WorldWideScience

Sample records for mexico interplate earthquake

  1. The deadly Morelos-Puebla, Mexico Intraslab Earthquake of 19 September 2017 (Mw7.1): Was the Earthquake Unexpected and Were the Ground Motions and Damage Pattern in Mexico City Abnormal?

    Science.gov (United States)

    Perez-Campos, X.; Singh, S. K.; Arroyo, D.; Cruz-Atienza, V. M.; Ordaz, M.; Hjorleifsdottir, V.; Iglesias, A.

    2017-12-01

    On 19 September 2017, thirty two years after the 1985 Michoacan interplate earthquake (Mw8.0), the city was once again devastated but this time by a Mw7.1 intraslab earthquake. The 2017 earthquake was located near the border of the states of Morelos and Puebla (18.410N, -98.710E; H=57 km), to SSE of Mexico City, at a hypocentral distance of about 127 km. It caused great panic in Mexico City, collapse of 44 buildings, and severely damaged many others. More than 200 persons were killed in the city. It was the second most destructive earthquake in the history of Mexico City, next only to the 1985 earthquake. A strong-motion station at CU located on basalt lava flows on main campus UNAM has been in continuous operation since 1964. PGA of 59 gal at CU during the 2017 earthquake is the largest ever, two times greater than that recorded during the 1985 earthquake (29 gal). The 2017 earthquake raised questions that are critical in fathoming the seismic vulnerability of the city and in its reconstruction. Was such an intraslab earthquake (Mw 7 at a hypocentral distance of 127 km) unexpected? Were the recorded ground motions in the city unusually high for such an earthquake? Why did the damage pattern during the earthquake differ from that observed during the 1985 earthquake? The earthquake was the closest M>5 intraslab earthquake to Mexico City ever recorded. However, Mw 5.9 events have occurred in recent years in the vicinity of the 2017 earthquake (R 145 km). Three Mw≥6.9 earthquakes have occurred since 1964 in the distance range 184-225 km. Thus, Mw and R of the earthquake was not surprising. However, a comparison of Fourier acceleration spectra at CU of 10 intraslab earthquakes with largest PGA, reduced to a common distance of R=127 km, shows that the amplitudes of the 2017 events were abnormally high in 1-2s range. Spectra of intraslab events at CU are enriched at higher frequencies relative to interplate ones because of closer distance, greater depth and higher

  2. Geodetic characteristic of the postseismic deformation following the interplate large earthquake along the Japan Trench (Invited)

    Science.gov (United States)

    Ohta, Y.; Hino, R.; Ariyoshi, K.; Matsuzawa, T.; Mishina, M.; Sato, T.; Inazu, D.; Ito, Y.; Tachibana, K.; Demachi, T.; Miura, S.

    2013-12-01

    On March 9, 2011 at 2:45 (UTC), an M7.3 interplate earthquake (hereafter foreshock) occurred ~45 km northeast of the epicenter of the M9.0 2011 Tohoku earthquake. This foreshock preceded the 2011 Tohoku earthquake by 51 hours. Ohta et al., (2012, GRL) estimated co- and postseismic afterslip distribution based on a dense GPS network and ocean bottom pressure gauge sites. They found the afterslip distribution was mainly concentrated in the up-dip extension of the coseismic slip. The coseismic slip and afterslip distribution of the foreshock were also located in the slip deficit region (between 20-40m slip) of the coiseismic slip of the M9.0 mainshock. The slip amount for the afterslip is roughly consistent with that determined by repeating earthquake analysis carried out in a previous study (Kato et al., 2012, Science). The estimated moment release for the afterslip reached magnitude 6.8, even within a short time period of 51 hours. They also pointed out that a volumetric strainmeter time series suggests that this event advanced with a rapid decay time constant (4.8 h) compared with other typical large earthquakes. The decay time constant of the afterslip may reflect the frictional property of the plate interface, especially effective normal stress controlled by fluid. For verification of the short decay time constant of the foreshock, we investigated the postseismic deformation characteristic following the 1989 and 1992 Sanriku-Oki earthquakes (M7.1 and M6.9), 2003 and 2005 Miyagi-Oki earthquakes (M6.8 and M7.2), and 2008 Fukushima-Oki earthquake (M6.9). We used four components extensometer at Miyako (39.59N, 141.98E) on the Sanriku coast for 1989 and 1992 event. For 2003, 2005 and 2008 events, we used volumetric strainmeter at Kinka-zan (38.27N, 141.58E) and Enoshima (38.27N, 141.60E). To extract the characteristics of the postseismic deformation, we fitted the logarithmic function. The estimated decay time constants for each earthquake had almost similar range (1

  3. Ground Motion Prediction for Great Interplate Earthquakes in Kanto Basin Considering Variation of Source Parameters

    Science.gov (United States)

    Sekiguchi, H.; Yoshimi, M.; Horikawa, H.

    2011-12-01

    Broadband ground motions are estimated in the Kanto sedimentary basin which holds Tokyo metropolitan area inside for anticipated great interplate earthquakes along surrounding plate boundaries. Possible scenarios of great earthquakes along Sagami trough are modeled combining characteristic properties of the source area and adequate variation in source parameters in order to evaluate possible ground motion variation due to next Kanto earthquake. South to the rupture area of the 2011 Tohoku earthquake along the Japan trench, we consider possible M8 earthquake. The ground motions are computed with a four-step hybrid technique. We first calculate low-frequency ground motions at the engineering basement. We then calculate higher-frequency ground motions at the same position, and combine the lower- and higher-frequency motions using a matched filter. We finally calculate ground motions at the surface by computing the response of the alluvium-diluvium layers to the combined motions at the engineering basement.

  4. Possible scenarios for occurrence of M ~ 7 interplate earthquakes prior to and following the 2011 Tohoku-Oki earthquake based on numerical simulation.

    Science.gov (United States)

    Nakata, Ryoko; Hori, Takane; Hyodo, Mamoru; Ariyoshi, Keisuke

    2016-05-10

    We show possible scenarios for the occurrence of M ~ 7 interplate earthquakes prior to and following the M ~ 9 earthquake along the Japan Trench, such as the 2011 Tohoku-Oki earthquake. One such M ~ 7 earthquake is so-called the Miyagi-ken-Oki earthquake, for which we conducted numerical simulations of earthquake generation cycles by using realistic three-dimensional (3D) geometry of the subducting Pacific Plate. In a number of scenarios, the time interval between the M ~ 9 earthquake and the subsequent Miyagi-ken-Oki earthquake was equal to or shorter than the average recurrence interval during the later stage of the M ~ 9 earthquake cycle. The scenarios successfully reproduced important characteristics such as the recurrence of M ~ 7 earthquakes, coseismic slip distribution, afterslip distribution, the largest foreshock, and the largest aftershock of the 2011 earthquake. Thus, these results suggest that we should prepare for future M ~ 7 earthquakes in the Miyagi-ken-Oki segment even though this segment recently experienced large coseismic slip in 2011.

  5. Possible scenarios for occurrence of M ~ 7 interplate earthquakes prior to and following the 2011 Tohoku-Oki earthquake based on numerical simulation

    Science.gov (United States)

    Nakata, Ryoko; Hori, Takane; Hyodo, Mamoru; Ariyoshi, Keisuke

    2016-01-01

    We show possible scenarios for the occurrence of M ~ 7 interplate earthquakes prior to and following the M ~ 9 earthquake along the Japan Trench, such as the 2011 Tohoku-Oki earthquake. One such M ~ 7 earthquake is so-called the Miyagi-ken-Oki earthquake, for which we conducted numerical simulations of earthquake generation cycles by using realistic three-dimensional (3D) geometry of the subducting Pacific Plate. In a number of scenarios, the time interval between the M ~ 9 earthquake and the subsequent Miyagi-ken-Oki earthquake was equal to or shorter than the average recurrence interval during the later stage of the M ~ 9 earthquake cycle. The scenarios successfully reproduced important characteristics such as the recurrence of M ~ 7 earthquakes, coseismic slip distribution, afterslip distribution, the largest foreshock, and the largest aftershock of the 2011 earthquake. Thus, these results suggest that we should prepare for future M ~ 7 earthquakes in the Miyagi-ken-Oki segment even though this segment recently experienced large coseismic slip in 2011. PMID:27161897

  6. Recent Intermediate Depth Earthquakes in El Salvador, Central Mexico, Cascadia and South-West Japan

    Science.gov (United States)

    Lemoine, A.; Gardi, A.; Gutscher, M.; Madariaga, R.

    2001-12-01

    We studied occurence and source parameters of several recent intermediate depth earthquakes. We concentrated on the Mw=7.7 salvadorian earthquake which took place on January 13, 2001. It was a good example of the high seismic risk associated to such kind of events which occur closer to the coast than the interplate thrust events. The Salvadorian earthquake was an intermediate depth downdip extensional event which occured inside the downgoing Cocos plate, next to the downdip flexure where the dip increases sharply before the slab sinks more steeply. This location corresponds closely to the position of the Mw=5.7 1996 and Mw=7.3 1982 downdip extensional events. Several recent intermediate depth earthquakes occured in subduction zones exhibiting a ``flat slab'' geometry with three distinct flexural bends where flexural stress may be enhanced. The Mw=6.7 Geiyo event showed a downdip extensional mechanism with N-S striking nodal planes. This trend was highly oblique to the trench (Nankai Trough), yet consistent with westward steepening at the SW lateral termination of the SW Japan flat slab. The Mw=6.8 Olympia earthquake in the Cascadia subduction zone occured at the downdip termination of the Juan de Fuca slab, where plate dip increases from about 5o to over 30o. The N-S orientation of the focal planes, parallel to the trench indicated downdip extension. The location at the downdip flexure corresponds closely to the estimated positions of the 1949 M7.1 Olympia and 1965 M6.5 Seattle-Tacoma events. Between 1994 and 1999, in Central Mexico, an unusually high intermediate depth seismicity occured where several authors proposed a flat geometry for the Cocos plate. Seven events of magnitude between Mw=5.9 and Mw=7.1 occured. Three of them were downdip compressional and four where down-dip extensional. We can explain these earthquakes by flexural stresses at down-dip and lateral terminations of the supposed flat segment. Even if intermediate depth earthquakes occurence could

  7. Constraining the Source of the M w 8.1 Chiapas, Mexico Earthquake of 8 September 2017 Using Teleseismic and Tsunami Observations

    Science.gov (United States)

    Heidarzadeh, Mohammad; Ishibe, Takeo; Harada, Tomoya

    2018-04-01

    The September 2017 Chiapas (Mexico) normal-faulting intraplate earthquake (M w 8.1) occurred within the Tehuantepec seismic gap offshore Mexico. We constrained the finite-fault slip model of this great earthquake using teleseismic and tsunami observations. First, teleseismic body-wave inversions were conducted for both steep (NP-1) and low-angle (NP-2) nodal planes for rupture velocities (V r) of 1.5-4.0 km/s. Teleseismic inversion guided us to NP-1 as the actual fault plane, but was not conclusive about the best V r. Tsunami simulations also confirmed that NP-1 is favored over NP-2 and guided the V r = 2.5 km/s as the best source model. Our model has a maximum and average slips of 13.1 and 3.7 m, respectively, over a 130 km × 80 km fault plane. Coulomb stress transfer analysis revealed that the probability for the occurrence of a future large thrust interplate earthquake at offshore of the Tehuantepec seismic gap had been increased following the 2017 Chiapas normal-faulting intraplate earthquake.

  8. Imaging a Time-variant Earthquake Focal Region along an Interplate Boundary

    Science.gov (United States)

    Tsuruga, K.; Kasahara, J.; Hasada, Y.; Fujii, N.

    2010-12-01

    We show a preliminary result of a trial for detecting a time-variant earthquake focal region along an interplate boundary by means of a new imaging method through a numerical simulation. Remarkable seismic reflections from the interplate boundaries of a subducting oceanic plate have been observed in Japan Trench (Mochizuki et al, 2005) and in Nankai Trough (Iidaka et al., 2003). Those strong seismic reflection existing in the current aseismic zones suggest the existence of fluid along the subduction boundary, and it is considered that they closely relate to a future huge earthquake. Seismic ACROSS has a potential to monitor some changes of transfer function along the propagating ray paths, by using an accurately-controlled transmission and receiving of the steady continuous signals repeatedly (Kumazawa et al., 2000). If the physical state in a focal region along the interplate would be changed enough in the time and space, for instance, by increasing or decreasing of fluid flow, we could detect some differences of the amplitude and/or travel-time of the particular reflection phases from the time-variant target region. In this study, we first investigated the seismic characteristics of seismograms and their differences before and after the change of a target region through a numerical simulation. Then, as one of the trials, we attempted to make an image of such time-variant target region by applying a finite-difference back-propagation technique in the time and space to the differences of waveforms (after Kasahara et al., 2010). We here used a 2-D seismic velocity model in the central Japan (Tsuruga et al., 2005), assuming a time-variant target region with a 200-m thickness along a subducting Philippine Sea plate at 30 km in depth. Seismograms were calculated at a 500-m interval for 260 km long by using FDM software (Larsen, 2000), in the case that P- and S-wave velocities (Vp amd Vs) in the target region decreased about 30 % before to after the change (e.g., Vp=3

  9. Structural factors controlling inter-plate coupling and earthquake rupture process

    Science.gov (United States)

    Kodaira, S.

    2007-05-01

    through the strong patch when the next earthquake is nucleated near the segmentation boundary; consequently growing into a giant earthquake. The most recent result of a series of seismic surveys at the incoming plate of the eastern edge of the Philippine sea plate shows subduction and collision of fore arc ridge system. This structure may provide remarkably different inter-plate coupling at the easternmost part of the Nankai trough where the great Kanto earthquake (M=7.9) occurred in 1923 beneath Tokyo.

  10. Spatiotemporal distribution of interplate slip following the 2003 Tokachi-oki earthquake deduced from ocean bottom pressure gauges and onland GNSS data

    Science.gov (United States)

    Itoh, Y.; Nishimura, T.; Ariyoshi, K.; Matsumoto, H.

    2017-12-01

    The 2003 Tokachi-oki earthquake (Mw 8.0) is an interplate earthquake along the Kurile trench. Its co- and post-seismic deformation has been observed by onland GNSS [e.g., Miyazaki et al. 2004] and modeled with afterslip and/or viscoelastic relaxation [e.g., Itoh and Nishimura 2016]. In the offshore region, two ocean bottom pressure gauges (OBPs) are operated by JAMSTEC since July 1999 [Hirata et al. 2002] and they have continuously observed the pre-, co- and post-seismic pressure change of the 2003 event [Baba et al. 2006]. The observed pressure change can be interpreted as vertical displacement, and the resolution of slip beneath the seafloor far from the land was improved by incorporating these pressure data into onland GNSS data [Baba et al. 2006]. However, no previous studies used postseismic pressure data for several years to estimate an interplate slip. Because, in this region, an M8 class event similar to the 2003 event has occurred in 1952, it is important to clarify a healing process of an interplate coupling which may lead to a next M8 class event in terms of the earthquake cycle. Itoh and Nishimura [2017, JpGU-AGU Joint Meeting] estimated it but used only onland GNSS data. In this study, we use both onland GNSS and OBP data. For OBP data analysis, we first removed the tidal component using BAYTAP08 [Tamura et al. 1991; Tamura and Agnew 2008]. Next, we corrected the temporal fluctuation of data correlating with temperature [Baba et al. 2006]. We estimated the linear trend before the 2003 event using the corrected time series from 2002 Jan. 1 to 2003 Sep. 1 and remove the estimated trend from the data after the 2003 event. Here, we assumed a non-linear drift could be ignored. Finally, we down-sampled the remained time series with an interval of 1 month. For the onland GNSS data, we used the same data set of Itoh and Nishimura [2017, JpGU-AGU Joint Meeting]. We constructed the model consisting of coseismic slip of the 2003 and M6-7 events in the postseismic

  11. Estimation of interplate coupling along Nankai trough considering the block motion model based on onland GNSS and seafloor GPS/A observation data using MCMC method

    Science.gov (United States)

    Kimura, H.; Ito, T.; Tadokoro, K.

    2017-12-01

    Introduction In southwest Japan, Philippine sea plate is subducting under the overriding plate such as Amurian plate, and mega interplate earthquakes has occurred at about 100 years interval. There is no occurrence of mega interplate earthquakes in southwest Japan, although it has passed about 70 years since the last mega interplate earthquakes: 1944 and 1946 along Nankai trough, meaning that the strain has been accumulated at plate interface. Therefore, it is essential to reveal the interplate coupling more precisely for predicting or understanding the mechanism of next occurring mega interplate earthquake. Recently, seafloor geodetic observation revealed the detailed interplate coupling distribution in expected source region of Nankai trough earthquake (e.g., Yokota et al. [2016]). In this study, we estimated interplate coupling in southwest Japan, considering block motion model and using seafloor geodetic observation data as well as onland GNSS observation data, based on Markov Chain Monte Carlo (MCMC) method. Method Observed crustal deformation is assumed that sum of rigid block motion and elastic deformation due to coupling at block boundaries. We modeled this relationship as a non-linear inverse problem that the unknown parameters are Euler pole of each block and coupling at each subfault, and solved them simultaneously based on MCMC method. Input data we used in this study are 863 onland GNSS observation data and 24 seafloor GPS/A observation data. We made some block division models based on the map of active fault tracing and selected the best model based on Akaike's Information Criterion (AIC): that is consist of 12 blocks. Result We find that the interplate coupling along Nankai trough has heterogeneous spatial distribution, strong at the depth of 0 to 20km at off Tokai region, and 0 to 30km at off Shikoku region. Moreover, we find that observed crustal deformation at off Tokai region is well explained by elastic deformation due to subducting Izu Micro

  12. Monitoring of the spatio-temporal change in the interplate coupling at northeastern Japan subduction zone based on the spatial gradients of surface velocity field

    Science.gov (United States)

    Iinuma, Takeshi

    2018-04-01

    A monitoring method to grasp the spatio-temporal change in the interplate coupling in a subduction zone based on the spatial gradients of surface displacement rate fields is proposed. I estimated the spatio-temporal change in the interplate coupling along the plate boundary in northeastern (NE) Japan by applying the proposed method to the surface displacement rates based on global positioning system observations. The gradient of the surface velocities is calculated in each swath configured along the direction normal to the Japan Trench for time windows such as 0.5, 1, 2, 3 and 5 yr being shifted by one week during the period of 1997-2016. The gradient of the horizontal velocities is negative and has a large magnitude when the interplate coupling at the shallow part (less than approximately 50 km in depth) beneath the profile is strong, and the sign of the gradient of the vertical velocity is sensitive to the existence of the coupling at the deep part (greater than approximately 50 km in depth). The trench-parallel variation of the spatial gradients of a displacement rate field clearly corresponds to the trench-parallel variation of the amplitude of the interplate coupling on the plate interface, as well as the rupture areas of previous interplate earthquakes. Temporal changes in the trench-parallel variation of the spatial gradient of the displacement rate correspond to the strengthening or weakening of the interplate coupling. We can monitor the temporal change in the interplate coupling state by calculating the spatial gradients of the surface displacement rate field to some extent without performing inversion analyses with applying certain constraint conditions that sometimes cause over- and/or underestimation at areas of limited spatial resolution far from the observation network. The results of the calculation confirm known interplate events in the NE Japan subduction zone, such as the post-seismic slip of the 2003 M8.0 Tokachi-oki and 2005 M7.2 Miyagi

  13. Interplate coupling along segments of the Central America Subduction zone

    Science.gov (United States)

    Zarifi, Zoya; Raeesi, Mohammad; Atakan, Kuvvet

    2013-04-01

    We analyzed 5 major earthquakes that occurred during 1992 to 2012 in a segment of the Central America subduction zone along the coasts of Guatemala and El Salvador. These events include 1992/09/02 (Mw 7.7), 1993/09/10 (Mw 7.2), 2001/01/13 (Mw 7.7), 2012/08/27 (Mw 7.3) and 2012/11/07 (Mw 7.3). We derived the asperities of these earthquakes using two completely independent methods of body-waveform inversion and a gravity-derived measure, Trench Parallel Bouguer Anomaly (TPBA). Using TPBA we discuss the status of interplate coupling along the segment and interpret each of the major earthquakes as a piece of the governing rupture process. We delineate the critical unbroken asperities along the segment that will likely generate great earthquake(s) in the future.

  14. The 2006-2007 Kuril Islands great earthquake sequence

    Science.gov (United States)

    Lay, T.; Kanamori, H.; Ammon, C.J.; Hutko, Alexander R.; Furlong, K.; Rivera, L.

    2009-01-01

    The southwestern half of a ???500 km long seismic gap in the central Kuril Island arc subduction zone experienced two great earthquakes with extensive preshock and aftershock sequences in late 2006 to early 2007. The nature of seismic coupling in the gap had been uncertain due to the limited historical record of prior large events and the presence of distinctive upper plate, trench and outer rise structures relative to adjacent regions along the arc that have experienced repeated great interplate earthquakes in the last few centuries. The intraplate region seaward of the seismic gap had several shallow compressional events during the preceding decades (notably an MS 7.2 event on 16 March 1963), leading to speculation that the interplate fault was seismically coupled. This issue was partly resolved by failure of the shallow portion of the interplate megathrust in an MW = 8.3 thrust event on 15 November 2006. This event ruptured ???250 km along the seismic gap, just northeast of the great 1963 Kuril Island (Mw = 8.5) earthquake rupture zone. Within minutes of the thrust event, intense earthquake activity commenced beneath the outer wall of the trench seaward of the interplate rupture, with the larger events having normal-faulting mechanisms. An unusual double band of interplate and intraplate aftershocks developed. On 13 January 2007, an MW = 8.1 extensional earthquake ruptured within the Pacific plate beneath the seaward edge of the Kuril trench. This event is the third largest normal-faulting earthquake seaward of a subduction zone on record, and its rupture zone extended to at least 33 km depth and paralleled most of the length of the 2006 rupture. The 13 January 2007 event produced stronger shaking in Japan than the larger thrust event, as a consequence of higher short-period energy radiation from the source. The great event aftershock sequences were dominated by the expected faulting geometries; thrust faulting for the 2006 rupture zone, and normal faulting for

  15. The 2009 Samoa-Tonga great earthquake triggered doublet

    Science.gov (United States)

    Lay, T.; Ammon, C.J.; Kanamori, H.; Rivera, L.; Koper, K.D.; Hutko, Alexander R.

    2010-01-01

    Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event1-4. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  16. Libraries in the Mexico City Earthquake.

    Science.gov (United States)

    de Zamora, Rosa Maria Fernandez

    1990-01-01

    As a result of damage from the Mexico City earthquake of September 1985, some of the busiest public and special libraries had to be closed. A National Committee for the Reconstruction of Libraries was established, and international support was received through the International Federation of Library Associations and Institutions and other…

  17. NASA Applied Sciences Disasters Program Support for the September 2017 Mexico Earthquakes

    Science.gov (United States)

    Glasscoe, M. T.; Kirschbaum, D.; Torres-Perez, J. L.; Yun, S. H.; Owen, S. E.; Hua, H.; Fielding, E. J.; Liang, C.; Bekaert, D. P.; Osmanoglu, B.; Amini, R.; Green, D. S.; Murray, J. J.; Stough, T.; Struve, J. C.; Seepersad, J.; Thompson, V.

    2017-12-01

    The 8 September M 8.1 Tehuantepec and 19 September M 7.1 Puebla earthquakes were among the largest earthquakes recorded in Mexico. These two events caused widespread damage, affecting several million people and causing numerous casualties. A team of event coordinators in the NASA Applied Sciences Program activated soon after these devastating earthquakes in order to support decision makers in Mexico, using NASA modeling and international remote sensing capabilities to generate decision support products to aid in response and recovery. The NASA Disasters Program promotes the use of Earth observations to improve the prediction of, preparation for, response to, and recovery from natural and technological disasters. For these two events, the Disasters Program worked with Mexico's space agency (Agencia Espacial Mexico, AEM) and the National Center for Prevention of Disasters (Centro Nacional de Prevención de Desastres, CENAPRED) to generate products to support response, decision-making, and recovery. Products were also provided to academic partners, technical institutions, and field responders to support response. In addition, the Program partnered with the US Geological Survey (USGS), Office of Foreign Disaster Assistance (OFDA), and other partners in order to provide information to federal and domestic agencies that were supporting event response. Leveraging the expertise of investigators at NASA Centers, products such as landslide susceptibility maps, precipitation models, and radar based damage assessments and surface deformation maps were generated and used by AEM, CENAPRED, and others during the event. These were used by AEM in collaboration with other government agencies in Mexico to make appropriate decisions for mapping damage, rescue and recovery, and informing the population regarding areas prone to potential risk. We will provide an overview of the response activities and data products generated in support of the earthquake response, partnerships with

  18. Crustal block motion model and interplate coupling along Ecuador-Colombia trench based on GNSS observation network

    Science.gov (United States)

    Ito, T.; Mora-Páez, H.; Peláez-Gaviria, J. R.; Kimura, H.; Sagiya, T.

    2017-12-01

    IntroductionEcuador-Colombia trench is located at the boundary between South-America plate, Nazca Plate and Caribrian plate. This region is very complexes such as subducting Caribrian plate and Nazca plate, and collision between Panama and northern part of the Andes mountains. The previous large earthquakes occurred along the subducting boundary of Nazca plate, such as 1906 (M8.8) and 1979 (M8.2). And also, earthquakes occurred inland, too. So, it is important to evaluate earthquake potentials for preparing huge damage due to large earthquake in near future. GNSS observation In the last decade, the GNSS observation was established in Columbia. The GNSS observation is called by GEORED, which is operated by servicing Geologico Colomiano. The purpose of GEORED is research of crustal deformation. The number of GNSS site of GEORED is consist of 60 continuous GNSS observation site at 2017 (Mora et al., 2017). The sampling interval of almost GNSS site is 30 seconds. These GNSS data were processed by PPP processing using GIPSY-OASYS II software. GEORED can obtain the detailed crustal deformation map in whole Colombia. In addition, we use 100 GNSS data at Ecuador-Peru region (Nocquet et al. 2014). Method We developed a crustal block movements model based on crustal deformation derived from GNSS observation. Our model considers to the block motion with pole location and angular velocity and the interplate coupling between each block boundaries, including subduction between the South-American plate and the Nazca plate. And also, our approach of estimation of crustal block motion and coefficient of interplate coupling are based on MCMC method. The estimated each parameter is obtained probably density function (PDF). Result We tested 11 crustal block models based on geological data, such as active fault trace at surface. The optimal number of crustal blocks is 11 for based on geological and geodetic data using AIC. We use optimal block motion model. And also, we estimate

  19. The Occurrence of the Recent Deadly Mexico Earthquakes was not that Unexpected

    Science.gov (United States)

    Flores-Marquez, L.; Sarlis, N. V.; Skordas, E. S.; Varotsos, P.; Ramírez-Rojas, A.

    2017-12-01

    Most big Mexican earthquakes occur right along the interface between the colliding Cocos and North American plates, but the two recent deadly Mexico earthquakes, i.e., the magnitude 8.2 earthquake that struck the Mexico's Chiapas state on 7 September 2017 and the magnitude 7.1 earthquake that struck central Mexico, almost 12 days later, killing more than 400 people and reducing buildings to rubble in several States happened at two different spots in the flat-slab in the middle of the Cocos tectonic plate which is considered a geologically surprising area [1]. Here, upon considering a new type of analysis termed natural time, we show that their occurrence should not in principle puzzle scientists. Earthquakes may be considered as critical phenomena, see Ref. [2] and references therein and natural time analysis [3] uncovers an order parameter for seismicity. It has been shown [2] that the fluctuations of this order parameter exhibit a universal behavior with a probability density function (pdf), which is non-Gaussian having a left exponential tail [3]. Natural time analysis of seismicity in various tectonic regions of the Mexican Pacific Coast has been made in Ref.[4]. The study of the order parameter pdf for the Chiapas area as well as for the Guerrero area shows that the occurrence of large earthquakes in these two areas was not unexpected. References A. Witze, Deadly Mexico quakes not linked, Nature 549, 442 (2017). Varotsos PA, Sarlis NV, Skordas ES, Natural Time Analysis: The new view of time. Precursory Seismic Electric Signals, Earthquakes and other Complex Time-Series (Springer-Verlag, Berlin Heidelberg 2011) P. Varotsos et al., Similarity of fluctuations in correlated systems: the case of seismicity. Phys. Rev. E 72, 041103 (2005) A. Ramírez-Rojas and E.L. Flores-Márquez, Order parameter analysis of seismicity of the Mexican Pacific coast. Physica A, 392 2507 (2013)

  20. Preliminary report on Petatlan, Mexico: earthquake of 14 March 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    A major earthquake, M/sub s/ = 7.6, occurred off the southern coast of Mexico near the town of Petatlan on 14 March 1979. The earthquake ruptured a 50-km-long section of the Middle American subduction zone, a seismic gap last ruptured by a major earthquake (M/sub s/ = 7.5) in 1943. Since adjacent gaps of approximately the same size have not had a large earthquake since 1911, and one of these suffered three major earthquakes in four years (1907, 1909, 1911), recurrence times for large events here are highly variable. Thus, this general area remains one of high seismic risk, and provides a focus for investigation of segmentation in the subduction processes. 2 figures.

  1. A moment-tensor catalog for intermediate magnitude earthquakes in Mexico

    Science.gov (United States)

    Rodríguez Cardozo, Félix; Hjörleifsdóttir, Vala; Martínez-Peláez, Liliana; Franco, Sara; Iglesias Mendoza, Arturo

    2016-04-01

    Located among five tectonic plates, Mexico is one of the world's most seismically active regions. The earthquake focal mechanisms provide important information on the active tectonics. A widespread technique for estimating the earthquake magnitud and focal mechanism is the inversion for the moment tensor, obtained by minimizing a misfit function that estimates the difference between synthetic and observed seismograms. An important element in the estimation of the moment tensor is an appropriate velocity model, which allows for the calculation of accurate Green's Functions so that the differences between observed and synthetics seismograms are due to the source of the earthquake rather than the velocity model. However, calculating accurate synthetic seismograms gets progressively more difficult as the magnitude of the earthquakes decreases. Large earthquakes (M>5.0) excite waves of longer periods that interact weakly with lateral heterogeneities in the crust. For these events, using 1D velocity models to compute Greens functions works well and they are well characterized by seismic moment tensors reported in global catalogs (eg. USGS fast moment tensor solutions and GCMT). The opposite occurs for small and intermediate sized events, where the relatively shorter periods excited interact strongly with lateral heterogeneities in the crust and upper mantle. To accurately model the Green's functions for the smaller events in a large heterogeneous area, requires 3D or regionalized 1D models. To obtain a rapid estimate of earthquake magnitude, the National Seismological Survey in Mexico (Servicio Sismológico Nacional, SSN) automatically calculates seismic moment tensors for events in the Mexican Territory (Franco et al., 2002; Nolasco-Carteño, 2006). However, for intermediate-magnitude and small earthquakes the signal-to-noise ratio could is low for many of the seismic stations, and without careful selection and filtering of the data, obtaining a stable focal mechanism

  2. Precursory earthquakes of the 1943 eruption of Paricutin volcano, Michoacan, Mexico

    Science.gov (United States)

    Yokoyama, I.; de la Cruz-Reyna, S.

    1990-12-01

    Paricutin volcano is a monogenetic volcano whose birth and growth were observed by modern volcanological techniques. At the time of its birth in 1943, the seismic activity in central Mexico was mainly recorded by the Wiechert seismographs at the Tacubaya seismic station in Mexico City about 320 km east of the volcano area. In this paper we aim to find any characteristics of precursory earthquakes of the monogenetic eruption. Though there are limits in the available information, such as imprecise location of hypocenters and lack of earthquake data with magnitudes under 3.0. The available data show that the first precursory earthquake occurred on January 7, 1943, with a magnitude of 4.4. Subsequently, 21 earthquakes ranging from 3.2 to 4.5 in magnitude occurred before the outbreak of the eruption on February 20. The (S - P) durations of the precursory earthquakes do not show any systematic changes within the observational errors. The hypocenters were rather shallow and did not migrate. The precursory earthquakes had a characteristic tectonic signature, which was retained through the whole period of activity. However, the spectra of the P-waves of the Paricutin earthquakes show minor differences from those of tectonic earthquakes. This fact helped in the identification of Paricutin earthquakes. Except for the first shock, the maximum earthquake magnitudes show an increasing tendency with time towards the outbreak. The total seismic energy released by the precursory earthquakes amounted to 2 × 10 19 ergs. Considering that statistically there is a threshold of cumulative seismic energy release (10 17-18ergs) by precursory earthquakes in polygenetic volcanoes erupting after long quiescence, the above cumulative energy is exceptionally large. This suggests that a monogenetic volcano may need much more energy to clear the way of magma passage to the earth surface than a polygenetic one. The magma ascent before the outbreak of Paricutin volcano is interpretable by a model

  3. Comprehensive understanding of a deep transition zone from an unstable- to stable-slip regime of the megathrust interplate earthquake

    Science.gov (United States)

    Kato, A.; Iidaka, T.; Ikuta, R.; Yoshida, Y.; Katsumata, K.; Iwasaki, T.; Sakai, S.; Yamaoka, K.; Watanabe, T.; Kunitomo, T.; Yamazaki, F.; Tsumura, N.; Nozaki, K.; Okubo, M.; Suzuki, S.; Hirata, N.; Zhang, H.; Thurber, C. H.

    2009-12-01

    Most slow slips have occurred in the deep transition zone from an unstable- to stable-slip regime. Detailed knowledge about a deep transition zone is essentially important to understand the mechanism of the slow slips, and the stress concentration process to the source region of the megathrust interplate earthquake. We have conducted a very dense seismic observation in the Tokai-region from the April to the August in 2008 through a linear deployment of 75 portable stations, in Japan. The array extended from the bottom part of the source region of the Tokai earthquake to deep low-frequency earthquakes (LFE, ~ 35 km depth) including the long-term slow-slip region (~ 25 km depth). Here we present a high-resolution tomographic imaging of seismic velocities and highly-accurate hypocenters including LFEs, using first arrival data from the dense seismograph deployment. We manually picked the first arrivals of P- and S- waves from each waveform for about 700 earthquakes including about 20 LFEs observed by the dense array. Then, we applied the TomoDD-code [Zhang and Thurber, 2003] to the arrival data set, adding an accurate double-difference data estimated by a waveform cross-correlation technique. A low velocity (Vp, Vs) layer with high Poisson’s ratio is clearly imaged, and tilts to the northwestward with a low dip angle, which corresponds to the subducting oceanic crust of the Philippine Sea Slab. Although seismicity within the oceanic crust is significantly low, few earthquakes occur within the oceanic crust. The LFEs are linearly aligned along the top surface of the subducting oceanic crust at depths from 30 to 40 km. The Poisson’s ratio within the oceanic crust does not show significant depth-dependent increase beneath the linear alignment of LFEs. This result argues against a depth section of Poisson’s ratio obtained in the SW Japan [Shelly et al., 2006]. Beneath the LFEs, active cluster of slab earthquakes are horizontally distributed. At the depths greater

  4. The results of the Seismic Alert System of Mexico SASMEX, during the earthquakes of 7 and 19 of September 2017

    Science.gov (United States)

    Espinosa Aranda, J. M., Sr.; Cuellar Martinez, A.

    2017-12-01

    The Seismic Alert System of Mexico, SASMEX began in 1991, is integrated by the seismic alert system of Mexico City and the seismic alert system of Oaxaca. SASMEX has 97 seismic sensors which are distributed in the seismic regions of the Pacific coast and the South of the Trans-Mexican Volcanic Belt of states of Jalisco, Colima, Michoacán, Guerrero, Oaxaca and Puebla. The alert dissemination covers the cities of: Acapulco, Chilpancingo, Morelia, Puebla, Oaxaca, Toluca and Mexico City, reaching the earthquake warnings to more than 25 millions of people. SASMEX has detected correctly more than 5600 earthquakes and warned 156. Mexico City has different alert dissemination systems like several Radio and Tv commercial broadcasters, dedicated radio receivers, EAS-SAME-SARMEX radio receivers and more tha 6700 public loud speakers. The other cities have only some of those systems. The Mw 8.2 Chiapas earthquake on September 7, despite the epicentral distance far of the first seismic detections (more than 180 km) and the low amplitudes of the P waves, the earthquake warning time gave more than 90 seconds to Mexico City before the arrivals of S waves with minor damages to the city in contrast with high damages in towns in the coast. This earthquake offered an opportunity to show the developments and lacks to reduce the risk, such as the need to increase the seismic detection coverage and the earthquake warning dissemination in towns with high seismic vulnerability. The Mw 7.1 Morelos earthquake on September 19 caused thousands of damages and hundreds of deaths and injuries in Mexico City, this earthquake is the second with the most damages after the Mw 8.1 Michoacán earthquake of September 19 on 1985. The earthquake early warning gave 11 seconds after the arrivals of S waves, however the activation occurred few seconds after the P waves arrives to Mexico City, and due to the seismic focus was near to the city, the P waves were felt for the people. The Accelerographic Network

  5. Near-real-time and scenario earthquake loss estimates for Mexico

    Science.gov (United States)

    Wyss, M.; Zuñiga, R.

    2017-12-01

    The large earthquakes of 8 September 2017, M8.1, and 19 September 2017, M7.1 have focused attention on the dangers of Mexican seismicity. The near-real-time alerts by QLARM estimated 10 to 300 fatalities and 0 to 200 fatalities, respectively. At the time of this submission the reported death tolls are 96 and 226, respectively. These alerts were issued within 96 and 57 minutes of the occurrence times. For the M8.1 earthquake the losses due to a line model could be calculated. The line with length L=110 km extended from the initial epicenter to the NE, where the USGS had reported aftershocks. On September 19, no aftershocks were available in near-real-time, so a point source had to be used for the quick calculation of likely casualties. In both cases, the casualties were at least an order of magnitude smaller than what they could have been because on 8 September the source was relatively far offshore and on 19 September the hypocenter was relatively deep. The largest historic earthquake in Mexico occurred on 28 March 1787 and likely had a rupture length of 450 km and M8.6. Based on this event, and after verifying our tool for Mexico, we estimated the order of magnitude of a disaster, given the current population, in a maximum credible earthquake along the Pacific coast. In the countryside along the coast we expect approximately 27,000 fatalities and 480,000 injured. In the special case of Mexico City the casualties in a worst possible earthquake along the Pacific plate boundary would likely be counted as five digit numbers. The large agglomerate of the capital with its lake bed soil attracts most attention. Nevertheless, one should pay attention to the fact that the poor, rural segment of society, living in buildings of weak resistance to shaking, are likely to sustain a mortality rate about 20% larger than the population in cities on average soil.

  6. Detection and Mapping of the September 2017 Mexico Earthquakes Using DAS Fiber-Optic Infrastructure Arrays

    Science.gov (United States)

    Karrenbach, M. H.; Cole, S.; Williams, J. J.; Biondi, B. C.; McMurtry, T.; Martin, E. R.; Yuan, S.

    2017-12-01

    Fiber-optic distributed acoustic sensing (DAS) uses conventional telecom fibers for a wide variety of monitoring purposes. Fiber-optic arrays can be located along pipelines for leak detection; along borders and perimeters to detect and locate intruders, or along railways and roadways to monitor traffic and identify and manage incidents. DAS can also be used to monitor oil and gas reservoirs and to detect earthquakes. Because thousands of such arrays are deployed worldwide and acquiring data continuously, they can be a valuable source of data for earthquake detection and location, and could potentially provide important information to earthquake early-warning systems. In this presentation, we show that DAS arrays in Mexico and the United States detected the M8.1 and M7.2 Mexico earthquakes in September 2017. At Stanford University, we have deployed a 2.4 km fiber-optic DAS array in a figure-eight pattern, with 600 channels spaced 4 meters apart. Data have been recorded continuously since September 2016. Over 800 earthquakes from across California have been detected and catalogued. Distant teleseismic events have also been recorded, including the two Mexican earthquakes. In Mexico, fiber-optic arrays attached to pipelines also detected these two events. Because of the length of these arrays and their proximity to the event locations, we can not only detect the earthquakes but also make location estimates, potentially in near real time. In this presentation, we review the data recorded for these two events recorded at Stanford and in Mexico. We compare the waveforms recorded by the DAS arrays to those recorded by traditional earthquake sensor networks. Using the wide coverage provided by the pipeline arrays, we estimate the event locations. Such fiber-optic DAS networks can potentially play a role in earthquake early-warning systems, allowing actions to be taken to minimize the impact of an earthquake on critical infrastructure components. While many such fiber

  7. Revisiting the physical characterisitics of the subduction interplate seismogenic zones

    Science.gov (United States)

    Heuret, Arnauld; Lallemand, Serge; Funiciello, Francesca; Piromallo, Claudia

    2010-05-01

    Based on the Centennial earthquake catalog, the revised 1964-2007 EHB hypocenters catalog and the 1976-2007 CMT Harvard catalog, we have extracted the hypocenters, nodal planes and seismic moments of worldwide subduction earthquakes for the 1900-2007 period. For the 1976-2007 period, we combine the focal solutions provided by Harvard and the revised hypocenters from Engdahl et al. (1998). Older events are extracted from the Centennial catalogue (Engdahl and Villasenor, 2002) and they are used to estimate the cumulated seismic moment only. The selection criteria for the subduction earthquakes are similar to those used by Mc Caffrey (1994), i.e., we test if the focal mechanisms are consistent with 1/ shallow thrust events (depth > 70 km, positive slips, and at least one nodal plane gets dip 8). We assume that the seismogenic zone coincides with the distribution of 5.5 statistical study done by Pacheco et al. (1993) and test some empirical laws obtained for example by Ruff and Kanamori (1980) in light of a more complete, detailed, accurate and uniform description of the subduction interplate seismogenic zone. Since subduction earthquakes result from stress accumulation along the interplate and stress depends on plates kinematics, subduction zone geometry, thermal state and seismic coupling, we aim to isolate some correlations between parameters. The statistical analysis reveals that: 1- vs, the subduction velocity is the first order controlling parameter of seismogenic zone variability, both in term of geometry and seismic behaviour; 2- steep dip, large vertical extent and narrow horizontal extent of the seismogenic zone are associated to fast subductions, and cold slabs, the opposite holding for slow subductions and warm slabs; the seismogenic zone usually ends in the fore-arc mantle rather than at the upper plate Moho depth; 3- seismic rate () variability is coherent with the geometry of the seismogenic zone:  increases with the dip and with the vertical

  8. Factors Contributing to the Catastrophe in Mexico City During the Earthquake of September 19, 1985

    OpenAIRE

    Beck, James L.; Hall, John F.

    1986-01-01

    The extensive damage to high‐rise buildings in Mexico City during the September 19, 1985 earthquake is primarily due to the intensity of the ground shaking exceeding what was previously considered credible for the city by Mexican engineers. There were two major factors contributing to the catastrophe, resonance in the sediments of an ancient lake that once existed in the Valley of Mexico, and the long duration of shaking compared with other coastal earthquakes in the last 50 years. Both of th...

  9. Revisiting the November 27, 1945 Makran (Mw=8.2) interplate earthquake

    Science.gov (United States)

    Zarifi, Z.; Raeesi, M.

    2012-04-01

    Makran Subduction Zone (MSZ) in southern Iran and southwestern Pakistan is a zone of convergence, where the remnant oceanic crust of Arabian plate is subducting beneath the Eurasian plate with a rate of less than 30 mm/yr. The November 27, 1945 earthquake (Mw=8.2) in eastern section of Makran followed by a tsunami, at some points 15 meters high. More than 4000 victims and widespread devastation along the coastal area of Pakistan, Iran, Oman and India are reported for this earthquake. We have collected the old seismograms of the 1945 earthquake and its largest following earthquake (August 5, 1947, Mw=7.3) from a number of stations around the globe. Using ISS data, we relocated these two events. We used the teleseismic body-waveform inversion code of Kikuchi and Kanamori to determine the slip distribution of these two earthquakes for the first time. The results show that the extent of rupture of the 1945 earthquake is larger than what previously had been approximated in other studies. The slip distribution suggests two distinct sets of asperities with different behavior in the west close to Pasni and in the east close to Ormara. The highest slip was obtained for an area between these two cities which shows geological evidence of rapid uplift. To associate this behavior with the structure of slab interface we studied the TPGA (Trench Parallel Free-air Gravity Anomaly) and TPBA (Trench Parallel Bouguer Anomaly) in MSZ. The results of TPGA does not show the expected phenomenon, which is the correlation of asperities with the area of highly negative TPGA. However, TPBA can make correlation between the observed slip distribution and the structure of slab interface. Using the topography and gravity profiles perpendicular to trench and along the MSZ, we could observe the segmentation in the slab interface. This confirms that we barely expect that the whole interface releases energy in one single megathrust earthquake. Current seismicity in MSZ, although sparse, can fairly

  10. Seafloor observations indicate spatial separation of coseismic and postseismic slips in the 2011 Tohoku earthquake

    Science.gov (United States)

    Iinuma, Takeshi; Hino, Ryota; Uchida, Naoki; Nakamura, Wataru; Kido, Motoyuki; Osada, Yukihito; Miura, Satoshi

    2016-01-01

    Large interplate earthquakes are often followed by postseismic slip that is considered to occur in areas surrounding the coseismic ruptures. Such spatial separation is expected from the difference in frictional and material properties in and around the faults. However, even though the 2011 Tohoku Earthquake ruptured a vast area on the plate interface, the estimation of high-resolution slip is usually difficult because of the lack of seafloor geodetic data. Here using the seafloor and terrestrial geodetic data, we investigated the postseismic slip to examine whether it was spatially separated with the coseismic slip by applying a comprehensive finite-element method model to subtract the viscoelastic components from the observed postseismic displacements. The high-resolution co- and postseismic slip distributions clarified the spatial separation, which also agreed with the activities of interplate and repeating earthquakes. These findings suggest that the conventional frictional property model is valid for the source region of gigantic earthquakes. PMID:27853138

  11. Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico

    Directory of Open Access Journals (Sweden)

    Carrillo Julián

    2014-01-01

    Full Text Available The development of new codes for earthquake-resistant structures has made possible to guarantee a better performance of buildings, when they are subjected to seismic actions. Therefore, it is convenient that current codes for design of building become conceptually transparent when defining the strength modification factors and assessing maximum lateral displacements, so that the design process can be clearly understood by structural engineers. The aim of this study is to analyze the transparency of earthquake-resistant design approach for buildings in Mexico by means of a critical review of the factors for strength modification and displacement amplification. The approach of building design codes in US is also analyzed. It is concluded that earthquake-resistant design in Mexico have evolved in refinement and complexity. It is also demonstrated that the procedure prescribed by such design codes allows the assessment of the design strengths and displacements in a more rational way, in accordance not only with the present stage of knowledge but also with the contemporary tendencies in building codes. In contrast, the procedures used in US codes may not provide a clear view for seismic response assessment of buildings.

  12. Inter-plant coordination and its relationships with supply chain integration and operational performance

    DEFF Research Database (Denmark)

    Yang, Cheng; Chaudhuri, Atanu; Farooq, Sami

    2016-01-01

    Based on the data obtained from the sixth version of International Manufacturing Strategy Survey (IMSS VI), this paper explores the relationships at the level of plant between (1) inter-plant coordination and operational performance, and (2) between inter-plant coordination and internal/external ......Based on the data obtained from the sixth version of International Manufacturing Strategy Survey (IMSS VI), this paper explores the relationships at the level of plant between (1) inter-plant coordination and operational performance, and (2) between inter-plant coordination and internal...

  13. Remotely-triggered Slip in Mexico City Induced by the September 2017 Mw=7.1 Puebla Earthquake.

    Science.gov (United States)

    Solano Rojas, D. E.; Havazli, E.; Cabral-Cano, E.; Wdowinski, S.

    2017-12-01

    Although the epicenter of the September 19th, 2017 Mw=7.1 Puebla earthquake is located 100 km from Mexico City, the earthquake caused severe destruction in the city, leading to life loss and property damage. Mexico City is built on a thick clay-rich sedimentary sequence and, hence, is susceptible to seismic acceleration during earthquakes. The sediment layer also causes land subsidence, at rates as high as 350 mm/yr, and surface faulting. The earthquake damage in the eastern part of the city, characterized by the collapse of several buildings, can be explained by seismic amplification. However, the damage in the southern part of the city, characterized by the collapse of small houses and surface faulting, requires a different explanation. We present here geodetic observations suggesting that the surface faulting in Mexico City triggered by the Puebla earthquake occurred in areas already experiencing differential displacements. Our study is based on Sentinel-1A satellite data from before and after the earthquake (September 17th and 29th, 2017). We process the data using Interferometric Synthetic Aperture Radar (InSAR) to produce a coseismic interferogram. We also identify phase discontinuities that can be interpreted as surface faulting using the phase gradient technique (Price and Sandwell, 1998). The results of our analysis reveal the locations and patterns of coseismic phase discontinuities, mainly in the piedmont of the Sierra de Santa Catarina, which agree with the location of earthquake's damage reported by official and unofficial sources (GCDMX, 2017; OSM, 2017). The observed phase discontinuities also agree well with the location of preexisting, subsidence-related faults identified during 10 years of field surveys (GCDMX, 2017) and coincide with differential displacements identified using a Fast Fourier Transform residual technique on high-resolution InSAR results from 2012 (Solano-Rojas et. al, 2017). We propose that the seismic energy released by the 2017

  14. Rapid Seismic Deployment for Capturing Aftershocks of the September 2017 Tehuantepec, Mexico (M=8.1) and Morelos-Puebla (M=7.1), Mexico Earthquakes

    Science.gov (United States)

    Velasco, A. A.; Karplus, M. S.; Dena, O.; Gonzalez-Huizar, H.; Husker, A. L.; Perez-Campos, X.; Calo, M.; Valdes, C. M.

    2017-12-01

    The September 7 Tehuantepec, Mexico (M=8.1) and the September 19 Morelos-Puebla, Mexico (M=7.1) earthquakes ruptured with extensional faulting within the Cocos Plate at 70-km and 50-km depth, as it subducts beneath the continental North American Plate. Both earthquakes caused significant damage and loss of life. These events were followed by a M=6.1 extensional earthquake at only 10-km depth in Oaxaca on September 23, 2017. While the Morelos-Puebla earthquake was likely too far away to be statically triggered by the Tehuantepec earthquake, initial Coulomb stress analyses show that the M=6.1 event may have been an aftershock of the Tehuantepec earthquake. Many questions remain about these earthquakes, including: Did the Cocos Plate earthquakes load the upper plate, and could they possibly trigger an equal or larger earthquake on the plate interface? Are these the result of plate bending? Do the aftershocks migrate to the locked zone in the subduction zone? Why did the intermediate depth earthquakes create so much damage? Are these earthquakes linked by dynamic stresses? Is it possible that a potential slow-slip event triggered both events? To address some of these questions, we deployed 10 broadband seismometers near the epicenter of the Tehuantepec, Mexico earthquake and 51 UTEP-owned nodes (5-Hz, 3-component geophones) to record aftershocks and augment networks deployed by the Universidad Nacional Autónoma de México (UNAM). The 10 broadband instruments will be deployed for 6 months, while the nodes were deployed 25 days. The relative ease-of-deployment and larger numbers of the nodes allowed us to deploy them quickly in the area near the M=6.1 Oaxaca earthquake, just a few days after that earthquake struck. We deployed them near the heavily-damaged cities of Juchitan, Ixtaltepec, and Ixtepec as well as in Tehuantepec and Salina Cruz, Oaxaca in order to test their capabilities for site characterization and aftershock studies. This is the first test of these

  15. The 1985 México earthquake The 1985 México earthquake

    Directory of Open Access Journals (Sweden)

    Moreno Murillo Juan Manuel

    1995-10-01

    Full Text Available

    This paper includes a bibliographic review with the description of the various aspects about the (Ms = 8.1 Michoacan, Mexico earthquake, which comprised of three events. The main shock of the September 19, 1985 earthquake occurred on Thursday at 7h. 17m. 46.6s. local time in Mexico City, and had (Ms = 8.1. The focus of the event was a depth of approximately 18 km. A second shock occurred on Friday evening 21 September at 7h. 38m. p.m. local time. The last aftershock occurred on 30 April of 1986 (Ms = 7.0. A prior event occurred to the September 1985 earthquake, occurred on 28 May, 1985 (mb = 5.2 and is described too. This event, was a terrible natural disaster for that country, at least 9,500 people were killed, about 30,000 were injured, more that 100,000 were left homeless and severe damage occurred in many parts of Mexico City and several states of central Mexico. According to some sources, It is estimated that the earthquake seriously affected an area of approximately 825,000 square kilometers. This paper describes a summary of the global tectonic setting, genesis and location of the epicenter, an interpretation of the source mechanism and a analyses at these results from some stations that recorded this earthquake and at the same time, a comparison between the two largest earthquake of 1985. Moreover, this paper describes the principal damage resulting and a description of effects from tsunami produced from earthquake. The 1985 Mexico earthquake occurred as a result of slipping in the subduction process between the Cocos and American plates. This was a shallow interplate thrust type event which occurred in the intersection of the Orozco fracture with the Middle American trench.

  16. THE MAY 23TH 2007 GULF OF MEXICO EARTHQUAKE

    Science.gov (United States)

    Yamamoto, J.; Jimenez, Z.

    2009-12-01

    On the 23th of May 2007 at 14:09 local time (19:09 UT) an insolated earthquake of local magnitude 5.2 occurred offshore northern Veracruz in the Gulf of Mexico. The seismic focus was located using local and regional data at 20.11° N, 97.38° W and 7.8 km depth at 175 km distance from Tuxpan a city of 134,394 inhabitants. The earthquake was widely felt along the costal states of southern Tamaulipas and Veracruz in which several schools and public buildings were evacuated. Neither Laguna Verde nuclear plant, located approximately 245 km from the epicenter, nor PEMEX petroleum company reported damage. First-motion data indicates that the rupture occurred as strike slip faulting along two possible planes, one oriented roughly north-south and the other east-west. In the present paper a global analysis of the earthquake is made to elucidate its origin and possible correlation with known geotectonic features of the region.

  17. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake

    Science.gov (United States)

    Ito, Yoshihiro; Hino, Ryota; Kido, Motoyuki; Fujimoto, Hiromi; Osada, Yukihito; Inazu, Daisuke; Ohta, Yusaku; Iinuma, Takeshi; Ohzono, Mako; Miura, Satoshi; Mishina, Masaaki; Suzuki, Kensuke; Tsuji, Takeshi; Ashi, Juichiro

    2013-07-01

    We describe two transient slow slip events that occurred before the 2011 Tohoku-Oki earthquake. The first transient crustal deformation, which occurred over a period of a week in November 2008, was recorded simultaneously using ocean-bottom pressure gauges and an on-shore volumetric strainmeter; this deformation has been interpreted as being an M6.8 episodic slow slip event. The second had a duration exceeding 1 month and was observed in February 2011, just before the 2011 Tohoku-Oki earthquake; the moment magnitude of this event reached 7.0. The two events preceded interplate earthquakes of magnitudes M6.1 (December 2008) and M7.3 (March 9, 2011), respectively; the latter is the largest foreshock of the 2011 Tohoku-Oki earthquake. Our findings indicate that these slow slip events induced increases in shear stress, which in turn triggered the interplate earthquakes. The slow slip event source area on the fault is also located within the downdip portion of the huge-coseismic-slip area of the 2011 earthquake. This demonstrates episodic slow slip and seismic behavior occurring on the same portions of the megathrust fault, suggesting that the faults undergo slip in slow slip events can also rupture seismically.

  18. Faulting process and coseismic stress change during the 30 January, 1973, Colima, Mexico interplate earthquake (Mw=7.6)

    Energy Technology Data Exchange (ETDEWEB)

    Santoyo, Miguel A; Mikumo, Takeshi; Quintanar, Luis [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico D.F (Mexico)

    2006-07-15

    A large thrust earthquake (Mw=7.6) occurred on January 30, 1973, on the plate interface between the subducting Cocos plate and the continental North America plate, near the triple junction between the North America, Cocos and Rivera Plates. This event might be related to two sequences of subsequent large earthquakes that occurred around this region. Although several authors have analyzed the focal mechanism and depth of this earthquake, we analyzed its source characteristics and performed a linear kinematic waveform inversion for the slip distribution over the fault plane. We find a shallow thrust mechanism (St=285 degrees, Dip=16 degrees, Ra=85 degrees) consistent with the tectonic environment, with a depth of 16 km and a total moment release of 2.98x10{sup 2}7 dyn-cm. The results show a slip distribution with two main patches, with a maximum dislocation of 199 cm and 173 cm respectively. We calculated the coseismic stress change on and around the fault plane. This earthquake ruptured two main asperities, one downdip and southwest and the other updip and northwest of the hypocenter, with stress change of -31 and -40 bars respectively The surrounding zone of stress increase could have influenced the subsequent seismicity to a distance of up to 120 km from the hypocenter. [Spanish] El 30 de enero de 1973 ocurrio un evento mayor de subduccion (Mw=7.6) en la interfase de las placas de Cocos y Norteamerica, cerca del punto triple entre las placas de Rivera, Cocos y Norteamerica. Este evento podria estar relacionado con dos secuencias de grandes sismos subsecuentes que ocurrieron alrededor de esta region. Aunque varios autores han analizado el mecanismo focal y la profundidad de este sismo, nosotros analizamos las caracteristicas de la fuente y realizamos una inversion cinematica lineal de la distribucion de deslizamientos sobre el plano de falla a traves del modelado de forma de onda. Encontramos un mecanismo inverso (St=285 grados, Dip=16 grados, Ra=85 grados

  19. Oil palm growth, yield and financial returns from interplanted food ...

    African Journals Online (AJOL)

    Maize, soyabean and pigeon pea were inter-planted with a juvenile oil palm plantation in 1999-2002 at the Teaching and Research Farm of the University of Agriculture, Abeokuta (7°15'N, 3°25', altitude 144m above sea level) to evaluate the growth of the interplanted oil palm as well as yield and overall economic returns ...

  20. Effect of Interplanting with Zero Tillage and Straw Manure on Rice Growth and Rice Quality

    Directory of Open Access Journals (Sweden)

    Shi-ping LIU

    2007-09-01

    Full Text Available The interplanting with zero-tillage of rice, i.e. direct sowing rice 10–20 days before wheat harvesting, and remaining about 30-cm high stubble after cutting wheat or rice with no tillage, is a new cultivation technology in wheat-rice rotation system. To study the effects of interplanting with zero tillage and straw manure on rice growth and quality, an experiment was conducted in a wheat-rotation rotation system. Four treatments, i.e. ZIS (Zero-tillage, straw manure and rice interplanting, ZI (Zero-tillage, no straw manure and rice interplanting, PTS (Plowing tillage, straw manure and rice transplanting, and PT (Plowing tillage, no straw manure and rice transplanting, were used. ZIS reduced plant height, leaf area per plant and the biomass of rice plants, but the biomass accumulation of rice at the late stage was quicker than that under conventional transplanting cultivation. In the first year (2002, there was no significant difference in rice yield among the four treatments. However, rice yield decreased in interplanting with zero-tillage in the second year (2003. Compared with the transplanting treatments, the number of filled grains per panicle decreased but 1000-grain weight increased in interplanting with zero-tillage, which were the main factors resulting in higher yield. Interplanting with zero-tillage improved the milling and appearance qualities of rice. The rates of milled and head rice increased while chalky rice rate and chalkiness decreased in interplanting with zero-tillage. Zero-tillage and interplanting also affected rice nutritional and cooking qualities. In 2002, ZIS showed raised protein content, decreased amylose content, softer gel consistency, resulting in improved rice quality. In 2003, zero-tillage and interplanting decreased protein content and showed similar amylose content as compared with transplanting treatments. Moreover, protein content in PTS was obviously increased in comparison with the other three treatments

  1. Reassessing the 2006 Guerrero slow-slip event, Mexico : Implications for large earthquakes in the Guerrero Gap

    NARCIS (Netherlands)

    Bekaert, D.P.S.; Hooper, A.; Wright, T.J.

    2015-01-01

    In Guerrero, Mexico, slow-slip events have been observed in a seismic gap, where no earthquakes have occurred since 1911. A rupture of the entire gap today could result in a Mw 8.2–8.4 earthquake. However, it remains unclear how slow-slip events change the stress field in the Guerrero seismic region

  2. Båth's law and its relation to the tectonic environment: A case study for earthquakes in Mexico

    Science.gov (United States)

    Rodríguez-Pérez, Q.; Zúñiga, F. R.

    2016-09-01

    We studied 66 mainshocks and their largest aftershocks in the Mexican subduction zone and in the Gulf of California with magnitudes in the range of 5.2 worldwide studies supporting the observation of mechanism dependence of radiated seismic energy. The statistical tests indicate that the only significant difference is for shallow thrust and strike-slip events for these parameters. The statistical comparison of stress drop of shallow thrust versus that of inslab events shows a strongly significant difference with a confidence better than 99%. The comparison of stress drop of shallow thrust events with that of strike-slip events, also indicates a strongly significant difference. We see no dependence of stress drop with magnitude, which is strong evidence of earthquake self-similarity. We do not observe a systematic depth dependence of stress drop. The results also reveal differences in the earthquake rupture among the events. The magnitude difference between the mainshock and the largest aftershock for inslab events is larger than interplate and strike-slip events suggesting focal mechanism dependence of Båth's law. For the case of this parameter, only that for inslab and strike-slip events present a significant difference with 95% confidence.

  3. Earthquake scenario and probabilistic ground-shaking hazard maps for the Albuquerque-Belen-Santa Fe, New Mexico, corridor

    Science.gov (United States)

    Wong, I.; Olig, S.; Dober, M.; Silva, W.; Wright, D.; Thomas, P.; Gregor, N.; Sanford, A.; Lin, K.-W.; Love, D.

    2004-01-01

    New Mexico's population is concentrated along the corridor that extends from Belen in the south to Española in the north and includes Albuquerque and Santa Fe. The Rio Grande rift, which encompasses the corridor, is a major tectonically, volcanically, and seismically active continental rift in the western U.S. Although only one large earthquake (moment magnitude (M) ≥ 6) has possibly occurred in the New Mexico portion of the rift since 1849, paleoseismic data indicate that prehistoric surface-faulting earthquakes of M 6.5 and greater have occurred on aver- age every 400 yrs on many faults throughout the Rio Grande rift.

  4. Earthquakes; May-June 1982

    Science.gov (United States)

    Person, W.J.

    1982-01-01

    There were four major earthquakes (7.0-7.9) during this reporting period: two struck in Mexico, one in El Salvador, and one in teh Kuril Islands. Mexico, El Salvador, and China experienced fatalities from earthquakes.

  5. Comparison of earthquake source parameters and interseismic plate coupling variations in global subduction zones (Invited)

    Science.gov (United States)

    Bilek, S. L.; Moyer, P. A.; Stankova-Pursley, J.

    2010-12-01

    Geodetically determined interseismic coupling variations have been found in subduction zones worldwide. These coupling variations have been linked to heterogeneities in interplate fault frictional conditions. These connections to fault friction imply that observed coupling variations are also important in influencing details in earthquake rupture behavior. Because of the wealth of newly available geodetic models along many subduction zones, it is now possible to examine detailed variations in coupling and compare to seismicity characteristics. Here we use a large catalog of earthquake source time functions and slip models for moderate to large magnitude earthquakes to explore these connections, comparing earthquake source parameters with available models of geodetic coupling along segments of the Japan, Kurile, Kamchatka, Peru, Chile, and Alaska subduction zones. In addition, we use published geodetic results along the Costa Rica margin to compare with source parameters of small magnitude earthquakes recorded with an onshore-offshore network of seismometers. For the moderate to large magnitude earthquakes, preliminary results suggest a complex relationship between earthquake parameters and estimates of strongly and weakly coupled segments of the plate interface. For example, along the Kamchatka subduction zone, these earthquakes occur primarily along the transition between strong and weak coupling, with significant heterogeneity in the pattern of moment scaled duration with respect to the coupling estimates. The longest scaled duration event in this catalog occurred in a region of strong coupling. Earthquakes along the transition between strong and weakly coupled exhibited the most complexity in the source time functions. Use of small magnitude (0.5 earthquake spectra, with higher corner frequencies and higher mean apparent stress for earthquakes that occur in along the Osa Peninsula relative to the Nicoya Peninsula, mimicking the along-strike variations in

  6. Tehuantepec and Morelos-Puebla earthquakes lived and reported by the Servicio Sismológico Nacional, Mexico

    Science.gov (United States)

    Perez-Campos, X.

    2017-12-01

    On September 2017, Mexico experienced two significant inslab earthquakes with only 11 days apart from each other. Both caused severe damage in the epicentral states: Chiapas, Oaxaca, Puebla, Morelos, and Mexico City. In all senses, they tested the capabilities of the Servicio Sismológico Nacional (SSN, Mexican National Seismological Service), from the acquisition, processing, and reporting systems (both, automatic and manual), to social network and media response. In this work, we present the various aspects of the performance of the SSN and the results obtained real-time and the days after. The first earthquake occurred on 8 September within the Gulf of Tehuantepec. The SSN estimated its magnitude as Mww8.2, from W-phase inversion of local and regional data. Forty days later, it has had more than 7750 aftershocks with magnitudes larger than 2.5, making restless to inhabitants in the epicentral area. A preliminary hypo-DD relocation of the aftershocks shows two parallel SE-NW alignments. The mainshock seemed to have triggered seismicity in central Mexico, an effect previously observed by Singh et al. (1998) for coastal earthquakes. Barely 11 days had passed since this major quake. The SSN was in the middle of an intense aftershock sequence and conducting several outreach activities due to the anniversary of the 19 September 1985 (Mw8.0) earthquake, when the second quake hit. SSN located its epicenter at the border of the states of Morelos and Puebla and estimated its magnitude as Mww7.1. In this case, SSN identified only eight aftershocks, which was a similar behavior for previous inslab earthquakes in the region. Important aspects that these events have highlighted are the media and social network responses. Immediately after the first quake, SSN faced misinformation due to viral videos and social media messages predicting massive earthquakes and their relation to a solar storm that took place days before. Outreach to the public and the media became essential

  7. MEASUREMENTS OF MICROTREMORS IN BUILDINGS IN MEXICO CITY AFTER THE SEPTEMBER 19,1985 MICHOACAN EARTHQUAKE

    OpenAIRE

    Tadao, MINAMI; Toshihide, KASHIMA; Earthquake Research Institute, University of Tokyo; Building Research Institute, Ministry of Construction

    1990-01-01

    We had the opportunity to measure the microtremors of 46 buildings in Mexico City as members of the Technical Cooperation Mission that the Japan International Cooperation Agency (JICA) dispatched to work in Mexico from 19 October to 22 November 1985. Fourier analyses of the recorded microtremor data provided useful information about the dynamic properties of buildings damaged or undamaged by the 1985 Michoacan earthquake. The measured natural periods suggested that the rigidity of the undamag...

  8. Survey Report on the Tsunami of the Michoacan, Mexico Earthquake of September 19, 1985

    OpenAIRE

    Abe, Katsuyuki; Hakuno, Motohiko; Takeuchi, Mikio; Katada, Toshiyuki

    1987-01-01

    The tsunami was caused by the Michoacan, Mexico earthquake (M. 8.1) of September 19, 1985. According to the site survey, sea water ran up to an elevation of 2 meters or more above sea level in the coastal areas of Mexico from Petatlan to Playa Azul. The tsunami was as high as 4 meters at Barra del Potosi and Playa Linda, where minor tsunami damages occurred; some thatched huts on the beaches were destroyed and pieces of furniture were swept out to sea. The tsunami magnitude Mt is estimated to...

  9. Some isotopic and geochemical anomalies observed in Mexico prior to large scale earthquakes and volcanic eruptions

    International Nuclear Information System (INIS)

    Cruz R, S. de la; Armienta, M.A.; Segovia A, N.

    1992-05-01

    A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichon, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analysed. (Author)

  10. Some isotopic and geochemical anomalies observed in Mexico prior to large scale earthquakes and volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Cruz R, S. de la; Armienta, M A; Segovia A, N

    1992-05-15

    A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichon, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analysed. (Author)

  11. Complex Non-volcanic Tremor in Guerrero Mexico Triggered by the 2010 Mw 8.8 Chilean Earthquake

    Science.gov (United States)

    Zigone, D.; Campillo, M.; Husker, A. L.; Kostoglodov, V.; Payero, J. S.; Frank, W.; Shapiro, N. M.; Voisin, C.; Cougoulat, G.; Cotte, N.

    2010-12-01

    In this study we analyze the tremors triggered in Guerrero region (Mexico) by the 2010 magnitude 8.8 Chilean Earthquake using mini-seismic array data from the French-Mexican G-GAP project and broadband data from the Servicio Sismologico Nacional of Mexico. The strong dynamic shaking by the earthquake produced the first observed triggered non-volcanic tremors (NVT) in Mexico so far with at least 3 different types of tremors at different time scales. There was a slow slip event (SSE) occurring at the time of the earthquake, which may have increased the probability of tremor triggering in the region. The first type of observed triggered tremors occurred during the S waves, Love waves and Rayleigh waves as already reported in other subductions zones and continental faults (Miyazawa and Mori, 2005, 2006; Rubinstein et al., 2007; Gomberg et al., 2008; Peng et al, 2009…). The greatest amount of energy and duration accompanies the long-period Rayleigh waves, with smaller bursts during the S and Love waves. For this particular tremor we observed the dispersion of Rayleigh waves in the envelopes of triggered tremors, which indicates a very strong modulation of the source by the passing surface wave. An unexpected short-term tremor occurred approximately one hour later of the arrival of the surface waves on the coastal stations. The NVT has only been previously observed at distances > 100 km inland. It also has a shorter frequency range (3-6 Hz) than other NVT (1-10 Hz) observed in the region. Finally, we observed a significant increase of so-called ambient tremor activity with higher intensity than all triggered NVT during the days after the earthquake. This study adds new types of tremors to the lexicon of triggered NVT observed in the world.

  12. Margin-Wide Earthquake Subspace Scanning Along the Cascadia Subduction Zone Using the Cascadia Initiative Amphibious Dataset

    Science.gov (United States)

    Morton, E.; Bilek, S. L.; Rowe, C. A.

    2017-12-01

    Understanding the spatial extent and behavior of the interplate contact in the Cascadia Subduction Zone (CSZ) may prove pivotal to preparation for future great earthquakes, such as the M9 event of 1700. Current and historic seismic catalogs are limited in their integrity by their short duration, given the recurrence rate of great earthquakes, and by their rather high magnitude of completeness for the interplate seismic zone, due to its offshore distance from these land-based networks. This issue is addressed via the 2011-2015 Cascadia Initiative (CI) amphibious seismic array deployment, which combined coastal land seismometers with more than 60 ocean-bottom seismometers (OBS) situated directly above the presumed plate interface. We search the CI dataset for small, previously undetected interplate earthquakes to identify seismic patches on the megathrust. Using the automated subspace detection method, we search for previously undetected events. Our subspace comprises eigenvectors derived from CI OBS and on-land waveforms extracted for existing catalog events that appear to have occurred on the plate interface. Previous work focused on analysis of two repeating event clusters off the coast of Oregon spanning all 4 years of deployment. Here we expand earlier results to include detection and location analysis to the entire CSZ margin during the first year of CI deployment, with more than 200 new events detected for the central portion of the margin. Template events used for subspace scanning primarily occurred beneath the land surface along the coast, at the downdip edge of modeled high slip patches for the 1700 event, with most concentrated at the northwestern edge of the Olympic Peninsula.

  13. Tsunami Numerical Simulation for Hypothetical Giant or Great Earthquakes along the Izu-Bonin Trench

    Science.gov (United States)

    Harada, T.; Ishibashi, K.; Satake, K.

    2013-12-01

    We performed tsunami numerical simulations from various giant/great fault models along the Izu-Bonin trench in order to see the behavior of tsunamis originated in this region and to examine the recurrence pattern of great interplate earthquakes along the Nankai trough off southwest Japan. As a result, large tsunami heights are expected in the Ryukyu Islands and on the Pacific coasts of Kyushu, Shikoku and western Honshu. The computed large tsunami heights support the hypothesis that the 1605 Keicho Nankai earthquake was not a tsunami earthquake along the Nankai trough but a giant or great earthquake along the Izu-Bonin trench (Ishibashi and Harada, 2013, SSJ Fall Meeting abstract). The Izu-Bonin subduction zone has been regarded as so-called 'Mariana-type subduction zone' where M>7 interplate earthquakes do not occur inherently. However, since several M>7 outer-rise earthquakes have occurred in this region and the largest slip of the 2011 Tohoku earthquake (M9.0) took place on the shallow plate interface where the strain accumulation had considered to be a little, a possibility of M>8.5 earthquakes in this region may not be negligible. The latest M 7.4 outer-rise earthquake off the Bonin Islands on Dec. 22, 2010 produced small tsunamis on the Pacific coast of Japan except for the Tohoku and Hokkaido districts and a zone of abnormal seismic intensity in the Kanto and Tohoku districts. Ishibashi and Harada (2013) proposed a working hypothesis that the 1605 Keicho earthquake which is considered a great tsunami earthquake along the Nankai trough was a giant/great earthquake along the Izu-Bonin trench based on the similarity of the distributions of ground shaking and tsunami of this event and the 2010 Bonin earthquake. In this study, in order to examine the behavior of tsunamis from giant/great earthquakes along the Izu-Bonin trench and check the Ishibashi and Harada's hypothesis, we performed tsunami numerical simulations from fault models along the Izu-Bonin trench

  14. Dynamics of interplate domain in subduction zones: influence of rheological parameters and subducting plate age

    Directory of Open Access Journals (Sweden)

    D. Arcay

    2012-12-01

    Full Text Available The properties of the subduction interplate domain are likely to affect not only the seismogenic potential of the subduction area but also the overall subduction process, as it influences its viability. Numerical simulations are performed to model the long-term equilibrium state of the subduction interplate when the diving lithosphere interacts with both the overriding plate and the surrounding convective mantle. The thermomechanical model combines a non-Newtonian viscous rheology and a pseudo-brittle rheology. Rock strength here depends on depth, temperature and stress, for both oceanic crust and mantle rocks. I study the evolution through time of, on one hand, the brittle-ductile transition (BDT depth, zBDT, and, on the other hand, of the kinematic decoupling depth, zdec, simulated along the subduction interplate. The results show that both a high friction and a low ductile strength at the asthenospheric wedge tip shallow zBDT. The influence of the weak material activation energy is of second order but not negligible. zBDT becomes dependent on the ductile strength increase with depth (activation volume if the BDT occurs at the interplate decoupling depth. Regarding the interplate decoupling depth, it is shallowed (1 significantly if mantle viscosity at asthenospheric wedge tip is low, (2 if the difference in mantle and interplate activation energy is weak, and (3 if the activation volume is increased. Very low friction coefficients and/or low asthenospheric viscosities promote zBDT = zdec. I then present how the subducting lithosphere age affects the brittle-ductile transition depth and the kinematic decoupling depth in this model. Simulations show that a rheological model in which the respective activation energies of mantle and interplate material are too close hinders the mechanical decoupling at the down-dip extent of the interplate

  15. Effect of modeled microgravity on UV-C-induced interplant communication of Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Ting; Xu, Wei; Li, Huasheng; Deng, Chenguang; Zhao, Hui; Wu, Yuejin; Liu, Min; Wu, Lijun; Lu, Jinying; Bian, Po

    2017-12-01

    Controlled ecological life support systems (CELSS) will be an important feature of long-duration space missions of which higher plants are one of the indispensable components. Because of its pivotal role in enabling plants to cope with environmental stress, interplant communication might have important implications for the ecological stability of such CELSS. However, the manifestations of interplant communication in microgravity conditions have yet to be fully elucidated. To address this, a well-established Arabidopsis thaliana co-culture experimental system, in which UV-C-induced airborne interplant communication is evaluated by the alleviation of transcriptional gene silencing (TGS) in bystander plants, was placed in microgravity modeled by a two-dimensional rotating clinostat. Compared with plants under normal gravity, TGS alleviation in bystander plants was inhibited in microgravity. Moreover, TGS alleviation was also prevented when plants of the pgm-1 line, which are impaired in gravity sensing, were used in either the UV-C-irradiated or bystander group. In addition to the specific TGS-loci, interplant communication-shaped genome-wide DNA methylation in bystander plants was altered under microgravity conditions. These results indicate that interplant communications might be modified in microgravity. Time course analysis showed that microgravity interfered with both the production of communicative signals in UV-C-irradiated plants and the induction of epigenetic responses in bystander plants. This was further confirmed by the experimental finding that microgravity also prevented the response of bystander plants to exogenous methyl jasmonate (JA) and methyl salicylate (SA), two well-known airborne signaling molecules, and down-regulated JA and SA biosynthesis in UV-C-irradiated plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake.

    Science.gov (United States)

    Chester, Frederick M; Rowe, Christie; Ujiie, Kohtaro; Kirkpatrick, James; Regalla, Christine; Remitti, Francesca; Moore, J Casey; Toy, Virginia; Wolfson-Schwehr, Monica; Bose, Santanu; Kameda, Jun; Mori, James J; Brodsky, Emily E; Eguchi, Nobuhisa; Toczko, Sean

    2013-12-06

    The mechanics of great subduction earthquakes are influenced by the frictional properties, structure, and composition of the plate-boundary fault. We present observations of the structure and composition of the shallow source fault of the 2011 Tohoku-Oki earthquake and tsunami from boreholes drilled by the Integrated Ocean Drilling Program Expedition 343 and 343T. Logging-while-drilling and core-sample observations show a single major plate-boundary fault accommodated the large slip of the Tohoku-Oki earthquake rupture, as well as nearly all the cumulative interplate motion at the drill site. The localization of deformation onto a limited thickness (less than 5 meters) of pelagic clay is the defining characteristic of the shallow earthquake fault, suggesting that the pelagic clay may be a regionally important control on tsunamigenic earthquakes.

  17. Seismic Regionalization of Michoacan, Mexico and Recurrence Periods for Earthquakes

    Science.gov (United States)

    Magaña García, N.; Figueroa-Soto, Á.; Garduño-Monroy, V. H.; Zúñiga, R.

    2017-12-01

    Michoacán is one of the states with the highest occurrence of earthquakes in Mexico and it is a limit of convergence triggered by the subduction of Cocos plate over the North American plate, located in the zone of the Pacific Ocean of our country, in addition to the existence of active faults inside of the state like the Morelia-Acambay Fault System (MAFS).It is important to make a combination of seismic, paleosismological and geological studies to have good planning and development of urban complexes to mitigate disasters if destructive earthquakes appear. With statistical seismology it is possible to characterize the degree of seismic activity as well as to estimate the recurrence periods for earthquakes. For this work, seismicity catalog of Michoacán was compiled and homogenized in time and magnitude. This information was obtained from world and national agencies (SSN, CMT, etc), some data published by Mendoza and Martínez-López (2016) and starting from the seismic catalog homogenized by F. R. Zúñiga (Personal communication). From the analysis of the different focal mechanisms reported in the literature and geological studies, the seismic regionalization of the state of Michoacán complemented the one presented by Vázquez-Rosas (2012) and the recurrence periods for earthquakes within the four different seismotectonic regions. In addition, stable periods were determined for the b value of the Gutenberg-Richter (1944) using the Maximum Curvature and EMR (Entire Magnitude Range Method, 2005) techniques, which allowed us to determine recurrence periods: years for earthquakes upper to 7.5 for the subduction zone (A zone) with EMR technique and years with MAXC technique for the same years for earthquakes upper to 5 for B1 zone with EMR technique and years with MAXC technique; years for earthquakes upper to 7.0 for B2 zone with EMR technique and years with MAXC technique; and the last one, the Morelia-Acambay Fault Sistem zone (C zone) years for earthquakes

  18. Reevaluation of the macroseismic effects of the 1887 Sonora, Mexico earthquake and its magnitude estimation

    Science.gov (United States)

    Suárez, Gerardo; Hough, Susan E.

    2008-01-01

    The Sonora, Mexico, earthquake of 3 May 1887 occurred a few years before the start of the instrumental era in seismology. We revisit all available accounts of the earthquake and assign Modified Mercalli Intensities (MMI), interpreting and analyzing macroseismic information using the best available modern methods. We find that earlier intensity assignments for this important earthquake were unjustifiably high in many cases. High intensity values were assigned based on accounts of rock falls, soil failure or changes in the water table, which are now known to be very poor indicators of shaking severity and intensity. Nonetheless, reliable accounts reveal that light damage (intensity VI) occurred at distances of up to ~200 km in both Mexico and the United States. The resulting set of 98 reevaluated intensity values is used to draw an isoseismal map of this event. Using the attenuation relation proposed by Bakun (2006b), we estimate an optimal moment magnitude of Mw7.6. Assuming this magnitude is correct, a fact supported independently by documented rupture parameters assuming standard scaling relations, our results support the conclusion that northern Sonora as well as the Basin and Range province are characterized by lower attenuation of intensities than California. However, this appears to be at odds with recent results that Lg attenuation in the Basin and Range province is comparable to that in California.

  19. The 8 September 2017 Tsunami Triggered by the M w 8.2 Intraplate Earthquake, Chiapas, Mexico

    Science.gov (United States)

    Ramírez-Herrera, María Teresa; Corona, Néstor; Ruiz-Angulo, Angel; Melgar, Diego; Zavala-Hidalgo, Jorge

    2018-01-01

    The 8 September 2017, M w 8.2 earthquake offshore Chiapas, Mexico, is the largest earthquake in recorded history in Chiapas since 1902. It caused damage in the states of Oaxaca, Chiapas and Tabasco, including more than 100 fatalities, over 1.5 million people were affected, and 41,000 homes were damaged in the state of Chiapas alone. This earthquake, an intraplate event on a normal fault on the oceanic subducting plate, generated a tsunami recorded at several tide gauge stations in Mexico and on the Pacific Ocean. Here, we report the physical effects of the tsunami on the Chiapas coast and analyze the societal implications of this tsunami on the basis of our post-tsunami field survey. The associated tsunami waves were recorded first at Huatulco tide gauge station at 5:04 (GMT) 12 min after the earthquake. We covered ground observations along 41 km of the coast of Chiapas, encompassing the sites with the highest projected wave heights based on our preliminary tsunami model (maximum tsunami amplitudes between 94.5° and 93.0°W). Runup and inundation distances were measured along eight sites. The tsunami occurred at low tide. The maximum runup was 3 m at Boca del Cielo, and maximum inundation distance was 190 m in Puerto Arista, corresponding to the coast in front of the epicenter and in the central sector of the Gulf of Tehuantepec. Tsunami scour and erosion was evident along the Chiapas coast. Tsunami deposits, mainly sand, reached up to 32 cm thickness thinning landward up to 172 m distance.

  20. September 1985 Mexico City, Mexico Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The magnitude 8.1 earthquake occurred off the Pacific coast of Mexico. The damage was concentrated in a 25 square km area of Mexico City, 350 km from the epicenter....

  1. Assessment of precast beam-column using capacity demand response spectrum subject to design basis earthquake and maximum considered earthquake

    Science.gov (United States)

    Ghani, Kay Dora Abd.; Tukiar, Mohd Azuan; Hamid, Nor Hayati Abdul

    2017-08-01

    Malaysia is surrounded by the tectonic feature of the Sumatera area which consists of two seismically active inter-plate boundaries, namely the Indo-Australian and the Eurasian Plates on the west and the Philippine Plates on the east. Hence, Malaysia experiences tremors from far distant earthquake occurring in Banda Aceh, Nias Island, Padang and other parts of Sumatera Indonesia. In order to predict the safety of precast buildings in Malaysia under near field ground motion the response spectrum analysis could be used for dealing with future earthquake whose specific nature is unknown. This paper aimed to develop of capacity demand response spectrum subject to Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE) in order to assess the performance of precast beam column joint. From the capacity-demand response spectrum analysis, it can be concluded that the precast beam-column joints would not survive when subjected to earthquake excitation with surface-wave magnitude, Mw, of more than 5.5 Scale Richter (Type 1 spectra). This means that the beam-column joint which was designed using the current code of practice (BS8110) would be severely damaged when subjected to high earthquake excitation. The capacity-demand response spectrum analysis also shows that the precast beam-column joints in the prototype studied would be severely damaged when subjected to Maximum Considered Earthquake (MCE) with PGA=0.22g having a surface-wave magnitude of more than 5.5 Scale Richter, or Type 1 spectra.

  2. Long-term change of activity of very low-frequency earthquakes in southwest Japan

    Science.gov (United States)

    Baba, S.; Takeo, A.; Obara, K.; Kato, A.; Maeda, T.; Matsuzawa, T.

    2017-12-01

    On plate interface near seismogenic zone of megathrust earthquakes, various types of slow earthquakes were detected including non-volcanic tremors, slow slip events (SSEs) and very low-frequency earthquakes (VLFEs). VLFEs are classified into deep VLFEs, which occur in the downdip side of the seismogenic zone, and shallow VLFEs, occur in the updip side, i.e. several kilometers in depth in southwest Japan. As a member of slow earthquake family, VLFE activity is expected to be a proxy of inter-plate slipping because VLFEs have the same mechanisms as inter-plate slipping and are detected during Episodic tremor and slip (ETS). However, long-term change of the VLFE seismicity has not been well constrained compared to deep low-frequency tremor. We thus studied long-term changes in the activity of VLFEs in southwest Japan where ETS and long-term SSEs have been most intensive. We used continuous seismograms of F-net broadband seismometers operated by NIED from April 2004 to March 2017. After applying the band-pass filter with a frequency range of 0.02—0.05 Hz, we adopted the matched-filter technique in detecting VLFEs. We prepared templates by calculating synthetic waveforms for each hypocenter grid assuming typical focal mechanisms of VLFEs. The correlation coefficients between templates and continuous F-net seismograms were calculated at each grid every 1s in all components. The grid interval is 0.1 degree for both longitude and latitude. Each VLFE was detected as an event if the average of correlation coefficients exceeds the threshold. We defined the detection threshold as eight times as large as the median absolute deviation of the distribution. At grids in the Bungo channel, where long-term SSEs occurred frequently, the cumulative number of detected VLFEs increases rapidly in 2010 and 2014, which were modulated by stress loading from the long-term SSEs. At inland grids near the Bungo channel, the cumulative number increases steeply every half a year. This stepwise

  3. P-Wave Velocity Tomography from Local Earthquakes in Western Mexico

    Science.gov (United States)

    Ochoa-Chávez, Juan A.; Escudero, Christian R.; Núñez-Cornú, Francisco J.; Bandy, William L.

    2016-10-01

    In western Mexico, the subduction of the Rivera and Cocos plates beneath the North America plate has deformed and fragmented the overriding plate, forming several structural rifts and crustal blocks. To obtain a reliable subsurface image of the continental crust and uppermost mantle in this complex area, we used P-wave arrivals of local earthquakes along with the Fast Marching Method tomography technique. We followed an inversion scheme consisting of (1) the use of a high-quality earthquake catalog and corrected phase picks, (2) the selection of earthquakes using a maximum location error threshold, (3) the estimation of an improved 1-D reference velocity model, and (4) the use of checkerboard testing to determine the optimum configuration of the velocity nodes and inversion parameters. Surprisingly, the tomography results show a very simple δVp distribution that can be described as being controlled by geologic structures formed during two stages of the separation of the Rivera and Cocos plates. The earlier period represents the initial stages of the separation of the Rivera and Cocos plates beneath western Mexico; the later period represents the more advanced stage of rifting where the Rivera and Cocos plates had separated sufficiently to allow melt to accumulate below the Colima Volcanic complex. During the earlier period (14 or 10-1.6 Ma), NE-SW-oriented structures/lineaments (such as the Southern Colima Rift) were formed as the two plates separated. During the second period (1.6 Ma to the present), the deformation is attributed to magma, generated within and above the tear zone between the Rivera and Cocos plates, rising beneath the region of the Colima Volcanic Complex. The rising magma fractured the overlying crust, forming a classic triple-rift junction geometry. This triple-rift system is confined to the mid- to lower crust perhaps indicating that this rifting process is still in an early stage. This fracturing, along with fluid circulation and associated

  4. Triggered surface slips in southern California associated with the 2010 El Mayor-Cucapah, Baja California, Mexico, earthquake

    Science.gov (United States)

    Rymer, Michael J.; Treiman, Jerome A.; Kendrick, Katherine J.; Lienkaemper, James J.; Weldon, Ray J.; Bilham, Roger; Wei, Meng; Fielding, Eric J.; Hernandez, Janis L.; Olson, Brian P.E.; Irvine, Pamela J.; Knepprath, Nichole; Sickler, Robert R.; Tong, Xiaopeng; Siem, Martin E.

    2011-01-01

    The April 4, 2010 (Mw7.2), El Mayor-Cucapah, Baja California, Mexico, earthquake is the strongest earthquake to shake the Salton Trough area since the 1992 (Mw7.3) Landers earthquake. Similar to the Landers event, ground-surface fracturing occurred on multiple faults in the trough. However, the 2010 event triggered surface slip on more faults in the central Salton Trough than previous earthquakes, including multiple faults in the Yuha Desert area, the southwestern section of the Salton Trough. In the central Salton Trough, surface fracturing occurred along the southern San Andreas, Coyote Creek, Superstition Hills, Wienert, Kalin, and Imperial Faults and along the Brawley Fault Zone, all of which are known to have slipped in historical time, either in primary (tectonic) slip and/or in triggered slip. Surface slip in association with the El Mayor-Cucapah earthquake is at least the eighth time in the past 42 years that a local or regional earthquake has triggered slip along faults in the central Salton Trough. In the southwestern part of the Salton Trough, surface fractures (triggered slip) occurred in a broad area of the Yuha Desert. This is the first time that triggered slip has been observed in the southwestern Salton Trough.

  5. A shallow crustal earthquake doublet from the Trans-Mexican volcanic belt (Central Mexico)

    Science.gov (United States)

    Quintanar, L.; Rodríguez-González, M.; Campos-Enríquez, O.

    2003-04-01

    The trans-Mexican volcanic belt is an active volcanic arc related to subduction along the Middle America trench and characterized by shallow seismicity and synvolcanic to postvolcanic extensional arc-parallel faulting. The Mezquital graben is a major intra-arc basin of the central trans-Mexican volcanic belt. A doublet of moderate shallow shocks occurred in March and October 1976 in the region of this graben. These earthquakes were recorded by the Mexican National Seismological network, in particular by the Bosch-Omori seismograph (T_0 = 18 s) at the Tacubaya Observatory in Mexico City. We have carefully relocated the two main shocks and their major aftershocks by reading the original records and using a modified crustal velocity model for this region. A difference of ˜50 km is observed between the locations reported by the Mexican Seismological Service and those obtained in this study, which are additionally supported by the damage distribution of these earthquakes. A first motion analysis, based on regional and teleseismic records, defines for the March and October shocks normal fault mechanisms, characterized by E-W striking fault planes, which coincides with the orientation of the master faults of the Mezquital graben. After calculating the instrumental response, the source parameters were obtained from the Bosch-Omori seismograph records by body-wave modeling. For the March earthquake, we estimate a seismic moment of 4.5×1023 dyne-cm (equivalent to M_w=5.0) and a stress drop of 0.7 MPa assuming a circular rupture model (radius = 3 km). Given the poor quality of the Bosch-Omori record for the October earthquake, we used the comparison, between both events, of long-period (T=20 sec) teleseismic records at 2 stations to obtain its corresponding source parameters. By assuming a similar stress drop as for the March event, we obtain a M_0 of 5.6×1023 dyne-cm and M_w = 5.1 with a rupture length of 6.5 km. According to gravity data, the regional E-W faults are

  6. Testing earthquake links in Mexico from 1978 up to the 2017 M=8.1 Chiapas and M=7.1 Puebla shocks

    Science.gov (United States)

    Segou, Margarita; Parsons, Thomas E.

    2018-01-01

    The M = 8.1 Chiapas and the M = 7.1 Puebla earthquakes occurred in the bending part of the subducting Cocos plate 11 days and ~600 km apart, a range that puts them well outside the typical aftershock zone. We find this to be a relatively common occurrence in Mexico, with 14% of M > 7.0 earthquakes since 1900 striking more than 300 km apart and within a 2 week interval, not different from a randomized catalog. We calculate the triggering potential caused by crustal stress redistribution from large subduction earthquakes over the last 40 years. There is no evidence that static stress transfer or dynamic triggering from the 8 September Chiapas earthquake promoted the 19 September earthquake. Both recent earthquakes were promoted by past thrust events instead, including delayed afterslip from the 2012 M = 7.5 Oaxaca earthquake. A repeated pattern of shallow thrust events promoting deep intraslab earthquakes is observed over the past 40 years.

  7. Aspect of the 2011 off the Pacific coast Tohoku Earthquake, Japan

    International Nuclear Information System (INIS)

    Kato, Aitaro

    2012-01-01

    The 2011 off the Pacific coast of Tohoku Earthquake (Tohoku-Oki), Japan, was the first magnitude (M) 9 subduction megathrust event to be recorded by a dense network of seismic, geodetic, and tsunami observations. I here review the Tohoku-Oki earthquake in terms of, 1) asperity model, 2) earthquake source observations, 3) precedent processes, 4) postseismic slip (afetrslip). Based on finite source models of the Tohoku-Oki mainshock, the coseismic fault slip exceeded 30 m at shallow part of the subduction zone off-shore of Miyagi. The rupture reached the trench axis, producing a large uplift therein, which was likely an important factor generating devastating tsunami waves. The mainshock was preceded by slow-slip transients propagating toward the initial rupture point, which may have caused substantial stress loading, prompting the unstable dynamic rupture of the mainshock. Furthermore, a sequence of M 7-class interplate earthquakes and subsequent large afterslip events, those occurred before the mainshock rupture, might be interpreted as preparation stage of the earthquake generation. Most of slip released by the postseismic deformation following the Tohoku-Oki mainshock is located in the region peripheral to the large coseismic slip area. (author)

  8. Interplant coordination, supply chain integration, and operational performance of a plant in a manufacturing network

    DEFF Research Database (Denmark)

    Yang, Cheng; Chaudhuri, Atanu; Farooq, Sami

    2016-01-01

    Purpose The objective of this paper is to investigate the relationships at the level of plant in a manufacturing network, labelled as networked plant in the paper, between (1) inter-plant coordination and operational performance, (2) supply chain integration (SCI) and operational performance......, and (3) inter-plant coordination and SCI. Design/methodology/approach This paper is developed based on the data obtained from the sixth version of International Manufacturing Strategy Survey (IMSS VI). Specifically, this paper uses a subset of the IMSS VI data set from the 606 plants that identified...

  9. Geological and historical evidence of irregular recurrent earthquakes in Japan.

    Science.gov (United States)

    Satake, Kenji

    2015-10-28

    Great (M∼8) earthquakes repeatedly occur along the subduction zones around Japan and cause fault slip of a few to several metres releasing strains accumulated from decades to centuries of plate motions. Assuming a simple 'characteristic earthquake' model that similar earthquakes repeat at regular intervals, probabilities of future earthquake occurrence have been calculated by a government committee. However, recent studies on past earthquakes including geological traces from giant (M∼9) earthquakes indicate a variety of size and recurrence interval of interplate earthquakes. Along the Kuril Trench off Hokkaido, limited historical records indicate that average recurrence interval of great earthquakes is approximately 100 years, but the tsunami deposits show that giant earthquakes occurred at a much longer interval of approximately 400 years. Along the Japan Trench off northern Honshu, recurrence of giant earthquakes similar to the 2011 Tohoku earthquake with an interval of approximately 600 years is inferred from historical records and tsunami deposits. Along the Sagami Trough near Tokyo, two types of Kanto earthquakes with recurrence interval of a few hundred years and a few thousand years had been recognized, but studies show that the recent three Kanto earthquakes had different source extents. Along the Nankai Trough off western Japan, recurrence of great earthquakes with an interval of approximately 100 years has been identified from historical literature, but tsunami deposits indicate that the sizes of the recurrent earthquakes are variable. Such variability makes it difficult to apply a simple 'characteristic earthquake' model for the long-term forecast, and several attempts such as use of geological data for the evaluation of future earthquake probabilities or the estimation of maximum earthquake size in each subduction zone are being conducted by government committees. © 2015 The Author(s).

  10. Effects of interplanted legumes with maize on major soil nutrients ...

    African Journals Online (AJOL)

    A field experiment was carried out at the Teaching and Research Farm of the University of Ibadan, in early 2004 and 2005 to evaluate the effects of interplanted legumes with maize on major soil nutrients and performance of maize. The experiment laid out in a randomized complete block design, with four levels of crop ...

  11. Activity of Small Repeating Earthquakes along Izu-Bonin and Ryukyu Trenches

    Science.gov (United States)

    Hibino, K.; Matsuzawa, T.; Uchida, N.; Nakamura, W.; Matsushima, T.

    2014-12-01

    There are several subduction systems near the Japanese islands. The 2011 Mw9.0 Tohoku-oki megathrust earthquake occurred at the NE Japan (Tohoku) subduction zone. We have revealed a complementary relation between the slip areas for huge earthquakes and small repeating earthquakes (REs) in Tohoku. Investigations of REs in these subduction zones and the comparison with Tohoku area are important for revealing generation mechanism of megathrust earthquakes. Our target areas are Izu-Bonin and Ryukyu subduction zones, which appear to generate no large interplate earthquake. To investigate coupling of plate boundary in these regions, we estimated spatial distribution of slip rate by using REs. We use seismograms from the High Sensitivity Seismograph Network (Hi-net), Full Range Seismograph Network of Japan (F-net), and permanent seismic stations of Japan Meteorological Agency (JMA), Tohoku University, University of Tokyo, and Kagoshima University from 8 May 2003 (Izu-Bonin) and 14 July 2005 (Ryukyu) to 31 December 2012 to detect REs along the two trenches, by using similarity of seismograms. We mainly follow the procedure adopted in Uchida and Matsuzawa (2013) that studied REs in Tohoku area to compare our results with the REs in Tohoku. We find that the RE distribution along the Ryukyu trench shows two bands parallel to the trench axis. This feature is similar to the pattern in Tohoku where relatively large earthquakes occur between the bands. Along the Izu-Bonin trench, on the other hand, we find much fewer REs than in Tohoku or Ryukyu subduction zones and only one along-trench RE band, which corresponds to the area where the subducting Pacific plate contacts with the crust of the Philippine Sea plate. We also estimate average slip rate and coupling coefficient by using an empirical relationship between seismic moment and slip for REs (Nadeau and Johnson, 1998) and relative plate motion model. As a result, we find interplate slip rate in the deeper band is higher than

  12. Lateral structural variation within the overlying plate and its correlation to the Tonankai earthquake

    Science.gov (United States)

    Fujie, G.; Nakanishi, A.; Park, J.; Obana, K.; Kodaira, S.; Kaneda, Y.

    2009-12-01

    Destructive interplate earthquakes have repeatedly occurred every 100-150 years beneath the Kumano-nada, off the Kii peninsula owing to the subduction of the Philippine Sea plate beneath the southwest Japan arc. The last great interplate earthquakes in this seismogenic subduction zone was the 1944 Tonankai earthquakes, and a number of coseismic slip distribution models derived from seismic and tsunami data show remarkable lateral variations along the trough axis. In 2006 and 2007, we conducted extensive wide-angle seismic refraction and reflection surveys in the entire rupture zone of the 1944 Tonankai earthquake. We designed two along-trough and two across-trench seismic survey lines and deployed a number of OBSs (Ocean Bottom Seismometers) with a spacing of 5km and fired an airgun array with a total volume of 200L at every 0.2km. The quality of the obtained wide-angle seismic record section is substantially good and we observed remarkable regional variation in the amplitude of refraction and reflection phases. For example, in some record sections, we can trace seismic signals up to the offset of more than 100 km, but in other sections, the airgun signals become dim at the offset of less than 30km. Such regional variation in the amplitude indicates the lateral variation of the seismic attenuation structure. For revealing lateral structural variation, we developed seismic structure models by the following approach. First, we applied the first arrival tomography for developing P-wave velocity structure models. Then, we imaged structural boundaries by the reflection traveltime mapping method. Finally, we developed seismic attenuation models by using raypaths and amplitude of first arrivals. Our seismic structure models showed remarkable along-trench structural variation. In the P-wave velocity models, we found a height on the subducting Philippine plate at the eastern end of the Kumano basin (south-east off Shima peninsula). In the western area (i.e. Kumano Basin

  13. Determination of focal mechanisms of intermediate-magnitude earthquakes in Mexico, based on Greens functions calculated for a 3D Earth model

    Science.gov (United States)

    Rodrigo Rodríguez Cardozo, Félix; Hjörleifsdóttir, Vala

    2015-04-01

    One important ingredient in the study of the complex active tectonics in Mexico is the analysis of earthquake focal mechanisms, or the seismic moment tensor. They can be determined trough the calculation of Green functions and subsequent inversion for moment-tensor parameters. However, this calculation is gets progressively more difficult as the magnitude of the earthquakes decreases. Large earthquakes excite waves of longer periods that interact weakly with laterally heterogeneities in the crust. For these earthquakes, using 1D velocity models to compute the Greens fucntions works well. The opposite occurs for smaller and intermediate sized events, where the relatively shorter periods excited interact strongly with lateral heterogeneities in the crust and upper mantle and requires more specific or regional 3D models. In this study, we calculate Greens functions for earthquakes in Mexico using a laterally heterogeneous seismic wave speed model, comprised of mantle model S362ANI (Kustowski et al 2008) and crustal model CRUST 2.0 (Bassin et al 1990). Subsequently, we invert the observed seismograms for the seismic moment tensor using a method developed by Liu et al (2004) an implemented by Óscar de La Vega (2014) for earthquakes in Mexico. By following a brute force approach, in which we include all observed Rayleigh and Love waves of the Mexican National Seismic Network (Servicio Sismológico Naciona, SSN), we obtain reliable focal mechanisms for events that excite a considerable amount of low frequency waves (Mw > 4.8). However, we are not able to consistently estimate focal mechanisms for smaller events using this method, due to high noise levels in many of the records. Excluding the noisy records, or noisy parts of the records manually, requires interactive edition of the data, using an efficient tool for the editing. Therefore, we developed a graphical user interface (GUI), based on python and the python library ObsPy, that allows the edition of observed and

  14. Advanced maintenance strategies for power plant operators--introducing inter-plant life cycle management

    International Nuclear Information System (INIS)

    Graeber, Ulrich

    2004-01-01

    One of the most important goals of competing power plant operators is to ensure safe operation of their plants, characterized by maximum availability throughout the entire life cycle and minimized specific generating costs. One parameter crucial to the total price of electricity--and one that can be actively influenced by the power plant operators--is maintenance. Up to 30% of all electricity generating costs accrue from maintenance. In the past years maintenance measures have been optimized particularly by the application and continuing development of testing and diagnostic techniques, by the increased level of system and component automation as well as more efficient organization structures. Despite the considerable success of these efforts, the potential for further cost reductions is still far from exhausted. But the risks connected to reliability, availability and safety need to be analyzed in greater detail in order to ensure the sustainability of the savings already achieved as well as those yet to be realized. The systematic application of condition-based maintenance and the implementation of structured life cycle management are essential requirements. An inter-plant approach is recommended to make a quick implementation of maintenance optimization potentials possible. Plant-specific improvement potentials can be established with the help of a best-practice comparison, and measures and priorities can be defined for realizing them. Creating an inter-plant database will allow experience and findings to be analyzed quickly and efficiently by experts and made available to all participants on a neutral platform. Despite--or maybe owing to--the increasingly competitive marketplace, a sustained reduction in the maintenance costs of power plant operators can only be achieved through a structured, inter-plant exchange of experience. The ZES offers the industry a suitable platform for cooperation with its 'Condition-Based Maintenance' research focus. The introduction

  15. The Road to Total Earthquake Safety

    Science.gov (United States)

    Frohlich, Cliff

    Cinna Lomnitz is possibly the most distinguished earthquake seismologist in all of Central and South America. Among many other credentials, Lomnitz has personally experienced the shaking and devastation that accompanied no fewer than five major earthquakes—Chile, 1939; Kern County, California, 1952; Chile, 1960; Caracas,Venezuela, 1967; and Mexico City, 1985. Thus he clearly has much to teach someone like myself, who has never even actually felt a real earthquake.What is this slim book? The Road to Total Earthquake Safety summarizes Lomnitz's May 1999 presentation at the Seventh Mallet-Milne Lecture, sponsored by the Society for Earthquake and Civil Engineering Dynamics. His arguments are motivated by the damage that occurred in three earthquakes—Mexico City, 1985; Loma Prieta, California, 1989; and Kobe, Japan, 1995. All three quakes occurred in regions where earthquakes are common. Yet in all three some of the worst damage occurred in structures located a significant distance from the epicenter and engineered specifically to resist earthquakes. Some of the damage also indicated that the structures failed because they had experienced considerable rotational or twisting motion. Clearly, Lomnitz argues, there must be fundamental flaws in the usually accepted models explaining how earthquakes generate strong motions, and how we should design resistant structures.

  16. Kinematic source inversion of the 2017 Puebla-Morelos, Mexico earthquake (2017/09/19, Mw.7.1)

    Science.gov (United States)

    Iglesias, A.; Castro-Artola, O.; Hjorleifsdottir, V.; Singh, S. K.; Ji, C.; Franco-Sánchez, S. I.

    2017-12-01

    On September 19th 2017, an Mw 7.1 earthquake struck Central Mexico, causing severe damage in the epicentral region, especially in several small and medium size houses as well as historical buildings like churches and government offices. In Mexico City, at a distance of 100km from the epicenter, 38 buildings collapsed. Authorities reported that 369 persons were killed by the earthquake (> 60% in the Mexico City). We determined the hypocentral location (18.406N, 98.706W, d=57km), from regional data, situating this earthquake inside the subducted Cocos Plate, with a normal fault mechanism (Globalcmt: =300°, =44°, and =-82°). In this presentation we show the the slip on the fault plane, determined by 1) a frequency-domain inversion using local and regional acceleration records that have been numerically integrated twice and bandpass filtered between 2 and 30, and 2) a wavelet domain inversion using teleseismic body and surface-waves, filtered between 1-100 s and 50-150 s respectively, as well as static offsets. In both methods the fault plane is divided into subfaults, and for each subfault we invert for the average slip, and timing of initiation of slip. In the first method the slip direction is fixed to the ? direction and we invert for the rise time. In the second method the direction of slip is estimated, with values between -90 and +90 allowed, and the time history is an asymmetric cosine time function, for which we determine the "rise" and "fall" durations. For both methods, synthetic seismograms, based on the GlobalCMT focal mechanism, are computed for each subfault-station pair and for three components (Z, N-S, EW). Preliminary results, using local data, show some slip concentrated close to the hypocentral location and a large patch 20 km in NW direction far from the origin. Using teleseismic data, it is difficult to distinguish between the two fault planes, as the waveforms are equally well fit using either one of them. However, both are consistent with a

  17. Growth and foliar nitrogen concentrations of interplanted native woody legumes and pecan

    Science.gov (United States)

    J.W. Van Sambeek; Nadia E. Navarrete-Tindall; Kenneth L. Hunt

    2008-01-01

    The interplanting and underplanting of nodulated nitrogen-fixing plants in tree plantings can increase early growth and foliage nitrogen content of hardwoods, especially black walnut and pecan. Recent studies have demonstrated that some non-nodulated woody legumes may be capable of fixing significant levels of atmospheric nitrogen. The following nine nurse crop...

  18. Probabilistic Tsunami Hazard Analysis of the Pacific Coast of Mexico: Case Study Based on the 1995 Colima Earthquake Tsunami

    Directory of Open Access Journals (Sweden)

    Nobuhito Mori

    2017-06-01

    Full Text Available This study develops a novel computational framework to carry out probabilistic tsunami hazard assessment for the Pacific coast of Mexico. The new approach enables the consideration of stochastic tsunami source scenarios having variable fault geometry and heterogeneous slip that are constrained by an extensive database of rupture models for historical earthquakes around the world. The assessment focuses upon the 1995 Jalisco–Colima Earthquake Tsunami from a retrospective viewpoint. Numerous source scenarios of large subduction earthquakes are generated to assess the sensitivity and variability of tsunami inundation characteristics of the target region. Analyses of nine slip models along the Mexican Pacific coast are performed, and statistical characteristics of slips (e.g., coherent structures of slip spectra are estimated. The source variability allows exploring a wide range of tsunami scenarios for a moment magnitude (Mw 8 subduction earthquake in the Mexican Pacific region to conduct thorough sensitivity analyses and to quantify the tsunami height variability. The numerical results indicate a strong sensitivity of maximum tsunami height to major slip locations in the source and indicate major uncertainty at the first peak of tsunami waves.

  19. Changes in carbon pool and stand structure of a native subtropical mangrove forest after inter-planting with exotic species Sonneratia apetala.

    Science.gov (United States)

    Lu, Weizhi; Yang, Shengchang; Chen, Luzhen; Wang, Wenqing; Du, Xiaona; Wang, Canmou; Ma, Yan; Lin, Guangxuan; Lin, Guanghui

    2014-01-01

    In this study, we compared stand structure, biomass and soil carbon pools, and litterfall production between a mixed mangrove forest consisting of Aegiceras corniculatum inter-planted with the exotic Sonneratia apetala and a native monospecific forest dominated by A. corniculatum in the intertidal area of Zhanjiang, Guangdong Province, southeast China. The goal of this study was to test the hypothesis that inter-planting fast growing exotic mangrove S. apetala into subtropical native mangrove forests will significantly increase C sequestration. Although the tree heights and basal diameters of S. apetala were significantly higher than those of A. corniculatum, the density of the 12-year-old S. apetala trees in the mixed forest was much smaller than that of A. corniculatum in the monospecific forest. In contrast to several previous studies on S. apetala forests planted directly on mangrove-free mudflats, the mixed mangrove forest showed no significant difference in either standing biomass or soil carbon pools from the native monospecific mangrove forest (p = 0.294 and 0.073, respectively) twelve years after inter-planting with S. apetala. Moreover, carbon cycling was likely speeded up after inter-planting S. apetala due to higher litterfall input and lower C/N ratio. Thus, inter-planting fast-growing S. apetala into native mangrove forest is not an effective way to increase carbon sequestration in this subtropical mangrove forest. Given that exotic plant species may exert negative impact on native mangrove species and related epifauna, this fast-growing mangrove species is not suitable for mangrove plantation projects aiming mainly at enhancing carbon sequestration.

  20. Rose bush leaf and internode expansion dynamics: analysis and development of a model capturing interplant variability

    Directory of Open Access Journals (Sweden)

    Sabine eDemotes-Mainard

    2013-10-01

    Full Text Available Bush rose architecture, among other factors, such as plant health, determines plant visual quality. The commercial product is the individual plant and interplant variability may be high within a crop. Thus, both mean plant architecture and interplant variability should be studied. Expansion is an important feature of architecture, but it has been little studied at the level of individual organs in bush roses. We investigated the expansion kinetics of primary shoot organs, to develop a model reproducing the organ expansion of real crops from non destructive input variables. We took interplant variability in expansion kinetics and the model’s ability to simulate this variability into account. Changes in leaflet and internode dimensions over thermal time were recorded for primary shoot expansion, on 83 plants from three crops grown in different climatic conditions and densities. An empirical model was developed, to reproduce organ expansion kinetics for individual plants of a real crop of bush rose primary shoots. Leaflet or internode length was simulated as a logistic function of thermal time. The model was evaluated by cross-validation. We found that differences in leaflet or internode expansion kinetics between phytomer positions and between plants at a given phytomer position were due mostly to large differences in time of organ expansion and expansion rate, rather than differences in expansion duration. Thus, in the model, the parameters linked to expansion duration were predicted by values common to all plants, whereas variability in final size and organ expansion time was captured by input data. The model accurately simulated leaflet and internode expansion for individual plants (RMSEP = 7.3% and 10.2% of final length, respectively. Thus, this study defines the measurements required to simulate expansion and provides the first model simulating organ expansion in rosebush to capture interplant variability.

  1. Structure of the subducted Cocos Plate from locations of intermediate-depth earthquakes

    Science.gov (United States)

    Lomnitz, C.; Rodríguez-Padilla, L. D.; Castaños, H.

    2013-05-01

    Locations of 3,000 earthquakes of 40 to 300 km depth are used to define the 3-D structure of the subducted Cocos Plate under central and southern Mexico. Discrepancies between deep-seated lineaments and surface tectonics are described. Features of particular interest include: (1) a belt of moderate activity at 40 to 80 km depth that parallels the southern boundary of the Mexican Volcanic Plateau; (2) an offset of 150 km across the Isthmus of Tehuantepec where all seismic activity is displaced toward the northeast; (3) three nests of frequent, deep-seated events (80 to 300 km depth) under southern Veracruz, Chiapas and the coast of Mexico-Guatemala. The active subduction process is sharply delimited along a NW-SE lineament from the Yucatan Peninsula, of insignificant earthquake activity. The focal distribution of intermediate-depth earthquakes in south-central Mexico provides evidence of stepwise deepening of the subduction angle along the Trench, starting at 15 degrees under Michoacan-Guerrero to 45 degrees under NW Guatemala. Historical evidence suggests that the hazard to Mexico City from large intermediate-depth earthquakes may have been underestimated.

  2. Dynamic Source Inversion of a M6.5 Intraslab Earthquake in Mexico: Application of a New Parallel Genetic Algorithm

    Science.gov (United States)

    Díaz-Mojica, J. J.; Cruz-Atienza, V. M.; Madariaga, R.; Singh, S. K.; Iglesias, A.

    2013-05-01

    We introduce a novel approach for imaging the earthquakes dynamics from ground motion records based on a parallel genetic algorithm (GA). The method follows the elliptical dynamic-rupture-patch approach introduced by Di Carli et al. (2010) and has been carefully verified through different numerical tests (Díaz-Mojica et al., 2012). Apart from the five model parameters defining the patch geometry, our dynamic source description has four more parameters: the stress drop inside the nucleation and the elliptical patches; and two friction parameters, the slip weakening distance and the change of the friction coefficient. These parameters are constant within the rupture surface. The forward dynamic source problem, involved in the GA inverse method, uses a highly accurate computational solver for the problem, namely the staggered-grid split-node. The synthetic inversion presented here shows that the source model parameterization is suitable for the GA, and that short-scale source dynamic features are well resolved in spite of low-pass filtering of the data for periods comparable to the source duration. Since there is always uncertainty in the propagation medium as well as in the source location and the focal mechanisms, we have introduced a statistical approach to generate a set of solution models so that the envelope of the corresponding synthetic waveforms explains as much as possible the observed data. We applied the method to the 2012 Mw6.5 intraslab Zumpango, Mexico earthquake and determined several fundamental source parameters that are in accordance with different and completely independent estimates for Mexican and worldwide earthquakes. Our weighted-average final model satisfactorily explains eastward rupture directivity observed in the recorded data. Some parameters found for the Zumpango earthquake are: Δτ = 30.2+/-6.2 MPa, Er = 0.68+/-0.36x10^15 J, G = 1.74+/-0.44x10^15 J, η = 0.27+/-0.11, Vr/Vs = 0.52+/-0.09 and Mw = 6.64+/-0.07; for the stress drop

  3. A global outer-rise/outer-trench-slope (OR/OTS) earthquake study

    Science.gov (United States)

    Wartman, J. M.; Kita, S.; Kirby, S. H.; Choy, G. L.

    2009-12-01

    Using improved seismic, bathymetric, satellite gravity and other geophysical data, we investigated the seismicity patterns and focal mechanisms of earthquakes in oceanic lithosphere off the trenches of the world that are large enough to be well recorded at teleseismic distances. A number of prominent trends are apparent, some of which have been previously recognized based on more limited data [1], and some of which are largely new [2-5]: (1) The largest events and the highest seismicity rates tend to occur where Mesozoic incoming plates are subducting at high rates (e.g., those in the western Pacific and the Banda segment of Indonesia). The largest events are predominantly shallow normal faulting (SNF) earthquakes. Less common are reverse-faulting (RF) events that tend to be deeper and to be present along with SNF events where nearby seamounts, seamount chains and other volcanic features are subducting [Seno and Yamanaka, 1996]. Blooms of SNF OR/OTS events usually occur just after and seaward of great interplate thrust (IPT) earthquakes but are far less common after smaller IPT events. (2) Plates subducting at slow rates (Chile, the Ninety East Ridge in Sumatra, and the D’Entrecastaux Ridge in Vanuatu).

  4. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters

    Science.gov (United States)

    Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.

  5. Revised Earthquake Catalog and Relocated Hypocenters Near Fluid Injection Wells and the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico

    Science.gov (United States)

    Edel, S.; Bilek, S. L.; Garcia, K.

    2014-12-01

    Induced seismicity is a class of crustal earthquakes resulting from human activities such as surface and underground mining, impoundment of reservoirs, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground cavities. Within the Permian basin in southeastern New Mexico lies an active area of oil and gas production, as well as the Waste Isolation Pilot Plant (WIPP), a geologic nuclear waste repository located just east of Carlsbad, NM. Small magnitude earthquakes have been recognized in the area for many years, recorded by a network of short period vertical component seismometers operated by New Mexico Tech. However, for robust comparisons between the seismicity patterns and the injection well locations and rates, improved locations and a more complete catalog over time are necessary. We present results of earthquake relocations for this area by using data from the 3-component broadband EarthScope Flexible Array SIEDCAR experiment that operated in the area between 2008-2011. Relocated event locations tighten into a small cluster of ~38 km2, approximately 10 km from the nearest injection wells. The majority of events occurred at 10-12 km depth, given depth residuals of 1.7-3.6 km. We also present a newly developed more complete catalog of events from this area by using a waveform cross-correlation algorithm and the relocated events as templates. This allows us to detect smaller magnitude events that were previously undetected with the short period network data. The updated earthquake catalog is compared with geologic maps and cross sections to identify possible fault locations. The catalog is also compared with available well data on fluid injection and production. Our preliminary results suggest no obvious connection between seismic moment release, fluid injection, or production given the available monthly industry data. We do see evidence in the geologic and well data of previously unidentified faults in the area.

  6. Earthquake Triggering in the September 2017 Mexican Earthquake Sequence

    Science.gov (United States)

    Fielding, E. J.; Gombert, B.; Duputel, Z.; Huang, M. H.; Liang, C.; Bekaert, D. P.; Moore, A. W.; Liu, Z.; Ampuero, J. P.

    2017-12-01

    Southern Mexico was struck by four earthquakes with Mw > 6 and numerous smaller earthquakes in September 2017, starting with the 8 September Mw 8.2 Tehuantepec earthquake beneath the Gulf of Tehuantepec offshore Chiapas and Oaxaca. We study whether this M8.2 earthquake triggered the three subsequent large M>6 quakes in southern Mexico to improve understanding of earthquake interactions and time-dependent risk. All four large earthquakes were extensional despite the the subduction of the Cocos plate. The traditional definition of aftershocks: likely an aftershock if it occurs within two rupture lengths of the main shock soon afterwards. Two Mw 6.1 earthquakes, one half an hour after the M8.2 beneath the Tehuantepec gulf and one on 23 September near Ixtepec in Oaxaca, both fit as traditional aftershocks, within 200 km of the main rupture. The 19 September Mw 7.1 Puebla earthquake was 600 km away from the M8.2 shock, outside the standard aftershock zone. Geodetic measurements from interferometric analysis of synthetic aperture radar (InSAR) and time-series analysis of GPS station data constrain finite fault total slip models for the M8.2, M7.1, and M6.1 Ixtepec earthquakes. The early M6.1 aftershock was too close in time and space to the M8.2 to measure with InSAR or GPS. We analyzed InSAR data from Copernicus Sentinel-1A and -1B satellites and JAXA ALOS-2 satellite. Our preliminary geodetic slip model for the M8.2 quake shows significant slip extended > 150 km NW from the hypocenter, longer than slip in the v1 finite-fault model (FFM) from teleseismic waveforms posted by G. Hayes at USGS NEIC. Our slip model for the M7.1 earthquake is similar to the v2 NEIC FFM. Interferograms for the M6.1 Ixtepec quake confirm the shallow depth in the upper-plate crust and show centroid is about 30 km SW of the NEIC epicenter, a significant NEIC location bias, but consistent with cluster relocations (E. Bergman, pers. comm.) and with Mexican SSN location. Coulomb static stress

  7. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California.

    Science.gov (United States)

    Lee, Ya-Ting; Turcotte, Donald L; Holliday, James R; Sachs, Michael K; Rundle, John B; Chen, Chien-Chih; Tiampo, Kristy F

    2011-10-04

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M ≥ 4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most "successful" in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts.

  8. Physical Observations of the Tsunami during the September 8th 2017 Tehuantepec, Mexico Earthquake

    Science.gov (United States)

    Ramirez-Herrera, M. T.; Corona, N.; Ruiz-Angulo, A.; Melgar, D.; Zavala-Hidalgo, J.

    2017-12-01

    The September 8th 2017, Mw8.2 earthquake offshore Chiapas, Mexico, is the largest earthquake recorded history in Chiapas since 1902. It caused damage in the states of Oaxaca, Chiapas and Tabasco; it had more than 100 fatalities, over 1.5 million people were affected, and 41,000 homes were damaged in the state of Chiapas alone. This earthquake, a deep intraplate event on a normal fault on the oceanic subducting plate, generated a tsunami recorded at several tide gauge stations in Mexico and on the Pacific Ocean. Here we report the physical effects of the tsunami on the Chiapas coast and analyze the societal implications of this tsunami on the basis of our field observations. Tide gauge data indicate 11.3 and 8.2 cm of coastal subsidence at Salina Cruz and Puerto Chiapas stations. The associated tsunami waves were recorded first at Salina Cruz tide gauge station at 5:13 (GMT). We covered ground observations along 41 km of the coast of Chiapas, encompassing the sites with the highest projected wave heights based on the preliminary tsunami model (maximum tsunami amplitudes between -94.5 and -93.0 W). Runup and inundation distances were measured with an RTK GPS and using a Sokkia B40 level along 8 sites. We corrected runup data with estimated astronomical tide levels at the time of the tsunami. The tsunami occurred at low tide. The maximum runup was 3 m at Boca del Cielo, and maximum inundation distance was 190 m in Puerto Arista, corresponding to the coast directly opposite the epicenter and in the central sector of the Gulf of Tehuantepec. In general, our field data agree with the predicted results from the preliminary tsunami model. Tsunami scour and erosion was evident on the Chiapas coast. Tsunami deposits, mainly sand, reached up to 32 cm thickness thinning landwards up to 172 m distance. Even though the Mexican tsunami early warning system (CAT) issued several warnings, the tsunami arrival struck the Chiapas coast prior to the arrival of official warnings to the

  9. Characteristic of the postseismic deformation following the 2011 Sanriku-Oki earthquake (Mw 7.2) by comparing the 1989 and 1992 Sanriku-Oki events

    Science.gov (United States)

    Ohta, Yusaku; Hino, Ryota; Ariyoshi, Keisuke; Matsuzawa, Toru; Mishina, Masaaki; Sato, Tadahiro; Tachibana, Kenji; Demachi, Tomotsugu; Miura, Satoshi

    2013-04-01

    The March 11, 2011, moment magnitude (Mw) 9.0 Tohoku earthquake (hereafter referred to as the mainshock) generated a large tsunami, which caused devastating damage and the loss of more than 15,800 lives. On March 9, 2011 at 2:45 (UTC), an M7.3 interplate earthquake (hereafter referred to as the foreshock) occurred ~45 km northeast of the epicenter of the Mw9.0 mainshock. The focal mechanism estimated by the National Research Institute for Earth Science and Disaster Prevention (NIED) incorporates reverse fault motion with a west-northwest to east-southeast compression axis. This foreshock preceded the 2011 Tohoku earthquake by 51 h. Kato et al. [Science, 2012] pointed out aftershock migration after the foreshock along the trench axis toward the epicenter of the Mw9.0 mainshock on the basis of an earthquake catalog, which was created using a waveform correlation technique. They also estimated aseismic slip amount by the repeating earthquake analysis. Ohta et al. [GRL, 2012] proposed a coseismic and postseismic afterslip model of the foreshock based on a GPS network and ocean bottom pressure gauge sites. The estimated coseismic slip and afterslip areas show complementary spatial distributions. The slip amount for the afterslip is roughly consistent with that determined by repeating earthquake analysis carried out by Kato et al. [2012]. Ohta et al. [2012] also pointed out a volumetric strainmeter time series suggests that this event advanced with a rapid decay time constant compared with other typical large earthquakes. For verification of this exception, we investigated the postseismic deformation characteristic following the 1989 and 1992 Sanriku-Oki earthquake, which occurred 100-150 km north of the epicenter of the 2011 Sanriku-Oki event. We used four components extensometer of the Tohoku University at Miyako (39.59N, 141.98E) on the Sanriku coast for these events. To extract the characteristics of the postseismic deformation, we fitted the logarithmic function

  10. Revisiting Slow Slip Events Occurrence in Boso Peninsula, Japan, Combining GPS Data and Repeating Earthquakes Analysis

    Science.gov (United States)

    Gardonio, B.; Marsan, D.; Socquet, A.; Bouchon, M.; Jara, J.; Sun, Q.; Cotte, N.; Campillo, M.

    2018-02-01

    Slow slip events (SSEs) regularly occur near the Boso Peninsula, central Japan. Their time of recurrence has been decreasing from 6.4 to 2.2 years from 1996 to 2014. It is important to better constrain the slip history of this area, especially as models show that the recurrence intervals could become shorter prior to the occurrence of a large interplate earthquake nearby. We analyze the seismic waveforms of more than 2,900 events (M≥1.0) taking place in the Boso Peninsula, Japan, from 1 April 2004 to 4 November 2015, calculating the correlation and the coherence between each pair of events in order to define groups of repeating earthquakes. The cumulative number of repeating earthquakes suggests the existence of two slow slip events that have escaped detection so far. Small transient displacements observed in the time series of nearby GPS stations confirm these results. The detection scheme coupling repeating earthquakes and GPS analysis allow to detect small SSEs that were not seen before by classical methods. This work brings new information on the diversity of SSEs and demonstrates that the SSEs in Boso area present a more complex history than previously considered.

  11. Geomorphological and geological property of short active fault in fore-arc region of Japan

    International Nuclear Information System (INIS)

    Sasaki, Toshinori; Inoue, Daiei; Ueta, Keiichi; Miyakoshi, Katsuyoshi

    2009-01-01

    The important issue in the earthquake magnitude evaluation method is the classification of short active faults or lineaments. It is necessary to determine the type of active fault to be included in the earthquake magnitude evaluation. The particular group of fault is the surface earthquake faults that are presumed to be branched faults of large interplate earthquakes in subduction zones. We have classified short lineaments in two fore-arc regions of Japan through geological and geomorphological methods based on field survey and aerial photograph interpretation. The first survey is conducted at Enmeiji Fault in Boso Peninsula. The fault is known to have been displaced by 1923 Taisho Kanto earthquake. The altitude distributions of marine terrace surfaces are different on both sides of the fault. In other words, this fault has been displaced repeatedly by the large interplate earthquakes in the past. However, the recurrent interval of this fault is far longer than the large interplate earthquake calculated by the slip rate and the displacement per event. The second survey is conducted in the western side of Muroto Peninsula, where several short lineaments are distributed. We have found several fault outcrops along the few, particular lineaments. The faults in the region have similar properties to Enmeiji Fault. On the other hand, short lineaments are found to be structural landforms. The comparison of the two groups enables us to classify the short lineaments based on the geomorphological property and geological cause of these faults. Displacement per event is far larger than displacement deduced from length of the active fault. Recurrence interval of the short active fault is far longer than that of large interplate earthquake. Displacement of the short active fault has cumulative. The earthquake magnitude of the faults have these characters need to be evaluated by the plate boundary fault or the long branched seismogenic fault. (author)

  12. Effect of earthquake and tsunami. Ground motion and tsunami observed at nuclear power station

    International Nuclear Information System (INIS)

    Hijikata, Katsuichirou

    2012-01-01

    Fukushima Daiichi and Daini Nuclear Power Stations (NPSs) were struck by the earthquake off the pacific coast in the Tohoku District, which occurred at 14:46 on March 11, 2011. Afterwards, tsunamis struck the Tohoku District. In terms of the earthquake observed at the Fukushima NPSs, the acceleration response spectra of the earthquake movement observed on the basic board of reactor buildings exceeded the acceleration response spectra of the response acceleration to the standard seismic ground motion Ss for partial periodic bands at the Fukushima Daiichi NPS. As for the Fukushima Daini NPS, the acceleration response spectra of the earthquake movement observed on the basic board of the reactor buildings was below the acceleration response spectra of the response acceleration to the standard seismic ground motion Ss. Areas inundated by Tsunami at each NPS were investigated and tsunami inversion analysis was made to build tsunami source model to reproduce tide record, tsunami height, crustal movement and inundated area, based on tsunami observation records in the wide areas from Hokkaido to Chiba prefectures. Tsunami heights of Fukushima Daiichi and Daini NPSs were recalculated as O.P. +13m and +9m respectively and tsunami peak height difference was attributed to the extent of superposition of tsunami waves of tsunami earthquake type of wave source in the area along interplane trench off the coast in the Fukushima prefecture and interplane earthquake type of wave source in rather deep interplate area off the coast in the Miyagi prefecture. (T. Tanaka)

  13. The 2007 Mentawai earthquake sequence on the Sumatra megathrust

    Science.gov (United States)

    Konca, A.; Avouac, J.; Sladen, A.; Meltzner, A. J.; Kositsky, A. P.; Sieh, K.; Fang, P.; Li, Z.; Galetzka, J.; Genrich, J.; Chlieh, M.; Natawidjaja, D. H.; Bock, Y.; Fielding, E. J.; Helmberger, D. V.

    2008-12-01

    The Sumatra Megathrust has recently produced a flurry of large interplate earthquakes starting with the giant Mw 9.15, Aceh earthquake of 2004. All of these earthquakes occurred within the area monitored by the Sumatra Geodetic Array (SuGAr), which provided exceptional records of near-field co-seismic and postseismic ground displacements. The most recent of these major earthquakes, an Mw 8.4 earthquake and an Mw 7.9 earthquake twelve hours later, occurred in the Mentawai islands area where devastating historical earthquakes had happened in 1797 and 1833. The 2007 earthquake sequence provides an exceptional opportunity to understand the variability of the earthquakes along megathrusts and their relation to interseismic coupling. The InSAR, GPS and teleseismic modeling shows that 2007 earthquakes ruptured a fraction of the strongly coupled Mentawai patch of the megathrust, which is also only a fraction of the 1833 rupture area. It also released a much smaller moment than the one released in 1833, or than the deficit of moment that has accumulated since. Both earthquakes of 2007 consist of 2 sub-events which are 50 to 100 km apart from each other. On the other hand, the northernmost slip patch of 8.4 and southern slip patch of 7.9 earthquakes abut each other, but they ruptured 12 hours apart. Sunda megathrust earthquakes of recent years include a rupture of a strongly coupled patch that closely mimics a prior rupture of that patch and which is well correlated with the interseismic coupling pattern (Nias-Simeulue section), as well as a rupture sequence of a strongly coupled patch that differs substantially in the details from its most recent predecessors (Mentawai section). We conclude that (1) seismic asperities are probably persistent features which arise form heterogeneous strain build up in the interseismic period; and (2) the same portion of a megathrust can rupture in different ways depending on whether asperities break as isolated events or cooperate to produce

  14. Mexican Earthquakes and Tsunamis Catalog Reviewed

    Science.gov (United States)

    Ramirez-Herrera, M. T.; Castillo-Aja, R.

    2015-12-01

    Today the availability of information on the internet makes online catalogs very easy to access by both scholars and the public in general. The catalog in the "Significant Earthquake Database", managed by the National Center for Environmental Information (NCEI formerly NCDC), NOAA, allows access by deploying tabular and cartographic data related to earthquakes and tsunamis contained in the database. The NCEI catalog is the product of compiling previously existing catalogs, historical sources, newspapers, and scientific articles. Because NCEI catalog has a global coverage the information is not homogeneous. Existence of historical information depends on the presence of people in places where the disaster occurred, and that the permanence of the description is preserved in documents and oral tradition. In the case of instrumental data, their availability depends on the distribution and quality of seismic stations. Therefore, the availability of information for the first half of 20th century can be improved by careful analysis of the available information and by searching and resolving inconsistencies. This study shows the advances we made in upgrading and refining data for the earthquake and tsunami catalog of Mexico since 1500 CE until today, presented in the format of table and map. Data analysis allowed us to identify the following sources of error in the location of the epicenters in existing catalogs: • Incorrect coordinate entry • Place name erroneous or mistaken • Too general data that makes difficult to locate the epicenter, mainly for older earthquakes • Inconsistency of earthquakes and the tsunami occurrence: earthquake's epicenter located too far inland reported as tsunamigenic. The process of completing the catalogs directly depends on the availability of information; as new archives are opened for inspection, there are more opportunities to complete the history of large earthquakes and tsunamis in Mexico. Here, we also present new earthquake and

  15. A Proton Flare Triggered the Mw 8.1 Chiapos Mexican Earthquake

    Science.gov (United States)

    Elfaki, H.; Yousef, S.

    2017-12-01

    In a 2015 Cairo University M.Sc. thesis by Sarah Khodairy, very strong earthquakes were found to be highly correlated with proton flares. Strange blue and green bright flashes of light across Mexico accompanied the 8th of September 2017 Mw 1.8 Chiapas earthquake. Those lights were contemporary with a solar proton flare. Those green and blue lights are indicative of the arrival of proton streams over Mexico and their interaction with atmospheric Oxygen and Nitrogen atoms respectively in analogy with aurora lights. The proton streams attacked the weak spots of tectonic plates where the Coscos plate is being subducted below the North American plate. It is suggested that they induced telluric electric currents in the ground and in the magma thus caused motion and more subduction in the tectonic plates. Such motion immediately trigged the Chiapas earthquake in the near vicinity. The Bz component of the interplanetary magnetic field was highly negative, a door was opened in the magnetosphere and the proton stream easily leaked inside and targeted Mexico. This proton flare was accompanied by coronal mass ejection and extremely strong X.9.3- class X-ray flare as well as magnetic storms. On the other hand, the 19th of September Mw 7.1 Puebla central Mexico earthquake was initiated by fast solar wind coronal hole stream. Such stream if they hit ground they cause earthquakes, if they hit narrow seas like the Red Sea they cause flash floods. However if they target Oceans they initiate hurricanes.

  16. Investigating the March 28th 1875 and the September 20th 1920 earthquakes/tsunamis of the Southern Vanuatu arc, offshore Loyalty Islands, New Caledonia

    Science.gov (United States)

    Ioualalen, Mansour; Pelletier, Bernard; Solis Gordillo, Gabriela

    2017-07-01

    New Caledonia's Loyalty Islands are located in the southwest region of the Pacific ocean in the highly seismogenic southern Vanuatu subduction zone and therefore may be subject to devastating local tsunamis. Over the past 150 years, two large tsunamis were triggered by major earthquakes on March 28th 1875 and September 20th 1920. In this study, we use historical observations of these tsunamis (mostly in the form of testimonials), earthquake scenarios, and tsunami modeling to derive the magnitudes of these earthquakes, as well as tsunami runup and inundation maps. Assuming that these earthquakes were located on the interplate megathrust zone, the 1875 earthquake's magnitude was Mw8.1-8.2 and the 1920 event's magnitude was Mw7.5-7.8. The tsunami damage inflicted on the Lifou and Maré islands was approximately proportional to these magnitudes, with Maré being less impacted due to favorable wave directivity. Damage at Ouvéa island may have varied irregularly with the magnitude due to the effects of resonance. This study demonstrates that the quantitative characteristics of historical tsunamigenic earthquakes may be derived from qualitative estimates of tsunami runup.

  17. The seismogenic zone in the Central Costa Rican Pacific margin: high-quality hypocentres from an amphibious network

    Science.gov (United States)

    Arroyo, Ivonne G.; Husen, Stephan; Flueh, Ernst R.

    2014-10-01

    Transition from subduction of normal to thickened oceanic crust occurs in the central portion of the Costa Rican margin, where large interplate earthquakes ( M ~ 7) and abundant interseismic seismicity have been associated with subduction of bathymetric highs. We relocated ~1,300 earthquakes recorded for 6 months by a combined on- and offshore seismological network using probabilistic earthquake relocation in a 3D P-wave velocity model. Most of the seismicity originated at the seismogenic zone of the plate boundary, appearing as an 18° dipping, planar cluster from 15 to 25-30 km depth, beneath the continental shelf. Several reverse focal mechanisms were resolved within the cluster. The upper limit of this interseismic interplate seismicity seems to be controlled primarily by the overlying-plate thickness and coherency, which in turn is governed by the erosional processes and fluid release and escape at temperatures lower than ~100 to 120 °C along the plate boundary. The downdip limit of the stick-slip behaviour collocates with relative low temperatures of ~150 to 200 °C, suggesting that it is controlled by serpentinization of the mantle wedge. The distribution of the interseismic interplate seismicity is locally modified by the presence of subducted seamounts at different depths. Unlike in northern Costa Rica, rupture of large earthquakes in the last two decades seems to coincide with the area defined by the interseismic interplate seismicity.

  18. Estimation of the seismic hazards of the possible rupture of the Pastores and Venta de Bravo faults in the Acambay grabens, state of Mexico, Mexico, using the Empirical Green's Function Method

    Science.gov (United States)

    Ishizawa, O. A.; Lermo, J.; Aguirre, J.

    2003-04-01

    Even though the majority of earthquakes in Mexico and in the world are in direct relation with the movement of tectonic plates, there are less frequent tremors which take place in the continents, within the plates. This is the case with the earthquakes which occur in Mexico along the Neovolcanic Axis. Despite the fact that these quakes in the Neovolcanic Axis are, in general, of small magnitude, there are occassional events of greater magnitude. For instance, in 1912, an earthquake with an approximate magnitude of M=6.9 took place in Acambay, state of Mexico, 80 km. from Mexico City. The reported damage areas for these earthquakes suggest that they were originated in surface faults probably associated with tensional geological structures which exist in the area (grabens). This region stretches along 400 km. between the cities of Mexico and Guadalajara. The faults are normal, extending tens of kilometers, with a dip of up to 80o and vertical differences of several hundred meters. The faults in this part of the country can be classified as "active" or "potentially active", with an important seismic expression. The faulting, volcanism and seismicity manifested in the region studied constitute geological effects of the more recent tectonic activity of the central part of Mexico. The present activity of these faults represent the major part of the natural hazards (geological hazards) for this region, taking account of its high demographic density make it a zone of great vulnerability. We will be primarily interested in two of the faults which constitute the fault system of the Acambay graben, eastern sector of the Mexican Neovolcanic Axis, at approximately 80 km. northwest of Mexico City: the Pastores fault and the Venta de Bravo fault system. We will estimate the resultant seismic movement at the University campus (CU) station, in Mexico DF, utilizing the record of the main earthquake (M=4.0) of Tlaxcoapan, Hgo., of March 18 1998 and formulating the scenario of the

  19. Analysis of Wedge-like Response in Mexico City during the September 19th, 2017 Puebla-Morelos Earthquake

    Science.gov (United States)

    Baena-Rivera, M.; Sanchez-Sesma, F. J.; Ramirez-Guzman, L.

    2017-12-01

    The September 19th, 2017 Puebla-Morelos earthquake (Mw7.1) caused severe structural and nonstructural damage in Mexico City in the Transition and border of the Lake geotechnical zones. Previously recorded ground motion had not reached similar high intensities. The Transition zone surrounds the base of mountain ranges and is composed of alluvial sands and silts, limited by layers of hard soil of the Hill Zone and highly compressible clay deposits of the Lake Zone. These transition configurations are modeled as dipping layers where the soft sediments progressively thicken away from the edge.We present a preliminary analysis of 2D SH and P-SV dipping layer models with homogeneous and lateral variations that resemble the known structure of the basin. Our results show the emergence of surface waves in the edges, and the spread of the energy, broadening the frequency range as compared to 1D models. The latter is a plausible explanation of the frequency content in the recorded ground motion in sites of observed damage. Acknowledgments: Records used in this research are obtained, processed and maintained by the Seismic Instrumentation Unit of the Institute of Engineering at the National Autonomous University of Mexico. This Project was funded by the Secretaría de Ciencia, Tecnología e Innovación (SECITI) of Mexico City. Project SECITI/073/2016.

  20. August 1973 Veracruz, Mexico Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — South of Veracruz, southeastern Mexico. Damage: Severe. The earthquake caused heavy damage in the states of Morelos, Puebla, and Veracruz. Thousands were left...

  1. Subducted bathymetric features linked to variations in earthquake apparent stress along the northern Japan Trench

    Science.gov (United States)

    Moyer, P. A.; Bilek, S. L.; Phillips, W. S.

    2010-12-01

    Ocean floor bathymetric features such as seamounts and ridges are thought to influence the earthquake rupture process when they enter the subduction zone by causing changes in frictional conditions along the megathrust contact between the subducting and overriding plates. Once subducted, these features have been described as localized areas of heterogeneous plate coupling, with some controversy over whether these features cause an increase or decrease in interplate coupling. Along the northern Japan Trench, a number of bathymetric features, such as horst and graben structures and seamounts, enter the subduction zone where they may vary earthquake behavior. Using seismic coda waves, scattered energy following the direct wave arrivals, we compute apparent stress (a measure of stress drop proportional to radiated seismic energy that has been tied to the strength of the fault interface contact) for 329 intermediate magnitude (3.2 earthquake spectra for path and site effects and compute apparent stress using the seismic moment and corner frequency determined from the spectra. Preliminary results indicate apparent stress values between 0.3 - 22.6 MPa for events over a depth range of 2 - 55 km, similar to those found in other studies of the region although within a different depth range, with variations both along-strike and downdip. Off the Sanriku Coast, horst and graben structures enter the Japan Trench in an area where a large number of earthquakes occur at shallow (< 30 km) depth. These shallow events have a mean apparent stress of 1.2 MPa (range 0.3 - 3.8 MPa) which is approximately 2 times lower then the mean apparent stress for other events along the northern portion of this margin in the same shallow depth range. The relatively low apparent stress for events related to subducting horst and graben structures suggests weak interplate coupling between the subducting and overriding plates due to small, irregular contact zones with these features at depth. This is in

  2. Physical Exposure to Seismic Hazards of Health Facilities in Mexico City, Mexico

    Science.gov (United States)

    Rodriguez, S. M.; Novelo Casanova, D.

    2010-12-01

    Although health facilities are essential infrastructure during disasters and emergencies, they are also usually highly vulnerable installations in the case of the occurrence of large and major earthquakes. Hospitals are one of the most complex critical facilities in modern cities and they are used as first response in emergency situations. The operability of a hospital must be maintained after the occurrence of a local strong earthquake in order to satisfy the need for medical care of the affected population. If a health facility is seriously damaged, it cannot fulfill its function when most is needed. In this case, hospitals become a casualty of the disaster. To identify the level of physical exposure of hospitals to seismic hazards in Mexico City, we analyzed their geographic location with respect to the seismic response of the different type of soils of the city from past earthquakes, mainly from the events that occurred on September 1985 (Ms= 8.0) and April 1989 (Ms= 6.9). Seismic wave amplification in this city is the result of the interaction of the incoming seismic waves with the soft and water saturated clay soils, on which a large part of Mexico City is built. The clay soils are remnants of the lake that existed in the Valley of Mexico and which has been drained gradually to accommodate the growing urban sprawl. Hospital facilities were converted from a simple database of names and locations into a map layer of resources. This resource layer was combined with other map layers showing areas of seismic microzonation in Mexico City. This overlay was then used to identify those hospitals that may be threatened by the occurrence of a large or major seismic event. We analyzed the public and private hospitals considered as main health facilities. Our results indicate that more than 50% of the hospitals are highly exposed to seismic hazards. Besides, in most of these health facilities we identified the lack of preventive measures and preparedness to reduce their

  3. Tectonic feedback and the earthquake cycle

    Science.gov (United States)

    Lomnitz, Cinna

    1985-09-01

    The occurrence of cyclical instabilities along plate boundaries at regular intervals suggests that the process of earthquake causation differs in some respects from the model of elastic rebound in its simplest forms. The model of tectonic feedback modifies the concept of this original model in that it provides a physical interaction between the loading rate and the state of strain on the fault. Two examples are developed: (a) Central Chile, and (b) Mexico. The predictions of earthquake hazards for both types of models are compared.

  4. Nucleation and kinematic rupture of the 2017 Mw 8.2 Chiapas Mexico earthquake

    Science.gov (United States)

    Meng, L.; Huang, H.; Xie, Y.; Feng, T.; Dominguez, L. A.; Han, J.; Davis, P. M.

    2017-12-01

    Integrated geophysical observations from the 2017 Mw 8.2 Oaxaca, Mexico earthquake allow the exploration of one of the largest recorded normal faulting events inside a subducting slab. In this study, we collect seismic data from regional and teleseismic stations, and regional tsunami recordings to better understand the preparation and rupture processes. The mainshock occurred on the steeply dipping plane of a mega-normal fault, confirmed by time reversal analysis of tsunami waves. We utilize a template matching approach to detect possible missing earthquakes within a 2-month period before the Oaxaca mainshock. The seismicity rate (M > 3.7) shows an abrupt increase in the last day within 30 km around the mainshock hypocenter. The largest one is a M 4.6 event with similar normal faulting as the mainshock located at about 18 km updip from the hypocenter. The waveforms of the subsequent foreshocks are not similar, supporting the diversity of their locations or focal mechanisms. The nucleation process can be explained by a cascading process which eventually triggers the mainshock. Back-projection using the USArray network in Alaska reveals that the mainshock rupture propagated northwestward unilaterally at a speed of 3.1 km/s, for about 200 km and terminated near the Tehuantepec Fracture Zone. We also document the tectonic fabric of bending related faulting of the incoming Cocos plate. The mainshock is likely a reactivation of subducted outer rise faults, supported by the similarity of the strike angle between the mainshock and the outer rise faults. The surprisingly large magnitude is consistent with the exceedingly large dimensions of outer rise faulting in this particular segment of the central Mexican trench.

  5. Oceanic Sub-Moho Reflectors in and Around the Segmentation Boundary Between the Tonankai-Nankai Earthquake Area, the Central Nankai Trough

    Science.gov (United States)

    Nakanishi, A.; Kodaira, S.; Miura, S.; Ito, A.; Sato, T.; Park, J.; Obana, K.; Kaneda, Y.

    2006-12-01

    The Nankai Trough is a unique subduction zone because the recurrence intervals of M8 class earthquakes and the segmentation of rupture zones are well documented on the basis of geophysical, geological and historic data. In 2004, large intraslab earthquake (Mw7.5) occurred southeast off the Kii Peninsula, the central Nankai Trough. Recent ocean bottom seismograph observation off the Kii Peninsula shows seismicity concentrated in the oceanic crust and the uppermost mantle. To understand the genesis of such intraslab earthquakes and its relation to large interplate earthquakes as well as to obtain an entire structural image of Nankai Trough subduction seismogenic zone, a wide-angle reflection/refraction survey across the coseismic rupture zone of the Tonankai earthquake was conducted in 2004. This research is part of "Structure research on plate dynamics of the presumed rupture zone of the Tonankai-Nankai Earthquakes" funded by Ministry of Education, Culture, Sports, Science and Technology. The result of structural image shows a bit thicker oceanic crust (>8km) subducting landward, and the existence of oceanic sub-Moho reflectors in the uppermost mantle. The aftershocks of the 2004 off Kii Peninsula earthquake are distributed within the oceanic crust and the uppermantle, which is not consistent with the estimated fault plane of main shock. Comparing the structural image with this aftershock distribution and usual seismicity in the uppermost mantle, the depth of the oceanic sub-Moho reflectors and the intraslab events within the uppermantle are both distributed around 20km. We consider that such sub-Moho reflectors may become a seismic fault of intraslab earthquakes.

  6. Modeling earthquake sequences along the Manila subduction zone: Effects of three-dimensional fault geometry

    Science.gov (United States)

    Yu, Hongyu; Liu, Yajing; Yang, Hongfeng; Ning, Jieyuan

    2018-05-01

    To assess the potential of catastrophic megathrust earthquakes (MW > 8) along the Manila Trench, the eastern boundary of the South China Sea, we incorporate a 3D non-planar fault geometry in the framework of rate-state friction to simulate earthquake rupture sequences along the fault segment between 15°N-19°N of northern Luzon. Our simulation results demonstrate that the first-order fault geometry heterogeneity, the transitional-segment (possibly related to the subducting Scarborough seamount chain) connecting the steeper south segment and the flatter north segment, controls earthquake rupture behaviors. The strong along-strike curvature at the transitional-segment typically leads to partial ruptures of MW 8.3 and MW 7.8 along the southern and northern segments respectively. The entire fault occasionally ruptures in MW 8.8 events when the cumulative stress in the transitional-segment is sufficiently high to overcome the geometrical inhibition. Fault shear stress evolution, represented by the S-ratio, is clearly modulated by the width of seismogenic zone (W). At a constant plate convergence rate, a larger W indicates on average lower interseismic stress loading rate and longer rupture recurrence period, and could slow down or sometimes stop ruptures that initiated from a narrower portion. Moreover, the modeled interseismic slip rate before whole-fault rupture events is comparable with the coupling state that was inferred from the interplate seismicity distribution, suggesting the Manila trench could potentially rupture in a M8+ earthquake.

  7. Analysis of the Source and Ground Motions from the 2017 M8.2 Tehuantepec and M7.1 Puebla Earthquakes

    Science.gov (United States)

    Melgar, D.; Sahakian, V. J.; Perez-Campos, X.; Quintanar, L.; Ramirez-Guzman, L.; Spica, Z.; Espindola, V. H.; Ruiz-Angulo, A.; Cabral-Cano, E.; Baltay, A.; Geng, J.

    2017-12-01

    The September 2017 Tehuantepec and Puebla earthquakes were intra-slab earthquakes that together caused significant damage in broad regions of Mexico, including the states of Oaxaca, Chiapas, Morelos, Puebla, Mexico, and Mexico City. Ground motions in Mexico City have approximately the same angle of incidence from both earthquakes and potentially sample similar paths close to the city. We examine site effects and source terms by analysis of residuals between Ground-Motion Prediction Equations (GMPEs) and observed ground motions for both of these events at stations from the Servicio Sismólogico Nacional, Instituto de Ingeniería, and the Instituto de Geofísica Red del Valle de Mexico networks. GMPEs are a basis for seismic design, but also provide median ground motion values to act as a basis for comparison of individual earthquakes and site responses. First, we invert for finite-fault slip inversions for Tehuantepec with high-rate GPS, static GPS, tide gauge and DART buoy data, and for Puebla with high-rate GPS and strong motion data. Using the distance from the stations with ground motion observations to the derived slip models, we use the GMPEs of Garcia et al. (2005), Zhao et al. (2006), and Abrahamson, Silva and Kamai (2014), to compute predicted values of peak ground acceleration and velocity (PGA and PGV) and response spectral accelerations (SA). Residuals between observed and predicted ground motion parameters are then computed for each recording, and are decomposed into event and site components using a mixed effects regression. We analyze these residuals as an adjustment away from median ground motions in the region to glean information about the earthquake source properties, as well as local site response in and outside of the Mexico City basin. The event and site terms are then compared with available values of stress drop for the two earthquakes, and Vs30 values for the sites, respectively. This analysis is useful in determining which GMPE is most

  8. Use of Fault Displacement Vector to Identify Future Zones of Seismicity: An Example from the Earthquakes of Nepal Himalayas.

    Science.gov (United States)

    Naim, F.; Mukherjee, M. K.

    2017-12-01

    Earthquakes occur due to fault slip in the subsurface. They can occur either as interplate or intraplate earthquakes. The region of study is the Nepal Himalayas that defines the boundary of Indian-Eurasian plate and houses the focus of the most devastating earthquakes. The aim of the study was to analyze all the earthquakes that occurred in the Nepal Himalayas upto May 12, 2015 earthquake in order to mark the regions still under stress and vulnerable for future earthquakes. Three different fault systems in the Nepal Himalayas define the tectonic set up of the area. They are: (1) Main Frontal Thrust(MFT), (2) Main Central Thrust(MCT) and (3) Main Boundary Thrust(MBT) that extend from NW to SE. Most of the earthquakes were observed to occur between the MBT and MCT. Since the thrust faults are dipping towards NE, the focus of most of the earthquakes lies on the MBT. The methodology includes estimating the dip of the fault by considering the depths of different earthquake events and their corresponding distance from the MBT. In order to carry out stress analysis on the fault, the beach ball diagrams associated with the different earthquakes were plotted on a map. Earthquakes in the NW and central region of the fault zone were associated with reverse fault slip while that on the South-Eastern part were associated with a strike slip component. The direction of net slip on the fault associated with the different earthquakes was known and from this a 3D slip diagram of the fault was constructed. The regions vulnerable for future earthquakes in the Nepal Himalaya were demarcated on the 3D slip diagram of the fault. Such zones were marked owing to the fact that the slips due to earthquakes cause the adjoining areas to come under immense stress and this stress is directly proportional to the amount of slip occuring on the fault. These vulnerable zones were in turn projected on the map to show their position and are predicted to contain the epicenter of the future earthquakes.

  9. Forearc Sliver Translation, a Lack of Arc-Normal Strain Accumulation, and Interplate Thrust Earthquakes: GPS Geodesy in Western Nicaragua

    Science.gov (United States)

    Turner, H. L.; Mattioli, G. S.; Jansma, P. E.; Styron, R. H.

    2007-05-01

    We have been investigating the kinematics of the Nicaraguan forearc using campaign GPS measurements of our geodetic network made over the last seven years (Turner et al., 2007). We currently have interseismic velocities for 18 campaign sites and have installed 10 additional sites in the backarc to investigate the nature of the transition from forearc sliver motion to stable Caribbean Plate motion. Our work focusing on the later issue is presented elsewhere at this meeting (Styron et al., 2007). Corrections for modeled coseismic offsets from the Jan. 13, 2001 Mw7.7 earthquake off the coast of El Salvador have been applied to our campaign site velocities. Some of our time-series are also strongly affected by coseismic and postseismic effects of the Oct. 9, 2004 Mw6.9 earthquake off of the coast of Nicaragua. The geodetic effects of this event are being removed from the affected time-series for interseismic velocity analysis. We have also derived interseismic velocities for five continuous GPS sites in the region. Our GPS results confirm previous predictions of northwest transport of a forearc sliver with an average Northwest velocity of ~15 mm yr-1, but show little evidence for an arc- normal component of strain accumulation associated with locking on the subduction interface. However, the amount of seismicity along this section of the Middle America Trench, including several recent large events such as the 1992 Mw7.6 and 2004 Mw6.9 earthquakes, indicates some amount of locking is present. Several possibilities may account for the apparent contradiction between the GPS results and observed seismicity. The locked zone may be too shallow and too far offshore for the arc-normal component to show up in our network, or the arc-normal signal may be masked by post-seismic effects from the 1992 offshore earthquake. If coupling between the downgoing slab and the overriding plate is weak or limited to a small seismogenic zone, then arc-parallel motion of the forearc sliver may

  10. Optimum Sea Surface Displacement and Fault Slip Distribution of the 2017 Tehuantepec Earthquake (Mw 8.2) in Mexico Estimated From Tsunami Waveforms

    Science.gov (United States)

    Gusman, Aditya Riadi; Mulia, Iyan E.; Satake, Kenji

    2018-01-01

    The 2017 Tehuantepec earthquake (Mw 8.2) was the first great normal fault event ever instrumentally recorded to occur in the Middle America Trench. The earthquake generated a tsunami with an amplitude of 1.8 m (height = 3.5 m) in Puerto Chiapas, Mexico. Tsunami waveforms recorded at coastal tide gauges and offshore buoy stations were used to estimate the optimum sea surface displacement without assuming any fault. Our optimum sea surface displacement model indicated that the maximum uplift of 0.5 m is located near the trench and the maximum subsidence of 0.8 m on the coastal side near the epicenter. We then estimated the fault slip distribution that can best explain the optimum sea surface displacement assuming 10 different fault geometries. The best model suggests that a compact region of large slip (3-6 m) extends from a depth of 30 km to 90 km, centered at a depth of 60 km.

  11. A physical model of the Mexico City seismic response after the damaging M7.1 earthquake of September 19, 2017

    Science.gov (United States)

    Cruz-Atienza, V. M.; Tago, J.; Villafuerte, C. D.; Chaljub, E.; Sanabria-Gómez, J. D.

    2017-12-01

    Built-up on top of ancient lake deposits, Mexico City experiences some of the largest seismic site effects in the world. The M7.1 intermediate-depth earthquake of September 19, 2017 (S19) collapsed 43 one-to-ten story buildings in the city close to the western edge of the lake-bed sediments, on top of the geotechnically-known transition zone. In this work we explore the physical reasons explaining such a damaging pattern and the long-lasting strong motion records well-documented from past events by means of new observations and high performance computational modeling. Besides the extreme amplification of seismic waves, duration of intense ground motion in the lake-bed lasts more than three times those recorded in hard-rock a few kilometers away. Different mechanisms contribute to the long lasting motions, such as the regional dispersion and multiple-scattering of the incoming wavefield all the way from the source. However, recent beamforming observations at hard-rock suggest that duration of the incoming field is significantly shorter than the strong shaking in the lake-bed. We show that despite the highly dissipative shallow deposits, seismic energy can propagate long distances in the deep structure of the valley, promoting also a large elongation of motion. Our simulations reveal that the seismic response of the basin is dominated by surface-waves overtones, and that this mechanism increases the duration of ground motion up to 280% and 500% of the incoming wavefield duration at 0.5 and 0.3 Hz, respectively. Furthermore, our results indicate that the damage pattern of the S19 earthquake is most likely due to the propagation of the fundamental mode in the transition zone of the basin. These conclusions contradicts what has been previously stated from observational and modeling investigations, where the basin itself has been discarded as a preponderant factor promoting long and devastating shaking in Mexico City. Reference: Cruz-Atienza, V. M., J. Tago, J. D

  12. Spatial Analysis of the Level of Exposure to Seismic Hazards of Health Facilities in Mexico City, Mexico

    Science.gov (United States)

    Moran, S.; Novelo-Casanova, D. A.

    2011-12-01

    Although health facilities are essential infrastructure during disasters and emergencies, they are also usually highly vulnerable installations in the case of the occurrence of large and major earthquakes. Hospitals are one of the most complex critical facilities in modern cities and they are used as first response in emergency situations. The operability of a hospital must be maintained after the occurrence of a local strong earthquake in order to satisfy the need for medical care of the affected population. If a health facility is seriously damaged, it cannot fulfill its function when most is needed. In this case, hospitals become a casualty of the disaster. To identify the level of physical exposure of hospitals to seismic hazards in Mexico City, we analyzed their geographic location with respect to the seismic response of the different type of soils of the city from past earthquakes, mainly from the events that occurred on September 1985 (Ms= 8.0) and April 1989 (Ms= 6.9). Seismic wave amplification in this city is the result of the interaction of the incoming seismic waves with the soft and water saturated clay soils, on which a large part of Mexico City is built. The clay soils are remnants of the lake that existed in the Valley of Mexico and which has been drained gradually to accommodate the growing urban sprawl. Hospital facilities were converted from a simple database of names and locations into a map layer of resources. This resource layer was combined with other map layers showing areas of seismic microzonation in Mexico City. This overlay was then used to identify those hospitals that may be threatened by the occurrence of a large or major seismic event. We analyzed the public and private hospitals considered as main health facilities. Our results indicate that more than 50% of the hospitals are highly exposed to seismic hazards. Besides, in most of these health facilities we identified the lack of preventive measures and preparedness to reduce their

  13. Intraplate paroxysms

    Science.gov (United States)

    Fonseca, João

    2017-04-01

    Earthquake science received a decisive boost from Reid's elastic rebound model in 1910 and from plate tectonics in the sixties. Both theories highlight the first-order accumulation of elastic strain energy near 2D discontinuities of the material properties of the crust. The second-order process whereby stresses build-up within 3D crustal blocks has remained obscure, because the available seismological data are swamped by interplate events. That notwithstanding, highly destructive earthquakes have originated away from plate boundaries or other previously identified faults. This includes the most destructive earthquake in human history - the Shanxi earthquake of 1556, with 830K fatalities - and more recent events such as the Tangshan earthquake of 1976 with 250K fatalities. In 2012, an intraplate earthquake of magnitude 8.6 provided unprecedented data for this type of phenomenon, revealing striking differences with respect to common observations pertaining to interplate earthquakes. Of paramount relevance is the role of a very complex network of disconnected structures, spreading the moment release over a broad footprint. I propose the name of "intraplate paroxysm" for this type of great (M>8) earthquake, to stress that it has distinctive characteristics, and most likely distinctive nucleation processes that beg investigation. In this paper, I explore the observations that pertain to the 2012 Indian Ocean earthquake to discuss the data concerning the 1755 Lisbon earthquake, arguing that this event must be regarded, at least in part, as an intraplate rupture, and may share some of the features. The need to analyze this class of phenomena without the constraints of the interplate model is highlighted. In particular, magnitude estimation for historical intraplates earthquakes is particularly challenging, possibly because of inadequate premises. I argue that the observations of 1755 do not imply such an extreme moment magnitude as is often adopted (8.5-8.7) if some

  14. Seismology in Mexico

    Science.gov (United States)

    Lomnitz, C.

    1982-01-01

    Mexico is situated at the intersection of four major crustal Plates: the Americas Plate, the Pacific Plate, the Caribbean Plate, and the Cocos Plate. The interaction of these four plates is very complex. The pattern of earthquake risk is, therefore, among the most complicated in the world. The average release of seismic energy each is 55x1021 ergs-more than twice the figure for California. 

  15. The April 2017 M6.7 Botswana Earthquake: Implications for African Intraplate Seismicity.

    Science.gov (United States)

    Gardonio, B.; Calais, E.; Jolivet, R.

    2017-12-01

    The last decades have seen a rapidly increasing number of studies of interplate seismicity, revealing for instance the fundamental relationship between seismic and aseismic slip along plate boundary faults. To the contrary, intraplate earthquakes, occurring far from plate boundaries are still misunderstood and by far less studied. Key questions are the mechanisms through which elastic strain builds up and is released in the seismogenic crust in such contexts, in the absence of (yet) measurable intraplate strain rates. The April 2017 M6.7 Botswana earthquake was a surprise in many ways. This is the largest recorded event that struck this ordinarily seismically quiet region, West to the East-African Rift system where most of the usual southern seismicity occurs. It may also be the largest intraplate event recorded since the 1988 Tennant Creek earthquake in central Australia. No active structure can be mapped at the surface. Active extension related to the east African rifting may occur several hundreds of kilometers to the north-east with low rates of a few mm per year. Closer to the event, the Okavango delta, located at 20° of latitude and 23° of longitude is considered by some as an incipient rift with very low deformation rates, similar to a large part of the southern African continent. Interestingly, seismic activity in the area of the recent Botswana earthquake is more important than the world average intraplate activity, potentially due to rifting to the east and/or large stresses induced by lateral gradients in gravitational potential energy (this part of the world has an altitude of 1000 to 2000 m.). The aim of this study is to better constrain the tectonic setting and the dynamics of the Botswana earthquake area. To do so, we analyze a Sentinel 1 interferogram of the event to constrain the strike, dip, depth, magnitude and location of the earthquake. We also analyze continuous teleseismic signals during two months centered on the mainshock using a template

  16. 3D geometry of a plate boundary fault related to the 2016 Off-Mie earthquake in the Nankai subduction zone, Japan

    Science.gov (United States)

    Tsuji, Takeshi; Minato, Shohei; Kamei, Rie; Tsuru, Tetsuro; Kimura, Gaku

    2017-11-01

    We used recent seismic data and advanced techniques to investigate 3D fault geometry over the transition from the partially coupled to the fully coupled plate interface inboard of the Nankai Trough off the Kii Peninsula, Japan. We found that a gently dipping plate boundary décollement with a thick underthrust layer extends beneath the entire Kumano forearc basin. The 1 April 2016 Off-Mie earthquake (Mw6.0) and its aftershocks occurred, where the plate boundary décollement steps down close to the oceanic crust surface. This location also lies beneath the trenchward edge of an older accretionary prism (∼14 Ma) developed along the coast of the Kii peninsula. The strike of the 2016 rupture plane was similar to that of a formerly active splay fault system in the accretionary prism. Thus, the fault planes of the 2016 earthquake and its aftershocks were influenced by the geometry of the plate interface as well as splay faulting. The 2016 earthquake occurred within the rupture area of large interplate earthquakes such as the 1944 Tonankai earthquake (Mw8.1), although the 2016 rupture area was much smaller than that of the 1944 event. Whereas the hypocenter of the 2016 earthquake was around the underplating sequence beneath the younger accretionary prism (∼6 Ma), the 1944 great earthquake hypocenter was close to oceanic crust surface beneath the older accretionary prism. The variation of fault geometry and lithology may influence the degree of coupling along the plate interface, and such coupling variation could hinder slip propagation toward the deeper plate interface in the 2016 event.

  17. Advancing Understanding of Earthquakes by Drilling an Eroding Convergent Margin

    Science.gov (United States)

    von Huene, R.; Vannucchi, P.; Ranero, C. R.

    2010-12-01

    A program of IODP with great societal relevance is sampling and instrumenting the seismogenic zone. The zone generates great earthquakes that trigger tsunamis, and submarine slides thereby endangering coastal communities containing over sixty percent of the earth’s population. To asses and mitigate this endangerment it is urgent to advance understanding of fault dynamics that allows more timely anticipation of hazardous seismicity. Seismogenesis on accreting and eroding convergent plate boundaries apparently differ because of dissimilar materials along the interplate fault. As the history of instrumentally recorded earthquakes expands the difference becomes clearer. The more homogeneous clay, silt and sand subducted at accreting margins is associated with great earthquakes (M 9) whereas the fragmented upper plate rock that can dominate subducted material along an eroding margin plate interface is associated with many tsunamigenic earthquakes (Bilek, 2010). Few areas have been identified where the seismogenic zone can be reached with scientific drilling. In IODP accreting margins are studied on the NanTroSeize drill transect off Japan where the ultimate drilling of the seismogenic interface may occur by the end of IODP. The eroding Costa Rica margin will be studied in CRISP where a drill program will begin in 2011. The Costa Rican geophysical site survey will be complete with acquisition and processing of 3D seismic data in 2011 but the entire drilling will not be accomplished in IODP. It is appropriate that the accreting margin study be accomplished soon considering the indications of a pending great earthquake that will affect a country that has devoted enormous resources to IODP. However, understanding the erosional end-member is scientifically as important to an understanding of fault mechanics. Transoceanic tsunamis affect the entire Pacific rim where most subduction zones are eroding margins. The Costa Rican subduction zone is less complex operationally and

  18. Introduction: seismology and earthquake engineering in Mexico and Central and South America.

    Science.gov (United States)

    Espinosa, A.F.

    1982-01-01

    The results from seismological studies that are used by the engineering community are just one of the benefits obtained from research aimed at mitigating the earthquake hazard. In this issue of Earthquake Information Bulletin current programs in seismology and earthquake engineering, seismic networks, future plans and some of the cooperative programs with different internation organizations are described by Latin-American seismologists. The article describes the development of seismology in Latin America and the seismological interest of the OAS. -P.N.Chroston

  19. A new Proposal to Mexico Valley Zonification

    Science.gov (United States)

    Flores-Estrella, H. C.; Yussim, S.; Lomnitz, C.

    2004-12-01

    The effects of the Michoacan earthquake (19th September, 1985, Mw 8.1) in Mexico City caused a significant change in the political, social and scientific history, as it was considered the worst seismic disaster ever lived in Mexico. Since then, numerous efforts have been made to understand and determine the parameters that caused the special features registered. One of these efforts had began on 1960 with the work by Marsal and Masari, who published the Mexico Valley seismological and geotechnical zonification (1969), based on gravimetric and shallow borehole data. In this work, we present a revision of the studies that proposed the zonification, a description of the valley geology, and basing on it we propose a new zonification for Mexico Valley.

  20. The Engineering Strong Ground Motion Network of the National Autonomous University of Mexico

    Science.gov (United States)

    Velasco Miranda, J. M.; Ramirez-Guzman, L.; Aguilar Calderon, L. A.; Almora Mata, D.; Ayala Hernandez, M.; Castro Parra, G.; Molina Avila, I.; Mora, A.; Torres Noguez, M.; Vazquez Larquet, R.

    2014-12-01

    The coverage, design, operation and monitoring capabilities of the strong ground motion program at the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM) is presented. Started in 1952, the seismic instrumentation intended initially to bolster earthquake engineering projects in Mexico City has evolved into the largest strong ground motion monitoring system in the region. Today, it provides information not only to engineering projects, but also to the near real-time risk mitigation systems of the country, and enhances the general understanding of the effects and causes of earthquakes in Mexico. The IE network includes more than 100 free-field stations and several buildings, covering the largest urban centers and zones of significant seismicity in Central Mexico. Of those stations, approximately one-fourth send the observed acceleration to a processing center in Mexico City continuously, and the rest require either periodic visits for the manual recovery of the data or remote interrogation, for later processing and cataloging. In this research, we document the procedures and telecommunications systems used systematically to recover information. Additionally, we analyze the spatial distribution of the free-field accelerographs, the quality of the instrumentation, and the recorded ground motions. The evaluation criteria are based on the: 1) uncertainty in the generation of ground motion parameter maps due to the spatial distribution of the stations, 2) potential of the array to provide localization and magnitude estimates for earthquakes with magnitudes greater than Mw 5, and 3) adequacy of the network for the development of Ground Motion Prediction Equations due to intra-plate and intra-slab earthquakes. We conclude that the monitoring system requires a new redistribution, additional stations, and a substantial improvement in the instrumentation and telecommunications. Finally, we present an integral plan to improve the current network

  1. Geological Deformations and Potential Hazards Triggered by the 01-12-2010 Haiti Earthquake: Insights from Google Earth Imagery

    Science.gov (United States)

    Doblas, M.; Benito, B.; Torres, Y.; Belizaire, D.; Dorfeuille, J.; Aretxabala, A.

    2013-05-01

    In this study we compare the different Google Earth imagery (GEI) available before and after the 01-12-2010 earthquake of Haiti and carry out a detailed analysis of the superficial seismic-related geological deformations in the following sites: 1) the capital Port-Au-Prince and other cities (Carrefour and Gresslier); 2) the mountainous area of the Massif de la Selle which is transected by the "Enriquillo-Plaintain-Garden" (EPG) interplate boundary-fault (that supposedly triggered the seism); 3) some of the most important river channels and their corresponding deltas (Momanche, Grise and Frorse). The initial results of our researches were published in March 2010 in a special web page created by the scientific community to try to mitigate the devastating effects of this catastrophe (http://supersites.earthobservations.org/haiti.php). Six types of superficial geological deformations triggered by the seismic event have been identified with the GEI: liquefaction structures, chaotic rupture zones, coastal and domal uplifts, river-delta turnovers, faults/ruptures and landslides. Potential geological hazards triggered by the Haiti earthquake include landslides, inundations, reactivation of active tectonic elements (e.g., fractures), river-delta turnovers, etc. We analyzed again the GEI after the rain period and, as expected, most of the geological deformations that we initially identified had been erased and/or modified by the water washout or buried by the sediments. In this sense the GEI constitutes an invaluable instrument in the analysis of seismic geological hazards: we still have the possibility to compare all the images before and after the seism that are recorded in its useful "time tool". These are in fact the only witnesses of most of the geological deformations triggered by the Haiti earthquake that remain stored in the virtual archives of the GEI. In fact a field trip to the area today would be useless as most of these structures have disappeared. We will show

  2. Is the Central America forearc sliver part of the North America plate?

    Science.gov (United States)

    Guzman-Speziale, M.

    2012-04-01

    The Central America Forearc sliver is located between the Central America volcanic arc and the Middle America trench. Several authors have suggested that the forearc is being displaced to the northwest with respect to the Caribbean plate; they point to right-lateral, normal-faulting earthquakes along the Central America volcanic arc as prime evidence of this displacement. Apparently, the forearc continues to the northwest into southeastern Mexico, although this portion of the forearc is not being displaced. I present evidence that suggests that the forearc indeed continues into southeastern Mexico and that it belongs to the North America plate. Physiographically, there is a continuity of the forearc into the Coastal plains of southeastern (Chiapas) Mexico, across the Motagua and Polochic faults. Offshore, cross-sections of the Middle America trench are similar along the mexican (Chiapas) segment, and the Central American segment. Furthermore, at the northwestern end of the coastal plain there are no compressive structures, which suggests that the coastal plain is not being displaced to the northwest. As a matter of fact, fault-plane solutions for shallow earthquakes show extension rather than compression. Shallow, interplate earthquakes along the trench show similar parameters along both segments. P-axes and earthquake slip vectors have consistent azimuths, which relate better with Cocos-North America convergence than with Cocos-Caribbean. Azimuth of T-axes for normal-faulting earthquakes also agree well with Cocos-North America convergence. Similarity in several parameters is thus found across both segments, the Chiapas coastal plain and the Central America forearc sliver proper. This suggests that both segments are continuous and probably one and the same, and belonging to the North America plate. Perhaps more properly, the forearc sliver extends into southeastern Mexico and is part of the zone of deformation associated to the Cocos-North America-Caribbean plates

  3. Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean

    Science.gov (United States)

    Yolsal-Çevikbilen, Seda; Taymaz, Tuncay

    2012-04-01

    values (Δσ < 30 bars) for all earthquakes implying typically interplate seismic activity in the region. Further, results of numerical simulations verified that damaging historical tsunamis along the Hellenic subduction zone are able to threaten especially the coastal plains of Crete and Rhodes islands, SW Turkey, Cyprus, Levantine, and Nile Delta-Egypt regions. Thus, we tentatively recommend that special care should be considered in the evaluation of the tsunami risk assessment of the Eastern Mediterranean region for future studies.

  4. Structural Damage in Mexico City

    OpenAIRE

    Hall, John F.; Beck, James L.

    1986-01-01

    This paper describes the structural damage in Mexico City caused by the September 19, 1985 earthquake. Photographs which illustrate various features of structural behavior are included. One explanation is presented as to why buildings with fundamental periods of elastic vibration considerably below the predominant two‐second period of the ground motion were most vulnerable to damage.

  5. The 2013 Crete (Hellenic Arc) Earthquake Sequence

    Science.gov (United States)

    Karakostas, V. G.; Papadimitriou, E. E.; Vallianatos, F.

    2014-12-01

    The western Hellenic Arc is a well known place of active interplate deformation, where the convergence motion vector is perpendicular to the subduction front. On 12 October 2013 this area was hit by a strong (Mw=6.7) earthquake, occurred on a thrust fault onto the coupled part of the overriding and descending plates, with the compression axis being oriented in the direction of plate convergence. This was the first strong (M>6.0) event to have occurred onto this segment of the descending slab, which has accommodated the largest (M8.3) known earthquake in the Mediterranean area, and to be recorded by the Hellenic Unified Seismological Network (HUSN) that has been considerably improved in the last five years. The first 2-days relocated seismicity shows activation of the upper part of the descending slab, downdip of the plate interface and forming a relatively narrow aftershock area on map view. The less densely visited by aftershocks area, where the main shock is also encompassed, is considered as the high-slip area along the downdip portion of the subducting plane. Dense concentration of the intraslab aftershocks are probably due to the increase of static stress generated by the main shock. A spectacular feature of the aftershock activity concerns the lateral extension of the slipped area, which appears very sharply defined. This provides evidence on localized coupling and aseismically creeping areas, explaining the low coupling ratio in the Hellenic Arc, as it derives from comparison between relative plate motion and seismic energy release. Elucidating the issue of how far the associated large-slip zone might be extended along the plate interface during the main rupture is crucial in assessing future earthquake hazards from subduction events in the study area. This research has been co-funded by the European Union (European Social Fund) and Greek national resources under the framework of the "THALES Program: SEISMO FEAR HELLARC" project.

  6. ON STRUCTURED AND DIFFUSE SEISMICITY, STIFFNESS OF EARTHQUAKE FOCI, AND NONLINEARITY OF MAGNITUDE RECURRENCE GRAPHS

    Directory of Open Access Journals (Sweden)

    Evgeny G. Bugaev

    2011-01-01

    Full Text Available Geological, geophysical and seismogeological studies are now conducted in a more detail and thus provide for determining seismic sources with higher accuracy, from the first meters to first dozens of meters [Waldhauser, Schaff, 2008]. It is now possible to consider uncertainty ellipses of earthquake hypocenters, that are recorded in the updated Earthquake Catalogue, as surfaces of earthquake focus generators. In our article, it is accepted that a maximum horizontal size of an uncertainty ellipse corresponds to an area of a focus generator, and seismic events are thus classified into two groups, earthquakes with nonstiff and stiff foci. Criteria of such a classification are two limits of elastic strain and brittle strain in case of uniaxial (3⋅10–5 or omnidirectional (10–6 compression. The criteria are established from results of analyses of parameters of seismic dislocations and earthquake foci with regard to studies of surface parameters and deformation parameters of fault zones. It is recommendable that the uniaxial compression criterion shall be applied to zones of interaction between tectonic plates, and the unilateral compression criterion shall be applied to low active (interplate areas. Sample cases demonstrate the use of data sets on nonstiff and stiff foci for separate evaluation of magnitude reoccurrence curves, analyses of structured and dissipated seismicity, review of the physical nature of nonlinearity of recurrence curves and conditions of preparation of strong earthquakes. Changes of parameters of the recurrence curves with changes of data collection square areas are considered. Reviewed are changes of parameters of the recurrence curves during preparation for the Japan major earthquake of 11 March 2011 prior to and after the major shock. It is emphasized that it is important to conduct even more detailed geological and geophysical studies and to improve precision and sensitivity of local seismological monitoring networks

  7. Large early afterslip following the 1995/10/09 Mw 8 Jalisco, Mexico earthquake

    Science.gov (United States)

    Hjörleifsdóttir, Vala; Sánchez Reyes, Hugo Samuel; Ruiz-Angulo, Angel; Ramirez-Herrera, Maria Teresa; Castillo-Aja, Rosío; Krishna Singh, Shri; Ji, Chen

    2017-04-01

    The behaviour of slip close to the trench during earthquakes is not well understood, with some earthquakes breaking only the near trench area, most earthquakes breaking only the deeper part of the fault interface, whereas a few break both simultaneously. Observations of multiple earthquakes breaking different down dip segments of the same subduction segment are rare. The 1995 Mw 8 Jalisco earthquake, seems to have broken the near trench area, as evidenced by anomalously small accelerations for its size, the excitation of a tsunami, a small Ms relative to Mw and a small ratio between the radiated energy and moment (Pacheco et al 1997). However, slip models obtained using GPS campaign data, indicate slip near shore (Melbourne et al 1997, Hutton et al 2001). We invert tele seismic P- and S-waves, Rayleigh and Love waves, as well as the static offsets measured by campaign GPS models, to obtain the slip distribution on the fault as a function of time, during the earthquake. We confirm that the slip models obtained using only seismic data are most consistent with slip near the trench, whereas those obtained using only GPS data are consistent with slip closer to the coast. We find remarkable similarity with models of other researchers (Hutton et al 2001, Mendoza et al 1999) using the same datasets, even though the slip distributions from each dataset are almost complementary. To resolve this inconsistency we jointly invert the datasets. However, we find that the joint inversions do not produce adequate fits to both seismic and GPS data. Furthermore, we model tsunami observations on the coast, to constrain further the plausible slip models. Assuming that the discrepancy stems from slip that occurred within the time window between the campaign GPS measurements, but not during the earthquake, we model the residual displacements by very localised slip on the interface down dip from the coseismic slip. Aftershocks (Pacheco et al 1997) align on mostly between the non

  8. Characterizing the Temporal and Spatial Distribution of Earthquake Swarms in the Puerto Rico - Virgin Island Block

    Science.gov (United States)

    Hernandez, F. J.; Lopez, A. M.; Vanacore, E. A.

    2017-12-01

    The presence of earthquake swarms and clusters in the north and northeast of the island of Puerto Rico in the northeastern Caribbean have been recorded by the Puerto Rico Seismic Network (PRSN) since it started operations in 1974. Although clusters in the Puerto Rico-Virgin Island (PRVI) block have been observed for over forty years, the nature of their enigmatic occurrence is still poorly understood. In this study, the entire seismic catalog of the PRSN, of approximately 31,000 seismic events, has been limited to a sub-set of 18,000 events located all along north of Puerto Rico in an effort to characterize and understand the underlying mechanism of these clusters. This research uses two de-clustering methods to identify cluster events in the PRVI block. The first method, known as Model Independent Stochastic Declustering (MISD), filters the catalog sub-set into cluster and background seismic events, while the second method uses a spatio-temporal algorithm applied to the catalog in order to link the separate seismic events into clusters. After using these two methods, identified clusters were classified into either earthquake swarms or seismic sequences. Once identified, each cluster was analyzed to identify correlations against other clusters in their geographic region. Results from this research seek to : (1) unravel their earthquake clustering behavior through the use of different statistical methods and (2) better understand the mechanism for these clustering of earthquakes. Preliminary results have allowed to identify and classify 128 clusters categorized in 11 distinctive regions based on their centers, and their spatio-temporal distribution have been used to determine intra- and interplate dynamics.

  9. Evidence for Ancient Mesoamerican Earthquakes

    Science.gov (United States)

    Kovach, R. L.; Garcia, B.

    2001-12-01

    Evidence for past earthquake damage at Mesoamerican ruins is often overlooked because of the invasive effects of tropical vegetation and is usually not considered as a casual factor when restoration and reconstruction of many archaeological sites are undertaken. Yet the proximity of many ruins to zones of seismic activity would argue otherwise. Clues as to the types of damage which should be soughtwere offered in September 1999 when the M = 7.5 Oaxaca earthquake struck the ruins of Monte Alban, Mexico, where archaeological renovations were underway. More than 20 structures were damaged, 5 of them seriously. Damage features noted were walls out of plumb, fractures in walls, floors, basal platforms and tableros, toppling of columns, and deformation, settling and tumbling of walls. A Modified Mercalli Intensity of VII (ground accelerations 18-34 %b) occurred at the site. Within the diffuse landward extension of the Caribbean plate boundary zone M = 7+ earthquakes occur with repeat times of hundreds of years arguing that many Maya sites were subjected to earthquakes. Damage to re-erected and reinforced stelae, walls, and buildings were witnessed at Quirigua, Guatemala, during an expedition underway when then 1976 M = 7.5 Guatemala earthquake on the Motagua fault struck. Excavations also revealed evidence (domestic pttery vessels and skeleton of a child crushed under fallen walls) of an ancient earthquake occurring about the teim of the demise and abandonment of Quirigua in the late 9th century. Striking evidence for sudden earthquake building collapse at the end of the Mayan Classic Period ~A.D. 889 was found at Benque Viejo (Xunantunich), Belize, located 210 north of Quirigua. It is argued that a M = 7.5 to 7.9 earthquake at the end of the Maya Classic period centered in the vicinity of the Chixoy-Polochic and Motagua fault zones cound have produced the contemporaneous earthquake damage to the above sites. As a consequences this earthquake may have accelerated the

  10. Homogenization and implementation of a 3D regional velocity model in Mexico for its application in moment tensor inversion of intermediate-magnitude earthquakes

    Science.gov (United States)

    Rodríguez Cardozo, Félix; Hjörleifsdóttir, Vala; Caló, Marco

    2017-04-01

    Moment tensor inversions for intermediate and small earthquakes (M. < 4.5) are challenging as they principally excite relatively short period seismic waves that interact strongly with local heterogeneities. Incorporating detailed regional 3D velocity models permits obtaining realistic synthetic seismograms and recover the seismic source parameters these smaller events. Two 3D regional velocity models have recently been developed for Mexico, using surface waves and seismic noise tomography (Spica et al., 2016; Gaite et al., 2015), which could be used to model the waveforms of intermediate magnitud earthquakes in this region. Such models are parameterized as layered velocity profiles and for some of the profiles, the velocity difference between two layers are considerable. The "jump" in velocities between two layers is inconvenient for some methods and algorithms that calculate synthetic waveforms, in particular for the method that we are using, the spectral element method (SPECFEM3D GLOBE, Komatitsch y Tromp, 2000), when the mesh does not follow the layer boundaries. In order to make the velocity models more easily implementec in SPECFEM3D GLOBE it is neccesary to apply a homogenization algorithm (Capdeville et al., 2015) such that the (now anisotropic) layer velocities are smoothly varying with depth. In this work, we apply a homogenization algorithm to the regional velocity models in México for implementing them in SPECFEM3D GLOBE, calculate synthetic waveforms for intermediate-magnitude earthquakes in México and invert them for the seismic moment tensor.

  11. Source and path characteristics of earthquakes occurring off the Kii peninsula

    International Nuclear Information System (INIS)

    Shiba, Yoshiaki; Sato, Hiroaki

    2007-01-01

    The characteristics of strong ground motions during the 2004 off the Kii peninsula earthquake sequence are examined based on the records observed on the rock outcrops. These events, including the foreshock of M JMA 7.1, the main shock of M JMA 7.4, and the largest aftershock of M JMA 6.5, are all the intra-plate earthquakes occurring in the outer rise region of the Philippine Sea plate close to the Nankai-Trough. Very large long-period ground motions are observed in sedimentary basins far from source area during the foreshock and the main shock, however, the excitation of short-period motions agrees well with the empirical relations assuming the inter-plate or inland events, rather than the intra-plate ones. Furthermore the spectral inversion analysis exhibits the Q s values beneath the Kii peninsula region are higher than average ones estimated at other areas in Japan, due to relatively long propagating path through the high-Q oceanic plate. The local site effects derived from the spectral inversion analysis correspond to the residual spectra in the rock-outcrop site, and also to the one-dimensional amplification function based on the PS logging data in the KiK-net site with S-wave velocity at basement higher than 2.2 km/s. Finally we verified that the amplitude levels of acceleration source spectra in the shorter periods of the Kii-peninsula events distribute near the empirical relationships to the seismic moments. (author)

  12. A systematic investigation into b values prior to coming large earthquakes

    Science.gov (United States)

    Nanjo, K.; Yoshida, A.

    2017-12-01

    The Gutenberg-Richter law for frequency-magnitude distribution of earthquakes is now well established in seismology. The b value, the slope of the distribution, is supposed to reflect heterogeneity of seismogenic region (e.g. Mogi 1962) and development of interplate coupling in subduction zone (e.g. Nanjo et al., 2012; Tormann et al. 2015). In the laboratory as well as in the Earth's crust, the b value is known to be inversely dependent on differential stresses (Scholz 1968, 2015). In this context, the b value could serve as a stress meter to help locate asperities, the highly-stressed patches, in fault planes where large rupture energy is released (e.g. Schorlemmer & Wiemer 2005). However, it still remains uncertain whether the b values of events prior to coming large earthquakes are always low significantly. To clarify this issue, we conducted a systematic investigation into b values prior to large earthquakes in the Japanese Mainland. Since no physical definition of mainshock, foreshock, and aftershock is known, we simply investigated b values of the events with magnitudes larger than the lower-cutoff magnitude, Mc, prior to earthquakes equal to or larger than a threshold magnitude, Mth, where Mth>Mc. Schorlemmer et al. (2005) showed that the b value for different fault types differs significantly, which is supposed to reflect the feature that the fracture stress depends on fault types. Therefore, we classified fault motions into normal, strike-slip, and thrust types based on the mechanism solution of earthquakes, and computed b values of events associated with each fault motion separately. We found that the target events (M≥Mth) and the events that occurred prior to the target events both show a common systematic change in b: normal faulting events have the highest b values, thrust events the lowest and strike-slip events intermediate values. Moreover, we found that the b values for the prior events (M≥Mc) are significantly lower than the b values for the

  13. Tsunami Source Inversion Using Tide Gauge and DART Tsunami Waveforms of the 2017 Mw8.2 Mexico Earthquake

    Science.gov (United States)

    Adriano, Bruno; Fujii, Yushiro; Koshimura, Shunichi; Mas, Erick; Ruiz-Angulo, Angel; Estrada, Miguel

    2018-01-01

    On September 8, 2017 (UTC), a normal-fault earthquake occurred 87 km off the southeast coast of Mexico. This earthquake generated a tsunami that was recorded at coastal tide gauge and offshore buoy stations. First, we conducted a numerical tsunami simulation using a single-fault model to understand the tsunami characteristics near the rupture area, focusing on the nearby tide gauge stations. Second, the tsunami source of this event was estimated from inversion of tsunami waveforms recorded at six coastal stations and three buoys located in the deep ocean. Using the aftershock distribution within 1 day following the main shock, the fault plane orientation had a northeast dip direction (strike = 320°, dip = 77°, and rake =-92°). The results of the tsunami waveform inversion revealed that the fault area was 240 km × 90 km in size with most of the largest slip occurring on the middle and deepest segments of the fault. The maximum slip was 6.03 m from a 30 × 30 km2 segment that was 64.82 km deep at the center of the fault area. The estimated slip distribution showed that the main asperity was at the center of the fault area. The second asperity with an average slip of 5.5 m was found on the northwest-most segments. The estimated slip distribution yielded a seismic moment of 2.9 × 10^{21} Nm (Mw = 8.24), which was calculated assuming an average rigidity of 7× 10^{10} N/m2.

  14. Recurrent slow slip events as a barrier to the northward rupture propagation of the 2016 Pedernales earthquake (Central Ecuador)

    Science.gov (United States)

    Vaca, Sandro; Vallée, Martin; Nocquet, Jean-Mathieu; Battaglia, Jean; Régnier, Marc

    2018-01-01

    The northern Ecuador segment of the Nazca/South America subduction zone shows spatially heterogeneous interseismic coupling. Two highly coupled zones (0.4° S-0.35° N and 0.8° N-4.0° N) are separated by a low coupled area, hereafter referred to as the Punta Galera-Mompiche Zone (PGMZ). Large interplate earthquakes repeatedly occurred within the coupled zones in 1958 (Mw 7.7) and 1979 (Mw 8.1) for the northern patch and in 1942 (Mw 7.8) and 2016 (Mw 7.8) for the southern patch, while the whole segment is thought to have rupture during the 1906 Mw 8.4-8.8 great earthquake. We find that during the last decade, the PGMZ has experienced regular and frequent seismic swarms. For the best documented sequence (December 2013-January 2014), a joint seismological and geodetic analysis reveals a six-week-long Slow Slip Event (SSE) associated with a seismic swarm. During this period, the microseismicity is organized into families of similar earthquakes spatially and temporally correlated with the evolution of the aseismic slip. The moment release (3.4 × 1018 Nm, Mw 6.3), over a 60 × 40 km area, is considerably larger than the moment released by earthquakes (5.8 × 1015 Nm, Mw 4.4) during the same time period. In 2007-2008, a similar seismic-aseismic episode occurred, with higher magnitudes both for the seismic and aseismic processes. Cross-correlation analyses of the seismic waveforms over a 15 years-long period further suggest a 2-year repeat time for seismic swarms, which also implies that SSEs recurrently affect this area. Such SSEs contribute to release the accumulated stress, likely explaining why the 2016 Pedernales earthquake did not propagate northward into the PGMZ.

  15. Reassessment of the 1892 Laguna Salada Earthquake: Fault Kinematics and Rupture Patterns

    Czech Academy of Sciences Publication Activity Database

    Rockwell, T.K.; Fletcher, J.M.; Teran, O.J.; Hernandez, A.P.; Mueller, K.J.; Salisbury, J.B.; Akciz, S.O.; Štěpančíková, Petra

    2015-01-01

    Roč. 105, č. 6 (2015), s. 2885-2893 ISSN 0037-1106 R&D Projects: GA MŠk LH12078 Institutional support: RVO:67985891 Keywords : paleoseismology * earthquake s * fault kinematics * Laguna Salada * Mexico Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.311, year: 2015

  16. Far-field tsunami of 2017 Mw 8.1 Tehuantepec, Mexico earthquake recorded by Chilean tide gauge network: Implications for tsunami warning systems

    Science.gov (United States)

    González-Carrasco, J. F.; Benavente, R. F.; Zelaya, C.; Núñez, C.; Gonzalez, G.

    2017-12-01

    The 2017 Mw 8.1, Tehuantepec earthquake generated a moderated tsunami, which was registered in near-field tide gauges network activating a tsunami threat state for Mexico issued by PTWC. In the case of Chile, the forecast of tsunami waves indicate amplitudes less than 0.3 meters above the tide level, advising an informative state of threat, without activation of evacuation procedures. Nevertheless, during sea level monitoring of network we detect wave amplitudes (> 0.3 m) indicating a possible change of threat state. Finally, NTWS maintains informative level of threat based on mathematical filtering analysis of sea level records. After 2010 Mw 8.8, Maule earthquake, the Chilean National Tsunami Warning System (NTWS) has increased its observational capabilities to improve early response. Most important operational efforts have focused on strengthening tide gauge network for national area of responsibility. Furthermore, technological initiatives as Integrated Tsunami Prediction and Warning System (SIPAT) has segmented the area of responsibility in blocks to focus early warning and evacuation procedures on most affected coastal areas, while maintaining an informative state for distant areas of near-field earthquake. In the case of far-field events, NTWS follow the recommendations proposed by Pacific Tsunami Warning Center (PTWC), including a comprehensive monitoring of sea level records, such as tide gauges and DART (Deep-Ocean Assessment and Reporting of Tsunami) buoys, to evaluate the state of tsunami threat in the area of responsibility. The main objective of this work is to analyze the first-order physical processes involved in the far-field propagation and coastal impact of tsunami, including implications for decision-making of NTWS. To explore our main question, we construct a finite-fault model of the 2017, Mw 8.1 Tehuantepec earthquake. We employ the rupture model to simulate a transoceanic tsunami modeled by Neowave2D. We generate synthetic time series at

  17. Large earthquake rupture process variations on the Middle America megathrust

    Science.gov (United States)

    Ye, Lingling; Lay, Thorne; Kanamori, Hiroo

    2013-11-01

    The megathrust fault between the underthrusting Cocos plate and overriding Caribbean plate recently experienced three large ruptures: the August 27, 2012 (Mw 7.3) El Salvador; September 5, 2012 (Mw 7.6) Costa Rica; and November 7, 2012 (Mw 7.4) Guatemala earthquakes. All three events involve shallow-dipping thrust faulting on the plate boundary, but they had variable rupture processes. The El Salvador earthquake ruptured from about 4 to 20 km depth, with a relatively large centroid time of ˜19 s, low seismic moment-scaled energy release, and a depleted teleseismic short-period source spectrum similar to that of the September 2, 1992 (Mw 7.6) Nicaragua tsunami earthquake that ruptured the adjacent shallow portion of the plate boundary. The Costa Rica and Guatemala earthquakes had large slip in the depth range 15 to 30 km, and more typical teleseismic source spectra. Regional seismic recordings have higher short-period energy levels for the Costa Rica event relative to the El Salvador event, consistent with the teleseismic observations. A broadband regional waveform template correlation analysis is applied to categorize the focal mechanisms for larger aftershocks of the three events. Modeling of regional wave spectral ratios for clustered events with similar mechanisms indicates that interplate thrust events have corner frequencies, normalized by a reference model, that increase down-dip from anomalously low values near the Middle America trench. Relatively high corner frequencies are found for thrust events near Costa Rica; thus, variations along strike of the trench may also be important. Geodetic observations indicate trench-parallel motion of a forearc sliver extending from Costa Rica to Guatemala, and low seismic coupling on the megathrust has been inferred from a lack of boundary-perpendicular strain accumulation. The slip distributions and seismic radiation from the large regional thrust events indicate relatively strong seismic coupling near Nicoya, Costa

  18. Wave-Wave Coupling and Disasters: The 1985 Mexico Earthquake and the 2001 WTC Collapse

    Science.gov (United States)

    Lomnitz, C.

    2002-12-01

    Wave-wave coupling occurs in the presence of weak nonlinearity. It can generate quite dramatic, unexpected effects. In the 1985 earthquake disaster in Mexico City more than 400 high-rise buildings collapsed on soft ground with a loss of life of around 10,000. The emergence of a large, monochromatic, coherent ground wave was an unforeseen factor. Linear modeling failed to reproduce the main features of this signal including the prominent spectral peak close to the resonant frequency of the high-rise buildings, and an extremely long time duration (more than five minutes). The signal was apparently due to coupling of a fundamental Rayleigh mode to the quarter-wavelength shear resonance in the surface mud layer through their common frequency at 0.4 Hz. An additional unexpected feature was the low attenuation of these modes in the mud layer, and the presence of prograde particle motion. Prograde rotation, though not necessarily caused by nonlinear effects, will couple with structural modes of vibration that tend to destabilize a tall building, much like a tall ship in ocean waves. Such unanticipated features may play a critical role in earthquake disasters on soft ground. A related case is the World Trade Center disaster of 11 September 2001, which was presumed to be due to gradual heat softening of steel girders. If so, the Twin Towers should have leaned over sideways but actually the collapse occurred vertically and quite suddenly. A likely alternative is coupling between a fireball caused by a phase transition between low- and high-oxygen consumption modes in burning jet fuel: (low-oxygen) 2CnH2n+2 + (n+1)O2 = nC2 + (2n+2)H2O, (1) (high-oxygen) 2CnH2n+2 + (3n+1)O2 = 2nCO2 + (2n+2)H2O, (2) and a pressure pulse propagating vertically inside the tubular structure. The pulse would have taken out the concrete floors, thus initiating collapse by implosion of the structural shell. Linear thinking may fail to anticipate coupling, and thus appropriate preventive measures may

  19. Detection of Repeating Earthquakes within the Cascadia Subduction Zone Using 2013-2014 Cascadia Initiative Amphibious Network Data

    Science.gov (United States)

    Kenefic, L.; Morton, E.; Bilek, S.

    2017-12-01

    It is well known that subduction zones create the largest earthquakes in the world, like the magnitude 9.5 Chile earthquake in 1960, or the more recent 9.1 magnitude Japan earthquake in 2011, both of which are in the top five largest earthquakes ever recorded. However, off the coast of the Pacific Northwest region of the U.S., the Cascadia subduction zone (CSZ) remains relatively quiet and modern seismic instruments have not recorded earthquakes of this size in the CSZ. The last great earthquake, a magnitude 8.7-9.2, occurred in 1700 and is constrained by written reports of the resultant tsunami in Japan and dating a drowned forest in the U.S. Previous studies have suggested the margin is most likely segmented along-strike. However, variations in frictional conditions in the CSZ fault zone are not well known. Geodetic modeling indicates that the locked seismogenic zone is likely completely offshore, which may be too far from land seismometers to adequately detect related seismicity. Ocean bottom seismometers, as part of the Cascadia Initiative Amphibious Network, were installed directly above the inferred seismogenic zone, which we use to better detect small interplate seismicity. Using the subspace detection method, this study looks to find new seismogenic zone earthquakes. This subspace detection method uses multiple previously known event templates concurrently to scan through continuous seismic data. Template events that make up the subspace are chosen from events in existing catalogs that likely occurred along the plate interface. Corresponding waveforms are windowed on the nearby Cascadia Initiative ocean bottom seismometers and coastal land seismometers for scanning. Detections that are found by the scan are similar to the template waveforms based upon a predefined threshold. Detections are then visually examined to determine if an event is present. The presence of repeating event clusters can indicate persistent seismic patches, likely corresponding to

  20. Crustal deformation and seismic measurements in the region of McDonald Observatory, West Texas. [Texas and Northern Chihuahua, Mexico

    Science.gov (United States)

    Dorman, H. J.

    1981-01-01

    The arrival times of regional and local earthquakes and located earthquakes in the Basin and Range province of Texas and in the adjacent areas of Chihuahua, Mexico from January 1976 to August 1980 at the UT'NASA seismic array are summarized. The August 1931 Texas earthquake is reevaluated and the seismicity and crustal structure of West Texas is examined. A table of seismic stations is included.

  1. Slow slip events in Guerrero, Mexico, and consequences on strain accumulation over the past 15 years.

    Science.gov (United States)

    Radiguet, M.; Cotton, F.; Cavalié, O.; Pathier, E.; Kostoglodov, V.; Vergnolle, M.; Campillo, M.; Walpersdorf, A.; Cotte, N.; Santiago, J.; Franco, S.

    2012-12-01

    Continuous Global Positioning System (cGPS) time series in Guerrero, Mexico, reveal the widespread existence of large Slow Slip Events (SSEs) at the boundary between the Cocos and North American plates. The existence of these SSEs asks the question of how seismic and aseismic slips complement each other in subduction zones. We examined the last three SSEs that occurred in 2001/2002, 2006 and 2009/2010, and their impact on the strain accumulation along the Guerrero subduction margin. We use continuous cGPS time series and InSAR images to evaluate the surface displacement during SSEs and inter-SSE periods. The slip distributions on the plate interface associated with each SSE, as well as the inter-SSE (short-term) coupling rates are evaluated by inverting these surface displacements. Our results reveal that the three analyzed SSEs have equivalent moment magnitudes of around 7.5 and their lateral extension is variable.The slip distributions for the three SSEs show that in the Guerrero gap area, the slow slip occurs at shallower depth (updip limit around 15-20 km) than in surrounding regions. The InSAR data provide additional information for the 2006 SSE. The joint inversion of InSAR and cGPS data confirms the lateral variation of the slip distribution along the trench, with shallower slip in the Guerrero seismic gap, west of Acapulco, and deeper slip further east. Inversion of inter-SSE displacement rates reveal that during the inter-SSE time intervals, the interplate coupling is high in the area where the slow slip subsequently occurs. Over a 12 year period, corresponding to three cycles of SSEs, our results reveal that the accumulated slip deficit in the Guerrero gap area is only ¼ of the slip deficit accumulated on both sides of the gap. Moreover, the regions of large slip deficit coincide with the rupture areas of recent large earthquakes. We conclude that the SSEs account for a major portion of the overall moment release budget in the Guerrero gap. If large

  2. Identifying Intraplate Mechanism by B-Value Calculations in the South of Java Island

    Science.gov (United States)

    Bagus Suananda Y., Ida; Aufa, Irfan; Harlianti, Ulvienin

    2018-03-01

    Java is the most populous island in Indonesia with 50 million people live there. This island geologically formed at the Eurasia plate margin by the subduction of the Australian oceanic crust. At the south part of Java, beside the occurrence of 2-plate convergence earthquake (interplate), there are also the activities of the intraplate earthquake. Research for distinguish this 2 different earthquake type is necessary for estimating the behavior of the earthquake that may occur. The aim of this research is to map the b-value in the south of Java using earthquake data from 1963 until 2008. The research area are divided into clusters based on the epicenter mapping results with magnitude more than 4 and three different depth (0-30 km, 30-60 km, 60-100 km). This location clustering indicate group of earthquakes occurred by the same structure or mechanism. On some cluster in the south of Java, b-value obtained are between 0.8 and 1.25. This range of b-value indicates the region was intraplate earthquake zone, with 0.72-1.2 b-value range is the indication of intraplate earthquake zone. The final validation is to determine the mechanism of a segment done by correlating the epicenter and b-value plot with the available structural geology data. Based on this research, we discover that the earthquakes occur in Java not only the interplate earthquake, the intraplate earthquake also occurred here. By identifying the mechanism of a segment in the south of Java, earthquake characterization that may occur can be done for developing the accurate earthquake disaster mitigation system.

  3. First measurements by the DEMETER satellite of ionospheric perturbations associated with earthquakes

    International Nuclear Information System (INIS)

    Blecki, J.; Slominski, J.; Wronowski, R.; Parrot, M.; Lagoutte, D.; Brochot, J.-Y.

    2005-01-01

    DEMETER is a French project of a low altitude microsatellite. Its main scientific goals are to study the ionospheric perturbations related to the seismic and volcanic activity and the Earth's electromagnetic environment. The payload of the DEMETER microsatellite allows to measure waves and also some important plasma parameters (ion composition, electron density and temperature, energetic particles). The launch of the satellite was done by the Ukrainian rocket Dnepr from Baikonour on June 29, 2004. The regular measurements started in the middle of July. Since the beginning of the data gathering some earthquakes with magnitude M>6 were registered. The analysis of the data has been done for selected passes of DEMETER over the epicenters. The results of the measurements for two Earthquakes- one during the pass 5 days before Japanese Earthquake (23.10.2004) and the second one just 3 minutes after Mexico Earthquake (9.09.04) will be shown. (author)

  4. Electromagnetic attenuation of eight earthquakes registered in Mexico using FFT-based spectrum and t-test statistical analysis for ULF Q-R ratios signals

    Directory of Open Access Journals (Sweden)

    Omar Chavez

    2016-07-01

    Full Text Available A method to improve the detection of seismo-magnetic signals is presented herein. Eight events registered for periods of 24 hours with seismic activity were analyzed and compared with non-seismic periods of the same duration. The distance between the earthquakes (EQs and the ultra-low frequency detector is of  ρ = (1.8 100.45M, where M is the magnitude of the EQ reported by the Seismological National Service of Mexico, in a period of three years. An improved fast Fourier transform analysis in the form of the ratio of the vertical magnetic field component to the horizontal one (Q = Bz/Bx has been developed. There are important differences between the frequencies obtained during the days of seismic activity compared with those with no seismic activity.

  5. GPS Time Series Analysis of Southern California Associated with the 2010 M7.2 El Mayor/Cucapah Earthquake

    Science.gov (United States)

    Granat, Robert; Donnellan, Andrea

    2011-01-01

    The Magnitude 7.2 El-Mayor/Cucapah earthquake the occurred in Mexico on April 4, 2012 was well instrumented with continuous GPS stations in California. Large Offsets were observed at the GPS stations as a result of deformation from the earthquake providing information about the co-seismic fault slip as well as fault slip from large aftershocks. Information can also be obtained from the position time series at each station.

  6. Seismotectonic framework of the 2010 February 27 Mw 8.8 Maule, Chile earthquake sequence

    Science.gov (United States)

    Hayes, Gavin P.; Bergman, Eric; Johnson, Kendra J.; Benz, Harley M.; Brown, Lucy; Meltzer, Anne S.

    2013-01-01

    After the 2010 Mw 8.8 Maule earthquake, an international collaboration involving teams and instruments from Chile, the US, the UK, France and Germany established the International Maule Aftershock Deployment temporary network over the source region of the event to facilitate detailed, open-access studies of the aftershock sequence. Using data from the first 9-months of this deployment, we have analyzed the detailed spatial distribution of over 2500 well-recorded aftershocks. All earthquakes have been relocated using a hypocentral decomposition algorithm to study the details of and uncertainties in both their relative and absolute locations. We have computed regional moment tensor solutions for the largest of these events to produce a catalogue of 465 mechanisms, and have used all of these data to study the spatial distribution of the aftershock sequence with respect to the Chilean megathrust. We refine models of co-seismic slip distribution of the Maule earthquake, and show how small changes in fault geometries assumed in teleseismic finite fault modelling significantly improve fits to regional GPS data, implying that the accuracy of rapid teleseismic fault models can be substantially improved by consideration of existing fault geometry model databases. We interpret all of these data in an integrated seismotectonic framework for the Maule earthquake rupture and its aftershock sequence, and discuss the relationships between co-seismic rupture and aftershock distributions. While the majority of aftershocks are interplate thrust events located away from regions of maximum co-seismic slip, interesting clusters of aftershocks are identified in the lower plate at both ends of the main shock rupture, implying internal deformation of the slab in response to large slip on the plate boundary interface. We also perform Coulomb stress transfer calculations to compare aftershock locations and mechanisms to static stress changes following the Maule rupture. Without the

  7. Intermediate-depth earthquakes within young Cocos plate beneath Central Mexico: A hypothesis test for dehydration embrittlement and shear instability

    Science.gov (United States)

    Song, T.

    2010-12-01

    Subducting slab undergoes a series of dehydration reactions on their ways into the mantle and these processes are responsible for transporting water, recycling volatiles and chemical elements in arc magmas. It is generally accepted that the SOC is hydrated. However, it is not clear if subducting oceanic mantle (SOM) is hydrated and how deep the hydration is. Seismic refraction studies found that normal-fault type faulting can extend 12-20 km deep into the interior of the slab off Nicaragua, suggesting deep hydration of the SOM. Seismic refraction studies also found that the uppermost SOM is seismically slow and is partially serpentinized. The fluids released from dehydration inside the SOM can reduce the normal stress locally and facilitate the occurrences of intra-slab events through dehydration embrittlement and hydraulic fracture. It has been suggested that the dehydration of antigorite at about 600C is particularly important in facilitating the lower plane of the double seismic zone. To link the dehydration process to the occurrences of intra-slab events, it is critical to clarify where these events are located, either located at the dehydration boundary or in the neighborhood rocks. However, if the SOM is anhydrous, other mechanism, such as shear instabilities, has to be invoked to explain the occurrences of intermediate-depth intraslab earthquakes. Here I discuss locations of intermediate-depth intraslab earthquakes in Central Mexico subduction zone, where young Cocos plate subducts beneath North America plate. Recent studies involving local converted wave modeling and receiver function analysis indicate the presence of an ultra-slow velocity layer (USL) of about 3 km thick, likely an over-pressured upper oceanic crust. Most events display anomalously large converted SP waves that are 2-2.5 secs after direct P waves and finite difference modeling converge the location of these events about 9 km below the lower boundary USL. With a lower oceanic crust of about

  8. Three Kanto Earthquakes Inferred from the Tsunami Deposits and the Relative Sea Level Change in the Miura Peninsula, Central Japan

    Science.gov (United States)

    Kim, H.; Shimazaki, K.; Chiba, T.; Ishibe, T.; Okamura, M.; Matsuoka, H.; Tsuji, Y.; Satake, K.

    2010-12-01

    The Kanto earthquake is a great interplate earthquake caused by subduction of the Philippine Sea Plate beneath the Japan Island along the Sagami Trough. The 1923 Kanto earthquake (M=7.9) and the 1703 Kanto earthquake (M~8.0) are two of the most devastating earthquake those struck Tokyo Metropolitan area, respectively. These earthquakes brought large (~5 m) tsunami to the coast area and uplifted the Miura peninsula by ~1.4 m. The tide gauge station, moreover, records the subsidence during the interseismic period before and after the 1923 earthquake. Present study clarifies the past Kanto earthquake prior to the 1703 earthquake based on the sedimentary analysis in the Koajiro bay of the southern Miura Peninsula. The continuous samples of inner bay fine sediments were taken by the boring survey using 3-m-long geoslicer. Three layers of coarse sediments, T1, T2, and T3 units from top toward bottom, are observed in the bay sediments at almost all the sites. These units are composed of mixture of materials such as shell fragments, rock clasts and gravel, and some of units have eroded the lower fine sediments, indicating the event deposits by the strong traction flow. The grain sizes of the bay sediments are grading upward and abruptly become larger after the deposition of the T1, T2 and T3 units. Very little diatom is observed in these units, but the total number of diatoms increase in the bay sediments. The ratio of the marine planktonic species against the benthic species gradually rises from the lower part to the upper part in the bay sediment. In the tidal flat sediment, the freshwater planktonic species appear in place of the marine planktonic diatom. The changes of grain size and diatom species make a presumption that the sea depth suddenly becomes shallow by the event and deeper during the interseismic period. The T1, T2 and T3 units, thus, are correlated with the tsunami deposits conveyed by the Kanto earthquake. The T1 and T2 units are inferred to be the tsunami

  9. Microearthquake detection at 2012 M4.9 Qiaojia earthquake source area , the north of the Xiaojiang Fault in Yunnan, China

    Science.gov (United States)

    Li, Y.; Yang, H.; Zhou, S.; Yan, C.

    2016-12-01

    We perform a comprehensive analysis in Yunnan area based on continuous seismic data of 38 stations of Qiaojia Network in Xiaojiang Fault from 2012.3 to 2015.2. We use an effective method: Match and Locate (M&L, Zhang&Wen, 2015) to detect and locate microearthquakes to conduct our research. We first study dynamic triggering around the Xiaojiang Fault in Yunnan. The triggered earthquakes are identified as two impulsive seismic arrivals in 2Hz-highpass-filtered velocity seismograms during the passage of surface waves of large teleseismic earthquakes. We only find two earthquakes that may have triggered regional earthquakes through inspecting their spectrograms: Mexico Mw7.4 earthquake in 03/20/2012 and El Salvador Mw7.3 earthquake in 10/14/2014. To confirm the two earthquakes are triggered instead of coincidence, we use M&L to search if there are any repeating earthquakes. The result of the coefficients shows that it is a coincidence during the surface waves of El Salvador earthquake and whether 2012 Mexico have triggered earthquake is under discussion. We then visually inspect the 2-8Hz-bandpass-filterd velocity envelopes of these years to search for non-volcanic tremor. We haven't detected any signals similar to non-volcanic tremors yet. In the following months, we are going to study the 2012 M4.9 Qiaojia earthquake. It occurred only 30km west of the epicenter of the 2014 M6.5 Ludian earthquake. We use Match and Locate (M&L) technique to detect and relocate microearthquakes that occurred 2 days before and 3 days after the mainshock. Through this, we could obtain several times more events than listed in the catalogs provided by NEIC and reduce the magnitude of completeness Mc. We will also detect microearthquakes along Xiaojiang Fault using template earthquakes listed in the catalogs to learn more about fault shape and other properties of Xiaojiang Fault. Analyzing seismicity near Xiaojiang Fault systematically may cast insight on our understanding of the features of

  10. An ongoing earthquake sequence near Dhaka, Bangladesh, from regional recordings

    Science.gov (United States)

    Howe, M.; Mondal, D. R.; Akhter, S. H.; Kim, W.; Seeber, L.; Steckler, M. S.

    2013-12-01

    Earthquakes in and around the syntaxial region between the continent-continent collision of the Himalayan arc and oceanic subduction of the Sunda arc result primarily from the convergence of India and Eurasia-Sunda plates along two fronts. The northern front, the convergence of the Indian and Eurasian plates, has produced the Himalayas. The eastern front, the convergence of the Indian and Sunda plates, ranges from ocean-continent subduction at the Andaman Arc and Burma Arc, and transitions to continent-continent collision to the north at the Assam Syntaxis in northeast India. The India-Sunda convergence at the Burma Arc is extremely oblique. The boundary-normal convergence rate is ~17 mm/yr while the boundary-parallel rate is ~45 mm/yr including the well-known Sagaing strike-slip fault, which accommodates about half the shear component. This heterogeneous tectonic setting produces multiple earthquake sources that need to be considered when assessing seismic hazard and risk in this region. The largest earthquakes, just as in other subduction systems, are expected to be interplate events that occur on the low-angle megathrusts, such as the Mw 9.2 2004 Sumatra-Andaman earthquake and the 1762 earthquake along the Arakan margin. These earthquakes are known to produce large damage over vast areas, but since they account for large fault motions they are relatively rare. The majority of current seismicity in the study area is intraplate. Most of the seismicity associated with the Burma Arc subduction system is in the down-going slab, including the shallow-dipping part below the megathrust flooring the accretionary wedge. The strike of the wedge is ~N-S and Dhaka lies at its outer limit. One particular source relevant to seismic risk in Dhaka is illuminated by a multi-year sequence of earthquakes in Bangladesh less than 100 km southeast of Dhaka. The population in Dhaka (now at least 15 million) has been increasing dramatically due to rapid urbanization. The vulnerability

  11. S-wave attenuation in northeastern Sonora, Mexico, near the faults that ruptured during the earthquake of 3 May 1887 Mw 7.5.

    Science.gov (United States)

    Villalobos-Escobar, Gina P; Castro, Raúl R

    2014-01-01

    We used a new data set of relocated earthquakes recorded by the Seismic Network of Northeastern Sonora, Mexico (RESNES) to characterize the attenuation of S-waves in the fault zone of the 1887 Sonora earthquake (M w 7.5). We determined spectral attenuation functions for hypocentral distances (r) between 10 and 140 km using a nonparametric approach and found that in this fault zone the spectral amplitudes decay slower with distance at low frequencies (f < 4 Hz) compared to those reported in previous studies in the region using more distant recordings. The attenuation functions obtained for 23 frequencies (0.4 ≤ f ≤ 63.1 Hz) permit us estimating the average quality factor Q S  = (141 ± 1.1 )f ((0.74 ± 0.04)) and a geometrical spreading term G(r) = 1/r (0.21). The values of Q estimated for S-wave paths traveling along the fault system that rupture during the 1887 event, in the north-south direction, are considerably lower than the average Q estimated using source-station paths from multiple stations and directions. These results indicate that near the fault zone S waves attenuate considerably more than at regional scale, particularly at low frequencies. This may be the result of strong scattering near the faults due to the fractured upper crust and higher intrinsic attenuation due to stress concentration near the faults.

  12. Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities.

    Science.gov (United States)

    Gorzelak, Monika A; Asay, Amanda K; Pickles, Brian J; Simard, Suzanne W

    2015-05-15

    Adaptive behaviour of plants, including rapid changes in physiology, gene regulation and defence response, can be altered when linked to neighbouring plants by a mycorrhizal network (MN). Mechanisms underlying the behavioural changes include mycorrhizal fungal colonization by the MN or interplant communication via transfer of nutrients, defence signals or allelochemicals. We focus this review on our new findings in ectomycorrhizal ecosystems, and also review recent advances in arbuscular mycorrhizal systems. We have found that the behavioural changes in ectomycorrhizal plants depend on environmental cues, the identity of the plant neighbour and the characteristics of the MN. The hierarchical integration of this phenomenon with other biological networks at broader scales in forest ecosystems, and the consequences we have observed when it is interrupted, indicate that underground 'tree talk' is a foundational process in the complex adaptive nature of forest ecosystems. Published by Oxford University Press on behalf of the Annals of Botany Company.

  13. Preliminary Report Summarizes Tsunami Impacts and Lessons Learned from the September 7, 2017, M8.1 Tehuantepec Earthquake

    Science.gov (United States)

    Wilson, R. I.; Ramirez-Herrera, M. T.; Dengler, L. A.; Miller, K.; LaDuke, Y.

    2017-12-01

    The preliminary tsunami impacts from the September 7, 2017, M8.1 Tehuantepec Earthquake have been summarized in the following report: https://www.eeri.org/wp-content/uploads/EERI-Recon-Rpt-090717-Mexico-tsunami_fn.pdf. Although the tsunami impacts were not as significant as those from the earthquake itself (98 fatalities and 41,000 homes damaged), the following are highlights and lessons learned: The Tehuantepec earthquake was one of the largest down-slab normal faulting events ever recorded. This situation complicated the tsunami forecast since forecast methods and pre-event modeling are primarily associated with megathrust earthquakes where the most significant tsunamis are generated. Adding non-megathrust source modeling to the tsunami forecast databases of conventional warning systems should be considered. Offshore seismic and tsunami hazard analyses using past events should incorporate the potential for large earthquakes occurring along sources other than the megathrust boundary. From an engineering perspective, initial reports indicate there was only minor tsunami damage along the Mexico coast. There was damage to Marina Chiapas where floating docks overtopped their piles. Increasing pile heights could reduce the potential for damage to floating docks. Tsunami warning notifications did not get to the public in time to assist with evacuation. Streamlining the messaging in Mexico from the warning system directly to the public should be considered. And, for local events, preparedness efforts should place emphasis on responding to feeling the earthquake and not waiting to be notified. Although the U.S. tsunami warning centers were timely with their international and domestic messaging, there were some issues with how those messages were presented and interpreted. The use of a "Tsunami Threat" banner on the new main warning center website created confusion with emergency managers in the U.S. where no tsunami threat was expected to exist. Also, some U.S. states and

  14. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  15. Connecting slow earthquakes to huge earthquakes

    OpenAIRE

    Obara, Kazushige; Kato, Aitaro

    2016-01-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of th...

  16. Seismic Hazard Management in Mexico City

    Science.gov (United States)

    Wintergerst, L.

    2007-05-01

    Mexico City is one of the largest cities in the world. More than 8.5 million residents and 4.5 million floating population are in the city itself, but with the surrounding suburbs the number of people that could be affected by natural and man-made hazards rises to approximately 20 million. The main risk to the city as a whole is a large magnitude earthquake. Since there is reason to prepare for a credible seismic scenario of Mw = 8.2, which would exceed the damages caused during the 1985 earthquake (Mw = 8.1), we founded the Metropolitan Geologic Service (MGS) in 1998. The MGS has developed geologic and seismic hazard maps for the city (http:www.proteccioncivil.df.gob.mx). The maps include three separate risk maps for low height (3 stories), medium height (10 stories) and tall buildings (10 stories). The maps were prepared by using the maximum horizontal accelerations documented during the 1985 earthquake, and wave propagation modeling for buildings of different resonant periods (T = 0.0, 1.0 and 2.0 sec). In all cases, the risk zones were adjusted to include documented damage during the 1957, 1979 and 1985 earthquakes. All three maps show a high risk zone in the north-central portion of the city, elongated in a N-S direction, which corresponds with a narrow graben where the thickness of alluvial sediments is particularly large, and where wave amplification is accentuated. Preparation of these maps, and others used for planning, has been facilitated by the ongoing elaboration of a Dynamic Geographical Information System, which is based on geo-scientific information, includes all types of risks, and incorporates vulnerability models. From the risk management standpoint, we have elaborated the Permanent Contingency Plan for Mexico City, which in its Earthquakes chapter includes plans for coordination and for organizing attention to the population in the event of a seismic disaster. This Permanent Plan follows the philosophy of Descartes' Method, has 11 processes (6

  17. Application of an extension of the MAI method to the Acapulco City, Mexico

    Science.gov (United States)

    Contreras, M.; Aguirre, J.

    2001-12-01

    The site effects and the source parameters, are inverted from a Fourier displacement spectra of seismograms that are corrected by geometrical spreading and regional attenuation valid for south center of Mexico(Ordaz and Singh, 1992). We used Genetic Algorithms (GA) to perform the non-linear inversion, like in the MAI method (Moya et al., 2000) . The GA have proved to produce better results than other traditional methods which are frequently trapped in a local minimum. GA is a method that mimics the evolution laws in living creatures. The best individuals reproduce and develop themselves with every generation. In our case each individual correspond to one source and the genes correspond to the source parameters. As in nature, the best source remain and are improved with each iteration. We assume that the site effect at each station are the same independently of the earthquake, because of that we can search for the combination of sources that can produce the smaller standard deviation of the estimated site effects from the different Fourier displacement earthquake spectra. Then we use the obtained site effects to generate a Fourier displacement spectra of an earthquake scenario. With this, we are able to compute the response spectra by means of random vibration theory (Reinoso et al., 1990). We apply this method to four stations located in the Acapulco City, Mexico, that recorded four earthquakes with epicenter located in the Guerrero Subduction Zone. The site effect estimated for one of the stations, called ACAZ, shows a good agreement with the estimated by Chávez-García et al. (1994) using spectral ratios between the ACAZ station and a rock reference site. Also we compare the response spectra from other earthquake, obtained by the former method and the response spectra computed using the acceleration record. We find an acceptable correlation between them. Chávez-García, J. Cuenca y M. Cárdenas (1994), "Estudio complementario de efectos de sitio en Acapulco

  18. Alaska earthquake source for the SAFRR tsunami scenario: Chapter B in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    Science.gov (United States)

    Kirby, Stephen; Scholl, David; von Huene, Roland E.; Wells, Ray

    2013-01-01

    Tsunami modeling has shown that tsunami sources located along the Alaska Peninsula segment of the Aleutian-Alaska subduction zone have the greatest impacts on southern California shorelines by raising the highest tsunami waves for a given source seismic moment. The most probable sector for a Mw ~ 9 source within this subduction segment is between Kodiak Island and the Shumagin Islands in what we call the Semidi subduction sector; these bounds represent the southwestern limit of the 1964 Mw 9.2 Alaska earthquake rupture and the northeastern edge of the Shumagin sector that recent Global Positioning System (GPS) observations indicate is currently creeping. Geological and geophysical features in the Semidi sector that are thought to be relevant to the potential for large magnitude, long-rupture-runout interplate thrust earthquakes are remarkably similar to those in northeastern Japan, where the destructive Mw 9.1 tsunamigenic earthquake of 11 March 2011 occurred. In this report we propose and justify the selection of a tsunami source seaward of the Alaska Peninsula for use in the Tsunami Scenario that is part of the U.S. Geological Survey (USGS) Science Application for Risk Reduction (SAFRR) Project. This tsunami source should have the potential to raise damaging tsunami waves on the California coast, especially at the ports of Los Angeles and Long Beach. Accordingly, we have summarized and abstracted slip distribution from the source literature on the 2011 event, the best characterized for any subduction earthquake, and applied this synoptic slip distribution to the similar megathrust geometry of the Semidi sector. The resulting slip model has an average slip of 18.6 m and a moment magnitude of Mw = 9.1. The 2011 Tohoku earthquake was not anticipated, despite Japan having the best seismic and geodetic networks in the world and the best historical record in the world over the past 1,500 years. What was lacking was adequate paleogeologic data on prehistoric earthquakes

  19. Detection of induced seismicity due to oil and gas extraction in the northern Gulf of Mexico, USA

    Science.gov (United States)

    Fadugba, Oluwaseun Idowu

    Drilling operations and extraction of oil and gas (O&G) may lead to subsurface slumping or compression of sediments due to reduced vertical principal stress which may lead to small earthquakes at the drilling site. O&G extraction is common in the northern Gulf of Mexico (NGM) and only thirty-five earthquakes of magnitudes between 2.3 and 6.0 have been recorded in the area from 1974 to the present. The purpose of this research is to detect more earthquakes using stacks of seismic data from the Transportable USArray (TA) from 2011 to 2013, and determine the spatiotemporal relationship between the detected earthquakes and O&G extraction. Five new small offshore earthquakes, that may be associated with the offshore O&G production, have been detected in the data. Spatial correlation of the epicenters with offshore drilling sites shows that the earthquakes may be due to the O&G extraction.

  20. The HayWired Earthquake Scenario—Earthquake Hazards

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  1. Research on Collection of Earthquake Disaster Information from the Crowd

    Science.gov (United States)

    Nian, Z.

    2017-12-01

    In China, the assessment of the earthquake disasters information is mainly based on the inversion of the seismic source mechanism and the pre-calculated population data model, the real information of the earthquake disaster is usually collected through the government departments, the accuracy and the speed need to be improved. And in a massive earthquake like the one in Mexico, the telecommunications infrastructure on ground were damaged , the quake zone was difficult to observe by satellites and aircraft in the bad weather. Only a bit of information was sent out through maritime satellite of other country. Thus, the timely and effective development of disaster relief was seriously affected. Now Chinese communication satellites have been orbiting, people don't only rely on the ground telecom base station to keep communication with the outside world, to open the web page,to land social networking sites, to release information, to transmit images and videoes. This paper will establish an earthquake information collection system which public can participate. Through popular social platform and other information sources, the public can participate in the collection of earthquake information, and supply quake zone information, including photos, video, etc.,especially those information made by unmanned aerial vehicle (uav) after earthqake, the public can use the computer, potable terminals, or mobile text message to participate in the earthquake information collection. In the system, the information will be divided into earthquake zone basic information, earthquake disaster reduction information, earthquake site information, post-disaster reconstruction information etc. and they will been processed and put into database. The quality of data is analyzed by multi-source information, and is controlled by local public opinion on them to supplement the data collected by government departments timely and implement the calibration of simulation results ,which will better guide

  2. Reading a 400,000-year record of earthquake frequency for an intraplate fault.

    Science.gov (United States)

    Williams, Randolph T; Goodwin, Laurel B; Sharp, Warren D; Mozley, Peter S

    2017-05-09

    Our understanding of the frequency of large earthquakes at timescales longer than instrumental and historical records is based mostly on paleoseismic studies of fast-moving plate-boundary faults. Similar study of intraplate faults has been limited until now, because intraplate earthquake recurrence intervals are generally long (10s to 100s of thousands of years) relative to conventional paleoseismic records determined by trenching. Long-term variations in the earthquake recurrence intervals of intraplate faults therefore are poorly understood. Longer paleoseismic records for intraplate faults are required both to better quantify their earthquake recurrence intervals and to test competing models of earthquake frequency (e.g., time-dependent, time-independent, and clustered). We present the results of U-Th dating of calcite veins in the Loma Blanca normal fault zone, Rio Grande rift, New Mexico, United States, that constrain earthquake recurrence intervals over much of the past ∼550 ka-the longest direct record of seismic frequency documented for any fault to date. The 13 distinct seismic events delineated by this effort demonstrate that for >400 ka, the Loma Blanca fault produced periodic large earthquakes, consistent with a time-dependent model of earthquake recurrence. However, this time-dependent series was interrupted by a cluster of earthquakes at ∼430 ka. The carbon isotope composition of calcite formed during this seismic cluster records rapid degassing of CO 2 , suggesting an interval of anomalous fluid source. In concert with U-Th dates recording decreased recurrence intervals, we infer seismicity during this interval records fault-valve behavior. These data provide insight into the long-term seismic behavior of the Loma Blanca fault and, by inference, other intraplate faults.

  3. Reading a 400,000-year record of earthquake frequency for an intraplate fault

    Science.gov (United States)

    Williams, Randolph T.; Goodwin, Laurel B.; Sharp, Warren D.; Mozley, Peter S.

    2017-05-01

    Our understanding of the frequency of large earthquakes at timescales longer than instrumental and historical records is based mostly on paleoseismic studies of fast-moving plate-boundary faults. Similar study of intraplate faults has been limited until now, because intraplate earthquake recurrence intervals are generally long (10s to 100s of thousands of years) relative to conventional paleoseismic records determined by trenching. Long-term variations in the earthquake recurrence intervals of intraplate faults therefore are poorly understood. Longer paleoseismic records for intraplate faults are required both to better quantify their earthquake recurrence intervals and to test competing models of earthquake frequency (e.g., time-dependent, time-independent, and clustered). We present the results of U-Th dating of calcite veins in the Loma Blanca normal fault zone, Rio Grande rift, New Mexico, United States, that constrain earthquake recurrence intervals over much of the past ˜550 ka—the longest direct record of seismic frequency documented for any fault to date. The 13 distinct seismic events delineated by this effort demonstrate that for >400 ka, the Loma Blanca fault produced periodic large earthquakes, consistent with a time-dependent model of earthquake recurrence. However, this time-dependent series was interrupted by a cluster of earthquakes at ˜430 ka. The carbon isotope composition of calcite formed during this seismic cluster records rapid degassing of CO2, suggesting an interval of anomalous fluid source. In concert with U-Th dates recording decreased recurrence intervals, we infer seismicity during this interval records fault-valve behavior. These data provide insight into the long-term seismic behavior of the Loma Blanca fault and, by inference, other intraplate faults.

  4. Geodetic Imaging for Rapid Assessment of Earthquakes: Airborne Laser Scanning (ALS)

    Science.gov (United States)

    Carter, W. E.; Shrestha, R. L.; Glennie, C. L.; Sartori, M.; Fernandez-Diaz, J.; National CenterAirborne Laser Mapping Operational Center

    2010-12-01

    To the residents of an area struck by a strong earthquake quantitative information on damage to the infrastructure, and its attendant impact on relief and recovery efforts, is urgent and of primary concern. To earth scientists a strong earthquake offers an opportunity to learn more about earthquake mechanisms, and to compare their models with the real world, in hopes of one day being able to accurately predict the precise locations, magnitudes, and times of large (and potentially disastrous) earthquakes. Airborne laser scanning (also referred to as airborne LiDAR or Airborne Laser Swath Mapping) is particularly well suited for rapid assessment of earthquakes, both for immediately estimating the damage to infrastructure and for providing information for the scientific study of earthquakes. ALS observations collected at low altitude (500—1000m) from a relatively slow (70—100m/sec) aircraft can provide dense (5—15 points/m2) sets of surface features (buildings, vegetation, ground), extending over hundreds of square kilometers with turn around times of several hours to a few days. The actual response time to any given event depends on several factors, including such bureaucratic issues as approval of funds, export license formalities, and clearance to fly over the area to be mapped, and operational factors such as the deployment of the aircraft and ground teams may also take a number of days for remote locations. Of course the need for immediate mapping of earthquake damage generally is not as urgent in remote regions with less infrastructure and few inhabitants. During August 16-19, 2010 the National Center for Airborne Laser Mapping (NCALM) mapped the area affected by the magnitude 7.2 El Mayor-Cucapah Earthquake (Northern Baja California Earthquake), which occurred on April 4, 2010, and was felt throughout southern California, Arizona, Nevada, and Baja California North, Mexico. From initial ground observations the fault rupture appeared to extend 75 km

  5. Understanding the distribution of strong motions and the damage caused during the September 19th, 2017 earthquake

    Science.gov (United States)

    Aguirre, J.; Ramirez-Guzman, L.; Leonardo Suárez, M.; Quintanar, L.

    2017-12-01

    On September 19, 2017, a normal fault earthquake of magnitude Mw 7.1 occurred 120 km from Mexico City. The quake generated large accelerations, more than 200 cm/s*s at least in two stations in Mexico City, where there was extensive damage. The damage pattern, which includes more than 40 building collapses, differs from the one induced by the 1985 Michoacan earthquake. While the observed accelerations in stations located in the Hill and Transition zones are the largest ever recorded, in the Lake zone the intensities were lower than those recorded in 1985. Even though the proximity of the epicenter could partially explain the accelerations, other factors need to be explored to understand the nuances of the ground motion. Unlike 1985, there is a substantially larger number of acceleration records in Mexico City, operated and maintained by different institutions. In this paper, we present the analysis of acceleration records and 3D numerical simulations to understand if effects such as focusing and directionality participate in the amplified motion. Finally, transfer functions between Lake and Hill zones and response and design spectral values are analyzed in regions where the building code requirements were exceeded. Acknowledgments: Records used in this research are obtained, processed and maintained by the National Autonomous University of Mexico through the Seismic Instrumentation Unit of the Institute of Engineering and the National Seismological Service of the Institute of Geophysics. The Centro de Intrumentacion y Registro Sismico A.C. (CIRES) kindly provided their records. This Project was funded in part by the Secretaria de Ciencia, Tecnología e Innovación (SECITI) of Mexico City. Project SECITI/073/2016.

  6. Observing earthquakes triggered in the near field by dynamic deformations

    Science.gov (United States)

    Gomberg, J.; Bodin, P.; Reasenberg, P.A.

    2003-01-01

    We examine the hypothesis that dynamic deformations associated with seismic waves trigger earthquakes in many tectonic environments. Our analysis focuses on seismicity at close range (within the aftershock zone), complementing published studies of long-range triggering. Our results suggest that dynamic triggering is not confined to remote distances or to geothermal and volcanic regions. Long unilaterally propagating ruptures may focus radiated dynamic deformations in the propagation direction. Therefore, we expect seismicity triggered dynamically by a directive rupture to occur asymmetrically, with a majority of triggered earthquakes in the direction of rupture propagation. Bilaterally propagating ruptures also may be directive, and we propose simple criteria for assessing their directivity. We compare the inferred rupture direction and observed seismicity rate change following 15 earthquakes (M 5.7 to M 8.1) that occured in California and Idaho in the United States, the Gulf of Aqaba, Syria, Guatemala, China, New Guinea, Turkey, Japan, Mexico, and Antarctica. Nine of these mainshocks had clearly directive, unilateral ruptures. Of these nine, seven apparently induced an asymmetric increase in seismicity rate that correlates with the rupture direction. The two exceptions include an earthquake preceded by a comparable-magnitude event on a conjugate fault and another for which data limitations prohibited conclusive results. Similar (but weaker) correlations were found for the bilaterally rupturing earthquakes we studied. Although the static stress change also may trigger seismicity, it and the seismicity it triggers are expected to be similarly asymmetric only if the final slip is skewed toward the rupture terminus. For several of the directive earthquakes, we suggest that the seismicity rate change correlates better with the dynamic stress field than the static stress change.

  7. Coupled seismic modes and earthquake hazard in Mexico City

    Science.gov (United States)

    Lomnitz, C.

    2007-05-01

    Wave-to-wave coupling can arise when an acoustic pulse selects a Rayleigh mode of the same speed and both travel together swapping energy across an interface. A similar effect may cause severe damage at distances of several hundred kilometers when an Lg wavetrain incides upon a soft remote sedimentary waveguide, as in Mexico City. Energy at a single dominant frequency is then trapped in the waveguide. When the input power exceeds the damping losses, the trapped mode reverberates in the layer for up to five minutes, causing severe resonant damage to structures.

  8. Systematic deficiency of aftershocks in areas of high coseismic slip for large subduction zone earthquakes

    Science.gov (United States)

    Wetzler, Nadav; Lay, Thorne; Brodsky, Emily E.; Kanamori, Hiroo

    2018-01-01

    Fault slip during plate boundary earthquakes releases a portion of the shear stress accumulated due to frictional resistance to relative plate motions. Investigation of 101 large [moment magnitude (Mw) ≥ 7] subduction zone plate boundary mainshocks with consistently determined coseismic slip distributions establishes that 15 to 55% of all master event–relocated aftershocks with Mw ≥ 5.2 are located within the slip regions of the mainshock ruptures and few are located in peak slip regions, allowing for uncertainty in the slip models. For the preferred models, cumulative deficiency of aftershocks within the central three-quarters of the scaled slip regions ranges from 15 to 45%, increasing with the total number of observed aftershocks. The spatial gradients of the mainshock coseismic slip concentrate residual shear stress near the slip zone margins and increase stress outside the slip zone, driving both interplate and intraplate aftershock occurrence near the periphery of the mainshock slip. The shear stress reduction in large-slip regions during the mainshock is generally sufficient to preclude further significant rupture during the aftershock sequence, consistent with large-slip areas relocking and not rupturing again for a substantial time. PMID:29487902

  9. Sedimentary evidence of historical and prehistorical earthquakes along the Venta de Bravo Fault System, Acambay Graben (Central Mexico)

    Science.gov (United States)

    Lacan, Pierre; Ortuño, María; Audin, Laurence; Perea, Hector; Baize, Stephane; Aguirre-Díaz, Gerardo; Zúñiga, F. Ramón

    2018-03-01

    The Venta de Bravo normal fault is one of the longest structures in the intra-arc fault system of the Trans-Mexican Volcanic Belt. It defines, together with the Pastores Fault, the 80 km long southern margin of the Acambay Graben. We focus on the westernmost segment of the Venta de Bravo Fault and provide new paleoseismological information, evaluate its earthquake history, and assess the related seismic hazard. We analyzed five trenches, distributed at three different sites, in which Holocene surface faulting offsets interbedded volcanoclastic, fluvio-lacustrine and colluvial deposits. Despite the lack of known historical destructive earthquakes along this fault, we found evidence of at least eight earthquakes during the late Quaternary. Our results indicate that this is one of the major seismic sources of the Acambay Graben, capable of producing by itself earthquakes with magnitudes (MW) up to 6.9, with a slip rate of 0.22-0.24 mm yr- 1 and a recurrence interval between 1940 and 2390 years. In addition, a possible multi-fault rupture of the Venta de Bravo Fault together with other faults of the Acambay Graben could result in a MW > 7 earthquake. These new slip rates, earthquake recurrence rates, and estimation of slips per event help advance our understanding of the seismic hazard posed by the Venta de Bravo Fault and provide new parameters for further hazard assessment.

  10. The September 2017 M=8.1 Chiapas and M=7.1 Puebla, Mexico, earthquakes: Chain reaction or coincidence?

    Science.gov (United States)

    Toda, S.; Stein, R. S.

    2017-12-01

    days and 600 km apart? We calculate that to be 1 chance in 30,000, which at first seems remote. But there's another coincidence in our midst: What's the chance that the M=7.1 Puebla shock would strike within 2 hours of the annual Mexico City earthquake drill? It's 1 chance in a 900,000. So, extreme coincidences do indeed occur in our lives, we might find that it's the best explanation we've got for this pair.

  11. STRONG-MOTION OBSERVATION DEMONSTRATION OF THE LONG-PATH EFFECTS FROM THE PACIFIC OCEAN TO MEXICO CITY

    OpenAIRE

    Masahiro, IIDA; Yoshinori, FURUMOTO; Hitoshi, TANIGUCHI; Carlos, GUTIERREZ; Earthquake Res. Inst., University of Tokyo; Sumitomo Heavy Industries, Ltd.; United Nations, Centre for Regional Development; National Disaster Prevention Center

    1997-01-01

    During the 1985 Michoacan earthquake (M=8.1), seismic waves were remarkably amplified in the lakebed zone of Mexico City, approximately 400 km from the epicenter, and the long duration of the lakebed seismograms was a great surprise. Many researchers thought that the origin of the long coda seen in the lakebed zone was surface waves caused by the deep Mexico basin and the soft surficial layers, but this explanation was not adequate. Another possible cause of the long coda is the long-distance...

  12. MASE: a Great Opportunity for Outreach to the Rural Communities in Mexico

    Science.gov (United States)

    Pérez-Campos, X.; Rodríguez, L. E.; Espejo, L.; Greene, F.; Reyes, T. A.; Solano, E. A.; Iglesias, A.; Clayton, R. W.

    2006-12-01

    The MesoAmerican Subduction Experiment (MASE) deployed 100 seismic stations across Mexico between Acapulco and Tampico, passing through Mexico City at the midpoint. Deploying the instruments at a secure site was an important issue, schools are nearly ideal in this respect. Consequently, 54 MASE stations are situated in schools that range from the K-12 through the University level. This presented a golden opportunity to outreach to rural communities, since the students come from small towns around the school and can spread the word to their home towns. Given the constant earthquake activity in Mexico and its history of destruction, the societal responsibility of UNAM, it is crucial to educate people in understanding a phenomenon that affects their daily lives and to prepare them to deal with it. One challenge in achieving this commitment is the diversity of level of knowledge of earthquakes. We address this by giving out different examples and utilizing didactic material adequate to the level, together with a series of talks, posters, handouts, etc., that cover topics from the Earth structure through the purpose of MASE. The program is being carried out by undergraduate students from the School of Engineering at UNAM, the program also provides an invaluable outreach experience to them. From this experience, we conclude that large-scale experiments like this should be accompanied by a committed outreach program given the large number of people that would be touched by it.

  13. GPS measurements and finite element modeling of the earthquake cycle along the Middle America subduction zone

    Science.gov (United States)

    Correa Mora, Francisco

    We model surface deformation recorded by GPS stations along the Pacific coasts of Mexico and Central America to estimate the magnitude of and variations in frictional locking (coupling) along the subduction interface, toward a better understanding of seismic hazard in these earthquake-prone regions. The first chapter describes my primary analysis technique, namely 3-dimensional finite element modeling to simulate subduction and bounded-variable inversions that optimize the fit to the GPS velocity field. This chapter focuses on and describes interseismic coupling of the Oaxaca segment of the Mexican subduction zone and introduces an analysis of transient slip events that occur in this region. Our results indicate that coupling is strong within the rupture zone of the 1978 Ms=7.8 Oaxaca earthquake, making this region a potential source of a future large earthquake. However, we also find evidence for significant variations in coupling on the subduction interface over distances of only tens of kilometers, decreasing toward the outer edges of the 1978 rupture zone. In the second chapter, we study in more detail some of the slow slip events that have been recorded over a broad area of southern Mexico, with emphasis on their space-time behavior. Our modeling indicates that transient deformation beneath southern Mexico is focused in two distinct slip patches mostly located downdip from seismogenic areas beneath Guerrero and Oaxaca. Contrary to conclusions reached in one previous study, we find no evidence for a spatial or temporal correlation between transient slip that occurs in these two widely separated source regions. Finally, chapter three extends the modeling techniques to new GPS data in Central America, where subduction coupling is weak or zero and the upper plate deformation is much more complex than in Mexico. Cocos-Caribbean plate convergence beneath El Salvador and Nicaragua is accompanied by subduction and trench-parallel motion of the forearc. Our GPS

  14. Earthquakes

    Science.gov (United States)

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  15. The Challenge of Centennial Earthquakes to Improve Modern Earthquake Engineering

    International Nuclear Information System (INIS)

    Saragoni, G. Rodolfo

    2008-01-01

    The recent commemoration of the centennial of the San Francisco and Valparaiso 1906 earthquakes has given the opportunity to reanalyze their damages from modern earthquake engineering perspective. These two earthquakes plus Messina Reggio Calabria 1908 had a strong impact in the birth and developing of earthquake engineering. The study of the seismic performance of some up today existing buildings, that survive centennial earthquakes, represent a challenge to better understand the limitations of our in use earthquake design methods. Only Valparaiso 1906 earthquake, of the three considered centennial earthquakes, has been repeated again as the Central Chile, 1985, Ms = 7.8 earthquake. In this paper a comparative study of the damage produced by 1906 and 1985 Valparaiso earthquakes is done in the neighborhood of Valparaiso harbor. In this study the only three centennial buildings of 3 stories that survived both earthquakes almost undamaged were identified. Since for 1985 earthquake accelerogram at El Almendral soil conditions as well as in rock were recoded, the vulnerability analysis of these building is done considering instrumental measurements of the demand. The study concludes that good performance of these buildings in the epicentral zone of large earthquakes can not be well explained by modern earthquake engineering methods. Therefore, it is recommended to use in the future of more suitable instrumental parameters, such as the destructiveness potential factor, to describe earthquake demand

  16. ASSESSMENT OF THE TSUNAMIGENIC POTENTIAL ALONG THE NORTHERN CARIBBEAN MARGIN Case Study: Earthquake and Tsunamis of 12 January 2010 in Haiti.

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2010-01-01

    Full Text Available The potential tsunami risk for Hispaniola, as well as for the other Greater Antilles Islands is assessed by reviewing the complex geotectonic processes and regimes along the Northern Caribbean margin, including the convergent, compressional and collisional tectonic activity of subduction, transition, shearing, lateral movements, accretion and crustal deformation caused by the eastward movement of the Caribbean plate in relation to the North American plate. These complex tectonic interactions have created a broad, diffuse tectonic boundary that has resulted in an extensive, internal deformational sliver slab - the Gonâve microplate – as well as further segmentation into two other microplates with similarly diffused boundary characteristics where tsunamigenic earthquakes have and will again occur. The Gonâve microplate is the most prominent along the Northern Caribbean margin and extends from the Cayman Spreading Center to Mona Pass, between Puerto Rico and the island of Hispaniola, where the 1918 destructive tsunami was generated. The northern boundary of this sliver microplate is defined by the Oriente strike-slip fault south of Cuba, which appears to be an extension of the fault system traversing the northern part of Hispaniola, while the southern boundary is defined by another major strike-slip fault zone where the Haiti earthquake of 12 January 2010 occurred. Potentially tsunamigenic regions along the Northern Caribbean margin are located not only along the boundaries of the Gonâve microplate’s dominant western transform zone but particularly within the eastern tectonic regimes of the margin where subduction is dominant - particularly along the Puerto Rico trench. The Haiti earthquake of 12 January 2010 and its focal mechanism are examined, as they provide additional clues of potential tsunami generation that can occur along transform zones and, more specifically, from interplate and intraplate seismic events and subsequently induced

  17. Radiated Seismic Energy of Earthquakes in the South-Central Region of the Gulf of California, Mexico

    Science.gov (United States)

    Castro, Raúl R.; Mendoza-Camberos, Antonio; Pérez-Vertti, Arturo

    2018-05-01

    We estimated the radiated seismic energy (ES) of 65 earthquakes located in the south-central region of the Gulf of California. Most of these events occurred along active transform faults that define the Pacific-North America plate boundary and have magnitudes between M3.3 and M5.9. We corrected the spectral records for attenuation using nonparametric S-wave attenuation functions determined with the whole data set. The path effects were isolated from the seismic source using a spectral inversion. We computed radiated seismic energy of the earthquakes by integrating the square velocity source spectrum and estimated their apparent stresses. We found that most events have apparent stress between 3 × 10-4 and 3 MPa. Model independent estimates of the ratio between seismic energy and moment (ES/M0) indicates that this ratio is independent of earthquake size. We conclude that in general the apparent stress is low (σa < 3 MPa) in the south-central and southern Gulf of California.

  18. Satellite Infrared Radiation Measurements Prior to the Major Earthquakes

    Science.gov (United States)

    Ouzounov, Dimitar; Pulintes, S.; Bryant, N.; Taylor, Patrick; Freund, F.

    2005-01-01

    This work describes our search for a relationship between tectonic stresses and increases in mid-infrared (IR) flux as part of a possible ensemble of electromagnetic (EM) phenomena that may be related to earthquake activity. We present and &scuss observed variations in thermal transients and radiation fields prior to the earthquakes of Jan 22, 2003 Colima (M6.7) Mexico, Sept. 28 .2004 near Parkfield (M6.0) in California and Northern Sumatra (M8.5) Dec. 26,2004. Previous analysis of earthquake events has indicated the presence of an IR anomaly, where temperatures increased or did not return to its usual nighttime value. Our procedures analyze nighttime satellite data that records the general condtion of the ground after sunset. We have found from the MODIS instrument data that five days before the Colima earthquake the IR land surface nighttime temperature rose up to +4 degrees C in a 100 km radius around the epicenter. The IR transient field recorded by MODIS in the vicinity of Parkfield, also with a cloud free environment, was around +1 degree C and is significantly smaller than the IR anomaly around the Colima epicenter. Ground surface temperatures near the Parkfield epicenter four days prior to the earthquake show steady increase. However, on the night preceding the quake, a significant drop in relative humidity was indicated, process similar to those register prior to the Colima event. Recent analyses of continuous ongoing long- wavelength Earth radiation (OLR) indicate significant and anomalous variability prior to some earthquakes. The cause of these anomalies is not well understood but could be the result of a triggering by an interaction between the lithosphere-hydrosphere and atmospheric related to changes in the near surface electrical field and/or gas composition prior to the earthquake. The OLR anomaly usually covers large areas surrounding the main epicenter. We have found strong anomalies signal (two sigma) along the epicentral area signals on Dec 21

  19. Earthquake prediction

    International Nuclear Information System (INIS)

    Ward, P.L.

    1978-01-01

    The state of the art of earthquake prediction is summarized, the possible responses to such prediction are examined, and some needs in the present prediction program and in research related to use of this new technology are reviewed. Three basic aspects of earthquake prediction are discussed: location of the areas where large earthquakes are most likely to occur, observation within these areas of measurable changes (earthquake precursors) and determination of the area and time over which the earthquake will occur, and development of models of the earthquake source in order to interpret the precursors reliably. 6 figures

  20. The International Platform on Earthquake Early Warning Systems (IP-EEWS)

    Science.gov (United States)

    Torres, Jair; Fanchiotti, Margherita

    2017-04-01

    The Sendai Framework for Disaster Risk Reduction 2015-2030 recognizes the need to "substantially increase the availability of and access to multi-hazard early warning systems and disaster risk information and assessments to the people by 2030" as one of its global targets (target "g"). While considerable progress has been made in recent decades, early warning systems (EWSs) continue to be less developed for geo-hazards and significant challenges remain in advancing the development of EWSs for specific hazards, particularly for fastest onset hazards such as earthquakes. An earthquake early warning system (EEWS) helps in disseminating timely information about potentially catastrophic earthquake hazards to the public, emergency managers and the private sector to provide enough time to implement automatized emergency measures. At the same time, these systems help to reduce considerably the CO2 emissions produced by the catastrophic impacts and subsequent effects of earthquakes, such as those generated by fires, collapses, and pollution (among others), as well as those produced in the recovery and reconstruction processes. In recent years, EEWSs have been developed independently in few countries: EEWSs have shown operational in Japan and Mexico, while other regions in California (USA), Turkey, Italy, Canada, South Korea and China (including Taiwan) are in the development stages or under restricted applications. Many other countries in the Indian Subcontinent, Southeast Asia, Central Asia, Middle East, Eastern Africa, Southeast Africa, as well as Central America, South America and the Caribbean, are located in some of the most seismically active regions in the world, or present moderate seismicity but high vulnerability, and would strongly benefit from the development of EEWSs. Given that, in many instances, the development of an EEWS still requires further testing, increased density coverage in seismic observation stations, regional coordination, and further scientific

  1. Progress in Understanding the Pre-Earthquake Associated Events by Analyzing IR Satellite Data

    Science.gov (United States)

    Ouzounov, Dimitar; Taylor, Patrick; Bryant, Nevin

    2004-01-01

    We present latest result in understanding the potential relationship between tectonic stress, electro-chemical and thermodynamic processes in the Earths crust and atmosphere with an increase in IR flux as a potential signature of electromagnetic (EM) phenomena that are related to earthquake activity, either pre-, co- or post seismic. Thermal infra-red (TIR) surveys performed by the polar orbiting (NOAA/AVHRR MODIS) and geosynchronous weather satellites (GOES, METEOSAT) gave an indication of the appearance (from days to weeks before the event) of "anomalous" space-time TIR transients that are associated with the location (epicenter and local tectonic structures) and time of a number of major earthquakes with M>5 and focal depths less than 50km. We analyzed broad category of associated pre-earthquake events, which provided evidence for changes in surface temperature, surface latent heat flux, chlorophyll concentrations, soil moisture, brightness temperature, emissivity of surface, water vapour in the atmosphere prior to the earthquakes occurred in Algeria, India, Iran, Italy, Mexico and Japan. The cause of such anomalies has been mainly related to the change of near-surface thermal properties due to complex lithosphere-hydrosphere-atmospheric interactions. As final results we present examples from the most recent (2000-2004) worldwide strong earthquakes and the techniques used to capture the tracks of EM emission mid-IR anomalies and a methodology for practical future use of such phenomena in the early warning systems.

  2. Characteristics of broadband slow earthquakes explained by a Brownian model

    Science.gov (United States)

    Ide, S.; Takeo, A.

    2017-12-01

    Brownian slow earthquake (BSE) model (Ide, 2008; 2010) is a stochastic model for the temporal change of seismic moment release by slow earthquakes, which can be considered as a broadband phenomena including tectonic tremors, low frequency earthquakes, and very low frequency (VLF) earthquakes in the seismological frequency range, and slow slip events in geodetic range. Although the concept of broadband slow earthquake may not have been widely accepted, most of recent observations are consistent with this concept. Then, we review the characteristics of slow earthquakes and how they are explained by BSE model. In BSE model, the characteristic size of slow earthquake source is represented by a random variable, changed by a Gaussian fluctuation added at every time step. The model also includes a time constant, which divides the model behavior into short- and long-time regimes. In nature, the time constant corresponds to the spatial limit of tremor/SSE zone. In the long-time regime, the seismic moment rate is constant, which explains the moment-duration scaling law (Ide et al., 2007). For a shorter duration, the moment rate increases with size, as often observed for VLF earthquakes (Ide et al., 2008). The ratio between seismic energy and seismic moment is constant, as shown in Japan, Cascadia, and Mexico (Maury et al., 2017). The moment rate spectrum has a section of -1 slope, limited by two frequencies corresponding to the above time constant and the time increment of the stochastic process. Such broadband spectra have been observed for slow earthquakes near the trench axis (Kaneko et al., 2017). This spectrum also explains why we can obtain VLF signals by stacking broadband seismograms relative to tremor occurrence (e.g., Takeo et al., 2010; Ide and Yabe, 2014). The fluctuation in BSE model can be non-Gaussian, as far as the variance is finite, as supported by the central limit theorem. Recent observations suggest that tremors and LFEs are spatially characteristic

  3. Utility of temporary aftershock warning system in the immediate aftermath of large damaging earthquakes

    International Nuclear Information System (INIS)

    Harben, P.E.; Jarpe, S.P.; Hunter, S.; Johnston, C.A.

    1993-01-01

    An aftershock warning system (AWS) is a real-time warning system that is deployed immediately after a large damaging earthquake in the epicentral region of the main shock. The primary purpose of such a system is to warn rescue teams and workers within damaged structures of imminent destructive shaking. The authors have examined the utility of such a system (1) by evaluating historical data, and (2) by developing and testing a prototype system during the 1992 Landers, California, aftershock sequence. Analyzing historical data is important in determining when and where damaging aftershocks are likely to occur and the probable usefulness of an AWS in a particular region. As part of this study, they analyzed the spatial and temporal distribution of large (magnitude >5.0) aftershocks from earthquakes with magnitudes >6.0 that took place between 1942 and 1991 in California and Nevada. They found that one-quarter of these large aftershocks occurred from 2 days-2 months after the main event, nearly one-half occurred within the first two days of the main event, and greater than one-half occurred within 20 km of the main shock's epicenter. They also reviewed a case study of the 1985 Mexico City earthquake, which showed that an AWS could have given Mexico City a warning of ∼60 sec before the magnitude 7.6 aftershock that occurred 36 hr. after the main event. They deployed a four-station prototype AWS near Landers after a magnitude 7.4 earthquake occurred on June 28, 1992. The aftershock data, collected from July 3-10, showed that the aftershocks in the vicinity of the four stations varied in magnitude from 3.0-4.4. Using a two-station detection criterion to minimize false alarms, this AWS reliably discriminated between smaller and larger aftershocks within 3 sec of the origin time of the events. This prototype could have provided 6 sec of warning to Palm Springs and 20 sec of warning to San Bernardino of aftershocks occurring in the main-shock epicentral region

  4. Smoke in the Gulf of Mexico

    Science.gov (United States)

    2002-01-01

    This Sea-viewing Wide Field-of-view Sensor (SeaWiFS) image of the Bay of Campeche, acquired January 17, 2001, shows a 300-kilometer long smoke plume streaming towards the northwest from around 19.4o North and 92o West, the location of the Akal oil field. In the lower right (southeast) corner of the image is the country of El Salvador, site of a magnitude 7.6 earthquake on January 13, 2001. On the Pacific side of Southern Mexico, the productive waters of the Gulf of Tehuantepec are visible. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  5. On the historical account of disastrous landslides in Mexico: the challenge of risk management and disaster prevention

    Science.gov (United States)

    Alcántara-Ayala, I.

    2008-01-01

    Landslides disasters in Mexico caused more than 3500 deaths between 1935 and 2006. Such disasters have been mainly associated to intense precipitation events derived from hurricanes, tropical storms and their interactions with cold fronts, although earthquake triggered landslides have also occurred to a lesser extent. The impact of landsliding in Mexico is basically determined by the geomorphic features of mountain ranges and dissected plateaus inhabited by vulnerable communities. The present contribution provides a comprehensive temporal assessment of historical landslide disasters in Mexico. Moreover, it aims at exploring the future directions of risk management and disaster prevention, in order to reduce the impact of landslides on populations as a result of climatic change, urban sprawl, land use change and social vulnerability.

  6. Measurements of Active Tectonic Deformation on the Guerrero Coast, Mexico

    Science.gov (United States)

    Ramirez, T.; Cundy, A.; Carranza-Edwards, A.; Morales, E.; Kostoglodov, V.; Urrutia-Fucugauchi, J.

    2004-12-01

    The study of tectonic deformation rates using displaced shoreline features is relatively well-established, and has provided much useful information on seismic hazard. Such studies have frequently been complemented by analysis of the coastal sedimentary record, where past marine to terrestrial environmental changes (and vice versa) may be recorded by clear changes in stratigraphy. Studies of this type are particularly valuable for tectonically-active areas where the preservation of former shoreline features is poor, or where long-term subsidence has resulted in their erosion, drowning or burial. The specific objective of this study is to derive rates of tectonic deformation from geomorphic and stratigraphic studies of the Guerrero coastal area, and to examine the feasibility of this stratigraphic approach in the coastal lagoons of the Mexican Pacific coast, in the Guerrero gap. The Guerrero gap coastal area, where a major earthquake is expected to occur, parallels the Cocos plate subduction zone. Here convergence rates vary from 5.2 cm/yr to 5.8 cm/yr. The Guerrero gap has experienced several historical earthquakes, notably the 1911 (7.8 Ms). However, no large magnitude events since the 1911 earthquake and only a few Ms~6 events have occurred near the Guerrero gap edges. It is expected that a major interplate earthquake of estimated magnitude Mw=8.1 to 8.4 has a high probability to occur. Landforms within the Guerrero gap indicate that the coast is subsiding. A series of key indicators such as elongated islands reminiscent of ancient barriers, submerged barriers island, extensive marshy environments, increased depths in the lagoons, and submerged anthropogenic features (shell mounds), among others, suggest active tectonic subsidence of the coast. In contrast, the adjacent northwest area off the Guerrero gap exhibits landforms characteristic of tectonic uplift (marine terraces and uplifted beach ridges), indicating a different seismo-tectonic regime northwest of the

  7. S-Wave Velocity Structure beneath Southwest North America from Seismogram Comparisons of the Mexico Earthquake on 22 June 1997

    Directory of Open Access Journals (Sweden)

    Bagus Jaya Santosa

    2008-09-01

    Full Text Available This research investigates earth structure beneath the Southwest North America landmass, especially between Mexico and California. Models based on S wave velocities for this area were obtained by carrying out seismogram fitting in time domain and three Cartesian components simultaneously. The data used is from an event, coded as C052297B that occurred in the state of Guerrero, Mexico and it was fitted to synthetic data computed with the GEMINI program at TS network stations. Earth model IASPEI91 and SPREM were used as input to create the synthetic data. Real and synthetic seismograms were subjected to a low-pass filter with a frequency corner of 20 mHz.Waveform analysis results show very unsystematic and strong deviations in the waveform, arrival times, amount of oscillation and the height of the wave amplitude. Discrepancies are met on S, Love, Rayleigh and ScS waves, where the stations epicentral distances are below 300. Deviation in analysis waveform because of the usage of model 1-D of SPREM and IASPEI91, because the 1-D was a kind of average value an elastic property at one particular depth of global earth. With the method of waveform analysis we can see how sensitive waveform is to structures within the layers of the Earth.To explain the discrepancies, a correction to the earth structure is essential. The corrections account for the thickness of the crust, speed gradient of bh, the coefficient for the bh and bv in the upper mantle for surface wave fitting, a small variation of the S speed structure at a layer under the upper mantle above 771 km for S wave fitting, and a small variation at the base the mantle layers for ScS wave fitting. At some stations, a correction for S speed structure have yielded P wave fitting. Results of this research indicate that the 1-D earth model obtained through seismogram fitting at every hypocenter-observation station pair is unique. The S-wave velocity on the upper mantle has strong negative anomalies. This

  8. Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003

    Directory of Open Access Journals (Sweden)

    S. A. Pulinets

    2006-05-01

    Full Text Available The paper examines the possible relationship of anomalous variations of different atmospheric and ionospheric parameters observed around the time of a strong earthquake (Mw 7.8 which occurred in Mexico (state of Colima on 21 January 2003. These variations are interpreted within the framework of the developed model of the Lithosphere-Atmosphere-Ionosphere coupling. The main attention is focused on the processes in the near ground layer of the atmosphere involving the ionization of air by radon, the water molecules' attachment to the formed ions, and the corresponding changes in the latent heat. Model considerations are supported by experimental measurements showing the local diminution of air humidity one week prior to the earthquake, accompanied by the anomalous thermal infrared (TIR signals and surface latent heat flux (SLHF and anomalous variations of the total electron content (TEC registered over the epicenter of the impending earthquake three days prior to the main earthquake event. Statistical processing of the data of the GPS receivers network, together with various other atmospheric parameters demonstrate the possibility of an early warning of an impending strong earthquake.

  9. Relocalizing a historical earthquake using recent methods: The 10 November 1935 Earthquake near Montserrat, Lesser Antilles

    Science.gov (United States)

    Niemz, P.; Amorèse, D.

    2016-03-01

    This study investigates the hypothesis of Feuillet et al. (2011) that the hypocenter of the seismic event on November 10, 1935 near Montserrat, Lesser Antilles (MS 6 1/4) (Gutenberg and Richter, 1954) was mislocated by other authors and is actually located in the Montserrat-Havers fault zone. While this proposal was based both on a Ground Motion Prediction Equation and on the assumption that earthquakes in this region are bound to prominent fault systems, our study relies on earthquake localization methods using arrival times of the International Seismological Summary (ISS). Results of our methodology suggest that the hypocenter was really located at 16.90° N, 62.53° W. This solution is about 25 km north-west of the location proposed by Feuillet et al. (2011) within the Redonda fault system, northward of the Montserrat-Havers fault zone. As depth phases that contribute valuable insights to the focal depth are not included in the ISS data set and the reassociation of these phases is difficult, the error in depth is high. Taking into account tectonic constraints and the vertical extend of NonLinLoc's uncertainty area of the preferred solution we assume that the focus is most probably in the lower crust between 20 km and the Moho. Our approach shows that the information of the ISS can lead to a reliable solution even without an exhaustive search for seismograms and station bulletins. This is encouraging for a better assessment of seismic and tsunami hazard in the Caribbean, Mexico, South and Central America, where many moderate to large earthquakes occurred in the first half of the 20th century. The limitations during this early phase of seismology which complicate such relocations are described in detail in this study.

  10. Micro-earthquake signal analysis and hypocenter determination around Lokon volcano complex

    International Nuclear Information System (INIS)

    Firmansyah, Rizky; Nugraha, Andri Dian; Kristianto

    2015-01-01

    Mount Lokon is one of five active volcanoes which is located in the North Sulawesi region. Since June 26 th , 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) for this mountain. The Mount Lokon volcano erupted on July 4 th , 2011 and still continuously erupted until August 28 th , 2011. Due to its high seismic activity, this study is focused to analysis of micro-earthquake signal and determine the micro-earthquake hypocenter location around the complex area of Lokon-Empung Volcano before eruption phase in 2011 (time periods of January, 2009 up to March, 2010). Determination of the hypocenter location was conducted with Geiger Adaptive Damping (GAD) method. We used initial model from previous study in Volcan de Colima, Mexico. The reason behind the model selection was based on the same characteristics that shared between Mount Lokon and Colima including andesitic stratovolcano and small-plinian explosions volcanian types. In this study, a picking events was limited to the volcano-tectonics of A and B types, hybrid, long-period that has a clear signal onset, and local tectonic with different maximum S – P time are not more than three seconds. As a result, we observed the micro-earthquakes occurred in the area north-west of Mount Lokon region

  11. Bend Faulting at the Edge of a Flat Slab: The 2017 Mw7.1 Puebla-Morelos, Mexico Earthquake

    Science.gov (United States)

    Melgar, Diego; Pérez-Campos, Xyoli; Ramirez-Guzman, Leonardo; Spica, Zack; Espíndola, Victor Hugo; Hammond, William C.; Cabral-Cano, Enrique

    2018-03-01

    We present results of a slip model from joint inversion of strong motion and static Global Positioning System data for the Mw7.1 Puebla-Morelos earthquake. We find that the earthquake nucleates at the bottom of the oceanic crust or within the oceanic mantle with most of the moment release occurring within the oceanic mantle. Given its location at the edge of the flat slab, the earthquake is likely the result of bending stresses occurring at the transition from flat slab subduction to steeply dipping subduction. The event strikes obliquely to the slab, we find a good agreement between the seafloor fabric offshore the source region and the strike of the earthquake. We argue that the event likely reactivated a fault first created during seafloor formation. We hypothesize that large bending-related events at the edge of the flat slab are more likely in areas of low misalignment between the seafloor fabric and the slab strike where reactivation of preexisting structures is favored. This hypothesis predicts decreased likelihood of bending-related events northwest of the 2017 source region but also suggests that they should be more likely southeast of the 2017 source region.

  12. Seismic‐hazard forecast for 2016 including induced and natural earthquakes in the central and eastern United States

    Science.gov (United States)

    Petersen, Mark D.; Mueller, Charles; Moschetti, Morgan P.; Hoover, Susan M.; Llenos, Andrea L.; Ellsworth, William L.; Michael, Andrew J.; Rubinstein, Justin L.; McGarr, Arthur F.; Rukstales, Kenneth S.

    2016-01-01

    The U.S. Geological Survey (USGS) has produced a one‐year (2016) probabilistic seismic‐hazard assessment for the central and eastern United States (CEUS) that includes contributions from both induced and natural earthquakes that are constructed with probabilistic methods using alternative data and inputs. This hazard assessment builds on our 2016 final model (Petersen et al., 2016) by adding sensitivity studies, illustrating hazard in new ways, incorporating new population data, and discussing potential improvements. The model considers short‐term seismic activity rates (primarily 2014–2015) and assumes that the activity rates will remain stationary over short time intervals. The final model considers different ways of categorizing induced and natural earthquakes by incorporating two equally weighted earthquake rate submodels that are composed of alternative earthquake inputs for catalog duration, smoothing parameters, maximum magnitudes, and ground‐motion models. These alternatives represent uncertainties on how we calculate earthquake occurrence and the diversity of opinion within the science community. In this article, we also test sensitivity to the minimum moment magnitude between M 4 and M 4.7 and the choice of applying a declustered catalog with b=1.0 rather than the full catalog with b=1.3. We incorporate two earthquake rate submodels: in the informed submodel we classify earthquakes as induced or natural, and in the adaptive submodel we do not differentiate. The alternative submodel hazard maps both depict high hazard and these are combined in the final model. Results depict several ground‐shaking measures as well as intensity and include maps showing a high‐hazard level (1% probability of exceedance in 1 year or greater). Ground motions reach 0.6g horizontal peak ground acceleration (PGA) in north‐central Oklahoma and southern Kansas, and about 0.2g PGA in the Raton basin of Colorado and New Mexico, in central Arkansas, and in

  13. The Texcoco Seismic Array: Analysis of the Seismic Movement in the Deep Sediments of Mexico Basin.

    Science.gov (United States)

    Flores-Estrella, H.; Cardenas-Soto, M.; Lomnitz, C.

    2007-05-01

    The seismic movement in the Lake Zone of the Mexico Basin is characterized by long durations and late energy arrivals; many efforts have been made to find the origin of these late waves. In 1997 the Texcoco Seismic Array (TXC) was installed in the former Lake of Texcoco, in the northeastern part of Mexico Basin. It is a natural reserve formed by the same lacustrine clays of the Lake Zone in Mexico City, however we consider TXC as a virgin site as there are no buildings near, and there is almost no human activity. We analyzed 7 earthquakes recorded at TXC in two instrumental arrays, to identify late energy arrivals near the fundamental period and we also analyzed these pulses with F-K method to estimate the phase velocity and its origin.

  14. Earthquake Culture: A Significant Element in Earthquake Disaster Risk Assessment and Earthquake Disaster Risk Management

    OpenAIRE

    Ibrion, Mihaela

    2018-01-01

    This book chapter brings to attention the dramatic impact of large earthquake disasters on local communities and society and highlights the necessity of building and enhancing the earthquake culture. Iran was considered as a research case study and fifteen large earthquake disasters in Iran were investigated and analyzed over more than a century-time period. It was found that the earthquake culture in Iran was and is still conditioned by many factors or parameters which are not integrated and...

  15. Geodetic Slip Solution for the Mw=7.4 Champerico (Guatemala) Earthquake of 07 November 2012

    Science.gov (United States)

    Ellis, A. P.; DeMets, C.; Briole, P.; Molina, E.; Flores, O.; Rivera, J.; Lasserre, C.; Lyon-Caen, H.; Lord, N. E.

    2014-12-01

    As the first large subduction thrust earthquake off the coast of western Guatemala in the past several decades, the 07 November 2012 Mw=7.4 earthquake offers the first opportunity for a geodetic study of coseismic and postseismic behavior for a segment of the Middle America trench where frictional coupling makes a transition from weak coupling off the coast of El Salvador to strong coupling in southern Mexico. We use measurements at 19 continuous GPS sites in Guatemala, El Salvador, and Mexico to estimate the coseismic slip and post-seismic deformation of the November 2012 Champerico (Guatemala) earthquake. Coseismic offsets range from ~47 mm near the epicenter to El Salvador. An inversion of the geodetic data indicate that that up to ~2 m of coseismic slip occurred on a ~30 km by 30 km rupture area between ~10 and 30 km depth, encouragingly close to the global CMT epicenter. The geodetic moment of 13 x 1019 N·m and corresponding magnitude of 7.4 both agree well with independent seismological estimates. An inversion for the postseismic fault afterslip shows that the transient postseismic motions recorded at 11 GPS sites are well fit with a logarithmically decaying function. More than 70 per cent of the postseismic slip occurred at the same depth or directly downdip from the main shock epicenter. At the upper limit, afterslip that occurred within 6 months of the earthquake released energy equivalent to only ~20 per cent of the coseismic moment. The seismologically derived slip solution from Ye et al. (2012), which features more highly concentrated slip than our own, fits our GPS offsets reasonably well provided that we translate their slip centroid ~51 km to the west to a position close to our own slip centroid. The geodetic and seismologic slip solutions thus suggest bounds of 2-5 m for the peak slip along a region of the interface no larger than 30 x 30 km and possibly much smaller.

  16. Large magnitude (M > 7.5) offshore earthquakes in 2012: few examples of absent or little tsunamigenesis, with implications for tsunami early warning

    Science.gov (United States)

    Pagnoni, Gianluca; Armigliato, Alberto; Tinti, Stefano

    2013-04-01

    We take into account some examples of offshore earthquakes occurred worldwide in year 2012 that were characterised by a "large" magnitude (Mw equal or larger than 7.5) but which produced no or little tsunami effects. Here, "little" is intended as "lower than expected on the basis of the parent earthquake magnitude". The examples we analyse include three earthquakes occurred along the Pacific coasts of Central America (20 March, Mw=7.8, Mexico; 5 September, Mw=7.6, Costa Rica; 7 November, Mw=7.5, Mexico), the Mw=7.6 and Mw=7.7 earthquakes occurred respectively on 31 August and 28 October offshore Philippines and offshore Alaska, and the two Indian Ocean earthquakes registered on a single day (11 April) and characterised by Mw=8.6 and Mw=8.2. For each event, we try to face the problem related to its tsunamigenic potential from two different perspectives. The first can be considered purely scientific and coincides with the question: why was the ensuing tsunami so weak? The answer can be related partly to the particular tectonic setting in the source area, partly to the particular position of the source with respect to the coastline, and finally to the focal mechanism of the earthquake and to the slip distribution on the ruptured fault. The first two pieces of information are available soon after the earthquake occurrence, while the third requires time periods in the order of tens of minutes. The second perspective is more "operational" and coincides with the tsunami early warning perspective, for which the question is: will the earthquake generate a significant tsunami and if so, where will it strike? The Indian Ocean events of 11 April 2012 are perfect examples of the fact that the information on the earthquake magnitude and position alone may not be sufficient to produce reliable tsunami warnings. We emphasise that it is of utmost importance that the focal mechanism determination is obtained in the future much more quickly than it is at present and that this

  17. Seismic recording at the Los Medanos area of Southeastern New Mexico, 1974-1975

    International Nuclear Information System (INIS)

    Sanford, A.R.; Johansen, S.J.; Caravella, F.J.; Ward, R.M.

    1976-01-01

    The objective has been to determine if low-level seismic activity is occurring at or near the proposed nuclear waste repository in southeastern New Mexico. The research involved installation and maintenance of a continuously recording seismograph at the Los Medanos site and interpretation of the seismic events detected by that station. The following topics are discussed: (1) a description of the seismic instrumentation and its performance; (2) statistics on the local and regional earthquakes detected by the seismograph station at the Los Medanos site; (3) special studies on the seismic events associated with rockfalls at the National Potash Co. Eddy County Mine on July 26, 1972 and November 28, 1974; and (4) improved estimates of recurrence intervals for major earthquakes likely to effect the Los Medanos site

  18. A non-accelerating foreshock sequence followed by a short period of quiescence for a large inland earthquake

    Science.gov (United States)

    Doi, I.; Kawakata, H.

    2012-12-01

    system has a negative feedback response to local loading. For example, the spatial distribution of AEs may remain constant during the nucleation phase of rock fracture under conditions of loading control [Lockner et al., 1992]. The host rock systems for faults inland may be stiffer than those undergoing deformation at plate interfaces. We think these differences in load responses between inland and inter-plate fault systems as critical factors in the contrasting foreshock patterns from the 1999 Izmit earthquake and the events analyzed in this study. Acknowledgements: We used waveform data of Hi-net, operated by National Research Institute for Earth Science and Disaster Prevention (NIED) in Japan. Hypocenter information determined by Japan Metrological Agency (JMA) was referred. We would like to express sincere gratitude to them.

  19. Earthquakes and Earthquake Engineering. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    An earthquake is a shaking of the ground resulting from a disturbance in the earth's interior. Seismology is the (1) study of earthquakes; (2) origin, propagation, and energy of seismic phenomena; (3) prediction of these phenomena; and (4) investigation of the structure of the earth. Earthquake engineering or engineering seismology includes the…

  20. Geodetic slip solutions for the Mw=7.4 Champerico (Guatemala) subduction earthquake of November 7 2012

    Science.gov (United States)

    Ellis, Andria; DeMets, Charles; Briole, Pierre; Molina, Enrique; Flores, Omar; Rivera, Jeffrey; Lasserre, Cécile; Lyon-Caen, Hélène; Lord, Neal

    2014-05-01

    As the first large subduction thrust earthquake off the coast of western Guatemala in the past 50 years, the 7 November 2012 Mw=7.4 earthquake offers the first opportunity for a geodetic study of coseismic and postseismic behavior for a segment of the Middle America trench where frictional coupling makes a transition from weak coupling off the coast of El Salvador to strong coupling in southern Mexico. Processing of continuous GPS measurements at 19 stations in Guatemala, El Salvador, and southern Mexico, and at 7 campaign points in Guatemala defines a highly consistent pattern of coseismic offsets during the earthquake, ranging from 47±5 mm of SW movement just inland from the earthquake epicenter to a few mm at sites located in northern Guatemala. Inversions of these offsets to find their best-fitting fault-slip solution in an elastic half space give a geodetic earthquake moment ranging between 0.75 and 1.1 x 1020 Nm, slightly smaller than the seismic estimates that range between 1.2 and 1.45 x 1020 Nm. Slip inversion using a constant slip model, assuming 293° and 29° for the fault azimuth and dip angle, indicates a nearly reverse slip of 2.8 m (rake 78°) on a fault plane 42 km-long and 20 km-wide, centered at 26 km depth. A variable slip inversion indicates that slip concentrated above depths of 40 km may have extended updip to the trench and reached a maximum of only 0.8 m, less than one-sixth the maximum slip indicated by a recent slip solution (5.3 m) obtained from waveform inversion of seismological data. Detailed model comparisons will be discussed. Transient postseismic displacements have been recorded at the nearby continuous GPS sites with amplitudes reaching 20-25 mm at some stations. The duration of the phenomenon is short: using an exponential-decay model, the estimated decay time is 90 ± 10 days. This postseismic signal is consistent with afterslip along a significantly broader area (+50%) of the subduction interface than ruptured coseismically

  1. Analog earthquakes

    International Nuclear Information System (INIS)

    Hofmann, R.B.

    1995-01-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository

  2. Imaging the 2017 MW 8.2 Tehuantepec intermediate-depth earthquake using Teleseismic P Waves

    Science.gov (United States)

    Brudzinski, M.; Zhang, H.; Koper, K. D.; Pankow, K. L.

    2017-12-01

    The September 8, 2017 MW 8.1 Tehuantepec, Mexico earthquakes in the middle American subduction zone is one of the largest intermediate-depth earthquake ever recorded and could provide an unprecedented opportunity for understanding the mechanism of intermediate-depth earthquakes. While the hypocenter and centroid depths for this earthquake are shallower than typically considered for intermediate depth earthquakes, the normal faulting mechanism consistent with down-dip extension and location within the subducting plate align with properties of intermediate depth earthquakes. Back-projection of high-frequency teleseismic P-waves from two regional arrays for this earthquake shows unilateral rupture on a southeast-northwest striking fault that extends north of the Tehuantepec fracture zone (TFZ), with an average horizontal rupture speed of 3.0 km/s and total duration of 60 s. Guided by these back-projection results, 47 globally distributed low-frequency P-waves were inverted for a finite-fault model (FFM) of slip for both nodal planes. The FFM shows a slip deficit in proximity to the extension of the TFZ, as well as the minor rupture beyond the TFZ (confirmed by the synthetic tests), which indicates that the TFZ acted as a barrier for this earthquake. Analysis of waveform misfit leads to the preference of a subvertical plane as the causative fault. The FFM shows that the majority of the rupture is above the focal depth and consists of two large slip patches: the first one is near the hypocenter ( 55 km depth) and the second larger one near 30 km depth. The distribution of the two patches spatially agrees with seismicity that defines the upper and lower zones of a double Benioff zone (DBZ). It appears there was single fault rupture across the two depth zones of the DBZ. This is uncommon because a stark aseismic zone is typically observed between the upper and lower zones of the DBZ. This finding indicates that the mechanism for intraslab earthquakes must allow for

  3. Artificial seismic acceleration

    Science.gov (United States)

    Felzer, Karen R.; Page, Morgan T.; Michael, Andrew J.

    2015-01-01

    In their 2013 paper, Bouchon, Durand, Marsan, Karabulut, 3 and Schmittbuhl (BDMKS) claim to see significant accelerating seismicity before M 6.5 interplate mainshocks, but not before intraplate mainshocks, reflecting a preparatory process before large events. We concur with the finding of BDMKS that their interplate dataset has significantly more fore- shocks than their intraplate dataset; however, we disagree that the foreshocks are predictive of large events in particular. Acceleration in stacked foreshock sequences has been seen before and has been explained by the cascade model, in which earthquakes occasionally trigger aftershocks larger than themselves4. In this model, the time lags between the smaller mainshocks and larger aftershocks follow the inverse power law common to all aftershock sequences, creating an apparent acceleration when stacked (see Supplementary Information).

  4. The 13 January 2001 El Salvador earthquake: A multidata analysis

    Science.gov (United States)

    ValléE, Martin; Bouchon, Michel; Schwartz, Susan Y.

    2003-04-01

    On 13 January 2001, a large normal faulting intermediate depth event (Mw = 7.7) occurred 40 km off the El Salvadorian coast (Central America). We analyze this earthquake using teleseismic, regional, and local data. We first build a kinematic source model by simultaneously inverting P and SH displacement waveforms and source time functions derived from surface waves using an empirical Green's function analysis. In an attempt to discriminate between the two nodal planes (30° trenchward dipping and 60° landward dipping), we perform identical inversions using both possible fault planes. After relocating the hypocentral depth at 54 km, we retrieve the kinematic features of the rupture using a combination of the Neighborhood algorithm of [1999] and the Simplex method allowing for variable rupture velocity and slip. We find updip rupture propagation yielding a centroid depth around 47 km for both assumed fault planes with a larger variance reduction obtained using the 60° landward dipping nodal plane. We test the two possible fault models using regional broadband data and near-field accelerograms provided by [2001]. Near-field data confirm that the steeper landward dipping nodal plane is preferred. Rupture propagated mostly updip and to the northwest, resulting in a main moment release zone of approximately 25 km × 50 km with an average slip of ˜3.5 m. The large slip occurs near the interplate interface at a location where the slab steepens dip significantly. The occurrence of this event is well-explained by bending of the subducting plate.

  5. Turkish Compulsory Earthquake Insurance and "Istanbul Earthquake

    Science.gov (United States)

    Durukal, E.; Sesetyan, K.; Erdik, M.

    2009-04-01

    The city of Istanbul will likely experience substantial direct and indirect losses as a result of a future large (M=7+) earthquake with an annual probability of occurrence of about 2%. This paper dwells on the expected building losses in terms of probable maximum and average annualized losses and discusses the results from the perspective of the compulsory earthquake insurance scheme operational in the country. The TCIP system is essentially designed to operate in Turkey with sufficient penetration to enable the accumulation of funds in the pool. Today, with only 20% national penetration, and about approximately one-half of all policies in highly earthquake prone areas (one-third in Istanbul) the system exhibits signs of adverse selection, inadequate premium structure and insufficient funding. Our findings indicate that the national compulsory earthquake insurance pool in Turkey will face difficulties in covering incurring building losses in Istanbul in the occurrence of a large earthquake. The annualized earthquake losses in Istanbul are between 140-300 million. Even if we assume that the deductible is raised to 15%, the earthquake losses that need to be paid after a large earthquake in Istanbul will be at about 2.5 Billion, somewhat above the current capacity of the TCIP. Thus, a modification to the system for the insured in Istanbul (or Marmara region) is necessary. This may mean an increase in the premia and deductible rates, purchase of larger re-insurance covers and development of a claim processing system. Also, to avoid adverse selection, the penetration rates elsewhere in Turkey need to be increased substantially. A better model would be introduction of parametric insurance for Istanbul. By such a model the losses will not be indemnified, however will be directly calculated on the basis of indexed ground motion levels and damages. The immediate improvement of a parametric insurance model over the existing one will be the elimination of the claim processing

  6. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  7. The Earthquakes Role in the Paleoenviromental Record of the Lakes and in the Development of the Mesoamerican Cultures

    Science.gov (United States)

    Garduño Monroy, V. H., Sr.; Israde-Alcantara, I.

    2017-12-01

    Inside the Mexican Volcanic Belt Paleoseismological and Archeoseismological studies in the lakes sedimentary sequences delimited by seismically active faults are of importance. Those studies reveal that the lakes can not be analyzed only in the context of climatic variations or anthropogenic effects. The lakes of the ancient Tenochtitlan, Cuitzeo, Pátzcuaro, Zacapu in Michoacán (Tarascan Culture) and Zacoalco and Juanacatlán in Jalisco (Cultures of the West of Mexico) testimoniate throughout their sedimentation record, extraordinary seismic events that modified the geometry of the strata, sedimentation rates, and the morphology of the lakes bottom, among others. In some cases, these events were seen as premonitories of some misfortune "the fifth omen of the arrival of the Spaniards was the fact that the water surrounded Tenochtitlan rose with great waves that traveled far away, entering into the houses, shaking its foundations and making them fall". All these effects generated by important earthquakes like liquefaction, faulting, slumps, folding among others, have been studied in cores obtained in the mentioned lakes. Seismic events are observed in different stratigraphic levels, and with the 14C datation it is possible to obtain the recurrence of seismic events (M> 5). The Mesoamerican cultures developed very clear concepts about the earthquakes intensities, mixing earth (tlalli) and movement (ollin) symbols. However, much of this information has been omitted in the interpretation of secondary structures generated by earthquakes with M> 5. These phenomens modified the paleoenvironmental conditions on the lakes of central Mexico, in the context of intraplate faults oriented optimally into the late Holoce field stress.

  8. Cascadia Seismicity Related to Seamount Subduction as detected by the Cascadia Initiative Amphibious Data

    Science.gov (United States)

    Morton, E.; Bilek, S. L.; Rowe, C. A.

    2016-12-01

    Unlike other subduction zones, the Cascadia subduction zone (CSZ) is notable for the absence of detected and located small and moderate magnitude interplate earthquakes, despite the presence of recurring episodic tremor and slip (ETS) downdip and evidence of pre-historic great earthquakes. Thermal and geodetic models indicate that the seismogenic zone exists primarily, if not entirely, offshore; therefore the perceived unusual seismic quiescence may be a consequence of seismic source location in relation to land based seismometers. The Cascadia Initiative (CI) amphibious community seismic experiment includes ocean bottom seismometers (OBS) deployed directly above the presumed locked seismogenic zone. We use the CI dataset to search for small magnitude interplate earthquakes previously undetected using the on-land sensors alone. We implement subspace detection to search for small earthquakes. We build our subspace with template events from existing earthquake catalogs that appear to have occurred on the plate interface, windowing waveforms on CI OBS and land seismometers. Although our efforts will target the entire CSZ margin and full 4-year CI deployment, here we focus on a previously identified cluster off the coast of Oregon, related to a subducting seamount. During the first year of CI deployment, this target area yields 293 unique detections with 86 well-located events. Thirty-two of these events occurred within the seamount cluster, and 13 events were located in another cluster to the northwest of the seamount. Events within the seamount cluster are separated into those whose depths place them on the plate interface, and a shallower set ( 5 km depth). These separate event groups track together temporally, and seem to agree with a model of seamount subduction that creates extensive fracturing around the seamount, rather than stress concentrated at the seamount-plate boundary. During CI year 2, this target area yields >1000 additional event detections.

  9. Megathrust Earthquake Swarms Contemporaneous to Slow Slip and Non-Volcanic Tremor in Southern Mexico, Detected and Analyzed through a Template Matching Approach

    Science.gov (United States)

    Holtkamp, S.; Brudzinski, M. R.; Cabral-Cano, E.; Arciniega-Ceballos, A.

    2012-12-01

    An outstanding question in geophysics is the degree to which the newly discovered types of slow fault slip are related to their destructive cousin - the earthquake. Here, we utilize a local network along the Oaxacan segment of the Middle American subduction zone to investigate the potential relationship between slow slip, non-volcanic tremor (NVT), and earthquakes along the subduction megathrust. We have developed a multi-station "template matching" waveform cross correlation technique which is able to detect and locate events several orders of magnitude smaller than would be possible using more traditional techniques. Also, our template matching procedure is capable of consistently locate events which occur during periods of increased background activity (e.g., during productive NVT, loud cultural noise, or after larger earthquakes) because the multi-station detector is finely tuned to events with similar hypocentral location and focal mechanism. The local network in the Oaxaca region allows us to focus on documented megathrust earthquake swarms, which we focus on because slow slip is hypothesized to be the cause for earthquake swarms in some tectonic environments. We identify a productive earthquake swarm in July 2006 (~600 similar earthquakes detected), which occurred during a week-long episode of productive tremor and slow slip. Families of events in this sequence were also active during larger and longer slow slip events, which provides a potential link between slow slip in the transition zone and earthquakes at the downdip end of the seismogenic portion of the megathrust. Because template matching techniques only detect similar signals, detected waveforms can be stacked together to produce higher signal to noise ratios or cross correlated against each other to produce precise relative phase arrival times. We are using the refined signals to look for evidence of expansion or propagation of hypocenters during these earthquake swarms, which could be used as a

  10. Earthquake, GIS and multimedia. The 1883 Casamicciola earthquake

    Directory of Open Access Journals (Sweden)

    M. Rebuffat

    1995-06-01

    Full Text Available A series of multimedia monographs concerning the main seismic events that have affected the Italian territory are in the process of being produced for the Documental Integrated Multimedia Project (DIMP started by the Italian National Seismic Survey (NSS. The purpose of the project is to reconstruct the historical record of earthquakes and promote an earthquake public education. Producing the monographs. developed in ARC INFO and working in UNIX. involved designing a special filing and management methodology to integrate heterogeneous information (images, papers, cartographies, etc.. This paper describes the possibilities of a GIS (Geographic Information System in the filing and management of documental information. As an example we present the first monograph on the 1883 Casamicciola earthquake. on the island of Ischia (Campania, Italy. This earthquake is particularly interesting for the following reasons: I historical-cultural context (first destructive seismic event after the unification of Italy; 2 its features (volcanic earthquake; 3 the socioeconomic consequences caused at such an important seaside resort.

  11. Micro-earthquake signal analysis and hypocenter determination around Lokon volcano complex

    Energy Technology Data Exchange (ETDEWEB)

    Firmansyah, Rizky, E-mail: rizkyfirmansyah@hotmail.com [Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Kristianto, E-mail: kris@vsi.esdm.go.id [Center for Volcanology and Geological Hazard Mitigation (CVGHM), Geological Agency, Bandung, 40122 (Indonesia)

    2015-04-24

    Mount Lokon is one of five active volcanoes which is located in the North Sulawesi region. Since June 26{sup th}, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) for this mountain. The Mount Lokon volcano erupted on July 4{sup th}, 2011 and still continuously erupted until August 28{sup th}, 2011. Due to its high seismic activity, this study is focused to analysis of micro-earthquake signal and determine the micro-earthquake hypocenter location around the complex area of Lokon-Empung Volcano before eruption phase in 2011 (time periods of January, 2009 up to March, 2010). Determination of the hypocenter location was conducted with Geiger Adaptive Damping (GAD) method. We used initial model from previous study in Volcan de Colima, Mexico. The reason behind the model selection was based on the same characteristics that shared between Mount Lokon and Colima including andesitic stratovolcano and small-plinian explosions volcanian types. In this study, a picking events was limited to the volcano-tectonics of A and B types, hybrid, long-period that has a clear signal onset, and local tectonic with different maximum S – P time are not more than three seconds. As a result, we observed the micro-earthquakes occurred in the area north-west of Mount Lokon region.

  12. OMG Earthquake! Can Twitter improve earthquake response?

    Science.gov (United States)

    Earle, P. S.; Guy, M.; Ostrum, C.; Horvath, S.; Buckmaster, R. A.

    2009-12-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment its earthquake response products and the delivery of hazard information. The goal is to gather near real-time, earthquake-related messages (tweets) and provide geo-located earthquake detections and rough maps of the corresponding felt areas. Twitter and other social Internet technologies are providing the general public with anecdotal earthquake hazard information before scientific information has been published from authoritative sources. People local to an event often publish information within seconds via these technologies. In contrast, depending on the location of the earthquake, scientific alerts take between 2 to 20 minutes. Examining the tweets following the March 30, 2009, M4.3 Morgan Hill earthquake shows it is possible (in some cases) to rapidly detect and map the felt area of an earthquake using Twitter responses. Within a minute of the earthquake, the frequency of “earthquake” tweets rose above the background level of less than 1 per hour to about 150 per minute. Using the tweets submitted in the first minute, a rough map of the felt area can be obtained by plotting the tweet locations. Mapping the tweets from the first six minutes shows observations extending from Monterey to Sacramento, similar to the perceived shaking region mapped by the USGS “Did You Feel It” system. The tweets submitted after the earthquake also provided (very) short first-impression narratives from people who experienced the shaking. Accurately assessing the potential and robustness of a Twitter-based system is difficult because only tweets spanning the previous seven days can be searched, making a historical study impossible. We have, however, been archiving tweets for several months, and it is clear that significant limitations do exist. The main drawback is the lack of quantitative information

  13. Earthquake Early Warning Systems

    OpenAIRE

    Pei-Yang Lin

    2011-01-01

    Because of Taiwan’s unique geographical environment, earthquake disasters occur frequently in Taiwan. The Central Weather Bureau collated earthquake data from between 1901 and 2006 (Central Weather Bureau, 2007) and found that 97 earthquakes had occurred, of which, 52 resulted in casualties. The 921 Chichi Earthquake had the most profound impact. Because earthquakes have instant destructive power and current scientific technologies cannot provide precise early warnings in advance, earthquake ...

  14. Twitter earthquake detection: Earthquake monitoring in a social world

    Science.gov (United States)

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.

    2011-01-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  15. Ground water and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ts' ai, T H

    1977-11-01

    Chinese folk wisdom has long seen a relationship between ground water and earthquakes. Before an earthquake there is often an unusual change in the ground water level and volume of flow. Changes in the amount of particulate matter in ground water as well as changes in color, bubbling, gas emission, and noises and geysers are also often observed before earthquakes. Analysis of these features can help predict earthquakes. Other factors unrelated to earthquakes can cause some of these changes, too. As a first step it is necessary to find sites which are sensitive to changes in ground stress to be used as sensor points for predicting earthquakes. The necessary features are described. Recording of seismic waves of earthquake aftershocks is also an important part of earthquake predictions.

  16. Foreshocks, aftershocks, and earthquake probabilities: Accounting for the landers earthquake

    Science.gov (United States)

    Jones, Lucile M.

    1994-01-01

    The equation to determine the probability that an earthquake occurring near a major fault will be a foreshock to a mainshock on that fault is modified to include the case of aftershocks to a previous earthquake occurring near the fault. The addition of aftershocks to the background seismicity makes its less probable that an earthquake will be a foreshock, because nonforeshocks have become more common. As the aftershocks decay with time, the probability that an earthquake will be a foreshock increases. However, fault interactions between the first mainshock and the major fault can increase the long-term probability of a characteristic earthquake on that fault, which will, in turn, increase the probability that an event is a foreshock, compensating for the decrease caused by the aftershocks.

  17. Earthquake forecasting and warning

    Energy Technology Data Exchange (ETDEWEB)

    Rikitake, T.

    1983-01-01

    This review briefly describes two other books on the same subject either written or partially written by Rikitake. In this book, the status of earthquake prediction efforts in Japan, China, the Soviet Union, and the United States are updated. An overview of some of the organizational, legal, and societal aspects of earthquake prediction in these countries is presented, and scientific findings of precursory phenomena are included. A summary of circumstances surrounding the 1975 Haicheng earthquake, the 1978 Tangshan earthquake, and the 1976 Songpan-Pingwu earthquake (all magnitudes = 7.0) in China and the 1978 Izu-Oshima earthquake in Japan is presented. This book fails to comprehensively summarize recent advances in earthquake prediction research.

  18. Ionospheric earthquake precursors

    International Nuclear Information System (INIS)

    Bulachenko, A.L.; Oraevskij, V.N.; Pokhotelov, O.A.; Sorokin, V.N.; Strakhov, V.N.; Chmyrev, V.M.

    1996-01-01

    Results of experimental study on ionospheric earthquake precursors, program development on processes in the earthquake focus and physical mechanisms of formation of various type precursors are considered. Composition of experimental cosmic system for earthquake precursors monitoring is determined. 36 refs., 5 figs

  19. Evaluation of earthquake vibration on aseismic design of nuclear power plant judging from recent earthquakes

    International Nuclear Information System (INIS)

    Dan, Kazuo

    2006-01-01

    The Regulatory Guide for Aseismic Design of Nuclear Reactor Facilities was revised on 19 th September, 2006. Six factors for evaluation of earthquake vibration are considered on the basis of the recent earthquakes. They are 1) evaluation of earthquake vibration by method using fault model, 2) investigation and approval of active fault, 3) direct hit earthquake, 4) assumption of the short active fault as the hypocentral fault, 5) locality of the earthquake and the earthquake vibration and 6) remaining risk. A guiding principle of revision required new evaluation method of earthquake vibration using fault model, and evaluation of probability of earthquake vibration. The remaining risk means the facilities and people get into danger when stronger earthquake than the design occurred, accordingly, the scattering has to be considered at evaluation of earthquake vibration. The earthquake belt of Hyogo-Nanbu earthquake and strong vibration pulse in 1995, relation between length of surface earthquake fault and hypocentral fault, and distribution of seismic intensity of off Kushiro in 1993 are shown. (S.Y.)

  20. Comparison of two large earthquakes: the 2008 Sichuan Earthquake and the 2011 East Japan Earthquake.

    Science.gov (United States)

    Otani, Yuki; Ando, Takayuki; Atobe, Kaori; Haiden, Akina; Kao, Sheng-Yuan; Saito, Kohei; Shimanuki, Marie; Yoshimoto, Norifumi; Fukunaga, Koichi

    2012-01-01

    Between August 15th and 19th, 2011, eight 5th-year medical students from the Keio University School of Medicine had the opportunity to visit the Peking University School of Medicine and hold a discussion session titled "What is the most effective way to educate people for survival in an acute disaster situation (before the mental health care stage)?" During the session, we discussed the following six points: basic information regarding the Sichuan Earthquake and the East Japan Earthquake, differences in preparedness for earthquakes, government actions, acceptance of medical rescue teams, earthquake-induced secondary effects, and media restrictions. Although comparison of the two earthquakes was not simple, we concluded that three major points should be emphasized to facilitate the most effective course of disaster planning and action. First, all relevant agencies should formulate emergency plans and should supply information regarding the emergency to the general public and health professionals on a normal basis. Second, each citizen should be educated and trained in how to minimize the risks from earthquake-induced secondary effects. Finally, the central government should establish a single headquarters responsible for command, control, and coordination during a natural disaster emergency and should centralize all powers in this single authority. We hope this discussion may be of some use in future natural disasters in China, Japan, and worldwide.

  1. Twitter earthquake detection: earthquake monitoring in a social world

    Directory of Open Access Journals (Sweden)

    Daniel C. Bowden

    2011-06-01

    Full Text Available The U.S. Geological Survey (USGS is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word “earthquake” clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  2. Earthquakes, September-October 1986

    Science.gov (United States)

    Person, W.J.

    1987-01-01

    There was one great earthquake (8.0 and above) during this reporting period in the South Pacific in the Kermadec Islands. There were no major earthquakes (7.0-7.9) but earthquake-related deaths were reported in Greece and in El Salvador. There were no destrcutive earthquakes in the United States.

  3. EARTHQUAKE-INDUCED DEFORMATION STRUCTURES AND RELATED TO EARTHQUAKE MAGNITUDES

    Directory of Open Access Journals (Sweden)

    Savaş TOPAL

    2003-02-01

    Full Text Available Earthquake-induced deformation structures which are called seismites may helpful to clasify the paleoseismic history of a location and to estimate the magnitudes of the potention earthquakes in the future. In this paper, seismites were investigated according to the types formed in deep and shallow lake sediments. Seismites are observed forms of sand dikes, introduced and fractured gravels and pillow structures in shallow lakes and pseudonodules, mushroom-like silts protruding laminites, mixed layers, disturbed varved lamination and loop bedding in deep lake sediments. Earthquake-induced deformation structures, by benefiting from previous studies, were ordered according to their formations and earthquake magnitudes. In this order, the lowest eartquake's record is loop bedding and the highest one is introduced and fractured gravels in lacustrine deposits.

  4. Seismologic study of Los Hum eros geothermal field, Pueblo, Mexico. Part I: Seismicity, source mechanisms and stress distribution; Estudio sismologico del campo geotermico de Los Humeros, Puebla, Mexico. Parte I: Sismicidad, mecanismos de fuente y distribucion de esfuerzos

    Energy Technology Data Exchange (ETDEWEB)

    Lermo, Javier; Antayhua, Yanet [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Mexico D.F (Mexico)]. E-Mail: jles@pumas.iingen.unam.mx; Quintanar, Luis [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico D.F (Mexico); Lorenzo, Cecilia [Gerencia de Proyectos Geotermoelectricos, Comision Federal de Electricidad, Michoacan (Mexico)

    2008-01-15

    The distribution of earthquakes at the surface and at depth in the Los Humeros geothermal field, Puebla (Mexico), is analyzed from 1997-2004. Data for 95 earthquakes were registered at more than five permanent and temporary stations installed by the Comision Federal de Electricidad and the Instituto de Ingenieria of the Universidad Nacional Autonoma de Mexico. The duration magnitudes of the quakes are equal to or lower than 3.6 Md and the focal depths do not exceed 4.0 km. Simple focal mechanisms and moment tensor inversions were made, and the number of earthquakes registered by two stations of the permanent network (numbers S05, S06) was compared with water-injection and steam-production volumes over a certain period. The results at the surface and at depth show seismic activity occurring in the northern zone of the field around injection wells I29 (well H-29) and I38 (well H-38); whereas, the simple focal mechanisms and moment tensors demonstrate stresses of heterogeneous origin, suggesting that part of the seismic activity in Los Humeros is probably induced, mainly by injecting water. [Spanish] Se analiza la distribucion en superficie y en profundidad de los sismos ocurridos en el campo geotermico de Los Humeros, Puebla (Mexico), durante el periodo 1997-2004. Los datos corresponden a 95 sismos registrados por mas de cinco estaciones permanentes y temporales instaladas por la Comision Federal de Electricidad y el Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico, cuyas magnitudes de duracion son menores o iguales a 3.6 Md y profundidades focales que no sobrepasan los 4.0 km. Asimismo, se realizaron mecanismos focales simples y de inversion de tensor de momento, y se comparo el numero de sismos registrados por dos estaciones de la red permanente (numeros S05, S06) con la inyeccion de agua y la produccion de vapor durante cierto tiempo. Los resultados en superficie y en profundidad muestran actividad sismica en la zona norte del campo, alrededor

  5. Megathrust earthquakes in Central Chile: What is next after the Maule 2010 earthquake?

    Science.gov (United States)

    Madariaga, R.

    2013-05-01

    The 27 February 2010 Maule earthquake occurred in a well identified gap in the Chilean subduction zone. The event has now been studied in detail using both far-field, near field seismic and geodetic data, we will review this information gathered so far. The event broke a region that was much longer along strike than the gap left over from the 1835 Concepcion earthquake, sometimes called the Darwin earthquake because he was in the area when the earthquake occurred and made many observations. Recent studies of contemporary documents by Udias et al indicate that the area broken by the Maule earthquake in 2010 had previously broken by a similar earthquake in 1751, but several events in the magnitude 8 range occurred in the area principally in 1835 already mentioned and, more recently on 1 December 1928 to the North and on 21 May 1960 (1 1/2 days before the big Chilean earthquake of 1960). Currently the area of the 2010 earthquake and the region immediately to the North is undergoing a very large increase in seismicity with numerous clusters of seismicity that move along the plate interface. Examination of the seismicity of Chile of the 18th and 19th century show that the region immediately to the North of the 2010 earthquake broke in a very large megathrust event in July 1730. this is the largest known earthquake in central Chile. The region where this event occurred has broken in many occasions with M 8 range earthquakes in 1822, 1880, 1906, 1971 and 1985. Is it preparing for a new very large megathrust event? The 1906 earthquake of Mw 8.3 filled the central part of the gap but it has broken again on several occasions in 1971, 1973 and 1985. The main question is whether the 1906 earthquake relieved enough stresses from the 1730 rupture zone. Geodetic data shows that most of the region that broke in 1730 is currently almost fully locked from the northern end of the Maule earthquake at 34.5°S to 30°S, near the southern end of the of the Mw 8.5 Atacama earthquake of 11

  6. Clarifying the interplate main tectonic elements of Western Anatolia, Turkey by using GNSS velocities and Bouguer gravity anomalies

    Science.gov (United States)

    Çırmık, Ayça; Pamukçu, Oya

    2017-10-01

    In this study, the GNSS and gravity data were processed and compared together for examining the continental structures of the Western Anatolia region which has very complicated tectonism. The GNSS data of three national projects were processed and GNSS velocities were found as approximately 25 mm per year towards southwest with respect to the Eurasia fixed frame. In order to investigate the interplate motions of the region, the Anatolian and Aegean block solutions were calculated and the differences in directions and amplitudes of velocities were observed particularly in the Anatolian block solution. Due to the Anatolian block solutions, the study area was grouped into three regions and compared with the tectonic structures as the first time for Western Anatolia by this study. Additionally, W-E and N-S relative GNSS solutions were obtained for observing the possible tectonic borders of the study area. Besides, 2nd order horizontal derivative and low-pass filter methods were applied to Bouguer gravity anomalies and the results of the gravity applications and the changes on crustal-mantle interface were compared with the GNSS horizontal velocities.

  7. Extreme value statistics and thermodynamics of earthquakes. Large earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lavenda, B. [Camerino Univ., Camerino, MC (Italy); Cipollone, E. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). National Centre for Research on Thermodynamics

    2000-06-01

    A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershocks sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Frechet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions show that self-similar power laws are transformed into non scaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Frechet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same catalogue of Chinese earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Frechet distribution. Earthquake temperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  8. Detection of Induced Seismicity Due to Oil and Gas Extraction in the Northern Gulf of Mexico, USA

    Science.gov (United States)

    Fadugba, O. I.; Ebel, J.

    2014-12-01

    Drilling operations and extraction of oil and gas (O&G) may lead to subsurface slumping or compression of sediments due to reduced vertical principal stress which may lead to small earthquakes at the drilling site. O&G extraction is common in the northern Gulf of Mexico (NGM) and only thirty-five earthquakes of magnitudes between 2.3 and 6.0 have been recorded in the area from 1974 to the present. The purpose of this research is to detect more earthquakes using stacks of seismic data from the EarthScope Transportable USArray (TA) from 2011 to 2013, and determine the spatiotemporal relationship between the detected earthquakes and O&G extraction. TA waveform records were retrieved from IRIS database and a narrow bandpass filter of 1 - 2 Hz was applied to remove background and high frequency noises and focus on the low energy part of the signal. The seismic record at all stations was plotted vertically with respect to distance from the Gulf. An Automatic Gain Control (AGC) using Root Mean Square was applied to boost the signals at farther stations. More than 1500 events have been detected, including teleseisms and local blasts from the area, especially from the three Walter Minerals coal mines in Alabama. No offshore earthquakes have been detected in the data, although data processing is still ongoing. Therefore, any earthquake activity, if present, associated with the offshore oil and gas production must be at a magnitude below the detection threshold of the algorithm.

  9. Geodetic slip solutions for the Mw = 7.4 Champerico (Guatemala) earthquake of 2012 November 7 and its postseismic deformation

    Science.gov (United States)

    Ellis, Andria P.; DeMets, Charles; Briole, Pierre; Molina, Enrique; Flores, Omar; Rivera, Jeffrey; Lasserre, Cécile; Lyon-Caen, Hélène; Lord, Neal

    2015-05-01

    As the first large subduction thrust earthquake off the coast of western Guatemala in the past several decades, the 2012 November 7 Mw = 7.4 earthquake offers the first opportunity to study coseismic and postseismic behaviour along a segment of the Middle America trench where frictional coupling makes a transition from weak coupling off the coast of El Salvador to strong coupling in southern Mexico. We use measurements at 19 continuous GPS sites in Guatemala, El Salvador and Mexico to estimate the coseismic slip and postseismic deformation of the November 2012 Champerico (Guatemala) earthquake. An inversion of the coseismic offsets, which range up to ˜47 mm at the surface near the epicentre, indicates that up to ˜2 m of coseismic slip occurred on a ˜30 × 30 km rupture area between ˜10 and 30 km depth, which is near the global CMT centroid. The geodetic moment of 13 × 1019 N m and corresponding magnitude of 7.4 both agree well with independent seismological estimates. Transient postseismic deformation that was recorded at 11 GPS sites is attributable to a combination of fault afterslip and viscoelastic flow in the lower crust and/or mantle. Modelling of the viscoelastic deformation suggests that it constituted no more than ˜30 per cent of the short-term postseismic deformation. GPS observations that extend six months after the earthquake are well fit by a model in which most afterslip occurred at the same depth or directly downdip from the rupture zone and released energy equivalent to no more than ˜20 per cent of the coseismic moment. An independent seismological slip solution that features more highly concentrated coseismic slip than our own fits the GPS offsets well if its slip centroid is translated ˜50 km to the west to a position close to our slip centroid. The geodetic and seismologic slip solutions thus suggest bounds of 2-7 m for the peak slip along a region of the interface no larger than 30 × 30 km.

  10. The GIS and analysis of earthquake damage distribution of the 1303 Hongtong M=8 earthquake

    Science.gov (United States)

    Gao, Meng-Tan; Jin, Xue-Shen; An, Wei-Ping; Lü, Xiao-Jian

    2004-07-01

    The geography information system of the 1303 Hongton M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studies. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage distribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed.

  11. Earthquakes, November-December 1977

    Science.gov (United States)

    Person, W.J.

    1978-01-01

    Two major earthquakes occurred in the last 2 months of the year. A magnitude 7.0 earthquake struck San Juan Province, Argentina, on November 23, causing fatalities and damage. The second major earthquake was a magnitude 7.0 in the Bonin Islands region, an unpopulated area. On December 19, Iran experienced a destructive earthquake, which killed over 500.

  12. Protecting your family from earthquakes: The seven steps to earthquake safety

    Science.gov (United States)

    Developed by American Red Cross, Asian Pacific Fund

    2007-01-01

    This book is provided here because of the importance of preparing for earthquakes before they happen. Experts say it is very likely there will be a damaging San Francisco Bay Area earthquake in the next 30 years and that it will strike without warning. It may be hard to find the supplies and services we need after this earthquake. For example, hospitals may have more patients than they can treat, and grocery stores may be closed for weeks. You will need to provide for your family until help arrives. To keep our loved ones and our community safe, we must prepare now. Some of us come from places where earthquakes are also common. However, the dangers of earthquakes in our homelands may be very different than in the Bay Area. For example, many people in Asian countries die in major earthquakes when buildings collapse or from big sea waves called tsunami. In the Bay Area, the main danger is from objects inside buildings falling on people. Take action now to make sure your family will be safe in an earthquake. The first step is to read this book carefully and follow its advice. By making your home safer, you help make our community safer. Preparing for earthquakes is important, and together we can make sure our families and community are ready. English version p. 3-13 Chinese version p. 14-24 Vietnamese version p. 25-36 Korean version p. 37-48

  13. SEISMIC HAZARD ASSESSMENT OF SCHOOL BUILDINGS IN PENINSULAR MALAYSIA

    OpenAIRE

    Tan, K.T.; Razak, H. Abdul

    2015-01-01

    Peninsular Malaysia is located on the southern edge of the Eurasian Plate. However, it is close to a seismically active plate boundary, the inter-plate boundary between the Indo-Australian and Eurasian Plates. Occasionally, tremors can be felt throughout the region even when active faults are located several hundred kilometers away. Lessons learnt from past events, active earthquakes located far from the existing building can cause potential damage. Thus, fragility curves become an essential ...

  14. 2017 One‐year seismic‐hazard forecast for the central and eastern United States from induced and natural earthquakes

    Science.gov (United States)

    Petersen, Mark D.; Mueller, Charles; Moschetti, Morgan P.; Hoover, Susan M.; Shumway, Allison; McNamara, Daniel E.; Williams, Robert; Llenos, Andrea L.; Ellsworth, William L.; Rubinstein, Justin L.; McGarr, Arthur F.; Rukstales, Kenneth S.

    2017-01-01

    We produce a one‐year 2017 seismic‐hazard forecast for the central and eastern United States from induced and natural earthquakes that updates the 2016 one‐year forecast; this map is intended to provide information to the public and to facilitate the development of induced seismicity forecasting models, methods, and data. The 2017 hazard model applies the same methodology and input logic tree as the 2016 forecast, but with an updated earthquake catalog. We also evaluate the 2016 seismic‐hazard forecast to improve future assessments. The 2016 forecast indicated high seismic hazard (greater than 1% probability of potentially damaging ground shaking in one year) in five focus areas: Oklahoma–Kansas, the Raton basin (Colorado/New Mexico border), north Texas, north Arkansas, and the New Madrid Seismic Zone. During 2016, several damaging induced earthquakes occurred in Oklahoma within the highest hazard region of the 2016 forecast; all of the 21 moment magnitude (M) ≥4 and 3 M≥5 earthquakes occurred within the highest hazard area in the 2016 forecast. Outside the Oklahoma–Kansas focus area, two earthquakes with M≥4 occurred near Trinidad, Colorado (in the Raton basin focus area), but no earthquakes with M≥2.7 were observed in the north Texas or north Arkansas focus areas. Several observations of damaging ground‐shaking levels were also recorded in the highest hazard region of Oklahoma. The 2017 forecasted seismic rates are lower in regions of induced activity due to lower rates of earthquakes in 2016 compared with 2015, which may be related to decreased wastewater injection caused by regulatory actions or by a decrease in unconventional oil and gas production. Nevertheless, the 2017 forecasted hazard is still significantly elevated in Oklahoma compared to the hazard calculated from seismicity before 2009.

  15. Evidence for strong Holocene earthquake(s) in the Wabash Valley seismic zone

    International Nuclear Information System (INIS)

    Obermeier, S.

    1991-01-01

    Many small and slightly damaging earthquakes have taken place in the region of the lower Wabash River Valley of Indiana and Illinois during the 200 years of historic record. Seismologists have long suspected the Wabash Valley seismic zone to be capable of producing earthquakes much stronger than the largest of record (m b 5.8). The seismic zone contains the poorly defined Wabash Valley fault zone and also appears to contain other vaguely defined faults at depths from which the strongest earthquakes presently originate. Faults near the surface are generally covered with thick alluvium in lowlands and a veneer of loess in uplands, which make direct observations of faults difficult. Partly because of this difficulty, a search for paleoliquefaction features was begun in 1990. Conclusions of the study are as follows: (1) an earthquake much stronger than any historic earthquake struck the lower Wabash Valley between 1,500 and 7,500 years ago; (2) the epicentral region of the prehistoric strong earthquake was the Wabash Valley seismic zone; (3) apparent sites have been located where 1811-12 earthquake accelerations can be bracketed

  16. Mexico.

    Science.gov (United States)

    Semaan, Leslie

    The text explores Mexico's history, geography, art, religion, and lifestyles in the context of its complex economy. The text focuses on Mexico's economy and reasons for its current situation. Part I of this teaching unit includes: Teacher Overview, Why Study Mexico, Mexico Fact Sheet, Map of Mexico, the Land and Climate, History, Government,…

  17. The 1985 central chile earthquake: a repeat of previous great earthquakes in the region?

    Science.gov (United States)

    Comte, D; Eisenberg, A; Lorca, E; Pardo, M; Ponce, L; Saragoni, R; Singh, S K; Suárez, G

    1986-07-25

    A great earthquake (surface-wave magnitude, 7.8) occurred along the coast of central Chile on 3 March 1985, causing heavy damage to coastal towns. Intense foreshock activity near the epicenter of the main shock occurred for 11 days before the earthquake. The aftershocks of the 1985 earthquake define a rupture area of 170 by 110 square kilometers. The earthquake was forecast on the basis of the nearly constant repeat time (83 +/- 9 years) of great earthquakes in this region. An analysis of previous earthquakes suggests that the rupture lengths of great shocks in the region vary by a factor of about 3. The nearly constant repeat time and variable rupture lengths cannot be reconciled with time- or slip-predictable models of earthquake recurrence. The great earthquakes in the region seem to involve a variable rupture mode and yet, for unknown reasons, remain periodic. Historical data suggest that the region south of the 1985 rupture zone should now be considered a gap of high seismic potential that may rupture in a great earthquake in the next few tens of years.

  18. The northern Lesser Antilles oblique subduction zone: new insight about the upper plate deformation, 3D slab geometry and interplate coupling.

    Science.gov (United States)

    Marcaillou, B.; Laurencin, M.; Graindorge, D.; Klingelhoefer, F.

    2017-12-01

    In subduction zones, the 3D geometry of the plate interface is thought to be a key parameter for the control of margin tectonic deformation, interplate coupling and seismogenic behavior. In the northern Caribbean subduction, precisely between the Virgin Islands and northern Lesser Antilles, these subjects remain controversial or unresolved. During the ANTITHESIS cruises (2013-2016), we recorded wide-angle seismic, multichannel reflection seismic and bathymetric data along this zone in order to constrain the nature and the geometry of the subducting and upper plate. This experiment results in the following conclusions: 1) The Anegada Passage is a 450-km long structure accross the forearc related to the extension due to the collision with the Bahamas platform. 2) More recently, the tectonic partitioning due to the plate convergence obliquity re-activated the Anegada Passage in the left-lateral strike-slip system. The partitioning also generated the left-lateral strike-slip Bunce Fault, separating the accretionary prism from the forearc. 3) Offshore of the Virgin Islands margin, the subducting plate shows normal faults parallel to the ancient spreading center that correspond to the primary fabric of the oceanic crust. In contrast, offshore of Barbuda Island, the oceanic crust fabric is unresolved (fracture zone?, exhumed mantle? ). 4) In the direction of the plate convergence vector, the slab deepening angle decreases northward. It results in a shallower slab beneath the Virgin Islands Platform compared to the St Martin-Barbuda forearc. In the past, the collision of the Bahamas platform likely changed the geodynamic settings of the northeastern corner of the Caribbean subduction zone and we present a revised geodynamic history of the region. Currently, various features are likely to control the 3D geometry of the slab: the margin convexity, the convergence obliquity, the heterogeneity of the primary fabric of the oceanic crust and the Bahamas docking. We suggest that

  19. The relationship between earthquake exposure and posttraumatic stress disorder in 2013 Lushan earthquake

    Science.gov (United States)

    Wang, Yan; Lu, Yi

    2018-01-01

    The objective of this study is to explore the relationship between earthquake exposure and the incidence of PTSD. A stratification random sample survey was conducted to collect data in the Longmenshan thrust fault after Lushan earthquake three years. We used the Children's Revised Impact of Event Scale (CRIES-13) and the Earthquake Experience Scale. Subjects in this study included 3944 school student survivors in local eleven schools. The prevalence of probable PTSD is relatively higher, when the people was trapped in the earthquake, was injured in the earthquake or have relatives who died in the earthquake. It concluded that researchers need to pay more attention to the children and adolescents. The government should pay more attention to these people and provide more economic support.

  20. Crowdsourced earthquake early warning

    Science.gov (United States)

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  1. Encyclopedia of earthquake engineering

    CERN Document Server

    Kougioumtzoglou, Ioannis; Patelli, Edoardo; Au, Siu-Kui

    2015-01-01

    The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 265 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well-informed without needing to deal with the details of specialist understanding. The content of this encyclopedia provides technically inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encycl...

  2. Earthquake hazard evaluation for Switzerland

    International Nuclear Information System (INIS)

    Ruettener, E.

    1995-01-01

    Earthquake hazard analysis is of considerable importance for Switzerland, a country with moderate seismic activity but high economic values at risk. The evaluation of earthquake hazard, i.e. the determination of return periods versus ground motion parameters, requires a description of earthquake occurrences in space and time. In this study the seismic hazard for major cities in Switzerland is determined. The seismic hazard analysis is based on historic earthquake records as well as instrumental data. The historic earthquake data show considerable uncertainties concerning epicenter location and epicentral intensity. A specific concept is required, therefore, which permits the description of the uncertainties of each individual earthquake. This is achieved by probability distributions for earthquake size and location. Historical considerations, which indicate changes in public earthquake awareness at various times (mainly due to large historical earthquakes), as well as statistical tests have been used to identify time periods of complete earthquake reporting as a function of intensity. As a result, the catalog is judged to be complete since 1878 for all earthquakes with epicentral intensities greater than IV, since 1750 for intensities greater than VI, since 1600 for intensities greater than VIII, and since 1300 for intensities greater than IX. Instrumental data provide accurate information about the depth distribution of earthquakes in Switzerland. In the Alps, focal depths are restricted to the uppermost 15 km of the crust, whereas below the northern Alpine foreland earthquakes are distributed throughout the entire crust (30 km). This depth distribution is considered in the final hazard analysis by probability distributions. (author) figs., tabs., refs

  3. Earthquake Clusters and Spatio-temporal Migration of earthquakes in Northeastern Tibetan Plateau: a Finite Element Modeling

    Science.gov (United States)

    Sun, Y.; Luo, G.

    2017-12-01

    Seismicity in a region is usually characterized by earthquake clusters and earthquake migration along its major fault zones. However, we do not fully understand why and how earthquake clusters and spatio-temporal migration of earthquakes occur. The northeastern Tibetan Plateau is a good example for us to investigate these problems. In this study, we construct and use a three-dimensional viscoelastoplastic finite-element model to simulate earthquake cycles and spatio-temporal migration of earthquakes along major fault zones in northeastern Tibetan Plateau. We calculate stress evolution and fault interactions, and explore effects of topographic loading and viscosity of middle-lower crust and upper mantle on model results. Model results show that earthquakes and fault interactions increase Coulomb stress on the neighboring faults or segments, accelerating the future earthquakes in this region. Thus, earthquakes occur sequentially in a short time, leading to regional earthquake clusters. Through long-term evolution, stresses on some seismogenic faults, which are far apart, may almost simultaneously reach the critical state of fault failure, probably also leading to regional earthquake clusters and earthquake migration. Based on our model synthetic seismic catalog and paleoseismic data, we analyze probability of earthquake migration between major faults in northeastern Tibetan Plateau. We find that following the 1920 M 8.5 Haiyuan earthquake and the 1927 M 8.0 Gulang earthquake, the next big event (M≥7) in northeastern Tibetan Plateau would be most likely to occur on the Haiyuan fault.

  4. Near Fault Strong Ground Motion Records in the Kathmandu Valley during the 2015 Gorkha Nepal Earthquake

    Science.gov (United States)

    Takai, N.; Shigefuji, M.; Rajaure, S.; Bijukchhen, S.; Ichiyanagi, M.; Dhital, M. R.; Sasatani, T.

    2015-12-01

    Kathmandu is the capital of Nepal and is located in the Kathmandu Valley, which is formed by soft lake sediments of Plio-Pleistocene origin. Large earthquakes in the past have caused significant damage as the seismic waves were amplified in the soft sediments. To understand the site effect of the valley structure, we installed continuous recording accelerometers in four different parts of the valley. Four stations were installed along a west-to-east profile of the valley at KTP (Kirtipur; hill top), TVU (Kirtipur; hill side), PTN (Patan) and THM (Thimi). On 25 April 2015, a large interplate earthquake Mw 7.8 occurred in the Himalayan Range of Nepal. The focal area estimated was about 200 km long and 150 km wide, with a large slip area under the Kathmandu Valley where our strong motion observation stations were installed. The strong ground motions were observed during this large damaging earthquake. The maximum horizontal peak ground acceleration at the rock site was 271 cm s-2, and the maximum horizontal peak ground velocity at the sediment sites reached 112 cm s-1. We compared these values with the empirical attenuation formula for strong ground motions. We found the peak accelerations were smaller and the peak velocities were approximately the same as the predicted values. The rock site KTP motions are less affected by site amplification and were analysed further. The horizontal components were rotated to the fault normal (N205E) and fault parallel (N115E) directions using the USGS fault model. The velocity waveforms at KTP showed about 5 s triangular pulses on the N205E and the up-down components; however the N115E component was not a triangular pulse but one cycle sinusoidal wave. The velocity waveforms at KTP were integrated to derive the displacement waveforms. The derived displacements at KTP are characterized by a monotonic step on the N205E normal and up-down components. The displacement waveforms of KTP show permanent displacements of 130 cm in the fault

  5. Perception of earthquake risk in Taiwan: effects of gender and past earthquake experience.

    Science.gov (United States)

    Kung, Yi-Wen; Chen, Sue-Huei

    2012-09-01

    This study explored how individuals in Taiwan perceive the risk of earthquake and the relationship of past earthquake experience and gender to risk perception. Participants (n= 1,405), including earthquake survivors and those in the general population without prior direct earthquake exposure, were selected and interviewed through a computer-assisted telephone interviewing procedure using a random sampling and stratification method covering all 24 regions of Taiwan. A factor analysis of the interview data yielded a two-factor structure of risk perception in regard to earthquake. The first factor, "personal impact," encompassed perception of threat and fear related to earthquakes. The second factor, "controllability," encompassed a sense of efficacy of self-protection in regard to earthquakes. The findings indicated prior earthquake survivors and females reported higher scores on the personal impact factor than males and those with no prior direct earthquake experience, although there were no group differences on the controllability factor. The findings support that risk perception has multiple components, and suggest that past experience (survivor status) and gender (female) affect the perception of risk. Exploration of potential contributions of other demographic factors such as age, education, and marital status to personal impact, especially for females and survivors, is discussed. Future research on and intervention program with regard to risk perception are suggested accordingly. © 2012 Society for Risk Analysis.

  6. The earthquake problem in engineering design: generating earthquake design basis information

    International Nuclear Information System (INIS)

    Sharma, R.D.

    1987-01-01

    Designing earthquake resistant structures requires certain design inputs specific to the seismotectonic status of the region, in which a critical facility is to be located. Generating these inputs requires collection of earthquake related information using present day techniques in seismology and geology, and processing the collected information to integrate it to arrive at a consolidated picture of the seismotectonics of the region. The earthquake problem in engineering design has been outlined in the context of a seismic design of nuclear power plants vis a vis current state of the art techniques. The extent to which the accepted procedures of assessing seismic risk in the region and generating the design inputs have been adherred to determine to a great extent the safety of the structures against future earthquakes. The document is a step towards developing an aproach for generating these inputs, which form the earthquake design basis. (author)

  7. Limitation of the Predominant-Period Estimator for Earthquake Early Warning and the Initial Rupture of Earthquakes

    Science.gov (United States)

    Yamada, T.; Ide, S.

    2007-12-01

    Earthquake early warning is an important and challenging issue for the reduction of the seismic damage, especially for the mitigation of human suffering. One of the most important problems in earthquake early warning systems is how immediately we can estimate the final size of an earthquake after we observe the ground motion. It is relevant to the problem whether the initial rupture of an earthquake has some information associated with its final size. Nakamura (1988) developed the Urgent Earthquake Detection and Alarm System (UrEDAS). It calculates the predominant period of the P wave (τp) and estimates the magnitude of an earthquake immediately after the P wave arrival from the value of τpmax, or the maximum value of τp. The similar approach has been adapted by other earthquake alarm systems (e.g., Allen and Kanamori (2003)). To investigate the characteristic of the parameter τp and the effect of the length of the time window (TW) in the τpmax calculation, we analyze the high-frequency recordings of earthquakes at very close distances in the Mponeng mine in South Africa. We find that values of τpmax have upper and lower limits. For larger earthquakes whose source durations are longer than TW, the values of τpmax have an upper limit which depends on TW. On the other hand, the values for smaller earthquakes have a lower limit which is proportional to the sampling interval. For intermediate earthquakes, the values of τpmax are close to their typical source durations. These two limits and the slope for intermediate earthquakes yield an artificial final size dependence of τpmax in a wide size range. The parameter τpmax is useful for detecting large earthquakes and broadcasting earthquake early warnings. However, its dependence on the final size of earthquakes does not suggest that the earthquake rupture is deterministic. This is because τpmax does not always have a direct relation to the physical quantities of an earthquake.

  8. Sun, Moon and Earthquakes

    Science.gov (United States)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  9. Why and Where do Large Shallow Slab Earthquakes Occur?

    Science.gov (United States)

    Seno, T.; Yoshida, M.

    2001-12-01

    Within a shallow portion (20-60 km depth) of subducting slabs, it has been believed that large earthquakes seldom occur because the differential stress is generally expected to be low between bending at the trench-outer rise and unbending at the intermediate-depth. However, there are several regions in which large ( M>=7.0 ) earthquakes, including three events early in this year, have occurred in this portion. Searching such events from published individual studies and Harvard University centroid moment tensor catalogue, we find nineteen events in eastern Hokkaido, Kyushu-SW Japan, Mariana, Manila, Sumatra, Vanuatu, Chile, Peru, El Salvador, Mexico, and Cascadia. Slab stresses revealed from the mechanism solutions of those large events and smaller events are tensional in a slab dip direction. However, ages of the subducting oceanic plates are generally young, which denies a possibility that the slab pull works as a cause. Except for Manila and Sumatra, the stresses in the overriding plates are characterized by the change in {σ }Hmax direction from arc-parallel in the back-arc to arc-perpendicular in the fore-arc, which implies that a horizontal stress gradient exists in the across-arc direction. Peru and Chile, where the back-arc is compressional, can be categorized into this type, because a horizontal stress gradient exists over the continent from tension in east to compression in the west. In these regions, it is expected that mantle drag forces are operating beneath the upper plates, which drive the upper plates to the trenchward overriding the subducting oceanic plates. Assuming that the mantle drag forces beneath the upper plates originate from the mantle convection currents or upwelling plumes, we infer that the upper plates driven by the convection suck the oceanic plates, making the shallow portion of the slabs in extra-tension, thus resulting in the large shallow slab earthquakes in this tectonic regime.

  10. Predicting earthquakes by analyzing accelerating precursory seismic activity

    Science.gov (United States)

    Varnes, D.J.

    1989-01-01

    During 11 sequences of earthquakes that in retrospect can be classed as foreshocks, the accelerating rate at which seismic moment is released follows, at least in part, a simple equation. This equation (1) is {Mathematical expression},where {Mathematical expression} is the cumulative sum until time, t, of the square roots of seismic moments of individual foreshocks computed from reported magnitudes;C and n are constants; and tfis a limiting time at which the rate of seismic moment accumulation becomes infinite. The possible time of a major foreshock or main shock, tf,is found by the best fit of equation (1), or its integral, to step-like plots of {Mathematical expression} versus time using successive estimates of tfin linearized regressions until the maximum coefficient of determination, r2,is obtained. Analyzed examples include sequences preceding earthquakes at Cremasta, Greece, 2/5/66; Haicheng, China 2/4/75; Oaxaca, Mexico, 11/29/78; Petatlan, Mexico, 3/14/79; and Central Chile, 3/3/85. In 29 estimates of main-shock time, made as the sequences developed, the errors in 20 were less than one-half and in 9 less than one tenth the time remaining between the time of the last data used and the main shock. Some precursory sequences, or parts of them, yield no solution. Two sequences appear to include in their first parts the aftershocks of a previous event; plots using the integral of equation (1) show that the sequences are easily separable into aftershock and foreshock segments. Synthetic seismic sequences of shocks at equal time intervals were constructed to follow equation (1), using four values of n. In each series the resulting distributions of magnitudes closely follow the linear Gutenberg-Richter relation log N=a-bM, and the product n times b for each series is the same constant. In various forms and for decades, equation (1) has been used successfully to predict failure times of stressed metals and ceramics, landslides in soil and rock slopes, and volcanic

  11. Earthquake engineering development before and after the March 4, 1977, Vrancea, Romania earthquake

    International Nuclear Information System (INIS)

    Georgescu, E.-S.

    2002-01-01

    At 25 years since the of the Vrancea earthquake of March, 4th 1977, we can analyze in an open and critical way its impact on the evolution of earthquake engineering codes and protection policies in Romania. The earthquake (M G-R = 7.2; M w = 7.5), produced 1,570 casualties and more than 11,300 injured persons (90% of the victims in Bucharest), seismic losses were estimated at more then USD 2 billions. The 1977 earthquake represented a significant episode of XXth century in seismic zones of Romania and neighboring countries. The INCERC seismic record of March 4, 1977 put, for the first time, in evidence the spectral content of long period seismic motions of Vrancea earthquakes, the duration, the number of cycles and values of actual accelerations, with important effects of overloading upon flexible structures. The seismic coefficients k s , the spectral curve (the dynamic coefficient β r ) and the seismic zonation map, the requirements in the antiseismic design norms were drastically, changed while the microzonation maps of the time ceased to be used, and the specific Vrancea earthquake recurrence was reconsidered based on hazard studies Thus, the paper emphasises: - the existing engineering knowledge, earthquake code and zoning maps requirements until 1977 as well as seismology and structural lessons since 1977; - recent aspects of implementing of the Earthquake Code P.100/1992 and harmonization with Eurocodes, in conjunction with the specific of urban and rural seismic risk and enforcing policies on strengthening of existing buildings; - a strategic view of disaster prevention, using earthquake scenarios and loss assessments, insurance, earthquake education and training; - the need of a closer transfer of knowledge between seismologists, engineers and officials in charge with disaster prevention public policies. (author)

  12. The music of earthquakes and Earthquake Quartet #1

    Science.gov (United States)

    Michael, Andrew J.

    2013-01-01

    Earthquake Quartet #1, my composition for voice, trombone, cello, and seismograms, is the intersection of listening to earthquakes as a seismologist and performing music as a trombonist. Along the way, I realized there is a close relationship between what I do as a scientist and what I do as a musician. A musician controls the source of the sound and the path it travels through their instrument in order to make sound waves that we hear as music. An earthquake is the source of waves that travel along a path through the earth until reaching us as shaking. It is almost as if the earth is a musician and people, including seismologists, are metaphorically listening and trying to understand what the music means.

  13. Toward real-time regional earthquake simulation of Taiwan earthquakes

    Science.gov (United States)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  14. Geophysical Anomalies and Earthquake Prediction

    Science.gov (United States)

    Jackson, D. D.

    2008-12-01

    Finding anomalies is easy. Predicting earthquakes convincingly from such anomalies is far from easy. Why? Why have so many beautiful geophysical abnormalities not led to successful prediction strategies? What is earthquake prediction? By my definition it is convincing information that an earthquake of specified size is temporarily much more likely than usual in a specific region for a specified time interval. We know a lot about normal earthquake behavior, including locations where earthquake rates are higher than elsewhere, with estimable rates and size distributions. We know that earthquakes have power law size distributions over large areas, that they cluster in time and space, and that aftershocks follow with power-law dependence on time. These relationships justify prudent protective measures and scientific investigation. Earthquake prediction would justify exceptional temporary measures well beyond those normal prudent actions. Convincing earthquake prediction would result from methods that have demonstrated many successes with few false alarms. Predicting earthquakes convincingly is difficult for several profound reasons. First, earthquakes start in tiny volumes at inaccessible depth. The power law size dependence means that tiny unobservable ones are frequent almost everywhere and occasionally grow to larger size. Thus prediction of important earthquakes is not about nucleation, but about identifying the conditions for growth. Second, earthquakes are complex. They derive their energy from stress, which is perniciously hard to estimate or model because it is nearly singular at the margins of cracks and faults. Physical properties vary from place to place, so the preparatory processes certainly vary as well. Thus establishing the needed track record for validation is very difficult, especially for large events with immense interval times in any one location. Third, the anomalies are generally complex as well. Electromagnetic anomalies in particular require

  15. Historical earthquake research in Austria

    Science.gov (United States)

    Hammerl, Christa

    2017-12-01

    Austria has a moderate seismicity, and on average the population feels 40 earthquakes per year or approximately three earthquakes per month. A severe earthquake with light building damage is expected roughly every 2 to 3 years in Austria. Severe damage to buildings ( I 0 > 8° EMS) occurs significantly less frequently, the average period of recurrence is about 75 years. For this reason the historical earthquake research has been of special importance in Austria. The interest in historical earthquakes in the past in the Austro-Hungarian Empire is outlined, beginning with an initiative of the Austrian Academy of Sciences and the development of historical earthquake research as an independent research field after the 1978 "Zwentendorf plebiscite" on whether the nuclear power plant will start up. The applied methods are introduced briefly along with the most important studies and last but not least as an example of a recently carried out case study, one of the strongest past earthquakes in Austria, the earthquake of 17 July 1670, is presented. The research into historical earthquakes in Austria concentrates on seismic events of the pre-instrumental period. The investigations are not only of historical interest, but also contribute to the completeness and correctness of the Austrian earthquake catalogue, which is the basis for seismic hazard analysis and as such benefits the public, communities, civil engineers, architects, civil protection, and many others.

  16. Studies of earthquakes stress drops, seismic scattering, and dynamic triggering in North America

    Science.gov (United States)

    Escudero Ayala, Christian Rene

    I use the Relative Source Time Function (RSTF) method to determine the source properties of earthquakes within southeastern Alaska-northwestern Canada in a first part of the project, and earthquakes within the Denali fault in a second part. I deconvolve a small event P-arrival signal from a larger event by the following method: select arrivals with a tapered cosine window, fast fourier transform to obtain the spectrum, apply water level deconvolution technique, and bandpass filter before inverse transforming the result to obtain the RSTF. I compare the source processes of earthquakes within the area to determine stress drop differences to determine their relation with the tectonic setting of the earthquakes location. Results show an consistency with previous results, stress drop independent of moment implying self-similarity, correlation of stress drop with tectonic regime, stress drop independent of depth, stress drop depends of focal mechanism where strike-slip present larger stress drops, and decreasing stress drop as function of time. I determine seismic wave attenuation in the central western United States using coda waves. I select approximately 40 moderate earthquakes (magnitude between 5.5 and 6.5) located alocated along the California-Baja California, California-Nevada, Eastern Idaho, Gulf of California, Hebgen Lake, Montana, Nevada, New Mexico, off coast of Northern California, off coast of Oregon, southern California, southern Illinois, Vancouver Island, Washington, and Wyoming regions. These events were recorded by the EarthScope transportable array (TA) network from 2005 to 2009. We obtain the data from the Incorporated Research Institutions for Seismology (IRIS). In this study we implement a method based on the assumption that coda waves are single backscattered waves from randomly distributed heterogeneities to calculate the coda Q. The frequencies studied lie between 1 and 15 Hz. The scattering attenuation is calculated for frequency bands centered

  17. Where was the 1898 Mare Island Earthquake? Insights from the 2014 South Napa Earthquake

    Science.gov (United States)

    Hough, S. E.

    2014-12-01

    The 2014 South Napa earthquake provides an opportunity to reconsider the Mare Island earthquake of 31 March 1898, which caused severe damage to buildings at a Navy yard on the island. Revising archival accounts of the 1898 earthquake, I estimate a lower intensity magnitude, 5.8, than the value in the current Uniform California Earthquake Rupture Forecast (UCERF) catalog (6.4). However, I note that intensity magnitude can differ from Mw by upwards of half a unit depending on stress drop, which for a historical earthquake is unknowable. In the aftermath of the 2014 earthquake, there has been speculation that apparently severe effects on Mare Island in 1898 were due to the vulnerability of local structures. No surface rupture has ever been identified from the 1898 event, which is commonly associated with the Hayward-Rodgers Creek fault system, some 10 km west of Mare Island (e.g., Parsons et al., 2003). Reconsideration of detailed archival accounts of the 1898 earthquake, together with a comparison of the intensity distributions for the two earthquakes, points to genuinely severe, likely near-field ground motions on Mare Island. The 2014 earthquake did cause significant damage to older brick buildings on Mare Island, but the level of damage does not match the severity of documented damage in 1898. The high intensity files for the two earthquakes are more over spatially shifted, with the centroid of the 2014 distribution near the town of Napa and that of the 1898 distribution near Mare Island, east of the Hayward-Rodgers Creek system. I conclude that the 1898 Mare Island earthquake was centered on or near Mare Island, possibly involving rupture of one or both strands of the Franklin fault, a low-slip-rate fault sub-parallel to the Rodgers Creek fault to the west and the West Napa fault to the east. I estimate Mw5.8 assuming an average stress drop; data are also consistent with Mw6.4 if stress drop was a factor of ≈3 lower than average for California earthquakes. I

  18. Earthquakes, May-June 1991

    Science.gov (United States)

    Person, W.J.

    1992-01-01

    One major earthquake occurred during this reporting period. This was a magntidue 7.1 in Indonesia (Minahassa Peninsula) on June 20. Earthquake-related deaths were reported in the Western Caucasus (Georgia, USSR) on May 3 and June 15. One earthquake-related death was also reported El Salvador on June 21. 

  19. Modeling, Forecasting and Mitigating Extreme Earthquakes

    Science.gov (United States)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  20. The evolving interaction of low-frequency earthquakes during transient slip.

    Science.gov (United States)

    Frank, William B; Shapiro, Nikolaï M; Husker, Allen L; Kostoglodov, Vladimir; Gusev, Alexander A; Campillo, Michel

    2016-04-01

    Observed along the roots of seismogenic faults where the locked interface transitions to a stably sliding one, low-frequency earthquakes (LFEs) primarily occur as event bursts during slow slip. Using an event catalog from Guerrero, Mexico, we employ a statistical analysis to consider the sequence of LFEs at a single asperity as a point process, and deduce the level of time clustering from the shape of its autocorrelation function. We show that while the plate interface remains locked, LFEs behave as a simple Poisson process, whereas they become strongly clustered in time during even the smallest slow slip, consistent with interaction between different LFE sources. Our results demonstrate that bursts of LFEs can result from the collective behavior of asperities whose interaction depends on the state of the fault interface.

  1. Earthquake Catalogue of the Caucasus

    Science.gov (United States)

    Godoladze, T.; Gok, R.; Tvaradze, N.; Tumanova, N.; Gunia, I.; Onur, T.

    2016-12-01

    The Caucasus has a documented historical catalog stretching back to the beginning of the Christian era. Most of the largest historical earthquakes prior to the 19th century are assumed to have occurred on active faults of the Greater Caucasus. Important earthquakes include the Samtskhe earthquake of 1283 (Ms˜7.0, Io=9); Lechkhumi-Svaneti earthquake of 1350 (Ms˜7.0, Io=9); and the Alaverdi earthquake of 1742 (Ms˜6.8, Io=9). Two significant historical earthquakes that may have occurred within the Javakheti plateau in the Lesser Caucasus are the Tmogvi earthquake of 1088 (Ms˜6.5, Io=9) and the Akhalkalaki earthquake of 1899 (Ms˜6.3, Io =8-9). Large earthquakes that occurred in the Caucasus within the period of instrumental observation are: Gori 1920; Tabatskuri 1940; Chkhalta 1963; Racha earthquake of 1991 (Ms=7.0), is the largest event ever recorded in the region; Barisakho earthquake of 1992 (M=6.5); Spitak earthquake of 1988 (Ms=6.9, 100 km south of Tbilisi), which killed over 50,000 people in Armenia. Recently, permanent broadband stations have been deployed across the region as part of the various national networks (Georgia (˜25 stations), Azerbaijan (˜35 stations), Armenia (˜14 stations)). The data from the last 10 years of observation provides an opportunity to perform modern, fundamental scientific investigations. In order to improve seismic data quality a catalog of all instrumentally recorded earthquakes has been compiled by the IES (Institute of Earth Sciences/NSMC, Ilia State University) in the framework of regional joint project (Armenia, Azerbaijan, Georgia, Turkey, USA) "Probabilistic Seismic Hazard Assessment (PSHA) in the Caucasus. The catalogue consists of more then 80,000 events. First arrivals of each earthquake of Mw>=4.0 have been carefully examined. To reduce calculation errors, we corrected arrivals from the seismic records. We improved locations of the events and recalculate Moment magnitudes in order to obtain unified magnitude

  2. Natural Time and Nowcasting Earthquakes: Are Large Global Earthquakes Temporally Clustered?

    Science.gov (United States)

    Luginbuhl, Molly; Rundle, John B.; Turcotte, Donald L.

    2018-02-01

    The objective of this paper is to analyze the temporal clustering of large global earthquakes with respect to natural time, or interevent count, as opposed to regular clock time. To do this, we use two techniques: (1) nowcasting, a new method of statistically classifying seismicity and seismic risk, and (2) time series analysis of interevent counts. We chose the sequences of M_{λ } ≥ 7.0 and M_{λ } ≥ 8.0 earthquakes from the global centroid moment tensor (CMT) catalog from 2004 to 2016 for analysis. A significant number of these earthquakes will be aftershocks of the largest events, but no satisfactory method of declustering the aftershocks in clock time is available. A major advantage of using natural time is that it eliminates the need for declustering aftershocks. The event count we utilize is the number of small earthquakes that occur between large earthquakes. The small earthquake magnitude is chosen to be as small as possible, such that the catalog is still complete based on the Gutenberg-Richter statistics. For the CMT catalog, starting in 2004, we found the completeness magnitude to be M_{σ } ≥ 5.1. For the nowcasting method, the cumulative probability distribution of these interevent counts is obtained. We quantify the distribution using the exponent, β, of the best fitting Weibull distribution; β = 1 for a random (exponential) distribution. We considered 197 earthquakes with M_{λ } ≥ 7.0 and found β = 0.83 ± 0.08. We considered 15 earthquakes with M_{λ } ≥ 8.0, but this number was considered too small to generate a meaningful distribution. For comparison, we generated synthetic catalogs of earthquakes that occur randomly with the Gutenberg-Richter frequency-magnitude statistics. We considered a synthetic catalog of 1.97 × 10^5 M_{λ } ≥ 7.0 earthquakes and found β = 0.99 ± 0.01. The random catalog converted to natural time was also random. We then generated 1.5 × 10^4 synthetic catalogs with 197 M_{λ } ≥ 7.0 in each catalog and

  3. Earthquake hazard assessment and small earthquakes

    International Nuclear Information System (INIS)

    Reiter, L.

    1987-01-01

    The significance of small earthquakes and their treatment in nuclear power plant seismic hazard assessment is an issue which has received increased attention over the past few years. In probabilistic studies, sensitivity studies showed that the choice of the lower bound magnitude used in hazard calculations can have a larger than expected effect on the calculated hazard. Of particular interest is the fact that some of the difference in seismic hazard calculations between the Lawrence Livermore National Laboratory (LLNL) and Electric Power Research Institute (EPRI) studies can be attributed to this choice. The LLNL study assumed a lower bound magnitude of 3.75 while the EPRI study assumed a lower bound magnitude of 5.0. The magnitudes used were assumed to be body wave magnitudes or their equivalents. In deterministic studies recent ground motion recordings of small to moderate earthquakes at or near nuclear power plants have shown that the high frequencies of design response spectra may be exceeded. These exceedances became important issues in the licensing of the Summer and Perry nuclear power plants. At various times in the past particular concerns have been raised with respect to the hazard and damage potential of small to moderate earthquakes occurring at very shallow depths. In this paper a closer look is taken at these issues. Emphasis is given to the impact of lower bound magnitude on probabilistic hazard calculations and the historical record of damage from small to moderate earthquakes. Limited recommendations are made as to how these issues should be viewed

  4. Extreme value distribution of earthquake magnitude

    Science.gov (United States)

    Zi, Jun Gan; Tung, C. C.

    1983-07-01

    Probability distribution of maximum earthquake magnitude is first derived for an unspecified probability distribution of earthquake magnitude. A model for energy release of large earthquakes, similar to that of Adler-Lomnitz and Lomnitz, is introduced from which the probability distribution of earthquake magnitude is obtained. An extensive set of world data for shallow earthquakes, covering the period from 1904 to 1980, is used to determine the parameters of the probability distribution of maximum earthquake magnitude. Because of the special form of probability distribution of earthquake magnitude, a simple iterative scheme is devised to facilitate the estimation of these parameters by the method of least-squares. The agreement between the empirical and derived probability distributions of maximum earthquake magnitude is excellent.

  5. Historic Eastern Canadian earthquakes

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Atchinson, R.J.

    1981-01-01

    Nuclear power plants licensed in Canada have been designed to resist earthquakes: not all plants, however, have been explicitly designed to the same level of earthquake induced forces. Understanding the nature of strong ground motion near the source of the earthquake is still very tentative. This paper reviews historical and scientific accounts of the three strongest earthquakes - St. Lawrence (1925), Temiskaming (1935), Cornwall (1944) - that have occurred in Canada in 'modern' times, field studies of near-field strong ground motion records and their resultant damage or non-damage to industrial facilities, and numerical modelling of earthquake sources and resultant wave propagation to produce accelerograms consistent with the above historical record and field studies. It is concluded that for future construction of NPP's near-field strong motion must be explicitly considered in design

  6. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  7. Children's Ideas about Earthquakes

    Science.gov (United States)

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  8. Excel, Earthquakes, and Moneyball: exploring Cascadia earthquake probabilities using spreadsheets and baseball analogies

    Science.gov (United States)

    Campbell, M. R.; Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.

    2017-12-01

    Much recent media attention focuses on Cascadia's earthquake hazard. A widely cited magazine article starts "An earthquake will destroy a sizable portion of the coastal Northwest. The question is when." Stories include statements like "a massive earthquake is overdue", "in the next 50 years, there is a 1-in-10 chance a "really big one" will erupt," or "the odds of the big Cascadia earthquake happening in the next fifty years are roughly one in three." These lead students to ask where the quoted probabilities come from and what they mean. These probability estimates involve two primary choices: what data are used to describe when past earthquakes happened and what models are used to forecast when future earthquakes will happen. The data come from a 10,000-year record of large paleoearthquakes compiled from subsidence data on land and turbidites, offshore deposits recording submarine slope failure. Earthquakes seem to have happened in clusters of four or five events, separated by gaps. Earthquakes within a cluster occur more frequently and regularly than in the full record. Hence the next earthquake is more likely if we assume that we are in the recent cluster that started about 1700 years ago, than if we assume the cluster is over. Students can explore how changing assumptions drastically changes probability estimates using easy-to-write and display spreadsheets, like those shown below. Insight can also come from baseball analogies. The cluster issue is like deciding whether to assume that a hitter's performance in the next game is better described by his lifetime record, or by the past few games, since he may be hitting unusually well or in a slump. The other big choice is whether to assume that the probability of an earthquake is constant with time, or is small immediately after one occurs and then grows with time. This is like whether to assume that a player's performance is the same from year to year, or changes over their career. Thus saying "the chance of

  9. Do Earthquakes Shake Stock Markets?

    Science.gov (United States)

    Ferreira, Susana; Karali, Berna

    2015-01-01

    This paper examines how major earthquakes affected the returns and volatility of aggregate stock market indices in thirty-five financial markets over the last twenty years. Results show that global financial markets are resilient to shocks caused by earthquakes even if these are domestic. Our analysis reveals that, in a few instances, some macroeconomic variables and earthquake characteristics (gross domestic product per capita, trade openness, bilateral trade flows, earthquake magnitude, a tsunami indicator, distance to the epicenter, and number of fatalities) mediate the impact of earthquakes on stock market returns, resulting in a zero net effect. However, the influence of these variables is market-specific, indicating no systematic pattern across global capital markets. Results also demonstrate that stock market volatility is unaffected by earthquakes, except for Japan.

  10. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    Science.gov (United States)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  11. Sedimentary Signatures of Submarine Earthquakes: Deciphering the Extent of Sediment Remobilization from the 2011 Tohoku Earthquake and Tsunami and 2010 Haiti Earthquake

    Science.gov (United States)

    McHugh, C. M.; Seeber, L.; Moernaut, J.; Strasser, M.; Kanamatsu, T.; Ikehara, K.; Bopp, R.; Mustaque, S.; Usami, K.; Schwestermann, T.; Kioka, A.; Moore, L. M.

    2017-12-01

    The 2004 Sumatra-Andaman Mw9.3 and the 2011 Tohoku (Japan) Mw9.0 earthquakes and tsunamis were huge geological events with major societal consequences. Both were along subduction boundaries and ruptured portions of these boundaries that had been deemed incapable of such events. Submarine strike-slip earthquakes, such as the 2010 Mw7.0 in Haiti, are smaller but may be closer to population centers and can be similarly catastrophic. Both classes of earthquakes remobilize sediment and leave distinct signatures in the geologic record by a wide range of processes that depends on both environment and earthquake characteristics. Understanding them has the potential of greatly expanding the record of past earthquakes, which is critical for geohazard analysis. Recent events offer precious ground truth about the earthquakes and short-lived radioisotopes offer invaluable tools to identify sediments they remobilized. In the 2011 Mw9 Japan earthquake they document the spatial extent of remobilized sediment from water depths of 626m in the forearc slope to trench depths of 8000m. Subbottom profiles, multibeam bathymetry and 40 piston cores collected by the R/V Natsushima and R/V Sonne expeditions to the Japan Trench document multiple turbidites and high-density flows. Core tops enriched in xs210Pb,137Cs and 134Cs reveal sediment deposited by the 2011 Tohoku earthquake and tsunami. The thickest deposits (2m) were documented on a mid-slope terrace and trench (4000-8000m). Sediment was deposited on some terraces (600-3000m), but shed from the steep forearc slope (3000-4000m). The 2010 Haiti mainshock ruptured along the southern flank of Canal du Sud and triggered multiple nearshore sediment failures, generated turbidity currents and stirred fine sediment into suspension throughout this basin. A tsunami was modeled to stem from both sediment failures and tectonics. Remobilized sediment was tracked with short-lived radioisotopes from the nearshore, slope, in fault basins including the

  12. Analysis of pre-earthquake ionospheric anomalies before the global M = 7.0+ earthquakes in 2010

    Directory of Open Access Journals (Sweden)

    W. F. Peng

    2012-03-01

    Full Text Available The pre-earthquake ionospheric anomalies that occurred before the global M = 7.0+ earthquakes in 2010 are investigated using the total electron content (TEC from the global ionosphere map (GIM. We analyze the possible causes of the ionospheric anomalies based on the space environment and magnetic field status. Results show that some anomalies are related to the earthquakes. By analyzing the time of occurrence, duration, and spatial distribution of these ionospheric anomalies, a number of new conclusions are drawn, as follows: earthquake-related ionospheric anomalies are not bound to appear; both positive and negative anomalies are likely to occur; and the earthquake-related ionospheric anomalies discussed in the current study occurred 0–2 days before the associated earthquakes and in the afternoon to sunset (i.e. between 12:00 and 20:00 local time. Pre-earthquake ionospheric anomalies occur mainly in areas near the epicenter. However, the maximum affected area in the ionosphere does not coincide with the vertical projection of the epicenter of the subsequent earthquake. The directions deviating from the epicenters do not follow a fixed rule. The corresponding ionospheric effects can also be observed in the magnetically conjugated region. However, the probability of the anomalies appearance and extent of the anomalies in the magnetically conjugated region are smaller than the anomalies near the epicenter. Deep-focus earthquakes may also exhibit very significant pre-earthquake ionospheric anomalies.

  13. Websim3d: A Web-based System for Generation, Storage and Dissemination of Earthquake Ground Motion Simulations.

    Science.gov (United States)

    Olsen, K. B.

    2003-12-01

    Synthetic time histories from large-scale 3D ground motion simulations generally constitute large 'data' sets which typically require 100's of Mbytes or Gbytes of storage capacity. For the same reason, getting access to a researchers simulation output, for example for an earthquake engineer to perform site analysis, or a seismologist to perform seismic hazard analysis, can be a tedious procedure. To circumvent this problem we have developed a web-based ``community model'' (websim3D) for the generation, storage, and dissemination of ground motion simulation results. Websim3D allows user-friendly and fast access to view and download such simulation results for an earthquake-prone area. The user selects an earthquake scenario from a map of the region, which brings up a map of the area where simulation data is available. Now, by clicking on an arbitrary site location, synthetic seismograms and/or soil parameters for the site can be displayed at fixed or variable scaling and/or downloaded. Websim3D relies on PHP scripts for the dynamic plots of synthetic seismograms and soil profiles. Although not limited to a specific area, we illustrate the community model for simulation results from the Los Angeles basin, Wellington (New Zealand), and Mexico.

  14. The 2008 Wenchuan Earthquake and the Rise and Fall of Earthquake Prediction in China

    Science.gov (United States)

    Chen, Q.; Wang, K.

    2009-12-01

    Regardless of the future potential of earthquake prediction, it is presently impractical to rely on it to mitigate earthquake disasters. The practical approach is to strengthen the resilience of our built environment to earthquakes based on hazard assessment. But this was not common understanding in China when the M 7.9 Wenchuan earthquake struck the Sichuan Province on 12 May 2008, claiming over 80,000 lives. In China, earthquake prediction is a government-sanctioned and law-regulated measure of disaster prevention. A sudden boom of the earthquake prediction program in 1966-1976 coincided with a succession of nine M > 7 damaging earthquakes in the densely populated region of the country and the political chaos of the Cultural Revolution. It climaxed with the prediction of the 1975 Haicheng earthquake, which was due mainly to an unusually pronounced foreshock sequence and the extraordinary readiness of some local officials to issue imminent warning and evacuation order. The Haicheng prediction was a success in practice and yielded useful lessons, but the experience cannot be applied to most other earthquakes and cultural environments. Since the disastrous Tangshan earthquake in 1976 that killed over 240,000 people, there have been two opposite trends in China: decreasing confidence in prediction and increasing emphasis on regulating construction design for earthquake resilience. In 1976, most of the seismic intensity XI areas of Tangshan were literally razed to the ground, but in 2008, many buildings in the intensity XI areas of Wenchuan did not collapse. Prediction did not save life in either of these events; the difference was made by construction standards. For regular buildings, there was no seismic design in Tangshan to resist any earthquake shaking in 1976, but limited seismic design was required for the Wenchuan area in 2008. Although the construction standards were later recognized to be too low, those buildings that met the standards suffered much less

  15. 1/f and the Earthquake Problem: Scaling constraints that facilitate operational earthquake forecasting

    Science.gov (United States)

    yoder, M. R.; Rundle, J. B.; Turcotte, D. L.

    2012-12-01

    The difficulty of forecasting earthquakes can fundamentally be attributed to the self-similar, or "1/f", nature of seismic sequences. Specifically, the rate of occurrence of earthquakes is inversely proportional to their magnitude m, or more accurately to their scalar moment M. With respect to this "1/f problem," it can be argued that catalog selection (or equivalently, determining catalog constraints) constitutes the most significant challenge to seismicity based earthquake forecasting. Here, we address and introduce a potential solution to this most daunting problem. Specifically, we introduce a framework to constrain, or partition, an earthquake catalog (a study region) in order to resolve local seismicity. In particular, we combine Gutenberg-Richter (GR), rupture length, and Omori scaling with various empirical measurements to relate the size (spatial and temporal extents) of a study area (or bins within a study area) to the local earthquake magnitude potential - the magnitude of earthquake the region is expected to experience. From this, we introduce a new type of time dependent hazard map for which the tuning parameter space is nearly fully constrained. In a similar fashion, by combining various scaling relations and also by incorporating finite extents (rupture length, area, and duration) as constraints, we develop a method to estimate the Omori (temporal) and spatial aftershock decay parameters as a function of the parent earthquake's magnitude m. From this formulation, we develop an ETAS type model that overcomes many point-source limitations of contemporary ETAS. These models demonstrate promise with respect to earthquake forecasting applications. Moreover, the methods employed suggest a general framework whereby earthquake and other complex-system, 1/f type, problems can be constrained from scaling relations and finite extents.; Record-breaking hazard map of southern California, 2012-08-06. "Warm" colors indicate local acceleration (elevated hazard

  16. Post-earthquake building safety inspection: Lessons from the Canterbury, New Zealand, earthquakes

    Science.gov (United States)

    Marshall, J.; Jaiswal, Kishor; Gould, N.; Turner, F.; Lizundia, B.; Barnes, J.

    2013-01-01

    The authors discuss some of the unique aspects and lessons of the New Zealand post-earthquake building safety inspection program that was implemented following the Canterbury earthquake sequence of 2010–2011. The post-event safety assessment program was one of the largest and longest programs undertaken in recent times anywhere in the world. The effort engaged hundreds of engineering professionals throughout the country, and also sought expertise from outside, to perform post-earthquake structural safety inspections of more than 100,000 buildings in the city of Christchurch and the surrounding suburbs. While the building safety inspection procedure implemented was analogous to the ATC 20 program in the United States, many modifications were proposed and implemented in order to assess the large number of buildings that were subjected to strong and variable shaking during a period of two years. This note discusses some of the key aspects of the post-earthquake building safety inspection program and summarizes important lessons that can improve future earthquake response.

  17. Estimation of the pseudoacceleration response spectra in sites of Mexico

    International Nuclear Information System (INIS)

    Jara-Guerrero, J. M.; Jara-Diaz, M.; Hernandez, H.

    2007-01-01

    A methodology for the pseudoacceleration response spectra assessment using utility functions is presented. This methodology was applied to the seismic hazard analysis of several cities in Mexico. After the identification of the main seismic sources that could affect the site, attenuation laws are proposed using empirical models and the instrumental information collected. Historical seismicity data and recent seismic data obtained form the strong-motion networks installed on several sites of the country are used for evaluating the characteristics of the coastal earthquakes. Due to the lack of instrumental information, empirical data are employed in other seismic faults. Source parameters, characterized by the maximum magnitudes expected, are chosen according to the physical parameters of the faults and a Bayesian analysis approach. The subduction earthquake occurrences are established with a relation between the time since the last major event and the expected magnitude of the next one. Bayes theorem was applied twice to determine the probability distribution of the parameters in the lognormal distribution of the interoccurrence times for each of the Mexican subduction segments. Annual exceedence rates of the ground acceleration and pseudoacceleration response spectra parameters based on a utility function are obtained. (authors)

  18. Extreme value statistics and thermodynamics of earthquakes: large earthquakes

    Directory of Open Access Journals (Sweden)

    B. H. Lavenda

    2000-06-01

    Full Text Available A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershock sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Fréchet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions shows that self-similar power laws are transformed into nonscaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Fréchet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same Catalogue of Chinese Earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Fréchet distribution. Earthquaketemperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  19. Countermeasures to earthquakes in nuclear plants

    International Nuclear Information System (INIS)

    Sato, Kazuhide

    1979-01-01

    The contribution of atomic energy to mankind is unmeasured, but the danger of radioactivity is a special thing. Therefore in the design of nuclear power plants, the safety has been regarded as important, and in Japan where earthquakes occur frequently, the countermeasures to earthquakes have been incorporated in the examination of safety naturally. The radioactive substances handled in nuclear power stations and spent fuel reprocessing plants are briefly explained. The occurrence of earthquakes cannot be predicted effectively, and the disaster due to earthquakes is apt to be remarkably large. In nuclear plants, the prevention of damage in the facilities and the maintenance of the functions are required at the time of earthquakes. Regarding the location of nuclear plants, the history of earthquakes, the possible magnitude of earthquakes, the properties of ground and the position of nuclear plants should be examined. After the place of installation has been decided, the earthquake used for design is selected, evaluating live faults and determining the standard earthquakes. As the fundamentals of aseismatic design, the classification according to importance, the earthquakes for design corresponding to the classes of importance, the combination of loads and allowable stress are explained. (Kako, I.)

  20. Do earthquakes exhibit self-organized criticality?

    International Nuclear Information System (INIS)

    Yang Xiaosong; Ma Jin; Du Shuming

    2004-01-01

    If earthquakes are phenomena of self-organized criticality (SOC), statistical characteristics of the earthquake time series should be invariant after the sequence of events in an earthquake catalog are randomly rearranged. In this Letter we argue that earthquakes are unlikely phenomena of SOC because our analysis of the Southern California Earthquake Catalog shows that the first-return-time probability P M (T) is apparently changed after the time series is rearranged. This suggests that the SOC theory should not be used to oppose the efforts of earthquake prediction

  1. Earthquake precursors: spatial-temporal gravity changes before the great earthquakes in the Sichuan-Yunnan area

    Science.gov (United States)

    Zhu, Yi-Qing; Liang, Wei-Feng; Zhang, Song

    2018-01-01

    Using multiple-scale mobile gravity data in the Sichuan-Yunnan area, we systematically analyzed the relationships between spatial-temporal gravity changes and the 2014 Ludian, Yunnan Province Ms6.5 earthquake and the 2014 Kangding Ms6.3, 2013 Lushan Ms7.0, and 2008 Wenchuan Ms8.0 earthquakes in Sichuan Province. Our main results are as follows. (1) Before the occurrence of large earthquakes, gravity anomalies occur in a large area around the epicenters. The directions of gravity change gradient belts usually agree roughly with the directions of the main fault zones of the study area. Such gravity changes might reflect the increase of crustal stress, as well as the significant active tectonic movements and surface deformations along fault zones, during the period of gestation of great earthquakes. (2) Continuous significant changes of the multiple-scale gravity fields, as well as greater gravity changes with larger time scales, can be regarded as medium-range precursors of large earthquakes. The subsequent large earthquakes always occur in the area where the gravity changes greatly. (3) The spatial-temporal gravity changes are very useful in determining the epicenter of coming large earthquakes. The large gravity networks are useful to determine the general areas of coming large earthquakes. However, the local gravity networks with high spatial-temporal resolution are suitable for determining the location of epicenters. Therefore, denser gravity observation networks are necessary for better forecasts of the epicenters of large earthquakes. (4) Using gravity changes from mobile observation data, we made medium-range forecasts of the Kangding, Ludian, Lushan, and Wenchuan earthquakes, with especially successful forecasts of the location of their epicenters. Based on the above discussions, we emphasize that medium-/long-term potential for large earthquakes might exist nowadays in some areas with significant gravity anomalies in the study region. Thus, the monitoring

  2. Overestimation of the earthquake hazard along the Himalaya: constraints in bracketing of medieval earthquakes from paleoseismic studies

    Science.gov (United States)

    Arora, Shreya; Malik, Javed N.

    2017-12-01

    The Himalaya is one of the most seismically active regions of the world. The occurrence of several large magnitude earthquakes viz. 1905 Kangra earthquake (Mw 7.8), 1934 Bihar-Nepal earthquake (Mw 8.2), 1950 Assam earthquake (Mw 8.4), 2005 Kashmir (Mw 7.6), and 2015 Gorkha (Mw 7.8) are the testimony to ongoing tectonic activity. In the last few decades, tremendous efforts have been made along the Himalayan arc to understand the patterns of earthquake occurrences, size, extent, and return periods. Some of the large magnitude earthquakes produced surface rupture, while some remained blind. Furthermore, due to the incompleteness of the earthquake catalogue, a very few events can be correlated with medieval earthquakes. Based on the existing paleoseismic data certainly, there exists a complexity to precisely determine the extent of surface rupture of these earthquakes and also for those events, which occurred during historic times. In this paper, we have compiled the paleo-seismological data and recalibrated the radiocarbon ages from the trenches excavated by previous workers along the entire Himalaya and compared earthquake scenario with the past. Our studies suggest that there were multiple earthquake events with overlapping surface ruptures in small patches with an average rupture length of 300 km limiting Mw 7.8-8.0 for the Himalayan arc, rather than two or three giant earthquakes rupturing the whole front. It has been identified that the large magnitude Himalayan earthquakes, such as 1905 Kangra, 1934 Bihar-Nepal, and 1950 Assam, that have occurred within a time frame of 45 years. Now, if these events are dated, there is a high possibility that within the range of ±50 years, they may be considered as the remnant of one giant earthquake rupturing the entire Himalayan arc. Therefore, leading to an overestimation of seismic hazard scenario in Himalaya.

  3. Stress triggering of the Lushan M7. 0 earthquake by the Wenchuan Ms8. 0 earthquake

    Directory of Open Access Journals (Sweden)

    Wu Jianchao

    2013-08-01

    Full Text Available The Wenchuan Ms8. 0 earthquake and the Lushan M7. 0 earthquake occurred in the north and south segments of the Longmenshan nappe tectonic belt, respectively. Based on the focal mechanism and finite fault model of the Wenchuan Ms8. 0 earthquake, we calculated the coulomb failure stress change. The inverted coulomb stress changes based on the Nishimura and Chenji models both show that the Lushan M7. 0 earthquake occurred in the increased area of coulomb failure stress induced by the Wenchuan Ms8. 0 earthquake. The coulomb failure stress increased by approximately 0. 135 – 0. 152 bar in the source of the Lushan M7. 0 earthquake, which is far more than the stress triggering threshold. Therefore, the Lushan M7. 0 earthquake was most likely triggered by the coulomb failure stress change.

  4. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  5. Using Earthquake Location and Coda Attenuation Analysis to Explore Shallow Structures Above the Socorro Magma Body, New Mexico

    Science.gov (United States)

    Schmidt, J. P.; Bilek, S. L.; Worthington, L. L.; Schmandt, B.; Aster, R. C.

    2017-12-01

    The Socorro Magma Body (SMB) is a thin, sill-like intrusion with a top at 19 km depth covering approximately 3400 km2 within the Rio Grande Rift. InSAR studies show crustal uplift patterns linked to SMB inflation with deformation rates of 2.5 mm/yr in the area of maximum uplift with some peripheral subsidence. Our understanding of the emplacement history and shallow structure above the SMB is limited. We use a large seismic deployment to explore seismicity and crustal attenuation in the SMB region, focusing on the area of highest observed uplift to investigate the possible existence of fluid/magma in the upper crust. We would expect to see shallower earthquakes and/or higher attenuation if high heat flow, fluid or magma is present in the upper crust. Over 800 short period vertical component geophones situated above the northern portion of the SMB were deployed for two weeks in 2015. This data is combined with other broadband and short period seismic stations to detect and locate earthquakes as well as to estimate seismic attenuation. We use phase arrivals from the full dataset to relocate a set of 33 local/regional earthquakes recorded during the deployment. We also measure amplitude decay after the S-wave arrival to estimate coda attenuation caused by scattering of seismic waves and anelastic processes. Coda attenuation is estimated using the single backscatter method described by Aki and Chouet (1975), filtering the seismograms at 6, 9 and 12 Hz center frequencies. Earthquakes occurred at 2-13 km depth during the deployment, but no spatial patterns linked with the high uplift region were observed over this short duration. Attenuation results for this deployment suggest Q ranging in values of 130 to 2000, averaging around Q of 290, comparable to Q estimates of other studies of the western US. With our dense station coverage, we explore attenuation over smaller scales, and find higher attenuation for stations in the area of maximum uplift relative to stations

  6. Sensing the earthquake

    Science.gov (United States)

    Bichisao, Marta; Stallone, Angela

    2017-04-01

    Making science visual plays a crucial role in the process of building knowledge. In this view, art can considerably facilitate the representation of the scientific content, by offering a different perspective on how a specific problem could be approached. Here we explore the possibility of presenting the earthquake process through visual dance. From a choreographer's point of view, the focus is always on the dynamic relationships between moving objects. The observed spatial patterns (coincidences, repetitions, double and rhythmic configurations) suggest how objects organize themselves in the environment and what are the principles underlying that organization. The identified set of rules is then implemented as a basis for the creation of a complex rhythmic and visual dance system. Recently, scientists have turned seismic waves into sound and animations, introducing the possibility of "feeling" the earthquakes. We try to implement these results into a choreographic model with the aim to convert earthquake sound to a visual dance system, which could return a transmedia representation of the earthquake process. In particular, we focus on a possible method to translate and transfer the metric language of seismic sound and animations into body language. The objective is to involve the audience into a multisensory exploration of the earthquake phenomenon, through the stimulation of the hearing, eyesight and perception of the movements (neuromotor system). In essence, the main goal of this work is to develop a method for a simultaneous visual and auditory representation of a seismic event by means of a structured choreographic model. This artistic representation could provide an original entryway into the physics of earthquakes.

  7. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography

    Science.gov (United States)

    Dong, Zhi-hui; Yang, Zhi-gang; Chen, Tian-wu; Chu, Zhi-gang; Deng, Wen; Shao, Heng

    2011-01-01

    PURPOSE: Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT). METHODS: We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. RESULTS: The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR) = 2.2; pchest (45/143 vs. 11/66 patients, RR = 1.9; ptraumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries. PMID:21789386

  8. The 2010 M w 7.2 El Mayor-Cucapah Earthquake Sequence, Baja California, Mexico and Southernmost California, USA: Active Seismotectonics along the Mexican Pacific Margin

    Science.gov (United States)

    Hauksson, Egill; Stock, Joann; Hutton, Kate; Yang, Wenzheng; Vidal-Villegas, J. Antonio; Kanamori, Hiroo

    2011-08-01

    The El Mayor-Cucapah earthquake sequence started with a few foreshocks in March 2010, and a second sequence of 15 foreshocks of M > 2 (up to M4.4) that occurred during the 24 h preceding the mainshock. The foreshocks occurred along a north-south trend near the mainshock epicenter. The M w 7.2 mainshock on April 4 exhibited complex faulting, possibly starting with a ~M6 normal faulting event, followed ~15 s later by the main event, which included simultaneous normal and right-lateral strike-slip faulting. The aftershock zone extends for 120 km from the south end of the Elsinore fault zone north of the US-Mexico border almost to the northern tip of the Gulf of California. The waveform-relocated aftershocks form two abutting clusters, each about 50 km long, as well as a 10 km north-south aftershock zone just north of the epicenter of the mainshock. Even though the Baja California data are included, the magnitude of completeness and the hypocentral errors increase gradually with distance south of the international border. The spatial distribution of large aftershocks is asymmetric with five M5+ aftershocks located to the south of the mainshock, and only one M5.7 aftershock, but numerous smaller aftershocks to the north. Further, the northwest aftershock cluster exhibits complex faulting on both northwest and northeast planes. Thus, the aftershocks also express a complex pattern of stress release along strike. The overall rate of decay of the aftershocks is similar to the rate of decay of a generic California aftershock sequence. In addition, some triggered seismicity was recorded along the Elsinore and San Jacinto faults to the north, but significant northward migration of aftershocks has not occurred. The synthesis of the El Mayor-Cucapah sequence reveals transtensional regional tectonics, including the westward growth of the Mexicali Valley and the transfer of Pacific-North America plate motion from the Gulf of California in the south into the southernmost San

  9. Consideration for standard earthquake vibration (1). The Niigataken Chuetsu-oki Earthquake in 2007

    International Nuclear Information System (INIS)

    Ishibashi, Katsuhiko

    2007-01-01

    Outline of new guideline of quakeproof design standard of nuclear power plant and the standard earthquake vibration are explained. The improvement points of new guideline are discussed on the basis of Kashiwazaki-Kariwa Nuclear Power Plant incidents. The fundamental limits of new guideline are pointed. Placement of the quakeproof design standard of nuclear power plant, JEAG4601 of Japan Electric Association, new guideline, standard earthquake vibration of new guideline, the Niigataken Chuetsu-oki Earthquake in 2007 and damage of Kashiwazaki-Kariwa Nuclear Power Plant are discussed. The safety criteria of safety review system, organization, standard and guideline should be improved on the basis of this earthquake and nuclear plant accident. The general knowledge, 'a nuclear power plant is not constructed in the area expected large earthquake', has to be realized. Preconditions of all nuclear power plants should not cause damage to anything. (S.Y.)

  10. Earthquake Emergency Education in Dushanbe, Tajikistan

    Science.gov (United States)

    Mohadjer, Solmaz; Bendick, Rebecca; Halvorson, Sarah J.; Saydullaev, Umed; Hojiboev, Orifjon; Stickler, Christine; Adam, Zachary R.

    2010-01-01

    We developed a middle school earthquake science and hazards curriculum to promote earthquake awareness to students in the Central Asian country of Tajikistan. These materials include pre- and post-assessment activities, six science activities describing physical processes related to earthquakes, five activities on earthquake hazards and mitigation…

  11. Intensity earthquake scenario (scenario event - a damaging earthquake with higher probability of occurrence) for the city of Sofia

    Science.gov (United States)

    Aleksandrova, Irena; Simeonova, Stela; Solakov, Dimcho; Popova, Maria

    2014-05-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic risk to earthquakes are increasing steadily as urbanization and development occupy more areas that a prone to effects of strong earthquakes. Additionally, the uncontrolled growth of mega cities in highly seismic areas around the world is often associated with the construction of seismically unsafe buildings and infrastructures, and undertaken with an insufficient knowledge of the regional seismicity peculiarities and seismic hazard. The assessment of seismic hazard and generation of earthquake scenarios is the first link in the prevention chain and the first step in the evaluation of the seismic risk. The earthquake scenarios are intended as a basic input for developing detailed earthquake damage scenarios for the cities and can be used in earthquake-safe town and infrastructure planning. The city of Sofia is the capital of Bulgaria. It is situated in the centre of the Sofia area that is the most populated (the population is of more than 1.2 mil. inhabitants), industrial and cultural region of Bulgaria that faces considerable earthquake risk. The available historical documents prove the occurrence of destructive earthquakes during the 15th-18th centuries in the Sofia zone. In 19th century the city of Sofia has experienced two strong earthquakes: the 1818 earthquake with epicentral intensity I0=8-9 MSK and the 1858 earthquake with I0=9-10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK). Almost a century later (95 years) an earthquake of moment magnitude 5.6 (I0=7-8 MSK) hit the city of Sofia, on May 22nd, 2012. In the present study as a deterministic scenario event is considered a damaging earthquake with higher probability of occurrence that could affect the city with intensity less than or equal to VIII

  12. Earthquake recurrence models fail when earthquakes fail to reset the stress field

    Science.gov (United States)

    Tormann, Thessa; Wiemer, Stefan; Hardebeck, Jeanne L.

    2012-01-01

    Parkfield's regularly occurring M6 mainshocks, about every 25 years, have over two decades stoked seismologists' hopes to successfully predict an earthquake of significant size. However, with the longest known inter-event time of 38 years, the latest M6 in the series (28 Sep 2004) did not conform to any of the applied forecast models, questioning once more the predictability of earthquakes in general. Our study investigates the spatial pattern of b-values along the Parkfield segment through the seismic cycle and documents a stably stressed structure. The forecasted rate of M6 earthquakes based on Parkfield's microseismicity b-values corresponds well to observed rates. We interpret the observed b-value stability in terms of the evolution of the stress field in that area: the M6 Parkfield earthquakes do not fully unload the stress on the fault, explaining why time recurrent models fail. We present the 1989 M6.9 Loma Prieta earthquake as counter example, which did release a significant portion of the stress along its fault segment and yields a substantial change in b-values.

  13. Earthquake Damage Assessment Using Objective Image Segmentation: A Case Study of 2010 Haiti Earthquake

    Science.gov (United States)

    Oommen, Thomas; Rebbapragada, Umaa; Cerminaro, Daniel

    2012-01-01

    In this study, we perform a case study on imagery from the Haiti earthquake that evaluates a novel object-based approach for characterizing earthquake induced surface effects of liquefaction against a traditional pixel based change technique. Our technique, which combines object-oriented change detection with discriminant/categorical functions, shows the power of distinguishing earthquake-induced surface effects from changes in buildings using the object properties concavity, convexity, orthogonality and rectangularity. Our results suggest that object-based analysis holds promise in automatically extracting earthquake-induced damages from high-resolution aerial/satellite imagery.

  14. Rupture, waves and earthquakes.

    Science.gov (United States)

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  15. The CATDAT damaging earthquakes database

    Science.gov (United States)

    Daniell, J. E.; Khazai, B.; Wenzel, F.; Vervaeck, A.

    2011-08-01

    The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture) database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes. Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon. Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected), and economic losses (direct, indirect, aid, and insured). Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto (214 billion USD damage; 2011 HNDECI-adjusted dollars) compared to the 2011 Tohoku (>300 billion USD at time of writing), 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product), exchange rate, wage information, population, HDI (Human Development Index), and insurance information have been collected globally to form comparisons. This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global reinsurance field.

  16. The CATDAT damaging earthquakes database

    Directory of Open Access Journals (Sweden)

    J. E. Daniell

    2011-08-01

    Full Text Available The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes.

    Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon.

    Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected, and economic losses (direct, indirect, aid, and insured.

    Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto ($214 billion USD damage; 2011 HNDECI-adjusted dollars compared to the 2011 Tohoku (>$300 billion USD at time of writing, 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product, exchange rate, wage information, population, HDI (Human Development Index, and insurance information have been collected globally to form comparisons.

    This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global

  17. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    Science.gov (United States)

    Nelson, C. H.; Gutiérrez Pastor, J.; Goldfinger, C.; Escutia, C.

    2012-11-01

    results in a margin stratigraphy of minor MTDs compared to the turbidite-system deposits. In contrast, the MTDs and turbidites are equally intermixed on basin floors along passive margins with a mud-rich continental slope, such as the northern Gulf of Mexico. Great earthquakes also result in characteristic seismo-turbidite lithology. Along the Cascadia margin, the number and character of multiple coarse pulses for correlative individual turbidites generally remain constant both upstream and downstream in different channel systems for 600 km along the margin. This suggests that the earthquake shaking or aftershock signature is normally preserved, for the stronger (Mw ≥ 9) Cascadia earthquakes. In contrast, the generally weaker (Mw = or turbidity currents that deposit in channels below confluences of the tributaries. Consequently, both downstream channel confluences and the strongest (Mw ≥ 9) great earthquakes contribute to multi-pulsed and stacked turbidites that are typical for seismo-turbidites generated by a single great earthquake. Earthquake triggering and multi-pulsed or stacked turbidites also become an alternative explanation for amalgamated turbidite beds in active tectonic margins, in addition to other classic explanations. The sedimentologic characteristics of turbidites triggered by great earthquakes along the Cascadia and northern California margins provide criteria to help distinguish seismo-turbidites in other active tectonic margins.

  18. Comparison of aftershock sequences between 1975 Haicheng earthquake and 1976 Tangshan earthquake

    Science.gov (United States)

    Liu, B.

    2017-12-01

    The 1975 ML 7.3 Haicheng earthquake and the 1976 ML 7.8 Tangshan earthquake occurred in the same tectonic unit. There are significant differences in spatial-temporal distribution, number of aftershocks and time duration for the aftershock sequence followed by these two main shocks. As we all know, aftershocks could be triggered by the regional seismicity change derived from the main shock, which was caused by the Coulomb stress perturbation. Based on the rate- and state- dependent friction law, we quantitative estimated the possible aftershock time duration with a combination of seismicity data, and compared the results from different approaches. The results indicate that, aftershock time durations from the Tangshan main shock is several times of that form the Haicheng main shock. This can be explained by the significant relationship between aftershock time duration and earthquake nucleation history, normal stressand shear stress loading rateon the fault. In fact the obvious difference of earthquake nucleation history from these two main shocks is the foreshocks. 1975 Haicheng earthquake has clear and long foreshocks, while 1976 Tangshan earthquake did not have clear foreshocks. In that case, abundant foreshocks may mean a long and active nucleation process that may have changed (weakened) the rocks in the source regions, so they should have a shorter aftershock sequences for the reason that stress in weak rocks decay faster.

  19. Ionospheric phenomena before strong earthquakes

    Directory of Open Access Journals (Sweden)

    A. S. Silina

    2001-01-01

    Full Text Available A statistical analysis of several ionospheric parameters before earthquakes with magnitude M > 5.5 located less than 500 km from an ionospheric vertical sounding station is performed. Ionospheric effects preceding "deep" (depth h > 33 km and "crust" (h 33 km earthquakes were analysed separately. Data of nighttime measurements of the critical frequencies foF2 and foEs, the frequency fbEs and Es-spread at the middle latitude station Dushanbe were used. The frequencies foF2 and fbEs are proportional to the square root of the ionization density at heights of 300 km and 100 km, respectively. It is shown that two days before the earthquakes the values of foF2 averaged over the morning hours (00:00 LT–06:00 LT and of fbEs averaged over the nighttime hours (18:00 LT–06:00 LT decrease; the effect is stronger for the "deep" earthquakes. Analysing the coefficient of semitransparency which characterizes the degree of small-scale turbulence, it was shown that this value increases 1–4 days before "crust" earthquakes, and it does not change before "deep" earthquakes. Studying Es-spread which manifests itself as diffuse Es track on ionograms and characterizes the degree of large-scale turbulence, it was found that the number of Es-spread observations increases 1–3 days before the earthquakes; for "deep" earthquakes the effect is more intensive. Thus it may be concluded that different mechanisms of energy transfer from the region of earthquake preparation to the ionosphere occur for "deep" and "crust" events.

  20. Financing options in Mexico`s energy industry

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, J.J. [PricewaterhouseCoopers Securities, Houston, TX (United States)

    1999-10-01

    A series of brief notes accompanied this presentation which was divided into seven sections entitled: (1) capital markets update, (2) Mexican financial market update, (3) financing options in the energy industry, (4) the Venezuelan experience at La Apertura, (5) private and strategic equity alternatives, (6) Pricewaterhouse Coopers Securities, and (7) Mexico energy 2005 prediction. The paper focused on how the financial crisis and merger activity in Latin America will impact electricity reform in Mexico. It was noted that under Mexico`s Policy Proposal for Electricity Reform of the Mexican Electricity Industry, the financial community will seek to back companies in power generation, transportation and distribution. The difficulty of financing government businesses undergoing privatization was also discussed with particular emphasis on the challenge of accepting political and regulatory risks. The Latin private equity market and Canadian investment in Mexico was also reviewed. Since NAFTA (North American Free Trade Agreement) went into affect in 1994, Canadian investment in Mexico has more than tripled. Canadian companies have invested more than C$1.7 billion in Mexico since NAFTA. Pricewaterhouse Coopers Securities is a global investment bank which sees large opportunities in the Mexican energy market. They predict that in five years, Mexico will experience a gradual liberalization of the oil and gas sector, and a full liberalization of the gas pipeline and distribution business and the power generation, transmission and distribution business. 3 figs.

  1. Far-Field Tsunami Hazard Assessment Along the Pacific Coast of Mexico by Historical Records and Numerical Simulation

    Science.gov (United States)

    Ortiz-Huerta, Laura G.; Ortiz, Modesto; García-Gastélum, Alejandro

    2018-03-01

    Historical records of the Chile (22 May 1960), Alaska (27 March 1964), and Tohoku (11 March 2011) tsunamis recorded along the Pacific Coast of Mexico are used to investigate the goodness of far-field tsunami modeling using a focal mechanism consisting in a uniform slip distribution on large thrust faults around the Pacific Ocean. The Tohoku 2011 tsunami records recorded by Deep ocean Assessment and Reporting of Tsunami (DART) stations, and at coastal tide stations, were used to validate transoceanic tsunami models applicable to the harbors of Ensenada, Manzanillo, and Acapulco on the coast of Mexico. The amplitude resulting from synthetic tsunamis originated by M w 9.3 earthquakes around the Pacific varies from 1 to 2.5 m, depending on the tsunami origin region and on the directivity due to fault orientation and waveform modification by prominent features of sea bottom relief.

  2. Far-Field Tsunami Hazard Assessment Along the Pacific Coast of Mexico by Historical Records and Numerical Simulation

    Science.gov (United States)

    Ortiz-Huerta, Laura G.; Ortiz, Modesto; García-Gastélum, Alejandro

    2018-04-01

    Historical records of the Chile (22 May 1960), Alaska (27 March 1964), and Tohoku (11 March 2011) tsunamis recorded along the Pacific Coast of Mexico are used to investigate the goodness of far-field tsunami modeling using a focal mechanism consisting in a uniform slip distribution on large thrust faults around the Pacific Ocean. The Tohoku 2011 tsunami records recorded by Deep ocean Assessment and Reporting of Tsunami (DART) stations, and at coastal tide stations, were used to validate transoceanic tsunami models applicable to the harbors of Ensenada, Manzanillo, and Acapulco on the coast of Mexico. The amplitude resulting from synthetic tsunamis originated by M w 9.3 earthquakes around the Pacific varies from 1 to 2.5 m, depending on the tsunami origin region and on the directivity due to fault orientation and waveform modification by prominent features of sea bottom relief.

  3. Tradable Earthquake Certificates

    NARCIS (Netherlands)

    Woerdman, Edwin; Dulleman, Minne

    2018-01-01

    This article presents a market-based idea to compensate for earthquake damage caused by the extraction of natural gas and applies it to the case of Groningen in the Netherlands. Earthquake certificates give homeowners a right to yearly compensation for both property damage and degradation of living

  4. What Can Sounds Tell Us About Earthquake Interactions?

    Science.gov (United States)

    Aiken, C.; Peng, Z.

    2012-12-01

    It is important not only for seismologists but also for educators to effectively convey information about earthquakes and the influences earthquakes can have on each other. Recent studies using auditory display [e.g. Kilb et al., 2012; Peng et al. 2012] have depicted catastrophic earthquakes and the effects large earthquakes can have on other parts of the world. Auditory display of earthquakes, which combines static images with time-compressed sound of recorded seismic data, is a new approach to disseminating information to a general audience about earthquakes and earthquake interactions. Earthquake interactions are influential to understanding the underlying physics of earthquakes and other seismic phenomena such as tremors in addition to their source characteristics (e.g. frequency contents, amplitudes). Earthquake interactions can include, for example, a large, shallow earthquake followed by increased seismicity around the mainshock rupture (i.e. aftershocks) or even a large earthquake triggering earthquakes or tremors several hundreds to thousands of kilometers away [Hill and Prejean, 2007; Peng and Gomberg, 2010]. We use standard tools like MATLAB, QuickTime Pro, and Python to produce animations that illustrate earthquake interactions. Our efforts are focused on producing animations that depict cross-section (side) views of tremors triggered along the San Andreas Fault by distant earthquakes, as well as map (bird's eye) views of mainshock-aftershock sequences such as the 2011/08/23 Mw5.8 Virginia earthquake sequence. These examples of earthquake interactions include sonifying earthquake and tremor catalogs as musical notes (e.g. piano keys) as well as audifying seismic data using time-compression. Our overall goal is to use auditory display to invigorate a general interest in earthquake seismology that leads to the understanding of how earthquakes occur, how earthquakes influence one another as well as tremors, and what the musical properties of these

  5. A smartphone application for earthquakes that matter!

    Science.gov (United States)

    Bossu, Rémy; Etivant, Caroline; Roussel, Fréderic; Mazet-Roux, Gilles; Steed, Robert

    2014-05-01

    Smartphone applications have swiftly become one of the most popular tools for rapid reception of earthquake information for the public, some of them having been downloaded more than 1 million times! The advantages are obvious: wherever someone's own location is, they can be automatically informed when an earthquake has struck. Just by setting a magnitude threshold and an area of interest, there is no longer the need to browse the internet as the information reaches you automatically and instantaneously! One question remains: are the provided earthquake notifications always relevant for the public? What are the earthquakes that really matters to laypeople? One clue may be derived from some newspaper reports that show that a while after damaging earthquakes many eyewitnesses scrap the application they installed just after the mainshock. Why? Because either the magnitude threshold is set too high and many felt earthquakes are missed, or it is set too low and the majority of the notifications are related to unfelt earthquakes thereby only increasing anxiety among the population at each new update. Felt and damaging earthquakes are the ones that matter the most for the public (and authorities). They are the ones of societal importance even when of small magnitude. A smartphone application developed by EMSC (Euro-Med Seismological Centre) with the financial support of the Fondation MAIF aims at providing suitable notifications for earthquakes by collating different information threads covering tsunamigenic, potentially damaging and felt earthquakes. Tsunamigenic earthquakes are considered here to be those ones that are the subject of alert or information messages from the PTWC (Pacific Tsunami Warning Centre). While potentially damaging earthquakes are identified through an automated system called EQIA (Earthquake Qualitative Impact Assessment) developed and operated at EMSC. This rapidly assesses earthquake impact by comparing the population exposed to each expected

  6. Nowcasting Earthquakes and Tsunamis

    Science.gov (United States)

    Rundle, J. B.; Turcotte, D. L.

    2017-12-01

    The term "nowcasting" refers to the estimation of the current uncertain state of a dynamical system, whereas "forecasting" is a calculation of probabilities of future state(s). Nowcasting is a term that originated in economics and finance, referring to the process of determining the uncertain state of the economy or market indicators such as GDP at the current time by indirect means. We have applied this idea to seismically active regions, where the goal is to determine the current state of a system of faults, and its current level of progress through the earthquake cycle (http://onlinelibrary.wiley.com/doi/10.1002/2016EA000185/full). Advantages of our nowcasting method over forecasting models include: 1) Nowcasting is simply data analysis and does not involve a model having parameters that must be fit to data; 2) We use only earthquake catalog data which generally has known errors and characteristics; and 3) We use area-based analysis rather than fault-based analysis, meaning that the methods work equally well on land and in subduction zones. To use the nowcast method to estimate how far the fault system has progressed through the "cycle" of large recurring earthquakes, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. We select a "small" region in which the nowcast is to be made, and compute the statistics of a much larger region around the small region. The statistics of the large region are then applied to the small region. For an application, we can define a small region around major global cities, for example a "small" circle of radius 150 km and a depth of 100 km, as well as a "large" earthquake magnitude, for example M6.0. The region of influence of such earthquakes is roughly 150 km radius x 100 km depth, which is the reason these values were selected. We can then compute and rank the seismic risk of the world's major cities in terms of their relative seismic risk

  7. Seismicity map tools for earthquake studies

    Science.gov (United States)

    Boucouvalas, Anthony; Kaskebes, Athanasios; Tselikas, Nikos

    2014-05-01

    We report on the development of new and online set of tools for use within Google Maps, for earthquake research. We demonstrate this server based and online platform (developped with PHP, Javascript, MySQL) with the new tools using a database system with earthquake data. The platform allows us to carry out statistical and deterministic analysis on earthquake data use of Google Maps and plot various seismicity graphs. The tool box has been extended to draw on the map line segments, multiple straight lines horizontally and vertically as well as multiple circles, including geodesic lines. The application is demonstrated using localized seismic data from the geographic region of Greece as well as other global earthquake data. The application also offers regional segmentation (NxN) which allows the studying earthquake clustering, and earthquake cluster shift within the segments in space. The platform offers many filters such for plotting selected magnitude ranges or time periods. The plotting facility allows statistically based plots such as cumulative earthquake magnitude plots and earthquake magnitude histograms, calculation of 'b' etc. What is novel for the platform is the additional deterministic tools. Using the newly developed horizontal and vertical line and circle tools we have studied the spatial distribution trends of many earthquakes and we here show for the first time the link between Fibonacci Numbers and spatiotemporal location of some earthquakes. The new tools are valuable for examining visualizing trends in earthquake research as it allows calculation of statistics as well as deterministic precursors. We plan to show many new results based on our newly developed platform.

  8. Earthquake at 40 feet

    Science.gov (United States)

    Miller, G. J.

    1976-01-01

    The earthquake that struck the island of Guam on November 1, 1975, at 11:17 a.m had many unique aspects-not the least of which was the experience of an earthquake of 6.25 Richter magnitude while at 40 feet. My wife Bonnie, a fellow diver, Greg Guzman, and I were diving at Gabgab Beach in teh outer harbor of Apra Harbor, engaged in underwater phoyography when the earthquake struck. 

  9. Earthquakes and economic growth

    OpenAIRE

    Fisker, Peter Simonsen

    2012-01-01

    This study explores the economic consequences of earthquakes. In particular, it is investigated how exposure to earthquakes affects economic growth both across and within countries. The key result of the empirical analysis is that while there are no observable effects at the country level, earthquake exposure significantly decreases 5-year economic growth at the local level. Areas at lower stages of economic development suffer harder in terms of economic growth than richer areas. In addition,...

  10. Radon anomalies prior to earthquakes (2). Atmospheric radon anomaly observed before the Hyogoken-Nanbu earthquake

    International Nuclear Information System (INIS)

    Ishikawa, Tetsuo; Tokonami, Shinji; Yasuoka, Yumi; Shinogi, Masaki; Nagahama, Hiroyuki; Omori, Yasutaka; Kawada, Yusuke

    2008-01-01

    Before the 1995 Hyogoken-Nanbu earthquake, various geochemical precursors were observed in the aftershock area: chloride ion concentration, groundwater discharge rate, groundwater radon concentration and so on. Kobe Pharmaceutical University (KPU) is located about 25 km northeast from the epicenter and within the aftershock area. Atmospheric radon concentration had been continuously measured from 1984 at KPU, using a flow-type ionization chamber. The radon concentration data were analyzed using the smoothed residual values which represent the daily minimum of radon concentration with the exclusion of normalized seasonal variation. The radon concentration (smoothed residual values) demonstrated an upward trend about two months before the Hyogoken-Nanbu earthquake. The trend can be well fitted to a log-periodic model related to earthquake fault dynamics. As a result of model fitting, a critical point was calculated to be between 13 and 27 January 1995, which was in good agreement with the occurrence date of earthquake (17 January 1995). The mechanism of radon anomaly before earthquakes is not fully understood. However, it might be possible to detect atmospheric radon anomaly as a precursor before a large earthquake, if (1) the measurement is conducted near the earthquake fault, (2) the monitoring station is located on granite (radon-rich) areas, and (3) the measurement is conducted for more than several years before the earthquake to obtain background data. (author)

  11. Retrospective stress-forecasting of earthquakes

    Science.gov (United States)

    Gao, Yuan; Crampin, Stuart

    2015-04-01

    Observations of changes in azimuthally varying shear-wave splitting (SWS) above swarms of small earthquakes monitor stress-induced changes to the stress-aligned vertical microcracks pervading the upper crust, lower crust, and uppermost ~400km of the mantle. (The microcracks are intergranular films of hydrolysed melt in the mantle.) Earthquakes release stress, and an appropriate amount of stress for the relevant magnitude must accumulate before each event. Iceland is on an extension of the Mid-Atlantic Ridge, where two transform zones, uniquely run onshore. These onshore transform zones provide semi-continuous swarms of small earthquakes, which are the only place worldwide where SWS can be routinely monitored. Elsewhere SWS must be monitored above temporally-active occasional swarms of small earthquakes, or in infrequent SKS and other teleseismic reflections from the mantle. Observations of changes in SWS time-delays are attributed to stress-induced changes in crack aspect-ratios allowing stress-accumulation and stress-relaxation to be identified. Monitoring SWS in SW Iceland in 1988, stress-accumulation before an impending earthquake was recognised and emails were exchanged between the University of Edinburgh (EU) and the Iceland Meteorological Office (IMO). On 10th November 1988, EU emailed IMO that a M5 earthquake could occur soon on a seismically-active fault plane where seismicity was still continuing following a M5.1 earthquake six-months earlier. Three-days later, IMO emailed EU that a M5 earthquake had just occurred on the specified fault-plane. We suggest this is a successful earthquake stress-forecast, where we refer to the procedure as stress-forecasting earthquakes as opposed to predicting or forecasting to emphasise the different formalism. Lack of funds has prevented us monitoring SWS on Iceland seismograms, however, we have identified similar characteristic behaviour of SWS time-delays above swarms of small earthquakes which have enabled us to

  12. Charles Darwin's earthquake reports

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    As it is the 200th anniversary of Darwin's birth, 2009 has also been marked as 170 years since the publication of his book Journal of Researches. During the voyage Darwin landed at Valdivia and Concepcion, Chile, just before, during, and after a great earthquake, which demolished hundreds of buildings, killing and injuring many people. Land was waved, lifted, and cracked, volcanoes awoke and giant ocean waves attacked the coast. Darwin was the first geologist to observe and describe the effects of the great earthquake during and immediately after. These effects sometimes repeated during severe earthquakes; but great earthquakes, like Chile 1835, and giant earthquakes, like Chile 1960, are rare and remain completely unpredictable. This is one of the few areas of science, where experts remain largely in the dark. Darwin suggested that the effects were a result of ‘ …the rending of strata, at a point not very deep below the surface of the earth…' and ‘…when the crust yields to the tension, caused by its gradual elevation, there is a jar at the moment of rupture, and a greater movement...'. Darwin formulated big ideas about the earth evolution and its dynamics. These ideas set the tone for the tectonic plate theory to come. However, the plate tectonics does not completely explain why earthquakes occur within plates. Darwin emphasised that there are different kinds of earthquakes ‘...I confine the foregoing observations to the earthquakes on the coast of South America, or to similar ones, which seem generally to have been accompanied by elevation of the land. But, as we know that subsidence has gone on in other quarters of the world, fissures must there have been formed, and therefore earthquakes...' (we cite the Darwin's sentences following researchspace. auckland. ac. nz/handle/2292/4474). These thoughts agree with results of the last publications (see Nature 461, 870-872; 636-639 and 462, 42-43; 87-89). About 200 years ago Darwin gave oneself airs by the

  13. Integrated Risk Research. Case of Study: Motozintla, Chiapas, Mexico

    Science.gov (United States)

    Novelo-Casanova, D. A.; Jaimes, M.

    2015-12-01

    This integrated risk research include the analysis of all components of individual constituents of risk such hazard identification, hazard exposure, and vulnerability. We determined risk to natural hazards in the community of Motozintla located in southern Mexico in the state of Chiapas (15.37ºN, 92.25ºW. Due to its geographical and geological location, this community is continuously exposed mainly to earthquakes, landslides and floods. We developed integrated studies and analysis of seismic zonation, landslides and flood susceptibility using standard methodologies. Vulnerability was quantified from data collected from local families interviews considering five social variables: characteristics of housing construction, availability of basic public services, family economic conditions, existing community plans for disaster preparedness, and risk perception. Local families surveyed were randomly selected considering a sample statistically significant. Our results were spatially represented using a Geographical Information System (GIS). Structural vulnerability curves were generated for typical housing constructions. Our integrated risk analysis demonstrates that the community of Motozintla has a high level of structural and socio-economical risk to floods and earthquakes. More than half of the population does not know any existing Civil Protection Plan and perceive that they are in high risk to landslides and floods. Although the community is located in a high seismic risk zone, most of the local people believe that cannot be impacted by a large earthquake. These natural and social conditions indicate that the community of Motozintla has a very high level of risk to natural hazards. This research will support local decision makers in developing an integrated comprehensive natural hazards mitigation and prevention program.

  14. Mexico Geoid Heights (MEXICO97)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' geoid height grid for Mexico, and North-Central America, is the MEXICO97 geoid model. The computation used about one million terrestrial and marine gravity...

  15. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  16. Earthquake effect on the geological environment

    International Nuclear Information System (INIS)

    Kawamura, Makoto

    1999-01-01

    Acceleration caused by the earthquake, changes in the water pressure, and the rock-mass strain were monitored for a series of 344 earthquakes from 1990 to 1998 at Kamaishi In Situ Test Site. The largest acceleration was registered to be 57.14 gal with the earthquake named 'North coast of Iwate Earthquake' (M4.4) occurred in June, 1996. Changes of the water pressure were recorded with 27 earthquakes; the largest change was -0.35 Kgt/cm 2 . The water-pressure change by earthquake was, however, usually smaller than that caused by rainfall in this area. No change in the electric conductivity or pH of ground water was detected before and after the earthquake throughout the entire period of monitoring. The rock-mass strain was measured with a extensometer whose detection limit was of the order of 10 -8 to 10 -9 degrees and the remaining strain of about 2.5x10 -9 degrees was detected following the 'Offshore Miyagi Earthquake' (M5.1) in October, 1997. (H. Baba)

  17. Quaternary Slip History for the Agua Blanca Fault, northern Baja California, Mexico

    Science.gov (United States)

    Gold, P. O.; Behr, W. M.; Rockwell, T. K.; Fletcher, J. M.

    2017-12-01

    The Agua Blanca Fault (ABF) is the primary structure accommodating San Andreas-related right-lateral slip across the Peninsular Ranges of northern Baja California. Activity on this fault influences offshore faults that parallel the Pacific coast from Ensenada to Los Angeles and is a potential threat to communities in northern Mexico and southern California. We present a detailed Quaternary slip history for the ABF, including new quantitative constraints on geologic slip rates, slip-per-event, the timing of most recent earthquake, and the earthquake recurrence interval. Cosmogenic 10Be exposure dating of clasts from offset fluvial geomorphic surfaces at 2 sites located along the western, and most active, section of the ABF yield preliminary slip rate estimates of 2-4 mm/yr and 3 mm/yr since 20 ka and 2 ka, respectively. Fault zone geomorphology preserved at the younger site provides evidence for right-lateral surface displacements measuring 2.5 m in the past two ruptures. Luminescence dating of an offset alluvial fan at a third site is in progress, but is expected to yield a slip rate relevant to the past 10 kyr. Adjacent to this third site, we excavated 2 paleoseismic trenches across a sag pond formed by a right step in the fault. Preliminary radiocarbon dates indicate that the 4 surface ruptures identified in the trenches occurred in the past 6 kyr, although additional dating should clarify earthquake timing and the mid-Holocene to present earthquake recurrence interval, as well as the likely date of the most recent earthquake. Our new slip rate estimates are somewhat lower than, but comparable within error to, previous geologic estimates based on soil morphology and geodetic estimates from GPS, but the new record of surface ruptures exposed in the trenches is the most complete and comprehensively dated earthquake history yet determined for this fault. Together with new and existing mapping of tectonically generated geomorphology along the ABF, our constraints

  18. Earthquake predictions using seismic velocity ratios

    Science.gov (United States)

    Sherburne, R. W.

    1979-01-01

    Since the beginning of modern seismology, seismologists have contemplated predicting earthquakes. The usefulness of earthquake predictions to the reduction of human and economic losses and the value of long-range earthquake prediction to planning is obvious. Not as clear are the long-range economic and social impacts of earthquake prediction to a speicifc area. The general consensus of opinion among scientists and government officials, however, is that the quest of earthquake prediction is a worthwhile goal and should be prusued with a sense of urgency. 

  19. Evaluation of the recorded ground motions for the unusual earthquake of 13 August 2006 ( M w 5.3) in Michoacán México

    Science.gov (United States)

    Ramírez-Gaytán, Alejandro; Jaimes, Miguel A.; Bandy, William L.; Huerfano, Victor M.; Salido-Ruiz, Ricardo A.

    2015-10-01

    The focal mechanism of the moderate earthquake of 13 August 2006 M w = 5.3, which occurred in the border coastal area between Michoacán and Colima, México, is unusual. As shown by the Global Centroid Moment Tensor (CMT) project and the Servicio Sismológico Nacional de Mexico (SSN), the thrust mechanism is striking almost perpendicularly to the majority of earthquakes occurring along the subduction zone of the Mexican Pacific continental margin which commonly strike nearly parallel to the trench. The purpose of this study is to analyze the observed ground motions of this particular event relative to those of the common events. First, we apply the H/V technique to verify that the stations involved in this study are nearly free of site effects. Then, we compare the observed ground motions with (i) three empirical ground motion prediction equations (GMPEs) appropriate for the region, (ii) ground motions of four real earthquakes with the common mechanism, and (iii) the Fourier spectrum of a selected common event.

  20. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    Directory of Open Access Journals (Sweden)

    C. H. Nelson

    2012-11-01

    cause seismic strengthening of the sediment, which results in a margin stratigraphy of minor MTDs compared to the turbidite-system deposits. In contrast, the MTDs and turbidites are equally intermixed on basin floors along passive margins with a mud-rich continental slope, such as the northern Gulf of Mexico.

    Great earthquakes also result in characteristic seismo-turbidite lithology. Along the Cascadia margin, the number and character of multiple coarse pulses for correlative individual turbidites generally remain constant both upstream and downstream in different channel systems for 600 km along the margin. This suggests that the earthquake shaking or aftershock signature is normally preserved, for the stronger (Mw ≥ 9 Cascadia earthquakes. In contrast, the generally weaker (Mw = or <8 California earthquakes result in upstream simple fining-up turbidites in single tributary canyons and channels; however, downstream mainly stacked turbidites result from synchronously triggered multiple turbidity currents that deposit in channels below confluences of the tributaries. Consequently, both downstream channel confluences and the strongest (Mw ≥ 9 great earthquakes contribute to multi-pulsed and stacked turbidites that are typical for seismo-turbidites generated by a single great earthquake. Earthquake triggering and multi-pulsed or stacked turbidites also become an alternative explanation for amalgamated turbidite beds in active tectonic margins, in addition to other classic explanations. The sedimentologic characteristics of turbidites triggered by great earthquakes along the Cascadia and northern California margins provide criteria to help distinguish seismo-turbidites in other active tectonic margins.

  1. Earthquakes and Schools

    Science.gov (United States)

    National Clearinghouse for Educational Facilities, 2008

    2008-01-01

    Earthquakes are low-probability, high-consequence events. Though they may occur only once in the life of a school, they can have devastating, irreversible consequences. Moderate earthquakes can cause serious damage to building contents and non-structural building systems, serious injury to students and staff, and disruption of building operations.…

  2. Smoking prevalence increases following Canterbury earthquakes.

    Science.gov (United States)

    Erskine, Nick; Daley, Vivien; Stevenson, Sue; Rhodes, Bronwen; Beckert, Lutz

    2013-01-01

    A magnitude 7.1 earthquake hit Canterbury in September 2010. This earthquake and associated aftershocks took the lives of 185 people and drastically changed residents' living, working, and social conditions. To explore the impact of the earthquakes on smoking status and levels of tobacco consumption in the residents of Christchurch. Semistructured interviews were carried out in two city malls and the central bus exchange 15 months after the first earthquake. A total of 1001 people were interviewed. In August 2010, prior to any earthquake, 409 (41%) participants had never smoked, 273 (27%) were currently smoking, and 316 (32%) were ex-smokers. Since the September 2010 earthquake, 76 (24%) of the 316 ex-smokers had smoked at least one cigarette and 29 (38.2%) had smoked more than 100 cigarettes. Of the 273 participants who were current smokers in August 2010, 93 (34.1%) had increased consumption following the earthquake, 94 (34.4%) had not changed, and 86 (31.5%) had decreased their consumption. 53 (57%) of the 93 people whose consumption increased reported that the earthquake and subsequent lifestyle changes as a reason to increase smoking. 24% of ex-smokers resumed smoking following the earthquake, resulting in increased smoking prevalence. Tobacco consumption levels increased in around one-third of current smokers.

  3. Cyclic migration of weak earthquakes between Lunigiana earthquake of October 10, 1995 and Reggio Emilia earthquake of October 15, 1996 (Northern Italy)

    Science.gov (United States)

    di Giovambattista, R.; Tyupkin, Yu

    The cyclic migration of weak earthquakes (M 2.2) which occurred during the yearprior to the October 15, 1996 (M = 4.9) Reggio Emilia earthquake isdiscussed in this paper. The onset of this migration was associated with theoccurrence of the October 10, 1995 (M = 4.8) Lunigiana earthquakeabout 90 km southwest from the epicenter of the Reggio Emiliaearthquake. At least three series of earthquakes migrating from theepicentral area of the Lunigiana earthquake in the northeast direction wereobserved. The migration of earthquakes of the first series terminated at adistance of about 30 km from the epicenter of the Reggio Emiliaearthquake. The earthquake migration of the other two series halted atabout 10 km from the Reggio Emilia epicenter. The average rate ofearthquake migration was about 200-300 km/year, while the time ofrecurrence of the observed cycles varied from 68 to 178 days. Weakearthquakes migrated along the transversal fault zones and sometimesjumped from one fault to another. A correlation between the migratingearthquakes and tidal variations is analysed. We discuss the hypothesis thatthe analyzed area is in a state of stress approaching the limit of thelong-term durability of crustal rocks and that the observed cyclic migrationis a result of a combination of a more or less regular evolution of tectonicand tidal variations.

  4. The 2012 Mw5.6 earthquake in Sofia seismogenic zone - is it a slow earthquake

    Science.gov (United States)

    Raykova, Plamena; Solakov, Dimcho; Slavcheva, Krasimira; Simeonova, Stela; Aleksandrova, Irena

    2017-04-01

    Recently our understanding of tectonic faulting has been shaken by the discoveries of seismic tremor, low frequency earthquakes, slow slip events, and other models of fault slip. These phenomenas represent models of failure that were thought to be non-existent and theoretically impossible only a few years ago. Slow earthquakes are seismic phenomena in which the rupture of geological faults in the earth's crust occurs gradually without creating strong tremors. Despite the growing number of observations of slow earthquakes their origin remains unresolved. Studies show that the duration of slow earthquakes ranges from a few seconds to a few hundred seconds. The regular earthquakes with which most people are familiar release a burst of built-up stress in seconds, slow earthquakes release energy in ways that do little damage. This study focus on the characteristics of the Mw5.6 earthquake occurred in Sofia seismic zone on May 22nd, 2012. The Sofia area is the most populated, industrial and cultural region of Bulgaria that faces considerable earthquake risk. The Sofia seismic zone is located in South-western Bulgaria - the area with pronounce tectonic activity and proved crustal movement. In 19th century the city of Sofia (situated in the centre of the Sofia seismic zone) has experienced two strong earthquakes with epicentral intensity of 10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK64).The 2012 quake occurs in an area characterized by a long quiescence (of 95 years) for moderate events. Moreover, a reduced number of small earthquakes have also been registered in the recent past. The Mw5.6 earthquake is largely felt on the territory of Bulgaria and neighbouring countries. No casualties and severe injuries have been reported. Mostly moderate damages were observed in the cities of Pernik and Sofia and their surroundings. These observations could be assumed indicative for a

  5. The severity of an earthquake

    Science.gov (United States)

    ,

    1997-01-01

    The severity of an earthquake can be expressed in terms of both intensity and magnitude. However, the two terms are quite different, and they are often confused. Intensity is based on the observed effects of ground shaking on people, buildings, and natural features. It varies from place to place within the disturbed region depending on the location of the observer with respect to the earthquake epicenter. Magnitude is related to the amount of seismic energy released at the hypocenter of the earthquake. It is based on the amplitude of the earthquake waves recorded on instruments

  6. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography

    Directory of Open Access Journals (Sweden)

    Zhi-hui Dong

    2011-01-01

    Full Text Available PURPOSE: Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT. METHODS: We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. RESULTS: The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR = 2.2; p<0.001. Among these patients, those with more than 3 fractured ribs (106/143 vs. 41/66 patients, RR=1.2; p<0.05 or flail chest (45/143 vs. 11/66 patients, RR=1.9; p<0.05 were more frequently seen in the earthquake cohort. Earthquake-related crush injuries more frequently resulted in bilateral rib fractures (66/143 vs. 18/66 patients, RR= 1.7; p<0.01. Additionally, the incidence of non-rib fracture was higher in the earthquake cohort (85 vs. 60 patients, RR= 1.4; p<0.01. Pulmonary parenchymal and pleural injuries were more frequently seen in earthquake-related crush injuries (117 vs. 80 patients, RR=1.5 for parenchymal and 146 vs. 74 patients, RR = 2.0 for pleural injuries; p<0.001. Non-rib fractures, pulmonary parenchymal and pleural injuries had significant positive correlation with rib fractures in these two cohorts. CONCLUSIONS: Thoracic crush traumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries.

  7. Earthquake prediction by Kina Method

    International Nuclear Information System (INIS)

    Kianoosh, H.; Keypour, H.; Naderzadeh, A.; Motlagh, H.F.

    2005-01-01

    Earthquake prediction has been one of the earliest desires of the man. Scientists have worked hard to predict earthquakes for a long time. The results of these efforts can generally be divided into two methods of prediction: 1) Statistical Method, and 2) Empirical Method. In the first method, earthquakes are predicted using statistics and probabilities, while the second method utilizes variety of precursors for earthquake prediction. The latter method is time consuming and more costly. However, the result of neither method has fully satisfied the man up to now. In this paper a new method entitled 'Kiana Method' is introduced for earthquake prediction. This method offers more accurate results yet lower cost comparing to other conventional methods. In Kiana method the electrical and magnetic precursors are measured in an area. Then, the time and the magnitude of an earthquake in the future is calculated using electrical, and in particular, electrical capacitors formulas. In this method, by daily measurement of electrical resistance in an area we make clear that the area is capable of earthquake occurrence in the future or not. If the result shows a positive sign, then the occurrence time and the magnitude can be estimated by the measured quantities. This paper explains the procedure and details of this prediction method. (authors)

  8. Sense of Community and Depressive Symptoms among Older Earthquake Survivors Following the 2008 Earthquake in Chengdu China

    Science.gov (United States)

    Li, Yawen; Sun, Fei; He, Xusong; Chan, Kin Sun

    2011-01-01

    This study examined the impact of an earthquake as well as the role of sense of community as a protective factor against depressive symptoms among older Chinese adults who survived an 8.0 magnitude earthquake in 2008. A household survey of a random sample was conducted 3 months after the earthquake and 298 older earthquake survivors participated…

  9. Precisely locating the Klamath Falls, Oregon, earthquakes

    Science.gov (United States)

    Qamar, A.; Meagher, K.L.

    1993-01-01

    The Klamath Falls earthquakes on September 20, 1993, were the largest earthquakes centered in Oregon in more than 50 yrs. Only the magnitude 5.75 Milton-Freewater earthquake in 1936, which was centered near the Oregon-Washington border and felt in an area of about 190,000 sq km, compares in size with the recent Klamath Falls earthquakes. Although the 1993 earthquakes surprised many local residents, geologists have long recognized that strong earthquakes may occur along potentially active faults that pass through the Klamath Falls area. These faults are geologically related to similar faults in Oregon, Idaho, and Nevada that occasionally spawn strong earthquakes

  10. Feasibility of Twitter Based Earthquake Characterization From Analysis of 32 Million Tweets: There's Got to be a Pony in Here Somewhere!

    Science.gov (United States)

    Earle, P. S.; Guy, M. R.; Smoczyk, G. M.; Horvath, S. R.; Jessica, T. S.; Bausch, D. B.

    2014-12-01

    social media such as Instagram to obtain rapid images of earthquake-related damage. An Instagram search following the damaging M6.9 earthquake near the Mexico, Guatemala boarder on July 7, 2014 reveled half a dozen unconfirmed images of damage; the first posted 15 minutes after the event.

  11. The mechanism of earthquake

    Science.gov (United States)

    Lu, Kunquan; Cao, Zexian; Hou, Meiying; Jiang, Zehui; Shen, Rong; Wang, Qiang; Sun, Gang; Liu, Jixing

    2018-03-01

    The physical mechanism of earthquake remains a challenging issue to be clarified. Seismologists used to attribute shallow earthquake to the elastic rebound of crustal rocks. The seismic energy calculated following the elastic rebound theory and with the data of experimental results upon rocks, however, shows a large discrepancy with measurement — a fact that has been dubbed as “the heat flow paradox”. For the intermediate-focus and deep-focus earthquakes, both occurring in the region of the mantle, there is not reasonable explanation either. This paper will discuss the physical mechanism of earthquake from a new perspective, starting from the fact that both the crust and the mantle are discrete collective system of matters with slow dynamics, as well as from the basic principles of physics, especially some new concepts of condensed matter physics emerged in the recent years. (1) Stress distribution in earth’s crust: Without taking the tectonic force into account, according to the rheological principle of “everything flows”, the normal stress and transverse stress must be balanced due to the effect of gravitational pressure over a long period of time, thus no differential stress in the original crustal rocks is to be expected. The tectonic force is successively transferred and accumulated via stick-slip motions of rock blocks to squeeze the fault gouge and then exerted upon other rock blocks. The superposition of such additional lateral tectonic force and the original stress gives rise to the real-time stress in crustal rocks. The mechanical characteristics of fault gouge are different from rocks as it consists of granular matters. The elastic moduli of the fault gouges are much less than those of rocks, and they become larger with increasing pressure. This peculiarity of the fault gouge leads to a tectonic force increasing with depth in a nonlinear fashion. The distribution and variation of the tectonic stress in the crust are specified. (2) The

  12. An accuracy assessment of realtime GNSS time series toward semi- real time seafloor geodetic observation

    Science.gov (United States)

    Osada, Y.; Ohta, Y.; Demachi, T.; Kido, M.; Fujimoto, H.; Azuma, R.; Hino, R.

    2013-12-01

    Large interplate earthquake repeatedly occurred in Japan Trench. Recently, the detail crustal deformation revealed by the nation-wide inland GPS network called as GEONET by GSI. However, the maximum displacement region for interplate earthquake is mainly located offshore region. GPS/Acoustic seafloor geodetic observation (hereafter GPS/A) is quite important and useful for understanding of shallower part of the interplate coupling between subducting and overriding plates. We typically conduct GPS/A in specific ocean area based on repeated campaign style using research vessel or buoy. Therefore, we cannot monitor the temporal variation of seafloor crustal deformation in real time. The one of technical issue on real time observation is kinematic GPS analysis because kinematic GPS analysis based on reference and rover data. If the precise kinematic GPS analysis will be possible in the offshore region, it should be promising method for real time GPS/A with USV (Unmanned Surface Vehicle) and a moored buoy. We assessed stability, precision and accuracy of StarFireTM global satellites based augmentation system. We primarily tested for StarFire in the static condition. In order to assess coordinate precision and accuracy, we compared 1Hz StarFire time series and post-processed precise point positioning (PPP) 1Hz time series by GIPSY-OASIS II processing software Ver. 6.1.2 with three difference product types (ultra-rapid, rapid, and final orbits). We also used difference interval clock information (30 and 300 seconds) for the post-processed PPP processing. The standard deviation of real time StarFire time series is less than 30 mm (horizontal components) and 60 mm (vertical component) based on 1 month continuous processing. We also assessed noise spectrum of the estimated time series by StarFire and post-processed GIPSY PPP results. We found that the noise spectrum of StarFire time series is similar pattern with GIPSY-OASIS II processing result based on JPL rapid orbit

  13. Turkish Children's Ideas about Earthquakes

    Science.gov (United States)

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  14. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  15. Global earthquake fatalities and population

    Science.gov (United States)

    Holzer, Thomas L.; Savage, James C.

    2013-01-01

    Modern global earthquake fatalities can be separated into two components: (1) fatalities from an approximately constant annual background rate that is independent of world population growth and (2) fatalities caused by earthquakes with large human death tolls, the frequency of which is dependent on world population. Earthquakes with death tolls greater than 100,000 (and 50,000) have increased with world population and obey a nonstationary Poisson distribution with rate proportional to population. We predict that the number of earthquakes with death tolls greater than 100,000 (50,000) will increase in the 21st century to 8.7±3.3 (20.5±4.3) from 4 (7) observed in the 20th century if world population reaches 10.1 billion in 2100. Combining fatalities caused by the background rate with fatalities caused by catastrophic earthquakes (>100,000 fatalities) indicates global fatalities in the 21st century will be 2.57±0.64 million if the average post-1900 death toll for catastrophic earthquakes (193,000) is assumed.

  16. Instruction system upon occurrence of earthquakes

    International Nuclear Information System (INIS)

    Inagaki, Masakatsu; Morikawa, Matsuo; Suzuki, Satoshi; Fukushi, Naomi.

    1987-01-01

    Purpose: To enable rapid re-starting of a nuclear reactor after earthquakes by informing various properties of encountered earthquake to operators and properly displaying the state of damages in comparison with designed standard values of facilities. Constitution: Even in a case where the maximum accelerations due to the movements of earthquakes encountered exceed designed standard values, it may be considered such a case that equipments still remain intact depending on the wave components of the seismic movements and the vibration properties inherent to the equipments. Taking notice of the fact, the instruction device comprises a system that indicates the relationship between the seismic waveforms of earthquakes being encountered and the scram setting values, a system for indicating the comparison between the floor response spectrum of the seismic waveforms of the encountered earthquakes and the designed floor response spectrum used for the design of the equipments and a system for indicating those equipments requiring inspection after the earthquakes. Accordingly, it is possible to improve the operationability upon scram of a nuclear power plant undergoing earthquakes and improve the power saving and safety by clearly defining the inspection portion after the earthquakes. (Kawakami, Y.)

  17. How fault geometry controls earthquake magnitude

    Science.gov (United States)

    Bletery, Q.; Thomas, A.; Karlstrom, L.; Rempel, A. W.; Sladen, A.; De Barros, L.

    2016-12-01

    Recent large megathrust earthquakes, such as the Mw9.3 Sumatra-Andaman earthquake in 2004 and the Mw9.0 Tohoku-Oki earthquake in 2011, astonished the scientific community. The first event occurred in a relatively low-convergence-rate subduction zone where events of its size were unexpected. The second event involved 60 m of shallow slip in a region thought to be aseismicaly creeping and hence incapable of hosting very large magnitude earthquakes. These earthquakes highlight gaps in our understanding of mega-earthquake rupture processes and the factors controlling their global distribution. Here we show that gradients in dip angle exert a primary control on mega-earthquake occurrence. We calculate the curvature along the major subduction zones of the world and show that past mega-earthquakes occurred on flat (low-curvature) interfaces. A simplified analytic model demonstrates that shear strength heterogeneity increases with curvature. Stress loading on flat megathrusts is more homogeneous and hence more likely to be released simultaneously over large areas than on highly-curved faults. Therefore, the absence of asperities on large faults might counter-intuitively be a source of higher hazard.

  18. Earthquake casualty models within the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.; Earle, Paul S.; Porter, Keith A.; Hearne, Mike

    2011-01-01

    Since the launch of the USGS’s Prompt Assessment of Global Earthquakes for Response (PAGER) system in fall of 2007, the time needed for the U.S. Geological Survey (USGS) to determine and comprehend the scope of any major earthquake disaster anywhere in the world has been dramatically reduced to less than 30 min. PAGER alerts consist of estimated shaking hazard from the ShakeMap system, estimates of population exposure at various shaking intensities, and a list of the most severely shaken cities in the epicentral area. These estimates help government, scientific, and relief agencies to guide their responses in the immediate aftermath of a significant earthquake. To account for wide variability and uncertainty associated with inventory, structural vulnerability and casualty data, PAGER employs three different global earthquake fatality/loss computation models. This article describes the development of the models and demonstrates the loss estimation capability for earthquakes that have occurred since 2007. The empirical model relies on country-specific earthquake loss data from past earthquakes and makes use of calibrated casualty rates for future prediction. The semi-empirical and analytical models are engineering-based and rely on complex datasets including building inventories, time-dependent population distributions within different occupancies, the vulnerability of regional building stocks, and casualty rates given structural collapse.

  19. Measuring the size of an earthquake

    Science.gov (United States)

    Spence, W.; Sipkin, S.A.; Choy, G.L.

    1989-01-01

    Earthquakes range broadly in size. A rock-burst in an Idaho silver mine may involve the fracture of 1 meter of rock; the 1965 Rat Island earthquake in the Aleutian arc involved a 650-kilometer length of the Earth's crust. Earthquakes can be even smaller and even larger. If an earthquake is felt or causes perceptible surface damage, then its intensity of shaking can be subjectively estimated. But many large earthquakes occur in oceanic areas or at great focal depths and are either simply not felt or their felt pattern does not really indicate their true size.

  20. Earthquakes-Rattling the Earth's Plumbing System

    Science.gov (United States)

    Sneed, Michelle; Galloway, Devin L.; Cunningham, William L.

    2003-01-01

    Hydrogeologic responses to earthquakes have been known for decades, and have occurred both close to, and thousands of miles from earthquake epicenters. Water wells have become turbid, dry or begun flowing, discharge of springs and ground water to streams has increased and new springs have formed, and well and surface-water quality have become degraded as a result of earthquakes. Earthquakes affect our Earth’s intricate plumbing system—whether you live near the notoriously active San Andreas Fault in California, or far from active faults in Florida, an earthquake near or far can affect you and the water resources you depend on.

  1. Real-time earthquake source imaging: An offline test for the 2011 Tohoku earthquake

    Science.gov (United States)

    Zhang, Yong; Wang, Rongjiang; Zschau, Jochen; Parolai, Stefano; Dahm, Torsten

    2014-05-01

    In recent decades, great efforts have been expended in real-time seismology aiming at earthquake and tsunami early warning. One of the most important issues is the real-time assessment of earthquake rupture processes using near-field seismogeodetic networks. Currently, earthquake early warning systems are mostly based on the rapid estimate of P-wave magnitude, which contains generally large uncertainties and the known saturation problem. In the case of the 2011 Mw9.0 Tohoku earthquake, JMA (Japan Meteorological Agency) released the first warning of the event with M7.2 after 25 s. The following updates of the magnitude even decreased to M6.3-6.6. Finally, the magnitude estimate stabilized at M8.1 after about two minutes. This led consequently to the underestimated tsunami heights. By using the newly developed Iterative Deconvolution and Stacking (IDS) method for automatic source imaging, we demonstrate an offline test for the real-time analysis of the strong-motion and GPS seismograms of the 2011 Tohoku earthquake. The results show that we had been theoretically able to image the complex rupture process of the 2011 Tohoku earthquake automatically soon after or even during the rupture process. In general, what had happened on the fault could be robustly imaged with a time delay of about 30 s by using either the strong-motion (KiK-net) or the GPS (GEONET) real-time data. This implies that the new real-time source imaging technique is helpful to reduce false and missing warnings, and therefore should play an important role in future tsunami early warning and earthquake rapid response systems.

  2. Earthquake forewarning in the Cascadia region

    Science.gov (United States)

    Gomberg, Joan S.; Atwater, Brian F.; Beeler, Nicholas M.; Bodin, Paul; Davis, Earl; Frankel, Arthur; Hayes, Gavin P.; McConnell, Laura; Melbourne, Tim; Oppenheimer, David H.; Parrish, John G.; Roeloffs, Evelyn A.; Rogers, Gary D.; Sherrod, Brian; Vidale, John; Walsh, Timothy J.; Weaver, Craig S.; Whitmore, Paul M.

    2015-08-10

    This report, prepared for the National Earthquake Prediction Evaluation Council (NEPEC), is intended as a step toward improving communications about earthquake hazards between information providers and users who coordinate emergency-response activities in the Cascadia region of the Pacific Northwest. NEPEC charged a subcommittee of scientists with writing this report about forewarnings of increased probabilities of a damaging earthquake. We begin by clarifying some terminology; a “prediction” refers to a deterministic statement that a particular future earthquake will or will not occur. In contrast to the 0- or 100-percent likelihood of a deterministic prediction, a “forecast” describes the probability of an earthquake occurring, which may range from >0 to processes or conditions, which may include Increased rates of M>4 earthquakes on the plate interface north of the Mendocino region 

  3. Links Between Earthquake Characteristics and Subducting Plate Heterogeneity in the 2016 Pedernales Ecuador Earthquake Rupture Zone

    Science.gov (United States)

    Bai, L.; Mori, J. J.

    2016-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  4. Radon observation for earthquake prediction

    Energy Technology Data Exchange (ETDEWEB)

    Wakita, Hiroshi [Tokyo Univ. (Japan)

    1998-12-31

    Systematic observation of groundwater radon for the purpose of earthquake prediction began in Japan in late 1973. Continuous observations are conducted at fixed stations using deep wells and springs. During the observation period, significant precursory changes including the 1978 Izu-Oshima-kinkai (M7.0) earthquake as well as numerous coseismic changes were observed. At the time of the 1995 Kobe (M7.2) earthquake, significant changes in chemical components, including radon dissolved in groundwater, were observed near the epicentral region. Precursory changes are presumably caused by permeability changes due to micro-fracturing in basement rock or migration of water from different sources during the preparation stage of earthquakes. Coseismic changes may be caused by seismic shaking and by changes in regional stress. Significant drops of radon concentration in groundwater have been observed after earthquakes at the KSM site. The occurrence of such drops appears to be time-dependent, and possibly reflects changes in the regional stress state of the observation area. The absence of radon drops seems to be correlated with periods of reduced regional seismic activity. Experience accumulated over the two past decades allows us to reach some conclusions: 1) changes in groundwater radon do occur prior to large earthquakes; 2) some sites are particularly sensitive to earthquake occurrence; and 3) the sensitivity changes over time. (author)

  5. Earthquake number forecasts testing

    Science.gov (United States)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  6. Imaging the deep structures of the convergent plates along the Ecuadorian subduction zone through receiver function analysis

    Science.gov (United States)

    Galve, A.; Charvis, P.; Regnier, M. M.; Font, Y.; Nocquet, J. M.; Segovia, M.

    2017-12-01

    The Ecuadorian subduction zone was affected by several large M>7.5 earthquakes. While we have low resolution on the 1942, 1958 earthquakes rupture zones extension, the 2016 Pedernales earthquake, that occurs at the same location than the 1942 earthquake, give strong constraints on the deep limit of the seismogenic zone. This downdip limit is caused by the onset of plasticity at a critical temperature (> 350-450 °C for crustal materials, or serpentinized mantle wedge, and eventually > 700 °C for dry mantle). However we still don't know exactly where is the upper plate Moho and therefore what controls the downdip limit of Ecuadorian large earthquakes seismogenic zone. For several years Géoazur and IG-EPN have maintained permanent and temporary networks (ADN and JUAN projects) along the margin to register the subduction zone seismological activity. Although Ecuador is not a good place to perform receiver function due to its position with respect to the worldwide teleseismic sources, the very long time deployment compensate this issue. We performed a frequency dependent receiver function analysis to derive (1) the thickness of the downgoing plate, (2) the interplate depth and (3) the upper plate Moho. These constraints give the frame to interpretation on the seismogenic zone of the 2016 Pedernales earthquake.

  7. 33 CFR 222.4 - Reporting earthquake effects.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Reporting earthquake effects. 222..., DEPARTMENT OF DEFENSE ENGINEERING AND DESIGN § 222.4 Reporting earthquake effects. (a) Purpose. This... significant earthquakes. It primarily concerns damage surveys following the occurrences of earthquakes. (b...

  8. Earthquakes - a danger to deep-lying repositories?

    International Nuclear Information System (INIS)

    2012-03-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at geological factors concerning earthquakes and the safety of deep-lying repositories for nuclear waste. The geological processes involved in the occurrence of earthquakes are briefly looked at and the definitions for magnitude and intensity of earthquakes are discussed. Examples of damage caused by earthquakes are given. The earthquake situation in Switzerland is looked at and the effects of earthquakes on sub-surface structures and deep-lying repositories are discussed. Finally, the ideas proposed for deep-lying geological repositories for nuclear wastes are discussed

  9. Earthquake data base for Romania

    International Nuclear Information System (INIS)

    Rizescu, M.; Ghica, D.; Grecu, B.; Popa, M.; Borcia, I. S.

    2002-01-01

    A new earthquake database for Romania is being constructed, comprising complete earthquake information and being up-to-date, user-friendly and rapidly accessible. One main component of the database consists from the catalog of earthquakes occurred in Romania since 984 up to present. The catalog contains information related to locations and other source parameters, when available, and links to waveforms of important earthquakes. The other very important component is the 'strong motion database', developed for strong intermediate-depth Vrancea earthquakes where instrumental data were recorded. Different parameters to characterize strong motion properties as: effective peak acceleration, effective peak velocity, corner periods T c and T d , global response spectrum based intensities were computed and recorded into this database. Also, information on the recording seismic stations as: maps giving their positioning, photographs of the instruments and site conditions ('free-field or on buildings) are included. By the huge volume and quality of gathered data, also by its friendly user interface, the Romania earthquake data base provides a very useful tool for geosciences and civil engineering in their effort towards reducing seismic risk in Romania. (authors)

  10. Mapping Tectonic Stress Using Earthquakes

    International Nuclear Information System (INIS)

    Arnold, Richard; Townend, John; Vignaux, Tony

    2005-01-01

    An earthquakes occurs when the forces acting on a fault overcome its intrinsic strength and cause it to slip abruptly. Understanding more specifically why earthquakes occur at particular locations and times is complicated because in many cases we do not know what these forces actually are, or indeed what processes ultimately trigger slip. The goal of this study is to develop, test, and implement a Bayesian method of reliably determining tectonic stresses using the most abundant stress gauges available - earthquakes themselves.Existing algorithms produce reasonable estimates of the principal stress directions, but yield unreliable error bounds as a consequence of the generally weak constraint on stress imposed by any single earthquake, observational errors, and an unavoidable ambiguity between the fault normal and the slip vector.A statistical treatment of the problem can take into account observational errors, combine data from multiple earthquakes in a consistent manner, and provide realistic error bounds on the estimated principal stress directions.We have developed a realistic physical framework for modelling multiple earthquakes and show how the strong physical and geometrical constraints present in this problem allow inference to be made about the orientation of the principal axes of stress in the earth's crust

  11. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  12. Earthquake cycles and physical modeling of the process leading up to a large earthquake

    Science.gov (United States)

    Ohnaka, Mitiyasu

    2004-08-01

    A thorough discussion is made on what the rational constitutive law for earthquake ruptures ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid facts observed in the laboratory. From this standpoint, it is concluded that the constitutive law should be a slip-dependent law with parameters that may depend on slip rate or time. With the long-term goal of establishing a rational methodology of forecasting large earthquakes, the entire process of one cycle for a typical, large earthquake is modeled, and a comprehensive scenario that unifies individual models for intermediate-and short-term (immediate) forecasts is presented within the framework based on the slip-dependent constitutive law and the earthquake cycle model. The earthquake cycle includes the phase of accumulation of elastic strain energy with tectonic loading (phase II), and the phase of rupture nucleation at the critical stage where an adequate amount of the elastic strain energy has been stored (phase III). Phase II plays a critical role in physical modeling of intermediate-term forecasting, and phase III in physical modeling of short-term (immediate) forecasting. The seismogenic layer and individual faults therein are inhomogeneous, and some of the physical quantities inherent in earthquake ruptures exhibit scale-dependence. It is therefore critically important to incorporate the properties of inhomogeneity and physical scaling, in order to construct realistic, unified scenarios with predictive capability. The scenario presented may be significant and useful as a necessary first step for establishing the methodology for forecasting large earthquakes.

  13. The USGS Earthquake Notification Service (ENS): Customizable notifications of earthquakes around the globe

    Science.gov (United States)

    Wald, Lisa A.; Wald, David J.; Schwarz, Stan; Presgrave, Bruce; Earle, Paul S.; Martinez, Eric; Oppenheimer, David

    2008-01-01

    At the beginning of 2006, the U.S. Geological Survey (USGS) Earthquake Hazards Program (EHP) introduced a new automated Earthquake Notification Service (ENS) to take the place of the National Earthquake Information Center (NEIC) "Bigquake" system and the various other individual EHP e-mail list-servers for separate regions in the United States. These included northern California, southern California, and the central and eastern United States. ENS is a "one-stop shopping" system that allows Internet users to subscribe to flexible and customizable notifications for earthquakes anywhere in the world. The customization capability allows users to define the what (magnitude threshold), the when (day and night thresholds), and the where (specific regions) for their notifications. Customization is achieved by employing a per-user based request profile, allowing the notifications to be tailored for each individual's requirements. Such earthquake-parameter-specific custom delivery was not possible with simple e-mail list-servers. Now that event and user profiles are in a structured query language (SQL) database, additional flexibility is possible. At the time of this writing, ENS had more than 114,000 subscribers, with more than 200,000 separate user profiles. On a typical day, more than 188,000 messages get sent to a variety of widely distributed users for a wide range of earthquake locations and magnitudes. The purpose of this article is to describe how ENS works, highlight the features it offers, and summarize plans for future developments.

  14. Stigma in science: the case of earthquake prediction.

    Science.gov (United States)

    Joffe, Helene; Rossetto, Tiziana; Bradley, Caroline; O'Connor, Cliodhna

    2018-01-01

    This paper explores how earthquake scientists conceptualise earthquake prediction, particularly given the conviction of six earthquake scientists for manslaughter (subsequently overturned) on 22 October 2012 for having given inappropriate advice to the public prior to the L'Aquila earthquake of 6 April 2009. In the first study of its kind, semi-structured interviews were conducted with 17 earthquake scientists and the transcribed interviews were analysed thematically. The scientists primarily denigrated earthquake prediction, showing strong emotive responses and distancing themselves from earthquake 'prediction' in favour of 'forecasting'. Earthquake prediction was regarded as impossible and harmful. The stigmatisation of the subject is discussed in the light of research on boundary work and stigma in science. The evaluation reveals how mitigation becomes the more favoured endeavour, creating a normative environment that disadvantages those who continue to pursue earthquake prediction research. Recommendations are made for communication with the public on earthquake risk, with a focus on how scientists portray uncertainty. © 2018 The Author(s). Disasters © Overseas Development Institute, 2018.

  15. Impact of the Christchurch earthquakes on hospital staff.

    Science.gov (United States)

    Tovaranonte, Pleayo; Cawood, Tom J

    2013-06-01

    On September 4, 2010 a major earthquake caused widespread damage, but no loss of life, to Christchurch city and surrounding areas. There were numerous aftershocks, including on February 22, 2011 which, in contrast, caused substantial loss of life and major damage to the city. The research aim was to assess how these two earthquakes affected the staff in the General Medicine Department at Christchurch Hospital. Problem To date there have been no published data assessing the impact of this type of natural disaster on hospital staff in Australasia. A questionnaire that examined seven domains (demographics, personal impact, psychological impact, emotional impact, impact on care for patients, work impact, and coping strategies) was handed out to General Medicine staff and students nine days after the September 2010 earthquake and 14 days after the February 2011 earthquake. Response rates were ≥ 99%. Sixty percent of responders were earthquakes, respectively. A fifth to a third of people had to find an alternative route of transport to get to work but only eight percent to 18% took time off work. Financial impact was more severe following the February earthquake, with 46% reporting damage of >NZ $1,000, compared with 15% following the September earthquake (P earthquake than the September earthquake (42% vs 69%, P earthquake but this rose to 53% after the February earthquake (12/53 vs 45/85, P earthquake but this dropped significantly to 15% following the February earthquake (27/53 vs 13/62, P earthquakes upon General Medicine hospital staff. The effect was widespread with minor financial impact during the first but much more during the second earthquake. Moderate psychological impact was experienced in both earthquakes. This data may be useful to help prepare plans for future natural disasters. .

  16. Physics of Earthquake Rupture Propagation

    Science.gov (United States)

    Xu, Shiqing; Fukuyama, Eiichi; Sagy, Amir; Doan, Mai-Linh

    2018-05-01

    A comprehensive understanding of earthquake rupture propagation requires the study of not only the sudden release of elastic strain energy during co-seismic slip, but also of other processes that operate at a variety of spatiotemporal scales. For example, the accumulation of the elastic strain energy usually takes decades to hundreds of years, and rupture propagation and termination modify the bulk properties of the surrounding medium that can influence the behavior of future earthquakes. To share recent findings in the multiscale investigation of earthquake rupture propagation, we held a session entitled "Physics of Earthquake Rupture Propagation" during the 2016 American Geophysical Union (AGU) Fall Meeting in San Francisco. The session included 46 poster and 32 oral presentations, reporting observations of natural earthquakes, numerical and experimental simulations of earthquake ruptures, and studies of earthquake fault friction. These presentations and discussions during and after the session suggested a need to document more formally the research findings, particularly new observations and views different from conventional ones, complexities in fault zone properties and loading conditions, the diversity of fault slip modes and their interactions, the evaluation of observational and model uncertainties, and comparison between empirical and physics-based models. Therefore, we organize this Special Issue (SI) of Tectonophysics under the same title as our AGU session, hoping to inspire future investigations. Eighteen articles (marked with "this issue") are included in this SI and grouped into the following six categories.

  17. Real Time Earthquake Information System in Japan

    Science.gov (United States)

    Doi, K.; Kato, T.

    2003-12-01

    An early earthquake notification system in Japan had been developed by the Japan Meteorological Agency (JMA) as a governmental organization responsible for issuing earthquake information and tsunami forecasts. The system was primarily developed for prompt provision of a tsunami forecast to the public with locating an earthquake and estimating its magnitude as quickly as possible. Years after, a system for a prompt provision of seismic intensity information as indices of degrees of disasters caused by strong ground motion was also developed so that concerned governmental organizations can decide whether it was necessary for them to launch emergency response or not. At present, JMA issues the following kinds of information successively when a large earthquake occurs. 1) Prompt report of occurrence of a large earthquake and major seismic intensities caused by the earthquake in about two minutes after the earthquake occurrence. 2) Tsunami forecast in around three minutes. 3) Information on expected arrival times and maximum heights of tsunami waves in around five minutes. 4) Information on a hypocenter and a magnitude of the earthquake, the seismic intensity at each observation station, the times of high tides in addition to the expected tsunami arrival times in 5-7 minutes. To issue information above, JMA has established; - An advanced nationwide seismic network with about 180 stations for seismic wave observation and about 3,400 stations for instrumental seismic intensity observation including about 2,800 seismic intensity stations maintained by local governments, - Data telemetry networks via landlines and partly via a satellite communication link, - Real-time data processing techniques, for example, the automatic calculation of earthquake location and magnitude, the database driven method for quantitative tsunami estimation, and - Dissemination networks, via computer-to-computer communications and facsimile through dedicated telephone lines. JMA operationally

  18. Earthquake precursory events around epicenters and local active faults; the cases of two inland earthquakes in Iran

    Science.gov (United States)

    Valizadeh Alvan, H.; Mansor, S.; Haydari Azad, F.

    2012-12-01

    The possibility of earthquake prediction in the frame of several days to few minutes before its occurrence has stirred interest among researchers, recently. Scientists believe that the new theories and explanations of the mechanism of this natural phenomenon are trustable and can be the basis of future prediction efforts. During the last thirty years experimental researches resulted in some pre-earthquake events which are now recognized as confirmed warning signs (precursors) of past known earthquakes. With the advances in in-situ measurement devices and data analysis capabilities and the emergence of satellite-based data collectors, monitoring the earth's surface is now a regular work. Data providers are supplying researchers from all over the world with high quality and validated imagery and non-imagery data. Surface Latent Heat Flux (SLHF) or the amount of energy exchange in the form of water vapor between the earth's surface and atmosphere has been frequently reported as an earthquake precursor during the past years. The accumulated stress in the earth's crust during the preparation phase of earthquakes is said to be the main cause of temperature anomalies weeks to days before the main event and subsequent shakes. Chemical and physical interactions in the presence of underground water lead to higher water evaporation prior to inland earthquakes. On the other hand, the leak of Radon gas occurred as rocks break during earthquake preparation causes the formation of airborne ions and higher Air Temperature (AT) prior to main event. Although co-analysis of direct and indirect observation for precursory events is considered as a promising method for future successful earthquake prediction, without proper and thorough knowledge about the geological setting, atmospheric factors and geodynamics of the earthquake-prone regions we will not be able to identify anomalies due to seismic activity in the earth's crust. Active faulting is a key factor in identification of the

  19. Texas-Mexico multimodal transportation: developments in Mexico

    Science.gov (United States)

    Boske, Leigh B.

    1994-03-01

    This presentation highlights the results of a recently completed study that examines the Texas- Mexico multimodal transport system already in place, current plans for improvements or expansion, and opportunities and constraints faced by each transport mode -- motor carriage, rail, maritime, and air. Particular emphasis is given to findings regarding transportation developments in Mexico. The study concludes that in Mexico, all modes are working at establishing new services and strategic alliances, intermodal arrangements are on the rise, and private-sector participation in infrastructure improvements is growing daily at Mexican seaports and airports as well as within that nation's highway and rail systems. This presentation looks at developments that concern privatization, deregulation, infrastructure improvements, financing arrangements, and new services in Mexico.

  20. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  1. Earthquake Hazard Analysis Methods: A Review

    Science.gov (United States)

    Sari, A. M.; Fakhrurrozi, A.

    2018-02-01

    One of natural disasters that have significantly impacted on risks and damage is an earthquake. World countries such as China, Japan, and Indonesia are countries located on the active movement of continental plates with more frequent earthquake occurrence compared to other countries. Several methods of earthquake hazard analysis have been done, for example by analyzing seismic zone and earthquake hazard micro-zonation, by using Neo-Deterministic Seismic Hazard Analysis (N-DSHA) method, and by using Remote Sensing. In its application, it is necessary to review the effectiveness of each technique in advance. Considering the efficiency of time and the accuracy of data, remote sensing is used as a reference to the assess earthquake hazard accurately and quickly as it only takes a limited time required in the right decision-making shortly after the disaster. Exposed areas and possibly vulnerable areas due to earthquake hazards can be easily analyzed using remote sensing. Technological developments in remote sensing such as GeoEye-1 provide added value and excellence in the use of remote sensing as one of the methods in the assessment of earthquake risk and damage. Furthermore, the use of this technique is expected to be considered in designing policies for disaster management in particular and can reduce the risk of natural disasters such as earthquakes in Indonesia.

  2. Earthquake Drill using the Earthquake Early Warning System at an Elementary School

    Science.gov (United States)

    Oki, Satoko; Yazaki, Yoshiaki; Koketsu, Kazuki

    2010-05-01

    Japan frequently suffers from many kinds of disasters such as earthquakes, typhoons, floods, volcanic eruptions, and landslides. On average, we lose about 120 people a year due to natural hazards in this decade. Above all, earthquakes are noteworthy, since it may kill thousands of people in a moment like in Kobe in 1995. People know that we may have "a big one" some day as long as we live on this land and that what to do; retrofit houses, appliance heavy furniture to walls, add latches to kitchen cabinets, and prepare emergency packs. Yet most of them do not take the action, and result in the loss of many lives. It is only the victims that learn something from the earthquake, and it has never become the lore of the nations. One of the most essential ways to reduce the damage is to educate the general public to be able to make the sound decision on what to do at the moment when an earthquake hits. This will require the knowledge of the backgrounds of the on-going phenomenon. The Ministry of Education, Culture, Sports, Science and Technology (MEXT), therefore, offered for public subscription to choose several model areas to adopt scientific education to the local elementary schools. This presentation is the report of a year and half courses that we had at the model elementary school in Tokyo Metropolitan Area. The tectonic setting of this area is very complicated; there are the Pacific and Philippine Sea plates subducting beneath the North America and the Eurasia plates. The subduction of the Philippine Sea plate causes mega-thrust earthquakes such as the 1923 Kanto earthquake (M 7.9) making 105,000 fatalities. A magnitude 7 or greater earthquake beneath this area is recently evaluated to occur with a probability of 70 % in 30 years. This is of immediate concern for the devastating loss of life and property because the Tokyo urban region now has a population of 42 million and is the center of approximately 40 % of the nation's activities, which may cause great global

  3. Book review: Earthquakes and water

    Science.gov (United States)

    Bekins, Barbara A.

    2012-01-01

    It is really nice to see assembled in one place a discussion of the documented and hypothesized hydrologic effects of earthquakes. The book is divided into chapters focusing on particular hydrologic phenomena including liquefaction, mud volcanism, stream discharge increases, groundwater level, temperature and chemical changes, and geyser period changes. These hydrologic effects are inherently fascinating, and the large number of relevant publications in the past decade makes this summary a useful milepost. The book also covers hydrologic precursors and earthquake triggering by pore pressure. A natural need to limit the topics covered resulted in the omission of tsunamis and the vast literature on the role of fluids and pore pressure in frictional strength of faults. Regardless of whether research on earthquake-triggered hydrologic effects ultimately provides insight into the physics of earthquakes, the text provides welcome common ground for interdisciplinary collaborations between hydrologists and seismologists. Such collaborations continue to be crucial for investigating hypotheses about the role of fluids in earthquakes and slow slip. 

  4. Earthquake resistant design of structures

    International Nuclear Information System (INIS)

    Choi, Chang Geun; Kim, Gyu Seok; Lee, Dong Geun

    1990-02-01

    This book tells of occurrence of earthquake and damage analysis of earthquake, equivalent static analysis method, application of equivalent static analysis method, dynamic analysis method like time history analysis by mode superposition method and direct integration method, design spectrum analysis considering an earthquake-resistant design in Korea. Such as analysis model and vibration mode, calculation of base shear, calculation of story seismic load and combine of analysis results.

  5. Exploring Earthquakes in Real-Time

    Science.gov (United States)

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.

    2013-12-01

    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  6. Spatial Evaluation and Verification of Earthquake Simulators

    Science.gov (United States)

    Wilson, John Max; Yoder, Mark R.; Rundle, John B.; Turcotte, Donald L.; Schultz, Kasey W.

    2017-06-01

    In this paper, we address the problem of verifying earthquake simulators with observed data. Earthquake simulators are a class of computational simulations which attempt to mirror the topological complexity of fault systems on which earthquakes occur. In addition, the physics of friction and elastic interactions between fault elements are included in these simulations. Simulation parameters are adjusted so that natural earthquake sequences are matched in their scaling properties. Physically based earthquake simulators can generate many thousands of years of simulated seismicity, allowing for a robust capture of the statistical properties of large, damaging earthquakes that have long recurrence time scales. Verification of simulations against current observed earthquake seismicity is necessary, and following past simulator and forecast model verification methods, we approach the challenges in spatial forecast verification to simulators; namely, that simulator outputs are confined to the modeled faults, while observed earthquake epicenters often occur off of known faults. We present two methods for addressing this discrepancy: a simplistic approach whereby observed earthquakes are shifted to the nearest fault element and a smoothing method based on the power laws of the epidemic-type aftershock (ETAS) model, which distributes the seismicity of each simulated earthquake over the entire test region at a decaying rate with epicentral distance. To test these methods, a receiver operating characteristic plot was produced by comparing the rate maps to observed m>6.0 earthquakes in California since 1980. We found that the nearest-neighbor mapping produced poor forecasts, while the ETAS power-law method produced rate maps that agreed reasonably well with observations.

  7. Parallel Earthquake Simulations on Large-Scale Multicore Supercomputers

    KAUST Repository

    Wu, Xingfu

    2011-01-01

    Earthquakes are one of the most destructive natural hazards on our planet Earth. Hugh earthquakes striking offshore may cause devastating tsunamis, as evidenced by the 11 March 2011 Japan (moment magnitude Mw9.0) and the 26 December 2004 Sumatra (Mw9.1) earthquakes. Earthquake prediction (in terms of the precise time, place, and magnitude of a coming earthquake) is arguably unfeasible in the foreseeable future. To mitigate seismic hazards from future earthquakes in earthquake-prone areas, such as California and Japan, scientists have been using numerical simulations to study earthquake rupture propagation along faults and seismic wave propagation in the surrounding media on ever-advancing modern computers over past several decades. In particular, ground motion simulations for past and future (possible) significant earthquakes have been performed to understand factors that affect ground shaking in populated areas, and to provide ground shaking characteristics and synthetic seismograms for emergency preparation and design of earthquake-resistant structures. These simulation results can guide the development of more rational seismic provisions for leading to safer, more efficient, and economical50pt]Please provide V. Taylor author e-mail ID. structures in earthquake-prone regions.

  8. Children's emotional experience two years after an earthquake: An exploration of knowledge of earthquakes and associated emotions.

    Science.gov (United States)

    Raccanello, Daniela; Burro, Roberto; Hall, Rob

    2017-01-01

    We explored whether and how the exposure to a natural disaster such as the 2012 Emilia Romagna earthquake affected the development of children's emotional competence in terms of understanding, regulating, and expressing emotions, after two years, when compared with a control group not exposed to the earthquake. We also examined the role of class level and gender. The sample included two groups of children (n = 127) attending primary school: The experimental group (n = 65) experienced the 2012 Emilia Romagna earthquake, while the control group (n = 62) did not. The data collection took place two years after the earthquake, when children were seven or ten-year-olds. Beyond assessing the children's understanding of emotions and regulating abilities with standardized instruments, we employed semi-structured interviews to explore their knowledge of earthquakes and associated emotions, and a structured task on the intensity of some target emotions. We applied Generalized Linear Mixed Models. Exposure to the earthquake did not influence the understanding and regulation of emotions. The understanding of emotions varied according to class level and gender. Knowledge of earthquakes, emotional language, and emotions associated with earthquakes were, respectively, more complex, frequent, and intense for children who had experienced the earthquake, and at increasing ages. Our data extend the generalizability of theoretical models on children's psychological functioning following disasters, such as the dose-response model and the organizational-developmental model for child resilience, and provide further knowledge on children's emotional resources related to natural disasters, as a basis for planning educational prevention programs.

  9. 13 CFR 120.174 - Earthquake hazards.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Earthquake hazards. 120.174... Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.174 Earthquake..., the construction must conform with the “National Earthquake Hazards Reduction Program (“NEHRP...

  10. Chapter two: Phenomenology of tsunamis II: scaling, event statistics, and inter-event triggering

    Science.gov (United States)

    Geist, Eric L.

    2012-01-01

    Observations related to tsunami catalogs are reviewed and described in a phenomenological framework. An examination of scaling relationships between earthquake size (as expressed by scalar seismic moment and mean slip) and tsunami size (as expressed by mean and maximum local run-up and maximum far-field amplitude) indicates that scaling is significant at the 95% confidence level, although there is uncertainty in how well earthquake size can predict tsunami size (R2 ~ 0.4-0.6). In examining tsunami event statistics, current methods used to estimate the size distribution of earthquakes and landslides and the inter-event time distribution of earthquakes are first reviewed. These methods are adapted to estimate the size and inter-event distribution of tsunamis at a particular recording station. Using a modified Pareto size distribution, the best-fit power-law exponents of tsunamis recorded at nine Pacific tide-gauge stations exhibit marked variation, in contrast to the approximately constant power-law exponent for inter-plate thrust earthquakes. With regard to the inter-event time distribution, significant temporal clustering of tsunami sources is demonstrated. For tsunami sources occurring in close proximity to other sources in both space and time, a physical triggering mechanism, such as static stress transfer, is a likely cause for the anomalous clustering. Mechanisms of earthquake-to-earthquake and earthquake-to-landslide triggering are reviewed. Finally, a modification of statistical branching models developed for earthquake triggering is introduced to describe triggering among tsunami sources.

  11. Earthquake magnitude estimation using the τ c and P d method for earthquake early warning systems

    Science.gov (United States)

    Jin, Xing; Zhang, Hongcai; Li, Jun; Wei, Yongxiang; Ma, Qiang

    2013-10-01

    Earthquake early warning (EEW) systems are one of the most effective ways to reduce earthquake disaster. Earthquake magnitude estimation is one of the most important and also the most difficult parts of the entire EEW system. In this paper, based on 142 earthquake events and 253 seismic records that were recorded by the KiK-net in Japan, and aftershocks of the large Wenchuan earthquake in Sichuan, we obtained earthquake magnitude estimation relationships using the τ c and P d methods. The standard variances of magnitude calculation of these two formulas are ±0.65 and ±0.56, respectively. The P d value can also be used to estimate the peak ground motion of velocity, then warning information can be released to the public rapidly, according to the estimation results. In order to insure the stability and reliability of magnitude estimation results, we propose a compatibility test according to the natures of these two parameters. The reliability of the early warning information is significantly improved though this test.

  12. Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions

    Science.gov (United States)

    Atkinson, G.M.; Boore, D.M.

    2003-01-01

    Ground-motion relations for earthquakes that occur in subduction zones are an important input to seismic-hazard analyses in many parts of the world. In the Cascadia region (Washington, Oregon, northern California, and British Columbia), for example, there is a significant hazard from megathrust earthquakes along the subduction interface and from large events within the subducting slab. These hazards are in addition to the hazard from shallow earthquakes in the overlying crust. We have compiled a response spectra database from thousands of strong-motion recordings from events of moment magnitude (M) 5-8.3 occurring in subduction zones around the world, including both interface and in-slab events. The 2001 M 6.8 Nisqually and 1999 M 5.9 Satsop earthquakes are included in the database, as are many records from subduction zones in Japan (Kyoshin-Net data), Mexico (Guerrero data), and Central America. The size of the database is four times larger than that available for previous empirical regressions to determine ground-motion relations for subduction-zone earthquakes. The large dataset enables improved determination of attenuation parameters and magnitude scaling, for both interface and in-slab events. Soil response parameters are also better determined by the data. We use the database to develop global ground-motion relations for interface and in-slab earthquakes, using a maximum likelihood regression method. We analyze regional variability of ground-motion amplitudes across the global database and find that there are significant regional differences. In particular, amplitudes in Cascadia differ by more than a factor of 2 from those in Japan for the same magnitude, distance, event type, and National Earthquake Hazards Reduction Program (NEHRP) soil class. This is believed to be due to regional differences in the depth of the soil profile, which are not captured by the NEHRP site classification scheme. Regional correction factors to account for these differences are

  13. Earthquake evaluation of a substation network

    International Nuclear Information System (INIS)

    Matsuda, E.N.; Savage, W.U.; Williams, K.K.; Laguens, G.C.

    1991-01-01

    The impact of the occurrence of a large, damaging earthquake on a regional electric power system is a function of the geographical distribution of strong shaking, the vulnerability of various types of electric equipment located within the affected region, and operational resources available to maintain or restore electric system functionality. Experience from numerous worldwide earthquake occurrences has shown that seismic damage to high-voltage substation equipment is typically the reason for post-earthquake loss of electric service. In this paper, the authors develop and apply a methodology to analyze earthquake impacts on Pacific Gas and Electric Company's (PG and E's) high-voltage electric substation network in central and northern California. The authors' objectives are to identify and prioritize ways to reduce the potential impact of future earthquakes on our electric system, refine PG and E's earthquake preparedness and response plans to be more realistic, and optimize seismic criteria for future equipment purchases for the electric system

  14. Geothermal Gradient impact on Induced Seismicity in Raton Basin, Colorado and New Mexico

    Science.gov (United States)

    Pfeiffer, K.; Ge, S.

    2017-12-01

    Since 1999, Raton Basin, located in southeastern Colorado and northern New Mexico, is the site of wastewater injection for disposing a byproduct of coal bed methane production. During 1999-2016, 29 wastewater injection wells were active in Raton Basin. Induced seismicity began in 2001 and the largest recorded earthquake, an M5.3, occurred in August 2011. Although most injection occurs in the Dakota Formation, the majority of the seismicity has been located in the crystalline basement. Previous studies involving Raton Basin focused on high injection rates and high volume wells to determine their effect on increased pore pressure. However, the geothermal gradient has yet to be studied as a potential catalyst of seismicity. Enhanced Geothermal Systems throughout the world have experienced similar seismicity problems due to water injection. Raton's geothermal gradient, which averages 49± 12°C/km, is much higher then other areas experiencing seismicity. Thermal differences between the hot subsurface and cooler wastewater injection have the potential to affect the strength of the rock and allow for failure. Therefore, we hypothesis that wells in high geothermal gradient areas will produce more frequent earthquakes due to thermal contrast from relatively cold wastewater injection. We model the geothermal gradient in the surrounding areas of the injection sites in Raton Basin to assess potential spatial relationship between high geothermal gradient and earthquakes. Preliminary results show that the fluid pressure increase from injecting cool water is above the threshold of 0.1MPa, which has been shown to induce earthquakes. In addition, temperatures in the subsurface could decrease up to 2°C at approximately 80 m from the injection well, with a temperature effect reaching up to 100 m away from the injection well.

  15. Update earthquake risk assessment in Cairo, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2017-07-01

    The Cairo earthquake (12 October 1992; m b = 5.8) is still and after 25 years one of the most painful events and is dug into the Egyptians memory. This is not due to the strength of the earthquake but due to the accompanied losses and damages (561 dead; 10,000 injured and 3000 families lost their homes). Nowadays, the most frequent and important question that should rise is "what if this earthquake is repeated today." In this study, we simulate the same size earthquake (12 October 1992) ground motion shaking and the consequent social-economic impacts in terms of losses and damages. Seismic hazard, earthquake catalogs, soil types, demographics, and building inventories were integrated into HAZUS-MH to produce a sound earthquake risk assessment for Cairo including economic and social losses. Generally, the earthquake risk assessment clearly indicates that "the losses and damages may be increased twice or three times" in Cairo compared to the 1992 earthquake. The earthquake risk profile reveals that five districts (Al-Sahel, El Basateen, Dar El-Salam, Gharb, and Madinat Nasr sharq) lie in high seismic risks, and three districts (Manshiyat Naser, El-Waily, and Wassat (center)) are in low seismic risk level. Moreover, the building damage estimations reflect that Gharb is the highest vulnerable district. The analysis shows that the Cairo urban area faces high risk. Deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated buildings damages are concentrated within the most densely populated (El Basateen, Dar El-Salam, Gharb, and Madinat Nasr Gharb) districts. Moreover, about 75 % of casualties are in the same districts. Actually, an earthquake risk assessment for Cairo represents a crucial application of the HAZUS earthquake loss estimation model for risk management. Finally, for mitigation, risk reduction, and to improve the seismic performance of structures and assure life safety

  16. Swedish earthquakes and acceleration probabilities

    International Nuclear Information System (INIS)

    Slunga, R.

    1979-03-01

    A method to assign probabilities to ground accelerations for Swedish sites is described. As hardly any nearfield instrumental data is available we are left with the problem of interpreting macroseismic data in terms of acceleration. By theoretical wave propagation computations the relation between seismic strength of the earthquake, focal depth, distance and ground accelerations are calculated. We found that most Swedish earthquake of the area, the 1904 earthquake 100 km south of Oslo, is an exception and probably had a focal depth exceeding 25 km. For the nuclear power plant sites an annual probability of 10 -5 has been proposed as interesting. This probability gives ground accelerations in the range 5-20 % for the sites. This acceleration is for a free bedrock site. For consistency all acceleration results in this study are given for bedrock sites. When applicating our model to the 1904 earthquake and assuming the focal zone to be in the lower crust we get the epicentral acceleration of this earthquake to be 5-15 % g. The results above are based on an analyses of macrosismic data as relevant instrumental data is lacking. However, the macroseismic acceleration model deduced in this study gives epicentral ground acceleration of small Swedish earthquakes in agreement with existent distant instrumental data. (author)

  17. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Hustrulid, W.A.; Stephenson, D.E.

    1978-11-01

    The potential seismic risk for an underground nuclear waste repository will be one of the considerations in evaluating its ultimate location. However, the risk to subsurface facilities cannot be judged by applying intensity ratings derived from the surface effects of an earthquake. A literature review and analysis were performed to document the damage and non-damage due to earthquakes to underground facilities. Damage from earthquakes to tunnels, s, and wells and damage (rock bursts) from mining operations were investigated. Damage from documented nuclear events was also included in the study where applicable. There are very few data on damage in the subsurface due to earthquakes. This fact itself attests to the lessened effect of earthquakes in the subsurface because mines exist in areas where strong earthquakes have done extensive surface damage. More damage is reported in shallow tunnels near the surface than in deep mines. In mines and tunnels, large displacements occur primarily along pre-existing faults and fractures or at the surface entrance to these facilities.Data indicate vertical structures such as wells and shafts are less susceptible to damage than surface facilities. More analysis is required before seismic criteria can be formulated for the siting of a nuclear waste repository

  18. Thermal infrared anomalies of several strong earthquakes.

    Science.gov (United States)

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  19. Earthquake Warning Performance in Vallejo for the South Napa Earthquake

    Science.gov (United States)

    Wurman, G.; Price, M.

    2014-12-01

    In 2002 and 2003, Seismic Warning Systems, Inc. installed first-generation QuakeGuardTM earthquake warning devices at all eight fire stations in Vallejo, CA. These devices are designed to detect the P-wave of an earthquake and initiate predetermined protective actions if the impending shaking is estimated at approximately Modifed Mercalli Intensity V or greater. At the Vallejo fire stations the devices were set up to sound an audio alert over the public address system and to command the equipment bay doors to open. In August 2014, after more than 11 years of operating in the fire stations with no false alarms, the five units that were still in use triggered correctly on the MW 6.0 South Napa earthquake, less than 16 km away. The audio alert sounded in all five stations, providing fire fighters with 1.5 to 2.5 seconds of warning before the arrival of the S-wave, and the equipment bay doors opened in three of the stations. In one station the doors were disconnected from the QuakeGuard device, and another station lost power before the doors opened completely. These problems highlight just a small portion of the complexity associated with realizing actionable earthquake warnings. The issues experienced in this earthquake have already been addressed in subsequent QuakeGuard product generations, with downstream connection monitoring and backup power for critical systems. The fact that the fire fighters in Vallejo were afforded even two seconds of warning at these epicentral distances results from the design of the QuakeGuard devices, which focuses on rapid false positive rejection and ground motion estimates. We discuss the performance of the ground motion estimation algorithms, with an emphasis on the accuracy and timeliness of the estimates at close epicentral distances.

  20. Automatic Earthquake Detection by Active Learning

    Science.gov (United States)

    Bergen, K.; Beroza, G. C.

    2017-12-01

    In recent years, advances in machine learning have transformed fields such as image recognition, natural language processing and recommender systems. Many of these performance gains have relied on the availability of large, labeled data sets to train high-accuracy models; labeled data sets are those for which each sample includes a target class label, such as waveforms tagged as either earthquakes or noise. Earthquake seismologists are increasingly leveraging machine learning and data mining techniques to detect and analyze weak earthquake signals in large seismic data sets. One of the challenges in applying machine learning to seismic data sets is the limited labeled data problem; learning algorithms need to be given examples of earthquake waveforms, but the number of known events, taken from earthquake catalogs, may be insufficient to build an accurate detector. Furthermore, earthquake catalogs are known to be incomplete, resulting in training data that may be biased towards larger events and contain inaccurate labels. This challenge is compounded by the class imbalance problem; the events of interest, earthquakes, are infrequent relative to noise in continuous data sets, and many learning algorithms perform poorly on rare classes. In this work, we investigate the use of active learning for automatic earthquake detection. Active learning is a type of semi-supervised machine learning that uses a human-in-the-loop approach to strategically supplement a small initial training set. The learning algorithm incorporates domain expertise through interaction between a human expert and the algorithm, with the algorithm actively posing queries to the user to improve detection performance. We demonstrate the potential of active machine learning to improve earthquake detection performance with limited available training data.

  1. Indoor radon and earthquake

    International Nuclear Information System (INIS)

    Saghatelyan, E.; Petrosyan, L.; Aghbalyan, Yu.; Baburyan, M.; Araratyan, L.

    2004-01-01

    For the first time on the basis of the Spitak earthquake of December 1988 (Armenia, December 1988) experience it is found out that the earthquake causes intensive and prolonged radon splashes which, rapidly dispersing in the open space of close-to-earth atmosphere, are contrastingly displayed in covered premises (dwellings, schools, kindergartens) even if they are at considerable distance from the earthquake epicenter, and this multiplies the radiation influence on the population. The interval of splashes includes the period from the first fore-shock to the last after-shock, i.e. several months. The area affected by radiation is larger vs. Armenia's territory. The scale of this impact on population is 12 times higher than the number of people injured in Spitak, Leninakan and other settlements (toll of injured - 25 000 people, radiation-induced diseases in people - over 300 000). The influence of radiation directly correlates with the earthquake force. Such a conclusion is underpinned by indoor radon monitoring data for Yerevan since 1987 (120 km from epicenter) 5450 measurements and multivariate analysis with identification of cause-and-effect linkages between geo dynamics of indoor radon under stable and conditions of Earth crust, behavior of radon in different geological mediums during earthquakes, levels of room radon concentrations and effective equivalent dose of radiation impact of radiation dose on health and statistical data on public health provided by the Ministry of Health. The following hitherto unexplained facts can be considered as consequences of prolonged radiation influence on human organism: long-lasting state of apathy and indifference typical of the population of Armenia during the period of more than a year after the earthquake, prevalence of malignant cancer forms in disaster zones, dominating lung cancer and so on. All urban territories of seismically active regions are exposed to the threat of natural earthquake-provoked radiation influence

  2. Modified-Fibonacci-Dual-Lucas method for earthquake prediction

    Science.gov (United States)

    Boucouvalas, A. C.; Gkasios, M.; Tselikas, N. T.; Drakatos, G.

    2015-06-01

    The FDL method makes use of Fibonacci, Dual and Lucas numbers and has shown considerable success in predicting earthquake events locally as well as globally. Predicting the location of the epicenter of an earthquake is one difficult challenge the other being the timing and magnitude. One technique for predicting the onset of earthquakes is the use of cycles, and the discovery of periodicity. Part of this category is the reported FDL method. The basis of the reported FDL method is the creation of FDL future dates based on the onset date of significant earthquakes. The assumption being that each occurred earthquake discontinuity can be thought of as a generating source of FDL time series The connection between past earthquakes and future earthquakes based on FDL numbers has also been reported with sample earthquakes since 1900. Using clustering methods it has been shown that significant earthquakes (conjunct Sun, Moon opposite Sun, Moon conjunct or opposite North or South Modes. In order to test improvement of the method we used all +8R earthquakes recorded since 1900, (86 earthquakes from USGS data). We have developed the FDL numbers for each of those seeds, and examined the earthquake hit rates (for a window of 3, i.e. +-1 day of target date) and for <6.5R. The successes are counted for each one of the 86 earthquake seeds and we compare the MFDL method with the FDL method. In every case we find improvement when the starting seed date is on the planetary trigger date prior to the earthquake. We observe no improvement only when a planetary trigger coincided with the earthquake date and in this case the FDL method coincides with the MFDL. Based on the MDFL method we present the prediction method capable of predicting global events or localized earthquakes and we will discuss the accuracy of the method in as far as the prediction and location parts of the method. We show example calendar style predictions for global events as well as for the Greek region using

  3. Radiological surveillance in Mexico, derived of the accident of the Fukushima Daiichi nuclear power plant; Vigilancia radiologica en Mexico, derivado del accidente en la central nuclear de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre G, J.; Nohpal J, X., E-mail: jaguirre@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Departamento de Vigilancia Radiologica, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2012-10-15

    March 11, 2011 an earthquake of 9.0 grades in the Richter scale, originated in the coast of Tohoku, Japan, in the Pacific Ocean gave origin to a tsunami that caused an accident in the Fukushima Daiichi nuclear power plant. Due to this accident, derived of the loss of the reactor cooling system, as well as of the prolonged absence of alternating and direct current, radiological protection actions were realized without being able to avoid the liberation of radioactive material to the atmosphere and ocean. The radiological impact of these liberations, not only in Japan but around the world, mainly in the north hemisphere of the Earth, was analyzed by means of environmental dose measurements and radionuclide concentrations in soil and water, among others. In the Mexico case, air samples data were obtained, as well as environmental dose celerity and full-length counts of the people coming from Japan near the disaster area. The present work contains the obtained results of the realized measurements in Mexico, same that have been used to make a summary and analysis of the dispersion in the environment in several countries of the world. (Author)

  4. Brittle and ductile friction modeling of triggered tremor in Guerrero, Mexico

    Science.gov (United States)

    Zhang, Y.; Daub, E. G.; Wu, C.

    2017-12-01

    Low frequency earthquakes (LFEs), which make up the highest amplitude portions of non-volcanic tremor, are mostly found along subduction zones at a depth of 30-40km which is typically within the brittle-ductile transition zone. Previous studies in Guerrero, Mexico demonstrated a relationship between the bursts of LFEs and the contact states of fault interfaces, and LFEs that triggered by different mechanisms were observed along different parts of the subduction zone. To better understand the physics of fault interfaces at depth, especially the influence of contact states of these asperities, we use a brittle-ductile friction model to simulate the occurrence of LFE families from a model of frictional failure and slip. This model takes the stress state, slip rate, perturbation force, fault area, and brittle-ductile frictional contact characteristics and simulates the times and amplitudes of LFE occurrence for a single family. We examine both spontaneous and triggered tremor occurrence by including stresses due to external seismic waves, such as the 2010 Maule Earthquake, which triggered tremor and slow slip on the Guerrero section of the subduction zone. By comparing our model output with detailed observations of LFE occurrence, we can determine valuable constraints on the frictional properties of subduction zones at depth.

  5. Fault geometry and earthquake mechanics

    Directory of Open Access Journals (Sweden)

    D. J. Andrews

    1994-06-01

    Full Text Available Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1 regeneration of stress irregularities in an earthquake; 2 the concentration of stress drop in an earthquake into asperities; 3 starting and stopping of earthquake slip at fault junctions, and 4 self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the

  6. Determination of Design Basis Earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Muneaki [Japan Atomic Power Co., Tokyo (Japan)

    1997-03-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  7. Determination of Design Basis Earthquake ground motion

    International Nuclear Information System (INIS)

    Kato, Muneaki

    1997-01-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  8. Impact- and earthquake- proof roof structure

    International Nuclear Information System (INIS)

    Shohara, Ryoichi.

    1990-01-01

    Building roofs are constituted with roof slabs, an earthquake proof layer at the upper surface thereof and an impact proof layer made of iron-reinforced concrete disposed further thereover. Since the roofs constitute an earthquake proof structure loading building dampers on the upper surface of the slabs by the concrete layer, seismic inputs of earthquakes to the buildings can be moderated and the impact-proof layer is formed, to ensure the safety to external conditions such as earthquakes or falling accidents of airplane in important facilities such as reactor buildings. (T.M.)

  9. Prompt Assessment of Global Earthquakes for Response (PAGER): A System for Rapidly Determining the Impact of Earthquakes Worldwide

    Science.gov (United States)

    Earle, Paul S.; Wald, David J.; Jaiswal, Kishor S.; Allen, Trevor I.; Hearne, Michael G.; Marano, Kristin D.; Hotovec, Alicia J.; Fee, Jeremy

    2009-01-01

    Within minutes of a significant earthquake anywhere on the globe, the U.S. Geological Survey (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system assesses its potential societal impact. PAGER automatically estimates the number of people exposed to severe ground shaking and the shaking intensity at affected cities. Accompanying maps of the epicentral region show the population distribution and estimated ground-shaking intensity. A regionally specific comment describes the inferred vulnerability of the regional building inventory and, when available, lists recent nearby earthquakes and their effects. PAGER's results are posted on the USGS Earthquake Program Web site (http://earthquake.usgs.gov/), consolidated in a concise one-page report, and sent in near real-time to emergency responders, government agencies, and the media. Both rapid and accurate results are obtained through manual and automatic updates of PAGER's content in the hours following significant earthquakes. These updates incorporate the most recent estimates of earthquake location, magnitude, faulting geometry, and first-hand accounts of shaking. PAGER relies on a rich set of earthquake analysis and assessment tools operated by the USGS and contributing Advanced National Seismic System (ANSS) regional networks. A focused research effort is underway to extend PAGER's near real-time capabilities beyond population exposure to quantitative estimates of fatalities, injuries, and displaced population.

  10. Application of τc*Pd for identifying damaging earthquakes for earthquake early warning

    Science.gov (United States)

    Huang, P. L.; Lin, T. L.; Wu, Y. M.

    2014-12-01

    Earthquake Early Warning System (EEWS) is an effective approach to mitigate earthquake damage. In this study, we used the seismic record by the Kiban Kyoshin network (KiK-net), because it has dense station coverage and co-located borehole strong-motion seismometers along with the free-surface strong-motion seismometers. We used inland earthquakes with moment magnitude (Mw) from 5.0 to 7.3 between 1998 and 2012. We choose 135 events and 10950 strong ground accelerograms recorded by the 696 strong ground accelerographs. Both the free-surface and the borehole data are used to calculate τc and Pd, respectively. The results show that τc*Pd has a good correlation with PGV and is a robust parameter for assessing the potential of damaging earthquake. We propose the value of τc*Pd determined from seconds after the arrival of P wave could be a threshold for the on-site type of EEW.

  11. Earthquake forecasting test for Kanto district to reduce vulnerability of urban mega earthquake disasters

    Science.gov (United States)

    Yokoi, S.; Tsuruoka, H.; Nanjo, K.; Hirata, N.

    2012-12-01

    Collaboratory for the Study of Earthquake Predictability (CSEP) is a global project on earthquake predictability research. The final goal of this project is to search for the intrinsic predictability of the earthquake rupture process through forecast testing experiments. The Earthquake Research Institute, the University of Tokyo joined CSEP and started the Japanese testing center called as CSEP-Japan. This testing center provides an open access to researchers contributing earthquake forecast models applied to Japan. Now more than 100 earthquake forecast models were submitted on the prospective experiment. The models are separated into 4 testing classes (1 day, 3 months, 1 year and 3 years) and 3 testing regions covering an area of Japan including sea area, Japanese mainland and Kanto district. We evaluate the performance of the models in the official suite of tests defined by CSEP. The total number of experiments was implemented for approximately 300 rounds. These results provide new knowledge concerning statistical forecasting models. We started a study for constructing a 3-dimensional earthquake forecasting model for Kanto district in Japan based on CSEP experiments under the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters. Because seismicity of the area ranges from shallower part to a depth of 80 km due to subducting Philippine Sea plate and Pacific plate, we need to study effect of depth distribution. We will develop models for forecasting based on the results of 2-D modeling. We defined the 3D - forecasting area in the Kanto region with test classes of 1 day, 3 months, 1 year and 3 years, and magnitudes from 4.0 to 9.0 as in CSEP-Japan. In the first step of the study, we will install RI10K model (Nanjo, 2011) and the HISTETAS models (Ogata, 2011) to know if those models have good performance as in the 3 months 2-D CSEP-Japan experiments in the Kanto region before the 2011 Tohoku event (Yokoi et al., in preparation). We use CSEP

  12. Temporal stress changes caused by earthquakes: A review

    Science.gov (United States)

    Hardebeck, Jeanne L.; Okada, Tomomi

    2018-01-01

    Earthquakes can change the stress field in the Earth’s lithosphere as they relieve and redistribute stress. Earthquake-induced stress changes have been observed as temporal rotations of the principal stress axes following major earthquakes in a variety of tectonic settings. The stress changes due to the 2011 Mw9.0 Tohoku-Oki, Japan, earthquake were particularly well documented. Earthquake stress rotations can inform our understanding of earthquake physics, most notably addressing the long-standing problem of whether the Earth’s crust at plate boundaries is “strong” or “weak.” Many of the observed stress rotations, including that due to the Tohoku-Oki earthquake, indicate near-complete stress drop in the mainshock. This implies low background differential stress, on the order of earthquake stress drop, supporting the weak crust model. Earthquake stress rotations can also be used to address other important geophysical questions, such as the level of crustal stress heterogeneity and the mechanisms of postseismic stress reloading. The quantitative interpretation of stress rotations is evolving from those based on simple analytical methods to those based on more sophisticated numerical modeling that can capture the spatial-temporal complexity of the earthquake stress changes.

  13. Remote Triggering of the Mw 6.9 Hokkaido Earthquake as a Result of the Mw 6.6 Indonesian Earthquake on September 11, 2008

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin

    2012-01-01

    Full Text Available Only just recently, the phenomenon of earthquakes being triggered by a distant earthquake has been well established. Yet, most of the triggered earthquakes have been limited to small earthquakes (M < 3. Also, the exact triggering mechanism for earthquakes is still not clear. Here I show how one strong earthquake (Mw = 6.6 is capable of triggering another (Mw = 6.9 at a remote distance (~4750 km. On September 11, 2008, two strong earthquakes with magnitudes (Mw of 6.6 and 6.9 hit respectively in Indonesia and Japan within a short interval of ~21 minutes time. Careful examination of broadband seismograms recorded in Japan shows that the Hokkaido earthquake occurred just as the surface waves generated by the Indonesia earthquake arrived. Although the peak dynamic stress estimated at the focus of the Hokkaido earthquake was just reaching the lower bound for the capability of triggering earthquakes in general, a more plausible mechanism for triggering an earthquake might be attributed to the change of a fault property by fluid infiltration. These observations suggest that the Hokkaido earthquake was likely triggered from a remote distance by the surface waves generated from the Indonesia earthquake. If some more cases can be observed, a temporal warning of possible interaction between strong earthquakes might be concerned in the future.

  14. Living with earthquakes - development and usage of earthquake-resistant construction methods in European and Asian Antiquity

    Science.gov (United States)

    Kázmér, Miklós; Major, Balázs; Hariyadi, Agus; Pramumijoyo, Subagyo; Ditto Haryana, Yohanes

    2010-05-01

    Earthquakes are among the most horrible events of nature due to unexpected occurrence, for which no spiritual means are available for protection. The only way of preserving life and property is applying earthquake-resistant construction methods. Ancient Greek architects of public buildings applied steel clamps embedded in lead casing to hold together columns and masonry walls during frequent earthquakes in the Aegean region. Elastic steel provided strength, while plastic lead casing absorbed minor shifts of blocks without fracturing rigid stone. Romans invented concrete and built all sizes of buildings as a single, unflexible unit. Masonry surrounding and decorating concrete core of the wall did not bear load. Concrete resisted minor shaking, yielding only to forces higher than fracture limits. Roman building traditions survived the Dark Ages and 12th century Crusader castles erected in earthquake-prone Syria survive until today in reasonably good condition. Concrete and steel clamping persisted side-by-side in the Roman Empire. Concrete was used for cheap construction as compared to building of masonry. Applying lead-encased steel increased costs, and was avoided whenever possible. Columns of the various forums in Italian Pompeii mostly lack steel fittings despite situated in well-known earthquake-prone area. Whether frequent recurrence of earthquakes in the Naples region was known to inhabitants of Pompeii might be a matter of debate. Seemingly the shock of the AD 62 earthquake was not enough to apply well-known protective engineering methods throughout the reconstruction of the city before the AD 79 volcanic catastrophe. An independent engineering tradition developed on the island of Java (Indonesia). The mortar-less construction technique of 8-9th century Hindu masonry shrines around Yogyakarta would allow scattering of blocks during earthquakes. To prevent dilapidation an intricate mortise-and-tenon system was carved into adjacent faces of blocks. Only the

  15. Bam Earthquake in Iran

    CERN Multimedia

    2004-01-01

    Following their request for help from members of international organisations, the permanent Mission of the Islamic Republic of Iran has given the following bank account number, where you can donate money to help the victims of the Bam earthquake. Re: Bam earthquake 235 - UBS 311264.35L Bubenberg Platz 3001 BERN

  16. Assessment of earthquake-induced landslides hazard in El Salvador after the 2001 earthquakes using macroseismic analysis

    Science.gov (United States)

    Esposito, Eliana; Violante, Crescenzo; Giunta, Giuseppe; Ángel Hernández, Miguel

    2016-04-01

    Two strong earthquakes and a number of smaller aftershocks struck El Salvador in the year 2001. The January 13 2001 earthquake, Mw 7.7, occurred along the Cocos plate, 40 km off El Salvador southern coast. It resulted in about 1300 deaths and widespread damage, mainly due to massive landsliding. Two of the largest earthquake-induced landslides, Las Barioleras and Las Colinas (about 2x105 m3) produced major damage to buildings and infrastructures and 500 fatalities. A neighborhood in Santa Tecla, west of San Salvador, was destroyed. The February 13 2001 earthquake, Mw 6.5, occurred 40 km east-southeast of San Salvador. This earthquake caused over 300 fatalities and triggered several landslides over an area of 2,500 km2 mostly in poorly consolidated volcaniclastic deposits. The La Leona landslide (5-7x105 m3) caused 12 fatalities and extensive damage to the Panamerican Highway. Two very large landslides of 1.5 km3 and 12 km3 produced hazardous barrier lakes at Rio El Desague and Rio Jiboa, respectively. More than 16.000 landslides occurred throughout the country after both quakes; most of them occurred in pyroclastic deposits, with a volume less than 1x103m3. The present work aims to define the relationship between the above described earthquake intensity, size and areal distribution of induced landslides, as well as to refine the earthquake intensity in sparsely populated zones by using landslide effects. Landslides triggered by the 2001 seismic sequences provided useful indication for a realistic seismic hazard assessment, providing a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides.

  17. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.; Mai, Paul Martin; Schorlemmer, Danijel

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data

  18. Inter-Disciplinary Validation of Pre Earthquake Signals. Case Study for Major Earthquakes in Asia (2004-2010) and for 2011 Tohoku Earthquake

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Hattori, K.; Liu, J.-Y.; Yang. T. Y.; Parrot, M.; Kafatos, M.; Taylor, P.

    2012-01-01

    We carried out multi-sensors observations in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several physical and environmental parameters, which we found, associated with the earthquake processes: thermal infrared radiation, temperature and concentration of electrons in the ionosphere, radon/ion activities, and air temperature/humidity in the atmosphere. We used satellite and ground observations and interpreted them with the Lithosphere-Atmosphere- Ionosphere Coupling (LAIC) model, one of possible paradigms we study and support. We made two independent continues hind-cast investigations in Taiwan and Japan for total of 102 earthquakes (M>6) occurring from 2004-2011. We analyzed: (1) ionospheric electromagnetic radiation, plasma and energetic electron measurements from DEMETER (2) emitted long-wavelength radiation (OLR) from NOAA/AVHRR and NASA/EOS; (3) radon/ion variations (in situ data); and 4) GPS Total Electron Content (TEC) measurements collected from space and ground based observations. This joint analysis of ground and satellite data has shown that one to six (or more) days prior to the largest earthquakes there were anomalies in all of the analyzed physical observations. For the latest March 11 , 2011 Tohoku earthquake, our analysis shows again the same relationship between several independent observations characterizing the lithosphere /atmosphere coupling. On March 7th we found a rapid increase of emitted infrared radiation observed from satellite data and subsequently an anomaly developed near the epicenter. The GPS/TEC data indicated an increase and variation in electron density reaching a maximum value on March 8. Beginning from this day we confirmed an abnormal TEC variation over the epicenter in the lower ionosphere. These findings revealed the existence of atmospheric and ionospheric phenomena occurring prior to the 2011 Tohoku earthquake, which indicated new evidence of a distinct

  19. POST Earthquake Debris Management - AN Overview

    Science.gov (United States)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  20. Simulating Earthquakes for Science and Society: Earthquake Visualizations Ideal for use in Science Communication and Education

    Science.gov (United States)

    de Groot, R.

    2008-12-01

    The Southern California Earthquake Center (SCEC) has been developing groundbreaking computer modeling capabilities for studying earthquakes. These visualizations were initially shared within the scientific community but have recently gained visibility via television news coverage in Southern California. Computers have opened up a whole new world for scientists working with large data sets, and students can benefit from the same opportunities (Libarkin & Brick, 2002). For example, The Great Southern California ShakeOut was based on a potential magnitude 7.8 earthquake on the southern San Andreas fault. The visualization created for the ShakeOut was a key scientific and communication tool for the earthquake drill. This presentation will also feature SCEC Virtual Display of Objects visualization software developed by SCEC Undergraduate Studies in Earthquake Information Technology interns. According to Gordin and Pea (1995), theoretically visualization should make science accessible, provide means for authentic inquiry, and lay the groundwork to understand and critique scientific issues. This presentation will discuss how the new SCEC visualizations and other earthquake imagery achieve these results, how they fit within the context of major themes and study areas in science communication, and how the efficacy of these tools can be improved.

  1. PRECURSORS OF EARTHQUAKES: VLF SIGNALSIONOSPHERE IONOSPHERE RELATION

    Directory of Open Access Journals (Sweden)

    Mustafa ULAS

    2013-01-01

    Full Text Available lot of people have died because of earthquakes every year. Therefore It is crucial to predict the time of the earthquakes reasonable time before it had happed. This paper presents recent information published in the literature about precursors of earthquakes. The relationships between earthquakes and ionosphere are targeted to guide new researches in order to study further to find novel prediction methods.

  2. Building with Earthquakes in Mind

    Science.gov (United States)

    Mangieri, Nicholas

    2016-04-01

    Earthquakes are some of the most elusive and destructive disasters humans interact with on this planet. Engineering structures to withstand earthquake shaking is critical to ensure minimal loss of life and property. However, the majority of buildings today in non-traditional earthquake prone areas are not built to withstand this devastating force. Understanding basic earthquake engineering principles and the effect of limited resources helps students grasp the challenge that lies ahead. The solution can be found in retrofitting existing buildings with proper reinforcements and designs to deal with this deadly disaster. The students were challenged in this project to construct a basic structure, using limited resources, that could withstand a simulated tremor through the use of an earthquake shake table. Groups of students had to work together to creatively manage their resources and ideas to design the most feasible and realistic type of building. This activity provided a wealth of opportunities for the students to learn more about a type of disaster they do not experience in this part of the country. Due to the fact that most buildings in New York City were not designed to withstand earthquake shaking, the students were able to gain an appreciation for how difficult it would be to prepare every structure in the city for this type of event.

  3. Meeting the Challenge of Earthquake Risk Globalisation: Towards the Global Earthquake Model GEM (Sergey Soloviev Medal Lecture)

    Science.gov (United States)

    Zschau, J.

    2009-04-01

    Earthquake risk, like natural risks in general, has become a highly dynamic and globally interdependent phenomenon. Due to the "urban explosion" in the Third World, an increasingly complex cross linking of critical infrastructure and lifelines in the industrial nations and a growing globalisation of the world's economies, we are presently facing a dramatic increase of our society's vulnerability to earthquakes in practically all seismic regions on our globe. Such fast and global changes cannot be captured with conventional earthquake risk models anymore. The sciences in this field are, therefore, asked to come up with new solutions that are no longer exclusively aiming at the best possible quantification of the present risks but also keep an eye on their changes with time and allow to project these into the future. This does not apply to the vulnerablity component of earthquake risk alone, but also to its hazard component which has been realized to be time-dependent, too. The challenges of earthquake risk dynamics and -globalisation have recently been accepted by the Global Science Forum of the Organisation for Economic Co-operation and Development (OECD - GSF) who initiated the "Global Earthquake Model (GEM)", a public-private partnership for establishing an independent standard to calculate, monitor and communicate earthquake risk globally, raise awareness and promote mitigation.

  4. Laboratory generated M -6 earthquakes

    Science.gov (United States)

    McLaskey, Gregory C.; Kilgore, Brian D.; Lockner, David A.; Beeler, Nicholas M.

    2014-01-01

    We consider whether mm-scale earthquake-like seismic events generated in laboratory experiments are consistent with our understanding of the physics of larger earthquakes. This work focuses on a population of 48 very small shocks that are foreshocks and aftershocks of stick–slip events occurring on a 2.0 m by 0.4 m simulated strike-slip fault cut through a large granite sample. Unlike the larger stick–slip events that rupture the entirety of the simulated fault, the small foreshocks and aftershocks are contained events whose properties are controlled by the rigidity of the surrounding granite blocks rather than characteristics of the experimental apparatus. The large size of the experimental apparatus, high fidelity sensors, rigorous treatment of wave propagation effects, and in situ system calibration separates this study from traditional acoustic emission analyses and allows these sources to be studied with as much rigor as larger natural earthquakes. The tiny events have short (3–6 μs) rise times and are well modeled by simple double couple focal mechanisms that are consistent with left-lateral slip occurring on a mm-scale patch of the precut fault surface. The repeatability of the experiments indicates that they are the result of frictional processes on the simulated fault surface rather than grain crushing or fracture of fresh rock. Our waveform analysis shows no significant differences (other than size) between the M -7 to M -5.5 earthquakes reported here and larger natural earthquakes. Their source characteristics such as stress drop (1–10 MPa) appear to be entirely consistent with earthquake scaling laws derived for larger earthquakes.

  5. Radon, gas geochemistry, groundwater, and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    King, Chi-Yu [Power Reactor and Nuclear Fuel Development Corp., Tono Geoscience Center, Toki, Gifu (Japan)

    1998-12-31

    Radon monitoring in groundwater, soil air, and atmosphere has been continued in many seismic areas of the world for earthquake-prediction and active-fault studies. Some recent measurements of radon and other geochemical and hydrological parameters have been made for sufficiently long periods, with reliable instruments, and together with measurements of meteorological variables and solid-earth tides. The resultant data are useful in better distinguishing earthquake-related changes from various background noises. Some measurements have been carried out in areas where other geophysical measurements are being made also. Comparative studies of various kinds of geophysical data are helpful in ascertaining the reality of the earthquake-related and fault-related anomalies and in understanding the underlying mechanisms. Spatial anomalies of radon and other terrestrial gasses have been observed for many active faults. Such observations indicate that gas concentrations are very much site dependent, particularly on fault zones where terrestrial fluids may move vertically. Temporal anomalies have been reliably observed before and after some recent earthquakes, including the 1995 Kobe earthquake, and the general pattern of anomaly occurrence remains the same as observed before: They are recorded at only relatively few sensitive sites, which can be at much larger distances than expected from existing earthquake-source models. The sensitivity of a sensitive site is also found to be changeable with time. These results clearly show the inadequacy of the existing dilatancy-fluid diffusion and elastic-dislocation models for earthquake sources to explain earthquake-related geochemical and geophysical changes recorded at large distances. (J.P.N.)

  6. The Christchurch earthquake stroke incidence study.

    Science.gov (United States)

    Wu, Teddy Y; Cheung, Jeanette; Cole, David; Fink, John N

    2014-03-01

    We examined the impact of major earthquakes on acute stroke admissions by a retrospective review of stroke admissions in the 6 weeks following the 4 September 2010 and 22 February 2011 earthquakes. The control period was the corresponding 6 weeks in the previous year. In the 6 weeks following the September 2010 earthquake there were 97 acute stroke admissions, with 79 (81.4%) ischaemic infarctions. This was similar to the 2009 control period which had 104 acute stroke admissions, of whom 80 (76.9%) had ischaemic infarction. In the 6 weeks following the February 2011 earthquake, there were 71 stroke admissions, and 61 (79.2%) were ischaemic infarction. This was less than the 96 strokes (72 [75%] ischaemic infarction) in the corresponding control period. None of the comparisons were statistically significant. There was also no difference in the rate of cardioembolic infarction from atrial fibrillation between the study periods. Patients admitted during the February 2011 earthquake period were less likely to be discharged directly home when compared to the control period (31.2% versus 46.9%, p=0.036). There was no observable trend in the number of weekly stroke admissions between the 2 weeks leading to and 6 weeks following the earthquakes. Our results suggest that severe psychological stress from earthquakes did not influence the subsequent short term risk of acute stroke, but the severity of the earthquake in February 2011 and associated civil structural damages may have influenced the pattern of discharge for stroke patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards

    Science.gov (United States)

    McNamara, D. E.; Yeck, W. L.; Barnhart, W. D.; Schulte-Pelkum, V.; Bergman, E.; Adhikari, L. B.; Dixit, A.; Hough, S. E.; Benz, H. M.; Earle, P. S.

    2017-09-01

    The Gorkha earthquake on April 25th, 2015 was a long anticipated, low-angle thrust-faulting event on the shallow décollement between the India and Eurasia plates. We present a detailed multiple-event hypocenter relocation analysis of the Mw 7.8 Gorkha Nepal earthquake sequence, constrained by local seismic stations, and a geodetic rupture model based on InSAR and GPS data. We integrate these observations to place the Gorkha earthquake sequence into a seismotectonic context and evaluate potential earthquake hazard. Major results from this study include (1) a comprehensive catalog of calibrated hypocenters for the Gorkha earthquake sequence; (2) the Gorkha earthquake ruptured a 150 × 60 km patch of the Main Himalayan Thrust (MHT), the décollement defining the plate boundary at depth, over an area surrounding but predominantly north of the capital city of Kathmandu (3) the distribution of aftershock seismicity surrounds the mainshock maximum slip patch; (4) aftershocks occur at or below the mainshock rupture plane with depths generally increasing to the north beneath the higher Himalaya, possibly outlining a 10-15 km thick subduction channel between the overriding Eurasian and subducting Indian plates; (5) the largest Mw 7.3 aftershock and the highest concentration of aftershocks occurred to the southeast the mainshock rupture, on a segment of the MHT décollement that was positively stressed towards failure; (6) the near surface portion of the MHT south of Kathmandu shows no aftershocks or slip during the mainshock. Results from this study characterize the details of the Gorkha earthquake sequence and provide constraints on where earthquake hazard remains high, and thus where future, damaging earthquakes may occur in this densely populated region. Up-dip segments of the MHT should be considered to be high hazard for future damaging earthquakes.

  8. Powering Mexico

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article examines Mexico's demand for electricity and the market for independent power generation. The topics discussed in the article include the outlook for the 1990s for growth in Mexico's economy and energy demand, renewable energy, energy conservation, small-scale, off-grid renewable energy systems, and estimates of Mexico's market for electric power generating equipment

  9. Plant state display device after occurrence of earthquake

    International Nuclear Information System (INIS)

    Kitada, Yoshio; Yonekura, Kazuyoshi.

    1992-01-01

    If a nuclear power plant should encounter earthquakes, an earthquake response analysis value previously stored and the earthquakes observed are compared to judge the magnitude of the earthquakes. From the result of the judgement, a possibility that an abnormality is recognized in plant equipment systems after the earthquakes is evaluated, in comparison with a previously stored earthquake fragility data base of each of equipment/systems. The result of the evaluation is displayed in a central control chamber. The plant equipment system is judged such that abnormalities are recognized at a high probability is evaluated by a previously stored earthquake PSA method for the influence of the abnormality on plant safety, and the result is displayed in the central control chamber. (I.S.)

  10. A minimalist model of characteristic earthquakes

    DEFF Research Database (Denmark)

    Vázquez-Prada, M.; González, Á.; Gómez, J.B.

    2002-01-01

    In a spirit akin to the sandpile model of self- organized criticality, we present a simple statistical model of the cellular-automaton type which simulates the role of an asperity in the dynamics of a one-dimensional fault. This model produces an earthquake spectrum similar to the characteristic-earthquake...... behaviour of some seismic faults. This model, that has no parameter, is amenable to an algebraic description as a Markov Chain. This possibility illuminates some important results, obtained by Monte Carlo simulations, such as the earthquake size-frequency relation and the recurrence time...... of the characteristic earthquake....

  11. EARTHQUAKE RESEARCH PROBLEMS OF NUCLEAR POWER GENERATORS

    Energy Technology Data Exchange (ETDEWEB)

    Housner, G. W.; Hudson, D. E.

    1963-10-15

    Earthquake problems associated with the construction of nuclear power generators require a more extensive and a more precise knowledge of earthquake characteristics and the dynamic behavior of structures than was considered necessary for ordinary buildings. Economic considerations indicate the desirability of additional research on the problems of earthquakes and nuclear reactors. The nature of these earthquake-resistant design problems is discussed and programs of research are recommended. (auth)

  12. Seismic-resistant design of nuclear power stations in Japan, earthquake country. Lessons learned from Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Irikura, Kojiro

    2008-01-01

    The new assessment (back-check) of earthquake-proof safety was being conducted at Kashiwazaki-Kariwa Nuclear Power Plants, Tokyo Electric Co. in response to a request based on the guideline for reactor evaluation for seismic-resistant design code, revised in 2006, when the 2007 Chuetsu-oki Earthquake occurred and brought about an unexpectedly huge tremor in this area, although the magnitude of the earthquake was only 6.8 but the intensity of earthquake motion exceeded 2.5-fold more than supposed. This paper introduces how and why the guideline for seismic-resistant design of nuclear facilities was revised in 2006, the outline of the Chuetsu-oki Earthquake, and preliminary findings and lessons learned from the Earthquake. The paper specifically discusses on (1) how we may specify in advance geologic active faults as has been overlooked this time, (2) how we can make adequate models for seismic origin from which we can extract its characteristics, and (3) how the estimation of strong ground motion simulation may be possible for ground vibration level of a possibly overlooked fault. (S. Ohno)

  13. Antioptimization of earthquake exitation and response

    Directory of Open Access Journals (Sweden)

    G. Zuccaro

    1998-01-01

    Full Text Available The paper presents a novel approach to predict the response of earthquake-excited structures. The earthquake excitation is expanded in terms of series of deterministic functions. The coefficients of the series are represented as a point in N-dimensional space. Each available ccelerogram at a certain site is then represented as a point in the above space, modeling the available fragmentary historical data. The minimum volume ellipsoid, containing all points, is constructed. The ellipsoidal models of uncertainty, pertinent to earthquake excitation, are developed. The maximum response of a structure, subjected to the earthquake excitation, within ellipsoidal modeling of the latter, is determined. This procedure of determining least favorable response was termed in the literature (Elishakoff, 1991 as an antioptimization. It appears that under inherent uncertainty of earthquake excitation, antioptimization analysis is a viable alternative to stochastic approach.

  14. Modified Mercalli intensities for some recent California earthquakes and historic San Francisco Bay Region earthquakes

    Science.gov (United States)

    Bakun, William H.

    1998-01-01

    Modified Mercalli Intensity (MMI) data for recent California earthquakes were used by Bakun and Wentworth (1997) to develop a strategy for bounding the location and moment magnitude M of earthquakes from MMI observations only. Bakun (Bull. Seismol. Soc. Amer., submitted) used the Bakun and Wentworth (1997) strategy to analyze 19th century and early 20th century San Francisco Bay Region earthquakes. The MMI data and site corrections used in these studies are listed in this Open-file Report. 

  15. <> earthquakes: a growing contribution to the Catalogue of Strong Italian Earthquakes

    Directory of Open Access Journals (Sweden)

    E. Guidoboni

    2000-06-01

    Full Text Available The particular structure of the research into historical seismology found in this catalogue has allowed a lot of information about unknown seismic events to be traced. This new contribution to seismologic knowledge mainly consists in: i the retrieval and organisation within a coherent framework of documentary evidence of earthquakes that took place between the Middle Ages and the sixteenth century; ii the improved knowledge of seismic events, even destructive events, which in the past had been "obscured" by large earthquakes; iii the identification of earthquakes in "silent" seismic areas. The complex elements to be taken into account when dealing with unknown seismic events have been outlined; much "new" information often falls into one of the following categories: simple chronological errors relative to other well-known events; descriptions of other natural phenomena, though defined in texts as "earthquakes" (landslides, hurricanes, tornadoes, etc.; unknown tremors belonging to known seismic periods; tremors that may be connected with events which have been catalogued under incorrect dates and with very approximate estimates of location and intensity. This proves that this was not a real seismic "silence" but a research vacuum.

  16. Smartphone MEMS accelerometers and earthquake early warning

    Science.gov (United States)

    Kong, Q.; Allen, R. M.; Schreier, L.; Kwon, Y. W.

    2015-12-01

    The low cost MEMS accelerometers in the smartphones are attracting more and more attentions from the science community due to the vast number and potential applications in various areas. We are using the accelerometers inside the smartphones to detect the earthquakes. We did shake table tests to show these accelerometers are also suitable to record large shakings caused by earthquakes. We developed an android app - MyShake, which can even distinguish earthquake movements from daily human activities from the recordings recorded by the accelerometers in personal smartphones and upload trigger information/waveform to our server for further analysis. The data from these smartphones forms a unique datasets for seismological applications, such as earthquake early warning. In this talk I will layout the method we used to recognize earthquake-like movement from single smartphone, and the overview of the whole system that harness the information from a network of smartphones for rapid earthquake detection. This type of system can be easily deployed and scaled up around the global and provides additional insights of the earthquake hazards.

  17. Ionospheric precursors for crustal earthquakes in Italy

    Directory of Open Access Journals (Sweden)

    L. Perrone

    2010-04-01

    Full Text Available Crustal earthquakes with magnitude 6.0>M≥5.5 observed in Italy for the period 1979–2009 including the last one at L'Aquila on 6 April 2009 were considered to check if the earlier obtained relationships for ionospheric precursors for strong Japanese earthquakes are valid for the Italian moderate earthquakes. The ionospheric precursors are based on the observed variations of the sporadic E-layer parameters (h'Es, fbEs and foF2 at the ionospheric station Rome. Empirical dependencies for the seismo-ionospheric disturbances relating the earthquake magnitude and the epicenter distance are obtained and they have been shown to be similar to those obtained earlier for Japanese earthquakes. The dependences indicate the process of spreading the disturbance from the epicenter towards periphery during the earthquake preparation process. Large lead times for the precursor occurrence (up to 34 days for M=5.8–5.9 tells about a prolong preparation period. A possibility of using the obtained relationships for the earthquakes prediction is discussed.

  18. Fundamental questions of earthquake statistics, source behavior, and the estimation of earthquake probabilities from possible foreshocks

    Science.gov (United States)

    Michael, Andrew J.

    2012-01-01

    Estimates of the probability that an ML 4.8 earthquake, which occurred near the southern end of the San Andreas fault on 24 March 2009, would be followed by an M 7 mainshock over the following three days vary from 0.0009 using a Gutenberg–Richter model of aftershock statistics (Reasenberg and Jones, 1989) to 0.04 using a statistical model of foreshock behavior and long‐term estimates of large earthquake probabilities, including characteristic earthquakes (Agnew and Jones, 1991). I demonstrate that the disparity between the existing approaches depends on whether or not they conform to Gutenberg–Richter behavior. While Gutenberg–Richter behavior is well established over large regions, it could be violated on individual faults if they have characteristic earthquakes or over small areas if the spatial distribution of large‐event nucleations is disproportional to the rate of smaller events. I develop a new form of the aftershock model that includes characteristic behavior and combines the features of both models. This new model and the older foreshock model yield the same results when given the same inputs, but the new model has the advantage of producing probabilities for events of all magnitudes, rather than just for events larger than the initial one. Compared with the aftershock model, the new model has the advantage of taking into account long‐term earthquake probability models. Using consistent parameters, the probability of an M 7 mainshock on the southernmost San Andreas fault is 0.0001 for three days from long‐term models and the clustering probabilities following the ML 4.8 event are 0.00035 for a Gutenberg–Richter distribution and 0.013 for a characteristic‐earthquake magnitude–frequency distribution. Our decisions about the existence of characteristic earthquakes and how large earthquakes nucleate have a first‐order effect on the probabilities obtained from short‐term clustering models for these large events.

  19. The Pocatello Valley, Idaho, earthquake

    Science.gov (United States)

    Rogers, A. M.; Langer, C.J.; Bucknam, R.C.

    1975-01-01

    A Richter magnitude 6.3 earthquake occurred at 8:31 p.m mountain daylight time on March 27, 1975, near the Utah-Idaho border in Pocatello Valley. The epicenter of the main shock was located at 42.094° N, 112.478° W, and had a focal depth of 5.5 km. This earthquake was the largest in the continental United States since the destructive San Fernando earthquake of February 1971. The main shock was preceded by a magnitude 4.5 foreshock on March 26. 

  20. Evaluating spatial and temporal relationships between an earthquake cluster near Entiat, central Washington, and the large December 1872 Entiat earthquake

    Science.gov (United States)

    Brocher, Thomas M.; Blakely, Richard J.; Sherrod, Brian

    2017-01-01

    We investigate spatial and temporal relations between an ongoing and prolific seismicity cluster in central Washington, near Entiat, and the 14 December 1872 Entiat earthquake, the largest historic crustal earthquake in Washington. A fault scarp produced by the 1872 earthquake lies within the Entiat cluster; the locations and areas of both the cluster and the estimated 1872 rupture surface are comparable. Seismic intensities and the 1–2 m of coseismic displacement suggest a magnitude range between 6.5 and 7.0 for the 1872 earthquake. Aftershock forecast models for (1) the first several hours following the 1872 earthquake, (2) the largest felt earthquakes from 1900 to 1974, and (3) the seismicity within the Entiat cluster from 1976 through 2016 are also consistent with this magnitude range. Based on this aftershock modeling, most of the current seismicity in the Entiat cluster could represent aftershocks of the 1872 earthquake. Other earthquakes, especially those with long recurrence intervals, have long‐lived aftershock sequences, including the Mw">MwMw 7.5 1891 Nobi earthquake in Japan, with aftershocks continuing 100 yrs after the mainshock. Although we do not rule out ongoing tectonic deformation in this region, a long‐lived aftershock sequence can account for these observations.

  1. 1985年9月19日メキシコ地震に関する研究 I : 地盤震動特性と被害との関係について

    OpenAIRE

    正木, 和明

    1989-01-01

    The damage in Mexico city during the Mexico Earthquake of September 19,1985 was studied in relation to seismic characteristics of soils in Mexico Valley. Mexico city is nowadays one of the biggest cities in the world with population of about 18 million. A sudden increase in population since 1940 caused a rapid expantion of urban area to the Lake Zone composed of extremely soft sediments of Lake Texcoco. Damages during the earthquake concentrated in this area. Microtremor measurements and spec...

  2. Prospective testing of Coulomb short-term earthquake forecasts

    Science.gov (United States)

    Jackson, D. D.; Kagan, Y. Y.; Schorlemmer, D.; Zechar, J. D.; Wang, Q.; Wong, K.

    2009-12-01

    Earthquake induced Coulomb stresses, whether static or dynamic, suddenly change the probability of future earthquakes. Models to estimate stress and the resulting seismicity changes could help to illuminate earthquake physics and guide appropriate precautionary response. But do these models have improved forecasting power compared to empirical statistical models? The best answer lies in prospective testing in which a fully specified model, with no subsequent parameter adjustments, is evaluated against future earthquakes. The Center of Study of Earthquake Predictability (CSEP) facilitates such prospective testing of earthquake forecasts, including several short term forecasts. Formulating Coulomb stress models for formal testing involves several practical problems, mostly shared with other short-term models. First, earthquake probabilities must be calculated after each “perpetrator” earthquake but before the triggered earthquakes, or “victims”. The time interval between a perpetrator and its victims may be very short, as characterized by the Omori law for aftershocks. CSEP evaluates short term models daily, and allows daily updates of the models. However, lots can happen in a day. An alternative is to test and update models on the occurrence of each earthquake over a certain magnitude. To make such updates rapidly enough and to qualify as prospective, earthquake focal mechanisms, slip distributions, stress patterns, and earthquake probabilities would have to be made by computer without human intervention. This scheme would be more appropriate for evaluating scientific ideas, but it may be less useful for practical applications than daily updates. Second, triggered earthquakes are imperfectly recorded following larger events because their seismic waves are buried in the coda of the earlier event. To solve this problem, testing methods need to allow for “censoring” of early aftershock data, and a quantitative model for detection threshold as a function of

  3. Surface latent heat flux as an earthquake precursor

    Directory of Open Access Journals (Sweden)

    S. Dey

    2003-01-01

    Full Text Available The analysis of surface latent heat flux (SLHF from the epicentral regions of five recent earthquakes that occurred in close proximity to the oceans has been found to show anomalous behavior. The maximum increase of SLHF is found 2–7 days prior to the main earthquake event. This increase is likely due to an ocean-land-atmosphere interaction. The increase of SLHF prior to the main earthquake event is attributed to the increase in infrared thermal (IR temperature in the epicentral and surrounding region. The anomalous increase in SLHF shows great potential in providing early warning of a disastrous earthquake, provided that there is a better understanding of the background noise due to the tides and monsoon in surface latent heat flux. Efforts have been made to understand the level of background noise in the epicentral regions of the five earthquakes considered in the present paper. A comparison of SLHF from the epicentral regions over the coastal earthquakes and the earthquakes that occurred far away from the coast has been made and it has been found that the anomalous behavior of SLHF prior to the main earthquake event is only associated with the coastal earthquakes.

  4. Method to Determine Appropriate Source Models of Large Earthquakes Including Tsunami Earthquakes for Tsunami Early Warning in Central America

    Science.gov (United States)

    Tanioka, Yuichiro; Miranda, Greyving Jose Arguello; Gusman, Aditya Riadi; Fujii, Yushiro

    2017-08-01

    Large earthquakes, such as the Mw 7.7 1992 Nicaragua earthquake, have occurred off the Pacific coasts of El Salvador and Nicaragua in Central America and have generated distractive tsunamis along these coasts. It is necessary to determine appropriate fault models before large tsunamis hit the coast. In this study, first, fault parameters were estimated from the W-phase inversion, and then an appropriate fault model was determined from the fault parameters and scaling relationships with a depth dependent rigidity. The method was tested for four large earthquakes, the 1992 Nicaragua tsunami earthquake (Mw7.7), the 2001 El Salvador earthquake (Mw7.7), the 2004 El Astillero earthquake (Mw7.0), and the 2012 El Salvador-Nicaragua earthquake (Mw7.3), which occurred off El Salvador and Nicaragua in Central America. The tsunami numerical simulations were carried out from the determined fault models. We found that the observed tsunami heights, run-up heights, and inundation areas were reasonably well explained by the computed ones. Therefore, our method for tsunami early warning purpose should work to estimate a fault model which reproduces tsunami heights near the coast of El Salvador and Nicaragua due to large earthquakes in the subduction zone.

  5. Earthquake simulation, actual earthquake monitoring and analytical methods for soil-structure interaction investigation

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H T [Seismic Center, Electric Power Research Institute, Palo Alto, CA (United States)

    1988-07-01

    Approaches for conducting in-situ soil-structure interaction experiments are discussed. High explosives detonated under the ground can generate strong ground motion to induce soil-structure interaction (SSI). The explosive induced data are useful in studying the dynamic characteristics of the soil-structure system associated with the inertial aspect of the SSI problem. The plane waves generated by the explosives cannot adequately address the kinematic interaction associated with actual earthquakes because of he difference in wave fields and their effects. Earthquake monitoring is ideal for obtaining SSI data that can address all aspects of the SSI problem. The only limitation is the level of excitation that can be obtained. Neither the simulated earthquake experiments nor the earthquake monitoring experiments can have exact similitude if reduced scale test structures are used. If gravity effects are small, reasonable correlations between the scaled model and the prototype can be obtained provided that input motion can be scaled appropriately. The key product of the in-situ experiments is the data base that can be used to qualify analytical methods for prototypical applications. (author)

  6. Real-time earthquake data feasible

    Science.gov (United States)

    Bush, Susan

    Scientists agree that early warning devices and monitoring of both Hurricane Hugo and the Mt. Pinatubo volcanic eruption saved thousands of lives. What would it take to develop this sort of early warning and monitoring system for earthquake activity?Not all that much, claims a panel assigned to study the feasibility, costs, and technology needed to establish a real-time earthquake monitoring (RTEM) system. The panel, drafted by the National Academy of Science's Committee on Seismology, has presented its findings in Real-Time Earthquake Monitoring. The recently released report states that “present technology is entirely capable of recording and processing data so as to provide real-time information, enabling people to mitigate somewhat the earthquake disaster.” RTEM systems would consist of two parts—an early warning system that would give a few seconds warning before severe shaking, and immediate postquake information within minutes of the quake that would give actual measurements of the magnitude. At this time, however, this type of warning system has not been addressed at the national level for the United States and is not included in the National Earthquake Hazard Reduction Program, according to the report.

  7. Critical behavior in earthquake energy dissipation

    Science.gov (United States)

    Wanliss, James; Muñoz, Víctor; Pastén, Denisse; Toledo, Benjamín; Valdivia, Juan Alejandro

    2017-09-01

    We explore bursty multiscale energy dissipation from earthquakes flanked by latitudes 29° S and 35.5° S, and longitudes 69.501° W and 73.944° W (in the Chilean central zone). Our work compares the predictions of a theory of nonequilibrium phase transitions with nonstandard statistical signatures of earthquake complex scaling behaviors. For temporal scales less than 84 hours, time development of earthquake radiated energy activity follows an algebraic arrangement consistent with estimates from the theory of nonequilibrium phase transitions. There are no characteristic scales for probability distributions of sizes and lifetimes of the activity bursts in the scaling region. The power-law exponents describing the probability distributions suggest that the main energy dissipation takes place due to largest bursts of activity, such as major earthquakes, as opposed to smaller activations which contribute less significantly though they have greater relative occurrence. The results obtained provide statistical evidence that earthquake energy dissipation mechanisms are essentially "scale-free", displaying statistical and dynamical self-similarity. Our results provide some evidence that earthquake radiated energy and directed percolation belong to a similar universality class.

  8. Centrality in earthquake multiplex networks

    Science.gov (United States)

    Lotfi, Nastaran; Darooneh, Amir Hossein; Rodrigues, Francisco A.

    2018-06-01

    Seismic time series has been mapped as a complex network, where a geographical region is divided into square cells that represent the nodes and connections are defined according to the sequence of earthquakes. In this paper, we map a seismic time series to a temporal network, described by a multiplex network, and characterize the evolution of the network structure in terms of the eigenvector centrality measure. We generalize previous works that considered the single layer representation of earthquake networks. Our results suggest that the multiplex representation captures better earthquake activity than methods based on single layer networks. We also verify that the regions with highest seismological activities in Iran and California can be identified from the network centrality analysis. The temporal modeling of seismic data provided here may open new possibilities for a better comprehension of the physics of earthquakes.

  9. Parallelization of the Coupled Earthquake Model

    Science.gov (United States)

    Block, Gary; Li, P. Peggy; Song, Yuhe T.

    2007-01-01

    This Web-based tsunami simulation system allows users to remotely run a model on JPL s supercomputers for a given undersea earthquake. At the time of this reporting, predicting tsunamis on the Internet has never happened before. This new code directly couples the earthquake model and the ocean model on parallel computers and improves simulation speed. Seismometers can only detect information from earthquakes; they cannot detect whether or not a tsunami may occur as a result of the earthquake. When earthquake-tsunami models are coupled with the improved computational speed of modern, high-performance computers and constrained by remotely sensed data, they are able to provide early warnings for those coastal regions at risk. The software is capable of testing NASA s satellite observations of tsunamis. It has been successfully tested for several historical tsunamis, has passed all alpha and beta testing, and is well documented for users.

  10. Ionospheric Anomaly before Kyushu|Japan Earthquake

    Directory of Open Access Journals (Sweden)

    YANG Li

    2017-05-01

    Full Text Available GIM data released by IGS is used in the article and a new method of combining the Sliding Time Window Method and the Ionospheric TEC correlation analysis method of adjacent grid points is proposed to study the relationship between pre-earthquake ionospheric anomalies and earthquake. By analyzing the abnormal change of TEC in the 5 grid points around the seismic region, the abnormal change of ionospheric TEC is found before the earthquake and the correlation between the TEC sequences of lattice points is significantly affected by earthquake. Based on the analysis of the spatial distribution of TEC anomaly, anomalies of 6 h, 12 h and 6 h were found near the epicenter three days before the earthquake. Finally, ionospheric tomographic technology is used to do tomographic inversion on electron density. And the distribution of the electron density in the ionospheric anomaly is further analyzed.

  11. Retrospective analysis of the Spitak earthquake

    Directory of Open Access Journals (Sweden)

    A. K. Tovmassian

    1995-06-01

    Full Text Available Based on the retrospective analysis of numerous data and studies of the Spitak earthquake the present work at- tempts to shed light on different aspects of that catastrophic seismic event which occurred in Northern Arme- nia on December 7, 1988. The authors follow a chronological order of presentation, namely: changes in geo- sphere, atmosphere, biosphere during the preparation of the Spitak earthquake, foreshocks, main shock, after- shocks, focal mechanisms, historical seismicity; seismotectonic position of the source, strong motion records, site effects; the macroseismic effect, collapse of buildings and structures; rescue activities; earthquake conse- quences; and the lessons of the Spitak earthquake.

  12. Where and why do large shallow intraslab earthquakes occur?

    Science.gov (United States)

    Seno, Tetsuzo; Yoshida, Masaki

    2004-03-01

    We try to find how often, and in what regions large earthquakes ( M≥7.0) occur within the shallow portion (20-60 km depth) of a subducting slab. Searching for events in published individual studies and the Harvard University centroid moment tensor catalogue, we find twenty such events in E. Hokkaido, Kyushu-SW, Japan, S. Mariana, Manila, Sumatra, Vanuatu, N. Chile, C. Peru, El Salvador, Mexico, N. Cascadia and Alaska. Slab stresses revealed from the mechanism solutions of these large intraslab events and nearby smaller events are almost always down-dip tensional. Except for E. Hokkaido, Manila, and Sumatra, the upper plate shows horizontal stress gradient in the arc-perpendicular direction. We infer that shear tractions are operating at the base of the upper plate in this direction to produce the observed gradient and compression in the outer fore-arc, balancing the down-dip tensional stress of the slab. This tectonic situation in the subduction zone might be realized as part of the convection system with some conditions, as shown by previous numerical simulations.

  13. Nonlinear acoustic/seismic waves in earthquake processes

    International Nuclear Information System (INIS)

    Johnson, Paul A.

    2012-01-01

    Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering—one of the most fascinating topics in seismology today—which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering of the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge—the granular material located between the fault blocks—is key to the triggering phenomenon.

  14. On the plant operators performance during earthquake

    International Nuclear Information System (INIS)

    Kitada, Y.; Yoshimura, S.; Abe, M.; Niwa, H.; Yoneda, T.; Matsunaga, M.; Suzuki, T.

    1994-01-01

    There is little data on which to judge the performance of plant operators during and after strong earthquakes. In order to obtain such data to enhance the reliability on the plant operation, a Japanese utility and a power plant manufacturer carried out a vibration test using a shaking table. The purpose of the test was to investigate operator performance, i.e., the quickness and correctness in switch handling and panel meter read-out. The movement of chairs during earthquake as also of interest, because if the chairs moved significantly or turned over during a strong earthquake, some arresting mechanism would be required for the chair. Although there were differences between the simulated earthquake motions used and actual earthquakes mainly due to the specifications of the shaking table, the earthquake motions had almost no influence on the operators of their capability (performance) for operating the simulated console and the personal computers

  15. Data base pertinent to earthquake design basis

    International Nuclear Information System (INIS)

    Sharma, R.D.

    1988-01-01

    Mitigation of earthquake risk from impending strong earthquakes is possible provided the hazard can be assessed, and translated into appropriate design inputs. This requires defining the seismic risk problem, isolating the risk factors and quantifying risk in terms of physical parameters, which are suitable for application in design. Like all other geological phenomena, past earthquakes hold the key to the understanding of future ones. Quantificatio n of seismic risk at a site calls for investigating the earthquake aspects of the site region and building a data base. The scope of such investigations is il lustrated in Figure 1 and 2. A more detailed definition of the earthquake problem in engineering design is given elsewhere (Sharma, 1987). The present document discusses the earthquake data base, which is required to support a seismic risk evaluation programme in the context of the existing state of the art. (author). 8 tables, 10 figs., 54 refs

  16. Seismic-electromagnetic precursors of Romania's Vrancea earthquakes

    International Nuclear Information System (INIS)

    Enescu, B.D.; Enescu, C.; Constantin, A. P.

    1999-01-01

    Diagrams were plotted from electromagnetic data that were recorded at Muntele Rosu Observatory during December 1996 to January 1997, and December 1997 to September 1998. The times when Vrancea earthquakes of magnitudes M ≥ 3.9 occurred within these periods are marked on the diagrams.The parameters of the earthquakes are given in a table which also includes information on the magnetic and electric anomalies (perturbations) preceding these earthquakes. The magnetic data prove that Vrancea earthquakes are preceded by magnetic perturbations that may be regarded as their short-term precursors. Perturbations, which could likewise be seen as short-term precursors of Vrancea earthquakes, are also noticed in the electric records. Still, a number of electric data do cast a doubt on their forerunning nature. Some suggestions are made in the end of the paper on how electromagnetic research should go ahead to be of use for Vrancea earthquake prediction. (authors)

  17. Earthquake activity along the Himalayan orogenic belt

    Science.gov (United States)

    Bai, L.; Mori, J. J.

    2017-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  18. Seismic monitoring at the geothermal zone of Acoculco, Pue., Mexico; Monitoreo sismico en la zona geotermica de Acoculco, Pue., Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lermo, Javier; Antayhua, Yanet; Bernal, Isabel [Universidad Nacional Autonoma de Mexico (UNAM), Instituto de Ingenieria Mexico, D.F. (Mexico); Venegas, Saul; Arredondo, Jesus [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: jles@pumas.iingen.unam.mx

    2009-01-15

    Results are presented of a research project to study seismic activity in the Acoculco geothermal zone, Puebla, Mexico. Geological and geophysical information was collected for the zone and a seismic network composed of seven digital seismographs was installed over four months (August-November 2004). Of the 30 regional earthquakes located by the National Seismological Service, 14 were at the subduction zone, 7 in the intra-plate zone, 6 of cortical type were in the Mexican Volcanic Belt, and 3 had deep origins in the Veracruz and Chiapas regions. Although there were no local earthquakes, probably due to the short monitoring span or lack of currently active zones, velocity models were defined near the springs of Los Azufres and Alcaparrosa, with lineal arrangements of wide-band seismic stations (SPAC) and strata identified in the exploratory well EAC-1, drilled by the Comision Federal de Electricidad. By using the registers of regional earthquakes, the site-effects were estimated on the six temporary seismic stations, whose empirical transfer functions were used to validate a velocities model proposed for the endhoreic basin. The proposed velocity models, both for the endhoreic basin and outside it, enhance the previous interpretations. They confirm the geo-electrical model proposed for the zone is adequate and they provide dynamic conditions for the model, such as propagation velocities of the P and S waves and densities and attenuation. [Spanish] Se presentan los resultados de un proyecto de investigacion para estudiar la actividad sismica de la zona geotermica de Acoculco, Puebla, Mexico. Con este fin se recopilo informacion geologica y geofisica de la zona y se instalo durante cuatro meses (de agosto a noviembre de 2004) una red sismica conformada por siete sismografos digitales. Se registraron 30 sismos regionales que fueron localizados por el Servicio Sismologico Nacional en la zona de subduccion (14), en la zona de intraplaca (7), de tipo cortical del Eje

  19. Prediction of site specific ground motion for large earthquake

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro; Irikura, Kojiro; Fukuchi, Yasunaga.

    1990-01-01

    In this paper, we apply the semi-empirical synthesis method by IRIKURA (1983, 1986) to the estimation of site specific ground motion using accelerograms observed at Kumatori in Osaka prefecture. Target earthquakes used here are a comparatively distant earthquake (Δ=95 km, M=5.6) caused by the YAMASAKI fault and a near earthquake (Δ=27 km, M=5.6). The results obtained are as follows. 1) The accelerograms from the distant earthquake (M=5.6) are synthesized using the aftershock records (M=4.3) for 1983 YAMASAKI fault earthquake whose source parameters have been obtained by other authors from the hypocentral distribution of the aftershocks. The resultant synthetic motions show a good agreement with the observed ones. 2) The synthesis for a near earthquake (M=5.6, we call this target earthquake) are made using a small earthquake which occurred in the neighborhood of the target earthquake. Here, we apply two methods for giving the parameters for synthesis. One method is to use the parameters of YAMASAKI fault earthquake which has the same magnitude as the target earthquake, and the other is to use the parameters obtained from several existing empirical formulas. The resultant synthetic motion with the former parameters shows a good agreement with the observed one, but that with the latter does not. 3) We estimate the source parameters from the source spectra of several earthquakes which have been observed in this site. Consequently we find that the small earthquakes (M<4) as Green's functions should be carefully used because the stress drops are not constant. 4) We propose that we should designate not only the magnitudes but also seismic moments of the target earthquake and the small earthquake. (J.P.N.)

  20. Clustered and transient earthquake sequences in mid-continents

    Science.gov (United States)

    Liu, M.; Stein, S. A.; Wang, H.; Luo, G.

    2012-12-01

    Earthquakes result from sudden release of strain energy on faults. On plate boundary faults, strain energy is constantly accumulating from steady and relatively rapid relative plate motion, so large earthquakes continue to occur so long as motion continues on the boundary. In contrast, such steady accumulation of stain energy does not occur on faults in mid-continents, because the far-field tectonic loading is not steadily distributed between faults, and because stress perturbations from complex fault interactions and other stress triggers can be significant relative to the slow tectonic stressing. Consequently, mid-continental earthquakes are often temporally clustered and transient, and spatially migrating. This behavior is well illustrated by large earthquakes in North China in the past two millennia, during which no single large earthquakes repeated on the same fault segments, but moment release between large fault systems was complementary. Slow tectonic loading in mid-continents also causes long aftershock sequences. We show that the recent small earthquakes in the Tangshan region of North China are aftershocks of the 1976 Tangshan earthquake (M 7.5), rather than indicators of a new phase of seismic activity in North China, as many fear. Understanding the transient behavior of mid-continental earthquakes has important implications for assessing earthquake hazards. The sequence of large earthquakes in the New Madrid Seismic Zone (NMSZ) in central US, which includes a cluster of M~7 events in 1811-1812 and perhaps a few similar ones in the past millennium, is likely a transient process, releasing previously accumulated elastic strain on recently activated faults. If so, this earthquake sequence will eventually end. Using simple analysis and numerical modeling, we show that the large NMSZ earthquakes may be ending now or in the near future.

  1. Investigating landslides caused by earthquakes - A historical review

    Science.gov (United States)

    Keefer, D.K.

    2002-01-01

    Post-earthquake field investigations of landslide occurrence have provided a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides. This paper traces the historical development of knowledge derived from these investigations. Before 1783, historical accounts of the occurrence of landslides in earthquake are typically so incomplete and vague that conclusions based on these accounts are of limited usefulness. For example, the number of landslides triggered by a given event is almost always greatly underestimated. The first formal, scientific post-earthquake investigation that included systematic documentation of the landslides was undertaken in the Calabria region of Italy after the 1783 earthquake swarm. From then until the mid-twentieth century, the best information on earthquake-induced landslides came from a succession of post-earthquake investigations largely carried out by formal commissions that undertook extensive ground-based field studies. Beginning in the mid-twentieth century, when the use of aerial photography became widespread, comprehensive inventories of landslide occurrence have been made for several earthquakes in the United States, Peru, Guatemala, Italy, El Salvador, Japan, and Taiwan. Techniques have also been developed for performing "retrospective" analyses years or decades after an earthquake that attempt to reconstruct the distribution of landslides triggered by the event. The additional use of Geographic Information System (GIS) processing and digital mapping since about 1989 has greatly facilitated the level of analysis that can applied to mapped distributions of landslides. Beginning in 1984, synthesis of worldwide and national data on earthquake-induced landslides have defined their general characteristics and relations between their occurrence and various geologic and seismic parameters. However, the number of comprehensive post-earthquake studies of landslides is still

  2. Post-Earthquake Reconstruction — in Context of Housing

    Science.gov (United States)

    Sarkar, Raju

    Comprehensive rescue and relief operations are always launched with no loss of time with active participation of the Army, Governmental agencies, Donor agencies, NGOs, and other Voluntary organizations after each Natural Disaster. There are several natural disasters occurring throughout the world round the year and one of them is Earthquake. More than any other natural catastrophe, an earthquake represents the undoing of our most basic pre-conceptions of the earth as the source of stability or the first distressing factor due to earthquake is the collapse of our dwelling units. Earthquake has affected buildings since people began constructing them. So after each earthquake a reconstruction of housing program is very much essential since housing is referred to as shelter satisfying one of the so-called basic needs next to food and clothing. It is a well-known fact that resettlement (after an earthquake) is often accompanied by the creation of ghettos and ensuing problems in the provision of infrastructure and employment. In fact a housing project after Bhuj earthquake in Gujarat, India, illustrates all the negative aspects of resettlement in the context of reconstruction. The main theme of this paper is to consider few issues associated with post-earthquake reconstruction in context of housing, all of which are significant to communities that have had to rebuild after catastrophe or that will face such a need in the future. Few of them are as follows: (1) Why rebuilding opportunities are time consuming? (2) What are the causes of failure in post-earthquake resettlement? (3) How can holistic planning after an earthquake be planned? (4) What are the criteria to be checked for sustainable building materials? (5) What are the criteria for success in post-earthquake resettlement? (6) How mitigation in post-earthquake housing can be made using appropriate repair, restoration, and strengthening concepts?

  3. Measures for groundwater security during and after the Hanshin-Awaji earthquake (1995) and the Great East Japan earthquake (2011), Japan

    Science.gov (United States)

    Tanaka, Tadashi

    2016-03-01

    Many big earthquakes have occurred in the tectonic regions of the world, especially in Japan. Earthquakes often cause damage to crucial life services such as water, gas and electricity supply systems and even the sewage system in urban and rural areas. The most severe problem for people affected by earthquakes is access to water for their drinking/cooking and toilet flushing. Securing safe water for daily life in an earthquake emergency requires the establishment of countermeasures, especially in a mega city like Tokyo. This paper described some examples of groundwater use in earthquake emergencies, with reference to reports, books and newspapers published in Japan. The consensus is that groundwater, as a source of water, plays a major role in earthquake emergencies, especially where the accessibility of wells coincides with the emergency need. It is also important to introduce a registration system for citizen-owned and company wells that can form the basis of a cooperative during a disaster; such a registration system was implemented by many Japanese local governments after the Hanshin-Awaji Earthquake in 1995 and the Great East Japan Earthquake in 2011, and is one of the most effective countermeasures for groundwater use in an earthquake emergency. Emphasis is also placed the importance of establishing of a continuous monitoring system of groundwater conditions for both quantity and quality during non-emergency periods.

  4. New geological perspectives on earthquake recurrence models

    International Nuclear Information System (INIS)

    Schwartz, D.P.

    1997-01-01

    In most areas of the world the record of historical seismicity is too short or uncertain to accurately characterize the future distribution of earthquakes of different sizes in time and space. Most faults have not ruptured once, let alone repeatedly. Ultimately, the ability to correctly forecast the magnitude, location, and probability of future earthquakes depends on how well one can quantify the past behavior of earthquake sources. Paleoseismological trenching of active faults, historical surface ruptures, liquefaction features, and shaking-induced ground deformation structures provides fundamental information on the past behavior of earthquake sources. These studies quantify (a) the timing of individual past earthquakes and fault slip rates, which lead to estimates of recurrence intervals and the development of recurrence models and (b) the amount of displacement during individual events, which allows estimates of the sizes of past earthquakes on a fault. When timing and slip per event are combined with information on fault zone geometry and structure, models that define individual rupture segments can be developed. Paleoseismicity data, in the form of timing and size of past events, provide a window into the driving mechanism of the earthquake engine--the cycle of stress build-up and release

  5. Earthquake Education in Prime Time

    Science.gov (United States)

    de Groot, R.; Abbott, P.; Benthien, M.

    2004-12-01

    Since 2001, the Southern California Earthquake Center (SCEC) has collaborated on several video production projects that feature important topics related to earthquake science, engineering, and preparedness. These projects have also fostered many fruitful and sustained partnerships with a variety of organizations that have a stake in hazard education and preparedness. The Seismic Sleuths educational video first appeared in the spring season 2001 on Discovery Channel's Assignment Discovery. Seismic Sleuths is based on a highly successful curriculum package developed jointly by the American Geophysical Union and The Department of Homeland Security Federal Emergency Management Agency. The California Earthquake Authority (CEA) and the Institute for Business and Home Safety supported the video project. Summer Productions, a company with a reputation for quality science programming, produced the Seismic Sleuths program in close partnership with scientists, engineers, and preparedness experts. The program has aired on the National Geographic Channel as recently as Fall 2004. Currently, SCEC is collaborating with Pat Abbott, a geology professor at San Diego State University (SDSU) on the video project Written In Stone: Earthquake Country - Los Angeles. Partners on this project include the California Seismic Safety Commission, SDSU, SCEC, CEA, and the Insurance Information Network of California. This video incorporates live-action demonstrations, vivid animations, and a compelling host (Abbott) to tell the story about earthquakes in the Los Angeles region. The Written in Stone team has also developed a comprehensive educator package that includes the video, maps, lesson plans, and other supporting materials. We will present the process that facilitates the creation of visually effective, factually accurate, and entertaining video programs. We acknowledge the need to have a broad understanding of the literature related to communication, media studies, science education, and

  6. Defeating Earthquakes

    Science.gov (United States)

    Stein, R. S.

    2012-12-01

    The 2004 M=9.2 Sumatra earthquake claimed what seemed an unfathomable 228,000 lives, although because of its size, we could at least assure ourselves that it was an extremely rare event. But in the short space of 8 years, the Sumatra quake no longer looks like an anomaly, and it is no longer even the worst disaster of the Century: 80,000 deaths in the 2005 M=7.6 Pakistan quake; 88,000 deaths in the 2008 M=7.9 Wenchuan, China quake; 316,000 deaths in the M=7.0 Haiti, quake. In each case, poor design and construction were unable to withstand the ferocity of the shaken earth. And this was compounded by inadequate rescue, medical care, and shelter. How could the toll continue to mount despite the advances in our understanding of quake risk? The world's population is flowing into megacities, and many of these migration magnets lie astride the plate boundaries. Caught between these opposing demographic and seismic forces are 50 cities of at least 3 million people threatened by large earthquakes, the targets of chance. What we know for certain is that no one will take protective measures unless they are convinced they are at risk. Furnishing that knowledge is the animating principle of the Global Earthquake Model, launched in 2009. At the very least, everyone sh