interaction of high-frequency electromagnetic waves with electron plasma. Under definite conditions the ASE energy may essentially exceed (by the order of magnitude or even more) thermal energies of background electron plasma, the ASE distribution in pitch-angle being concentrated around definite directions. This situation is typical for, e.g. electron cyclotron heating of magnetic mirror plasmas (generation of 'sloshing' electrons) and for current drive in tokamaks by means of lower-hybrid or, sometimes, electron cyclotron waves. In this work, an analysis of the possibility of the ASE laser diagnostics is based on the calculations of Thomson scattering of laser radiation by plasma electrons. The model electron velocity distribution functions, which provide qualitative description of the ASE peculiar features, were used in calculations. (author) 4 refs., 1 fig

  2. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee.

    Science.gov (United States)

    Groppa, S; Oliviero, A; Eisen, A; Quartarone, A; Cohen, L G; Mall, V; Kaelin-Lang, A; Mima, T; Rossi, S; Thickbroom, G W; Rossini, P M; Ziemann, U; Valls-Solé, J; Siebner, H R

    2012-05-01

    Transcranial magnetic stimulation (TMS) is an established neurophysiological tool to examine the integrity of the fast-conducting corticomotor pathways in a wide range of diseases associated with motor dysfunction. This includes but is not limited to patients with multiple sclerosis, amyotrophic lateral sclerosis, stroke, movement disorders, disorders affecting the spinal cord, facial and other cranial nerves. These guidelines cover practical aspects of TMS in a clinical setting. We first discuss the technical and physiological aspects of TMS that are relevant for the diagnostic use of TMS. We then lay out the general principles that apply to a standardized clinical examination of the fast-conducting corticomotor pathways with single-pulse TMS. This is followed by a detailed description of how to examine corticomotor conduction to the hand, leg, trunk and facial muscles in patients. Additional sections cover safety issues, the triple stimulation technique, and neuropediatric aspects of TMS. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Zaveryaev, V [Kurchatov Institute, Moscow (Russian Federation); others, and

    2012-09-15

    The success in achieving peaceful fusion power depends on the ability to control a high temperature plasma, which is an object with unique properties, possibly the most complicated object created by humans. Over years of fusion research a new branch of science has been created, namely plasma diagnostics, which involves knowledge of almost all fields of physics, from electromagnetism to nuclear physics, and up-to-date progress in engineering and technology (materials, electronics, mathematical methods of data treatment). Historically, work on controlled fusion started with pulsed systems and accordingly the methods of plasma parameter measurement were first developed for short lived and dense plasmas. Magnetically confined hot plasmas require the creation of special experimental techniques for diagnostics. The diagnostic set is the most scientifically intensive part of a plasma device. During many years of research operation some scientific tasks have been solved while new ones arose. New tasks often require significant changes in the diagnostic system, which is thus a very flexible part of plasma machines. Diagnostic systems are designed to solve several tasks. As an example here are the diagnostic tasks for the International Thermonuclear Experimental Reactor - ITER: (1) Measurements for machine protection and basic control; (2) Measurements for advanced control; (3) Additional measurements for performance evaluation and physics. Every new plasma machine is a further step along the path to the main goal - controlled fusion - and nobody knows in advance what new phenomena will be met on the way. So in the planning of diagnostic construction we should keep in mind further system upgrading to meet possible new scientific and technical challenges. (author)

  4. Diagnostic value of 3D time-of-flight magnetic resonance angiography for detecting intracranial aneurysm: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, HaiFeng; Xu, YongSheng [First Hospital of LanZhou University, Department of Radiology, Lanzhou, Gansu (China); First Clinical Medical College of LanZhou University, Lanzhou, Gansu (China); Xun, YangQin [Lanzhou University, Evidence-based Medicine Center, Lanzhou (China); Dou, Yu; Wang, ShuaiWen; Lu, XingRu; Lei, JunQiang [First Hospital of LanZhou University, Department of Radiology, Lanzhou, Gansu (China)

    2017-11-15

    This meta-analysis is to comprehensively evaluate the diagnostic performance of three-dimensional time-of-flight magnetic resonance angiography (3D-TOF-MRA) for detecting intracranial aneurysm (IA). PubMed, Embase, Web of Science, and the Cochrane library were systematically searched for retrieving eligible studies. Study inclusion, data extraction, and risk of bias assessment were performed by two researchers independently. Pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were calculated to assess the diagnostic value. In addition, heterogeneity and subgroup analysis were carried out. In total, 18 studies comprising 3463 patients were selected. The results of 3D-TOF-MRA for diagnosing IA were SEN 0.89 (95% CI 0.82-0.94), SPE 0.94 (0.86-0.97), PLR 13.79 (5.92-32.12), NLR 0.11 (0.07-0.19), DOR 121.90 (38.81-382.94), and AUC 0.96 (0.94-0.98), respectively. In the subgroup analysis, studies without subarachnoid hemorrhage (SAH) tend to perform statistical significantly better (P < 0.05) in detecting IAs than studies with SAH 0.99 (0.98-1.00) vs. 0.89 (0.86-0.91). The diagnostic value of studies with a two-image reconstruction method was higher than studies with only one image reconstruction method: 0.99 (0.98-1.00) vs. 0.91 (0.89-0.94) with P < 0.05. The 3D-TOF-MRA had better SEN in aneurysms > 3 mm than the aneurysms ≤ 3 mm in diameter: 0.89 (0.87-0.92) vs. 0.78 (0.71-0.84) with P < 0.05. This study demonstrated that 3D-TOF-MRA has an excellent diagnostic performance for the overall assessment of IA and may serve as an alternative for further patient management with IA. (orig.)

  5. Magnetic particle movement program to calculate particle paths in flow and magnetic fields

    International Nuclear Information System (INIS)

    Inaba, Toru; Sakazume, Taku; Yamashita, Yoshihiro; Matsuoka, Shinya

    2014-01-01

    We developed an analysis program for predicting the movement of magnetic particles in flow and magnetic fields. This magnetic particle movement simulation was applied to a capturing process in a flow cell and a magnetic separation process in a small vessel of an in-vitro diagnostic system. The distributions of captured magnetic particles on a wall were calculated and compared with experimentally obtained distributions. The calculations involved evaluating not only the drag, pressure gradient, gravity, and magnetic force in a flow field but also the friction force between the particle and the wall, and the calculated particle distributions were in good agreement with the experimental distributions. Friction force was simply modeled as static and kinetic friction forces. The coefficients of friction were determined by comparing the calculated and measured results. This simulation method for solving multiphysics problems is very effective at predicting the movements of magnetic particles and is an excellent tool for studying the design and application of devices. - Highlights: ●We developed magnetic particles movement program in flow and magnetic fields. ●Friction force on wall is simply modeled as static and kinetic friction force. ●This program was applied for capturing and separation of an in-vitro diagnostic system. ●Predicted particle distributions on wall were agreed with experimental ones. ●This method is very effective at predicting movements of magnetic particles

  6. Molecular diagnostics using magnetic nanobeads

    International Nuclear Information System (INIS)

    Zardan Gomez de la Torre, Teresa; Stroemberg, Mattias; Goeransson, Jenny; Stroemme, Maria; Gunnarsson, Klas; Svedlindh, Peter; Nilsson, Mats

    2010-01-01

    In this paper, we investigate the volume-amplified magnetic nanobead detection assay with respect to bead size, bead concentration and bead oligonucleotide surface coverage in order to improve the understanding of the underlying microscopic mechanisms. It has been shown that: (i) the immobilization efficiency of the beads depends on the surface coverage of oligonucleotides, (ii) by using lower amounts of probe-tagged beads, detection sensitivity can be improved and (iii) using small enough beads enables both turn-off and turn-on detection. Finally, biplex detection was demonstrated.

  7. Cardiac magnetic resonance imaging

    African Journals Online (AJOL)

    2011-03-06

    Mar 6, 2011 ... Cardiac magnetic resonance imaging. Cardiovascular magnetic resonance imaging is becoming a routine diagnostic technique. BRUCE s sPOTTiswOOdE, PhD. MRC/UCT Medical Imaging Research Unit, University of Cape Town, and Division of Radiology, Stellenbosch University. Bruce Spottiswoode ...

  8. Check valve diagnostics utilizing acoustic and magnetic technologies

    International Nuclear Information System (INIS)

    Agostinelli, A.

    1991-01-01

    The potential hazards associated with check valve failures make it necessary to detect check valve problems before they cause significant damage. In the nuclear industry, check valve failures are known to have resulted in damaging water hammer conditions, overpressurization of low pressure systems, steam binding of auxiliary feedwater pumps, and other serious component damage in power plant environments. Similar problems exist in fossil power and various process industries, but the resources dedicated to valve maintenance issues are greatly reduced. However, the trend toward plant life extension, predictive maintenance, and maximum operating efficiency will raise the general awareness of check valve maintenance in commercial (non-nuclear) applications. Although this paper includes specific references to the nuclear industry, the check valve problem conditions and diagnostic techniques apply across all power and process plant environments. The ability to accurately diagnose check valve conditions using non-intrusive, predictive maintenance testing methods allows for a more cost-efficient, productive maintenance program. One particular diagnostic system, called Quickcheck trademark, assists utilities in addressing these concerns. This article presents actual field test data and analysis that demonstrate the power of check valve diagnostics. Prior to presenting the field data, a brief overview of the system is overviewed

  9. Recent Advancements in Microwave Imaging Plasma Diagnostics

    International Nuclear Information System (INIS)

    Park, H.; Chang, C.C.; Deng, B.H.; Domier, C.W.; Donni, A.J.H.; Kawahata, K.; Liang, C.; Liang, X.P.; Lu, H.J.; Luhmann, N.C. Jr.; Mase, A.; Matsuura, H.; Mazzucato, E.; Miura, A.; Mizuno, K.; Munsat, T.; Nagayama, K.; Nagayama, Y.; Pol, M.J. van de; Wang, J.; Xia, Z.G.; Zhang, W-K.

    2002-01-01

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented

  10. The diagnostic performance of magnetic resonance spectroscopy in differentiating high-from low-grade gliomas: A systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Wang, Qun; Zhang, JiaShu; Wu, Chen; Li, FangYe; Chen, XiaoLei; Xu, BaiNan; Zhang, Hui; Zhu, WeiJie

    2016-01-01

    Magnetic resonance spectroscopy (MRS) is a powerful tool for preoperative grading of gliomas. We performed a meta-analysis to evaluate the diagnostic performance of MRS in differentiating high-grade gliomas (HGGs) from low-grade gliomas (LGGs). PubMed and Embase databases were systematically searched for relevant studies of glioma grading assessed by MRS through 27 March 2015. Based on the data from eligible studies, pooled sensitivity, specificity, diagnostic odds ratio and areas under summary receiver operating characteristic curve (SROC) of different metabolite ratios were obtained. Thirty articles comprising a total sample size of 1228 patients were included in our meta-analysis. Quantitative synthesis of studies showed that the pooled sensitivity/specificity of Cho/Cr, Cho/NAA and NAA/Cr ratios was 0.75/0.60, 0.80/0.76 and 0.71/0.70, respectively. The area under the curve (AUC) of the SROC was 0.83, 0.87 and 0.78, respectively. MRS demonstrated moderate diagnostic performance in distinguishing HGGs from LGGs using tumoural metabolite ratios including Cho/Cr, Cho/NAA and NAA/Cr. Although there was no significant difference in AUC between Cho/Cr and Cho/NAA groups, Cho/NAA ratio showed higher sensitivity and specificity than Cho/Cr ratio and NAA/Cr ratio. We suggest that MRS should combine other advanced imaging techniques to improve diagnostic accuracy in differentiating HGGs from LGGs. (orig.)

  11. A new diagnostic for spheromaks

    International Nuclear Information System (INIS)

    Boyd, D.A.

    1986-01-01

    Electron cyclotron emission from a spheromak plasma may be able to provide information about the confining magnetic field of the system. Emission generated in the extraordinary mode wit hits electric vector perpendicular to the local magnetic field at sufficiently high frequency will propagate out of the plasma while retaining the original orientation if its electric vector. Thus, a measurement of the orientation of the emergent electric vector and the emission frequency will allow one to deduce the orientation and strength of the magnetic field at the radiation source. In this paper, simple models of the Maryland spheromak are used to examine the practicality of such a diagnostic

  12. Irradiation effects on plasma diagnostic components

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Iida, Toshiyuki; Ikeda, Yujiro

    1998-10-01

    One of the most important issues to develop the diagnostics for the experimental thermonuclear reactor such as ITER is the irradiation effects on the diagnostics components. Typical neutron flux and fluence on the first wall are 1 MW/m 2 and 1 MWa/m 2 , respectively for ITER. In such radiation condition, most of the present diagnostics could not survive so that those will be planed to be installed far from the vacuum vessel. However, some diagnostics sensors such as bolometers and magnetic probes still have to be install inside vessel. And many transmission components for lights, wave and electric signals are inevitable even inside vessel. As a part of this R and D program of the ITER Engineering Design Activities (EDA), we carried out the irradiation tests on the basic materials of the transmission components and in-vessel diagnostics sensors in order to identify radiation hardened materials that can be used for diagnostic systems. (J.P.N.)

  13. Irradiation effects on plasma diagnostic components

    Energy Technology Data Exchange (ETDEWEB)

    Nishitani, Takeo [ed.] [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Iida, Toshiyuki; Ikeda, Yujiro [and others

    1998-10-01

    One of the most important issues to develop the diagnostics for the experimental thermonuclear reactor such as ITER is the irradiation effects on the diagnostics components. Typical neutron flux and fluence on the first wall are 1 MW/m{sup 2} and 1 MWa/m{sup 2}, respectively for ITER. In such radiation condition, most of the present diagnostics could not survive so that those will be planed to be installed far from the vacuum vessel. However, some diagnostics sensors such as bolometers and magnetic probes still have to be install inside vessel. And many transmission components for lights, wave and electric signals are inevitable even inside vessel. As a part of this R and D program of the ITER Engineering Design Activities (EDA), we carried out the irradiation tests on the basic materials of the transmission components and in-vessel diagnostics sensors in order to identify radiation hardened materials that can be used for diagnostic systems. (J.P.N.)

  14. Magnetic resonance, a phenomenon with a great potential in medicine, but with a complex physical background – Part 2: The basics of magnetic resonance

    Directory of Open Access Journals (Sweden)

    Bojan Božič

    2014-01-01

    Full Text Available Magnetic resonance imaging is a very complex diagnostic technique. Therefore, both practical experiences and theoretical understanding is needed for effective diagnostics. It is therefore important that physicians are sufficiently familiar with the basic physical principles of magnetic resonance. In the interpretation of physical concepts, we will rely both on the classical as well as on the quantum-mechanical view of the signal formation in magnetic resonance, which are to some extent complementary. The signal appearance in magnetic resonance imaging will be discussed. A special emphasis will be put on the role of the resonance frequency and the pulse sequences. Furthermore, the spin echo as one of the most used classical signal sequences in diagnostic investigations will be described.

  15. The motional stark effect with laser-induced fluorescence diagnostic

    Science.gov (United States)

    Foley, E. L.; Levinton, F. M.

    2010-05-01

    The motional Stark effect (MSE) diagnostic is the worldwide standard technique for internal magnetic field pitch angle measurements in magnetized plasmas. Traditionally, it is based on using polarimetry to measure the polarization direction of light emitted from a hydrogenic species in a neutral beam. As the beam passes through the magnetized plasma at a high velocity, in its rest frame it perceives a Lorentz electric field. This field causes the H-alpha emission to be split and polarized. A new technique under development adds laser-induced fluorescence (LIF) to a diagnostic neutral beam (DNB) for an MSE measurement that will enable radially resolved magnetic field magnitude as well as pitch angle measurements in even low-field (experiments. An MSE-LIF system will be installed on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory. It will enable reconstructions of the plasma pressure, q-profile and current as well as, in conjunction with the existing MSE system, measurements of radial electric fields.

  16. Diagnostic interface problems on TFTR

    International Nuclear Information System (INIS)

    Goldfarb, S.

    1977-01-01

    Diagnostic equipment on TFTR has functional interfaces with many machine systems. Salient requirements include plasma access, environmental resistance to thermal, magnetic and radiation effects, automated data acquisition and controls, remote handling and personnel safety. Problems imposed by these requirements and the solutions being considered are described

  17. Biomimetic magnetic nanoparticles

    OpenAIRE

    Klem, Michael T.; Young, Mark; Douglas, Trevor

    2005-01-01

    Magnetic nanoparticles are of considerable interest because of their potential use in high-density memory devices, spintronics, and applications in diagnostic medicine. The conditions for synthesis of these materials are often complicated by their high reaction temperatures, costly reagents, and post-processing requirements. Practical applications of magnetic nanoparticles will require the development of alternate synthetic strategies that can overcome these impediments. Biomimetic approaches...

  18. Progress on the MSE diagnostic for ITER

    International Nuclear Information System (INIS)

    Lotte, Ph.; Giannella, R.; Von Hellermann, M.; Kuldkepp, M.; Rachlew, E.; Malaquias, A.; Costley, A.; Walker, C.

    2004-01-01

    The Motional Stark Effect (MSE) diagnostic is now considered as an essential diagnostic for an accurate determination of current profiles in tokamak discharges. It mainly allows a measurement of the direction of the total magnetic field, a very powerful constraint for the determination of the safety factor profile. The realisation of such a diagnostic on ITER implies to face new challenges, because of the bigger size of the machine and of its hard environment. Now, most of the foreseen difficulties have been examined, solutions envisaged, and we propose to review them in this paper. This article is divided into 3 parts: 1) principle of the MSE diagnostic and its feasibility at higher Lorentz electric fields, 2) spatial and time resolution of the diagnostic, and 3) the light collection system

  19. Solitary pulmonary nodule: radiologic features and diagnostic approach

    International Nuclear Information System (INIS)

    Rodriguez Cambronero, Luis Enrique

    2012-01-01

    A literature review is conducted on the solitary pulmonary nodule, to determine the diagnostic methods and specific characteristics. The diagnostic methods used have been: chest radiography, computed tomography, positron emission tomography and magnetic resonance imaging. The radiological features are defined: location, size, definition of contours or edges (margins), densitometric and attenuation characteristics, cavitation, air bronchogram, growth, doubling time, satellite nodules, nutrient vessels [es

  20. Beam diagnostics for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Nikol`skiy Yu.E.

    2012-06-01

    Full Text Available

    The paper presents aliterature review of domestic and foreign sources of modern methods of diagnostics imaging for traumatic brain injury. Information of the magnetic resonance imaging and computed tomography in the of this disease

  1. Skeletal diseases. Diagnostic clinical radiology and differential diagnostics. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Freyschmidt, J.

    1997-01-01

    The book focuses on the diagnostic evaluation of idiopathic diseases of the skeleton and bone joints, also including the fundamental healing processes of bone fractures, particularly of stress-induced and pathologic fractures. Ample space has been given to the description and imaging of the course of diseases under treatment by up-to-date therapies, as e.g. for ostitis deformans Paget's disease, or skeletal metastases. This second edition of the book incorporates the progress achieved over the last five years in skeletal diagnostics. The advances in this field have been resulting from basic research work, for instance in molecular biology, or from a variety of completed studies relating to clinical medicine, laboratory chemistry, histopathology and radiology of skeletal diseases, and from experience obtained with the diagnostic radiology methods and techniques, with the potentials and constraints of magnetic resonance imaging (MRI) today being more critically assessed than five years ago. MRI is a modality currently meeting with interest in the context of search for additional diagnostic information, new definition of complete pictures of diseases, or false or overinterpretation of diagnostic findings. (orig./MG). 431 figs [de

  2. Optimized diagnostic performance of brain magnetic resonance imaging in children with idiopathic growth hormone deficiency

    International Nuclear Information System (INIS)

    Rac, M.

    2006-01-01

    Purpose: The aim of this study was to search for correlations between anatomic changes in the pituitary gland and hormonal disturbances in children with short stature. Material and methods: Children with short stature were enrolled when criteria of pituitary growth hormone deficiency were partly or completely met. Magnetic resonance imaging was performed in 87 children and particular attention was given to the pituitary gland. Measurements were compared with pituitary dimensions accepted as normal in the literature. Contrast with GdDTPA was used to visualize the pituitary gland and associated structures (stalk, infundibulum). T1-weighted images in the sagittal and coronal planes were obtained. The results were statistically analyzed with non-parametric tests. Conclusions: 1. Magnetic resonance imaging is a very sensitive method for detecting changes in the pituitary gland and may well be recommended as a method of choice even though the percentage of changes detected with it is rather small. 2. The use of contrast agent may be abandoned to limit costs when searching for cause of growth deficit in children with idiopathic growth hormone deficiency, save for the following cases: hypoplasia or aplasia of the pituitary gland, transection of the stalk, empty sella syndrome or tumor in the central nervous system. 3. Pituitary volume and height appear to be of greatest diagnostic significance, while width (which varies little) can serve as an auxiliary parameter. (author)

  3. A proposed search for dark-matter axions in the 0.6--16 μeV range

    International Nuclear Information System (INIS)

    Hagmann, C.; Turner, M.S.; Sikivie, P.; Sullivan, N.S.; Tanner, D.B.; Villa, F.

    1991-11-01

    A proposed experiment is described to search for dark-matter axions in the mass range 0.6--16 μeV. The method is based on the Primakoff conversion of axions into monochromatic microwave photons inside a tunable microwave cavity in a large volume high field magnet. This proposal capitalized on the availability of two Axicell magnets from the MFTF-B fusion machine at LLNL. Assuming a local dark-matter density in axions of ρ a = 0.3 GeV/cm 3 , the axion would be found or ruled out at the 97% c.1. in the above mass range in 48 months

  4. Design and development of neutral beam module components

    International Nuclear Information System (INIS)

    Holl, P.M.; Bulmer, R.H.; Dilgard, L.W.; Horvath, J.A.; Molvik, A.W.; Porter, G.D.; Shearer, J.W.; Slack, D.S.; Colonias, J.S.

    1979-01-01

    The Mirror Fusion Test Facility (MFTF) injection system consists of twenty 20 keV start-up, and twenty-four 80 keV sustaining neutral beam source modules. The neutral beam modules are mounted in four clusters equally spaced around the waist of the vacuum vessel which contains the superconducting magnets. A module is defined here as an assembly consisting of a beam source and the interfacing components between that beam source and the vacuum chamber. Six major interfacing components are the subject of this paper. They are the magnetic shield, the neutralizer duct, the isolation valve, mounting gimbals, aiming bellows and actuators

  5. Detection of a normal zone in the MFTF magnets

    International Nuclear Information System (INIS)

    Owen, E.W.

    1979-01-01

    A method is described for the electrical detection of a normal zone in inductively coupled superconducting coils. Measurements are made with two kinds of bridges, mutual inductance bridges and self-inductance bridges. The bridge outputs are combined with other measured voltages to form a detector that can be realized with either analog circuits or a computer algorithm. The detection of a normal zone in a pair of coupled coils, each with taps, is discussed in detail. It is also shown that the method applies to a pair of coils when one has no taps and to a pair when one coil is superconducting and the other is not. The method is extended, in principle, to a number of coils. A description is given of a technique for balancing the bridges at near the operating currents of the coils

  6. Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam

    International Nuclear Information System (INIS)

    Davies, A.; Haberberger, D.; Boni, R.; Ivancic, S.; Brown, R.; Froula, D. H.

    2014-01-01

    A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4ω (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry

  7. Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam.

    Science.gov (United States)

    Davies, A; Haberberger, D; Boni, R; Ivancic, S; Brown, R; Froula, D H

    2014-11-01

    A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4ω (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry.

  8. The Magnetic Reconnection Code: Center for Magnetic Reconnection Studies

    Energy Technology Data Exchange (ETDEWEB)

    Amitava Bhattacharjee

    2007-04-20

    Understanding magnetic reconnection is one of the principal challenges in plasma physics. Reconnection is a process by which magnetic fields reconfigure themselves, releasing energy that can be converted to particle energies and bulk flows. Thanks to the availability of sophisticated diagnostics in fusion and laboratory experiments, in situ probing of magnetospheric and solar wind plasmas, and X-ray emission measurements from solar and stellar plasmas, theoretical models of magnetic reconnection can now be constrained by stringent observational tests. The members of the CMRS comprise an interdisciplinary group drawn from applied mathematics, astrophysics, computer science, fluid dynamics, plasma physics, and space science communities.

  9. Technology Issues of Burning Plasma Diagnostics

    International Nuclear Information System (INIS)

    Kaye, A. S.

    2008-01-01

    The ITER Tokamak will require many diagnostics both for safe and reliable operation of the machine and for understanding of the physics underlying the performance. The design of these diagnostics raises many challenging technical issues not faced on smaller machines. These arise partly from the increase demands on established diagnostics arising from the increased size, higher magnetic field, large heating power, and in particular the dramatically longer pulse duration of ITER, which make issue such as power loading on first wall components more challenging. The demands on reliability and availability of the machine in order to achieve the objectives within the agreed time schedule also place severe additional demands on the design, quality assurance and maintainability of diagnostics. ITER will produce many orders of magnitude more neutrons than previous Tokamaks and will be a licensed nuclear facility. This has important implications for the traceability, quality assurance and availability of safety critical diagnostics, and for the control of the design and procurement of all diagnostics. The high neutron flux/fluence also constrains the design of diagnostics, which must offer shielding consistent with the allowable dose rates on critical components of the Tokamak, and themselves be tolerant of the radiation level at the diagnostic. This paper presents an overview of the more critical issues for ITER diagnostics

  10. Magnetism in Medicine

    Science.gov (United States)

    Schenck, John

    2000-03-01

    For centuries physicians, scientists and others have postulated an important role, either as a cause of disease or as a mode of therapy, for magnetism in medicine. Although there is a straightforward role in the removal of magnetic foreign bodies, the majority of the proposed magnetic applications have been controversial and have often been attributed by mainstream practitioners to fraud, quackery or self-deception. Calculations indicate that many of the proposed methods of action, e.g., the field-induced alignment of water molecules or alterations in blood flow, are of negligible magnitude. Nonetheless, even at the present time, the use of small surface magnets (magnetotherapy) to treat arthritis and similar diseases is a widespread form of folk medicine and is said to involve sales of approximately one billion dollars per year. Another medical application of magnetism associated with Mesmer and others (eventually known as animal magnetism) has been discredited, but has had a culturally significant role in the development of hypnotism and as one of the sources of modern psychotherapy. Over the last two decades, in marked contrast to previous applications of magnetism to medicine, magnetic resonance imaging or MRI, has become firmly established as a clinical diagnostic tool. MRI permits the non-invasive study of subtle biological processes in intact, living organisms and approximately 150,000,000 diagnostic studies have been performed since its clinical introduction in the early 1980s. The dramatically swift and widespread acceptance of MRI was made possible by scientific and engineering advances - including nuclear magnetic resonance, computer technology and whole-body-sized, high field superconducting magnets - in the decades following World War Two. Although presently used much less than MRI, additional applications, including nerve and muscle stimulation by pulsed magnetic fields, the use of magnetic forces to guide surgical instruments, and imaging utilizing

  11. Diagnostic accuracy of computer tomography angiography and magnetic resonance angiography in the stenosis detection of autologuous hemodialysis access: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Bin Li

    Full Text Available PURPOSE: To compare the diagnostic performances of computer tomography angiography (CTA and magnetic resonance angiography (MRA for detection and assessment of stenosis in patients with autologuous hemodialysis access. MATERIALS AND METHODS: Search of PubMed, MEDLINE, EMBASE and Cochrane Library database from January 1984 to May 2013 for studies comparing CTA or MRA with DSA or surgery for autologuous hemodialysis access. Eligible studies were in English language, aimed to detect more than 50% stenosis or occlusion of autologuous vascular access in hemodialysis patients with CTA and MRA technology and provided sufficient data about diagnosis performance. Methodological quality was assessed by the Quality Assessment of Diagnostic Studies (QUADAS instrument. Sensitivities (SEN, specificities (SPE, positive likelihood ratio (PLR, negative likelihood values (NLR, diagnostic odds ratio (DOR and areas under the receiver operator characteristic curve (AUC were pooled statistically. Potential threshold effect, heterogeneity and publication bias was evaluated. The clinical utility of CTA and MRA in detection of stenosis was also investigated. RESULT: Sixteen eligible studies were included, with a total of 500 patients. Both CTA and MRA were accurate modality (sensitivity, 96.2% and 95.4%, respectively; specificity, 97.1 and 96.1%, respectively; DOR [diagnostic odds ratio], 393.69 and 211.47, respectively for hemodialysis vascular access. No significant difference was detected between the diagnostic performance of CTA (AUC, 0.988 and MRA (AUC, 0.982. Meta-regression analyses and subgroup analyses revealed no statistical difference. The Deek's funnel plots suggested a publication bias. CONCLUSION: Diagnostic performance of CTA and MRA for detecting stenosis of hemodialysis vascular access had no statistical difference. Both techniques may function as an alternative or an important complement to conventional digital subtraction angiography (DSA and may be

  12. DIAGNOSTIC ACCURACY OF CLINICAL AND MAGNETIC RESONANCE IN KNEE MENISCI AND LIGAMENTOUS INJURIES

    Directory of Open Access Journals (Sweden)

    Nilesh

    2016-03-01

    Full Text Available OBJECTIVE The purpose of this study was to evaluate the reliability of clinical diagnosis compared to MRI findings in ligamentous and meniscal injuries with respect to arthroscopic confirmation as a gold standard. METHODS 485 patients with knee injuries were prospectively assessed by clinical evaluation and magnetic resonance imaging and correlated after therapeutic arthroscopy. The overall accuracy, clinically productive values of sensitivity and specificity was derived. The actual value of the test with respect to positive predictive and negative predictive value was also derived, taking arthroscopic findings as confirmatory. The overall partial and total agreement among the clinical, MRI and arthroscopy was documented. RESULTS The overall accuracy for clinical examination was 85, 92, 100 and 100 and accuracy for MRI was 90, 97, 97 and 97 for detecting medial meniscus, lateral meniscus, ACL and PCL tears respectively. Clinically lateral meniscus tears are difficult to diagnose clinically with negative predictive value (90 whereas ACL injuries do not need MRI for diagnosis as evident by a high negative predictive value (100 of clinical examination. Total agreement with the clinical findings confirmed by arthroscopy was 64.40% which was relatively high as compared to total agreement of MRI findings which was only 31.50%. We found similar total agreement versus total disagreement of both clinical and MRI to be only 2.74% indicating very high accuracy in clinical diagnosis of meniscal and ligamentous injuries combined. CONCLUSION The clinical evaluation alone is sufficient to diagnose meniscal and ACL/PCL pathologies and MRI should be considered only as a powerful negative diagnostic tool. The arthroscopy decision should not be heavily dependent on MRI for ligamentous injuries but reverse is true for meniscal lesions. MR evaluation functions as a powerful negative diagnostic tool to rule out doubtful and complex knee injuries.

  13. Magnetic field measurements using the transient internal probe (TIP)

    International Nuclear Information System (INIS)

    Galambos, J.P.; Bohnet, M.A.; Jarboe, T.R.; Mattick, A.T.

    1995-01-01

    Knowledge of the internal magnetic field profile in hot plasmas is fundamental to understanding the structure and behavior of the current profile. The transient internal probe (TIP) is a novel diagnostic designed to measure internal magnetic fields in hot plasmas. The diagnostic involves shooting a magneto-optic probe through the plasma at high velocities (greater than 2 km/s) using a two stage light gas gun. Local fields are obtained by illuminating the probe with an argon ion laser and measuring the amount of Faraday rotation in the reflected beam. Initial development of the diagnostic is complete. Results of magnetic field measurements conducted at 2 km/s will be presented. Helium muzzle gas introduction to the plasma chamber has been limited to less than 0.4 Torr-ell. Magnetic field resolution of 40 Gauss and spatial resolution of 5 mm have been achieved. System frequency response is 10 MHz

  14. Development and validation of a novel diagnostic test for human brucellosis using a glyco-engineered antigen coupled to magnetic beads.

    Directory of Open Access Journals (Sweden)

    Andrés E Ciocchini

    Full Text Available Brucellosis is a highly contagious zoonosis and still a major human health problem in endemic areas of the world. Although several diagnostic tools are available, most of them are difficult to implement especially in developing countries where complex health facilities are limited. Taking advantage of the identical structure and composition of the Brucella spp. and Yersinia enterocolitica O:9 O-polysaccharide, we explored the application of a recombinant Y. enterocolitica O:9-polysaccharide-protein conjugate (OAg-AcrA as a novel antigen for diagnosis of human brucellosis. We have developed and validated an indirect immunoassay using OAg-AcrA coupled to magnetic beads. OAg-AcrA was produced and purified with high yields in Y. enterocolitica O:9 cells co-expressing the oligosaccharyltransferase PglB and the protein acceptor AcrA of Campylobacter jejuni without the need for culturing Brucella. Expression of PglB and AcrA in Y. enterocolitica resulted in the transfer of the host O-polysaccharide from its lipid carrier to AcrA. To validate the assay and determine the cutoff values, a receiver-operating characteristic analysis was performed using a panel of characterized serum samples obtained from healthy individuals and patients of different clinical groups. Our results indicate that, using this assay, it is possible to detect infection caused by the three main human brucellosis agents (B. abortus, B. melitensis and B. suis and select different cutoff points to adjust sensitivity and specificity levels as needed. A cutoff value of 13.20% gave a sensitivity of 100% and a specificity of 98.57%, and a cutoff value of 16.15% resulted in a test sensitivity and specificity of 93.48% and 100%, respectively. The high diagnostic accuracy, low cost, reduced assay time and simplicity of this new glycoconjugate-magnetic beads assay makes it an attractive diagnostic tool for using not only in clinics and brucellosis reference laboratories but also in locations

  15. Development and Validation of a Novel Diagnostic Test for Human Brucellosis Using a Glyco-engineered Antigen Coupled to Magnetic Beads

    Science.gov (United States)

    Ciocchini, Andrés E.; Rey Serantes, Diego A.; Melli, Luciano J.; Iwashkiw, Jeremy A.; Deodato, Bettina; Wallach, Jorge; Feldman, Mario F.; Ugalde, Juan E.; Comerci, Diego J.

    2013-01-01

    Brucellosis is a highly contagious zoonosis and still a major human health problem in endemic areas of the world. Although several diagnostic tools are available, most of them are difficult to implement especially in developing countries where complex health facilities are limited. Taking advantage of the identical structure and composition of the Brucella spp. and Yersinia enterocolitica O:9 O-polysaccharide, we explored the application of a recombinant Y. enterocolitica O:9-polysaccharide-protein conjugate (OAg-AcrA) as a novel antigen for diagnosis of human brucellosis. We have developed and validated an indirect immunoassay using OAg-AcrA coupled to magnetic beads. OAg-AcrA was produced and purified with high yields in Y. enterocolitica O:9 cells co-expressing the oligosaccharyltransferase PglB and the protein acceptor AcrA of Campylobacter jejuni without the need for culturing Brucella. Expression of PglB and AcrA in Y. enterocolitica resulted in the transfer of the host O-polysaccharide from its lipid carrier to AcrA. To validate the assay and determine the cutoff values, a receiver-operating characteristic analysis was performed using a panel of characterized serum samples obtained from healthy individuals and patients of different clinical groups. Our results indicate that, using this assay, it is possible to detect infection caused by the three main human brucellosis agents (B. abortus, B. melitensis and B. suis) and select different cutoff points to adjust sensitivity and specificity levels as needed. A cutoff value of 13.20% gave a sensitivity of 100% and a specificity of 98.57%, and a cutoff value of 16.15% resulted in a test sensitivity and specificity of 93.48% and 100%, respectively. The high diagnostic accuracy, low cost, reduced assay time and simplicity of this new glycoconjugate-magnetic beads assay makes it an attractive diagnostic tool for using not only in clinics and brucellosis reference laboratories but also in locations with limited

  16. Magnetically guided capsule endoscopy.

    Science.gov (United States)

    Shamsudhin, Naveen; Zverev, Vladimir I; Keller, Henrik; Pane, Salvador; Egolf, Peter W; Nelson, Bradley J; Tishin, Alexander M

    2017-08-01

    Wireless capsule endoscopy (WCE) is a powerful tool for medical screening and diagnosis, where a small capsule is swallowed and moved by means of natural peristalsis and gravity through the human gastrointestinal (GI) tract. The camera-integrated capsule allows for visualization of the small intestine, a region which was previously inaccessible to classical flexible endoscopy. As a diagnostic tool, it allows to localize the sources of bleedings in the middle part of the gastrointestinal tract and to identify diseases, such as inflammatory bowel disease (Crohn's disease), polyposis syndrome, and tumors. The screening and diagnostic efficacy of the WCE, especially in the stomach region, is hampered by a variety of technical challenges like the lack of active capsular position and orientation control. Therapeutic functionality is absent in most commercial capsules, due to constraints in capsular volume and energy storage. The possibility of using body-exogenous magnetic fields to guide, orient, power, and operate the capsule and its mechanisms has led to increasing research in Magnetically Guided Capsule Endoscopy (MGCE). This work shortly reviews the history and state-of-art in WCE technology. It highlights the magnetic technologies for advancing diagnostic and therapeutic functionalities of WCE. Not restricting itself to the GI tract, the review further investigates the technological developments in magnetically guided microrobots that can navigate through the various air- and fluid-filled lumina and cavities in the body for minimally invasive medicine. © 2017 American Association of Physicists in Medicine.

  17. A practical guide to diagnostic transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Groppa, S; Oliviero, A; Eisen, A

    2012-01-01

    lateral sclerosis, stroke, movement disorders, disorders affecting the spinal cord, facial and other cranial nerves. These guidelines cover practical aspects of TMS in a clinical setting. We first discuss the technical and physiological aspects of TMS that are relevant for the diagnostic use of TMS. We...

  18. Biomedical applications of magnetic particles

    CERN Document Server

    Mefford, Thompson

    2018-01-01

    Magnetic particles are increasingly being used in a wide variety of biomedical applications. Written by a team of internationally respected experts, this book provides an up-to-date authoritative reference for scientists and engineers. The first section presents the fundamentals of the field by explaining the theory of magnetism, describing techniques to synthesize magnetic particles, and detailing methods to characterize magnetic particles. The second section describes biomedical applications, including chemical sensors and cellular actuators, and diagnostic applications such as drug delivery, hyperthermia cancer treatment, and magnetic resonance imaging contrast.

  19. Magnetically-driven medical robots: An analytical magnetic model for endoscopic capsules design

    Science.gov (United States)

    Li, Jing; Barjuei, Erfan Shojaei; Ciuti, Gastone; Hao, Yang; Zhang, Peisen; Menciassi, Arianna; Huang, Qiang; Dario, Paolo

    2018-04-01

    Magnetic-based approaches are highly promising to provide innovative solutions for the design of medical devices for diagnostic and therapeutic procedures, such as in the endoluminal districts. Due to the intrinsic magnetic properties (no current needed) and the high strength-to-size ratio compared with electromagnetic solutions, permanent magnets are usually embedded in medical devices. In this paper, a set of analytical formulas have been derived to model the magnetic forces and torques which are exerted by an arbitrary external magnetic field on a permanent magnetic source embedded in a medical robot. In particular, the authors modelled cylindrical permanent magnets as general solution often used and embedded in magnetically-driven medical devices. The analytical model can be applied to axially and diametrically magnetized, solid and annular cylindrical permanent magnets in the absence of the severe calculation complexity. Using a cylindrical permanent magnet as a selected solution, the model has been applied to a robotic endoscopic capsule as a pilot study in the design of magnetically-driven robots.

  20. Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam

    Energy Technology Data Exchange (ETDEWEB)

    Davies, A., E-mail: adavies@lle.rochester.edu; Haberberger, D.; Boni, R.; Ivancic, S.; Brown, R.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-11-15

    A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4ω (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry.

  1. Comparison of the diagnostic performance of digital breast tomosynthesis and magnetic resonance imaging added to digital mammography in women with known breast cancers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Hwa; Chang, Jung Min; Moon, Woo Kyung [Seoul National University Hospital, Department of Radiology, 101 Daehangno, Jongno-gu, Seoul (Korea, Republic of); Moon, Hyeong-Gon [Seoul National University Hospital, Department of Surgery, Seoul (Korea, Republic of); Yi, Ann [Seoul National University Hospital, Department of Radiology, Gangnan Healthcare Center, Seoul (Korea, Republic of); Koo, Hye Ryoung [Hanyang University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Gweon, Hye Mi [Yonsei University College of Medicine, Department of Radiology, Gangnam Severance Hospital, Seoul (Korea, Republic of)

    2016-06-15

    To compare the diagnostic performance of digital breast tomosynthesis (DBT) and magnetic resonance imaging (MRI) added to mammography in women with known breast cancers. Three radiologists independently reviewed image sets of 172 patients with 184 cancers; mammography alone, DBT plus mammography and MRI plus mammography, and scored for cancer probability using the Breast Imaging Reporting and Data System (BI-RADS). Jack-knife alternative free-response receiver-operating characteristic (JAFROC), which allows diagnostic performance estimation using single lesion as a statistical unit in a cancer-only population, was used. Sensitivity and positive predictive value (PPV) were compared using the McNemar and Fisher-exact tests. The JAFROC figures of merit (FOMs) was lower in DBT plus mammography (0.937) than MRI plus mammography (0.978, P = 0.0006) but higher than mammography alone (0.900, P = 0.0013). The sensitivity was lower in DBT plus mammography (88.2 %) than MRI plus mammography (97.8 %) but higher than mammography alone (78.3 %, both P < 0.0001). The PPV was significantly higher in DBT plus mammography (93.3 %) than MRI plus mammography (89.6 %, P = 0.0282). DBT provided lower diagnostic performance than MRI as an adjunctive imaging to mammography. However, DBT had higher diagnostic performance than mammography and higher PPV than MRI. (orig.)

  2. Comparison of the diagnostic performance of digital breast tomosynthesis and magnetic resonance imaging added to digital mammography in women with known breast cancers

    International Nuclear Information System (INIS)

    Kim, Won Hwa; Chang, Jung Min; Moon, Woo Kyung; Moon, Hyeong-Gon; Yi, Ann; Koo, Hye Ryoung; Gweon, Hye Mi

    2016-01-01

    To compare the diagnostic performance of digital breast tomosynthesis (DBT) and magnetic resonance imaging (MRI) added to mammography in women with known breast cancers. Three radiologists independently reviewed image sets of 172 patients with 184 cancers; mammography alone, DBT plus mammography and MRI plus mammography, and scored for cancer probability using the Breast Imaging Reporting and Data System (BI-RADS). Jack-knife alternative free-response receiver-operating characteristic (JAFROC), which allows diagnostic performance estimation using single lesion as a statistical unit in a cancer-only population, was used. Sensitivity and positive predictive value (PPV) were compared using the McNemar and Fisher-exact tests. The JAFROC figures of merit (FOMs) was lower in DBT plus mammography (0.937) than MRI plus mammography (0.978, P = 0.0006) but higher than mammography alone (0.900, P = 0.0013). The sensitivity was lower in DBT plus mammography (88.2 %) than MRI plus mammography (97.8 %) but higher than mammography alone (78.3 %, both P < 0.0001). The PPV was significantly higher in DBT plus mammography (93.3 %) than MRI plus mammography (89.6 %, P = 0.0282). DBT provided lower diagnostic performance than MRI as an adjunctive imaging to mammography. However, DBT had higher diagnostic performance than mammography and higher PPV than MRI. (orig.)

  3. [Diagnostic imaging and acute abdominal pain].

    Science.gov (United States)

    Liljekvist, Mads Svane; Pommergaard, Hans-Christian; Burcharth, Jakob; Rosenberg, Jacob

    2015-01-19

    Acute abdominal pain is a common clinical condition. Clinical signs and symptoms can be difficult to interpret, and diagnostic imaging may help to identify intra-abdominal disease. Conventional X-ray, ultrasound (US) and computed tomography (CT) of the abdomen vary in usability between common surgical causes of acute abdominal pain. Overall, conventional X-ray cannot confidently diagnose or rule out disease. US and CT are equally trustworthy for most diseases. US with subsequent CT may enhance diagnostic precision. Magnetic resonance seems promising for future use in acute abdominal imaging.

  4. Temporomandibular disorders – validity of clinical diagnostics compared to magnetic resonance imaging

    OpenAIRE

    BADEL, TOMISLAV; MAROTTI, MILJENKO; SAVIĆ PAVIČIN, IVANA; DULČIĆ, NIKŠA; ZADRAVEC, DIJANA; KERN, JOSIPA

    2011-01-01

    Background and Purpose: Orthopedic examination techniques of the musculoskeletal system contribute to the successful diagnostics of temporomandibular disorders (TMD). The purpose of this study is to determine the validity of TMD clinical diagnostics by comparing the findings of manual functional analysis (MFA) and the results of MRI of temporomandibular joint (TMJ). The diagnostic significance of limited mouth opening and pain upon passive mouth opening were taken into consideration. M...

  5. Clinical diagnostic study by means of magnetic resonance imaging for lesions of the major salivary gland region

    International Nuclear Information System (INIS)

    Iihama, Tsuyoshi; Mataga, Izumi; Kato, Joji

    1994-01-01

    The diagnostic value of magnetic resonance imaging (MRI) for lesions situated in the major salivary glands was clinically discussed in this study. A total of 46 patients with salivary gland disorders treated in our department over the past five years were assessed by mean of MRI, and in 11 patients the findings were compared with the histopathological features of lesions sectioned at the same level postoperatively. In addition, preliminary investigations to introduce a new qualitative diagnostic procedure for estimation of salivary gland function in geriatric patients were attempted. In this investigation, T 1 and T 2 values, and signal intensity ratios of the submandibular gland were measured in elderly patients complaining of dry mouth and in healthy controls. Likewise, salivary gland function was examined by taste stimulation induced by applying citric acid to the tongue surface just before starting MRI. MRI clearly demonstrated lesions in the salivary glands. The histopathological diagnosis could not be accurately predicted by signal intensity. However, benign tumors showed higher intensity signals than did malignant tumors on T 2 -weighted images. Cystic lesions could be differentiated from tumors by signal intensity. Histopathological features of salivary gland tumors corresponded to the MRI signal intensity. Relaxation times of T 1 and T 2 values and signal intensity in each major salivary gland were diminished in elderly patients in a resting condition. Only T 1 values in healthy subjects remarkably responded to taste stimulation. These results suggest that MRI is useful and beneficial not only in the qualitative diagnosis of tumors arising from salivary glands but also in the estimation of salivary gland function. MRI should therefore be included in routine diagnostic examinations for salivary gland disorders. (author)

  6. Non-invasive diagnostic workup of patients with suspected stable angina by combined computed tomography coronary angiography and magnetic resonance perfusion imaging

    International Nuclear Information System (INIS)

    Kirschbaum, S.W.; Nieman, K.; Springeling, T.

    2011-01-01

    The background of this study was to evaluate additional adenosine magnetic resonance perfusion (MRP) imaging in the diagnostic workup of patients with suspected stable angina with computed tomography coronary angiography (CTCA) as first-line diagnostic modality. Two hundred and thirty symptomatic patients (male, 52%; age, 56 year) with suspected stable angina underwent CTCA. In patients with a stenosis of >50% as visually assessed, MRP was performed and the quantitative myocardial perfusion reserve index (MPRI) was calculated. Coronary flow reserve (CFR) using invasive coronary flow measurements served as the standard of reference. CTCA showed non-significant coronary artery disease (CAD) in 151/230 (66%) patients and significant CAD in 79/230 patients (34%), of whom 50 subsequently underwent MRP and CFR. MRP showed reduced perfusion in 32 patients (64%), which was confirmed by CFR in 27 (84%). All 18 cases of normal MRP (36%) were confirmed by CFR. The positive likelihood ratio of MRP for the presence of functional significant disease in patients with a lesion on CTCA was 4.49 (95% confidence interval [CI] 2.12-9.99). The negative likelihood ratio was 0.05 (95% CI 0.01-0.34). CTCA as first-line diagnostic modality excluded coronary artery disease in a high percentage of patients referred for diagnostic workup of suspected stable angina. MRP made a significant contribution to the detection of functional significant lesions in patients with a positive CTCA. (author)

  7. Diagnostic criteria in MR neurography

    International Nuclear Information System (INIS)

    Baeumer, P.

    2017-01-01

    Peripheral neuropathies are frequent and can mostly be correctly diagnosed by clinical examination and electrophysiology; however, diagnostically difficult cases are sometimes encountered especially with respect to precise localization of nerve lesions. Imaging of the peripheral nervous system has been shown to provide additional useful diagnostic information. In addition to the more widely available nerve sonography, magnetic resonance neurography (MRN) is the method of choice in diagnostically complex cases. The most important pulse sequence is a T2-weighted fat-saturated pulse sequence with high in-plane resolution and detects increased T2-weighted signals of nerve fascicles as a highly sensitive sign for nerve lesions. Further established diagnostic criteria are nerve caliber and, less commonly used, contrast agent uptake. The spatial pattern of nerve lesions aids in the diagnostic classification of neuropathies. Functional imaging techniques, such as diffusion tensor imaging (DTI) and nerve perfusion are currently under examination with respect to the clinical potential. If all other diagnostic methods, including clinical examination, electrophysiology and nerve sonography do not arrive at an unambiguous diagnosis of a peripheral neuropathy, MRN should be used. The special value of MRN is demonstrated particularly in complex nerve lesions, such as traumatic plexopathies and in partial fascicular neuropathies and many other indications. (orig.) [de

  8. Diagnostic Use of Transcranial Magnetic Stimulation in Psychiatry

    Directory of Open Access Journals (Sweden)

    Abdullah Bolu

    2013-08-01

    Full Text Available Motor evoked potentials from peripheral nerves, spinal cord or muscle can be recorded by stimulation of the motor cortex and motor pathways in the central nervous system with transcranial magnetic stimulation which is a neurophysiological analysis method. This method allows investigation the mechanism of diseases which cause changes in the excitability of cortical motor areas. Similarly, it was used in determining the effects of psychotropic drugs on cortical activity and electrophysiological measurement of aggressive behavior Transcranial magnetic stimulation studies in the field of psychiatry are focused on etiopathogenesis of pathologies such as schizophrenia, obsessive-compulsive disorder, attention deficit hyperactivity disorder and substance abuse.

  9. A Magnetic Resonance Measurement Technique for Rapidly Switched Gradient Magnetic Fields in a Magnetic Resonance Tomograph

    Directory of Open Access Journals (Sweden)

    K. Bartušek

    2003-01-01

    Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.

  10. Fabrication of ion source components by electroforming

    International Nuclear Information System (INIS)

    Schechter, D.E.; Sluss, F.

    1983-01-01

    Several components of the Oak Ridge National Laboratory (ORNL)/Magnetic Fusion Test Facility (MFTF-B) ion source have been fabricated utilizing an electroforming process. A procedure has been developed for enclosing coolant passages in copper components by electrodepositing a thick (greater than or equal to 0.75-mm) layer of copper (electroforming) over the top of grooves machined into the copper component base. Details of the procedure to fabricate acceleration grids and other ion source components are presented

  11. Sensitive Blu-ray detection of clustered rolling circle products for molecular Diagnostics

    DEFF Research Database (Denmark)

    Ahlford, Annika; Donolato, Marco; Antunes, Paula Soares Martins

    2014-01-01

    In this paper we present a method for low cost and rapid sensing of nucleic acids (NA) for infectious diagnostics, where isothermal rolling circle amplification (RCA) products, specifically generated by the presence of the human pathogen Pseudomonas aeruginosa (PA), are bound to magnetic nanopart......In this paper we present a method for low cost and rapid sensing of nucleic acids (NA) for infectious diagnostics, where isothermal rolling circle amplification (RCA) products, specifically generated by the presence of the human pathogen Pseudomonas aeruginosa (PA), are bound to magnetic...

  12. Magnetic resonance in the diagnostic imaging study of mesial temporal sclerosis

    International Nuclear Information System (INIS)

    Pastor, E.; Sanchez, J. C.; Rodriguez, I.; Altuzarra, A.; Machado, F.; Aguilar, D.

    2001-01-01

    Mesial temporal sclerosis (MTS) consists of hippocampal atrophy and gliosis and is the most common cause of temporal lobe epilepsy. The objective of the authors was to establish a magnetic resonance imaging (MRI) protocol for its diagnosis. A prospective study was carried out in 72 patients with drug resistant complex partial seizures (42 women and 30 men ranging in age from 6 to 66 year: mean: 30 years). Using a 1.5-Tesla magnet, paracoronal sections were made in hippocampi for T1-weighted inversion-recovery images and volume measurements, fluid-attenuated inversion-recovery (FLAIR) and T2 relaxometry. A control group of 30 health volunteers was included in the study. MTS was considered to be indicated by the presence of atrophy and hyperintensity in hippocampi on T2-weighted images. There were no differences among the hippocampi of the healthy individuals. The confidence intervals (mean± 1.96 SD) were 4169 mm''3-5911 mm''3 for volume of right side, 4097 mm''3-5940 mm''3 for volume of left side and 98-113 ms for T2 relaxation time. MTS was detected in 40 patients (55.5%): 23 cases involving the left side, 13 involving the right and 4 cases of bilateral asymmetric involvement. The 95% confidence intervals for the diagnostic validity of the results (sensitivity/specificity) were (88.8%-97.2%)/(87.6%-96.4%) for T1 volumetry, (88.8%-97.2%)(95.7%-100.3%) for FLAIR and (85.4%-96.6%)/(85.4%-96.6%) for T2 relaxometry. In 5 cases of MTS, astrophy of other extra hippocampal structures was also observed, and MTS was associated with an extra hippocampal lesion (dual pathology), especially neurona migration disorders, in 8 patients. Seventeen patients (23.5%) presented lesions without MTS (tumors, cortical dysplasias and heterotopias) and there was no MRI evidence of anomalies in 15 (21%). Twenty-five patients underwent surgical treatment: 20 with MTS (19 diagnosed according to MRI and one in whom there had been no abnormal findings), 4 with tumors and 1 with a ballooned cell

  13. Magnetic resonance cholangiopancreatography. The fine art of bilio-pancreatic imaging.

    Science.gov (United States)

    Adamek, H E; Breer, H; Layer, G; Riemann, J F

    2002-01-01

    With the introduction of endoscopic retrograde cholangio-pancreatography in the early 1970s, gastroenterologists have a lot of diagnostic options in the biliopancreatic system to their disposal. Meanwhile, magnetic resonance cholangiopancreatography (MRCP) has become a competitive replacement for diagnostic ERCP with the advantage of avoiding complications related to endoscopic techniques. Mounting evidence suggests that both MRCP and MRI (magnetic resonance imaging) have a profound influence of diagnostic algorithms in a variety of hepatobiliary and pancreatic diseases. Copyright 2002 S. Karger AG, Basel and IAP

  14. High performance wash-free magnetic bioassays through microfluidically enhanced particle specificity.

    Science.gov (United States)

    Bechstein, Daniel J B; Lee, Jung-Rok; Ooi, Chin Chun; Gani, Adi W; Kim, Kyunglok; Wilson, Robert J; Wang, Shan X

    2015-06-30

    Magnetic biosensors have emerged as a sensitive and versatile platform for high performance medical diagnostics. These magnetic biosensors require well-tailored magnetic particles as detection probes, which need to give rise to a large and specific biological signal while showing very low nonspecific binding. This is especially important in wash-free bioassay protocols, which do not require removal of particles before measurement, often a necessity in point of care diagnostics. Here we show that magnetic interactions between magnetic particles and magnetized sensors dramatically impact particle transport and magnetic adhesion to the sensor surfaces. We investigate the dynamics of magnetic particles' biomolecular binding and magnetic adhesion to the sensor surface using microfluidic experiments. We elucidate how flow forces can inhibit magnetic adhesion, greatly diminishing or even eliminating nonspecific signals in wash-free magnetic bioassays, and enhancing signal to noise ratios by several orders of magnitude. Our method is useful for selecting and optimizing magnetic particles for a wide range of magnetic sensor platforms.

  15. Feasibility Study on a Neutral Beam Diagnostic Injector for TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, K. J.; Balbin, R.; Lopez-Fraguas, A.

    2003-07-01

    A diagnostic neutral beam system is proposed for the TJ-II stellarator. The main goal of installing such a system in TJ-II is to increase the signal to noise ratio and provide spatial resolution in diagnostic systems based on Charge Exchange Recombination Spectroscopy and Neutral Particle Analysis, while also opening up new opportunities for physics studies in this magnetically confined plasma device. After outlining the unique characteristics of the TJ-II and reviewing available diagnostic injector systems, the compact system selected for TJ-II is presented together with estimates of the resulting increased signal levels Finally other important aspects are discussed, in particular its location and orientation, as well as possible solutions to avoid perturbing the TJ-II magnetic configurations in the heliac device. (Author) 31 refs.

  16. Feasibility Study on a Neutral Beam Diagnostic Injector for TJ-II

    International Nuclear Information System (INIS)

    McCarthy, K. J.; Balbin, R.; Lopez-Fraguas, A.

    2003-01-01

    A diagnostic neutral beam system is proposed for the TJ-II stellarator. The main goal of installing such a system in TJ-II is to increase the signal to noise ratio and provide spatial resolution in diagnostic systems based on Charge Exchange Recombination Spectroscopy and Neutral Particle Analysis, while also opening up new opportunities for physics studies in this magnetically confined plasma device. After outlining the unique characteristics of the TJ-II and reviewing available diagnostic injector systems, the compact system selected for TJ-II is presented together with estimates of the resulting increased signal levels Finally other important aspects are discussed, in particular its location and orientation, as well as possible solutions to avoid perturbing the TJ-II magnetic configurations in the heliac device. (Author) 31 refs

  17. The possibilities of laser scattering diagnostics in plasmas

    International Nuclear Information System (INIS)

    Doebele, H.F.

    1974-01-01

    The laser has opened many new possibilities for plasma diagnostics. Intensive monochromatic light sources with higher precision and better time resolution have helped to improve such well-known techniques as interferometry and Schlieren method. At the same time, the range of applicability was extended into the infrared range. Due to the wave length dependence of the plasma diffraction index, the effects increase approximately lambda in interferometry and approximately lambda 2 in the Schlieren methods. The laser also helped to develop entirely new methods such as utilization of the Faraday effect in the electrons of a plasma in a magnetic field which allows the calculation of the product nsub(e) x B from the rotation of the polarization plane of monochromatic light with linear polarization. Here, too, the effect increases approximately lambda 2 , and measurements have been carried out up to FIR (HCN,337 μ). The best diagnostic possibilities are offered by the Thomson scattering diagnostics. Electron and ion temperatures, electron densities, drift velocities, magnetic fields, wave propagation and dissipation can be measured by this method. (orig./AK) [de

  18. Magnetic resonance imaging-a diagnostic tool for postoperative evaluation of dental implants: a case report.

    Science.gov (United States)

    Wanner, Laura; Ludwig, Ute; Hövener, Jan-Bernd; Nelson, Katja; Flügge, Tabea

    2018-04-01

    Compared with cone beam computed tomography (CBCT), magnetic resonance imaging (MRI) might be superior for the diagnosis of nerve lesions associated with implant placement. A patient presented with unilateral pain associated with dysesthesia in the region of the right lower lip and chin after implant placement. Conventional orthopantomography could not identify an association between the position of the inferior alveolar nerve and the implant. For 3-dimensional display of the implant in relation to the surrounding anatomy, CBCT was compared with MRI. MRI enabled the precise depiction of the implant position and its spatial relation to the inferior alveolar nerve, whereas the nerve position and its exact course within the mandible could not be directly displayed in CBCT. MRI may be a valuable, radiation-free diagnostic tool for the visualization of intraoral hard and soft tissues, offering an objective assessment of nerve injuries by a direct visualization of the inferior alveolar neurovascular bundle. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Diagnostic assessment of the heart after infarction: what is the role of magnetic resonance imaging?

    International Nuclear Information System (INIS)

    Kivelitz, D.E.; Taupitz, M.; Hamm, B.

    1999-01-01

    There have been considerable advances in the diagnostic assessment of the heart by magnetic resonance imaging (MRI) in recent years. Thus, MRI as a one-stop shop modality for the comprehensive noninvasive evaluation of coronary heart disease and myocardial infarction may soon become a reality. This article presents an overview of the present possibilities and future potential of evaluating myocardial anatomy, function, perfusion, and coronary anatomy after myocardial infarction. Cine MRI provides a reliable analysis of regional and global disturbances of cardiac wall motion with a high temporal and spatial resolution. Tagging techniques permit the noninvasive labelling of parts of the myocardium and the identification of three-dimensional patterns of contraction. Myocardial perfusion and disturbed wall motion under pharmacologic stress can be reliably assessed by MRI as well. What is unique is the visualization of myocardial edema, which is made possible by the high soft-tissue contrast resolution. The as yet limited potential to assess coronary arteries and coronary bypasses is likewise discussed. (orig.) [de

  20. Polarizer design for millimeter-wave plasma diagnostics

    DEFF Research Database (Denmark)

    Leipold, Frank; Salewski, Mirko; Jacobsen, Asger Schou

    2013-01-01

    Radiation from magnetized plasmas is in general elliptically polarized. In order to convert the elliptical polarization to linear polarization, mirrors with grooved surfaces are currently employed in our collective Thomson scattering diagnostic at ASDEX Upgrade. If these mirrors can be substituted...

  1. Ion diode diagnostics to resolve beam quality issues

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, H; Buth, L; Hoppe, P [Forschungszentrum Karlsruhe (Germany). Institut fuer Neutronenphysik und Reaktortechnik; and others

    1997-12-31

    Various diagnostic methods and instruments are under development at the Forschungszentrum Karlsruhe to measure important physical quantities in the accelerating gap of high power diodes on KALIF with a high spatial and temporal resolution. The methods include optical spectroscopy, refractive index measurements, dispersion interferometry, and high resolution energy analysis. The setup of these diagnostic tools and the first results obtained for applied and self-magnetically insulated diodes are presented. (author). 6 figs., 5 refs.

  2. Magnetic resonance imaging-detected extramural venous invasion in rectal cancer before and after preoperative chemoradiotherapy. Diagnostic performance and prognostic significance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sun [Chung-Ang University Hospital, Department of Radiology, Seoul (Korea, Republic of); Chung-Ang University, College of Medicine and Graduate School of Medicine, Seoul (Korea, Republic of); National Cancer Centre, Department of Radiology, Goyang-si, Gyeonggi-do (Korea, Republic of); Kim, Min Ju; Hur, Bo Yun [National Cancer Centre, Department of Radiology, Goyang-si, Gyeonggi-do (Korea, Republic of); Park, Sung Chan; Hyun, Jong Hee; Chang, Hee Jin; Baek, Ji Yeon; Kim, Dae Yong; Oh, Jae Hwan [National Cancer Centre, Centre for Colorectal Cancer, Goyang, Gyeonggi-do (Korea, Republic of); Kim, Sun Young [National Cancer Centre, Centre for Colorectal Cancer, Goyang, Gyeonggi-do (Korea, Republic of); University of Ulsan College of Medicine, Department of Oncology, Asan Medical Centre, Seoul (Korea, Republic of)

    2018-02-15

    We evaluated the diagnostic performance of magnetic resonance imaging (MRI) in terms of identifying extramural venous invasion (EMVI) in rectal cancer patients with preoperative chemoradiotherapy (CRT) and its prognostic significance. During 2008-2010, 200 patients underwent surgery following preoperative CRT for rectal cancer. Two radiologists independently reviewed all pre- and post-CRT MRI retrospectively. We investigated diagnostic performance of pre-CRT MR-EMVI (MR-EMVI) and post-CRT MR-EMVI (yMR-EMVI), based on pathological EMVI as the standard of reference. We assessed correlation between MRI findings and patients' prognosis, such as disease-free survival (DFS) and overall survival (OS). Additionally, subgroup analysis in MR- or yMR-EMVI-positive patients was performed to confirm the significance of the severity of EMVI in MRI on patient's prognosis. The sensitivity and specificity of yMR-EMVI were 76.19% and 79.75% (area under the curve: 0.830), respectively. In univariate analysis, yMR-EMVI was the only significant MRI factor in DFS (P = 0.027). The mean DFS for yMR-EMVI (+) patients was significantly less than for yMR-EMVI (-) patients: 57.56 months versus 72.46 months. yMR-EMVI demonstrated good diagnostic performance. yMR-EMVI was the only significant EMVI-related MRI factor that correlated with patients' DFS in univariate analysis; however, it was not significant in multivariate analysis. (orig.)

  3. Interpolation of the magnetic field at the test masses in eLISA

    International Nuclear Information System (INIS)

    Mateos, I; Díaz-Aguiló, M; Ramos-Castro, J; García-Berro, E; Lobo, A

    2015-01-01

    A feasible design for a magnetic diagnostics subsystem for eLISA will be based on that of its precursor mission, LISA Pathfinder. Previous experience indicates that magnetic field estimation at the positions of the test masses has certain complications. This is due to two reasons. The first is that magnetometers usually back-act due to their measurement principles (i.e., they also create their own magnetic fields), while the second is that the sensors selected for LISA Pathfinder have a large size, which conflicts with space resolution and with the possibility of having a sufficient number of them to properly map the magnetic field around the test masses. However, high-sensitivity and small-sized sensors that significantly mitigate the two aforementioned limitations exist, and have been proposed to overcome these problems. Thus, these sensors will be likely selected for the magnetic diagnostics subsystem of eLISA. Here we perform a quantitative analysis of the new magnetic subsystem, as it is currently conceived, and assess the feasibility of selecting these sensors in the final configuration of the magnetic diagnostic subsystem. (paper)

  4. Laser Induced Fluorescence Diagnostic for the Plasma Couette Experiment

    Science.gov (United States)

    Katz, Noam; Skiff, Fred; Collins, Cami; Weisberg, Dave; Wallace, John; Clark, Mike; Garot, Kristine; Forest, Cary

    2010-11-01

    The Plasma Couette Experiment (PCX) at U. Wisconsin-Madison consists of a rotating high-beta plasma and is well-suited to the study of flow-driven, astrophysically-relevant plasma phenomena. PCX confinement relies on alternating rings of 1kG permanent magnets and the rotation is driven by electrode rings, interspersed between the magnets, which provide an azimuthal ExB. I will discuss the development of a laser-induced fluorescence diagnostic (LIF) to characterize the ion distribution function of argon plasmas in PCX. The LIF system--which will be scanned radially--will be used to calibrate internal Mach probes, as well as to measure the time-resolved velocity profile, ion temperature and density non-perturbatively. These diagnostics will be applied to study the magneto-rotational instability in a plasma, as well as the buoyancy instability thought to be involved in producing the solar magnetic field. This work is supported by NSF and DOE.

  5. Radiation diagnostics in extremely harsh environments

    International Nuclear Information System (INIS)

    Dona, H.; Lee, P.H.Y.; Williams, A.H.; McGurn, J.L.; Veeser, L.R.

    1986-01-01

    Some recent Trailmaster experiments have required to use of rather delicate radiation diagnostics in hostile environments. We have developed instrumentation for use high-explosive magnetic flux compression generators and near the noisy environment of high energy capacitor banks. These include some rather unique ''fly-away'' designs for x-ray imaging and spectroscopy, and other optical techniques for plasma temperature and field measurements. We will show some representative data and will also discuss an on-going program for the determination of magnetic field via atomic spectral line splitting and/or broadening

  6. Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease

    Science.gov (United States)

    Kallenberg, K.; Summers, D. M.; Romero, C.; Taratuto, A.; Heinemann, U.; Breithaupt, M.; Varges, D.; Meissner, B.; Ladogana, A.; Schuur, M.; Haik, S.; Collins, S. J.; Jansen, Gerard H.; Stokin, G. B.; Pimentel, J.; Hewer, E.; Collie, D.; Smith, P.; Roberts, H.; Brandel, J. P.; van Duijn, C.; Pocchiari, M.; Begue, C.; Cras, P.; Will, R. G.; Sanchez-Juan, P.

    2009-01-01

    Several molecular subtypes of sporadic Creutzfeldt–Jakob disease have been identified and electroencephalogram and cerebrospinal fluid biomarkers have been reported to support clinical diagnosis but with variable utility according to subtype. In recent years, a series of publications have demonstrated a potentially important role for magnetic resonance imaging in the pre-mortem diagnosis of sporadic Creutzfeldt–Jakob disease. Magnetic resonance imaging signal alterations correlate with distinct sporadic Creutzfeldt–Jakob disease molecular subtypes and thus might contribute to the earlier identification of the whole spectrum of sporadic Creutzfeldt–Jakob disease cases. This multi-centre international study aimed to provide a rationale for the amendment of the clinical diagnostic criteria for sporadic Creutzfeldt–Jakob disease. Patients with sporadic Creutzfeldt–Jakob disease and fluid attenuated inversion recovery or diffusion-weight imaging were recruited from 12 countries. Patients referred as ‘suspected sporadic Creutzfeldt–Jakob disease’ but with an alternative diagnosis after thorough follow up, were analysed as controls. All magnetic resonance imaging scans were assessed for signal changes according to a standard protocol encompassing seven cortical regions, basal ganglia, thalamus and cerebellum. Magnetic resonance imaging scans were evaluated in 436 sporadic Creutzfeldt–Jakob disease patients and 141 controls. The pattern of high signal intensity with the best sensitivity and specificity in the differential diagnosis of sporadic Creutzfeldt–Jakob disease was identified. The optimum diagnostic accuracy in the differential diagnosis of rapid progressive dementia was obtained when either at least two cortical regions (temporal, parietal or occipital) or both caudate nucleus and putamen displayed a high signal in fluid attenuated inversion recovery or diffusion-weight imaging magnetic resonance imaging. Based on our analyses, magnetic

  7. Diagnostic imaging of shoulder impingement

    International Nuclear Information System (INIS)

    Merl, T.; Weinhardt, H.; Oettl, G.; Lenz, M.; Riel, K.A.

    1996-01-01

    Magnetic resonance imaging is a method that has been advancing in the last few years to the modality of choice for diagnostic evaluation of the bone joints, as the method is capable of imaging not only the ossous but also the soft tissue components of the joint. MRI likewise has become an accepted method for diagnostic evaluation of syndromes of the shoulder, with high diagnostic accuracy in detecting rotator cuff lesions, or as an efficient MRI arthrography for evaluation of the instability or lesions of the labrocapsular complex. In the evaluation of early stages of shoulder impingement, the conventional MRI technique as a static technique yields indirect signs which in many cases do not provide the diagnostic certainty required in order to do justice to the functional nature of the syndrome. In these cases, functional MRI for imaging of the arm in abducted position and in rotational movement may offer a chance to early detect impingement and thus identify patients who will profit from treatment at an early stage [de

  8. Hypervelocity Dust Injection for Plasma Diagnostic Applications

    Science.gov (United States)

    Ticos, Catalin

    2005-10-01

    Hypervelocity micron-size dust grain injection was proposed for high-temperature magnetized plasma diagnosis. Multiple dust grains are launched simultaneously into high temperature plasmas at several km/s or more. The hypervelocity dust grains are ablated by the electron and ion fluxes. Fast imaging of the resulting luminous plumes attached to each grain is expected to yield local magnetic field vectors. Combination of multiple local magnetic field vectors reproduces 2D or even 3D maps of the internal magnetic field topology. Key features of HDI are: (1) a high spatial resolution, due to a relatively small transverse size of the elongated tail, and (2) a small perturbation level, as the dust grains introduce negligible number of particles compared to the plasma particle inventory. The latter advantage, however, could be seriously compromised if the gas load from the accelerator has an unobstructed access to the diagnosed plasma. Construction of a HDI diagnostic for National Spherical Torus Experiment (NSTX), which includes a coaxial plasma gun for dust grain acceleration, is underway. Hydrogen and deuterium gas discharges inside accelerator are created by a ˜ 1 mF capacitor bank pre-charged up to 10 kV. The diagnostic apparatus also comprises a dust dispenser for pre-loading the accelerator with dust grains, and an imaging system that has a high spatial and temporal resolution.

  9. Incoherent Thomson scattering as a diagnostic tool

    NARCIS (Netherlands)

    Barth, C. J.

    1998-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wavelength is much smaller than the plasma Debye length, the total scattered power is

  10. Single voxel magnetic resonance spectroscopy in distinguishing ...

    African Journals Online (AJOL)

    Objective: Assess diagnostic utility of combined magnetic resonance imaging and magnetic resonance spectroscopy (MRI, MRS) in differentiating focal neoplastic lesions from focal non- neoplastic (infective or degenerative) brain lesions. Design: Descriptive, analytical - prospective study. Setting: The Aga Khan University ...

  11. RFQ1 diagnostic devices

    International Nuclear Information System (INIS)

    Chidley, B.G.; Arbique, G.M.; de Jong, M.S.; McMichael, G.E.; Michel, W.L.; Smith, B.H.

    1991-01-01

    The diagnostic devices in use on RFQ1 will be described. They consist of a double-slit emittance-measuring unit, a 45 degree deflection energy-analysis magnet, parametric current transformers, optical beam sensors, beam-stop current monitors, and an x-ray end-point analyzer. All of these devices are able to operate up to the full output current of RFQ1 (75 mA cw at 0.6 MeV)

  12. Octopole and hexapole end cells for tandem mirrors

    International Nuclear Information System (INIS)

    Devoto, R.S.

    1985-01-01

    To date, nearly all operating or planned tandem mirror experiments use quadrupole magnetic fields in the end cells for stabilization of magnetohydrodynamic (MHD) instabilities. A disadvantage with quadrupole fields is the considerable aximuthal asymmetry in the magnetic field. As a result, those center-cell ions which pass into the end cell can suffer a radial deflection and be lost by radial diffusion. The diffusion can be minimized by adding C-coils to the end cell to symmetrize the geodesic curvature in the end cell. Very small radial deflection can be obtained on each field line. Such a method is used in the design of the MFTF-B experiment and the MARS reactor. A disadvantage of this approach is the large number of coils required. In addition, since ions drift azimuthally as they reflect in the end cell, even perfect cancellation on individual field lines will, in general, not lead to zero radial diffusion. One way to form a more symmetric field in the end cells is to use multipoles higher than quadrupole. The use of an octopole end cell for a small tandem-mirror reactor was recently proposed/sup L/ and has been adopted for the miniMARS reactor study. In this paper the author discusses some feature of octopole, and to a lesser extent, hexapole end cells in both reactor and experimental (MFTF-B) applications

  13. Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging and Fusion Guided Targeted Biopsy Evaluated by Transperineal Template Saturation Prostate Biopsy for the Detection and Characterization of Prostate Cancer.

    Science.gov (United States)

    Mortezavi, Ashkan; Märzendorfer, Olivia; Donati, Olivio F; Rizzi, Gianluca; Rupp, Niels J; Wettstein, Marian S; Gross, Oliver; Sulser, Tullio; Hermanns, Thomas; Eberli, Daniel

    2018-02-21

    We evaluated the diagnostic accuracy of multiparametric magnetic resonance imaging and multiparametric magnetic resonance imaging/transrectal ultrasound fusion guided targeted biopsy against that of transperineal template saturation prostate biopsy to detect prostate cancer. We retrospectively analyzed the records of 415 men who consecutively presented for prostate biopsy between November 2014 and September 2016 at our tertiary care center. Multiparametric magnetic resonance imaging was performed using a 3 Tesla device without an endorectal coil, followed by transperineal template saturation prostate biopsy with the BiopSee® fusion system. Additional fusion guided targeted biopsy was done in men with a suspicious lesion on multiparametric magnetic resonance imaging, defined as Likert score 3 to 5. Any Gleason pattern 4 was defined as clinically significant prostate cancer. The detection rates of multiparametric magnetic resonance imaging and fusion guided targeted biopsy were compared with the detection rate of transperineal template saturation prostate biopsy using the McNemar test. We obtained a median of 40 (range 30 to 55) and 3 (range 2 to 4) transperineal template saturation prostate biopsy and fusion guided targeted biopsy cores, respectively. Of the 124 patients (29.9%) without a suspicious lesion on multiparametric magnetic resonance imaging 32 (25.8%) were found to have clinically significant prostate cancer on transperineal template saturation prostate biopsy. Of the 291 patients (70.1%) with a Likert score of 3 to 5 clinically significant prostate cancer was detected in 129 (44.3%) by multiparametric magnetic resonance imaging fusion guided targeted biopsy, in 176 (60.5%) by transperineal template saturation prostate biopsy and in 187 (64.3%) by the combined approach. Overall 58 cases (19.9%) of clinically significant prostate cancer would have been missed if fusion guided targeted biopsy had been performed exclusively. The sensitivity of

  14. Advanced neutral gas diagnostics for magnetic confinement devices

    International Nuclear Information System (INIS)

    Wenzel, U.; Schlisio, G.; Marquardt, M.; Pedersen, T.S.; Kremeyer, T.; Schmitz, O.; Mackie, B.; Maisano-Brown, J.

    2017-01-01

    For the study of particle exhaust in nuclear fusion devices the neutral pressure must be measured in strong magnetic fields. We describe as an example the neutral pressure gauges in the Wendelstein 7-X stellarator. Two types are used: hot cathode ionization gauges (or ASDEX pressure gauges) and Penning gauges. We show some results from the first experimental campaign. The main problems were runtime effects and the failure of some ASDEX pressure gauges. To improve the reliability we integrated a new LaB 6 electron emitter into the ASDEX pressure gauges. In addition, a special Penning gauge without permanent magnets was developed in order to operate Penning gauges near the plasma edge. These new pressure gauges will be used in the upcoming campaign of Wendelstein 7-X.

  15. Free magnetic energy and relative magnetic helicity diagnostics for the quality of NLFF field extrapolations

    Science.gov (United States)

    Moraitis, Kostas; Archontis, Vasilis; Tziotziou, Konstantinos; Georgoulis, Manolis K.

    We calculate the instantaneous free magnetic energy and relative magnetic helicity of solar active regions using two independent approaches: a) a non-linear force-free (NLFF) method that requires only a single photospheric vector magnetogram, and b) well known semi-analytical formulas that require the full three-dimensional (3D) magnetic field structure. The 3D field is obtained either from MHD simulations, or from observed magnetograms via respective NLFF field extrapolations. We find qualitative agreement between the two methods and, quantitatively, a discrepancy not exceeding a factor of 4. The comparison of the two methods reveals, as a byproduct, two independent tests for the quality of a given force-free field extrapolation. We find that not all extrapolations manage to achieve the force-free condition in a valid, divergence-free, magnetic configuration. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

  16. Microfluidic high gradient magnetic cell separation

    Science.gov (United States)

    Inglis, David W.; Riehn, Robert; Sturm, James C.; Austin, Robert H.

    2006-04-01

    Separation of blood cells by native susceptibility and by the selective attachment of magnetic beads has recently been demonstrated on microfluidic devices. We discuss the basic principles of how forces are generated via the magnetic susceptibility of an object and how microfluidics can be combined with micron-scale magnetic field gradients to greatly enhance in principle the fractionating power of magnetic fields. We discuss our efforts and those of others to build practical microfluidic devices for the magnetic separation of blood cells. We also discuss our attempts to integrate magnetic separation with other microfluidic features for developing handheld medical diagnostic tools.

  17. A proposed search for dark-matter axions in the 0.6--16 {mu}eV range

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, C. [California Univ., Berkeley, CA (United States). Dept. of Physics; Moltz, D.M. [Lawrence Berkeley Lab., CA (United States); Turner, M.S. [Chicago Univ., IL (United States). Dept. of Physics and Astronomy]|[Fermi National Accelerator Lab., Batavia, IL (United States); Sikivie, P.; Sullivan, N.S.; Tanner, D.B. [Florida Univ., Gainesville, FL (United States). Dept. of Physics; Bluele, A.I.; Geraskin, E.V.; Golubev, N.A.; Ishkin, V.V.; Kazachenko, O.V.; Kuzmin, V.; Polushkin, V.G. [AN SSSR, Moscow (USSR). Inst. Yadernykh Issledovanij; Anthony, P.L.; van Bibber, K.; Patrick, R.E.; Shen, S.; Slack, D.S.; Steele, J.V. [Lawrence Livermore National Lab., CA (United States); Villa, F. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1991-11-01

    A proposed experiment is described to search for dark-matter axions in the mass range 0.6--16 {mu}eV. The method is based on the Primakoff conversion of axions into monochromatic microwave photons inside a tunable microwave cavity in a large volume high field magnet. This proposal capitalized on the availability of two Axicell magnets from the MFTF-B fusion machine at LLNL. Assuming a local dark-matter density in axions of {rho}{sub a}= 0.3 GeV/cm{sup 3}, the axion would be found or ruled out at the 97% c.1. in the above mass range in 48 months.

  18. A proposed search for dark-matter axions in the 0. 6--16. mu. eV range

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, C. (California Univ., Berkeley, CA (United States). Dept. of Physics); Moltz, D.M. (Lawrence Berkeley Lab., CA (United States)); Turner, M.S. (Chicago Univ., IL (United States). Dept. of Physics and Astronomy Fermi National Accelerator Lab., Batavia, IL (United States)); Sikivie, P.; Sullivan, N.S.; Tanner, D.B. (Florida Univ., Gainesville, FL (United States). Dept. of Physics); Bluele, A.I

    1991-11-01

    A proposed experiment is described to search for dark-matter axions in the mass range 0.6--16 {mu}eV. The method is based on the Primakoff conversion of axions into monochromatic microwave photons inside a tunable microwave cavity in a large volume high field magnet. This proposal capitalized on the availability of two Axicell magnets from the MFTF-B fusion machine at LLNL. Assuming a local dark-matter density in axions of {rho}{sub a}= 0.3 GeV/cm{sup 3}, the axion would be found or ruled out at the 97% c.1. in the above mass range in 48 months.

  19. Internal Magnetic Configuration Measured by ECE Imaging on EAST Tokamak

    International Nuclear Information System (INIS)

    Xu Ming; Wen Yizhi; Xie Jinlin; Yu Changxuan; Gao Bingxi; Xu Xiaoyuan; Liu Wandong; Hu Liqun; Sun Youwen; Qian Jinping; Wan Baonian

    2013-01-01

    ECE imaging (electron cyclotron emission imaging) is an important diagnostic which can give 2D imaging of temperature fluctuation in the core of tokamak. A method based on ECE imaging is introduced which can give the information of the position of magnetic axis and the structure of internal magnetic surface for EAST tokamak. The EFIT equilibrium reconstruction is not reliable due to the absence of important core diagnostic at the initial phase for EAST, so the information given by ECE imaging could help to improve the accuracy of EFIT equilibrium reconstruction. (magnetically confined plasma)

  20. Radiological diagnostic in acute chest pain

    International Nuclear Information System (INIS)

    Kawel, Nadine; Bremerich, Jens

    2010-01-01

    Acute chest pain is one of the main symptoms leading to a consultation of the emergency department. Main task of the initial diagnostic is the confirmation or exclusion of a potentially life threatening cause. Conventional chest X-ray and computed tomography are the most significant techniques. Due to limited availability and long examination times magnetic resonance tomography rather plays a limited role in routine clinical workup. In the following paper we will systematically review the radiological diagnostic of the acute life threatening causes of chest pain. Imaging modalities, technical aspects and image interpretation will be discussed. (orig.)

  1. Investigations on the magnetization behavior of magnetic composite particles

    Energy Technology Data Exchange (ETDEWEB)

    Eichholz, Christian [Process Research and Chemical Engineering, BASF SE, Ludwigshafen (Germany); Knoll, Johannes, E-mail: johannes.knoll@kit.edu [Institute of Mechanical Engineering and Mechanics, Karlsruhe Institute of Technology, Karlsruhe (Germany); Lerche, Dietmar [L.U.M. GmbH, Berlin (Germany); Nirschl, Hermann [Institute of Mechanical Engineering and Mechanics, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2014-11-15

    In life sciences the application of surface functionalized magnetic composite particles is establishing in diagnostics and in downstream processing of modern biotechnology. These magnetic composite particles consist of non-magnetic material, e.g. polystyrene, which serves as a matrix for the second magnetic component, usually colloidal magnetite. Because of the multitude of magnetic cores these magnetic beads show a complex magnetization behavior which cannot be described with the available approaches for homogeneous magnetic material. Therefore, in this work a new model for the magnetization behavior of magnetic composite particles is developed. By introducing an effective magnetization and considering an overall demagnetization factor the deviation of the demagnetization of homogeneously magnetized particles is taken into account. Calculated and experimental results show a good agreement which allows for the verification of the adapted model of particle magnetization. Besides, a newly developed magnetic analyzing centrifuge is used for the characterization of magnetic composite particle systems. The experimental results, also used for the model verification, give both, information about the magnetic properties and the interaction behavior of particle systems. By adding further components to the particle solution, such as salts or proteins, industrial relevant systems can be reconstructed. The analyzing tool can be used to adapt industrial processes without time-consuming preliminary tests with large samples in the process equipments. - Highlights: • New model for magnetizability calculation of magnetic composite particles. • New method for particle bulk characterization relating to their magnetizability. • Model verification due to experimental data.

  2. Investigations on the magnetization behavior of magnetic composite particles

    International Nuclear Information System (INIS)

    Eichholz, Christian; Knoll, Johannes; Lerche, Dietmar; Nirschl, Hermann

    2014-01-01

    In life sciences the application of surface functionalized magnetic composite particles is establishing in diagnostics and in downstream processing of modern biotechnology. These magnetic composite particles consist of non-magnetic material, e.g. polystyrene, which serves as a matrix for the second magnetic component, usually colloidal magnetite. Because of the multitude of magnetic cores these magnetic beads show a complex magnetization behavior which cannot be described with the available approaches for homogeneous magnetic material. Therefore, in this work a new model for the magnetization behavior of magnetic composite particles is developed. By introducing an effective magnetization and considering an overall demagnetization factor the deviation of the demagnetization of homogeneously magnetized particles is taken into account. Calculated and experimental results show a good agreement which allows for the verification of the adapted model of particle magnetization. Besides, a newly developed magnetic analyzing centrifuge is used for the characterization of magnetic composite particle systems. The experimental results, also used for the model verification, give both, information about the magnetic properties and the interaction behavior of particle systems. By adding further components to the particle solution, such as salts or proteins, industrial relevant systems can be reconstructed. The analyzing tool can be used to adapt industrial processes without time-consuming preliminary tests with large samples in the process equipments. - Highlights: • New model for magnetizability calculation of magnetic composite particles. • New method for particle bulk characterization relating to their magnetizability. • Model verification due to experimental data

  3. Radiological safety design considerations for fusion research experiments

    International Nuclear Information System (INIS)

    Crase, K.W.; Singh, M.S.

    1979-01-01

    A wide variety of fusion research experiments are in the planning or construction stages. Two such experiments, the Nova Laser Fusion Facility and the Mirror Fusion Test Facility (MFTF), are currently under construction at Lawrence Livermore Laboratory. Although the plasma chamber vault for MFTF and the Nova target room will have thick concrete walls and roofs, the radiation safety problems are made complex by the numerous requirements for shield wall penetrations. This paper addresses radiation safety considerations for the MFTF and Nova experiments, and the need for integrated safety considerations and safety technology development during the planning stages of fusion experiments

  4. MULTI-LINE STOKES INVERSION FOR PROMINENCE MAGNETIC-FIELD DIAGNOSTICS

    International Nuclear Information System (INIS)

    Casini, R.; Lopez Ariste, A.; Paletou, F.; Leger, L.

    2009-01-01

    We present test results on the simultaneous inversion of the Stokes profiles of the He I lines at 587.6 nm (D 3 ) and 1083.0 nm in prominences (90 deg. scattering). We created data sets of synthetic Stokes profiles for the case of quiescent prominences (B -3 of the peak intensity for the polarimetric sensitivity of the simulated observations. In this work, we focus on the error analysis for the inference of the magnetic field vector, under the usual assumption that the prominence can be assimilated to a slab of finite optical thickness with uniform magnetic and thermodynamic properties. We find that the simultaneous inversion of the two lines significantly reduces the errors on the inference of the magnetic field vector, with respect to the case of single-line inversion. These results provide a solid justification for current and future instrumental efforts with multi-line capabilities for the observations of solar prominences and filaments.

  5. Proof-of-the-Concept Study on Mathematically Optimized Magnetic Resonance Spectroscopy for Breast Cancer Diagnostics.

    Science.gov (United States)

    Belkić, Dževad; Belkić, Karen

    2015-06-01

    Magnetic resonance (MR)-based modalities aid breast cancer detection without exposure to ionizing radiation. Magnetic resonance imaging is very sensitive but costly and insufficiently specific. Molecular imaging through magnetic resonance spectroscopy (MRS) can provide information about key metabolites. Here, the measured/encoded time signals cannot be interpreted directly, necessitating mathematics for mapping to the more manageable frequency domain. Conventional applications of MRS are hampered by data analysis via the fast Fourier transform (FFT) and postprocessing by fitting techniques. Most in vivo MRS studies on breast cancer rely upon estimations of total choline (tCHO). These have yielded only incremental improvements in diagnostic accuracy. In vitro studies reveal richer metabolic information for identifying breast cancer, particularly in closely overlapping components of tCHO. Among these are phosphocholine (PC), a marker of malignant transformation of the breast. The FFT cannot assess these congested spectral components. This can be done by the fast Padé transform (FPT), a high-resolution, quantification-equipped method, which we presently apply to noisy MRS time signals consistent with those encoded in breast cancer. The FPT unequivocally and robustly extracted the concentrations of all physical metabolites, including PC. In sharp contrast, the FFT produced a rough envelope spectrum with a few distorted peaks and key metabolites absent altogether. As such, the FFT has poor resolution for these typical MRS time signals from breast cancer. Hence, based on Fourier-estimated envelope spectra, tCHO estimates are unreliable. Using even truncated time signals, the FPT clearly distinguishes noise from true metabolites whose concentrations are accurately extracted. The high resolution of the FPT translates directly into shortened examination time of the patient. These capabilities strongly suggest that by applying the FPT to time signals encoded in vivo from

  6. Magnetic anisotropy considerations in magnetic force microscopy studies of single superparamagnetic nanoparticles

    International Nuclear Information System (INIS)

    Nocera, Tanya M; Agarwal, Gunjan; Chen Jun; Murray, Christopher B

    2012-01-01

    In recent years, superparamagnetic nanoparticles (SPNs) have become increasingly important in applications ranging from solid state memory devices to biomedical diagnostic and therapeutic tools. However, detection and characterization of the small and unstable magnetic moment of an SPN at the single particle level remains a challenge. Further, depending on their physical shape, crystalline structure or orientation, SPNs may also possess magnetic anisotropy, which can govern the extent to which their magnetic moments can align with an externally applied magnetic field. Here, we demonstrate how we can exploit the magnetic anisotropy of SPNs to enable uniform, highly-sensitive detection of single SPNs using magnetic force microscopy (MFM) in ambient air. Superconducting quantum interference device magnetometry and analytical transmission electron microscopy techniques are utilized to characterize the collective magnetic behavior, morphology and composition of the SPNs. Our results show how the consideration of magnetic anisotropy can enhance the ability of MFM to detect single SPNs at ambient room temperature with high force sensitivity and spatial resolution. (paper)

  7. Magnetic resonance imaging in the cranio-cervical region

    International Nuclear Information System (INIS)

    Koschorek, F.; Jensen, H.P.; Terwey, B.

    1987-01-01

    Since the introduction of nuclear magnetic resonance imaging (NMR) in the neurosurgical and neurological diagnostic this new imaging modality has shown to be of high diagnostic value - especially in disease process of the cranio-vertebral junction. Other imaging moralities such as x-ray CT and myelography are of inferior quality as the images are degraded by bone artifacts and superposition of other structures. NMR can reveal many aspects of the cranio-vertebral region in a single examination without artifacts from surrounding structures. A further improvement of NMR is the introduction of para-magnetic agents, such as gadolinium-DTPA, as it increases the specifity by dynamic magnetic resonance imaging. The authors present a review of their clinical experience

  8. Diagnostic value of whole-body diffusion-weighted magnetic resonance imaging for detection of primary and metastatic malignancies: A meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin, E-mail: lllb146@163.com [Department of Radiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003 (China); Li, Qiong [Department of Radiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003 (China); Nie, Wei [Department of Respiratory Disease, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003 (China); Liu, Shiyuan, E-mail: lsy20112077@163.com [Department of Radiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003 (China)

    2014-02-15

    Purpose: To perform a meta-analysis to evaluate the diagnostic performance of whole-body diffusion-weighted magnetic resonance imaging (WB-DWI) technique in detection of primary and metastatic malignancies compared with that of whole-body positron emission tomography/computed tomography (WB-PET/CT). Materials and methods: Search Pubmed, MEDLINE, EMBASE and Cochrane Library database from January 1984 to July 2013 for studies comparing WB-DWI with WB-PET/CT for detection of primary and metastatic malignancies. Methodological quality was assessed by the quality assessment of diagnostic studies (QUADAS) instrument. Sensitivities, specificities, predictive values, diagnostic odds ratio (DOR) and areas under the summary receiver operator characteristic curve (AUC) were calculated. Potential threshold effect, heterogeneity and publication bias were investigated. Result: Thirteen eligible studies were included, with a total of 1067 patients. There was no significant threshold effect. WB-DWI had a similar AUC (0.966 (95% CI, 0.940–0.992) versus 0.984 (95% CI, 0.965–0.999)) with WB-PET/CT. No significant difference was detected between AUC of WB-DWI and WB-PET/CT. WB-DWI had a pooled sensitivity of 0.897 (95% CI, 0.876–0.916) and a pooled specificity of 0.954 (95% CI, 0.944–0.962). WB-PET/CT had a pooled sensitivity of 0.895 (95% CI, 0.865–0.920) and a pooled specificity of 0.975 (95% CI, 0.966–0.981). Heterogeneity was found to stem primarily from data type (per lesion versus per patient), MR sequence (DWIBS only and DWIBS with other sequence), and primary lesion type (single type and multiple type). The Deeks's funnel plots suggested the absence of publication bias. Conclusion: WB-DWI has similar, good diagnostic performance for the detection of primary and metastatic malignancies compared with WB-PET/CT. DWIBS with other MR sequences could further improve the diagnostic performance. More high-quality studies regarding comparison of WB-DWI and WB

  9. The application of magnetic resonance imaging in temporomandibular joint pathology

    International Nuclear Information System (INIS)

    Ehmedov, E.T.; Qahramanov, E.T.

    2007-01-01

    The diseases and damages of temporomandibular joint have compleceted diagnostic unlike other bone-joint pathologies. In 2005 for the first time in history it was implemented the magnetic resonance imaging in diagnostics of patients with with temporomandibular joints pathology. The current researches are in place till today. Being the golden standart the application of magnetic resonance tomography has a great role in differential diagnostics of the chronic arthritis, sclerosanse, deformanse arthrosis and arthrosis with internal derancement. This method guaranteed the correct valuation of the bone, disc and muscle structures of the joint and therefore brought full clearance into the problem

  10. Ultrasound versus Magnetic Resonance Arthrography in Acetabular Labral Tear Diagnostics: A Prospective Comparison in 20 Dysplastic Hips

    Energy Technology Data Exchange (ETDEWEB)

    Troelsen, A.; Jacobsen, S.; Bolvig, L.; Gelineck, J.; Roemer, L.; Soeballe, K. [Orthopedic Research Unit and Dept. of Radiology, Univ. Hospital of Aarhus, A arhus (Denmark)

    2007-11-15

    Background: Acetabular labral tears are highly associated with hip dysplasia. Magnetic resonance arthrography (MR arthrography) is the expensive and time-consuming contemporary gold-standard method in the radiological assessment of acetabular labral tears. Purpose: To assess the diagnostic ability of noninvasive ultrasound (US) examination compared to MR arthrography in diagnosing acetabular labral tears in dysplastic hip joints. Material and Methods: The study compared US examination and MR arthrography diagnosis of labral tears in 20 consecutively referred dysplastic hip joints. Results: The ability to diagnose acetabular labral tears upon US examination was calculated: sensitivity 44%, specificity 75%, positive predictive value 88%, and negative predictive value 25%. Conclusion: The ability of US examination in diagnosing acetabular labral tears is not yet good enough. The technique is still to be developed, and more experience, especially with the interpretation of US examinations, is needed.

  11. Diagnostic accuracy of magnetic resonance, computed tomography and contrast enhanced ultrasound in radiological multimodality assessment of peribiliary liver metastases.

    Directory of Open Access Journals (Sweden)

    Vincenza Granata

    Full Text Available We compared diagnostic performance of Magnetic Resonance (MR, Computed Tomography (CT and Ultrasound (US with (CEUS and without contrast medium to identify peribiliary metastasis.We identified 35 subjects with histological proven peribiliary metastases who underwent CEUS, CT and MR study. Four radiologists evaluated the presence of peribiliary lesions, using a 4-point confidence scale. Echogenicity, density and T1-Weigthed (T1-W, T2-W and Diffusion Weighted Imaging (DWI signal intensity as well as the enhancement pattern during contrast studies on CEUS, CT and MR so as hepatobiliary-phase on MRI was assessed.All lesions were detected by MR. CT detected 8 lesions, while US/CEUS detected one lesion. According to the site of the lesion, respect to the bile duct and hepatic parenchyma: 19 (54.3% were periductal, 15 (42.8% were intra-periductal and 1 (2.8% was periductal-intrahepatic. According to the confidence scale MRI had the best diagnostic performance to assess the lesion. CT obtained lower diagnostic performance. There was no significant difference in MR signal intensity and contrast enhancement among all metastases (p>0.05. There was no significant difference in CT density and contrast enhancement among all metastases (p>0.05.MRI is the method of choice for biliary tract tumors but it does not allow a correct differential diagnosis among different histological types of metastasis. The presence of biliary tree dilatation without hepatic lesions on CT and US/CEUS study may be an indirect sign of peribiliary metastases and for this reason the patient should be evaluated by MRI.

  12. Nuclear diagnostics in support of ICF experiments

    International Nuclear Information System (INIS)

    Moran, M.J.; Hall, J.

    1996-01-01

    As the yields of Inertial Confinement Fusion (ICF) experiments increase to NIF levels new diagnostic techniques for studying details of fusion burn behavior will become feasible. The new techniques will provide improved measurements of fusion burn temperature and history. Improved temperature measurements might be achieved with magnetic spectroscopy of fusion neutrons. High-bandwidth fusion reaction history will be measured with fusion-specific γ-ray diagnostics. Additional energy-resolved γ-ray might be able to study a selection of specific behaviors during fusion burn. Present ICF yields greater than 10 13 neutrons are sufficient to demonstrate the basic methods that underlie the new techniques. As ICF yields increase, the diagnostics designs adjusted accordingly in order to provide clear and specific data on fusion burn performance

  13. Revolutionary diagnostic method using rotating atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Frese, W.

    1986-01-23

    Nuclear tomography, a newcomer in medical diagnostics, has rapidly gained ground and recently achieved a decisive success: Electronic sectional images of the body which hitherto took measuring times of several minutes now can be obtained within only a few seconds. This jump in time has been earned by experts of the Goettingen Max Planck Institute for biophysical chemistry who puzzled out the significant modification of the method, which offers completely new insight to clinical diagnostics. One advantage is that nuclear magnetic resonance imaging - as the method also is called - allows dynamic processes to be made visible, and not only the movements of anatomic structures such as the heart, but indeed also physiological processes such as renal excretion. The other decisive improvement is that three-dimensional images of tissue and organs can be obtained. And on top of it all, nuclear magnetic resonance imaging does not invade the patient's body with harmful radiation.

  14. Revolutionary diagnostic method using rotating atomic nuclei

    International Nuclear Information System (INIS)

    Frese, W.

    1986-01-01

    Nuclear tomography, a newcomer in medical diagnostics, has rapidly gained ground and recently achieved a decisive success: Electronic sectional images of the body which hitherto took measuring times of several minutes now can be obtained within only a few seconds. This jump in time has been earned by experts of the Goettingen Max Planck Institute for biophysical chemistry who puzzled out the significant modification of the method, which offers completely new insight to clinical diagnostics. One advantage is that nuclear magnetic resonance imaging - as the method also is called - allows dynamic processes to be made visible, and not only the movements of anatomic structures such as the heart, but indeed also physiological processes such as renal excretion. The other decisive improvement is that three-dimensional images of tissue and organs can be obtained. And on top of it all, nuclear magnetic resonance imaging does not invade the patient's body with harmful radiation. (orig./MG) [de

  15. Formation of compact toroidal configurations for magnetic confinement of high temperature plasmas

    International Nuclear Information System (INIS)

    Fuentes, N.O.; Rodrigo, A.B.

    1986-01-01

    The formation stage of inverted magnetic field toroidal configurations (FRC) for hot plasmas confinement using a low energy linear theta pinch is studied. The diagnostic techniques used are based on optical spectroscopy, ultrarapid photography, magnetic probes and excluded flux compensated bonds. The generalities of the present research program, the used diagnostic techniques and the results obtained are discussed. (Author)

  16. Mammary carcinoma diagnostics and therapy; Diagnostik und Therapie des Mammakarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Uwe; Baum, Friedemann (eds.) [Diagnostisches Brustzentrum Goettingen BZG, Goettingen(Germany)

    2014-11-01

    The book on mammary carcinoma diagnostics and therapy covers the following issues: development, anatomy and physiology of the mammary glands, pathology of benign and malign mammary gland changes, non-imaging diagnostics; mammography; ultrasonic mammography; magnetic resonance tomography of the mammary glands; imaging diagnostics findings; mammary interventions; examination concepts; operative therapy of the mammary carcinoma; chemotherapy of the mammary carcinoma; radio-oncological therapy of the mammary carcinoma; logistics in a medical center for mammary gland diseases; logistics in an interdisciplinary center for mammary diseases; dialogue conduction and psycho-social attendance.

  17. Phase contrast imaging diagnostic for the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Boettger, Lukas-Georg; Grulke, Olaf [Max Planck Institute for Plasma Physics, 17491 Greifswald (Germany)

    2016-07-01

    The phase contrast imaging (PCI) diagnostic allows for non-invasive measurements of density fluctuations in high temperature plasmas. Since the index of refraction in a plasma is a function of the electron density, an incoming laser beam experiences a phase shift, which can be converted to intensity variations via interference after passing a phase plate. Generally speaking, the signal contains only the line-integrated information along the beam path. This limitation can be circumvented by using the fact that the density fluctuations form filamentary structures that are well aligned with the local magnetic field. If the magnetic field direction significantly varies along the beam path, optical filtering allows for localization of the density fluctuations. In order to identify the best diagnostic position regarding localization performance three figures of merit are introduced. They allow for quantitative comparison of different lines of sight and different magnetic field configurations. The results of the optimization process and a comparison with other fusion experiments are shown in this contribution.

  18. Endoscopic and ultrasound diagnostics as contemporary method in diagnostics of dog stomach diseases

    Directory of Open Access Journals (Sweden)

    Krstić Vanja

    2005-01-01

    Full Text Available The visualization of pathological processes in the dog stomach determines a correct diagnosis or differential diagnosis, which presents the basic prerequisite for rational therapy. In addition to the conventional type of clinical examination which covers the taking of anamnestic data, observation of the patient and laboratory tests, there are also certain computerized diagnostic methods (magnetic resonance and scanner which are the most precise and most reliable in the verification of stomach diseases. However, the listed approaches are either insufficiently relevant in making the diagnosis or are too expensive and demanding for the everyday clinical practice. These are the reasons why veterinary medicine today increasingly resorts to the use of other forms of imaging diagnostics, and, as its representatives, the video endoscopic, ultrasound and X-ray examination of the digestive tract.

  19. Possibilities of computer and magnetic-resonance tomography in liver neoplasm diagnostics

    International Nuclear Information System (INIS)

    Momot, N.V.; Shpak, S.A.

    2003-01-01

    With the purpose of comparison of CT and MRI possibilities in diagnostics of focal liver lesions 238 patients were studied by CT and 38 - by MRI. Results of investigation were verified by surgery, needle-fine biopsy, dynamic observation. CT is a method of a choice in diagnostics of focal liver lesions. MRI has some advantages in revealing of small metastases and neoplasms located on diaphragmal surface of the liver, in evaluation of hepatic portal structures and tumor relation with surrounding tissues and vessels

  20. Magnetic resonance angiography (MRA)

    International Nuclear Information System (INIS)

    Arlart, I.P.; Guhl, L.

    1992-01-01

    An account is given in this paper of the physical and technical principles underlying the 'time-of-flight' technique for imaging of vessels by magnetic resonance tomography. Major indications for the new procedure of magnetic resonance angiography at present are intracerebral and extracerebral vessels, with digital subtraction angiography quite often being required to cope with minor alterations (small aneurysms, small occlusions). Magnetic resonance angiography and digital subtraction angiography are compared to each other for advantages and disadvantages. Basically, replacement of radiological angiography by magnetic resonance angiography appears to be possible only within limits, since X-ray diagnostics primarily provides morphological information about vessels, whereas flow dynamics is visualized by the 'time-of-flight' technique. (orig.) [de

  1. Diagnostic accuracy of magnetic resonance imaging versus computed tomography in stress fractures of the lumbar spine

    International Nuclear Information System (INIS)

    Ganiyusufoglu, A.K.; Onat, L.; Karatoprak, O.; Enercan, M.; Hamzaoglu, A.

    2010-01-01

    Aim: To compare the diagnostic accuracy of magnetic resonance imaging (MRI) with computed tomography (CT) in stress fractures of the lumbar spine. Materials and methods: Radiological and clinical data from 57 adolescents and young adults with a diagnosis of stress injury of the lumbar spine were retrospectively reviewed. All cases had undergone both 1.5 T MRI and 16-section CT examinations. All MRI and CT images were retrospectively reviewed and evaluated in separate sessions. The fracture morphology (complete/incomplete, localization) and vertebral levels were noted at both the CT and MRI examinations. Bone marrow/peri-osseous soft-tissue oedema was also determined at MRI. Results: In total, 73 complete and 32 incomplete stress fractures were detected with CT. Sixty-seven complete, 24 incomplete fractures and eight stress reactions were detected using MRI in the same study group. Marrow oedema was also seen in eight of the complete and 20 of the incomplete fractures. The specificity, sensitivity, and accuracy of MRI in detecting fracture lines were 99.6, 86.7, and 97.2%, respectively. MRI was more accurate at the lower lumbar levels in comparison to upper lumbar levels. Conclusion: MRI has a similar diagnostic accuracy to CT in determining complete fractures with or without accompanying marrow oedema and incomplete fractures with accompanying marrow oedema, especially at the lower lumbar levels, which constitutes 94% of all fractures. At upper lumbar levels and in the incomplete fractures of the pars interarticularis with marked surrounding sclerosis, MRI has apparent limitations compared to CT imaging.

  2. Diagnostic accuracy of magnetic resonance imaging versus computed tomography in stress fractures of the lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Ganiyusufoglu, A.K., E-mail: kursady33@yahoo.co [Department of Radiology, Florence Nightingale Hospital, Istanbul (Turkey); Onat, L. [Department of Radiology, Florence Nightingale Hospital, Istanbul (Turkey); Karatoprak, O.; Enercan, M.; Hamzaoglu, A. [Department of Orthopedics and Traumatology, Florence Nightingale Hospital, Istanbul (Turkey)

    2010-11-15

    Aim: To compare the diagnostic accuracy of magnetic resonance imaging (MRI) with computed tomography (CT) in stress fractures of the lumbar spine. Materials and methods: Radiological and clinical data from 57 adolescents and young adults with a diagnosis of stress injury of the lumbar spine were retrospectively reviewed. All cases had undergone both 1.5 T MRI and 16-section CT examinations. All MRI and CT images were retrospectively reviewed and evaluated in separate sessions. The fracture morphology (complete/incomplete, localization) and vertebral levels were noted at both the CT and MRI examinations. Bone marrow/peri-osseous soft-tissue oedema was also determined at MRI. Results: In total, 73 complete and 32 incomplete stress fractures were detected with CT. Sixty-seven complete, 24 incomplete fractures and eight stress reactions were detected using MRI in the same study group. Marrow oedema was also seen in eight of the complete and 20 of the incomplete fractures. The specificity, sensitivity, and accuracy of MRI in detecting fracture lines were 99.6, 86.7, and 97.2%, respectively. MRI was more accurate at the lower lumbar levels in comparison to upper lumbar levels. Conclusion: MRI has a similar diagnostic accuracy to CT in determining complete fractures with or without accompanying marrow oedema and incomplete fractures with accompanying marrow oedema, especially at the lower lumbar levels, which constitutes 94% of all fractures. At upper lumbar levels and in the incomplete fractures of the pars interarticularis with marked surrounding sclerosis, MRI has apparent limitations compared to CT imaging.

  3. Novel uses of detonator diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, John R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilde, Zakary Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tasker, Douglas George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Francois, Elizabeth Green [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nakamoto, Teagan Kanakanui Junichi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Dalton Kay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trujillo, Christopher J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    A novel combination of diagnostics is being used to research the physics of detonator initiation. The explosive PETN (Pentaerythritol tetranitrate) commonly used in detonators, is also a piezo-electric material that, when sufficiently shocked, emits an electromagnetic field in the radio frequency (RF) range, along crystal fracture planes. In an effort to capture this RF signal, a new diagnostic was created. A copper foil, used as an RF antenna, was wrapped around a foam fixture encompassing a PETN pellet. Rogowski coils were used to obtain the change in current with respect to time (di/dt) the detonator circuit, in and polyvinylidene difluoride (PVDF) stress sensors were used to capture shockwave arrival time. The goal of these experiments is to use these diagnostics to study the reaction response of a PETN pellet of known particle size to shock loading with various diagnostics including an antenna to capture RF emissions. Our hypothesis is that RF feedback may signify the rate of deflagration to detonation transition (DDT) or lack thereof. The new diagnostics and methods will be used to determine the timing of start of current, bridge burst, detonator breakout timing and RF generated from detonation. These data will be compared to those of currently used diagnostics in order to validate the accuracy of these new methods. Future experiments will incorporate other methods of validation including dynamic radiography, optical initiation and use of magnetic field sensors.

  4. Overuse of Diagnostic Imaging for Work-Related Injuries.

    Science.gov (United States)

    Clendenin, Brianna Rebecca; Conlon, Helen Acree; Burns, Candace

    2017-02-01

    Overuse of health care in the United States is a growing concern. This article addresses the use of diagnostic imaging for work-related injuries. Diagnostic imaging drives substantial cost for increases in workers' compensation. Despite guidelines published by the American College of Radiology and the American College of Occupational Medicine and the Official Disability Guidelines, practitioners are prematurely ordering imaging sooner than recommended. Workers are exposed to unnecessary radiation and are incurring increasing costs without evidence of better outcomes. Practitioners caring for workers and submitting workers' compensation claims should adhere to official guidelines, using their professional judgment to consider financial impact and health outcomes of diagnostic imaging including computed tomography, magnetic resonance imaging, nuclear medicine imaging, radiography, and ultrasound.

  5. Cranial MRI in a young child with cochlear implants after bilateral magnet removal.

    Science.gov (United States)

    Helbig, Silke; Stöver, Timo; Burck, Iris; Kramer, Sabine

    2017-12-01

    A young bilateral cochlear implant (CI) user required magnetic resonance imaging (MRI) to determine the cause of hydrocephalus. The images obtained with the CIs in place were not diagnostically useful due to large artefacts generated by the CI magnets. We obtained useful images by bilaterally explanting the CI-magnets and replacing them with non-magnetic placeholder dummies then conducted the imaging. The artefact in the new images was greatly reduced and the images were diagnostically useful. Lastly, we explanted the dummies and reimplanted the CI-magnets. This procedure should be useful to obtain useful images in CI users. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Diagnostic radiology 1987

    International Nuclear Information System (INIS)

    Margulis, A.R.; Gooding, C.A.

    1987-01-01

    This is the latest version of the continuing education course on diagnostic radiology given yearly by the Department of Radiology at the University of California, San Francisco. The lectures are grouped into sections on gastrointestinal radiology, mammography, uroradiology, magnetic resonance, hepatobiliary radiology, pediatric radiology, ultrasound, interventional radiology, chest radiology, nuclear medicine, cardiovascular radiology, and skeletal radiology. Each section contains four to eight topics. Each of these consists of text that represents highlights in narrative form, selected illustrations, and a short bibliography. The presentation gives a general idea of what points were made in the lecture

  7. Breast-specific gamma camera imaging with 99mTc-MIBI has better diagnostic performance than magnetic resonance imaging in breast cancer patients: A meta-analysis.

    Science.gov (United States)

    Zhang, Aimi; Li, Panli; Liu, Qiufang; Song, Shaoli

    2017-01-01

    This study aimed to evaluate the diagnostic role of breast-specific gamma camera imaging (BSGI) with technetium-99m-methoxy isobutyl isonitrile ( 99m Tc-MIBI) and magnetic resonance imaging (MRI) in patients with breast cancer through a meta-analysis. Three reviewers searched articles published in medical journals before June 2016 in MEDLINE, EMBASE and Springer Databases; the references listed in original articles were also retrieved. We used the quality assessment of diagnostic accuracy studies (QUADAS) tool to assess the quality of the included studies. Heterogeneity, pooled sensitivity and specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio (DOR) and summary receiver operating characteristic (SROC) curves were calculated by Meta-DiSc software to estimate the diagnostic performance of BSGI and MRI. Ten studies with 517 patients were included after meeting the inclusion criteria. We did a subgroup analysis of the same data type. The pooled sensitivities of BSGI and MRI were: 0.84 (95% CI, 0.79-0.88) and 0.89 (95% CI, 0.84-0.92) respectively, and the pooled specificities of BSGI and MRI were: 0.82 (95% CI, 0.74-0.88) and 0.39 (95% CI, 0.30-0.49) respectively. The areas under the SROC curve of BSGI and MRI were 0.93 and 0.72 respectively. The results of our meta-analysis indicated that compared with MRI, BSGI has similar sensitivity, higher specificity, better diagnostic performance, and can be widely used in clinical practice.

  8. System theory in medical diagnostic devices: an overview.

    Science.gov (United States)

    Baura, Gail D

    2006-01-01

    Medical diagnostics refers to testing conducted either in vitro or in vivo to provide critical health care information for risk assessment, early diagnosis, treatment, or disease management. Typical in vivo diagnostic tests include the computed tomography scan, magnetic resonance imaging, and blood pressure screening. Typical in vitro diagnostic tests include cholesterol, Papanicolaou smear, and conventional glucose monitoring tests. Historically, devices associated with both types of diagnostics have used heuristic curve fitting during signal analysis. However, since the early 1990s, a few enterprising engineers and physicians have used system theory to improve their core processing for feature detection and system identification. Current applications include automated Pap smear screening for detection of cervical cancer and diagnosis of Alzheimer's disease. Future applications, such as disease prediction before symptom onset and drug treatment customization, have been catalyzed by the Human Genome Project.

  9. Indirect magnetic resonance arthrography of the shoulder; a reliable diagnostic tool for investigation of suspected labral pathology

    Energy Technology Data Exchange (ETDEWEB)

    Fallahi, Farshid [North Cumbria University Hospitals NHS Trust, Carlisle (United Kingdom); North Cumbria University Hospitals, Department of Radiology, Carlisle (United Kingdom); Green, Nick; Gadde, Sarat; Jeavons, Lisa; Armstrong, Patrick; Jonker, Leon [North Cumbria University Hospitals NHS Trust, Carlisle (United Kingdom)

    2013-09-15

    Indirect magnetic resonance arthrography (I-MRA) confers significant logistical advantages over direct MRA and does not require articular injection. In this study, we determined the diagnostic performance of I-MRA in relation to conventional MRI and arthroscopy or surgery in detecting tears of the glenoid labrum, including Bankart lesions and superior labral antero-posterior (SLAP) tears in a standard clinical setting. Ninety-one symptomatic patients underwent conventional MRI and I-MRA of the affected shoulder, followed by either arthroscopy or open surgery. The scans were interpreted independently by two experienced radiology consultants with a special interest in musculoskeletal radiology. Using the surgical findings as the standard of reference, sensitivity, specificity, and diagnostic accuracy of conventional non-contrast MRI and I-MRA in the detection of labral tears were calculated. The sensitivity of I-MRA was 95 and 97 %, respectively, for two radiologists as opposed to 79 and 83 % for conventional MRI. For both radiologists, the specificity of I-MRA, as well as MRI, was 91 % for detection of labral tears of all types. Accuracy of diagnosis was 93 and 95 %, respectively, for two radiologists with indirect MRA, compared to 84 and 86 % with non-contrast MRI. This retrospective study shows that I-MRA is a highly accurate and sensitive method for the detection of labral tears. The data obtained supports the use of I-MRA as standard practice in patients with shoulder instability due to suspected labral pathology where further investigative imaging is indicated. (orig.)

  10. Indirect magnetic resonance arthrography of the shoulder; a reliable diagnostic tool for investigation of suspected labral pathology

    International Nuclear Information System (INIS)

    Fallahi, Farshid; Green, Nick; Gadde, Sarat; Jeavons, Lisa; Armstrong, Patrick; Jonker, Leon

    2013-01-01

    Indirect magnetic resonance arthrography (I-MRA) confers significant logistical advantages over direct MRA and does not require articular injection. In this study, we determined the diagnostic performance of I-MRA in relation to conventional MRI and arthroscopy or surgery in detecting tears of the glenoid labrum, including Bankart lesions and superior labral antero-posterior (SLAP) tears in a standard clinical setting. Ninety-one symptomatic patients underwent conventional MRI and I-MRA of the affected shoulder, followed by either arthroscopy or open surgery. The scans were interpreted independently by two experienced radiology consultants with a special interest in musculoskeletal radiology. Using the surgical findings as the standard of reference, sensitivity, specificity, and diagnostic accuracy of conventional non-contrast MRI and I-MRA in the detection of labral tears were calculated. The sensitivity of I-MRA was 95 and 97 %, respectively, for two radiologists as opposed to 79 and 83 % for conventional MRI. For both radiologists, the specificity of I-MRA, as well as MRI, was 91 % for detection of labral tears of all types. Accuracy of diagnosis was 93 and 95 %, respectively, for two radiologists with indirect MRA, compared to 84 and 86 % with non-contrast MRI. This retrospective study shows that I-MRA is a highly accurate and sensitive method for the detection of labral tears. The data obtained supports the use of I-MRA as standard practice in patients with shoulder instability due to suspected labral pathology where further investigative imaging is indicated. (orig.)

  11. The LIDAR Thomson Scattering Diagnostic on JET

    DEFF Research Database (Denmark)

    Salzmann, H.; Bundgaard, J.; Gadd, A.

    1988-01-01

    By combining the time‐of‐flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density are measured in a magnetically confined fusion plasma. This technique was realized for the first time on the JET tokamak. A ruby laser (3‐J pulse ener...

  12. Enhancement of the FIDA diagnostic at ASDEX Upgrade for velocity space tomography

    DEFF Research Database (Denmark)

    Weiland, M.; Geiger, B.; Jacobsen, Asger Schou

    2016-01-01

    Recent upgrades to the FIDA (fast-ion D-alpha) diagnostic at ASDEX Upgrade are discussed. The diagnostic has been extended from three to five line of sight arrays with different angles to the magnetic field, and a spectrometer redesign allows the simultaneous measurement of red- and blue-shifted ......Recent upgrades to the FIDA (fast-ion D-alpha) diagnostic at ASDEX Upgrade are discussed. The diagnostic has been extended from three to five line of sight arrays with different angles to the magnetic field, and a spectrometer redesign allows the simultaneous measurement of red- and blue......-shifted parts of the Doppler spectrum. These improvements make it possible to reconstruct the 2D fast-ion velocity distribution from the FIDA measurements by tomographic inversion under a wide range of plasma parameters. Two applications of the tomography are presented: a comparison between the distributions...... resulting from 60 keV and 93 keV neutral beam injection and a velocity-space resolved study of fast-ion redistribution induced by a sawtooth crash inside and outside the sawtooth inversion radius....

  13. Tokamak Physics EXperiment (TPX): Toroidal magnet design, development and manufacture. SDRL 31, Magnet sensors. Volume 4

    International Nuclear Information System (INIS)

    Weber, C.M.

    1995-01-01

    The requirement for magnet sensors to verify the TF magnet system operation and aid in diagnostic assessment are defined. However, generally one does not specify such a system in the absence of a definition of the local I ampersand C system. Also, one would expect that there would be great benefit (economy, redundancy, compatibility, etc.) in specifying common components for all of the magnet system. Thus specifying the sensors requirement we have tried to be flexible to accommodate future adjustments to these systems

  14. Diagnostic accuracy and prognostic impact of restaging by magnetic resonance imaging after preoperative chemoradiotherapy in patients with rectal cancer

    International Nuclear Information System (INIS)

    Huh, Jung Wook; Kim, Hee Cheol; Lee, Soon Jin; Yun, Seong Hyeon; Lee, Woo Yong; Park, Yoon Ah; Cho, Yong Beom; Chun, Ho-Kyung

    2014-01-01

    Background: The prognostic role of restaging rectal magnetic resonance imaging (MRI) in patients with preoperative CRT has not been established. The goal of this study was to evaluate the diagnostic accuracy and prognostic role of radiological staging by rectal MRI after preoperative chemoradiation (CRT) in patients with rectal cancer. Methods: A total of 231 consecutive patients with rectal cancer who underwent preoperative CRT and radical resection from January 2008 to December 2009 were prospectively enrolled. The diagnostic accuracy and prognostic significance of post-CRT radiological staging by MRI was evaluated. Results: The sensitivity, specificity, positive predictive value, and negative predictive value of radiological diagnosis of good responders (ypTNM stage 0–I) were 32%, 90%, 65%, and 69%, respectively. The overall accuracy of MRI restating for good responders was 68%. The 5-year disease-free survival rates of patients with radiological and pathological TNM stage 0, stage I, and stage II–III were 100%, 94%, and 76%, respectively (P = 0.037), and 97%, 87%, and 73%, respectively (P = 0.007). On multivariate analysis, post-CRT radiological staging by MRI was an independent prognostic factor for disease-free survival. Conclusion: Radiological staging by MRI after preoperative CRT may be an independent predictor of survival in patients with rectal cancer

  15. Eight meeting of the ITER diagnostic expert group

    International Nuclear Information System (INIS)

    Costley, A.E.; Young, K.M.

    1998-01-01

    The 8. Meeting of the ITER Diagnostics Expert Group which was held in San Diego, February 1998 had two main technical goals: to discuss the status and plans for developing kinetic control, and to review the current status of the design of the magnetic system

  16. Particle size optimization of SrFe12O19 magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob

    2015-01-01

    , magnets have been a keystone in the electric era in which we live. Nowadays people carry around magnets in every small electronic device or gadget and magnets are being used as a diagnostic in medicine. [1] This puts a high demand on controlling the magnetic properties. Since the discovery of quantum...

  17. Outcomes of non-invasive diagnostic modalities for the detection of coronary artery disease: network meta-analysis of diagnostic randomised controlled trials

    Science.gov (United States)

    Siontis, George CM; Mavridis, Dimitris; Greenwood, John P; Coles, Bernadette; Nikolakopoulou, Adriani; Jüni, Peter; Salanti, Georgia

    2018-01-01

    Abstract Objective To evaluate differences in downstream testing, coronary revascularisation, and clinical outcomes following non-invasive diagnostic modalities used to detect coronary artery disease. Design Systematic review and network meta-analysis. Data sources Medline, Medline in process, Embase, Cochrane Library for clinical trials, PubMed, Web of Science, SCOPUS, WHO International Clinical Trials Registry Platform, and Clinicaltrials.gov. Eligibility criteria for selecting studies Diagnostic randomised controlled trials comparing non-invasive diagnostic modalities in patients presenting with symptoms suggestive of low risk acute coronary syndrome or stable coronary artery disease. Data synthesis A random effects network meta-analysis synthesised available evidence from trials evaluating the effect of non-invasive diagnostic modalities on downstream testing and patient oriented outcomes in patients with suspected coronary artery disease. Modalities included exercise electrocardiograms, stress echocardiography, single photon emission computed tomography-myocardial perfusion imaging, real time myocardial contrast echocardiography, coronary computed tomographic angiography, and cardiovascular magnetic resonance. Unpublished outcome data were obtained from 11 trials. Results 18 trials of patients with low risk acute coronary syndrome (n=11 329) and 12 trials of those with suspected stable coronary artery disease (n=22 062) were included. Among patients with low risk acute coronary syndrome, stress echocardiography, cardiovascular magnetic resonance, and exercise electrocardiograms resulted in fewer invasive referrals for coronary angiography than coronary computed tomographic angiography (odds ratio 0.28 (95% confidence interval 0.14 to 0.57), 0.32 (0.15 to 0.71), and 0.53 (0.28 to 1.00), respectively). There was no effect on the subsequent risk of myocardial infarction, but estimates were imprecise. Heterogeneity and inconsistency were low. In patients with

  18. An infrared diagnostic for magnetism in hot stars

    Czech Academy of Sciences Publication Activity Database

    Oksala, M.E.; Grunhut, J.H.; Kraus, Michaela; Borges Fernandes, M.; Neiner, C.; Condori, C.A.H.; Condori, J.C.; Souza, C. T.

    2015-01-01

    Roč. 578, June (2015), A112/1-A112/4 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GA14-21373S Institutional support: RVO:67985815 Keywords : stars * magnetic field * circumstellar matter Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  19. Diagnostics for FIRE: A Status Report

    International Nuclear Information System (INIS)

    Kenneth M. Young

    2002-01-01

    The mission for the proposed FIRE (Fusion Ignition Research Experiment) device is to ''attain, explore, understand and optimize fusion-dominated plasmas.'' Operation at Q * 5, for 20 sec with a fusion power output of *150 MW is the major goal. Attaining this mission sets demands for plasma measurement that are at least as comprehensive as on present tokamaks, with the additional capabilities needed for control of the plasma and for understanding the effects of the alpha-particles. Because of the planned operation in advanced tokamak scenarios, with steep transport barriers, the diagnostic instrumentation must be able to provide fine spatial and temporal resolution. It must also be able to withstand the impact of the intense neutron and gamma irradiation. There are practical engineering issues of minimizing radiation streaming while providing essential diagnostic access to the plasma. Many components will operate close to the first wall, e.g. ceramics and mineral insulated cable for magnetic diagnostics and mirrors for optical diagnostics; these components must be selected and mounted so that they will operate and survive in fluxes which require special material selection. The measurement requirements have been assessed so that the diagnostics for the FIRE device can be defined. Clearly a better set of diagnostics of alpha-particles than that available for TFTR is essential, since the alpha-particles provide the dominant sources of heating and of instability-drive in the plasma

  20. Magnetic resonance imaging in cardiovascular disease

    International Nuclear Information System (INIS)

    Eckel, C.G.; Mettler, F.A. Jr.; Wicks, J.D.; Stevens, G.F.

    1986-01-01

    How does magnetic resonance imaging (MRI) currently contribute in the evaluation of patients with suspected heart disease? What role will MRI play in the future in evaluation of cardiovascular disease? To understand better where MRI fits into the diagnostic algorithm of cardiovascular disease the authors first consider the characteristics that they would like to see in the ideal diagnostic test and then survey the available cardiac diagnostic tests to note the characteristics that limit or recommend a test. In the final analysis, the justification for expensive diagnostic tests such as MRI must be an overall improvement in survival or quality of life in those patients treated after diagnosis

  1. Diagnostic value of high strength MRCP in the obstructive jaundice

    International Nuclear Information System (INIS)

    Yang Yang; Dong Yuhai; Yin Jie; Lv Guoyi

    2007-01-01

    Objective: To evaluate the diagnostic value of high strength MRCP in patients with obstructive jaundice. Methods: Routine MRI and MRCP examination on 161 patients with obstructive jaundice were carded out with 1.5T Siemens super-conductive magnetic resonance machine. Of them, 103 cases were benign lesions and 58 were malignant after surgical and ERCP pathological confirmation. Results: The diagnostic accuracy of MRCP was 100%, with the qualitative diagnostic accuracy at 90.2%. Conclusion: MRCP was the best method in diagnosing patients with obstructive jaundice, the concerned performances of MRCP could provide the dependable basis for surgical operation project. (authors)

  2. The role of diagnostic radiology in compressive and entrapment neuropathies

    International Nuclear Information System (INIS)

    Spratt, J.D.; Stanley, A.J.; Hide, I.G.; Campbell, R.S.D.; Grainger, A.J.

    2002-01-01

    Diagnostic imaging is increasingly being utilised to aid the diagnosis of compression and entrapment neuropathies. Cross-sectional imaging, primarily ultrasound and magnetic resonance imaging, can provide exquisite anatomical detail of peripheral nerves and the changes that may occur as a result of compression. Imaging can provide a useful diagnostic aid to clinicians, which may supplement clinical evaluation, and may eventually provide an alternative to other diagnostic techniques such as nerve conduction studies. This article describes the abnormalities that may be demonstrated by current imaging techniques, and critically analyses the impact of imaging in diagnosis of peripheral compressive neuropathy. (orig.)

  3. The role of diagnostic radiology in compressive and entrapment neuropathies

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, J.D.; Stanley, A.J.; Hide, I.G.; Campbell, R.S.D. [Department of Radiology, James Cook University Hospital, Middlesbrough, TS4 3BW (United Kingdom); Grainger, A.J. [Department of Radiology, Leeds General Infirmary, Leeds (United Kingdom)

    2002-09-01

    Diagnostic imaging is increasingly being utilised to aid the diagnosis of compression and entrapment neuropathies. Cross-sectional imaging, primarily ultrasound and magnetic resonance imaging, can provide exquisite anatomical detail of peripheral nerves and the changes that may occur as a result of compression. Imaging can provide a useful diagnostic aid to clinicians, which may supplement clinical evaluation, and may eventually provide an alternative to other diagnostic techniques such as nerve conduction studies. This article describes the abnormalities that may be demonstrated by current imaging techniques, and critically analyses the impact of imaging in diagnosis of peripheral compressive neuropathy. (orig.)

  4. Magnetic resonance instrumentation

    International Nuclear Information System (INIS)

    Bell, R.A.

    1987-01-01

    Magnetic resonance (MR), while opening new vistas to diagnostic medicine, utilizes equipment that is unfamiliar to most clinicians. Beyond learning to cope with new terms, such as spin-echo, T1, T2, and spin density, health care professionals are faced with the inclusion of magnetic and radiofrequency effects in their facilities produced by a complex array of devices. It is the purpose of this chapter to outline the components of an MR imaging system, to discuss their functions, and to note the variations in equipment commercially available

  5. Radiological diagnostics in hyperparathyroidism

    International Nuclear Information System (INIS)

    Moedder, U.; Kuhn, F.P.; Gruetzner, G.

    1991-01-01

    The most important radiologically detectable effects of the primary and secondary hyperparathyroidism of the skeletal system and the periarticular soft tissue structures are presented. In the following sensitivity and specificity of radiological imaging - sonography, scintigraphy, computed tomography, magnetic resonance imaging, arteriography and selective venous sampling - in the preoperative diagnostic of the parathyroid adenomas are discussed. Therefore, radiological imaging can be omitted before primary surgery. It was only in secondary surgery that radiological process proved useful and a guide during surgical intervention. (orig.) [de

  6. Development of a new virtual diagnostic for V3FIT

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, G. L., E-mail: gtrevisan@igi.cnr.it; Terranova, D. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), corso Stati Uniti 4-35127 Padova (Italy); Cianciosa, M. R.; Hanson, J. D. [Auburn University, Physics Department, Auburn, Alabama 36849 (United States)

    2014-12-15

    The determination of plasma equilibria from diagnostic information is a fundamental issue. V3FIT is a fully three-dimensional reconstruction code capable of solving the inverse problem using both magnetic and kinetic measurements. It uses VMEC as core equilibrium solver and supports both free- and fixed-boundary reconstruction approaches. In fixed-boundary mode VMEC does not use explicit information about currents in external coils, even though it has important effects on the shape of the safety factor profile. Indeed, the edge safety factor influences the reversal position in RFP plasmas, which then determines the position of the m = 0 island chain and the edge transport properties. In order to exploit such information a new virtual diagnostic has been developed, that thanks to Ampère's law relates the external current through the center of the torus to the circulation of the toroidal magnetic field on the outermost flux surface. The reconstructions that exploit the new diagnostic are indeed found to better interpret the experimental data with respect to edge physics.

  7. Seronegative neuromyelitis optica spectrum disorder patients diagnosed using new diagnostic criteria.

    Science.gov (United States)

    Uzawa, Akiyuki; Mori, Masahiro; Uchida, Tomohiko; Masuda, Hiroki; Ohtani, Ryohei; Kuwabara, Satoshi

    2016-09-01

    Recently, new diagnostic criteria for neuromyelitis optica spectrum disorders (NMOSD) were published. Our primary aim was to evaluate the usefulness of the new diagnostic criteria in anti-aquaporin 4 (AQP4) antibody-negative cases. Consecutive 471 patients whose anti-AQP4 antibody was measured at Chiba University were reviewed. Four anti-AQP4 antibody negative-patients, who fulfilled the new diagnostic criteria for NMOSD but not 2006 diagnostic criteria for neuromyelitis optica (NMO), were identified. They showed high cerebrospinal fluid interleukin-6 and glial fibrillary acidic protein levels, an absence of oligoclonal bands and/or cloud-like enhancement on magnetic resonance imaging, which are compatible findings for NMO. The new diagnostic criteria are clinically useful in seronegative NMOSD. © The Author(s), 2015.

  8. T1 mapping cardiovascular magnetic resonance imaging to detect myocarditis—Impact of slice orientation on the diagnostic performance

    Energy Technology Data Exchange (ETDEWEB)

    Bohnen, Sebastian, E-mail: s.bohnen@uke.de [University Medical Center Hamburg-Eppendorf, University Heart Center, General and Interventional Cardiology, Hamburg (Germany); Radunski, Ulf K., E-mail: u.radunski@uke.de [University Medical Center Hamburg-Eppendorf, University Heart Center, General and Interventional Cardiology, Hamburg (Germany); Lund, Gunnar K., E-mail: glund@uke.de [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Tahir, Enver, E-mail: e.tahir@uke.de [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Avanesov, Maxim, E-mail: m.avanesov@uke.de [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Stehning, Christian, E-mail: christian.stehning@philips.com [Philips Research, Hamburg (Germany); Schnackenburg, Bernhard, E-mail: bernhard.schnackenburg@philips.com [Philips Healthcare Germany, Hamburg (Germany); Adam, Gerhard, E-mail: g.adam@uke.de [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Blankenberg, Stefan, E-mail: s.blankenberg@uke.de [University Medical Center Hamburg-Eppendorf, University Heart Center, General and Interventional Cardiology, Hamburg (Germany); Muellerleile, Kai, E-mail: kamuellerleile@uke.de [University Medical Center Hamburg-Eppendorf, University Heart Center, General and Interventional Cardiology, Hamburg (Germany)

    2017-01-15

    Background: T1 mapping is a promising diagnostic tool to improve the diagnostic accuracy of cardiovascular magnetic resonance (CMR) in patients with suspected myocarditis. However, there are currently no data on the potential influence of slice orientation on the diagnostic performance of CMR. Thus, we compared the diagnostic performance of global myocardial T1 and extracellular volume (ECV) values to differentiate patients with myocarditis from healthy individuals between different slice orientations. Methods: This study included 48 patients with clinically defined myocarditis and 13 healthy controls who underwent CMR at 1.5 T. A modified Look-Locker inversion-recovery (MOLLI) sequence was used for T1 mapping before and 15 min after administration of 0.075 mmol/kg Gadolinium-BOPTA. T1 mapping was performed on three short and on three long axes slices, respectively. Native T1, post-contrast T1 and extracellular volume (ECV) −BOPTA maps were calculated using a dedicated plug-in written for the OsiriX software and compared between the mean value of three short-axes slices (3SAX), the central short-axis (1SAX), the mean value of three long-axes slices (3LAX), the four-chamber view (4CH), the three-chamber view (3CH) and the two-chamber view (2CH). Results: There were significantly lower native T1 values on 3LAX (1081 ms (1037–1131 ms)) compared to 3SAX (1107 ms (1069–1143 ms), p = 0.0022) in patients with myocarditis, but not in controls (1026 ms (1009–1059 ms) vs. 1039 ms (1023–1055 ms), p = 0.2719). The areas under the curve (AUC) to discriminate between myocarditis and healthy controls by native myocardial T1 were 0.85 (p < 0.0001) on 3SAX, 0.85 (p < 0.0001) on 1SAX, 0.76 (p = 0.0002) on 3LAX, 0.70 (p = 0.0075) on 4CH, 0.72 (p = 0.0020) on 3CH and 0.75 (p = 0.0003) on 2CH. The AUCs for ECV-BOPTA were 0.83 (p < 0.0001) on 3 SAX, 0.82 (p < 0.0001) on 1SAX, 0.77 (p = 0.0005) on 3LAX, 0.71 (p = 0.0079) on 4CH, 0.69 (p = 0.0371) on 3CH and 0.75 (p = 0.0006) on

  9. T1 mapping cardiovascular magnetic resonance imaging to detect myocarditis—Impact of slice orientation on the diagnostic performance

    International Nuclear Information System (INIS)

    Bohnen, Sebastian; Radunski, Ulf K.; Lund, Gunnar K.; Tahir, Enver; Avanesov, Maxim; Stehning, Christian; Schnackenburg, Bernhard; Adam, Gerhard; Blankenberg, Stefan; Muellerleile, Kai

    2017-01-01

    Background: T1 mapping is a promising diagnostic tool to improve the diagnostic accuracy of cardiovascular magnetic resonance (CMR) in patients with suspected myocarditis. However, there are currently no data on the potential influence of slice orientation on the diagnostic performance of CMR. Thus, we compared the diagnostic performance of global myocardial T1 and extracellular volume (ECV) values to differentiate patients with myocarditis from healthy individuals between different slice orientations. Methods: This study included 48 patients with clinically defined myocarditis and 13 healthy controls who underwent CMR at 1.5 T. A modified Look-Locker inversion-recovery (MOLLI) sequence was used for T1 mapping before and 15 min after administration of 0.075 mmol/kg Gadolinium-BOPTA. T1 mapping was performed on three short and on three long axes slices, respectively. Native T1, post-contrast T1 and extracellular volume (ECV) −BOPTA maps were calculated using a dedicated plug-in written for the OsiriX software and compared between the mean value of three short-axes slices (3SAX), the central short-axis (1SAX), the mean value of three long-axes slices (3LAX), the four-chamber view (4CH), the three-chamber view (3CH) and the two-chamber view (2CH). Results: There were significantly lower native T1 values on 3LAX (1081 ms (1037–1131 ms)) compared to 3SAX (1107 ms (1069–1143 ms), p = 0.0022) in patients with myocarditis, but not in controls (1026 ms (1009–1059 ms) vs. 1039 ms (1023–1055 ms), p = 0.2719). The areas under the curve (AUC) to discriminate between myocarditis and healthy controls by native myocardial T1 were 0.85 (p < 0.0001) on 3SAX, 0.85 (p < 0.0001) on 1SAX, 0.76 (p = 0.0002) on 3LAX, 0.70 (p = 0.0075) on 4CH, 0.72 (p = 0.0020) on 3CH and 0.75 (p = 0.0003) on 2CH. The AUCs for ECV-BOPTA were 0.83 (p < 0.0001) on 3 SAX, 0.82 (p < 0.0001) on 1SAX, 0.77 (p = 0.0005) on 3LAX, 0.71 (p = 0.0079) on 4CH, 0.69 (p = 0.0371) on 3CH and 0.75 (p = 0.0006) on

  10. Characterizing the Degree of Fuel Magnetization for MagLIF Using Neutron Diagnostics

    Science.gov (United States)

    Hahn, K. D.; Chandler, G. A.; Schmit, P. F.; Knapp, P. F.; Hansen, S. B.; Harding, E.; Ruiz, C. L.; Jones, B.; Gomez, M. R.; Ampleford, D. J.; Torres, J. A.; Alberto, P. J.; Cooper, G. W.; Styron, J. D.

    2017-10-01

    We are studying Magnetized Liner Inertial Fusion sources which utilize deuterium fuel and produce up to 4e12 primary DD and 5e10 secondary DT neutrons. For this concept, magnetizing the fuel can relax the stagnation pressures and densities required for ignition by insulating the hot fuel and confining the charged fusion products. The degree of magnetization of the fuel at stagnation is quantified using secondary DT neutron spectral measurements in the axial and radial directions and is also related to the ratio of the secondary DT yield to the primary DD yield. Measurements have confirmed that charged fusion products are strongly magnetized, as indicated by the product of the magnetic field and the fuel radius, to 0.4 MG-cm. We present new results that compare the degree of fuel magnetization inferred from spectral and yield measurements. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  11. Mirror Fusion vacuum technology developments

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10 7 to 10 8 l/s for D 2 , T 2 and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility

  12. Mirror fusion vacuum technology developments

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10 7 to 10 8 l/s for D 2 , T 2 and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility

  13. A proposed search for dark-matter axions in the 0.6--16 μeV range

    International Nuclear Information System (INIS)

    van Bibber, K.; Sikivie, P.; Sullivan, N.S.; Tanner, D.B.; Moltz, D.M.

    1991-03-01

    A proposed experiment is described to search for dark-matter axions in the mass range 0.6--16 μeV. The method is based on the Primakoff conversion of axions into monochromatic microwave photons inside a tunable microwave cavity in a large volume high field magnet, as described by Sikivie. This proposal capitalizes on the availability of two Axicell magnets from the decommissioned MFTF-B fusion machine at LLNL. Assuming a local dark-matter density in axions of ρ = 0.3 GeV/cm 3 , the axion would be found or ruled out at the 97% c.l. in the above mass range in 48 months. 13 refs., 6 figs., 2 tabs

  14. Contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Karadjian, V.

    1987-01-01

    The origine of nuclear magnetic resonance signal is reminded and different ways for contrast enhancement in magnetic resonance imaging are presented, especially, modifications of tissus relaxation times. Investigations have focused on development of agents incorporating either paramagnetic ions or stable free radicals. Pharmacological and toxicological aspects are developed. The diagnostic potential of these substances is illustrated by the example of gadolinium complexes [fr

  15. Combination of fast-ion diagnostics in velocity-space tomographies

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Nielsen, Stefan Kragh

    2013-01-01

    Fast-ion Dα (FIDA) and collective Thomson scattering (CTS) diagnostics provide indirect measurements of fast-ion velocity distribution functions in magnetically confined plasmas. Here we present the first prescription for velocity-space tomographic inversion of CTS and FIDA measurements that can ...

  16. From Emergence to Eruption: The Physics and Diagnostics of Solar Active Regions

    Science.gov (United States)

    Cheung, Mark

    2017-08-01

    The solar photosphere is continuously seeded by the emergence of magnetic fields from the solar interior. In turn, photospheric evolution shapes the magnetic terrain in the overlying corona. Magnetic fields in the corona store the energy needed to power coronal mass ejections (CMEs) and solar flares. In this talk, we recount a physics-based narrative of solar eruptive events from cradle to grave, from emergence to eruption, from evaporation to condensation. We review the physical processes which are understood to transport magnetic flux from the interior to the surface, inject free energy and twist into the corona, disentangle the coronal field to permit explosive energy release, and subsequently convert the released energy into observable signatures. Along the way, we review observational diagnostics used to constrain theories of active region evolution and eruption. Finally, we discuss the opportunities and challenges enabled by the large existing repository of solar observations. We argue that the synthesis of physics and diagnostics embodied in (1) data-driven modeling and (2) machine learning efforts will be an accelerating agent for scientific discovery.

  17. Diagnostics Plan for the National Compact Stellarator Experiment

    International Nuclear Information System (INIS)

    D. Johnson; T. Brown; H. Neilson; G. Schilling; H. Takahashi; M. Zarnstorff; M. Cole; E. Lazarus; and M. Fenstermacher

    2002-01-01

    The National Compact Stellarator Experiment (NCSX) is a stellarator-tokamak hybrid seeking to combine the good confinement, high beta and moderate aspect ratio of the tokamak with the quasi-steady-state operation and good stability properties of the stellarator. A preliminary list of measurement requirements, intended to satisfy the needs of the phased research plan, provides the basis for a full complement of plasma diagnostics. It is important to consider this full set, even at this early stage, to assess the adequacy of the stellarator design for diagnostic port access. The 3-D nature of the plasma is a measurement challenge, as is the necessity for high spatial resolution to assess the quality of magnetic surfaces. Other diagnostic requirements include the need for re-entrant views that penetrate the cryostat, for a convenient e-beam probe for field line mapping, and for a diagnostic neutral beam for active spectroscopy

  18. Development of electromagnetic induction diagnostics technology for condition based maintenance

    International Nuclear Information System (INIS)

    Mawatari, Shingo; Oeda, Kaoru; Yatogi, Hideo; Fukuchi, Taira; Ueno, Tadashi

    2008-01-01

    In ROKKASHO Reprocessing Plant (below, called 'RRP'), we have applied Condition Based Maintenance to rotating equipment with vibration diagnostics technology. However, a few rotating equipment are difficult to diagnose definitely, because have structural problems which exercise vibrational noise to peripheral and be impossible to install vibratory sensor. Electromagnetic induction diagnostics technology which measure magnetic fields to eddy current which is induced to rotary through static magnetic field, diagnose deterioration behavior such as abrasion and crack. As a result, it has possibilities to clear above problems. Therefore, we started our basic researches with this technology for Condition Based Maintenance. In this paper, it introduces basic data about 'Non-seal pump' that have installed in RRP. As a result, this technology is a possibility that be able to detect Condition Based Maintenance. (author)

  19. Use of computerized tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tjoerstad, K.

    1992-01-01

    This is a neurologist's opinion on how computerized tomography and magnetic resonance imaging have improved the doctor's diagnostic possibilities, changed patient/doctor relationship and increased the patients' expectations from diagnostic tests. How should the often conflicting interests of patients, society and doctors be handled? 15 refs., 1 fig., 1 tab

  20. Diagnostic Development for ST Plasmas on NSTX

    International Nuclear Information System (INIS)

    Johnson, D.

    2003-01-01

    Spherical tokamaks (STs) have much lower aspect ratio (a/R) and lower toroidal magnetic field, relative to tokamaks and stellarators. This paper will highlight some of the challenges and opportunities these features pose in the diagnosis of ST plasmas on the National Spherical Torus Experiment (NSTX), and discuss some of the corresponding diagnostic development that is underway. The low aspect ratio necessitates a small center stack, with tight space constraints and large thermal excursions, complicating the design of magnetic sensors in this region. The toroidal magnetic field on NSTX is less than or equal to 0.6 T, making it impossible to use ECE as a good monitor of electron temperature. A promising new development for diagnosing electron temperature is electron Bernstein wave (EBW) radiometry, which is currently being pursued on NSTX. A new high-resolution charge exchange recombination spectroscopy system is being installed. Since non-inductive current initiation and sustainment ar e top-level NSTX research goals, measurements of the current profile J(R) are essential to many planned experiments. On NSTX several modifications are planned to adapt the MSE technique to lower field, and two novel MSE systems are being prototyped. Several high speed 2-D imaging techniques are being developed, for viewing both visible and x-ray emission. The toroidal field is comparable to the poloidal field at the outside plasma edge, producing a large field pitch (>50 o ) at the outer mid-plane. The large shear in pitch angle makes some fluctuation diagnostics like beam emission spectroscopy very difficult, while providing a means of achieving spatial localization for microwave scattering investigations of high-k turbulence, which are predicted to be virulent for NSTX plasmas. A brief description of several of these techniques will be given in the context of the current NSTX diagnostic set

  1. The Mirror Fusion Test Facility cryogenic system: Performance, management approach, and present equipment status

    International Nuclear Information System (INIS)

    Slack, D.S.; Chronis, W.C.

    1987-01-01

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) is a 14-kW, 4.35-K helium refrigeration system that proved to be highly successful and cost-effective. All operating objectives were met, while remaining within a few percent of initial cost and schedule plans. The management approach used in MFTF allowed decisions to be made quickly and effectively, and it helped keep costs down. Manpower levels, extent and type of industrial participation, key aspects of subcontractor specifications, and subcontractor interactions are reviewed, as well as highlights of the system tests, operation, and present equipment status. Organizations planning large, high-technology systems may benefit from this experience with the MFTF cryogenic system

  2. Simulation and interpretation of ion beam diagnostics on PBFA-II

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Nelson, W.E.; Maenchen, J.E.; Stygar, W.A.; Ruiz, C.L.; Lockner, T.R.; Johnson, D.J.

    1988-03-01

    Ion diode and beam focusing experiments are in progress on PBFA-II working towards an ultimate goal of significant burn of an ICF pellet. Beam diagnostics on these experiments include a Thomson parabola, K/sub alpha/ x-ray pinhole cameras, filtered ion pinhole cameras, and a magnetic spectrometer. We are developing two new computer programs to simulate and interpret the data obtained from these diagnostics. VIDA is a VAX-based program that manipulates and unfolds data from digitized particle and x-ray diagnostic images. VIDA operations include: image display, background substraction, relative-to-absolute coordinate transformations, and image projection into the beam reference frame. PICDIAG allows us to study the effects of time-dependent ion focusing on the performance of ion beam diagnostics. 10 refs., 5 figs

  3. Magnetic resonance tomography in oncological diagnostics

    International Nuclear Information System (INIS)

    Lien, Hans Henrik; Taksdal, Ingeborg

    2000-01-01

    MR is well suited for imaging in patients with malignant disease. It is the most sensitive and most specific method in the detection of skeletal metastases. It clearly demonstrates the extent of primary bone tumours and also reveals skip metastases and invasion into neighbouring joints, hence it is an important procedure when surgery of a bone tumour is planned. In case of a soft tissue tumour, MR is the preferable imaging modality because it demonstrates the anatomy and reveals the different tissue constituents. MR is the best method to show tumour manifestations in the central nervous system and it supplements cerebrospinal fluid examination in the detection of meningeal metastasis. MR is the method of choice if there is a cord compression. MR imaging is important in gynaecology and oncology. Cost savings have been reported due to reduced use of other diagnostic tests and expensive surgical procedures. New and faster techniques allow examination of the total body in less than 45 minutes. We expect that MR imaging will be increasingly used in the future in patients with malignant disease

  4. Far-infrared polarimetry/interferometry for poloidal magnetic field measurement on ZT-40M

    International Nuclear Information System (INIS)

    Erickson, R.M.

    1986-06-01

    The measurement of internal magnetic field profiles may be a very important step in the understanding of magnetic confinement physics issues. The measurement of plasma-induced Faraday rotation is one of the more promising internal magnetic field diagnostics. This thesis describes the development of a heterodyne polarimeter/interferometer for internal poloidal magnetic field measurement on ZT-40M. Heterodyne techniques were employed because of the insensitivity to spurious signal amplitude changes that cause errors in other methods. Initial problems in polarimetric sensitivity were observed that were ultimately found to be related to discharge-induced motions of the constrained diagnostic access on ZT-40M. Grazing incidence motions of the constrained diagnostic access on ZT-40M. Grazing incidence reflections on metallic surfaces of the diagnostic ports caused polarization changes that affected the measurement accuracy. Installation of internally threaded sleeves to baffle the reflections eliminated the sensitivity problem, and allowed useful Faraday rotation measurements to be made. Simultaneous polarimetric and interferometric measurements have also been demonstrated. The ability to assemble a working heterodyne polarimeter/interferometer is no longer in question. The extension of the present system to multichord operation requires increased laser power and efficiency

  5. Design of magnetic analysis system for magnetic proton recoil spectrometer

    International Nuclear Information System (INIS)

    Qi Jianmin; Jiang Shilun; Zhou Lin; Peng Taiping

    2010-01-01

    Magnetic proton recoil (MPR) spectrometer is a novel diagnostic instrument with high performance for measurements of the neutron spectra from inertial confinement fusion (ICF) experiments and high power fusion devices. The design of the magnetic analysis system, which is a key part of the compact MPR-type spectrometer, has been completed through two-dimensional beam transport simulations and three-dimensional particle transport simulation. The analysis of the system's parameters and performances was performed, as well as system designs based on preferential principles of energy resolution, detection efficiency, and count rate, respectively. The results indicate that the magnetic analysis system can achieve a detection efficiency of 10 -5 ∼ 10 -4 level at the resolution range of 1.5% to 3.0% and fulfill the design goals of the compact MPR spectrometer. (authors)

  6. Proceedings of the second FY87 meeting of the National Working Group for Reduction in Transuranic Waste Arisings

    International Nuclear Information System (INIS)

    1987-09-01

    The Second FY87 Meeting of the National Working Group for Reduction in Transuranic Waste Arisings (NWGRTWA) was held at the Lawrence Livermore National Laboratory, Tuesday and Wednesday, July 28--29, 1987. The purpose of the meeting was to discuss (1) modeling programs for waste reduction, (2) proposed FY88 and out-year tasks including the SRL Pu incineration, immobilization improvement, erbia coating technology, and (3) improvements in up-stream recovery operations to effect waste reduction. In addition, tours were made of the LLNL Waste Operations, the Laser Fusion (NOVA), and the Magnetic Fusion (MFTF)

  7. Integrated cooling system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Johnson, B.; Chang, Y.

    1979-01-01

    The MFTF components that require water cooling include the neutral beam dumps, ion dumps, plasma dumps, baffle plates, magnet liners, gas boxes, streaming guns, and the neutral beam injectors. A total heat load of nearly 500 MW for 0.5 s dissipates over 4-min intervals. A steady-flow, closed-loop system is utilized. The design of the cooling system assumes that all components require cooling simultaneously. The cooling system contains process instrumentation for loop control. Alarms and safety interlocks are incorporated for the safe operation of the system

  8. Undulator A diagnostics at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Ilinski, P.

    1998-01-01

    Diagnostics of Undulator A number-sign 2 (UA2) radiation was performed during the October 1997 mn at the Advanced Photon Source (APS). The UA2 undulator is a standard 3.3-cm-period APS Undulator A, which was positioned downstream from the center of the straight section at Sector 8. The diagnostics included the angular-spectral measurements of the undulator radiation to determine the undulator radiation absolute spectral flux and the particle beam divergence. The results of the absolute spectral flux measurements are compared to the undulator spectrum calculated from measured undulator magnetic field. The particle's energy spread was determined from spectra comparison. Previously, the authors reported the first measurements made on Undulator A at the APS. The purpose of the present report is to summarize the results of the diagnostics performed on the Sector 8 undulator at the request of the IMM-CAT staff, and to present a more general discussion of undulator radiation sources at the APS and details of their diagnostics

  9. The use of MR in cardiological diagnostics

    International Nuclear Information System (INIS)

    Smith, Hans-Joergen

    2004-01-01

    Image diagnostics is playing an important role in cardiology, and magnetic resonance tomography (MR) is one of many methods used in examinations of the heart. Based on studies of the literature and his own experience the author surveys the potential of MR in today's and tomorrow's diagnostics of heart diseases. Among the image diagnostic methods MR is the one that can give the most extensive information about the heart's anatomy and function. In a non-invasive way and without the use of ionizing radiation, MR can represent the anatomy in selectable planes, visualize and quantify the heart's pumping function and functioning of the cardiac valves, and give detailed information about the regional contractility, blood flow and viability of myocard. MR is capable of giving important and to some extent unique contributions to heart diseases, both congenital and contracted heart disease. Because of failing availability and competence MR is still little used in cardiological diagnostics, but the method undoubtedly has the potential to play a very important role in the future

  10. Computation of electron cloud diagnostics and mitigation in the main injector

    International Nuclear Information System (INIS)

    Veitzer, S A; Cary, J R; Stoltz, P H; LeBrun, P; Spentzouris, P; Amundson, J F

    2009-01-01

    High-performance computations on Blue Gene/P at Argonne's Leadership Computing Facility have been used to determine phase shifts induced in injected RF diagnostics as a function of electron cloud density in the Main Injector. Inversion of the relationship between electron cloud parameters and induced phase shifts allows us to predict electron cloud density and evolution over many bunch periods. Long time-scale simulations using Blue Gene have allowed us to measure cloud evolution patterns under the influence of beam propagation with realistic physical parameterizations, such as elliptical beam pipe geometry, self-consistent electromagnetic fields, space charge, secondary electron emission, and the application of arbitrary external magnetic fields. Simultaneously, we are able to simulate the use of injected microwave diagnostic signals to measure electron cloud density, and the effectiveness of various mitigation techniques such as surface coating and the application of confining magnetic fields. These simulations provide a baseline for both RF electron cloud diagnostic design and accelerator fabrication in order to measure electron clouds and mitigate the adverse effects of such clouds on beam propagation.

  11. Outcomes of non-invasive diagnostic modalities for the detection of coronary artery disease: network meta-analysis of diagnostic randomised controlled trials.

    Science.gov (United States)

    Siontis, George Cm; Mavridis, Dimitris; Greenwood, John P; Coles, Bernadette; Nikolakopoulou, Adriani; Jüni, Peter; Salanti, Georgia; Windecker, Stephan

    2018-02-21

    To evaluate differences in downstream testing, coronary revascularisation, and clinical outcomes following non-invasive diagnostic modalities used to detect coronary artery disease. Systematic review and network meta-analysis. Medline, Medline in process, Embase, Cochrane Library for clinical trials, PubMed, Web of Science, SCOPUS, WHO International Clinical Trials Registry Platform, and Clinicaltrials.gov. Diagnostic randomised controlled trials comparing non-invasive diagnostic modalities in patients presenting with symptoms suggestive of low risk acute coronary syndrome or stable coronary artery disease. A random effects network meta-analysis synthesised available evidence from trials evaluating the effect of non-invasive diagnostic modalities on downstream testing and patient oriented outcomes in patients with suspected coronary artery disease. Modalities included exercise electrocardiograms, stress echocardiography, single photon emission computed tomography-myocardial perfusion imaging, real time myocardial contrast echocardiography, coronary computed tomographic angiography, and cardiovascular magnetic resonance. Unpublished outcome data were obtained from 11 trials. 18 trials of patients with low risk acute coronary syndrome (n=11 329) and 12 trials of those with suspected stable coronary artery disease (n=22 062) were included. Among patients with low risk acute coronary syndrome, stress echocardiography, cardiovascular magnetic resonance, and exercise electrocardiograms resulted in fewer invasive referrals for coronary angiography than coronary computed tomographic angiography (odds ratio 0.28 (95% confidence interval 0.14 to 0.57), 0.32 (0.15 to 0.71), and 0.53 (0.28 to 1.00), respectively). There was no effect on the subsequent risk of myocardial infarction, but estimates were imprecise. Heterogeneity and inconsistency were low. In patients with suspected stable coronary artery disease, an initial diagnostic strategy of stress echocardiography or

  12. Recent experimental results and diagnostics on LHD

    International Nuclear Information System (INIS)

    Kawahata, Kazuo

    2001-01-01

    LHD is a superconducting heliotron type device with 1=2/m=10 continuous helical coils and three pairs of poloidal coils. The major and minor radii of the plasma are 3.5-3.9 m and 0.6 m, respectively. The plasma experiment was started at the end of March 1998 with the magnetic field of 1.5 T. Subsequently, the magnetic field has been gradually increased checking carefully the stability of the SC coils, and the maximum magnetic field used in the plasma experiment was 2.89 T at the magnetic axis of R ax =3.6 m. The heating power has been gradually increased, i.e., NBI up to 5.2 MW (with two beam lines), ICRF up to 2.7 MW (with two antenna system), and ECRH up to 1.0 MW (with six gyrotron tubes). The carbon tiles were installed as divertor plates to meet high power heatings, resulting in significant reduction in metal impurity concentration (Fe) and total radiation power. Upgrading of the key hardware system has led to (i) higher Te [Te(0)=4.4 keV at =5.3x10 18 m -3 and P abs =1.8 MW], (ii) higher confinement [τ E =0.3 s, Te(0)=1.1 keV at =6.5x10 19 m -3 and P abs =2.0 MW], (iii) higher stored energy W p dia =1.0 MJ, (iv) the highest β value in helical devices [2.4% at 1.3 T, >30% at 0.5 T]. In this workshop, we will report the recent experimental results on the LHD and plasma diagnostics related to mm and sub-mm wave diagnostics. (author)

  13. Diagnostic utility of magnetic resonance imaging and radiography in juvenile spondyloarthritis: evaluation of the sacroiliac joints in controls and affected subjects.

    Science.gov (United States)

    Jaremko, Jacob L; Liu, Lei; Winn, Naomi J; Ellsworth, Janet E; Lambert, Robert G W

    2014-05-01

    To compare the utility of radiography and magnetic resonance imaging (MRI) for the diagnosis of juvenile-onset spondyloarthritis in pediatric patients presenting with low back and/or sacroiliac (SI) pain of potentially inflammatory etiology. Radiographs and MRI studies of the SI joints in 26 patients with juvenile spondyloarthritis (JSpA) and 35 controls were assessed independently by 2 radiologists, with discrepancies arbitrated by a third. Radiographs and MRI were blinded and read in separate batches in random order. Erosion was common and was the most useful diagnostic feature on radiography [positive likelihood ratio (LR) = 3.5] and was especially diagnostic of SpA on MRI (LR = 6.7). Subchondral sclerosis was common but was the least specific feature for both modalities. Joint space narrowing had some utility on radiography (LR = 2.0) and MRI (LR = 2.7) but was uncommon and had poor reader reliability. Bone marrow edema (LR = 3.1) and subarticular fat infiltration (LR = 4.5), detectable only on MRI, were both useful features. Global diagnostic impression of MRI (LR = 9.4) had very high utility for the diagnosis of JSpA, exceeding radiography (LR = 4.4) because of superior specificity. In addition, global diagnosis of SpA is much more reliably made on MRI (κ = 0.80) compared to radiography (κ = 0.30). Specificity and reliability of MRI of the SI joints are superior to radiography for the diagnosis of juvenile-onset SpA and, where available, MRI should replace radiography as the first line of investigation.

  14. Mechanical design of a 250 kilogauss solenoidal magnet

    International Nuclear Information System (INIS)

    Bonanos, P.

    1975-12-01

    The mechanical design and construction of a 5 cm bore, 23 cm long solenoidal magnet operated at 250 kilogauss is described. The magnet provides confining field for a plasma heated by a CO 2 laser. Radial diagnostic ports with a clear aperture of 0.41 cm allow viewing access near the magnet midplane. The on-axis field homogeneity is within 5 percent over a central length of 12 cm. The magnet sustained 500 to 1000 pulses at the highest field levels before catastrophic failure

  15. Diagnostic Value of Multislice Computed Tomography and Magnetic Resonance Imaging in the Diagnosis of Retroperitoneal Spread of Testicular Cancer: A Literature Review

    International Nuclear Information System (INIS)

    Hansen, J.; Jurik, A.G.

    2009-01-01

    Testicular cancer is the most frequent malignant disorder in men aged 15-35 years. Generally, diagnosing and follow-up include computer tomography (CT) examinations to detect possible retroperitoneal spread (abdomen and pelvis), resulting in at least eight CT examinations. This patient group is thereby exposed to a non-neglectable radiation dose, increasing the risk of future radiation-induced secondary cancer. This is especially problematic in potentially surgically cured patients with stage 1 testicular cancer. Thus, it can be beneficial to substitute CT with magnetic resonance imaging (MRI), provided there is valid evidence that the diagnostic value of MRI is at least comparable to current multislice CT (MSCT). The purpose of this study was to analyze whether there is evidence to recommend a substitution of MSCT with MRI in the diagnosis of retroperitoneal spread of testicular cancer. A literature search on the diagnostic accuracy, specificity, and sensitivity of MSCT and MRI in the diagnosis of retroperitoneal spread of testicular cancer was performed in the following databases: PubMed, EmBase, and ISI Web of Science. The search was limited to include the period from 2000 to September 2008, and to human and English-language publications. Forty-four publications were obtained for formal review (27 from PubMed, 15 from EmBase, two from ISI Web of Science). None of the publications reviewed encompassed diagnostic specificity and sensitivity of MSCT, and they lacked systematic comparison of MSCT and MRI. Only one study included sensitivity and specificity of MRI compared to single-slice CT. Both methods had a sensitivity and a specificity of approximately 70%. The literature review did not reveal valid data regarding diagnostic accuracy of MRI compared with MSCT for diagnosing retroperitoneal spread of testicular cancer. A prospective blinded comparative study is needed to provide valid evidence

  16. Diagnostic Value of Multislice Computed Tomography and Magnetic Resonance Imaging in the Diagnosis of Retroperitoneal Spread of Testicular Cancer: A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J. (Dept. of Medical Physics, Aarhus Univ. Hospital, Aarhus Sygehus, Aarhus (Denmark)); Jurik, A.G. (Dept. of Radiology, Aarhus Univ. Hospital, Aarhus Sygehus, Aarhus (Denmark))

    2009-11-15

    Testicular cancer is the most frequent malignant disorder in men aged 15-35 years. Generally, diagnosing and follow-up include computer tomography (CT) examinations to detect possible retroperitoneal spread (abdomen and pelvis), resulting in at least eight CT examinations. This patient group is thereby exposed to a non-neglectable radiation dose, increasing the risk of future radiation-induced secondary cancer. This is especially problematic in potentially surgically cured patients with stage 1 testicular cancer. Thus, it can be beneficial to substitute CT with magnetic resonance imaging (MRI), provided there is valid evidence that the diagnostic value of MRI is at least comparable to current multislice CT (MSCT). The purpose of this study was to analyze whether there is evidence to recommend a substitution of MSCT with MRI in the diagnosis of retroperitoneal spread of testicular cancer. A literature search on the diagnostic accuracy, specificity, and sensitivity of MSCT and MRI in the diagnosis of retroperitoneal spread of testicular cancer was performed in the following databases: PubMed, EmBase, and ISI Web of Science. The search was limited to include the period from 2000 to September 2008, and to human and English-language publications. Forty-four publications were obtained for formal review (27 from PubMed, 15 from EmBase, two from ISI Web of Science). None of the publications reviewed encompassed diagnostic specificity and sensitivity of MSCT, and they lacked systematic comparison of MSCT and MRI. Only one study included sensitivity and specificity of MRI compared to single-slice CT. Both methods had a sensitivity and a specificity of approximately 70%. The literature review did not reveal valid data regarding diagnostic accuracy of MRI compared with MSCT for diagnosing retroperitoneal spread of testicular cancer. A prospective blinded comparative study is needed to provide valid evidence

  17. Magnetic resonance imaging of the central nervous system

    International Nuclear Information System (INIS)

    Brant-Zawadzki, M.; Norman, D.

    1987-01-01

    This book presents the papers on technological advancement and diagnostic uses g magnetic resonance imaging. A comparative evaluation with computerized tomography is presented. Topics covered are imaging principles g magnetic resonance;instrumentation of magnetic resonance (MR);pathophysiology;quality and limitations g images;NMR imaging of brain and spinal cord;MR spectroscopy and its applications;neuroanatomy;Congenital malformations of brain and MR imaging;planning g MR imaging of spine and head and neck imaging

  18. Imaging mammary diagnostics. Diagnostic techniques, archetypical findings, differential diagnostcs and interventions. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Heywang-Koebrunner, S.; Schreer, I.

    2008-01-01

    The book includes the following chapters: I. Methodology: anamnesis and interview; clinical evidence, mammography, sonography, magnetic resonance tomography, new imaging techniques (scintigraphy, PET), transcutaneous biopsy, pre-operative marking; II. phenotypes: normal mammary glands, mastopathics, cysts, benign tumors, inflammatory diseases, in-situ carcinomas, invasive carcinomas, lymphomas, other semi-malign and malign tumors, post-traumatic, post-surgical and post-therapeutic changes, skin changes, male mamma, screening, continuative diagnostics of screening evidence and problem solving for symptomatic patients

  19. Crohn's Disease Evaluated with Magnetic Resonance Enteroclysis: Diagnostic Performance of Experienced and Inexperienced Readers before and after Training

    International Nuclear Information System (INIS)

    Negaard, A.; Mulahasanovic, A.; Reisaeter, L.A.; Aasekjaer, K.; Sandvik, L.; Klow, N.E.

    2008-01-01

    Background: Magnetic resonance enteroclysis (MRE) is suggested to become the preferred radiological method in small-bowel Crohn's disease (CD). However, the performance of inexperienced readers may influence the diagnostic value of the method and has not been previously investigated. Purpose: To compare readings of MRE in small-bowel CD performed by experienced and inexperienced readers before and after training.Material and Methods: One experienced radiologist (observer 1) and two trainees (observers 2 and 3) reviewed 60 MRE examinations. A second reading was performed after training. Bowel wall thickness (BWT), ulcers (BWU), stenosis (BWS), fistulas (FIS), and abscesses (ABS) were evaluated. A reference standard based on clinical records was established. Results: BWT in the terminal ileum was evaluated with high diagnostic performance (sensitivity: observer 1, 83%; observer 2, 72%; observer 3, 78%). Only BWU was diagnosed with a higher sensitivity by observer 1 (78% vs. 33% and 39%, respectively; P=0.02). False-positive findings for BWT in the jejunum (observer 2: 7; observer 3: 4) and fistulas and abscesses (observer 2: 11/5; observer 3: 5/4) were made by the trainees. Interobserver agreement in the jejunum was poor (observer 1/observer 2: κ=0.23; observer 1/observer 3: κ=-0.03) and in the ileum good (observer 1/observer 2: κ=0.78; observer 1/observer 3: κ=0.73). After training, evaluation of BWU (observer 2: 56%, P=0.22; observer 3: 44%, P=0.03), BWT (observer 2: 2; observer 3: 2), and interobserver agreement in the jejunum improved (observer 1/observer 2: κ=0.66; observer 1/observer 3: κ=0.66). However, the number of diagnosed fistulas and abscesses remained high. Conclusion: Before training, most findings of Crohn's disease in the terminal ileum were evaluated with high diagnostic performance by all readers. However, the inexperienced readers evaluated BWU with a low sensitivity and overestimated the number of FIS, number of ABS, and increased BWT in

  20. Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Robert H. Morris

    2014-11-01

    Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...

  1. Technology spin-offs from the magnetic fusion energy program

    International Nuclear Information System (INIS)

    1982-05-01

    A description is given of 138 possible spin-offs from the magnetic fusion program. The spin-offs cover the following areas: (1) superconducting magnets, (2) materials technology, (3) vacuum systems, (4) high frequency and high power rf, (5) electronics, (6) plasma diagnostics, (7) computers, and (8) particle beams

  2. Musculoskeletal applications of magnetic resonance imaging: Council on Scientific Affairs

    International Nuclear Information System (INIS)

    Harms, S.E.; Fisher, C.F.; Fulmer, J.M.

    1989-01-01

    Magnetic resonance imaging provides superior contrast, resolution, and multiplanar imaging capability, allowing excellent definition of soft-tissue and bone marrow abnormalities. For these reasons, magnetic resonance imaging has become a major diagnostic imaging method for the evaluation of many musculoskeletal disorders. The applications of magnetic resonance imaging for musculoskeletal diagnosis are summarized and examples of common clinical situations are given. General guidelines are suggested for the musculoskeletal applications of magnetic resonance imaging

  3. NSTX Diagnostics for Fusion Plasma Science Studies

    International Nuclear Information System (INIS)

    Kaita, R.; Johnson, D.; Roquemore, L.; Bitter, M.; Levinton, F.; Paoletti, F.; Stutman, D.

    2001-01-01

    This paper will discuss how plasma science issues are addressed by the diagnostics for the National Spherical Torus Experiment (NSTX), the newest large-scale machine in the magnetic confinement fusion (MCF) program. The development of new schemes for plasma confinement involves the interplay of experimental results and theoretical interpretations. A fundamental requirement, for example, is a determination of the equilibria for these configurations. For MCF, this is well established in the solutions of the Grad-Shafranov equation. While it is simple to state its basis in the balance between the kinetic and magnetic pressures, what they are as functions of space and time are often not easy to obtain. Quantities like the plasma pressure and current density are not directly measurable. They are derived from data that are themselves complex products of more basic parameters. The same difficulties apply to the understanding of plasma instabilities. Not only are the needs for spatial and temporal resolution more stringent, but the wave parameters which characterize the instabilities are difficult to resolve. We will show how solutions to the problems of diagnostic design on NSTX, and the physics insight the data analysis provides, benefits both NSTX and the broader scientific community

  4. Cardiac magnetic resonance imaging after ventricular tachyarrhythmias increases diagnostic precision and reduces the need for family screening for inherited cardiac disease

    DEFF Research Database (Denmark)

    Marstrand, Peter; Axelsson, Anna; Thune, Jens Jakob

    2016-01-01

    -CAG) (81%), exercise stress test (47%), late potentials (54%), electrophysiological study (44%), pharmacological provocation (44%), and/or myocardial biopsy (16%). Family screening was indicated for 53 probands (67%) prior to CMR. After full workup, only 43 cases (54%) warranted evaluation of relatives (19......AIMS: Guidelines recommend evaluation of family members of sudden cardiac death victims. However, initiation of cascade screening in families with uncertain diagnoses is not cost-effective and may cause unnecessary concern. For these reasons, we set out to assess to what extent cardiac magnetic...... resonance imaging (CMR) would increase the diagnostic precision and thereby possibly change the indication for family screening in patients with ventricular tachyarrhythmias. METHODS AND RESULTS: We retrospectively collected data from 79 patients hospitalized with aborted cardiac arrest (resuscitated from...

  5. Dynamic magnetic particle actuation for integrated lab-on-chip biosensing

    NARCIS (Netherlands)

    Jong, de A.M.; Reenen, van A.; Prins, M.W.J.

    2014-01-01

    The demand for easy to use and cost effective medical technologies inspires scientists to develop innovative lab-on-chip technologies for in-vitro diagnostic testing. We study the use of magnetic particles actuated by magnetic fields to perform different microfluidic handling steps of an integrated

  6. Magnetic Bead—Magic Bullet

    Directory of Open Access Journals (Sweden)

    Christine Ruffert

    2016-01-01

    Full Text Available Microfluidics is assumed to be one of the leading and most promising areas of research since the early 1990s. In microfluidic systems, small spherical magnetic particles with superparamagnetic properties, called magnetic beads, play an important role in the design of innovative methods and tools, especially in bioanalysis and medical sciences. The intention of this review paper is to address main aspects from the state-of-the-art in the area of magnetic bead research, while demonstrating the broad variety of applications and the huge potential to solve fundamental biological and medical problems in the fields of diagnostics and therapy. Basic issues and demands related to the fabrication of magnetic particles and physical properties of nanosize magnets are discussed in Section 2. Of main interest are the control and adjustment of the nanoparticles’ properties and the availability of adequate approaches for particle detection via their magnetic field. Section 3 presents an overview of magnetic bead applications in nanomedicine. In Section 4, practical aspects of sample manipulation and separation employing magnetic beads are described. Finally, the benefits related to the use of magnetic bead-based microfluidic systems are summarized, illustrating ongoing questions and open tasks to be solved on the way to an approaching microfluidic age.

  7. Operation of the cryogenic system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Chronis, W.C.; Slack, D.S.

    1987-01-01

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) at Lawrence Livermore National Laboratory (LLNL) was designed to cool the entire MFTF-B system from ambient to operating temperature in less than 10 days. The system was successfully operated in the recent plant and capital equipment (PACE) acceptance tests, and results from these tests helped us correct problem areas and improve the system

  8. Multiple sclerosis - etiology and diagnostic potential.

    Science.gov (United States)

    Kamińska, Joanna; Koper, Olga M; Piechal, Kinga; Kemona, Halina

    2017-06-30

    Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of autoimmune originate. The main agents responsible for the MS development include exogenous, environmental, and genetic factors. MS is characterized by multifocal and temporally scattered central nervous system (CNS) damage which lead to the axonal damage. Among clinical courses of MS it can be distinguish relapsing-remitting multiple sclerosis (RRMS), secondary progressive multiple sclerosis (SPSM), primary progressive multiple sclerosis (PPMS), and progressive-relapsing multiple sclerosis (RPMS). Depending on the severity of signs and symptoms MS can be described as benign MS or malignant MS. MS diagnosis is based on McDonald's diagnostic criteria, which link clinical manifestation with characteristic lesions demonstrated by magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) analysis, and visual evoked potentials. Among CSF laboratory tests used to the MS diagnosis are applied: Tibbling & Link IgG index, reinbegrams, and CSF isoelectrofocusing for oligoclonal bands detection. It should be emphasized, that despite huge progress regarding MS as well as the availability of different diagnostics methods this disease is still a diagnostic challenge. It may result from fact that MS has diverse clinical course and there is a lack of single test, which would be of appropriate diagnostic sensitivity and specificity for quick and accurate diagnosis.

  9. An Edge Rotation and Temperature Diagnostic on NSTX

    International Nuclear Information System (INIS)

    Biewer, T.M.; Bell, R.E.; Feder, R.; Johnson, D.W.; Palladino, R.W.

    2003-01-01

    A new diagnostic for the National Spherical Torus Experiment (NSTX) is described whose function is to measure ion rotation and temperature at the plasma edge. The diagnostic is sensitive to C III, C IV, and He II intrinsic emission, covering a radial region of 15 cm at the extreme edge of the outboard midplane. Thirteen chords are distributed between toroidal and poloidal views, allowing the toroidal and poloidal rotation and temperature of the plasma edge to be simultaneously measured with 10 ms resolution. Combined with the local pressure gradient and the EFIT code reconstructed magnetic field profile, the edge flow gives a measure of the local radial electric field

  10. Correlation measurements for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Pazsit, I.

    1995-01-01

    A list of a few methods for plasma diagnostics via fluctuations (noise) analysis of random (both temporally and spatially) system parameters is reviewed. Analogy is drawn with certain noise analysis methods, used in the diagnostics of fission reactors. These methods have been applied also to fusion measurements to some extent. However, the treatment of fusion plasma fluctuations is dominated by an approach that allows for temporal randomness, but assumes periodicity in space. This approach suits well a large class of phenomena such as magnetic fluctuations (MHD effects), but is much less suited to treat localised effects such as turbulence and density fluctuations. This paper discusses the potentials of the former approach, i.e. ordinary noise analysis methods of non-periodic variables in fusion plasma diagnostics. A new recommendation is to use the crossed beam correlation analysis of soft X-ray signals for determining the local short-range correlations in the plasma and to perform a systematic exploration of the plasma spatial correlation structure with that and other methods. 16 refs, 7 figs

  11. Bone marrow lesions: A systematic diagnostic approach

    International Nuclear Information System (INIS)

    Grande, Filippo Del; Farahani, Sahar J; Carrino, John A; Chhabra, Avneesh

    2014-01-01

    Bone marrow lesions on magnetic resonance (MR) imaging are common and may be seen with various pathologies. The authors outline a systematic diagnostic approach with proposed categorization of various etiologies of bone marrow lesions. Utilization of typical imaging features on conventional MR imaging techniques and other problem-solving techniques, such as chemical shift imaging and diffusion-weighted imaging (DWI), to achieve accurate final diagnosis has been highlighted

  12. [Diagnostic difficulties in Grave's orbitopathy--case report].

    Science.gov (United States)

    Jedrzejowski, Maciej; Grzesiuk, Wiesław; Szwejda, Elzbieta; Bar-Andziak, Ewa

    2004-03-01

    Graves' orbitopathy is caused by intraorbital inflammatory reaction due to autoimmune thyroid disease. In most cases the diagnosis is based on the coexistence of typical eye signs and hyperthyroidism symptoms. In presented case, the absence of thyroid dysfunction implicated performance of differential diagnosis. Among many available diagnostic tools nuclear magnetic resonance seems to be the most accurate in confirmation of diagnosis of Graves' orbitopathy.

  13. Progress in diagnostics of the COMPASS tokamak

    Science.gov (United States)

    Weinzettl, V.; Adamek, J.; Berta, M.; Bilkova, P.; Bogar, O.; Bohm, P.; Cavalier, J.; Dejarnac, R.; Dimitrova, M.; Ficker, O.; Fridrich, D.; Grover, O.; Hacek, P.; Havlicek, J.; Havranek, A.; Horacek, J.; Hron, M.; Imrisek, M.; Komm, M.; Kovarik, K.; Krbec, J.; Markovic, T.; Matveeva, E.; Mitosinkova, K.; Mlynar, J.; Naydenkova, D.; Panek, R.; Paprok, R.; Peterka, M.; Podolnik, A.; Seidl, J.; Sos, M.; Stockel, J.; Tomes, M.; Varavin, M.; Varju, J.; Vlainic, M.; Vondracek, P.; Zajac, J.; Zacek, F.; Stano, M.; Anda, G.; Dunai, D.; Krizsanoczi, T.; Refy, D.; Zoletnik, S.; Silva, A.; Gomes, R.; Pereira, T.; Popov, Tsv.; Sarychev, D.; Ermak, G. P.; Zebrowski, J.; Jakubowski, M.; Rabinski, M.; Malinowski, K.; Nanobashvili, S.; Spolaore, M.; Vianello, N.; Gauthier, E.; Gunn, J. P.; Devitre, A.

    2017-12-01

    The COMPASS tokamak at IPP Prague is a small-size device with an ITER-relevant plasma geometry and operating in both the Ohmic as well as neutral beam assisted H-modes since 2012. A basic set of diagnostics installed at the beginning of the COMPASS operation has been gradually broadened in type of diagnostics, extended in number of detectors and collected channels and improved by an increased data acquisition speed. In recent years, a significant progress in diagnostic development has been motivated by the improved COMPASS plasma performance and broadening of its scientific programme (L-H transition and pedestal scaling studies, magnetic perturbations, runaway electron control and mitigation, plasma-surface interaction and corresponding heat fluxes, Alfvenic and edge localized mode observations, disruptions, etc.). In this contribution, we describe major upgrades of a broad spectrum of the COMPASS diagnostics and discuss their potential for physical studies. In particular, scrape-off layer plasma diagnostics will be represented by a new concept for microsecond electron temperature and heat flux measurements - we introduce a new set of divertor Langmuir and ball-pen probe arrays, newly constructed probe heads for reciprocating manipulators as well as several types of standalone probes. Among optical tools, an upgraded high-resolution edge Thomson scattering diagnostic for pedestal studies and a set of new visible light and infrared (plasma-surface interaction investigations) cameras will be described. Particle and beam diagnostics will be covered by a neutral particle analyzer, diagnostics on a lithium beam, Cherenkov detectors (for a direct detection of runaway electrons) and neutron detectors. We also present new modifications of the microwave reflectometer for fast edge density profile measurements.

  14. Nitroxide radicals as contrast substances for magnetic resonance imaging diagnostics. Part 1

    International Nuclear Information System (INIS)

    Zhelev, Z.

    2016-01-01

    In last ten years, there is a significant progress in the selective and localized detection of redox-active compounds in the cells, tissues, and intact organisms. This progress is due to the development of new synthetic and genetically encoded redox-sensitive contrast substances, as well as due to the improvement of the techniques for their imaging: fluorescent, chemiluminescent, magnetic resonance, nuclear, ultrasonic. One of the most attractive redox-sensitive contrast substances are cyclic (stable) nitroxide radicals. They can be visualized and analyzed in vitro and in vivo by a variety of magnetic resonance techniques - electron-paramagnetic resonance imaging (EPRI), magnetic resonance imaging (MRI), Overhauser-enhanced MRI (OMRI). This review describes the merits and demerits of the nitroxide-enhanced EPR and MRI and the perspectives for their application in biomedical studies and clinical practice. The article is intended for a wide range of readers - from students to specialists in the field. Key words: Magnetic Resonance Imaging (MRI). Electron-Paramagnetic Resonance (EPR). Overhauser-Enhanced MRI (O MRI). Nitroxide

  15. Diagnostic yield of combined magnetic resonance spectroscopy and diffusion weighted imaging in intracranial neoplasms

    Directory of Open Access Journals (Sweden)

    Ayat E. El Sherbeny

    2014-09-01

    Conclusion: MRS has a robust diagnostic accuracy in cases of well defined high or low grade brain neoplasms. ADC value had the ability to confirm and differentiate low from high grade tumors in many situations where there were diagnostic confusions with MRS due to borderline values.

  16. Diagnostic accuracy of cardiovascular magnetic resonance imaging of right ventricular morphology and function in the assessment of suspected pulmonary hypertension results from the ASPIRE registry

    Directory of Open Access Journals (Sweden)

    Swift Andrew J

    2012-06-01

    Full Text Available Abstract Background Cardiovascular Magnetic Resonance (CMR imaging is accurate and reproducible for the assessment of right ventricular (RV morphology and function. However, the diagnostic accuracy of CMR derived RV measurements for the detection of pulmonary hypertension (PH in the assessment of patients with suspected PH in the clinic setting is not well described. Methods We retrospectively studied 233 consecutive treatment naïve patients with suspected PH including 39 patients with no PH who underwent CMR and right heart catheterisation (RHC within 48hours. The diagnostic accuracy of multiple CMR measurements for the detection of mPAP ≥ 25 mmHg was assessed using Fisher’s exact test and receiver operating characteristic (ROC analysis. Results Ventricular mass index (VMI was the CMR measurement with the strongest correlation with mPAP (r = 0.78 and the highest diagnostic accuracy for the detection of PH (area under the ROC curve of 0.91 compared to an ROC of 0.88 for echocardiography calculated mPAP. Late gadolinium enhancement, VMI ≥ 0.4, retrograde flow ≥ 0.3 L/min/m2 and PA relative area change ≤ 15% predicted the presence of PH with a high degree of diagnostic certainty with a positive predictive value of 98%, 97%, 95% and 94% respectively. No single CMR parameter could confidently exclude the presence of PH. Conclusion CMR is a useful alternative to echocardiography in the evaluation of suspected PH. This study supports a role for the routine measurement of ventricular mass index, late gadolinium enhancement and the use of phase contrast imaging in addition to right heart functional indices in patients undergoing diagnostic CMR evaluation for suspected pulmonary hypertension.

  17. Protection study of a diagnostic system for electron beam at the output of an accelerator

    International Nuclear Information System (INIS)

    Rahmani, Kaouther; Yaacoubi, Imen

    2009-01-01

    The aim of this work is the determination of the conception of a protection system dedicated to protect a diagnostic system in the CNSTN. According to this study, the suitable material for the protection against the electrons in the plexiglas and the supermalloy to protect the future diagnostic system against the magnetic field. (Author)

  18. Recent developments of ECE diagnostics at JET

    Energy Technology Data Exchange (ETDEWEB)

    Luna, E. de la; Sanchez, J. [Association Euratom-Ciemat para Fusion, Ciemant (Spain); Cientoli, C.; Blanchard, P.; Joffrin, E.; Mazon, D. [Association Euratom-ENEA sulla Fusione, IFP-CNR, Milano (Italy); Riva, M.; Zerbini, M. [Association Euratom-ENEA sulla Fusione Centro Ricerche Energia Frascati (Italy); Conway, G. [IPP-Euratom Association, Garching (Germany); Felton, R.; Fessey, J.; Gowers, C. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Murari, A. [Consorzio RFX, Association Euratom-ENEA sulla Fusione, Padova (Italy)

    2004-07-01

    In JET, two types of ECE (electron cyclotron emission) instruments are routinely operated to provide electron temperature measurements: a Michelson interferometer and a heterodyne radiometer. ECE diagnostics are able to provide time-resolved electron temperature profiles with high spatial and temporal resolution, and have proven to play a fundamental role in the investigation and development of internal transport barriers (ITBs) in JET. In this paper we report on the major upgrade of the ECE diagnostics systems currently in progress at JET. Diagnostic developments include an upgrade of the multi-channel heterodyne radiometer, aimed at extending the radial region over which T{sub e} measurement can be performed, and the installation of a new Michelson interferometer with fast scanning capability, to improve the frequency and temporal resolution of the multi-harmonic ECE measurements at JET. Moreover, a future extension of the ECE system, an oblique ECE diagnostic to measure the ECE spectra at different angles with respect to the normal to the magnetic field, is being developed. This diagnostic is expected to give valuable insight into the interpretation of ECE measurements in high T{sub e}-plasmas and should be available for measurements once JET resumes operation in 2005.In this paper, the recent developments in the JET ECE diagnostic system will be described and illustrated with some recent results, with an emphasis on issues related with calibration stability, high-Te plasmas and ITB studies. Some of these issues will be discussed in the context of ITER.

  19. The diagnostic and therapeutic impact of MRI: an observational multi-centre study

    International Nuclear Information System (INIS)

    Hollingworth, William; Todd, Christopher J.; Bell, Matthew I.; Arafat, Qais; Girling, Simon; Karia, Kanti R.; Dixon, Adrian K.

    2000-01-01

    AIM: To provide information about the diagnostic and therapeutic impact of magnetic resonance imaging (MRI) and to compare the findings across diagnostic groups. MATERIALS AND METHODS: A prospective, observational study of 2017 consecutive referrals for MRI of the head, spine or knee at four imaging centres. Clinicians completed questionnaires before MRI stating initial diagnoses, diagnostic confidence and treatment plans. After imaging, a second questionnaire evaluated clinicians' revised diagnosis and treatment plans in the light of imaging findings. Patients were grouped into nine diagnostic categories for analysis. Comparison between pre- and post-imaging was used to assess the diagnostic and therapeutic impact of MRI. RESULTS: In seven of nine diagnostic groups MRI findings were associated with a diagnostic impact. Diagnoses were revised or discarded following normal MR findings and diagnostic confidence was increased by confirmative MR findings. There was no statistically significant diagnostic impact for suspected pituitary or cerebello-pontine angle lesions. In five of nine diagnostic groups (knee meniscus, knee ligament, multiple sclerosis, lumbar and cervical spine) MRI findings had a clear impact on treatment plans. CONCLUSION: This study demonstrates that in most diagnostic categories, MRI influences diagnosis and treatment. However, experimental studies are needed to prove that these diagnostic and therapeutic impacts lead to improved health. Hollingworth (2000)

  20. The diagnostic and therapeutic impact of MRI: an observational multi-centre study

    Energy Technology Data Exchange (ETDEWEB)

    Hollingworth, William; Todd, Christopher J.; Bell, Matthew I.; Arafat, Qais; Girling, Simon; Karia, Kanti R.; Dixon, Adrian K

    2000-11-01

    AIM: To provide information about the diagnostic and therapeutic impact of magnetic resonance imaging (MRI) and to compare the findings across diagnostic groups. MATERIALS AND METHODS: A prospective, observational study of 2017 consecutive referrals for MRI of the head, spine or knee at four imaging centres. Clinicians completed questionnaires before MRI stating initial diagnoses, diagnostic confidence and treatment plans. After imaging, a second questionnaire evaluated clinicians' revised diagnosis and treatment plans in the light of imaging findings. Patients were grouped into nine diagnostic categories for analysis. Comparison between pre- and post-imaging was used to assess the diagnostic and therapeutic impact of MRI. RESULTS: In seven of nine diagnostic groups MRI findings were associated with a diagnostic impact. Diagnoses were revised or discarded following normal MR findings and diagnostic confidence was increased by confirmative MR findings. There was no statistically significant diagnostic impact for suspected pituitary or cerebello-pontine angle lesions. In five of nine diagnostic groups (knee meniscus, knee ligament, multiple sclerosis, lumbar and cervical spine) MRI findings had a clear impact on treatment plans. CONCLUSION: This study demonstrates that in most diagnostic categories, MRI influences diagnosis and treatment. However, experimental studies are needed to prove that these diagnostic and therapeutic impacts lead to improved health. Hollingworth (2000)