WorldWideScience

Sample records for mevalonate-derived isoprenoid moiety

  1. Block of the Mevalonate Pathway Triggers Oxidative and Inflammatory Molecular Mechanisms Modulated by Exogenous Isoprenoid Compounds

    Directory of Open Access Journals (Sweden)

    Paola Maura Tricarico

    2014-04-01

    Full Text Available Deregulation of the mevalonate pathway is known to be involved in a number of diseases that exhibit a systemic inflammatory phenotype and often neurological involvements, as seen in patients suffering from a rare disease called mevalonate kinase deficiency (MKD. One of the molecular mechanisms underlying this pathology could depend on the shortage of isoprenoid compounds and the subsequent mitochondrial damage, leading to oxidative stress and pro-inflammatory cytokines’ release. Moreover, it has been demonstrated that cellular death results from the balance between apoptosis and pyroptosis, both driven by mitochondrial damage and the molecular platform inflammasome. In order to rescue the deregulated pathway and decrease inflammatory markers, exogenous isoprenoid compounds were administered to a biochemical model of MKD obtained treating a murine monocytic cell line with a compound able to block the mevalonate pathway, plus an inflammatory stimulus. Our results show that isoprenoids acted in different ways, mainly increasing the expression of the evaluated markers [apoptosis, mitochondrial dysfunction, nucleotide-binding oligomerization-domain protein-like receptors 3 (NALP3, cytokines and nitric oxide (NO]. Our findings confirm the hypothesis that inflammation is triggered, at least partially, by the shortage of isoprenoids. Moreover, although further studies are necessary, the achieved results suggest a possible role for exogenous isoprenoids in the treatment of MKD.

  2. Manipulation of isoprenoid biosynthesis as a possible therapeutic option in mevalonate kinase deficiency

    NARCIS (Netherlands)

    Schneiders, Marit S.; Houten, Sander M.; Turkenburg, Marjolein; Wanders, Ronald J. A.; Waterham, Hans R.

    2006-01-01

    OBJECTIVE: In cells from patients with the autoinflammatory disorder mevalonate kinase (MK) deficiency, which includes the hyperimmunoglobulin D with periodic fever syndrome, MK becomes the rate-limiting enzyme in the isoprenoid biosynthesis pathway. This suggests that up-regulation of residual MK

  3. Isoprenoid biosynthesis in hereditary periodic fever syndromes and inflammation

    NARCIS (Netherlands)

    Houten, S. M.; Frenkel, J.; Waterham, H. R.

    2003-01-01

    Mevalonate kinase (MK) is an essential enzyme in the isoprenoid biosynthesis pathway which produces numerous biomolecules (isoprenoids) involved in a variety of cellular processes. The indispensability of MK and isoprenoid biosynthesis for human health is demonstrated by the identification of its

  4. Crystallization and preliminary X-ray diffraction analysis of mevalonate kinase from Methanosarcina mazei

    International Nuclear Information System (INIS)

    Zhuang, Ningning; Seo, Kyung Hye; Chen, Cong; Zhou, Jia; Kim, Seon Won; Lee, Kon Ho

    2012-01-01

    Recombinant mevalonate kinase from M. mazei has been crystallized. Diffraction data were collected to 2.08 Å resolution. Mevalonate kinase (MVK), which plays an important role in catalysing the biosynthesis of isoprenoid compounds derived from the mevalonate pathway, transforms mevalonate to 5-phosphomevalonate using ATP as a cofactor. Mevalonate kinase from Methanosarcina mazei (MmMVK) was expressed in Escherichia coli, purified and crystallized for structural analysis. Diffraction-quality crystals of MmMVK were obtained by the vapour-diffusion method using 0.32 M MgCl 2 , 0.08 M bis-tris pH 5.5, 16%(w/v) PEG 3350. The crystals belonged to space group P2 1 2 1 2, with unit-cell parameters a = 97.11, b = 135.92, c = 46.03 Å. Diffraction data were collected to 2.08 Å resolution

  5. Efficient Use of Exogenous Isoprenols for Protein Isoprenylation by MDA-MB-231 Cells Is Regulated Independently of the Mevalonate Pathway*

    Science.gov (United States)

    Onono, Fredrick; Subramanian, Thangaiah; Sunkara, Manjula; Subramanian, Karunai Leela; Spielmann, H. Peter; Morris, Andrew J.

    2013-01-01

    Mammalian cells can use exogenous isoprenols to generate isoprenoid diphosphate substrates for protein isoprenylation, but the mechanism, efficiency, and biological importance of this process are not known. We developed mass spectrometry-based methods using chemical probes and newly synthesized stable isotope-labeled tracers to quantitate incorporation of exogenously provided farnesol, geranylgeraniol, and unnatural analogs of these isoprenols containing an aniline group into isoprenoid diphosphates and protein isoprenylcysteines by cultured human cancer cell lines. We found that at exogenous isoprenol concentrations >10 μm, this process can generate as much as 50% of the cellular isoprenoid diphosphate pool used for protein isoprenylation. Mutational activation of p53 in MDA-MB-231 breast cancer cells up-regulates the mevalonate pathway to promote tumor invasiveness. p53 silencing or pharmacological inhibition of HMG-CoA reductase in these cells decreases protein isoprenylation from endogenously synthesized isoprenoids but enhances the use of exogenous isoprenols for this purpose, indicating that this latter process is regulated independently of the mevalonate pathway. Our observations suggest unique opportunities for design of cancer cell-directed therapies and may provide insights into mechanisms underlying pleiotropic therapeutic benefits and unwanted side effects of mevalonate pathway inhibition. PMID:23908355

  6. Structure, substrate recognition and reactivity of Leishmania major mevalonate kinase

    Directory of Open Access Journals (Sweden)

    Hunter William N

    2007-03-01

    Full Text Available Abstract Background Isoprenoid precursor synthesis via the mevalonate route in humans and pathogenic trypanosomatids is an important metabolic pathway. There is however, only limited information available on the structure and reactivity of the component enzymes in trypanosomatids. Since isoprenoid biosynthesis is essential for trypanosomatid viability and may provide new targets for therapeutic intervention it is important to characterize the pathway components. Results Putative mevalonate kinase encoding genes from Leishmania major (LmMK and Trypanosoma brucei (TbMK have been cloned, over-expressed in and proteins isolated from procyclic-form T. brucei. A highly sensitive radioactive assay was developed and shows ATP-dependent phosphorylation of mevalonate. Apo and (R-mevalonate bound crystal structures of LmMK, from a bacterial expression system, have been determined to high resolution providing, for the first time, information concerning binding of mevalonate to an MK. The mevalonate binds in a deep cavity lined by highly conserved residues. His25 is key for binding and for discrimination of (R- over (S-mevalonate, with the main chain amide interacting with the C3 hydroxyl group of (R-mevalonate, and the side chain contributing, together with Val202 and Thr283, to the construction of a hydrophobic binding site for the C3 methyl substituent. The C5 hydroxyl, where phosphorylation occurs, points towards catalytic residues, Lys18 and Asp155. The activity of LmMK was significantly reduced compared to MK from other species and we were unable to obtain ATP-binding data. Comparisons with the rat MK:ATP complex were used to investigate how this substrate might bind. In LmMK, helix α2 and the preceding polypeptide adopt a conformation, not seen in related kinase structures, impeding access to the nucleotide triphosphate binding site suggesting that a conformational rearrangement is required to allow ATP binding. Conclusion Our new structural

  7. Structural Basis for Nucleotide Binding and Reaction Catalysis in Mevalonate Diphosphate Decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; McWhorter, William J.; Miziorko, Henry M.; Geisbrecht, Brian V. (UMKC)

    2012-09-17

    Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg{sup 2+}-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k{sub cat} decreased 10{sup 3}- and 10{sup 5}-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp{sup 283} functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ('P-loop') provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.

  8. The mevalonate pathway in C. Elegans

    Directory of Open Access Journals (Sweden)

    Rauthan Manish

    2011-12-01

    Full Text Available Abstract The mevalonate pathway in human is responsible for the synthesis of cholesterol and other important biomolecules such as coenzyme Q, dolichols and isoprenoids. These molecules are required in the cell for functions ranging from signaling to membrane integrity, protein prenylation and glycosylation, and energy homeostasis. The pathway consists of a main trunk followed by sub-branches that synthesize the different biomolecules. The majority of our knowledge about the mevalonate pathway is currently focused on the cholesterol synthesis branch, which is the target of the cholesterol-lowering statins; less is known about the function and regulation of the non-cholesterol-related branches. To study them, we need a biological system where it is possible to specifically modulate these metabolic branches individually or in groups. The nematode Caenorhabditis elegans (C. elegans is a promising model to study these non-cholesterol branches since its mevalonate pathway seems very well conserved with that in human except that it has no cholesterol synthesis branch. The simple genetic makeup and tractability of C. elegans makes it relatively easy to identify and manipulate key genetic components of the mevalonate pathway, and to evaluate the consequences of tampering with their activity. This general experimental approach should lead to new insights into the physiological roles of the non-cholesterol part of the mevalonate pathway. This review will focus on the current knowledge related to the mevalonate pathway in C. elegans and its possible applications as a model organism to study the non-cholesterol functions of this pathway.

  9. Changes in isoprenoid lipid synthesis by gemfibrozil and clofibric acid in rat hepatocytes.

    Science.gov (United States)

    Hashimoto, F; Taira, S; Hayashi, H

    2000-05-15

    We studied whether gemfibrozil and clofibric acid alter isoprenoid lipid synthesis in rat hepatocytes. After incubation of the cells with the agent for 74 hr, [(14)C]acetate or [(3)H]mevalonate was added, and the cells were further incubated for 4 hr. Gemfibrozil and clofibric acid increased ubiquinone synthesis from [(14)C]acetate and [(3)H]mevalonate. The effect of gemfibrozil was greater than that of clofibric acid. Also, gemfibrozil decreased dolichol synthesis from [(14)C]acetate and [(3)H]mevalonate. However, clofibric acid increased dolichol synthesis from [(3)H]mevalonate. Gemfibrozil decreased cholesterol synthesis from [(14)C]acetate and [(3)H]mevalonate. Clofibric acid decreased cholesterol synthesis from [(14)C]acetate, but did not affect synthesis from [(3)H]mevalonate. These results suggest that both agents, at different rates, activate the synthetic pathway of ubiquinone, at least from mevalonate. Gemfibrozil may inhibit the synthetic pathway of dolichol, at least from mevalonate. Contrary to gemfibrozil, clofibric acid may activate the synthetic pathway of dolichol from mevalonate. Gemfibrozil may inhibit the synthetic pathway of cholesterol from mevalonate in addition to the pathway from acetate to mevalonate inhibited by both agents.

  10. Isoprenylation is required for the processing of the lamin A precursor

    International Nuclear Information System (INIS)

    Beck, L.A.; Hosick, T.J.; Sinensky, M.

    1990-01-01

    The nuclear lamina proteins, prelamin A, lamin B, and a 70-kD lamina-associated protein, are posttranslationally modified by a metabolite derived from mevalonate. This modification can be inhibited by treatment with (3-R,S)-3-fluoromevalonate, demonstrating that it is isoprenoid in nature. We have examined the association between isoprenoid metabolism and processing of the lamin A precursor in human and hamster cells. Inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by mevinolin (lovastatin) specifically depletes endogenous isoprenoid pools and inhibits the conversion of prelamin A to lamin A. Prelamin A processing is also blocked by mevalonate starvation of Mev-1, a CHO cell line auxotrophic for mevalonate. Moreover, inhibition of prelamin A processing by mevinolin treatment is rapidly reversed by the addition of exogenous mevalonate. Processing of prelamin A is, therefore, dependent on isoprenoid metabolism. Analysis of the conversion of prelamin A to lamin A by two independent methods, immunoprecipitation and two-dimensional nonequilibrium pH gel electrophoresis, demonstrates that a precursor-product relationship exists between prelamin A and lamin A. Analysis of R,S-[5-3H(N)]mevalonate-labeled cells shows that the rate of turnover of the isoprenoid group from prelamin A is comparable to the rate of conversion of prelamin A to lamin A. These results suggest that during the proteolytic maturation of prelamin A, the isoprenylated moiety is lost. A significant difference between prelamin A processing, and that of p21ras and the B-type lamins that undergo isoprenylation-dependent proteolytic maturation, is that the mature form of lamin A is no longer isoprenylated

  11. Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging

    NARCIS (Netherlands)

    Sapir, Amir; Tsur, Assaf; Koorman, Thijs; Ching, Kaitlin; Mishra, Prashant; Bardenheier, Annabelle; Podolsky, Lisa; Bening-Abu-Shach, Ulrike; Boxem, Mike; Chou, Tsui-Fen; Broday, Limor; Sternberg, Paul W

    2014-01-01

    Many metabolic pathways are critically regulated during development and aging but little is known about the molecular mechanisms underlying this regulation. One key metabolic cascade in eukaryotes is the mevalonate pathway. It catalyzes the synthesis of sterol and nonsterol isoprenoids, such as

  12. Metabolic plasticity for isoprenoid biosynthesis in bacteria.

    Science.gov (United States)

    Pérez-Gil, Jordi; Rodríguez-Concepción, Manuel

    2013-05-15

    Isoprenoids are a large family of compounds synthesized by all free-living organisms. In most bacteria, the common precursors of all isoprenoids are produced by the MEP (methylerythritol 4-phosphate) pathway. The MEP pathway is absent from archaea, fungi and animals (including humans), which synthesize their isoprenoid precursors using the completely unrelated MVA (mevalonate) pathway. Because the MEP pathway is essential in most bacterial pathogens (as well as in the malaria parasites), it has been proposed as a promising new target for the development of novel anti-infective agents. However, bacteria show a remarkable plasticity for isoprenoid biosynthesis that should be taken into account when targeting this metabolic pathway for the development of new antibiotics. For example, a few bacteria use the MVA pathway instead of the MEP pathway, whereas others possess the two full pathways, and some parasitic strains lack both the MVA and the MEP pathways (probably because they obtain their isoprenoids from host cells). Moreover, alternative enzymes and metabolic intermediates to those of the canonical MVA or MEP pathways exist in some organisms. Recent work has also shown that resistance to a block of the first steps of the MEP pathway can easily be developed because several enzymes unrelated to isoprenoid biosynthesis can produce pathway intermediates upon spontaneous mutations. In the present review, we discuss the major advances in our knowledge of the biochemical toolbox exploited by bacteria to synthesize the universal precursors for their essential isoprenoids.

  13. The mevalonate pathway in neurons: It's not just about cholesterol.

    Science.gov (United States)

    Moutinho, Miguel; Nunes, Maria João; Rodrigues, Elsa

    2017-11-01

    Cholesterol homeostasis greatly impacts neuronal function due to the essential role of this sterol in the brain. The mevalonate (MVA) pathway leads to the synthesis of cholesterol, but also supplies cells with many other intermediary molecules crucial for neuronal function. Compelling evidence point to a model in which neurons shutdown cholesterol synthesis, and rely on a shuttle derived from astrocytes to meet their cholesterol needs. Nevertheless, several reports suggest that neurons maintain the MVA pathway active, even with sustained cholesterol supply by astrocytes. Hence, in this review we focus not on cholesterol production, but rather on the role of the MVA pathway in the synthesis of particular intermediaries, namely isoprenoids, and on their role on neuronal function. Isoprenoids act as anchors for membrane association, after being covalently bound to proteins, such as most of the small guanosine triphosphate-binding proteins, which are critical to neuronal cell function. Based on literature, on our own results, and on the analysis of public transcriptomics databases, we raise the idea that in neurons there is a shift of the MVA pathway towards the non-sterol branch, responsible for isoprenoid synthesis, in detriment to post-squalene branch, and that this is ultimately essential for synaptic activity. Nevertheless new tools that facilitate imaging and the biochemical characterization and quantification of the prenylome in neurons and astrocytes are needed to understand the regulation of isoprenoid production and protein prenylation in the brain, and to analyze its differences on diverse physiological or pathological conditions, such as aging and neurodegenerative states. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Ecto-ATPase CD39 Inactivates Isoprenoid-Derived Vγ9Vδ2 T Cell Phosphoantigens

    Directory of Open Access Journals (Sweden)

    Georg Gruenbacher

    2016-07-01

    Full Text Available In humans, Vγ9Vδ2 T cells respond to self and pathogen-associated, diphosphate-containing isoprenoids, also known as phosphoantigens (pAgs. However, activation and homeostasis of Vγ9Vδ2 T cells remain incompletely understood. Here, we show that pAgs induced expression of the ecto-ATPase CD39, which, however, not only hydrolyzed ATP but also abrogated the γδ T cell receptor (TCR agonistic activity of self and microbial pAgs (C5 to C15. Only mevalonate-derived geranylgeranyl diphosphate (GGPP, C20 resisted CD39-mediated hydrolysis and acted as a regulator of CD39 expression and activity. GGPP enhanced macrophage differentiation in response to the tissue stress cytokine interleukin-15. In addition, GGPP-imprinted macrophage-like cells displayed increased capacity to produce IL-1β as well as the chemokine CCL2 and preferentially activated CD161-expressing CD4+ T cells in an innate-like manner. Our studies reveal a previously unrecognized immunoregulatory function of CD39 and highlight a particular role of GGPP among pAgs.

  15. The Non-Mevalonate Pathway to Isoprenoid Biosynthesis : A Potential Source of New Drug Targets

    NARCIS (Netherlands)

    Hirsch, Anna K.H.; Diederich, François

    2008-01-01

    Isoprenoids are an essential class of natural products with a myriad of biological functions. All isoprenoids are assembled using two common five-carbon precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) that are biosynthesized via two completely independent routes: the

  16. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    Energy Technology Data Exchange (ETDEWEB)

    Lohr M.; Schwender J.; Polle, J. E. W.

    2012-04-01

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.

  17. Investigations on the isoprenoid biosynthesis in the green alga Scenedesmus obliquus by using the 13C-labelling technique

    International Nuclear Information System (INIS)

    Schwender, J.

    1995-01-01

    The biosynthesis of several prenyllipids (isoprenoid lipids) of the green alga Scendesmus obliquus was investigated. The aim was to verify, whether the biosynthesis of isopentenyl diphosphate (IPP) in Scenedesmus proceeds according to the classical acetate mevalonate pathway or to an alternative pathway. An alternative pathway for IPP formation has recently been detected in some eubacteria by the group of Prof. M. Rohmer. Some inhibition tests were performed with mevinolin, a specific inhibitor of HMG-CoA reductase which yields mevalonic acid. Mevinolin should block the biosynthesis of such isoprenoids which are formed via the acetate mevalonate pathway. Scenedesmus was grown heterotrophically on 13 C-labelled glucose or acetate. After isolation and purification of 13 C-labelled phytol (side chains of chlorophylls), β-carotene, lutein, plastoquinone-9 and three sterol compounds, the enrichment of 13 C at different carbon-positions of the labelled compounds was determined. This was achieved by the 13 C-NMR technique in cooperation with Miriam Seemann of the group of Prof. M. Rohmer in Mullhouse/France. (orig.) [de

  18. Metabolic engineering of volatile isoprenoids in plants and microbes.

    Science.gov (United States)

    Vickers, Claudia E; Bongers, Mareike; Liu, Qing; Delatte, Thierry; Bouwmeester, Harro

    2014-08-01

    The chemical properties and diversity of volatile isoprenoids lends them to a broad variety of biological roles. It also lends them to a host of biotechnological applications, both by taking advantage of their natural functions and by using them as industrial chemicals/chemical feedstocks. Natural functions include roles as insect attractants and repellents, abiotic stress protectants in pathogen defense, etc. Industrial applications include use as pharmaceuticals, flavours, fragrances, fuels, fuel additives, etc. Here we will examine the ways in which researchers have so far found to exploit volatile isoprenoids using biotechnology. Production and/or modification of volatiles using metabolic engineering in both plants and microorganisms are reviewed, including engineering through both mevalonate and methylerythritol diphosphate pathways. Recent advances are illustrated using several case studies (herbivores and bodyguards, isoprene, and monoterpene production in microbes). Systems and synthetic biology tools with particular utility for metabolic engineering are also reviewed. Finally, we discuss the practical realities of various applications in modern biotechnology, explore possible future applications, and examine the challenges of moving these technologies forward so that they can deliver tangible benefits. While this review focuses on volatile isoprenoids, many of the engineering approaches described here are also applicable to non-isoprenoid volatiles and to non-volatile isoprenoids. © 2014 John Wiley & Sons Ltd.

  19. Lack of isoprenoid products raises ex vivo interleukin-1beta secretion in hyperimmunoglobulinemia D and periodic fever syndrome

    NARCIS (Netherlands)

    Frenkel, Joost; Rijkers, Ger T.; Mandey, Saskia H. L.; Buurman, Sandra W. M.; Houten, Sander M.; Wanders, Ronald J. A.; Waterham, Hans R.; Kuis, Wietse

    2002-01-01

    OBJECTIVE: To investigate whether the increased interleukin-1beta (IL-1beta) secretion in hyperimmunoglobulinemia D and periodic fever syndrome is due to the accumulation of mevalonate kinase (MK), the substrate of the deficient enzyme, or the lack of its products, the isoprenoid compounds. METHODS:

  20. Overexpressing 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR in the lactococcal mevalonate pathway for heterologous plant sesquiterpene production.

    Directory of Open Access Journals (Sweden)

    Adelene Ai-Lian Song

    Full Text Available Isoprenoids are a large and diverse group of metabolites with interesting properties such as flavour, fragrance and therapeutic properties. They are produced via two pathways, the mevalonate pathway or the 2-C-methyl-D-erythritol-4-phosphate (MEP pathway. While plants are the richest source of isoprenoids, they are not the most efficient producers. Escherichia coli and yeasts have been extensively studied as heterologous hosts for plant isoprenoids production. In the current study, we describe the usage of the food grade Lactococcus lactis as a potential heterologous host for the production of sesquiterpenes from a local herbaceous Malaysian plant, Persicaria minor (synonym Polygonum minus. A sesquiterpene synthase gene from P. minor was successfully cloned and expressed in L. lactis. The expressed protein was identified to be a β-sesquiphellandrene synthase as it was demonstrated to be functional in producing β-sesquiphellandrene at 85.4% of the total sesquiterpenes produced based on in vitro enzymatic assays. The recombinant L. lactis strain developed in this study was also capable of producing β-sesquiphellandrene in vivo without exogenous substrates supplementation. In addition, overexpression of the strain's endogenous 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR, an established rate-limiting enzyme in the eukaryotic mevalonate pathway, increased the production level of β-sesquiphellandrene by 1.25-1.60 fold. The highest amount achieved was 33 nM at 2 h post-induction.

  1. Isoprenoids responsible for protein prenylation modulate the biological effects of statins on pancreatic cancer cells

    Czech Academy of Sciences Publication Activity Database

    Gbelcová, H.; Rimpelová, S.; Knejzlík, Z.; Šáchová, Jana; Kolář, Michal; Strnad, Hynek; Repiska, V.; D'Acunto, C.W.; Ruml, T.; Vítek, L.

    2017-01-01

    Roč. 16, zima (2017), č. článku 250. ISSN 1476-511X R&D Projects: GA MZd(CZ) NT13112 Institutional support: RVO:68378050 Keywords : Farmesyl pyrophosphate * Gene expression * Geranylgeranyl pyrophosphate * HMG-CoA reductase inhibitors * Isoprenoids * K-Ras oncogene * Mevalonate * Pncreatic cancer * Prenylation * Statins Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 2.073, year: 2016

  2. Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway.

    Science.gov (United States)

    Zhu, Wen-Liang; Cui, Jin-Yu; Cui, Lan-Yu; Liang, Wei-Fan; Yang, Song; Zhang, Chong; Xing, Xin-Hui

    2016-03-01

    Methylotrophic biosynthesis using methanol as a feedstock is a promising and attractive method to solve the over-dependence of the bioindustry on sugar feedstocks derived from grains that are used for food. In this study, we introduced and engineered the mevalonate pathway into Methylobacterium extorquens AM1 to achieve high mevalonate production from methanol, which could be a platform for terpenoid synthesis. We first constructed a natural operon (MVE) harboring the mvaS and mvaE genes from Enterococcus faecalis as well as an artificial operon (MVH) harboring the hmgcs1 gene from Blattella germanica and the tchmgr gene from Trypanosoma cruzi that encoded enzymes with the highest reported activities. We achieved mevalonate titers of 56 and 66 mg/L, respectively, in flask cultivation. Introduction of the phaA gene from Ralstonia eutropha into the operon MVH increased the mevalonate titer to 180 mg/L, 3.2-fold higher than that of the natural operon MVE. Further modification of the expression level of the phaA gene by regulating the strength of the ribosomal binding site resulted in an additional 20 % increase in mevalonate production to 215 mg/L. A fed-batch fermentation of the best-engineered strain yielded a mevalonate titer of 2.22 g/L, which was equivalent to an overall yield and productivity of 28.4 mg mevalonate/g methanol and 7.16 mg/L/h, respectively. The production of mevalonate from methanol, which is the initial, but critical step linking methanol with valuable terpenoids via methylotrophic biosynthesis, represents a proof of concept for pathway engineering in M. extorquens AM1.

  3. Inhibitory effect of isoprenoid-substituted flavonoids isolated from Artocarpus heterophyllus on melanin biosynthesis.

    Science.gov (United States)

    Arung, Enos Tangke; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2006-07-01

    Isoprenoid-substituted flavonoids were isolated from the wood of Artocarpus heterophyllus by means of activity-guided fractionation. Artocarpin (1), cudraflavone C (2), 6-prenylapigenin (3), kuwanon C (4), norartocarpin (5) and albanin A (6) inhibited melanin biosynthesis in B16 melanoma cells without inhibiting tyrosinase. A structure-activity investigation indicated that the presence of the isoprenoid-substituted moiety enhanced the inhibitory activity on melanin production in B16 melanoma cells.

  4. Isoprenoid-substituted flavonoids from wood of Artocarpus heterophyllus on B16 melanoma cells: cytotoxicity and structural criteria.

    Science.gov (United States)

    Arung, Enos Tangke; Yoshikawa, Keisuke; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2010-03-01

    As a result of cytotoxicity-guided fractionation, nine flavonoids, artocarpin (1), cudraflavone C (2), 6-prenylapigenin (3), kuwanon C (4), norartocarpin (5), albanin A (6), cudraflavone B (7), brosimone I (8) and artocarpanone (9) were identified from the methanol extract of the wood of Artocarpus heterophyllus, known commonly as Nangka in Indonesia. A structure-activity investigation of the effect of these isolated compounds (1-9) and structurally related compounds on B16 melanoma cells indicated that isoprenoid moiety substitutions in flavonoids enhance their cytotoxicity, and that the position of attachment and the number of isoprenoid-substituent moieties per molecule influence flavonoid cytotoxicity. 2009 Elsevier B.V. All rights reserved.

  5. Mevalonate kinase deficiencies: from mevalonic aciduria to hyperimmunoglobulinemia D syndrome

    Directory of Open Access Journals (Sweden)

    Hoffmann Georg F

    2006-04-01

    Full Text Available Abstract Mevalonic aciduria (MVA and hyperimmunoglobulinemia D syndrome (HIDS represent the two ends of a clinical spectrum of disease caused by deficiency of mevalonate kinase (MVK, the first committed enzyme of cholesterol biosynthesis. At least 30 patients with MVA and 180 patients with HIDS have been reported worldwide. MVA is characterized by psychomotor retardation, failure to thrive, progressive cerebellar ataxia, dysmorphic features, progressive visual impairment and recurrent febrile crises. The febrile episodes are commonly accompanied by hepatosplenomegaly, lymphadenopathy, abdominal symptoms, arthralgia and skin rashes. Life expectancy is often compromised. In HIDS, only febrile attacks are present, but a subgroup of patients may also develop neurological abnormalities of varying degree such as mental retardation, ataxia, ocular symptoms and epilepsy. A reduced activity of MVK and pathogenic mutations in the MVK gene have been demonstrated as the common genetic basis in both disorders. In MVA, the diagnosis is established by detection of highly elevated levels of mevalonic acid excreted in urine. Increased levels of immunoglobulin D (IgD and, in most patients of immunoglobulin A (IgA, in combination with enhanced excretion of mevalonic acid provide strong evidence for HIDS. The diagnosis is confirmed by low activity of mevalonate kinase or by demonstration of disease-causing mutations. Genetic counseling should be offered to families at risk. There is no established successful treatment for MVA. Simvastatin, an inhibitor of HMG-CoA reductase, and anakinra have been shown to have beneficial effect in HIDS.

  6. Isoprenoid drugs, biofuels, and chemicals--artemisinin, farnesene, and beyond.

    Science.gov (United States)

    George, Kevin W; Alonso-Gutierrez, Jorge; Keasling, Jay D; Lee, Taek Soon

    2015-01-01

    Isoprenoids have been identified and used as natural pharmaceuticals, fragrances, solvents, and, more recently, advanced biofuels. Although isoprenoids are most commonly found in plants, researchers have successfully engineered both the eukaryotic and prokaryotic isoprenoid biosynthetic pathways to produce these valuable chemicals in microorganisms at high yields. The microbial synthesis of the precursor to artemisinin--an important antimalarial drug produced from the sweet wormwood Artemisia annua--serves as perhaps the most successful example of this approach. Through advances in synthetic biology and metabolic engineering, microbial-derived semisynthetic artemisinin may soon replace plant-derived artemisinin as the primary source of this valuable pharmaceutical. The richness and diversity of isoprenoid structures also make them ideal candidates for advanced biofuels that may act as "drop-in" replacements for gasoline, diesel, and jet fuel. Indeed, the sesquiterpenes farnesene and bisabolene, monoterpenes pinene and limonene, and hemiterpenes isopentenol and isopentanol have been evaluated as fuels or fuel precursors. As in the artemisinin project, these isoprenoids have been produced microbially through synthetic biology and metabolic engineering efforts. Here, we provide a brief review of the numerous isoprenoid compounds that have found use as pharmaceuticals, flavors, commodity chemicals, and, most importantly, advanced biofuels. In each case, we highlight the metabolic engineering strategies that were used to produce these compounds successfully in microbial hosts. In addition, we present a current outlook on microbial isoprenoid production, with an eye towards the many challenges that must be addressed to achieve higher yields and industrial-scale production.

  7. Metabolic engineering for the microbial production of isoprenoids: Carotenoids and isoprenoid-based biofuels

    Directory of Open Access Journals (Sweden)

    Fu-Xing Niu

    2017-09-01

    Full Text Available Isoprenoids are the most abundant and highly diverse group of natural products. Many isoprenoids have been used for pharmaceuticals, nutraceuticals, flavors, cosmetics, food additives and biofuels. Carotenoids and isoprenoid-based biofuels are two classes of important isoprenoids. These isoprenoids have been produced microbially through metabolic engineering and synthetic biology efforts. Herein, we briefly review the engineered biosynthetic pathways in well-characterized microbial systems for the production of carotenoids and several isoprenoid-based biofuels.

  8. Engineering a functional 1-deoxy-D-xylulose 5-phosphate (DXP) pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kirby, James; Dietzel, Kevin L.; Wichmann, Gale

    2016-01-01

    Isoprenoids are used in many commercial applications and much work has gone into engineering microbial hosts for their production. Isoprenoids are produced either from acetyl-CoA via the mevalonate pathway or from pyruvate and glyceraldehyde 3-phosphate via the 1-deoxy-D-xylulose 5-phosphate (DXP......) pathway. Saccharomyces cerevisiae exclusively utilizes the mevalonate pathway to synthesize native isoprenoids and in fact the alternative DXP pathway has never been found or successfully reconstructed in the eukaryotic cytosol. There are, however, several advantages to isoprenoid synthesis via the DXP...... time, functional expression of the DXP pathway in S. cerevisiae. Under low aeration conditions, an engineered strain relying solely on the DXP pathway for isoprenoid biosynthesis achieved an endpoint biomass 80% of that of the same strain using the mevalonate pathway....

  9. Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance

    Czech Academy of Sciences Publication Activity Database

    Tarkowská, Danuše; Strnad, Miroslav

    2018-01-01

    Roč. 247, č. 5 (2018), s. 1051-1066 ISSN 0032-0935 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Dimethylallyl diphosphate * Isopentenyl diphosphate * Isoprenoids * Phytoecdysteroids * Plant hormones * Terpenoids Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemical research methods Impact factor: 3.361, year: 2016

  10. Biosynthesis of 2-methyl-3-buten-2-ol emitted from needles of Pinus ponderosa via the non-mevalonate DOXP/MEP pathway of isoprenoid formation.

    Science.gov (United States)

    Zeidler, J; Lichtenthaler, H K

    2001-06-01

    The volatile hemiterpene 2-methyl-3-buten-2-ol (MBO) is emitted from the needles of several pine species from the Western United States and contributes to ozone formation in the atmosphere. It is synthesised enzymatically from dimethylallyl diphosphate (DMAPP). We show here that needles of Pinus ponderosa Laws. incorporated [1-2H1]-1-deoxy-D-xylulose (d-DOX) into the emitted MBO, but not D,L-[2-13C]mevalonic acid lactone. Furthermore, MBO emission was inhibited by fosmidomycin, a specific inhibitor of the second enzyme of the mevalonate-independent pathway of isopentenyl diphosphate and DMAPP formation, i.e. the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. We thus prove that MBO emitted from needles of P. ponderosa is primarily formed via the DOXP/MEP pathway.

  11. Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Skaff, D. Andrew; McWhorter, William J.; Herdendorf, Timothy J.; Miziorko, Henry M.; Geisbrecht, Brian V. (UMKC)

    2011-10-28

    The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 {angstrom} resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 {angstrom} resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 {angstrom} resolution). Comparison of these structures provides a physical basis for the significant differences in K{sub i} values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser{sup 192} as making potential contributions to catalysis. Significantly, Ser {yields} Ala substitution of this side chain decreases k{sub cat} by {approx}10{sup 3}-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 {angstrom} cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.

  12. Influence of deep-water derived isoprenoid tetraether lipids on the TEX

    NARCIS (Netherlands)

    Kim, J.H.; Schouten, S.; Rodrigo-Gámiz, M.; Rampen, S.W.; Marino, G.; Huguet, C.; Helmke, P.; Buscail, R.; Hopmans, E.C.; Pross, J.; Sangiorgi, F.; Middelburg, J.; Sinninghe Damsté, J.S.

    2015-01-01

    The View the MathML sourceTEX86H paleothermometer based on isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs) has widely been applied in various marine settings to reconstruct past sea surface temperatures (SSTs). However, it still remains uncertain how well this proxy reconstructs annual

  13. Mevalonate Kinase Deficiency and Neuroinflammation: Balance between Apoptosis and Pyroptosis

    Directory of Open Access Journals (Sweden)

    Paola Maura Tricarico

    2013-11-01

    Full Text Available Mevalonic aciduria, a rare autosomal recessive disease, represents the most severe form of the periodic fever, known as Mevalonate Kinase Deficiency. This disease is caused by the mutation of the MVK gene, which codes for the enzyme mevalonate kinase, along the cholesterol pathway. Mevalonic aciduria patients show recurrent fever episodes with associated inflammatory symptoms, severe neurologic impairments, or death, in early childhood. The typical neurodegeneration occurring in mevalonic aciduria is linked both to the intrinsic apoptosis pathway (caspase-3 and -9, which is triggered by mitochondrial damage, and to pyroptosis (caspase-1. These cell death mechanisms seem to be also related to the assembly of the inflammasome, which may, in turn, activate pro-inflammatory cytokines and chemokines. Thus, this particular molecular platform may play a crucial role in neuroinflammation mechanisms. Nowadays, a specific therapy is still lacking and the pathogenic mechanisms involving neuroinflammation and neuronal dysfunction have not yet been completely understood, making mevalonic aciduria an orphan drug disease. This review aims to analyze the relationship among neuroinflammation, mitochondrial damage, programmed cell death, and neurodegeneration. Targeting inflammation and degeneration in the central nervous system might help identify promising treatment approaches for mevalonic aciduria or other diseases in which these mechanisms are involved.

  14. Mevalonate kinase deficiency: Evidence for a phenotypic continuum

    NARCIS (Netherlands)

    Simon, A; Kremer, H P H; Wevers, R A; Scheffer, H; de Jong, J G; van der Meer, J W M; Drenth, J. P.

    2004-01-01

    Both mevalonic aciduria, characterized by psychomotor retardation, cerebellar ataxia, recurrent fever attacks, and death in early childhood, and hyper-immunoglobulin D (hyper-IgD) syndrome, with recurrent fever attacks without neurologic symptoms, are caused by a functional deficiency of mevalonate

  15. Deuterium incorporation experiments from (3R)- and (3S)-[3-2H]leucine into characteristic isoprenoidal lipid-core of halophilic archaea suggests the involvement of isovaleryl-CoA dehydrogenase.

    Science.gov (United States)

    Yamauchi, Noriaki; Tanoue, Ryo

    2017-11-01

    The stereochemical reaction course for the two C-3 hydrogens of leucine to produce a characteristic isoprenoidal lipid in halophilic archaea was observed using incubation experiments with whole cell Halobacterium salinarum. Deuterium-labeled (3R)- and (3S)-[3- 2 H]leucine were freshly prepared as substrates from 2,3-epoxy-4-methyl-1-pentanol. Incorporation of deuterium from (3S)-[3- 2 H]leucine and loss of deuterium from (3R)-[3- 2 H]leucine in the lipid-core of H. salinarum was observed. Taken together with the results of our previous report, involving the incubation of chiral-labeled [5- 2 H]leucine, these results strongly suggested an involvement of isovaleryl-CoA dehydrogenase in leucine conversion to isoprenoid lipid in halophilic archaea. The stereochemical course of the reaction (anti-elimination) might have been the same as that previously reported for mammalian enzyme reactions. Thus, these results suggested that branched amino acids were metabolized to mevalonate in archaea in a manner similar to other organisms.

  16. Hyper-IgD syndrome or mevalonate kinase deficiency.

    NARCIS (Netherlands)

    Stoffels, M.; Simon, A.

    2011-01-01

    PURPOSE OF REVIEW: The hyper-IgD and periodic fever syndrome (HIDS) is one of the classical monogenetic hereditary autoinflammatory disorders, and together with the more severe mevalonic aciduria it is also known as 'mevalonate kinase deficiency' (MKD). In this study, we will give an overview of the

  17. Metabolism of Mevalonic Acid in Vegetative and Induced Plants of Xanthium strumarium.

    Science.gov (United States)

    Bledsoe, C S

    1978-11-01

    The metabolism of mevalonic acid in Xanthium strumarium L. Chicago plants was studied to determine how mevalonate was metabolized and whether metabolism was related to induction of flowering. Leaves of vegetative, photoperiodically induced, and chemically inhibited cocklebur plants were supplied with [(14)C]mevalonic acid prior to or during a 16-hour inductive dark period. Vegetative, induced, and Tris(2-diethylaminoethyl)phosphate trihydrochloride-treated plants did not differ significantly in the amount of [(14)C]mevalonic acid they absorbed, nor in the distribution of radioactivity among the leaf blade (97%), petiole (2.3%), or shoot tip (0.7%). [(14)C]Mevalonic acid was rapidly metabolized and transported out of the leaves. Possible metabolites of mevalonate were mevalonic acid phosphates and sterols. No detectable (14)C was found in gibberellins, carotenoids, or the phytol alcohol of chlorophyll. Chemically inhibited plants accumulated (14)C compounds not found in vegetative or induced plants. When ethanol extracts of leaves, petioles, and buds were chromatographed, comparisons of chromatographic patterns did not show significant differences between vegetative and induced treatments.

  18. Engineering a functional 1-deoxy-D-xylulose 5-phosphate (DXP) pathway in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, James [Univ. of California, Berkeley, CA (United States). California Institute of Quantitative Biosciences (QB3); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Dietzel, Kevin L. [Amyris, inc., Emeryville, CA (United States); Wichmann, Gale [Amyris, inc., Emeryville, CA (United States); Chan, Rossana [Univ. of California, Berkeley, CA (United States). California Institute of Quantitative Biosciences (QB3); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Antipov, Eugene [Amyris, inc., Emeryville, CA (United States); Moss, Nathan [Amyris, inc., Emeryville, CA (United States); Baidoo, Edward E. K. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Jackson, Peter [Amyris, inc., Emeryville, CA (United States); Gaucher, Sara P. [Amyris, inc., Emeryville, CA (United States); Gottlieb, Shayin [Amyris, inc., Emeryville, CA (United States); LaBarge, Jeremy [Amyris, inc., Emeryville, CA (United States); Mahatdejkul, Tina [Amyris, inc., Emeryville, CA (United States); Hawkins, Kristy M. [Amyris, inc., Emeryville, CA (United States); Muley, Sheela [Amyris, inc., Emeryville, CA (United States); Newman, Jack D. [Amyris, inc., Emeryville, CA (United States); Liu, Pinghua [Boston Univ., MA (United States). Dept. of Chemistry; Keasling, Jay D. [Univ. of California, Berkeley, CA (United States). California Institute of Quantitative Biosciences (QB3); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States). Depts. of Chemical & Biomolecular Engineering and Bioengineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems & Engineering Div.; Technical Univ. of Denmark, Hoesholm (Denmark). Novo Nodisk Foundation Center for Biosustainability; Zhao, Lishan [Amyris, inc., Emeryville, CA (United States)

    2016-10-27

    Isoprenoids are made by all free-living organisms and range from essential metabolites like sterols and quinones to more complex compounds like pinene and rubber. They are used in many commercial applications and much work has gone into engineering microbial hosts for their production. Isoprenoids are produced either from acetyl-CoA via the mevalonate pathway or from pyruvate and glyceraldehyde 3-phosphate via the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway. Saccharomyces cerevisiae exclusively utilizes the mevalonate pathway to synthesize native isoprenoids and in fact the alternative DXP pathway has never been found or successfully reconstructed in the eukaryotic cytosol. There are, however, several advantages to isoprenoid synthesis via the DXP pathway, such as a higher theoretical yield, and it has long been a goal to transplant the pathway into yeast. In this work, we investigate and address barriers to DXP pathway functionality in S. cerevisiae using a combination of synthetic biology, biochemistry and metabolomics. We report, for the first time, functional expression of the DXP pathway in S. cerevisiae. Under low aeration conditions, an engineered strain relying solely on the DXP pathway for isoprenoid biosynthesis achieved an endpoint biomass 80% of that of the same strain using the mevalonate pathway.

  19. Biosynthesis of sterols from mevalonate in a starfish, Coscinasterias acutispina

    International Nuclear Information System (INIS)

    Teshima, Shin-ichi; Kanazawa, Akio

    1976-01-01

    This study deals with the biosynthesis of sterols from mevalonate in a starfish, Coscinasterias acutispina. After injection of mevalonate-2- 14 C, the metabolites were investigated by using thin-layer, column, and gas-liquid chromatographic techniques. The detailed investigation of radioactive desmethylsterols showed that radioactivity was mainly associated with cholest-7-enol. However, there was no evidence for the incorporation of mevalonate-2- 14 C into C 26 -, C 28 -, and C 29 -sterols besides cholestanol and cholesterol. The results indicated that the starfish, C. acutispina, is capable of synthesizing at least cholest-7-enol from mevalonate via probably squalene and lanosterol etc. But not sterols other than C 27 -sterols. Also, it was suggested that the conversion of cholest-7-enol to cholesterol may not proceed in this starfish. (auth.)

  20. Metabolism of Mevalonic Acid in Vegetative and Induced Plants of Xanthium strumarium 1

    Science.gov (United States)

    Bledsoe, Caroline S.; Ross, Cleon W.

    1978-01-01

    The metabolism of mevalonic acid in Xanthium strumarium L. Chicago plants was studied to determine how mevalonate was metabolized and whether metabolism was related to induction of flowering. Leaves of vegetative, photoperiodically induced, and chemically inhibited cocklebur plants were supplied with [14C]mevalonic acid prior to or during a 16-hour inductive dark period. Vegetative, induced, and Tris(2-diethylaminoethyl)phosphate trihydrochloride-treated plants did not differ significantly in the amount of [14C]mevalonic acid they absorbed, nor in the distribution of radioactivity among the leaf blade (97%), petiole (2.3%), or shoot tip (0.7%). [14C]Mevalonic acid was rapidly metabolized and transported out of the leaves. Possible metabolites of mevalonate were mevalonic acid phosphates and sterols. No detectable 14C was found in gibberellins, carotenoids, or the phytol alcohol of chlorophyll. Chemically inhibited plants accumulated 14C compounds not found in vegetative or induced plants. When ethanol extracts of leaves, petioles, and buds were chromatographed, comparisons of chromatographic patterns did not show significant differences between vegetative and induced treatments. ImagesFig. 1 PMID:16660583

  1. Activity of mevalonate pathway inhibitors against breast and ovarian cancers in the ATP-based tumour chemosensitivity assay

    International Nuclear Information System (INIS)

    Knight, Louise A; Kurbacher, Christian M; Glaysher, Sharon; Fernando, Augusta; Reichelt, Ralf; Dexel, Susanne; Reinhold, Uwe; Cree, Ian A

    2009-01-01

    Previous data suggest that lipophilic statins such as fluvastatin and N-bisphosphonates such as zoledronic acid, both inhibitors of the mevalonate metabolic pathway, have anti-cancer effects in vitro and in patients. We have examined the effect of fluvastatin alone and in combination with zoledronic acid in the ATP-based tumour chemosensitivity assay (ATP-TCA) for effects on breast and ovarian cancer tumour-derived cells. Both zoledronic acid and fluvastatin showed activity in the ATP-TCA against breast and ovarian cancer, though fluvastatin alone was less active, particularly against breast cancer. The combination of zoledronic acid and fluvastatin was more active than either single agent in the ATP-TCA with some synergy against breast and ovarian cancer tumour-derived cells. Sequential drug experiments showed that pre-treatment of ovarian tumour cells with fluvastatin resulted in decreased sensitivity to zoledronic acid. Addition of mevalonate pathway components with zoledronic acid with or without fluvastatin showed little effect, while mevalonate did reduced inhibition due to fluvastatin. These data suggest that the combination of zoledronic acid and fluvastatin may have activity against breast and ovarian cancer based on direct anti-cancer cell effects. A clinical trial to test this is in preparation

  2. Mevalonate 5-diphosphate mediates ATP binding to the mevalonate diphosphate decarboxylase from the bacterial pathogen Enterococcus faecalis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Liang; Mermoud, James C.; Paul, Lake N.; Steussy, Calvin Nicklaus; Stauffacher, Cynthia V. (Purdue)

    2017-10-12

    The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen Enterococcus faecalis. The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from E. faecalis (MDDEF). The MDDEF crystal structure in complex with ATP (MDDEF–ATP) revealed that the phosphate-binding loop (amino acids 97–105) is not involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDDEF to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDDEF performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs during the MDDEF-catalyzed reaction. The disengagement of the phosphate-binding loop concomitant with the alternative ATP-binding configuration may provide the structural basis for antimicrobial design against these pathogenic enterococci.

  3. Synthesis, Antiviral Bioactivity of Novel 4-Thioquinazoline Derivatives Containing Chalcone Moiety

    Directory of Open Access Journals (Sweden)

    Zhihua Wan

    2015-06-01

    Full Text Available A series of novel 4-thioquinazoline derivatives containing chalcone moiety were designed, synthesized and systematically evaluated for their antiviral activity against TMV. The bioassay results showed that most of these compounds exhibited moderate to good anti-TMV activity. In particular, compounds M2 and M6 possessed appreciable protection activities against TMV in vivo, with 50% effective concentration (EC50 values of 138.1 and 154.8 μg/mL, respectively, which were superior to that of Ribavirin (436.0 μg/mL. The results indicated that chalcone derivatives containing 4-thioquinazoline moiety could effectively control TMV. Meanwhile, the structure-activity relationship (SAR of the target compounds, studied using the three-dimensional quantitative structure-activity relationship (3D-QSAR method of comparative molecular field analysis (CoMFA based on the protection activities against TMV, demonstrated that the CoMFA model exhibited good predictive ability with the cross-validated q2 and non-cross-validated r2 values of 0.674 and 0.993, respectively. Meanwhile, the microscale thermophoresis (MST experimental showed that the compound M6 may interaction with the tobacco mosaic virus coat protein (TMV CP.

  4. Effect of a spacer moiety on radiometal labelled Neurotensin derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Mascarin, A.; Valverde, I.E.; Mindt, T.L. [Univ. of Basel Hospital (Switzerland). Div. of Radiopharmaceutical Chemistry

    2013-07-01

    The binding sequence of the regulatory peptide Neurotensin, NT(8-13), represents a promising tumour-specific vector for the development of radiopeptides useful in nuclear oncology for the diagnosis (imaging) and therapy of cancer. A number of radiometal-labelled NT(8-13) derivatives have been reported, however, the effect of the spacer which connects the vector with the radiometal complex has yet not been investigated systematically. Because a spacer moiety can influence potentially important biological characteristics of radiopeptides, we synthesized three [DOTA({sup 177}Lu)]-X-NT(8-13) derivatives and evaluated the effect of a spacer (X) on the physico-chemical properties of the conjugate including lipophilicity, stability, and in vitro receptor affinity and cell internalization. (orig.)

  5. Enhanced protein and biochemical production using CRISPRi-based growth switches

    DEFF Research Database (Denmark)

    Li, Songyuan; Jendresen, Christian Bille; Grünberger, Alexander

    2016-01-01

    functionality of the growth switches. Decoupling of growth from production of biochemicals was demonstrated for mevalonate, a precursor for isoprenoid compounds. Mass yield of mevalonate was increased by 41%, and production was maintained for more than 45 h after activation of the pyrF-based growth switch...

  6. Chemical Synthesis and Biological Activities of Novel Pleuromutilin Derivatives with Substituted Amino Moiety

    Science.gov (United States)

    Shang, Ruofeng; Wang, Shengyu; Xu, Ximing; Yi, Yunpeng; Guo, Wenzhu; YuLiu; Liang, Jianping

    2013-01-01

    Novel pleuromutilin derivatives designed based on the structure of valnemulin were synthesized and evaluated for their in vitro antibacterial activities. These pleuromutilin derivatives with substituted amino moiety exhibited excellent activities against methicillin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis, Escherichia coli, and Streptococcus agalactiae. Compound 5b showed the highest antibacterial activities and even exceeded tiamulin. Moreover, the docking experiments provided information about the binding model between the synthesized compounds and peptidyl transferase center (PTC) of 23S rRNA. PMID:24376551

  7. Chemical synthesis and biological activities of novel pleuromutilin derivatives with substituted amino moiety.

    Directory of Open Access Journals (Sweden)

    Ruofeng Shang

    Full Text Available Novel pleuromutilin derivatives designed based on the structure of valnemulin were synthesized and evaluated for their in vitro antibacterial activities. These pleuromutilin derivatives with substituted amino moiety exhibited excellent activities against methicillin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis, Escherichia coli, and Streptococcus agalactiae. Compound 5b showed the highest antibacterial activities and even exceeded tiamulin. Moreover, the docking experiments provided information about the binding model between the synthesized compounds and peptidyl transferase center (PTC of 23S rRNA.

  8. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Kwak, Suryang; Kim, Soo Rin; Xu, Haiqing; Zhang, Guo-Chang; Lane, Stephan; Kim, Heejin; Jin, Yong-Su

    2017-11-01

    Saccharomyces cerevisiae has limited capabilities for producing fuels and chemicals derived from acetyl-CoA, such as isoprenoids, due to a rigid flux partition toward ethanol during glucose metabolism. Despite numerous efforts, xylose fermentation by engineered yeast harboring heterologous xylose metabolic pathways was not as efficient as glucose fermentation for producing ethanol. Therefore, we hypothesized that xylose metabolism by engineered yeast might be a better fit for producing non-ethanol metabolites. We indeed found that engineered S. cerevisiae on xylose showed higher expression levels of the enzymes involved in ethanol assimilation and cytosolic acetyl-CoA synthesis than on glucose. When genetic perturbations necessary for overproducing squalene and amorphadiene were introduced into engineered S. cerevisiae capable of fermenting xylose, we observed higher titers and yields of isoprenoids under xylose than glucose conditions. Specifically, co-overexpression of a truncated HMG1 (tHMG1) and ERG10 led to substantially higher squalene accumulation under xylose than glucose conditions. In contrast to glucose utilization producing massive amounts of ethanol regardless of aeration, xylose utilization allowed much less amounts of ethanol accumulation, indicating ethanol is simultaneously re-assimilated with xylose consumption and utilized for the biosynthesis of cytosolic acetyl-CoA. In addition, xylose utilization by engineered yeast with overexpression of tHMG1, ERG10, and ADS coding for amorphadiene synthase, and the down-regulation of ERG9 resulted in enhanced amorphadiene production as compared to glucose utilization. These results suggest that the problem of the rigid flux partition toward ethanol production in yeast during the production of isoprenoids and other acetyl-CoA derived chemicals can be bypassed by using xylose instead of glucose as a carbon source. Biotechnol. Bioeng. 2017;114: 2581-2591. © 2017 Wiley Periodicals, Inc. © 2017 Wiley

  9. Isoprenoid biosynthesis and mevalonate kinase deficiency

    NARCIS (Netherlands)

    Henneman, L.

    2011-01-01

    Mevalonaat Kinase Deficiëntie (MKD) is een aangeboren ziekte geassocieerd met heftige koortsaanvallen die drie tot vier dagen aanhouden en gepaard gaan met koude rillingen, gewrichtsklachten, huiduitslag, hoofdpijn, duizeligheid, buikpijn, braken en diarree. De koortsaanvallen treden gemiddeld eens

  10. Syntehsis and antiproliferative activities of chloropyridazine derivatives retain alkylsulfonyl moiety

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chae Won; Park, Myung Sook [College of Pharmacy, Duksung Women' s University, Seoul (Korea, Republic of)

    2016-11-15

    Some chloropyridazine derivatives have shown interesting pharmacodynamics properties in terms of antioxidant and anti-human rotavirus (HRV) activities (Figure 1). To date, however, no study has evaluated the antiproliferative effects of chloropyridazines in other types of human cancer cells. In conclusion, we designed and synthesized a total of five groups of alkoxy-(or alkylthio-, alkylselenyl-, alkylsufinyl alkylsulfonyl-)chloropyridazines, and their antiproliferative activity was evaluated in the human cancer cell lines. IC{sub 50} values showed that the alkylsulfonylchloropyridazine compounds exhibited more active than the other four groups having alkoxy, alkylthio, alkylselenyl, alkylsulfinyl moieties against MCF-7 and Hep2B Cells.

  11. Syntehsis and antiproliferative activities of chloropyridazine derivatives retain alkylsulfonyl moiety

    International Nuclear Information System (INIS)

    Kim, Chae Won; Park, Myung Sook

    2016-01-01

    Some chloropyridazine derivatives have shown interesting pharmacodynamics properties in terms of antioxidant and anti-human rotavirus (HRV) activities (Figure 1). To date, however, no study has evaluated the antiproliferative effects of chloropyridazines in other types of human cancer cells. In conclusion, we designed and synthesized a total of five groups of alkoxy-(or alkylthio-, alkylselenyl-, alkylsufinyl alkylsulfonyl-)chloropyridazines, and their antiproliferative activity was evaluated in the human cancer cell lines. IC_5_0 values showed that the alkylsulfonylchloropyridazine compounds exhibited more active than the other four groups having alkoxy, alkylthio, alkylselenyl, alkylsulfinyl moieties against MCF-7 and Hep2B Cells

  12. Detection of nonsterol isoprenoids by HPLC-MS/MS

    NARCIS (Netherlands)

    Henneman, Linda; van Cruchten, Arno G.; Denis, Simone W.; Amolins, Michael W.; Placzek, Andrew T.; Gibbs, Richard A.; Kulik, Willem; Waterham, Hans R.

    2008-01-01

    Isoprenoids constitute an important class of biomolecules that participate in many different cellular processes. Most available detection methods allow the identification of only one or two specific nonsterol isoprenoid intermediates following radioactive or fluorescent labeling. We here report a

  13. Volatile isoprenoids as defense compounds during abiotic stress in tropical plants

    Science.gov (United States)

    Jardine, K.

    2015-12-01

    Emissions of volatile isoprenoids from tropical forests play central roles in atmospheric processes by fueling atmospheric chemistry resulting in modified aerosol and cloud lifecycles and their associated feedbacks with the terrestrial biosphere. However, the identities of tropical isoprenoids, their biological and environmental controls, and functions within plants and ecosystems remain highly uncertain. As part of the DOE ARM program's GoAmazon 2014/15 campaign, extensive field and laboratory observations of volatile isoprenoids are being conducted in the central Amazon. Here we report the results of our completed and ongoing activities at the ZF2 forest reserve in the central Amazon. Among the results of the research are the suprisingly high abundance of light-dependent volatile isoprenoid emissions across abundant tree genera in the Amazon in both primary and secondary forests, the discovery of highly reactive monoterpene emissions from Amazon trees, and evidence for the importance of volatile isoprenoids in protecting photosynthesis during oxidative stress under elevated temperatures including energy consumption and direct antioxidant functions and a tight connection betwen volatile isoprenoid emissions, photorespiration, and CO2 recycling within leaves. The results highlight the need to model allocation of carbon to isoprenoids during elevated temperature stress in the tropics.

  14. Synthesis of Some New 1,3,4-Thiadiazole, Thiazole and Pyridine Derivatives Containing 1,2,3-Triazole Moiety

    Directory of Open Access Journals (Sweden)

    Nadia A. Abdelriheem

    2017-02-01

    Full Text Available In this study, 1-(5-Methyl-1-(p-tolyl-1H-1,2,3-triazol-4-ylethan-1-one, was reacted with Thiosemicarbazide, alkyl carbodithioate and benzaldehyde to give thiosemicarbazone, alkylidenehydrazinecarbodithioate and 3-phenylprop-2-en-1-one-1,2,3-triazole derivatives. The 1,3,4-thiadiazole derivatives containing the 1,2,3-triazole moiety were obtained via reaction of alkylidenecarbodithioate with hydrazonoyl halides. Also, hydrazonoyl halides were reacted with thiosemicarbazone and pyrazolylthioamide to give 1,3-thiazoles derivatives. Subsequently, 3-phenyl2-en-1-one was used to synthesize substituted pyridines and substituted nicotinic acid ester. The latter was converted to its azide compound which was reacted with aromatic amines and phenol to give substituted urea and phenylcarbamate containing 1,2,3-triazole moiety. The newly synthesized compounds were established by elemental analysis, spectral data and alternative synthesis whenever possible.

  15. Synthesis and Antifungal Activity of Novel Sulfone Derivatives Containing 1,3,4-Oxadiazole Moieties

    Directory of Open Access Journals (Sweden)

    Maoguo Tong

    2011-11-01

    Full Text Available A series of new sulfone compounds containing 1,3,4-oxadiazole moieties were synthesized. The structures of these compounds were confirmed by spectroscopic data (IR, 1H- and 13C-NMR and elemental analyses. Antifungal tests indicated that all the title compounds exhibited good antifungal activities against eight kinds of plant pathogenic fungi, and some showed superiority over the commercial fungicide hymexazol. Among them, compounds 5d, 5e, 5f, and 5i showed prominent activity against B. cinerea, with determined EC50 values of 5.21 μg/mL, 8.25 µg/mL, 8.03 µg/mL, and 21.00 µg/mL, respectively. The present work demonstrates that sulfone derivatives such as 5d containing a 1,3,4-oxadiazole moiety can be used as possible lead compounds for the development of potential agrochemicals.

  16. Hydrocarbons and energy from plants: Final report, 1984-1987

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, M.; Otvos, J.; Taylor, S.E.; Nemethy, E.K.; Skrukrud, C.L.; Hawkins, D.R.; Lago, R.

    1988-08-01

    Plant hydrocarbon (isoprenoid) production was investigated as an alternative source to fossil fuels. Because of their high triterpenoid (hydrocarbon) content of 4--8%, Euphorbia lathyris plants were used as a model system for this study. The structure of the E. lathyris triterpenoids was determined, and triterpenoid biosynthesis studied to better understand the metabolic regulation of isoprenoid production. Triterpenoid biosynthesis occurs in two distinct tissue types in E. lathyris plants: in the latex of the laticifer cells; and in the mesophyll cells of the leaf and stem. The latex has been fractionated by centrifugation, and it has been determined that the later steps of isoprenoid biosynthesis, the conversion of mevalonic acid to the triterpenes, are compartmentized within a vacuole. Also identified was the conversion of hydroxymethyl glutaryl-CoA to mevalonic acid, catalyzed by the enzyme Hydroxymethyl glutaryl-CoA Reductase, as a key rate limiting step in isoprenoid biosynthesis. At least two isozymes of this enzyme, one in the latex and another in the leaf plastids, have been identified. Environmental stress has been applied to plants to study changes in carbon allocation. Salinity stress caused a large decrease in growth, smaller decreases in photosynthesis, resulting in a larger allocation of carbon to both hydrocarbon and sugar production. An increase in Hydroxymethyl glutaryl-CoA Reductase activity was also observed when isoprenoid production increased. Other species where also screened for the production of hydrogen rich products such as isoprenoids and glycerides, and their hydrocarbon composition was determined.

  17. Influence of deep-water derived isoprenoid tetraether lipids on the TEXH86 paleothermometer in the Mediterranean Sea

    NARCIS (Netherlands)

    Kim, J.-H.; Schouten, Stefan; Rodrigo-Gámiz, Marta; Rampen, Sebastiaan; Marino, Gianluca; Huguet, Carme; Helmke, Peer; Buscail, Roselyne; Hopmans, Ellen C.; Pross, J.; Sangiorgi, Francesca; Middelburg, Jack B.M.; Sinninghe Damsté, Jaap S.

    2015-01-01

    The View the MathML sourceTEX86H paleothermometer based on isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs) has widely been applied in various marine settings to reconstruct past sea surface temperatures (SSTs). However, it still remains uncertain how well this proxy reconstructs annual

  18. Synthesis of New Thiazole Derivatives Bearing A Sulfonamide Moiety Of Expected Anticancer And Radiosensitizing Activities

    International Nuclear Information System (INIS)

    Mohamed, S.Sh.I.

    2012-01-01

    In a search for new cytotoxic agents with improved antitumor activity and selectivity, some new pyrano thiazole and thiazolopyranopyrimidine derivatives bearing sulfonamide moiety were synthesized. The newly synthesized compounds were evaluated for their antitumor activity alone and in combination with γ-irradiation. These new compounds were docked inside the active site of carbonic anhydrase II to predict their mechanism of action.

  19. Facile Synthesis of Novel Vanillin Derivatives Incorporating a Bis(2-hydroxyethyl)dithhioacetal Moiety as Antiviral Agents.

    Science.gov (United States)

    Zhang, Jian; Zhao, Lei; Zhu, Chun; Wu, Zengxue; Zhang, Guoping; Gan, Xiuhai; Liu, Dengyue; Pan, Jianke; Hu, Deyu; Song, Baoan

    2017-06-14

    A series of vanillin derivatives incorporating a bis(2-hydroxyethyl)dithioacetal moiety was designed and synthesized via a facile method. A plausible reaction pathway was proposed and verified by computational studies. Bioassay results demonstrated that target compounds possessed good to excellent activities against potato virus Y (PVY) and cucumber mosaic virus (CMV), of which, compound 6f incorporating a bis(2-hydroxyethyl)dithioacetal moiety, exhibited the best curative and protection activities against PVY and CMV in vivo, with 50% effective concentration values of 217.6, 205.7 μg/mL and 206.3, 186.2 μg/mL, respectively, better than those of ribavirin (848.0, 808.1 μg/mL and 858.2, 766.5 μg/mL, respectively), dufulin (462.6, 454.8 μg/mL and 471.2, 465.4 μg/mL, respectively), and ningnanmycin (440.5, 425.3 μg/mL and 426.1, 405.3 μg/mL, respectively). Current studies provide support for the application of vanillin derivatives incorporating bis(2-hydroxyethyl)dithioacetal as new antiviral agents.

  20. Anti-tuberculosis lupane-type isoprenoids from Syzygium guineense Wild DC. (Myrtaceae stem bark

    Directory of Open Access Journals (Sweden)

    I.A. Oladosu

    2017-12-01

    Full Text Available Plant derived isoprenoids commonly called terpenoids, are not only useful as chemosytemic markers but are increasingly attracting attention in the development of newer drugs for the treatment of multi-drug resistant tuberculosis. Anti-tuberculosis activity guided solvent fractionation and chromatographic separation of the chloroform extract of S. guineense stem bark resulted in the isolation of two bioactive 3-β-hydroxylupane-type isoprenoids: betulinic acid methylenediol ester (1 (MIC; 0.15 mg/mL and betulinic acid (2 (MIC; 0.60 mg/mL. The structures of the isolated compounds were elucidated using spectroscopic techniques. The antituberculosis assay was done using the Mycobacterium Growth Indicator Tube (MGIT method. This is the first report of the isolation of the anti-tuberculosis constituents of S. guineense and its potentials for the development of drug leads for the treatment of tuberculosis thus validating its ethno-medicinal uses.

  1. Directed Evolution towards Increased Isoprenoid Production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Carlsen, Simon; Nielsen, Michael Lynge; Kielland-Brandt, Morten

    production can easily be scaled to meet current demands and it is also an environmental benign production method compared to organic synthesis. Thus it would be attractive to engineer a microorganism to produce high amounts of IPP and other immediate prenyl precursors such as geranyl pyrophosphate, farnesyl...... for discovering new genetic perturbations, which would results in and increased production of isoprenoids by S. cerevisiae has been very limited. This project is focus on creating diversity within a lycopene producing S. cerevisiae strain by construction of gDNA-, cDNA-, and transposon-libraries. The diversified...... coloration which is the result of higher amount of lycopene is being produced and hence high amount of isoprenoid precursor being available. This will elucidate novel genetic targets for increasing isoprenoid production in S. cerevisiae...

  2. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    KAUST Repository

    Meier, Stuart; Tzfadia, Oren; Vallabhaneni, Ratnakar; Gehring, Christoph A; Wurtzel, Eleanore T

    2011-01-01

    Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.Results: A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of

  3. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    KAUST Repository

    Meier, Stuart

    2011-05-19

    Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.Results: A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of

  4. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Vallabhaneni Ratnakar

    2011-05-01

    Full Text Available Abstract Background The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana. Results A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR but was inhibited by abscisic acid (ABA. Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced

  5. Synthesis and antiproliferative activity of novel limonene derivatives with a substituted thiourea moiety

    International Nuclear Information System (INIS)

    Figueiredo, Isis M.; Santos, Luciane V. dos; Costa, Willian F. da; Silva, Cleuza C. da; Sarragiotto, Maria H.; Carvalho, Joao E. de; Sacoman, Juliana L.; Kohn, Luciana K.

    2006-01-01

    A series of R-(+)-limonene derivatives bearing a substituted thiourea moiety (3-13) and five S-methyl analogs (14-18) were synthesized and evaluated for their in vitro antiproliferative activity against human cancer cell lines. Compounds bearing aromatic substituents (3-6) exhibit cytostatic activity in the full panel of cell lines tested, with GI 50 values in the range of 2.5 to 24 μmol L -1 . Compounds 3, 10, 12 and 16 were the most active with GI 5 )0 values in the range of 0.41 to 3.0 μmol L -1 , against different cell lines. (author)

  6. [MVK gene abnormality and new approach to treatment of hyper IgD syndrome and periodic fever syndrome].

    Science.gov (United States)

    Naruto, Takuya

    2007-04-01

    Hyper IgD and periodic fever syndrome (HIDS; OMIM 260920) is one of the hereditary autoinflammatory syndromes characterized by recurrent episodes of fever and inflammation.. HIDS is an autosomal recessive disorder characterized by recurrent fever attacks in early childhood. HIDS caused by mevalonate kinase (MK) mutations, also that is the gene of mevalonic aciduria (OMIM 251170). During febrile episodes, urinary mevalonate concentrations were found to be significantly elevated in patients. Diagnosis of HIDS was retrieving gene or measurement of the enzyme activity in peripheral blood lymphocyte in general. This of HIDS is an activity decline of MK, and a complete deficiency of MK becomes a mevalonic aciduria with a nervous symptom. The relation between the fever and inflammation of mevalonate or isoprenoid products are uncertain. The therapy attempt with statins, which is inhibited the next enzyme after HMG-CoA reductase, or inhibit the proinflammatory cytokines.

  7. Mevalonosomes: specific vacuoles containing the mevalonate pathway in Plocamium brasiliense cortical cells (Rhodophyta).

    Science.gov (United States)

    Paradas, Wladimir Costa; Crespo, Thalita Mendes; Salgado, Leonardo Tavares; de Andrade, Leonardo Rodrigues; Soares, Angélica Ribeiro; Hellio, Claire; Paranhos, Ricardo Rogers; Hill, Lilian Jorge; de Souza, Geysa Marinho; Kelecom, Alphonse Germaine Albert Charles; Da Gama, Bernardo Antônio Perez; Pereira, Renato Crespo; Amado-Filho, Gilberto Menezes

    2015-04-01

    This paper has identified, for the first time in a member of the Rhodophyta, a vacuolar organelle containing enzymes that are involved in the mevalonate pathway-an important step in red algal isoprenoid biosynthesis. These organelles were named mevalonosomes (Mev) and were found in the cortical cells (CC) of Plocamium brasiliense, a marine macroalgae that synthesizes several halogenated monoterpenes. P. brasiliense specimens were submitted to a cytochemical analysis of the activity of the 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS). Using transmission electron microscopy (TEM), we confirmed the presence of HMGS activity within the Mev. Because HMGS is necessary for the biosynthesis of halogenated monoterpenes, we isolated a hexanic fraction (HF) rich in halogenated monoterpenes from P. brasiliense that contained a pentachlorinated monoterpene as a major metabolite. Because terpenes are often related to chemical defense, the antifouling (AF) activity of pentachlorinated monoterpene was tested. We found that the settlement of the mussel Perna perna was reduced by HF treatment (2.25 times less than control; 40% and 90% of fouled surface, respectively; P = 0.001; F9,9 = 1.13). The HF (at 10 μg · mL(-1) ) also inhibited three species of fouling microalgae (Chlorarachnion reptans, Cylindrotheca cloisterium, and Exanthemachrysis gayraliae), while at a higher concentration (50 μg · mL(-1) ), it inhibited the bacteria Halomonas marina, Polaribacter irgensii, Pseudoalteromonas elyakovii, Shewanella putrefaciens, and Vibrio aestuarianus. The AF activity of P. brasiliense halogenated monoterpenes and the localization of HMGS activity inside Mev suggest that this cellular structure found in CC may play a role in thallus protection against biofouling. © 2015 Phycological Society of America.

  8. Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments.

    Science.gov (United States)

    Brassell, S C; Wardroper, A M; Thomson, I D; Maxwell, J R; Eglinton, G

    1981-04-23

    The widespread occurrence of extended hopanoids in sediments and petroleums illustrates the importance of bacterial lipid contributions to geological materials. In archaebacteria, however, hopanoids are absent; their role as structural components of biomembranes is fulfilled by acyclic isoprenoids. Recent studies of the lipid constituents of archaebacteria have greatly extended the range of acyclic isoprenoid skeletons known in organisms (Fig. 1). In particularly, isoprenoids with head-to-head linkages have been identified, and such compounds (for example, 3,7,11,15,18,22,26,30-octamethyldotriacontane, I) have been recognized in petroleum and as degradation products of Messel shale kerogen. Here we report the first recognition of 2,6,10,15,19-pentamethyleicosane (II), a known component of methanogens, in marine sediments of Recent to Cretaceous age (Table 1) and suggest that it and certain other acyclic isoprenoids may be used as biological markers for methanogens.

  9. Nonorthologous gene displacement of phosphomevalonate kinase

    NARCIS (Netherlands)

    Houten, S. M.; Waterham, H. R.

    2001-01-01

    Phosphomevalonate kinase (PMK; EC 2.7.4.2) catalyzes the phosphorylation of 5-phosphomevalonate into 5-diphosphomevalonate, an essential step in isoprenoid biosynthesis via the mevalonate pathway. So far, two nonorthologous genes encoding PMK have been described, the Saccharomyces cerevisiae ERG8

  10. Azomesogens with a heterocyclic moiety

    Indian Academy of Sciences (India)

    Unknown

    Azomesogens with a heterocyclic moiety. †. JAYRANG S DAVE and MEERA MENON*. Department of Applied Chemistry, Faculty of Technology and Engineering, MS University of Baroda,. Baroda 390 001, India. Abstract. Azobenzene derivatives were among the first ten liquid crystalline compounds. But there have been.

  11. Regulation of the Mevalonate Pathway for the Prevention of Breast Cancer

    National Research Council Canada - National Science Library

    Archer, Michael

    2000-01-01

    ...) can be accounted for by their inhibitory effect on the cholesterol biosynthesis (mevalonate) pathway. In Task 1, we have shown that the decrease in mammary gland HMG-CoA reductase seen in LDL-R -/- mice compared...

  12. Coumarin derivatives bearing benzoheterocycle moiety: synthesis, cholinesterase inhibitory, and docking simulation study

    Directory of Open Access Journals (Sweden)

    Kimia Hirbod

    2017-06-01

    Full Text Available Objective(s: To investigate the efficiency of a novel series of coumarin derivatives bearing benzoheterocycle moiety as novel cholinesterase inhibitors. Materials and Methods: Different 7-hydroxycoumarin derivatives were synthesized via Pechmann or Knoevenagel condensation and conjugated to different benzoheterocycle (8-hydroxyquinoline, 2-mercaptobenzoxazole or 2-mercaptobenzimidazole using dibromoalkanes 3a-m. Final compounds were evaluated against acetylcholinesterase (AChE and butyrylcholinesterase (BuChE by Ellman's method. Kinetic study of AChE inhibition and ligand-protein docking simulation were also carried out for the most potent compound 3b. Results: Some of the compounds revealed potent and selective activity against AChE. Compound 3b containing the quinoline group showed the best activity with an IC50 value of 8.80 µM against AChE. Kinetic study of AChE inhibition revealed the mixed-type inhibition of the enzyme by compound 3b. Ligand-protein docking simulation also showed that the flexibility of the hydrophobic five carbons linker allows the quinoline ring to form π-π interaction with Trp279 in the PAS. Conclusion: We suggest these synthesized compounds could become potential leads for AChE inhibition and prevention of AD symptoms.

  13. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    Science.gov (United States)

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Isoprenoid Pathway And Neurological And Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Ravikumar A

    1999-01-01

    Full Text Available The coexistence of neuronal degeneration, psychiatric manifestation, immune activation and malignant transformation has been documented in literature, suggesting a central dysfunction in the pathophysiology of these disorders. The isoprenoid pathway may be candidate in this respect, in view of the changes in the concentration of some products of this pathway in many of these disorders, however, no detailed study has been carried out in this respect. In view of this, a study was undertaken on the isoprenoid pathway in some of these disorders - primary generalized epilepsy, Parkinson’s disease (PD, schizophrenia, manic depressive psychosis (MDP, CNS glioma, multiple sclerosis, subacute sclerosing panencephalitis (SSPEand a familial group with familial coexistence of schizophrenia, PD, primary generalized epilepsy, malignant neoplasia, rheumatoid arthritis and syndrome-X over three generations. The following parameters were studied in the patients of these disorders as compared to age and sex matched control subjects - ubiquinone dolichol, digoxin, activity of HMG CoA reductase in the plasma and erthyorcyte membrane Na -K--ATpase. Increase in the activity of HMG CoA reductase and in the concentration of plasma digoxin and dolichol was observed in most of these cases. On the other hand, there was decrease in the concentration of plasma ubiquinone. Decrease in the activity of erythrocyte membrane Na-K- ATpase activity for which digoxin is an inhibitor was also observed in all the cases studied. These results indicate an upregulation of the isoprenoid pathway in the neurological and psychiatric disorders studied. The implications of this change is discussed in details.

  15. One-Pot Multicomponent Synthesis of Thiourea Derivatives in Cyclotriphosphazenes Moieties

    Directory of Open Access Journals (Sweden)

    Zainab Ngaini

    2017-01-01

    Full Text Available In this study, hexasubstituted thiourea was carried out via reaction of isothiocyanato cyclophosphazene intermediates with a series of aromatics amines and amino acids in a one-pot reaction system. The reaction was not as straightforward as typical thiourea synthesis. Six unexpected thiourea derivatives 3a–f were formed in the presence of cyclotriphosphazene moieties in good yields (53–82%. The structures of 3a–f were characterized by elemental analysis and FTIR, 1H, 13C, and 31P NMR spectroscopies. The occurrence of reverse thioureas formation in a one-pot reaction system is discussed. The possible binding interaction of the synthesised thiourea 3a-b in comparison to the predicted phenyl thiourea 5a-b and the targeted 4a with enzyme enoyl ACP reductase (FabI is also discussed. Molecular docking of the targeted hexasubstituted thiourea 4a is able to give higher binding affinity of −7.5 kcal/mol compared to 5a-b (−5.9 kcal/mol and −6.3 kcal/mol and thiourea 3a-b (−4.5 kcal/mol and −4.7 Kcal/mol.

  16. The Regulation of the Mevalonate Pathway for the Prevention of Breast Cancer

    National Research Council Canada - National Science Library

    Archer, Michael

    2001-01-01

    ...)can be accounted for by their inhibitory effect on the cholesterol biosynthesis (mevalonate) pathway. In Task 1, we have shown that the decrease in mammary gland HMG-CoA redustase seen in LDL-R -/- mice compared...

  17. Are pleiotropic effects of statins real?

    Directory of Open Access Journals (Sweden)

    Alberto Corsini

    2007-11-01

    Full Text Available Alberto Corsini, Nicola Ferri, Michele CortellaroDepartment of Pharmacological Sciences and Department of Clinical Sciences, “Luigi Sacco”, University of Milan, Milan, ItalyAbstract: The clinical benefits of statins are strongly related to their low density lipoproteincholesterol (LDL-C lowering properties. However, because mevalonic acid (MVA, the product of 3-hydroxy-3-methyl-3-glutaryl coenzyme A (HMG-CoA reductase reaction, is the precursor not only of cholesterol but also of nonsteroidal isoprenoid compounds, the inhibition of HMG-CoA reductase may result in pleiotropic effects, independent of their hypocholesterolemic properties. The discrimination between the pleiotropic from LDL-C lowering effects may potentially be more evident during the early phase of treatment since plasma MVA levels drop up to 70% within 1–2 hours while a reduction of LDL-C, detectable after 24 hours, became significant after 6–7 days. Therefore, the deprivation of circulating MVA-derived isoprenoids in the early phase of treatment could be the main mechanism responsible for the atheroprotective effect of statins. This early window of protection in the absence of LDL-C lowering suggests that the anti-inflammatory and the pleiotropic properties of statins may have clinical importance. Therefore, acute coronary syndromes could represent a clinical condition for addressing the early benefits of statins therapy, ie, within 24 h of the event, independent of LDL-C lowering.Keywords: anti-inflammatory effects of statins, mevalonate pathway, LDL lowering, acute coronary syndrome, prenylated proteins

  18. Design, Synthesis and Biological Evaluation of Novel Bromophenol Derivatives Incorporating Indolin-2-One Moiety as Potential Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Li-Jun Wang

    2015-02-01

    Full Text Available A series of bromophenol derivatives containing indolin-2-one moiety were designed and evaluated that for their anticancer activities against A549, Bel7402, HepG2, HeLa and HCT116 cancer cell lines using MTT assay in vitro. Among them, seven compounds (4g–4i, 5h, 6d, 7a, 7b showed potent activity against the tested five human cancer cell lines. Wound-healing assay demonstrated that compound 4g can be used as a potent compound for inactivating invasion and metastasis by inhibiting the migration of cancer cells. The structure–activity relationships (SARs of bromophenol derivatives had been discussed, which were useful for exploring and developing bromophenol derivatives as novel anticancer drugs.

  19. Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase

    DEFF Research Database (Denmark)

    Montalvetti, A; Pena Diaz, Javier; Hurtado, R

    2000-01-01

    In eukaryotes the enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyses the synthesis of mevalonic acid, a common precursor to all isoprenoid compounds. Here we report the isolation and overexpression of the gene coding for HMG-CoA reductase from Leishmania major. The protein from L...

  20. Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E. coli

    Science.gov (United States)

    George, Kevin W.; Thompson, Mitchell G.; Kang, Aram; Baidoo, Edward; Wang, George; Chan, Leanne Jade G.; Adams, Paul D.; Petzold, Christopher J.; Keasling, Jay D.; Soon Lee, Taek

    2015-01-01

    Branched five carbon (C5) alcohols are attractive targets for microbial production due to their desirable fuel properties and importance as platform chemicals. In this study, we engineered a heterologous isoprenoid pathway in E. coli for the high-yield production of 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, and 3-methyl-1-butanol, three C5 alcohols that serve as potential biofuels. We first constructed a pathway for 3-methyl-3-buten-1-ol, where metabolite profiling identified NudB, a promiscuous phosphatase, as a likely pathway bottleneck. We achieved a 60% increase in the yield of 3-methyl-3-buten-1-ol by engineering the Shine-Dalgarno sequence of nudB, which increased protein levels by 9-fold and reduced isopentenyl diphosphate (IPP) accumulation by 4-fold. To further optimize the pathway, we adjusted mevalonate kinase (MK) expression and investigated MK enzymes from alternative microbes such as Methanosarcina mazei. Next, we expressed a fusion protein of IPP isomerase and the phosphatase (Idi1~NudB) along with a reductase (NemA) to diversify production to 3-methyl-2-buten-1-ol and 3-methyl-1-butanol. Finally, we used an oleyl alcohol overlay to improve alcohol recovery, achieving final titers of 2.23 g/L of 3-methyl-3-buten-1-ol (~70% of pathway-dependent theoretical yield), 150 mg/L of 3-methyl-2-buten-1-ol, and 300 mg/L of 3-methyl-1-butanol. PMID:26052683

  1. Isoprenoid biosynthesis in Archaea - Biochemical and evolutionary implications

    NARCIS (Netherlands)

    Matsumi, Rie; Atomi, Haruyuki; Driessen, Arnold J. M.; van der Oost, John

    Isoprenoids are indispensable for all types of cellular life in the Archaea, Bacteria, and Eucarya. These membrane-associated molecules are involved in a wide variety of vital biological functions, ranging from compartmentalization and stability, to protection and energy-transduction. In Archaea,

  2. Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli

    DEFF Research Database (Denmark)

    George, Kevin W; Thompson, Mitchell; Kim, Joonhoon

    2018-01-01

    evidence that IPP can be transported by E. coli, findings that might be broadly relevant for the study of isoprenoid biosynthesis. Finally, we discover that IPP accumulation leads to the formation of ApppI, a nucleotide analog of IPP that may contribute to observed toxicity phenotypes. This comprehensive...... assessment of IPP stress suggests potential strategies for the alleviation of prenyl diphosphate toxicity and highlights possible engineering targets for improved IPP flux and high titer isoprenoid production....

  3. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions

    International Nuclear Information System (INIS)

    Tie Xuexi; Li Guohui; Ying, Zhuming; Guenther, Alex; Madronich, Sasha

    2006-01-01

    In this study, a regional dynamical model (WRF) is used to drive biogenic emission models to calculate high resolution (10 x 10 km) biogenic emissions of isoprene (C 5 H 8 ), monoterpenes (C 1 H 16 ), and nitric oxide (NO) in China. This high resolution biogenic inventory will be available for the community to study the effect of biogenic emissions on photochemical oxidants in China. The biogenic emissions are compared to anthropogenic emissions to gain insight on the potential impact of the biogenic emissions on tropospheric chemistry, especially ozone production in this region. The results show that the biogenic emissions in China exhibit strongly diurnal, seasonal, and spatial variations. The isoprenoid (including both isoprene and monoterpenes) emissions are closely correlated to tree density and strongly vary with season and local time. During winter (January), the biogenic isoprenoid emissions are the lowest, resulting from lower temperature and solar radiation, and highest in summer (July) due to higher temperature and solar radiation. The biogenic NO emissions are also higher during summer and lower during winter, but the magnitude of the seasonal variation is smaller than the emissions of isoprene and monoterpenes. The biogenic emissions of NO are widely spread out in the northern, eastern, and southern China regions, where high-density agricultural soil lands are located. Both biogenic NO and isoprenoid emissions are very small in western China. The calculated total biogenic emission budget is smaller than the total anthropogenic VOC emission budget in China. The biogenic isoprenoid and anthropogenic VOC emissions are 10.9 and 15.1 Tg year -1 , respectively. The total biogenic and anthropogenic emissions of NO are 5.9 and 11.5 Tg(NO) year -1 , respectively. The study shows that in central eastern China, the estimated biogenic emissions of isoprenoids are very small, and the anthropogenic emissions of VOCs are dominant in this region. However, in

  4. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions.

    Science.gov (United States)

    Tie, Xuexi; Li, Guohui; Ying, Zhuming; Guenther, Alex; Madronich, Sasha

    2006-12-01

    In this study, a regional dynamical model (WRF) is used to drive biogenic emission models to calculate high resolution (10x10 km) biogenic emissions of isoprene (C(5)H(8)), monoterpenes (C(10)H(16)), and nitric oxide (NO) in China. This high resolution biogenic inventory will be available for the community to study the effect of biogenic emissions on photochemical oxidants in China. The biogenic emissions are compared to anthropogenic emissions to gain insight on the potential impact of the biogenic emissions on tropospheric chemistry, especially ozone production in this region. The results show that the biogenic emissions in China exhibit strongly diurnal, seasonal, and spatial variations. The isoprenoid (including both isoprene and monoterpenes) emissions are closely correlated to tree density and strongly vary with season and local time. During winter (January), the biogenic isoprenoid emissions are the lowest, resulting from lower temperature and solar radiation, and highest in summer (July) due to higher temperature and solar radiation. The biogenic NO emissions are also higher during summer and lower during winter, but the magnitude of the seasonal variation is smaller than the emissions of isoprene and monoterpenes. The biogenic emissions of NO are widely spread out in the northern, eastern, and southern China regions, where high-density agricultural soil lands are located. Both biogenic NO and isoprenoid emissions are very small in western China. The calculated total biogenic emission budget is smaller than the total anthropogenic VOC emission budget in China. The biogenic isoprenoid and anthropogenic VOC emissions are 10.9 and 15.1 Tg year(-1), respectively. The total biogenic and anthropogenic emissions of NO are 5.9 and 11.5 Tg(NO) year(-1), respectively. The study shows that in central eastern China, the estimated biogenic emissions of isoprenoids are very small, and the anthropogenic emissions of VOCs are dominant in this region. However, in

  5. Seasonality of isoprenoid emissions from a primary rainforest in central Amazonia

    Science.gov (United States)

    Alves, Eliane G.; Jardine, Kolby; Tota, Julio; Jardine, Angela; Yãnez-Serrano, Ana Maria; Karl, Thomas; Tavares, Julia; Nelson, Bruce; Gu, Dasa; Stavrakou, Trissevgeni; Martin, Scot; Artaxo, Paulo; Manzi, Antonio; Guenther, Alex

    2016-03-01

    Tropical rainforests are an important source of isoprenoid and other volatile organic compound (VOC) emissions to the atmosphere. The seasonal variation of these compounds is however still poorly understood. In this study, vertical profiles of mixing ratios of isoprene, total monoterpenes and total sesquiterpenes, were measured within and above the canopy, in a primary rainforest in central Amazonia, using a proton transfer reaction - mass spectrometer (PTR-MS). Fluxes of these compounds from the canopy into the atmosphere were estimated from PTR-MS measurements by using an inverse Lagrangian transport model. Measurements were carried out continuously from September 2010 to January 2011, encompassing the dry and wet seasons. Mixing ratios were higher during the dry (isoprene - 2.68 ± 0.9 ppbv, total monoterpenes - 0.67 ± 0.3 ppbv; total sesquiterpenes - 0.09 ± 0.07 ppbv) than the wet season (isoprene - 1.66 ± 0.9 ppbv, total monoterpenes - 0.47 ± 0.2 ppbv; total sesquiterpenes - 0.03 ± 0.02 ppbv) for all compounds. Ambient air temperature and photosynthetically active radiation (PAR) behaved similarly. Daytime isoprene and total monoterpene mixing ratios were highest within the canopy, rather than near the ground or above the canopy. By comparison, daytime total sesquiterpene mixing ratios were highest near the ground. Daytime fluxes varied significantly between seasons for all compounds. The maximums for isoprene (2.53 ± 0.5 µmol m-2 h-1) and total monoterpenes (1.77 ± 0.05 µmol m-2 h-1) were observed in the late dry season, whereas the maximum for total sesquiterpenes was found during the dry-to-wet transition season (0.77 ± 0.1 µmol m-2 h-1). These flux estimates suggest that the canopy is the main source of isoprenoids emitted into the atmosphere for all seasons. However, uncertainties in turbulence parameterization near the ground could affect estimates of fluxes that come from the ground. Leaf phenology seemed to be an important driver of seasonal

  6. A window into the current state of isoprenoid research

    Czech Academy of Sciences Publication Activity Database

    Drašar, P.; Harmatha, Juraj; Khripach, V.; Wicha, J.

    2015-01-01

    Roč. 97, SI (2015), s. 1-1 ISSN 0039-128X Institutional support: RVO:61388963 Keywords : Conference on Isoprenoids * scientific contacts * international cooperation Subject RIV: CE - Biochemistry Impact factor: 2.513, year: 2015

  7. Discovery and biological evaluation of some (1H-1,2,3-triazol-4-yl)methoxybenzaldehyde derivatives containing an anthraquinone moiety as potent xanthine oxidase inhibitors.

    Science.gov (United States)

    Zhang, Ting-Jian; Li, Song-Ye; Yuan, Wei-Yan; Wu, Qing-Xia; Wang, Lin; Yang, Su; Sun, Qi; Meng, Fan-Hao

    2017-02-15

    A series of (1H-1,2,3-triazol-4-yl)methoxybenzaldehyde derivatives containing an anthraquinone moiety were synthesized and identified as novel xanthine oxidase inhibitors. Among them, the most promising compounds 1h and 1k were obtained with IC 50 values of 0.6μM and 0.8μM, respectively, which were more than 10-fold potent compared with allopurinol. The Lineweaver-Burk plot revealed that compound 1h acted as a mixed-type xanthine oxidase inhibitor. SAR analysis showed that the benzaldehyde moiety played a more important role than the anthraquinone moiety for inhibition potency. The basis of significant inhibition of xanthine oxidase by 1h was rationalized by molecular modeling studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Increasing production yield of tyrosine and mevalonate through inhibition of biomass formation

    DEFF Research Database (Denmark)

    Li, Songyuan; Jendresen, Christian Bille; Nielsen, Alex Toftgaard

    2016-01-01

    , in particular, resulted in an increase in mass yield of mevalonate and tyrosine by 80% and 50%, respectively. By tracking production and biomass concentrations, it was observed that the production was maintained for more than 10 h after inhibition of cell growth, despite cell maintenance requirements...

  9. A genetic and pharmacological analysis of isoprenoid pathway by LC-MS/MS in fission yeast.

    Directory of Open Access Journals (Sweden)

    Tomonori Takami

    Full Text Available Currently, statins are the only drugs acting on the mammalian isoprenoid pathway. The mammalian genes in this pathway are not easily amenable to genetic manipulation. Thus, it is difficult to study the effects of the inhibition of various enzymes on the intermediate and final products in the isoprenoid pathway. In fission yeast, antifungal compounds such as azoles and terbinafine are available as inhibitors of the pathway in addition to statins, and various isoprenoid pathway mutants are also available. Here in these mutants, treated with statins or antifungals, we quantified the final and intermediate products of the fission yeast isoprenoid pathway using liquid chromatography-mass spectrometry/mass spectrometry. In hmg1-1, a mutant of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, ergosterol (a final sterol product, and squalene (an intermediate pathway product, were decreased to approximately 80% and 10%, respectively, compared with that of wild-type cells. Consistently in wild-type cells, pravastatin, an HMGR inhibitor decreased ergosterol and squalene, and the effect was more pronounced on squalene. In hmg1-1 mutant and in wild-type cells treated with pravastatin, the decrease in the levels of farnesyl pyrophosphate and geranylgeranyl pyrophosphate respectively was larger than that of ergosterol but was smaller than that of squalene. In Δerg6 or Δsts1 cells, mutants of the genes involved in the last step of the pathway, ergosterol was not detected, and the changes of intermediate product levels were distinct from that of hmg1-1 mutant. Notably, in wild-type cells miconazole and terbinafine only slightly decreased ergosterol level. Altogether, these studies suggest that the pleiotropic phenotypes caused by the hmg1-1 mutation and pravastatin might be due to decreased levels of isoprenoid pyrophosphates or other isoprenoid pathway intermediate products rather than due to a decreased ergosterol level.

  10. Mutagenicity of quaternary ammonium salts containing carbohydrate moieties

    Energy Technology Data Exchange (ETDEWEB)

    Dmochowska, Barbara [Department of Carbohydrate Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Piosik, Jacek; Woziwodzka, Anna [Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk (Poland); Sikora, Karol; Wisniewski, Andrzej [Department of Carbohydrate Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Wegrzyn, Grzegorz, E-mail: wegrzyn@biotech.univ.gda.pl [Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk (Poland)

    2011-10-15

    Highlights: {yields} A series of quaternary ammonium salts containing carbohydrate moieties, with configuration D-galacto, D-gluco and D-manno, was synthesized and characterized. {yields} The quaternary ammonium salts containing carbohydrate moieties revealed potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. {yields} The N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. {yields} We suggest that quaternary ammonium salts may be more hazardous than previously supposed. - Abstract: Quaternary ammonium salts are widely used in industrial, agricultural, healthcare and domestic applications. They are believed to be safe compounds, with little or no health hazard to humans. However, in this report, we demonstrate that a series of newly synthesized quaternary ammonium salts containing carbohydrate moieties reveal potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. D-Gluco- and D-galacto-derivatives were found to have a higher mutagenic potential than D-manno-derivatives. Among the former groups of compounds, the N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. These results suggest that the safety of quaternary ammonium salts may be lower than previously supposed, indicating a need for testing such compounds for their mutagenicity.

  11. Mutagenicity of quaternary ammonium salts containing carbohydrate moieties

    International Nuclear Information System (INIS)

    Dmochowska, Barbara; Piosik, Jacek; Woziwodzka, Anna; Sikora, Karol; Wisniewski, Andrzej; Wegrzyn, Grzegorz

    2011-01-01

    Highlights: → A series of quaternary ammonium salts containing carbohydrate moieties, with configuration D-galacto, D-gluco and D-manno, was synthesized and characterized. → The quaternary ammonium salts containing carbohydrate moieties revealed potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. → The N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. → We suggest that quaternary ammonium salts may be more hazardous than previously supposed. - Abstract: Quaternary ammonium salts are widely used in industrial, agricultural, healthcare and domestic applications. They are believed to be safe compounds, with little or no health hazard to humans. However, in this report, we demonstrate that a series of newly synthesized quaternary ammonium salts containing carbohydrate moieties reveal potent mutagenic activities, as assessed by using the Vibrio harveyi bioluminescence mutagenicity test. D-Gluco- and D-galacto-derivatives were found to have a higher mutagenic potential than D-manno-derivatives. Among the former groups of compounds, the N-[2-(D-glycopyranosyloxy)ethyl]-N,N,N-trimethylaminium salts were of the highest activity in the mutagenicity assay. These results suggest that the safety of quaternary ammonium salts may be lower than previously supposed, indicating a need for testing such compounds for their mutagenicity.

  12. Synthesis and Bioactivities of Novel Pyrazole Oxime Derivatives Containing a 5-Trifluoromethylpyridyl Moiety

    Directory of Open Access Journals (Sweden)

    Hong Dai

    2016-02-01

    Full Text Available In this study, in order to find novel biologically active pyrazole oxime compounds, a series of pyrazole oxime derivatives containing a 5-trifluoromethylpyridyl moiety were synthesized. Preliminary bioassays indicated that most title compounds were found to display good to excellent acaricidal activity against Tetranychus cinnabarinus at a concentration of 200 μg/mL, and some designed compounds still showed excellent acaricidal activity against Tetranychus cinnabarinus at the concentration of 10 μg/mL, especially since the inhibition rates of compounds 8e, 8f, 8l, 8m, 8n, 8p, and 8q were all 100.00%. Interestingly, some target compounds exhibited moderate to good insecticidal activities against Plutella xylostella and Aphis craccivora at a concentration of 200 μg/mL; furthermore, compounds 8e and 8l possessed outstanding insecticidal activities against Plutella xylostella under the concentration of 50 μg/mL.

  13. Synthesis, Characterization, and Anti-Inflammatory Activities of Methyl Salicylate Derivatives Bearing Piperazine Moiety.

    Science.gov (United States)

    Li, Jingfen; Yin, Yong; Wang, Lisheng; Liang, Pengyun; Li, Menghua; Liu, Xu; Wu, Lichuan; Yang, Hua

    2016-11-23

    In this study, a new series of 16 methyl salicylate derivatives bearing a piperazine moiety were synthesized and characterized. The in vivo anti-inflammatory activities of target compounds were investigated against xylol-induced ear edema and carrageenan-induced paw edema in mice. The results showed that all synthesized compounds exhibited potent anti-inflammatory activities. Especially, the anti-inflammatory activities of compounds M15 and M16 were higher than that of aspirin and even equal to that of indomethacin at the same dose. In addition, the in vitro cytotoxicity activities and anti-inflammatory activities of four target compounds were performed in RAW264.7 macrophages, and compound M16 was found to significantly inhibit the release of lipopolysaccharide (LPS)-induced interleukin (IL)-6 and tumor necrosis factor (TNF)-α in a dose-dependent manner. In addition, compound M16 was found to attenuate LPS induced cyclooxygenase (COX)-2 up-regulation. The current preliminary study may provide information for the development of new and safe anti-inflammatory agents.

  14. Design of α-S-Neoglycopeptides Derived from MUC1 with a Flexible and Solvent-Exposed Sugar Moiety

    DEFF Research Database (Denmark)

    Rojas-Ocáriz, Víctor; Compañón, Ismael; Aydillo Miguel, Carlos

    2016-01-01

    in solution have been evaluated by combining NMR experiments and molecular dynamics simulations. The linker plays a key role in the modulation of the conformation of these compounds at different levels, blocking a direct contact between the sugar moiety and the backbone, promoting a helix-like conformation...... for the glycosylated residue and favoring the proper presentation of the sugar unit for molecular recognition events. The feasibility of these novel compounds as mimics of MUC1 antigens has been validated by the X-ray diffraction structure of one of these unnatural derivatives complexed to an anti-MUC1 monoclonal...

  15. Development and validation of a rapid resolution liquid chromatography method for the screening of dietary plant isoprenoids: carotenoids, tocopherols and chlorophylls.

    Science.gov (United States)

    Stinco, Carla M; Benítez-González, Ana M; Hernanz, Dolores; Vicario, Isabel M; Meléndez-Martínez, Antonio J

    2014-11-28

    A rapid resolution liquid chromatography (RRLC) method was developed and validated for the simultaneous determination of nine carotenoids compounds (violaxanthin, lutein, zeaxanthin, β-cryptoxanthin, α-carotene, β-carotene, lycopene, phytoene, phytofluene), four tocopherols and four chlorophylls and derivates (chlorophylls and pheophytins). The methodology consisted in a micro-extraction procedure with or without saponification and subsequent analysis by RRLC. The limits of detection were saponification step was performed. The recovery of the method without the saponification step ranged from 92% to 107%, whilst that when saponification was carried out ranged from 60% for α-tocopherol to 82% for β-carotene. Finally, the applicability of the method was demonstrated by the identification and quantification of isoprenoids in different samples. The methodology is appropriate for the high-throughput screening of dietary isoprenoids in fruits and vegetables. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Role of plastidic pyruvate dehydrogenase complex (pl. PDC) in chloroplast metabolism of spinach

    International Nuclear Information System (INIS)

    Schulze-Siebert, D.; Homeyer, U.; Schultz, G.

    1986-01-01

    Labeling experiments of chloroplasts in the light ( 14 CO 2 , 2- 14 C-pyruvate etc.) revealed that pl. PDC is predominantly involved in the synthesis of branched chain amino acids and pl. isoprenoids (carotenes, PQ, α-T). In this context, pl. phosphoglycerate mutase as missing link in the C 3 → C 2 metabolism of chloroplasts was identified by latency experiments. This indicates a direct pathway from Calvin cycle to pl. PDC. Using protoplasts, maximal rates in pl. PDC metabolism were obtained. On the other hand, mitochondrial PDC in protoplasts is mainly involved in fatty acid synthesis by known mechanism. Additionally, cytosolic-ER-isoprenoids were formed (e.g. sterols). When 14 CO 2 was simultaneously applied with unlabeled acetate to protoplasts in the light an isotopic dilution of fatty acids were found but not of pl. isoprenoids. This may indicate an partially channeling of pl. PDC and mevalonate pathway for pl. isoprenoid synthesis. Inhibitory studies with DCMU point in the same direction

  17. Identification of Carotenoids and Isoprenoid Quinones from Asaia lannensis and Asaia bogorensis

    Directory of Open Access Journals (Sweden)

    Hubert Antolak

    2017-09-01

    Full Text Available The aim of the study was to identify and quantitatively assess of carotenoids and isoprenoid quinones biosynthesized by six different strains of acetic acid bacteria, belonging to genus Asaia, that are common beverage-spoiling bacteria in Europe. Bacterial cultures were conducted in a laboratory liquid culture minimal medium with 2% sucrose. Carotenoids and isoprenoid quinones were investigated using UHPLC-DAD-ESI-MS analysis. In general, tested strains of Asaia spp. were able to produce 10 carotenoids and 3 isoprenoid quinones: menaquinone-7, menaquinone-8, and ubiquinone-10. The main identified carotenoids in Asaia lannensis strains were phytofluene, neurosporene, α-carotene, while for Asaia bogorensis, neurosporene, canthaxanthin, and zeaxanthin were noted. What is more, tested Asaia spp. were able to produce myxoxanthophyll, which has so far been identified primarily in cyanobacteria. The results show that A. lannensis are characterized by statistically higher concentrations of produced carotenoids, as well as a greater variety of these compounds. We have noted that carotenoids were not only accumulated by bacterial cells, but also some strains of A. lannensis produced extracellular carotenoids.

  18. Potential of tocotrienols in the prevention and therapy of Alzheimer's disease.

    Science.gov (United States)

    Xia, Weiming; Mo, Huanbiao

    2016-05-01

    Currently there is no cure for Alzheimer's disease (AD); clinical trials are underway to reduce amyloid generation and deposition, a neuropathological hallmark in brains of AD patients. While genetic factors and neuroinflammation contribute significantly to AD pathogenesis, whether increased cholesterol level is a causative factor or a result of AD is equivocal. Prenylation of proteins regulating neuronal functions requires mevalonate-derived farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). The observation that the levels of FPP and GGPP, but not that of cholesterol, are elevated in AD patients is consistent with the finding that statins, competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, reduce FPP and GGPP levels and amyloid β protein production in preclinical studies. Retrospective studies show inverse correlations between incidence of AD and the intake and serum levels of the HMG CoA reductase-suppressive tocotrienols; tocopherols show mixed results. Tocotrienols, but not tocopherols, block the processing and nuclear localization of sterol regulatory element binding protein-2, the transcriptional factor for HMG CoA reductase and FPP synthase, and enhance the degradation of HMG CoA reductase. Consequently, tocotrienols deplete the pool of FPP and GGPP and potentially blunt prenylation-dependent AD pathogenesis. The antiinflammatory activity of tocotrienols further contributes to their protection against AD. The mevalonate- and inflammation-suppressive activities of tocotrienols may represent those of an estimated 23,000 mevalonate-derived plant secondary metabolites called isoprenoids, many of which are neuroprotective. Tocotrienol-containing plant foods and tocotrienol derivatives and formulations with enhanced bioavailability may offer a novel approach in AD prevention and treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Regulation of Isoprenoid Pheromone Biosynthesis in Bumblebee Males

    Czech Academy of Sciences Publication Activity Database

    Prchalová, Darina; Buček, Aleš; Brabcová, Jana; Žáček, Petr; Kindl, Jiří; Valterová, Irena; Pichová, Iva

    2016-01-01

    Roč. 17, č. 3 (2016), s. 260-267 ISSN 1439-4227 R&D Projects: GA MŠk LO1302; GA ČR GA15-06569S Institutional support: RVO:61388963 Keywords : biosynthesis * Bombus spp. * gene expression * isoprenoid s * pheromones * transcriptional regulation Subject RIV: CE - Biochemistry Impact factor: 2.847, year: 2016

  20. Metabolic engineering of volatile isoprenoids in plants and microbes

    NARCIS (Netherlands)

    Vickers, C.; Bongers, M.; Liu, Q.; Delatte, T.L.; Bouwmeester, H.J.

    2014-01-01

    The chemical properties and diversity of volatile isoprenoids lends them to a broad variety of biological roles. It also lends them to a host of biotechnological applications, both by taking advantage of their natural functions and by using them as industrial chemicals/chemical feedstocks. Natural

  1. Synthesis and pharmacological characterization of a novel nitric oxide-releasing diclofenac derivative containing a benzofuroxan moiety.

    Science.gov (United States)

    de Carvalho, Paulo Sérgio; Maróstica, Marta; Gambero, Alessandra; Pedrazzoli, José

    2010-06-01

    1-oxy-benzo[1,2,5]oxadiazol-5-ylmethyl [2-(2,6-dichloro-phenylamino)-phenyl]-acetate, a new diclofenac derivative bearing a benzofuroxan heterocyclic moiety in its structure, was prepared by the reaction of sodium diclofenac and 5-bromomethyl-benzo[1,2,5]oxadiazole 1-oxide. Pharmacological characterization of this modified diclofenac maintained the anti-inflammatory activity similar to its parent compound assayed in vitro and in vivo. The ulcerogenic properties of native diclofenac were not observed with this modified compound, despite the inhibition of prostaglandin E2 gastric content. The better gastric tolerability seems to be related to nitric oxide release ability. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  2. Statins and protein prenylation in cancer cell biology and therapy.

    Science.gov (United States)

    Garcia-Ruiz, Carmen; Morales, Albert; Fernandez-Checa, Jose C

    2012-05-01

    The use of statins has scaled up to become one of the most prescribed medicines in the world and have been very useful in the manegement of cardiovascular diseases and related mortality. The disclosure of their chemical structure similar to that of hydroxy methyl glutaryl-CoA (HMG-CoA) revealed their ability to compete with and inhibit the rate-limiting enzyme HMG-CoA reductase that catalyzes the synthesis of mevalonate, which then serves as the precursor for isoprenoids and cholesterol in the mevalonate pathway. While most of the effects of statins are associated with the lowering of cellular cholesterol levels, it is clear that they also blunt the non-sterol branch of the mevalonate pathway, decreasing formation of isoprenoids and altering protein-prenylation, a critical event in the posttranslational modulation of proteins involved in the regulation of cell cycle progression, proliferation and signaling pathways. Randomized controlled trials for the prevention of cardiovascular diseases indicated that statins elicited provocative and unexpected benefits for reducing a number of different types of cancers, including colorectal carcinoma, melanoma, prostate and hepatocellular carcinoma, although in other cancer types the preclinical expectations of statins were dissapointing. In this review, we will describe the evidence and mechanisms underlying the potential beneficial use of statins and the role of protein prenylation in cancer prevention. Of relevance, the combination of statins with other anti cancer drugs may be a significant asset in malignancies resistant to current therapy.

  3. Seasonality of isoprenoid emissions from a primary rainforest in central Amazonia

    Directory of Open Access Journals (Sweden)

    E. G. Alves

    2016-03-01

    Full Text Available Tropical rainforests are an important source of isoprenoid and other volatile organic compound (VOC emissions to the atmosphere. The seasonal variation of these compounds is however still poorly understood. In this study, vertical profiles of mixing ratios of isoprene, total monoterpenes and total sesquiterpenes, were measured within and above the canopy, in a primary rainforest in central Amazonia, using a proton transfer reaction – mass spectrometer (PTR-MS. Fluxes of these compounds from the canopy into the atmosphere were estimated from PTR-MS measurements by using an inverse Lagrangian transport model. Measurements were carried out continuously from September 2010 to January 2011, encompassing the dry and wet seasons. Mixing ratios were higher during the dry (isoprene – 2.68 ± 0.9 ppbv, total monoterpenes – 0.67 ± 0.3 ppbv; total sesquiterpenes – 0.09 ± 0.07 ppbv than the wet season (isoprene – 1.66 ± 0.9 ppbv, total monoterpenes – 0.47 ± 0.2 ppbv; total sesquiterpenes – 0.03 ± 0.02 ppbv for all compounds. Ambient air temperature and photosynthetically active radiation (PAR behaved similarly. Daytime isoprene and total monoterpene mixing ratios were highest within the canopy, rather than near the ground or above the canopy. By comparison, daytime total sesquiterpene mixing ratios were highest near the ground. Daytime fluxes varied significantly between seasons for all compounds. The maximums for isoprene (2.53 ± 0.5 µmol m−2 h−1 and total monoterpenes (1.77 ± 0.05 µmol m−2 h−1 were observed in the late dry season, whereas the maximum for total sesquiterpenes was found during the dry-to-wet transition season (0.77 ± 0.1 µmol m−2 h−1. These flux estimates suggest that the canopy is the main source of isoprenoids emitted into the atmosphere for all seasons. However, uncertainties in turbulence parameterization near the ground could affect estimates of fluxes that come from the ground. Leaf

  4. Stereochemical studies of acyclic isoprenoids-XII. Lipids of methanogenic bacteria and possible contributions to sediments

    Science.gov (United States)

    Risatti, J.B.; Rowland, S.J.; Yon, D.A.; Maxwell, J.R.

    1984-01-01

    Abundant volatile lipids of Methanobacterium thermoautotrophicum and Methanosarcina barkeri include isoprenoid hydrocarbons (??? C30), and C15, C20 and C25 isoprenoid alcohols. M. barkeri contains 2,6,10,15,19-pentamethyleicosane, whose relative stereochemistry is the same as found in marine sediments, indicating that it is a marker of methanogenic activity. The C20, C30 and C25 alkenes in M. thermoautotrophicum also have a preferred sterochemistry; the latter have the 2,6,10,14,18-pentamethyleicosanyl skeleton, suggesting that the alkane in marine sediments may derive from methanogens. The stereochemistry of squalane in a marine sediment is also compatible with an origin in methanogens; in contrast, the stereochemistry of pristane in M. thermoautotrophicum indicates a fossil fuel contaminant origin, suggesting that this and certain other alkanes reported in archaebacteria might also be of contaminant origin. There is, therefore, little evidence at present that the pristane in immature marine sediments originates in methanogens. The C15 and C20 saturated alcohols in M. thermoautotrophicum have mainly the all-R configuration. If this is generally true for methanogens, the C20 alcohol in the Messel shale may originate mainly from methanogens, whereas that in the Green River shale may originate mainly from photosynthetic organisms. ?? 1984.

  5. S-Carvone Suppresses Cellulase-Induced Capsidiol Production in Nicotiana tabacum by Interfering with Protein Isoprenylation1[C][W

    Science.gov (United States)

    Huchelmann, Alexandre; Gastaldo, Clément; Veinante, Mickaël; Zeng, Ying; Heintz, Dimitri; Tritsch, Denis; Schaller, Hubert; Rohmer, Michel; Bach, Thomas J.; Hemmerlin, Andréa

    2014-01-01

    S-Carvone has been described as a negative regulator of mevalonic acid (MVA) production by interfering with 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) activity, a key player in isoprenoid biosynthesis. The impact of this monoterpene on the production of capsidiol in Nicotiana tabacum, an assumed MVA-derived sesquiterpenoid phytoalexin produced in response to elicitation by cellulase, was investigated. As expected, capsidiol production, as well as early stages of elicitation such as hydrogen peroxide production or stimulation of 5-epi-aristolochene synthase activity, were repressed. Despite the lack of capsidiol synthesis, apparent HMGR activity was boosted. Feeding experiments using (1-13C)Glc followed by analysis of labeling patterns by 13C-NMR, confirmed an MVA-dependent biosynthesis; however, treatments with fosmidomycin, an inhibitor of the MVA-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) isoprenoid pathway, unexpectedly down-regulated the biosynthesis of this sesquiterpene as well. We postulated that S-carvone does not directly inhibit the production of MVA by inactivating HMGR, but possibly targets an MEP-derived isoprenoid involved in the early steps of the elicitation process. A new model is proposed in which the monoterpene blocks an MEP pathway–dependent protein geranylgeranylation necessary for the signaling cascade. The production of capsidiol was inhibited when plants were treated with some inhibitors of protein prenylation or by further monoterpenes. Moreover, S-carvone hindered isoprenylation of a prenylable GFP indicator protein expressed in N. tabacum cell lines, which can be chemically complemented with geranylgeraniol. The model was further validated using N. tabacum cell extracts or recombinant N. tabacum protein prenyltransferases expressed in Escherichia coli. Our study endorsed a reevaluation of the effect of S-carvone on plant isoprenoid metabolism. PMID:24367019

  6. Increased Ratio of Electron Transport to Net Assimilation Rate Supports Elevated Isoprenoid Emission Rate in Eucalypts under Drought1[W][OPEN

    Science.gov (United States)

    Dani, Kaidala Ganesha Srikanta; Jamie, Ian McLeod; Prentice, Iain Colin; Atwell, Brian James

    2014-01-01

    Plants undergoing heat and low-CO2 stresses emit large amounts of volatile isoprenoids compared with those in stress-free conditions. One hypothesis posits that the balance between reducing power availability and its use in carbon assimilation determines constitutive isoprenoid emission rates in plants and potentially even their maximum emission capacity under brief periods of stress. To test this, we used abiotic stresses to manipulate the availability of reducing power. Specifically, we examined the effects of mild to severe drought on photosynthetic electron transport rate (ETR) and net carbon assimilation rate (NAR) and the relationship between estimated energy pools and constitutive volatile isoprenoid emission rates in two species of eucalypts: Eucalyptus occidentalis (drought tolerant) and Eucalyptus camaldulensis (drought sensitive). Isoprenoid emission rates were insensitive to mild drought, and the rates increased when the decline in NAR reached a certain species-specific threshold. ETR was sustained under drought and the ETR-NAR ratio increased, driving constitutive isoprenoid emission until severe drought caused carbon limitation of the methylerythritol phosphate pathway. The estimated residual reducing power unused for carbon assimilation, based on the energetic status model, significantly correlated with constitutive isoprenoid emission rates across gradients of drought (r2 > 0.8) and photorespiratory stress (r2 > 0.9). Carbon availability could critically limit emission rates under severe drought and photorespiratory stresses. Under most instances of moderate abiotic stress levels, increased isoprenoid emission rates compete with photorespiration for the residual reducing power not invested in carbon assimilation. A similar mechanism also explains the individual positive effects of low-CO2, heat, and drought stresses on isoprenoid emission. PMID:25139160

  7. Analysis of iridoids content and expression studies of genes encoding early enzymes in the indol terpenoid biosynthesis pathway in Catharanthus roseus Análisis de iridoides y expresión de genes que codifican enzimas tempranas en la síntesis de alcaloides indol terpenoicos en Catharanthus roseus

    OpenAIRE

    Leech Mark; Palacios-Rojas Natalia

    2004-01-01

    Terpenoid indole alkaloids (TIA) are of pharmaceutical importance, however the industrial use of these compouds is very limited because its accumulation is very low in plant tissues. TIA are derived f rom the shikimate and terpenoid pathways, which supply secologanin and tryptamine, the indole and iridoid moieties, respectively. Secololganin is a terpenoid which is belived to be synthesised the MEP pathway rather than by the acetate/mevalonic acid pathway. Secologanin is thought to be a limit...

  8. Isoprenoid-phospholipid conjugates as potential therapeutic agents: Synthesis, characterization and antiproliferative studies.

    Directory of Open Access Journals (Sweden)

    Anna Gliszczyńska

    Full Text Available The aim of this research was to extend application field of isoprenoid compounds by their introduction into phospholipid structure as the transport vehicle. The series of novel isoprenoid phospholipids were synthesized in high yields (24-97%, their structures were fully characterized and its anticancer activity was investigated in vitro towards several cell lines of different origin. Most of synthesized compounds showed a significantly higher antiproliferative effect on tested cell lines than free terpene acids. The most active phosphatidylcholine analogue, containing 2,3-dihydro-3-vinylfarnesoic acids instead of fatty acids in both sn-1 and sn-2 position, inhibits the proliferation of colon cancer cells at 13.6 μM.

  9. Mevalonate-derived quinonemethide triterpenoid from in vitro roots of Peritassa laevigata and their localization in root tissue by MALDI imaging

    Science.gov (United States)

    Pina, Edieidia S.; Silva, Denise B.; Teixeira, Simone P.; Coppede, Juliana S.; Furlan, Maysa; França, Suzelei C.; Lopes, Norberto P.; Pereira, Ana Maria S.; Lopes, Adriana A.

    2016-03-01

    Biosynthetic investigation of quinonemethide triterpenoid 22β-hydroxy-maytenin (2) from in vitro root cultures of Peritassa laevigata (Celastraceae) was conducted using 13C-precursor. The mevalonate pathway in P. laevigata is responsible for the synthesis of the quinonemethide triterpenoid scaffold. Moreover, anatomical analysis of P. laevigata roots cultured in vitro and in situ showed the presence of 22β-hydroxy-maytenin (2) and maytenin (1) in the tissues from transverse or longitudinal sections with an intense orange color. MALDI-MS imaging confirmed the distribution of (2) and (1) in the more distal portions of the root cap, the outer cell layers, and near the vascular cylinder of P. laevigata in vitro roots suggesting a role in plant defense against infection by microorganisms as well as in the root exudation processes.

  10. Synthesis and Antimicrobial Evaluation of Some Novel Thiazole, Pyridone, Pyrazole, Chromene, Hydrazone Derivatives Bearing a Biologically Active Sulfonamide Moiety

    Science.gov (United States)

    Darwish, Elham S.; Abdel Fattah, Azza M.; Attaby, Fawzy A.; Al-Shayea, Oqba N.

    2014-01-01

    This study aimed for the synthesis of new heterocyclic compounds incorporating sulfamoyl moiety suitable for use as antimicrobial agents via a versatile, readily accessible N-[4-(aminosulfonyl)phenyl]-2-cyanoacetamide (3). The 2-pyridone derivatives were obtained via reaction of cyanoacetamide with acetylacetone or arylidenes malononitrile. Cycloaddition reaction of cyanoacetamide with salicyaldehyde furnished chromene derivatives. Diazotization of 3 with the desired diazonium chloride gave the hydrazone derivatives 13a–e. Also, the reactivity of the hydrazone towards hydrazine hydrate to give Pyrazole derivatives was studied. In addition, treatment of 3 with elemental sulfur and phenyl isothiocyanate or malononitrile furnished thiazole and thiophene derivatives respectively. Reaction of 3 with phenyl isothiocyanate and KOH in DMF afforded the intermediate salt 17 which reacted in situ with 3-(2-bromoacetyl)-2H-chromen-2-one and methyl iodide afforded the thiazole and ketene N,S-acetal derivatives respectively. Finally, reaction of 3 with carbon disulfide and 1,3-dibromopropane afforded the N-[4-(aminosulfonyl) phenyl]-2-cyano-2-(1,3-dithian-2-ylidene)acetamide product 22. All newly synthesized compounds were elucidated by considering the data of both elemental and spectral analysis. The compounds were evaluated for both their in vitro antibacterial and antifungal activities and showed promising results. PMID:24445259

  11. Synthesis and Antimicrobial Evaluation of Some Novel Thiazole, Pyridone, Pyrazole, Chromene, Hydrazone Derivatives Bearing a Biologically Active Sulfonamide Moiety

    Directory of Open Access Journals (Sweden)

    Elham S. Darwish

    2014-01-01

    Full Text Available This study aimed for the synthesis of new heterocyclic compounds incorporating sulfamoyl moiety suitable for use as antimicrobial agents via a versatile, readily accessible N-[4-(aminosulfonylphenyl]-2-cyanoacetamide (3. The 2-pyridone derivatives were obtained via reaction of cyanoacetamide with acetylacetone or arylidenes malononitrile. Cycloaddition reaction of cyanoacetamide with salicyaldehyde furnished chromene derivatives. Diazotization of 3 with the desired diazonium chloride gave the hydrazone derivatives 13a–e. Also, the reactivity of the hydrazone towards hydrazine hydrate to give Pyrazole derivatives was studied. In addition, treatment of 3 with elemental sulfur and phenyl isothiocyanate or malononitrile furnished thiazole and thiophene derivatives respectively. Reaction of 3 with phenyl isothiocyanate and KOH in DMF afforded the intermediate salt 17 which reacted in situ with 3-(2-bromoacetyl-2H-chromen-2-one and methyl iodide afforded the thiazole and ketene N,S-acetal derivatives respectively. Finally, reaction of 3 with carbon disulfide and 1,3-dibromopropane afforded the N-[4-(aminosulfonyl phenyl]-2-cyano-2-(1,3-dithian-2-ylideneacetamide product 22. All newly synthesized compounds were elucidated by considering the data of both elemental and spectral analysis. The compounds were evaluated for both their in vitro antibacterial and antifungal activities and showed promising results.

  12. The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses

    Directory of Open Access Journals (Sweden)

    Ü. Niinemets

    2010-07-01

    Full Text Available The rate of constitutive isoprenoid emissions from plants is driven by plant emission capacity under specified environmental conditions (ES, the emission factor and by responsiveness of the emissions to instantaneous variations in environment. In models of isoprenoid emission, ES has been often considered as intrinsic species-specific constant invariable in time and space. Here we analyze the variations in species-specific values of ES under field conditions focusing on abiotic stresses, past environmental conditions and developmental processes. The reviewed studies highlight strong stress-driven, adaptive (previous temperature and light environment and growth CO2 concentration and developmental (leaf age variations in ES values operating at medium to long time scales. These biological factors can alter species-specific ES values by more than an order of magnitude. While the majority of models based on early concepts still ignore these important sources of variation, recent models are including some of the medium- to long-term controls. However, conceptually different strategies are being used for incorporation of these longer-term controls with important practical implications for parameterization and application of these models. This analysis emphasizes the need to include more biological realism in the isoprenoid emission models and also highlights the gaps in knowledge that require further experimental work to reduce the model uncertainties associated with biological sources of variation.

  13. Growth regulating properties of isoprene and isoprenoid-based essential oils.

    Science.gov (United States)

    Jones, Andrew Maxwell P; Shukla, Mukund R; Sherif, Sherif M; Brown, Paula B; Saxena, Praveen K

    2016-01-01

    Essential oils have growth regulating properties comparable to the well-documented methyl jasmonate and may be involved in localized and/or airborne plant communication. Aromatic plants employ large amounts of resources to produce essential oils. Some essential oils are known to contain compounds with plant growth regulating activities. However, the potential capacity of essential oils as airborne molecules able to modulate plant growth/development has remained uninvestigated. Here, we demonstrate that essential oils from eight taxonomically diverse plants applied in their airborne state inhibited auxin-induced elongation of Pisum sativum hypocotyls and Avena sativa coleoptiles. This response was also observed using five monoterpenes commonly found in essential oils as well as isoprene, the basic building block of terpenes. Upon transfer to ambient conditions, A. sativa coleoptiles resumed elongation, demonstrating an antagonistic relationship rather than toxicity. Inclusion of essential oils, monoterpenes, or isoprene into the headspace of culture vessels induced abnormal cellular growth along hypocotyls of Arabidopsis thaliana. These responses were also elicited by methyl jasmonate (MeJA); however, where methyl jasmonate inhibited root growth essential oils did not. Gene expression studies in A. thaliana also demonstrated differences between the MeJA and isoprenoid responses. This series of experiments clearly demonstrate that essential oils and their isoprenoid components interact with endogenous plant growth regulators when applied directly or as volatile components in the headspace. The similarities between isoprenoid and MeJA responses suggest that they may act in plant defence signalling. While further studies are needed to determine the ecological and evolutionary significance, the results of this study and the specialized anatomy associated with aromatic plants suggest that essential oils may act as airborne signalling molecules.

  14. Oxidation of the Primary Alcoholic Moiety Selectively in the Presence of the Secondary Alcoholic Moieties

    International Nuclear Information System (INIS)

    Tin Myint Htwe

    2011-12-01

    Both primary and secondary alcoholic moieties are very sensitive to oxidation reactions. But sometimes it is necessary to oxidized only the primary alcoholic moiety. Such cases are usually found in Food Industries. In this situation, TEMPO (1, 1, 6, 6-Tetramethyl-1-Piperidine Oxoammonium) was used as an oxidizing agent. In this paper, Alpha starch was successfully oxidized using TEMPO as the oxidizing agent in combination with sodium hypochlorite with and without sodium bromide. The oxidation of primary alcoholic moiety only and the remaining untouched secondary alcoholic moiety were proved by infrared spectroscopy method.

  15. Novel α,β-unsaturated amide derivatives bearing α-amino phosphonate moiety as potential antiviral agents.

    Science.gov (United States)

    Lan, Xianmin; Xie, Dandan; Yin, Limin; Wang, Zhenzhen; Chen, Jin; Zhang, Awei; Song, Baoan; Hu, Deyu

    2017-09-15

    Based on flexible construction and broad bioactivity of ferulic acid, a series of novel α,β-unsaturated amide derivatives bearing α-aminophosphonate moiety were designed, synthesized and systematically evaluated for their antiviral activity. Bioassay results indicated that some compounds exhibited good antiviral activities against cucumber mosaic virus (CMV) and tobacco mosaic virus (TMV) in vivo. Especially, compound g18 showed excellent curative and protective activities against CMV, with half-maximal effective concentration (EC 50 ) values of 284.67μg/mL and 216.30μg/mL, which were obviously superior to that of Ningnanmycin (352.08μg/mL and 262.53μg/mL). Preliminary structure-activity relationships (SARs) analysis revealed that the introduction of electron-withdrawing group at the 2-position or 4-position of the aromatic ring is favorable for antiviral activity. Present work provides a promising template for development of potential inhibitor of plant virus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Proteomic Analysis of Lettuce Seed Germination and Thermoinhibition by Sampling of Individual Seeds at Germination and Removal of Storage Proteins by Polyethylene Glycol Fractionation1

    Science.gov (United States)

    Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-01-01

    Germination and thermoinhibition in lettuce (Lactuca sativa ‘Jianyexianfeng No. 1’) seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. PMID:25736209

  17. Computer Based Design and Synthesis of Some Novel Thiazole Derivatives Bearing a Sulfonamide Moiety and Studying Their Potential Synergistic Anticancer Effect With γ-Irradiation

    International Nuclear Information System (INIS)

    Soliman, A.M.M.

    2011-01-01

    In a search for new cytotoxic agents with improved antitumor activity and selectivity, some new thiazole, thiazolo pyrimidine, thiazolo pyrane and thiazolo pyrano pyrimidine derivatives bearing sulfonamide moiety were synthesized. The newly synthesized compounds were evaluated for their antitumor activity alone and in combination with γ-irradiation. These new compounds were docked inside the active site of carbonic anhydrase II to predict their mechanism of action.

  18. Perspectives and limits of engineering the isoprenoid metabolism in heterologous hosts

    NARCIS (Netherlands)

    Muntendam, Remco; Melillo, Elena; Ryden, Annamargareta; Kayser, Oliver

    2009-01-01

    Terpenoids belong to the largest class of natural compounds and are produced in all living organisms. The isoprenoid skeleton is based on assembling of C5 building blocks, but the biosynthesis of a great variety of terpenoids ranging from monoterpenoids to polyterpenoids is not fully understood

  19. Isoprenoid emission variation of Norway spruce across a European latitudinal transect

    DEFF Research Database (Denmark)

    van Meeningen, Ylva; Wang, Min; Karlsson, Tomas

    2017-01-01

    to the formation and growth of secondary organic aerosols (SOA) in the atmosphere. Isoprenoid emissions were measured from Norway spruce trees at seven different sites, distributed from Ljubljana in Slovenia to Piikkiö in Finland. Four of the sites were part of a network of genetically identical spruce trees...

  20. Lack of Prenylated Proteins, Autophagy Impairment and Apoptosis in SH-SY5Y Neuronal Cell Model of Mevalonate Kinase Deficiency

    Directory of Open Access Journals (Sweden)

    Paola Maura Tricarico

    2017-03-01

    Full Text Available Background/Aims: Mevalonate Kinase Deficiency (MKD, is a hereditary disease due to mutations in mevalonate kinase gene (MVK. MKD has heterogeneous clinical phenotypes: the correlation between MVK mutations and MKD clinical phenotype is still to be fully elucidated. Deficiency of prenylated proteins has been hypothesized as possible MKD pathogenic mechanism. Based on this hypothesis and considering that neurologic impairment characterizes Mevalonic Aciduria (MA, the most severe form of MKD, we studied the effects of I268T and N301T MVK mutations on protein prenylation, autophagy and programmed cell death in SH-SY5Y neuroblastoma cell lines. Methods: SH-SY5Y cells were transiently transfected, with the pCMV-6 plasmid containing MVK wild type and the two mutated sequences. Protein prenylation levels were evaluated using GFP-RhoA-F to assess farnesylation, and GFP-RhoA to evaluate geranylgeranylation; autophagy was measured by evaluating LC3 and p62 protein levels, while Annexin V-FITC and Propidium Iodide staining allowed apoptosis detection. Results: MVK mutants’ over-expression causes decreased levels of farnesylation and geranylgeranylation, and also increased LC3 lipidation in SH-SY5Y, with concomitant p62 accumulation. Treatment with bafilomycin A1 (an inhibitor of vacuolar H+-ATPase, a late autophagy inhibitor further increase LC3-II and p62 levels, suggesting that degradation of autophagolysosome could be impaired. SH-SY5Y, with both MVK mutants, showed apoptosis increase; the presence of N301T associated with augmented cell death. Conclusions: We hypothesize that mevalonate pathway impairment causes alteration of farnesylation and geranylgeranylation proteins and alteration of the autophagic flux; these changes can induce apoptosis, possibly more relevant in the presence of N301T mutation.

  1. Lack of Prenylated Proteins, Autophagy Impairment and Apoptosis in SH-SY5Y Neuronal Cell Model of Mevalonate Kinase Deficiency.

    Science.gov (United States)

    Tricarico, Paola Maura; Romeo, Alessandra; Gratton, Rossella; Crovella, Sergio; Celsi, Fulvio

    2017-01-01

    Mevalonate Kinase Deficiency (MKD), is a hereditary disease due to mutations in mevalonate kinase gene (MVK). MKD has heterogeneous clinical phenotypes: the correlation between MVK mutations and MKD clinical phenotype is still to be fully elucidated. Deficiency of prenylated proteins has been hypothesized as possible MKD pathogenic mechanism. Based on this hypothesis and considering that neurologic impairment characterizes Mevalonic Aciduria (MA), the most severe form of MKD, we studied the effects of I268T and N301T MVK mutations on protein prenylation, autophagy and programmed cell death in SH-SY5Y neuroblastoma cell lines. SH-SY5Y cells were transiently transfected, with the pCMV-6 plasmid containing MVK wild type and the two mutated sequences. Protein prenylation levels were evaluated using GFP-RhoA-F to assess farnesylation, and GFP-RhoA to evaluate geranylgeranylation; autophagy was measured by evaluating LC3 and p62 protein levels, while Annexin V-FITC and Propidium Iodide staining allowed apoptosis detection. MVK mutants' over-expression causes decreased levels of farnesylation and geranylgeranylation, and also increased LC3 lipidation in SH-SY5Y, with concomitant p62 accumulation. Treatment with bafilomycin A1 (an inhibitor of vacuolar H+-ATPase, a late autophagy inhibitor) further increase LC3-II and p62 levels, suggesting that degradation of autophagolysosome could be impaired. SH-SY5Y, with both MVK mutants, showed apoptosis increase; the presence of N301T associated with augmented cell death. We hypothesize that mevalonate pathway impairment causes alteration of farnesylation and geranylgeranylation proteins and alteration of the autophagic flux; these changes can induce apoptosis, possibly more relevant in the presence of N301T mutation. © 2017 The Author(s)Published by S. Karger AG, Basel.

  2. Ferricyanide-based analysis of aqueous lignin suspension revealed sequestration of water-soluble lignin moieties

    OpenAIRE

    Joshua, CJ; Simmons, BA; Singer, SW

    2016-01-01

    © 2016 The Royal Society of Chemistry. This study describes the application of a ferricyanide-based assay as a simple and inexpensive assay for rapid analysis of aqueous lignin samples. The assay measures the formation of Prussian blue from the redox reaction between a mixture of potassium ferricyanide and ferric chloride, and phenolic hydroxyl groups of lignin or lignin-derived phenolic moieties. This study revealed that soluble lignin moieties exhibited stronger ferricyanide reactivity than...

  3. A highly spatially resolved GIS-based model to assess the isoprenoid emissions from key Italian ecosystems

    Science.gov (United States)

    Pacheco, Claudia Kemper; Fares, Silvano; Ciccioli, Paolo

    2014-10-01

    The amount of Biogenic Volatile Organic Compounds (BVOC) emitted from terrestrial vegetation is of great importance in atmospheric reactivity, particularly for ozone-forming reactions and as condensation nuclei in aerosol formation and growth. This work presents a detailed inventory of isoprenoid emissions from vegetation in Italy using an original approach which combines state of the art models to estimate the species-specific isoprenoid emissions and a Geographic Information System (GIS) where emissions are spatially represented. Isoprenoid species and basal emission factors were obtained by combining results from laboratory experiments with those published in literature. For the first time, our investigation was not only restricted to isoprene and total monoterpenes, but our goal was to provide maps of isoprene and individual monoterpenes at a high-spatial (∼1 km2) and temporal resolution (daily runs, monthly trends in emissions are discussed in the text). Another novelty in our research was the inclusion of the effects of phenology on plant emissions. Our results show that: a) isoprene, a-pinene, sabinene and b-pinene are the most important compounds emitted from vegetation in Italy; b) annual biogenic isoprene and monoterpene fluxes for the year 2006 were ∼31.30 Gg and ∼37.70 Gg, respectively; and c) Quercus pubescens + Quercus petrea + Quercus robur, Quercus ilex, Quercus suber and Fagus sylvatica are the principal isoprenoid emitting species in the country. The high spatial and temporal resolution, combined with the species-specific emission output, makes the model particularly suitable for assessing local budgets, and for modeling photochemical pollution in Italy.

  4. Establishment of Yeast Platform for Isoprenoid Production

    DEFF Research Database (Denmark)

    Asadollahi, Mohammadali

    2008-01-01

    Isoprenoider er navnet på en kemisk stofgruppe og består af en diverse samling af naturligt forekomne forbindelser. De udfylder en lang række af biologiske og økologiske funktioner, og mere end 40,000 eksempler er beskrevet i litteraturen. Målet med dette Ph.D. studie har været at etablere en pro......-optimerede gener crtE, crtB og crtI fra bakterien Erwinia herbicola, og udtryk af de tre karoten-gener medførte akkumulering af lycopener. Effekten af nedregulering af ERG9 og overudtryk af tHMG1 i forbindelse med produktionen af lycopene blev ligeledes undersøgt....

  5. Analyzing the structural aspects of Isoprenoid biosynthesis pathway proteins in Ocimum species

    Directory of Open Access Journals (Sweden)

    Muktesh Chandra

    2017-10-01

    Full Text Available Generally thought that the extremely diverse array of secondary metabolites observed within Ocimum species defends against a comparable diverse array of biotic pests, pathogens and herbivores encountered around its natural range. Along with defense the diverse array of secondary metabolite also leads to the therapeutic and remedial property which justifies Ocimum as natural medicinal and aromatic casket. Many of the defense compounds, aroma compounds and medicinal derivatives are secondary metabolites isolated from trichome glands, mainly consist of terpenoids as well as phenylpropanoids. Various pathways fabricating these compounds are known viz. mevalonate pathway (MVA, phenylpropanoid pathway and MEP pathways. The enzyme cascade responsible for various secondary metabolites, need to be explored in various aspects. Here we had studied the MVA pathway enzymes in O. basilicum and O. gratissimum to figure out variations in enzyme structures due to speciation. Hence, in depth analysis of the transcriptome of O. basilicum and O. gratissimum, varrying in qualitative and quantitative aspects of essential oil were carried out. The transcriptome data from NCBI server was assembled using bioinformatic approaches. nr database at NCBI repository used for annotation, which assigned 60% contigs to known functions. Contigs corresponding to Mevalonate pathway enzymes are isolated using perl pipelines developed in our lab, which were further assembled using CLC workbench to remove redundancy and make larger stretch of sequence. Blastx of these larger sequences assigned them function and they are mapped to validated sequences to make full length. Data from both species led us to overall seven enzymes (total 14 of MVA pathway. These enzymes are studied in detail for various physio-chemical properties, steriochemical properties and motif/domain for protein-protein interaction (PPI study. Homolog models of all enzymes were predicted, against templates from RCSB

  6. Isoprenoids emission in Stipa tenacissima L.: Photosynthetic control and the effect of UV light

    International Nuclear Information System (INIS)

    Guidolotti, Gabriele; Rey, Ana; Medori, Mauro; Calfapietra, Carlo

    2016-01-01

    Fluxes of CO_2 and isoprenoids were measured for the first time in Stipa tenacissima L (alfa grass), a perennial tussock grass dominant in the driest areas of Europe. In addition, we studied how those fluxes were influenced by environmental conditions, leaf ontogeny and UV radiation and compared emission rates in two contrasting seasons: summer when plants are mostly inactive and autumn, the growing season in this region. Leaf ontogeny significantly affected both photosynthesis and isoprenoids emission. Isoprene emission was positively correlated with photosynthesis, although a low isoprene emission was detected in brown leaves with a net carbon loss. Moreover, leaves with a significant lower photosynthesis emitted only monoterpenes, while at higher photosynthetic rates also isoprene was produced. Ambient UV radiation uncoupled photosynthesis and isoprene emission. It is speculated that alfa grass represent an exception from the general rules governing plant isoprenoid emitters. - Highlights: • Stipa tenacissima L. is a grass emitting either monoterpenes and isoprene. • The emission has reasonable rates even in senescent leaves. • Isoprene emission is positively correlated with CO_2 assimilation. • Ambient UV radiation uncouples photosynthesis and isoprene emission. • Leaves with lower photosynthetic rates emit only monoterpenes. - We proved for the first time that alfa grass emit both isoprene and monoterpene, and we provide some innovative aspects about the UV effect and the behavior of Stipa tenacissima.

  7. Inhibition of the isoprenoid biosynthesis pathway; detection of intermediates by UPLC-MS/MS

    NARCIS (Netherlands)

    Henneman, Linda; van Cruchten, Arno G.; Kulik, Willem; Waterham, Hans R.

    2011-01-01

    The isoprenoid biosynthesis pathway provides the cell with a variety of compounds which are involved in multiple cellular processes. Inhibition of this pathway with statins and bisphosphonates is widely applied in the treatment of hypercholesterolemia and metabolic bone disease, respectively. In

  8. Chapter 3: Omics Advances of Biosynthetic Pathways of Isoprenoid Production in Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Paniagua-Michel, J.; Subramanian, Venkataramanan

    2017-01-01

    In this chapter, the current status of microalgal isoprenoids and the role of omics technologies, or otherwise specified, in bioproducts optimization and applications are reviewed. Emphasis is focused in the metabolic pathways of microalgae involved in the production of commercially important products, namely, hydrocarbons and biofuels, nutraceuticals, and pharmaceuticals.

  9. Free and sulphurized hopanoids and highly branched isoprenoids in immature lacustrine oil shales

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Las Heras, F.X.C. de; Grimalt, J.O.; Lopez, J.F.; Albaiges, J.; Leeuw, J.W. de

    1997-01-01

    A study of the solvent extracts of four samples from two immature oil shales from Tertiary lacustrine basins, Ribesalbes and Campins (southern European rift system), deposited under reducing conditions, has allowed the identification of S-containing hopanoids and novel highly branched isoprenoids

  10. Synthesis and Positive Inotropic Activity of [1,2,4]Triazolo[4,3-a] Quinoxaline Derivatives Bearing Substituted Benzylpiperazine and Benzoylpiperazine Moieties

    Directory of Open Access Journals (Sweden)

    Xue-Kun Liu

    2017-02-01

    Full Text Available In an attempt to search for more potent positive inotropic agents, two series of [1,2,4]triazolo[4,3-a] quinoxaline derivatives bearing substituted benzylpiperazine and benzoylpiperazine moieties were synthesized and their positive inotropic activities evaluated by measuring left atrial stroke volume in isolated rabbit heart preparations. Several compounds showed favorable activities compared with the standard drug, milrinone. Compound 6c was the most potent agent, with an increased stroke volume of 12.53% ± 0.30% (milrinone: 2.46% ± 0.07% at 3 × 10−5 M. The chronotropic effects of compounds having considerable inotropic effects were also evaluated.

  11. Inhibition of Mevalonate Pathway and Synthesis of the Storage Lipids in Human Liver-Derived and Non-liver Cell Lines by Lippia alba Essential Oils.

    Science.gov (United States)

    Montero-Villegas, Sandra; Polo, Mónica; Galle, Marianela; Rodenak-Kladniew, Boris; Castro, María; Ves-Losada, Ana; Crespo, Rosana; García de Bravo, Margarita

    2017-01-01

    The essential oils (EOs) of Lippia alba, an herb extensively used as a folk medicine in Latin America, are today promoted as an effective means of eliminating problems caused by hyperlipemia. We hypothesized that L.alba EOs inhibited cholesterol and triacylglycerols synthesis and decreased the intracellular depots of those lipids (lipid droplets), mechanisms involving the induction of a hypolipidemic response. Our aim was, therefore, to evaluate the hypolipogenic capability of the EOs of four L. alba chemotypes on liver-derived (HepG2) and non-liver (A549) human cell lines and to identify the potential biochemical targets of those chemotypes, particularly within the mevalonate pathway (MP). [ 14 C]Acetate was used as radioactive precursor for assays. Lipid analyses were performed by thin-layer and capillary gas chromatography, lipid droplets analyzed by fluorescence microscopy, and HMGCR levels determined by Western blot. In both cell lines, all four chemotypes exerted hypocholesterogenic effects within a concentration range of 3.2-32 µg/mL. Nonsaponifiable lipids manifested a decrease in incorporation of [ 14 C]acetate into squalene, lanosterol, lathosterol, and cholesterol, but not into ubiquinone, thus suggesting an inhibition of enzymes in the MP downstream from farnesyl pyrophosphate. The tagetenone chemotype, the most efficacious hypocholesterogenic L. alba EO, lowered HMGCR protein levels; inhibited triacylglycerols, cholesteryl esters, and phospholipids synthesis; and diminished lipid droplets in size and volume. These results revealed that L. alba EOs inhibited different lipogenic pathways and such lipid-lowering effects could prove essential to prevent cardiovascular diseases.

  12. A genetic screen for increasing metabolic flux in the isoprenoid pathway of Saccharomyces cerevisiae: Isolation of SPT15 mutants using the screen

    Directory of Open Access Journals (Sweden)

    M. Wadhwa

    2016-12-01

    Full Text Available A genetic screen to identify mutants that can increase flux in the isoprenoid pathway of yeast has been lacking. We describe a carotenoid-based visual screen built with the core carotenogenic enzymes from the red yeast Rhodosporidium toruloides. Enzymes from this yeast displayed the required, higher capacity in the carotenoid pathway. The development also included the identification of the metabolic bottlenecks, primarily phytoene dehydrogenase, that was subjected to a directed evolution strategy to yield more active mutants. To further limit phytoene pools, a less efficient version of GGPP synthase was employed. The screen was validated with a known flux increasing gene, tHMG1. New mutants in the TATA binding protein SPT15 were isolated using this screen that increased the yield of carotenoids, and an alternate isoprenoid, α-Farnesene confirming increase in overall flux. The findings indicate the presence of previously unknown links to the isoprenoid pathway that can be uncovered using this screen. Keywords: Metabolic engineering, Carotenoids, Isoprenoids, α-Farnesene, Rhodosporidium toruloides, SPT15

  13. Differential Subplastidial Localization and Turnover of Enzymes Involved in Isoprenoid Biosynthesis in Chloroplasts.

    Directory of Open Access Journals (Sweden)

    Catalina Perello

    Full Text Available Plastidial isoprenoids are a diverse group of metabolites with roles in photosynthesis, growth regulation, and interaction with the environment. The methylerythritol 4-phosphate (MEP pathway produces the metabolic precursors of all types of plastidial isoprenoids. Proteomics studies in Arabidopsis thaliana have shown that all the enzymes of the MEP pathway are localized in the plastid stroma. However, immunoblot analysis of chloroplast subfractions showed that the first two enzymes of the pathway, deoxyxylulose 5-phosphate synthase (DXS and reductoisomerase (DXR, can also be found in non-stromal fractions. Both transient and stable expression of GFP-tagged DXS and DXR proteins confirmed the presence of the fusion proteins in distinct subplastidial compartments. In particular, DXR-GFP was found to accumulate in relatively large vesicles that could eventually be released from chloroplasts, presumably to be degraded by an autophagy-independent process. Together, we propose that protein-specific mechanisms control the localization and turnover of the first two enzymes of the MEP pathway in Arabidopsis chloroplasts.

  14. Synthesis and Antibacterial Evaluation of Novel Heterocyclic Compounds Containing a Sulfonamido Moiety

    Directory of Open Access Journals (Sweden)

    Eman A. El-Bordany

    2013-01-01

    Full Text Available Aiming for the synthesis of new heterocyclic compounds containing a sulfonamido moiety suitable for use as antibacterial agents, the precursor ethyl {[4-N-(4,6-dimethylpyrimidin-2-ylsulfamoyl]phenylazo}cyanoacetate was reacted with a variety of active methylene compounds producing pyran, pyridine and pyridazine derivatives. Also, the reactivity of the precursor hydrazone towards hydrazine derivatives to give pyrazole and oxazole derivatives was studied. On the other hand, treatment of the same precursor with urea, thiourea and/or guanidine hydrochloride furnished pyrimidine and thiazine derivatives, respectively. The newly synthesized compounds were tested for antibacterial activity, whereby eight compounds were found to have high activities.

  15. In Vivo Antimalarial Activity and Mechanisms of Action of 4-Nerolidylcatechol Derivatives

    Science.gov (United States)

    Rocha e Silva, Luiz Francisco; Nogueira, Karla Lagos; Pinto, Ana Cristina da Silva; Katzin, Alejandro Miguel; Sussmann, Rodrigo A. C.; Muniz, Magno Perêa; Neto, Valter Ferreira de Andrade; Chaves, Francisco Célio Maia; Coutinho, Julia Penna; Lima, Emerson Silva; Krettli, Antoniana Ursine; Tadei, Wanderli Pedro

    2015-01-01

    4-Nerolidylcatechol (1) is an abundant antiplasmodial metabolite that is isolated from Piper peltatum roots. O-Acylation or O-alkylation of compound 1 provides derivatives exhibiting improved stability and significant in vitro antiplasmodial activity. The aim of this work was to study the in vitro inhibition of hemozoin formation, inhibition of isoprenoid biosynthesis in Plasmodium falciparum cultures, and in vivo antimalarial activity of several 4-nerolidylcatechol derivatives. 1,2-O,O-Diacetyl-4-nerolidylcatechol (2) inhibited in vitro hemozoin formation by up to 50%. In metabolic labeling studies using [1-(n)-3H]geranylgeranyl pyrophosphate, diester 2 significantly inhibited the biosynthesis of isoprenoid metabolites ubiquinone 8, menaquinone 4, and dolichol 12 in cultures of P. falciparum 3D7. Similarly, 2-O-benzyl-4-nerolidylcatechol (3) significantly inhibited the biosynthesis of dolichol 12. P. falciparum in vitro protein synthesis was not affected by compounds 2 or 3. At oral doses of 50 mg per kg of body weight per day, compound 2 suppressed Plasmodium berghei NK65 in infected BALB/c mice by 44%. This in vivo result for derivative 2 represents marked improvement over that obtained previously for natural product 1. Compound 2 was not detected in mouse blood 1 h after oral ingestion or in mixtures with mouse blood/blood plasma in vitro. However, it was detected after in vitro contact with human blood or blood plasma. Derivatives of 4-nerolidylcatechol exhibit parasite-specific modes of action, such as inhibition of isoprenoid biosynthesis and inhibition of hemozoin formation, and they therefore merit further investigation for their antimalarial potential. PMID:25801563

  16. Priming by Hexanoic acid induce activation of mevalonic and linolenic pathways and promotes the emission of plant volatiles.

    Directory of Open Access Journals (Sweden)

    Eugenio eLlorens

    2016-04-01

    Full Text Available Hexanoic acid is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of hexanoic acid in response to the challenge pathogen Alternaria alternata, focusing on the response of the plant. Moreover, we used 13C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of 13C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than two hundred molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by hexanoic acid. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of hexanoic acid this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application.

  17. Changes in photosynthesis, mesophyll conductance to CO2, and isoprenoid emissions in Populus nigra plants exposed to excess nickel

    International Nuclear Information System (INIS)

    Velikova, Violeta; Tsonev, Tsonko; Loreto, Francesco; Centritto, Mauro

    2011-01-01

    Poplar (Populus nigra) plants were grown hydroponically with 30 and 200 μM Ni (Ni 30 and Ni 200 ). Photosynthesis limitations and isoprenoid emissions were investigated in two leaf types (mature and developing). Ni stress significantly decreased photosynthesis, and this effect depended on the leaf Ni content, which was lower in mature than in developing leaves. The main limitations to photosynthesis were attributed to mesophyll conductance and metabolism impairment. In Ni-stressed developing leaves, isoprene emission was significantly stimulated. We attribute such stimulation to the lower chloroplastic [CO 2 ] than in control leaves. However chloroplastic [CO 2 ] did not control isoprene emission in mature leaves. Ni stress induced the emission of cis-β-ocimene in mature leaves, and of linalool in both leaf types. Induced biosynthesis and emission of isoprenoids reveal the onset of antioxidant processes that may also contribute to reduce Ni stress, especially in mature poplar leaves. - Graphical abstract: Visible damage caused by Ni treatment. 1 - Ni 0 (control plants); 2 - Ni 200 ; M = mature and D = developing Populus nigra leaves. Display Omitted Highlights: → We study the effect of Ni pollution on photosynthesis and isoprenoid emissions. → Ni stress significantly decreases photosynthesis. The main limitations are attributed to mesophyll conductance and metabolism impairment. → Constitutive isoprene emission was significantly stimulated in Ni-stressed leaves. Exposure to enhanced Ni concentration induces cis-beta-ocimene and linalool emissions. - The study reveals consequences of Ni stress on plant physiology, namely increasing diffusional limitation to photosynthesis and isoprenoid emissions.

  18. Alteration of Mevalonate Pathway in Rat Splenic Lymphocytes: Possible Role in Cytokines Secretion Regulated by L-Theanine

    Directory of Open Access Journals (Sweden)

    Chengjian Li

    2018-01-01

    Full Text Available L-Theanine is a nonprotein amino acid in tea, and its immunomodulatory function has been confirmed. This study aimed to investigate the effect of L-theanine addition on cytokines secretion in rat splenic lymphocytes and explore its potential immunomodulatory effects on the mevalonate biosynthetic pathway. Our results showed that L-theanine treatment did not influence the proliferation and division indexes of the splenic lymphocytes subsets. Interestingly, L-theanine treatment had regulated the contents of IFN-γ, IL-2, IL-4, IL-10, IL-12, and TNF-α  (P<0.001 except IL-6 and upregulated the mRNA and protein expression of Ras-related protein Rap-1A (Rap1A, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR, and farnesyl diphosphate synthase (FDPs (P<0.001. Additionally, there was a positive correlation between Rap1A and HMGCR proteins expression and IFN-γ, IL-4, and IL-6 levels. In conclusion, L-theanine regulated the secretion of cytokines probably by activating expression of Rap1A and HMGCR proteins involved in the mevalonate biosynthetic pathway in rat splenic lymphocytes. Therefore, L-theanine might be a promising potential drug candidate as immunopotentiator.

  19. The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling

    Directory of Open Access Journals (Sweden)

    Ü. Niinemets

    2010-06-01

    Full Text Available In models of plant volatile isoprenoid emissions, the instantaneous compound emission rate typically scales with the plant's emission potential under specified environmental conditions, also called as the emission factor, ES. In the most widely employed plant isoprenoid emission models, the algorithms developed by Guenther and colleagues (1991, 1993, instantaneous variation of the steady-state emission rate is described as the product of ES and light and temperature response functions. When these models are employed in the atmospheric chemistry modeling community, species-specific ES values and parameter values defining the instantaneous response curves are often taken as initially defined. In the current review, we argue that ES as a characteristic used in the models importantly depends on our understanding of which environmental factors affect isoprenoid emissions, and consequently need standardization during experimental ES determinations. In particular, there is now increasing consensus that in addition to variations in light and temperature, alterations in atmospheric and/or within-leaf CO2 concentrations may need to be included in the emission models. Furthermore, we demonstrate that for less volatile isoprenoids, mono- and sesquiterpenes, the emissions are often jointly controlled by the compound synthesis and volatility. Because of these combined biochemical and physico-chemical drivers, specification of ES as a constant value is incapable of describing instantaneous emissions within the sole assumptions of fluctuating light and temperature as used in the standard algorithms. The definition of ES also varies depending on the degree of aggregation of ES values in different parameterization schemes (leaf- vs. canopy- or region-scale, species vs. plant functional type levels and various

  20. High-throughput enzyme screening platform for the IPP-bypass mevalonate pathway for isopentenol production

    DEFF Research Database (Denmark)

    Kang, Aram; Meadows, Corey W.; Canu, Nicolas

    2017-01-01

    Isopentenol (or isoprenol, 3-methyl-3-buten-1-ol) is a drop-in biofuel and a precursor for commodity chemicals such as isoprene. Biological production of isopentenol via the mevalonate pathway has been optimized extensively in Escherichia coli, yielding 70% of its theoretical maximum. However, high...... ATP requirements and isopentenyl diphosphate (IPP) toxicity pose immediate challenges for engineering bacterial strains to overproduce commodities utilizing IPP as an intermediate. To overcome these limitations, we developed an “IPP-bypass� isopentenol pathway using the promiscuous activity...

  1. Hartmut Lichtenthaler: an authority on chloroplast structure and isoprenoid biochemistry.

    Science.gov (United States)

    Sharkey, Thomas D; Govindjee

    2016-05-01

    We pay tribute to Hartmut Lichtenthaler for making important contributions to the field of photosynthesis research. He was recently recognized for ground-breaking discoveries in chloroplast structure and isoprenoid biochemistry by the Rebeiz Foundation for Basic Research (RFBR; http://vlpbp.org/ ), receiving a 2014 Lifetime Achievement Award for Photosynthesis. The ceremony, held in Champaign, Illinois, was attended by many prominent researchers in the photosynthesis field. We provide below a brief note on his education, and then describe some of the areas in which Hartmut Lichtenthaler has been a pioneer.

  2. Synthesis and Biological Activity of Substituted Urea and Thiourea Derivatives Containing 1,2,4-Triazole Moieties

    Directory of Open Access Journals (Sweden)

    David E. Wedge

    2013-03-01

    Full Text Available A series of novel thiourea and urea derivatives containing 1,2,4-triazole moieties were synthesized and evaluated for their antifungal and larvicidal activity. Triazole derivatives 3a–e and 4a–e were synthesized by reacting thiocarbohydrazide with thiourea and urea compounds 1a–e and 2a–e, respectively, in a 130–140 °C oil bath. The proposed structures of all the synthesized compounds were confirmed using elemental analysis, UV, IR, 1H-NMR and mass spectroscopy. All compounds were evaluated for antifungal activity against plant pathogens, larvicidal and biting deterrent activity against the mosquito Aedes aegypti L. and in vitro cytotoxicity and anti-inflammatory activity against some human cell lines. Phomopis species were the most sensitive fungi to these compounds. Compounds 1b, 1c, 3a and 4e demonstrated selectively good activity against Phomopis obscurans and only 1b and 4e showed a similar level of activity against P. viticola. Compound 3d, with a LD50 value of 67.9 ppm, followed by 1c (LD50 = 118.8 ppm and 3e (LD50 = 165.6 ppm, showed the highest toxicity against Aedes aegypti larvae. Four of these compounds showed biting deterrent activity greater than solvent control, with the highest activity being seen for 1c, with a proportion not biting (PNB value of 0.75, followed by 1e, 2b and 1a. No cytotoxicity was observed against the tested human cancer cell lines. No anti-inflammatory activity was observed against NF-kB dependent transcription induced by phorbol myristate acetate (PMA in human chondrosarcoma cells.

  3. Variation in short-term and long-term responses of photosynthesis and isoprenoid-mediated photoprotection to soil water availability in four Douglas-fir provenances.

    Science.gov (United States)

    Junker, Laura Verena; Kleiber, Anita; Jansen, Kirstin; Wildhagen, Henning; Hess, Moritz; Kayler, Zachary; Kammerer, Bernd; Schnitzler, Jörg-Peter; Kreuzwieser, Jürgen; Gessler, Arthur; Ensminger, Ingo

    2017-01-10

    For long-lived forest tree species, the understanding of intraspecific variation among populations and their response to water availability can reveal their ability to cope with and adapt to climate change. Dissipation of excess excitation energy, mediated by photoprotective isoprenoids, is an important defense mechanism against drought and high light when photosynthesis is hampered. We used 50-year-old Douglas-fir trees of four provenances at two common garden experiments to characterize provenance-specific variation in photosynthesis and photoprotective mechanisms mediated by essential and non-essential isoprenoids in response to soil water availability and solar radiation. All provenances revealed uniform photoprotective responses to high solar radiation, including increased de-epoxidation of photoprotective xanthophyll cycle pigments and enhanced emission of volatile monoterpenes. In contrast, we observed differences between provenances in response to drought, where provenances sustaining higher CO 2 assimilation rates also revealed increased water-use efficiency, carotenoid-chlorophyll ratios, pools of xanthophyll cycle pigments, β-carotene and stored monoterpenes. Our results demonstrate that local adaptation to contrasting habitats affected chlorophyll-carotenoid ratios, pool sizes of photoprotective xanthophylls, β-carotene, and stored volatile isoprenoids. We conclude that intraspecific variation in isoprenoid-mediated photoprotective mechanisms contributes to the adaptive potential of Douglas-fir provenances to climate change.

  4. Changes in photosynthesis, mesophyll conductance to CO{sub 2}, and isoprenoid emissions in Populus nigra plants exposed to excess nickel

    Energy Technology Data Exchange (ETDEWEB)

    Velikova, Violeta, E-mail: violet@obzor.bio21.bas.bg [Bulgarian Academy of Sciences, Acad. M. Popov Institute of Plant Physiology, Acad. G. Bonchev, Bl. 21, 1113 Sofia (Bulgaria); Tsonev, Tsonko [Bulgarian Academy of Sciences, Acad. M. Popov Institute of Plant Physiology, Acad. G. Bonchev, Bl. 21, 1113 Sofia (Bulgaria); Loreto, Francesco [Consiglio Nazionale delle Ricerche, Istituto per la Protezione delle Piante, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Centritto, Mauro [Consiglio Nazionale delle Ricerche, Istituto di Biologia Agroambientale e Forestale, 00015 Monterotondo Scalo (RM) (Italy)

    2011-05-15

    Poplar (Populus nigra) plants were grown hydroponically with 30 and 200 {mu}M Ni (Ni{sub 30} and Ni{sub 200}). Photosynthesis limitations and isoprenoid emissions were investigated in two leaf types (mature and developing). Ni stress significantly decreased photosynthesis, and this effect depended on the leaf Ni content, which was lower in mature than in developing leaves. The main limitations to photosynthesis were attributed to mesophyll conductance and metabolism impairment. In Ni-stressed developing leaves, isoprene emission was significantly stimulated. We attribute such stimulation to the lower chloroplastic [CO{sub 2}] than in control leaves. However chloroplastic [CO{sub 2}] did not control isoprene emission in mature leaves. Ni stress induced the emission of cis-{beta}-ocimene in mature leaves, and of linalool in both leaf types. Induced biosynthesis and emission of isoprenoids reveal the onset of antioxidant processes that may also contribute to reduce Ni stress, especially in mature poplar leaves. - Graphical abstract: Visible damage caused by Ni treatment. 1 - Ni{sub 0} (control plants); 2 - Ni{sub 200}; M = mature and D = developing Populus nigra leaves. Display Omitted Highlights: > We study the effect of Ni pollution on photosynthesis and isoprenoid emissions. > Ni stress significantly decreases photosynthesis. The main limitations are attributed to mesophyll conductance and metabolism impairment. > Constitutive isoprene emission was significantly stimulated in Ni-stressed leaves. Exposure to enhanced Ni concentration induces cis-beta-ocimene and linalool emissions. - The study reveals consequences of Ni stress on plant physiology, namely increasing diffusional limitation to photosynthesis and isoprenoid emissions.

  5. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli.

    Science.gov (United States)

    Yang, Chen; Gao, Xiang; Jiang, Yu; Sun, Bingbing; Gao, Fang; Yang, Sheng

    2016-09-01

    Isoprene, a key building block of synthetic rubber, is currently produced entirely from petrochemical sources. In this work, we engineered both the methylerythritol phosphate (MEP) pathway and the mevalonate (MVA) pathway for isoprene production in E. coli. The synergy between the MEP pathway and the MVA pathway was demonstrated by the production experiment, in which overexpression of both pathways improved the isoprene yield about 20-fold and 3-fold, respectively, compared to overexpression of the MEP pathway or the MVA pathway alone. The (13)C metabolic flux analysis revealed that simultaneous utilization of the two pathways resulted in a 4.8-fold increase in the MEP pathway flux and a 1.5-fold increase in the MVA pathway flux. The synergy of the dual pathway was further verified by quantifying intracellular flux responses of the MEP pathway and the MVA pathway to fosmidomycin treatment and mevalonate supplementation. Our results strongly suggest that coupling of the complementary reducing equivalent demand and ATP requirement plays an important role in the synergy of the dual pathway. Fed-batch cultivation of the engineered strain overexpressing the dual pathway resulted in production of 24.0g/L isoprene with a yield of 0.267g/g of glucose. The synergy of the MEP pathway and the MVA pathway also successfully increased the lycopene productivity in E. coli, which demonstrates that it can be used to improve the production of a broad range of terpenoids in microorganisms. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Synthesis and Characterization of Poly (ether imide)s Containing Phthalazinone and Isopropyl Moieties

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel poly(ether imide)s containing phthalazinone and isopropyl moieties derived from 2-(4-aminophenyl)-4-[4-(4-aminophenoxy)phenyl]-phthalazin-l-one and bisphenol-A diphthalic anhydride was synthesized by one-step solution condensation polymerization in m-cresol. The polymer was characterized by FTIR, NMR, molecular weights, glass transition temperature,thermal degradation temperature and WAXD.

  7. Molecular docking and NMR binding studies to identify novel inhibitors of human phosphomevalonate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Boonsri, Pornthip [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Neumann, Terrence S.; Olson, Andrew L.; Cai, Sheng [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Herdendorf, Timothy J.; Miziorko, Henry M. [Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Hannongbua, Supa [Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Sem, Daniel S., E-mail: daniel.sem@cuw.edu [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Natural and synthetic inhibitors of human phosphomevalonate kinase identified. Black-Right-Pointing-Pointer Virtual screening yielded a hit rate of 15%, with inhibitor K{sub d}'s of 10-60 {mu}M. Black-Right-Pointing-Pointer NMR studies indicate significant protein conformational changes upon binding. -- Abstract: Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based {sup 1}H-{sup 15}N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (K{sub d}). Tight binding compounds with K{sub d}'s ranging from 6-60 {mu}M were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.

  8. Catalytic asymmetric synthesis of enantiopure isoprenoid building blocks : application in the synthesis of apple leafminer pheromones

    NARCIS (Netherlands)

    Summeren, Ruben P. van; Reijmer, Sven J.W.; Minnaard, Adriaan J.; Feringa, Bernard

    2005-01-01

    The first catalytic asymmetric procedure capable of preparing all 4 diastereoisomers (ee > 99%, de > 98%) of a versatile saturated isoprenoid building block was developed and the value of this new method was demonstrated in its application to the concise total synthesis of two pheromones.

  9. A survey of cyclic replacements for the central diamide moiety of inhibitors of inosine monophosphate dehydrogenase.

    Science.gov (United States)

    Dhar, T G Murali; Liu, Chunjian; Pitts, William J; Guo, Junquing; Watterson, Scott H; Gu, Henry; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Barrish, Joel C; Hollenbaugh, Diane; Iwanowicz, Edwin J

    2002-11-04

    A series of heterocyclic replacements for the central diamide moiety of 1, a potent small molecule inhibitor of inosine monophosphate dehydrogenase (IMPDH) were explored The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for these new series of inhibitors is given.

  10. Utilization of biodiesel by-product as substrate for high-production of β-farnesene via relatively balanced mevalonate pathway in Escherichia coli.

    Science.gov (United States)

    You, Shengping; Yin, Qingdian; Zhang, Jianye; Zhang, Chengyu; Qi, Wei; Gao, Lan; Tao, Zhiping; Su, Rongxin; He, Zhimin

    2017-11-01

    Farnesene has been identified as suitable jet fuel substitutes and metabolic engineering for microbial production of farnesene is an alternative and attractive route. In this study, due to accumulation of toxic intermediate isopentenyl pyrophosphate (IPP), an engineered Escherichia coli strain harboring heterologous mevalonate pathway produced only 4.11mg/L β-farnesene. Through higher-level expression of isopentenyl diphosphate isomerase and farnesyl diphosphate synthase to minimize the accumulated IPP, another engineered strain with relatively balanced mevalonate pathway was constructed and had the highest production of β-farnesene to date (8.74g/L) by Escherichia coli in a lab bioreactor. Furthermore, this is the first report on utilization of biodiesel by-product (simple purification) as substrate for high-production of β-farnesene by the engineered strain optimized and β-farnesene concentration reached 2.83g/L in a lab bioreactor. Therefore, the engineered strain optimized could be used as a platform host for high-production of other terpenoids using biodiesel by-product as substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Conversion of Isoprenoid Oil by Catalytic Cracking and Hydrocracking over Nanoporous Hybrid Catalysts

    Directory of Open Access Journals (Sweden)

    Toshiyuki Kimura

    2012-01-01

    Full Text Available In order to produce petroleum alternatives from biomass, a significant amount of research has been focused on oils from microalgae due to their origin, which would not affect food availability. Nanoporous hybrid catalysts composed of ns Al2O3 and zeolites have been proven to be very useful compared to traditional catalysts in hydrotreating (HT, hydrocracking (HC, and catalytic cracking (CC of large molecules. To evaluate the reaction scheme and products from model isoprenoid compounds of microalgae oil, nanoporous hybrid catalyst technologies (CC: ns Al2O3/H-USY and ns Al2O3/H-GaAlMFI; HC: [Ni-Mo/γ-Al2O3]/ns Al2O3/H-beta were studied. The major product from CC on ns Al2O3/H-USY was highly aromatic gasoline, while the product from HC was half-isoparaffinic/olefinic kerosene. Although more than 50 wt% of the products from HT/CC on the USY catalyst was liquefied petroleum gas due to overcracking, the product from HT/CC on the MFI catalyst was high-octane-number gasoline. Delightfully, the product from HT/HC was kerosene and its average number was 11, with more than 80 wt% being isoparaffinic. As a result, it was demonstrated that hydrotreating may convert isoprenoid oil from microalgae over nanoporous hybrid catalysts into a variety of products.

  12. Structural identification of the C-25 highly branched isoprenoid pentaene in the marine diatom Rhizosolenia setigera

    NARCIS (Netherlands)

    Damste, JSS; Rijpstra, WIC; Hopmans, EC; Peletier, H; Gieskes, WWC; Geenevasen, JAJ

    1999-01-01

    2,6,10, 14-tetramethyl-7-(3-methylpent-4-enyl)-pentadeca-2,5E,9E, 13-tetraene I possessing a C-25 highly branched isoprenoid skeleton has been isolated from the marine diatom Rhizosolenia setigera and identified by H-1 and C-13 NMR spectroscopy. (C) 1999 Elsevier Science Ltd. All rights reserved.

  13. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation.

    Science.gov (United States)

    Wang, Wei-Qing; Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-04-01

    Germination and thermoinhibition in lettuce (Lactuca sativa 'Jianyexianfeng No. 1') seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (Pseeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. © 2015 American Society of Plant Biologists. All Rights Reserved.

  14. Rapid Analysis of Protein Farnesyltransferase Substrate Specificity Using Peptide Libraries and Isoprenoid Diphosphate Analogues

    OpenAIRE

    Wang, Yen-Chih; Dozier, Jonathan K.; Beese, Lorena S.; Distefano, Mark D.

    2014-01-01

    Protein farnesytransferase (PFTase) catalyzes the farnesylation of proteins with a carboxy-terminal tetrapeptide sequence denoted as a Ca1a2X box. To explore the specificity of this enzyme, an important therapeutic target, solid-phase peptide synthesis in concert with a peptide inversion strategy was used to prepare two libraries, each containing 380 peptides. The libraries were screened using an alkyne-containing isoprenoid analogue followed by click chemistry with biotin azide and subsequen...

  15. Polyethene with pendant fullerene moieties

    NARCIS (Netherlands)

    Zhang, XC; Sieval, AB; Hummelen, JC; Hessen, B; Zhang, Xiaochun

    2005-01-01

    Polyethene with fullerene moieties pendant on short-chain branches was prepared by the catalytic copolymerisation of ethene and a fullerene-containing vinylic comonomer, yielding polyethene copolymers containing up to 25 wt% of C-60.

  16. Synthesis of the Sugar Moieties

    Science.gov (United States)

    Grynkiewicz, Grzegorz; Szeja, Wieslaw

    Biological activity of the anthracycline antibiotics, which have found wide application in clinical oncology, is strongly related to their glycosidic structure. Modification or switch of the saccharide moiety became an important line of new drug discovery and study of their mechanism of action. Natural glycons (sugar moieties) of the anthracycline antibiotics belong to the 2,6-dideoxypyranose family and their principal representative, daunosamine, is 3-amino-2,3,6-trideoxy- l-lyxo-pyranose. Some newer chemical syntheses of this sugar, from a chiral pool as well as from achiral starting materials, are presented and their capability for scale-up and process development are commented upon. Rational sugar structural modifications, which are either useful for synthetic purposes or offer advantages in experimental therapy of cancer, are discussed from the chemical point of view.

  17. Synthesis of the mevalonic acid labelled with "1"4C, "1"3C and "3H

    International Nuclear Information System (INIS)

    Rousseau, Bernard

    1982-01-01

    This thesis describes five new methods of synthesis of the (R,S) mevalonic acid adapted to the labelling with "1"4C and "1"3C in positions 4,5 or 5 or 3', or with tritium in position 3'. Three of them use the tri-oxa-2,4,10 adamantyl group as masked carboxyl function. The two others take benefit from the regioselectivity of the bis-hydro-boration of terminal acetylenics by the 9-borabicyclo [3-3-1]nonane. The acylation of the bis-trimethylsilyl lithiomalonate, and the chemistry of dithiannes are also involved. Acetylene and methyl iodide labelled with isotopes are used as cheap base products [fr

  18. Synthesis and electroluminescent properties of anthracene derivatives containing electron-withdrawing oxide moieties

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jhin-yeong; Na, Eun Jae; Park, Soo Na [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Lee, Seok Jae [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@wow.hongik.ac.kr [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)

    2014-10-15

    Highlights: • Blue fluorescent material is important for application in full-color displays. • We have synthesized emitters based on anthracene connected with oxide moieties. • 1C shows a highly efficient blue EL emission due to electron-injection property. - Abstract: A series of new blue-emitting materials: (4-(10-(naphthalen-2-yl)anthracen-9-yl)phenyl)(phenyl)methanone (1); 9-(naphthalen-2-yl)-10-(4-((diphenyl)phosphine oxide)phenyl)anthracene (2); 9-(naphthalen-2-yl)-10-(4-(phenylsulfonyl)phenyl)anthracene (3) were designed and synthesized via Suzuki cross-coupling reaction. Multilayer OLEDs were fabricated in the following sequence: ITO (180 nm)/NPB (50 nm)/blue materials 1–3 (30 nm)/TPBi (15 nm)/Liq (2 nm)/Al (100 nm). All devices showed the efficient blue EL emissions. In particular, the device using 1 as an emitter exhibited efficient blue electroluminescent properties with a maximum luminous, power, external quantum efficiency and CIE coordinates of 0.36 cd/A, 0.90 lm/W, 0.55% at 20 mA/cm{sup 2} and (x = 0.16, y = 0.20) at 10.0 V, respectively.

  19. Isoprenoid hydrocarbons produced by thermal alteration of Nostoc muscorum and Rhodopseudomonas spheroides

    Science.gov (United States)

    Philp, R. P.; Brown, S.; Calvin, M.

    1978-01-01

    The potential of algae and photosynthetic bacteria to serve as precursors of kerogen was studied to determine what factors affect the relative rates of formation of precursor hydrocarbons. Cells of Nostoc muscorum and Rhodopseudomonas spheroides were subjected to thermal alteration (by heating samples in glass tubes sealed under nitrogen) for two, four, and twelve weeks. Both unextracted and extracted cells in the absence and presence of montmorillonite were investigated, and the isoprenoid hydrocarbons produced in these experiments were determined. Phytane and five isomeric phytenes were the main hydrocarbons observed; their relative rates of formation in the different experimental conditions are described. No phytadienes, pristane, or pristenes were detected.

  20. Analysis of acyl CoA ester intermediates of the mevalonate pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Seker, Tamay; Møller, Kasper; Nielsen, Jens

    2005-01-01

    The mevalonate pathway plays an important role in providing the cell with a number of essential precursors for the synthesis of biomass constituents. With respect to their chemical structure, the metabolites of this pathway can be divided into two groups: acyl esters [acetoacetyl CoA, acetyl Co......A, hydroxymethylglutaryl (HMG) CoA] and phosphorylated metabolites (isopentenyl pyrophosphate, dimethylallyl pyrophosphate, geranyl pyrophosphate, farnesyl pyrophosphate). In this study, we developed a method for the precise analysis of the intracellular concentration of acetoacetyl CoA, acetyl CoA and HMG CoA; and we...... used this method for quantification of these metabolites in Saccharomyces cerevisiae, both during batch growth on glucose and on galactose and in glucose-limited chemostat cultures operated at three different dilution rates. The level of the metabolites changed depending on the growth phase...

  1. Simvastatin inhibits the proliferation of human prostate cancer PC-3 cells via down-regulation of the insulin-like growth factor 1 receptor

    International Nuclear Information System (INIS)

    Sekine, Yoshitaka; Furuya, Yosuke; Nishii, Masahiro; Koike, Hidekazu; Matsui, Hiroshi; Suzuki, Kazuhiro

    2008-01-01

    Recently, statins have been being studied for their proapoptic and antimetastatic effects. However, the exact mechanisms of their anticancer action are still unclear. Dolichyl phosphate is a nonsterol isoprenoid derivative in the mevalonate pathway that affects the expression of the Insulin-like growth factor 1 receptor (IGF-1R). IGF-1R activation is required for prostate cell proliferation; therefore, IGF-1R inhibitory agents may be of preventive and/or therapeutic value. In this study, the effects of simvastatin on IGF-1R signaling in prostate cancer PC-3 cells were examined. Simvastatin suppressed proliferation and induced apoptosis of PC-3, and the expression of IGF-1R was suppressed by simvastatin. Knockdown of IGF-1R by siRNA led to inhibition of proliferation of PC-3. Simvastatin also inhibited IGF-1-induced activation of both ERK and Akt signaling and IGF-1-induced PC-3 cell proliferation. Our results suggest statins are potent inhibitors of the IGF-1/IGF-1R system in prostate cancer cells and may be beneficial in prostate cancer treatment

  2. Rewiring Host Lipid Metabolism by Large Viruses Determines the Fate of Emiliania huxleyi, a Bloom-Forming Alga in the Ocean[C][W][OPEN

    Science.gov (United States)

    Rosenwasser, Shilo; Mausz, Michaela A.; Schatz, Daniella; Sheyn, Uri; Malitsky, Sergey; Aharoni, Asaph; Weinstock, Eyal; Tzfadia, Oren; Ben-Dor, Shifra; Feldmesser, Ester; Pohnert, Georg; Vardi, Assaf

    2014-01-01

    Marine viruses are major ecological and evolutionary drivers of microbial food webs regulating the fate of carbon in the ocean. We combined transcriptomic and metabolomic analyses to explore the cellular pathways mediating the interaction between the bloom-forming coccolithophore Emiliania huxleyi and its specific coccolithoviruses (E. huxleyi virus [EhV]). We show that EhV induces profound transcriptome remodeling targeted toward fatty acid synthesis to support viral assembly. A metabolic shift toward production of viral-derived sphingolipids was detected during infection and coincided with downregulation of host de novo sphingolipid genes and induction of the viral-encoded homologous pathway. The depletion of host-specific sterols during lytic infection and their detection in purified virions revealed their novel role in viral life cycle. We identify an essential function of the mevalonate-isoprenoid branch of sterol biosynthesis during infection and propose its downregulation as an antiviral mechanism. We demonstrate how viral replication depends on the hijacking of host lipid metabolism during the chemical “arms race” in the ocean. PMID:24920329

  3. IspE inhibitors identified by a combination of in silico and in vitro high-throughput screening.

    Directory of Open Access Journals (Sweden)

    Naomi Tidten-Luksch

    Full Text Available CDP-ME kinase (IspE contributes to the non-mevalonate or deoxy-xylulose phosphate (DOXP pathway for isoprenoid precursor biosynthesis found in many species of bacteria and apicomplexan parasites. IspE has been shown to be essential by genetic methods and since it is absent from humans it constitutes a promising target for antimicrobial drug development. Using in silico screening directed against the substrate binding site and in vitro high-throughput screening directed against both, the substrate and co-factor binding sites, non-substrate-like IspE inhibitors have been discovered and structure-activity relationships were derived. The best inhibitors in each series have high ligand efficiencies and favourable physico-chemical properties rendering them promising starting points for drug discovery. Putative binding modes of the ligands were suggested which are consistent with established structure-activity relationships. The applied screening methods were complementary in discovering hit compounds, and a comparison of both approaches highlights their strengths and weaknesses. It is noteworthy that compounds identified by virtual screening methods provided the controls for the biochemical screens.

  4. Functional analysis of the zebrafish ortholog of HMGCS1 reveals independent functions for cholesterol and isoprenoids in craniofacial development.

    Directory of Open Access Journals (Sweden)

    Anita M Quintana

    Full Text Available There are 8 different human syndromes caused by mutations in the cholesterol synthesis pathway. A subset of these disorders such as Smith-Lemli-Opitz disorder, are associated with facial dysmorphia. However, the molecular and cellular mechanisms underlying such facial deficits are not fully understood, primarily because of the diverse functions associated with the cholesterol synthesis pathway. Recent evidence has demonstrated that mutation of the zebrafish ortholog of HMGCR results in orofacial clefts. Here we sought to expand upon these data, by deciphering the cholesterol dependent functions of the cholesterol synthesis pathway from the cholesterol independent functions. Moreover, we utilized loss of function analysis and pharmacological inhibition to determine the extent of sonic hedgehog (Shh signaling in animals with aberrant cholesterol and/or isoprenoid synthesis. Our analysis confirmed that mutation of hmgcs1, which encodes the first enzyme in the cholesterol synthesis pathway, results in craniofacial abnormalities via defects in cranial neural crest cell differentiation. Furthermore targeted pharmacological inhibition of the cholesterol synthesis pathway revealed a novel function for isoprenoid synthesis during vertebrate craniofacial development. Mutation of hmgcs1 had no effect on Shh signaling at 2 and 3 days post fertilization (dpf, but did result in a decrease in the expression of gli1, a known Shh target gene, at 4 dpf, after morphological deficits in craniofacial development and chondrocyte differentiation were observed in hmgcs1 mutants. These data raise the possibility that deficiencies in cholesterol modulate chondrocyte differentiation by a combination of Shh independent and Shh dependent mechanisms. Moreover, our results describe a novel function for isoprenoids in facial development and collectively suggest that cholesterol regulates craniofacial development through versatile mechanisms.

  5. Preservation of peptide moieties in three Spanish sulfur-rich Tertiary kerogens

    Energy Technology Data Exchange (ETDEWEB)

    Rio, J.C. del [Consejo Superior de Investigaciones Cientificas, Seville (Spain). Inst. de Recursos Naturales y Agrobiologia; Olivella, M.A.; Heras, F.X.D. de las [Escola Universitaria Politecnica de Manresa, Catalonia (Spain); Knicker, H. [Technische Universitaet Muenchen (Germany). Lehrstuhl fuer Bodenkunde

    2004-09-01

    Thermochemolysis with tetramethylammonium hydroxide (TMAH) and solid-state {sup 15}N NMR were utilized for the characterization of refractory organic nitrogen in Tertiary Spanish kerogens. The samples included sulfur-rich oil shales from the Ribesalbes (Serravallian), Libros (Tortonian) and Cerdanya (Tortonian) basins. Analysis using solid state {sup 15}N NMR showed that part of the refractory nitrogen in the kerogens corresponds to amide groups. Moreover, the release of amino acid derivatives after pyrolysis in the presence of TMAH indicated that this amide-N arose from peptide moieties. The amino acids released from the kerogens were dominated by high amounts of glycine and alanine. Minor amounts of aspartic acid, serine, {alpha}-aminobutyric acid and other unidentified amino acids were also detected. Because proteinaceous structures, including small peptides, are generally considered as being highly sensitive to diagenetic degradation, encapsulation of labile peptide material into aliphatic structures in S-rich kerogens (probably via lipid sulfurization) has been proposed to explain the survival of these moieties. Substantial amounts of fatty acids (as methyl esters) were also released from all the kerogens after pyrolysis/TMAH, indicating their highly aliphatic character. The production of both fatty acids and amino acids from the kerogens supports the encapsulation process. (author)

  6. Synthesis, reactions, and antiarrhythmic activities of some novel pyrimidines and pyridines fused with thiophene moiety

    OpenAIRE

    AMR, Abdel-Galil El-Sayed; ABDEL-HAFEZ, Naglaa Abdel-Samei

    2009-01-01

    We report herein the synthesis and antiarrhythmic activities of some newly synthesized heterocyclic theino[2,3-c]pyrimidine and theino[2,3-c]pyridine derivatives fused with thiophene moiety. Initially the acute toxicity of the compounds was assayed via the determination of their LD50. The antiarrhythmic activities for the compounds were determined and all the tested compounds were found more potent than Procaine amide\\textregistered and Lidocaine\\textregistered as positive antiarrhyth...

  7. Synthesis, reactions, and antiarrhythmic activities of some novel pyrimidines and pyridines fused with thiophene moiety

    OpenAIRE

    AMR, Abdel-Galil El-Sayed; ABDEL-HAFEZ, Naglaa Abdel-Samei; MOHAMED, Salwa Fahem; ABDALLA, Mohamed Mostafa

    2014-01-01

    We report herein the synthesis and antiarrhythmic activities of some newly synthesized heterocyclic theino[2,3-c]pyrimidine and theino[2,3-c]pyridine derivatives fused with thiophene moiety. Initially the acute toxicity of the compounds was assayed via the determination of their LD50. The antiarrhythmic activities for the compounds were determined and all the tested compounds were found more potent than Procaine amide\\textregistered and Lidocaine\\textregistered as positive antiarrhyth...

  8. Biosynthetic origin of the isoprene units in chromenes of Piper aduncum (Piperaceae)

    International Nuclear Information System (INIS)

    Leite, Ana C.; Lopes, Adriana A.; Bolzani, Vanderlan da S.; Furlan, Maysa; Kato, Massuo J.

    2007-01-01

    Metabolic studies involving the incorporation of [1- 13 C]-D-glucose into intact leaves of Piper aduncum (Piperaceae) have indicated that both the mevalonate (MVA) and the pyruvate-triose (MEP) non-mevalonate pathways are implicated in the biosynthesis of isoprene moieties present in methyl 2,2-dimethyl-2H-1-chromene-6-carboxylate (1) and methyl 2,2-dimethyl-8-(3'-methyl- 2'-butenyl)-2H-1-chromene-6-carboxylate (2). The pattern of incorporation of label from [1- 13 C]-D-glucose into these chromenes was determined by quantitative 13 C NMR spectroscopy. The results confirmed that biosynthetic compartment of 1 and 2 could either be the plastid and/ or the cytosol or, possibly, an additional compartment such as the plastid inter-membrane space. (author)

  9. Design, synthesis and evaluation of novel cinnamic acid derivatives bearing N-benzyl pyridinium moiety as multifunctional cholinesterase inhibitors for Alzheimer's disease.

    Science.gov (United States)

    Lan, Jin-Shuai; Hou, Jian-Wei; Liu, Yun; Ding, Yue; Zhang, Yong; Li, Ling; Zhang, Tong

    2017-12-01

    A novel family of cinnamic acid derivatives has been developed to be multifunctional cholinesterase inhibitors against AD by fusing N-benzyl pyridinium moiety and different substituted cinnamic acids. In vitro studies showed that most compounds were endowed with a noteworthy ability to inhibit cholinesterase, self-induced Aβ (1-42) aggregation, and to chelate metal ions. Especially, compound 5l showed potent cholinesterase inhibitory activity (IC 50 , 12.1 nM for eeAChE, 8.6 nM for hAChE, 2.6 μM for eqBuChE and 4.4 μM for hBuChE) and the highest selectivity toward AChE over BuChE. It also showed good inhibition of Aβ (1-42) aggregation (64.7% at 20 μM) and good neuroprotection on PC12 cells against amyloid-induced cell toxicity. Finally, compound 5l could penetrate the BBB, as forecasted by the PAMPA-BBB assay and proved in OF1 mice by ex vivo experiments. Overall, compound 5l seems to be a promising lead compound for the treatment of Alzheimer's diseases.

  10. Structural elucidation of the polysaccharide moiety of a glycopeptide (GLPCW-II) from Ganoderma lucidum fruiting bodies.

    Science.gov (United States)

    Ye, LiBin; Zhang, JingSong; Ye, XiJun; Tang, QingJiu; Liu, YanFang; Gong, ChunYu; Du, XiuJui; Pan, YingJie

    2008-03-17

    A water-soluble glycopeptide (GLPCW-II) was isolated from the fruiting bodies of Ganoderma lucidum by DEAE-Sepharose Fast-Flow and Sephacryl S-300 High Resolution Chromatography. The glycopeptide had a molecular weight of 1.2x10(4)Da (determined by HPLC), and consisted of approximately 90% carbohydrate and approximately 8% protein as determined using the phenol-sulfuric acid method and the BCA protein assay reagent kit, respectively. The polysaccharide moiety was composed mainly of D-Glc, L-Fuc, and D-Gal in the ratio of 1.00:1.09:4.09. To facilitate structure-activity studies, the structure of the GLPCW-II polysaccharide moiety was elucidated using 1H and 13C NMR spectroscopy including COSY, TOCSY, HMBC, HSQC, and ROESY, combined with GC-MS of methylated derivatives, and shown to consist of repeating units with the following structure: [Formula: see text].

  11. A C-25 highly branched isoprenoid alkene and C-25 and C-27 n-polyenes in the marine diatom Rhizosolenia setigera

    NARCIS (Netherlands)

    Sinninghe Damste, J.S; Rijpstra, W.I C; Schouten, S; Peletier, H.; van der Maarel, M.J.E.C.; Gieskes, W.W C

    1999-01-01

    A North Atlantic strain of the marine diatom Rhizosolenia setigera was examined for the presence of hydrocarbons. This strain biosynthesizes a highly branched isoprenoid (HBI) C-25 pentaene, in contrast to Australian strains of R. setigera which produce HBI C-30 alkenes. The more widespread

  12. Enhanced accumulation of phytosterols and phenolic compounds in cyclodextrin-elicited cell suspension culture of Daucus carota.

    Science.gov (United States)

    Miras-Moreno, Begoña; Almagro, Lorena; Pedreño, M A; Sabater-Jara, Ana Belén

    2016-09-01

    In this work, suspension-cultured cells of Daucus carota were used to evaluate the effect of β-cyclodextrins on the production of isoprenoid and phenolic compounds. The results showed that the phytosterols and phenolic compounds were accumulated in the extracellular medium (15100μgL(-1) and 477.46μgL(-1), respectively) in the presence of cyclodextrins. Unlike the phytosterol and phenolic compound content, β-carotene (1138.03μgL(-1)), lutein (25949.54μgL(-1)) and α-tocopherol (8063.82μgL(-1)) chlorophyll a (1625.13μgL(-1)) and b (9.958 (9958.33μgL(-1)) were mainly accumulated inside the cells. Therefore, cyclodextrins were able to induce the cytosolic mevalonate pathway, increasing the biosynthesis of phytosterols and phenolic compounds, and accumulate them outside the cells. However, in the absence of these cyclic oligosaccharidic elicitors, carrot cells mainly accumulated carotenoids through the methylerythritol 4-phosphate pathway. Therefore, the use of cyclodextrins would allow the extracellular accumulation of both phytosterols and phenolic compounds by diverting the carbon flux towards the cytosolic mevalonate/phenylpropanoid pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. One-Pot Synthesis of Cu(II Complex with Partially Oxidized TTF Moieties

    Directory of Open Access Journals (Sweden)

    Hiroki Oshio

    2012-07-01

    Full Text Available The one-pot synthesis of a Cu(II complex with partially oxidized tetrathiafulvalene (TTF moieties in its capping MT-Hsae-TTF ligands, [CuII(MT-sae-TTF2] [CuICl2] was realized by the simultaneous occurrence of Cu(II complexation and CuIICl2 mediated oxidation of TTF moieties. The crystal structure was composed of one-dimensional columns formed by partially oxidized TTF moieties and thus the cation radical salt showed relatively high electrical conductivity. Tight binding band structure calculations indicated the existence of a Peierls gap due to the tetramerization of the TTF moieties in the one-dimensional stacking column at room temperature, which is consistent with the semiconducting behavior of this salt.

  14. STEVIOSIDE SYNTHESIS IN STEVIA (Stevia rebaudiana Bert

    Directory of Open Access Journals (Sweden)

    Alfredo Jarma Orozco

    2010-01-01

    Full Text Available Stevia rebaudiana Bert. is a subtropical wild plant of Paraguay, that possesses a potent sweetener up to 300 times higher than sucrose and has no calories. The molecules responsible for these characteristics are diterpen glycosides, found in leaves and synthesized at least, at initial states, which use the same pathway of the gibberellic acid in which the shiquimic acid gives origin to many aromatic compounds. The acetate is the precursor of the terpens or isoprenoids through the acetate-mevalonate pathway, where steviosides are found. Although in this article, an alternative route is discussed. This updating pretends to contribute tools for the understanding of the main pathways of steviol glycosides synthesis.

  15. Zeatin is indispensable for the G2-M transition in tobacco BY-2 cells.

    Science.gov (United States)

    Laureys, F; Dewitte, W; Witters, E; Van Montagu, M; Inzé, D; Van Onckelen, H

    1998-04-10

    The importance of N6-isoprenoid cytokinins in the G2-M transition of Nicotiana tabacum BY-2 cells was investigated. Both cytokinin biosynthesis and entry in mitosis were partially blocked by application at early or late G2 of lovastatin (10 microM), an inhibitor of mevalonic acid synthesis. LC-MS/MS quantification of endogenous cytokinins proved that lovastatin affects cytokinin biosynthesis by inhibiting HMG-CoA reductase. Out of eight different aminopurines and a synthetic auxin tested for their ability to override lovastatin inhibition of mitosis, only zeatin was active. Our data point to a key role for a well-defined cytokinin (here, zeatin) in the G2-M transition of tobacco BY-2 cells.

  16. Synthesis, structural characterization and photoluminescence properties of rhenium(I) complexes based on bipyridine derivatives with carbazole moieties.

    Science.gov (United States)

    Li, Hong-Yan; Wu, Jing; Zhou, Xin-Hui; Kang, Ling-Chen; Li, Dong-Ping; Sui, Yan; Zhou, Yong-Hui; Zheng, You-Xuan; Zuo, Jing-Lin; You, Xiao-Zeng

    2009-12-21

    Three N,N-bidentate ligands, 5,5'-dibromo-2,2-bipyridine (L1) and two carbazole containing ligands of 5-bromo-5'-carbazolyl-2,2-bipyridine (L2), 5,5'-dicarbazolyl-2,2'-bipyridine (L3), and their corresponding rhenium Re(CO)3Cl(L) complexes (ReL1-ReL3) have been successfully synthesized and characterized by elemental analysis, 1H NMR and IR spectra. Their photophysical properties and thermal analysis, along with the X-ray crystal structure analysis of L3 and complexes ReL1 and ReL3 are also described. In CH2Cl2 solution at room temperature, all complexes display intense absorption bands at ca. 220-350 nm, which can be assigned to spin-allowed intraligand (pi-->pi*) transitions, and the low energy broad bands in the 360-480 nm region are attributed to the metal to ligand charge-transfer d(Re)-->pi* (diimine) (MLCT). The introduction of carbazole moieties improves the MLCT absorption and molar extinction coefficient of these complexes. Upon excitation at the peak maxima, all complexes show strong emissions around 620 nm, which are assigned to d(Re)-->pi* (diimine) MLCT phosphorescence. The photoluminescence lifetime decay of Re(I) complexes were measured and the quantum efficiencies of the rhenium(I) complexes were calculated by using air-equilibrated [Ru(bpy)3]2+ x 2 Cl- aqueous solution as standard (phi(std) = 0.028). The complexes with appended carbazole moieties exhibit enhanced luminescence performances relative to ReL1.

  17. Hydrophilization of poly(caprolactone copolymers through introduction of oligo(ethylene glycol moieties.

    Directory of Open Access Journals (Sweden)

    Jonathan J Wurth

    Full Text Available In this study, a new family of poly(ε-caprolactone (PCL copolymers that bear oligo(ethylene glycol (OEG moieties is described. The synthesis of three different oligo(ethylene glycol functionalized epoxide monomers derived from 2-methyl-4-pentenoic acid, and their copolymerization with ε-caprolactone (CL to poly(CL-co-OEG-MPO copolymers is presented. The statistical copolymerization initiated with SnOct2/BnOH yielded the copolymers with varying OEG content and composition. The linear relationship between feed ratio and incorporation of the OEG co-monomer enables control over backbone functional group density. The introduction of OEG moieties influenced both the thermal and the hydrophilic characteristics of the copolymers. Both increasing OEG length and backbone content resulted in a decrease in static water contact angle. The introduction of OEG side chains in the PCL copolymers had no adverse influence on MC-3TE3-E1 cell interaction. However, changes to cell form factor (Φ were observed. While unmodified PCL promoted elongated (anisotropic morphologies (Φ = 0.094, PCL copolymer with tri-ethylene glycol side chains at or above seven percent backbone incorporation induced more isotropic cell morphologies (Φ = 0.184 similar to those observed on glass controls (Φ = 0.151.

  18. Substituted group and side chain effects for the porphyrin and zinc(II)–porphyrin derivatives: A DFT and TD-DFT study

    International Nuclear Information System (INIS)

    Tai, Chin-Kuen; Chuang, Wen-Hua; Wang, Bo-Cheng

    2013-01-01

    The DFT/B3LYP/LANL2DZ and TD-DFT calculations have been performed to generate the optimized structures, electronic and photo-physical properties for the porphyrin and zinc(II)–porphyrin (metalloporphyrin) derivatives. The substituted group and side chain effects for these derivatives are discussed in this study. According to the calculation results, the side chain moiety extends the π-delocalization length from the porphyrin core to the side chain moiety. The substituted group with a stronger electron-donating ability increases the energy level of highest occupied molecular orbital (E HOMO ). The side chain moiety with a lower resonance energy decreases E HOMO , the energy level of the lowest unoccupied molecular orbital (E LUMO ), and the energy gap (E g ) between HOMO and LUMO in the porphyrin and zinc(II)–porphyrin derivatives. The natural bonding orbital (NBO) analysis determines the possible electron transfer mechanism from the electron-donating to -withdrawing groups (the side chain moiety) in these porphyrin derivatives. The projected density of state (PDOS) analysis shows that the electron-donating group affects the electron density distribution in both HOMO and LUMO, and the side chain moiety influence the electron density distribution in LUMO. The calculated photo-physical properties (absorption wavelengths and the related oscillator strength, f) in dichloromethane environment for porphyrin and zinc(II)–porphyrin derivatives have been simulated by using the TD-DFT method within the Polarizable Continuum Model (PCM). The present of both of the substituted group and the side chain moiety in these derivatives results in a red shift and broadening of the range of the absorption peaks of the Q/Soret band as compared to porphin. -- Highlights: • Side chain moiety extends the π-delocalization for the porphyrins. • Substituted group increases the energy of highest occupied molecular orbital. • Side chain moiety influences the Q/Soret band of

  19. Antidepressant potential of nitrogen-containing heterocyclic moieties: An updated review

    Directory of Open Access Journals (Sweden)

    Nadeem Siddiqui

    2011-01-01

    Full Text Available Depression is currently the fourth leading cause of disease or disability worldwide. Antidepressant is approved for the treatment of major depression (including paediatric depression, obsessive-compulsive disorder (in both adult and paediatric populations, bulimia nervosa, panic disorder and premenstrual dysphoric disorder. Antidepressant is a psychiatric medication used to alleviate mood disorders, such as major depression and dysthymia and anxiety disorders such as social anxiety disorder. Many drugs produce an antidepressant effect, but restrictions on their use have caused controversy and off-label prescription a risk, despite claims of superior efficacy. Our current understanding of its pathogenesis is limited and existing treatments are inadequate, providing relief to only a subset of people suffering from depression. Reviews of literature suggest that heterocyclic moieties and their derivatives has proven success in treating depression.

  20. Enhancing isoprenoid production through systematically assembling and modulating efflux pumps in Escherichia coli.

    Science.gov (United States)

    Wang, Jian-Feng; Xiong, Zhi-Qiang; Li, Shi-Yuan; Wang, Yong

    2013-09-01

    Enhancement of the cellular exportation of heterologous compounds is an important aspect to improve the product yield in microbial cell factory. Efflux pumps can expel various intra- or extra-cellular substances out of microbial hosts and increase the cellular tolerance. Thus in this study, by using the hydrophobic sesquiterpene (amorphadiene) and diterpene (kaurene) as two model compounds, we attempted to improve isoprenoid production through systematically engineering the efflux pumps in Escherichia coli BL21(DE3). The pleiotropic resistant pumps, AcrAB-TolC, MdtEF-TolC from E. coli and heterologous MexAB-OprM pump from Pseudomonas aeruginosa, were overexpressed, assembled, and finely modulated. We found that overexpression of AcrB and TolC components can effectively enhance the specific yield of amorphadiene and kaurene, e.g., 31 and 37 % improvement for amorphadiene compared with control, respectively. The heterologous MexB component can enhance kaurene production with 70 % improvement which is more effective than TolC and AcrB. The results suggest that the three components of tripartite efflux pumps play varied effect to enhance isoprenoid production. Considering the highly organized structure of efflux pumps and importance of components interaction, various component combinations were constructed and the copy number of key components AcrB and TolC was finely modulated as well. The results exhibit that the combination TolC and TolC and AcrB improved the specific yield of amorphadiene with 118 %, and AcrA and TolC and AcrB improved that of kaurene with 104 %. This study indicates that assembling and finely modulating efflux pumps is an effective strategy to improve the production of heterologous compounds in E. coli.

  1. Biosynthetic origin of the isoprene units in chromenes of Piper aduncum (Piperaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Ana C.; Lopes, Adriana A.; Bolzani, Vanderlan da S.; Furlan, Maysa [UNESP, Araraquara, SP (Brazil). Inst. de Quimica]. E-mail: maysaf@iq.unesp.br; Kato, Massuo J. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica

    2007-07-01

    Metabolic studies involving the incorporation of [1-{sup 13}C]-D-glucose into intact leaves of Piper aduncum (Piperaceae) have indicated that both the mevalonate (MVA) and the pyruvate-triose (MEP) non-mevalonate pathways are implicated in the biosynthesis of isoprene moieties present in methyl 2,2-dimethyl-2H-1-chromene-6-carboxylate (1) and methyl 2,2-dimethyl-8-(3'-methyl- 2'-butenyl)-2H-1-chromene-6-carboxylate (2). The pattern of incorporation of label from [1- {sup 13}C]-D-glucose into these chromenes was determined by quantitative {sup 13}C NMR spectroscopy. The results confirmed that biosynthetic compartment of 1 and 2 could either be the plastid and/ or the cytosol or, possibly, an additional compartment such as the plastid inter-membrane space. (author)

  2. Progress of research on the adsorption of chitosan and its derivatives to uranium

    International Nuclear Information System (INIS)

    Wang Caixia; Liu Yunhai; Hua Rong; Pang Cui; Wang Yong

    2010-01-01

    This paper has summarized the study on the adsorption of chitosan and its derivatives to uranium in recent years at home and abroad. It was found that the derivatives can be serine-type chitosan, methyl phosphoric acid modified chitosan, 3,4-dihydroxy benzoic acid-type chitosan, chitosan with 3,4-dihydroxybenzoic acid moiety, chitosan resin possessing a phenylarsonic acid moiety, quadrol modified chitosan, chitosan modified with molecular imprinting technique, polyacrylamide hydrogel, chitosan-coated perlite and so on. The application vista of chitosan and its derivatives to Absorpt uranium in water has been prospected. (authors)

  3. Small endogenous molecules as moiety to improve targeting of CNS drugs.

    Science.gov (United States)

    Sutera, Flavia Maria; De Caro, Viviana; Giannola, Libero Italo

    2017-01-01

    A major challenge in the development of novel neuro-therapeutic agents is to effectively overcome the blood-brain barrier (BBB), which acts as a 'working dynamic barrier'. The core problem in the treatment of neurodegenerative diseases is failed delivery of potential medicines due to their inadequate permeation rate. Areas covered: The present review gives a summary of endogenous moieties used in synthesizing prodrugs, derivatives and bioisosteric drugs appositely designed to structurally resemble physiological molecular entities able to be passively absorbed or carried by specific carrier proteins expressed at BBB level. In particular, this overview focuses on aminoacidic, glycosyl, purinergic, ureic and acidic fragments derivatives, most of which can take advantage from BBB carrier-mediated transporters, where passive diffusion is not permitted. Expert opinion: In the authors' perspective, further progress in this field could expedite successful translation of new chemical entities into clinical trials. Careful rationalization of the linkage between endogenous molecular structures and putative transporters binding sites could allow to useful work-flows and libraries for synthesizing new BBB-crossing therapeutic substances and/or multifunctional drugs for treatments of central disorders.

  4. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    Science.gov (United States)

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-01-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845

  5. The effect of maturation on the configurations of acyclic isoprenoid acids in sediments

    Science.gov (United States)

    Mackenzie, A. S.; Patience, R. L.; Yon, D. A.; Maxwell, J. R.

    1982-05-01

    Within a variety of sedimentary rocks of differing maturity, the configurations of a suite of acyclic isoprenoid acids have been examined by gas Chromatographic (in a few cases also by combined gas chromatography-mass spectrometry) analysis of their diastereoisomeric methyl and (-)-menthyl esters. The samples include the Eocene Messel (Germany) and Green River (U.S.) shales, the Permian Irati shale (Brazil) and a number of Lower Toarcian shales from the Paris Basin. The isomer distributions show that isomerisation occurs at the chiral centres with increasing maturation (to increase the number of isomers) and that the rate of isomerisation increases for centres (C-2,C-3) closest to the carboxyl group. These results suggest that adsorption of the carboxyl group to a catalyst surface may control the isomerisation rates by way of access to the catalyst.

  6. Carcinostatic effects of diverse ascorbate derivatives in comparison with aliphatic chain moiety structures: Promotion by combined hyperthermia and reduced cytotoxicity to normal cells.

    Science.gov (United States)

    Asada, Ryoko; Kageyama, Katsuhiro; Tanaka, Hiroshi; Kimura, Masatugu; Saitoh, Yasukazu; Miwa, Nobuhiko

    2012-05-01

    In this study, using human tongue squamous carcinoma cells (HSC-4) carcinostatic activity was compared for diverse L-ascorbic acid (Asc) derivatives, including the 'straight-C(16)-chain types', 6-O-palmitoyl-Asc (A6-P) and Asc-2-phosphate-6-O-palmitate sodium salt (APPS), as well as the 'branched-C(16)-chain types', Asc-2-phosphate-6-O-(2'-hexyl)decanoate (APHD), an isomer of APPS, and Asc-2,3,5,6-O-tetra-(2'-hexyl)decanoate (VCIP). The order of magnitude of the carcinostatic effects at 37°C was: APPS>A6-P = APHD>VCIP and at 42°C was APPS = A6-P>APHD>VCIP. Therefore, the two straight-C(16)-chain derivatives, APPS and A6-P, had a greater effect compared to the two branched-C(16)-chain Asc derivatives, which are considered to have more difficulty with 'orientation along cell-membrane-glycerolipid direction'. APPS-treated HCS-4 cells were observed for a decrease in cell number, cell shrinkage, pycnosis indicative of apoptosis and cell deformation. The order of cytotoxicity for the normal human dermal fibroblasts (OUMS-36) at 37°C was: A6-P (50% inhibitory concentration: 150-300 μM)>APHD (450-600 μM)>Asc = APPS (800-1000 μM). Accordingly, APHD was more cytotoxic than APPS, since the straight-C(16)-chain type, which was eliminated after the enzymatic esterolysis of APPS, is metabolized via the 'fatty acid β-oxidation cycle' more efficiently in normal cells. Thus, APPS had a greater advantage over APHD, A6-P and VCIP in terms of carcinostatic effects at 37°C, carcinostasis promotion at 42°C and a decrease of cytotoxicity to normal cells. This observation suggests a marked potential for aliphatic chain-moiety structures as anticancer agents, due to their cancer-selective carcinostasis and combined efficacy with hyperthermia, without causing side effects.

  7. Insights into the structure-activity relationship of the anticancer compound ZJ-101, a derivative of marine natural product superstolide A: A role played by the lactone moiety.

    Science.gov (United States)

    Qiu, Haibo; Qian, Shan; Head, Sarah A; Liu, Jun O; Jin, Zhendong

    2016-10-01

    Compound ZJ-101, a structurally simplified analog of the marine natural product superstolide A, was previously developed in our laboratory. In the subsequent structure-activity relationship study, a new analog ZJ-109 was designed and synthesized to probe the importance of the lactone moiety of the molecule by replacing the lactone in ZJ-101 with a lactam. The biological evaluation showed that ZJ-109 is about 8-12 times less active against cancer cells in vitro than ZJ-101, suggesting that the lactone moiety of the molecule is important for its anticancer activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A series of copper complexes with carbazole and oxadiazole moieties: Synthesis, characterization and luminescence performance

    Energy Technology Data Exchange (ETDEWEB)

    Bai Weiyang, E-mail: baiwy02@163.com [College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054 (China); Sun Li [Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2012-10-15

    In this paper, various moieties of ethyl, carbazole and oxadiazole are attached to 2-thiazol-4-yl-1H-benzoimidazole to form a series of diamine ligands. Their corresponding Cu(I) complexes are also synthesized using bis(2-(diphenylphosphanyl)phenyl) ether as the auxiliary ligand. Crystal structures, thermal property, electronic nature and luminescence property of these Cu(I) complexes are discussed in detail. These Cu(I) complexes are found to be efficient green-emitting ones in solutions and the emissive parameters are improved largely by the incorporation of substituent moieties. Detailed analysis suggests that the effective suppression of solvent-induced exciplex quenching is responsible for this phenomenon. On the other hand, the introduction of substituent moieties exerts no obvious influence on molecular structure, thermal stability and emitting-energy of the Cu(I) complexes, owing to their absence from inner coordination sphere. - Highlights: Black-Right-Pointing-Pointer Diamine ligands with various moieties and Cu(I) complexes are synthesized. Black-Right-Pointing-Pointer Crystal structures and photophysical property are discussed in detail. Black-Right-Pointing-Pointer The incorporation of substituent moieties improves luminescence performance. Black-Right-Pointing-Pointer Solvent-induced exciplex quenching is suppressed by substituent moieties.

  9. Protein farnesyltransferase isoprenoid substrate discrimination is dependent on isoprene double bonds and branched methyl groups.

    Science.gov (United States)

    Micali, E; Chehade, K A; Isaacs, R J; Andres, D A; Spielmann, H P

    2001-10-16

    Farnesylation is a posttranslational lipid modification in which a 15-carbon farnesyl isoprenoid is linked via a thioether bond to specific cysteine residues of proteins in a reaction catalyzed by protein farnesyltransferase (FTase). We synthesized the benzyloxyisoprenyl pyrophosphate (BnPP) series of transferable farnesyl pyrophosphate (FPP) analogues (1a-e) to test the length dependence of the isoprenoid substrate on the FTase-catalyzed transfer of lipid to protein substrate. Kinetic analyses show that pyrophosphates 1a-e and geranyl pyrophosphate (GPP) transfer with a lower efficiency than FPP whereas geranylgeranyl pyrophosphate (GGPP) does not transfer at all. While a correlation was found between K(m) and analogue hydrophobicity and length, there was no correlation between k(cat) and these properties. Potential binding geometries of FPP, GPP, GGPP, and analogues 1a-e were examined by modeling the molecules into the active site of the FTase crystal structure. We found that analogue 1d displaces approximately the same volume of the active site as does FPP, whereas GPP and analogues 1a-c occupy lesser volumes and 1e occupies a slightly larger volume. Modeling also indicated that GGPP adopts a different conformation than the farnesyl chain of FPP, partially occluding the space occupied by the Ca(1)a(2)X peptide in the ternary X-ray crystal structure. Within the confines of the FTase pocket, the double bonds and branched methyl groups of the geranylgeranyl chain significantly restrict the number of possible conformations relative to the more flexible lipid chain of analogues 1a-e. The modeling results also provide a molecular explanation for the observation that an aromatic ring is a good isostere for the terminal isoprene of FPP.

  10. Macromolecular Networks Containing Fluorinated Cyclic Moieties

    Science.gov (United States)

    2015-12-12

    Briefing Charts 3. DATES COVERED (From - To) 17 Nov 2015 – 12 Dec 2015 4. TITLE AND SUBTITLE Macromolecular Networks Containing Fluorinated Cyclic... FLUORINATED CYCLIC MOIETIES 12 December 2015 Andrew J. Guenthner,1 Scott T. Iacono,2 Cynthia A. Corley,2 Christopher M. Sahagun,3 Kevin R. Lamison,4...Reinforcements Good Flame, Smoke, & Toxicity Characteristics Low Water Uptake with Near Zero Coefficient of Hygroscopic Expansion ∆ DISTRIBUTION A

  11. 1,3-Oxazin-6-one Derivatives and Bohemamine-Type Pyrrolizidine Alkaloids from a Marine-Derived Streptomyces spinoverrucosus.

    Science.gov (United States)

    Fu, Peng; La, Scott; MacMillan, John B

    2016-03-25

    Two new 1,3-oxazin-6-one derivatives (1 and 2) and six new bohemamine-type pyrrolizidine alkaloids (3-8) were isolated from the marine-derived Streptomyces spinoverrucosus strain SNB-048. Their structures including the absolute configurations were fully elucidated on the basis of spectroscopic analysis, ECD spectra, quantum chemical calculations, and chemical methods. Compounds 1 and 2 possess a γ-lactam moiety and a 1,3-oxazin-6-one system.

  12. Triphenylphosphonium Moiety Modulates Proteolytic Stability and Potentiates Neuroprotective Activity of Antioxidant Tetrapeptides in Vitro

    Directory of Open Access Journals (Sweden)

    Rezeda A. Akhmadishina

    2018-02-01

    Full Text Available Although delocalized lipophilic cations have been identified as effective cellular and mitochondrial carriers for a range of natural and synthetic drug molecules, little is known about their effects on pharmacological properties of peptides. The effect of triphenylphosphonium (TPP cation on bioactivity of antioxidant tetrapeptides based on the model opioid YRFK motif was studied. Two tetrapeptide variants with L-arginine (YRFK and D-arginine (YrFK were synthesized and coupled with carboxyethyl-TPP (TPP-3 and carboxypentyl-TPP (TPP-6 units. The TPP moiety noticeably promoted YRFK cleavage by trypsin, but effectively prevented digestion of more resistant YrFK attributed, respectively, to structure-organizing and shielding effects of the TPP cation on conformational variants of the tetrapeptide motif. The TPP moiety enhanced radical scavenging activity of the modified YRFK in a model Fenton-like reaction, whereas decreased reactivity was revealed for both YrFK and its TPP derivative. The starting motifs and modified oligopeptides, especially the TPP-6 derivatives, suppressed acute oxidative stress in neuronal PC-12 cells during a brief exposure similarly with glutathione. The effect of oligopeptides was compared upon culturing of PC-12 cells with CoCl2, L-glutamic acid, or menadione to mimic physiologically relevant oxidative states. The cytoprotective activity of oligopeptides significantly depended on the type of oxidative factor, order of treatment and peptide structure. Pronounced cell-protective effect was established for the TPP-modified oligopeptides, which surpassed that of the unmodified motifs. The protease-resistant TPP-modified YrFK showed the highest activity when administered 24 h prior to the cell damage. Our results suggest that the TPP cation can be used as a modifier for small therapeutic peptides to improve their pharmacokinetic and pharmacological properties.

  13. Method for determining the composition of the sugar moiety of a sugar containing compound

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to methods of labeling sugar moieties of sugar containing compounds including glycopeptides. The compounds presented in the present invention facilitate reliable detection of sugar moieties of sugar containing compounds by a combination of spectroscopy methods...

  14. Discovery of a novel acyl-CoA: cholesterol acyltransferase inhibitor: the synthesis, biological evaluation, and reduced adrenal toxicity of (4-phenylcoumarin)acetanilide derivatives with a carboxylic acid moiety.

    Science.gov (United States)

    Ogino, Masaki; Nakada, Yoshihisa; Negoro, Nobuyuki; Itokawa, Shigekazu; Nishimura, Satoshi; Sanada, Tsukasa; Satomi, Tomoko; Kita, Shunbun; Kubo, Kazuki; Marui, Shogo

    2011-01-01

    As a part of our research for novel potent and orally available acyl-CoA: cholesterol acyltransferase (ACAT) inhibitors that can be used as anti-atherosclerotic agents, we recently reported the discovery of the (4-phenylcoumarine)acetanilide derivative 1. However, compound 1 showed adrenal toxicity in animal models. In order to search for safer ACAT inhibitors that do not have adrenal toxicity, we examined the inhibitory activity of ACAT in human macrophage and adrenal cells. The introduction of a carboxylic acid moiety on the pendant phenyl ring and the adjustment of the lipophilicity led to the discovery of (2E)-3-[7-chloro-3-[2-[[4-fluoro-2-(trifluoromethyl)phenyl]amino]-2-oxoethyl]-6-methyl-2-oxo-2H-chromen-4-yl]phenyl]acrylic acid (21e), which showed potent ACAT inhibitory activity in macrophages and a selectivity of around 30-fold over adrenal cells. In addition, compound 21e showed high adrenal safety in guinea pigs.

  15. An exploration on the synthesis and bio-applications of derivatives ...

    African Journals Online (AJOL)

    Keeping in view of the importance of this organic moiety in the field of medicine and biology here an attempt has been made to review the synthesis and biological importance of heterocyclic Mannich base derivatives. Keywords: Amines, β-amino carbonyl compounds, Biological activity, Heterocyclic Mannich base derivative ...

  16. One-Pot Synthesis of Novel Chiral β-Amino Acid Derivatives by Enantioselective Mannich Reactions Catalyzed by Squaramide Cinchona Alkaloids

    Directory of Open Access Journals (Sweden)

    Kankan Zhang

    2013-05-01

    Full Text Available An efficient one-pot synthesis of novel β-amino acid derivatives containing a thiadiazole moiety was developed using a chiral squaramide cinchona alkaloid as organocatalyst. The reactions afforded chiral β-amino acid derivatives in moderate yields and with moderate to excellent enantioselectivities. The present study demonstrated for the first time the use of a Mannich reaction catalyzed by a chiral bifunctional organocatalyst for the one-pot synthesis of novel β-amino acid derivatives bearing a 1,3,4-thiadiazole moiety on nitrogen.

  17. The disaccharide moiety of bleomycin facilitates uptake by cancer cells.

    Science.gov (United States)

    Schroeder, Benjamin R; Ghare, M Imran; Bhattacharya, Chandrabali; Paul, Rakesh; Yu, Zhiqiang; Zaleski, Paul A; Bozeman, Trevor C; Rishel, Michael J; Hecht, Sidney M

    2014-10-01

    The disaccharide moiety is responsible for the tumor cell targeting properties of bleomycin (BLM). While the aglycon (deglycobleomycin) mediates DNA cleavage in much the same fashion as bleomycin, it exhibits diminished cytotoxicity in comparison to BLM. These findings suggested that BLM might be modular in nature, composed of tumor-seeking and tumoricidal domains. To explore this possibility, BLM analogues were prepared in which the disaccharide moiety was attached to deglycobleomycin at novel positions, namely, via the threonine moiety or C-terminal substituent. The analogues were compared with BLM and deglycoBLM for DNA cleavage, cancer cell uptake, and cytotoxic activity. BLM is more potent than deglycoBLM in supercoiled plasmid DNA relaxation, while the analogue having the disaccharide on threonine was less active than deglycoBLM and the analogue containing the C-terminal disaccharide was slightly more potent. While having unexceptional DNA cleavage potencies, both glycosylated analogues were more cytotoxic to cultured DU145 prostate cancer cells than deglycoBLM. Dye-labeled conjugates of the cytotoxic BLM aglycons were used in imaging experiments to determine the extent of cell uptake. The rank order of internalization efficiencies was the same as their order of cytotoxicities toward DU145 cells. These findings establish a role for the BLM disaccharide in tumor targeting/uptake and suggest that the disaccharide moiety may be capable of delivering other cytotoxins to cancer cells. While the mechanism responsible for uptake of the BLM disaccharide selectively by tumor cells has not yet been established, data are presented which suggest that the metabolic shift to glycolysis in cancer cells may provide the vehicle for selective internalization.

  18. Difluorobenzothiadiazole based two-dimensional conjugated polymers with triphenylamine substituted moieties as pendants for bulk heterojunction solar cells

    Directory of Open Access Journals (Sweden)

    W. H. Lee

    2017-11-01

    Full Text Available Three donor/acceptor (D/A-type two-dimensional polythiophenes (PTs; PBTFA13, PBTFA12, PBTFA11 featuring difluorobenzothiadiazole (DFBT derivatives as the conjugated (acceptor units in the polymer backbone and tertbutyl–substituted triphenylamine (tTPA-containing moieties as (donor pendants have been synthesized and characterized. These PTs exhibited good thermal stabilities, broad absorption spectra, and narrow optical band gaps. The cutoff wavelength of the UV–Vis absorption band was red-shifted upon increasing the content of the DFBT units in the PTs. Bulk heterojunction solar cells having an active layer comprising blends of the PTs and fullerene derivatives [6,6] phenyl-C61/71-butyric acid methyl ester (PC61BM/PC71BM were fabricated; their photovoltaic performance was strongly dependent on the content of the DFBT derivative in the PT. Incorporating a suitable content of the DFBT derivative in the polymer backbone enhanced the solar absorption ability and conjugation length of the PTs. The photovoltaic properties of the PBTFA13-based solar cells were superior to those of the PBTFA11- and PBTFA12-based solar cells.

  19. White emission from liquid-crystalline copolymers containing oxadiazole moieties in the side chain

    Science.gov (United States)

    Kawamoto, Masuki; Tsukamoto, Takuji; Kinoshita, Motoi; Ikeda, Tomiki

    2006-09-01

    A liquid-crystalline polymer in the side chain was synthesized through copolymerization of a bipolar carrier-transporting monomer with a liquid-crystalline monomer containing oxadiazole moieties substituted with trifluoromethyl groups. A single-layer light-emitting diode of indium tin oxide (ITO)/copolymer/MgAg emitted white light with a maximum luminous efficiency of 0.1cd/A. The origin of the white emission in the copolymer is the electroplex between bipolar carrier-transporting moieties and strong electron-withdrawing moieties. Furthermore, a simple multilayer device with configuration of ITO/poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid)/copolymer/MgAg device showed white emission with CIE 1931 chromaticity coordinates (x,y): (0.30, 0.33).

  20. Discovery of novel scaffolds for γ-secretase modulators without an arylimidazole moiety.

    Science.gov (United States)

    Sekioka, Ryuichi; Honjo, Eriko; Honda, Shugo; Fuji, Hideyoshi; Akashiba, Hiroki; Mitani, Yasuyuki; Yamasaki, Shingo

    2018-01-15

    Gamma-secretase modulators (GSMs) selectively inhibit the production of amyloid-β 42 (Aβ42) and may therefore be useful in the management of Alzheimer's disease. Most heterocyclic GSMs that are not derived from nonsteroidal anti-inflammatory drugs contain an arylimidazole moiety that potentially inhibits cytochrome P450 (CYP) activity. Here, we discovered imidazopyridine derivatives that represent a new class of scaffold for GSMs, which do not have a strongly basic end group such as arylimidazole. High-throughput screening identified 2-methyl-8-[(2-methylbenzyl)oxy]-3-(pyridin-4-yl)imidazo[1,2-a]pyridine (3a), which inhibited the cellular production of Aβ42 (IC 50  = 7.1 µM) without changing total production of Aβ. Structural optimization of this series of compounds identified 5-[8-(benzyloxy)-2-methylimidazo[1,2-a]pyridin-3-yl]-2-ethylisoindolin-1-one (3m) as a potent inhibitor of Aβ42 (IC 50  = 0.39 µM) but not CYP3A4. Further, 3m demonstrated a sustained pharmacokinetic profile in mice and sufficiently penetrated the brain. Copyright © 2017. Published by Elsevier Ltd.

  1. Identification of microbial carotenoids and isoprenoid quinones from Rhodococcus sp. B7740 and its stability in the presence of iron in model gastric conditions.

    Science.gov (United States)

    Chen, Yashu; Xie, Bijun; Yang, Jifang; Chen, Jigang; Sun, Zhida

    2018-02-01

    Rhodococcus sp. B7740 is a newfound bacterium which was isolated from 25m deep seawater in the arctic. In this paper, Rhodococcus sp. B7740 was firstly discovered to produce abundant natural isoprenoids, including ubiquinone-4(UQ-4), 13 kinds of menaquinones, three rare aromatic carotenoids and more than one common carotenoid. These compounds were identified by UV-Visible, HPLC-APCI-MS/MS and HRMS spectra. Results demonstrated that Rhodococcus sp. B7740 might be a worthy source of natural isoprenoids especially for scarce aromatic carotenoids. Among them, isorenieratene with 528.3762Da (calculated for 528.3756Da, error: 1.1ppm), a carotenoid with aromatic ring, was purified by HSCCC. The stability of isorenieratene under the mimical gastric conditions was measured compared with common dietary carotenoids, β-carotene and lutein. Unlike β-carotene and lutein, isorenieratene exhibited rather stable in the presence of free iron or heme iron. Its high retention rate in gastrointestinal tract after ingestion indicates the benefits for health. Copyright © 2017. Published by Elsevier Ltd.

  2. Novel Bioactive Paulomycin Derivatives Produced by Streptomyces albus J1074

    Directory of Open Access Journals (Sweden)

    Jorge Fernández-De la Hoz

    2017-10-01

    Full Text Available Four novel paulomycin derivatives have been isolated from S. albus J1074 grown in MFE culture medium. These compounds are structural analogs of antibiotics 273a2α and 273a2β containing a thiazole moiety, probably originated through an intramolecular Michael addition. The novel, thiazole, moiety-containing paulomycins show a lower antibiotic activity than paulomycins A and B against Gram-positive bacteria. However, two of them show an improved activity against Gram-negative bacteria. In addition, the four novel compounds are more stable in culture than paulomycins A and B. Thus, the presence of an N-acetyl-l-cysteine moiety linked to the carbon atom of the paulic acid isothiocyanate moiety, via a thioester bond, and the subsequent intramolecular cyclization of the paulic acid to generate a thiazole heterocycle confer to paulomycins a higher structural stability that otherwise will conduce to paulomycin degradation and into inactive paulomenols.

  3. Cytokinins and urea derivatives stimulate seed germination in Lotus corniculatus L.

    Directory of Open Access Journals (Sweden)

    Nikolić Radomirka

    2007-01-01

    Full Text Available We studied the effects of various cytokinins and urea derivatives on germination of aged seeds of in Lotus corniculatus L. The following substances were applied: N6-isoprenoid cytokinins (isopentenyl adenine and zeatin, adenine sulfate, N6-aromatic cytokinins (kinetin, benzyladenine and their N9-ribosides, N-benzyl-9-(2- tetrahydropyranyladenine, and urea derivatives (diphenylurea, thidiazuron, and chloro-pyridyl phenylurea. With the exception of adenine sulfate, all cytokinins increased the percentage of seed germination up to twofold, depending on their kind and concentration. It is concluded that cytokinins may be among the missing factors in aged seeds of L. corniculatus contributing to the implementation of their full germination potential. They could be used to improve germination of both freshly harvested and aged seed samples, if necessary. .

  4. Deterrent activity of hops flavonoids and their derivatives against stored product pests.

    Science.gov (United States)

    Jackowski, J; Popłoński, J; Twardowska, K; Magiera-Dulewicz, J; Hurej, M; Huszcza, E

    2017-10-01

    Five flavonoids from hops, two of their derivatives, along with naringenin used as a model compound, were tested for their antifeedant activity against three coleopteran stored product pests: Sitophilus granarius L., Tribolium confusum Duv. and Trogoderma granarium Everts. The introduction, into the tested flavonoid molecules, of additional structural fragments such as prenyl or dimethylpyran moiety, is proposed to significantly alter the deterrent activity of the compounds. The prenyl moiety in flavonoids increased the deterrent activity of these compounds in all three of the grain feeding species used in the tests. It is also concluded that the introduction of dimethylpyran moiety to the flavonoid structure increases its deterrent activity in S. granarius and T. confusum, but in one of the test insects, T. granarium, an increased feeding was observed in response to the introduction of dimethylpyran moiety to the flavonoid structure.

  5. Structure Activity Relationship of Brevenal Hydrazide Derivatives

    Directory of Open Access Journals (Sweden)

    Allan Goodman

    2014-03-01

    Full Text Available Brevenal is a ladder frame polyether produced by the dinoflagellate Karenia brevis. This organism is also responsible for the production of the neurotoxic compounds known as brevetoxins. Ingestion or inhalation of the brevetoxins leads to adverse effects such as gastrointestinal maladies and bronchoconstriction. Brevenal shows antagonistic behavior to the brevetoxins and shows beneficial attributes when administered alone. For example, in an asthmatic sheep model, brevenal has been shown to increase tracheal mucosal velocity, an attribute which has led to its development as a potential treatment for Cystic Fibrosis. The mechanism of action of brevenal is poorly understood and the exact binding site has not been elucidated. In an attempt to further understand the mechanism of action of brevenal and potentially develop a second generation drug candidate, a series of brevenal derivatives were prepared through modification of the aldehyde moiety. These derivatives include aliphatic, aromatic and heteroaromatic hydrazide derivatives. The brevenal derivatives were tested using in vitro synaptosome binding assays to determine the ability of the compounds to displace brevetoxin and brevenal from their native receptors. A sheep inhalation model was used to determine if instillation of the brevenal derivatives resulted in bronchoconstriction. Only small modifications were tolerated, with larger moieties leading to loss of affinity for the brevenal receptor and bronchoconstriction in the sheep model.

  6. Comparative Studies on Conventional and Ultrasound-Assisted Synthesis of Novel Homoallylic Alcohol Derivatives Linked to Sulfonyl Dibenzene Moiety in Aqueous Media

    Directory of Open Access Journals (Sweden)

    Mohamed F. Mady

    2013-01-01

    Full Text Available Novel homoallylic alcohols incorporating sulfone moieties were synthesized by the treatment of different carbonyl compounds with allylic bromides in aqueous media via sonochemical Barbier-type reaction conditions. Sulfonation of α-bromoketones with sodium benzenesulfinate in presence of CuI/2,6-lutidine rapidly gave β-keto-sulfones in good yields. In general, ultrasound irradiation offered the advantages of high yields, short reaction times, and simplicity compared to the conventional methods. The structures of all the compounds were confirmed by analytical and spectral data.

  7. Synthesis and characterization of a new class of glycosylated porphyrins bearing the RGD moiety and their application in photodynamic therapy

    International Nuclear Information System (INIS)

    Chaleix, Vincent

    2003-01-01

    The use of porphyrins and analogues as photosensitisers together with visible light is a new treatment of tumors (photodynamic therapy, PDT). Carbohydrate-substituted porphyrins are in this domain very promising compounds. In addition, it is known that endothelial cells of the neo-vascularisation in tumors express αVβ3 integrin. Extracellular domains of this transmembrane glycoprotein are able to bind components of the extracellular matrix (ECM) and more precisely the sequence Arg-Gly-Asp. With the aim of their utilization in photodynamic therapy of cancers, we describe the synthesis and characterization (UV-Visible, mass, NMR) of new glucosylated porphyrins bearing the RGD moiety. The first synthesised compounds were derived from tritolyl and tri-glucosyl-aryl-porphyrins where the peptidic moiety is linked to the phenyl group by a spacer arm by means of a solid phase reaction.. The second series consists of glucosylated porphyrin derivatives bearing a cyclical unsaturated pentapeptide including RGD sequence, obtained by ring closing metathesis in solid phase. We have also synthesized a dimer in which the two glucosylated porphyrins are linked by the RGD sequence. These compounds produced 1 O 2 and photo-cyto-toxicities against K562 leukemia cell line were favourably compared to Photofrin II R . Due to their sensitising abilities, these compounds are of considerable interest for photodynamic therapy. (author) [fr

  8. Co-variation of crenarchaeol and branched GDGTs in globally-distributed marine and freshwater sedimentary archives

    NARCIS (Netherlands)

    Fietz, S.; Huguet, C.; Bendle, J.; Escala, M.; Gallacher, C.; Herfort, L.; Jamieson, R.; Martínez-Garcia, A.; McClymont, E.L.; Peck, V.L.; Prahl, F.G.; Rossi, S.; Rueda, G.; Sanson-Barrera, A.; Rosell-Melé, A.

    2012-01-01

    Two major types of glycerol dialkyl glycerol tetraethers (GDGTs) are commonly used in paleoecological and paleoclimatological reconstructions: isoprenoidal and branched GDGTs. In aquatic environments, it was originally assumed that isoprenoidal GDGTs, especially crenarchaeol, derive mainly from

  9. P53- and mevalonate pathway–driven malignancies require Arf6 for metastasis and drug resistance

    Science.gov (United States)

    Hashimoto, Ari; Oikawa, Tsukasa; Hashimoto, Shigeru; Sugino, Hirokazu; Yoshikawa, Ayumu; Otsuka, Yutaro; Handa, Haruka; Onodera, Yasuhito; Nam, Jin-Min; Oneyama, Chitose; Okada, Masato; Fukuda, Mitsunori

    2016-01-01

    Drug resistance, metastasis, and a mesenchymal transcriptional program are central features of aggressive breast tumors. The GTPase Arf6, often overexpressed in tumors, is critical to promote epithelial–mesenchymal transition and invasiveness. The metabolic mevalonate pathway (MVP) is associated with tumor invasiveness and known to prenylate proteins, but which prenylated proteins are critical for MVP-driven cancers is unknown. We show here that MVP requires the Arf6-dependent mesenchymal program. The MVP enzyme geranylgeranyl transferase II (GGT-II) and its substrate Rab11b are critical for Arf6 trafficking to the plasma membrane, where it is activated by receptor tyrosine kinases. Consistently, mutant p53, which is known to support tumorigenesis via MVP, promotes Arf6 activation via GGT-II and Rab11b. Inhibition of MVP and GGT-II blocked invasion and metastasis and reduced cancer cell resistance against chemotherapy agents, but only in cells overexpressing Arf6 and components of the mesenchymal program. Overexpression of Arf6 and mesenchymal proteins as well as enhanced MVP activity correlated with poor patient survival. These results provide insights into the molecular basis of MVP-driven malignancy. PMID:27044891

  10. Synthesis of some new heterocyclic compounds bearing a sulfonamide moiety and studying their combined anticancer effect with γ-radiation

    International Nuclear Information System (INIS)

    El-Hossary, E.M.M.

    2010-01-01

    In search for new cytotoxic agents with improved anticancer profile, some new halogen-containing quinoline and pyrimido[4,5-b]quinoline derivatives bearing a free sulfonamide moiety were synthesized. All the newly synthesized target compounds were subjected to in vitro anticancer screening against human breast cancer cell line (MCF7). The most potent compounds, as concluded from the in vitro anticancer screening, were selected to be evaluated again for their in vitro anticancer activity in combination with radiation. Also, the newly synthesized compounds were docked in the active site of the carbonic anhydrase enzyme

  11. Identifying all moiety conservation laws in genome-scale metabolic networks.

    Science.gov (United States)

    De Martino, Andrea; De Martino, Daniele; Mulet, Roberto; Pagnani, Andrea

    2014-01-01

    The stoichiometry of a metabolic network gives rise to a set of conservation laws for the aggregate level of specific pools of metabolites, which, on one hand, pose dynamical constraints that cross-link the variations of metabolite concentrations and, on the other, provide key insight into a cell's metabolic production capabilities. When the conserved quantity identifies with a chemical moiety, extracting all such conservation laws from the stoichiometry amounts to finding all non-negative integer solutions of a linear system, a programming problem known to be NP-hard. We present an efficient strategy to compute the complete set of integer conservation laws of a genome-scale stoichiometric matrix, also providing a certificate for correctness and maximality of the solution. Our method is deployed for the analysis of moiety conservation relationships in two large-scale reconstructions of the metabolism of the bacterium E. coli, in six tissue-specific human metabolic networks, and, finally, in the human reactome as a whole, revealing that bacterial metabolism could be evolutionarily designed to cover broader production spectra than human metabolism. Convergence to the full set of moiety conservation laws in each case is achieved in extremely reduced computing times. In addition, we uncover a scaling relation that links the size of the independent pool basis to the number of metabolites, for which we present an analytical explanation.

  12. Identifying all moiety conservation laws in genome-scale metabolic networks.

    Directory of Open Access Journals (Sweden)

    Andrea De Martino

    Full Text Available The stoichiometry of a metabolic network gives rise to a set of conservation laws for the aggregate level of specific pools of metabolites, which, on one hand, pose dynamical constraints that cross-link the variations of metabolite concentrations and, on the other, provide key insight into a cell's metabolic production capabilities. When the conserved quantity identifies with a chemical moiety, extracting all such conservation laws from the stoichiometry amounts to finding all non-negative integer solutions of a linear system, a programming problem known to be NP-hard. We present an efficient strategy to compute the complete set of integer conservation laws of a genome-scale stoichiometric matrix, also providing a certificate for correctness and maximality of the solution. Our method is deployed for the analysis of moiety conservation relationships in two large-scale reconstructions of the metabolism of the bacterium E. coli, in six tissue-specific human metabolic networks, and, finally, in the human reactome as a whole, revealing that bacterial metabolism could be evolutionarily designed to cover broader production spectra than human metabolism. Convergence to the full set of moiety conservation laws in each case is achieved in extremely reduced computing times. In addition, we uncover a scaling relation that links the size of the independent pool basis to the number of metabolites, for which we present an analytical explanation.

  13. Facile synthesis and antimicrobial evaluation of some new heterocyclic compounds incorporating a biologically active sulfamoyl moiety.

    Science.gov (United States)

    Darwish, Elham S

    2014-01-01

    A facile and convenient synthesis of new heterocyclic compounds containing a sulfamoyl moiety suitable for use as antimicrobial agents was reported. The precursor 3-oxo-3-phenyl-N-(4-sulfamoylphenyl)propionamide was coupled smoothly with arenediazonium salt producing hydrazones which reacted with malononitrile or triethylorthoformate affording pyridazine and triazine derivatives, respectively. Also, the reactivity of the same precursor with DMF-DMA was followed by aminotriazole; aromatic aldehydes was followed by hydrazine hydrate, triethylorthoformate, or thiourea affording triazolo[1,5-a]pyrimidine, pyrazole, acrylamide, and dihydropyrimidine derivatives, respectively. On the other hand, treatment of the precursor propionamide with phenyl isothiocyanate and KOH in DMF afforded the intermediate salt which was treated with dilute HCl followed by 2-bromo-1-phenylethanone affording carboxamide derivative. While the same intermediate salt reacted in situ with chloroacetone, ethyl 2-chloroacetate, 3-(2-bromoacetyl)-2H-chromen-2-one, methyl iodide, or 2-oxo-N-phenylpropane hydrazonoyl chloride afforded the thiophene, ketene N,S-acetal, and thiadiazole derivatives, respectively. The structure of the new products was established based on elemental and spectral analysis. Antimicrobial evaluation of some selected examples from the synthesized products was carried out whereby four compounds were found to have moderate activities and one compound showed the highest activity.

  14. Liquid chromatography-tandem mass spectrometry method for the measurement of serum mevalonic acid: a novel marker of hydroxymethylglutaryl coenzyme A reductase inhibition by statins.

    Science.gov (United States)

    Waldron, Jenna; Webster, Craig

    2011-05-01

    Mevalonic acid (MVA) is synthesized at an early and rate-limiting step in the biosynthesis of cholesterol by the enzyme hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase, and is a useful measure of statin efficacy or treatment. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the measurement of serum MVA has been developed. Following the in vitro conversion of MVA to mevalonic acid lactone (MVAL) in the serum, MVAL and a deuterated internal standard were extracted using an online solid-phase extraction procedure. Chromatographic separation was achieved using a Luna PFP column (Phenomenex), with enhanced selectivity and improved resolution for polar compounds. A gradient system was used, with mobile phase comprising methanol and water (5 mmol/L ammonium formate buffer, pH 2.5). Analysis was performed using an API 5000 tandem mass spectrometer (Applied Biosystems) in positive electrospray ionization mode. The method showed excellent recoveries (98 ± 8%) and imprecision (intra-assay coefficient of variation of 2.2% [6.5 ng/mL] and 2.6% [10.5 ng/mL], and inter-assay coefficient of variation of 9% [10.5 ng/mL]). The assay provides a calibration range up to 50 ng/mL with a limit of detection at 0.1 ng/mL. A simple, rapid and analytically specific method has been developed for the measurement of serum MVA, in the form of MVAL. The high analytical sensitivity of the method allows for accurate quantitation of MVAL in serum samples, both at the endogenous levels found in healthy individuals and in statin-treated patients where normal levels are expected to be greatly reduced through the inhibition of HMG-CoA reductase.

  15. Fluoride-induced modulation of ionic transport in asymmetric nanopores functionalized with "caged" fluorescein moieties.

    Science.gov (United States)

    Ali, Mubarak; Ahmed, Ishtiaq; Ramirez, Patricio; Nasir, Saima; Cervera, Javier; Niemeyer, Christof M; Ensinger, Wolfgang

    2016-04-28

    We demonstrate experimentally and theoretically a nanofluidic fluoride sensing device based on a single conical pore functionalized with "caged" fluorescein moieties. The nanopore functionalization is based on an amine-terminated fluorescein whose phenolic hydroxyl groups are protected with tert-butyldiphenylsilyl (TBDPS) moieties. The protected fluorescein (Fcn-TBDPS-NH2) molecules are then immobilized on the nanopore surface via carbodiimide coupling chemistry. Exposure to fluoride ions removes the uncharged TBDPS moieties due to the fluoride-promoted cleavage of the silicon-oxygen bond, leading to the generation of negatively charged groups on the fluorescein moieties immobilized onto the pore surface. The asymmetrical distribution of these groups along the conical nanopore leads to the electrical rectification observed in the current-voltage (I-V) curve. On the contrary, other halides and anions are not able to induce any significant ionic rectification in the asymmetric pore. In each case, the success of the chemical functionalization and deprotection reactions is monitored through the changes observed in the I-V curves before and after the specified reaction step. The theoretical results based on the Nernst-Planck and Poisson equations further demonstrate the validity of an experimental approach to fluoride-induced modulation of nanopore current rectification behaviour.

  16. Analysis of 2-methylthio-derivatives of isoprenoid cytokinins by liquid chromatography-tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tarkowski, Petr, E-mail: petr.tarkowski@upol.cz [Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany ASCR, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Biochemistry, Faculty of Science, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Vaclavikova, Katerina, E-mail: katka.vaclavik@seznam.cz [Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany ASCR, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Biochemistry, Faculty of Science, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Novak, Ondrej, E-mail: ondrej.novak@upol.cz [Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany ASCR, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Pertry, Ine, E-mail: ine.pertry@ugent.BE [Department of Plant Biotechnology and Genetics, Ghent University, K.L.Ledeganckstraat 35, B-9000 Gent (Belgium); Hanus, Jan, E-mail: helehan@seznam.cz [Isotope Laboratory, Institute of Experimental Botany ASCR, Videnska 1083, 142 20 Prague (Czech Republic); Whenham, Robert [Apex Organics, Devon, England (United Kingdom); Vereecke, Danny, E-mail: danny.vereecke@hogent.BE [Department of Plant Production, University College Ghent, Ghent University, Schoonmeersstraat 52, B-9000 Gent (Belgium); Sebela, Marek, E-mail: marek.sebela@upol.cz [Department of Biochemistry, Faculty of Science, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Strnad, Miroslav, E-mail: miroslav.strnad@upol.cz [Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany ASCR, Slechtitelu 11, 783 71 Olomouc (Czech Republic)

    2010-11-08

    A sensitive and reliable high-performance liquid chromatographic method with tandem mass spectrometric detection has been developed and used for the determination of 2-methylthio-cytokinin derivatives produced by the phytopathogenic actinomycete Rhodococcus fascians. The cultivation medium containing secreted cytokinins was concentrated and subjected to a solid-phase extraction (C18 and ion-exchange). The purified samples were further separated and analyzed by HPLC-ESI-MS/MS. This allowed to achieve chromatographic resolution of six highly hydrophobic cytokinin species including 2-methylthio-isopentenyladenine, 2-methylthio-isopentenyladenosine, 2-methylthio-trans-zeatin and 2-methylthio-trans-zeatin riboside and their cis-isomers when a reversed-phase chromatographic column (C4) and a mobile phase consisting of acetonitrile and 20 mM ammonium formate, pH 5, were used. Quantification was performed by a standard isotope dilution method using a multiple-reaction monitoring (MRM) mode. In the MRM mode, limits of detection reached 20-30 fmol and linear ranges spanned four orders of magnitude. Recovery values were between 35% and 65% and the analytical accuracy between 95% and 149%. The proposed bioanalytical method, which takes advantage of effective chromatographic separation of six 2-methyltio-derivatives (including isomers of zeatin-type cytokinins) and sensitive mass spectrometric detection, may become useful for plant biologists studying the significance of these substances in plant-microbe interactions.

  17. Analysis of 2-methylthio-derivatives of isoprenoid cytokinins by liquid chromatography-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Tarkowski, Petr; Vaclavikova, Katerina; Novak, Ondrej; Pertry, Ine; Hanus, Jan; Whenham, Robert; Vereecke, Danny; Sebela, Marek; Strnad, Miroslav

    2010-01-01

    A sensitive and reliable high-performance liquid chromatographic method with tandem mass spectrometric detection has been developed and used for the determination of 2-methylthio-cytokinin derivatives produced by the phytopathogenic actinomycete Rhodococcus fascians. The cultivation medium containing secreted cytokinins was concentrated and subjected to a solid-phase extraction (C18 and ion-exchange). The purified samples were further separated and analyzed by HPLC-ESI-MS/MS. This allowed to achieve chromatographic resolution of six highly hydrophobic cytokinin species including 2-methylthio-isopentenyladenine, 2-methylthio-isopentenyladenosine, 2-methylthio-trans-zeatin and 2-methylthio-trans-zeatin riboside and their cis-isomers when a reversed-phase chromatographic column (C4) and a mobile phase consisting of acetonitrile and 20 mM ammonium formate, pH 5, were used. Quantification was performed by a standard isotope dilution method using a multiple-reaction monitoring (MRM) mode. In the MRM mode, limits of detection reached 20-30 fmol and linear ranges spanned four orders of magnitude. Recovery values were between 35% and 65% and the analytical accuracy between 95% and 149%. The proposed bioanalytical method, which takes advantage of effective chromatographic separation of six 2-methyltio-derivatives (including isomers of zeatin-type cytokinins) and sensitive mass spectrometric detection, may become useful for plant biologists studying the significance of these substances in plant-microbe interactions.

  18. Side chain polysiloxanes with phthalocyanine moieties

    Directory of Open Access Journals (Sweden)

    T. Ganicz

    2012-05-01

    Full Text Available Side chain polysiloxane with 5-(pentyloxy-3-methyloxy-9,10,16,17,23,24-hexakis(octenyloxyphthalocyanine moieties is synthesized by hydrosilylation reaction. The phase behavior and thermooptical properties of the polysiloxane and starting 2-(pent-4-enyloxy-3-methyloxy-9,10,16,17,23,24-hexakis(octenyloxyphthalocyanine is examined by POM (Polarizing optical microscopy, TOA (thermooptical analysis, DSC (differential scanning calorimetry, AFM (atomic force microscopy and SAXS (small angle X-ray scattering studies. The effect of the attachment of phthalocyanine to polysiloxane chains over phase transitions and phase morphology is discussed in details.

  19. Excited-state dynamics of pentacene derivatives with stable radical substituents.

    Science.gov (United States)

    Ito, Akitaka; Shimizu, Akihiro; Kishida, Noriaki; Kawanaka, Yusuke; Kosumi, Daisuke; Hashimoto, Hideki; Teki, Yoshio

    2014-06-23

    The excited-state dynamics of pentacene derivatives with stable radical substituents were evaluated in detail through transient absorption measurements. The derivatives showed ultrafast formation of triplet excited state(s) in the pentacene moiety from a photoexcited singlet state through the contributions of enhanced intersystem crossing and singlet fission. Detailed kinetic analyses for the transient absorption data were conducted to quantify the excited-state characteristics of the derivatives. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Subtilisin-catalyzed esterification of di- and oligosaccharides containing a d-fructose moiety

    International Nuclear Information System (INIS)

    Riva, S.; Nonini, M.; Ottolina, G.; Danieli, B.

    1998-01-01

    Several di- and oligosaccharides containing a d-fructose moiety have been acylated by protease subtilisin in anhydrous dimethylformamide in the presence of the activated ester trifluoroethyl butanoate. Under the reaction conditions used, all the substrates were converted into the corresponding monobutanoates in ca. 50% isolated yields. Structural determination of the products by 13 C NMR indicated a strong preference of subtilisin towards the regioselective esterification of the primary hydroxyls of the fructose moiety and, specifically, of the C-1 OH, as already observed with sucrose. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Photoconducting hybrid perovskite containing carbazole moiety as the organic layer: Fabrication and characterization

    International Nuclear Information System (INIS)

    Deng Meng; Wu Gang; Cheng Siyuan; Wang Mang; Borghs, Gustaaf; Chen Hongzheng

    2008-01-01

    PbCl 2 -based thin films of perovskite structure with hole-transporting carbazole derivatives as the organic layer were successfully prepared by spin-coating from dimethylformamide solution containing stoichiometric amounts of organic and inorganic moieties. The crystal structure and optical property of the hybrid perovskite were characterized by Fourier transform infrared (FT-IR) spectrum, X-ray diffraction (XRD), UV-vis absorption and photoluminescence (PL). FT-IR spectra confirmed the formation of organic-inorganic hybrid perovskite structure. UV-vis spectra of hybrid perovskite thin films exhibited a wide absorption band in ultraviolet region as well as a sharp peak at 330 nm characteristic of PbCl 2 -based layered perovskite. X-ray diffraction profiles indicated that the layered structure was oriented parallel to the silica glass slide plane. Meanwhile, double-layer photoreceptors of the hybrid perovskite were also fabricated, which showed the enhancement of photoconductivity by carbazole chromophore

  2. The role of leucine in isoprenoid metabolism. Incorporation of [3-13C]leucine and of [2-3H,4-14C]-β,β-dimethyl-acrylic acid into phytosterols by tissue cultures of Andrographis paniculata

    International Nuclear Information System (INIS)

    Anastasis, P.; Freer, I.; Overton, K.; Rycroft, D.; Singh, S.B.

    1985-01-01

    [3- 13 C]Leucine is incorporated into phytosterols by tissue cultures of Andrographis paniculata by breakdown to acetyl-CoA and its subsequent incorporation via (3S)-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) and mevalonic acid; [2- 3 H,4- 14 C]-β,β-dimethylacrylic acid also is not incorporated intact. (author)

  3. Synthesis, characterization and gas separation properties of novel polyimides containing cardo and tert-butyl-m-terphenyl moieties

    Directory of Open Access Journals (Sweden)

    L. A. Bermejo

    2018-05-01

    Full Text Available A series of aromatic polyimides has been obtained by the reaction of two dianhydrides, the commercial 2,2′-bis(3,4-dicarboxyphenylhexafluoropropane dianhydride (6FDA and another having a 5′-tert-butyl-m-terphenyl moiety (BTPDA, with several diamines, including two that have a cardo structure (derived from 9H-fluorene, one of them bearing methyl groups ortho to the amino functionalities (TMeCardo. The solubility, and also the thermal, mechanical, and gas separation properties of the corresponding polyimide membranes were evaluated and compared in order to explore the effect of the different groups in the polyimide backbone. The novel polyimides, which were derived from BTPDA and the cardo diamines, showed high thermal stability, excellent solubility in organic solvents and good gas separation properties, especially the polyimide that bore the ortho methyl substituents. The behavior was especially good for the pair O2/N2, where the TMeCardo polymer overpassed the Robeson upper bound.

  4. Coregulation of terpenoid pathway genes and prediction of isoprene production in Bacillus subtilis using transcriptomics

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Becky M.; Xue, Junfeng; Markillie, Lye Meng; Taylor, Ronald C.; Wiley, H. S.; Ahring, Birgitte K.; Linggi, Bryan E.

    2013-06-19

    The isoprenoid pathway converts pyruvate to isoprene and related isoprenoid compounds in plants and some bacteria. Currently, this pathway is of great interest because of the critical role that isoprenoids play in basic cellular processes as well as the industrial value of metabolites such as isoprene. Although the regulation of several pathway genes has been described, there is a paucity of information regarding the system level regulation and control of the pathway. To address this limitation, we examined Bacillus subtilis grown under multiple conditions and then determined the relationship between altered isoprene production and the pattern of gene expression. We found that terpenoid genes appeared to fall into two distinct subsets with opposing correlations with respect to the amount of isoprene produced. The group whose expression levels positively correlated with isoprene production included dxs, the gene responsible for the commitment step in the pathway, as well as ispD, and two genes that participate in the mevalonate pathway, yhfS and pksG. The subset of terpenoid genes that inversely correlated with isoprene production included ispH, ispF, hepS, uppS, ispE, and dxr. A genome wide partial least squares regression model was created to identify other genes or pathways that contribute to isoprene production. This analysis showed that a subset of 213 regulated genes was sufficient to create a predictive model of isoprene production under different conditions and showed correlations at the transcriptional level. We conclude that gene expression levels alone are sufficiently informative about the metabolic state of a cell that produces increased isoprene and can be used to build a model which accurately predicts production of this secondary metabolite across many simulated environmental conditions.

  5. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    KAUST Repository

    Ilg, Andrea; Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2014-01-01

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-. trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. © 2014 The Authors.

  6. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    KAUST Repository

    Ilg, Andrea

    2014-06-25

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-. trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. © 2014 The Authors.

  7. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    Directory of Open Access Journals (Sweden)

    Andrea Ilg

    2014-01-01

    Full Text Available The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum carotenoid cleavage dioxygenase (SlCCD1B, which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents.

  8. Systematic Moiety Variations of Ultrashort Peptides Produce Profound Effects on Self-Assembly, Nanostructure Formation, Hydrogelation, and Phase Transition

    KAUST Repository

    Chan, Kiat Hwa

    2017-10-04

    Self-assembly of small biomolecules is a prevalent phenomenon that is increasingly being recognised to hold the key to building complex structures from simple monomeric units. Small peptides, in particular ultrashort peptides containing up to seven amino acids, for which our laboratory has found many biomedical applications, exhibit immense potential in this regard. For next-generation applications, more intricate control is required over the self-assembly processes. We seek to find out how subtle moiety variation of peptides can affect self-assembly and nanostructure formation. To this end, we have selected a library of 54 tripeptides, derived from systematic moiety variations from seven tripeptides. Our study reveals that subtle structural changes in the tripeptides can exert profound effects on self-assembly, nanostructure formation, hydrogelation, and even phase transition of peptide nanostructures. By comparing the X-ray crystal structures of two tripeptides, acetylated leucine-leucine-glutamic acid (Ac-LLE) and acetylated tyrosine-leucine-aspartic acid (Ac-YLD), we obtained valuable insights into the structural factors that can influence the formation of supramolecular peptide structures. We believe that our results have major implications on the understanding of the factors that affect peptide self-assembly. In addition, our findings can potentially assist current computational efforts to predict and design self-assembling peptide systems for diverse biomedical applications.

  9. Mono- and bis(pyrrolo)tetrathiafulvalene derivatives tethered to C60

    DEFF Research Database (Denmark)

    Vico Solano, Marta; Della Pia, Eduardo Antonio; Jevric, Martyn

    2014-01-01

    -functionalized MPTTF/BPTTF derivatives, two different tailor-made amino acids, and C-60. Electronic communication between the MPTTF/BPTTF units and the C-60 moieties was studied by a variety of techniques including cyclic voltammetry and absorption spectroscopy. These solution-based studies indicated no observable...

  10. Sulforaphane Analogues with Heterocyclic Moieties: Syntheses and Inhibitory Activities against Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Ye-Hui Shi

    2016-04-01

    Full Text Available Recent studies have shown that sulforaphane (SFN selectively inhibits the growth of ALDH+ breast cancer stem-like cells.Herein, a series of SFN analogues were synthesized and evaluated against breast cancer cell lines MCF-7 and SUM-159, and the leukemia stem cell-like cell line KG-1a. These SFN analogues were characterized by the replacement of the methyl group with heterocyclic moieties, and the replacement of the sulfoxide group with sulfide or sulfone. A growth inhibitory assay indicated that the tetrazole analogs 3d, 8d and 9d were significantly more potent than SFN against the three cancer cell lines. Compound 14c, the water soluble derivative of tetrazole sulfide 3d, demonstrated higher potency against KG-1a cell line than 3d. SFN, 3d and 14c significantly induced the activation of caspase-3, and reduced the ALDH+ subpopulation in the SUM159 cell line, while the marketed drug doxrubicin(DOX increased the ALDH+ subpopulation.

  11. Synthesis and Antibacterial Activities of New Metronidazole and Imidazole Derivatives

    Directory of Open Access Journals (Sweden)

    Abdul Jabar Kh. Atia

    2009-07-01

    Full Text Available New imidazole ring derivatives comprising 1,3-oxazoline, Schiff's bases, thiadiazole, oxadiazole and 1,2,4-triazole moieties are reported. 3-Aminobiimidazol-4-one compounds 7a-c were synthesized by the reaction of compounds 6a-c with hydrazine hydrate. Biimidazole esters 9a-c were converted into biimidazole hydrazide esters 10a-c. Compounds 7a-c and 10a-c were converted into a variety of derivatives.

  12. Nonionic diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena; Drummond, Calum J. (CSIRO/MSE)

    2014-09-24

    The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 {angstrom} following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms an L{sub 2} phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L{sub {alpha}}) at room temperature and up to {approx} 40 C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) bicontinuous cubic phases in addition to an L{sub {alpha}} phase.

  13. Selective tumor cell targeting by the disaccharide moiety of bleomycin.

    Science.gov (United States)

    Yu, Zhiqiang; Schmaltz, Ryan M; Bozeman, Trevor C; Paul, Rakesh; Rishel, Michael J; Tsosie, Krystal S; Hecht, Sidney M

    2013-02-27

    In a recent study, the well-documented tumor targeting properties of the antitumor agent bleomycin (BLM) were studied in cell culture using microbubbles that had been derivatized with multiple copies of BLM. It was shown that BLM selectively targeted MCF-7 human breast carcinoma cells but not the "normal" breast cell line MCF-10A. Furthermore, it was found that the BLM analogue deglycobleomycin, which lacks the disaccharide moiety of BLM, did not target either cell line, indicating that the BLM disaccharide moiety is necessary for tumor selectivity. Not resolved in the earlier study were the issues of whether the BLM disaccharide moiety alone is sufficient for tumor cell targeting and the possible cellular uptake of the disaccharide. In the present study, we conjugated BLM, deglycoBLM, and BLM disaccharide to the cyanine dye Cy5**. It was found that the BLM and BLM disaccharide conjugates, but not the deglycoBLM conjugate, bound selectively to MCF-7 cells and were internalized. The same was also true for the prostate cancer cell line DU-145 (but not for normal PZ-HPV-7 prostate cells) and for the pancreatic cancer cell line BxPC-3 (but not for normal SVR A221a pancreas cells). The targeting efficiency of the disaccharide was only slightly less than that of BLM in MCF-7 and DU-145 cells and comparable to that of BLM in BxPC-3 cells. These results establish that the BLM disaccharide is both necessary and sufficient for tumor cell targeting, a finding with obvious implications for the design of novel tumor imaging and therapeutic agents.

  14. Synthesis of a 2-Furylpyrazoline Derivative Using Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Suban Syed Shafi

    2009-08-01

    Full Text Available A simple method for the synthesis of pyrazoline derivative containing furan moiety was developed. Thus, 5-(6-bromo-1,3-benzodioxol-5-yl-3-(2-furyl-1-(3-methyl-phenyl-4,5-dihydro-1H-pyrazole was synthesized using microwave irradiation and it was characterized by NMR, IR, and LCMS.

  15. Pleiotropic effects of statins in distal human pulmonary artery smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Butrous Ghazwan S

    2011-10-01

    Full Text Available Abstract Background Recent clinical data suggest statins have transient but significant effects in patients with pulmonary arterial hypertension. In this study we explored the molecular effects of statins on distal human pulmonary artery smooth muscle cells (PASMCs and their relevance to proliferation and apoptosis in pulmonary arterial hypertension. Methods Primary distal human PASMCs from patients and controls were treated with lipophilic (simvastatin, atorvastatin, mevastatin and fluvastatin, lipophobic (pravastatin and nitric-oxide releasing statins and studied in terms of their DNA synthesis, proliferation, apoptosis, matrix metalloproteinase-9 and endothelin-1 release. Results Treatment of human PASMCs with selected statins inhibited DNA synthesis, proliferation and matrix metalloproteinase-9 production in a concentration-dependent manner. Statins differed in their effectiveness, the rank order of anti-mitogenic potency being simvastatin > atorvastatin > > pravastatin. Nevertheless, a novel nitric oxide-releasing derivative of pravastatin (NCX 6550 was effective. Lipophilic statins, such as simvastatin, also enhanced the anti-proliferative effects of iloprost and sildenafil, promoted apoptosis and inhibited the release of the mitogen and survival factor endothelin-1. These effects were reversed by mevalonate and the isoprenoid intermediate geranylgeranylpyrophosphate and were mimicked by inhibitors of the Rho and Rho-kinase. Conclusions Lipophilic statins exert direct effects on distal human PASMCs and are likely to involve inhibition of Rho GTPase signalling. These findings compliment some of the recently documented effects in patients with pulmonary arterial hypertension.

  16. Synthesis and biological evaluation of vinylogous combretastatin A-4 derivatives.

    Science.gov (United States)

    Kaffy, Julia; Pontikis, Renée; Florent, Jean-Claude; Monneret, Claude

    2005-07-21

    Stereospecific syntheses of the Z-E and E-Z vinylogues of combretastatin A-4, and two B-ring related analogues, were achieved through a Suzuki-Miyaura coupling. As compared to CA4, the derivative with a phenyl moiety has shown increased potency in its ability to inhibit tubulin polymerisation.

  17. Selfassembly of gold nanoparticles onto the surface of multiwall carbon nanotubes functionalized with mercaptobenzene moieties

    International Nuclear Information System (INIS)

    Shi Jin; Wang Zhe; Li Hulin

    2006-01-01

    We have developed a new and effective method to robustly self-assemble gold nanoparticles onto the surface of multiwall carbon nanotubes (MWNTs) functionalized with mercaptobenzene moieties. Fourier transform infrared and electron diffraction spectroscopy were used to verify whether or not the mercaptobenzene moieties have been attached to the π-conjugated body of MWNTs. Transmission electron microscope images give direct evidences for the success of selfassembly of gold nanoparticles onto the functionalized MWNTs

  18. Role of leucine in isoprenoid metabolism. Incorporation of (3-/sup 13/C)leucine and of (2-/sup 3/H,4-/sup 14/C)-. beta. ,. beta. -dimethyl-acrylic acid into phytosterols by tissue cultures of Andrographis paniculata

    Energy Technology Data Exchange (ETDEWEB)

    Anastasis, P; Freer, I; Overton, K; Rycroft, D; Singh, S B [Glasgow Univ. (UK). Dept. of Chemistry

    1985-02-01

    (3-/sup 13/C)Leucine is incorporated into phytosterols by tissue cultures of Andrographis paniculata by breakdown to acetyl-CoA and its subsequent incorporation via (3S)-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) and mevalonic acid; (2-/sup 3/H,4-/sup 14/C)-..beta..,..beta..-dimethylacrylic acid also is not incorporated intact.

  19. Condensation of the isoprenoid and amino precursors in the biosynthesis of domoic acid.

    Science.gov (United States)

    Savage, Thomas J; Smith, G Jason; Clark, Amy T; Saucedo, Portia N

    2012-01-01

    Understanding how environmental signals regulate production of domoic acid in blooms of Pseudo-nitzschia spp. at a molecular level requires description of the biochemical pathway to this kainoid neurotoxin. Precursor feeding studies have suggested domoic acid arises from the condensation of the C(10) isoprenoid geranyl diphosphate with glutamate, but the specific reactions leading to domoic acid from these precursors remain undescribed. Here, we develop a method to derivatize domoic acid with propyl chloroformate that enables gas chromatography-mass spectrometry (GC-MS) analysis to measure incorporation of stable isotopes into domoic acid generated in cultures incubated with isotopically-labeled substrates. We apply this method to demonstrate that both (2)H from [1-(2)H(2)]geraniol are incorporated into domoic acid, suggesting that the condensation of geranyl diphosphate with an amino group occurs by nucleophilic substitution of the diphosphate rather than by oxidation of geraniol to the aldehyde before reaction with an amino group to form an imine. Ultimately, these and similar studies will facilitate the identification of DA biosynthetic enzymes and genes which will enable the study of how environmental factors regulate DA biosynthesis at the molecular level. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. MRI study of the cuprizone-induced mouse model of multiple sclerosis: demyelination is not found after co-treatment with polyprenols (long-chain isoprenoid alcohols)

    Science.gov (United States)

    Khodanovich, M.; Glazacheva, V.; Pan, E.; Akulov, A.; Krutenkova, E.; Trusov, V.; Yarnykh, V.

    2016-02-01

    Multiple sclerosis is a neurological disorder with poorly understood pathogenic mechanisms and a lack of effective therapies. Therefore, the search for new MS treatments remains very important. This study was performed on a commonly used cuprizone animal model of multiple sclerosis. It evaluated the effect of a plant-derived substance called Ropren® (containing approximately 95% polyprenols or long-chain isoprenoid alcohols) on cuprizone- induced demyelination. The study was performed on 27 eight-week old male CD-1 mice. To induce demyelination mice were fed 0.5% cuprizone in the standard diet for 10 weeks. Ropren® was administered in one daily intraperitoneal injection (12mg/kg), beginning on the 6th week of the experiment. On the 11th week, the corpus callosum in the brain was evaluated in all animals using magnetic resonance imaging with an 11.7 T animal scanner using T2- weighted sequence. Cuprizone treatment successfully induced the model of demyelination with a significant decrease in the size of the corpus callosum compared with the control group (p<0.01). Mice treated with both cuprizone and Ropren® did not exhibit demyelination in the corpus callosum (p<0.01). This shows the positive effect of polyprenols on cuprizone-induced demyelination in mice.

  1. Evolutionary convergence in the biosyntheses of the imidazole moieties of histidine and purines.

    Directory of Open Access Journals (Sweden)

    Alberto Vázquez-Salazar

    Full Text Available The imidazole group is an ubiquitous chemical motif present in several key types of biomolecules. It is a structural moiety of purines, and plays a central role in biological catalysis as part of the side-chain of histidine, the amino acid most frequently found in the catalytic site of enzymes. Histidine biosynthesis starts with both ATP and the pentose phosphoribosyl pyrophosphate (PRPP, which is also the precursor for the de novo synthesis of purines. These two anabolic pathways are also connected by the imidazole intermediate 5-aminoimidazole-4-carboxamide ribotide (AICAR, which is synthesized in both routes but used only in purine biosynthesis. Rather surprisingly, the imidazole moieties of histidine and purines are synthesized by different, non-homologous enzymes. As discussed here, this phenomenon can be understood as a case of functional molecular convergence.In this work, we analyze these polyphyletic processes and argue that the independent origin of the corresponding enzymes is best explained by the differences in the function of each of the molecules to which the imidazole moiety is attached. Since the imidazole present in histidine is a catalytic moiety, its chemical arrangement allows it to act as an acid or a base. On the contrary, the de novo biosynthesis of purines starts with an activated ribose and all the successive intermediates are ribotides, with the key β-glycosidic bondage joining the ribose and the imidazole moiety. This prevents purine ribonucleotides to exhibit any imidazole-dependent catalytic activity, and may have been the critical trait for the evolution of two separate imidazole-synthesizing-enzymes. We also suggest that, in evolutionary terms, the biosynthesis of purines predated that of histidine.As reviewed here, other biosynthetic routes for imidazole molecules are also found in extant metabolism, including the autocatalytic cyclization that occurs during the formation of creatinine from creatine phosphate

  2. Penicillipyrones A and B, meroterpenoids from a marine-derived Penicillium sp. fungus.

    Science.gov (United States)

    Liao, Lijuan; Lee, Jung-Ho; You, Minjung; Choi, Tae Joon; Park, Wanki; Lee, Sang Kook; Oh, Dong-Chan; Oh, Ki-Bong; Shin, Jongheon

    2014-02-28

    Penicillipyrones A (1) and B (2), two novel meroterpenoids, were isolated from the marine-derived fungus Penicillium sp. On the basis of the results of combined spectroscopic analyses, these compounds were structurally elucidated to be sesquiterpene γ-pyrones from a new skeletal class derived from a unique linkage pattern between the drimane sesquiterpene and pyrone moieties. Compound 2 elicited significant induction of quinone reductase.

  3. Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Petra Peters-Wendisch

    2017-04-01

    Full Text Available Corynebacterium glutamicum is a natural producer of the C50 carotenoid decaprenoxanthin. The crtEcg0722crtBIYEb operon comprises most of its genes for terpenoid biosynthesis. The MarR-type regulator encoded upstream and in divergent orientation of the carotenoid biosynthesis operon has not yet been characterized. This regulator, named CrtR in this study, is encoded in many actinobacterial genomes co-occurring with terpenoid biosynthesis genes. CrtR was shown to repress the crt operon of C. glutamicum since DNA microarray experiments revealed that transcript levels of crt operon genes were increased 10 to 70-fold in its absence. Transcriptional fusions of a promoter-less gfp gene with the crt operon and crtR promoters confirmed that CrtR represses its own gene and the crt operon. Gel mobility shift assays with purified His-tagged CrtR showed that CrtR binds to a region overlapping with the −10 and −35 promoter sequences of the crt operon. Isoprenoid pyrophosphates interfered with binding of CrtR to its target DNA, a so far unknown mechanism for regulation of carotenogenesis. The molecular details of protein-ligand interactions remain to be studied. Decaprenoxanthin synthesis by C. glutamicum wild type was enhanced 10 to 30-fold upon deletion of crtR and was decreased 5 to 6-fold as result of crtR overexpression. Moreover, deletion of crtR was shown as metabolic engineering strategy to improve production of native and non-native carotenoids including lycopene, β-carotene, C.p. 450 and sarcinaxanthin.

  4. Examination of adipose depot-specific PPAR moieties

    Energy Technology Data Exchange (ETDEWEB)

    Dodson, M.V., E-mail: dodson@wsu.edu [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States); Vierck, J.L. [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States); Hausman, G.J. [USDA-ARS, Richard B. Russell Agricultural Research Station, Athens, GA 30604 (United States); Guan, L.L. [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5 Canada (Canada); Fernyhough, M.E. [The Hartz Mountain Corporation, Secaucus, NJ 07094 (United States); Poulos, S.P. [The Coca-Cola Company, Research and Technology, Atlanta, GA 30313 (United States); Mir, P.S. [Agriculture and Agri-Food Canada Research Centre, Lethbridge, CA T1J 4B1 (United States); Jiang, Z. [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States)

    2010-04-02

    Molecular mechanisms of peroxisome proliferator activated receptors (PPARs) are being defined rapidly, as illustrated by the volume of papers published. Much of the research is directed towards a clinical end-point/application; however, the non-homogeneous nature of adipose depots in laboratory animals is spurring similar research in domestic meat animals (such as beef cattle). Moreover, the size of adipose depots in meat animals remains an attractive feature for using them to obtain cells for PPAR research. Examination of meat-animal depot-specific PPAR moieties may provide novel information about adipocyte regulation that might be extrapolated to all animals.

  5. Examination of adipose depot-specific PPAR moieties

    International Nuclear Information System (INIS)

    Dodson, M.V.; Vierck, J.L.; Hausman, G.J.; Guan, L.L.; Fernyhough, M.E.; Poulos, S.P.; Mir, P.S.; Jiang, Z.

    2010-01-01

    Molecular mechanisms of peroxisome proliferator activated receptors (PPARs) are being defined rapidly, as illustrated by the volume of papers published. Much of the research is directed towards a clinical end-point/application; however, the non-homogeneous nature of adipose depots in laboratory animals is spurring similar research in domestic meat animals (such as beef cattle). Moreover, the size of adipose depots in meat animals remains an attractive feature for using them to obtain cells for PPAR research. Examination of meat-animal depot-specific PPAR moieties may provide novel information about adipocyte regulation that might be extrapolated to all animals.

  6. Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives.

    Science.gov (United States)

    Tanaka, Mutsuo; Sawaguchi, Takahiro; Sato, Yukari; Yoshioka, Kyoko; Niwa, Osamu

    2011-01-04

    Surface modification of glassy carbon (GC) and highly oriented pyrolytic graphite (HOPG) was carried out with diazonium, amine, azide, and olefin derivatives bearing ferrocene as an electroactive moiety. Features of the modified surfaces were evaluated by surface concentrations of immobilized molecule, blocking effect of the modified surface against redox reaction, and surface observation using cyclic voltammetry and electrochemical scanning tunneling microscope (EC-STM). The measurement of surface concentrations of immobilized molecule revealed the following three aspects: (i) Diazonium and olefin derivatives could modify substrates with the dense-monolayer concentration. (ii) The surface concentration of immobilized amine derivative did not reach to the dense-monolayer concentration reflecting their low reactivity. (iii) The surface modification with the dense-monolayer concentration was also possible with azide derivative, but the modified surface contained some oligomers produced by the photoreaction of azides. Besides, the blocking effect against redox reaction was observed for GC modified with diazonium derivative and for HOPG modified with diazonium and azide derivatives, suggesting fabrication of a densely modified surface. Finally, the surface observation for HOPG modified with diazonium derivative by EC-STM showed a typical monolayer structure, in which the ferrocene moieties were packed densely at random. On the basis of those results, it was demonstrated that surface modification of carbon substrates with diazonium could afford a dense monolayer similar to the self-assembled monolayer (SAM) formation.

  7. Synthesis of Dopamine and Serotonin Derivatives for Immobilization on a Solid Support

    DEFF Research Database (Denmark)

    Funder, Erik Daa; Jensen, Anne Bjørnskov; Tørring, Thomas

    2012-01-01

    rearrangement from the allylated phenol moiety of serotonin. The tethers are azide-functionalized, which enables coupling to alkyne-modified magnetic beads. The coupling to the magnetic beads is quantified by UV spectroscopy using Fmoc-monitoring of the immobilized dopamine and serotonin derivatives....

  8. Diagnostic radio labelled polysaccharide derivatives

    International Nuclear Information System (INIS)

    Milbrath, D.S.; Ferber, R.H.; Barnett, W.E.

    1982-01-01

    A radiopharmaceutical compound for diagnosing blood clots is claimed. It is the reaction product of a compound characterized by a water-soluble polysaccharide moiety having an average of at least 0.25 anionic group per monosaccharide unit, and at least one chelating group derived from the group consisting of amino acids, substituted cyclic acid anhydrides, and carbon disulfide; and a radioactive tracer metal compound selected from In-111, Tc-99m, Cr-51, Ga-68, and a reduced pertechnetate compound

  9. Arsenic moiety in gallium arsenide is responsible for neuronal apoptosis and behavioral alterations in rats

    International Nuclear Information System (INIS)

    Flora, Swaran J.S.; Bhatt, Kapil; Mehta, Ashish

    2009-01-01

    Gallium arsenide (GaAs), an intermetallic semiconductor finds widespread applications in high frequency microwave and millimeter wave, and ultra fast supercomputers. Extensive use of GaAs has led to increased exposure to humans working in semiconductor industry. GaAs has the ability to dissociate into its constitutive moieties at physiological pH and might be responsible for the oxidative stress. The present study was aimed at evaluating, the principle moiety (Ga or As) in GaAs to cause neurological dysfunction based on its ability to cause apoptosis, in vivo and in vitro and if this neuronal dysfunction translated to neurobehavioral changes in chronically exposed rats. Result indicated that arsenic moiety in GaAs was mainly responsible for causing oxidative stress via increased reactive oxygen species (ROS) and nitric oxide (NO) generation, both in vitro and in vivo. Increased ROS further caused apoptosis via mitochondrial driven pathway. Effects of oxidative stress were also confirmed based on alterations in antioxidant enzymes, GPx, GST and SOD in rat brain. We noted that ROS induced oxidative stress caused changes in the brain neurotransmitter levels, Acetylcholinesterase and nitric oxide synthase, leading to loss of memory and learning in rats. The study demonstrates for the first time that the slow release of arsenic moiety from GaAs is mainly responsible for oxidative stress induced apoptosis in neuronal cells causing behavioral changes.

  10. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    International Nuclear Information System (INIS)

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko; Dohi, Makoto

    2014-01-01

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4 + T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4 + T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects

  11. Synthesis and anticonvulsant activity of some 2-pyrazolines derived from chalcones

    Directory of Open Access Journals (Sweden)

    Nagihan Beyhan

    2017-05-01

    All compounds were tested for their anticonvulsant activity using pentylenetetrazole induced seizure (PTZ and maximal electroshock seizure (MES tests in mice at a dose level of 50 mg/kg. Among the 2-pyrazoline-1-carbothioamide derivatives, 5-(2,6-dichlorophenyl-3-(thiophen-2-yl-4,5-dihydro-1H-pyrazole-1-carbothioamide (2e reduced grade-5 seizure activity and also increased survival rate in PTZ test. In MES test, 5-(4-methoxyphenyl-3-[4-(methylsulphonylphenyl]-4,5-dihydro-1H-pyrazole-1-carbothioamide(2g has not only decreased seizure severity, but also increased survival rate. Among the 2-pyrazoline-1-carboxamide derivatives, 3-(5-bromothiophen-2-yl-N-(4-chlorophenyl-5-(2,6-dichlorophenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (3d having 5-bromothiophen and 2,6-dichlorophenyl moieties and N-(4-chlorophenyl-5-(2,6-dichlorophenyl-3-(5-chlorothiophen-2-yl-4,5-dihydro-1H-pyrazole-1-carboxamide (3e having 5-chlorothiophen and 2,6-dichlorophenyl moieties showed remarkable activities in PTZ test. Among all tested derivatives, compound 3d was found to be the most active one and reduced grade-5 seizure severity and also increased survival rate.

  12. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway.

    Science.gov (United States)

    Matusova, Radoslava; Rani, Kumkum; Verstappen, Francel W A; Franssen, Maurice C R; Beale, Michael H; Bouwmeester, Harro J

    2005-10-01

    The seeds of parasitic plants of the genera Striga and Orobanche will only germinate after induction by a chemical signal exuded from the roots of their host. Up to now, several of these germination stimulants have been isolated and identified in the root exudates of a series of host plants of both Orobanche and Striga spp. In most cases, the compounds were shown to be isoprenoid and belong to one chemical class, collectively called the strigolactones, and suggested by many authors to be sesquiterpene lactones. However, this classification was never proven; hence, the biosynthetic pathways of the germination stimulants are unknown. We have used carotenoid mutants of maize (Zea mays) and inhibitors of isoprenoid pathways on maize, cowpea (Vigna unguiculata), and sorghum (Sorghum bicolor) and assessed the effects on the root exudate-induced germination of Striga hermonthica and Orobanche crenata. Here, we show that for these three host and two parasitic plant species, the strigolactone germination stimulants are derived from the carotenoid pathway. Furthermore, we hypothesize how the germination stimulants are formed. We also discuss this finding as an explanation for some phenomena that have been observed for the host-parasitic plant interaction, such as the effect of mycorrhiza on S. hermonthica infestation.

  13. Insights into the structure-activity relationship of the anticancer compound ZJ-101, a derivative of marine natural product superstolide A: A critical role played by the conjugated trienyl lactone moiety.

    Science.gov (United States)

    Qian, Shan; Shah, Aashay K; Head, Sarah A; Liu, Jun O; Jin, Zhendong

    2016-08-01

    Compound ZJ-101, a structurally simplified analog of the marine natural product superstolide A, was previously developed in our laboratory. In the subsequent structure-activity relationship study, two new analogs, ZJ-105 and ZJ-106, were designed and synthesized to probe the importance of the conjugated trienyl lactone moiety of the molecule by replacing the C2-C3 double bond in ZJ-101 with a single bond and switching the geometry of the C4-C5 double bond in ZJ-101 from Z to E, respectively. Biological evaluation showed that ZJ-105 completely loses antiproliferative activity whereas ZJ-106 is significantly less active against cancer cells in vitro than ZJ-101, suggesting that the conjugated trienyl lactone moiety of the molecule is critical for its anticancer activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    Science.gov (United States)

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K; Ejsing, Christer S; Carvalho, Pedro

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together to control sterol biosynthesis at different levels and thereby allowing independent regulation of multiple products of the mevalonate pathway. DOI: http://dx.doi.org/10.7554/eLife.00953.001 PMID:23898401

  15. Design, Synthesis and Fungicidal Activities of Some Novel Pyrazole Derivatives

    Directory of Open Access Journals (Sweden)

    Xue-Ru Liu

    2014-09-01

    Full Text Available In order to discover new compounds with good fungicidal activities, 32 pyrazole derivatives were designed and synthesized. The structures of the target compounds were confirmed by 1H-NMR, 13C-NMR, and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS, and their fungicidal activities against Botrytis cinerea, Rhizoctonia solani Kuhn, Valsa mali Miyabe et Yamada, Thanatephorus cucumeris (Frank Donk, Fusarium oxysporum (S-chl f.sp. cucumerinum Owen, and Fusarium graminearum Schw were tested. The bioassay results indicated that most of the derivatives exhibited considerable antifungal activities, especially compound 26 containing a p-trifluoromethyl- phenyl moiety showed the highest activity, with EC50 values of 2.432, 2.182, 1.787, 1.638, 6.986, and 6.043 μg/mL against B. cinerea, R. solani, V. mali, T. cucumeris, F. oxysporum, and F. graminearum, respectively. Moreover, the activities of compounds such as compounds 27–32 were enhanced by introducing isothiocyanate and carboxamide moieties to the 5-position of the pyrazole ring.

  16. Synthesis and Anchoring of Antineoplastic Ferrocene and Phthalocyanine Derivatives on Water-Soluble Polymeric Drug Carriers Derived from Lysine and Aspartic Acid

    OpenAIRE

    Maree, M. David; Neuse, Eberhard W.; Erasmus, Elizabeth; Swarts, Jannie C.

    2007-01-01

    The general synthetic strategy towards water-soluble biodegradable drug carriers and the properties that they must have are discussed. The syntheses of water-soluble biodegradable copolymers of lysine and aspartic acid as potential drug-delivering devices, having amine-functionalised side chains are then described. Covalent anchoring of carboxylic acid derivatives of the antineoplastic ferrocene and photodynamically active phthalocyanine moieties to the amine-containing drug carrier copolymer...

  17. Design of Thermochromic Polynorbornene Bearing Spiropyran Chromophore Moieties: Synthesis, Thermal Behavior and Dielectric Barrier Discharge Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Saleh A. Ahmed

    2017-11-01

    Full Text Available A new class of thermochromic polynorbornene with pendent spiropyran moieties has been synthesized. Functionalization of norbornene monomers with spirobenzopyran moieties has been achieved using Steglich esterification. These new monomeric materials were polymerized via Ring Opening Metathesis Polymerization (ROMP. In spite of their poor solubility, polynorbornenes with spirobenzopyran exhibited thermochromic behavior due to the conversion of their closed spiropyran moieties to the open merocyanine form. Moreover, these polymers displayed bathochromic shifts in their optical response, which was attributed to the J-aggregation of the attached merocyanine moieties that were associated with their high concentration in the polymeric chain. The surface of the obtained polymers was exposed to atmospheric pressure air Dielectric Barrier Discharge (DBD plasma system, which resulted in the reduction of the surface porosity and converted some surface area into completely non-porous regions. Moreover, the plasma system created some areas with highly ordered J-aggregates of the merocyanine form in thread-like structures. This modification of the polymers’ morphology may alter their applications and allow for these materials to be potential candidates for new applications, such as non-porous membranes for reverse osmosis, nanofiltration, or molecular separation in the gas phase.

  18. Synthesis of Lipophilic Guanine N-9 Derivatives

    DEFF Research Database (Denmark)

    Wamberg, Michael C; Pedersen, Pernille L; Löffler, Philipp M G

    2017-01-01

    the synthesis of five new guanine-N9 derivatives bearing alkyl chains with different attachment chemistries, exploiting a synthesis pathway that allows a flexible choice of hydrophobic anchor moiety. In this study, these guanine derivatives were functionalized with C10 chains for insertion into decanoic acid...... bilayer structures, in which both alkyl chain length and attachment chemistry determined their interaction with the membrane. Incubation of these guanine conjugates, as solids, with a decanoic acid vesicle suspension, showed that ether- and triazole-linked C10 anchors yielded an increased partitioning...... of the guanine derivative into the membranous phase compared to directly N-9-linked saturated alkyl anchors. Decanoic acid vesicle membranes could be loaded with up to 5.5 mol % guanine derivative, a 6-fold increase over previous limits. Thus, anchor chemistries exhibiting favorable interactions with a bilayer...

  19. The Strigolactone Germination Stimulants of the Plant-Parasitic Striga and Orobanche spp. Are Derived from the Carotenoid Pathway1

    Science.gov (United States)

    Matusova, Radoslava; Rani, Kumkum; Verstappen, Francel W.A.; Franssen, Maurice C.R.; Beale, Michael H.; Bouwmeester, Harro J.

    2005-01-01

    The seeds of parasitic plants of the genera Striga and Orobanche will only germinate after induction by a chemical signal exuded from the roots of their host. Up to now, several of these germination stimulants have been isolated and identified in the root exudates of a series of host plants of both Orobanche and Striga spp. In most cases, the compounds were shown to be isoprenoid and belong to one chemical class, collectively called the strigolactones, and suggested by many authors to be sesquiterpene lactones. However, this classification was never proven; hence, the biosynthetic pathways of the germination stimulants are unknown. We have used carotenoid mutants of maize (Zea mays) and inhibitors of isoprenoid pathways on maize, cowpea (Vigna unguiculata), and sorghum (Sorghum bicolor) and assessed the effects on the root exudate-induced germination of Striga hermonthica and Orobanche crenata. Here, we show that for these three host and two parasitic plant species, the strigolactone germination stimulants are derived from the carotenoid pathway. Furthermore, we hypothesize how the germination stimulants are formed. We also discuss this finding as an explanation for some phenomena that have been observed for the host-parasitic plant interaction, such as the effect of mycorrhiza on S. hermonthica infestation. PMID:16183851

  20. Stabilization of liquid crystal dispersion by nonionic surfactant/acrylamide copolymer containing hydrophobic moieties

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J.; Kim, M.H.; Lee, J.R. [Korea Research Institute of Chemical Technology, Taejon (Korea)

    1999-07-01

    The effect of nonionic surfactant (H(OCH){sub 2}-OC{sub 6}H{sub 4}-C{sub 9}H{sub 19}, NP-8) and acrylamide copolymer containing nonylphenyl groups as hydrophobic moieties on the stabilization of liquid crystal (LC)-in-water dispersion has been studied. According to cloud point and adsorption measurements, the hydrophobically strong interaction between NP-8 and the nonylphenol moieties is formed. And the addition of surfactant increases the stability of LC dispersion and improve the electrooptical properties of the nematic curvilinear aligned phase (NCAP) composite film. It is due to the presence of surfactant which allows the formation of nonpolar microenvironment in the round of LC droplet and finally reduces the anchoring effect between LC and the polymeric wall. 21 refs., 8 figs.

  1. [In vitro study over statins effects on cellular growth curves and its reversibility with mevalonate].

    Science.gov (United States)

    Millan Núñez-Cortés, Jesús; Alvarez Rodriguez, Ysmael; Alvarez Novés, Granada; Recarte Garcia-Andrade, Carlos; Alvarez-Sala Walther, Luis

    2014-01-01

    HMG-CoA-Reductase inhibitors, also known as statins, are currently the most powerful cholesterol-lowering drugs available on the market. Clinical trials and experimental evidence suggest that statins have heavy anti-atherosclerotic effects. These are in part consequence of lipid lowering but also result from pleiotropic actions of the drugs. These so-called pleiotropic properties affect various aspects of cell function, inflammation, coagulation, and vasomotor activity. These effects are mediated either indirectly through LDL-c reduction or via a direct effect on cellular functions. Although many of the pleiotropic properties of statins may be a class effect, some may be unique to certain agents and account for differences in their pharmacological activity. So, although statins typically have similar effects on LDL-c levels, differences in chemical structure and pharmacokinetic profile can lead to variations in pleiotropic effects. In this paper we analize the in vitro effects of different statins over different cell lines from cells implicated in atherosclerotic process: endothelial cells, fibroblasts, and vascular muscular cells. In relation with our results we can proof that the effects of different dosis of different statins provides singular effects over growth curves of different cellular lines, a despite of a class-dependent effects. So, pleiotropic effects and its reversibility with mevalonate are different according with the molecule and the dosis. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.

  2. Iptycene synthesis: A new method for attaching a 2,3-anthracene moiety to the 9,10-positions of another anthracene moiety - Exceptional conditions for a Lewis acid catalyzed Diels-Alder reaction

    Science.gov (United States)

    Chen, Yong-Shing; Hart, Harold

    1989-01-01

    An efficient three-step method for appending a 2,3-anthracene moiety to the 9,10-positions of an existing anthracene moiety is described. The first step uses excess 1,4-anthraquinone (3 equiv) and aluminum chloride (6 equiv) to obtain the anthracene-quinone cycloadduct (omission of the AlCl3 resulted in no adduct). The resulting diketone was reduced to the corresponding diol (excess LiAlH4), which was dehydrated to the arene with phosphorus oxychloride and pyridine. Specific examples include the preparation of heptipycene 8 from pentiptycene 6 (66 percent overall yield) and a similar conversion of 8 to the noniptycene 13 (75 percent overall yield). The methodology led to a markedly improved synthesis of tritriptycene 9 and the first synthesis of undecaiptycene 14.

  3. Design, synthesis and antifungal activities of novel strobilurin derivatives containing pyrimidine moieties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang; Geo, Yongxin; Liu, Huijun; Guo, Baoyuan; Wang, Huili [Research Center for Eco-Environmental Sciences/Chinese Academy of Sciences, Beijing (China)

    2012-04-15

    Strobilurins are one of the most important classes of agricultural fungicides. To discover new strobilurin derivatives with high activity against resistant pathogens, a series of novel β-methoxy acrylate analogues were designed and synthesized by integrating substituted pyrimidine with a strobilurin pharmacophore. The compounds were confirmed and characterized by infrared, {sup 1}H nuclear magnetic resonance, elemental analysis and mass spectroscopy. The bioassays indicated that most of the compounds (1a-1h) exhibited potent antifungal activities against Colletotrichum orbicular, Botrytis cinerea Pers and Protoporphyria caps ici Leon ian at the concentration of 50 μg/mL. Exhilaratingly, compound 1d (R=3-trifluoromethylphenyl) showed better antifungal activity against all the tested fungi than the commercial stilbenetriol fungicide azoxystrobin.

  4. Molecularly oriented surface relief formation in polymethacrylates comprising N-benzylideneaniline derivative side groups

    Science.gov (United States)

    Kawatsuki, Nobuhiro; Hosoda, Risa; Kondo, Mizuho; Sasaki, Tomoyuki; Ono, Hiroshi

    2014-12-01

    Molecularly oriented surface relief (SR) formation in polymethacrylates with N-benzylideneaniline (NBA) derivative side groups is investigated by holographic exposure using a 325 nm He-Cd laser. Because the NBA moieties show a photoinduced orientation perpendicular to the polarization of light, polarization holography successfully forms a molecularly oriented SR structure in accordance with the polarization distribution that includes p-polarized components. Although intensity holography induces molecular orientation, it does not generate a satisfactory SR structure. In all the holographic modes, the SR depth depends on the direction of the C=N bonds in the NBA moieties and the photoproducts affect the SR formation ability.

  5. Specific membrane binding of factor VIII is mediated by O-phospho-L-serine, a moiety of phosphatidylserine.

    Science.gov (United States)

    Gilbert, G E; Drinkwater, D

    1993-09-21

    Phosphatidylserine, a negatively charged lipid, is exposed on the platelet membrane following cell stimulation, correlating with the expression of factor VIII receptors. We have explored the importance of the negative electrostatic potential of phosphatidylserine vs chemical moieties of phosphatidylserine for specific membrane binding of factor VIII. Fluorescein-labeled factor VIII bound to membranes containing 15% phosphatidic acid, a negatively charged phospholipid, with low affinity compared to phosphatidylserine-containing membranes. Binding was not specific as it was inhibited by other proteins in plasma. Factor VIII bound to membranes containing 10% phosphatidylserine in spite of a varying net charge provided by 0-15% stearylamine, a positively charged lipid. The soluble phosphatidylserine moiety, O-phospho-L-serine, inhibited factor VIII binding to phosphatidylserine-containing membranes with a Ki of 20 mM, but the stereoisomer, O-phospho-D-serine, was 5-fold less effective. Furthermore, binding of factor VIII to membranes containing synthetic phosphatidyl-D-serine was 5-fold less than binding to membranes containing phosphatidyl-L-serine. Membranes containing synthetic phosphatidyl-L-homoserine, differing from phosphatidylserine by a single methylene, supported high-affinity binding, but it was not specific as factor VIII was displaced by other plasma proteins. O-Phospho-L-serine also inhibited the binding of factor VIII to platelet-derived microparticles with a Ki of 20 mM, and the stereoisomer was 4-fold less effective. These results indicate that membrane binding of factor VIII is mediated by a stereoselective recognition O-phospho-L-serine of phosphatidylserine and that negative electrostatic potential is of lesser importance.

  6. Isoprenoid emission variation of Norway spruce across a European latitudinal transect

    Science.gov (United States)

    van Meeningen, Ylva; Wang, Min; Karlsson, Tomas; Seifert, Ana; Schurgers, Guy; Rinnan, Riikka; Holst, Thomas

    2017-12-01

    Norway spruce (Picea abies) is one of the dominant tree species in the European boreal zone with the capacity to grow over large areas within Europe. It is an important emitter of biogenic volatile organic compounds (BVOCs), which can act as precursors of photochemical smog and ozone and contribute to the formation and growth of secondary organic aerosols (SOA) in the atmosphere. Isoprenoid emissions were measured from Norway spruce trees at seven different sites, distributed from Ljubljana in Slovenia to Piikkiö in Finland. Four of the sites were part of a network of genetically identical spruce trees and contained two separate provenances. The remaining three sites were part of other networks which have been used to conduct studies in the European boreal zone. There were minimal differences in the standardized emission rates between sites and across latitudes. The emission profile differed between provenances and sites, but there were not any distinct patterns which could be connected to a change in latitude. By using genetically identical trees and comparing the emission rates between sites and with genetically different trees, it was observed that the emission patterns were mostly influenced by genetics. But in order to confirm this possible stability of the relative emission profile based on genetics, more studies need to be performed. The effects of branch height, season and variation between years on observed emission pattern variations were also investigated. There were indications of potential influences of all three factors. However, due to different experimental setups between measurement campaigns, it is difficult to draw any robust conclusions.

  7. Novel immobilization of a quaternary ammonium moiety on keratin fibers for medical applications.

    Science.gov (United States)

    Yu, Dan; Cai, Jackie Y; Liu, Xin; Church, Jeffrey S; Wang, Lijing

    2014-09-01

    This paper introduces a new approach for immobilizing a quaternary ammonium moiety on a keratinous substrate for enhanced medical applications. The method involves the generation of thiols by controlled reduction of cystine disulfide bonds in the keratin, followed by reaction with [2-(acryloyloxy)ethyl]trimethylammonium chloride through thiol-ene click chemistry. The modified substrate was characterized with Raman and infrared spectroscopy, and assessed for its antibacterial efficacy and other performance changes. The results have demonstrated that the quaternary ammonium moiety has been effectively attached onto the keratin structure, and the resultant keratin substrate exhibits a multifunctional effect including antibacterial and antistatic properties, improved liquid moisture management property, improved dyeability and a non-leaching characteristic of the treated substrate. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  8. The synthesis of a water-soluble derivative of rutin as an antiradical agent

    Energy Technology Data Exchange (ETDEWEB)

    Pedriali, Carla Aparecida; Fernandes, Adjaci Uchoa [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Dept. de Bioquimica]. E-mail: capedriali@hotmail.com; Bernusso, Leandra de Cassia; Polakiewicz, Bronislaw [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Tecnologia Bioquimico-Farmaceutica

    2008-07-01

    The purpose of this study was to synthesize a water-soluble derivative of rutin (compound 2) by introducing carboxylate groups on rutin's sugar moiety. The rutin derivative showed an almost 100-fold solubility increase in water. The antiradical capacity of compound 2 was evaluated using the luminol/AAPH system, and the derivative's activity was 1.5 times greater than that of Trolox. Despite the derivative's high solubility in water (log P = -1.13), lipid peroxidation of brain homogenate membranes was very efficiently inhibited (inhibition values were only 19% lower than the inhibition values of rutin). (author)

  9. The synthesis of a water-soluble derivative of rutin as an antiradical agent

    International Nuclear Information System (INIS)

    Pedriali, Carla Aparecida; Fernandes, Adjaci Uchoa; Bernusso, Leandra de Cassia; Polakiewicz, Bronislaw

    2008-01-01

    The purpose of this study was to synthesize a water-soluble derivative of rutin (compound 2) by introducing carboxylate groups on rutin's sugar moiety. The rutin derivative showed an almost 100-fold solubility increase in water. The antiradical capacity of compound 2 was evaluated using the luminol/AAPH system, and the derivative's activity was 1.5 times greater than that of Trolox. Despite the derivative's high solubility in water (log P = -1.13), lipid peroxidation of brain homogenate membranes was very efficiently inhibited (inhibition values were only 19% lower than the inhibition values of rutin). (author)

  10. Transformation of ranitidine during water chlorination and ozonation: Moiety-specific reaction kinetics and elimination efficiency of NDMA formation potential.

    Science.gov (United States)

    Jeon, Dahee; Kim, Jisoo; Shin, Jaedon; Hidayat, Zahra Ramadhany; Na, Soyoung; Lee, Yunho

    2016-11-15

    Ranitidine can produce high yields of N-nitrosodimethylamine (NDMA) upon chloramination and its presence in water resources is a concern for water utilities using chloramine disinfection. This study assessed the efficiency of water chlorination and ozonation in transforming ranitidine and eliminating its NDMA formation potential (NDMA-FP) by determining moiety-specific reaction kinetics, stoichiometric factors, and elimination levels in real water matrices. Despite the fact that chlorine reacts rapidly with the acetamidine and thioether moieties of ranitidine (k>10(8)M(-1)s(-1) at pH 7), the NDMA-FP decreases significantly only when chlorine reacts with the less reactive tertiary amine (k=3×10(3)M(-1)s(-1) at pH 7) or furan moiety (k=81M(-1)s(-1) at pH 7). Ozone reacts rapidly with all four moieties of ranitidine (k=1.5×10(5)-1.6×10(6)M(-1)s(-1) at pH 7) and its reaction with the tertiary amine or furan moiety leads to complete elimination of the NDMA-FP. Treatments of ranitidine-spiked real water samples have shown that ozonation can efficiently deactivate ranitidine in water and wastewater treatment, while chlorination can be efficient for water containing low concentration of ammonia. This result can be applied to the other structurally similar, potent NDMA precursors. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    DEFF Research Database (Denmark)

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate......-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin...... ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together...

  12. Statistical mechanical model of gas adsorption in porous crystals with dynamic moieties.

    Science.gov (United States)

    Simon, Cory M; Braun, Efrem; Carraro, Carlo; Smit, Berend

    2017-01-17

    Some nanoporous, crystalline materials possess dynamic constituents, for example, rotatable moieties. These moieties can undergo a conformation change in response to the adsorption of guest molecules, which qualitatively impacts adsorption behavior. We pose and solve a statistical mechanical model of gas adsorption in a porous crystal whose cages share a common ligand that can adopt two distinct rotational conformations. Guest molecules incentivize the ligands to adopt a different rotational configuration than maintained in the empty host. Our model captures inflections, steps, and hysteresis that can arise in the adsorption isotherm as a signature of the rotating ligands. The insights disclosed by our simple model contribute a more intimate understanding of the response and consequence of rotating ligands integrated into porous materials to harness them for gas storage and separations, chemical sensing, drug delivery, catalysis, and nanoscale devices. Particularly, our model reveals design strategies to exploit these moving constituents and engineer improved adsorbents with intrinsic thermal management for pressure-swing adsorption processes.

  13. Fluorescence studies on 2-(het)aryl perimidine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Giani, Arianna Maria [Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2/3, I-28100 Novara (Italy); Lamperti, Marco; Maspero, Angelo; Cimino, Alessandro [Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, I-22100 Como (Italy); Negri, Roberto; Giovenzana, Giovanni Battista [Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2/3, I-28100 Novara (Italy); Palmisano, Giovanni [Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, I-22100 Como (Italy); Nardo, Luca, E-mail: luca.nardo@unimib.it [Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Via Cadore 48, I-20900 Monza (Italy)

    2016-11-15

    Perimidines are extensively studied for their different therapeutic properties, including antiulcer, antifungal, antimicrobial, immunosuppressive and anticancer activities. Moreover, their heterocyclic structure embodies the naphthalene moiety, exploited in bio-imaging and biomolecules staining due to its high fluorescence. In this work we present the spectroscopic characterization of a family of perimidine derivatives, in order to obtain information potentially useful for the design of compounds combining biological activity and detectable fluorescence in physiological environment.

  14. A Carbohydrate Moiety of Secreted Stage-Specific Glycoprotein 4 Participates in Host Cell Invasion by Trypanosoma cruzi Extracellular Amastigotes

    Science.gov (United States)

    Florentino, Pilar T. V.; Real, Fernando; Orikaza, Cristina M.; da Cunha, Julia P. C.; Vitorino, Francisca N. L.; Cordero, Esteban M.; Sobreira, Tiago J. P.; Mortara, Renato A.

    2018-01-01

    Trypanosoma cruzi is the etiologic agent of Chagas’ disease. It is known that amastigotes derived from trypomastigotes in the extracellular milieu are infective in vitro and in vivo. Extracellular amastigotes (EAs) have a stage-specific surface antigen called Ssp-4, a GPI-anchored glycoprotein that is secreted by the parasites. By immunoprecipitation with the Ssp-4-specific monoclonal antibodies (mAb) 2C2 and 1D9, we isolated the glycoprotein from EAs. By mass spectrometry, we identified the core protein of Ssp-4 and evaluated mRNA expression and the presence of Ssp-4 carbohydrate epitopes recognized by mAb1D9. We demonstrated that the carbohydrate epitope recognized by mAb1D9 could promote host cell invasion by EAs. Although infectious EAs express lower amounts of Ssp-4 compared with less-infectious EAs (at the mRNA and protein levels), it is the glycosylation of Ssp-4 (identified by mAb1D9 staining only in infectious strains and recognized by galectin-3 on host cells) that is the determinant of EA invasion of host cells. Furthermore, Ssp-4 is secreted by EAs, either free or associated with parasite vesicles, and can participate in host-cell interactions. The results presented here describe the possible role of a carbohydrate moiety of T. cruzi surface glycoproteins in host cell invasion by EA forms, highlighting the potential of these moieties as therapeutic and vaccine targets for the treatment of Chagas’ disease. PMID:29692765

  15. Structural effects of a light emitting copolymer having perylene moieties in the side chain on the electroluminescent characteristics

    International Nuclear Information System (INIS)

    Lee, Chang Ho; Ryu, Seung Hoon; Jang, Hee Dong; Oh, Se Young

    2004-01-01

    We have synthesized a novel side chain light emitting copolymer. The side chain light emitting copolymer has a perylene moiety as an emitting unit and methylmethacrylate (MMA) as a spacer to decrease the concentration quenching of light emitting site in the polymer intrachain. These polymers are very soluble in most organic solvents such as monochlorobenzene, tetrahydrofuran, chloroform and benzene. The single-layered electroluminescent (EL) device consisting of ITO/carrier transporting copolymer and light emitting copolymer/Al was manufactured. The carrier transporting copolymer has triphenylamine moiety as a hole transporting unit and triazine moiety as an electron transporting unit in the polymer side chain. This device exhibits maximum external quantum efficiency when the MMA contents of light emitting copolymer is 30 wt.%. In particular, the device emits more blue light as MMA contents increase

  16. Synthesis and Analgesic Properties of Lidocaine Derivatives with Substituted Aminobenzothiazoles.

    Science.gov (United States)

    Ahmadi, Abbas; Khalili, Mohsen; Mohammadinoude, Mohammad Kazem; Nahri-Niknafs, Babak

    2016-01-01

    Local anesthetics are the most widely consumed drugs in the practice of medicine which provide a loss of sensation in a certain body part without loss of consciousness or impairment of central control of essential functions. Lidocaine (I) is the most commonly local anaesthetic drug which is widely used in all species due to its fabulous diffusing and penetrating properties as well as prompt onset of surgical analgesia. In this study, new aminobenzothiazole (with many useful biological and pharmacological properties) analogues were synthesized by changing of amine moiety of I. Both acute and chronic pain properties of new compounds (II-VI) were studied by using the tail immersion and formalin tests on mice and the outcomes were compared with control and lidocaine groups. According to the results, aminobenzothiazole derivatives are better candidates than diethylamine group for replacement on amine moiety of I. Also, derivatives with electron-withdrawing groups on this amine (V and VI) could decrease pain better than electron-donating ones (II and III) (specially on position 6 of this amine, II and V) which may be of concern for blockade of specific sodium channels by these new compounds.

  17. Influence of different amino substituents in position 1 and 4 on spectroscopic and acid base properties of 9,10-anthraquinone moiety.

    Science.gov (United States)

    Wcisło, Anna; Niedziałkowski, Paweł; Wnuk, Elżbieta; Zarzeczańska, Dorota; Ossowski, Tadeusz

    2013-05-01

    A series of novel 1-amino and 1,4-diamino-9,10-anthraquinones, substituted with different alkyl groups, were synthesized as the result of alkylation with amino substituents. All the obtained aminoanthraquinone derivatives were characterized by NMR, IR spectroscopy and mass spectrometry. The spectroscopic properties of these compounds were determined by using UV-Vis spectroscopy in acetonitrile, and in the mixture of acetonitrile and methanol at different pH ranges. The effects of various substituents present in the newly developed anthraquinone derivatives and their ability to form hydrogen bonds between the carbonyl oxygen atom of anthraquinone moiety and nitrogen atom of N-H group in 1-aminoanthraquinone (1-AAQ) and 1,4-diaminoanthraquinone (1,4-DAAQ) were studied. Additionally, the effects of hydrogen bond formation between O-H group in hydroxyethylamino substituent and the carbonyl oxygen atom of anthraquinone were investigated. The spectroscopic behavior of the studied derivatives strongly depended on the solvent-solute interactions and the nature of solvent. The values of pKa for the new anthraquinones were determined by the combined potentiometric and spectrophotometric titration methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. High-efficiency red-light emission from polyfluorenes grafted with cyclometalated iridium complexes and charge transport moiety.

    Science.gov (United States)

    Chen, Xiwen; Liao, Jin-Long; Liang, Yongmin; Ahmed, M O; Tseng, Hao-En; Chen, Show-An

    2003-01-22

    We report a new route for the design of electroluminescent polymers by grafting high-efficiency phosphorescent organometallic complexes as dopants and charge transport moieties onto alky side chains of fully conjugated polymers for polymer light-emitting diodes (PLED) with single layer/single polymers. The polymer system studied involves polyfluorene (PF) as the base conjugated polymer, carbazole (Cz) as the charge transport moiety and a source for green emission by forming an electroplex with the PF main chain, and cyclometalated iridium (Ir) complexes as the phosphorescent dopant. Energy transfer from the green Ir complex or an electroplex formed between the fluorene main chain and side-chain carbazole moieties, in addition to that from the PF main chain, to the red Ir complex can significantly enhance the device performance, and a red light-emitting device with the high efficiency 2.8 cd/A at 7 V and 65 cd/m2, comparable to that of the same Ir complex-based OLED, and a broad-band light-emitting device containing blue, green, and red peaks (2.16 cd/A at 9 V) are obtained.

  19. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko [Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Dohi, Makoto, E-mail: mdohi-tky@umin.ac.jp [Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Institute of Respiratory Immunology, Shibuya Clinic for Respiratory Diseases and Allergology, Tokyo (Japan)

    2014-01-03

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4{sup +} T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4{sup +} T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects.

  20. Multifaceted Strategy for the Synthesis of Diverse 2,2'-Bithiophene Derivatives

    Directory of Open Access Journals (Sweden)

    Stanisław Krompiec

    2015-03-01

    Full Text Available New catalytically or high pressure activated reactions and routes, including coupling, double bond migration in allylic systems, and various types of cycloaddition and dihydroamination have been used for the synthesis of novel bithiophene derivatives. Thanks to the abovementioned reactions and routes combined with non-catalytic ones, new acetylene, butadiyne, isoxazole, 1,2,3-triazole, pyrrole, benzene, and fluoranthene derivatives with one, two or six bithiophenyl moieties have been obtained. Basic sources of crucial substrates which include bithiophene motif for catalytic reactions were 2,2'-bithiophene, gaseous acetylene and 1,3-butadiyne.

  1. Regioselective 1,4- and 1,6-Conjugate Additions of Grignard Reagent-Derived Organozinc(II)ates to Polyconjugated Esters.

    Science.gov (United States)

    Hatano, Manabu; Mizuno, Mai; Ishihara, Kazuaki

    2016-09-16

    Regioselective synthetic methods were developed for 1,4- and 1,6-conjugate additions of Grignard reagent-derived organozinc(II)ates to malonate-derived polyconjugated esters. By taking advantage of the tight ion-pair control of organozinc(II)ates, it was possible to switch between 1,4- and 1,6-conjugate additions by introducing a terminal ethoxy moiety in the conjugation.

  2. Primary structure of the oligosaccharide moiety of hemocyanin from the scorpion Androctonus australis

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Debeire, P.; Montreuil, J.; Goyffon, M.; Kuik, J.A. van; Halbeek, H. van

    1986-01-01

    Hemocyanin, the copper-containing glycoprotein that serves as an oxygen carrier in the hemolymph of some arthropods and molluscs, was obtained from the blood of the scorpion Androctonus australis. Sugar analysis of the glycoprotein revealed that its carbohydrate moiety is of the N-glycosylic type.

  3. Synthesis, structurale elucidation and antioxidant study of Ortho-substituted N,N’-bis(benzamidothiocarbonyl)hydrazine derivatives

    Science.gov (United States)

    Firdausiah, Syadza; Hasbullah, S. A.; Yamin, B. M.

    2018-03-01

    Some bis(thiourea) compounds have been reported to posses excellent performance in pharmaceutical and environmental fields because of their ability to form chelating complexes with various anions and metal ions. Structurally for carbonyl thiourea derivatives, to become a chelating agent, it must adopt cis-configuration. In the present study, four new bis(thiourea) derivatives namely N,N’-bis(o-fluorobenzamidothiocarbonyl)hydrazine (1), N,N’- bis(o-chloro-benzamidothiocarbonyl)hydrazine (2), N,N’-bis(o-nitrobenzamidothiocarbonyl)-hydrazine (3), and N,N’-bis(o-methylbenzamidothiocarbonyl)hydrazine (4) were successfully synthesized and characterized by CHNS microelemental analysis, FTIR, UV-Vis, and 1H and 13C NMR spectroscopy. However chemical crystallography study showed that both thiourea moieties in compound (2) and (3) adopt trans geometry. Therefore they are potential monodentate ligand with two active moieties. DPPH radical scavenging experiment showed that compound (1), (2), and (4) exhibited higher antioxidant activity than ascorbic acid (Vitamin C).

  4. Expression of the mevalonate pathway enzymes in the Lutzomyia longipalpis (Diptera: Psychodidae) sex pheromone gland demonstrated by an integrated proteomic approach.

    Science.gov (United States)

    González-Caballero, Natalia; Rodríguez-Vega, Andrés; Dias-Lopes, Geovane; Valenzuela, Jesus G; Ribeiro, Jose M C; Carvalho, Paulo Costa; Valente, Richard H; Brazil, Reginaldo P; Cuervo, Patricia

    2014-01-16

    In Latin America, Lutzomyia longipalpis is the main vector of the protozoan parasite Leishmania infantum, which is the causal agent of American Visceral Leishmaniasis. This insect uses male-produced pheromones for mate recognition. Elucidation of pheromone biogenesis or its regulation may enable molecular strategies for mating disruption and, consequently, the vector's population management. Motivated by our recent results of the transcriptomic characterization of the L. longipalpis pheromone gland, we performed a proteomic analysis of this tissue combining SDS-PAGE, and mass spectrometry followed by an integrative data analysis. Considering that annotated genome sequences of this sand fly are not available, we designed an alternative workflow searching MS/MS data against two customized databases using three search engines: Mascot, OMSSA and ProLuCID. A total of 542 proteins were confidently characterized, 445 of them using a Uniref100-insect protein database, and 97 using a transcript translated database. In addition, use of PEAKS for de novo peptide sequencing of MS/MS data confirmed ~90% identifications made with the combination of the three search engines. Our results include the identification of six of the seven enzymes of the mevalonate-pathway, plus the enzymes involved in sesquiterpenoid biosynthesis, all of which are proposed to be involved in pheromone production in L. longipalpis. L. longipalpis is the main vector of the protozoan parasite L. infantum, which is the causal agent of American Visceral Leishmaniasis. One of the control measures of such disease is focused on vector population control. As this insect uses male-produced pheromones for mate recognition, the elucidation of pheromone biogenesis or its regulating process may enable molecular strategies for mating disruption and, consequently, this vector's population management. On this regard, in this manuscript we report expression evidence, at the protein level, of several molecules potentially

  5. Kojyl cinnamate ester derivatives promote adiponectin production during adipogenesis in human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Rho, Ho Sik; Hong, Soo Hyun; Park, Jongho; Jung, Hyo-Il; Park, Young-Ho; Lee, John Hwan; Shin, Song Seok; Noh, Minsoo

    2014-05-01

    The subcutaneous fat tissue mass gradually decreases with age, and its regulation is a strategy to develop anti-aging compounds to ameliorate the photo-aging of human skin. The adipogenesis of human adipose tissue-mesenchymal stem cells (hAT-MSCs) can be used as a model to discover novel anti-aging compounds. Cinnamomum cassia methanol extracts were identified as adipogenesis-promoting agents by natural product library screening. Cinnamates, the major chemical components of Cinnamomum cassia extracts, promoted adipogenesis in hAT-MSCs. We synthesized kojyl cinnamate ester derivatives to improve the pharmacological activity of cinnamates. Structure-activity studies of kojyl cinnamate derivatives showed that both the α,β-unsaturated carbonyl ester group and the kojic acid moiety play core roles in promoting adiponectin production during adipogenesis in hAT-MSCs. We conclude that kojyl cinnamate ester derivatives provide novel pharmacophores that can regulate adipogenesis in hAT-MSCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Identification of novel 3,5-diarylpyrazoline derivatives containing salicylamide moiety as potential anti-melanoma agents.

    Science.gov (United States)

    Li, Qing-Shan; Lv, Xian-Hai; Zhang, Yan-Bin; Dong, Jing-Jun; Zhou, Wen-Ping; Yang, Yang; Zhu, Hai-Liang

    2012-11-01

    There is an accumulating body of experimental evidences validating oncogenic BRAF(V600E) as a therapeutic target and offering opportunities for anti-melanoma drug development. Encouraged by the positive results of pyrazole derivatives as BRAF(V600E) inhibitors, we sought to design diverse novel potential BRAF(V600E) inhibitors as antitumor agents based on pyrazole skeleton. In silico and in vitro screening of our designed pyrazole derivatives has identified Hit 1 as BRAF(V600E) inhibitor. Based on its structure and through further structure modification, compound 25, which exhibited the most potent inhibitory activity with an IC(50) value of 0.16 μM for BRAF(V600E) and GI(50) value of 0.24 μM for mutant BRAF-dependent melanoma cells, was obtained. The 3D-QSAR models and the molecular docking simulation were introduced to analyze the structure-activity relationship. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. An unprecedented two-fold nested super-polyrotaxane: sulfate-directed hierarchical polythreading assembly of uranyl polyrotaxane moieties

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Lei; Wu, Qun-yan; Yuan, Li-yong; Wang, Lin; An, Shu-wen; Xie, Zhen-ni; Hu, Kong-qiu; Shi, Wei-qun [Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Chai, Zhi-fang [Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); School of Radiological and Interdisciplinary Sciences and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou (China); Burns, Peter C. [Department of Chemistry and Biochemistry, University of Notre Dame, IN (United States)

    2016-08-01

    The hierarchical assembly of well-organized submoieties could lead to more complicated superstructures with intriguing properties. We describe herein an unprecedented polyrotaxane polythreading framework containing a two-fold nested super-polyrotaxane substructure, which was synthesized through a uranyl-directed hierarchical polythreading assembly of one-dimensional polyrotaxane chains and two-dimensional polyrotaxane networks. This special assembly mode actually affords a new way of supramolecular chemistry instead of covalently linked bulky stoppers to construct stable interlocked rotaxane moieties. An investigation of the synthesis condition shows that sulfate can assume a vital role in mediating the formation of different uranyl species, especially the unique trinuclear uranyl moiety [(UO{sub 2}){sub 3}O(OH){sub 2}]{sup 2+}, involving a notable bent [O=U=O] bond with a bond angle of 172.0(9) . Detailed analysis of the coordination features, the thermal stability as well as a fluorescence, and electrochemical characterization demonstrate that the uniqueness of this super-polyrotaxane structure is mainly closely related to the trinuclear uranyl moiety, which is confirmed by quantum chemical calculations. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. A Carbohydrate Moiety of Secreted Stage-Specific Glycoprotein 4 Participates in Host Cell Invasion by Trypanosoma cruzi Extracellular Amastigotes

    Directory of Open Access Journals (Sweden)

    Pilar T. V. Florentino

    2018-04-01

    Full Text Available Trypanosoma cruzi is the etiologic agent of Chagas’ disease. It is known that amastigotes derived from trypomastigotes in the extracellular milieu are infective in vitro and in vivo. Extracellular amastigotes (EAs have a stage-specific surface antigen called Ssp-4, a GPI-anchored glycoprotein that is secreted by the parasites. By immunoprecipitation with the Ssp-4-specific monoclonal antibodies (mAb 2C2 and 1D9, we isolated the glycoprotein from EAs. By mass spectrometry, we identified the core protein of Ssp-4 and evaluated mRNA expression and the presence of Ssp-4 carbohydrate epitopes recognized by mAb1D9. We demonstrated that the carbohydrate epitope recognized by mAb1D9 could promote host cell invasion by EAs. Although infectious EAs express lower amounts of Ssp-4 compared with less-infectious EAs (at the mRNA and protein levels, it is the glycosylation of Ssp-4 (identified by mAb1D9 staining only in infectious strains and recognized by galectin-3 on host cells that is the determinant of EA invasion of host cells. Furthermore, Ssp-4 is secreted by EAs, either free or associated with parasite vesicles, and can participate in host-cell interactions. The results presented here describe the possible role of a carbohydrate moiety of T. cruzi surface glycoproteins in host cell invasion by EA forms, highlighting the potential of these moieties as therapeutic and vaccine targets for the treatment of Chagas’ disease.

  9. Inhibitory action of certain cyclophosphate derivatives of cAMP on cAMP-dependent protein kinases

    NARCIS (Netherlands)

    Wit, René J.W. de; Hekstra, Doeke; Jastorff, Bernd; Stec, Wojciech J.; Baraniak, Janina; Driel, Roel van; Haastert, Peter J.M. van

    1984-01-01

    A series cAMP derivatives with modifications in the adenine, ribose and cyclophosphate moiety were screened for their binding affinity for the two types of cAMP-binding sites in mammalian protein kinase type I. In addition, the activation of the kinase by these analogs was monitored. The binding

  10. New Microporous Polymer Electrolyte Based on Polysiloxane Grafted with Imidazolium Iodide Moieties for DSSC

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2011-01-01

    Full Text Available Two types of polysiloxane grafted with different ratio of imidazolium iodide moieties (IL-SiO2 have been synthesized to develop a micro-porous polymer electrolyte for quasi-solid-state dye-sensitized solar cells. The samples were characterized by 1HNMR, FT-IR spectrum, XRD, TEM and SEM, respectively. Moreover, the ionic conductivity of the electrolytes was measured by electrochemical workstation. Nanostructured polysiloxane containing imidazolium iodide showed excellent compatibility with organic solvent and polymer matrix for its ionic liquid characteristics. Increasing the proportion of imidazolium iodide moieties in polysiloxane improved the electrochemical behavior of the gel polymer electrolyte. A dye-sensitized solar cell with gel polymer electrolyte yielded an open-circuit voltage of 0.70 V, short-circuit current of 11.19 mA cm−2, and the conversion efficiency of 3.61% at 1 sun illumination.

  11. The effect of distribution of monomer moiety on the pH response and mechanical properties of poly(acrylonitrile-co-acrylic acid) copolymers

    International Nuclear Information System (INIS)

    Sahoo, Anasuya; Jassal, Manjeet; Agrawal, Ashwini K

    2010-01-01

    The pH response and mechanical properties of copolymer-based hydrogels such as poly(acrylonitrile-co-acrylic acid) are usually attributed to their chemical composition. In this study, it has been shown that the architecture of the polymer chains, i.e. the distribution of comonomers in the macromolecules, also plays a major role in controlling these properties. A series of four poly(acrylonitrile-co-acrylic acids) with fixed composition (i.e. ∼30 mol% acrylic acid moieties) were synthesized, where the block lengths of both AN (acrylonitrile) and AAc (acrylic acid) moieties in the copolymers were varied by controlling the feeding pattern of the monomers during free radical copolymerization. These copolymers were then converted into fine fibers of the same dimensions. The monomer distribution in the four copolymers was estimated using quantitative carbon 13 C nuclear magnetic resonance (NMR) and related to the mechanical and pH response properties of the resultant fibers. The pH response of the fibers with similar composition increased dramatically as the block length of the AAc moiety was increased, while the mechanical properties increased as a direct function of the block length of the AN moieties. The fiber's response at pH 10 in terms of the change in length increased by ∼four times while its response rate increased by ∼50 times with the increase in block length of the AAc moiety. On the other hand, the tensile properties and retractive stress increased by ∼four times with the increase in the block length of the AN moiety

  12. The effect of distribution of monomer moiety on the pH response and mechanical properties of poly(acrylonitrile-co-acrylic acid) copolymers

    Science.gov (United States)

    Sahoo, Anasuya; Jassal, Manjeet; Agrawal, Ashwini K.

    2010-02-01

    The pH response and mechanical properties of copolymer-based hydrogels such as poly(acrylonitrile-co-acrylic acid) are usually attributed to their chemical composition. In this study, it has been shown that the architecture of the polymer chains, i.e. the distribution of comonomers in the macromolecules, also plays a major role in controlling these properties. A series of four poly(acrylonitrile-co-acrylic acids) with fixed composition (i.e. ~30 mol% acrylic acid moieties) were synthesized, where the block lengths of both AN (acrylonitrile) and AAc (acrylic acid) moieties in the copolymers were varied by controlling the feeding pattern of the monomers during free radical copolymerization. These copolymers were then converted into fine fibers of the same dimensions. The monomer distribution in the four copolymers was estimated using quantitative carbon 13C nuclear magnetic resonance (NMR) and related to the mechanical and pH response properties of the resultant fibers. The pH response of the fibers with similar composition increased dramatically as the block length of the AAc moiety was increased, while the mechanical properties increased as a direct function of the block length of the AN moieties. The fiber's response at pH 10 in terms of the change in length increased by ~four times while its response rate increased by ~50 times with the increase in block length of the AAc moiety. On the other hand, the tensile properties and retractive stress increased by ~four times with the increase in the block length of the AN moiety.

  13. Mevalonate Pathway Antagonist Suppresses Formation of Serous Tubal Intraepithelial Carcinoma and Ovarian Carcinoma in Mouse Models.

    Science.gov (United States)

    Kobayashi, Yusuke; Kashima, Hiroyasu; Wu, Ren-Chin; Jung, Jin-Gyoung; Kuan, Jen-Chun; Gu, Jinghua; Xuan, Jianhua; Sokoll, Lori; Visvanathan, Kala; Shih, Ie-Ming; Wang, Tian-Li

    2015-10-15

    Statins are among the most frequently prescribed drugs because of their efficacy and low toxicity in treating hypercholesterolemia. Recently, statins have been reported to inhibit the proliferative activity of cancer cells, especially those with TP53 mutations. Because TP53 mutations occur in almost all ovarian high-grade serous carcinoma (HGSC), we determined whether statins suppressed tumor growth in animal models of ovarian cancer. Two ovarian cancer mouse models were used. The first one was a genetically engineered model, mogp-TAg, in which the promoter of oviduct glycoprotein-1 was used to drive the expression of SV40 T-antigen in gynecologic tissues. These mice spontaneously developed serous tubal intraepithelial carcinomas (STICs), which are known as ovarian cancer precursor lesions. The second model was a xenograft tumor model in which human ovarian cancer cells were inoculated into immunocompromised mice. Mice in both models were treated with lovastatin, and effects on tumor growth were monitored. The molecular mechanisms underlying the antitumor effects of lovastatin were also investigated. Lovastatin significantly reduced the development of STICs in mogp-TAg mice and inhibited ovarian tumor growth in the mouse xenograft model. Knockdown of prenylation enzymes in the mevalonate pathway recapitulated the lovastatin-induced antiproliferative phenotype. Transcriptome analysis indicated that lovastatin affected the expression of genes associated with DNA replication, Rho/PLC signaling, glycolysis, and cholesterol biosynthesis pathways, suggesting that statins have pleiotropic effects on tumor cells. The above results suggest that repurposing statin drugs for ovarian cancer may provide a promising strategy to prevent and manage this devastating disease. ©2015 American Association for Cancer Research.

  14. Hybrid-state emission in a polythienylenevinylene derivative with an electron deficient moiety

    Energy Technology Data Exchange (ETDEWEB)

    Lafalce, Evan, E-mail: elafalce@mail.usf.edu; Jiang, Xiaomei; Pan, Jianjun [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Whittington, Christi; Larsen, Randy [Department of Chemistry, University of South Florida, Tampa, Florida 33620 (United States); Sanow, Logan P.; Zhang, Cheng [Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota 57007 (United States)

    2015-04-28

    The photoluminescence (PL) of a novel imide-substituted poly(3-thienylenevinylene) derivative (imidePTV) was studied in film and solution. PL quantum efficiency was measured to be more than two orders of magnitude larger than its nonluminescent counterpart, namely, alkyl-substituted PTV and was interpreted as evidence for a near degeneracy of optically allowed 1{sup 1}B{sub u} and optically forbidden 2{sup 1}A{sub g} excitonic states. As a result, coexistence of 2{sup 1}A{sub g} and 1{sup 1}B{sub u} emissions was observed, and the predominance was found to be sensitive to temperature and morphological environment. PL of solutions in solvents of higher polarity and polarizability and from low-temperature films was dominated by the transition from the dipole allowed 1{sup 1}B{sub u} state. On the other hand, the PL spectra of films at high temperature and solutions in solvents of low polarity and polarizability were primarily from the 2{sup 1}A{sub g} state that obtains a finite transmission moment from an asymmetric perturbation mixing with the 1{sup 1}B{sub u}.

  15. Synthesis of polynorbornene with pendant moiety bearing azide and terminal alkyne groups

    Institute of Scientific and Technical Information of China (English)

    Ze Zhang; Zhi Wei Peng; Kun Zeng Fan

    2011-01-01

    A powerful approach to the synthesis of an unprecedented polynorbornene with pendant moiety bearing azide and terminal alkyne groups is developed. Two key intermediates, namely, 3-azido-5-(2-(trimethylsilyl)ethynyl) benzyl alcohol and 4-(4-aza-tricyclo [5.2.1.02.6]dec-8-en-4-yl) benzoic acid, were optimally synthesized for convergent synthesis of the corresponding monomer.

  16. Retinoid production using metabolically engineered Escherichia coli with a two-phase culture system.

    Science.gov (United States)

    Jang, Hui-Jeong; Yoon, Sang-Hwal; Ryu, Hee-Kyung; Kim, Jung-Hun; Wang, Chong-Long; Kim, Jae-Yean; Oh, Deok-Kun; Kim, Seon-Won

    2011-07-29

    Retinoids are lipophilic isoprenoids composed of a cyclic group and a linear chain with a hydrophilic end group. These compounds include retinol, retinal, retinoic acid, retinyl esters, and various derivatives of these structures. Retinoids are used as cosmetic agents and effective pharmaceuticals for skin diseases. Retinal, an immediate precursor of retinoids, is derived by β-carotene 15,15'-mono(di)oxygenase (BCM(D)O) from β-carotene, which is synthesized from the isoprenoid building blocks isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Retinoids are chemically unstable and biologically degraded via retinoic acid. Although extensive studies have been performed on the microbial production of carotenoids, retinoid production using microbial metabolic engineering has not been reported. Here, we report retinoid production using engineered Escherichia coli that express exogenous BCM(D)O and the mevalonate (MVA) pathway for the building blocks synthesis in combination with a two-phase culture system using a dodecane overlay. Among the BCM(D)O tested in E. coli, the synthetic retinoid synthesis protein (SR), based on bacteriorhodopsin-related protein-like homolog (Blh) of the uncultured marine bacteria 66A03, showed the highest β-carotene cleavage activity with no residual intracellular β-carotene. By introducing the exogenous MVA pathway, 8.7 mg/L of retinal was produced, which is 4-fold higher production than that of augmenting the MEP pathway (dxs overexpression). There was a large gap between retinal production and β-carotene consumption using the exogenous MVA pathway; therefore, the retinal derivatives were analyzed. The derivatives, except for retinoic acid, that formed were identified, and the levels of retinal, retinol, and retinyl acetate were measured. Amounts as high as 95 mg/L retinoids were obtained from engineered E. coli DH5α harboring the synthetic SR gene and the exogenous MVA pathway in addition to dxs overexpression, which

  17. A model to assess the emission of individual isoprenoids emitted from Italian ecosystems

    Science.gov (United States)

    Kemper Pacheco, C. J.; Fares, S.; Loreto, F.; Ciccioli, P.

    2012-04-01

    The aim of this work was to develop a GIS-based model to estimate the emissions from the Italian forest ecosystems. The model was aimed at generating a species-specific emission inventory for isoprene and individual monoterpenes that could have been validated with experimental data collected in selected sites of the CARBOITALY network. The model was develop for the year 2006. At a resolution of 1 km2 with a daily time resolution. By using the emission rates of individual components obtained through several laboratory and field experiments carried out on different vegetation species of the Mediterranean basin, maps of individual isoprenoids were generated for the Italian ecosystems. The spatial distribution and fractional contents of vegetation species present in the Italian forest ecosystems was obtained by combining the CORINE IV land cover map with National Forest Inventory based on ground observations performed at local levels by individual Italian regions (22) in which the country is divided. In general, basal emission rates for individual isoprenoids was reported by Steinbrecher et al. 1997 and Karl et al. 2009 were used. In this case, classes were further subdivided into T and L+T emitters as functions of the active pool. In many instances, however they were revised based on the results obtained in our Institute through determinations performed at leaf, branch (cuvette method) or ecosystem level (REA and the gradient method). In the latter case, studies performed in Italy and/or Mediterranean countries were used. An empirical light extinction function as a function of the canopy type and structure was introduced. The algorithms proposed by (Guenther et al. 1993) were used, but, they were often adapted to fit with the experimental observations made in the Mediterranean Areas. They were corrected for a seasonality factor (Steinbrecher et al. 2009) taking into account a time lag in leaf sprouting due to the plant elevation. A simple parameterization with LAI was

  18. Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitor

    International Nuclear Information System (INIS)

    Chappell, J.; Nable, R.

    1987-01-01

    Large amounts of the sesquiterpenoid capsidiol accumulated in the media of tobacco (Nicotiana tabacum L. cv KY14) cell suspension cultures upon addition of fungal elicitor. Capsidiol accumulation was proportional to the amount of elicitor added. The accumulation of capsidiol was preceded by a transient increase in the capsidiol de novo synthesis rate as measured by the incorporation of exogenous [ 14 C]acetate. Changes in 3-hydroxy-3-methylglutaryl-CoA reductase activity, an enzyme of general isoprenoid metabolism, paralleled the changes in [ 14 C]acetate incorporation into capsidiol. Incubation of the cell cultures with mevinolin, a potent in vitro inhibitor of the tobacco HMGR enzyme activity, inhibited the elicitor-induced capsidiol accumulation in a concentration dependent manner. [ 14 C]Acetate incorporation into capsidiol was likewise inhibited by mevinolin treatment. Unexpectedly, [ 3 H] mevalonate incorporation into capsidiol was also partially inhibited by mevinolin, suggesting that mevinolin may effect secondary sites of sesquiterpenoid biosynthesis in vivo beyond HMGR. The data indicated the importance of the induced HMGR activity for capsidiol production in elicitor-treated tobacco cell suspension cultures

  19. Cholesterol as a Causative Factor in Alzheimer Disease: A Debatable Hypothesis

    Science.gov (United States)

    Wood, W. Gibson; Li, Ling; Müller, Walter E.; Eckert, Gunter P.

    2014-01-01

    High serum/plasma cholesterol levels have been suggested as a risk factor for Alzheimer disease (AD). Some reports, mostly retrospective epidemiological studies, have observed a decreased prevalence of AD in patients taking the cholesterol lowering drugs, statins. The strongest evidence causally linking cholesterol to AD is provided by experimental studies showing that adding/reducing cholesterol alters amyloid precursor protein (APP) and amyloid beta-protein (Aβ) levels. However, there are problems with the cholesterol-AD hypothesis. Cholesterol levels in serum/plasma and brain of AD patients do not support cholesterol as a causative factor in AD. Prospective studies on statins and AD have largely failed to show efficacy. Even the experimental data are open to interpretation given that it is well-established that modification of cholesterol levels has effects on multiple proteins, not only APP and Aβ. The purpose of this review, therefore, is to examine the above-mentioned issues and discuss the pros and cons of the cholesterol-AD hypothesis, and the involvement of other lipids in the mevalonate pathway, such as isoprenoids and oxysterols, in AD. PMID:24329875

  20. Donor-π-Acceptor Polymer with Alternating Triarylborane and Triphenylamine Moieties.

    Science.gov (United States)

    Li, Haiyan; Jäkle, Frieder

    2010-05-12

    A luminescent main chain donor-π-acceptor-type polymer (4) was prepared via organometallic polycondensation reaction followed by post modification. With both electron-rich amine and electron-deficient borane moieties embedded in the main chain, 4 exhibits an interesting ambipolar character: it can be reduced and oxidized electrochemically at moderate potentials and shows a strong solvatochromic effect in the emission spectra. Complexation studies show that 4 selectively binds to fluoride and cyanide; quantitative titration with cyanide reveals a two-step binding process. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Decisive Interactions between the Heterocyclic Moiety and the Cluster Observed in Polyoxometalate-Surfactant Hybrid Crystals

    Directory of Open Access Journals (Sweden)

    Saki Otobe

    2015-04-01

    Full Text Available Inorganic-organic hybrid crystals were successfully obtained as single crystals by using polyoxotungstate anion and cationic dodecylpyridazinium (C12pda and dodecylpyridinium (C12py surfactants. The decatungstate (W10 anion was used as the inorganic component, and the crystal structures were compared. In the crystal comprising C12pda (C12pda-W10, the heterocyclic moiety directly interacted with W10, which contributed to a build-up of the crystal structure. On the other hand, the crystal consisting of C12py (C12py-W10 had similar crystal packing and molecular arrangement to those in the W10 crystal hybridized with other pyridinium surfactants. These results indicate the significance of the heterocyclic moiety of the surfactant to construct hybrid crystals with polyoxometalate anions.

  2. Untargeted Metabolic Profiling of Winery-Derived Biomass Waste Degradation by Penicillium chrysogenum.

    Science.gov (United States)

    Karpe, Avinash V; Beale, David J; Godhani, Nainesh B; Morrison, Paul D; Harding, Ian H; Palombo, Enzo A

    2015-12-16

    Winery-derived biomass waste was degraded by Penicillium chrysogenum under solid state fermentation over 8 days in a (2)H2O-supplemented medium. Multivariate statistical analysis of the gas chromatography-mass spectrometry (GC-MS) data resulted in the identification of 94 significant metabolites, within 28 different metabolic pathways. The majority of biomass sugars were utilized by day 4 to yield products such as sugars, fatty acids, isoprenoids, and amino acids. The fungus was observed to metabolize xylose to xylitol, an intermediate of ethanol production. However, enzyme inhibition and autolysis were observed from day 6, indicating 5 days as the optimal time for fermentation. P. chrysogenum displayed metabolism of pentoses (to alcohols) and degraded tannins and lignins, properties that are lacking in other biomass-degrading ascomycetes. Rapid fermentation (3-5 days) may not only increase the pentose metabolizing efficiency but also increase the yield of medicinally important metabolites, such as syringate.

  3. Identification of halosalicylamide derivatives as a novel class of allosteric inhibitors of HCV NS5B polymerase.

    Science.gov (United States)

    Liu, Yaya; Donner, Pamela L; Pratt, John K; Jiang, Wen W; Ng, Teresa; Gracias, Vijaya; Baumeister, Steve; Wiedeman, Paul E; Traphagen, Linda; Warrior, Usha; Maring, Clarence; Kati, Warren M; Djuric, Stevan W; Molla, Akhteruzzaman

    2008-06-01

    Halosalicylamide derivatives were identified from high-throughput screening as potent inhibitors of HCV NS5B polymerase. The subsequent structure and activity relationship revealed the absolute requirement of the salicylamide moiety for optimum activity. Methylation of either the hydroxyl group or the amide group of the salicylamide moiety abolished the activity while the substitutions on both phenyl rings are acceptable. The halosalicylamide derivatives were shown to be non-competitive with respect to elongation nucleotide and demonstrated broad genotype activity against genotype 1-3 HCV NS5B polymerases. Inhibitor competition studies indicated an additive binding mode to the initiation pocket that is occupied by the thiadiazine class of compounds and an additive binding mode to the elongation pocket that is occupied by diketoacids, but a mutually exclusive binding mode with respect to the allosteric thumb pocket that is occupied by the benzimidazole class of inhibitors. Therefore, halosalicylamides represent a novel class of allosteric inhibitors of HCV NS5B polymerase.

  4. Chlorophyll-derived fatty acids regulate expression of lipid metabolizing enzymes in liver - a nutritional opportunity

    Directory of Open Access Journals (Sweden)

    Wolfrum Christian

    2001-01-01

    Full Text Available Nutritional values of fatty acid classes are normally discussed on the basis of their saturated, monounsaturated and polyunsaturated structures with implicit understanding that they are straight-chain. Here we focus on chlorophyll-derived phytanic and pristanic acids that are minor isoprenoid branched-chain lipid constituents in food, but of unknown nutritional value. After describing the enzyme machinery that degrades these nutrient fatty acids in the peroxisome, we show by the criteria of a mouse model and of a human cell culture model that they induce with high potency expression of enzymes responsible for beta-oxidation of straight-chain fatty acids in the peroxisome. We summarize present mechanistic knowledge on fatty acid signaling to the nucleus, which involves protein/protein contacts between peroxisome proliferator activated receptor (PPAR and fatty acid binding protein (FABP. In this signaling event the branched-chain fatty acids are the most effective ones. Finally, on the basis of this nutrient-gene interaction we discuss nutritional opportunities and therapeutic aspects of the chlorophyll-derived fatty acids.

  5. Biofuels: from microbes to molecules

    National Research Council Canada - National Science Library

    Lu, Xuefeng

    2014-01-01

    .... The production of different biofuel molecules including hydrogen, methane, ethanol, butanol, higher chain alcohols, isoprenoids and fatty acid derivatives, from genetically engineered microbes...

  6. The effect of intramolecular donor–acceptor moieties with donor–π-bridge–acceptor structure on the solar photovoltaic performance

    Directory of Open Access Journals (Sweden)

    T. L. Wang

    2015-10-01

    Full Text Available A series of intramolecular donor–acceptor polymers containing different contents of (E-1-(2-ethylhexyl-6,9-dioctyl-2-(2-(thiophen-3-ylvinyl-1H-phenanthro[9,10-d]imidazole (thiophene-DOPI moiety and 4,4-diethylhexylcyclopenta[ 2,1-b:3,4-b']dithiophene (CPDT unit was synthesized via Grignard metathesis (GRIM polymerization. The synthesized random copolymers and homopolymer of thiophene-DOPI contain the donor–π-bridge–acceptor conjugated structure to tune the absorption spectra and energy levels of the resultant polymers. UV-vis spectra of the three polymer films exhibit panchromatic absorptions ranging from 300 to 1100 nm and low band gaps from 1.38 to 1.51 eV. It is found that more thiophene-DOPI moieties result in the decrease of band gap and lower the highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO values of polymers. Photovoltaic performance results indicate that if the content of the intramolecular donor–acceptor moiety is high enough, the copolymer structure may be better than homopolymer due to more light-harvesting afforded by both monomer units.

  7. Different Steric-Twist-Induced Ternary Memory Characteristics in Nonconjugated Copolymers with Pendant Naphthalene and 1,8-Naphthalimide Moieties.

    Science.gov (United States)

    Wang, Ming; Li, Zhuang; Li, Hua; He, Jinghui; Li, Najun; Xu, Qingfeng; Lu, Jianmei

    2017-10-18

    Herein, novel random copolymers PMNN and PMNB were designed and synthesized, and the memory devices Al/PMNN and PMNB/ITO both exhibited ternary memory performance. The switching voltages of the OFF-ON1 and ON1-ON2 transitions for both memory devices are around -2.0 and -3.5 V, respectively, and the ON1/OFF, ON2/ON1 current ratios are both up to 10 3 . The observed tristable electrical conductivity switching could be attributed to field-induced conformational ordering of the naphthalene rings in the side chains, and subsequent charge trapping by 1,8-naphthalimide moieties. More interestingly, by adjusting the connection sites of 1,8-naphthalimide moieties to tune the steric-twist effect, different memory properties were achieved (PMNN showed nonvolatile write once, read many (WORM) memory behavior, whereas PMNB showed volatile static RAM (SRAM) memory behavior). This result will offer a guideline for the design of different high-performance multilevel memory devices by tuning the steric effects of the chemical moieties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Intracellular transport of low density lipoprotein-derived cholesterol is defective in Niemann-Pick type C fibroblasts

    International Nuclear Information System (INIS)

    Liscum, L.; Ruggiero, R.M.; Faust, J.R.

    1989-01-01

    Niemann-Pick disease type C (NPC) is characterized by substantial intracellular accumulation of unesterified cholesterol. The accumulation of unesterified cholesterol in NPC fibroblasts cultured with low density lipoprotein (LDL) appears to result from the inability of LDL to stimulate cholesterol esterification in addition to impaired LDL-mediated downregulation of LDL receptor activity and cellular cholesterol synthesis. Although a defect in cholesterol transport in NPC cells has been inferred from previous studies, no experiments have been reported that measure the intracellular movement of LDL-cholesterol specifically. We have used four approaches to assess intracellular cholesterol transport in normal and NPC cells and have determined the following: (a) mevinolin-inhibited NPC cells are defective in using LDL-cholesterol for growth. However, exogenously added mevalonate restores cell growth equally in normal and NPC cells; (b) the transport of LDL-derived [3H]cholesterol to the plasma membrane is slower in NPC cells, while the rate of appearance of [3H]acetate-derived, endogenously synthesized [3H]cholesterol at the plasma membrane is the same for normal and NPC cells; (c) in NPC cells, LDL-derived [3H]cholesterol accumulates in lysosomes to higher levels than normal, resulting in defective movement to other cell membranes; and (d) incubation of cells with LDL causes an increase in cholesterol content of NPC lysosomes that is threefold greater than that observed in normal lysosomes. Our results indicate that a cholesterol transport defect exists in NPC that is specific for LDL-derived cholesterol

  9. Simvastatin Inhibits IL-5-Induced Chemotaxis and CCR3 Expression of HL-60-Derived and Human Primary Eosinophils.

    Science.gov (United States)

    Fu, Chia-Hsiang; Tsai, Wan-Chun; Lee, Ta-Jen; Huang, Chi-Che; Chang, Po-Hung; Su Pang, Jong-Hwei

    2016-01-01

    IL-5-induced chemotaxis of eosinophils is an important feature of allergic airway inflammatory diseases. Simvastatin, a lipid lowering agent, has been shown to exhibit anti-inflammatory and anti-allergic effects. Our aim was to investigate the effect of simvastatin on IL-5-induced eosinophil chemotaxis and its regulatory mechanisms. Eosinophils were derived by treating HL-60 clone 15 (HC15) cells with butyric acid (BA) in an alkaline condition or through direct isolation from human peripheral blood. The expressions of CC chemokine receptor 3 (CCR3) and interleukin (IL)-5 receptors (IL5Rα and β) were analyzed using RT/real-time PCR. The granular proteins were stained using fast green. Eotaxin-induced chemotaxis was measured using a transwell migration assay. CCR3 protein expression was revealed by immunocytochemistry. An animal model of allergic rhinitis was established by challenging Sprague-Dawley® rats repeatedly with ovalbumin. Butyric acid significantly increased the expression of IL5Rα and IL5Rβ, CCR3 and granular proteins in HC15 cells, indicating the maturation of eosinophils (BA-E cells). IL-5 further enhanced the CCR3 expression at both the mRNA and protein levels and the eotaxin-induced chemotaxis of BA-E cells. Simvastatin inhibited the effects of IL-5 on BA-E cells, but not in the presence of mevalonate. Similar results were also exhibited in human primary eosinophils. In vivo animal studies further confirmed that oral simvastatin could significantly suppress the infiltration of eosinophils into turbinate tissues of allergic rats. Therefore, simvastatin was demonstrated to inhibit IL-5-induced CCR3 expression and chemotaxis of eosinophils mediated via the mevalonate pathway. We confirmed that simvastatin also reduced eosinophilic infiltration in allergic rhinitis.

  10. Some bromo phenyl piperidine derivatives having plasmepsin inhibition with potent analgesia

    International Nuclear Information System (INIS)

    Rafiq, K.; Saify, Z.S.

    2016-01-01

    The present study was conducted to evaluate the synthesized 4-(4?-Bromophenyl)-4-hydroxy piperdine derivatives for plasmepsin inhibition (antimalarial activity) and analgesic response to develop excellent moiety to work in malaria. The plasmepsin II and cathepsin D (Biodesign International, USA) assays were measured using a fluorescence resonance energy transfer (FRET) method. The inhibition of enzyme was done (in triplicates) in 96 well plate format and response were obtained on a Perkin Elmer LS55 Fluorescence spectrometer with an excitation and emission wavelengths of 336 and 490 nm, respectively and analgesic activity of synthesized derivatives of 4-(4-Bromophenyl)-4-hydroxy piperidine was conducted by Eddy's hot plate method in albino mice by providing standard colony conditions using Pethidine as standard drug. These novel compounds having the parent moiety 4-(4-Bromophenyl)-4-hydroxy piperdine were found to prove strong inhibition towards plasmepsin enzyme with 8-10 IC50 in micro M and highly significant analgesic response in albino mice. The current studies suggest that the designed molecules were found to work both on cellular level and also on the symptoms of disease as the headache, fever and muscle aches are the very common and initial symptoms associated with malaria and hence the molecules discovered as excellent analgesics. (author)

  11. Derivatives of phenyl tribromomethyl sulfone as novel compounds with potential pesticidal activity

    Directory of Open Access Journals (Sweden)

    Krzysztof M. Borys

    2012-02-01

    Full Text Available A halogenmethylsulfonyl moiety is incorporated in numerous active herbicides and fungicides. The synthesis of tribromomethyl phenyl sulfone derivatives as novel potential pesticides is reported. The title sulfone was obtained by following three different synthetic routes, starting from 4-chlorothiophenol or 4-halogenphenyl methyl sulfone. Products of its subsequent nitration were subjected to the SNAr reactions with ammonia, amines, hydrazines and phenolates to give 2-nitroaniline, 2-nitrophenylhydrazine and diphenyl ether derivatives. Reduction of the nitro group of 4-tribromomethylsulfonyl-2-nitroaniline yielded the corresponding o-phenylenediamine substrate for preparation of structurally varied benzimidazoles.

  12. Dehydroacetic Acid Derivatives Bearing Amide or Urea Moieties as Effective Anion Receptors.

    Science.gov (United States)

    Bregović, Nikola; Cindro, Nikola; Bertoša, Branimir; Barišić, Dajana; Frkanec, Leo; Užarević, Krunoslav; Tomišić, Vladislav

    2017-08-01

    Derivatives of dehydroacetic acid comprising amide or urea subunits have been synthesized and their anion-binding properties investigated. Among a series of halides and oxyanions, the studied compounds selectively bind acetate and dihydrogen phosphate in acetonitrile and dimethyl sulfoxide. The corresponding complexation processes were characterized by means of 1 H NMR titrations, which revealed a 1:1 complex stoichiometry in most cases, with the exception of dihydrogen phosphate, which formed 2:1 (anion/ligand) complexes in acetonitrile. The complex stability constants were determined and are discussed with respect to the structural properties of the receptors, the hydrogen-bond-forming potential of the anions, and the characteristics of the solvents used. Based on the spectroscopic data and results of Monte Carlo simulations, the amide or urea groups were affirmed as the primary binding sites in all cases. The results of the computational methods indicate that an array of both inter- and intramolecular hydrogen bonds can form in the studied systems, and these were shown to play an important role in defining the overall stability of the complexes. Solubility measurements were carried out in both solvents and the thermodynamics of transfer from acetonitrile to dimethyl sulfoxide were characterized on a quantitative level. This has afforded a detailed insight into the impact of the medium on the complexation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Regulation of schistosome egg production by HMG CoA reductase

    International Nuclear Information System (INIS)

    VandeWaa, E.A.; Bennett, J.L.

    1986-01-01

    Hydroxymethylglutaryl coenzyme A reductase (HMG CoA reductase) catalyzes the conversion of HMG CoA to mevalonate in the synthesis of steroids, isoprenoids and terpenes. Mevinolin, an inhibitor of this enzyme, decreased egg production in Schistosoma mansoni during in vitro incubations. This was associated with a reduction in the incorporation of 14 C-acetate into polyisoprenoids and a reduction in the formation of a lipid-linked oligosaccharide. In vivo, mevinolin in daily doses of 50 mg/kg (p.o., from days 30-48 post-infection) caused no change in gross liver pathology in S. mansoni infected mice. However, when parasites exposed to mevinolin or its vehicle in vivo were cultured in vitro, worms from mevinolin-treated mice produced six times more eggs than control parasites. When infected mice were dosed with 250 mg/kg mevinolin daily (p.o., from days 35-45 post-infection), liver pathology was reduced in comparison to control mice. Thus, during in vivo exposure to a high dose of the drug egg production is decreased, while at a lower dose it appears unaffected until the parasites are cultured in a drug-free in vitro system wherein egg production is stimulated to extraordinarily high levels. It may be that at low doses mevinolin, by inhibiting the enzyme, is blocking the formation of a product (such as an isoprenoid) which normally acts to down-regulate enzyme synthesis, resulting in enzyme induction. Induction of HMG CoA reductase is then expressed as increased egg production when the worms are removed from the drug. These data suggest that HMG CoA reductase plays a role in schistosome egg production

  14. 5-Alkylresorcinol Derivatives from the Bryozoan Schizomavella mamillata: Isolation, Synthesis, and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    María J. Ortega

    2017-11-01

    Full Text Available The chemical study of the bryozoan Schizomavella mamillata has led to the isolation of six new 5-alkylresorcinol derivatives, schizols A–F (1–6, whose structures were established by spectrocospic means. Schizol A (1 exhibits a (E-6-phenylnon-5-enyl moiety linked to the C-5 of a resorcinol ring, while in schizol B (2 the substituent at C-5 contains an unusual 1,2-dihydrocyclobutabenzene moiety. Schizols C (3 and D (4 have been characterized as the 1-sulfate derivatives of 1 and 2, respectively, and schizols E (5 and F (6 are the corresponding 1,3-disulfates. Schizol A (1 has been synthetized from 3,5-dimethoxybenzaldehyde through a sequence involving a Wittig reaction for the construction of the C-1′,C-2′ bond and a Julia–Kocienski olefination for the synthesis of the C-5′,C-6′ double bond. In the ABTS (2,2′-azinobis(3-ethylbenzothiazoline-6-sulphonic acid antioxidant assay, the natural compounds schizol A (1 and schizol B (2 showed higher radical scavenging activity than the Trolox standard.

  15. Mevalonate Pathway Antagonist Inhibits Proliferation of Serous Tubal Intraepithelial Carcinoma and Ovarian Carcinoma in Mouse Models

    Science.gov (United States)

    Kobayashi, Yusuke; Kashima, Hiroyasu; Wu, Ren-Chin; Jung, Jin- Gyoung; Kuan, Jen-Chun; Gu, Jinghua; Xuan, Jianhua; Sokoll, Lori; Visvanathan, Kala; Shih, Ie-Ming; Wang, Tian-Li

    2015-01-01

    Purpose Statins are among the most frequently prescribed drugs because of their efficacy and low toxicity in treating hypercholesterolemia. Recently, statins have been reported to inhibit the proliferative activity of cancer cells, especially those with TP53 mutations. Since TP53 mutations occur in almost all of the ovarian high-grade serous carcinoma, we determined if statins suppressed tumor growth in animal models of ovarian cancer. Experimental Design Two ovarian cancer mouse models were employed. The first one was a genetically engineered model, mogp-TAg, in which the promoter of oviduct glycoprotein-1 was used to drive the expression of SV40 T-antigen in gynecologic tissues. These mice spontaneously develop serous tubal intraepithelial carcinomas (STICs), which are known as ovarian cancer precursor lesions. The second model was a xenograft tumor model in which human ovarian cancer cells were inoculated into immunocompromised mice. Mice in both models were treated with lovastatin, and effects on tumor growth were monitored. The molecular mechanisms underlying the anti-tumor effects of lovastatin were also investigated. Results Lovastatin significantly reduced the development of STICs in mogp-TAg mice and inhibited ovarian tumor growth in the mouse xenograft model. Knockdown of prenylation enzymes in the mevalonate pathway recapitulated the lovastatin-induced anti-proliferative phenotype. Transcriptome analysis indicated that lovastatin affected the expression of genes associated with DNA replication, Rho/PLC signaling, glycolysis, and cholesterol biosynthesis pathways, suggesting that statins have pleiotropic effects on tumor cells. Conclusion The above results suggest that repurposing statin drugs for ovarian cancer may provide a promising strategy to prevent and manage this devastating disease. PMID:26109099

  16. Robot-assisted pyeloplasty for pelvi-ureteric junction obstruction of lower moiety in partial duplex system: A technical challenge

    Directory of Open Access Journals (Sweden)

    Girdhar S Bora

    2016-01-01

    Full Text Available Management of pelvi-ureteric junction obstruction (PUJO in a duplex system is technically challenging as dissection at the pelvis may jeopardize the vascularity of the normal moiety ureter. Anastomosing the pelvis to the one single ureter will have a risk of future development of stricture which then will risk both the moieties. Robotic assistance enables appropriate tissue dissection; minimal handling of normal ureter and precision in suturing, overcoming the potential challenges involved in the minimally invasive management of such complex cases. We report the feasibility and efficacy of robot-assisted laparoscopic pyeloplasty in such case.

  17. Synthesis of new, UV-photoactive dansyl derivatives for flow cytometric studies on bile acid uptake.

    Science.gov (United States)

    Rohacova, Jana; Marin, M Luisa; Martínez-Romero, Alicia; O'Connor, José-Enrique; Gomez-Lechon, M Jose; Donato, M Teresa; Castell, Jose V; Miranda, Miguel A

    2009-12-07

    Four new fluorescent derivatives of cholic acid have been synthesized; they incorporate a dansyl moiety at 3alpha-, 3beta-, 7alpha- or 7beta- positions. These cholic acid analogs are UV photoactive and also exhibit green fluorescence. In addition, they have been demonstrated to be suitable for studying the kinetics of bile acid transport by flow cytometry.

  18. Metallocene-based antimalarials: an exploration into the influence of the ferrocenyl moiety on in vitro antimalarial activity in chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum.

    Science.gov (United States)

    Blackie, Margaret A L; Beagley, Paul; Croft, Simon L; Kendrick, Howard; Moss, John R; Chibale, Kelly

    2007-10-15

    To establish the role of the ferrocenyl moiety in the antiplasmodial activity of ferroquine, compounds in which this moiety is replaced by the corresponding ruthenium-based moieties were synthesized and evaluated. In both the sensitive (D10) and resistant (K1) strains of Plasmodium falciparum, ruthenoquine analogues showed comparable potency to ferroquine. This suggests that a probable role of the ferrocenyl fragment is to serve simply as a hydrophobic spacer group. In addition, ferroquine analogues with different aromatic substituents were synthesized and evaluated. Unexpectedly high activity for quinoline compounds lacking the 7-chloro substituent suggests the ferrocenyl moiety may have an additive and/or synergistic effect.

  19. Carnitine derivatives: clinical usefulness.

    Science.gov (United States)

    Malaguarnera, Mariano

    2012-03-01

    Carnitine and its derivatives are natural substances involved in both carbohydrate and lipid metabolism. This review summarizes the recent progress in the field in relation to the molecular mechanisms. The pool of different carnitine derivatives is formed by acetyl-L-carnitine (ALC), propionyl-L-carnitine (PLC), and isovaleryl-carnitine. ALC may have a preferential effect on the brain tissue. ALC represents a compound of great interest for its wide clinical application in various neurological disorders: it may be of benefit in treating Alzheimer's dementia, depression in the elderly, HIV infection, chronic fatigue syndrome, peripheral neuropathies, ischemia and reperfusion of the brain, and cognitive impairment associated with various conditions. PLC has been demonstrated to replenish the intermediates of the tricarboxylic acid cycle by the propionyl-CoA moiety, a greater affinity for the sarcolemmal carrier, peripheral vasodilator activity, a greater positive inotropism, and more rapid entry into myocytes. Most studies of the therapeutic use of PLC are focused on the prevention and treatment of ischemic heart disease, congestive heart failure, hypertrophic heart disease, and peripheral arterial disease. ALC and PLC are considered well tolerated without significant side-effects. A number of therapeutic effects possibly come from the interaction of carnitine and its derivatives with the elements of cellular membranes.

  20. A Nitric Oxide-Donor Furoxan Moiety Improves the Efficacy of Edaravone against Early Renal Dysfunction and Injury Evoked by Ischemia/Reperfusion

    Directory of Open Access Journals (Sweden)

    Fausto Chiazza

    2015-01-01

    Full Text Available Edaravone (5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, EDV is a free-radical scavenger reduces organ ischemic injury. Here we investigated whether the protective effects of EDV in renal ischemia/reperfusion (I/R injury may be enhanced by an EDV derivative bearing a nitric oxide- (NO- donor furoxan moiety (NO-EDV. Male Wistar rats were subjected to renal ischemia (45 minutes, followed by reperfusion (6 hours. Administration of either EDV (1.2–6–30 µmol/kg, i.v. or NO-EDV (0.3–1.2–6 µmol/kg, i.v. dose-dependently attenuated markers of renal dysfunction (serum urea and creatinine, creatinine clearance, urine flow, urinary N-acetyl-β-D-glucosaminidase, and neutrophil gelatinase-associated lipocalin/lipocalin-2. NO-EDV exerted protective effects in the dose-range 1.2–6 µmol/kg, while a higher dose (30 µmol/kg was needed to obtain protection by EDV. Both EDV and NO-EDV modulated tissue markers of oxidative stress and lipid peroxidation. NO-EDV, but not EDV, activated endothelial NO synthase (NOS and blunted I/R-induced upregulation of inducible NOS, secondary to modulation of Akt and NF-κB activation, respectively. Besides NO-EDV administration inhibited I/R-induced IL-1β, IL-18, IL-6, and TNF-α overproduction. Overall, these findings demonstrate that the NO-donor moiety contributes to the protection against early renal I/R injury and suggest that NO-donor EDV codrugs are worthy of additional study as innovative pharmacological tools.

  1. The ecotoxicity of zinc and zinc-containing substances in soil with consideration of metal-moiety approaches and organometal complexes.

    Science.gov (United States)

    Ritchie, Ellyn; Boyd, Patrick; Lawson-Halasz, Annamaria; Hawari, Jalal; Saucier, Stacey; Scroggins, Richard; Princz, Juliska

    2017-12-01

    Within Canada, screening-level assessments for chemical substances are required to determine whether the substances pose a risk to human health and/or the environment, and as appropriate, risk management strategies. In response to the volume of metal and metal-containing substances, process efficiencies were introduced using a metal-moiety approach, whereby substances that contain a common metal moiety are assessed simultaneously as a group, with the moiety of concern consisting of the metal ion. However, for certain subgroups, such as organometals or organic metal salts, the organic moiety or parent substance may be of concern, rather than simply the metal ion. To further investigate the need for such additional consideration, certain substances were evaluated: zinc (Zn)-containing inorganic (Zn chloride [ZnCl2] and Zn oxide) and organic (organometal: Zn diethyldithiocarbamate [Zn(DDC) 2 ] and organic metal salts (Zn stearate [ZnSt] and 4-chloro-2-nitrobenzenediazonium tetrachlorozincate [BCNZ]). The toxicity of the substances were assessed using plant (Trifolium pratense and Elymus lanceolatus) and soil invertebrate (Folsomia candida and Eisenia andrei) tests in a sandy soil. Effect measures were determined based on total metal and total parent analyses (for organic substances). In general, the inorganic Zn substances were less toxic than the organometals and organic metal salts, with 50% effective concentrations ranging from 11 to >5194 mg Zn kg -1 dry soil. The data demonstrate the necessity for alternate approaches in the assessment of organo-metal complexes, with the organic moieties or parent substances warranting consideration rather than the metal ion alone. In this instance, the organometals and organic metal salts were significantly more toxic than other test substances despite their low total Zn content. Environ Toxicol Chem 2017;36:3324-3332. © 2017 Crown in the Right of Canada. Published by Wiley Periodicals Inc. on behalf of SETAC. © 2017 Crown

  2. Photoactive curcumin-derived dyes with surface anchoring moieties used in ZnO nanoparticle-based dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Kil, Byung-Ho; Maldar, N.N.; Han, Jin Wook; Han, Sung-Hwan

    2010-01-01

    Photoactive, eco-friendly and high molar extinction coefficient, curcumin-derived dyes (BCMoxo and BCtCM) have been explored in ZnO nanoparticles (NPs)-based dye-sensitized solar cells (DSSCs). The boron complex curcumin dyes modified with di-carboxylic anchor groups (BCtCM) provided surface attachment with a strong UV-vis region absorption than the dye molecule without anchor groups (BCMoxo). Photoanodes primed with poly-dispersive ZnO NPs (∼80-50 nm) specifically devised for these dyes and optimized for the critical thickness, sensitization time and concentration using a solvent-free ionic electrolyte so as to get current density as high as 1.66 mA/cm 2 under 80 mW/cm 2 irradiation. Therefore, a successful conversion of visible light into electricity by using these curcumin-derived dyes (natural derived photoactive molecules) as photosensitizer in DSSCs would be a great interest in future studies for enhancing further conversion efficiencies.

  3. Diversity of ABBA Prenyltransferases in Marine Streptomyces sp. CNQ-509: Promiscuous Enzymes for the Biosynthesis of Mixed Terpenoid Compounds.

    Directory of Open Access Journals (Sweden)

    Franziska Leipoldt

    Full Text Available Terpenoids are arguably the largest and most diverse family of natural products, featuring prominently in e.g. signalling, self-defence, UV-protection and electron transfer. Prenyltransferases are essential players in terpenoid and hybrid isoprenoid biosynthesis that install isoprene units on target molecules and thereby often modulate their bioactivity. In our search for new prenyltransferase biocatalysts we focused on the marine-derived Streptomyces sp. CNQ-509, a particularly rich source of meroterpenoid chemistry. Sequencing and analysis of the genome of Streptomyces sp. CNQ-509 revealed seven putative phenol/phenazine-specific ABBA prenyltransferases, and one putative indole-specific ABBA prenyltransferase. To elucidate the substrate specificity of the ABBA prenyltransferases and to learn about their role in secondary metabolism, CnqP1 -CnqP8 were produced in Escherichia coli and incubated with various aromatic and isoprenoid substrates. Five of the eight prenyltransferases displayed enzymatic activity. The efficient conversion of dihydroxynaphthalene derivatives by CnqP3 (encoded by AA958_24325 and the co-location of AA958_24325 with genes characteristic for the biosynthesis of THN (tetrahydroxynaphthalene-derived natural products indicates that the enzyme is involved in the formation of debromomarinone or other naphthoquinone-derived meroterpenoids. Moreover, CnqP3 showed high flexibility towards a range of aromatic and isoprenoid substrates and thus represents an interesting new tool for biocatalytic applications.

  4. Biosynthesis of triacylglycerols containing very long chain monounsaturated acyl moieties in developing seeds

    International Nuclear Information System (INIS)

    Fehling, E.; Murphy, D.J.; Mukherjee, K.D.

    1990-01-01

    Particulate (15,000g) fractions from developing seeds of honesty (Lunaria annua L.) and mustard (Sinapis alba L.) synthesize radioactive very long chain monounsaturated fatty acids (gadoleic, erucic, and nervonic) from [1- 14 C]oleoyl-CoA and malonyl-CoA or from oleoyl-CoA and [2- 14 C]malonyl-CoA. The very long chain monounsaturated fatty acids are rapidly channeled to triacylglycerols and other acyl lipids without intermediate accumulation of their CoA thioesters. When [1- 14 C]oleoyl-CoA is used as the radioactive substrate, phosphatidylcholines and other phospholipids are most extensively radiolabeled by oleoyl moieties rather than by very long chain monounsaturated acyl moieties. When [2- 14 C]malonyl-CoA is used as the radioactive substrate, no radioactive oleic acid is formed and the newly synthesized very long chain monounsaturated fatty acids are extensively incorporated into phosphatidylcholines and other phospholipids as well as triacylglycerols. The pattern of labeling of the key intermediates of the Kennedy pathway, e.g. lysophosphatidic acids, phosphatidic acids, and diacylglycerols by the newly synthesized very long chain monounsaturated fatty acids is consistent with the operation of this pathway in the biosynthesis of triacylglycerols

  5. New pentose dimers with bicyclic moieties from pretreated biomass

    DEFF Research Database (Denmark)

    Rasmussen, H.; Sørensen, Henrik Rokkjær; Tanner, David Ackland

    2017-01-01

    In lignocellulosic biorefinery processes involving enzyme catalysed reactions it is a challenge that enzyme inhibiting compounds are generated and liberated during pretreatment of the biomass. In this study the contribution to cellulase inhibition from xylooligosaccharides and newly discovered...... oligophenolic compounds from pilot scale pretreated wheat straw was assessed at two different pretreatment severities. An increase in severity of the pretreatment led to more oligophenol compounds and in turn the total overall cellulase inhibition increased. When the xylooligosaccharides were enzymatically...... degraded prior to cellulose hydrolysis, a relief in cellulase inhibition was observed, but some inhibition remained, suggesting that other components also played a role in inhibition. We propose that these components include dipentoses with bicyclic moieties and feruloylated tripentoses, because LC...

  6. Photoactive curcumin-derived dyes with surface anchoring moieties used in ZnO nanoparticle-based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Kil, Byung-Ho; Maldar, N.N. [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of); Han, Jin Wook, E-mail: jwhan@hanyang.ac.kr [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of); Han, Sung-Hwan, E-mail: shhan@hanyang.ac.kr [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of)

    2010-09-01

    Photoactive, eco-friendly and high molar extinction coefficient, curcumin-derived dyes (BCMoxo and BCtCM) have been explored in ZnO nanoparticles (NPs)-based dye-sensitized solar cells (DSSCs). The boron complex curcumin dyes modified with di-carboxylic anchor groups (BCtCM) provided surface attachment with a strong UV-vis region absorption than the dye molecule without anchor groups (BCMoxo). Photoanodes primed with poly-dispersive ZnO NPs ({approx}80-50 nm) specifically devised for these dyes and optimized for the critical thickness, sensitization time and concentration using a solvent-free ionic electrolyte so as to get current density as high as 1.66 mA/cm{sup 2} under 80 mW/cm{sup 2} irradiation. Therefore, a successful conversion of visible light into electricity by using these curcumin-derived dyes (natural derived photoactive molecules) as photosensitizer in DSSCs would be a great interest in future studies for enhancing further conversion efficiencies.

  7. Synthesis and Biological Activity of Substituted Urea and Thiourea Derivatives Containing 1,2,4-Triazole Moieties

    Science.gov (United States)

    2013-03-19

    reader. Sp -1 was used as a control transcription factor to evaluate the toxicity of tested compounds in the same assay and parthenolide was used as a...enantiomers of chiral γ-Aryl-1H-1,2,4-triazole derivatives and Penicillium digitatum. J. Agric. Food Chem. 2009, 57, 6914–6919. 22. Crank, G.; Neville, M

  8. Porous Lactose-Modified Chitosan Scaffold for Liver Tissue Engineering: Influence of Galactose Moieties on Cell Attachment and Mechanical Stability

    Directory of Open Access Journals (Sweden)

    Birong Wang

    2016-01-01

    Full Text Available Galactosylated chitosan (CTS has been widely applied in liver tissue engineering as scaffold. However, the influence of degree of substitution (DS of galactose moieties on cell attachment and mechanical stability is not clear. In this study, we synthesized the lactose-modified chitosan (Lact-CTS with various DS of galactose moieties by Schiff base reaction and reducing action of NaBH4, characterized by FTIR. The DS of Lact-CTS-1, Lact-CTS-2, and Lact-CTS-3 was 19.66%, 48.62%, and 66.21% through the method of potentiometric titration. The cell attachment of hepatocytes on the CTS and Lact-CTS films was enhanced accompanied with the increase of galactose moieties on CTS chain because of the galactose ligand-receptor recognition; however, the mechanical stability of Lact-CTS-3 was reduced contributing to the extravagant hydrophilicity, which was proved using the sessile drop method. Then, the three-dimensional Lact-CTS scaffolds were fabricated by freezing-drying technique. The SEM images revealed the homogeneous pore bearing the favorable connectivity and the pore sizes of scaffolds with majority of 100 μm; however, the extract solution of Lact-CTS-3 scaffold significantly damaged red blood cells by hemolysis assay, indicating that exorbitant DS of Lact-CTS-3 decreased the mechanical stability and increased the toxicity. To sum up, the Lact-CTS-2 with 48.62% of galactose moieties could facilitate the cell attachment and possess great biocompatibility and mechanical stability, indicating that Lact-CTS-2 was a promising material for liver tissue engineering.

  9. Kinetics of phosphomevalonate kinase from Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    David E Garcia

    Full Text Available The mevalonate-based isoprenoid biosynthetic pathway is responsible for producing cholesterol in humans and is used commercially to produce drugs, chemicals, and fuels. Heterologous expression of this pathway in Escherichia coli has enabled high-level production of the antimalarial drug artemisinin and the proposed biofuel bisabolane. Understanding the kinetics of the enzymes in the biosynthetic pathway is critical to optimize the pathway for high flux. We have characterized the kinetic parameters of phosphomevalonate kinase (PMK, EC 2.7.4.2 from Saccharomyces cerevisiae, a previously unstudied enzyme. An E. coli codon-optimized version of the S. cerevisiae gene was cloned into pET-52b+, then the C-terminal 6X His-tagged protein was expressed in E. coli BL21(DE3 and purified on a Ni²⁺ column. The KM of the ATP binding site was determined to be 98.3 µM at 30°C, the optimal growth temperature for S. cerevisiae, and 74.3 µM at 37°C, the optimal growth temperature for E. coli. The K(M of the mevalonate-5-phosphate binding site was determined to be 885 µM at 30°C and 880 µM at 37°C. The V(max was determined to be 4.51 µmol/min/mg enzyme at 30°C and 5.33 µmol/min/mg enzyme at 37°C. PMK is Mg²⁺ dependent, with maximal activity achieved at concentrations of 10 mM or greater. Maximum activity was observed at pH = 7.2. PMK was not found to be substrate inhibited, nor feedback inhibited by FPP at concentrations up to 10 µM FPP.

  10. 1,2,3-Triazole–Diketopyrrolopyrrole Derivatives with TunableSolubility and Intermolecular Interactions

    OpenAIRE

    Punzi, Angela; Maiorano, Eliana; Nicoletta, Francesca; Blasi, Davide; Ardizzone, Antonio; Ventosa Rull, Nora; Ratera Bastardas, Immaculada; Veciana Miró, Jaume; Farinola, Gianluca M.

    2016-01-01

    1,2,3-Triazole rings bearing hydrophobic aliphatic or hydrophilic oligoether chains were easily introduced at the two ends of the conjugated skeleton of bisthiophene–diketopyrrolopyrrole (TDPP) derivatives by simple click cycloaddition reactions. The combination of side chains with different structures and polarities on the triazole rings with the side chains on the N-atoms of the lactam groups of the TDPP moiety enabled the solubility and the solid-state spectroscopic properties of the resul...

  11. Scopranones with Two Atypical Scooplike Moieties Produced by Streptomyces sp. BYK-11038.

    Science.gov (United States)

    Uchida, Ryuji; Lee, Daiki; Suwa, Ibuki; Ohtawa, Masaki; Watanabe, Nozomu; Demachi, Ayumu; Ohte, Satoshi; Katagiri, Takenobu; Nagamitsu, Tohru; Tomoda, Hiroshi

    2017-11-03

    Three new compounds, designated scopranones A-C, were isolated from the culture broth of a soil isolate, Streptomyces sp. BYK-11038, and shown to be inhibitors of bone morphogenetic protein (BMP) induced alkaline phosphatase activity in a BMP receptor mutant cell line. The structures were elucidated using NMR and other spectral data. The scopranones have an unusual structure with two atypical scooplike moieties linked at the tails to form part of a unique 3-furanone ring.

  12. Natural product derived insecticides: discovery and development of spinetoram.

    Science.gov (United States)

    Galm, Ute; Sparks, Thomas C

    2016-03-01

    This review highlights the importance of natural product research and industrial microbiology for product development in the agricultural industry, based on examples from Dow AgroSciences. It provides an overview of the discovery and development of spinetoram, a semisynthetic insecticide derived by a combination of a genetic block in a specific O-methylation of the rhamnose moiety of spinosad coupled with neural network-based QSAR and synthetic chemistry. It also emphasizes the key role that new technologies and multidisciplinary approaches play in the development of current spinetoram production strains.

  13. [Synthesis and physico-chemical characterisation of some new derivatives of rutoside and clofibric acid].

    Science.gov (United States)

    Lupaşcu, D; Profire, Lenuţa; Dănilă, Gh

    2006-01-01

    Fibrates are drugs with efficacy in reducing blood cholesterol levels and especially, triglyceride plasma levels. Unfortunately, fibrates have a poor water-solubility and showed some adverse reactions at long treatment. The objective of this study was to obtain some new clofibric acid derivatives with rutin; some of these compounds contain a guanidine moiety, known as effective at cardiovascular level. All the compounds are soluble in water.

  14. Vitamin E derivatives: a patent review (2010 - 2015).

    Science.gov (United States)

    Koufaki, Maria

    2016-01-01

    The vitamin E family consists of four tocopherols and four tocotrienols. α-Tocopherol is the most studied member of this family for its antioxidant and non-antioxidant properties, while tocotrienols have attracted recent research interest. The structural motifs of the vitamin E family and specifically the chroman moiety, are amenable to various modifications in order to improve their bioactivities towards numerous therapeutic targets. This review includes the patent literature from 2010 - 2015 related to vitamin E derivatives and it is focused on 2-, 5- or 6-substituted chroman analogues. The patent search was performed using Reaxys® and esp@cenet. The chroman moiety of vitamin E is a privileged structure and an essential pharmacophore which inspired organic chemists to synthesize new analogues with improved bioactivities. Modifications at the 2- and 5- positions of the chroman ring resulted in very interesting active compounds in cellular and animal models of diseases related to oxidative stress. More recent publications and patents reported 6-substituted chromans as anticancer agents in vitro and in vivo. Additionally, an emerging interest is observed towards the use of vitamin E analogues incorporated in drug delivery systems and for medical imaging as contrast agents or fluorescent probes.

  15. The nature of the Iron Moiety bisorped by immobilized Saccharomyces Cervisiae at low pH: A Mossbauer spectroscopic investigation

    International Nuclear Information System (INIS)

    Khalil, Mustaim I.; Al-Wassil, Abdulaziz I.

    1999-01-01

    The nature of the adsorped Fe-moiety on immobilized Saccharomyces Cervisiae at low pH has been investigated by Mossbauer spectroscopy. The Mossbauer spectrum at 77K exhibited two sites: the major one (69%) was a quadrupole-split double, Delta Q=0.77 mms with an isomer shift 0.46 mms, assigned to the high spin octahedrally coordinated iron (III); and a single line minor site (31%) with an isomer shift, d=0.36 mms, assigned to the high-spin tetrahedral iron (III) Cl-moiety. An electrostatic and a covalent mode of Fe binding were then inferred. (author)

  16. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sund, James B., E-mail: jim@jamessund.com [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Causey, Corey P. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Wolter, Scott D. [Department of Physics, Elon University, Elon, NC 27244 (United States); Parker, Charles B., E-mail: charles.parker@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Stoner, Brian R. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Research Triangle Institute (RTI) International, Research Triangle Park, NC (United States); Toone, Eric J. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Glass, Jeffrey T. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States)

    2014-05-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  17. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    International Nuclear Information System (INIS)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-01-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis

  18. Naturally Occurring Cinnamic Acid Sugar Ester Derivatives

    Directory of Open Access Journals (Sweden)

    Yuxin Tian

    2016-10-01

    Full Text Available Cinnamic acid sugar ester derivatives (CASEDs are a class of natural product with one or several phenylacrylic moieties linked with the non-anomeric carbon of a glycosyl skeleton part through ester bonds. Their notable anti-depressant and brains protective activities have made them a topic of great interest over the past several decades. In particular the compound 3′,6-disinapoylsucrose, the index component of Yuanzhi (a well-known Traditional Chinese Medicine or TCM, presents antidepressant effects at a molecular level, and has become a hotspot of research on new lead drug compounds. Several other similar cinnamic acid sugar ester derivatives are reported in traditional medicine as compounds to calm the nerves and display anti-depression and neuroprotective activity. Interestingly, more than one third of CASEDs are distributed in the family Polygalaceae. This overview discusses the isolation of cinnamic acid sugar ester derivatives from plants, together with a systematic discussion of their distribution, chemical structures and properties and pharmacological activities, with the hope of providing references for natural product researchers and draw attention to these interesting compounds.

  19. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen, E-mail: nesnow.stephen@epa.gov

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  20. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa.

    Directory of Open Access Journals (Sweden)

    Zhaohui Hu

    Full Text Available With its high seed oil content, the mustard family plant Camelina sativa has gained attention as a potential biofuel source. As a bioenergy crop, camelina has many advantages. It grows on marginal land with low demand for water and fertilizer, has a relatively short life cycle, and is stress tolerant. As most other crop seed oils, camelina seed triacylglycerols (TAGs consist of mostly long, unsaturated fatty acyl moieties, which is not desirable for biofuel processing. In our efforts to produce shorter, saturated chain fatty acyl moieties in camelina seed oil for conversion to jet fuel, a 12:0-acyl-carrier thioesterase gene, UcFATB1, from California bay (Umbellularia californica Nutt. was expressed in camelina seeds. Up to 40% of short chain laurate (C12:0 and myristate (C14:0 were present in TAGs of the seed oil of the transgenics. The total oil content and germination rate of the transgenic seeds were not affected. Analysis of positions of these two fatty acyl moieties in TAGs indicated that they were present at the sn-1 and sn-3 positions, but not sn-2, on the TAGs. Suppression of the camelina KASII genes by RNAi constructs led to higher accumulation of palmitate (C16:0, from 7.5% up to 28.5%, and further reduction of longer, unsaturated fatty acids in seed TAGs. Co-transformation of camelina with both constructs resulted in enhanced accumulation of all three medium-chain, saturated fatty acids in camelina seed oils. Our results show that a California bay gene can be successfully used to modify the oil composition in camelina seed and present a new biological alternative for jet fuel production.

  1. Protein resistance of surfaces modified with oligo(ethylene glycol) aryl diazonium derivatives.

    Science.gov (United States)

    Fairman, Callie; Ginges, Joshua Z; Lowe, Stuart B; Gooding, J Justin

    2013-07-22

    Anti-fouling surfaces are of great importance for reducing background interference in biosensor signals. Oligo(ethylene glycol) (OEG) moieties are commonly used to confer protein resistance on gold, silicon and carbon surfaces. Herein, we report the modification of surfaces using electrochemical deposition of OEG aryl diazonium salts. Using electrochemical and contact angle measurements, the ligand packing density is found to be loose, which supports the findings of the fluorescent protein labelling that aryl diazonium OEGs confer resistance to nonspecific adsorption of proteins albeit lower than alkane thiol-terminated OEGs. In addition to protein resistance, aryl diazonium attachment chemistry results in stable modification. In common with OEG species on gold electrodes, OEGs with distal hydroxyl moieties do confer superior protein resistance to those with a distal methoxy group. This is especially the case for longer derivatives where superior coiling of the OEG chains is possible. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis, Characterization and Antimicrobial Activity of New Thiadiazole Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Mullick, Pooja; Khan, Suroor A.; Verma, Surajpal; Alam, Ozair [Hamdard University, New Delhi (India)

    2010-08-15

    A series of thiadiazole derivatives were synthesized with differently substituted benzoic acids which were cyclized to give differently substituted thiazolidin-4-one. Elemental analysis, IR, {sup 1}H NMR, {sup 13}C NMR and mass spectral data confirmed the structure of the newly synthesized compounds. The derivatives of these moieties were evaluated for antimicrobial activity. Most of the synthesized compounds showed good antimicrobial activity at 200 and 100 μg/mL. Compounds showed most significant antibacterial activity against gram negative test organism Escherichia coli and most significant antifungal activity against test organisms Aspergillus niger and Candida albicans. It was observed that compounds with OCH{sub 3} at 3, 4 position of phenyl ring [5(a-l)] were more potent against microbes as compared to compounds having unsubstituted phenyl ring [4(a-l)].

  3. Preparation and evaluation of unilamellar liposomes incorporating boron-containing derivatives of cholesterol

    International Nuclear Information System (INIS)

    Feakes, D.A.; Tate, C.C.; Stefanutti, S.J.

    2000-01-01

    The application of boron neutron capture therapy is dependent on the identification and preparation of boron-containing compounds that can be delivered and retained by the tumor cells. Unilamellar liposomes have been investigated as potential tumor-specific delivery vehicles for boron-containing compounds that have no inherent tumor specificity. A series of carborane-containing derivatives of cholesterol have been prepared and incorporated into the bilayer of unilamellar liposomes. The cholesterol derivatives vary in the linker moiety (ester and ether), the chain length between the cholesterol and the carborane substituent, and the identity of the carborane group itself (closo- and nido-). The ability of the boron-containing derivatives of cholesterol to be incorporated into the bilayer of the unilamellar liposomes and the stability of the resulting liposome formulations will be presented. (author)

  4. TRPA1-dependent reversible opening of tight junction by natural compounds with an α,β-unsaturated moiety and capsaicin.

    Science.gov (United States)

    Kanda, Yusuke; Yamasaki, Youhei; Sasaki-Yamaguchi, Yoshie; Ida-Koga, Noriko; Kamisuki, Shinji; Sugawara, Fumio; Nagumo, Yoko; Usui, Takeo

    2018-02-02

    The delivery of hydrophilic macromolecules runs into difficulties such as penetration of the cell membrane lipid bilayer. Our prior experiment demonstrated that capsaicin induces the reversible opening of tight junctions (TJs) and enhances the delivery of hydrophilic macromolecules through a paracellular route. Herein, we screened paracellular permeability enhancers other than capsaicin. As TJ opening by capsaicin is associated with Ca 2+ influx, we first screened the compounds that induce Ca 2+ influx in layered MDCK II cells, and then we determined the compounds' abilities to open TJs. Our results identified several natural compounds with α,β-unsaturated moiety. A structure-activity relationship (SAR) analysis and the results of pretreatment with reducing reagent DTT suggested the importance of α,β-unsaturated moiety. We also examined the underlying mechanisms, and our findings suggest that the actin reorganization seen in capsaicin treatment is important for the reversibility of TJ opening. Furthermore, our analyses revealed that TRPA1 is involved in the Ca 2+ influx and TJ permeability increase not only by an α,β-unsaturated compound but also by capsaicin. Our results indicate that the α,β-unsaturated moiety can be a potent pharmacophore for TJ opening.

  5. Novel coumarin derivatives bearing N-benzyl pyridinium moiety: potent and dual binding site acetylcholinesterase inhibitors.

    Science.gov (United States)

    Alipour, Masoumeh; Khoobi, Mehdi; Foroumadi, Alireza; Nadri, Hamid; Moradi, Alireza; Sakhteman, Amirhossein; Ghandi, Mehdi; Shafiee, Abbas

    2012-12-15

    A novel series of coumarin derivatives linked to benzyl pyridinium group were synthesized and biologically evaluated as inhibitors of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The enzyme inhibitory activity of synthesized compounds was measured using colorimetric Ellman's method. It was revealed that compounds 3e, 3h, 3l, 3r and 3s have shown higher activity compared with donepezil hydrochloride as standard drug. Most of the compounds in these series had nanomolar range IC(50) in which compound 3r (IC(50) = 0.11 nM) was the most active compound against acetylcholinesterase enzyme. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Tyrosine B10 triggers a heme propionate hydrogen bonding network loop with glutamine E7 moiety

    International Nuclear Information System (INIS)

    Ramos-Santana, Brenda J.; López-Garriga, Juan

    2012-01-01

    Highlights: ► H-bonding network loop by PheB10Tyr mutation is proposed. ► The propionate group H-bonding network restricted the flexibility of the heme. ► The hydrogen bonding interaction modulates the electron density of the iron. ► Propionate H-bonding network loop explains the heme-ligand stabilization. -- Abstract: Propionates, as peripheral groups of the heme active center in hemeproteins have been described to contribute in the modulation of heme reactivity and ligand selection. These electronic characteristics prompted the question of whether the presence of hydrogen bonding networks between propionates and distal amino acids present in the heme ligand moiety can modulate physiological relevant events, like ligand binding association and dissociation activities. Here, the role of these networks was evaluated by NMR spectroscopy using the hemoglobin I PheB10Tyr mutant from Lucina pectinata as model for TyrB10 and GlnE7 hemeproteins. 1 H-NMR results for the rHbICN PheB10Tyr derivative showed chemical shifts of TyrB10 OHη at 31.00 ppm, GlnE7 N ε1 H/N ε2 H at 10.66 ppm/−3.27 ppm, and PheE11 C δ H at 11.75 ppm, indicating the presence of a crowded, collapsed, and constrained distal pocket. Strong dipolar contacts and inter-residues crosspeaks between GlnE7/6-propionate group, GlnE7/TyrB10 and TyrB10/CN suggest that this hydrogen bonding network loop between GlnE7, TyrB10, 6-propionate group, and the heme ligand contribute significantly to the modulation of the heme iron electron density as well as the ligand stabilization mechanism. Therefore, the network loop presented here support the fact that the electron withdrawing character of the hydrogen bonding is controlled by the interaction of the propionates and the nearby electronic environments contributing to the modulation of the heme electron density state. Thus, we hypothesize that in hemeproteins with similar electrostatic environment the flexibility of the heme-6-propionate promotes a hydrogen

  7. Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve isoprenoids production in Escherichia coli.

    Science.gov (United States)

    Li, Qingyan; Fan, Feiyu; Gao, Xiang; Yang, Chen; Bi, Changhao; Tang, Jinlei; Liu, Tao; Zhang, Xueli

    2017-11-01

    The MEP pathway genes were modulated to investigate whether there were new rate-limiting steps and toxic intermediates in this pathway. Activating IspG led to significant decrease of cell growth and β-carotene production. It was found that ispG overexpression led to accumulation of intermediate HMBPP, which seriously interfered with synthesis machinery of nucleotide and protein in Escherichia coli. Activation of the downstream enzyme IspH could solve HMBPP accumulation problem and eliminate the negative effects of ispG overexpression. In addition, intermediate MECPP accumulated in the starting strain, while balanced activation of IspG and IspH could push the carbon flux away from MECPP and led to 73% and 77% increase of β-carotene and lycopene titer respectively. Our work for the first time identified HMBPP to be a cytotoxic intermediate in MEP pathway and demonstrated that balanced activation of IspG and IspH could eliminate accumulation of HMBPP and MECPP and improve isoprenoids production. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Increased Water Solubility of the Curcumin Derivatives via Substitution with an Acetoxy Group at the Central Methylene Moiety

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Kyoung; Mok, Hyejung; Chong, Youhoon [Konkuk Univ., Seoul (Korea, Republic of)

    2012-09-15

    Curcumin (diferuloyl methane), a natural yellow pigment in the roots of turmeric, has been considered as one of the most promising chemopreventive agents against a variety of human cancers. Curcumin is known to exhibit its antiproliferative effect against various cancer cells through cell cycle arrest and induction of apoptosis. Although not as potent as many other cytotoxic agents, curcumin has been demonstrated to be safe in humans at relatively high doses (10 grams/day), making it an attractive target for chemotherapeutic drug discovery efforts. Two compounds with meta-methoxy substituents (2 and 3) maintained comparable antiproliferative activity with curcumin (1). In contrast, the acetoxy-curcuminoids (8-14) showed moderate to potent activity against all three cancer cell lines tested (Table 1). In particular, the colon cancer cell (HCT116) was most susceptible to the acetoxy-curcuminoids (8-12, Table 1) to show 2-2.5 times increase in EC{sub 50} values compared with that of curcumin (1, Table 1). In this series, like the simple curcuminoids (2-7), the aromatic meta-methoxy substituent turned out to be critical for the antiproliferative effect, and the corresponding acetoxy-curcuminoids 10 and 11 showed the most potent activity against HCT116 with EC{sub 50} values of 18.5 μM and 16.9 μM, respectively. Also noteworthy is the broad spectrum antiproliferative effect of the acetoxy-curcuminoid 11 with a free catechol moiety, which exhibited almost similar antiproliferative activity against all three cancer cell lines tested. Taken together, through evaluation of solubility as well as antiproliferative effect of the acetoxy-curcuminoids, we figured out that the acetoxy group substituted at the central methylene unit which served to enhance the solubility of the corresponding curcuminoids also played a key role in potentiating their antiproliferative effect. Thus, upon combination of the methylenyl acetoxy group and the aromatic meta-methoxy group on the curcumin

  9. Increased Water Solubility of the Curcumin Derivatives via Substitution with an Acetoxy Group at the Central Methylene Moiety

    International Nuclear Information System (INIS)

    Kim, Mi Kyoung; Mok, Hyejung; Chong, Youhoon

    2012-01-01

    Curcumin (diferuloyl methane), a natural yellow pigment in the roots of turmeric, has been considered as one of the most promising chemopreventive agents against a variety of human cancers. Curcumin is known to exhibit its antiproliferative effect against various cancer cells through cell cycle arrest and induction of apoptosis. Although not as potent as many other cytotoxic agents, curcumin has been demonstrated to be safe in humans at relatively high doses (10 grams/day), making it an attractive target for chemotherapeutic drug discovery efforts. Two compounds with meta-methoxy substituents (2 and 3) maintained comparable antiproliferative activity with curcumin (1). In contrast, the acetoxy-curcuminoids (8-14) showed moderate to potent activity against all three cancer cell lines tested (Table 1). In particular, the colon cancer cell (HCT116) was most susceptible to the acetoxy-curcuminoids (8-12, Table 1) to show 2-2.5 times increase in EC 50 values compared with that of curcumin (1, Table 1). In this series, like the simple curcuminoids (2-7), the aromatic meta-methoxy substituent turned out to be critical for the antiproliferative effect, and the corresponding acetoxy-curcuminoids 10 and 11 showed the most potent activity against HCT116 with EC 50 values of 18.5 μM and 16.9 μM, respectively. Also noteworthy is the broad spectrum antiproliferative effect of the acetoxy-curcuminoid 11 with a free catechol moiety, which exhibited almost similar antiproliferative activity against all three cancer cell lines tested. Taken together, through evaluation of solubility as well as antiproliferative effect of the acetoxy-curcuminoids, we figured out that the acetoxy group substituted at the central methylene unit which served to enhance the solubility of the corresponding curcuminoids also played a key role in potentiating their antiproliferative effect. Thus, upon combination of the methylenyl acetoxy group and the aromatic meta-methoxy group on the curcumin framework

  10. Novel Synthetic Monothiourea Aspirin Derivatives Bearing Alkylated Amines as Potential Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Norsyafikah Asyilla Nordin

    2017-01-01

    Full Text Available A new series of aspirin bearing alkylated amines moieties 1–12 were synthesised by reacting isothiocyanate with a series of aniline derivatives in overall yield of 16–56%. The proposed structures of all the synthesised compounds were confirmed using elemental analysis, FTIR, and 1H and  13C NMR spectroscopy. All compounds were evaluated for antibacterial activities against E. coli and S. aureus via turbidimetric kinetic and Kirby Bauer disc diffusion method. Compound 5 bearing meta -CH3 substituent showed the highest relative inhibition zone diameter against tested bacteria compared to ortho and para substituent. Furthermore, aspirin derivatives bearing shorter chains exhibited better bacterial inhibition than longer alkyl chains.

  11. Surface modified liposomes by mannosylated conjugates anchored via the adamantyl moiety in the lipid bilayer.

    Science.gov (United States)

    Stimac, Adela; Segota, Suzana; Dutour Sikirić, Maja; Ribić, Rosana; Frkanec, Leo; Svetličić, Vesna; Tomić, Srđanka; Vranešić, Branka; Frkanec, Ruža

    2012-09-01

    The aim of the present study was to encapsulate mannosylated 1-aminoadamantane and mannosylated adamantyltripeptides, namely [(2R)-N-(adamant-1-yl)-3-(α,β-d-mannopyranosyloxy)-2-methylpropanamide and (2R)-N-[3-(α-d-mannopyranosyloxy)-2-methylpropanoyl]-d,l-(adamant-2-yl)glycyl-l-alanyl-d-isoglutamine] in liposomes. The characterization of liposomes, size and surface morphology was performed using dynamic light scattering (DLS) and atomic force microscopy (AFM). The results have revealed that the encapsulation of examined compounds changes the size and surface of liposomes. After the concanavalin A (ConA) was added to the liposome preparation, increase in liposome size and their aggregation has been observed. The enlargement of liposomes was ascribed to the specific binding of the ConA to the mannose present on the surface of the prepared liposomes. Thus, it has been shown that the adamantyl moiety from mannosylated 1-aminoadamantane and mannosylated adamantyltripeptides can be used as an anchor in the lipid bilayer for carbohydrate moiety exposed on the liposome surface. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Engineered jadomycin analogues with altered sugar moieties revealing JadS as a substrate flexible O-glycosyltransferase.

    Science.gov (United States)

    Li, Liyuan; Pan, Guohui; Zhu, Xifen; Fan, Keqiang; Gao, Wubin; Ai, Guomin; Ren, Jinwei; Shi, Mingxin; Olano, Carlos; Salas, José A; Yang, Keqian

    2017-07-01

    Glycosyltransferases (GTs)-mediated glycodiversification studies have drawn significant attention recently, with the goal of generating bioactive compounds with improved pharmacological properties by diversifying the appended sugars. The key to achieving glycodiversification is to identify natural and/or engineered flexible GTs capable of acting upon a broad range of substrates. Here, we report the use of a combinatorial biosynthetic approach to probe the substrate flexibility of JadS, the GT in jadomycin biosynthesis, towards different non-native NDP-sugar substrates, enabling us to identify six jadomycin B analogues with different sugar moieties. Further structural engineering by precursor-directed biosynthesis allowed us to obtain 11 new jadomycin analogues. Our results for the first time show that JadS is a flexible O-GT that can utilize both L- and D- sugars as donor substrates, and tolerate structural changes at the C2, C4 and C6 positions of the sugar moiety. JadS may be further exploited to generate novel glycosylated jadomycin molecules in future glycodiversification studies.

  13. The discovery of tropane-derived CCR5 receptor antagonists.

    Science.gov (United States)

    Armour, Duncan R; de Groot, Marcel J; Price, David A; Stammen, Blanda L C; Wood, Anthony; Perros, Manos; Burt, Catherine

    2006-04-01

    The development of compound 1, a piperidine-based CCR5 receptor antagonist with Type I CYP2D6 inhibition, into the tropane-derived analogue 5, is described. This compound, which is devoid of CYP2D6 liabilities, is a highly potent ligand for the CCR5 receptor and has broad-spectrum activity against a range of clinically relevant HIV isolates. The identification of human ether a-go-go-related gene channel inhibition within this series is described and the potential for QTc interval prolongation discussed. Furthermore, structure activity relationship (SAR) around the piperidine moiety is also described.

  14. Sesquiterpene and Acetogenin Derivatives from the Marine Red Alga Laurencia okamurai

    Directory of Open Access Journals (Sweden)

    Bin-Gui Wang

    2012-12-01

    Full Text Available In addition to 13 known compounds, four new bisabolane sesquiterpenes, okamurenes A–D (1–4, a new chamigrane derivative, okamurene E (5, and a new C12-acetogenin, okamuragenin (6, were isolated from the marine red alga Laurencia okamurai. The structures of these compounds were determined through detailed spectroscopic analyses. Of these, okamurenes A and B (1 and 2 are the first examples of bromobisabolane sesquiterpenes possessing a phenyl moiety among Laurencia-derived sesquiterpenes, while okamuragenin (6 was the first acetogenin aldehyde possessing a C12-carbon skeleton. Each of the isolated compounds was evaluated for the brine shrimp (Artemia salina lethal assay and 7-hydroxylaurene displayed potent lethality with LD50 1.8 μM.

  15. Synthesis and Herbicidal Activity of Novel Sulfonylureas Containing 1,2,4-Triazolinone Moiety

    Institute of Scientific and Technical Information of China (English)

    LIU Zhuo; PAN Li; LI Yong-hong; WANG Su-hua; LI Zheng-ming

    2013-01-01

    A series of new sulfonylureas incorporating 1,2,4-triazolinone moiety was synthesized,which were further bio-assayed for the herbicidal activity against four herbs,representative of monocotyledons and dicotyledons.Some of them exhibited high potency to inhibit the growth of dicotyledons(Bassica napus and Amaranthus retroflexus) in the pot experiment.Compounds 9a and 9b also displayed an excellent herbicidal activity against Bassica napus at a concentration of 15 g/hectare,which were comparable with commercial triasulfuron.

  16. Radiolysis of aqueous solutions of nucleosides halogenated at the sugar moiety

    Energy Technology Data Exchange (ETDEWEB)

    Hissung, A; Isildar, M; von Sonntag, C [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany, F.R.). Inst. fuer Strahlenforschung; Witzel, H [Biochemisches Institut der Westfaelischen Wilhelms-Universitaet, Muenster, West Germany

    1981-02-01

    The pulse radiolysis of aqueous solutions of nucleosides halogenated at the sugar moiety (2'-bromo-2'-deoxyuridine 4, 3'-deoxy-3'-iodothymidine 5, 5'-deoxy-5'-iodouridine 6) has been studied. G(Hal) were determined by conductometry varying the experimental conditions (pH, saturation with Ar, N/sub 2/O or air, addition of t-butanol). The results indicate that solvated electrons both add to the nucleobases and eliminate halogen ions from the halogenated sugar moiety. In the case of 4(and possibly of 5) the radical anion of the base transfers (k approximately 10/sup 5/s/sup -1/) an electron to the sugar-bound halogen atom thus cleaving the C-Hal bond. In competition with this reaction there is a protonation of the radical anion of the base by protons and by water. For the latter reaction constant of k = 5 x 10/sup 3/ M/sup -1/s/sup -1/ was estimated. Compound 4 has also been investigated by product analysis after 60-Co-..gamma..-irradiation. In aerated solutions erythrose is formed with a G-value of 0.12. Its precursor radical is the 2'-radical generated from 4 by dissociative electron capture which reacts with O/sub 2/ to the corresponding peroxyl radical. Erythrose is formed after a sequence of reactions, one of which involves the scission of the C-1'-C-2'bond. Under this condition G(HBr) as measured by pulse radiolysis is 0.8. Thus erythrose is formed in 15 per cent yield with respect to its precursor radical. This result is of importance in assessing the precursor radical of a similar product observed in irradiated DNA.

  17. Radiolysis of aqueous solutions of nucleosides halogenated at the sugar moiety

    International Nuclear Information System (INIS)

    Hissung, A.; Isildar, M.; Sonntag, C. von; Witzel, H.

    1981-01-01

    The pulse radiolysis of aqueous solutions of nucleosides halogenated at the sugar moiety (2'-bromo-2'-deoxyuridine 4, 3'-deoxy-3'-iodothymidine 5, 5'-deoxy-5'-iodouridine 6) has been studied. G(Hal) were determined by conductometry varying the experimental conditions (pH, saturation with Ar, N 2 O or air, addition of t-butanol). The results indicate that solvated electrons both add to the nucleobases and eliminate halogen ions from the halogenated sugar moiety. In the case of 4(and possibly of 5) the radical anion of the base transfers (k approximately 10 5 s -1 ) an electron to the sugar-bound halogen atom thus cleaving the C-Hal bond. In competition with this reaction there is a protonation of the radical anion of the base by protons and by water. For the latter reaction constant of k = 5 x 10 3 M -1 s -1 was estimated. Compound 4 has also been investigated by product analysis after 60-Co-γ-irradiation. In aerated solutions erythrose is formed with a G-value of 0.12. Its precursor radical is the 2'-radical generated from 4 by dissociative electron capture which reacts with O 2 to the corresponding peroxyl radical. Erythrose is formed after a sequence of reactions, one of which involves the scission of the C-1'-C-2'bond. Under this condition G(HBr) as measured by pulse radiolysis is 0.8. Thus erythrose is formed in 15 per cent yield with respect to its precursor radical. This result is of importance in assessing the precursor radical of a similar product observed in irradiated DNA. (author)

  18. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms.

    Science.gov (United States)

    Nobmann, Patricia; Smith, Aoife; Dunne, Julie; Henehan, Gary; Bourke, Paula

    2009-01-15

    Novel mono-substituted carbohydrate fatty acid (CFA) esters and ethers were investigated for their antibacterial activity against a range of pathogenic and spoilage bacteria focussing on Listeria monocytogenes. Carbohydrate derivatives with structural differences enable comparative studies on the structure/activity relationship for antimicrobial efficacy and mechanism of action. The antimicrobial efficacy of the synthesized compounds was compared with commercially available compounds such as monolaurin and monocaprylin, as well as the pure free fatty acids, lauric acid and caprylic acid, which have proven antimicrobial activity. Compound efficacy was compared using an absorbance based broth microdilution assay to determine the minimum inhibitory concentration (MIC), increase in lag phase and decrease in maximum growth rate. Among the carbohydrate derivatives synthesized, lauric ether of methyl alpha-d-glucopyranoside and lauric ester of methyl alpha-d-mannopyranoside showed the highest growth-inhibitory effect with MIC values of 0.04 mM, comparable to monolaurin. CFA derivatives were generally more active against Gram positive bacteria than Gram negative bacteria. The analysis of both ester and ether fatty acid derivatives of the same carbohydrate, in tandem with alpha and beta configuration of the carbohydrate moiety suggest that the carbohydrate moiety is involved in the antimicrobial activity of the fatty acid derivatives and that the nature of the bond also has a significant effect on efficacy, which requires further investigation. This class of CFA derivatives has great potential for developing antibacterial agents relevant to the food industry, particularly for control of Listeria or other Gram-positive pathogens.

  19. Biofuel and chemical production by recombinant microorganisms via fermentation of proteinaceous biomass

    Science.gov (United States)

    Liao, James C.; Cho, Kwang Myung; Yan, Yajun; Huo, Yixin

    2016-03-15

    Provided herein are metabolically modified microorganisms characterized by having an increased keto-acid flux when compared with the wild-type organism and comprising at least one polynucleotide encoding an enzyme that when expressed results in the production of a greater quantity of a chemical product when compared with the wild-type organism. The recombinant microorganisms are useful for producing a large number of chemical compositions from various nitrogen containing biomass compositions and other carbon sources. More specifically, provided herein are methods of producing alcohols, acetaldehyde, acetate, isobutyraldehyde, isobutyric acid, n-butyraldehyde, n-butyric acid, 2-methyl-1-butyraldehyde, 2-methyl-1-butyric acid, 3-methyl-1-butyraldehyde, 3-methyl-1-butyric acid, ammonia, ammonium, amino acids, 2,3-butanediol, 1,4-butanediol, 2-methyl-1,4-butanediol, 2-methyl-1,4-butanediamine, isobutene, itaconate, acetoin, acetone, isobutene, 1,5-diaminopentane, L-lactic acid, D-lactic acid, shikimic acid, mevalonate, polyhydroxybutyrate (PHB), isoprenoids, fatty acids, homoalanine, 4-aminobutyric acid (GABA), succinic acid, malic acid, citric acid, adipic acid, p-hydroxy-cinnamic acid, tetrahydrofuran, 3-methyl-tetrahydrofuran, gamma-butyrolactone, pyrrolidinone, n-methylpyrrolidone, aspartic acid, lysine, cadeverine, 2-ketoadipic acid, and/or S-adenosyl-methionine (SAM) from a suitable nitrogen rich biomass.

  20. Additions of precursors and elicitors improve geranylgeraniol production in Croton stellatopilosus callus cultures

    Directory of Open Access Journals (Sweden)

    Juraithip Wungsintaweekul

    2015-02-01

    Full Text Available Strategies for enhancing GGOH production in Croton stellatopilosus callus culture included additions of precursors (sodium acetate-NA, sodium pyruvate-NP, mevalonic acid lactone-MVA and elicitors (methyl jasmonate-MJ, acetylsalicylic acid-ASA, yeast extract-YE. Treated cells were evaluated for their GGOH contents by GC-FID and compared with the nontreated cells as controls. Additions of NA (25 mg/L, NP (50 mg/L and MVA (100 mg/L resulted in an enhancement of GGOH productivity to 0.61 mg/g DW, 0.52 mg/g DW and 0.70 mg/g DW, respectively, compared to the control culture (0.29 mg/g DW. Callus cultures elicited with MJ at 30 mg/L for 24 h stimulated GGOH production to 0.35 mg/g DW compared to the control culture (0.07 mg/g DW. Cells also responded to ASA (20 mg/L, 2 days and YE (0.25 g/L, 4 days and produced GGOH contents of 0.46 mg/g DW and 1.37 mg/g DW, respectively. This study has shown that isoprenoid precursors and conventional elicitors enhanced GGOH production in the C. stellatopilosus callus culture.

  1. Inhibitors of inosine monophosphate dehydrogenase: SARs about the N-[3-Methoxy-4-(5-oxazolyl)phenyl moiety.

    Science.gov (United States)

    Iwanowicz, Edwin J; Watterson, Scott H; Guo, Junqing; Pitts, William J; Murali Dhar, T G; Shen, Zhongqi; Chen, Ping; Gu, Henry H; Fleener, Catherine A; Rouleau, Katherine A; Cheney, Daniel L; Townsend, Robert M; Hollenbaugh, Diane L

    2003-06-16

    The first reported structure-activity relationships (SARs) about the N-[3-methoxy-4-(5-oxazolyl)phenyl moiety for a series of recently disclosed inosine monophosphate dehydrogenase (IMPDH) inhibitors are described. The syntheses and in vitro inhibitory values for IMPDH II, and T-cell proliferation (for select analogues) are given.

  2. Solid-Phase Synthesis of a New Diphosphate 5-Aminoimidazole-4-carboxamide Riboside (AICAR Derivative and Studies toward Cyclic AICAR Diphosphate Ribose

    Directory of Open Access Journals (Sweden)

    Gennaro Piccialli

    2011-09-01

    Full Text Available The solid-phase synthesis of the first example of a new diphosphate AICAR derivative is reported. The new substance is characterized by the presence of a 5'-phosphate group while a second phosphate moiety is installed on a 5-hydroxypentyl chain attached to the 4-N-position of AICAR. Cyclization of the diphosphate derivative by pyrophosphate bond formation allowed for the formation of a novel AICAR-based cyclic ADP-ribose (cADPR mimic.

  3. Observational Study of a French and Belgian Multicenter Cohort of 23 Patients Diagnosed in Adulthood With Mevalonate Kinase Deficiency.

    Science.gov (United States)

    Durel, Cécile-Audrey; Aouba, Achille; Bienvenu, Boris; Deshayes, Samuel; Coppéré, Brigitte; Gombert, Bruno; Acquaviva-Bourdain, Cécile; Hachulla, Eric; Lecomte, Frédéric; Touitou, Isabelle; Ninet, Jacques; Philit, Jean-Baptiste; Messer, Laurent; Brouillard, Marc; Girard-Madoux, Marie-Hélène; Moutschen, Michel; Raison-Peyron, Nadia; Hutin, Pascal; Duffau, Pierre; Trolliet, Pierre; Hatron, Pierre-Yves; Heudier, Philippe; Cevallos, Ramiro; Lequerré, Thierry; Brousse, Valentine; Lesire, Vincent; Audia, Sylvain; Maucort-Boulch, Delphine; Cuisset, Laurence; Hot, Arnaud

    2016-03-01

    The aim of this study was to describe the clinical and biological features of Mevalonate kinase deficiency (MKD) in patients diagnosed in adulthood. This is a French and Belgian observational retrospective study from 2000 to 2014. To constitute the cohort, we cross-check the genetic and biochemical databases. The clinical, enzymatic, and genetic data were gathered from medical records. Twenty-three patients were analyzed. The mean age at diagnosis was 40 years, with a mean age at onset of symptoms of 3 years. All symptomatic patients had fever. Febrile attacks were mostly associated with arthralgia (90.9%); lymphadenopathy, abdominal pain, and skin lesions (86.4%); pharyngitis (63.6%); cough (59.1%); diarrhea, and hepatosplenomegaly (50.0%). Seven patients had psychiatric symptoms (31.8%). One patient developed recurrent seizures. Three patients experienced renal involvement (13.6%). Two patients had angiomyolipoma (9.1%). All but one tested patients had elevated serum immunoglobulin (Ig) D level. Twenty-one patients had genetic diagnosis; most of them were compound heterozygote (76.2%). p.Val377Ile was the most prevalent mutation. Structural articular damages and systemic AA amyloidosis were the 2 most serious complications. More than 65% of patients displayed decrease in severity and frequency of attacks with increasing age, but only 35% achieved remission. MKD diagnosed in adulthood shared clinical and genetic features with classical pediatric disease. An elevated IgD concentration is a good marker for MKD in adults. Despite a decrease of severity and frequency of attacks with age, only one-third of patients achieved spontaneous remission.

  4. A preliminary study of the metabolic stability of a series of benzoxazinone derivatives as potent neuropeptide Y5 antagonists.

    Science.gov (United States)

    Dordal, Alberto; Lipkin, Mike; Macritchie, Jackie; Mas, Josep; Port, Adriana; Rose, Sally; Salgado, Leonardo; Savic, Vladimir; Schmidt, Wolfgang; Serafini, Maria Teresa; Spearing, William; Torrens, Antoni; Yeste, Sandra

    2005-08-15

    The metabolic stability of benzoxazinone derivatives, a potent series of NPY Y5 antagonists, has been investigated. This study resulted in the identification of the structural moieties prone to metabolic transformations and which strongly influenced the in vitro half-life. This provides opportunities to optimize the structure of this new class of NPY Y5 antagonists.

  5. Labelling of penicillin-binding proteins from Escherichia coli with photoreactive derivatives of #betta#-lactam antibiotics

    International Nuclear Information System (INIS)

    Aran, V.; Rodriguez-Tebar, A.; Vazquez, D.

    1983-01-01

    The authors have synthesized a number of photoreactive radiolabelled #betta#-lactams that react and form permanent covalent bonds with the penicillin-binding proteins (PBPs), since photoreactive ligand derivatives have been used to some extent for structural studies on membranes and other biological structures. Chemical and photochemical labelling of a receptor by its ligand are important techniques to elucidate the nature of the ligand-receptor interaction, and for identification and characterization of receptors. They have synthesized two #betta#-lactam derivatives each containing two different photoreactive moieties. One of them is an aryl azido compound, widely known as a photoreactive reagent for labelling studies, whereas the other one contains a nitroguaiacol derived group used in photochemical studies with other biological materials. (Auth.)

  6. Synthesis of Morpholine Containing Sulfonamides: Introduction of Morpholine Moiety on Amine Functional Group

    Directory of Open Access Journals (Sweden)

    D. Singh

    2004-01-01

    Full Text Available Sulfonamides have been the center of drug structures as this group is quite stable & well tolerated in human beings. The synthesis of these structures was started in search of new pharmacological active reagents. These compounds are being tested for the desired activity (ICAM-1/LFA-1 Interaction inhibitors as anti-adhesion therapeutic agents, the biological activity & structure activity relationship will be published elsewhere. Synthesis of morpholine moiety from amino group is done by using reagent 2-chloroethanol.

  7. Functionalized mesoporous silicas with crown ether moieties for selective adsorption of lithium ions in artificial sea water.

    Science.gov (United States)

    Sung, Soo Park; Moorthy, Madhappan Santha; Song, Hyun-Jin; Ha, Chang-Sik

    2014-11-01

    Lithium ion has been increasingly recognized in a wide range of industrial applications. In this work, we studied on the adsorption of Li+ in the artificial seawater with high selectivity using methyl-crown ether (AC-SBA-15) and aza-crown ether (HMC-SBA-15) moieties-functionalized mesoporous silica materials. First, methyl-crown ether and aza-crown ether moieties-functionalized mesoporous silica materials were synthesized via two-step post-synthesis process using a grafting method. The functionalized materials were employed to the metal ion adsorption from aqueous solution (artificial seawater) containing Li+, Co2+, Cr3+ and Hg2+. The prepared hybrid material showed high selectivity for Li+ ion in the artificial seawater at pH 8.0. The absorbed amount of Li+ was 73 times higher than Cr3+ for aza-crown ether containing AC-SBA-15 as an absorbent. The absorbed amount of Co2+ (4.5 x 10(-5) mol/g), Cr3+ (1.5 x 10(-5) mol/g) and Hg2+ (2.25 x 10(-4) mol/g) were remarkably lower than the case of Li+. On the other hand, the absorbed amount of various metal ions of HMC-SBA-15 with amine groups in alky chains and crown ether moieties were 1.1 x 10(-3) mol/g for Li+, 5.0 x 10(-5) mol/g for Co2+, 2.9 x 10(-4) mol/g for Cr3+, 2.8 x 10(-4) mol/g for Hg2+ mol/g, respectively.

  8. How Secondary and Tertiary Amide Moieties are Molecular Stations for Dibenzo-24-crown-8 in [2]Rotaxane Molecular Shuttles?

    Science.gov (United States)

    Riss-Yaw, Benjamin; Morin, Justine; Clavel, Caroline; Coutrot, Frédéric

    2017-11-21

    Interlocked molecular machines like [2]rotaxanes are intriguing aesthetic molecules. The control of the localization of the macrocycle, which surrounds a molecular axle, along the thread leads to translational isomers of very different properties. Although many moieties have been used as sites of interactions for crown ethers, the very straightforwardly obtained amide motif has more rarely been envisaged as molecular station. In this article, we report the use of secondary and tertiary amide moieties as efficient secondary molecular station in pH-sensitive molecular shuttles. Depending on the N -substitution of the amide station, and on deprotonation or deprotonation-carbamoylation, the actuation of the molecular machinery differs accordingly to very distinct interactions between the axle and the DB24C8.

  9. Protective effects of a squalene synthase inhibitor, lapaquistat acetate (TAK-475), on statin-induced myotoxicity in guinea pigs

    International Nuclear Information System (INIS)

    Nishimoto, Tomoyuki; Ishikawa, Eiichiro; Anayama, Hisashi; Hamajyo, Hitomi; Nagai, Hirofumi; Hirakata, Masao; Tozawa, Ryuichi

    2007-01-01

    High-dose statin treatment has been recommended as a primary strategy for aggressive reduction of LDL cholesterol levels and protection against coronary artery disease. The effectiveness of high-dose statins may be limited by their potential for myotoxic side effects. There is currently little known about the molecular mechanisms of statin-induced myotoxicity. Previously we showed that T-91485, an active metabolite of the squalene synthase inhibitor lapaquistat acetate (lapaquistat: a previous name is TAK-475), attenuated statin-induced cytotoxicity in human skeletal muscle cells [Nishimoto, T., Tozawa, R., Amano, Y., Wada, T., Imura, Y., Sugiyama, Y., 2003a. Comparing myotoxic effects of squalene synthase inhibitor, T-91485, and 3-hydroxy-3-methylglutaryl coenzyme A. Biochem. Pharmacol. 66, 2133-2139]. In the current study, we investigated the effects of lapaquistat administration on statin-induced myotoxicity in vivo. Guinea pigs were treated with either high-dose cerivastatin (1 mg/kg) or cerivastatin together with lapaquistat (30 mg/kg) for 14 days. Treatment with cerivastatin alone decreased plasma cholesterol levels by 45% and increased creatine kinase (CK) levels by more than 10-fold (a marker of myotoxicity). The plasma CK levels positively correlated with the severity of skeletal muscle lesions as assessed by histopathology. Co-administration of lapaquistat almost completely prevented the cerivastatin-induced myotoxicity. Administration of mevalonolactone (100 mg/kg b.i.d.) prevented the cerivastatin-induced myotoxicity, confirming that this effect is directly related to HMG-CoA reductase inhibition. These results strongly suggest that cerivastatin-induced myotoxicity is due to depletion of mevalonate derived isoprenoids. In addition, squalene synthase inhibition could potentially be used clinically to prevent statin-induced myopathy

  10. Inhibition of Prenylation Promotes Caspase 3 Activation, Lamin B Degradation and Loss in Metabolic Cell Viability in Pancreatic β-Cells

    Directory of Open Access Journals (Sweden)

    Khadija G. Syeda

    2017-10-01

    Full Text Available Background/Aims: Lamins are intermediate filament proteins that constitute the main components of the lamina underlying the inner-nuclear membrane and serve to organize chromatin. Lamins (e.g., lamin B undergo posttranslational modifications (e.g., isoprenylation at their C-terminal cysteine residues. Such modifications are thought to render optimal association of lamins with the nuclear envelop. Using human islets, rodent islets, and INS-1 832/13 cells, we recently reported significant metabolic defects under glucotoxic and endoplasmic reticulum (ER stress conditions, including caspase 3 activation and lamin B degradation. The current study is aimed at further understanding the regulatory roles of protein prenylation in the induction of the aforestated metabolic defects. Methods: Subcellular phase partitioning assay was done using Triton X-114. Cell morphology and metabolic cell viability assays were carried out using standard methodologies. Results: We report that exposure of pancreatic β-cells to Simvastatin, an inhibitor of mevalonic acid (MVA biosynthesis, and its downstream isoprenoid derivatives, or FTI-277, an inhibitor of farnesyltransferase that mediates farnesylation of lamins, leads to activation of caspase 3 and lamin B degradation. Furthermore, Simvastatin-treatment increased activation of p38MAPK (a stress kinase and inhibited ERK1/2 (regulator of cell proliferation. Inhibition of farnesylation also resulted in the release of degraded lamin B into the cytosolic fraction and promoted loss in metabolic cell viability. Conclusion: Based on these findings we conclude that protein prenylation plays key roles in islet β-cell function. These findings affirm further support to the hypothesis that defects in prenylation pathway induce caspase-3 activation and nuclear lamin degradation in pancreatic β-cells under the duress of metabolic stress (e.g., glucotoxicity.

  11. Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Huanan; Song, Zhihong; Nikolau, Basil J.

    2012-03-31

    Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT‐encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T‐DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol‐localized, mevalonate‐derived isoprenoid biosynthetic pathway.

  12. Increased RhoA prenylation in the loechrig (loe mutant leads to progressive neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Mandy Cook

    Full Text Available The Drosophila mutant loechrig (loe shows age-dependent degeneration of the nervous system and is caused by the loss of a neuronal isoform of the AMP-activated protein kinase (AMPK γ-subunit (also known as SNF4Aγ. The trimeric AMPK complex is activated by low energy levels and metabolic insults and regulates multiple important signal pathways that control cell metabolism. A well-known downstream target of AMPK is hydroxyl-methylglutaryl-CoA reductase (HMGR, a key enzyme in isoprenoid synthesis, and we have previously shown that HMGR genetically interacts with loe and affects the severity of the degenerative phenotype. Prenylation of proteins like small G-proteins is an important posttranslational modification providing lipid moieties that allow the association of these proteins with membranes, thereby facilitating their subsequent activation. Rho proteins have been extensively studied in neuronal outgrowth, however, much less is known about their function in neuronal maintenance. Here we show that the loe mutation interferes with isoprenoid synthesis, leading to increased prenylation of the small GTPase Rho1, the fly orthologue of vertebrate RhoA. We also demonstrate that increased prenylation and Rho1 activity causes neurodegeneration and aggravates the behavioral and degenerative phenotypes of loe. Because we cannot detect defects in the development of the central nervous system in loe, this suggests that loe only interferes with the function of the RhoA pathway in maintaining neuronal integrity during adulthood. In addition, our results show that alterations in isoprenoids can result in progressive neurodegeneration, supporting findings in vertebrates that prenylation may play a role in neurodegenerative diseases like Alzheimer's Disease.

  13. Topological and quantum molecular descriptors as effective tools for analyzing cytotoxic activity achieved by a series of (diselanediyldibenzene-4,1-diylnide)biscarbamate derivatives.

    Science.gov (United States)

    Font, María; Plano, Daniel; Sanmartín, Carmen; Palop, Juan Antonio

    2017-05-01

    A molecular modeling study has been carried out on a previously reported series of (diselanediyldibenzene-4,1-diylnide)biscarbamate derivatives that show cytotoxic and antiproliferative in vitro activity against MCF-7 human cell line; radical scavenging properties were also confirmed when these compounds were tested for their ability to scavenge DPPH and ABTS radicals. The data obtained allowed us to classify the compounds into two different groups: (a) aliphatic carbamates for which the activity could be related with a first nucleophilic attack (mediated by H 2 O, for example) on the selenium atoms of the central scaffold, followed by the release of the alkyl N-(4-selanylphenyl) and N-(4-selenenophenyl)carbamate moieties. Then, a second nucleophilic attack on the carbamate moiety, to yield 4-aminobenzeneselenol and 4-selenenoaniline respectively, which can ultimately be responsible for the activity of the compounds; (b) aromatic carbamates, for which we propose a preferred nucleophilic attack on the carbamate moiety, yielding 4-[(4-aminophenyl)diselanyl]aniline, the common structural fragment for this series, for which we have previously demonstrated its cytotoxic profile. Then, selenium atoms of the central fragment may later undergo a new nucleophilic attack, to yield 4-selenenoaniline and 4-aminobenzeneselenol. The phenolic moieties released in this process may also have a synergistic cytotoxic and redox activity. The data that support this connection include the conformational behavior and the molecular topography of the derivatives which can influence the accessibility of the hydrolysis points, and some quantum descriptors (bond order, atomic charges, total valences, ionization potential, electron affinity, HOMO 0 and LUMO 0 location, etc.) that have been related to the biological activity of the compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Synthesis, antioxidative and whitening effects of novel cysteine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ji Hoon; Kim, Kyoung Mi; Jeong, Yoon Ju; Park, Young Min; Lee, Jae Young; Park, Soo Nam [Dept. of Fine Chemistry, Cosmetic R and D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Park, Jino [Daebong LS. Ltd, Incheon (Korea, Republic of)

    2017-01-15

    Recently, development of biocompatibility functional cosmetic agents as antioxidant or whitening agent has increased. In this study, synthetic cysteine derivatives (DBLS-21, -24, and -33) were developed containing syringic acid and cysteine moieties (l-cysteine ethyl ester, N-acetyl cysteine methyl ester, and N-acetyl cysteine ethyl ester), and their antioxidative and whitening activities were evaluated. The cellular protective effect (τ{sub 50}) of DBLS-21 was 51.1 min at 50 μM on {sup 1}O{sub 2} -induced hemolysis of erythrocytes. This activity was slightly higher than that of α-tocopherol (43.6 min) as a lipophilic antioxidant. In the melanogenesis inhibitory effect, DBLS-21, -24, and -33 was 1.6-, 1.8-, and 2.5-fold higher than arbutin, respectively. In particular, DBLS-21 and -33 was 112.8- and 6.1-fold higher than arbutin, respectively (293.4 μM) on tyrosinase inhibition activity (IC{sub 50} ). But DBLS-24 had no tyrosinase inhibitory activity. These results suggest that cysteine derivatives possess potential for use as an antioxidant agent (DBLS-21) and whitening agents (all derivatives) in cosmetics.

  15. Synthesis, antioxidative and whitening effects of novel cysteine derivatives

    International Nuclear Information System (INIS)

    Ha, Ji Hoon; Kim, Kyoung Mi; Jeong, Yoon Ju; Park, Young Min; Lee, Jae Young; Park, Soo Nam; Park, Jino

    2017-01-01

    Recently, development of biocompatibility functional cosmetic agents as antioxidant or whitening agent has increased. In this study, synthetic cysteine derivatives (DBLS-21, -24, and -33) were developed containing syringic acid and cysteine moieties (l-cysteine ethyl ester, N-acetyl cysteine methyl ester, and N-acetyl cysteine ethyl ester), and their antioxidative and whitening activities were evaluated. The cellular protective effect (τ_5_0) of DBLS-21 was 51.1 min at 50 μM on "1O_2 -induced hemolysis of erythrocytes. This activity was slightly higher than that of α-tocopherol (43.6 min) as a lipophilic antioxidant. In the melanogenesis inhibitory effect, DBLS-21, -24, and -33 was 1.6-, 1.8-, and 2.5-fold higher than arbutin, respectively. In particular, DBLS-21 and -33 was 112.8- and 6.1-fold higher than arbutin, respectively (293.4 μM) on tyrosinase inhibition activity (IC_5_0 ). But DBLS-24 had no tyrosinase inhibitory activity. These results suggest that cysteine derivatives possess potential for use as an antioxidant agent (DBLS-21) and whitening agents (all derivatives) in cosmetics

  16. Synthesis and biological evaluation of arctigenin ester and ether derivatives as activators of AMPK.

    Science.gov (United States)

    Shen, Sida; Zhuang, Jingjing; Chen, Yijia; Lei, Min; Chen, Jing; Shen, Xu; Hu, Lihong

    2013-07-01

    A series of new arctigenin and 9-deoxy-arctigenin derivatives bearing different ester and ether side chains at the phenolic hydroxyl positions are designed, synthesized, and evaluated for activating AMPK potency in L6 myoblasts. Initial biological evaluation indicates that some alkyl ester and phenethyl ether arctigenin derivatives display potential activities in AMPK phosphorylation improvement. Further structure-activity relationship analysis shows that arctigenin ester derivatives 3a, 3h and 9-deoxy-arctigenin phenethyl ether derivatives 6a, 6c, 6d activate AMPK more potently than arctigenin. Moreover, the 2-(3,4-dimethoxyphenyl)ethyl ether moiety of 6c has been demonstrated as a potential functional group to improve the effect of AMPK phosphorylation. The structural optimization of arctigenin leads to the identification of 6c as a promising lead compound that exhibits excellent activity in AMPK activation. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Isolation and Characterization of an Acyclic Isoprenoid from Semecarpus anacardium Linn. and its Antibacterial Potential in vitro - Antimicrobial Activity of Semecarpus anacardium Linn. Seeds -

    Directory of Open Access Journals (Sweden)

    Ayyakkannu Purushothaman

    2017-06-01

    Full Text Available Objectives: Semecarpus anacardium Linn. is a plant well-known for its antimicrobial, antidiabetic and anti-arthritic properties in the Ayurvedic and Siddha system of medicine. This has prompted the screening of this plant for antibacterial activity. The main aims of this study were to isolate compounds from the plant’s seeds and to evaluate their antibacterial effects on clinical bacterial test strains. Methods: The n-butanolic concentrate of the seed extract was subjected to thin layer chromatography (TLC and repeated silica gel column chromatography followed by elution with various solvents. The compound was identified based on observed spectral (IR, 1H NMR, 13C NMR and high-resolution mass spectrometry data. The well diffusion method was employed to evaluate the antibacterial activities of the isolated acyclic isoprenoid compound (final concentration: 5 - 15 μg/mL on four test bacterial strains, namely, Staphylococcus aureus (MTCC 96, Bacillus cereus

  18. Radiation chemistry of carbohydrates and of the sugar moiety in DNA

    International Nuclear Information System (INIS)

    Sonntag, C. von

    1979-01-01

    The free radical chemistry of carbohydrates as studied by radiation techniques is briefly reviewed. In aqueous solutions OH radicals and H atoms abstract carbon-bound H atoms to give the primary carbohydrate radicals which can undergo a number of elimination and rearrangement reactions leading to secondary carbohydrate radicals. Oxygen can suppress these elimination and rearrangement reactions by converting the primary carbohydrate radicals into the corresponding peroxyl radicals. The reactions leading to the observed products are discussed. In the solid state a few carbohydrates show radiation-induced chain reactions which are of preparative interest. Hydroxyl radical attack at the sugar moiety of DNA eventually leads to DNA strand breaks and to alkali-labile sites. (Auth.)

  19. Toward industrial production of isoprenoids in Escherichia coli: Lessons learned from CRISPR-Cas9 based optimization of a chromosomally integrated mevalonate pathway

    DEFF Research Database (Denmark)

    Alonso-Gutierrez, Jorge; Koma, Daisuke; Hu, Qijun

    2017-01-01

    , we established a CRISPR-Cas9 system to rapidly and systematically replace promoter sequences. This strategy led to higher pathway expression and a fivefold improvement in bisabolene production. More interestingly, we analyzed proteomics data sets to understand and address some of the challenges...

  20. Reactive fillers based on SWCNTs functionalized with matrix-based moieties for the production of epoxy composites with superior and tunable properties

    International Nuclear Information System (INIS)

    González-Domínguez, Jose M; Ansón-Casaos, A; Martínez, M Teresa; Martínez-Rubí, Yadienka; Simard, Benoit; Díez-Pascual, Ana M; Gómez-Fatou, Marian

    2012-01-01

    Composite materials based on epoxy matrix and single-walled carbon nanotubes (SWCNTs) are able to exhibit outstanding improvements in physical properties when using a tailored covalent functionalization with matrix-based moieties containing terminal amines or epoxide rings. The proper choice of grafted moiety and integration protocol makes it feasible to tune the composite physical properties. At 0.5 wt% SWCNT loading, these composites exhibit up to 65% improvement in storage modulus, 91% improvement in tensile strength, and 65% improvement in toughness. A 15 °C increase in the glass transition temperature relative to the parent matrix was also achieved. This suggests that a highly improved interfacial bonding between matrix and filler, coupled to improved dispersion, are achieved. The degradation temperatures show an upshift in the range of 40–60 °C, which indicates superior thermal performance. Electrical conductivity ranges from ∼10 −13 to ∼10 −3 S cm −1 , which also shows the possibility of tuning the insulating or conductive behaviour of the composites. The chemical affinity of the functionalization moieties with the matrix and the unchanged molecular structure at the SWCNT/matrix interface are responsible for such improvements. (paper)

  1. Two-dimensional NMR spectroscopy links structural moieties of soil organic matter to the temperature sensitivity of its decomposition

    Science.gov (United States)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Schleucher, Jürgen

    2015-04-01

    Soil organic matter (SOM) represents a huge carbon pool, specifically in boreal ecosystems. Warming-induced release of large amounts of CO2 from the soil carbon pool might become a significant exacerbating feedback to global warming, if decomposition rates of boreal soils were more sensitive to increased temperatures. Despite a large number of studies dedicated to the topic, it has proven difficult to elucidate how the organo-chemical composition of SOM influences its decomposition, or its quality as a substrate for microbial metabolism. A great part of this challenge results from our inability to achieve a detailed characterization of the complex composition of SOM on the level of molecular structural moieties. 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to characterize SOM. However, SOM is a very complex mixture and the chemical shift regions distinguished in the 13C NMR spectra often represent many different molecular fragments. For example, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. We applied two-dimensional (2D) NMR to characterize SOM with highly increased resolution. We directly dissolved finely ground litters and forest floors'fibric and humic horizons'of both coniferous and deciduous boreal forests in dimethyl sulfoxide and analyzed the resulting solution with a 2D 1H-13C NMR experiment. In the 2D planes of these spectra, signals of CH groups can be resolved based on their 13C and 1H chemical shifts, hence the resolving power and information content of these NMR spectra is hugely increased. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra, so that hundreds of distinct CH groups could be observed and many molecular fragments could be identified. For instance, in the aromatics region, signals from individual lignin units could

  2. SYNTHESIZING DERIVATIVES FROM CYCLOPENTANONE ANALOGUE CURCUMIN AND THEIR TOXIC, ANTIOXIDANT AND ANTI-INFLAMMATORY ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Adel Zamri1

    2011-11-01

    Full Text Available Three types of cyclopentanone derivatives have been synthesized from aromatic aldehyde and ketone derivatives undera base condition through aldol condensation. These cyclopentanone products were 2,5-dibenzylidene-cyclopentanone(a, 2,5-bis-(4-hydroxy-benzylidene-cyclopentanone (b, and 2,5-bis-(4-hydroxy-benzylidene-cyclopentanone (cwhich has a yield of 63-99%. The chemical structure of these compounds were determined using UV, IR and NMRspectroscopy. In order to clarify the role of hydroxyl and amine moieties, toxic, antioxidant and anti-inflammatoryactivities were carried out. The toxic test indicated that the compounds showed strong toxicity. In addition, the presenceof hydroxyl and amine groups on both rings of curcumin increased the antioxidant and anti-inflammatory activities

  3. Synthesis and antimicrobial properties of 1,3,4-oxadiazole analogs containing dibenzosuberone moiety

    Energy Technology Data Exchange (ETDEWEB)

    Moger, Manjunath [Mangalore University, Karnataka (India). Department of Chemistry; Satam, Vijay; Paniraj, A.S.; Gopinath, Vadiraj S.; Hindupur, Rama Mohan; Pati, Hari N., E-mail: hari.pati@advinus.com [Advinus Therapeutics Ltd., 21 and 22, Phase II, Peenya Industrial Area, Karnataka (India); Govindaraju, Darshan Raj C. [Department of Bio-Medicinal Research, Vidya Herbs Pvt. Ltd., Karnataka (India)

    2014-01-15

    A series of ten novel 1,3,4-oxadiazole analogs containing dibenzosuberone moiety were synthesized using linear as well as convergent synthesis approach. All the compounds were characterized by mass spectrometry, infrared (IR), {sup 1}H and {sup 13}C nuclear magnetic resonance ({sup 1}H NMR and {sup 13}C NMR) spectroscopies and elemental analysis. These compounds were evaluated for antibacterial and antifungal activities. Among ten analogs, four compounds, namely, 8a, 8d, 8e and 8j were found to be highly active antibacterial and antifungal agents (author)

  4. Determination of Structural Requirements of N-Substituted Tetrahydro-β-Carboline Imidazolium Salt Derivatives Using in Silico Approaches for Designing MEK-1 Inhibitors

    Directory of Open Access Journals (Sweden)

    Jingwei Liang

    2017-06-01

    Full Text Available Novel N-substituted tetrahydro-β-carboline imidazolium salt derivatives proved to have potent antitumor activity in past research. The Topomer CoMFA and CoMSIA function in Sybyl-X 2.0 software was applied for the identification of important features of N-substituted tetrahydro-β-carboline-imidazolium salt derivative moieties. In the case of Topomer CoMFA, all the compounds were split into two fragments which were used to generate a 3D invariant representation, the statistical results of the Topomer CoMFA model: q2 value of 0.700; r2 value of 0.954; with 5 optimum components. The database alignment was utilized for building the CoMSIA model, and the CoMSIA model had q2 and r2 values of 0.615 and 0.897, with 4 optimum components. Target fishing of the PharmMapper platform was utilised for finding potential targets, the human mitogen-activated protein kinase 1 (MEK-1 was found to be the primary potential target for the three compounds with the fit scores of 6.288, 5.741, and 6.721. The molecular docking technique of MOE 2015 was carried out to identify the interactions of amino acids surrounding the ligand, and correlating QASR contour maps were used to identify structural requirements of N-substituted tetrahydro-β-carboline imidazolium salt moieties. Molecular dynamics and simulation studies proved that the target protein was stable for 0.8–5 ns. The pivotal moieties of N-substituted tetrahydro-β-carboline imidazolium salt derivatives and its potential targets were verified by the QASR study, PharmMapper, and the molecular docking study which would be helpful to design novel MEK-1 inhibitors for anticancer drugs.

  5. Terbinafine: effects on platelet-derived growth factor-stimulated smooth muscle cells in vitro and myointimal proliferation in vivo

    International Nuclear Information System (INIS)

    McCarthy, L.; Van Halen, R.G.; St Denny, I.H.; Glinka, K.G.; Handley, D.A.; Stuetz, A.; Nemecek, G.M.

    1987-01-01

    Terbinafine (T; (E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic agent with antimitogenic activity in fibroblasts, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated aortic smooth muscle cell DNA synthesis in vitro and myointimal proliferation in vivo. Exposure of smooth muscle cells to 1-25 μM T resulted in a concentration-dependent inhibition of PDGF-induced mitogenesis as determined by [ 3 H]thymidine incorporation or cell number. The IC 50 for T was approximately 5 μM. The inhibitory effect of terbinafine persisted in the presence of 0.4-8.0 μg/ml cholesterol or 130 μg/ml mevalonate. Administration of T to rats for 2 d before and 14 d after balloon catheter carotid injury resulted in a 40% decrease in lesion area. These observations indicate that T is both a potent in vitro antagonist of the smooth muscle cell mitogenic response to PDGF and an effective, well-tolerated, orally active inhibitor of myointimal proliferation in vivo

  6. Terbinafine: effects on platelet-derived growth factor-stimulated smooth muscle cells in vitro and myointimal proliferation in vivo

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, L.; Van Halen, R.G.; St. Denny, I.H.; Glinka, K.G.; Handley, D.A.; Stuetz, A.; Nemecek, G.M.

    1987-05-01

    Terbinafine (T; (E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic agent with antimitogenic activity in fibroblasts, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated aortic smooth muscle cell DNA synthesis in vitro and myointimal proliferation in vivo. Exposure of smooth muscle cells to 1-25 ..mu..M T resulted in a concentration-dependent inhibition of PDGF-induced mitogenesis as determined by (/sup 3/H)thymidine incorporation or cell number. The IC/sub 50/ for T was approximately 5 ..mu..M. The inhibitory effect of terbinafine persisted in the presence of 0.4-8.0 ..mu..g/ml cholesterol or 130 ..mu..g/ml mevalonate. Administration of T to rats for 2 d before and 14 d after balloon catheter carotid injury resulted in a 40% decrease in lesion area. These observations indicate that T is both a potent in vitro antagonist of the smooth muscle cell mitogenic response to PDGF and an effective, well-tolerated, orally active inhibitor of myointimal proliferation in vivo.

  7. HPLC/DAD/MS analysis of flavonoids and cynamoyl derivatives in Vernonia amygdalina leaves

    Energy Technology Data Exchange (ETDEWEB)

    Salawu, S O [Department of Biochemistry, Federal University of Technology, Akure (Nigeria); [Department of Pharmaceutical Science, University of Florence, Florence (Italy); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)], E-mail: sosalawu@yahoo.com; it, ssalawu@ictp trieste; Akindahunsi, A A [Department of Biochemistry, Federal University of Technology, Akure (Nigeria); Mulinacci, N; Giaccherini, C; Innocenti, M; Vincieri, F F [Department of Pharmaceutical Science, University of Florence, Florence (Italy)

    2007-12-15

    Flavonoids and cynamoyl derivatives occurring in Vernonia amygdalina leaves have been identified and quantified. The identified flavonoids were luteolin, luteolin 7-O-glucuronoside, luteolin 7-O-glucoside and other two rutinosides of luteolin, with the sugar moiety linked in 4' and 7' The main flavonoids are luteolin- 7-O-glucoside and luteolin- 7-O-glucuronide. Three isomers belonging to the same class dicaffeoyl derivatives were identified as the cynamoyl derivative (dicaffeoyl quinic acid and 1,5 di-caffeoyl quinic acid) in addition to chlorogenic acid and caffeoyl quinic acid. The quantitative estimation of the compounds identified in vernonia amygdalina (mg/g dried weight) revealed that luteolin-7-O-glucuronide (0.47), luteolin-7-O-glucoside (0.36) were the dominant flavonoid while caffeoyl qunic acid derivatives were shown to be the dominant cinnamoyl derivative; dicaffeoyl quinic acid (0.78), 1,5 dicaffeoyl quinic acid (0.41) . The identified phenolic compounds would contribute to the antioxidant activity elicited by the studied plant due to the established potency of phenolic compounds as antioxidant molecules. (author)

  8. HPLC/DAD/MS analysis of flavonoids and cynamoyl derivatives in Vernonia amygdalina leaves

    International Nuclear Information System (INIS)

    Salawu, S.O.; Akindahunsi, A.A.; Mulinacci, N.; Giaccherini, C.; Innocenti, M.; Vincieri, F.F.

    2007-12-01

    Flavonoids and cynamoyl derivatives occurring in Vernonia amygdalina leaves have been identified and quantified. The identified flavonoids were luteolin, luteolin 7-O-glucuronoside, luteolin 7-O-glucoside and other two rutinosides of luteolin, with the sugar moiety linked in 4' and 7' The main flavonoids are luteolin- 7-O-glucoside and luteolin- 7-O-glucuronide. Three isomers belonging to the same class dicaffeoyl derivatives were identified as the cynamoyl derivative (dicaffeoyl quinic acid and 1,5 di-caffeoyl quinic acid) in addition to chlorogenic acid and caffeoyl quinic acid. The quantitative estimation of the compounds identified in vernonia amygdalina (mg/g dried weight) revealed that luteolin-7-O-glucuronide (0.47), luteolin-7-O-glucoside (0.36) were the dominant flavonoid while caffeoyl qunic acid derivatives were shown to be the dominant cinnamoyl derivative; dicaffeoyl quinic acid (0.78), 1,5 dicaffeoyl quinic acid (0.41) . The identified phenolic compounds would contribute to the antioxidant activity elicited by the studied plant due to the established potency of phenolic compounds as antioxidant molecules. (author)

  9. Biosynthesis of membrane lipids of thermophilic archaebacteria and its implication to early evolution of life

    International Nuclear Information System (INIS)

    Oshima, Tairo

    1995-01-01

    The unit lipid of cell membranes of archaebacteria is unique ether lipids, O-dialkylated glycerol with a polar head group at sn-1 position. The chirality of glycerol moiety of the lipids is opposite to that of other kingdoms. The hydrophobic potion consists of saturated C 20 isoprenoid hydrocarbon backbone and is connected to glycerol by an ether linkage. In addition, cell membrane of some of thermophilic archaebacteria are monolayer (in stead of bilayer) of tetraether lipids in which both tails of hydrocarbon chains of two diether lipids are covalently connected in a tail-to-tail fashion. Although the host cell from which contemporary eukaryotes have been derived by endosymbiosis, is speculated to be an archaebacterium, the unique ether lipids raised a serious question to the idea of archabacterial origin of eukaryote cells; why the unique ether lipids are not used to construct cytoplasmic membranes of eukaryotes? The author and his colleagues have studied biosynthesis of membrane liquids of two thermo-acidophilic archaebacteria, Thermoplasma and Sulfolobus. It was found that origins of stereospecificity of glycerol moiety of archaebacterial ether lipids differs form species to species. In Sulfolobus sn-glycerol-1-phosphate (the abnormal isomer of glycerol phosphate) seems to be directly synthesized from glycerol, whereas in Halobacterium stereospecificity of glycerol phosphate is inverted during the lipid synthesis. Recently we found that specific inhibitors for eukaryotes squalene epoxidase inhibit the condensation of diether lipids to tetraether lipids in cell-free extracts of these thermophilic archaebacteria. The results suggest evolutionary implication of archaebacterial tetraether condensing enzyme to eukaryote sterol biosynthesis. Relationships between chemical structures of membrane lipids and early evolution of life will be discussed. (author). Abstract only

  10. Factors influencing the antifolate activity of synthetic tea-derived catechins.

    Science.gov (United States)

    Sáez-Ayala, Magalí; Fernández-Pérez, María Piedad; Chazarra, Soledad; Mchedlishvili, Nani; Tárraga-Tomás, Alberto; Rodríguez-López, José Neptuno

    2013-07-16

    Novel tea catechin derivatives have been synthesized, and a structure-activity study, related to the capacity of these and other polyphenols to bind dihydrofolate reductase (DHFR), has been performed. The data showed an effective binding between all molecules and the free enzyme, and the dissociation constants of the synthetic compounds and of the natural analogues were on the same order. Polyphenols with a catechin configuration were better DHFR inhibitors than those with an epicatechin configuration. Antiproliferative activity was also studied in cultured tumour cells, and the data showed that the activity of the novel derivatives was higher in catechin isomers. Derivatives with a hydroxyl group para on the ester-bonded gallate moiety presented a high in vitro binding to DHFR, but exhibited transport problems in cell culture due to ionization at physiologic pHs. The impact of the binding of catechins to serum albumin on their biological activity was also evaluated. The information provided in this study could be important for the design of novel medicinal active compounds derived from tea catechins. The data suggest that changes in their structure to avoid serum albumin interactions and to facilitate plasmatic membrane transport are essential for the intracellular functions of catechins.

  11. Isoprenoid quinones resolve the stratification of microbial redox processes in a biogeochemical continuum from the photic zone to deep anoxic sediments of the Black Sea.

    Science.gov (United States)

    Becker, Kevin W; Elling, Felix J; Schröder, Jan M; Lipp, Julius S; Goldhammer, Tobias; Zabel, Matthias; Elvert, Marcus; Overmann, Jörg; Hinrichs, Kai-Uwe

    2018-03-09

    The stratified water column of the Black Sea serves as a model ecosystem for studying the interactions of microorganisms with major biogeochemical cycles. Here we provide detailed analysis of isoprenoid quinones to study microbial redox processes in the ocean. In a continuum from the photic zone through the chemocline into deep anoxic sediments of the southern Black Sea, diagnostic quinones and inorganic geochemical parameters indicate niche segregation between redox processes and corresponding shifts in microbial community composition. Quinones specific for oxygenic photosynthesis and aerobic respiration dominate oxic waters, while quinones associated with thaumarchaeal ammonia-oxidation and bacterial methanotrophy, respectively, dominate a narrow interval in suboxic waters. Quinone distributions indicate highest metabolic diversity within the anoxic zone, with anoxygenic photosynthesis being a major process in its photic layer. In the dark anoxic layer, quinone profiles indicate occurrence of bacterial sulfur and nitrogen cycling, archaeal methanogenesis, and archaeal methanotrophy. Multiple novel ubiquinone isomers, possibly originating from unidentified intra-aerobic anaerobes, occur in this zone. The respiration modes found in the anoxic zone continue into shallow subsurface sediments, but quinone abundances rapidly decrease within the upper 50 cm below sea floor, reflecting the transition to lower energy availability. In the deep subseafloor sediments, quinone distributions and geochemical profiles indicate archaeal methanogenesis/methanotrophy and potentially bacterial fermentative metabolisms. We observed that sedimentary quinone distributions track lithology, which supports prior hypotheses that deep biosphere community composition and metabolisms are determined by environmental conditions during sediment deposition. Importance Microorganisms play crucial roles in global biogeochemical cycles. Yet, we have only a fragmentary understanding of the diversity

  12. Attachment of inorganic moieties onto aliphatic polyurethanes

    Directory of Open Access Journals (Sweden)

    Eliane Ayres

    2007-06-01

    Full Text Available Polyurethanes have been used in a series of applications due basically to their versatility in terms of controlling the behavior by altering basically the type of reagents used. However, for more specific and advanced applications, such as in membranes, biomaterials and sensors, well-organized and defined chemical functionalities are necessary. In this work, inorganic functionalities were incorporated into aliphatic polyurethanes (PU having different macromolecular architectures. Polyurethanes were synthesized using a polyether diol and dicyclohexylmethane 4,4' diisocyanate (H12-MDI. Polyurethanes having carboxylic acid groups were also produced by introducing 2,2- bis (hydroxymethyl propionic acid in the polymerization process. Inorganic functionalities were inserted into polyurethanes by reacting isocyanate end capped chains with aminopropyltriethoxysilane followed by tetraethoxysilane. PU having carboxylic acid groups yielded transparent samples after the incorporation of inorganic entities, as an evidence of smaller and better dispersed inorganic entities in the polymer network. FTIR and swelling measurements showed that polyurethanes having carboxylic acid groups had inorganic domains less packed, condensed and cross-linked when compared to polyurethanes with no carboxylic acid groups. Results also suggested that the progressive incorporation of inorganic moieties in both types of polyurethanes occurred in regions previously activated with inorganic functionalities, instead of by the creation of new domains. The temperatures of thermal decomposition and glass transition were also shifted to higher temperatures when inorganic functionalities were incorporated into polyurethanes.

  13. Discovery of novel propargylamine-modified 4-aminoalkyl imidazole substituted pyrimidinylthiourea derivatives as multifunctional agents for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Xu, Yi-Xiang; Wang, Huan; Li, Xiao-Kang; Dong, Sheng-Nan; Liu, Wen-Wen; Gong, Qi; Wang, Tian-Duan-Yi; Tang, Yun; Zhu, Jin; Li, Jian; Zhang, Hai-Yan; Mao, Fei

    2018-01-01

    A series of novel propargylamine-modified pyrimidinylthiourea derivatives (1-3) were designed and synthesized as multifunctional agents for Alzheimer's disease (AD) therapy, and their potential was evaluated through various biological experiments. Among these derivatives, compound 1b displayed good selective inhibitory activity against AChE (vs BuChE, IC 50  = 0.324 μM, SI > 123) and MAO-B (vs MAO-A, IC 50  = 1.427 μM, SI > 35). Molecular docking study showed that the pyrimidinylthiourea moiety of 1b could bind to the catalytic active site (CAS) of AChE, and the propargylamine moiety interacted directly with the flavin adenine dinucleotide (FAD) of MAO-B. Moreover, 1b demonstrated mild antioxidant ability, good copper chelating property, effective inhibitory activity against Cu 2+ -induced Aβ 1-42 aggregation, moderate neuroprotection, low cytotoxicity, and appropriate blood-brain barrier (BBB) permeability in vitro and was capable of ameliorating scopolamine-induced cognitive impairment in mice. These results indicated that 1b has the potential to be a multifunctional candidate for the treatment of Alzheimer's disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. The Synthesis of Novel 3-Substituted Poly(pyrroles) Bearing Crown-ether Moieties and a Study of their Electrochemical Properties

    DEFF Research Database (Denmark)

    Guernion, Nicolas J.L.; Blencowe, A.; Hayes, Wayne

    2006-01-01

    A series of fourteen novel pyrrole monomers substituted at the 3-position with aliphatic and aromatic crown-ether moieties have been synthesised in good yield and characterised extensively. Several of those compounds were electropolymerised successfully in acetonitrile, using both potentiostatic ...

  15. Statins inhibit protein lipidation and induce the unfolded protein response in the non-sterol producing nematode Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Mörck, Catarina; Elmelund-Præstekær, Louise Cathrine Braun; Kurth, Caroline

    2009-01-01

    of lipid moieties for protein prenylation. The nematode Caenorhabditis elegans possesses a mevalonate pathway that lacks the branch leading to cholesterol synthesis, and thus represents an ideal organism to specifically study the noncholesterol roles of the pathway. Inhibiting HMG-CoA reductase in C....... elegans using statins or RNAi leads to developmental arrest and loss of membrane association of a GFP-based prenylation reporter. The unfolded protein response (UPR) is also strongly activated, suggesting that impaired prenylation of small GTPases leads to the accumulation of unfolded proteins and ER...... and fatty acid composition were unaffected in statin-treated worms, even though they showed reduced staining with Nile red. We conclude that inhibitors of HMG-CoA reductase or of farnesyl transferases induce the UPR by inhibiting the prenylation of M57.2 substrates, resulting in developmental arrest in C...

  16. Characterization and utilization of hydrotreated products produced from the Whiterocks (Utah) tar sand bitumen-derived liquid

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.H.; Longstaff, D.C.; Deo, M.D.; Hanson, F.V.; Oblad, A.G.

    1991-12-31

    The bitumen-derived liquid produced in a 4-inch diameter fluidized-bed reactor from the mined and crushed ore from the Whiterocks tar sand deposit has been hydrotreated in a fixed-bed reactor. The purpose was to determine the extent of upgrading as a function of process operating variable. A sulfided nickel-molybendum on alumina hydrodenitrogenation catalyst was used in all experiments. Moderately severe operating conditions were employed; that is, high reaction temperature (617--680 K) high reactor pressure (11.0--17.1 MPa) and low liquid feed rate (0.18--0.77 HSV); to achieve the desired reduction in heteroatom content. Detailed chemical structures of the bitumen-derived liquid feedstock and the hydrotreated total liquid products were determined by high resolution gas chromatography - mass spectrometry analyses. The compounds identified in the native bitumen included isoprenoids; bicyclic, tricycle, and tetracyclic terpenoids; steranes; hopanes; and perhydro-{beta}-carotenes. In addition, normal and branched alkanes and alkenes and partially dehydrogenated hydroaromatics were identified in the bitumen-derived liquid. The dominant pyrolysis reactions were: (1) the dealkylation of long alkyl side chains to form {alpha} - and isoolefins; and (2) the cleavage of alkyl chains linking aromatic and hydroaromatic clusters. Olefinic bonds were not observed in the hydrotreated product and monoaromatic hydrocarbons were the predominant aromatic species. The properties of the jet fuel fractions from the hydrotreated products met most of the jet fuel specifications. The cetane indices indicated these fractions would be suitable for use as diesel fuels.

  17. Characterization and utilization of hydrotreated products produced from the Whiterocks (Utah) tar sand bitumen-derived liquid

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.H.; Longstaff, D.C.; Deo, M.D.; Hanson, F.V.; Oblad, A.G.

    1991-01-01

    The bitumen-derived liquid produced in a 4-inch diameter fluidized-bed reactor from the mined and crushed ore from the Whiterocks tar sand deposit has been hydrotreated in a fixed-bed reactor. The purpose was to determine the extent of upgrading as a function of process operating variable. A sulfided nickel-molybendum on alumina hydrodenitrogenation catalyst was used in all experiments. Moderately severe operating conditions were employed; that is, high reaction temperature (617--680 K) high reactor pressure (11.0--17.1 MPa) and low liquid feed rate (0.18--0.77 HSV); to achieve the desired reduction in heteroatom content. Detailed chemical structures of the bitumen-derived liquid feedstock and the hydrotreated total liquid products were determined by high resolution gas chromatography - mass spectrometry analyses. The compounds identified in the native bitumen included isoprenoids; bicyclic, tricycle, and tetracyclic terpenoids; steranes; hopanes; and perhydro-{beta}-carotenes. In addition, normal and branched alkanes and alkenes and partially dehydrogenated hydroaromatics were identified in the bitumen-derived liquid. The dominant pyrolysis reactions were: (1) the dealkylation of long alkyl side chains to form {alpha} - and isoolefins; and (2) the cleavage of alkyl chains linking aromatic and hydroaromatic clusters. Olefinic bonds were not observed in the hydrotreated product and monoaromatic hydrocarbons were the predominant aromatic species. The properties of the jet fuel fractions from the hydrotreated products met most of the jet fuel specifications. The cetane indices indicated these fractions would be suitable for use as diesel fuels.

  18. Isoprenoid emission response to changing light conditions of English oak, European beech and Norway spruce

    Science.gov (United States)

    van Meeningen, Ylva; Schurgers, Guy; Rinnan, Riikka; Holst, Thomas

    2017-09-01

    Light is an important environmental factor controlling biogenic volatile organic compound (BVOC) emissions, but in natural conditions its impact is hard to separate from other influential factors such as temperature. We studied the light response of foliar BVOC emissions, photosynthesis and stomatal conductance on three common European tree species, namely English oak (Quercus robur), European beech (Fagus sylvatica) and two provenances of Norway spruce (Picea abies) in Taastrup, Denmark. Leaf scale measurements were performed on the lowest positioned branches of the tree in July 2015. Light intensity was increased in four steps (0, 500, 1000 and 1500 µmol m-2 s-1), whilst other chamber conditions such as temperature, humidity and CO2 levels were fixed. Whereas the emission rate differed between individuals of the same species, the relative contributions of compounds to the total isoprenoid emission remained similar. Whilst some compounds were species specific, the compounds α-pinene, camphene, 3-carene, limonene and eucalyptol were emitted by all of the measured tree species. Some compounds, like isoprene and sabinene, showed an increasing emission response with increasing light intensity, whereas other compounds, like camphene, had no significant emission response to light for most of the measured trees. English oak and European beech showed high light-dependent emission fractions from isoprene and sabinene, but other emitted compounds were light independent. For the two provenances of Norway spruce, the compounds α-pinene, 3-carene and eucalyptol showed high light-dependent fractions for many of the measured trees. This study highlights differences between compound emissions in their response to a change in light and a possible light independence for certain compounds, which might be valid for a wider range of tree species. This information could be of importance when improving emission models and to further emphasize the discussion regarding light or

  19. Controlled radical polymerization of an acrylamide containing L-alanine moiety via ATRP.

    Science.gov (United States)

    Rafiee, Zahra

    2016-02-01

    Homopolymerization of an optically active acrylamide having an amino acid moiety in the side chain, N-acryloyl-L-alanine (AAla) was carried out via atom transfer radical polymerization (ATRP) at room temperature using 2-hydroxyethyl-2'-methyl-2'-bromopropionate (HMB) or sodium-4-(bromomethyl)benzoate (SBB) as initiator in pure water, methanol/water mixture and pure methanol solvents. The polymerization reaction resulted in the optically active biocompatible amino acid-based homopolymer in good yield with narrow molecular weight distribution. The number average molecular weight increased with conversion and polydispersity was low. The structure and molecular weight of synthesized polymer were characterized by (1)H NMR, FT-IR spectroscopic techniques and size-exclusion chromatography.

  20. Synthesis and Biological Evaluation of Resveratrol Derivatives as Melanogenesis Inhibitors

    Directory of Open Access Journals (Sweden)

    Qing Liu

    2015-09-01

    Full Text Available Resveratrol (1, a naturally occurring stilbene compound, has been suggested as a potential whitening agent with strong inhibitory activity on melanin synthesis. However, the use of resveratrol in cosmetics has been limited due to its chemical instability and poor bioavailability. Therefore, resveratrol derivatives were prepared to improve bioavailability and anti-melanogenesis activity. Nine resveratrol derivatives including five alkyl ether derivatives with C2H5, C4H9, C5H11, C6H13, and C8H17 (2a–2e and four ester derivatives with CH3, CH=C(CH32, CH(C2H5C4H9, C7H15 (3a–3d were newly synthesized and their effect on melanin synthesis were assessed. All the synthetic derivatives efficiently reduced the melanin content in α-MSH stimulated B16F10 melanoma cells. Further investigation showed that the inhibitory effect of 2a on melanin synthesis was achieved not by the inhibition of tyrosinase activity but by the inhibition of melanogenic enzyme expressions such as tyrosinase and tyrosinase-related protein (TRP-1. Our synthetic resveratrol derivatives have more lipophilic properties than resveratrol by the addition of alkyl or acyl chains to free hydroxyl moiety of resveratrol; thus, they are expected to show better bioavailability in skin application. Therefore, we suggest that our synthetic resveratrol derivatives might be promising candidates for better practical application to skin-whitening cosmetics.

  1. Novel amide derivatives as inhibitors of histone deacetylase: design, synthesis and SAR

    DEFF Research Database (Denmark)

    Andrianov, V.; Gailite, V.; Lola, D.

    2009-01-01

    Enzymatic inhibition of histone deacetylase (HDAC) activity is emerging as an innovative and effective approach for the treatment of cancer. A series of novel amide derivatives have been synthesized and evaluated for their ability to inhibit human HDACs. Multiple compounds were identified as potent...... HDAC inhibitors (HDACi), with IC(50) values in the low nanomolar (nM) range against enzyme activity in HeLa cell extracts and sub-microM for their in vitro anti-proliferative effect on cell lines. The introduction of an unsaturated linking group between the terminal aryl ring and the amide moiety...

  2. Preparation of Gc protein-derived macrophage activating factor (GcMAF) and its structural characterization and biological activities.

    Science.gov (United States)

    Mohamad, Saharuddin Bin; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

    2002-01-01

    Gc protein has been reported to be a precursor of Gc protein-derived macrophage activation factor (GcMAF) in the inflammation-primed macrophage activation cascade. An inducible beta-galactosidase of B cells and neuraminidase of T cells convert Gc protein to GcMAF. Gc protein from human serum was purified using 25(OH)D3 affinity column chromatography and modified to GcMAF using immobilized glycosidases (beta-galactosidase and neuraminidase) The sugar moiety structure of GcMAF was characterized by lectin blotting by Helix pomatia agglutinin. The biological activities of GcMAF were evaluated by a superoxide generation assay and a phagocytosis assay. We successfully purified Gc protein from human serum. GcMAF was detected by lectin blotting and showed a high biological activity. Our results support the importance of the terminal N-acetylgalactosamine moiety in the GcMAF-mediated macrophage activation cascade, and the existence of constitutive GcMAF in human serum. These preliminary data are important for designing small molecular GcMAF mimics.

  3. Bioreversible Derivatives of Phenol. 2. Reactivity of Carbonate Esters with Fatty Acid-like Structures Towards Hydrolysis in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Claus Larsen

    2007-10-01

    Full Text Available A series of model phenol carbonate ester prodrugs encompassing derivatives with fatty acid-like structures were synthesized and their stability as a function of pH (range 0.4 – 12.5 at 37°C in aqueous buffer solutions investigated. The hydrolysis rates in aqueous solutions differed widely, depending on the selected pro-moieties (alkyl and aryl substituents. The observed reactivity differences could be rationalized by the inductive and steric properties of the substituent groups when taking into account that the mechanism of hydrolysis may change when the type of pro-moiety is altered, e.g. n-alkyl vs. t-butyl. Hydrolysis of the phenolic carbonate ester 2-(phenoxycarbonyloxy-acetic acid was increased due to intramolecular catalysis, as compared to the derivatives synthesized from ω-hydroxy carboxylic acids with longer alkyl chains. The carbonate esters appear to be less reactive towards specific acid and base catalyzed hydrolysis than phenyl acetate. The results underline that it is unrealistic to expect that phenolic carbonate ester prodrugs can be utilized in ready to use aqueous formulations. The stability of the carbonate ester derivatives with fatty acid-like structures, expected to interact with the plasma protein human serum albumin, proved sufficient for further in vitro and in vivo evaluation of the potential of utilizing HSA binding in combination with the prodrug approach for optimization of drug pharmacokinetics.

  4. Cyclohexane/benzene organic glasses and ethylene/styrene copolymers behaviour under ionizing radiations: energy and species transfers between aliphatic and aromatic moieties

    International Nuclear Information System (INIS)

    Ferry, M.

    2008-11-01

    The aim of this study is to understand how aliphatic and aromatic groups interact under ionizing radiations. Three research orientations were explored: the determination of the relative contribution of energy and radical transfers, the determination of the intermolecular and intra-chain relative contribution, and the influence of the repartition of the aliphatic and aromatic units inside the polymer chain. Three systems composed of aromatic and aliphatic units were studied: the cyclohexane/benzene organic glasses (intermolecular reactions), the ethylene/styrene random copolymers (inter-chain and intra-chain reactions) and ethylene/styrene di-blocs copolymers (influence of the repartition of the aliphatic and aromatic units in the material). Considering the results obtained, we have concluded that energy transfers are important in the radiation protection effect of the aliphatic moiety by the aromatic one, although radical transfers are also contributing. Intermolecular transfers are efficient in the solid state and their efficiency seems equivalent to that of the intra-chain ones. Thanks to the use of infrared spectroscopy, we have shown an important effect of radiation sensitization of the aromatic moiety, whatever the irradiation temperature and the system studied: energy transfers to the aromatic moiety are carried out at the detriment of its stability. Finally, the repartition of the aliphatic and aromatic units in the polymer chain is not an important factor in the effects induced by the energy transfers. (author)

  5. Mesoporous silicas with covalently immobilized β-cyclodextrin moieties: synthesis, structure, and sorption properties

    Science.gov (United States)

    Roik, Nadiia V.; Belyakova, Lyudmila A.; Trofymchuk, Iryna M.; Dziazko, Marina O.; Oranska, Olena I.

    2017-09-01

    Mesoporous silicas with chemically attached macrocyclic moieties were successfully prepared by sol-gel condensation of tetraethyl orthosilicate and β-cyclodextrin-silane in the presence of a structure-directing agent. Introduction of β-cyclodextrin groups into the silica framework was confirmed by the results of IR spectral, thermogravimetric, and quantitative chemical analysis of surface compounds. The porous structure of the obtained materials was characterized by nitrogen adsorption-desorption measurements, powder X-ray diffraction, transmission electron microscopy, and dynamic light scattering. It was found that the composition of the reaction mixture used in β-cyclodextrin-silane synthesis significantly affects the structural parameters of the resulting silicas. The increase in (3-aminopropyl)triethoxysilane as well as the coupling agent content in relation to β-cyclodextrin leads ultimately to the lowering or complete loss of hexagonal arrangement of pore channels in the synthesized materials. Formation of hexagonally ordered mesoporous structure was observed at molar composition of the mixture 0.049 TEOS:0.001 β-CD-silane:0.007 CTMAB:0.27 NH4OH:7.2 H2O and equimolar ratio of components in β-CD-silane synthesis. The sorption of alizarin yellow on starting silica and synthesized materials with chemically attached β-cyclodextrin moieties was studied in phosphate buffer solutions with pH 7.0. Experimental results of the dye equilibrium sorption were analyzed using Langmuir, Freundlich, and Redlich-Peterson isotherm models. It was proved that the Redlich-Peterson isotherm model is the most appropriate for fitting the equilibrium sorption of alizarin yellow on parent silica with hexagonally arranged mesoporous structure as well as on modified one with chemically immobilized β-cyclodextrin groups. [Figure not available: see fulltext.

  6. Design and study of some novel ibuprofen derivatives with potential nootropic and neuroprotective properties.

    Science.gov (United States)

    Siskou, Ioanna C; Rekka, Eleni A; Kourounakis, Angeliki P; Chrysselis, Michael C; Tsiakitzis, Kariofyllis; Kourounakis, Panos N

    2007-01-15

    Six novel ibuprofen derivatives and related structures, incorporating a proline moiety and designed for neurodegenerative disorders, are studied. They possess anti-inflammatory properties and three of them inhibited lipoxygenase. One compound was found to inhibit cyclooxygenase (COX)-2 production in spleenocytes from arthritic rats. The HS-containing compounds are potent antioxidants and one of them protected against glutathione loss after cerebral ischemia/reperfusion. They demonstrated lipid-lowering ability and seem to acquire low gastrointestinal toxicity. Acetylcholinesterase inhibitory activity, found in two of these compounds, may be an asset to their actions.

  7. Occurrence and distribution of tetraether membrane lipids in soils: implications for the use of the TEX86 proxy and the BIT index

    NARCIS (Netherlands)

    Weijers, J.W.H.; Schouten, S.; Spaargaren, O.C.; Sinnige Damsté, J.S.

    2006-01-01

    A diverse collection of globally distributed soil samples was analyzed for its glycerol dialkyl glycerol tetraether (GDGT) membrane lipid content. Branched GDGTs, derived from anaerobic soil bacteria, were the most dominant and were found in all soils. Isoprenoid GDGTs, membrane lipids of Archaea,

  8. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation

    DEFF Research Database (Denmark)

    Wang, Wei-Qing; Song, Bin-Yan; Deng, Zhi-Jun

    2015-01-01

    the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination...

  9. Loss of HMG-CoA reductase in C. elegans causes defects in protein prenylation and muscle mitochondria.

    Directory of Open Access Journals (Sweden)

    Parmida Ranji

    Full Text Available HMG-CoA reductase is the rate-limiting enzyme in the mevalonate pathway and the target of cholesterol-lowering statins. We characterized the C. elegans hmgr-1(tm4368 mutant, which lacks HMG-CoA reductase, and show that its phenotypes recapitulate that of statin treatment, though in a more severe form. Specifically, the hmgr-1(tm4368 mutant has defects in growth, reproduction and protein prenylation, is rescued by exogenous mevalonate, exhibits constitutive activation of the UPRer and requires less mevalonate to be healthy when the UPRmt is activated by a constitutively active form of ATFS-1. We also show that different amounts of mevalonate are required for different physiological processes, with reproduction requiring the highest levels. Finally, we provide evidence that the mevalonate pathway is required for the activation of the UPRmt.

  10. Palladium(II)-catalyzed ortho-C-H arylation/alkylation of N-benzoyl α-amino ester derivatives.

    Science.gov (United States)

    Misal Castro, Luis C; Chatani, Naoto

    2014-04-14

    The palladium-catalyzed arylation/alkylation of ortho-C-H bonds in N-benzoyl α-amino ester derivatives is described. In such a system both the NH-amido and the CO2R groups in the α-amino ester moieties play a role in successful C-H activation/C-C bond formation using iodoaryl coupling partners. A wide variety of functional groups and electron-rich/deficient iodoarenes are tolerated. The yields obtained range from 20 to 95%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Development of Mucoadhesive Chitosan Derivatives for Use as Submucosal Injections

    Directory of Open Access Journals (Sweden)

    Hidemi Hattori

    2018-04-01

    Full Text Available Endoscopic mucosal resection (EMR and endoscopic submucosal dissection (ESD have been used for surgical treatment of early gastric cancer. These endoscopic techniques require proper submucosal injections beneath the tumor to provide a sufficiently high submucosal fluid cushion (SFC to facilitate clean dissection and resection of the tumor. Until now, the submucosal injection materials developed for endoscopic techniques such as EMR and ESD of tumors have been composed of macromolecules, proteins, or polysaccharides. We have been investigating the use of chitosan, a product that is obtained by the alkaline deacetylation of chitin, the second-most abundant natural polysaccharide. Specifically, we have been studying a photocrosslinked chitosan hydrogel (PCH and solubilized chitosan derivatives for use as novel submucosal injections for endoscopic techniques. Notably, chitosan derivatives with lactose moieties linked to the amino groups of its glucosamine units can specifically interact with acidic mucopolysaccharides and mucins in submucosa without the need for the incorporation of harmful photoreactive groups nor potentially mutagenic ultraviolet irradiation.

  12. Factors Influencing the Antifolate Activity of Synthetic Tea-Derived Catechins

    Directory of Open Access Journals (Sweden)

    José Neptuno Rodríguez-López

    2013-07-01

    Full Text Available Novel tea catechin derivatives have been synthesized, and a structure-activity study, related to the capacity of these and other polyphenols to bind dihydrofolate reductase (DHFR, has been performed. The data showed an effective binding between all molecules and the free enzyme, and the dissociation constants of the synthetic compounds and of the natural analogues were on the same order. Polyphenols with a catechin configuration were better DHFR inhibitors than those with an epicatechin configuration. Antiproliferative activity was also studied in cultured tumour cells, and the data showed that the activity of the novel derivatives was higher in catechin isomers. Derivatives with a hydroxyl group para on the ester-bonded gallate moiety presented a high in vitro binding to DHFR, but exhibited transport problems in cell culture due to ionization at physiologic pHs. The impact of the binding of catechins to serum albumin on their biological activity was also evaluated. The information provided in this study could be important for the design of novel medicinal active compounds derived from tea catechins. The data suggest that changes in their structure to avoid serum albumin interactions and to facilitate plasmatic membrane transport are essential for the intracellular functions of catechins.

  13. Wittig Reaction: Domino Olefination and Stereoselectivity DFT Study. Synthesis of the Miharamycins' Bicyclic Sugar Moiety.

    Science.gov (United States)

    Cachatra, Vasco; Almeida, Andreia; Sardinha, João; Lucas, Susana D; Gomes, Ana; Vaz, Pedro D; Florêncio, M Helena; Nunes, Rafael; Vila-Viçosa, Diogo; Calhorda, Maria José; Rauter, Amélia P

    2015-11-20

    2-O-Acyl protected-d-ribo-3-uloses reacted with [(ethoxycarbonyl)methylene]triphenylphosphorane in acetonitrile to afford regio- and stereoselectively 2-(Z)-alkenes in 10-60 min under microwave irradiation. This domino reaction is proposed to proceed via tautomerization of 3-ulose to enol, acyl migration, tautomerization to the 3-O-acyl-2-ulose, and Wittig reaction. Alternatively, in chloroform, regioselective 3-olefination of 2-O-pivaloyl-3-uloses gave (E)-alkenes, key precursors for the miharamycins' bicyclic sugar moiety.

  14. The SUD1 gene encodes a putative E3 ubiquitin ligase and is a positive regulator of 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in Arabidopsis.

    Science.gov (United States)

    Doblas, Verónica G; Amorim-Silva, Vítor; Posé, David; Rosado, Abel; Esteban, Alicia; Arró, Montserrat; Azevedo, Herlander; Bombarely, Aureliano; Borsani, Omar; Valpuesta, Victoriano; Ferrer, Albert; Tavares, Rui M; Botella, Miguel A

    2013-02-01

    The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of α factor (Doα10) and human TEB4, components of the endoplasmic reticulum-associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals.

  15. Cis-to- Trans Isomerization of Azobenzene Derivatives Studied with Transition Path Sampling and Quantum Mechanical/Molecular Mechanical Molecular Dynamics.

    Science.gov (United States)

    Muždalo, Anja; Saalfrank, Peter; Vreede, Jocelyne; Santer, Mark

    2018-04-10

    Azobenzene-based molecular photoswitches are becoming increasingly important for the development of photoresponsive, functional soft-matter material systems. Upon illumination with light, fast interconversion between a more stable trans and a metastable cis configuration can be established resulting in pronounced changes in conformation, dipole moment or hydrophobicity. A rational design of functional photosensitive molecules with embedded azo moieties requires a thorough understanding of isomerization mechanisms and rates, especially the thermally activated relaxation. For small azo derivatives considered in the gas phase or simple solvents, Eyring's classical transition state theory (TST) approach yields useful predictions for trends in activation energies or corresponding half-life times of the cis isomer. However, TST or improved theories cannot easily be applied when the azo moiety is part of a larger molecular complex or embedded into a heterogeneous environment, where a multitude of possible reaction pathways may exist. In these cases, only the sampling of an ensemble of dynamic reactive trajectories (transition path sampling, TPS) with explicit models of the environment may reveal the nature of the processes involved. In the present work we show how a TPS approach can conveniently be implemented for the phenomenon of relaxation-isomerization of azobenzenes starting with the simple examples of pure azobenzene and a push-pull derivative immersed in a polar (DMSO) and apolar (toluene) solvent. The latter are represented explicitly at a molecular mechanical (MM) and the azo moiety at a quantum mechanical (QM) level. We demonstrate for the push-pull azobenzene that path sampling in combination with the chosen QM/MM scheme produces the expected change in isomerization pathway from inversion to rotation in going from a low to a high permittivity (explicit) solvent model. We discuss the potential of the simulation procedure presented for comparative calculation of

  16. Novel cytokinin derivatives do not show negative effects on root growth and proliferation in submicromolar range.

    Directory of Open Access Journals (Sweden)

    Kateřina Podlešáková

    Full Text Available BACKGROUND: When applied to a nutrition solution or agar media, the non-substituted aromatic cytokinins caused thickening and shortening of the primary root, had an inhibitory effect on lateral root branching, and even showed some negative effects on development of the aerial part at as low as a 10 nanomolar concentration. Novel analogues of aromatic cytokinins ranking among topolins substituted on N9-atom of adenine by tetrahydropyranyl or 4-chlorobutyl group have been prepared and tested in standardized cytokinin bioassays [1]. Those showing comparable activities with N(6-benzylaminopurine were further tested in planta. METHODOLOGY/PRINCIPAL FINDINGS: The main aim of the study was to explain molecular mechanism of function of novel cytokinin derivatives on plant development. Precise quantification of cytokinin content and profiling of genes involved in cytokinin metabolism and perception in treated plants revealed several aspects of different action of m-methoxytopolin base and its substituted derivative on plant development. In contrast to standard cytokinins, N9- tetrahydropyranyl derivative of m-topolin and its methoxy-counterpart showed the negative effects on root development only at three orders of magnitude higher concentrations. Moreover, the methoxy-derivative demonstrates a positive effect on lateral root branching and leaf emerging in a nanomolar range of concentrations, in comparison with untreated plants. CONCLUSIONS/SIGNIFICANCE: Tetrahydropyranyl substitution at N9-position of cytokinin purine ring significantly enhances acropetal transport of a given cytokinins. Together with the methoxy-substitution, impedes accumulation of non-active cytokinin glucoside forms in roots, allows gradual release of the active base, and has a significant effect on the distribution and amount of endogenous isoprenoid cytokinins in different plant tissues. The utilization of novel aromatic cytokinin derivatives can distinctively improve expected

  17. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xun [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Liu, Lang [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450002 (China); College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Wang, Li-Ya, E-mail: wlya@lynu.edu.cn [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473601 (China); Song, Hong-Liang; Qiang Shi, Zhi; Wu, Xu-Hong [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Ng, Seik-Weng [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 80203 (Saudi Arabia)

    2013-10-15

    A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln{sub 2}(Hdpp){sub 2}(dpp){sub 2}]{sub n}Ln=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H{sub 2}dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1–5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 4+} basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this case results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions. - Graphical abstract: A new family of lanthanide-organic frameworks incorporating multi-donor twisted ligand has been fabricated successfully, and has been characterized systematically. The complexes 1–5 are isostructural, and all feather three dimensional (3D) frameworks based on the interconnection of 1D double stride chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 2+} basic carboxylate as secondary building unit (SBU). Display Omitted - Highlights: • New family of lanthanide–organic coordination polymers incorporating multifunctional N-hetrocyclic dicarboxylate ligand has been fabricated. • They have been characterized systematically. • They all feather three dimensional frameworks based on the binuclear moiety of [Ln{sub 2}(Hdpp){sub 2}]{sup 2+}. • The Eu(III) and Dy(III) analogues exhibit intense photoluminescence.

  18. In vitro efficacy of nitro- and halogeno-thiazolide/thiadiazolide derivatives against Sarcocystis neurona.

    Science.gov (United States)

    Gargala, G; Le Goff, L; Ballet, J J; Favennec, L; Stachulski, A V; Rossignol, J F

    2009-06-10

    Sarcocystis neurona is an obligate intracellular parasite that causes equine protozoal myeloencephalitis (EPM). The aim of this work was to document inhibitory activities of nitazoxanide (NTZ, [2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide]) and new thiazolides/thiadiazolides on S. neurona in vitro development, and investigate their structure-activity relationships. S. neurona was grown in bovine turbinate cell cultures. At concentrations varying from 1.0 to 5.0mg/L, nitazoxanide and 21 of 32 second generation thiazolide/thiadiazolide agents exerted a > or =95% maximum inhibition on S. neurona development. Most active agents were either NO(2) or halogen substituted in position 5 of their thiazole moiety. In contrast, other 5-substitutions such as hydrogen, methyl, SO(2)CH(3), and CH(3) negatively impacted activity. Compared with derivatives with an acetylated benzene moiety, deacetylated compounds which most probably represent primary metabolites exhibited similar inhibitory activities. Present data provide the first evidence of in vitro inhibitory activities of nitazoxanide and new thiazolides/thiadiazolides on S. neurona development. Active halogeno-thiazolide/thiadiazolides may provide a valuable nitro-free alternative to nitazoxanide for EPM treatment depending on further evaluation of their in vivo activities.

  19. Formation and Characterization of Self-Assembled Phenylboronic Acid Derivative Monolayers toward Developing Monosaccaride Sensing-Interface

    Directory of Open Access Journals (Sweden)

    Kwangnak Koh

    2007-08-01

    Full Text Available We designed and synthesized phenylboronic acid as a molecular recognitionmodel system for saccharide detection. The phenylboronic acid derivatives that haveboronic acid moiety are well known to interact with saccharides in aqueous solution; thus,they can be applied to a functional interface of saccharide sensing through the formation ofself-assembled monolayer (SAM. In this study, self-assembled phenylboronic acidderivative monolayers were formed on Au surface and carefully characterized by atomicforce microscopy (AFM, Fourier transform infrared reflection absorption spectroscopy(FTIR-RAS, surface enhanced Raman spectroscopy (SERS, and surface electrochemicalmeasurements. The saccharide sensing application was investigated using surface plasmonresonance (SPR spectroscopy. The phenylboronic acid monolayers showed goodsensitivity of monosaccharide sensing even at the low concentration range (1.0 × 10-12 M.The SPR angle shift derived from interaction between phenylboronic acid andmonosaccharide was increased with increasing the alkyl spacer length of synthesizedphenylboronic acid derivatives.

  20. A multi-target caffeine derived rhodium(i) N-heterocyclic carbene complex: evaluation of the mechanism of action.

    Science.gov (United States)

    Zhang, Jing-Jing; Muenzner, Julienne K; Abu El Maaty, Mohamed A; Karge, Bianka; Schobert, Rainer; Wölfl, Stefan; Ott, Ingo

    2016-08-16

    A rhodium(i) and a ruthenium(ii) complex with a caffeine derived N-heterocyclic carbene (NHC) ligand were biologically investigated as organometallic conjugates consisting of a metal center and a naturally occurring moiety. While the ruthenium(ii) complex was largely inactive, the rhodium(i) NHC complex displayed selective cytotoxicity and significant anti-metastatic and in vivo anti-vascular activities and acted as both a mammalian and an E. coli thioredoxin reductase inhibitor. In HCT-116 cells it increased the reactive oxygen species level, leading to DNA damage, and it induced cell cycle arrest, decreased the mitochondrial membrane potential, and triggered apoptosis. This rhodium(i) NHC derivative thus represents a multi-target compound with promising anti-cancer potential.

  1. Design, Synthesis and Antifungal/Insecticidal Evaluation of Novel Cinnamide Derivatives

    Directory of Open Access Journals (Sweden)

    Yanjun Xu

    2011-10-01

    Full Text Available Twenty novel cinnamamide derivatives were designed and synthesized using as lead compound pyrimorph, whose morpholine moiety was replaced by β-phenylethylamine. All the compounds were characterized by their spectroscopic data. The fungicidal and insecticidal activities were also evaluated. The preliminary results showed that all the title compounds had certain fungicidal activities against seven plant pathogens at a concentration of 50 μg/mL, and compounds 11a and 11l showed inhibition ratios of up to 90% against R. solani. Most of the title compounds exhibited moderate nematicidal activities. In general, the morpholine ring may be replaced by other amines and a chlorine atom in the pyridine ring is helpful to fungicidal activity.

  2. Ultrasound-Promoted Greener Synthesis of Novel Trifurcate 3-Substituted-chroman-2,4-dione Derivatives and Their Drug-Likeness Evaluation

    Directory of Open Access Journals (Sweden)

    Yu Xue

    2012-11-01

    Full Text Available An efficient and convenient approach for one-pot synthesis of 3-substituted chroman-2,4-diones via a three-component reaction of aromatic aldehydes, 4-hydroxy- coumarins and diverse pyrazolone derivatives was described. The combinatorial synthesis for this methodology was achieved by applying ultrasound irradiation in the absence of activator while making use of water as green solvent. Additionally, novel chroman-2,4-dione derivatives attached to an edaravone moiety represent an exploitable source of brand new anticancer agents. In comparison with conventional methods, experimental simplicity, good functional group tolerance, excellent yields, short routine, and atom efficiency are prominent features of this sonocatalyzed procedure.

  3. Synthesis of C-glycosyl-bis-1,2,3-triazole derivatives from 3,4,6-tri-O-acetyl-D-glucal.

    Science.gov (United States)

    Shamim, Anwar; Souza, Frederico B; Trossini, Gustavo H G; Gatti, Fernando M; Stefani, Hélio A

    2015-08-01

    We have developed an efficient, CuI-catalyzed, microwave-assisted method for the synthesis of bis-1,2,3-triazole derivatives starting from a 3,4,6-tri-O-acetyl-D-glucal-derived mesylate. This mesylate was obtained from 3,4,6-tri-O-acetyl-D-glucal through C-glycosidation, deprotection of acetate groups to alcohols, and selective mesylation of the primary alcohol. This mesylate moiety was then converted to an azide through a microwave-assisted method with good yield. The azide, once synthesized, was then treated with different terminal alkynes in the presence of CuI to synthesize various bis-triazoles in high yields and short reaction times.

  4. Auspicious role of the steroidal heterocyclic derivatives as a platform for anti-cancer drugs.

    Science.gov (United States)

    Tantawy, Mohamed A; Nafie, Mohamed S; Elmegeed, Gamal A; Ali, Ibrahim A I

    2017-08-01

    Steroids are polycyclic compounds that have a wide range of biological activities. They are bio-synthesized from cholesterol through a series of enzyme-mediated transformations, so they are highly lipophilic and readily enter most cells to interact with intracellular receptors, making them ideal vehicles for targeting a broad array of pathologies. New curative agents for cancers have been developed from several steroidal derivatives. Some biologically important properties of modified steroids are dependent on structural features of the steroid moiety and their side chains. Therefore, chemical derivatization of steroids provides a way to modify their function, and many structure-activity relationships have been confirmed by such synthetic modifications. Several studies demonstrate that steroidal heterocyclic derivatives can be effective in the prevention and treatment of many types of hormone-dependent cancers. The present review is a concise report on steroidal heterocyclic derivatives, with special emphasis on steroid heterocyclic derivatives with 5 membered rings or six-membered rings having interesting therapeutic potential as enzyme inhibitors and cytotoxic drugs to be used as candidates for anti-cancer drug development. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Surface plasmon resonance spectroscopic study of UV-addressable phenylalanine sensing based on a self-assembled spirooxazine derivative monolayer

    International Nuclear Information System (INIS)

    Suk, Shinae; Suh, Hee-Jung; Gun An, Won; Kim, Jae-Ho; Jin, Sung-Ho; Kim, Sung-Hoon; Gal, Yeong-Soon; Koh, Kwangnak

    2004-01-01

    Light-addressable compounds are very interesting due to the possibilities of their practical use such as optical switches and memories or variable transmission materials. For example, transportation of phenylalanine across liposomal bilayers mediated by a photoresponsive carrier like spirooxazine through electrostatic interaction between phenylalanine and spirooxazine derivative. Thus, the spirooxazine is expected to form a UV-addressable phenylalanine sensing interface. In this study, we prepared phenylalanine sensing interface of a spirooxazine derivative by self-assembly technique and evaluated interaction between a spirooxazine moiety and phenylalanine with a surface plasmon resonance (SPR). The refractive index change of monolayer caused by interaction between a spirooxazine derivative and phenylalanine led to the SPR angle shifts upon UV irradiation. The SPR angle shift increased with increasing the concentration of phenylalanine solution. These results indicated that the spirooxazine derivative self-assembled monolayer (SAM) has an application potential for UV-addressable phenylalanine sensing

  6. Diamond surface functionalization with biomimicry - Amine surface tether and thiol moiety for electrochemical sensors

    Science.gov (United States)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-05-01

    The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen-oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  7. An efficient synthesis and spectroscopic characterization of Schiff bases containing 9,10-anthracenedione moiety

    Directory of Open Access Journals (Sweden)

    Fareed Ghulam

    2013-01-01

    Full Text Available A new method has been developed for the synthesis of novel Schiff bases containg anthraquinone moiety using dodeca-Tungstosilicic acid/P2O5 under solvent free conditions at room temperature. The reaction was completed in 1-3 minutes with excellent yields. This method was found to be more efficient, easy and hazardous free for the synthesis of azomethines. The development of these type of methadologies in synthetic chemistry may contribute to green chemistry. The structures of synthesized novel Schiff bases was elucidated using 1H-NMR, 13C-NMR, LCMS, FTIR and CHN analysis.

  8. Active site-directed alkylation of Na+-K+-ATPase by digitalis sulphonate derivatives of different lipophilicity.

    Science.gov (United States)

    Fricke, U.; Klaus, W.; Rogatti, M.

    1981-01-01

    1 Sulphonate derivatives of k-strophanthidin and digitoxigenin were tested as active site-directed labels of Na+-K+-adenosine triphosphatase (Na+-ATPase) from guinea-pig heart. 2 Lipophilicity ranged between P = 93 for strophanthidin-3-tosyloxy-acetate (STA) and P = 3028 for digitoxigenin-3-tosyloxy-acetate (DTA). 3 Although the alkylating moiety of STA and DTA was identical, the reversibility of Na+-K+-ATPase inhibition varied appreciably (82% and 35% respectively). 4 It is concluded that lipophilicity contributes considerably to the irreversible binding of alkylating cardiotonic steroids to myocardial Na+-K+-ATPase. PMID:6261865

  9. Quantum mechanics models of the methanol dimer: O-H…O hydrogen bonds of ß-D-glucose moieties from crystallographic data.

    Science.gov (United States)

    In this study, a survey of the Cambridge Crystal Structure Database for all donor-acceptor interactions in ß-D-glucose moieties was performed to examine the similarities and differences among the different hydroxyl groups and ether oxygen atoms that participate in hydrogen bonds. Comparable behavior...

  10. Crystallographic analysis of human hemoglobin elucidates the structural basis of the potent and dual antisickling activity of pyridyl derivatives of vanillin

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmalik, Osheiza [The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 (United States); Ghatge, Mohini S.; Musayev, Faik N.; Parikh, Apurvasena [Virginia Commonwealth University, Richmond, VA 23298 (United States); Chen, Qiukan; Yang, Jisheng [The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 (United States); Nnamani, Ijeoma [Duke University Medical Center, Durham, NC 27710 (United States); Danso-Danquah, Richmond [Virginia Commonwealth University, Richmond, VA 23298 (United States); Eseonu, Dorothy N. [Virginia Union University, Richmond, VA 23220 (United States); Asakura, Toshio [Duke University Medical Center, Durham, NC 27710 (United States); Abraham, Donald J.; Venitz, Jurgen; Safo, Martin K., E-mail: msafo@vcu.edu [Virginia Commonwealth University, Richmond, VA 23298 (United States); The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 (United States)

    2011-11-01

    Pyridyl derivatives of vanillin increase the fraction of the more soluble oxygenated sickle hemoglobin and/or directly increase the solubility of deoxygenated sickle hemoglobin. Crystallographic analysis reveals the structural basis of the potent and dual antisickling activity of these derivatives. Vanillin has previously been studied clinically as an antisickling agent to treat sickle-cell disease. In vitro investigations with pyridyl derivatives of vanillin, including INN-312 and INN-298, showed as much as a 90-fold increase in antisickling activity compared with vanillin. The compounds preferentially bind to and modify sickle hemoglobin (Hb S) to increase the affinity of Hb for oxygen. INN-312 also led to a considerable increase in the solubility of deoxygenated Hb S under completely deoxygenated conditions. Crystallographic studies of normal human Hb with INN-312 and INN-298 showed that the compounds form Schiff-base adducts with the N-terminus of the α-subunits to constrain the liganded (or relaxed-state) Hb conformation relative to the unliganded (or tense-state) Hb conformation. Interestingly, while INN-298 binds and directs its meta-positioned pyridine-methoxy moiety (relative to the aldehyde moiety) further down the central water cavity of the protein, that of INN-312, which is ortho to the aldehyde, extends towards the surface of the protein. These studies suggest that these compounds may act to prevent sickling of SS cells by increasing the fraction of the soluble high-affinity Hb S and/or by stereospecific inhibition of deoxygenated Hb S polymerization.

  11. Crystallographic analysis of human hemoglobin elucidates the structural basis of the potent and dual antisickling activity of pyridyl derivatives of vanillin

    International Nuclear Information System (INIS)

    Abdulmalik, Osheiza; Ghatge, Mohini S.; Musayev, Faik N.; Parikh, Apurvasena; Chen, Qiukan; Yang, Jisheng; Nnamani, Ijeoma; Danso-Danquah, Richmond; Eseonu, Dorothy N.; Asakura, Toshio; Abraham, Donald J.; Venitz, Jurgen; Safo, Martin K.

    2011-01-01

    Pyridyl derivatives of vanillin increase the fraction of the more soluble oxygenated sickle hemoglobin and/or directly increase the solubility of deoxygenated sickle hemoglobin. Crystallographic analysis reveals the structural basis of the potent and dual antisickling activity of these derivatives. Vanillin has previously been studied clinically as an antisickling agent to treat sickle-cell disease. In vitro investigations with pyridyl derivatives of vanillin, including INN-312 and INN-298, showed as much as a 90-fold increase in antisickling activity compared with vanillin. The compounds preferentially bind to and modify sickle hemoglobin (Hb S) to increase the affinity of Hb for oxygen. INN-312 also led to a considerable increase in the solubility of deoxygenated Hb S under completely deoxygenated conditions. Crystallographic studies of normal human Hb with INN-312 and INN-298 showed that the compounds form Schiff-base adducts with the N-terminus of the α-subunits to constrain the liganded (or relaxed-state) Hb conformation relative to the unliganded (or tense-state) Hb conformation. Interestingly, while INN-298 binds and directs its meta-positioned pyridine-methoxy moiety (relative to the aldehyde moiety) further down the central water cavity of the protein, that of INN-312, which is ortho to the aldehyde, extends towards the surface of the protein. These studies suggest that these compounds may act to prevent sickling of SS cells by increasing the fraction of the soluble high-affinity Hb S and/or by stereospecific inhibition of deoxygenated Hb S polymerization

  12. Chloramphenicol Derivatives as Antibacterial and Anticancer Agents: Historic Problems and Current Solutions

    Directory of Open Access Journals (Sweden)

    George P. Dinos

    2016-06-01

    Full Text Available Chloramphenicol (CAM is the D-threo isomer of a small molecule, consisting of a p-nitrobenzene ring connected to a dichloroacetyl tail through a 2-amino-1,3-propanediol moiety. CAM displays a broad-spectrum bacteriostatic activity by specifically inhibiting the bacterial protein synthesis. In certain but important cases, it also exhibits bactericidal activity, namely against the three most common causes of meningitis, Haemophilus influenzae, Streptococcus pneumoniae and Neisseria meningitidis. Resistance to CAM has been frequently reported and ascribed to a variety of mechanisms. However, the most important concerns that limit its clinical utility relate to side effects such as neurotoxicity and hematologic disorders. In this review, we present previous and current efforts to synthesize CAM derivatives with improved pharmacological properties. In addition, we highlight potentially broader roles of these derivatives in investigating the plasticity of the ribosomal catalytic center, the main target of CAM.

  13. Lipase-catalyzed asymmetric synthesis of naphtho[2,3-c]furan-1(3H)-one derivatives by a one-pot dynamic kinetic resolution/intramolecular Diels-Alder reaction: Total synthesis of (-)-himbacine.

    Science.gov (United States)

    Sugiyama, Koji; Kawanishi, Shinji; Oki, Yasuhiro; Kamiya, Marin; Hanada, Ryosuke; Egi, Masahiro; Akai, Shuji

    2018-04-01

    One-pot sequential reactions using the acyl moieties installed by enzymatic dynamic kinetic resolution of alcohols have been little investigated. In this work, the acryloyl moiety installed via the lipase/oxovanadium combo-catalyzed dynamic kinetic resolution of a racemic dienol [4-(cyclohex-1-en-1-yl)but-3-en-2-ol or 1-(cyclohex-1-en-1-yl)but-2-en-1-ol] with a (Z)-3-(phenylsulfonyl)acrylate underwent an intramolecular Diels-Alder reaction in a one-pot procedure to produce an optically active naphtho[2,3-c]furan-1(3H)-one derivative (98% ee). This method was successfully applied to the asymmetric total synthesis of (-)-himbacine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Structural studies of naturally occurring toxicogenic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Springer, J. P.

    1977-10-01

    The paralytic shellfish poison (PSP), saxitoxin, is a neurotoxin isolated from Alaska butter clams (Saxidomus giganteus), mussels (Mytilus californianus) and axenic cultures of the dinoflagellate Gonyaulax catenella. The structure of saxitoxin has been determined through the use of single crystal X-ray diffraction. It possesses a unique tricyclic arrangement of atoms containing two guanidinium moieties and also a hydrated ketone. The relative stereochemistry is presented as well as the absolute configuration. The chemical constitution of a tremorgenic metabolite, paxilline, isolated from extracts of the fungus Penicillium paxilli Bainier has been determined. Paxilline represents a previously unreported class of natural compounds formed by the combination of tryptophan and mevalonate subunits. The complete stereostructure of two other fungal metabolites, paspaline and paspalicine, closely related to paxilline but isolated from Claviceps paspali Stammes have also been determined and are presented. The stereochemistries of paxilline, paspaline and paspalicine are identical at corresponding chiral centers.

  15. Broadband two-photon absorption cross sections of benzothiazole derivatives and benzobisthiazolium salts

    Science.gov (United States)

    Noskovičova, Eva; Lorenc, Dušan; Magdolen, Peter; Sigmundová, Ivica; Zahradník, Pavol; Velič, Dušan

    2018-05-01

    Two-photon absorption (TPA) cross sections of conjugated donor-π-acceptor dipolar structures containing benzothiazole or benzobisthiazolium moieties are determined in a broad spectral range from 700 nm to 1000 nm using two-photon induced fluorescence technique. The TPA cross section values range from 150 GM to 4600 GM. The largest values are observed in near-infrared region. The dipolar derivative of benzothiazole has the largest TPA cross section of 4600 GM at wavelength of 890 nm. A combination of the large TPA in the near-infrared region and the high emission quantum yield makes these compounds excellent candidates for two-photon fluorescence microscopy.

  16. Ferrocenyl and organic novobiocin derivatives: Synthesis and their in vitro biological activity.

    Science.gov (United States)

    Mbaba, Mziyanda; Mabhula, Amanda N; Boel, Natasha; Edkins, Adrienne L; Isaacs, Michelle; Hoppe, Heinrich C; Khanye, Setshaba D

    2017-07-01

    A focused series of novobiocin derivatives containing a ferrocene unit together with their corresponding organic novobiocin analogues have been synthesized in modest to good yields. These compounds were screened for biological activity against a chloroquine-sensitive strain of Plasmodium falciparum (3D7) and human breast cancer cell line (HCC38). With the exception of compounds 5c and 5d, the general trend observed is that incorporation of the ferrocene moiety into novobiocin scaffold resulted in compounds 6a-d/6f showing enhanced activity compared to organic analogues 5a-b and 5e-f. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production.

    Science.gov (United States)

    Alonso-Gutierrez, Jorge; Chan, Rossana; Batth, Tanveer S; Adams, Paul D; Keasling, Jay D; Petzold, Christopher J; Lee, Taek Soon

    2013-09-01

    Limonene is a valuable monoterpene used in the production of several commodity chemicals and medicinal compounds. Among them, perillyl alcohol (POH) is a promising anti-cancer agent that can be produced by hydroxylation of limonene. We engineered E. coli with a heterologous mevalonate pathway and limonene synthase for production of limonene followed by coupling with a cytochrome P450, which specifically hydroxylates limonene to produce POH. A strain containing all mevalonate pathway genes in a single plasmid produced limonene at titers over 400mg/L from glucose, substantially higher than has been achieved in the past. Incorporation of a cytochrome P450 to hydroxylate limonene yielded approximately 100mg/L of POH. Further metabolic engineering of the pathway and in situ product recovery using anion exchange resins would make this engineered E. coli a potential production platform for any valuable limonene derivative. © 2013 Elsevier Inc. All rights reserved.

  18. Reduction of Pu(V) and Np(V) by leonardite humic acids and their quinonoid-enriched derivatives

    International Nuclear Information System (INIS)

    Shcherbina, N.S.; Kalmykov, St.N.; Perminova, I.V.; Kovalenko, A.N.

    2005-01-01

    Full text of publication follows: Humic substances (HS) are natural poly-electrolytes ubiquitous in aquatic environment responsible for complexation of metal ions. The presence of phenolic and quinonoid moieties in the structure of HS provide for their ability to take part in redox interactions. Capability of HS to reduce plutonium from higher oxidation states (Pu(V) and Pu(VI)) to tetravalent state was reported in several studies. However, the disparate results were reported for Np(V). The contradicting results on the redox behavior of HS could originate from the structural differences of the humic materials tested, in particular, from varying content of the redox-active quinonoid moieties. To test this hypothesis, the goal of this research was to evaluate reducing performance of leonardite humic acids and of their quinonoid-enriched derivatives with respect to Pu(V) and Np(V). The quinonoid-enriched humic derivatives were obtained using the reaction of formaldehyde co-poly-condensation between parent humic material - leonardite humic acid - and model dihydroxybenzenes - hydroquinone, catechol and 1,4-benzoquinone. The humic material: quinonoid monomer ration of 1 g per 250 mg was used. The reduction of Np(V) was studied at micro- and macro-concentration level: 10 -7 M and 10 -4 M, respectively. In case of Pu(V) the concentration was about 10 -10 M. The HS concentrations varied from 1 to 100 ppm, while ionic strength was zero. All experiments were conducted in anaerobic conditions and in the darkness. The kinetics of Pu(V) reduction was studied using solvent extraction (TTA in toluene); to monitor Np(V) reduction two independent techniques were used: solvent extraction and VIS-NIR spectrophotometry. The latter allows measuring absorbance of NpO 2 + and Np-humate complexes at 981.3 and 987.4 nm, respectively. Fast reduction of Pu(V) by the parent humic material was observed and the reduction rate increased with a decrease in pH. In case of Np(V), there was no

  19. Mono-, di- and trimethylated homologues of isoprenoid tetraether lipid cores in archaea and environmental samples: mass spectrometric identification and significance.

    Science.gov (United States)

    Knappy, Chris; Barillà, Daniela; Chong, James; Hodgson, Dominic; Morgan, Hugh; Suleman, Muhammad; Tan, Christine; Yao, Peng; Keely, Brendan

    2015-12-01

    Higher homologues of widely reported C(86) isoprenoid diglycerol tetraether lipid cores, containing 0-6 cyclopentyl rings, have been identified in (hyper)thermophilic archaea, representing up to 21% of total tetraether lipids in the cells. Liquid chromatography-tandem mass spectrometry confirms that the additional carbon atoms in the C(87-88) homologues are located in the etherified chains. Structures identified include dialkyl and monoalkyl ('H-shaped') tetraethers containing C(40-42) or C(81-82) hydrocarbons, respectively, many representing novel compounds. Gas chromatography-mass spectrometric analysis of hydrocarbons released from the lipid cores by ether cleavage suggests that the C(40) chains are biphytanes and the C(41) chains 13-methylbiphytanes. Multiple isomers, having different chain combinations, were recognised among the dialkyl lipids. Methylated tetraethers are produced by Methanothermobacter thermautotrophicus in varying proportions depending on growth conditions, suggesting that methylation may be an adaptive mechanism to regulate cellular function. The detection of methylated lipids in Pyrobaculum sp. AQ1.S2 and Sulfolobus acidocaldarius represents the first reported occurrences in Crenarchaeota. Soils and aquatic sediments from geographically distinct mesotemperate environments that were screened for homologues contained monomethylated tetraethers, with di- and trimethylated structures being detected occasionally. The structural diversity and range of occurrences of the C(87-89) tetraethers highlight their potential as complementary biomarkers for archaea in natural environments. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Synthesis and optical properties of novel pyrido[1,2-a]benzimidazole-containing 1,3,4-oxadiazole derivatives

    International Nuclear Information System (INIS)

    Yang He; Ge Yanqing; Jia Jiong; Wang Jianwu

    2011-01-01

    A series of novel substituted 1,3,4-oxadiazole derivatives containing pyrido[1,2-a]benzimidazole moiety were synthesized and characterized using FTIR, 1 H NMR, 13 C NMR, and HRMS. An efficient tandem reaction was employed as a key step in constructing the pyrido[1,2-a]benzimidazole moiety under very mild condition. The structure of compound 4a was established by X-ray crystallography. The UV-vis absorption and fluorescence spectral characteristics of these compounds were investigated in several solvents. Compounds 4a-i display similar absorptions, with absorption peaks ranging from 330 to 339 nm in acetonitrile, while the absorption maxima of compound 4j bearing a diphenylamino group on the benzene ring is red-shifted distinctly to 377 nm due to the strong electron-donating property of its substituent and extended π-conjugated system. All these target heterocyclic compounds present blue-green emissions (461-487 nm) in dilute solutions and show high quantum yields of fluorescence (φ PL =0.65-0.99) in dichloromethane. - Research Highlights: → The first report about the unique optical properties of pyrido[1,2-a]benzimidazole heteroaromatic compounds containing 1,3,4-oxadiazole unit. → Synthesis of pyrido[1,2-a]benzimidazole moiety via a novel efficient tandem reaction. → The target heterocyclic compounds showing high quantum yields of fluorescence, with great potential for use as fluorescent pigments and in optical/electro devices.

  1. Photo-triggered release from liposomes without membrane solubilization, based on binding to poly(vinyl alcohol) carrying a malachite green moiety.

    Science.gov (United States)

    Uda, Ryoko M; Kato, Yutaka; Takei, Michiko

    2016-10-01

    When working with liposomes analogous to cell membranes, it is important to develop substrates that can regulate interactions with the liposome surface in response to light. We achieved a photo-triggered release from liposomes by using a copolymer of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG). Although PVAMG is a neutral polymer under dark conditions, it is photoionized upon exposure to UV light, resulting in the formation of a cationic site for binding to liposomes with a negatively charged surface. Under UV irradiation, PVAMG showed effective interaction with liposomes, releasing the encapsulated compound; however, this release was negligible under dark conditions. The poly(vinyl alcohol) moiety of PVAMG played an important role in the photo-triggered release. This release was caused by membrane destabilization without lipid solubilization. We also investigated different aspects of liposome/PVAMG interactions, including PVAMG-induced fusion between the liposomes and the change in the liposome morphologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Blue Light Emitting Polyphenylene Dendrimers with Bipolar Charge Transport Moieties

    Directory of Open Access Journals (Sweden)

    Guang Zhang

    2016-10-01

    Full Text Available Two light-emitting polyphenylene dendrimers with both hole and electron transporting moieties were synthesized and characterized. Both molecules exhibited pure blue emission solely from the pyrene core and efficient surface-to-core energy transfers when characterized in a nonpolar environment. In particular, the carbazole- and oxadiazole-functionalized dendrimer (D1 manifested a pure blue emission from the pyrene core without showing intramolecular charge transfer (ICT in environments with increasing polarity. On the other hand, the triphenylamine- and oxadiazole-functionalized one (D2 displayed notable ICT with dual emission from both the core and an ICT state in highly polar solvents. D1, in a three-layer organic light emitting diode (OLED by solution processing gave a pure blue emission with Commission Internationale de l’Éclairage 1931 CIE xy = (0.16, 0.12, a peak current efficiency of 0.21 cd/A and a peak luminance of 2700 cd/m2. This represents the first reported pure blue dendrimer emitter with bipolar charge transport and surface-to-core energy transfer in OLEDs.

  3. Blue Light Emitting Polyphenylene Dendrimers with Bipolar Charge Transport Moieties.

    Science.gov (United States)

    Zhang, Guang; Auer-Berger, Manuel; Gehrig, Dominik W; Blom, Paul W M; Baumgarten, Martin; Schollmeyer, Dieter; List-Kratochvil, E J W; Müllen, Klaus

    2016-10-20

    Two light-emitting polyphenylene dendrimers with both hole and electron transporting moieties were synthesized and characterized. Both molecules exhibited pure blue emission solely from the pyrene core and efficient surface-to-core energy transfers when characterized in a nonpolar environment. In particular, the carbazole- and oxadiazole-functionalized dendrimer ( D1 ) manifested a pure blue emission from the pyrene core without showing intramolecular charge transfer (ICT) in environments with increasing polarity. On the other hand, the triphenylamine- and oxadiazole-functionalized one ( D2 ) displayed notable ICT with dual emission from both the core and an ICT state in highly polar solvents. D1 , in a three-layer organic light emitting diode (OLED) by solution processing gave a pure blue emission with Commission Internationale de l'Éclairage 1931 CIE xy = (0.16, 0.12), a peak current efficiency of 0.21 cd/A and a peak luminance of 2700 cd/m². This represents the first reported pure blue dendrimer emitter with bipolar charge transport and surface-to-core energy transfer in OLEDs.

  4. Diel cycles of isoprenoids in the emissions of Norway spruce, different Scots pine chemotypes, and in Boreal forest ambient air during HUMPPA-COPEC-2010

    Science.gov (United States)

    Yassaa, N.; Williams, J.; Song, W.; Vanhatalo, A.; Bäck, J.; Lelieveld, J.

    2012-04-01

    Cuvette based emission rates of monoterpenes and sesquiterpenes from four chemotypes of Scots pine (Pinus sylvestris) and one chemotype of Norway spruce (Picea abies) as well as the ambient mixing ratios of monoterpenes were determined during HUMPPA-COPEC 2010 summer campaign. Differences in chemical composition as well as in emission strength were observed between the different chemotypes. The chemotypes of Scots pine can be classified according to species with high, no and intermediate content of Δ3-carene. The "no- Δ3-carene" chemotype was found to be the strongest emitter of monoterpenes. From this chemotype, β-myrcene, a very reactive organic gas, was the dominant species accounting for more than 35 % of the total emission rates of isoprenoids followed by ß-phellandrene (~34%). Myrcene emission rates ranged from 0.8 up to 24 µg/g (dw)/h. α-farnesene was the dominant sesquiterpene species, with measured average emission rates of 318 ng/g (dw)/h. In the high Δ3-carene chemotype, which is the most studied in Hyytiälä, Δ3-carene was more than 48 % of the total monoterpene emission. The mean Δ3-carene emission rate, circa 609 ng/g (dw)/h reported here is consistent with the previously reported value during the same season. The terpene emission from spruce was dominated by limonene (35%), ß-phellandrene (15%), α-pinene (14 %) and eucalyptol (9%). Total spruce monoterpene emissions ranged from 0.549 up to 12.2 µg/g (dw)/h. Overall the total terpene flux (monoterpenes + sesquiterpenes) from all studied plant species varied from 230 ng/g (dw)/h up to 66 µg/g (dw)/h. The total ambient monoterpenes (including α-pinene, Δ3-carene, ß-pinene and ß-myrcene) measured during the campaign varied in mixing ratio from a few ppt to over one ppb. The most abundant biogenic VOCs measured above the canopy were α-pinene and Δ3-carene and these two compounds together contributed more than 50% of the total monoterpenes. The diel cycles of isoprenoid mixing ratios

  5. Synthesis and Properties of New Polyamides Based on 4-Phenylenediacrylic Acid and Hydantoin Derivatives in the Main Chain

    OpenAIRE

    FAGHIHI, Khalil

    2008-01-01

    Six new polyamides (5a-f) containing p-phenylenediacrylic and hydantoin moieties in the main chain were prepared by direct polycondensation reaction of 4-phenylenediacrylic acid (3) with 6 different hydantoin derivatives (4a-f) using thionyl chloride and pyridine as condensing agents and N-methyl-2-pyrolidone as solvent. These new polymers (5a-f) were obtained in high yield and inherent viscosity between 0.35-0.55 dL/g. The resulting polyamides were characterized by elemental analysi...

  6. Polypeptide nanogels with hydrophobic moieties in the cross-linked ionic cores: Synthesis, characterization and implications for anticancer drug delivery

    Science.gov (United States)

    Kim, Jong Oh; Oberoi, Hardeep S.; Desale, Swapnil; Kabanov, Alexander V.; Bronich, Tatiana K.

    2014-01-01

    Polymer nanogels have gained considerable attention as a potential platform for drug delivery applications. Here we describe the design and synthesis of novel polypeptide-based nanogels with hydrophobic moieties in the cross-linked ionic cores. Diblock copolymer, poly(ethylene glycol)-b-poly(L-glutamic acid), hydrophobically modified with L-phenylalanine methyl ester moieties was used for controlled template synthesis of nanogels with small size (ca. 70 nm in diameter) and narrow particle size distribution. Steady-state and time-resolved fluorescence studies using coumarin C153 indicated the existence of hydrophobic domains in the ionic cores of the nanogels. Stable doxorubicin-loaded nanogels were prepared at high drug capacity (30 w/w%). We show that nanogels are enzymatically-degradable leading to accelerated drug release under simulated lysosomal acidic pH. Furthermore, we demonstrate that the nanogel-based formulation of doxorubicin is well tolerated and exhibit an improved antitumor activity compared to a free doxorubicin in an ovarian tumor xenograft mouse model. Our results signify the point to a potential of these biodegradable nanogels as attractive carriers for delivery of chemotherapeutics. PMID:23998716

  7. Avidin binding of radiolabeled biotin derivatives

    International Nuclear Information System (INIS)

    Garlick, R.K.; Giese, R.W.

    1988-01-01

    Three N-acyl derivatives of biotinylethylenediamine were prepared: I, biotinylamidoethyl-3-(3-[ 125 I]iodo-4-hydroxyphenyl)propionamide; II, biotinylamidoethyl-[ 3 H]acetamide; and III, biotinylamidoethyl-3-(3,5-[ 125 I]diiodo-4-hydroxyphenyl)propionamid e. Each compound was combined with a large excess of avidin, yielding 1:1 molar complexes. Aside from a small fraction of each complex that dissociated more rapidly, the dissociation half-lives of these complexes were: I, 41 days; II, 4.4 days; and III, 148 days. The iodo- (mono or di) hydroxyphenylpropionyl moieties of I and III, therefore, contribute significantly to the binding strength of these compounds toward avidin. We also formed 4:1 complexes of I, II, and III with avidin (compound in excess), each of which exhibited biphasic dissociation, with initial half-lives of 4, 3.2, and 24 days, respectively. Thus, I or especially III potentially can be used as a sensitive tracer in quantitative studies with avidin

  8. Isoprenoid emission response to changing light conditions of English oak, European beech and Norway spruce

    Directory of Open Access Journals (Sweden)

    Y. van Meeningen

    2017-09-01

    Full Text Available Light is an important environmental factor controlling biogenic volatile organic compound (BVOC emissions, but in natural conditions its impact is hard to separate from other influential factors such as temperature. We studied the light response of foliar BVOC emissions, photosynthesis and stomatal conductance on three common European tree species, namely English oak (Quercus robur, European beech (Fagus sylvatica and two provenances of Norway spruce (Picea abies in Taastrup, Denmark. Leaf scale measurements were performed on the lowest positioned branches of the tree in July 2015. Light intensity was increased in four steps (0, 500, 1000 and 1500 µmol m−2 s−1, whilst other chamber conditions such as temperature, humidity and CO2 levels were fixed. Whereas the emission rate differed between individuals of the same species, the relative contributions of compounds to the total isoprenoid emission remained similar. Whilst some compounds were species specific, the compounds α-pinene, camphene, 3-carene, limonene and eucalyptol were emitted by all of the measured tree species. Some compounds, like isoprene and sabinene, showed an increasing emission response with increasing light intensity, whereas other compounds, like camphene, had no significant emission response to light for most of the measured trees. English oak and European beech showed high light-dependent emission fractions from isoprene and sabinene, but other emitted compounds were light independent. For the two provenances of Norway spruce, the compounds α-pinene, 3-carene and eucalyptol showed high light-dependent fractions for many of the measured trees. This study highlights differences between compound emissions in their response to a change in light and a possible light independence for certain compounds, which might be valid for a wider range of tree species. This information could be of importance when improving emission models and to further emphasize the

  9. Copper-free click reactions with polar bicyclononyne derivatives for modulation of cellular imaging.

    Science.gov (United States)

    Leunissen, E H P; Meuleners, M H L; Verkade, J M M; Dommerholt, J; Hoenderop, J G J; van Delft, F L

    2014-07-07

    The ability of cells to incorporate azidosugars metabolically is a useful tool for extracellular glycan labelling. The exposed azide moiety can covalently react with alkynes, such as bicyclo[6.1.0]nonyne (BCN), by strain-promoted alkyne-azide cycloaddition (SPAAC). However, the use of SPAAC can be hampered by low specificity of the cycloalkyne. In this article we describe the synthesis of more polar BCN derivatives and their properties for selective cellular glycan labelling. The new polar derivatives [amino-BCN, glutarylamino-BCN and bis(hydroxymethyl)-BCN] display reaction rates similar to those of BCN and are less cell-permeable. The labelling specificity in HEK293 cells is greater than that of BCN, as determined by confocal microscopy and flow cytometry. Interestingly, amino-BCN appears to be highly specific for the Golgi apparatus. In addition, the polar BCN derivatives label the N-glycan of the membrane calcium channel TRPV5 in HEK293 cells with significantly enhanced signal-to-noise ratios. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis and antitumor evaluation of thiophene based azo dyes incorporating pyrazolone moiety

    Directory of Open Access Journals (Sweden)

    Moustafa A. Gouda

    2016-03-01

    Full Text Available A series of thiophene incorporating pyrazolone moieties 5a–f and 6a–c were synthesized via diazo coupling of diazonium salt of 3-substituted-2-amino-4,5,6,7-tetrahydrobenzo[b]thiophenes 1a–c with 3-methyl-1H-pyrazol-5(4H-one, 3-methyl-1-phenyl-1H-pyrazol-5(4H-one or 3-amino-1H-pyrazol-5(4H-one, respectively. Newly synthesized dyes were applied to polyester fabric as disperse dyes in which their color measurements and fastness properties were evaluated. These dyes showed generally red to blue shifted color with high extinction coefficient in comparison with aniline-based azo dyes. The antitumor activity of the synthesized dyes was evaluated. The results showed clearly that most of them exhibited good activity and compounds 5c and 5d exhibited moderate activity.

  11. A DFT investigation on interactions between asymmetric derivatives of cisplatin and nucleobase guanine

    Science.gov (United States)

    Tai, Truong Ba; Nhat, Pham Vu

    2017-07-01

    The interactions of hydrolysis products of cisplatin and its asymmetric derivatives cis- and trans-[PtCl2(iPram)(Mepz)] with guanine were studied using DFT methods. These interactions are dominated by electrostatic effects, namely hydrogen bond contributions and there exists a charge flow from H-atoms of ligands to the O-atoms of guanine. The replacement of NH3 moieties by larger functional groups accompanies with a moderate reaction between PtII and guanine molecule, diminishing the cytotoxicity of the drug. The asymmetric and symmetric NH2 stretching modes of complexes having strong hydrogen bond interactions are red shifted importantly as compared to complexes without presence of hydrogen bond interactions.

  12. Muscle-type nicotinic receptor modulation by 2,6-dimethylaniline, a molecule resembling the hydrophobic moiety of lidocaine

    Directory of Open Access Journals (Sweden)

    Armando Alberola-Die

    2016-11-01

    Full Text Available To identify the molecular determinants responsible for lidocaine blockade of muscle-type nAChRs, we have studied the effects on this receptor of 2,6-dimethylaniline (DMA, which resembles lidocaine’s hydrophobic moiety. Torpedo marmorata nAChRs were microtransplanted to Xenopus oocytes and currents elicited by ACh (IACh, either alone or co-applied with DMA, were recorded. DMA reversibly blocked IACh and, similarly to lidocaine, exerted a closed-channel blockade, as evidenced by the enhancement of IACh blockade when DMA was pre-applied before its co-application with ACh, and hastened IACh decay. However, there were marked differences among its mechanisms of nAChR inhibition and those mediated by either the entire lidocaine molecule or diethylamine (DEA, a small amine resembling lidocaine’s hydrophilic moiety. Thereby, the IC50 for DMA, estimated from the dose-inhibition curve, was in the millimolar range, which is one order of magnitude higher than that for either DEA or lidocaine. Besides, nAChR blockade by DMA was voltage-independent in contrast to the increase of IACh inhibition at negative potentials caused by the more polar lidocaine or DEA molecules. Accordingly, virtual docking assays of DMA on nAChRs showed that this molecule binds predominantly at intersubunit crevices of the transmembrane-spanning domain, but also at the extracellular domain. Furthermore, DMA interacted with residues inside the channel pore, although only in the open-channel conformation. Interestingly, co-application of ACh with DEA and DMA, at their IC50s, had additive inhibitory effects on IACh and the extent of blockade was similar to that predicted by the allotopic model of interaction, suggesting that DEA and DMA bind to nAChRs at different loci. These results indicate that DMA mainly mimics the low potency and non-competitive actions of lidocaine on nAChRs, as opposed to the high potency and voltage-dependent block by lidocaine, which is emulated by the

  13. Steroidal[17,16-d]pyrimidines derived from dehydroepiandrosterone: A convenient synthesis, antiproliferation activity, structure-activity relationships, and role of heterocyclic moiety

    Science.gov (United States)

    Ke, Shaoyong; Shi, Liqiao; Zhang, Zhigang; Yang, Ziwen

    2017-01-01

    A series of steroidal[17,16-d]pyrimidines derived from dehydroepiandrosterone were designed and prepared by a convenient heterocyclization reaction. The in vitro anticancer activities for these obtained compounds were evaluated against human cancer cell lines (HepG2, Huh-7, and SGC-7901), which demonstrated that some of these heterocyclic pyrimidine derivatives exhibited significantly good cytotoxic activities against all tested cell lines compared with 5-fluorouracil (5-FU), especially, compound 3b exhibited high potential growth inhibitory activities against all tested cell lines with the IC50 values of 5.41 ± 1.34, 5.65 ± 1.02 and 10.64 ± 1.49 μM, respectively, which might be used as promising lead scaffold for discovery of novel anticancer agents. PMID:28290501

  14. Rearrangement of beta,gamma-unsaturated esters with thallium trinitrate: synthesis of indans bearing a beta-keto ester moiety

    Directory of Open Access Journals (Sweden)

    Silva Jr. Luiz F.

    2006-01-01

    Full Text Available The rearrangement of beta,gamma-unsaturated esters, such as 2-(3,4-dihydronaphthalen-1-yl-propionic acid ethyl ester, with thallium trinitrate (TTN in acetic acid leads to 3-indan-1-yl-2-methyl-3-oxo-propionic acid ethyl ester in good yield, through a ring contraction reaction. The new indans thus obtained feature a beta-keto ester moiety, which would be useful for further functionalization.

  15. Uranium(VI) adsorption properties of a chelating resin containing polyamine-substituted methylphosphonic acid moiety

    International Nuclear Information System (INIS)

    Matsuda, Masaaki; Akiyoshi, Yoshirou

    1991-01-01

    Uranium(VI) adsorption and desorption properties of a chelating resin containing polyamine-substituted methylphosphonic acid moiety of 2.29 mmol/g-resin (APA) were examined. Uranium(VI) adsorption properties of several ion exchange resins and extractant agents which were known as excellent adsorbents for uranium(VI), were examined together for a comparison with those of APA. Uranium(VI) adsorption capacity of APA at the concentration of 100 mg·dm -3 -uranium(VI) in 100 g·dm -3 -H 2 SO 4 aq. soln., 190 g·dm -3 -H 3 PO 4 aq. soln. and uranium enriched sea water, was 0.2, 0.05 and 0.05 mmol·g -1 respectively. The adsorption capacity of APA for uranium(VI) in these solutions was larger than that of another adsorbents, except the adsorption of uranium(VI) in enriched sea water on ion exchange resin containing phosphoric acid moiety (adsorption capacity ; 0.2 mmol·g -1 ). Uranium(VI) adsorption rate on APA was high and the relation between treatment time (t : min) and uranium(VI) concentration (y : mg·dm -3 ) in 100 g·dm -3 H 2 SO 4 aq. soln. after treatment, was shown as following equation, y=20 0.048t+1.90 (0≤t≤30). The adsorbed uranium(VI) on APA was able to be eluted with a mixed aq. soln. of hydrogen peroxide and sodium hydroxide and also was able to be eluted with an aq. alkaline soln. dissolved reduction agents such as sodium sulfite and hydrazine. From these results, it was thought that uranium(VI) adsorbed on APA was eluted due to the reduction to uranium(VI) by these eluents. (author)

  16. Design, synthesis, and pharmacological characterization of polyamine toxin derivatives

    DEFF Research Database (Denmark)

    Jensen, Lars S; Bølcho, Ulrik; Egebjerg, Jan

    2006-01-01

    for memory formation and are involved in neurodegenerative diseases. Previous studies have demonstrated that modification of the polyamine moiety of philanthotoxins can lead to very potent and highly selective ligands for the AMPA receptor, as exemplified with philanthotoxin-56. Much less attention has been......Polyamine toxins, such as philanthotoxins, are low-molecular-weight compounds isolated from spiders and wasps, which modulate ligand-gated ion channels in the nervous system. Philanthotoxins bind to the pore-forming region of AMPA receptors, a subtype of glutamate receptors which are important...... paid to the importance of the aromatic head group of philanthotoxins, but herein we demonstrate that modification of this moiety leads to a significant improvement in potency relative to philanthotoxin-56 at cloned AMPA receptors. Interestingly, the incorporation of an adamantane moiety is particularly...

  17. Development and optimization of the synthesis of new thiazolidin-4-one derivatives of ibuprofen.

    Science.gov (United States)

    Vasincu, Ioana; Apotrosoaei, Maria; Panzariu, Andreea; Buron, F; Routier, S; Profire, Lenuta

    2014-01-01

    Ibuprofen, an important nonsteroidal anti-inflammatory agent, is one of the most prescribed drugs for the treatment of pain and inflammation from various rheumatic diseases, but some side effects can occur on long-term use. The method for synthesis optimization of new derivatives of Ibuprofen with thiazolidin-4-one moiety, with improved pharmacological and toxicological profile. To optimize the derivatization method of free carboxyl group of Ibuprofen (2-(4-isobutylphenyl)propionic acid) the reaction conditions were varied (reagent ratio, catalyst, reaction medium). The most favorable method was proved to be the reaction between ibuprofen hydrazone and mercaptoacetic acid, in excess, at 80-85 degrees C, for 6 h with 96% conversion rate. The synthesis of 2-phenyl-3-[2-(4-(isobutyl)phenyl)-2-methyl]acetamido-thiazolidin-4-one derivative was optimized in view of applying it as a general procedure for the synthesis of other derivatives with related structure. The chemical structure and molecular weight of the synthesized compound were confirmed by spectral methods (IR, 1H NMR, 13C NMR, HR-MS).

  18. The Human Skin Barrier Is Organized as Stacked Bilayers of Fully Extended Ceramides with Cholesterol Molecules Associated with the Ceramide Sphingoid Moiety

    DEFF Research Database (Denmark)

    Iwai, Ichiro; Han, Hongmei; Hollander, Lianne den

    2012-01-01

    not previously described in a biological system-stacked bilayers of fully extended ceramides (CERs) with cholesterol molecules associated with the CER sphingoid moiety. This arrangement rationalizes the skin's low permeability toward water and toward hydrophilic and lipophilic substances, as well as the skin...

  19. Turnover and metabolism of phosphatidylglycerol acyl moieties in E. coli

    International Nuclear Information System (INIS)

    Cooper, C.L.; Rock, C.O.

    1987-01-01

    Fatty acids synthesized in mutants (plsB) blocked in de novo phospholipid biosynthesis were preferentially transferred to phosphatidylglycerol (PtdGro). The ratio of phospholipid species labeled with 32 P and [ 3 H]acetate in the absence of glycerol-3-P acyltransferase activity indicated that [ 3 H]acetate incorporation into PtdGro was due to fatty acid turnover. The magnitude of the turnover process was difficult to estimate due to a significant contraction of the acetyl-CoA pool following the inhibition of phospholipid synthesis. A possible connection between PtdGro turnover and protein acylation was investigated in an E. coli strain containing a lipoprotein expression vector. Cells were prelabeled with [ 3 H]acetate and lipoprotein expression was induced concomitant with the addition of exogenous [ 14 C]-palmitate. [ 14 C] Palmitate was assimilated into the l-position of phosphatidylethanolamine and transferred to the amino terminus of the lipoprotein. In contrast, the ester-linked lipoprotein fatty acids and PtdGro were not enriched in carbon-14 implying a metabolic relationship between these two pools. The data suggest that turnover of PtdGro acyl moieties is related to protein acylation, but a direct link between the two processes remains to be established

  20. Enhancement of Ag-Based Plasmonic Photocatalysis in Hydrogen Production from Ammonia Borane by the Assistance of Single-Site Ti-Oxide Moieties within a Silica Framework.

    Science.gov (United States)

    Verma, Priyanka; Kuwahara, Yasutaka; Mori, Kohsuke; Yamashita, Hiromi

    2017-03-13

    Ag nanoparticles (NPs) have gained great attention owing to their interesting plasmonic properties and efficient catalysis under visible-light irradiation. In this study, an Ag-based plasmonic catalyst supported on mesoporous silica with isolated and tetrahedrally coordinated single-site Ti-oxide moieties, namely, Ag/Ti-SBA-15, was designed with the purpose of utilizing the broad spectral range of solar energy. The Ti-SBA-15 support allows the deposition of small Ag NPs with a narrow size distribution. The chemical structure, morphology, and optical properties of the prepared catalyst were characterized by techniques such as UV/Vis, FT extended X-ray absorption fine structure, and X-ray photoelectron spectroscopy, field-emission SEM, TEM, and N 2 physisorption studies. The catalytic activity of Ag/Ti-SBA-15 in hydrogen production from ammonia borane by hydrolysis was significantly enhanced in comparison with Ag/SBA-15 without Ti-oxide moieties and Ag/TiO 2 /SBA-15 involving agglomerated TiO 2 , both in the dark and under light irradiation. Improved electron transfer under light irradiation caused by the creation of heterojunctions between Ag NPs and Ti-oxide moieties explains the results obtained in the present study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The hedgehog pathway gene shifted functions together with the hmgcr-dependent isoprenoid biosynthetic pathway to orchestrate germ cell migration.

    Directory of Open Access Journals (Sweden)

    Girish Deshpande

    Full Text Available The Drosophila embryonic gonad is assembled from two distinct cell types, the Primordial Germ Cells (PGCs and the Somatic Gonadal Precursor cells (SGPs. The PGCs form at the posterior of blastoderm stage embryos and are subsequently carried inside the embryo during gastrulation. To reach the SGPs, the PGCs must traverse the midgut wall and then migrate through the mesoderm. A combination of local repulsive cues and attractive signals emanating from the SGPs guide migration. We have investigated the role of the hedgehog (hh pathway gene shifted (shf in directing PGC migration. shf encodes a secreted protein that facilitates the long distance transmission of Hh through the proteoglycan matrix after it is released from basolateral membranes of Hh expressing cells in the wing imaginal disc. shf is expressed in the gonadal mesoderm, and loss- and gain-of-function experiments demonstrate that it is required for PGC migration. Previous studies have established that the hmgcr-dependent isoprenoid biosynthetic pathway plays a pivotal role in generating the PGC attractant both by the SGPs and by other tissues when hmgcr is ectopically expressed. We show that production of this PGC attractant depends upon shf as well as a second hh pathway gene gγ1. Further linking the PGC attractant to Hh, we present evidence indicating that ectopic expression of hmgcr in the nervous system promotes the release/transmission of the Hh ligand from these cells into and through the underlying mesodermal cell layer, where Hh can contact migrating PGCs. Finally, potentiation of Hh by hmgcr appears to depend upon cholesterol modification.

  2. Efficient modulation of γ-aminobutyric acid type A receptors by piperine derivatives.

    Science.gov (United States)

    Schöffmann, Angela; Wimmer, Laurin; Goldmann, Daria; Khom, Sophia; Hintersteiner, Juliane; Baburin, Igor; Schwarz, Thomas; Hintersteininger, Michael; Pakfeifer, Peter; Oufir, Mouhssin; Hamburger, Matthias; Erker, Thomas; Ecker, Gerhard F; Mihovilovic, Marko D; Hering, Steffen

    2014-07-10

    Piperine activates TRPV1 (transient receptor potential vanilloid type 1 receptor) receptors and modulates γ-aminobutyric acid type A receptors (GABAAR). We have synthesized a library of 76 piperine analogues and analyzed their effects on GABAAR by means of a two-microelectrode voltage-clamp technique. GABAAR were expressed in Xenopus laevis oocytes. Structure-activity relationships (SARs) were established to identify structural elements essential for efficiency and potency. Efficiency of piperine derivatives was significantly increased by exchanging the piperidine moiety with either N,N-dipropyl, N,N-diisopropyl, N,N-dibutyl, p-methylpiperidine, or N,N-bis(trifluoroethyl) groups. Potency was enhanced by replacing the piperidine moiety by N,N-dibutyl, N,N-diisobutyl, or N,N-bistrifluoroethyl groups. Linker modifications did not substantially enhance the effect on GABAAR. Compound 23 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dipropyl-2,4-pentadienamide] induced the strongest modulation of GABAA (maximal GABA-induced chloride current modulation (IGABA-max = 1673% ± 146%, EC50 = 51.7 ± 9.5 μM), while 25 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dibutyl-2,4-pentadienamide] displayed the highest potency (EC50 = 13.8 ± 1.8 μM, IGABA-max = 760% ± 47%). Compound 23 induced significantly stronger anxiolysis in mice than piperine and thus may serve as a starting point for developing novel GABAAR modulators.

  3. Strigolactones, a novel carotenoid-derived plant hormone

    KAUST Repository

    Al-Babili, Salim

    2015-04-29

    Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental processes that adapt plant architecture to nutrient availability. Highly branched/tillered mutants in Arabidopsis, pea, and rice have enabled the identification of four SL biosynthetic enzymes: a cis/trans-carotene isomerase, two carotenoid cleavage dioxygenases, and a cytochrome P450 (MAX1). In vitro and in vivo enzyme assays and analysis of mutants have shown that the pathway involves a combination of new reactions leading to carlactone, which is converted by a rice MAX1 homolog into an SL parent molecule with a tricyclic lactone moiety. In this review, we focus on SL biosynthesis, describe the hormonal and environmental factors that determine this process, and discuss SL transport and downstream signaling as well as the role of SLs in regulating plant development. ©2015 by Annual Reviews. All rights reserved.

  4. Prevention of hyperthermia-induced seizures in immature rats by a hydantoin derivative of naloxone.

    Science.gov (United States)

    Chatterjie, N; Laorden, M L; Puig, M M; Alexander, G J

    1989-01-01

    The non-specific opiate antagonist naloxone protects immature rats from hyperthermic seizures which occur when the animals are exposed to an environment of 40 degrees C and 55% humidity. Most of the currently used antiepileptic therapeutic agents can be said to contain either a hydantoin or a moiety stereochemically closely related to one. We have added a hydantoin group to naloxone and created a new combined chemical, naloxyl-6-alpha spirohydantoin. The new compound was ten times as effective as naloxone against hyperthermic seizures in 15-day old rat pups. Unlike naloxone, the new naloxone-hydantoin derivative retained a protective effect 24 hrs after injection.

  5. Synthesis of nanodiamond derivatives carrying amino functions and quantification by a modified Kaiser test

    Directory of Open Access Journals (Sweden)

    Gerald Jarre

    2014-11-01

    Full Text Available Nanodiamonds functionalized with different organic moieties carrying terminal amino groups have been synthesized. These include conjugates generated by Diels–Alder reactions of ortho-quinodimethanes formed in situ from pyrazine and 5,6-dihydrocyclobuta[d]pyrimidine derivatives. For the quantification of primary amino groups a modified photometric assay based on the Kaiser test has been developed and validated for different types of aminated nanodiamond. The results correspond well to values obtained by thermogravimetry. The method represents an alternative wet-chemical quantification method in cases where other techniques like elemental analysis fail due to unfavourable combustion behaviour of the analyte or other impediments.

  6. New Flame-Retardant Poly(ester-imide)s Containing Phosphine Oxide Moieties in the Main Chain: Synthesis and Properties

    OpenAIRE

    FAGHIHI, Khalil

    2014-01-01

    Six new flame-retardant poly(ester-imide)s (9a-f) with high inherent viscosity and containing phosphine oxide moieties in the main chain were synthesized from the polycondensation reaction of N,N-(3,3-diphenylphenyl phosphine oxide) bistrimellitimide diacid chloride (7) with 6 aromatic diols (8a-f) by 2 different methods:--solution and microwave-assisted polycondensation. The results showed that compared to solution polycondensation, the microwave-assisted polycondensation reaction us...

  7. Synthesis and biological evaluation of new C-12(α/β)-(N-) sulfamoyl-phenylamino-14-deoxy-andrographolide derivatives as potent anti-cancer agents.

    Science.gov (United States)

    Kandanur, Sai Giridhar Sarma; Nanduri, Srinivas; Golakoti, Nageswara Rao

    2017-07-01

    Andrographolide, the major diterpenoidal constituent of Andrographis paniculata (Acanthaceae) and its derivatives have been reported to possess plethora of biological properties including potent anti-cancer activity. In this work, synthesis and in-vitro anti-cancer evaluation of new C-12-substituted aryl amino 14-deoxy-andrographolide derivatives (III a-f) are reported. The substitutions include various sulfonamide moieties -SO 2 -NH-R 1 . The new derivatives (III a-e) exhibited improved cytotoxicity (GI 50 , TGI and LC 50 ) compared to andrographolide (I) and the corresponding 3,14,19-O-triacetyl andrographolide (II) when evaluated against 60 NCI cell line panel. Compounds III c and III e are found to be non-toxic to normal human dermal fibroblasts (NHDF) cells compared to reference drug THZ-1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A Selective G-Quadruplex DNA-Stabilizing Ligand Based on a Cyclic Naphthalene Diimide Derivative

    Directory of Open Access Journals (Sweden)

    Md. Monirul Islam

    2015-06-01

    Full Text Available A cyclic naphthalene diimide (cyclic NDI, 1, carrying a benzene moiety as linker chain, was synthesized and its interaction with G-quadruplex DNAs of a-core and a-coreTT as a human telomeric DNA, c-kit and c-myc as DNA sequence at promoter region, or thrombin-binding aptamer (TBA studied based on UV-VIS and circular dichroism (CD spectroscopic techniques, thermal melting temperature measurement, and FRET-melting assay. The circular dichroism spectra showed that 1 induced the formation of different types of G-quadruplex DNA structure. Compound 1 bound to these G-quadruplexes with affinities in the range of 106–107 M−1 order and a 2:1 stoichiometry. Compound 1 showed 270-fold higher selectivity for a-core than dsDNA with a preferable a-core binding than a-coreTT, c-kit, c-myc and TBA in the presence of K+, which is supported by thermal melting studies. The FRET-melting assay also showed that 1 bound preferentially to human telomeric DNA. Compound 1 showed potent inhibition against telomerase activity with an IC50 value of 0.9 μM and preferable binding to G-quadruplexes DNA than our previously published cyclic NDI derivative 3 carrying a benzene moiety as longer linker chain.

  9. Selective detection of carbohydrates and their peptide conjugates by ESI-MS using synthetic quaternary ammonium salt derivatives of phenylboronic acids.

    Science.gov (United States)

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  10. A novel and selective fluoride opening of aziridines by XtalFluor-E. synthesis of fluorinated diamino acid derivatives.

    Science.gov (United States)

    Nonn, Melinda; Kiss, Loránd; Haukka, Matti; Fustero, Santos; Fülöp, Ferenc

    2015-03-06

    The selective introduction of fluorine onto the skeleton of an aminocyclopentane or cyclohexane carboxylate has been developed through a novel and efficient fluoride opening of an activated aziridine ring with XtalFluor-E. The reaction proceeded through a stereoselective aziridination of the olefinic bond of a bicyclic lactam and regioselective aziridine ring opening with difluorosulfiliminium tetrafluoroborate with the neighboring group assistance of the sulfonamide moiety to yield fluorinated diamino acid derivatives. The method based on the selective aziridine opening by fluoride has been generalized to afford access to mono- or bicyclic fluorinated substances.

  11. Synthesis of bromo phenyl piperidine derivatives and the study of their effects on neurotransmitters and strong compatibility with alpha amylase enzyme

    International Nuclear Information System (INIS)

    Rafiq, K.; Zarreen, T.

    2016-01-01

    In the last few decades several novel derivatives of piperidine have been synthesized for their CNS potentials and proved to be effective in the treatment of psychiatric and other CNS disorders. The present study is the demonstration of same phenomenon through which a new series of 4-(4-Bromophenyl)-4-hydroxypiperidine derivatives were synthesized via substitution at nitrogen and tested for aectylcholinestrase and butyrylcholinestrase activity by TLC bioautographic method and showed that among these synthesized moieties two were found to produce effects on these neurotransmitters. The synthesized compounds were also assessed further for their interaction with digestive enzymes (alpha-amylase) in vitro by plate method and all the compounds showed good interaction with amylase enzyme. (author)

  12. Isoprenoid, lipid, and protein contents in intact plastids isolated from mesocarp cells of traditional and high-pigment tomato cultivars at different ripening stages.

    Science.gov (United States)

    Lenucci, Marcello S; Serrone, Lucia; De Caroli, Monica; Fraser, Paul D; Bramley, Peter M; Piro, Gabriella; Dalessandro, Giuseppe

    2012-02-22

    This study reports quali-quantitative analyses on isoprenoids, phospholipids, neutral lipids, phytosterols, and proteins in purified plastids isolated from fresh fruits of traditional (Donald and Incas) and high-pigment (Kalvert and HLY-18) tomato cultivars at four ripening stages. In all of the investigated cultivars, lycopene, β-catotene, lutein, and total carotenoids varied significantly during ripening. Chromoplasts of red-ripe tomato fruits of high-pigment cultivars accumulated twice as much as lycopene (307.6 and 319.2 μg/mg of plastid proteins in Kalvert and HLY-18, respectively) than ordinary cultivars (178.6 and 151.7 μg/mg of plastid proteins in Donald and Incas, respectively); differences in chlorophyll and α-tocopherol contents were also evidenced. Phospholipids and phytosterols increased during ripening, whereas triglycerides showed a general decrease. Regardless of the stage of ripening, palmitic acid was the major fatty acid in all cultivars (ranging from 35 to 52% of the total fatty acids), followed by stearic, oleic, linoleic, linolenic, and myristic acids, but their relative percentage was affected by ripening. Most of the bands detected on the SDS-PAGEs of plastid proteins were constantly present during chloroplast-to-chromoplast conversion, some others disappeared, and only one, with a molecular weight of ~41.6 kDa, was found to increase in intensity.

  13. Novel Terthiophene-Substituted Fullerene Derivatives as Easily Accessible Acceptor Molecules for Bulk-Heterojunction Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Filippo Nisic

    2014-01-01

    Full Text Available Five fulleropyrrolidines and methanofullerenes, bearing one or two terthiophene moieties, have been prepared in a convenient way and well characterized. These novel fullerene derivatives are characterized by good solubility and by better harvesting of the solar radiation with respect to traditional PCBM. In addition, they have a relatively high LUMO level and a low band gap that can be easily tuned by an adequate design of the link between the fullerene and the terthiophene. Preliminary results show that they are potential acceptors for the creation of efficient bulk-heterojunction solar cells based on donor polymers containing thiophene units.

  14. Synthesis and biological evaluation of cis-locked vinylogous combretastatin-A4 analogues: derivatives with a cyclopropyl-vinyl or a cyclopropyl-amide bridge.

    Science.gov (United States)

    Ty, Nancy; Kaffy, Julia; Arrault, Alban; Thoret, Sylviane; Pontikis, Renée; Dubois, Joelle; Morin-Allory, Luc; Florent, Jean-Claude

    2009-03-01

    A series of novel combretastatin A4 analogues, in which the cis-olefinic bridge is replaced by a cyclopropyl-vinyl or a cyclopropyl-amide moiety, were synthesized and evaluated for inhibition of tubulin polymerization and antiproliferative activity. The derivative 9a with a (cis,E)-cyclopropyl-vinyl unit is the most promising compound. As expected, molecular docking of 9a has shown that only one of the cis-cyclopropyl enantiomers is a good ligand for tubulin.

  15. Integration of Fermentation and Organic Synthesis: Studies of Roquefortine C and Biosynthetic Derivatives

    Science.gov (United States)

    Gober, Claire Marie

    Roquefortine C is one of the most ubiquitous indoline alkaloids of fungal origin. It has been isolated from over 30 different species of Penicillium fungi and has garnered attention in recent years for its role as a biosynthetic precursor to the triazaspirocyclic natural products glandicoline B, meleagrin, and oxaline. The triazaspirocyclic motif, which encompasses three nitrogen atoms attached to one quaternary carbon forming a spirocyclic scaffold, is a unique chemical moiety that has been shown to impart a wide array of biological activity, from anti-bacterial activity and antiproliferative activity against cancer cell lines to anti-biofouling against marine organisms. Despite the promise of these compounds in the pharmaceutical and materials industries, few syntheses of triazaspirocycles exist in the literature. The biosynthesis of roquefortine C-derived triazaspirocycles, however, provides inspiration for the synthesis of these compounds, namely through a nitrone-promoted transannular rearrangement. This type of internal rearrangement has never been carried out synthetically and would provide an efficient stereoselective synthesis of triazaspirocycles. This work encompasses efforts towards elucidating the biosynthetic pathway of roquefortine C-derived triazaspirocycles as well as synthetic efforts towards the construction of triazaspirocycles. Chapter 1 will discuss a large-scale fermentation procedure for the production of roquefortine C from Penicillium crustosum. Chapters 2 and 3 explore (through enzymatic and synthetic means, respectively) the formation of the key indoline nitrone moiety required for the proposed transannular rearrangement. Finally, chapter 4 will discuss synthetic efforts towards the synthesis of triazaspirocycles. This work has considerably enhanced our understanding of the roquefortine C biosynthetic pathway and the unique chemistry of this natural product, and our efforts towards the synthesis of triazaspirocycles will facilitate the

  16. Environmental and genetic factors associated with solanesol accumulation in potato leaves

    Directory of Open Access Journals (Sweden)

    Raymond Campbell

    2016-08-01

    Full Text Available Solanesol is a high value 45-carbon, unsaturated, all-trans-nonaprenol isoprenoid. Recently solanesol has received particular attention because of its utility, both in its own right and as a precursor in the production of numerous compounds used in the treatment of disease states. Solanesol is found mainly in solanaceous crops such as potato, tomato, tobacco and pepper where it accumulates in the foliage. There is considerable potential to explore the extraction of solanesol from these sources as a valuable co-product. In this study we have characterised the genetic variation in leaf solanesol content in a biparental, segregating diploid potato population. We demonstrate that potato leaf solanesol content is genetically controlled and identify several quantitative trait loci associated with leaf solanesol content. Transient over-expression of genes from the methylerythritol 4-phosphate (MEP and mevalonic acid (MVA pathways, either singly or in combination, resulted in enhanced accumulation of solanesol in leaves of Nicotiana benthamiana, providing insights for genetically engineering the pathway. We also demonstrate that in potato, leaf solanesol content is enhanced by up to six-fold on exposure to moderately elevated temperature and show corresponding changes in expression patterns of MEP and MVA genes. Our combined approaches offer new insights into solanesol accumulation and strategies for developing a bio-refinery approach to potato production.

  17. Analysis of five complete genome sequences for members of the class Peribacteria in the recently recognized Peregrinibacteria bacterial phylum

    Directory of Open Access Journals (Sweden)

    Karthik Anantharaman

    2016-01-01

    Full Text Available Five closely related populations of bacteria from the Candidate Phylum (CP Peregrinibacteria, part of the bacterial Candidate Phyla Radiation (CPR, were sampled from filtered groundwater obtained from an aquifer adjacent to the Colorado River near the town of Rifle, CO, USA. Here, we present the first complete genome sequences for organisms from this phylum. These bacteria have small genomes and, unlike most organisms from other lineages in the CPR, have the capacity for nucleotide synthesis. They invest significantly in biosynthesis of cell wall and cell envelope components, including peptidoglycan, isoprenoids via the mevalonate pathway, and a variety of amino sugars including perosamine and rhamnose. The genomes encode an intriguing set of large extracellular proteins, some of which are very cysteine-rich and may function in attachment, possibly to other cells. Strain variation in these proteins is an important source of genotypic variety. Overall, the cell envelope features, combined with the lack of biosynthesis capacities for many required cofactors, fatty acids, and most amino acids point to a symbiotic lifestyle. Phylogenetic analyses indicate that these bacteria likely represent a new class within the Peregrinibacteria phylum, although they ultimately may be recognized as members of a separate phylum. We propose the provisional taxonomic assignment as ‘Candidatus Peribacter riflensis’, Genus Peribacter, Family Peribacteraceae, Order Peribacterales, Class Peribacteria in the phylum Peregrinibacteria.

  18. Pleiotropic effects of statins in stroke prevention

    Directory of Open Access Journals (Sweden)

    Yenny Yenny

    2016-02-01

    Full Text Available Cardiovascular disease is the leading cause of death and disability, and  contributes substantially to healthcare budgets. The lipid-lowering drugs, 3-hydroxy-3-methylgulutaryl-coenzyme A (HMG-CoA reductase inhibitor or statins, reducing mortality and cardiovascular morbidity in patients with established cardiovascular disease. Statins therefore have a place in the secondary prevention of cardiovascular disease. Recent experimental and clinical studies suggest that statins may exert vascular protective effect beyond cholesterol reduction. The cholesterol-independet or “pleiotropic” effects of statin include the upregulation and activation of endothelial nitric acid synthase (eNOS that can increase nitric oxide (NO production. Augmentation of NO production increases cerebral blood flow, which can lead to neuroprotection during brain ischaemia. By inhibiting mevalonate synthesis, statins prevent the formation of several isoprenoids (including farnesylpyrophosphate and geranylgeranylpyrophosphate. Inhibiting geranylgeranylation of RhoA small G proteins increases the stability of eNOS mRNA through the remodeling of endothelial actin microfilamens. Moreover, statins directly increase eNOS activity within minutes by activating the pathway involving phosphoinositide 3-kinase and protein kinase B. In the secondary prevention of stroke, the use of statins reduces the incidence of either recurrent stroke or other major vascular events and treatment should be initiated soon after the event. The use of statins does not increase hemorrhagic stroke or cancer and may also favor atherosclerotic plaque regression.

  19. Pleiotropic effects of statins in stroke prevention

    Directory of Open Access Journals (Sweden)

    Yenny

    2009-08-01

    Full Text Available Cardiovascular disease is the leading cause of death and disability, and contributes substantially to healthcare budgets. The lipid-lowering drugs, 3-hydroxy-3-methylgulutaryl-coenzyme A (HMG-CoA reductase inhibitor or statins, reducing mortality and cardiovascular morbidity in patients with established cardiovascular disease. Statins therefore have a place in the secondary prevention of cardiovascular disease. Recent experimental and clinical studies suggest that statins may exert vascular protective effect beyond cholesterol reduction. The cholesterol-independet or “pleiotropic” effects of statin include the upregulation and activation of endothelial nitric acid synthase (eNOS that can increase nitric oxide (NO production. Augmentation of NO production increases cerebral blood flow, which can lead to neuroprotection during brain ischaemia. By inhibiting mevalonate synthesis, statins prevent the formation of several isoprenoids (including farnesylpyrophosphate and geranylgeranylpyrophosphate. Inhibiting geranylgeranylation of RhoA small G proteins increases the stability of eNOS mRNA through the remodeling of endothelial actin microfilamens. Moreover, statins directly increase eNOS activity within minutes by activating the pathway involving phosphoinositide 3-kinase and protein kinase B. In the secondary prevention of stroke, the use of statins reduces the incidence of either recurrent stroke or other major vascular events and treatment should be initiated soon after the event. The use of statins does not increase hemorrhagic stroke or cancer and may also favor atherosclerotic plaque regression.

  20. Effects of 2,3-iminosqualene in cultured cells

    International Nuclear Information System (INIS)

    Popjak, G.; Meenan, A.; Nes, W.D.

    1987-01-01

    2,3-Iminosqualene added to culture media 10 ug/ml) of rat hepatoma (H4-II-E-C3) or Chinese hamster ovary (CHO) cells irreversibly inactivates the squalene-oxide: lanosterol cyclase, but it does not inhibit general polyprenyl synthesis either from [ 14 C]acetate or [ 14 C]mevalonate. Isq added to lipoprotein-containing media of H4 cells causes in 24 hr an over twofold rise in HMG-CoA reductase and abolishes the repressive effect of mevalonate (MVA) on the reductase. H4 cells synthesize from [2- 14 C]-MVA labelled squalene, squalene-2,3-oxide, squalene-2,3-22,23-dioxide, but very little sterol. The conversion of MVA to these polyprenyls in the presence of Isq is as efficient as its conversion to squalene and cholesterol in control cells. They conclude that the repressor of HMG-CoA reductase derived from MVA is a sterol - whatever might be the nature of that sterol - and not a nonsteroidal derivative of MVA metabolism. H4 cells exposed to Isq in lipid-depleted media die in 48-72 hr, but can be rescued by LDL, but not by free cholesterol or MVA. CHO cells are more resistant than H4 cells and succumb only after 8-9 days' exposure to Isq

  1. Control of cell function on a phospholipid polymer having phenylboronic acid moiety

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Aya; Ishihara, Kazuhiko [Department of Materials Engineering, School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Konno, Tomohiro [Center for NanoBio Integration, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ikake, Hiroki; Kurita, Kimio, E-mail: konno@bioeng.t.u-tokyo.ac.j [Department of Materials and Applied Chemistry, Graduate School of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2010-10-01

    We synthesized a water-insoluble phospholipid polymer bearing a phenylboronic acid moiety (PMBV), which induces cell adhesion through a specific interaction with the glycoprotein, fibronectin. Surface plasmon resonance analysis revealed that fibronectin was adsorbed on the PMBV surface. When fibroblasts were cultured on the PMBV surface, the cells adhered and proliferated normally while showing a spherical morphology. In addition, the adherent cells were able to detach after the addition of sugar molecules, which bound to phenylboronic acid through an exchange reaction. The cell cycle of adherent cells was evaluated with the embedded HeLa-Fucci cells by using a fluorescent ubiquitination-based cell cycle indicator. The cell-cycle analysis by fluorescence microscopy indicated that the adherent HeLa-Fucci cells tended to converge to the G1 phase. The differentiation of mesenchymal stem cells to chondrocytes was accelerated on PMBV in the presence of bone morphogenetic protein-2. We concluded that PMBV is a useful surface in experiments for assessing cellular function and differentiation.

  2. The effect of albumin on podocytes: The role of the fatty acid moiety and the potential role of CD36 scavenger receptor

    International Nuclear Information System (INIS)

    Pawluczyk, I.Z.A.; Pervez, A.; Ghaderi Najafabadi, M.; Saleem, M.A.; Topham, P.S.

    2014-01-01

    Evidence is emerging that podocytes are able to endocytose proteins such as albumin using kinetics consistent with a receptor-mediated process. To date the role of the fatty acid moiety on albumin uptake kinetics has not been delineated and the receptor responsible for uptake is yet to be identified. Albumin uptake studies were carried out on cultured human podocytes exposed to FITC-labelled human serum albumin either carrying fatty acids (HSA +FA ) or depleted of them (HSA −FA ). Receptor-mediated endocytosis of FITC-HSA +FA over 60 min was 5 times greater than that of FITC-HSA −FA . 24 h exposure of podocytes to albumin up-regulated nephrin expression and induced the activation of caspase-3. These effects were more pronounced in response to HSA −FA. Individually, anti-CD36 antibodies had no effect upon endocytosis of FITC-HSA. However, a cocktail of 2 antibodies reduced uptake by nearly 50%. Albumin endocytosis was enhanced in the presence of the CD36 specific inhibitor sulfo-N-succinimidyl oleate (SSO) while knock-down of CD36 using CD36siRNA had no effect on uptake. These data suggest that receptor-mediated endocytosis of albumin by podocytes is regulated by the fatty acid moiety, although, some of the detrimental effects are induced independently of it. CD36 does not play a direct role in the uptake of albumin. - Highlights: • The fatty acid moiety is essential for receptor mediated endocytosis of albumin. • Fatty acid depleted albumin is more pathogenic to podocytes. • CD36 is not directly involved in albumin uptake by podocytes

  3. Novel 4-phenylpiperidine-2,6-dione derivatives. Ligands for α1-adrenoceptor subtypes

    KAUST Repository

    Romeo, Giuseppe F.

    2011-07-01

    A number of new 4-phenylpiperidine-2,6-diones bearing at the 1-position an ω-[4-(substituted phenyl)piperazin-1-yl]alkyl moiety were designed and synthesized as ligands for the α1-adrenergic receptor (α1-AR) subtypes. Some synthesized compounds, tested in binding assays for the human cloned α1A-, α1B-, and α1D-AR subtypes, displayed affinities in the nanomolar range. Highest affinity values were found in derivatives having a butyl connecting chain between the 4-phenylpiperidine-2,6-dione and the phenylpiperazinyl moieties. 1-[4-[4-(2-Methoxyphenyl)piperazin-1-yl]butyl]-4-phenylpiperidine-2,6- dione (34) showed the best affinity for the α1A-AR (pK i = 8.74) and 10-fold selectivity compared to the other two α1-AR subtypes. Some representative compounds were also tested in order to evaluate their effects on the signal transduction pathway coupled to α1-AR subtypes. They all blocked norepinephrine-induced stimulation of inositol phospholipid hydrolysis, thus behaving as antagonists. Binding data were used to refine a previously developed pharmacophoric model for α1D-ARs. The revised model shows a highly predictive power and could be useful for the future design of high affinity α1D-AR ligands. © 2011 Elsevier Masson SAS. All rights reserved.

  4. Novel 4-phenylpiperidine-2,6-dione derivatives. Ligands for α1-adrenoceptor subtypes

    KAUST Repository

    Romeo, Giuseppe F.; Materia, Luisa; Modica, Maria Nunziata; Pittal, Valeria; Salerno, Loredana; Siracusa, Maria Angela; Manetti, Fabrizio; Botta, Maurizio; Minneman, Kenneth P.

    2011-01-01

    A number of new 4-phenylpiperidine-2,6-diones bearing at the 1-position an ω-[4-(substituted phenyl)piperazin-1-yl]alkyl moiety were designed and synthesized as ligands for the α1-adrenergic receptor (α1-AR) subtypes. Some synthesized compounds, tested in binding assays for the human cloned α1A-, α1B-, and α1D-AR subtypes, displayed affinities in the nanomolar range. Highest affinity values were found in derivatives having a butyl connecting chain between the 4-phenylpiperidine-2,6-dione and the phenylpiperazinyl moieties. 1-[4-[4-(2-Methoxyphenyl)piperazin-1-yl]butyl]-4-phenylpiperidine-2,6- dione (34) showed the best affinity for the α1A-AR (pK i = 8.74) and 10-fold selectivity compared to the other two α1-AR subtypes. Some representative compounds were also tested in order to evaluate their effects on the signal transduction pathway coupled to α1-AR subtypes. They all blocked norepinephrine-induced stimulation of inositol phospholipid hydrolysis, thus behaving as antagonists. Binding data were used to refine a previously developed pharmacophoric model for α1D-ARs. The revised model shows a highly predictive power and could be useful for the future design of high affinity α1D-AR ligands. © 2011 Elsevier Masson SAS. All rights reserved.

  5. Optothermal Switching of Cholesteric Liquid Crystals: A Study of Azobenzene Derivatives and Laser Wavelengths

    Directory of Open Access Journals (Sweden)

    Tai-Chieh Huang

    2015-09-01

    Full Text Available The laser-initiated thermal (optothermal switching of cholesteric liquid crystals (CLCs is characterized by using different azobenzene (Azo derivatives and laser wavelengths. Under 405-nm laser irradiation, Azo-doped CLCs undergo phase transition from cholesteric to isotropic. No cis-to-trans photoisomerization occurs when the 405-nm laser irradiation is blocked because only a single laser is used. The fast response of Azo-doped CLCs under the on–off switching of the 405-nm laser occurs because of the optothermal effect of the system. The 660-nm laser, which cannot be used as irradiation to generate the trans–cis photoisomerization of Azo, is used in Anthraquinone (AQ-Azo-doped CLCs to examine the optothermal effect of doped Azo. The results show that the LC-like Azo derivative bearing two methyl groups ortho to the Azo moiety (A4 can greatly lower the clearing temperature and generate large amount of heat in AQ-A4-doped CLCs.

  6. Enhancing photophysical and photochemical properties of zinc(II) phthalocyanine dyes by substitution of triptycene moieties

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sohaimi, Bander Roshadan [Department of Chemistry, Faculty of Science, Taibah University, P.O. Box 344, Al-Madinah Al Munawwrah (Saudi Arabia); Pişkin, Mehmet [Çanakkale Onsekiz Mart University, Vocational School of Technical Sciences, Department of Food Technology, Çanakkale 17100 (Turkey); Aljuhani, Ateyatallah; Al-Raqa, Shaya Y. [Department of Chemistry, Faculty of Science, Taibah University, P.O. Box 344, Al-Madinah Al Munawwrah (Saudi Arabia); Durmuş, Mahmut, E-mail: durmus@gtu.edu.tr [Gebze Technical University, Department of Chemistry, P.O. Box 141, Gebze 41400, Kocaeli (Turkey)

    2016-05-15

    The symmetrical zinc(II) phthalocyanines conjugated with 9,10-dioctyl-6,7-dimethoxy-2,3-dioxytriptycene or 9,10-diundecyl-6,7-dimethoxy-2,3-dioxytriptycene moieties were synthesized in this study. These novel phthalocyanines were characterized by standard characterization techniques such as {sup 1}H-NMR, FT-IR, UV–vis, Mass and Elemental Analysis. All these phthalocyanines showed highly solubility and formed non-aggregated monomeric species in most of the organic solvents. Their photochemical properties such as singlet oxygen, and photodegradation quantum yields, and photophysical properties including fluorescence quantum yields and lifetimes were investigated in toluene. The fluorescence quenching behavior of the studied zinc(II) phthalocyanines by the addition of 1,4-benzoquinone were also described in toluene.

  7. Enhancing photophysical and photochemical properties of zinc(II) phthalocyanine dyes by substitution of triptycene moieties

    International Nuclear Information System (INIS)

    Al-Sohaimi, Bander Roshadan; Pişkin, Mehmet; Aljuhani, Ateyatallah; Al-Raqa, Shaya Y.; Durmuş, Mahmut

    2016-01-01

    The symmetrical zinc(II) phthalocyanines conjugated with 9,10-dioctyl-6,7-dimethoxy-2,3-dioxytriptycene or 9,10-diundecyl-6,7-dimethoxy-2,3-dioxytriptycene moieties were synthesized in this study. These novel phthalocyanines were characterized by standard characterization techniques such as 1 H-NMR, FT-IR, UV–vis, Mass and Elemental Analysis. All these phthalocyanines showed highly solubility and formed non-aggregated monomeric species in most of the organic solvents. Their photochemical properties such as singlet oxygen, and photodegradation quantum yields, and photophysical properties including fluorescence quantum yields and lifetimes were investigated in toluene. The fluorescence quenching behavior of the studied zinc(II) phthalocyanines by the addition of 1,4-benzoquinone were also described in toluene.

  8. Isoxazole-type derivatives related to combretastatin A-4, synthesis and biological evaluation.

    Science.gov (United States)

    Kaffy, Julia; Pontikis, Renée; Carrez, Danièle; Croisy, Alain; Monneret, Claude; Florent, Jean-Claude

    2006-06-15

    Novel combretastatin analogues bearing various five-membered heterocycles with consecutive oxygen and nitrogen atoms, in place of the olefinic bridge of CA4, have been synthesized (isoxazole, isoxazoline, oxadiazole, etc). These compounds have been evaluated for cytotoxicity and their ability to inhibit the tubulin assembly. On the basis of the relative position of the aromatic A- and B-rings on the heterocyclic moiety, they could be split in two classes, the alpha,gamma- or alpha,beta-diaryl heterocyclic derivatives. In the first series, the 3,5-diaryloxadiazole 9a displayed comparable antitubulin activity to that of CA4, but was devoid of cytotoxic effects. Among the alpha,beta-diaryl heterocyclic derivatives, the 4,5-diarylisoxazole 35 exhibited greater antitubulin activity than that of CA4 (0.75 vs 1.2 microM), but modest antiproliferative activity. These data showed that minor alteration in the chemical structure of the heterocyclic ring and its relative orientation with regard to the two phenyl rings of CA4 could dramatically influence the tubulin binding properties.

  9. Bipolar highly solid-state luminescent phenanthroimidazole derivatives as materials for blue and white organic light emitting diodes exploiting either monomer, exciplex or electroplex emission

    OpenAIRE

    Butkutė, Rita; Lygaitis, Ramūnas; Mimaitė, Viktorija; Gudeika, Dalius; Volyniuk, Dmytro; Sini, Gjergji; Gražulevičius, Juozas Vidas

    2017-01-01

    Four phenanthroimidazole-based bipolar compounds having electron-donating carbazole or diphenylamino moieties were synthesized and characterized. All compounds form glasses and exhibit high glass transition temperatures ranging from 183 to 239 °C. Solid state blue emission was detected for all synthesized compounds and quantum yields in solid state reached 0.55. Room temperature hole and electron mobilities in the layers of phenanthroimidazole derivatives reached 3.14 × 10−4 and 5.69 × 10−4 c...

  10. Thin-layer electrochemistry of ferrocenylbenzene derivatives: Intramolecular electronic communication

    International Nuclear Information System (INIS)

    Wang, Michael C.P.; Li Yunchao; Merbouh, Nabyl; Yu, Hua-Zhong

    2008-01-01

    Three arylferrocene derivatives, ferrocenylbenzene (MFcB), 1,3-diferrocenylbenzene (DFcB), and 1,3,5-triferrocenylbenzene (TFcB), were prepared and their redox properties systematically explored by thin-layer cyclic voltammetry (CV) and differential-pulse voltammetry (DPV). In contrast to conventional CV measurements that produced only a single pair of redox waves for all three compounds, the thin-layer technique discriminated between the multistep electron-transfer processes of DFcB and TFcB. In particular, two and three pairs of symmetric peaks were observed, respectively, when CV curves were recorded at a graphite electrode coated with a DFcB-containing and a TFcB-containing thin film of nitrobenzene and immersed in aqueous sodium perchlorate solution. These results demonstrate that the ferrocenyl moieties attached to the meta-positions of a benzene ring communicate electronically with each other, as a result of their distinct face-to-face orientations

  11. Novel α, β-Unsaturated Sophoridinic Derivatives: Design, Synthesis, Molecular Docking and Anti-Cancer Activities

    Directory of Open Access Journals (Sweden)

    Yiming Xu

    2017-11-01

    Full Text Available Using sophoridine 1 and chalcone 3 as the lead compounds, a series of novel α, β-unsaturated sophoridinic derivatives were designed, synthesized, and evaluated for their in vitro cytotoxicity. Structure-activity relationship (SAR analysis indicated that introduction of α, β-unsaturated ketone moiety and heterocyclic group might significantly enhance anticancer activity. Among the compounds, 2f and 2m exhibited potential effects against HepG-2 and CNE-2 human cancer cell lines. Furthermore, molecular docking studies were performed to understand possible docking sites of the molecules on the target proteins and the mode of binding. This work provides a theoretical basis for structural optimizations and exploring anticancer pathways of this kind of compound.

  12. Thioxopyrimidine in Heterocyclic Synthesis I: Synthesis of Some Novel 6-(Heteroatom-substituted-(thiopyrimidine Derivatives

    Directory of Open Access Journals (Sweden)

    Yuh-Wen Ho

    2013-01-01

    Full Text Available A series of novel N-cycloalkanes, morpholine, piperazines, pyrazole, pyrimidine, benzimidazolo[1,2-a]pyrimidine, 1,2,3,4-tetrazolo[1,5-a]pyrimidine, azopyrazolo[1,5- a]pyrimidine, pyrimido[4', 5':3,4]pyrazolo[1,5-a]pyrimidines and pyridine derivatives incorporating a 5-cyano-4-methyl-2-phenyl-(thiopyrimidine moiety were obtained by the intramolecular cyclization of 6-methylthio-pyrimidine, 6-(benzoylmethylthio- pyrimidine and 2-[(5-cyano-4-methyl-2-phenylpyrimidin-6-ylthio]-3-dimethyl- amino-1-phenyl-prop-2-en-1-one with appropriate amines and enaminone compounds, respectively. The structure of all new synthesized compounds was established from their spectral data, elemental analysis and the X-ray crystal analysis.

  13. Synthesis of some new 4-oxo-thiazolidines, tetrazole and triazole derived from 2-SH-benzothiazole and antimicrobial screening of some synthesized

    Directory of Open Access Journals (Sweden)

    Suaad M.H. Al-Majidi

    2014-12-01

    Triazole moieties reported condensation (MBT with ethylbromo acetate and potassium hydroxide by the fusion method and resulted in ester-2-mercaptobenzothiazole (7, which was treated with hydrazine hydrate to give a hydrazine derivative (8, then converting these compounds (8 to phenyl semicarbazide (9 and phenyl thiosemicarbazide (10 derivatives. Cyclization compounds (9,10 in alkaline media (4 N·NaOH gave triazoles compounds (11,12. Furthermore the compound (8 was converted to the dithiocarbazate salt (13 which was then cyclized with hydrazine hydrate to give substituted triazole (14. The prepared compounds were identified by spectral methods (FTIR, 1H NMR, 13C NMR and some of its physical properties were measured and furthermore the effects of the preparing compounds on some strains of bacteria were studied.

  14. Synthesis and Regioselective Reaction of Some Unsymmetrical Heterocyclic Chalcone Derivatives and Spiro Heterocyclic Compounds as Antibacterial Agents.

    Science.gov (United States)

    El-Hashash, Maher A; Rizk, Sameh A; Atta-Allah, Saad R

    2015-12-10

    A number of novel heterocyclic chalcone derivatives can be synthesized by thermal and microwave tools. Treatment of 4-(4-Acetylamino- and/or 4-bromo-phenyl)-4-oxobut-2-enoic acids with hydrogen peroxide in alkaline medium were afforded oxirane derivatives 2. Reaction of the epoxide 2 with 2-amino-5-aryl-1,3,4-thiadiazole derivatives yielded chalcone of imidazo[2,1-b]thiadiazole derivative 4 via two thermal routes. In one pot reaction of 4-bromoacetophenone, diethyloxalate, and 2-amino-5-aryl-1,3,4-thiadiazole derivatives in MW irradiation (W 250 and T 150 °C) under eco-friendly conditions afforded an unsuitable yield of the desired chalcone 4d. The chalcone derivatives 4 were used as a key starting material to synthesize some new spiroheterocyclic compounds via Michael and aza-Michael adducts. The chalcone 4f was similar to the aryl-oxo-vinylamide derivatives for the inhibition of tyrosine kinase and cancer cell growth. The electron-withdrawing substituents, such as halogens, and 2-amino-1,3,4-thiadiazole moeity decreasing the electron density, thereby decreasing the energy of HOMO, and the presence of imidazothiadiazole moiety should improve the antibacterial activity. Thus, the newly synthesized compounds were evaluated for their anti-bacterial activity against (ATCC 25923), (ATCC 10987), (ATCC 274,) and (SM514). The structure of the newly synthesized compounds was confirmed by elemental analysis and spectroscopic data.

  15. Linear acene derivatives - New routes to pentacene and naphthacene and the first synthesis of a triptycene with two anthracene moieties

    Science.gov (United States)

    Luo, Jihmei; Hart, Harold

    1987-01-01

    The cycloaddition of o-xylylene to arene 1,4-endoxides was used to construct linear arene derivatives. An analogous sequence but with naphthalene 1,4-endoxides gave naphthacenes. Dehydration of the di adducts from 4 and anthracene 1,4:5,8-diendoxides gave a mixture of 5,9,14,18- and 5,8,15,18-tetrahydroheptacenes 3 and 9. The previously unknown triptycene 2 was synthesized from 5,14-dihydropentacene, an intermediate in the new pentacene synthesis, in three steps and 29 percent overall yield.

  16. Histamine H3 receptor ligands in the group of (homo)piperazine derivatives.

    Science.gov (United States)

    Szczepanska, Katarzyna; Kuder, Kamil; Kiec-Kononowicz, Katarzyna

    2017-11-23

    Since its' discovery in 1983, followed by gene cloning in 1999, the histamine H3 receptor served as an outstanding target for drug discovery. The wide spectrum of possible therapeutic implications make H3R's one of the most researched areas in the vast GPCR ligands field - started from imidazole containing ligands, through various successful imidazole replacements, with recent introduction of Wakix® to pharmaceutical market. One of such replacements is piperazine moiety, a significant versatile scaffold in rational drug design for most of the GPCR ligands. Therefore, herein we review ligands built on piperazine, as well as its seven membered analogue azepine, that target H3R's and their potential therapeutical applications, in order to elucidate the current state of the art in this vast field. Due to a high level of structural divergence among compounds described herein, we decided to divide them into groups, where the key division element was the position of nitrogen basicity decreasing moieties in (homo)piperazine ring. Paying attention to a number of published structures and their overall high biological activity, one can realize that the (homo)piperazine scaffold bids a versatile template also for histamine H3 receptor ligands. With two possible substitution sites and therefore a number of possible structural combinations, piperazine derivatives stand as one of the largest group of high importance among H3R ligands. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Synthesis of some new 3-coumaranone and coumarin derivatives as dual inhibitors of acetyl- and butyrylcholinesterase.

    Science.gov (United States)

    Alipour, Masoumeh; Khoobi, Mehdi; Nadri, Hamid; Sakhteman, Amirhossein; Moradi, Alireza; Ghandi, Mehdi; Foroumadi, Alireza; Shafiee, Abbas

    2013-08-01

    A novel series of coumarin and 3-coumaranone derivatives encompassing the phenacyl pyridinium moiety were synthesized and evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity using Ellman's method. All compounds presented inhibitory activity against both AChE and BuChE in the micromolar range. The molecular docking simulations revealed that all compounds were dual binding site inhibitors of AChE. A kinetic study was performed and the mechanism of enzyme inhibition was proved to be of mixed type. All compounds were tested for their antioxidant activity and no significant activity was observed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparison of Separation of Seed Oil Triglycerides Containing Isomeric Conjugated Octadecatrienoic Acid Moieties by Reversed-Phase HPLC

    Directory of Open Access Journals (Sweden)

    Anh Van Nguyen

    2017-12-01

    Full Text Available Relative retention analysis and increment approach were applied for the comparison of triglycerides (TGs retention of a broad set of plant seed oils with isomeric conjugated octadecatrienoic acids (CLnA by reversed-phase HPLC for “propanol-2-acetonitrile” mobile phases and Kromasil 100-5C18 stationary phase with diode array detection (DAD and mass spectrometric (MS detection. The subjects of investigation were TGs of seed oils: Calendula officinalis, Catalpa ovata, Jacaranda mimosifolia, Centranthus ruber, Momordica charantia, Trichosanthes anguina, Punica granatum, Thladiantha dubia, Valeriana officinalis, and Vernicia montana. It was found that a sequence of elution of TGs of the same types is the same without any inversions for full range of mobile phase compositions: punicic (C18:39Z11E13Z < jacaric (C18:38Z10E12Z < catalpic (C18:39E11E13Z < α-eleostearic (C18:39Z11E13E < calendic (C18:38E10E12Z < β-eleostearic (C18:39E11E13E < all-E calendic (C18:38E10E12E acids. TGs and fatty acid compositions were calculated for all oil samples. Regularities of solute retentions as a function of isomeric conjugated octadecatrienoic acid moiety structure are discussed. Thus, it was proven that it is possible to differentiate TGs of complex composition with moieties of all natural CLnA by retention control accomplished by electronic spectra comparison, even though there are only three types of electronic-vibration spectra for seven isomeric CLnA.

  19. Synthesis and film formation of furfuryl- and maleimido carbonic acid derivatives of dextran.

    Science.gov (United States)

    Elschner, Thomas; Obst, Franziska; Stana-Kleinschek, Karin; Kargl, Rupert; Heinze, Thomas

    2017-04-01

    Carbonic acid derivatives of dextran possessing furfuryl- and maleimido moieties were synthesized and processed into thin films by spin coating. First, products with different degrees of substitution (DS) of up to 3.0 and substitution patterns were obtained and characterized by NMR- and FTIR spectroscopy, as well as elemental analysis. Thin films possessing maleimide groups were obtained by spin coating of maleimido dextran (furan-protected) and dextran furfuryl carbamate that was converted with bismaleimide. The removal of the protecting group (furan) on the thin film was monitored by QCM-D and compared with gravimetric analysis of the bulk material. Film morphology and wettability were determined by means of AFM and contact angle measurements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Synthesis, Photophysics, Electrochemistry and Electrogenerated Chemiluminescence of a Homologous Set of BODIPY-Appended Bipyridine Derivatives.

    Science.gov (United States)

    Rosenthal, Joel; Nepomnyashchii, Alexander B; Kozhukh, Julia; Bard, Allen J; Lippard, Stephen J

    2011-09-15

    Two new 2,2'-bipyridine (bpy) based ligands with ancillary BODIPY chromophores attached at the 4 and 4'-positions were prepared and characterized, which vary in the substitution pattern about the BODIPY periphery by either excluding (BB1) or including (BB2) a β-alkyl substituent. Both absorb strongly throughout the visible region and are strongly emissive. The basic photophysics and electrochemical properties of BB1 and BB2 are comparable to those of the BODIPY monomers on which they are based. The solid-state structures and electronic structure calculations both indicate that there is negligible electronic communication between the BODIPY moieties and the intervening bpy spacers. Electrogenerated chemiluminescence spectra of the two Bpy-BODIPY derivatives are similar to their recorded fluorescence profiles and are strongly influenced by substituents on the BODIPY chromophores. These 2,2'-bipyridine derivatives represent a new set of ligands that should find utility in applications including light-harvesting, photocatalysis, and molecular electronics.