WorldWideScience

Sample records for mev rf gun

  1. SSRL photocathode RF gun test stand

    International Nuclear Information System (INIS)

    Hernandez, M.; Baltay, M.; Boyce, A.

    1995-01-01

    A photocathode RF gun test stand designed for the production and study of high brightness electron beams will be constructed at SSRL. The beam will be generated from a laser driven third generation photocathode RF gun being developed in collaboration with BNL, LBL, and UCLA. The 3-5 [MeV] beam from the gun will be accelerated using a SLAC three meter S-band accelerator section, in order to achieve the desired low emittance beam, emittance compensation with solenoidal focusing will be employed

  2. Femtosecond precision measurement of laser–rf phase jitter in a photocathode rf gun

    International Nuclear Information System (INIS)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao

    2017-01-01

    We report on the measurement of the laser–rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser–rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser–rf phase jitter in the gun through measurement of the beam–rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  3. Femtosecond precision measurement of laser–rf phase jitter in a photocathode rf gun

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao, E-mail: dxiang@sjtu.edu.cn

    2017-03-21

    We report on the measurement of the laser–rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser–rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser–rf phase jitter in the gun through measurement of the beam–rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  4. Beam dynamics studies of a 30 MeV RF linac for neutron production

    Science.gov (United States)

    Nayak, B.; Krishnagopal, S.; Acharya, S.

    2018-02-01

    Design of a 30 MeV, 10 Amp RF linac as neutron source has been carried out by means of ASTRA simulation code. Here we discuss details of design simulations for three different cases i.e Thermionic , DC and RF photocathode guns and compare them as injectors to a 30 MeV RF linac for n-ToF production. A detailed study on choice of input parameters of the beam from point of view of transmission efficiency and beam quality at the output have been described. We found that thermionic gun isn't suitable for this application. Both DC and RF photocathode gun can be used. RF photocathode gun would be of better performance.

  5. High-quality electron pulse generation from a laser photocathode RF gun

    International Nuclear Information System (INIS)

    Yang, Jinfeng; Sakai, Fumio; Aoki, Yasushi

    1999-01-01

    A laser photocathode RF gun system was developed for ultra short X-ray pulse generation via the inverse Compton scattering. The gun is a BNL-type S-band RF gun and the performance test of the gun was performed at the Linear Accelerator Facility in the Institute of Scientific and Industries Research, Osaka University. The gun system produced 115 pC electron bunches with the energy of 1.6 MeV under the condition of RF peak power of 1.5 MW and laser pulse energy of 65 μJ. The quantum efficiency and dark current were obtained to be 10 -5 and 0.6 nA at the repetition rate of 10 Hz, respectively. The energy and charge of the electron bunch were measured as a function of laser injection phase. Furthermore, the electron bunches were accelerated up to 117 MeV by three s-band TW linacs and the energy monochromaticity (ΔE/E) of the beam was 1.2%. The transverse emittance was also experimentally investigated at the end of the linacs. (author)

  6. Mechanical design of a RF electron gun

    International Nuclear Information System (INIS)

    Woodle, M.H.; Batchelor, K.; Sheehan, J.

    1989-01-01

    Brookhaven National Laboratory is building an Accelerator Test Facility at which we plan to study laser acceleration of electrons, inverse free electron lasers and the production of X-rays by non-linear Compton scattering. The facility contains an electron gun, linac, lasers and ancillary systems which will enable the production of 6 ps duration pulses of 50-100 MeV electrons. The electron source is an one and one half cell RF Electron gun which utilizes either a thermionic or photoemissive cathode to produce 5 MeV electrons. This paper discusses how gun mechanical design considerations such as material, vacuum maintenance, surface finish, fabrication methods, cavity tuning, and cathode replacement were reconciled to arrive at the final design. 9 refs., 2 figs., 2 tabs

  7. Mechanical design of a rf electron gun

    International Nuclear Information System (INIS)

    Woodle, M.H.; Batchelor, K.; Sheehan, J.

    1988-01-01

    Brookhaven National Laboratory is building an Accelerator Test Facility at which we plan to study laser acceleration of electrons inverse free electron lasers and the production of X-rays by non- linear Compton scattering. The facility contains an electron gun, linac, lasers and ancillary systems which will enable the production of 6 ps duration pulses of 50--100 MeV electrons. The electron source is an one and one half cell RF Electron gun which utilizes either a thermionic or photoemissive cathode to produce 5 MeV electrons. This paper discusses how gun mechanical design considerations such as material, vacuum maintenance, surface finish, fabrication methods, cavity tuning, and cathode replacement were reconciled to arrive at the final design. 9 refs., 2 figs., 2 tabs

  8. Generation of femtosecond electron single pulse using laser photocathode RF gun

    Energy Technology Data Exchange (ETDEWEB)

    Uesaka, M.; Kinoshita, K.; Watanabe, T. [Nuclear Engineering Research Laboratory, University of Tokyo, Tokai, Ibaraki (JP)] [and others

    1998-11-01

    A new laser photocathode RF electron gun was installed in the second linac of the S-band twin linac system of Nuclear Engineering Research Laboratory(NERL) of University of Tokyo in August in 1997. Since then, the behavior of the new gun has been tested and the characteristic parameters have been evaluated. At the exit of the gun, the energy is 4.7 MeV, the charge per bunch 1 nC, the pulse width is 10 ps(FWHM), respectively, for 6 MW RF power supply from a klystron. The electron bunch is accelerated up to 17 MeV. The horizontal normalized emittance is 1 {pi} mm.mrad. Then, the bunch is compressed to be 440 fs(FWHM) with 0.35 nC by the chicane-type magnetic pulse compressor. The gun is planned to be used for femtosecond X-ray generation via the head-on Thomson scattering and laser wakefield acceleration in 1998. (author)

  9. Performance review of thermionic electron gun developed for RF linear accelerators at RRCAT

    International Nuclear Information System (INIS)

    Wanmode, Yashwant; Mulchandani, J.; Reddy, T.S.; Bhisikar, A.; Singh, H.G.; Shrivastava, Purushottam

    2015-01-01

    RRCAT is engaged in development of RF electron linear accelerator for irradiation of industrial and agricultural products. Thermionic electron gun is primary source for this accelerator as beam current in the RF accelerator is modest and thermionic emission is most prevalent option for electron gun development. An electron gun has to meet high cathode emission capability, low filament power, good accessibility for cathode replacement and should provide short time for maintenance. Electron linear accelerator up to beam energy of 10 MeV require electron source of 45-50 keV beam energy and emission current of 1 A. Electron optics of gun and electron beam profile simulations were carried out using CST's particle tracking code and EGUN code. Triode type electron gun of cathode voltage 50 kV pulsed has been designed, developed and integrated with 10 MeV electron linear accelerators at RRCAT. Beam current of more than 600 mA has been measured with faraday cup in the test stand developed for characterizing the electron gun. Two accelerators one is imported and another one developed indigenously has been energized using this electron gun. Beam energy of 5-10 MeV has been achieved with beam current of 250-400 mA by integrating this electron gun with the linear accelerator. This paper reviews the performance of indigenously developed electron gun for both linear accelerators. (author)

  10. The elbe accelerator facility starts operation with the superconducting rf gun

    CERN Document Server

    Xiang, R; Buettig, H; Janssen, D; Justus, M; Lehnert, U; Michel, P; Murcek, P; Schneider, C; Schurig, R; Staufenbiel, F; Teichert, J; Kamps, T; Rudolph, J; Schenk, M; Klemz, G; Will, I

    2010-01-01

    As the first superconducting rf photo-injector (SRF gun) in practice, the FZD 3+1/2 cell SRF gun is successfully connected to the superconducting linac ELBE. This setting will improve the beam quality for ELBE users. It is the first example for an accelerator facility fully based on superconducting RF technology. For high average power FEL and ERL sources, the combination of SRF linac and SRF gun provides a new chance to produce beams of high average current and low emittance with relative low power consumption. The main parameters achieved from the present SRF gun are the final electron energy of 3 MeV, 16 μA average current, and rms transverse normalized emittances of 3 mm mrad at 77 pC bunch charge. A modified 3+1/2 cell niobium cavity has been fabricated and tested, which will increase the rf gradient in the gun and thus better the beam parameters further. In this paper the status of the integration of the SRF gun with the ELBE linac will be presented, and the latest results of the beam experiments will ...

  11. Simulations of the BNL/SLAC/UCLA 1.6 cell emittance compensated photocathode RF gun low energy beam line

    International Nuclear Information System (INIS)

    Palmer, D.T.; Miller, R.H.; Winick, H.

    1995-01-01

    A dedicated low energy (2 to 10 MeV) experimental beam line is now under construction at Brookhaven National Laboratories Accelerator Test Facility (BNL/ATF) for photocathode RF gun testing and photoemission experiments. The design of the experimental line, using the 1.6 cell photocathode RF gun developed by the BNL/SLAC/UCLA RF gun collaboration is presented. Detailed beam dynamics simulations were performed for the 1.6 cell RF gun injector using a solenoidal emittance compensation technique. An experimental program for testing the 1.6 cell RF gun is presented. This program includes beam loading caused by dark current, higher order mode field measurements, integrated and slice emittance measurements using a pepper-pot and RF kicker cavity

  12. RF guns: a review

    International Nuclear Information System (INIS)

    Travier, C.

    1990-06-01

    Free Electron Lasers and future linear colliders require very bright electron beams. Conventional injectors made of DC guns and RF bunchers have intrinsic limitations. The recently proposed RF guns have already proven their capability to produce bright beams. The necessary effort to improve further these performances and to gain reliability is now undertaken by many laboratories. More than twenty RF gun projects both thermionic and laser-driven are reviewed. Their specific characteristics are outlined and their nominal performances are given

  13. Conceptual design of independently tunable cells RF gun with external injecting structure

    International Nuclear Information System (INIS)

    Liang Junjun; Feng Guangyao; Pei Yuanji; Pang Jian

    2012-01-01

    To obtain the micro-pulse bunch with the order of hundred femtoseconds length and high repetition rate, the pa- per proposes the independently tunable cells (ITC) RF gun, which has a double-cell structure with the cells being power fed independently. By choosing appropriate feeding power and phase of the two cells, this ITC-RF gun can achieve bunches of excellent characteristics. Additionally, the application of a-magnet and laser system can be avoided, which leads to more compact layout. An external injecting ITC-RF gun (DC-ITC-RF gun) structure is designed accordingly. The external injecting structure can increase beam current, decrease energy spread, and cancel the back-bombardment effect almost completely. By means of 1-D and 3- D beam dynamics calculation with different structure parameters, a group of RF parameters are obtained for better beam characteristics. Then the paper designs a pre-injector so that particles can be accelerated to 10 MeV. By choosing appropriate feeding power and incident particle phase for the pre-injector, the bunch length can be further compressed. (authors)

  14. X-Band Thermionic Cathode RF Gun at UTNL

    CERN Document Server

    Fukasawa, Atsushi; Dobashi, Katsuhiro; Ebina, Futaro; Hayano, Hitoshi; Higo, Toshiyasu; Kaneyasu, Tatsuo; Matsuo, Kennichi; Ogino, Haruyuki; Sakae, Hisaharu; Sakamoto, Fumito; Uesaka, Mitsuru; Urakawa, Junji

    2005-01-01

    The X-band (11.424 GHz) linac for compact Compton scattering hard X-ray source are under construction at Nuclear Engineering Research Laboratory, University of Tokyo. This linac designed to accelerate up to 35 MeV, and this electron beam will be used to produce hard X-ray by colliding with laser. It consists of a thermionic cathode RF gun, an alpha magnet, and a traveling wave tube. The gun has 3.5 cells (unloaded Q is 8250) and will be operated at pi-mode. A dispenser cathode is introduced. Since the energy spread of the beam from the gun is predicted to be broad due to the continuous emission from the thermionic cathode, a slit is placed in the alpha magnet to eliminate low energy electrons. The simulation on the injector shows the beam energy 2.9 MeV, the charge 23 pC/bunch, and the emittance less than 10 mm.mrad. The experiment on the gun is planed in the beginning of 2005, and the details will be discussed on the spot.

  15. Low emittance electron beam formation with a 17 GHz RF gun

    Directory of Open Access Journals (Sweden)

    W. J. Brown

    2001-08-01

    Full Text Available We report on electron beam quality measurement results from the Massachusetts Institute of Technology 17 GHz RF gun experiment. The 1.5 cell RF gun uses a solenoid for emittance compensation. It has produced bunch charges up to 0.1 nC with beam energies up to 1 MeV. The normalized rms emittance of the beam after 35 cm of transport from the gun has been measured by a slit technique to be 3π mm mrad for a 50 pC bunch. This agrees well with PARMELA simulations at these beam energies. At the exit of the electron gun, we estimate the emittance to be about 1π mm mrad, which corresponds to a beam brightness of about 80 A/(π mm mrad^{2}. Improved beam quality should be possible with a higher energy output electron beam from the gun.

  16. The design of a 3 GHz thermionic RF-gun and energy filter for MAX-lab

    CERN Document Server

    Anderberg, B; Demirkan, M; Eriksson, M; Malmgren, L; Werin, S

    2002-01-01

    A new pre-injector has been designed for the MAX-laboratory. It consists of an RF-gun and a magnetic energy filter. The newly designed RF-gun geometry will be operated at 3 GHz in the thermionic mode using a BaO cathode. The pre-injector will provide a 2.3 MeV electron beam in 3 ps micro pulses to a new injector system currently under construction.

  17. Unbalanced field RF electron gun

    Science.gov (United States)

    Hofler, Alicia

    2013-11-12

    A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.

  18. High-quality beam generation using an RF gun and a 150 MeV microtron

    Science.gov (United States)

    Kuroda, R.; Washio, M.; Kashiwagi, S.; Kobuki, T.; Ben-Zvi, I.; Wang, X. J.; Hori, T.; Sakai, F.; Tsunemi, A.; Urakawa, J.; Hirose, T.

    2000-11-01

    Low-emittance sub-picosecond electron pulses are expected to be used in a wide field, such as free electron laser, laser acceleration, femtosecond X-ray generation by Inverse Compton scattering, pulse radiolysis, etc. In order to produce the low-emittance sub-picosecond electron pulse, we are developing a compact Racetrack Microtron (RTM) with a new 5 MeV injection system adopting a laser photo cathode RF gun (Washio et al., Seventh China-Japan Bilateral Symposium on Radiation Chemistry, October 28, Cengdu, China, 1996). The operation of RTM has been kept under a steady state of beam loading for long pulse mode so far (Washio et al., J. Surf. Sci. Soc. Jpn. 19 (2) (1998) 23). In earlier work (Washio et al., PAC99, March 31, New York, USA, 1999), we have succeeded in the numerical simulation for the case of single short pulse acceleration. Finally, the modified RTM was demonstrated as a useful accelerator for a picosecond electron pulse generation under a transient state of beam loading. In the simulation, a picosecond electron pulse was accelerated to 149.6 MeV in RTM for the injection of 5 MeV electron bunch with a pulse length of 10 ps (FWHM), a charge of 1 nC per pulse, and an emittance of 3 πmm mrad.

  19. The SSRL linacs for injection to the storage ring and rf gun testing

    International Nuclear Information System (INIS)

    Park, Sanghyun; Weaver, James N.

    1996-01-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) operates two linac systems. One has three SLAC type linac sections powered by two klystrons for injection of electrons at 120 MeV into the booster ring, boosting the energy to 2.3 GeV to fill the SPEAR. After the ramping, the SPEAR stores up to 100 mA of the beam at 3.0 GeV. The preinjector consists of a thermionic RF gun, an alpha magnet, and a chopper along with focusing magnets. The other has one 10 foot section powered by the injector klystron for the testing of RF gun with photocathode, which is driven by a separate klystron. This paper describes present systems with their operational parameters, followed by plans for the upgrades and RF gun development efforts at the SSRL. (author)

  20. RF gun using laser-triggered photocathode

    International Nuclear Information System (INIS)

    Akiyama, H.; Otake, Y.; Naito, T.; Takeuchi, Y.; Yoshioka, M.

    1992-01-01

    An RF gun using laser-triggered photocathode has many advantages as an injector of the linear colliders since it can generate a low emittance and high current pulsed beam. The experimental facility for the RF gun, such as an RF system, a laser system and a photocathode have been fabricated to study the fundamental characteristics. The dynamics of the RF gun has also studied by the 1D sheet beam model. (author)

  1. Analysis of emittance compensation and simulation results to photo-cathode RF gun

    CERN Document Server

    LiuShengGuang

    2002-01-01

    The emittance compensation technology will be used on the photo-cathode RF gun for Shanghai SDUV-FEL. The space charge force and its effect on electron beam transverse emittance in RF gun is studied, the principle of emittance compensation in phase-space is discussed. The authors have designed a compensation solenoid and calculated its magnetic field distribution. Its performance has been studied by the code PARMELA. A simulation result indicates that the normalized transverse RMS emittance for electron beam of 1.5 nC is 1.612 pi mm centre dot mrad, electron energy E = 5.71 MeV

  2. A photocathode rf gun design for a mm-wave linac-based FEL

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, A.; Berenc, T,; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-07-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths ({approximately}300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell {pi}-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure.

  3. A photocathode rf gun design for a mm-wave linac-based FEL

    International Nuclear Information System (INIS)

    Nassiri, A.; Berenc, T.; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-01-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths (∼300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell π-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure

  4. Experimental studies of emittance growth and energy spread in a photocathode RF gun

    International Nuclear Information System (INIS)

    Yang, J.; Sakai, F.; Okada, Y.; Yorozu, M.; Yanagida, T.; Endo, A.

    2002-01-01

    In this paper we report on a low emittance electron source, based on a photocathode RF gun, a solenoid magnet and a subsequent linac. The dependencies of the beam transverse emittance and relative energy spread with respect to the laser injection phase of the radio-frequency (RF) gun, the RF phase of the linac and the bunch charge were investigated experimentally. It was found that a lower beam emittance is observed when the laser injection phase in the RF gun is low. The emittance increases almost linearly with the bunch charge under a constant solenoid magnetic field. The corrected relative energy spread of the beam is not strongly dependent on the bunch charge. Finally, an optimal normalized rms transverse emittance of 1.91±0.28 πmm mrad at a bunch charge of 0.6 nC was obtained when the RF gun was driven by a picosecond Nd:YAG laser. A corrected relative rms energy spread of 0.2-0.25% at a bunch charge of 0.3-2 nC was obtained after the beam was accelerated to 14 MeV by the subsequent linac

  5. Experimental studies of emittance growth and energy spread in a photocathode RF gun

    CERN Document Server

    Yang, J; Okada, Y; Yorozu, M; Yanagida, T; Endo, A

    2002-01-01

    In this paper we report on a low emittance electron source, based on a photocathode RF gun, a solenoid magnet and a subsequent linac. The dependencies of the beam transverse emittance and relative energy spread with respect to the laser injection phase of the radio-frequency (RF) gun, the RF phase of the linac and the bunch charge were investigated experimentally. It was found that a lower beam emittance is observed when the laser injection phase in the RF gun is low. The emittance increases almost linearly with the bunch charge under a constant solenoid magnetic field. The corrected relative energy spread of the beam is not strongly dependent on the bunch charge. Finally, an optimal normalized rms transverse emittance of 1.91+-0.28 pi mm mrad at a bunch charge of 0.6 nC was obtained when the RF gun was driven by a picosecond Nd:YAG laser. A corrected relative rms energy spread of 0.2-0.25% at a bunch charge of 0.3-2 nC was obtained after the beam was accelerated to 14 MeV by the subsequent linac.

  6. RF Design of the LCLS Gun

    International Nuclear Information System (INIS)

    Limborg-Deprey, C.

    2010-01-01

    Final dimensions for the LCLS RF gun are described. This gun, referred to as the LCLS gun, is a modified version of the UCLA/BNL/SLAC 1.6 cell S-Band RF gun (1), referred to as the prototype gun. The changes include a larger mode separation (15 MHz for the LCLS gun vs. 3.5 MHz for the prototype gun), a larger radius at the iris between the 2 cells, a reduced surface field on the curvature of the iris between the two cells, Z power coupling, increased cooling channels for operation at 120 Hz, dual rf feed, deformation tuning of the full cell, and field probes in both cells. Temporal shaping of the klystron pulse, to reduce the average power dissipated in the gun, has also been adopted. By increasing the mode separation, the amplitude of the 0-mode electric field on the cathode decreases from 10% of the peak on axis field for the prototype gun to less than 3% for the LCLS gun for the steady state fields. Beam performance is improved as shown by the PARMELA simulations. The gun should be designed to accept a future load lock system. Modifications follow the recommendations of our RF review committee (2). Files and reference documents are compiled in Section IV.

  7. X-Band RF Gun Development

    International Nuclear Information System (INIS)

    Vlieks, A.E.

    2012-01-01

    In support of the MEGa-ray program at LLNL and the High Gradient research program at SLAC, a new X-band multi-cell RF gun is being developed. This gun, similar to earlier guns developed at SLAC for Compton X-ray source program, will be a standing wave structure made of 5.5 cells operating in the pi mode with copper cathode. This gun was designed following criteria used to build SLAC X-band high gradient accelerating structures. It is anticipated that this gun will operate with surface electric fields on the cathode of 200 MeV/m with low breakdown rate. RF will be coupled into the structure through a final cell with symmetric duel feeds and with a shape optimized to minimize quadrupole field components. In addition, geometry changes to the original gun, operated with Compton X-ray source, will include a wider RF mode separation, reduced surface electric and magnetic fields.

  8. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    International Nuclear Information System (INIS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-01-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012 © . RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance

  9. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Science.gov (United States)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  10. Theoretical investigation of a travelling-wave rf gun

    International Nuclear Information System (INIS)

    Gao, J.

    1991-12-01

    A travelling-wave type rf gun (TW gun) is investigated theoretically. Analytical formulae concerning energy gain, energy spread, and transverse emittance are derived. After showing the corresponding formulae for the standing-wave rf gun (SW gun), comparisons are made between the two types of rf gun. Finally, some numerical results are calculated to demonstrate further the behaviours of the TW gun, and to compare with those from analytical formulae. (author) 11 refs.; 27 figs

  11. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Energy Technology Data Exchange (ETDEWEB)

    Rimjaem, S., E-mail: sakhorn.rimjaem@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Kusoljariyakul, K.; Thongbai, C. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand)

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012{sup ©}. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  12. Study of Control Grid Thermionic Cathode RF Gun

    CERN Document Server

    Xiao, Jin; Ming, Li; Xinfan, Yang; Xumin, Shen; Yanan, Chen; Zhou, Xu

    2004-01-01

    In this paper, the beam loading effect of RF Gun was analyzed. To minimize the energy spread, the grid control RF Gun was introduced. The result shows that the grid congrol RF Gun can increase electron beam within 1% energy spread.

  13. Geometry Optimization of DC/RF Photoelectron Gun

    CERN Document Server

    Chen Ping; Yu, David

    2005-01-01

    Pre-acceleration of photoelectrons in a pulsed, high voltage, short, dc gap and its subsequent injection into an rf gun is a promising method to improve electron beam emittance in rf accelerators. Simulation work has been performed in order to optimize the geometric shapes of a dc/rf gun and improve electron beam properties. Variations were made on cathode and anode shapes, dc gap distance, and inlet shape of the rf cavity. Simulations showed that significant improvement on the normalized emittance (< 1 mm-mrad), compared to a dc gun with flat cathode, could be obtained after the geometric shapes of the gun were optimized.

  14. Operation of the APS rf gun

    International Nuclear Information System (INIS)

    Lewellen, J. W.

    1998-01-01

    The Advanced Photon Source (APS) has a thermionic-cathode rf gun system capable of providing beam to the APS linac. The gun system consists of a 1.6-cell thermionic-cathode rf gun, a fast kicker for beam current control, and an alpha magnet for bunch compression and injection into the APS linac line. This system is intended for use both as an injector for positron creation, and as a first beam source for the Low-Energy Undulator Test Line (LEUTL) project [1]. The first measured performance characteristics of the gun are presented.

  15. The RF Design of an HOM Polarized RF Gun for the ILC

    International Nuclear Information System (INIS)

    Wang, J.W.; Clendenin, J.E.; Colby, E.R.; Miller, R.A.; Lewellen, J.W.

    2006-01-01

    The ILC requires a polarized electron beam. While a highly polarized beam can be produced by a GaAs-type cathode in a DC gun of the type currently in use at SLAC, JLAB and elsewhere, the ILC injector system can be simplified and made more efficient if a GaAs-type cathode can be combined with a low emittance RF gun. Since this type of cathode is known to be extremely sensitive to vacuum contamination including back bombardment by electrons and ions, any successful polarized RF gun must have a significantly improved operating vacuum compared to existing RF guns. We present a new RF design for an L-Band normal conducting (NC) RF gun for the ILC polarized electron source. This design incorporates a higher order mode (HOM) structure, whose chief virtue in this application is an improved conductance for vacuum pumping on the cathode. Computer simulation models have been used to optimize the RF parameters with two principal goals: first to minimize the required RF power; second to reduce the peak surface field relative to the field at the cathode in order to suppress field emitted electron bombardment. The beam properties have been simulated initially using PARMELA. Vacuum and other practical issues for implementing this design are discussed

  16. Performances of the Alpha-X RF gun on the PHIL accelerator at LAL

    Energy Technology Data Exchange (ETDEWEB)

    Vinatier, T., E-mail: vinatier@lal.in2p3.fr [Laboratoire de l' Accélérateur Linéaire (LAL), Université Paris Sud, UMR 8607, bâtiment 200, 91898 Orsay Cedex (France); Bruni, C. [Laboratoire de l' Accélérateur Linéaire (LAL), Université Paris Sud, UMR 8607, bâtiment 200, 91898 Orsay Cedex (France); Roux, R. [Laboratoire de l' Accélérateur Linéaire (LAL), Université Paris Sud, UMR 8607, bâtiment 200, 91898 Orsay Cedex (France); Laboratoire d' Etude des Eléments Légers, CEA IRAMIS, bâtiment 524, 91191 Gif sur Yvette Cedex (France); Brossard, J. [Laboratoire de l' Accélérateur Linéaire (LAL), Université Paris Sud, UMR 8607, bâtiment 200, 91898 Orsay Cedex (France); Laboratoire Astroparticule et Cosmologie, Université Paris 7, UMR 7164, bâtiment Condorcet, 75205 Paris Cedex (France); Chancé, S.; Cayla, J.N.; Chaumat, V. [Laboratoire de l' Accélérateur Linéaire (LAL), Université Paris Sud, UMR 8607, bâtiment 200, 91898 Orsay Cedex (France); and others

    2015-10-11

    The Alpha-X RF-gun was designed to produce an ultra-short (<100 fs rms), 100 pC and 6.3 MeV electron beam with a normalized rms transverse emittance of 1π mm mrad for a gun peak accelerating field of 100 MV/m. Such beams will be required by the Alpha-X project, which aims to study a laser-driven plasma accelerator with a short wavelength accelerating medium. It has been demonstrated on PHIL (Photo-Injector at LAL) that the coaxial RF coupling, chosen to preserve the gun field cylindrical symmetry, is perfectly understood and allows reaching the required peak accelerating field of 100 MV/m giving beam energy of 6.3 MeV. Moreover, a quite low beam rms relative energy spread of 0.15% at 3.8 MeV has been measured, completely agreeing with simulations. Dark current, quantum efficiencies and dephasing curves measurements have also been performed. They all show high values of the field enhancement factor β, which can be explained by the preparation of the photocathodes. Finally, measurements on the transverse phase-space have been carried out, with some limitations given by the difficult modelization of one of the PHIL solenoid magnets and by the enlargement of the beam transverse dimensions due to the use of YAG screens. These measurements give a normalized rms transverse emittance around 5π mm mrad, which does not fulfill the requirement for the Alpha-X project.

  17. Method of electron emission control in RF guns

    International Nuclear Information System (INIS)

    Khodak, I.V.; Kushnir, V.A.

    2001-01-01

    The electron emission control method for a RF gun is considered.According to the main idea of the method,the additional resonance system is created in a cathode region where the RF field strength could be varied using the external pulse equipment. The additional resonance system is composed of a coaxial cavity coupled with a RF gun cylindrical cavity via an axial hole. Computed results of radiofrequency and electrodynamic performances of such a two-cavity system and results of the RF gun model pilot study are presented in. Results of particle dynamics simulation are described

  18. Method of electron emission control in RF guns

    CERN Document Server

    Khodak, I V

    2001-01-01

    The electron emission control method for a RF gun is considered.According to the main idea of the method,the additional resonance system is created in a cathode region where the RF field strength could be varied using the external pulse equipment. The additional resonance system is composed of a coaxial cavity coupled with a RF gun cylindrical cavity via an axial hole. Computed results of radiofrequency and electrodynamic performances of such a two-cavity system and results of the RF gun model pilot study are presented in. Results of particle dynamics simulation are described.

  19. RF Electron Gun with Driven Plasma Cathode

    CERN Document Server

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  20. Rf and space-charge induced emittances in laser-driven rf guns

    International Nuclear Information System (INIS)

    Kim, Kwang-Je; Chen, Yu-Jiuan.

    1988-10-01

    Laser-driven rf electron guns are potential sources of high-current, low-emittance, short bunch-length electron beams, which are required for many advanced accelerator applications, such as free-electron lasers and injectors for high-energy machines. In such guns the design of which was pioneered at Los Alamos National Laboratory and which is currently being developed at several other laboratories, a high-power laser beam illuminates a photo-cathode surface placed on an end wall of an rf cavity. The main advantages of this type of gun are that the time structure of the electron beam is controlled by the laser, eliminating the need for bunchers, and that the electric field in rf cavities can be made very strong, so that the effects due to space-charge repulsion can be minimized. In this paper, we present an approximate but simple analysis for the transverse and longitudinal emittances in rf guns that takes into account both the time variation of the rf field and the space-charge effect. The results are compared and found to agree well with those from simulation. 7 refs., 6 figs

  1. Progress on a cryogenically cooled RF gun polarized electron source

    Energy Technology Data Exchange (ETDEWEB)

    Fliller, R.P., III; Edwards, H.; /Fermilab

    2006-08-01

    RF guns have proven useful in multiple accelerator applications. An RF gun capable of producing polarized electrons is an attractive electron source for the ILC or an electron-ion collider. Producing such a gun has proven elusive. The NEA GaAs photocathode needed for polarized electron production is damaged by the vacuum environment in an RF gun. Electron and ion back bombardment can also damage the cathode. These problems must be mitigated before producing an RF gun polarized electron source. In this paper we report continuing efforts to improve the vacuum environment in a normal conducting RF gun by cooling it with liquid nitrogen after a high temperature vacuum bake out. We also report on a design of a cathode preparation chamber to produce bulk GaAs photocathodes for testing in such a gun. Future directions are also discussed.

  2. On the frequency scalings of RF guns

    International Nuclear Information System (INIS)

    Lin, L.C.; Chen, S.C.; Wurtele, J.S.

    1995-01-01

    A frequency scaling law for RF guns is derived from the normalized Vlasov-Maxwell equations. It shows that higher frequency RF guns can generate higher brightness beams under the assumption that the accelerating gradient and all beam and structure parameters are scaled with the RF frequency. Numerical simulation results using MAGIC confirm the scaling law. A discussion of the range of applicability of the law is presented. copyright 1995 American Institute of Physics

  3. Simulations of S-band RF gun with RF beam control

    Science.gov (United States)

    Barnyakov, A. M.; Levichev, A. E.; Maltseva, M. V.; Nikiforov, D. A.

    2017-08-01

    The RF gun with RF control is discussed. It is based on the RF triode and two kinds of the cavities. The first cavity is a coaxial cavity with cathode-grid assembly where beam bunches are formed, the second one is an accelerating cavity. The features of such a gun are the following: bunched and relativistic beams in the output of the injector, absence of the back bombarding electrons, low energy spread and short length of the bunches. The scheme of the injector is shown. The electromagnetic field simulation and longitudinal beam dynamics are presented. The possible using of the injector is discussed.

  4. RF Processing Experience with the GTF Prototype RF Gun

    International Nuclear Information System (INIS)

    Schmerge, J.F.

    2010-01-01

    The SSRL Gun Test Facility (GTF) was built to develop a high brightness electron injector for the LCLS and has been operational since 1996. A total of five different metal cathodes (4 Cu and 1 Mg) have been installed on the GTF gun. The rf processing history with the different cathodes will be presented including peak field achieved at the cathode. The LCLS gun is intended to operate at 120 MV/m and fields up to 140 MV/m have been achieved in the GTF gun. After installing a new cathode the number of rf pulses required to reach 120 MV/m is approximately 5-10 million. Total emitted dark current and Fowler Nordheim plots are also shown over the life of the cathode. The GTF photo-injector gun is an S-band standing-wave structure, with two resonant cavities and an intervening thick washer (Figure 1). The flat, back wall of the first cavity is a copper plate that serves as photocathode when illuminated with ultraviolet light from a pulsed, high-power laser. RF power enters the gun through an iris on the outer wall of the second cavity, and is coupled to the first through the axial opening of the washer. The first cavity is often referred to as a half cell, because its full-cell length has been truncated by the cathode plate and the second cavity is called the full cell. The gun is designed to operate in a π mode, with the peak field on axis in each cell approximately equal. The maximum in the half cell occurs at the cathode, and in the full cell near the center of the cavity. The field profile and tuning procedures are discussed in a separate tech note (1).

  5. rf traveling-wave electron gun for photoinjectors

    Science.gov (United States)

    Schaer, Mattia; Citterio, Alessandro; Craievich, Paolo; Reiche, Sven; Stingelin, Lukas; Zennaro, Riccardo

    2016-07-01

    The design of a photoinjector, in particular that of the electron source, is of central importance for free electron laser (FEL) machines where a high beam brightness is required. In comparison to standard designs, an rf traveling-wave photocathode gun can provide a more rigid beam with a higher brightness and a shorter pulse. This is illustrated by applying a specific optimization procedure to the SwissFEL photoinjector, for which a brightness improvement up to a factor 3 could be achieved together with a double gun output energy compared to the reference setup foreseeing a state-of-the-art S-band rf standing-wave gun. The higher brightness is mainly given by a (at least) double peak current at the exit of the gun which brings benefits for both the beam dynamics in the linac and the efficiency of the FEL process. The gun design foresees an innovative coaxial rf coupling at both ends of the structure which allows a solenoid with integrated bucking coil to be placed around the cathode in order to provide the necessary focusing right after emission.

  6. Performances of the Alpha-X RF gun on the PHIL accelerator at LAL

    Science.gov (United States)

    Vinatier, T.; Bruni, C.; Roux, R.; Brossard, J.; Chancé, S.; Cayla, J. N.; Chaumat, V.; Xu, G.; Monard, H.

    2015-10-01

    The Alpha-X RF-gun was designed to produce an ultra-short (laser-driven plasma accelerator with a short wavelength accelerating medium. It has been demonstrated on PHIL (Photo-Injector at LAL) that the coaxial RF coupling, chosen to preserve the gun field cylindrical symmetry, is perfectly understood and allows reaching the required peak accelerating field of 100 MV/m giving beam energy of 6.3 MeV. Moreover, a quite low beam rms relative energy spread of 0.15% at 3.8 MeV has been measured, completely agreeing with simulations. Dark current, quantum efficiencies and dephasing curves measurements have also been performed. They all show high values of the field enhancement factor β, which can be explained by the preparation of the photocathodes. Finally, measurements on the transverse phase-space have been carried out, with some limitations given by the difficult modelization of one of the PHIL solenoid magnets and by the enlargement of the beam transverse dimensions due to the use of YAG screens. These measurements give a normalized rms transverse emittance around 5π mm mrad, which does not fulfill the requirement for the Alpha-X project.

  7. An rf modulated electron gun pulser for linacs

    International Nuclear Information System (INIS)

    Legg, R.; Hartline, R.

    1991-01-01

    Present linac injector designs often make use of sub-harmonic prebuncher cavities to properly bunch the electron beam before injection into a buncher and subsequent accelerating cavities. This paper proposes an rf modulated thermionic gun which would allow the sub-harmonic buncher to be eliminated from the injector. The performance parameters for the proposed gun are 120 kV operating voltage, macropulse duration-single pulse mode 2 nsec, multiple pulse mode 100 nsec, rf modularing frequency 500 MHz, charge per micropulse 0.4 nC, macropulse repetition frequency 10 Hz (max). The gun pulser uses a grid modulated planar triode to drive the gun cathode. The grid driver takes advantage of recently developed modular CATV rf drivers, high performance solid state pulser devices, and high-frequency fiber optic transmitters for telecommunications. Design details are presented with associated SPICE runs simulating operation of the gun

  8. RF Gun Optimization Study

    International Nuclear Information System (INIS)

    Alicia Hofler; Pavel Evtushenko

    2007-01-01

    Injector gun design is an iterative process where the designer optimizes a few nonlinearly interdependent beam parameters to achieve the required beam quality for a particle accelerator. Few tools exist to automate the optimization process and thoroughly explore the parameter space. The challenging beam requirements of new accelerator applications such as light sources and electron cooling devices drive the development of RF and SRF photo injectors. A genetic algorithm (GA) has been successfully used to optimize DC photo injector designs at Cornell University [1] and Jefferson Lab [2]. We propose to apply GA techniques to the design of RF and SRF gun injectors. In this paper, we report on the initial phase of the study where we model and optimize a system that has been benchmarked with beam measurements and simulation

  9. High time resolution beam-based measurement of the rf-to-laser jitter in a photocathode rf gun

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2014-03-01

    Full Text Available Characterizing the rf-to-laser jitter in the photocathode rf gun and its possible origins is important for improving the synchronization and beam quality of the linac based on the photocathode rf gun. A new method based on the rf compression effect in the photocathode rf gun is proposed to measure the rf-to-laser jitter in the gun. By taking advantage of the correlation between the rf compression and the laser injection phase, the error caused by the jitter of the accelerating field in the gun is minimized and thus 10 fs time resolution is expected. Experimental demonstration at the Tsinghua Thomson scattering x-ray source with a time resolution better than 35 fs is reported in this paper. The experimental results are successfully used to obtain information on the possible cause of the jitter and the accompanying drifts.

  10. rf traveling-wave electron gun for photoinjectors

    Directory of Open Access Journals (Sweden)

    Mattia Schaer

    2016-07-01

    Full Text Available The design of a photoinjector, in particular that of the electron source, is of central importance for free electron laser (FEL machines where a high beam brightness is required. In comparison to standard designs, an rf traveling-wave photocathode gun can provide a more rigid beam with a higher brightness and a shorter pulse. This is illustrated by applying a specific optimization procedure to the SwissFEL photoinjector, for which a brightness improvement up to a factor 3 could be achieved together with a double gun output energy compared to the reference setup foreseeing a state-of-the-art S-band rf standing-wave gun. The higher brightness is mainly given by a (at least double peak current at the exit of the gun which brings benefits for both the beam dynamics in the linac and the efficiency of the FEL process. The gun design foresees an innovative coaxial rf coupling at both ends of the structure which allows a solenoid with integrated bucking coil to be placed around the cathode in order to provide the necessary focusing right after emission.

  11. A numerical study of emittance growths in RF guns

    CERN Document Server

    Masuda, K; Sobajima, M; Kitagaki, J; Ohnishi, M; Toku, H; Yoshikawa, K

    1999-01-01

    A beam with greatly reduced emittance is required for further improvements of FELs, in particular, for FELs of shorter wavelengths, and of narrower bandwidths. From this viewpoint, the BNL/SLAC/UCLA 1.6-cell S-band photocathode RF gun performance characteristics were calculated, first in order to evaluate what may contribute to the emittance growths in photocathode RF guns. We developed an RF gun to produce an electron beam with an extremely low emittance, by using a 2-D simulation code. It is found that, by optimizing the laser injection phase, the drive laser spot radius and the cavity shape around the laser spot, the beam emittance by the 1.6-cell RF gun can be greatly reduced to 2.1 pi mm mrad, from the previous 4.4 pi mm mrad of the original shape.

  12. Function of bunching segment in multi-cell RF gun

    International Nuclear Information System (INIS)

    Yang Xingfan; Xu Zhou Liu Xisan

    2001-01-01

    With a bunching segment and a shortened first cell, the 4 + 1/2 cell RF gun produced in CAEP has been proved experimentally to be effective in reducing electron back bombardment. The analysis of the electric field distribution and electron motion in bunching segment of multi-cell RF gun is presented. The electron capture efficiency and electron trajectory with different initial phase are calculated using Runge-Kutta method. The function of the bunching segment is discussed. The calculated parameters of the 4 + 1/2 cell RF gun agree well with the experimental results

  13. A NEW THERMIONIC RF ELECTRON GUN FOR SYNCHROTRON LIGHT SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey; Agustsson, R.; Hartzell, J; Murokh, A.; Nassiri, A.; Savin, E.; Smirnov, A.V.; Smirnov, A. Yu; Sun, Y.; Verma, A; Waldschmidt, Geoff; Zholents, A.

    2017-06-02

    A thermionic RF gun is a compact and efficient source of electrons used in many practical applications. RadiaBeam Systems and the Advanced Photon Source at Argonne National Laboratory collaborate in developing of a reliable and robust thermionic RF gun for synchrotron light sources which would offer substantial improvements over existing thermionic RF guns and allow stable operation with up to 1A of beam peak current at a 100 Hz pulse repetition rate and a 1.5 μs RF pulse length. In this paper, we discuss the electromagnetic and engineering design of the cavity and report the progress towards high power tests of the cathode assembly of the new gun.

  14. Design study on an independently-tunable-cells thermionic RF gun

    International Nuclear Information System (INIS)

    Hama, H.; Tanaka, T.; Hinode, F.; Kawai, M.

    2006-01-01

    Characteristics of a thermionic RF gun have been studied by a 3-D simulation code developed using an FDTD (Finite Difference Time Domain) method as a Maxwell's equations solver. The gun is consists of two independent power feeding cavities, so that we call it independently-tunable-cells (ITC)'-RF gun. The first cell is the cathode cell and the second one is an accelerating cell. The ITC gun can be operated at various modes of different RF-power ratio and phase between two cavities. Simulation study shows a velocity-bunching like effect may be occurred in the gun, so that the short pulse beam from the thermionic RF gun is a better candidate to produce the coherent THz synchrotron radiation. Expected bunch length with a total charge of ∼20 pC (1% energy width from the top energy) is around 200 fs (fwhm). Even the beam energy extracted from the gun is varied by which the input powers are changed, almost same shape of the longitudinal phase space can be produced by tuning the phase. (author)

  15. Beam-Based Procedures for RF Guns

    CERN Document Server

    Krasilnikov, Mikhail; Grabosch, H J; Hartrott, Michael; Hui Han, Jang; Miltchev, Velizar; Oppelt, Anne; Petrosyan, Bagrat; Staykov, Lazar; Stephan, Frank

    2005-01-01

    A wide range of rf photo injector parameters has to be optimized in order to achieve an electron source performance as required for linac based high gain FELs. Some of the machine parameters can not be precisely controlled by direct measurements, whereas the tolerance on them is extremely tight. Therefore, this should be met with beam-based techniques. Procedures for beam-based alignment (BBA) of the laser on the photo cathode as well as solenoid alignment have been developed. They were applied at the Photo Injector Test facility at DESY Zeuthen (PITZ) and at the photo injector of the VUV-FEL at DESY Hamburg. A field balance of the accelerating mode in the 1 ½ cell gun cavity is one of the key beam dynamics issues of the rf gun. Since no direct field measurement in the half and full cell of the cavity is available for the PITZ gun, a beam-based technique to determine the field balance has been proposed. A beam-based rf phase monitoring procedure has been developed as well.

  16. Lasers for RF guns: Proceedings

    International Nuclear Information System (INIS)

    Srinivasan-Rao, T.

    1994-01-01

    In the past decade, laser driven RF guns have matured from a device under development to a proven source for high brightness and low emittance electron beams. The reliability of the electron beam from these sources is dictated by the laser system that drives it. In addition, capabilities of the laser systems play a vital role in the design of the electron source for future machines such as the TESLA and NLC. The purpose of this workshop was to provide a forum for discussing the design criteria for the laser systems so that the reliability of the existing sources could be improved and the future machines could be serviced. The Workshop brought together experts in RF Guns, accelerators, and lasers, from both the commercial and academic community. Most of the presentations, discussions and conclusions at the workshop are included in these proceedings. The contents are divided into three sections, Section I contains the invited talks that outline the requirements of the RF Guns and the capabilities of the laser systems to meet these requirements. Section II includes most of the papers presented in the poster session. These papers describe various laser systems used with electron guns, schemes to modify the laser beam profile to optimize the electron bunch, and computer simulations of electron trajectories. Section III contains the summaries of the working groups. As the summary section indicates, with sufficient feed back systems, the electron gun could be made to operate reliably with minimum downtime, using commercial lasers currently available. The design of laser systems for future colliders depend critically on the choice of the cathode m the gun and its efficiency. Tentative designs of laser systems for the TESLA test facility and LCLS had been drawn assuming a copper cathode. Using a more efficient cathode will ease the energy requirement of the laser and simplify the design. The individual papers have been cataloged separately elsewhere

  17. Performance of the Brookhaven photocathode rf gun

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, J.; Fisher, A.S.; Gallardo, J.; Ingold, G.; Kirk, H.G.; Leung, K.P.; Malone, R.; Pogorelsky, I.; Srinivasan-Rao, T.; Rogers, J.; Tsang, T.; Sheehan, J.; Ulc, S.; Woodle, M.; Xie, J.; Zhang, R.S.; Lin, L.Y.; McDonald, K.T.; Russell, D.P.; Hung, C.M.; Wang, X.J.

    1991-01-01

    The Brookhaven Accelerator Test Facility (ATF) uses a photocathode rf gun to provide a high-brightness electron beam intended for FEL and laser-acceleration experiments. The rf gun consists of 1 1/2 cells driven at 2856 MHz in π-mode with a maximum cathode field of 100 MV/m. To achieve long lifetimes, the photocathode development concentrates on robust metals such as copper, yttrium and samarium. We illuminate these cathodes with a 10-ps, frequency-quadrupled Nd:YAG laser. We describe the initial operation of the gun, including measurements of transverse and longitudinal emittance, quantum efficiencies, and peak current. The results are compared to models

  18. DESIGN OF A DC/RF PHOTOELECTRON GUN

    International Nuclear Information System (INIS)

    YU, D.; NEWSHAM, Y.; SMIRONOV, A.; YU, J.; SMEDLEY, J.; SRINIVASAN RAU, T.; LEWELLEN, J.; ZHOLENTS, A.

    2003-01-01

    An integrated dc/rf photoelectron gun produces a low-emittance beam by first rapidly accelerating electrons at a high gradient during a short (∼1 ns), high-voltage pulse, and then injecting the electrons into an rf cavity for subsequent acceleration. Simulations show that significant improvement of the emittance appears when a high field (∼ 0.5-1 GV/m) is applied to the cathode surface. An adjustable dc gap ((le) 1 mm) which can be integrated with an rf cavity is designed for initial testing at the Injector Test Stand at Argonne National Laboratory using an existing 70-kV pulse generator. Plans for additional experiments of an integrated dc/rf gun with a 250-kV pulse generator are being made

  19. Single-side electron multipacting at the photocathode in rf guns

    Directory of Open Access Journals (Sweden)

    Jang-Hui Han

    2008-01-01

    Full Text Available Multiple electron impacting (multipacting can take place in rf fields when the rf components are composed of materials with a secondary electron yield greater than one. In rf gun cavities, multipacting may change the properties of the vacuum components or even damage them. First systematic measurements of the multipacting occurring in a photocathode rf gun were made at the Fermilab/NICADD Photoinjector Laboratory in 2000. The multipacting properties were found to depend on the cathode material and the solenoid field configuration. In this study, we measure the multipacting properties in more detail and model the secondary electron generation for numerical simulation. Measurements and simulations for the photoinjectors at Fermilab and DESY are compared. The multipacting takes place at the photocathode in rf guns and is categorized as single-side multipacting. In a low rf field, the electrons emitted from the cathode area do not leave the gun cavity within one rf cycle and have an opportunity to travel back and hit the cathode. The solenoid field distribution in the vicinity of the cathode changes the probability of electron bombardment of the cathode and makes a major contribution to the multipacting behavior.

  20. The Development of the Linac Coherent Light Source RF Gun

    International Nuclear Information System (INIS)

    Dowell, D

    2008-01-01

    The Linac Coherent Light Source (LCLS) is the first x-ray laser user facility based upon a free electron laser (FEL) requiring extraordinary beam quality to saturate at 1.5 angstroms within a 100 meter undulator.[1] This new type of light source is using the last kilometer of the three kilometer linac at SLAC to accelerate the beam to an energy as high as 13.6 GeV and required a new electron gun and injector to produce a very bright beam for acceleration. At the outset of the project it was recognized that existing RF guns had the potential to produce the desired beam but none had demonstrated it. Therefore a new RF gun or at least the modification of an existing gun was necessary. The parameters listed in Table 1 illustrate the unique characteristics of LCLS which drive the requirements for the electron gun as given in Table 2. The gun beam quality needs to accommodate emittance growth as the beam is travels through approximately one kilometer of linac and two bunch compressors before reaching the undulator. These beam requirements were demonstrated during the recent commissioning runs of the LCLS injector and linac [2] due to the successful design, fabrication, testing and operation of the LCLS gun. The goal of this paper is to relate the technical background of how the gun was able to achieve and in some cases exceed these requirements by understanding and correcting the deficiencies of the prototype s-band RF photocathode gun, the BNL/SLAC/UCLA Gun III. This paper begins with a brief history and technical description of Gun III and the Gun Test Facility (GTF) at SLAC, and studies of the gun's RF and emittance compensation solenoid. The work at the GTF identified the gun and solenoid deficiencies, and helped to define the specifications for the LCLS gun. Section 1.1.5 describes the modeling used to compute and correct the gun RF fields and Section 1.1.6 describes the use of these fields in the electron beam simulations. The magnetic design and measurements of

  1. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V., E-mail: paramono@inr.ru [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Philipp, S. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Rybakov, I.; Skassyrskaya, A. [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Stephan, F. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2017-05-11

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  2. TOPGUN: a new way to increase the beam brightness of rf guns

    International Nuclear Information System (INIS)

    Serafini, L.; Pagani, C.; Rivolta, R.; Ferrarion, M.

    1991-01-01

    A new method is presented to neutralize the RF induced emittance blow up generated inside RF electron Guns. The method is based on a multi-mode operation of the RF Gun cavity, which must be able to support both the accelerating mode (TM 010-π ) and a higher harmonic mode. The analytical study of the beam dynamics, which has been found in good agreement with the numerical simulations, shows that the growth of the normalized rms emittance, produced by the time dependent RF forces during the acceleration in the Gun, can be cancelled up to fourth order terms. This is of great relevance for the improvement of RF Gun performances, since the RF field contribution to the emittance blow up becomes negligible and no more dependent on the unch size. As shown in this paper, with such a new Gun, which is called 'TOPGUN', the way to attain high brightness beams becomes straightforward

  3. The system of RF beam control for electron gun

    International Nuclear Information System (INIS)

    Barnyakov, A.M.; Levichev, A.E.; Chernousov, Yu.D.; Ivannikov, V.I.; Shebolaev, I.V.

    2015-01-01

    The system of RF control of three-electrode electron gun current is described. It consists of a source of microwave signal, coaxial line, coaxial RF switch and RF antenna lead. The system allows one to get the electron beam in the form of bunches with the frequency of the accelerating section to achieve the capture of particles in the acceleration mode close to 100%. The results of calculation and analysis of the elements of the system are presented. Characteristics of the devices are obtained experimentally. The results of using RF control in three-electrode electron gun at electron linear accelerator are described

  4. Progress on Using NEA Cathodes in an RF Gun

    CERN Document Server

    Fliller, Raymond P; Blüm, Hans; Edwards, Helen; Hüning, Markus; Schultheiss, Tom; Sinclair, Charles K

    2005-01-01

    RF guns have proven useful in multiple accelerator applications, and are an attractive electron source for the ILC. Using a NEA GaAs photocathode in such a gun allows for the production of polarized electron beams. However the lifetime of a NEA cathode in this environment is reduced by ion and electron bombardment and residual gas oxidation. We report progress made with studies to produce a RF gun using a NEA GaAs photocathode to produce polarized electron beams. Attempts to reduce the residual gas pressure in the gun are discussed. Initial measurements of ion flux through the cathode port are compared with simulations of ion bombardment. Future directions are also discussed.

  5. Low power microwave tests on RF gun prototype of the Iranian Light Source Facility

    Directory of Open Access Journals (Sweden)

    A Sadeghipanah

    2017-08-01

    Full Text Available In this paper, we introduce RF electron gun of Iranian Light Source Facility (ILSF pre-injection system. Design, fabrication and low-power microwave tests results of the prototype RF electron gun have been described in detail. This paper also explains the tuning procedure of the prototype RF electron gun to the desired resonant frequency. The outcomes of this project brighten the path to the fabrication of the RF electron gun by the local industries  

  6. Development of Adaptive Feedback Control System of Both Spatial and Temporal Beam Shaping for UV-Laser Light Source for RF Gun

    CERN Document Server

    Tomizawa, H; Dewa, H; Hanaki, H; Kobayashi, T; Mizuno, A; Suzuki, S; Taniuchi, T; Yanagida, K

    2004-01-01

    The ideal spatial and temporal profiles of a shot-by-shot single laser pulse are essential to suppress the emittance growth of the electron beam from a photo-cathode rf gun. We have been developing highly qualified UV-laser pulse as a light source of the rf gun for an injector candidate of future light sources. The gun cavity is a single-cell pillbox, and the copper inner wall is used as a photo cathode. The electron beam was accelerated up to 4.1 MeV at the maximum electric field on the cathode surface of 175 MV/m. For emittance compensation, two solenoid coils were used. As the first test run, with a microlens array as a simple spatial shaper, we obtained a minimum emittance value of 2 π·mm·mrad with a beam energy of 3.1 MeV, holding its charge to 0.1 nC/bunch. In the next test run, we prepared a deformable mirror for spatial shaping, and a spatial light modulator based on fused-silica plates for temporal shaping. We applied the both adaptive optics to automatically shape the bot...

  7. Dark Current and Multipacting in the Photocathode RF Guns at PITZ

    CERN Document Server

    Hui-Han, Jang; Flöttmann, Klaus; Grabosch, H J; Hartrott, Michael; Krasilnikov, Mikhail; Michelato, Paolo; Miltchev, Velizar; Monaco, Laura; Oppelt, Anne; Petrosyan, Bagrat; Riemann, S; Roensch, Juliane; Schreiber, Siegfried; Sertore, Daniele; Staykov, Lazar; Stephan, Frank

    2005-01-01

    For photocathode rf guns, the amount of dark current depends on the cavity surface and the photocathodes. Smooth conditioning reduces the amount of dark current. Mechanical damages of the cathodes induce high dark current and chemical pollution changes emission properties of the cathode. Multipacting in the gun cavity changes the surface status of the cathodes and sometimes makes the gun operation impossible due to vacuum interlocks. In this paper, dark current and multipacting features of the rf gun are presented including experimental and simulation studies.

  8. Results of the SLAC LCLS Gun High-Power RF Tests

    International Nuclear Information System (INIS)

    Dowell, D.H.; Jongewaard, E.; Limborg-Deprey, C.; Schmerge, J.F.; Li, Z.; Xiao, L.; Wang, J.; Lewandowski, J.; Vlieks, A.

    2007-01-01

    The beam quality and operational requirements for the Linac Coherent Light Source (LCLS) currently being constructed at SLAC are exceptional, requiring the design of a new RF photocathode gun for the electron source. Based on operational experience at SLAC's GTF and SDL and ATF at BNL as well as other laboratories, the 1.6cell s-band (2856MHz) gun was chosen to be the best electron source for the LCLS, however a significant redesign was necessary to achieve the challenging parameters. Detailed 3-D analysis and design was used to produce near-perfect rotationally symmetric rf fields to achieve the emittance requirement. In addition, the thermo-mechanical design allows the gun to operate at 120Hz and a 140MV/m cathode field, or to an average power dissipation of 4kW. Both average and pulsed heating issues are addressed in the LCLS gun design. The first LCLS gun is now fabricated and has been operated with high-power RF. The results of these high-power tests are presented and discussed

  9. Investigation of the Stability of the RF Gun of the SSRL Injector System

    International Nuclear Information System (INIS)

    Moore, J

    2004-01-01

    In the previous three years, Stanford Synchrotron Radiation Laboratory (SSRL) has experienced electron beam instabilities in the injector system of the Stanford Positron Electron Asymmetric Ring (SPEAR). Currently, for approximately the past four months the radio frequency (RF) gun of the linear accelerator injector system of the SPEAR at SSRL has become increasingly unstable. The current of the RF gun has become progressively sluggish and the lifetime of the cathode within the RF gun has been much shorter than expected. The cathode also sustains many unexplained damages. The instability of the RF gun affects the entire operation of SPEAR, creating substantial inconvenience. Through mechanical, design, and procedural analysis of the RF gun and the cathode that emits the electron beam of the linear accelerator, a solution to prolong the life of the cathode and secure the stability of the gun can be found. The thorough analysis of the gun and cathode involves investigation into the history of cathode installation and removal through the years of SPEAR operation as well as interviews with SSRL personnel involved with the upkeep of the gun and cathode. From speaking with SSRL employees and reviewing several articles many possible causes for beam instability were presented. The most likely cause of the SSRL gun instability is excessive back bombardment that can be attributed to running the cathode at too high a temperature

  10. Reducing Energy Degradation Due to Back-bombardment Effect with Modulated RF Input in S-band Thermionic RF Gun

    Science.gov (United States)

    Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo

    2007-01-01

    Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.

  11. A comparison of L-band and C-band rf guns as sources for inline-injection systems

    International Nuclear Information System (INIS)

    Gallardo, J.C.; Kirk, H.G.; Meyerer, T.

    1994-12-01

    We consider the beam dynamics associated with installing a BNL type 1 1/2 cell L-band or C-band rf gun before two TESLA L-band cryomodules. This system will deliver a 25 MeV electron beam with peak currents on the order of 100 A suitable for further magnetic compression. evaluate the injection systems utilizing the electron beam dynamic code PARMELA from the point of view of minimizing the transverse invariant emittance

  12. Formation of a high quality electron beam using photo cathode RF electron gun

    International Nuclear Information System (INIS)

    Washio, Masakazu

    2000-01-01

    Formation of a high quality electron beam using photo cathode RF electron gun is expected for formation of a next generation high brilliant X-ray beam and a source for electron and positron collider. And, on a field of material science, as is possible to carry out an experiment under ultra short pulse and extremely high precision in time, it collects large expectation. Recently, formation of high quality beam possible to develop for multi directions and to use by everyone in future has been able to realize. Here were explained on electron beam source, principle and component on RF electron gun, working features on RF gun, features and simulation of RF gun under operation, and some views in near future. (G.K.)

  13. Emittance growth in laser-driven RF electron guns

    International Nuclear Information System (INIS)

    Kim, K.J.

    1989-01-01

    A simple analysis for the evolution of the electron-beam phase space distribution in laser-driven rf guns is presented. In particular, formulas are derived for the transverse and longitudinal emittances at the exit of the gun. The results are compared and found to agree well with those from simulation. (Author). 9 refs.; 4 figs

  14. A high-gradient high-duty-factor Rf photo-cathode electron gun

    International Nuclear Information System (INIS)

    Rimmer, Robert A.; Hartman, Neal; Lidia, Steven M.; Wang, Shaoheng

    2002-01-01

    We describe the analysis and preliminary design of a high-gradient, high-duty factor RF photocathode gun. The gun is designed to operate at high repetition rate or CW, with high gradient on the cathode surface to minimize emittance growth due to space charge forces at high bunch charge. The gun may also be operated in a solenoidal magnetic field for emittance compensation. The design is intended for use in short-pulse, high-charge, and high-repetition rate applications such as linac based X-ray sources. We present and compare the results of gun simulations using different codes, as well as RF and thermal analysis of the structure

  15. A high-gradient high-duty-factor RF photo-cathode electron gun

    International Nuclear Information System (INIS)

    Rimmer, Robert; Hartman, N.; Lidia, S.; Wang, S.H.

    2002-01-01

    We describe the analysis and preliminary design of a high-gradient, high-duty factor RF photocathode gun. The gun is designed to operate at high repetition rate or CW, with high gradient on the cathode surface to minimize emittance growth due to space charge forces at high bunch charge. The gun may also be operated in a solenoidal magnetic field for emittance compensation. The design is intended for use in short-pulse, high-charge, and high-repetition rate applications such as linac based X-ray sources. We present and compare the results of gun simulations using different codes, as well as RF and thermal analysis of the structure

  16. Rf Gun with High-Current Density Field Emission Cathode

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2005-01-01

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  17. 1 ms pulse beam generation and acceleration by photo-cathode RF gun

    International Nuclear Information System (INIS)

    Watanabe, Ken; Hayano, Hitoshi; Urakawa, Jyunji

    2012-01-01

    We report successful generation of 1 ms long pulse and multi-bunch electron beam by a normal conducting photo-cathode RF gun at KEK-STF (Superconducting accelerator Test Facility). The 1 ms long Pulse beam generated by the RF gun is delivered to the injection line to examine stable acceleration and precise RF control. The 1 ms pulse beam is also used to demonstrate high brightness X-ray generation by inverse laser Compton scattering which will be also carried out at STF, supported by MEXT Quantum Beam project. The RF gun cavity has been fabricated by DESY-FNAL-KEK collaboration. Performing high power RF process and ethanol rinse to the cavity, a stable operation of the cavity up to 4.0 MW RF input power with ∼1 ms pulse length was achieved by keeping even low dark current. The beam generation test has been started since February 2012, 1 ms pulse was generated in March 2012. We explain about the STF injector and report the basic property of this 1 ms beam generation. (author)

  18. Photocathode operation of a thermionic RF gun

    International Nuclear Information System (INIS)

    Thorin, S.; Cutic, N.; Lindau, F.; Werin, S.; Curbis, F.

    2009-01-01

    The thermionic RF gun using a BaO cathode at the MAX-lab linac injector has been successfully commissioned for additional operation as a photocathode gun. By retaining the BaO cathode, lowering the temperature below thermal emission and illuminating it with a UV (263 nm) 9 ps laser pulse a reduced emittance and enhanced emission control has been achieved. Measurements show a normalised emittance of 5.5 mm mrad at 200 pC charge and a maximum quantum efficiency of 1.1x10 -4 . The gun is now routinely switched between storage ring injections in thermionic mode and providing a beam for the MAX-lab test FEL in photocathode mode.

  19. Beam Dynamics Simulation of Photocathode RF Electron Gun at the PBP-CMU Linac Laboratory

    Science.gov (United States)

    Buakor, K.; Rimjaem, S.

    2017-09-01

    Photocathode radio-frequency (RF) electron guns are widely used at many particle accelerator laboratories due to high quality of produced electron beams. By using a short-pulse laser to induce the photoemission process, the electrons are emitted with low energy spread. Moreover, the photocathode RF guns are not suffered from the electron back bombardment effect, which can cause the limited electron current and accelerated energy. In this research, we aim to develop the photocathode RF gun for the linac-based THz radiation source. Its design is based on the existing gun at the PBP-CMU Linac Laboratory. The gun consists of a one and a half cell S-band standing-wave RF cavities with a maximum electric field of about 60 MV/m at the centre of the full cell. We study the beam dynamics of electrons traveling through the electromagnetic field inside the RF gun by using the particle tracking program ASTRA. The laser properties i.e. transverse size and injecting phase are optimized to obtain low transverse emittance. In addition, the solenoid magnet is applied for beam focusing and emittance compensation. The proper solenoid magnetic field is then investigated to find the optimum value for proper emittance conservation condition.

  20. Finite element analyses for RF photoinjector gun cavities

    International Nuclear Information System (INIS)

    Marhauser, F.

    2006-01-01

    This paper details electromagnetical, thermal and structural 3D Finite Element Analyses (FEA) for normal conducting RF photoinjector gun cavities. The simulation methods are described extensively. Achieved results are presented. (orig.)

  1. Finite element analyses for RF photoinjector gun cavities

    Energy Technology Data Exchange (ETDEWEB)

    Marhauser, F. [Berliner Elektronenspeicherring-Gesellschaft fuer Synchrotronstrahlung mbH (BESSY), Berlin (Germany)

    2006-07-01

    This paper details electromagnetical, thermal and structural 3D Finite Element Analyses (FEA) for normal conducting RF photoinjector gun cavities. The simulation methods are described extensively. Achieved results are presented. (orig.)

  2. Microwave source development for 9 MeV RF electron LINAC for cargo scanning

    International Nuclear Information System (INIS)

    Yadav, V.; Chandan, Shiv; Tillu, A.R.; Bhattacharjee, D.; Chavan, R.B.; Dixit, K.P.; Mittal, K.C.; Gantayet, L.M.

    2011-01-01

    For cargo scanning, high energy X-rays are required. These X-rays can be generated from accelerated electrons. A 9 MeV Cargo scanning RF LINAC has been developed at ECIL, Hyderabad. The Microwave power source required for RF Linac is a klystron-based system generating 5.5 MW peak, 10 kW average, at 2.856 GHz. Various components required for microwave source were identified, procured, tested and integrated into the source. Microwave source was tested on water load, then it was connected to LINAC and RF conditioning and e-beam trials were successfully done. For operating the microwave source, a PC based remote handling system was also designed and developed for operating various power supplies and instruments of the microwave source, including the Klystron modulator, Signal generator and other devices. The accelerator operates in pulse mode, requiring synchronous operation of the Klystron modulator, RF driver amplifier and E-gun modulator. For this purpose, a synchronous trigger generator was designed and developed. This paper describes the development and testing of microwave source and its remote operating system. The results of beam trials are also discussed in this paper. (author)

  3. Thermionic RF Gun and Linac Pre-Injector for SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.

    2003-08-11

    Preparations are underway to upgrade the Spear2 to the third generation light source. Installation of all the subsystems will start in April 2003. Although the Spear3 RF system is entirely different from the present form, the pre-injector gun/linac and booster synchrotron will remain the same even after the upgrade. The thermionic rf gun reliability and stability are to be improved to inject 500 mA of stored current in shortest possible time. When a top-up mode is enforced, where the stored beam decay is replenished to maintain the constant current and thus constant light intensity, the Spear3 will take injection every few minutes. In that case the gun, linac, and booster must stay on at all times. In this report we will describe some improvements made on the gun and linac in the recent past, as well as their present performance and future upgrade to be made.

  4. Cavity design and beam simulations for the APS rf gun

    International Nuclear Information System (INIS)

    Borland, M.

    1991-01-01

    An earlier note discussed the preliminary design of the 1-1/2 cell RF cavity for the APS RF gun. This note describes the final design, including cavity properties and simulation results from the program rf gun. The basic idea for the new design was that the successful SSRL design could be improved upon by reducing fields that had nonlinear dependence on radius. As discussed previously, this would reduce the emittance and produce tighter momentum and time distributions. In addition, it was desirable to increase the fields in the first half-cell relative to the fields in the second half-cell, in order to allow more rapid initial acceleration, which would reduce the effects of space charge. Both of these goals were accomplished in the new design

  5. Amorphous NEA Silicon Photocathodes - A Robust RF Gun Electron Source. Final Report

    International Nuclear Information System (INIS)

    Mulhollan, Gregory A.

    2009-01-01

    Amorphous silicon (a-Si) has been shown to have great promise as a negative electron affinity visible wavelength photocathode suitable for radio frequency (RF) gun systems. The specific operating wavelength can be shifted by growing it as a germanium alloy (a-Si(1-x)Ge(x)) rather than as pure silicon. This class of photoemitters has been shown to possess a high degree of immunity to charged particle flux. Such particle flux can be a significant problem in the operation of other photocathodes in RF gun systems. Its emission characteristics in the form of current per unit area, or current density, and emission angle, or beam spread are well matched for use in RF guns. Photocathodes made of a-Si can be fabricated on a variety of substrates including those most commonly employed in RF gun systems. Such photocathodes can be made for operation in either transmission or reflection mode. By growing them utilizing radio frequency plasma enhanced chemical vapor deposition, the unit cost is quite low, the quality is high and it is straightforward to grow custom size substrates and full or limited regions to confine the electron emission to the desired area. Quality emitters have been fabricated on tantalum, molybdenum, tungsten, titanium, copper, stainless steel, float glass, borosilicate glass and gallium arsenide. In addition to performing well in dedicated test chambers, a-Si photocathodes have been shown to function well in self-contained vacuum tubes. In this employment, they are subjected to a strenuous environment. Successful operation in this configuration provides additional confidence in their application to high energy linac photoinjectors and potentially as part of reliable, low cost photocathode driven RF gun systems that could become ready replacements for the diode and triode guns used on medical accelerators. Their applications in stand-alone vacuum tubes is just beginning to be explored.

  6. Emittance measurement and optimization for the photocathode RF gun with laser profile shaping

    International Nuclear Information System (INIS)

    Liu Shengguang; Masafumi Fukuda; Sakae Araki; Nobuhiro Terunuma; Junji Urakawa

    2010-01-01

    The Laser Undulator Compact X-ray source (LUCX) is a test bench for a compact high brightness X-ray generator, based on inverse Compton Scattering at KEK, which requires high intensity multi-bunch trains with low transverse emittance. A photocathode RF gun with emittance compensation solenoid is used as an electron source. Much endeavor has been made to increase the beam intensity in the multi-bunch trains. The cavity of the RF gun is tuned into an unbalanced field in order to reduce space charge effects, so that the field gradient on the cathode surface is relatively higher when the forward RF power into gun cavity is not high enough. A laser profile shaper is employed to convert the driving laser profile from Gaussian into uniform. In this research we seek to find the optimized operational conditions for the decrease of the transverse emittance. With the uniform driving laser and the unbalanced RF gun, the RMS transverse emittance of a 1 nC bunch has been improved effectively from 5.46 πmm.mrad to 3.66 πmm·mrad. (authors)

  7. Design study of a low-emittance high-repetition rate thermionic rf gun

    Directory of Open Access Journals (Sweden)

    A. Opanasenko

    2017-05-01

    Full Text Available We propose a novel gridless continuous-wave radiofrequency (rf thermionic gun capable of generating nC ns electron bunches with a rms normalized slice emittance close to the thermal level of 0.3 mm mrad. In order to gate the electron emission, an externally heated thermionic cathode is installed into a stripline-loop conductor. Two high-voltage pulses propagating towards each other in the stripline-loop overlap in the cathode region and create a quasielectrostatic field gating the electron emission. The repetition rate of pulses is variable and can reach up to one MHz with modern solid-state pulsers. The stripline attached to a rf gun cavity wall has with the wall a common aperture that allows the electrons to be injected into the rf cavity for further acceleration. Thanks to this innovative gridless design, simulations suggest that the bunch emittance is approximately at the thermal level after the bunch injection into the cavity provided that the geometry of the cathode and aperture are properly designed. Specifically, a concave cathode is adopted to imprint an Ƨ-shaped distribution onto the beam transverse phase-space to compensate for an S-shaped beam distribution created by the spherical aberration of the aperture-cavity region. In order to compensate for the energy spread caused by rf fields of the rf gun cavity, a 3rd harmonic cavity is used. A detailed study of the electrodynamics of the stripline and rf gun cavity as well as the beam optics and bunch dynamics are presented.

  8. The effects of electromagnetic space-charge fields in RF photocathode guns

    International Nuclear Information System (INIS)

    Park, C.S.; Hess, M.

    2010-01-01

    In high-brightness rf photocathode guns, the effects of space-charge are important for electron bunches with high bunch charge. In an effort to accurately simulate the effects of these space-charge fields without the presence of numerical grid dispersion, a Green's function based code called IRPSS (Indiana Rf Photocathode Source Simulator) was developed. In this paper, we show the results of numerical simulations of the Argonne Wakefield Accelerator photocathode gun using IRPSS, and compare them with the results of an electrostatic Green's function version of IRPSS.

  9. A low-power RF system with accurate synchronization for a S-band RF-gun using a laser-triggered photocathode

    International Nuclear Information System (INIS)

    Otake, Y.; Naito, T.; Shintake, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yoshioka, M.; Akiyama, H.

    1992-01-01

    An S-band RF-gun using a laser-triggered photocathode and its low-power RF system have been constructed. The main elements of the low-power RF system comprise a 600-W amplifier, an amplitude modulator, a phase detector, a phase shifter and a frequency-divider module. Synchronization between the RF fields for acceleration and the mode-locked laser pulses for beam triggering are among the important points concerning the RF-gun. The frequency divider module which down-converts from 2856 MHz(RF) to 89.25 MHz(laser), and the electrical phase-shifter were specially developed for stable phase control. The phase jitter of the frequency divider should be less than 10 ps to satisfy our present requirements. The first experiments to trigger and accelerate beams with the above-mentioned system were carried out in January, 1992. (Author) 6 figs., 5 refs

  10. SLAC collider injector, RF-drive synchronization and trigger electronics, and 15-AMP thermionic-gun development

    International Nuclear Information System (INIS)

    Koontz, R.; Miller, R.; McKinney, T.; Wilmunder, A.

    1981-02-01

    The rf drive system for the Collider Injector Development (EL CID) including laser timing, subharmonic buncher drive and phasing, and accelerator rf drive is described. The rf synchronized master trigger generation scheme for the collider is outlined. Also, a 15 amp peak, 200 kV short pulse gun being developed at SLAC as a backup to the Sinclair laser gun is described

  11. Improving the beam quality of rf guns by correction of rf and space-charge effects

    International Nuclear Information System (INIS)

    Serafini, L.

    1992-01-01

    In this paper we describe two possible strategies to attain ultra-low emittance electron beam generation by laser-driven RF guns. The first one is based on the exploitation of multi-mode resonant cavities to neutralize the emittance degradation induced by RF effects. Accelerating cigar-like (long and thin) electron bunches in multi-mode operated RF guns the space charge induced emittance is strongly decreased at the same time: high charged bunches, as typically requested by future TeV e - e + colliders, can be delivered by the gun at a quite low transverse emittance and good behaviour in the longitudinal phase space, so that they can be magnetically compressed to reach higher peak currents. The second strategy consists in using disk-like electron bunches, produced by very short laser pulses illuminating the photocathode. By means of an analytical study a new regime has been found, where the normalized transverse emittance scales like the inverse of the peak current, provided that the laser pulse intensity distribution is properly shaped in the transverse direction. Preliminary numerical simulations confirm the analytical predictions and show that the minimum emittance achievable is set up, in this new regime, by the wake-field interaction between the bunch and the cathode metallic wall

  12. Establishing reliable good initial quantum efficiency and in-situ laser cleaning for the copper cathodes in the RF gun

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F., E-mail: zhoufeng@slac.stanford.edu; Sheppard, J.C.; Vecchione, T.; Jongewaard, E.; Brachmann, A.; Corbett, J.; Gilevich, S.; Weathersby, S.

    2015-05-21

    Establishing good initial quantum efficiency (QE) and reliable in-situ cleaning for copper cathode in the RF gun is of critical importance for the RF gun operations. Recent studies on the SLAC RF gun test bed indicated that the pre-cleaning (plasma cleaning) in the test chamber followed by copper cathode exposure to air for cathode change leads to a very low initial QE in the RF gun, and also demonstrated that without the pre-cleaning good initial QE >4×10{sup −5} can be routinely achieved in the RF gun with the cathodes of QE <1×10{sup −7} measured in the test chamber. QE can decay over the time in the RF gun. The in-situ laser cleaning technique for copper cathodes in the RF gun is established and refined in comparison to previous cleaning at the linac coherent light source, resulting in an improved QE and emittance evolutions. The physics of the laser cleaning process is discussed. It is believed that the reflectivity change is one of the major factors for the QE boost with the laser cleaning.

  13. Development of highly qualified UV-laser light source for rf gun

    International Nuclear Information System (INIS)

    Tomizawa, H.; Dewa, H.; Taniuchi, T.

    2004-01-01

    We have been developing stable and highly qualified UV-laser pulse as a light source of the rf gun for an injector candidate of future light sources. Our gun cavity is a single-cell pillbox, and the copper inner wall is used as a photo cathode. In present status, the short pulse energy stability of laser has been improved down to 1.3∼1.5% (rms; 10pps; 10000 shots) at the third harmonic generation. The long stability depends on the stability of modelocking at oscillator. In this improvement we just passively stabilized the system. We considered environmental controls in clean room to reduce optical damage accidents and constructed a new humidity-controlled clean room in 2003. And we re-installed the total laser system in this room in 2004. The relative humidity of this new clean room at room temperature is in a region of 50∼60 % with a stability of less than 2% (p-p). On the other hand, the ideal spatial and temporal profiles of a shot-by-shot single laser pulse are essential to suppress the emittance growth of the electron beam from a photo-cathode rf gun. This laser-shaping project has been started in two steps since 2002. As the first successful test run in 2002, with a microlens array as a simple spatial shaper, we obtained a minimum emittance value of 2π mm·mrad with a beam energy of 3.1 MeV, holding its charge to 0.1 nC/bunch. In the next test run in 2004, we prepared a deformable mirror for spatial shaping, and a spatial light modulator based on fused-silica plates for temporal shaping. We are applying the both adaptive optics to automatically shape the both spatial and temporal UV-laser profiles with a feedback routine at the same time. We report herein the principle and developing process of our laser beam quality control system. (author)

  14. Status of SPring-8 Photocathode Rf Gun for Future Light Sources

    CERN Document Server

    Tomizawa, H; Dewa, H; Hanaki, H; Kobayashi, T; Mizuno, A; Suzuki, S; Taniuchi, T; Yanagida, K

    2005-01-01

    We have been studying photocathode single-cell pillbox rf gun for future light sources since 1996. We achieved a rmaximum field gradient of 187 MV/m with chemical-etching processed cavity. We have been developed stable and highly qualified UV-laser source for the rf gun intensively last 3 years. The UV-laser pulse (10 Hz) energy is up to 850 uJ/pulse. The energy stability (rms) of laser has been improved down to 0.2~0.3 % at the fundamental and 0.7~1.3% at the third harmonic generation. This stability is held for two months continuously. In this improvement, we just passively stabilized the system in a humidity-controlled clean room. On the other hand, the ideal spatial and temporal profiles of a shot-by-shot single laser pulse are essential to suppress the emittance growth of the electron beam from the rf gun. We prepared a deformable mirror for spatial shaping, and a spatial light modulator based on fused-silica plates for temporal shaping. With a deformable mirror, we obtained an emittance of1.6

  15. Performance of photocathode rf gun electron accelerators

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1993-01-01

    In Photo-Injectors (PI) electron guns, electrons are emitted from a photocathode by a short laser pulse and then accelerated by intense rf fields in a resonant cavity. The best known advantage of this technique is the high peak current with a good emittance (high brightness). This is important for short wavelength Free-Electron Lasers and linear colliders. PIs are in operation in many electron accelerator facilities and a large number of new guns are under construction. Some applications have emerged, providing, for example, very high pulse charges. PIs have been operated over a wide range of frequencies, from 144 to 3000 MHz (a 17 GHz gun is being developed). An exciting new possibility is the development of superconducting PIs. A significant body of experimental and theoretical work exists by now, indicating the criticality of the accelerator elements that follow the gun for the preservation of the PI's performance as well as possible avenues of improvements in brightness. Considerable research is being done on the laser and photocathode material of the PI, and improvement is expected in this area

  16. The Grumman/Brookhaven high-brightness, high-duty factor RF gun

    International Nuclear Information System (INIS)

    Lehrman, I.S.; Birnbaum, I.A.; Cole, M.; Fixler, S.Z.; Heuer, R.L.; Siddiqi, S.; Sheedy, E.; Waren, G.D.

    1992-01-01

    Under a joint collaboration between Brookhaven National Laboratory and the Grumman Corporation, a high-duty (>1%) photocathode RF gun is under construction for use at the ATF facility at BNL. The gun will be capable of producing short ( 300 A (after compression) and a total bunch charge in excess of 3 nC. The gun consists of 3-1/2 cells constructed from GlidCop, an alumina dispersion strengthened copper alloy. Two individually phased waveguides are used to power the first two and final two cells. (Author) 10 refs., 8 figs., 2 tabs

  17. Initial test of an rf gun with a GaAs cathode installed

    International Nuclear Information System (INIS)

    Aulenbacher, K.; Bossart, R.; Braun, H.

    1996-09-01

    The operation of an rf gun with a GaAs crystal installed as the cathode has been tested in anticipation of eventually producing a polarized electron beam for a future e + /e - collider using an rf photoinjector

  18. Electron beam gun with kinematic coupling for high power RF vacuum devices

    Science.gov (United States)

    Borchard, Philipp

    2016-11-22

    An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composed of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.

  19. Surface Characterization of the LCLS RF Gun Cathode

    International Nuclear Information System (INIS)

    Brachmann, Axel; Decker, Franz-Josef; Ding, Yuantao; Dowell, David; Emma, Paul; Frisch, Josef; Gilevich, Sasha; Hays, Gregory; Hering, Philippe; Huang, Zhirong; Iverson, Richard; Loos, Henrik; Miahnahri, Alan; Nordlund, Dennis; Nuhn, Heinz-Dieter; Pianetta, Piero; Turner, James; Welch, James; White, William; Wu, Juhao; Xiang, Dao

    2012-01-01

    The first copper cathode installed in the LCLS RF gun was used during LCLS commissioning for more than a year. However, after high charge operation (> 500 pC), the cathode showed a decline of quantum efficiency within the area of drive laser illumination. They report results of SEM, XPS and XAS studies that were carried out on this cathode after it was removed from the gun. X-ray absorption and X-ray photoelectron spectroscopy reveal surface contamination by various hydrocarbon compounds. In addition they report on the performance of the second installed cathode with emphasis on the spatial distribution of electron emission.

  20. Particle Simulations of a Thermionic RF Gun with Gridded Triode Structure for Reduction of Back-Bombardment

    CERN Document Server

    Kusukame, K; Kii, T; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    Thermionic RF guns show advantageous features compared with photocathode ones such as easy operation and much higher repetition rate of micropulses, both of which are suitable for their application to high average power FELs. They however suffer from the back-bombardment effect [1], i.e., in conventional RF guns, electrons are extracted from cathode also in the latter half of accelerating phase and tend to back-stream to hit the cathode, and as a result the macropulse duration is limited down to severalμsec Against this adverse effect in thermionic RF guns, introduction of the triode structure has been proposed [2], where the accelerating phase and amplitude nearby the cathode can be controlled regardless of the phase of the first accelerating cell in the conventional RF gun. Our one-dimensional particle simulation results predict that the back-bombardment power can be reduced by 99 % only with 30-40 kW RF power fed to the grid in the present triode structure with an optimal phase difference from th...

  1. Current transmission and nonlinear effects in un-gated thermionic cathode RF guns

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P. [Fermilab; Harris, J. R. [Air Force Weapons Lab

    2017-05-03

    Un-gated thermionic cathode RF guns are well known as a robust source of electrons for many accelerator applications. These sources are in principle scalable to high currents without degradation of the transverse emittance due to control grids but they are also known for being limited by back-bombardment. While back-bombardment presents a significant limitation, there is still a lack of general understanding on how emission over the whole RF period will affect the nature of the beams produced from these guns. In order to improve our understanding of how these guns can be used in general we develop analytical models that predict the transmission efficiency as a function of the design parameters, study how bunch compression and emission enhancement caused by Schottky barrier lowering affect the output current profile in the gun, and study the onset of space-charge limited effects and the resultant virtual cathode formation leading to a modulation in the output current distribution.

  2. Design and modeling of a 17 GHz photocathode RF gun

    International Nuclear Information System (INIS)

    Lin, C.L.; Chen, S.C.; Wurtele, J.S.; Temkin, R.; Danly, B.

    1991-01-01

    The performance of a high-frequency (17 GHz), high accelerating gradient (250 MV/m) photocathode RF gun is studied with the particle-in-cell code MAGIC. For the parameter regime of interest, i.e. bunch charge smaller than 1 nC and bunch length shorter than 2 ps, space-charge forces and finite bunch length effects are less significant in determining the beam quality than nonlinear RF forces are. The cavity geometry, RF phase for photoemission, cathode size, and current density are being optimized to obtain high quality beams. Preliminary results are presented

  3. Synchronizaiton Between Laser and Electron Beam at Photocathode RF Gun

    CERN Document Server

    Sakumi, Akira; Fukasawa, Atsushi; Kumagai, Noritaka; Muroya, Yusa; Tomizawa, Hiromitsu; Ueda, T; Uesaka, Mitsuru; Urakawa, Junji; Yoshii, K

    2005-01-01

    The chemical reactions of hot, room temperature and critical water in a time-range of picosecond and sub-picosecond have been carried out by the 18 MeV S-band linac and a Mg photocathode RF gun with the irradiation of third harmonic Ti: Sapphire laser, at Nuclear Engineering Research Laboratory (NERL), the University of Tokyo. Although this short bunch and 100 fs laser light are enough to perform the experiment of radiation chemistry in the time-range of sub-picosecond, the total time-resolution become worse by the instability of synchronization between laser and radio frequency of linac. We found that the fluctuation of room temperature causes the instability, particularly the cycle of turning on/off of the air-conditioner. It is shown that 0.3 °C (peak-to-peak) fluctuation of the laser-room temperature have approximately corresponded to the instability of 6 ps. We are trying to decrease the fluctuation of the room temperature, together with the local temperature stability of the Ti: Sapphire crysta...

  4. Analysis of thermionic DC electron gun for 125 MeV linac

    International Nuclear Information System (INIS)

    Kanno, K.; Sato, Isamu; Sato, K.

    2000-01-01

    The beam trace calculation for the 100 kV thermionic DC electron gun with EIMAC 646E cathode, which is currently used for the 125 MeV linac at Nihon University, has been performed using EGUN code. The result showed a strong focus of the beam at the exit of the anode. A better geometry of the gun has been investigated by varying the shape of the wehnelt electrode. Also the trace calculation has been performed for the case of EIMAC 646B, which showed a considerably small emittance compared with that estimated for the present gun. (author)

  5. Analysis of thermionic DC electron gun for 125 MeV linac

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, K. [Graduate School of Science and Technology, Nihon Univ., Funabashi, Chiba (Japan); Sato, Isamu; Sato, K. [Nihon Univ., Funabashi, Chiba (Japan). Atomic Energy Research Inst] [and others

    2000-07-01

    The beam trace calculation for the 100 kV thermionic DC electron gun with EIMAC 646E cathode, which is currently used for the 125 MeV linac at Nihon University, has been performed using EGUN code. The result showed a strong focus of the beam at the exit of the anode. A better geometry of the gun has been investigated by varying the shape of the wehnelt electrode. Also the trace calculation has been performed for the case of EIMAC 646B, which showed a considerably small emittance compared with that estimated for the present gun. (author)

  6. Integration of the PHIN RF Gun into the CLIC Test Facility

    CERN Document Server

    Döbert, Steffen

    2006-01-01

    CERN is a collaborator within the European PHIN project, a joint research activity for Photo injectors within the CARE program. A deliverable of this project is an rf Gun equipped with high quantum efficiency Cs2Te cathodes and a laser to produce the nominal beam for the CLIC Test Facility (CTF3). The nominal beam for CTF3 has an average current of 3.5 A, 1.5 GHz bunch repetition frequency and a pulse length of 1.5 ìs (2332 bunches) with quite tight stability requirements. In addition a phase shift of 180 deg is needed after each train of 140 ns for the special CLIC combination scheme. This rf Gun will be tested at CERN in fall 2006 and shall be integrated as a new injector into the CTF3 linac, replacing the existing injector consisting of a thermionic gun and a subharmonic bunching system. The paper studies the optimal integration into the machine trying to optimize transverse and longitudinal phase space of the beam while respecting the numerous constraints of the existing accelerator. The presented scheme...

  7. Fibre optic control for electron gun power supplies and data acquisition of 3 MeV DC accelerator

    International Nuclear Information System (INIS)

    Chavan, R.B.; Yadav, Vivek; Dixit, K.P.; Bakhtsingh, R.I.; Rajan, Rehim; Nanu, K.; Mittal, K.C.; Chakravarthy, D.P.; Gantayet, L.M.

    2011-01-01

    A 3 MeV, 10 mA DC Industrial Electron Beam Accelerator is being commissioned at Electron Beam Centre, Navi Mumbai. The electron beam is generated by a triode electron gun and injected into the accelerating column at 5 keV. The gun and its power supplies, (5 kV anode, 3 kV grid and 15V/20A filament), are floating at 3 Million volts, and are situated in a tank which is pressurized with SF6 at 6 kg/cm 2 . These power supplies are required to be controlled remotely. The various accelerator parameters like Beam Energy, Beam Current, RF Electrode Voltage, Power Oscillator Plate Voltage / Current and Vacuum are required to be monitored during beam operation. The software was developed in VB.Net for control and data acquisition. The database is provided in SQL 2005 for storing the data. For this purpose, control system using ADAM modules and Optical fibre has been designed and developed. This paper describes the design features of the control system and experience of use of control software during initial beam trials. (author)

  8. First operation of cesium telluride photocathodes in the TTF injector RF gun

    CERN Document Server

    Sertore, D; Flöttmann, K; Stephan, F; Zapfe, K; Michelato, P

    2000-01-01

    During the run 1998/1999 a new injector based on a laser-driven RF gun was brought in operation at the TESLA Test Facility (TTF) linac at DESY, in order to produce the beam structure and quality required either by TeV collider and SASE FEL experiments. High quantum efficiency cesium telluride photocathodes, prepared at Milano and transferred to DESY, have been successfully operated in the RF gun. A bunch charge of 50 nC, only limited by space charge effects, was achieved. The photocathodes have shown an operative lifetime of several months. A new cathode surface finishing has showed a promising decrease of the photocathode dark current. Measurements of dark current, quantum efficiency and lifetime are reported.

  9. Performance of the 2 MeV microwave gun for the SSRL 150 MeV linac

    International Nuclear Information System (INIS)

    Borland, M.; Weaver, J.N.; Wiedemann, H.; Miller, R.H.; Tanabe, E.

    1990-09-01

    As described in a previous article, the preinjector linac for SSRL's 3 GeV synchrotron is fed by a 2 MeV, 1.5 A, low-emittance microwave gun, consisting of a thermionic cathode mounted in the first cell of a 1-1/2-cell S-band cavity. In this article, we report on the successful operation of the low-emittance gun, the longitudinally-bunching alpha-magnet, and the three-microbunch FET-pulsed beam-chopper. Simulations predict a normalized rms emittance at the gun exit of less than 10 π·m e c·μm; chromatic effects in transport optics increase this to approximately 30 π·m e c·μm. The gun was specifically designed to have a longitudinal phase-space suited to magnetic compression, as a result of which we predict that peak currents in excess of 300 A in a 1 ps bunch are feasible with the existing alpha-magnet. Results of simulations and experiments will be presented and compared. 13 refs., 9 figs

  10. 200 MeV RF linac for synchrotron injection

    International Nuclear Information System (INIS)

    Whitham, K.; Anamkath, H.; Lyons, S.; Manca, J.; Miller, R.; Treas, P.; Zante, T.; Miller, R.

    1992-01-01

    Construction has been completed on an electron linear accelerator for the Brookhaven National Laboratory. This accelerator will be used for the injection of a 200 MeV electron beam into a synchrotron for lithography experiments. This paper describes the conceptual design of the linac, its e-gun pulser, and its control and timing systems. 3 figs., ref

  11. R and D of control system of compact self-bunching RF gun test facility

    International Nuclear Information System (INIS)

    Pang Jian; Pei Yuanji; Huang Guirong; Wang Jinxiang

    2010-01-01

    An experimental device was recently constructed for testing the beam characteristics of a compact self-bunching RF gun at the National Synchrotron Radiation Laboratory. It designs an independent monitor and control system for the experimental device so as not to disturb the operation of 200MeV LINAC. According to the three-level architecture of a general control scheme, the proposed system consists of circuits that execute kernel control, photosignal emission/reception, and switch values input/output, respectively. It performs timing control, device status monitoring as well as interlock protection, and it can be remotely operated with the assistance of PC software. Testing results show that our system achieves the specified performance and meets the requirement of experimental device stably and reliably. Our proposed system can also be applied to control other small-scale accelerators. (authors)

  12. RF Design and Operating Performance of the BNL/AES 1.3 GHz Single Cell Superconducting RF Photocathode Electron Gun

    International Nuclear Information System (INIS)

    Cole, Michael; Kneisel, Peter; Ben-Zvi, Ilan; Burrill, Andrew; Hahn, H.; Rao, Triveni; Zhao, Y.

    2005-01-01

    Over the past several years Advanced Energy Systems and BNL have been collaborating on the development and testing of a fully superconducting photocathode electron gun. Over the past year we have begun to realize significant results which have been published elsewhere (1). This paper will review the RF design of the gun under test and present results of its performance under various operating conditions. Results for cavity quality factor will be presented for various operating temperatures and cavity field gradients. We will also discuss future plans for testing using this gun.

  13. Measures to alleviate the back bombardment effect of thermionic rf electron gun

    International Nuclear Information System (INIS)

    Huang, Y.; Xie, J.

    1991-01-01

    Thermionic rf electron gun finds application as a high brightness electron source for rf linacs. However, cathode heating from back-bombardment effect causes a ramp in the macro-pulse beam current and limit the usable pulse width. Three methods: ring cathode, magnetic deflection and laser assisted heating are studied in theory and in experiment. The results of these studies are reported

  14. Measurements of Transverse Emittance for RF Photocathode Gun at the PAL

    CERN Document Server

    Park Jang Ho; Park, Sung-Ju; Soo Ko In; Wang, Xijie; Woon Parc, Yong; Xiang, Dao

    2005-01-01

    A BNL GUN-IV type RF photo-cathode gun is under fabrication for use in the FIR (Far Infra-Red) facility being built at the Pohang Accelerator Laboratory (PAL). Performance test of the gun will include the measurement of transverse emittance profile along the longitudinal direction. Successful measurement of the emittance profile will provide powerful tool for the commissioning of the 4GLS (4th generation light source) injectors based on the emittance compensation principle. We are going to achieve this withthe use of pepper-pot based emittance meters that can be moved along the longitudinal direction. In this article, we present design considerations on the emittance meter with the resolution of 1 mm mrad.

  15. Beam dynamics simulations in the photo-cathode RF gun for the CLIC test facility

    International Nuclear Information System (INIS)

    Marchand, P.; Rinolfi, L.

    1992-01-01

    The CERN CLIC Test Facility (CTF) uses an RF gun with a laser driven photo-cathode in order to generate electron pulses of high charge (≥10 nC) and short duration (≤20 ps). The RF gun consists of a 3 GHz 1 + 1/2 cell cavity based on the design originally proposed at BNL which minimizes the non-linearities in the transverse field. The beam dynamics in the cavity is simulated by means of the multiparticle tracking code PARMELA. The results are compared to previous simulations as well as to the first experimental data. (author). 4 refs., 4 tabs., 4 figs

  16. Cerenkov Radiator Driven by a Superconducting RF Electron Gun

    International Nuclear Information System (INIS)

    Poole, B.R.; Harris, J.R.

    2011-01-01

    The Naval Postgraduate School (NPS), Niowave, Inc., and Boeing have recently demonstrated operation of the first superconducting RF electron gun based on a quarter wave resonator structure. In preliminary tests, this gun has produced 10 ps long bunches with charge in excess of 78 pC, and with beam energy up to 396 keV. Initial testing occurred at Niowave's Lansing, MI facility, but the gun and diagnostic beam line are planned for installation in California in the near future. The design of the diagnostic beam line is conducive to the addition of a Cerenkov radiator without interfering with other beam line operations. Design and simulations of a Cerenkov radiator, consisting of a dielectric lined waveguide will be presented. The dispersion relation for the structure is determined and the beam interaction is studied using numerical simulations. The characteristics of the microwave radiation produced in both the short and long bunch regimes will be presented.

  17. 3-D simulation study for a thermionic RF gun using an FDTD method

    Energy Technology Data Exchange (ETDEWEB)

    Hama, H. E-mail: hama@lns.tohoku.ac.jp; Hinode, F.; Shinto, K.; Miyamoto, A.; Tanaka, T

    2004-08-01

    Beam dynamics in a thermionic RF gun for a new pre-injector in a future synchrotron radiation facility at Tohoku university has been studied by developing a 3-D Maxwell's equation solver. Backbombardment (BB) effect on a cathode, which is a crucial problem for performance of the thermionic RF gun, has been investigated. It is found that an external dipole magnetic field applying around the cathode is effective to reduce high-energy backstreaming electrons from the accelerating cell. However, the low-energy electrons coming back from the first cell inevitably hit the cathode, so that characteristics of the cathode material seems to be crucial for reduction of the BB effect.

  18. Development of a coherent transition radiation-based bunch length monitor with application to the APS RF thermionic gun beam optimization

    CERN Document Server

    Lumpkin, Alex H; Berg, W J; Borland, M; Happek, U; Lewellen, J W; Sereno, N S

    2001-01-01

    We report further development of an EPICS-compatible bunch length monitor based on the autocorrelation of coherent transition radiation (CTR). In this case the monitor was used to optimize the beam from the S-band thermionic RF gun on the Advanced Photon Source (APS) linac. Bunch lengths of 400-500 fs (FWHM) were measured in the core of the beam, which corresponded to about 100-A peak current in each micropulse. The dependence of the CTR signal on the square of the beam charge for the beam core was demonstrated. We also report the first use of the beam accelerated to 217 MeV for successful visible wavelength SASE FEL experiments.

  19. High power testing of a 17 GHz photocathode RF gun

    International Nuclear Information System (INIS)

    Chen, S.C.; Danly, B.G.; Gonichon, J.

    1995-01-01

    The physics and technological issues involved in high gradient particle acceleration at high microwave (RF) frequencies are under study at MIT. The 17 GHz photocathode RF gun has a 1 1/2 cell (π mode) room temperature cooper cavity. High power tests have been conducted at 5-10 MW levels with 100 ns pulses. A maximum surface electric field of 250 MV/m was achieved. This corresponds to an average on-axis gradient of 150 MeV/m. The gradient was also verified by a preliminary electron beam energy measurement. Even high gradients are expected in our next cavity design

  20. 6 MeV RF Linac for cargo scanning and industrial radiography

    International Nuclear Information System (INIS)

    2017-01-01

    RF Linac-based X-ray sources are very widely used for cargo-scanning and industrial X-ray radiography applications. A 6 MeV on-axis coupled-cavity S-band RF linac has been designed, developed and tested successfully at Electron Beam Centre, Navi Mumbai. This facility falls under the purview of BARC Safety Council, which has conducted safety reviews and awarded regulatory clearances for the operation of the linac system. This paper outlines the salient features of the 6 MeV linac, its safety aspects and test results. A brief history of regulatory aspects is also presented

  1. High power RF systems for the BNL ERL project

    Energy Technology Data Exchange (ETDEWEB)

    Zaltsman, A.; Lambiase, R.

    2011-03-28

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  2. Beam dynamics in rf guns and emittance correction techniques

    International Nuclear Information System (INIS)

    Serafini, L.

    1994-01-01

    In this paper we present a general review of beam dynamics in a laser-driven rf gun. The peculiarity of such an accelerating structure versus other conventional multi-cell linac structures is underlined on the basis of the Panofsky-Wenzel theorem, which is found to give a theoretical background for the well known Kim's model. A basic explanation for some proposed methods to correct rf induced emittance growth is also derived from the theorem. We also present three emittance correction techniques for the recovery of space-charge induced emittance growth, namely the optimum distributed disk-like bunch technique, the use of rf spatial harmonics to correct spherical aberration induced by space charge forces and the technique of emittance filtering by clipping the electron beam. The expected performances regarding the beam quality achievable with different techniques, as predicted by scaling laws and simulations, are analyzed, and, where available, compared to experimental results. (orig.)

  3. Design of diode electron gun for 250 kW CW klystron

    International Nuclear Information System (INIS)

    Prasad, M.; Pande, S.A.; Hannurkar, P.R.

    2005-01-01

    A 250 kW CW klystron at frequencies 350 MHz and 700 MHz is being developed at Centre for Advanced Technology. These klystrons are required for forthcoming project like 100 MeV proton Linac for Spallation Neutron Source (SNS) as a main rf sources. In order to develop klystrons, we have designed the diode electron gun, which delivers more than 10 A beam current at 50 kV. This paper describes the simulation results of electron gun with computer code EGUN. (author)

  4. High-charge s-band photocathode RF-gun and linac system for radiation research

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tetsuya; Uesaka, Mitsuru; Katsumura, Yousuke [Univ. of Tokyo, Graduate School of Engineering, Nuclear Engineering Research Laboratory, Tokai, Ibaraki (JP)] (and others)

    2002-01-01

    For sub-picosecond pump-and-prove-type radiation chemistry work, a new synchronized electron linac and laser system was installed in the Nuclear Engineering Research Laboratory (NERL) of University of Tokyo. The new laser system, with a Ti:Sapphire oscillator (795 nm) and amplifiers, generates 300 ps pulses at 10 Hz. The laser is transported through the vacuum chamber and then split into two beams. The first is compressed and converted to the third harmonics (265 nm, <250 {mu}J, 4-11 ps) so as to drive the photocathode RF-gun and generate a pump-electron beam. The second is compressed to 100 fs and used for the probe light. The high-power RF, which is provided by a new 15 MW klystron, is divided into the gun and the accelerating section. Finally, a time jitter of 330 fs (rms) was achieved between the pump-electron beam and the probe laser, which is equivalent to the design value of 320 fs. A charge of 7 nC/bunch was observed at the exit of the gun from this new laser system. Improvement of the vacuum in the gun (<10{sup -9} Torr) is the most effective way to obtain such a high-charge beam. After about three years of operation, the Cu photocathode has shown no degradation of quantum efficiency. (author)

  5. Cs2Te normal conducting photocathodes in the superconducting rf gun

    CERN Document Server

    Xiang, R; Buettig, H; Janssen, D; Justus, M; Lehnert, U; Michel, P; Murcek, P; Schamlott, A; Schneider, Ch; Schurig, R; Staufenbiel, F; Teichert, J

    2010-01-01

    The superconducting radio frequency photoinjector (SRF gun) is one of the latest applications of superconducting rf technology in the accelerator field. Since superconducting photocathodes with high quantum efficiency are yet unavailable, normal conducting cathode material is the main choice for SRF photoinjectors. However, the compatibility between the photocathode and the cavity is one of the challenges for this concept. Recently, a SRF gun with Cs2Te cathode has been successfully operated in Forschungszentrum Dresden-Rossendorf. In this paper, we will present the physical properties of Cs2Te photocathodes in the SC cavity, such as the quantum efficiency, the lifetime, the rejuvenation, the charge saturation, and the dark current.

  6. An RF ion source based primary ion gun for secondary ion mass spectroscopy

    International Nuclear Information System (INIS)

    Menon, Ranjini; Nabhiraj, P.Y.; Bhandari, R.K.

    2011-01-01

    In this article we present the design, development and characterization of an RF plasma based ion gun as a primary ion gun for SIMS application. RF ion sources, in particular Inductively Coupled Plasma (ICP) ion sources are superior compared to LMIS and duoplasmtron ion sources since they are filamentless, can produce ions of gaseous elements. At the same time, ICP ion sources offer high angular current density which is an important factor in producing high current in small spot size on the target. These high current microprobes improve the signal to noise ratio by three orders as compared to low current ion sources such as LMIS. In addition, the high current microprobes have higher surface and depth profiling speeds. In this article we describe a simple ion source in its very basic form, two lens optical column and characteristics of microprobe

  7. Experience with a radio frequency gun on the SSRL Injector Linac

    International Nuclear Information System (INIS)

    Weaver, J.N.; Genin, R.D.; Golceff, P.; Morales, H.; Sebek, J.

    1993-04-01

    A-SSRL/Varian-Associates-built, one-and-a-half cavity microwave, thermionic-cathode gun has operated on the SSRL Injector Linac reliably without changing the cathode for over 10,000 hours, with no significant decrease in emission. Thus, for a pulsed electron beam, with a maximum of 0.5 A peak at 2 to 3 MeV from a 3.5 MW peak rf pulse of 2 μs pulse width at 10 pps, the apparent but small amount of back bombardment of the cathode has been tolerable. Use of a bunch-compression alpha magnet and a stripline chopper after the gun produces the required S-band 3 to 5 microbunches of electrons for injection into a standard 10-m-long linac and on into a booster synchrotron, which in turn is used to fill SPEAR. Component limitations and operating characteristics of the gun and the linac's rf system are discussed

  8. 10 MeV RF electron linac for industrial applications

    International Nuclear Information System (INIS)

    2017-01-01

    Electron linacs have found numerous applications in the field of radiation processing on an industrial scale. High power RF electron linacs are commonly used for food irradiation, medical sterilization, cross-linking of polymers, etc. For this purpose, the 10 MeV RF linac has been indigenously designed, developed, commissioned and is being used regularly at 3 kW beam power. This paper gives a brief description of the linac and its utilization for various applications. Safety considerations and regulatory aspects of the linac are also discussed

  9. Linac-beam characterizations at 600 MeV using optical transition radiation diagnostics.

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H.

    1998-05-27

    Selected optical diagnostics stations were upgraded in anticipation of low-emittance, bright electron beams from a thermionic rf gun or a photoelectric rf gun on the Advanced Photon Source (APS) injector linac. These upgrades include installation of optical transition radiation (OTR) screens, transport lines, and cameras for use in transverse beam size measurements and longitudinal profile measurements. Using beam from the standard thermionic gun, tests were done at 50 MeV and 400 to 650 MeV. Data were obtained on the limiting spatial ({sigma} {approximately} 200 {micro}m) and temporal resolution (300 ms) of the Chromox (Al{sub 2}O{sub 3} : Cr) screen (250-{micro}n thick) in comparison to the OTR screens. Both charge-coupled device (CCD) and charge-injection device (CID) video cameras were used as well as the Hamamatsu C5680 synchroscan streak camera operating at a vertical deflection rate of 119.0 MHz (the 24th subharmonic of the S-band 2856-MHz frequency). Beam transverse sizes as small as {sigma}{sub x} = 60 {micro}m for a 600-MeV beam and micropulse bunch lengths of {sigma}{sub {tau}}<3 ps have been recorded for macropulse-averaged behavior with charges of about 2 to 3 nC per macropulse. These techniques are applicable to linac-driven, fourth-generation light source R and D experiments including the APS's SASE FEL experiment.

  10. Development of a novel thermionic RF electron gun applied on a compact THz-FEL facility

    Science.gov (United States)

    Hu, T. N.; Pei, Y. J.; Qin, B.; Liu, K. F.; Feng, G. Y.

    2018-04-01

    The current requirements from civil and commercial applications lead to the development of compact free-electron laser (FEL)-based terahertz (THz) radiation sources. A picosecond electron gun plays an important role in an FEL-THz facility and attracts significant attention, as machine performance is very sensitive to initial conditions. A novel thermionic gun with an external cathode (EC) and two independently tunable cavities (ITCs) has been found to be a promising alternative to conventional electron sources due to its remarkable characteristics, and correspondingly an FEL injector can achieve a balance between a compact layout and high brightness benefitting from the velocity bunching properties and RF focusing effects in the EC-ITC gun. Nevertheless, the EC-ITC gun has not been extensively examined as part of the FEL injector in the past years. In this regard, to fill this gap, a development focusing on the experimental setup of an FEL injector based on an EC-ITC gun is described in detail. Before assembly, dynamic beam simulations were performed to investigate the optimal mounting position for the Linac associated with the focusing coils, and a suitable radio-frequency (RF) system was established based on a power coupling design and allocation. The testing bench proved to be fully functional through basic experiments using typical diagnostic approaches for estimating primary parameters. Associated with dynamic beam calculations, a performance evaluation for an EC-ITC gun was established while providing indirect testing results for an FEL injector.

  11. High power beam test and measurement of emittance evolution of a 1.6-cell photocathode RF gun at Pohang Accelerator Laboratory

    International Nuclear Information System (INIS)

    Park, Jang-Ho; Park, Sung-Ju; Kim, Changbum; Huang, Jung-Yun; Ko, In Soo; Parc, Yong-Woon; Hong, Ju-Ho; Xiang Dao; Wang, Xijie

    2007-01-01

    A Brookhaven National Laboratory (BNL) GUN-IV type photocathode rf gun has been fabricated to use in femtosecond electron diffraction (FED), femtosecond far infrared radiation (fs-FIR) facility, and X-ray free electron laser (XFEL) facilities at the Pohang Accelerator Laboratory (PAL). The gun consists of a 1.6-cell cavity with a copper cathode, a solenoid magnet, beam diagnostic components and auxiliary systems. We report here the measurement of the basic beam parameters which confirm a successful fabrication of the photocathode RF gun system. The emittance evolution is measured by an emittance meter and compared with the PARMELA simulation, which shows a good agreement. (author)

  12. Design and modelling of a 5 MeV radio frequency electron gun

    International Nuclear Information System (INIS)

    Batchelor, K.; Sheehan, J.; Woodle, M.

    1988-01-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory is a linac-laser complex for research into laser acceleration and for the generation of coherent radiation from electron beams. In order to achieve the design 50 MeV output emittance (γσ/sub x/σ/sub x/') of less than 3 /times/ 10/sup /minus/5/ m rad a high brightness electron gun is required. This paper describes computations and measurements made on a full scale brass model of a 1-1/2 cell, π-mode, resonant, disc loaded, radiofrequency gun structure which has been designed for this purpose. 7 refs., 9 figs., 6 tabs

  13. Cs_{2}Te normal conducting photocathodes in the superconducting rf gun

    Directory of Open Access Journals (Sweden)

    R. Xiang

    2010-04-01

    Full Text Available The superconducting radio frequency photoinjector (SRF gun is one of the latest applications of superconducting rf technology in the accelerator field. Since superconducting photocathodes with high quantum efficiency are yet unavailable, normal conducting cathode material is the main choice for SRF photoinjectors. However, the compatibility between the photocathode and the cavity is one of the challenges for this concept. Recently, a SRF gun with Cs_{2}Te cathode has been successfully operated in Forschungszentrum Dresden-Rossendorf. In this paper, we will present the physical properties of Cs_{2}Te photocathodes in the SC cavity, such as the quantum efficiency, the lifetime, the rejuvenation, the charge saturation, and the dark current.

  14. Optimization of beam parameters of electron gun for 2.5 MeV/100 kW high power industrial accelerator

    International Nuclear Information System (INIS)

    Pramod, R.; Petwal, V.C.

    2009-01-01

    A 2.5 MeV/100 kW transformer type industrial accelerator is being developed at RRCAT. A Pierce type electron gun consisting of 10 mm diameter LaB 6 disc (indirectly heated) is used as a source of electron beam. The cathode assembly is put on the top of the accelerating structure, which consists of many electrostatic lenses of which the first lens acts as anode of the gun. The quality of the beam injected into the accelerating structure depends on the anode voltage, shape and size of anode and its distance from the cathode. The anode is subjected to variable voltage during the operation of accelerator from energy 1 MeV to 2.5 MeV, which results in variable emittance at the exit of the electron gun. The electron beam from the gun should provide parallel or slightly convergent beam with long focal length and the emittance of the beam at the exit of electron gun should match the beam acceptance limit of the accelerating structure. The EGUN code is used to optimize the shape and size of the anode, its distance from the cathode to achieve above objectives. Our study suggests that the desired beam parameters at the exit of the anode can be obtained by reducing the aperture size of the anode and by applying suitable voltage gradient to the anode. (author)

  15. Initial results of the new high intensity electron gun at the Argonne Wakefield Accelerator

    International Nuclear Information System (INIS)

    Conde, M. E.; Gai, W.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.

    2000-01-01

    The authors report on the status of the new short bunch, high intensity electron gun at the Argonne Wakefield Accelerator. The 1-1/2 cell L-band photocathode RF gun is expected to produce 10--100 nC bunches with 2--5 ps rms pulse length and normalized emittance less than 100 mm mrad. The beam energy at the exit of the gun cavity will be in the range 7.5--10 MeV. A standing-wave linac structure operating at the same frequency (1.3 GHz) will increase the beam energy to about 15 MeV. This beam will be used in wakefield acceleration experiments with dielectric loaded structures. These travelling-wave dielectric loaded structures, operating at 7.8 and 15.6 GHz, will be excited by the propagation of single bunches or by trains of up to 32 electron bunches

  16. Repetitive Bunches from RF-Photo Gun Radiate Coherently

    CERN Document Server

    Van der Geer, C A J; Van der Geer, S B

    2004-01-01

    We consider to feed the laser wake field accelerator of the alpha-X project by a train of low charge pancake electron bunches to reduce undesired expansion due to space-charge forces. To this purpose the photo excitation laser of the rf-injector is split into a train of sub-pulses, such that each of the produced electron bunches falls into a successive ponderomotive well of the plasma accelerator. This way the total accelerated charge is not reduced. The repetitive photo gun can be tested, at low energy, by connecting it directly to the undulator and monitoring the radiation. The assertions are based on the results of new GPT simulations.

  17. Design of a high charge (10 - 100 nC) and short pulse (2 - 5 ps) rf photocathode gun for wakefield acceleration

    International Nuclear Information System (INIS)

    Gai, W.

    1998-01-01

    In this paper we present a design report on a 1-1/2 cell, L Band RF photocathode gun that is capable of generating and accelerating electron beams with peak currents >10 kA. We have performed simulation for bunch intensities in the range of 10-100 nC with peak axial electrical field at the photocathode of 30-100 MV/m. Unlike conventional short electron pulse generation, this design does not require magnetic pulse compression. Based on numerical simulations using SUPERFISH and PARMELA, this design will produce 20-100 nC beam at 18 MeV with rms bunch length 0.6-1.25 mm and normalized transverse emittance 30-108 mm mrad. Applications of this beam for wakefield acceleration is also discussed

  18. Design study of an S-band RF cavity of a dual-energy electron LINAC for the CIS

    Science.gov (United States)

    Lee, Byeong-No; Park, Hyungdal; Song, Ki-baek; Li, Yonggui; Lee, Byung Cheol; Cha, Sung-su; Lee, Jong-Chul; Shin, Seung-Wook; Chai, Jong-seo

    2014-01-01

    The design of a resonance frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) has been carried out for the cargo inspection system (CIS). This Standing-wave-type RF cavity is operated at a frequency under the 2856-MHz resonance frequency and generates electron beams of 9 MeV (high mode) and 6 MeV (low mode). The electrons are accelerated from the initial energy of the electron gun to the target energy (9 or 6 MeV) inside the RF cavity by using the RF power transmitted from a 5.5-MW-class klystron. Then, electron beams with a 1-kW average power (both high mode and low mode) bombard an X-ray target a 2-mm spot size. The proposed accelerating gradient was 13 MV/m, and the designed Q value was about 7100. On going research on 15-MeV non-destructive inspections for military or other applications is presented.

  19. Investigating the effect of electron emission pattern on RF gun beam quality

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, A. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Velenjak, 1983963113, Tehran (Iran, Islamic Republic of); Shokri, B., E-mail: b-shokri@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Velenjak, 1983963113, Tehran (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, G.C., Velenjak, 1983963113, Tehran (Iran, Islamic Republic of)

    2016-05-11

    Thermionic radio frequency gun is one of the most promising choices to gain a high quality electron beam, used in the infrared free electron lasers and synchrotron radiation injectors. To study the quality of the beam in a compact electron source, the emission pattern effect on the beam dynamics should be investigated. In the presented work, we developed a 3D simulation code to model the real process of thermionic emission and to investigate the effect of emission pattern, by considering geometrical constraints, on the beam dynamics. According to the results, the electron bunch emittance varies considerably with the emission pattern. Simulation results have been validated via comparison with the well-known simulation codes such as ASTRA simulation code and CST microwave studio, as well as other simulation results in the literature. It was also demonstrated that by using a continuous wave laser beam for heating the cathode, the emission pattern full width at half maximum (FWHM) of the transverse emission distribution is proportional to FWHM of the Gaussian profile for the laser beam. Additionally, by using the developed code, the effect of wall structure around the cathode on the back bombardment effect has been studied. According to the results, for a stable operation of the RF gun, one should consider the nose cone in vicinity of the cathode surface to reduce the back-bombardment effect. - Highlights: • We developed a 3D code to simulate the beam dynamics of thermionic RF gun. • Te impact of the emission pattern on the beam dynamic was investigated. • Different emission pattern results different emittance in the gun exit. • Using a nosecone around the cathode adjacent wall reduces back bombardment effect.

  20. Electron beam characterization of a combined diode rf electron gun

    Directory of Open Access Journals (Sweden)

    R. Ganter

    2010-09-01

    Full Text Available Experimental and simulation results of an electron gun test facility, based on pulsed diode acceleration followed by a two-cell rf cavity at 1.5 GHz, are presented here. The main features of this diode-rf combination are: a high peak gradient in the diode (up to 100  MV/m obtained without breakdown conditioning, a cathode shape providing an electrostatic focusing, and an in-vacuum pulsed solenoid to focus the electron beam between the diode and the rf cavity. Although the test stand was initially developed for testing field emitter arrays cathodes, it became also interesting to explore the limits of this electron gun with metallic photocathodes illuminated by laser pulses. The ultimate goal of this test facility is to fulfill the requirements of the SwissFEL project of Paul Scherrer Institute [B. D. Patterson et al., New J. Phys. 12, 035012 (2010NJOPFM1367-263010.1088/1367-2630/12/3/035012]; a projected normalized emittance below 0.4  μm for a charge of 200 pC and a bunch length of less than 10 ps (rms. A normalized projected emittance of 0.23  μm with 13 pC has been measured at 5 MeV using a Gaussian laser longitudinal intensity distribution on the photocathode. Good agreements with simulations have been obtained for different electron bunch charge and diode geometries. Emittance measurements at a bunch charge below 1 pC were performed for different laser spot sizes in agreement with intrinsic emittance theory [e.g. 0.54  μm/mm of laser spot size (rms for Cu at 274 nm]. Finally, a projected emittance of 1.25+/-0.2  μm was measured with 200 pC and 100  MV/m diode gradient.

  1. Observation of Repetition-Rate Dependent Emission From an Un-Gated Thermionic Cathode Rf Gun

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P.; Sun, Y.; Harris, J.R.; Lewellen, J.W.

    2017-06-02

    Recent work at Fermilab in collaboration with the Advanced Photon Source and members of other national labs, designed an experiment to study the relationship between the RF repetition rate and the average current per RF pulse. While existing models anticipate a direct relationship between these two parameters we observed an inverse relationship. We believe this is a result of damage to the barium coating on the cathode surface caused by a change in back-bombardment power that is unaccounted for in the existing theories. These observations shed new light on the challenges and fundamental limitations associated with scaling an ungated thermionic cathode RF gun to high average current.

  2. The RF system for the 70 MeV linac injector

    International Nuclear Information System (INIS)

    Planner, C.W.

    1975-12-01

    The Radio Frequency System for the 70 MeV Linac Injector for Nimrod is required to power the four Accelerating Cavities and the Buncher and Debuncher Cavities. The frequency of operation is 202.5 MHz and is determined by the use of existing equipment from the redundant 50 MeV Proton Linac for the second and third accelerating cavities and the buncher and de-buncher cavities. The subject is discussed under the following headings: low power drive chain; RF feed lines; cavity field level stabilisation. Circuit diagrams are presented. (U.K.)

  3. RK-TBA prototype RF source

    International Nuclear Information System (INIS)

    Houck, T.; Anderson, D.; Giordano, G.

    1996-01-01

    A prototype rf power source based on the Relativistic Klystron Two-Beam Accelerator (RK-TBA) concept is being constructed at the Lawrence Berkeley National Laboratory to study physics, engineering, and costing issues. The prototype is described and compared to a full scale design appropriate for driving the Next Linear Collider (NLC). Specific details of the induction core tests and pulsed power system are presented. The 1-MeV, 1.2-kA induction gun currently under construction is also described in detail

  4. X-band RF gun and linac for medical Compton scattering X-ray source

    International Nuclear Information System (INIS)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-01-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year

  5. X-band RF gun and linac for medical Compton scattering X-ray source

    Science.gov (United States)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-12-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year.

  6. Generation of quasiequally spaced ultrashort microbunches in a photocathode rf gun

    International Nuclear Information System (INIS)

    He, Zhigang; Xu, Yuanfang; Li, Weiwei; Jia, Qika

    2015-01-01

    A photocathode rf gun can generate trains of THz subpicosecond electron bunches by illuminating the cathode with trains of laser pulses, but it suffers from the increasing charge in the beam. The THz structure blurs and tends to disappear when the longitudinal space charge forces begin to play a significant role in the beam evolution. In this paper, we propose a scheme to restrain the space charge forces by expanding the transverse size of the laser pulses to reduce the charge density and adopting a multicell gun to increase the beam energy. Thus, quasiequally spaced ultrashort microbunches with relatively high charges can be generated according to our studies. Postacceleration can be used to freeze the longitudinal phase space dynamics. The proposed scheme is in principle able to generate intense multi-color narrow-band THz radiation and offers a promising way towards the tunable intense narrow-band THz sources

  7. High-Fidelity RF Gun Simulations with the Parallel 3D Finite Element Particle-In-Cell Code Pic3P

    Energy Technology Data Exchange (ETDEWEB)

    Candel, A; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Schussman, G.; Ko, K.; /SLAC

    2009-06-19

    SLAC's Advanced Computations Department (ACD) has developed the first parallel Finite Element 3D Particle-In-Cell (PIC) code, Pic3P, for simulations of RF guns and other space-charge dominated beam-cavity interactions. Pic3P solves the complete set of Maxwell-Lorentz equations and thus includes space charge, retardation and wakefield effects from first principles. Pic3P uses higher-order Finite Elementmethods on unstructured conformal meshes. A novel scheme for causal adaptive refinement and dynamic load balancing enable unprecedented simulation accuracy, aiding the design and operation of the next generation of accelerator facilities. Application to the Linac Coherent Light Source (LCLS) RF gun is presented.

  8. Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Feng, L. W.; Lin, L.; Huang, S. L.; Quan, S. W.; Hao, J. K.; Zhu, F.; Wang, F.; Liu, K. X., E-mail: kxliu@pku.edu.cn [Institute of Heavy Ion Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Jiang, T.; Zhu, P. F.; Fu, F.; Wang, R.; Zhao, L.; Xiang, D., E-mail: dxiang@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-30

    We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.

  9. A 3 GHz photoelectron gun for high beam intensity

    CERN Document Server

    Bossart, Rudolf; Dehler, M; Godot, J C

    1996-01-01

    For the Compact Linear Collider Test Facility (CTF) at CERN a new rf gun with a laser driven photocathode is under construction. The new rf gun will replace the present 11/2 cell gun and will consist of 21/2 cells accelerating the beam to a momentum of 7.0 MeV/c with an electric field strength of 100 MV/m. The strong space-charge forces at low beam energy caused by the high charge density of the electron bunches are contained by radial and longitudinal rf focusing in the gun. The rf gun under construction has been optimized by MAFIA beam simulations for an injector assembly comprising a second accelerating rf structure and an intermediate solenoid magnet correcting the beam divergence of the 21/2 cell gun. The beam loading of the rf gun, by a train of 48 bunches with 21 nC charge each, causes a strong energy decay accompanied by an increase of the flight time for the bunches with lower energy. These effects can be corrected by slightly shifting the acceleration frequency of the gun. The experimental results...

  10. Performance of the TU/e 2.6 Cell Rf-photogun in the 'Pancake' Regime

    NARCIS (Netherlands)

    Geer, van der S.B.; Loos, de M.J.; Luiten, O.J.; Brussaard, G.J.H.; Wiel, van der M.J.; Pöplau, G.

    2004-01-01

    The 2.6 cell rf-photogun currently in operation at Eindhoven University of Technology has been designed as a booster for a 2 MeV semi-DC accelerator with a field of 1 GV/m. In this paper we present GPT simulation results of the TU/e gun, operated without its pre-accelerator, in the low-charge

  11. Gun power source for electron gun of 3 MeV DC accelerator

    International Nuclear Information System (INIS)

    Dewangan, S.; Sharma, D.K.; Nanu, K.

    2011-01-01

    In DC electron beam accelerator electron gun is situated at high voltage terminal which requires constant power irrespective of beam energy. Floating power source is required for gun. This paper describes the scheme of static gun power source derived from parallel coupled voltage multiplier column. (author)

  12. Design, construction and measurements of an alpha magnet as a solution for compact bunch compressor for the electron beam from Thermionic RF Gun

    Science.gov (United States)

    Rajabi, A.; Jazini, J.; Fathi, M.; Sharifian, M.; Shokri, B.

    2018-03-01

    The beam produced by a thermionic RF gun has wide energy spread that makes it unsuitable for direct usage in photon sources. Here in the present work, we optimize the extracted beam from a thermionic RF gun by a compact economical bunch compressor. A compact magnetic bunch compressor (Alpha magnet) is designed and constructed. A comparison between simulation results and experimental measurements shows acceptable conformity. The beam dynamics simulation results show a reduction of the energy spread as well as a compression of length less than 1 ps with 2.3 mm-mrad emittance.

  13. Electron beam and rf characterization of a low-emittance X-band photoinjector

    Directory of Open Access Journals (Sweden)

    D. J. Gibson

    2001-09-01

    Full Text Available Detailed experimental studies of the first operation of an X-band (8.547 GHz rf photoinjector are reported. The rf characteristics of the device are first described, as well as the tuning technique used to ensure operation of the 11/2-cell rf gun in the balanced π-mode. The characterization of the photoelectron beam produced by the rf gun includes: measurements of the bunch charge as a function of the laser injection phase, yielding information about the quantum efficiency of the Cu photocathode ( 2×10^{-5} for a surface field of 100 MV/m; measurements of the beam energy (1.5–2 MeV and relative energy spread ( Δγ/γ_{0}=1.8±0.2% using a magnetic spectrometer; measurements of the beam 90% normalized emittance, which is found to be ɛ_{n}=1.65π mm mrad for a charge of 25 pC; and measurements of the bunch duration ( <2 ps. Coherent synchrotron radiation experiments at Ku-band and Ka-band confirm the extremely short duration of the photoelectron bunch and a peak power scaling quadratically with the bunch charge.

  14. Femtosecond electron bunches from an RF-gun

    International Nuclear Information System (INIS)

    Rimjaem, Sakhorn; Farias, Ruy; Thongbai, Chitrlada; Vilaithong, Thiraphat; Wiedemann, Helmut

    2004-01-01

    Sub-picosecond electron pulses become a tool of increasing importance to study dynamics at an atomic level. Such electron pulses can be used directly or be converted into intense coherent far infrared radiation or equally short X-ray pulses. In principle, sub-picosecond electron pulses can be obtained in large, high-energy electron linear accelerator systems by repeatedly applying an energy slew and magnetic compression. Another process is the production of short electron pulses at low energies from an RF-gun with a thermionic cathode together with a bunch compressing α-magnet. In this paper, we present a systematic analysis of capabilities and limits of sub-picosecond electron pulses from such a source. We discuss particular parameter choices as well as the impact of geometric and electric specifications on the 6-dimensional phase space electron distribution. Numerical beam simulations with the computer code PARMELA are performed including effects and limitations due to space charge forces. While the production of femtosecond electron bunches is of primary concern, we also consider the preservation of such short bunches along a beam transport line

  15. Construction of 100 MeV electron linac in Kyoto University

    International Nuclear Information System (INIS)

    Shirai, Toshiyuki; Sugimura, Takeshi; Kando, Masaki

    1995-01-01

    An electron linear accelerator and a compact storage ring have been constructed at Kyoto University. The beam energy of the storage ring is 300 MeV and will be utilized as a synchrotron radiation source. The output beam energy of the linac is 100 MeV and the designed beam current is 100 mA at the pulse width of 1 μsec. The construction of the linac had been finished and the test is under going. The electron beam of 300 mA is extracted from the electron gun and the peak RF power of 20 MW is successfully fed to the accelerating structures at the pulse width of 2 μsec. (author)

  16. ANALYTICAL MODELING OF ELECTRON BACK-BOMBARDMENT INDUCED CURRENT INCREASE IN UN-GATED THERMIONIC CATHODE RF GUNS

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P. [Fermilab; Sun, Y. [Argonne; Harris, J. R. [AFRL, NM; Lewellen, J. W. [Los Alamos Natl. Lab.

    2016-09-28

    In this paper we derive analytical expressions for the output current of an un-gated thermionic cathode RF gun in the presence of back-bombardment heating. We provide a brief overview of back-bombardment theory and discuss comparisons between the analytical back-bombardment predictions and simulation models. We then derive an expression for the output current as a function of the RF repetition rate and discuss relationships between back-bombardment, fieldenhancement, and output current. We discuss in detail the relevant approximations and then provide predictions about how the output current should vary as a function of repetition rate for some given system configurations.

  17. Design of a high repetition rate S-band photocathode gun

    International Nuclear Information System (INIS)

    Han Janghui; Cox, Matthew; Huang, Houcheng; Pande, Shivaji

    2011-01-01

    Photocathode RF guns have been developed in many laboratories for generating high quality electron beams for free-electron lasers based on linear accelerators. Such guns can generate electron beams with an exceptionally high peak current as well as a small transverse emittance. Their applications have been recently expanded for ultrafast electron diffraction, coherent terahertz radiation, and X-ray or γ-ray radiation by Compton scattering. In this paper, we design an S-band normal-conducting gun with capabilities of high quality beam generation and high repetition rate operation. The RF design and thermal analysis of the gun cavity and coupler are introduced. Optimal position of the gun focusing solenoid for low emittance beam generation is found by performing particle tracking simulations. Then, the gun system is designed to be able to afford the optimal solenoid position. The cooling-water channel surrounding the gun cavity and coupler is designed and analyzed numerically. The pressure in the gun is simulated with a vacuum model containing the detailed inner structure of the gun. An injector for a free-electron laser application is designed by using this gun and the beam dynamics simulation is shown. A cold test with a prototype gun for confirmation of the RF design is reported. - Highlights: → We design an S-band gun for low emittance beam generation and high repetition rate operation. → The RF design and thermal analysis of the gun cavity and coupler are studied. → An FEL injector is designed by using this gun and the beam dynamics simulation is shown. → A cold test with a prototype gun for confirmation of the RF design is reported.

  18. Emittance studies of the BNL/SLAC/UCLA 1.6 cell photocathode rf gun

    International Nuclear Information System (INIS)

    Palmer, D.T.; Miller, R.H.; Wang, X.J.

    1997-01-01

    The symmetrized 1.6 cell S-band photocathode gun developed by the BNL/SLAC/UCLA collaboration is in operation at the Brookhaven Accelerator Test Facility (ATF). A novel emittance compensation solenoid magnet has also been designed, built and is in operation at the ATF. These two subsystems form an emittance compensated photoinjector used for beam dynamics, advanced acceleration and free electron laser experiments at the ATF. The highest acceleration field achieved on the copper cathode is 150 MV/m, and the guns normal operating field is 130 MV/m. The maximum rf pulse length is 3 micros. The transverse emittance of the photoelectron beam were measured for various injection parameters. The 1 nC emittance results are presented along with electron bunch length measurements that indicated that at above the 400 pC, space charge bunch lengthening is occurring. The thermal emittance, ε o , of the copper cathode has been measured

  19. Recent advances in high-brightness electron guns at AES

    International Nuclear Information System (INIS)

    Bluem, H.; Todd, A.M.M.; Cole, M.D.; Rathke, J.; Schultheiss, T.

    2003-01-01

    We describe a number of active Advanced Energy Systems projects pertaining to the development of advanced, high-brightness electron guns for various applications. These projects include a fully superconducting, CW RF gun, nearing test, that utilizes the niobium surface as the photocathode material. An integrated 100 mA, low emittance DC/SRF gun, ideal as an injector for ERL-type light sources and intended as the injector for a 100 kW FEL, is in late design stage. A parallel high-power, CW, normal-conducting L-band RF gun project has just begun. The early performance analysis for this gun also shows good promise as an injector for ERL-type light sources. Lastly, a fully axisymmetric RF gun, operating in X-band, is being studied as a source of extremely bright electron bunches

  20. The linac and booster RF systems for a dedicated injector for SPEAR

    International Nuclear Information System (INIS)

    Weaver, J.N.; Baird, S.; Baltay, M.; Borland, M.; Nuhn, H.D.; Safranek, J.; Chavis, C.; Emery, L.; Genin, R.D.; Hettel, R.; Morales, H.; Sebek, J.; Voss, J.; Wang, D.; Wiedemann, H.; Youngmann, B.; Miller, R.H.

    1991-01-01

    A 120 MeV, 2,856 MHz, TW linac, with a microwave gun, alpha magnet, and chopper, has been built at SSRL as a preinjector for and along with a 3 GeV booster synchrotron ring. The resulting injector will be available on demand to fill SPEAR, which is a storage ring now dedicated to synchrotron light production. The linac sections were purchased from China, the XK-5 klystrons were obtained surplus from SLAC, the modulators are a variation on those at SLAC and were built by SSRL, the alpha magnet and chopper were designed and built at SSRL and the microwave gun was designed and built in collaboration with Varian Associates. The RF system for the booster ring is similar to those at SPEAR and PEP and was built by SSRL. Some of the interesting mechanical and electrical details are discussed and the operating characteristics of the linac and ring RF system are highlighted

  1. The linac and booster RF systems for a dedicated injector for SPEAR

    International Nuclear Information System (INIS)

    Weaver, J.N.; Baird, S.; Baltay, M.; Borland, M.; Nuhn, H.D.; Safranek, J.; Chavis, C.; Emery, L.; Genin, R.D.; Hettel, R.; Morales, H.; Sebek, J.; Voss, J.; Wang, H.; Wiedemann, H.; Youngmann, B.

    1991-05-01

    A 120 MeV, 2856 MHz, TW linac, with a microwave gun, alpha magnet, and chopper, has been built at SSRL as a preinjector for and along with a 3 GeV booster synchrotron ring. The resulting injector will be available on demand to fill SPEAR, which is a storage ring now dedicated to synchrotron light production. The linac sections were purchased from China, the XK-5 klystrons were obtained surplus from SLAC, the modulators are a variation on those at SLAC and were built by SSRL, the alpha magnet and chopper were designed and built at SSRL and the microwave gun was designed and built in collaboration with Varian Associates. The rf system for the booster ring is similar to those at SPEAR and PEP and was built by SSRL. Some of the interesting mechanical and electrical details are discussed and the operating characteristics of the linac and ring rf system are highlighted. 8 refs., 6 figs

  2. Transverse-emittance measurements on an S-band photocathode RF electron gun

    CERN Document Server

    Schmerge, J F; Clendenin, J E; Decker, Franz Josef; Dowell, D H; Gierman, S M; Limborg, C G; Murphy, B F

    2002-01-01

    Proposed fourth-generation light sources using SASE FELs to generate short pulse, coherent, X-rays require demonstration of high brightness electron sources. The gun test facility at SLAC was built to test high brightness sources for the proposed linac coherent light source at SLAC. The transverse-emittance measurements are made at nearly 30 MeV by measuring the spot size on a YAG screen using the quadrupole scan technique. The emittance was measured to vary from 1 to 3.5 mm mrad as the charge is increased from 50 to 350 pC using a laser pulse width of 2 ps FWHM. The measurements are in good agreement with simulation results using the LANL version of PARMELA.

  3. High Brightness Electron Guns for Next-Generation Light Sources and Accelerators

    International Nuclear Information System (INIS)

    H. Bluem; M.D. Cole; J. Rathke; T. Schultheiss; A.M.M. Todd; I. Ben-Zvi; T. Srinivasan-Rao; P. Colestock; D.C. Nguyen; R.L. Wood; L. Young; D. Janssen; J. Lewellen; G. Neil; H.L. Phillips; J.P. Preble

    2004-01-01

    Advanced Energy Systems continues to develop advanced electron gun and injector concepts. Several of these projects have been previously described, but the progress and status of each will be updated. The project closest to completion is an all superconducting RF (SRF) gun, being developed in collaboration with the Brookhaven National Laboratory, that uses the niobium of the cavity wall itself as the photocathode material. This gun has been fabricated and will shortly be tested with beam. The cavity string for a closely-coupled DC gun and SRF cavity injector that is expected to provide beam quality sufficient for proposed ERL light sources and FELs will be assembled at the Jefferson Laboratory later this year. We are also collaboration with Los Alamos on a prototype CW normal-conducting RF gun with similar performance, that will undergo thermal testing in late 2004. Another CW SRF gun project that uses a high quantum efficiency photocathode, similar to the FZ-Rossendorf approach, has just begun. Finally, we will present the RF design and cold test results for a fully axisymmetric, ultra-high-brightness x-band RF gun

  4. Electron dynamics in RF sources with a laser controlled emission

    CERN Document Server

    Khodak, I V; Metrochenko, V V

    2001-01-01

    Photoemission radiofrequency (RF) electron sources are sources of electron beams with extremely high brightness. Beam bunching processes in such devices are well studied in case when laser pulse duration is much lower of rf oscillation period.At the same time photoemission RF guns have some merits when operating in 'long-pulse' mode. In this case the laser pulse duration is much higher of rf oscillation period but much lower of rise time of oscillations in a gun cavity. Beam parameters at the gun output are compared for photoemission and thermoemission cathode applications. The paper presents results of a beam dynamics simulation in such guns with different resonance structures. Questions connected with defining of the current pulse peak value that can be obtained in such guns are discussed.

  5. The Digital Feedback RF Control System of the RFQ and DTL1 for 100 MeV Proton Linac of PEFP

    CERN Document Server

    Yu In Ha; Cho, Yong-Sub; Han, Yeung-Jin; Kang Heung Sik; Kim, Sung-Chul; Kwon, Hyeok-Jung; Park, In-Soo; Tae Kim, Do; Tae Seol, Kyung

    2005-01-01

    The 100 MeV Proton linear accelerator (Linac) for the PEFP (Proton Engineering Frontier Project) will include 1 RFQ and 1 DTL1 at 350 MHz as well as 7 DTL2 cavities at 700 MHz. The low level RF system with the digital feedback RF control provides the field control to accelerate a 20mA proton beam from 50 keV to 20 MeV with a RFQ and a DTL1 at 350M Hz. The FPGA-based digital feedback RF control system has been built and is used to control cavity field amplitude within ± 1% and relative phase within ± 1°. The fast digital processing is networked to the EPICS-based control system with an embedded processor (Blackfin). In this paper, the detailed description of the digital feedback RF control system will be described with the performance test results.

  6. One nanosecond pulsed electron gun systems

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1979-02-01

    At SLAC there has been a continuous need for the injection of very short bunches of electrons into the accelerator. Several time-of-flight experiments have used bursts of short pulses during a normal 1.6 micro-second rf acceleration period. Single bunch beam loading experiments made use of a short pulse injection system which included high power transverse beam chopping equipment. Until the equipment described in this paper came on line, the basic grid-controlled gun pulse was limited to a rise time of 7 nanoseconds and a pulse width of 10 nanoseconds. The system described here has a grid-controlled rise time of less than 500 pico-seconds, and a minimum pulse width of less than 1 nanosecond. Pulse burst repetition rate has been demonstrated above 20 MHz during a 1.6 microsecond rf accelerating period. The order-of-magnitude increase in gun grid switching speed comes from a new gun design which minimizes lead inductance and stray capacitance, and also increases gun grid transconductance. These gun improvements coupled with a newly designed fast pulser mounted directly within the gun envelope make possible subnanosecond pulsing of the gun

  7. Stability and performance studies of the PITZ photoelectron gun

    Energy Technology Data Exchange (ETDEWEB)

    Isaev, Igor

    2018-02-15

    The invention of free electron lasers (FELs) opened new opportunities for the investigation of natural phenomena. However, the operation of a FEL requires high energy, high peak current electron beams with very small transverse emittance which causes extreme requirements for the corresponding electron sources. Besides the high beam quality, the electron sources must have very high operational stability and reliability. One of the electron source types which satisfy FEL requirements is a photoelectron gun. Photoelectron guns combine photoemissive electron generation and direct acceleration in a Radio Frequency (RF) cavity. The Photo Injector Test facility at DESY, Zeuthen site (PITZ), was established as a test stand of the electron source for FELs like FLASH and the European XFEL in Hamburg. The studies of the beam emittance at PITZ showed that the gun is able to produce electron beams with emittance even smaller than it is required by XFEL specifications. But the experiments on the emittance revealed discrepancies between expected gun behavior and observation, such as the difference in optimal parameters for the smallest emittance value, asymmetry of the transverse beam profile and the phase spaces. The work performed at PITZ includes preparation of several RF guns for their subsequent operation at FLASH and the European XFEL. RF conditioning of a gun cavity is one of the major steps of the preparation of a high brightness electron source required for modern FELs. A thorough procedure is applied to increase the peak and average RF power in the gun cavity, including an increase of the repetition rate and RF pulse length combined with a gun solenoid current sweep. The main goals of this thesis are: (1) an attempt of deep understanding of physical processes taking place during operation of a photoelectron gun (conditioning process, parameters adjustments); (2) definition of operational problems sources and explanation of the experimentally obtained results in the gun

  8. Stability and performance studies of the PITZ photoelectron gun

    International Nuclear Information System (INIS)

    Isaev, Igor

    2018-02-01

    The invention of free electron lasers (FELs) opened new opportunities for the investigation of natural phenomena. However, the operation of a FEL requires high energy, high peak current electron beams with very small transverse emittance which causes extreme requirements for the corresponding electron sources. Besides the high beam quality, the electron sources must have very high operational stability and reliability. One of the electron source types which satisfy FEL requirements is a photoelectron gun. Photoelectron guns combine photoemissive electron generation and direct acceleration in a Radio Frequency (RF) cavity. The Photo Injector Test facility at DESY, Zeuthen site (PITZ), was established as a test stand of the electron source for FELs like FLASH and the European XFEL in Hamburg. The studies of the beam emittance at PITZ showed that the gun is able to produce electron beams with emittance even smaller than it is required by XFEL specifications. But the experiments on the emittance revealed discrepancies between expected gun behavior and observation, such as the difference in optimal parameters for the smallest emittance value, asymmetry of the transverse beam profile and the phase spaces. The work performed at PITZ includes preparation of several RF guns for their subsequent operation at FLASH and the European XFEL. RF conditioning of a gun cavity is one of the major steps of the preparation of a high brightness electron source required for modern FELs. A thorough procedure is applied to increase the peak and average RF power in the gun cavity, including an increase of the repetition rate and RF pulse length combined with a gun solenoid current sweep. The main goals of this thesis are: (1) an attempt of deep understanding of physical processes taking place during operation of a photoelectron gun (conditioning process, parameters adjustments); (2) definition of operational problems sources and explanation of the experimentally obtained results in the gun

  9. Conceptual design of a bright electron injector based on a laser-driven photocathode rf electron gun

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Chen, Y.J.; Hopkins, D.; Kim, K.J.; Kung, A.; Miller, R.; Sessler, A.; Young, T.

    1988-09-01

    Conceptual design of a bright electron injector for the 1 GeV high gradient test experiment, envisaged by the LLNL-SLAC-LBL collaboration on the Relativistic Klystron is presented. The design utilizes a high-brightness laser-driven rf photocathode electron gun, similar to the pioneering LANL early studies in concept (different parametrically however), together with achromatic magnetic bunching and transport systems and diagnostics. The design is performed with attention to possible use in an FEL as well. A simple but realistic analytic model including longitudinal and transverse space-charge and rf effects and extensive computer simulation form the basis of the parametric choice for the source. These parameters are used as guides for the design of the picosecond laser system and magnetic bunching section. 4 refs., 5 figs., 2 tabs

  10. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    Science.gov (United States)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-01

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 1011 n/cm2/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  11. Developmental efforts of RF collinear load for 10 MeV, 6 kW travelling wave Linac

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Kumar, Harish; Soni, R.K.; Dwivedi, Jishnu; Thakurta, A.C.; Wanmode, Y.D.; Pareek, Prashant; Senthil Kumar, S; Shinde, R.S.

    2015-01-01

    RRCAT is developing a 10 MeV, 6 kW Travelling Wave Electron Linac for radiation processing applications. The remnant RF power from the Linac structure is taken out by output RF coupler and absorbed by the waveguide load. RF collinear load is an improved technique for absorption of the remnant RF power. It replaces the output RF coupler, RF window and waveguide load leading to reduction in size of magnetic elements and less transverse beam instabilities. In addition, it uses the remnant RF power to increase the electron beam energy. The collinear load consists of a number of copper cavities coated with microwave absorbing material at inner surfaces and brazed to the Linac structure at the end. Development of the collinear load has been started at RRCAT and a prototype low power collinear load using Kanthal (FeCrAl alloy) coating has been developed. Further works are going on the development of high power collinear load using FeSiAl alloy. The paper describes the development of the Kanthal based prototype low power collinear load as well as the works for the development of FeSiAl alloy based high power collinear load. (author)

  12. Crane RF accelerator for high current radiation damage studies

    International Nuclear Information System (INIS)

    Whitham, K.; Anamkath, H.; Evans, K.; Lyons, S.; Palmer, D.; Miller, R.; Treas, P.; Zante, T.

    1992-01-01

    An electron accelerator was designed and built for the Naval Weapons Support Center for transient radiation effects on electronics experiments and testing. The Crane L Band RF Electron Linac was designed to provide high currents over a wide range of pulse widths and energies. The energy extends to 60 MeV and pulse widths vary from a few ns to 10 μsec. Beam currents range from 20 amps in the short pulse case to 1.5 amps in the long pulse case. This paper describes the linac, its architecture, the e-gun and pulser, waveguides, klystrons and modulator, vacuum system, beam transport, and control systems. fig., tab

  13. The ALS Gun Electronics system

    International Nuclear Information System (INIS)

    Lo, C.C.

    1993-05-01

    The ALS Gun Electronics system has been designed to accommodate gun with a custom made socket and high speed electronics circuit which is capable of producing single and multiple electron bunches with time jitters measured at better than 50 PS. The system generates the gated RF signal at ground level before sending it up to the 120 KV-biased gun deck via a fiber optic cable. The current pulse width as a function of grid bias, using an Eimac 8847A planar triode simulating an electron gun, was measured to show the relationship between the two parameters

  14. The ALS gun electronics system

    International Nuclear Information System (INIS)

    Lo, C.C.

    1993-01-01

    The ALS Gun Electronics system has been designed to accommodate the gun with a custom made socket and a high speed electronics circuit which is capable of producing single and multiple electron bunches with time jitters measured at better than 50 PS. The system generates the gated RF signal at ground level before sending it up to the 120 KV-biased gun deck via a fiber optic cable. The current pulse width as a function of grid bias, using an Eimac 8847A planar triode simulating an electron gun, was measured to show the relationship between the two parameters

  15. Low Emittance Guns for the ILC Polarized Electron Beam

    International Nuclear Information System (INIS)

    Clendenin, J. E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R. E.; Maruyama, T.; Miller, R. H.; Wang, J. W.; Zhou, F.

    2007-01-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of ≥200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while ≥500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns

  16. Low Emittance Guns for the ILC Polarized Electron Beam

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R.E.; Maruyama, T.; Miller, R.H.; Wang, J.W.; Zhou, F.; SLAC

    2006-01-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of (ge)200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while (ge)500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns

  17. A high-brightness thermionic microwave electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Borland, Michael [Stanford Univ., CA (United States)

    1991-02-01

    In a collaborative effort by SSRL, AET Associates, and Varian Associates, a high-brightness microwave electron gun using a thermionic cathode has been designed, built, tested, and installed for use with the SSRL 150 MeV linear accelerator. This thesis discusses the physics behind the design and operation of the gun and associated systems, presenting predictions and experimental tests of the gun`s performance. The microwave gun concept is of increasing interest due to its promise of providing higher-current, lower-emittance electron beams than possible from conventional, DC gun technology. In a DC guns, accelerating gradients are less than 8 MV/m, while those in a microwave gun can exceed 100 MV/m, providing much more rapid initial acceleration, thereby reducing the deleterious effects of space-charge. Microwave guns produce higher momentum beams than DC guns, thus lessening space-charge effects during subsequent beam transport. Typical DC guns produce kinetic energies of 80--400 KeV, compared to 2--3 MeV for the SSRL microwave gun. ``State-of-the-art`` microwave gun designs employ laser-driven photocathodes, providing excellent performance but with greater complexity and monetary costs. A thermionic microwave gun with a magnetic bunching system is comparable in cost and complexity to a conventional system, but provides performance that is orders of magnitude better. Simulations of the SSRL microwave gun predict a normalized RMS emittance at the gun exist of < 10 π • mec • μm for a beam consisting of approximately 50% of the particles emitted from the gun, and having a momentum spread ±10%. These emittances are for up to 5 x 109e- per bunch. Chromatic aberrations in the transport line between the gun and linear accelerator increase this to typically < 30 π • me • μm.

  18. Design and rf tuning of the KEK 40 MeV proton linear accelerator

    International Nuclear Information System (INIS)

    Kato, Takao.

    1986-09-01

    An Alvarez linac was designed and constructed on the basis of a model linac study to increase the output energy from 20 to 40 MeV. The linac was tuned by frequency tuners and post couplers. Stabilization of the field was achieved and a variation within ± 0.7 % of the accelerating field was obtained. An equivalent circuit analysis which can numerically solve loop equations, including stem and post currents in addition to tank current, can explain the rf characteristics of a postcoupled structure. (author)

  19. A high-brightness thermionic microwave electron gun

    International Nuclear Information System (INIS)

    Borland, M.

    1991-02-01

    In a collaborative effort by SSRL, AET Associates, and Varian Associates, a high-brightness microwave electron gun using a thermionic cathode has been designed, built, tested, and installed for use with the SSRL 150 MeV linear accelerator. This thesis discusses the physics behind the design and operation of the gun and associated systems, presenting predictions and experimental tests of the gun's performance. The microwave gun concept is of increasing interest due to its promise of providing higher-current, lower-emittance electron beams than possible from conventional, DC gun technology. In a DC guns, accelerating gradients are less than 8 MV/m, while those in a microwave gun can exceed 100 MV/m, providing much more rapid initial acceleration, thereby reducing the deleterious effects of space-charge. Microwave guns produce higher momentum beams than DC guns, thus lessening space-charge effects during subsequent beam transport. Typical DC guns produce kinetic energies of 80--400 KeV, compared to 2--3 MeV for the SSRL microwave gun. ''State-of-the-art'' microwave gun designs employ laser-driven photocathodes, providing excellent performance but with greater complexity and monetary costs. A thermionic microwave gun with a magnetic bunching system is comparable in cost and complexity to a conventional system, but provides performance that is orders of magnitude better. Simulations of the SSRL microwave gun predict a normalized RMS emittance at the gun exist of e c · μm for a beam consisting of approximately 50% of the particles emitted from the gun, and having a momentum spread ±10%. These emittances are for up to 5 x 10 9 e - per bunch. Chromatic aberrations in the transport line between the gun and linear accelerator increase this to typically e · μm

  20. Summary, Working Group 1: Electron guns and injector designs

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Bazarov, I.V.

    2006-01-01

    We summarize the proceedings of Working Group 1 of the 2005 Energy Recovery Linac (ERL) Workshop. The subject of this working group, the electron gun and injector design, is arguably the most critical part of the ERL as it determines the ultimate performance of this type of accelerators. Working Group 1 dealt with a variety of subjects: The technology of DC, normal-conducting RF and superconducting RF guns; beam dynamics in the gun and injector; the cathode and laser package; modeling and computational issues; magnetized beams and polarization. A short overview of these issues covered in the Working Group is presented in this paper

  1. Design and research of RF system for 10 MeV compact cyclotron

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A 10 MeV compact cyclotron (CYCHU-10) has been developing in Huazhong University of Science and Technology (HUST). The RF system includes a 10 kW RF power generator and a resonance cavity. There is no automatic frequency tuning equipment in the cavity due to space limitations, so the generator must search and track the cavity resonant frequency. AD9850 synthesizer is used to generate RF signal in the experimental prototype, and a fine sinusoidal waveform around 99 MHz is obtained with the method of picking up a special aliased signal from the synthesizer’s output, and the output power level can be set by regulating the resistor connected to the Pin ’Rset’. The final stage amplifier based on tetrode operates in the grounded cathode configuration, and the schematic of the tetrode circuit is illustrated. The method of searching the resonant frequency is discussed in detail. For the sake of a compact and robust structure, the resonance cavity will adopt non-uniform characteristic impedance coaxial structure, and the magnet surface electroplated with copper will be used as dummy Dees. The precise shapes and dimensions of the cavity are designed and simulation results are carried out in this paper. The distributions of electromagnetic field are illustrated by means of numerical calculation analysis, and the wooden model test is preformed as well.

  2. Design and development of a pierce electron gun

    International Nuclear Information System (INIS)

    Bhattacharjee, D.; Tiwari, R.; Nayak, B.; Tillu, A.R.; Jayaprakash, D.; Mishra, R.L.; Mittal, K.C.; Chakravarthy, D.P.; Gantayet, L.M.

    2011-01-01

    An electron gun is designed and developed using the Pierce configuration for the focusing electrode. Simulations were carried out using CST Particle Studio. The Gun is a thermionic type electron gun with indirect heating of the LaB6 cathode. The gun is capable of delivering a beam current of 500 mA at 50 kV with a beam size of less than 3.5 mm. It was tested on the gun test bench. This paper presents the gun design, particle simulations study, testing of the gun on test bench and integration with the ECIL 9 MeV linac. (author)

  3. Testing a GaAs cathode in SRF gun

    International Nuclear Information System (INIS)

    Wang, E.; Kewisch, J.; Ben-Zvi, I.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2011-01-01

    RF electron guns with a strained superlattice GaAs cathode are expected to generate polarized electron beams of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface and lower cathode temperature. We plan to install a bulk GaAs:Cs in a SRF gun to evaluate the performance of both the gun and the cathode in this environment. The status of this project is: In our 1.3 GHz 1/2 cell SRF gun, the vacuum can be maintained at nearly 10 -12 Torr because of cryo-pumping at 2K. With conventional activation of bulk GaAs, we obtained a QE of 10% at 532 nm, with lifetime of more than 3 days in the preparation chamber and have shown that it can survive in transport from the preparation chamber to the gun. The beam line has been assembled and we are exploring the best conditions for baking the cathode under vacuum. We report here the progress of our test of the GaAs cathode in the SRF gun. Future particle accelerators, such as eRHIC and the ILC require high-brightness, high-current polarized electrons. Strained superlattice GaAs:Cs has been shown to be an efficient cathode for producing polarized electrons. Activation of GaAs with Cs,O(F) lowers the electron affinity and makes it energetically possible for all the electrons, excited into the conduction band that drift or diffuse to the emission surface, to escape into the vacuum. Presently, all operating polarized electron sources, such as the CEBAF, are DC guns. In these devices, the excellent ultra-high vacuum extends the lifetime of the cathode. However, the low field gradient on the photocathode's emission surface of the DC guns limits the beam quality. The higher accelerating gradients, possible in the RF guns, generate a far better beam. Until recently, most RF guns operated at room temperature, limiting the vacuum to ∼10 -9 Torr. This destroys the GaAs's NEA surface. The SRF guns combine the excellent vacuum conditions of DC guns and the high accelerating

  4. Electron Beam Energy Compensation by Controlling RF Pulse Shape

    CERN Document Server

    Kii, T; Kusukame, K; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    We have studied on improvement of electron beam macropulse properties from a thermionic RF gun. Though a thermionic RF gun has many salient features, there is a serious problem that back-bombardment effect worsens quality of the beam. To reduce beam energy degradation by this effect, we tried to feed non-flat RF power into the gun. As a result, we successfully obtained about 1.5 times longer macropulse and two times larger total charge per macropulse. On the other hand, we calculated transient evolution of RF power considering non-constant beam loading. The beam loading is evaluated from time evolution of cathode temperature, by use of one dimensional heat conduction model and electron trajectories' calculations by a particle simulation code. Then we found good agreement between the experimental and calculation results. Furthermore, with the same way, we studied the electron beam output dependence on the cathode radius.

  5. Influence of laser parameters on the relativistic short electron bunches dynamics in linear accelerators based on RF-guns and development of associated diagnostics

    International Nuclear Information System (INIS)

    Vinatier, T.

    2015-01-01

    My thesis investigates dynamics and diagnostics related to short electron bunches, namely whose rms duration is not directly measurable by an electronic method locating the border at a few tens of picoseconds. The short nature of the bunch and the necessity of a high peak current for the applications imply strong space-charge forces leading to a degradation of beam properties, as its transverse emittance and duration. The main difficulty is to characterize, model and take into account these effects. The chapter 2 consists in the measurements of several properties of these bunches: charge, transverse emittance, energy and duration. The originality of my work is that I use simple methods, both on the theoretical (analytical at maximum) and technological (using only common elements of electron accelerators) point of view. I have developed a method of charge measurement from the measurement of the light intensity emitted by a scintillating screen following the interaction with an electron beam. I have also developed a method to measure the bunch mean energy with a steering magnet and a scintillating screen, via the displacement of the bunch centroid as a function of the field of the steering magnet. I have also adapted multi-parametric methods to measure the transverse emittance and duration of electron bunches. These indirect methods allow the determination of these properties from the measurement of other more accessible properties: the transverse dimensions for the transverse emittance and the energy spread for the duration. The chapter 3 consists in the comparison of the properties of short electron beams, single or longitudinally modulated, generated by 3 different methods: Injection of a short or longitudinally modulated laser pulse in an RF-gun; Magnetic compression in a chicane; and RF-compression in an accelerating structure (Velocity Bunching). I have shown that, at equal conditions of charge, the generation of short bunches thanks to a short laser pulse

  6. A novel scaling law relating the geometrical dimensions of a photocathode radio frequency gun to its radio frequency properties

    Science.gov (United States)

    Lal, Shankar; Pant, K. K.; Krishnagopal, S.

    2011-12-01

    Developing a photocathode RF gun with the desired RF properties of the π-mode, such as field balance (eb) ˜1, resonant frequency fπ = 2856 MHz, and waveguide-to-cavity coupling coefficient βπ ˜1, requires precise tuning of the resonant frequencies of the independent full- and half-cells (ff and fh), and of the waveguide-to-full-cell coupling coefficient (βf). While contemporary electromagnetic codes and precision machining capability have made it possible to design and tune independent cells of a photocathode RF gun for desired RF properties, thereby eliminating the need for tuning, access to such computational resources and quality of machining is not very widespread. Therefore, many such structures require tuning after machining by employing conventional tuning techniques that are iterative in nature. Any procedure that improves understanding of the tuning process and consequently reduces the number of iterations and the associated risks in tuning a photocathode gun would, therefore, be useful. In this paper, we discuss a method devised by us to tune a photocathode RF gun for desired RF properties under operating conditions. We develop and employ a simple scaling law that accounts for inter-dependence between frequency of independent cells and waveguide-to-cavity coupling coefficient, and the effect of brazing clearance for joining of the two cells. The method has been employed to successfully develop multiple 1.6 cell BNL/SLAC/UCLA type S-band photocathode RF guns with the desired RF properties, without the need to tune them by a tiresome cut-and-measure process. Our analysis also provides a physical insight into how the geometrical dimensions affect the RF properties of the photo-cathode RF gun.

  7. Secondary emission electron gun using external primaries

    Science.gov (United States)

    Srinivasan-Rao, Triveni [Shoreham, NY; Ben-Zvi, Ilan [Setauket, NY

    2009-10-13

    An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.

  8. The Eindhoven High-Brightness Electron Programme

    NARCIS (Netherlands)

    Brussaard, G.J.H.; Wiel, van der M.J.

    2004-01-01

    The Eindhoven High-Brightness programme is aimed at producing ultra-short intense electron bunches from compact accelerators. The RF electron gun is capable of producing 100 fs electron bunches at 7.5 MeV and 10 pC bunch charge. The DC/RF hybrid gun under development will produce bunches <75 fs at

  9. LCLS Gun Solenoid Design Considerations

    International Nuclear Information System (INIS)

    Schmerge, John

    2010-01-01

    The LCLS photocathode rf gun requires a solenoid immediately downstream for proper emittance compensation. Such a gun and solenoid have been operational at the SSRL Gun Test Facility (GTF) for over eight years. Based on magnetic measurements and operational experience with the GTF gun solenoid multiple modifications are suggested for the LCLS gun solenoid. The modifications include adding dipole and quadrupole correctors inside the solenoid, increasing the bore to accommodate the correctors, decreasing the mirror plate thickness to allow the solenoid to move closer to the cathode, cutouts in the mirror plate to allow greater optical clearance with grazing incidence cathode illumination, utilizing pancake coil mirror images to compensate the first and second integrals of the transverse fields and incorporating a bipolar power supply to allow for proper magnet standardization and quick polarity changes. This paper describes all these modifications plus the magnetic measurements and operational experience leading to the suggested modifications.

  10. Design, construction, system integration, and test results of the 1 MW CW RF system for the e-gun cavity in the energy recovery LINAC at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Lenci, S.J.; Eisen, E.L.; Dickey, D.L.; Sainz, J.E.; Utay, P.F.; Zaltsman, A.; Lambiase, R.

    2009-01-01

    Brookhaven's ERL (Energy Recovery LINAC) requires a 1 MW CW RF system for the superconducting electron gun cavity. The system consists primarily of a klystron tube, transmitter, and High-Voltage Power Supply (HVPS). The 703.75 MHz klystron made by CPl, Inc. provides RF power of 1MW CW with efficiency of 65%. It has a single output window, diode-type electron gun, and collector capable of dissipating the entire beam power. It was fully factory tested including 24-hour heat run at 1.1 MW CWo The solid state HVPS designed by Continental Electronics provides up to 100 kV at low ripple and 2.1 MW CW with over 95% efficiency. With minimal stored energy and a fast shut-down mode no crowbar circuit is needed. Continental 's transmitter includes PLC based user interface and monitoring, RF pre-amplifier, magnet and Vac-Ion pump supplies, cooling water instrumentation, and integral safety interlock system. BNL installed the klystron, HVPS, and transmitter along with other items, such as circulator, water load, and waveguide components. The collaboration of BNL, CPI, and Continental in the design, installation, and testing was essential to the successful operation of the 1MW system

  11. A 7MeV S-Band 2998MHz Variable Pulse Length Linear Accelerator System

    CERN Document Server

    Hernandez, Michael; Mishin, Andrey V; Saverskiy, Aleksandr J; Skowbo, Dave; Smith, Richard

    2005-01-01

    American Science and Engineering High Energy Systems Division (AS&E HESD) has designed and commissioned a variable pulse length 7 MeV electron accelerator system. The system is capable of delivering a 7 MeV electron beam with a pulse length of 10 nS FWHM and a peak current of 1 ampere. The system can also produce electron pulses with lengths of 20, 50, 100, 200, 400 nS and 3 uS FWHM with corresponding lower peak currents. The accelerator system consists of a gridded electron gun, focusing coil, an electrostatic deflector system, Helmholtz coils, a standing wave side coupled S-band linac, a 2.6 MW peak power magnetron, an RF circulator, a fast toroid, vacuum system and a PLC/PC control system. The system has been operated at repetition rates up to 250pps. The design, simulations and experimental results from the accelerator system are presented in this paper.

  12. Heat load of a P-doped GaAs photocathode in SRF electron gun

    International Nuclear Information System (INIS)

    Wang, E.; Ben-Zvi, I.; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q.; Jain, A.; Gupta, R.; Holmes, D.

    2010-01-01

    Many efforts were made over the last decades to develop a better polarized electron source for the high energy physics. Several laboratories operate DC guns with the Gallium-Arsenide photo-cathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved using a Superconducting RF electron gun, which delivers beams of higher brightness than DC guns does, because the field gradient at the cathode is higher. SRF guns with metal cathodes and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since the cathode will be normal conducting, the problem about the heat load stemming from the cathode arises. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and the verification by measuring the quality factor of the gun with and without cathode.

  13. Time Dependent Quantum Efficiency and Dark Current Measurements in an RF Photocathode Injector with a High Quantum Efficiency Cathode

    CERN Document Server

    Fliller, Raymond P; Hartung, Walter

    2005-01-01

    A system was developed at INFN Milano for preparing cesium telluride photo-cathodes and transferring them into an RF gun under ultra-high vacuum. This system has been in use at the Fermilab NICADD Photo-Injector Laboratory (FNPL) since 1997. A similar load-lock system is used at the TeSLA Test Facility at DESY-Hamburg. Two 1.625-cell high duty cycle RF guns have been fabricated for the project. Studies of the photo-emission and field emission ("dark current") behavior of both RF guns have been carried out. Unexpected phenomena were observed in one of the RF guns. In situ changes in the cathode's quantum efficiency and dark current with time were seen during operation of the photo-injector. These changes were correlated with the magnetostatic field at the cathode.* In addition, multipacting is observed in the RF guns under certain conditions. Recent measurements indicate a correlation between multipacting, anomalous photo-emission behavior, and anomalous field emission behavior. Results will be presented.

  14. Pulsed RF Sources for Linear Colliders

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1995-01-01

    These proceedings represent papers presented at the workshop on pulsed RF sources for linear colliders. The workshop examined the performance of RF sources for possible future linear colliders. Important sources were presented on new type of klystrons, gyrotrons and gyroklystrons. A number of auxiliary topics were covered, including modulators, pulse compression, power extraction, windows, electron guns and gun codes. The workshop was sponsored by the International Committee for Future Accelerators(ICFA), the U.S. Department of Energy and the Center for Accelerator Physics at Brookhaven National Laboratory. There were forty one papers presented at the workshop and all forty one have been abstracted for the Energy Science and Technology database

  15. Klystron High Power Operation for KOMAC 100-MeV Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Kyung-Tae; Kim, Seong-Gu; Kwon, Hyeok-Jung; Kim, Han-Sung; Cho, Yong-Sub [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The Korea multi-purpose accelerator complex (KOMAC) accelerator facility has a 100-MeV proton linac, five beam lines for 20-MeV beam utilization, and another five beam lines for 100-MeV beam utilization. The 100-MeV linac consists of a 50-keV proton injector based on a microwave ion source, a 3-MeV RFQ with a four-vane structure, and a 100-MeV DTL. Nine sets of 1MW klystrons have been operated for the 100-MeV proton linac. The klystron filament heating time was approximately 5700 hours in 2014, and RF operation time was 2863.4 hours. During the high power operation of the klystron, unstable RF waveforms appeared at the klystron output, and we have checked and performed cavity frequency adjustments, magnet and heater current, reflection from a circulator, klystron test without a circulator, and the frequency spectrum measurement. Nine sets of the klystrons have been operated for the KOMAC 100-MeV proton linac. The klystron filament heating time was 5700 hours and RF operation time was 2863.4 hours during the operation in 2014. Some klystrons have unstable RF waveforms at specific power level. We have checked and tested the cavity frequency adjustment, reflection from a circulator, high power test without a circulator, and frequency spectrum at the unstable RF.

  16. Quantum efficiency temporal response and lifetime of a GaAs cathode in SRF electron gun

    International Nuclear Information System (INIS)

    Wang, E.; Ben-Zvi, I.; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2010-01-01

    RF electron guns with a strained super lattice GaAs cathode can generate polarized electron beam of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface. In a normal conducting RF gun, the extremely high vaccum required by these cathodes can not be met. We report on an experiment with a superconducting SRF gun, which can maintain a vacuum of nearly 10-12 torr because of cryo-pumping at the temperature of 4.2K. With conventional activation, we obtained a QE of 3% at 532 nm, with lifetime of nearly 3 days in the preparation chamber. We plan to use this cathode in a 1.3 GHz 1/2 cell SRF gun to study its performance. In addition, we studied the multipacting at the location of cathode. A new model based on the Forkker-Planck equation which can estimate the bunch length of the electron beam is discussed in this paper. Future particle accelerators such as eRHIC and ILC require high brightness, high current polarized electrons Recently, using a superlattice crystal, the maximum polarization of 95% was reached. Activation with Cs,O lowers the electron affinity and makes it energetically possible for all the electrons excited in to the conduction band and reach the surface to escape into the vacuum. Presently the polarized electron sources are based on DC gun, such as that at the CEBAF at Jlab. In these devices, the life time of the cathode is extended due to the reduced back bombardment in their UHV conditions. However, the low accelerating gradient of the DC guns lead to poor longitudinal emittance. The higher accelerating gradient of the RF gun generates low emittance beams. Superconducting RF guns combine the excellent vacuum conditions of the DC guns with the higher accelerating gradients of the RF guns and provide potentially a long lived cathode with very low transverse and longitudinal emittance. In our work at BNL, we successfully activated the GaAs. The quantum efficient is 3% at 532 nm and is expected

  17. Quantum efficiency temporal response and lifetime of a GaAs cathode in SRF electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Wang, E.; Ben-Zvi, I.; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2010-05-23

    RF electron guns with a strained super lattice GaAs cathode can generate polarized electron beam of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface. In a normal conducting RF gun, the extremely high vaccum required by these cathodes can not be met. We report on an experiment with a superconducting SRF gun, which can maintain a vacuum of nearly 10-12 torr because of cryo-pumping at the temperature of 4.2K. With conventional activation, we obtained a QE of 3% at 532 nm, with lifetime of nearly 3 days in the preparation chamber. We plan to use this cathode in a 1.3 GHz 1/2 cell SRF gun to study its performance. In addition, we studied the multipacting at the location of cathode. A new model based on the Forkker-Planck equation which can estimate the bunch length of the electron beam is discussed in this paper. Future particle accelerators such as eRHIC and ILC require high brightness, high current polarized electrons Recently, using a superlattice crystal, the maximum polarization of 95% was reached. Activation with Cs,O lowers the electron affinity and makes it energetically possible for all the electrons excited in to the conduction band and reach the surface to escape into the vacuum. Presently the polarized electron sources are based on DC gun, such as that at the CEBAF at Jlab. In these devices, the life time of the cathode is extended due to the reduced back bombardment in their UHV conditions. However, the low accelerating gradient of the DC guns lead to poor longitudinal emittance. The higher accelerating gradient of the RF gun generates low emittance beams. Superconducting RF guns combine the excellent vacuum conditions of the DC guns with the higher accelerating gradients of the RF guns and provide potentially a long lived cathode with very low transverse and longitudinal emittance. In our work at BNL, we successfully activated the GaAs. The quantum efficient is 3% at 532 nm and is

  18. High Brightness Injectors Based On Photocathode DC Gun

    International Nuclear Information System (INIS)

    B. Yunn

    2001-01-01

    Sample results of new injector design method based on a photocathode dc gun are presented, based on other work analytically proving the validity of the emittance compensation scheme for the case even when beam bunching is involved. We have designed several new injectors appropriate for different bunch charge ranges accordingly. Excellent beam quality produced by these injectors clearly shows that a photocathode dc gun can compete with a rf gun on an equal footing as the source of an electron beam for the bunch charge ranging up to 2 nano Coulomb (nC). This work therefore elevates a dc gun based injector to the preferred choice for many ongoing high brightness accelerator projects considering the proven operational stability and high average power capability of the dc gun

  19. Status and future prospects of SRF gun developments

    International Nuclear Information System (INIS)

    Teichert, Jochen

    2006-01-01

    While the concepts of DC and normal-conducting photo-injectors are well proofed, the SRF gun development still possesses a high risk. Challenges are the thermal and contaminant isolation needed between the cathode and superconducting cavity, the choice of the right photocathode and its life time, the difficulty of coupling high-average power into the gun, and beam excitation of higher order cavity modes. But in combination with SRF linacs, the SRF guns are the best solution for high current and CW operation. Thus, several R and D projects of SRF gun have been launched. The talk will give an overview of the history and progress of the SRF gun development. In more detail the technical concept, performance, and status of the Rossendorf superconducting RF gun project, a collaboration of BESSY, DESY, MBI and FZR, will be presented. (author)

  20. 120 Hz Gun Review

    Energy Technology Data Exchange (ETDEWEB)

    Colby, E.

    2005-01-31

    The review was held at SLAC on September 11 and 12, 2001. Presentations concerning the thermal analysis, mechanical design, integration with the laser and accelerator, general beam dynamics considerations, a load lock mechanism, and symmetric power feed options comprised the review. Slides from these presentations are available elsewhere. The review committee was charged with evaluating the 120 Hz gun design including proposed load lock and power feed options and recommending improvements. Broader evaluation of the injector as a whole (including focusing and diagnostic systems that do no impact the envelope of the gun itself) is expected to be covered in a future review and will not be commented on here. In general, the long operational experience with four generations of s-band RF guns at numerous labs worldwide has led to considerable experience in design, fabrication, and operation aspects, and provides an excellent base on which to design the higher duty factor LCLS injector. While open questions remain on obtaining the design performance from these injectors, the microwave design of the gun has reached a state of relative maturity.

  1. DC and RF ion accelerators for MeV energies

    International Nuclear Information System (INIS)

    Urbanus, W.H.

    1990-01-01

    This thesis deals with the transport and acceleration of intense ion beams in single-ended Van de Graaff accelerators and the multiple beam rf accelerator MEQALAC (Multiple Electrostatic Quadrupole Array Linear Accelerator). Ch. 2 discusses several beam-envelope calculation techniques and describes the ion-optical components of a 1 MV, high-current, heavy-ion implantation facility and a 2 MV facility for analyzing purposes. The X-ray level of these accelerators is kept low, such that no shielding is needed, by keeping the energy of the secondary electrons sufficiently low, which is accomplished by a suppression system of small permanent magnets built in the acceleration tubes (ch. 3). Ch.'s 4,5 and 6 cover various aspects of stage II of the MEQALAC project. This stage deals with the parallel acceleration of four high-current N + beams from 40 keV to 1 MeV. Acceleration takes place in 32 rf gaps which are part of a modified interdigital H-resonator. In between the accelerating gaps, small electrostatic quadrupoles are mounted, which oppose the space charge forces of the intense ion beams. The lenses are arranged in a periodic focusing structure. A bucket-type plasma ion source is used, which produces both N + and N 2 + ions. In between the ion source and the MEQALAC section, a Low Energy Beam Transport (LEBT) section is mounted which provides for the drift space for a buncher. The latter device transforms the extracted dc beams into bunched beams which are accepted by the MEQALAC section. In ch. 4 the transport of ion beams that contain both N + and N 2 + ions, so-called mixed beams, through the LEBT section is discussed and equations for the current limit of a mixed beam are derived. Bunching of mixed N + , N 2 + beams is discussed in ch. 5. Multichannel acceleration of N + ions with the MEQALAC is discussed in ch. 6. (author). 122 refs.; 67 figs.; 1 tab

  2. Transmission line matching simulation for 350 MHz RF driver for 400 KeV (deuterium) RFQ based 14 MeV neutron source

    International Nuclear Information System (INIS)

    Sharma, Sonal; Pande, Manjiri; Handu, V.K.

    2009-01-01

    A 60 KW, 350 MHz tetrode based high power RF system is being developed for 400 KeV RFQ based 14 MeV neutron generator in Bhabha Atomic Research Centre to study physics of coupled neutron sources and subcritical assembly. This RF system requires a 2.5 kW RF driver which is being designed by using tetrode TH-393. At such high frequency i.e. 350 MHz, lumped components are not practically useful due to radiation losses. Therefore, techniques such as coaxial line with stub tuning are preferred, which minimizes these losses. Simulation of two such stub tuning based matched coaxial lines at the input and output of the tube has been done by using CST studio. CST STUDIO is a special tool for the 3D EM simulation of high frequency components

  3. Development of beam diagnostic devices for characterizing electron guns

    International Nuclear Information System (INIS)

    Bhattacharjee, D.; Tiwari, R.; Jayaprakash, D.; Mishra, R.L.; Sarukte, H.; Waghmare, A.; Thakur, N.; Dixit, K.P.

    2015-01-01

    The electron guns for the DC accelerators and RF Linacs are designed and developed at EBC/APPD/BARC, Kharghar. These electron guns need to be characterized for its design and performance. Two test benches were developed for characterizing the electron guns. Various beam diagnostic devices for measuring beam currents and beam sizes were developed. Conical faraday cup, segmented faraday cup, slit scanning bellows movement arrangement, multi-plate beam size measurement setup, multi- wire beam size measurement setup, Aluminum foil puncture assembly etc. were developed and used. The paper presents the in-house development of various beam diagnostics for characterizing electron guns and their use. (author)

  4. RF Design of the TW Buncher for the CLIC Drive Beam Injector (2nd report)

    CERN Document Server

    Shaker, Hamed

    2016-01-01

    CLIC is based on the two beams concept that one beam (drive beam) produces the required RF power to accelerate another beam (main beam). The drive beam is produced and accelerated up to 50MeV inside the CLIC drive beam injector. The drive beam injector main components are a thermionic electron gun, three sub-harmonic bunchers, a pre-buncher, a TW buncher, 13 accelerating structures and one magnetic chicane. This document is the second report of the RF structure design of the TW buncher. This design is based on the beam dynamic design done by Shahin Sanaye Hajari due to requirements mentioned in CLIC CDR. A disk-loaded tapered structure is chosen for the TW buncher. The axial electric field increases strongly based on the beam dynamic requirements. This second report includes the study of HOM effects, retuning the cells, study of dimensional tolerances and the heat dissipation on the surface.

  5. Sources of Emittance in RF Photocathode Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, David [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-12-11

    Advances in electron beam technology have been central to creating the current generation of x-ray free electron lasers and ultra-fast electron microscopes. These once exotic devices have become essential tools for basic research and applied science. One important beam technology for both is the electron source which, for many of these instruments, is the photocathode RF gun. The invention of the photocathode gun and the concepts of emittance compensation and beam matching in the presence of space charge and RF forces have made these high-quality beams possible. Achieving even brighter beams requires a taking a finer resolution view of the electron dynamics near the cathode during photoemission and the initial acceleration of the beam. In addition, the high brightness beam is more sensitive to degradation by the optical aberrations of the gun’s RF and magnetic lenses. This paper discusses these topics including the beam properties due to fundamental photoemission physics, space charge effects close to the cathode, and optical distortions introduced by the RF and solenoid fields. Analytic relations for these phenomena are derived and compared with numerical simulations.

  6. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    International Nuclear Information System (INIS)

    Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Leibfritz, J.R.; Martinez, A.; Nagaitsev, S.; Nobrega, L.E.

    2012-01-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  7. ATA injector-gun calculations

    International Nuclear Information System (INIS)

    Paul, A.C.

    1981-01-01

    ATA is a pulsed, 50 ns 10 KA, 50 MeV linear induction electron accelerator at LLNL. The ETA could be used as an injector for ATA. However the possibility of building a new injector gun for ATA, raised the question as to what changes from the ETA gun in electrode dimensions or potentials, if any, should be considered. In this report the EBQ code results for the four electrode configurations are reviewed and an attempt is made to determine the geometrical scaling laws appropriate to these ETA type gun geometries. Comparison of these scaling laws will be made to ETA operation. The characteristic operating curves for these geometries will also be presented and the effect of washer position determined. It will be shown that emittance growth will impose a limitation on beam current for a given anode potential before the virtual cathode limit is reached

  8. Optimizing SRF Gun Cavity Profiles in a Genetic Algorithm Framework

    International Nuclear Information System (INIS)

    Hofler, Alicia; Evtushenko, Pavel; Marhauser, Frank

    2009-01-01

    Automation of DC photoinjector designs using a genetic algorithm (GA) based optimization is an accepted practice in accelerator physics. Allowing the gun cavity field profile shape to be varied can extend the utility of this optimization methodology to superconducting and normal conducting radio frequency (SRF/RF) gun based injectors. Finding optimal field and cavity geometry configurations can provide guidance for cavity design choices and verify existing designs. We have considered two approaches for varying the electric field profile. The first is to determine the optimal field profile shape that should be used independent of the cavity geometry, and the other is to vary the geometry of the gun cavity structure to produce an optimal field profile. The first method can provide a theoretical optimal and can illuminate where possible gains can be made in field shaping. The second method can produce more realistically achievable designs that can be compared to existing designs. In this paper, we discuss the design and implementation for these two methods for generating field profiles for SRF/RF guns in a GA based injector optimization scheme and provide preliminary results.

  9. Design and construction of a pre-injector for the Iranian Light Source Facility

    Directory of Open Access Journals (Sweden)

    A Sadeghipanah

    2015-09-01

    Full Text Available Every synchrotron accelerator requires a pre-injector for primary injection of the electrons into the booster ring. The Iranian Light Source Facility (ILSF pre-injector is a 150 MeV S-band linear accelerator with a thermionic cathode RF gun. The design of the pre-injector lattice and its beam dynamics calculation results together with the design of RF gun, alpha magnet, quadrupole magnets and linear accelerator structures are described in this article. The measurement results of the RF gun prototype fabricated in Iran demonstrate a dimension error less than 20 μm and a surface roughness of less than 0.8 μm

  10. Electron beam bunch length characterizations using incoherent and coherent transition radiation on the APS SASE FEL project

    CERN Document Server

    Lumpkin, Alex H; Berg, W J; Lewellen, J W; Sereno, N S; Happek, U

    2000-01-01

    The Advanced Photon Source (APS) injector linac has been reconfigured with a low-emittance RF thermionic gun and a photocathode (PC) RF gun to support self-amplified spontaneous emission (SASE) free-electron laser (FEL) experiments. One of the most critical parameters for optimizing SASE performance (gain length) is the electron beam peak current, which requires a charge measurement and a bunch length measurement capability. We report here initial measurements of the latter using both incoherent optical transition radiation (OTR) and coherent transition radiation (CTR). A visible light Hamamatsu C5680 synchroscan streak camera was used to measure the thermionic RF gun beam's bunch length (sigma approx 2-3 ps) via OTR generated by the beam at 220 MeV and 200 mA macropulse average current. In addition, a CTR monitor (Michelson Interferometer) based on a Golay cell as the far-infrared (FIR) detector has been installed at the 40-MeV station in the beamline. Initial observations of CTR signal strength variation wi...

  11. Design of 250-MW CW RF system for APT

    International Nuclear Information System (INIS)

    Rees, D.

    1997-01-01

    The design for the RF systems for the APT (Accelerator Production of Tritium) proton linac will be presented. The linac produces a continuous beam power of 130 MW at 1300 MeV with the installed capability to produce up to a 170 MW beam at 1700 MeV. The linac is comprised of a 350 MHz RFQ to 7 MeV followed in sequence by a 700 MHz coupled-cavity drift tube linac, coupled-cavity linac, and superconducting (SC) linac to 1700 MeV. At the 1700 MeV, 100 mA level the linac requires 213 MW of continuous-wave (CW) RF power. This power will be supplied by klystrons with a nominal output power of 1.0 MW. 237 kystrons are required with all but three of these klystrons operating at 700 MHz. The klystron count includes redundancy provisions that will be described which allow the RF systems to meet an operational availability in excess of 95 percent. The approach to achieve this redundancy will be presented for both the normal conducting (NC) and SC accelerators. Because of the large amount of CW RF power required for the APT linac, efficiency is very important to minimize operating cost. Operation and the RF system design, including in-progress advanced technology developments which improve efficiency, will be discussed. RF system performance will also be predicted. Because of the simultaneous pressures to increase RF system reliability, reduce tunnel envelope, and minimize RF system cost, the design of the RF vacuum windows has become an important issue. The power from a klystron will be divided into four equal parts to minimize the stress on the RF vacuum windows. Even with this reduction, the RF power level at the window is at the upper boundary of the power levels employed at other CW accelerator facilities. The design of a 350 MHz, coaxial vacuum window will be presented as well as test results and high power conditioning profiles. The transmission of 950 kW, CW, power through this window has been demonstrated with only minimal high power conditioning

  12. Characteristics of the ETA gun

    International Nuclear Information System (INIS)

    Paul, A.C.; Neil, V.K.; Craig, G.D.; Fessenden, T.J.

    1981-01-01

    The Experimental Test Accelerator (ETA) is a linear induction device consisting of a 2.5-MV electron gun and ten 0.25-MV accelerating units designed to produce a 10-kA beam of electrons at 5 MeV. Calculations with the computer code EBQ as well as experimental measurements indicate that the current produced by the gun is limited by two phenomena. The first arises from the variation of particle energy with time during the pulse. Only particles with energy within a limited range can be transported by the focusing coils in the gun: therefore the variation of the gun's output current with time is determined by the coil settings. The second effect results from a collective interaction at sufficiently large current to cause a virtual cathode to form a few centimeters past the extraction grid. Operation in this regime results in greatly increased beam emittance and poor beam transport through the accelerator. Results of the code calculations are compared with experimental data and found to be in good agreement. (author)

  13. Temporal laser pulse shaping for RF photocathode guns: the cheap and easy way using UV birefringent crystals

    International Nuclear Information System (INIS)

    Power, J.G.; Jing, C.

    2009-01-01

    We report experimental investigations into a new technique for achieving temporal laser pulse shaping for RF photocathode gun applications using inexpensive UV birefringent crystals. Exploiting the group velocity mismatch between the two different polarizations of a birefringent crystal, a stack of UV pulses can be assembled into the desired temporal pulse shape. The scheme is capable of generating a variety of temporal pulse shapes including: (i) flat-top pulses with fast rise-time and variable pulse duration. (ii) microbunch trains, and (iii) ramped pulse generation. We will consider two applications for beam generation at the Argonne Wakefield Accelerator (AWA) including a flat-top laser pulse for low emittance production and matched bunch length for enhanced transformer ratio production. Streak camera measurements of the temporal profiles generated with a 2-crystal set and a 4-crystal set are presented.

  14. Self-bunching electron guns

    Science.gov (United States)

    Mako, Frederick M.; Len, L. K.

    1999-05-01

    We report on three electron gun projects that are aimed at power tube and injector applications. The purpose of the work is to develop robust electron guns which produce self-bunched, high-current-density beams. We have demonstrated, in a microwave cavity, self-bunching, cold electron emission, long life, and tolerance to contamination. The cold process is based on secondary electron emission. FMT has studied using simulation codes the resonant bunching process which gives rise to high current densities (0.01-5 kA/cm2), high charge bunches (up to 500 nC/bunch), and short pulses (1-100 ps) for frequencies from 1 to 12 GHz. The beam pulse width is nominally ˜5% of the rf period. The first project is the L-Band Micro-Pulse Gun (MPG). Measurements show ˜40 ps long micro-bunches at ˜20 A/cm2 without contamination due to air exposure. Lifetime testing has been carried out for about 18 months operating at 1.25 GHz for almost 24 hours per day at a repetition rate of 300 Hz and 5 μs-long macro-pulses. Approximately 5.8×1013 micro-bunches or 62,000 coulombs have passed through this gun and it is still working fine. The second project, the S-Band MPG, is now operational. It is functioning at a frequency of 2.85 GHz, a repetition rate of 30 Hz, with a 2 μs-long macro-pulse. It produces about 45 A in the macro-pulse. The third project is a 34.2 GHz frequency-multiplied source driven by an X-Band MPG. A point design was performed at an rf output power of 150 MW at 34.2 GHz. The resulting system efficiency is 53% and the gain is 60 dB. The system efficiency includes the input cavity efficiency, input driver efficiency (a 50 MW klystron at 11.4 GHz), output cavity efficiency, and the post-acceleration efficiency.

  15. Design of triode electron gun for electron LINAC

    International Nuclear Information System (INIS)

    Prasad, M.; Pande, S.A.; Hannurkar, P.R.

    2003-01-01

    A 10 MeV, 10 kW, electron linear accelerator is being developed at Centre for Advanced Technology, CAT for irradiation of agricultural products such as onions and potatoes. This facility required electron beam of variable energy and power. The linac structure consists of a thermionic triode gun, TW buncher and accelerator waveguide, focusing and centering coils, beam scanning system etc. The accelerator structure is disk loaded waveguide operating in TW 27π/3 mode at 2856 MHz. The triode gun is designed for operation at 50 kV. The gun is optimized for minimum grid voltage and minimum transverse beam dimensions. In this paper, the results of our optimization studies using computer code EGUN are presented. (author)

  16. Plasma-filled diode based on the coaxial gun

    Science.gov (United States)

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N.

    2012-10-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  17. Plasma-filled diode based on the coaxial gun.

    Science.gov (United States)

    Zherlitsyn, A A; Kovalchuk, B M; Pedin, N N

    2012-10-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  18. Plasma-filled diode based on the coaxial gun

    International Nuclear Information System (INIS)

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N.

    2012-01-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  19. R and D Requirements, RF Gun Mode Studies, FEL-2 Steady-State Studies, Preliminary FEL-1 Time-Dependent Studies, and Preliminary Layout Option Investigation

    International Nuclear Information System (INIS)

    Byrd, John; Corlett, John; Doolittle, Larry; Fawley, William; Lidia, Steven; Penn, Gregory; Ratti, Alex; Staples, John; Wilcox Russell; Wurtele, Jonathan; Zholents, Alexander

    2005-01-01

    This report constitutes the third deliverable of LBNLs contracted role in the FERMI (at) Elettra Technical Optimization study. It describes proposed RandD activities for the baseline design of the Technical Optimization Study, initial studies of the RF gun mode-coupling and potential effects on beam dynamics, steady-state studies of FEL-2 performance to 10 nm, preliminary studies of time-dependent FEL-1 performance using electron bunch distribution from the start-to-end studies, and a preliminary investigation of a configuration with FEL sinclined at a small angle from the line of the linac

  20. Novel radio-frequency gun structures for ultrafast relativistic electron diffraction.

    Science.gov (United States)

    Musumeci, P; Faillace, L; Fukasawa, A; Moody, J T; O'Shea, B; Rosenzweig, J B; Scoby, C M

    2009-08-01

    Radio-frequency (RF) photoinjector-based relativistic ultrafast electron diffraction (UED) is a promising new technique that has the potential to probe structural changes at the atomic scale with sub-100 fs temporal resolution in a single shot. We analyze the limitations on the temporal and spatial resolution of this technique considering the operating parameters of a standard 1.6 cell RF gun (which is the RF photoinjector used for the first experimental tests of relativistic UED at Stanford Linear Accelerator Center; University of California, Los Angeles; Brookhaven National Laboratory), and study the possibility of employing novel RF structures to circumvent some of these limits.

  1. The FELIX RF system

    International Nuclear Information System (INIS)

    Manintveld, P.; Delmee, P.F.M.; Geer, C.A.J. van der; Meddens, B.J.H.; Meer, A.F.G. van der; Amersfoort, P.W. van

    1992-01-01

    The performance of the RF system for the Free Electron Laser for Infrared eXperiments (FELIX) is discussed. The RF system provides the input power for a triode gun (1 GHz, 100 W), a prebuncher (1 GHz, 10 kW), a buncher (3 GHz, 20 MW), and two linacs (3 GHz, 8 MW each). The pulse length in the system is 20 μs. The required electron beam stability imposes the following demands on the RF system: a phase stability better than 0.3 deg for the 1 GHz signals and better than 1 deg for the 3 GHz signals; the amplitude stability has to be better than 1% for the 1 GHz and better than 0.2% for the 3 GHz signals. (author) 3 refs.; 6 figs

  2. Plasma-filled diode based on the coaxial gun

    Energy Technology Data Exchange (ETDEWEB)

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N. [Institute of High Current Electronics, 2/3 Academichesky Avenue, 634055 Tomsk (Russian Federation)

    2012-10-15

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of {>=}1 MeV at the current of Almost-Equal-To 100 kA was obtained in the experiments with a plasma-filled diode. The energy of Almost-Equal-To 5 kJ with the peak power of {>=}100 GW dissipated in the diode.

  3. State-of-the-Art Electron Guns and Injector Designs for Energy Recovery Linacs (ERL)

    CERN Document Server

    Todd, Alan; Ben-Zvi, Ilan; Benson, Stephen V; Blüm, Hans; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Campisi, Isidoro E; Chang, Xiangyun; Christina, Vincent; Cole, Michael; Colestock, Patrick L; Daly, Edward; Douglas, David; Dylla, Fred H; Falletta, Michael; Hahn, Harald; Hernandez-Garcia, Carlos; Hogan, John; Holmes, Douglas; Janssen, Dietmar; Kayran, Dmitry; Kelley, John P; Kewisch, Jorg; Kneisel, Peter; Kurennoy, Sergey; Lewellen, John W; Litvinenko, Vladimir N; Mammosser, John; McIntyre, Gary; Neil, George R; Nguyen, Dinh C; Nicoletti, Tony; Peterson, Ed; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Reass, William; Rees, Daniel; Rimmer, Robert; Rode, Claus; Russell, Steven; Scaduto, Joseph; Schrage, Dale L; Schultheiss, Tom; Sekutowicz, Jacek; Siggins, Tim; Warren Funk, L; Whitlach, Timothy; Wiseman, Mark; Wong, Robert; Wood, Richard L; Wu, Kuo-Chen; Young, Lloyd M; Zaltsman, Alex; Zhao, Yongxiang

    2005-01-01

    A key technology issue of ERL devices for high-power free-electron laser (FEL) and 4th generation light sources is the demonstration of reliable, high-brightness, high-power injector operation. Ongoing programs that target up to 1 Ampere injector performance at emittance values consistent with the requirements of these applications are described. We consider that there are three possible approaches that could deliver the required performance. The first is a DC photocathode gun and superconducting RF (SRF) booster cryomodule. Such a 750 MHz device is being integrated and will be tested up to 100 mA at the Thomas Jefferson National Accelerator Facility beginning in 2007. The second approach is a high-current normal-conducting RF photoinjector. A 700 MHz gun will undergo thermal test in 2006 at the Los Alamos National Laboratory, which, if successful, when equipped with a suitable cathode, would be capable of 1 Ampere operation. The last option is an SRF gun. A half-cell 703 MHz SRF gun capable of delivering 1.0...

  4. Self-bunching electron guns

    CERN Document Server

    Mako, F; Weilhammer, Peter

    1999-01-01

    We report on three electron gun projects that are aimed at power tube and injector applications. The purpose of the work is to develop robust electron guns which produce self-bunched, high-current-density beams. We have demonstrated cold emission, long life, and tolerance to contamination. The cold emission process is based on secondary electron emission. FMT has studied this resonant bunching process which gives rise to high current densities (0.01-5 kA/cm/sup 2/), high charge bunches (up to 100 nC/bunch), and short pulses (1-100 ps) for frequencies from 1 to 12 GHz. The beam pulse width is nominally ~5% of the RF period. The first project is the L-Band Micro-Pulse Gun (MPG). Measurements show ~40 ps long microbunches at ~20 A/cm/sup 2/ without contamination due to air exposure. Lifetime testing has been carried out for about 18 months operating at 1.25 GHz for almost 24 hours per day at a repetition rate of 300 Hz and 5 mu s-long macro- pulses. About 5.8*10/sup 13/ micro-bunches or 62,000 coulombs have pass...

  5. High power RF systems for LEHIPA of ADS

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Rao, B.V.R.; Mishra, J.K.; Patel, Niranjan; Gupta, S.K.

    2011-01-01

    Worldwide accelerator driven sub-critical system (ADS) has generated a huge interest for various reasons. In India, as a part of accelerator driven sub-critical system (ADS) program, a normal conducting, low energy high intensity proton accelerator (LEHIPA) of energy 20 MeV and beam current of 30 mA is being developed in Bhabha Atomic Research Centre (BARC). LEHIPA comprises of Electron Cyclotron Resonance (ECR) ion source (50 KeV), Radio Frequency Quadrupole (RFQ) accelerator (3 MeV) and Drift tube Linac (DTL) 1 and 2 (10 MeV and 20 MeV respectively). As per the accelerator physics design, RFQ requires nearly 530 kW RF power while each of DTL need 900 kW. Each accelerating cavity will be driven by a one- megawatt (CW) klystron based high power RF (HPRF) system at 352.21 MHz. Three such RF systems will be developed. The RF system has been designed around five cavity klystron tube TH2089F (Thales make) capable of delivering 1 MW continuous wave power at 352.21 MHz. The klystron has a gain of 40 dB and efficiency around 62 %. Each of the RF system comprises of a low power solid state driver (∼ 100 W), klystron tube, harmonic filter, directional coupler, Y-junction circulator (AFT make), RF load and WR2300 wave guide based RF transmission line each of 1 MW capacity. It also includes other subsystems like bias supplies (high voltage (HV) and low voltage (LV)), HV interface system, interlock and protection circuits, dedicated low conductivity water-cooling, pulsing circuitry/mechanisms etc. WR 2300 based RF transmission line transmits and feeds the RE power from klystron source to respective accelerating cavity. This transmission line starts from second port of the circulator and consists of straight sections, full height to half height transition, magic Tee, termination load at the centre of magic tee, half height sections, directional couplers and RE windows. For X-ray shielding, klystron will be housed in a lead (3 mm) based shielded cage. This system set up has a

  6. A high current high frequency ions gun

    International Nuclear Information System (INIS)

    Coutant, J.; Prevot, F.; Vienet, R.

    1959-01-01

    A 10 mA protons gun has been developed for different purposes. The first part of the report studies the plasma production with a RF electromagnetic field. Then the ion extraction process is analysed with particular reference to space charge phenomena. The last part describes a three electrode electrostatic lens which focusses the beam. (author) [fr

  7. Characteristics of electron gun used in the accelerator for customs inspection systems

    International Nuclear Information System (INIS)

    Huang Weiling; Li Quanfeng; Zhang Yunkai

    2001-01-01

    The author introduces the characteristics of the electron gun used in the 9 MeV traveling wave electron linear accelerator for fixed customs container inspection system. With the scan date cathode, the electron gun meets the accelerator characteristics with the whole system not needing high-temperature roasting to degas. The electron gun can work normally at a vacuum of about 10 -5 Pa and can be reinstalled after exposure to air. In the accelerator, the electron gun emits a beam which strikes the target to produce an X-ray beam with a dosage rate of over 30 Gy/(min·m) and a beam focus spot of less than φ 2 mm. The EGUN code is used to simulate the structure and properties of the electron gun. The reference size debugging parameters for replacing the electron gun are given for assembly requirements

  8. A self-adaptive feedforward rf control system for linacs

    International Nuclear Information System (INIS)

    Zhang Renshan; Ben-Zvi, I.; Xie Jialin

    1993-01-01

    The design and performance of a self-adaptive feedforward rf control system are reported. The system was built for the linac of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory. Variables of time along the linac macropulse, such as field or phase are discretized and represented as vectors. Upon turn-on or after a large change in the operating-point, the control system acquires the response of the system to test signal vectors and generates a linearized system response matrix. During operation an error vector is generated by comparing the linac variable vectors and a target vector. The error vector is multiplied by the inverse of the system's matrix to generate a correction vector is added to an operating point vector. This control system can be used to control a klystron to produce flat rf amplitude and phase pulses, to control a rf cavity to reduce the rf field fluctuation, and to compensate the energy spread among bunches in a rf linac. Beam loading effects can be corrected and a programmed ramp can be produced. The performance of the control system has been evaluated on the control of a klystron's output as well as an rf cavity. Both amplitude and phase have been regulated simultaneously. In initial tests, the rf output from a klystron has been regulated to an amplitude fluctuation of less than ±0.3% and phase variation of less than ±0.6deg. The rf field of the ATF's photo-cathode microwave gun cavity has been regulated to ±5% in amplitude and simultaneously to ±1deg in phase. Regulating just the rf field amplitude in the rf gun cavity, we have achieved amplitude fluctuation of less than ±2%. (orig.)

  9. DC photoemission electron guns as ERL sources

    International Nuclear Information System (INIS)

    Sinclair, Charles K.

    2006-01-01

    Very-high-voltage DC electron guns, delivering moderate duration bunches from photoemission cathodes, and followed by conventional drift bunching and acceleration, offer a practical solution for an ERL injector. In a variant of this scheme, a DC gun is placed in close proximity to a superconducting RF accelerator cavity, with few or no active elements between the gun and cavity. The principal technical challenge with such electron guns arises from field emission from the cathode electrode and its support structure. Field emission may result in voltage breakdown across the cathode-anode gap, or a punch-through failure of the insulator holding off the cathode potential, as well as lesser though still serious problems. Various means to mitigate these problems are described. The operational lifetime of high quantum efficiency photocathodes in these guns is determined by the vacuum conditions, through phenomena such as chemical poisoning and ion back-bombardment. Minimization of the field strength on electrode structures pushes high-voltage DC guns toward large dimensions and, correspondingly, large outgassing loads, but it is also true that these guns offer many opportunities for achieving excellent vacuum conditions. Good solutions to vacuum problems that had previously limited cathode lifetime have been demonstrated in recent years. Designs for DC guns presently in use and planned for the near future will be described. The parameters necessary for a 100 mA average current, very-high-voltage DC gun with a photocathode operational lifetime greater than 100 h appear to be within reach, but have yet to be demonstrated. A 1 A average current source with good cathode operational lifetime will require developments beyond the present state-of-the-art

  10. Optimizing hot-ion production from a gas-injected washer gun

    International Nuclear Information System (INIS)

    McCarrick, M.J.; Ellis, R.F.; Booske, J.H.; Koepke, M.

    1987-01-01

    This paper reports the results of a study to maximize the ion temperature of the plasma generated by a gas-injected washer gun. We characterize the gun discharge and the plasma output as a function of the controllable gun parameters. For hydrogen we find a maximum ion temperature of 100 eV with typical densities ranging from 2 x 10 11 to 5 x 10 12 cm -3 . A primary feature of the pulsed gun discharge is the observation of large amplitude rf fluctuations on the cathode voltage. The fluctuation amplitude varies with discharge current and with the quantity of injected gas. We show that the scaling of the fluctuation level with gun parameters is in agreement with that expected of an unstable beam-plasma system. We find a linear relation between the square of the fluctuation amplitude and the product of the plasma density times the ion temperature of the plasma output nT/sub i/, suggesting a stochastic wave-induced heating mechanism

  11. Microwave matching and tuning on the 20-MeV medical electron linac with feedback of rf power

    International Nuclear Information System (INIS)

    Yuan-ling, Wang

    1983-01-01

    This article describes the 20 Mev medical electron linac at Jiangsu Tumour Hospital. In the linac, feedback of rf power is used. In the linac with feedback (or with the resonator) the reflection affects the energy gain of the electron and the performance of the accelerator. By means of the theory of the traveling wave resonator, the field multiplication factor and the reflection coefficients inside and outside the feedback ring are calculated. The bands of the linacs without and with feedback are measured. In order to achieve a desirable band in front of the load (i.e. outside the feedback ring) a matching iris is added. After the linac with feedback has been matched, the band is given

  12. Study of beam transverse properties of a thermionic electron gun for application to a compact THz free electron laser

    International Nuclear Information System (INIS)

    Hu, Tongning; Qin, Bin; Tan, Ping; Chen, Qushan; Yang, Lei; Pei, Yuanji; Li, Ji

    2014-01-01

    A novel thermionic electron gun adopted for use in a high power THz free electron laser (FEL) is proposed in this paper. By optimization of the structural and radiofrequency (RF) parameters, the physical design of the gun is performed using dynamic calculations. Velocity bunching is used to minimize the bunch's energy spread, and the dynamic calculation results indicate that high quality beams can be provided. The transverse properties of the beams generated by the gun are also analyzed. The novel RF focusing effects of the resonance cavity are investigated precisely and are used to establish emittance compensation, which enables the injector length to be reduced. In addition, the causes of the extrema of the beam radius and the normalized transverse emittance are analyzed and interpreted, respectively, and slice simulations are performed to illustrate how the RF focusing varies along the bunch length and to determine the effects of that variation on the emittance compensation. Finally, by observation of the variations of the beam properties in the drift tube behind the electron gun, prospective assembly scenarios for the complete THz-FEL injector are discussed, and a joint-debugging process for the injector is implemented

  13. Emittances Studies at the Fermilab/NICADD Photoinjector Laboratory

    CERN Document Server

    Tikhoplav, Rodion; Melissinos, A C; Regis-Guy Piot, Philippe

    2005-01-01

    The Fermilab/NICADD photoinjector incorporates an L-band rf-gun capable of generating 1-10 nC bunches. The bunches are then accelerated to 16 MeV with a TESLA superconducting cavity. In the present paper we present parametric studies of transverse emittances and energy spread for a various operating points of the electron source (RF-gun E-field, laser length and spot size, and solenoid settings). We especially study the impact, on transverse emittance, of Gaussian and Plateau temporal distribution of the photocathode drive-laser.

  14. An electron gun with replaceable cathode-heater assembly for an E-beam irradiator

    International Nuclear Information System (INIS)

    Wu Xunlei; Yu Xiaojuan; Jiang Zhenbo

    2011-01-01

    A new type of electron guns has been developed for a 10 MeV 1.5 mA linac for radiation processing. The specifications required are: cathode voltage 60 kV, peak beam current 550-600 mA, spot size 4 mm, and working distance 60 mm. Particularly, this electron gun is advantageous in its replaceable cathode-heater assembly. This helps the customers to reduce their operation cost. The Egun and Mafia codes were used to simulate electromagnetic fields and electron trajectories. The guns were produced in the same technology of our klystron production. Design specifications of the gun were achieved in the beam current test and beam spot test. The first gun of this type has been working on an linac for about 3000 hours. (authors)

  15. Engineering Design and Fabrication of an Ampere-Class Superconducting Photocathode Electron Gun

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2008-01-01

    Over the past three years, Advanced Energy Systems and Brookhaven National Laboratory (BNL) have been collaborating on the design of an Ampere- class superconducting photocathode electron gun. BNL performed the physics design of the overall system and RF cavity under prior programs. Advanced Energy Systems (AES) is currently responsible for the engineering design and fabrication of the electron gun under contract to BNL. We will report on the engineering design and fabrication status of the superconducting photocathode electron gun. The overall configuration of the cryomodule will be reviewed. The layout of the hermitic string, space frame, shielding package, and cold mass will be discussed. The engineering design of the gun cavity and removable cathode will be presented in detail and areas of technical risk will be highlighted. Finally, the fabrication sequence and fabrication status of the gun cavity will be discussed

  16. Design and remote fiber communication of NSRL electron gun controller

    International Nuclear Information System (INIS)

    Wang Weibing; Gao Hui; Hong Jun; Chen Jun; Wang Guicheng; He Duohui; Chen Gang

    2005-01-01

    A new kind of pulse electron gun controller for 200 MeV LINAC at National Synchrotron Radiation Laboratory was introduced in this paper, including the working principle of the pulse electron gun, the applications of I 2 C serial bus and embedded microcontroller in controlling system. The emphasis is on the hardware design of digital controlled current regulator, digital controlled switch voltage source and high voltage pulse power supply. The software design of fiber communication and PC controlling is also presented. The electron gun controller has successfully been used in NSRL. The result shows that it is quite reliable and the performance is good. This electronic digital system has completely replaced the old mechanical control system. (authors)

  17. A proposed injector for the LCLS linac

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Bharadwaj, V.K.; Emma, P.; Miller, R.H.; Palmer, D.T.; Woodley, M.D.

    1996-11-01

    The Linac Coherent Light Source (LCLS) will use the last portion of the SLAC accelerator as a driver for a short wavelength FEL. The injector must produce 1-nC, 3-ps rms electron bunches at a repetition rate of up to 120 Hz with a normalized rms emittance of about 1 mm-mrad. The injector design takes advantage of the photocathode rf gun technology developed since its conception in the mid 1980's, in particular the S-band rf gun developed by the SLAC/BNL/UCLA collaboration, and emittance compensation techniques developed in the last decade. The injector beamline has been designed using the SUPERFISH, POISSON, PARMELA, and TRANSPORT codes in a consistent way to simulate the beam from the gun up to the entrance of the main accelerator linac where the beam energy is 150 MeV. PARMELA simulations indicate that at 150 MeV, space charge effects are negligible

  18. NSRL 200 MeV linac beam energy stabilization system

    International Nuclear Information System (INIS)

    Huang Guirong; Pei Yuanji; Dong Sai

    2001-01-01

    By using the computer image processing technology and RF phase auto-shifting system, the ESS (Energy Stabilization System) was applied to 200 MeV Linac. the ESS adjusts beam energy automatically in a range of +-4 MeV. After adjustment beam energy stability is improved to +-6%

  19. An Injector for the CLIC Test Facility (CTF3)

    CERN Document Server

    Braun, H; Rinolfi, Louis; Zhou, F; Mouton, B; Miller, R; Yeremian, A D

    2000-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed.

  20. An Injector for the CLIC Test Facility (CTF3)

    International Nuclear Information System (INIS)

    Miller, Roger H.

    2001-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed

  1. An injector for the CLIC test Facility (CTF3)

    CERN Document Server

    Braun, Hans-Heinrich; Rinolfi, L.; Zhou, F.; Mouton, B.; Miller, R.; Yeremian, D.

    2008-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed.

  2. Rf System for the NLCTA

    International Nuclear Information System (INIS)

    Wang, J.W.; Adolphsen, C.; Eichner, J.; Fuller, R.W.; Gold, S.L.; Hanna, S.M.; Hoag, H.A.; Holmes, S.G.; Koontz, R.F.; Lavine, Theodore L.; Loewen, R.J.; Miller, R.H.; Nantista, C.D.; Pope, R.; Rifkin, J.; Ruth, R.D.; Tantawi, S.G.; Vlieks, A.E.; Wilson, Z.; Yeremian, A.

    2011-01-01

    This paper describes an X-Band RF system for the Next Linear Collider Test Accelerator. The RF system consists of a 90 MeV injector and a 540 MeV linac. The main components of the injector are two low-Q single-cavity prebunchers and two 0.9-m-long detuned accelerator sections. The linac system consists of six 1.8-m-long detuned and damped detuned accelerator sections powered in pairs. The rf power generation, compression, delivery, distribution and measurement systems consist of klystrons, SLEDII energy compression systems, rectangular waveguides, magic-T's, and directional couplers. The phase and amplitude for each prebuncher is adjusted via a magic-T type phase shifter/attenuator. Correct phasing between the two 0.9 m accelerator sections is obtained by properly aligning the sections and adjusting two squeeze type phase shifters. Bunch phase and bunch length can be monitored with special microwave cavities and measurement systems. The design, fabrication, microwave measurement, calibration, and operation of the sub-systems and their components are briefly presented.

  3. Investigations and Applications of Field- and Photo-emitted Electron Beams from a Radio Frequency Gun

    Energy Technology Data Exchange (ETDEWEB)

    Panuganti, SriHarsha [Northern Illinois Univ., DeKalb, IL (United States)

    2015-08-01

    Production of quality electron bunches using e cient ways of generation is a crucial aspect of accelerator technology. Radio frequency electron guns are widely used to generate and rapidly accelerate electron beams to relativistic energies. In the current work, we primarily study the charge generation processes of photoemission and eld emission inside an RF gun installed at Fermilab's High Brightness Electron Source Laboratory (HBESL). Speci cally, we study and characterize second-order nonlinear photoemission from a Cesium Telluride (Cs2Te) semiconductor photocathode, and eld emission from carbon based cathodes including diamond eld emission array (DFEA) and carbon nanotube (CNT) cathodes located in the RF gun's cavity. Finally, we discuss the application experiments conducted at the facility to produce soft x-rays via inverse Compton scattering (ICS), and to generate uniformly lled ellipsoidal bunches and temporally shaped electron beams from the Cs2Te photocathode.

  4. The IPNS second harmonic RF upgrade

    International Nuclear Information System (INIS)

    Middendorf, M.E.; Brumwell, F.R.; Dooling, J.C.; Horan, D.; Kustom, R.L.; Lien, M.K.; McMichael, G.E.; Moser, M.R.; Nassiri, A.; Wang, S.

    2008-01-01

    The intense pulsed neutron source (IPNS) rapid cycling synchrotron (RCS) is used to accelerate protons from 50 MeV to 450 MeV, at a repetition rate of 30 Hz. The original ring design included two identical rf systems, each consisting of an accelerating cavity, cavity bias supply, power amplifiers and low-level analog electronics. The original cavities are located 180 degrees apart in the ring and provide a total peak accelerating voltage of ∼21 kV over the 2.21-MHz to 5.14-MHz revolution frequency sweep. A third rf system has been constructed and installed in the RCS. The third rf system is capable of operating at the fundamental revolution frequency for the entire acceleration cycle, providing an additional peak accelerating voltage of up to ∼11 kV, or at the second harmonic of the revolution frequency for the first ∼4 ms of the acceleration cycle, providing an additional peak voltage of up to ∼11 kV for bunch shape control. We describe here the hardware implementation and operation to date of the third rf cavity in the second harmonic mode.

  5. Multiobjective optimization design of an rf gun based electron diffraction beam line

    Directory of Open Access Journals (Sweden)

    Colwyn Gulliford

    2017-03-01

    Full Text Available Multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line comprised of a 100  MV/m 1.6-cell normal conducting rf (NCRF gun, as well as a nine-cell 2π/3 bunching cavity placed between two solenoids, have been performed. These include optimization of the normalized transverse emittance as a function of bunch charge, as well as optimization of the transverse coherence length as a function of the rms bunch length of the beam at the sample location for a fixed charge of 10^{6} electrons. Analysis of the resulting solutions is discussed in terms of the relevant scaling laws, and a detailed description of one of the resulting solutions from the coherence length optimizations is given. For a charge of 10^{6} electrons and final beam sizes of σ_{x}≥25  μm and σ_{t}≈5  fs, we found a relative coherence length of L_{c,x}/σ_{x}≈0.07 using direct optimization of the coherence length. Additionally, based on optimizations of the emittance as a function of final bunch length, we estimate the relative coherence length for bunch lengths of 30 and 100 fs to be roughly 0.1 and 0.2  nm/μm, respectively. Finally, using the scaling of the optimal emittance with bunch charge, for a charge of 10^{5} electrons, we estimate relative coherence lengths of 0.3, 0.5, and 0.92  nm/μm for final bunch lengths of 5, 30 and 100 fs, respectively.

  6. Numerical modelling of the CEBAF electron gun with EGUN

    International Nuclear Information System (INIS)

    Liger, P.; Krafft, G.A.

    1991-01-01

    The electron source used in the injector for the CEBAF accelerator is a Hermosa electron gun with a 2 mm diameter cathode and a control electrode. It produces a 100 keV electron beam to be focused on the first of two apertures which comprise an emittance filter. A normalized emittance of less than π mm mrad at 1.2 mA is set by the requirements of the final beam from the CEBAF linac, since downstream of the filter, a system of two choppers and a third aperture removes 5/6 of the current. In addition, for RF test purposes a higher current of about 5 mA is needed, possibly at higher emittance. This paper presents a way of calculating the characteristics of the CEBAF electron gun with the gun design code EGUN, and the accuracy of the results is discussed. The transverse shape of the beam delivered by the gun has been observed, and its current measured. A halo around the beam has been seen, and the calculations can reproduce this effect

  7. Beam emittance and the effects of the rf, space charge and wake fields: Application to the ATF photoelectron beam

    International Nuclear Information System (INIS)

    Parsa, Z.

    1991-01-01

    Laser driven photoelectron guns are of interest for use in new methods of accelerations, future development of Linear Colliders and new experiments such as Free Electron laser (IFEL). Such guns are potential source of low emittance-high current and short bunch length electron beams, where the emitted electrons are accelerated quickly to a relativistic energy by a strong rf, electric field in the cavity. We present a brief overview of the beam dynamic studies, e.g. emittance for the Brookhaven National Laboratory (BNL) ATF high brightness photocathode radio frequency gun (now in operation), and show the effects of the rf, Space Charge, and Wake fields on the photoelectrons. 4 refs., 7 figs

  8. Development of low emittance high brightness electron beams and rf accelerating structures

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1991-01-01

    The main goals of this project were the construction of an S-band RF photoinjector for the production of a high brightness electron beam, and the development of a new type of RF accelerator structure; the Plane wave transformer. By the end of October 1991 the photoinjector had been built, its RF characteristics had been measured at low power, and an initial test of the gun at high RF power had been done. The Plane Wave Transformer had also been built and tested at lower power. In both cases the results obtained are mostly in agreement with the expected and calculated behavior

  9. Development of the RF cavity for the SKKUCY-9 compact cyclotron

    International Nuclear Information System (INIS)

    Shin, Seungwook; Lee, Jongchul; LEE, Byeong-No; Ha, Donghyup; Namgoong, Ho; Chai, Jongseo

    2015-01-01

    A 9 MeV compact cyclotron, named SKKUCY-9, for a radiopharmaceutical compound especially fludeoxyglucose (FDG) production for a positron emission tomography (PET) machine was developed at Sungkyunkwan University. H − ions which are produced from a Penning Ionization Gauge(PIG) ion source, travel through a normal conducting radio frequency (RF) cavity which operates at 83.2 MHz for an acceleration and electro-magnet for a beam focusing until the ions acquire energy of about 9 MeV. For installation at a small local hospital, our SKKUCY-9 cyclotron is developed to be compact and light-weight, comparable to conventional medical purpose cyclotrons. For compactness, we adapted a deep valley and large angle hill type for the electro-magnet design. Normally a RF cavity is installed inside of the empty space of the magnet valley region, which is extremely small in our case. We faced problems such as difficulties of installing the RF cavity, low Q-value. Despite of those difficulties, a compact RF cavity and its system including a RF power coupler to feed amplified RF power to the RF cavity and a fine tuner to compensate RF frequency variations was successfully developed and tested

  10. Development of the RF cavity for the SKKUCY-9 compact cyclotron

    Science.gov (United States)

    Shin, Seungwook; Lee, Jongchul; LEE, Byeong-No; Ha, Donghyup; Namgoong, Ho; Chai, Jongseo

    2015-09-01

    A 9 MeV compact cyclotron, named SKKUCY-9, for a radiopharmaceutical compound especially fludeoxyglucose (FDG) production for a positron emission tomography (PET) machine was developed at Sungkyunkwan University. H- ions which are produced from a Penning Ionization Gauge(PIG) ion source, travel through a normal conducting radio frequency (RF) cavity which operates at 83.2 MHz for an acceleration and electro-magnet for a beam focusing until the ions acquire energy of about 9 MeV. For installation at a small local hospital, our SKKUCY-9 cyclotron is developed to be compact and light-weight, comparable to conventional medical purpose cyclotrons. For compactness, we adapted a deep valley and large angle hill type for the electro-magnet design. Normally a RF cavity is installed inside of the empty space of the magnet valley region, which is extremely small in our case. We faced problems such as difficulties of installing the RF cavity, low Q-value. Despite of those difficulties, a compact RF cavity and its system including a RF power coupler to feed amplified RF power to the RF cavity and a fine tuner to compensate RF frequency variations was successfully developed and tested.

  11. Diagnostics Beamline for the SRF Gun Project

    CERN Document Server

    Kamps, T; Goldammer, K; Krämer, Dietrich; Kuske, P; Kuszynski, J; Lipka, D; Marhauser, F; Quast, T; Richter, R

    2005-01-01

    A superconducting rf photo electron injector (SRF gun) is currently under construction by a collaboration between BESSY, DESY, FZR and MBI. The project aims at the design and setup of an CW SRF gun including a diagnostics beamline for the ELBE FEL and to address R&D issues on low emittance injectors for future light sources such as the BESSY FEL. Of critical importance for the injector performance is the control of the electron beam parameters. For this reason a compact diagnostics beamline is under development serving a multitude of operation settings ranging from low-charge (77pC), low-emittance (1 pi mm mrad) mode to high-charge (2.5nC) operation of the gun. For these operation modes beam dynamics simulations are resulting in boundary conditions for the beam instrumentation. Proven and mature technology is projected wherever possible, for example for current and beam position monitoring. The layout of the beam profile and emittance measurement systems is described. For the bunch length, which varies be...

  12. Laboratory report on RF superconductivity at Peking University

    International Nuclear Information System (INIS)

    Kui, Zhao; Baocheng, Zhang; Lifang, Wang; Jin, Yu; Rongli, Geng; Genfa, Wu; Tong, Wang; Jinhu, Song; Chia-erh, Chen

    1996-01-01

    The activities on RF superconductivity at Peking University in the past two years are reported. Two 1.5 GHz Nb cavities were successfully fabricated using Chinese Nb sheets in 1994. One of the cavities has been measured, and the results are given. A laser driven DC electron gun has been designed and constructed which is the pre-testing device of photo-electron gun using superconducting cavity. A series of experiments on the cathode and cavity will be performed in the near future. Two superconducting accelerating devices are being considered for two projects in China. (R.P.)

  13. Indirect method of measuring changes of EM field in RF-gun cavity for XFEL accelerator (Pośrednia metoda pomiaru zmian pola we wnęce działa elektronowego akceleratora XFEL)

    CERN Document Server

    Pozniak, K; Zabolotny, W; Koehler, W; Stephan, F; Simrock, S

    2009-01-01

    In the paper an RF-gun control system is described. Difficulties caused by the impossibility to observe directly the field gradient are mentioned. Calibration nd measurement procedure is discussed. A mathematical model, which provides a way to calculate the desired signal from the indirect measurements is developed and analyzed. This model is supported by both measurements and simulations discussed in the final part of the paper. Research done with participation of Ph.D. students.

  14. Electron bunch structure in energy recovery linac with high-voltage dc photoelectron gun

    Directory of Open Access Journals (Sweden)

    Y. M. Saveliev

    2016-09-01

    Full Text Available The internal structure of electron bunches generated in an injector line with a dc photoelectron gun is investigated. Experiments were conducted on the ALICE (accelerators and lasers in combined experiments energy recovery linac at Daresbury Laboratory. At a relatively low dc gun voltage of 230 kV, the bunch normally consisted of two beamlets with different electron energies, as well as transverse and longitudinal characteristics. The beamlets are formed at the head and the tail of the bunch. At a higher gun voltage of 325 kV, the beam substructure is much less pronounced and could be observed only at nonoptimal injector settings. Experiments and computer simulations demonstrated that the bunch structure develops during the initial beam acceleration in the superconducting rf booster cavity and can be alleviated either by increasing the gun voltage to the highest possible level or by controlling the beam acceleration from the gun voltage in the first accelerating structure.

  15. Characterization of a superconducting Pb photocathode in a superconducting rf photoinjector cavity

    CERN Document Server

    Barday, R; Jankowiak, A; Kamps, T; Knobloch, J; Kugeler, O; Matveenko, A; Neumann, A; Schmeißer, M; Volker, J; Kneisel, P; Nietubyc, R; Schubert S; Smedley J; Sekutowicz, J; Will, I

    2014-01-01

    Photocathodes are a limiting factor for the next generation of ultrahigh brightness photoinjectors. We studied the behavior of a superconducting Pb cathode in the cryogenic environment of a superconducting rf gun cavity to measure the quantum efficiency, its spatial distribution, and the work function. We will also discuss how the cathode surface contaminants modify the performance of the photocathode as well as the gun cavity and we discuss the possibilities to remove these contaminants.

  16. Gun ownership and social gun culture.

    Science.gov (United States)

    Kalesan, Bindu; Villarreal, Marcos D; Keyes, Katherine M; Galea, Sandro

    2016-06-01

    We assessed gun ownership rates in 2013 across the USA and the association between exposure to a social gun culture and gun ownership. We used data from a nationally representative sample of 4000 US adults, from 50 states and District of Columbia, aged >18 years to assess gun ownership and social gun culture performed in October 2013. State-level firearm policy information was obtained from the Brady Law Center and Injury Prevention and Control Center. One-third of Americans reported owning a gun, ranging from 5.2% in Delaware to 61.7% in Alaska. Gun ownership was 2.25-times greater among those reporting social gun culture (PR=2.25, 95% CI 2.02 to 2.52) than those who did not. In conclusion, we found strong association between social gun culture and gun ownership. Gun cultures may need to be considered for public health strategies that aim to change gun ownership in the USA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Positron acceleration to 200 MeV

    International Nuclear Information System (INIS)

    Leboutet, H.

    1983-01-01

    220 MeV is the energy that has to be obtained in routine operation. A standard 12m girder with SLED II can give 220 MeV minus a few percent due to not riding at the crest of the wave. In order to have the 200 MeV with only one girder, a klystron at full power all the time would be required - kept brand new. Then, for safety it is necessary to use two klystrons as designated in the SLC design. Having two klystrons gives freedom for the choice of the best arrangement. Since there will be excess rf power, it can be traded against higher gradient, shorter waveguides, larger apertures (lower shunt impedence)

  18. Water gun vs air gun: A comparison

    Science.gov (United States)

    Hutchinson, D.R.; Detrick, R. S.

    1984-01-01

    The water gun is a relatively new marine seismic sound source that produces an acoustic signal by an implosive rather than explosive mechanism. A comparison of the source characteristics of two different-sized water guns with those of conventional air guns shows the the water gun signature is cleaner and much shorter than that of a comparable-sized air gun: about 60-100 milliseconds (ms) for an 80-in3. (1.31-liter (I)) water gun compared with several hundred ms for an 80-in3. (1.31-1) air gun. The source spectra of water guns are richer in high frequencies (>200 Hz) than are those of air guns, but they also have less energy than those of air guns at low frequencies. A comparison between water gun and air gun reflection profiles in both shallow (Long Island Sound)-and deep (western Bermuda Rise)-water settings suggests that the water gun offers a good compromise between very high resolution, limited penetration systems (e.g. 3.5-kHz profilers and sparkers) and the large volume air guns and tuned air gun arrays generally used where significant penetration is required. ?? 1984 D. Reidel Publishing Company.

  19. Physics design of a 10 MeV, 6 kW travelling wave electron linac for industrial applications

    International Nuclear Information System (INIS)

    Kulkarni, Nita S.; Dhingra, Rinky; Kumar, Vinit

    2016-01-01

    We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear accelerator (linac), which has been recently built and successfully operated at Raja Ramanna Centre for Advanced Technology, Indore. The accelerating structure is a 2π/3 mode constant impedance travelling wave structure, which comprises travelling wave buncher cells, followed by regular accelerating cells. The structure is designed to accelerate 50 keV electron beam from the electron gun to 10 MeV. This paper describes the details of electromagnetic design simulations to fix the mechanical dimensions and tolerances, as well as heat loss calculations in the structure. Results of design simulations have been compared with those obtained using approximate analytical formulae. The beam dynamics simulation with space charge is performed and the required magnetic field profile for keeping the beam focussed in the linac has been evaluated and discussed. An important feature of a travelling wave linac (in contrast with standing wave linac) is that it accepts the RF power over a band of frequencies. Three dimensional transient simulations of the accelerating structure along with the input and output couplers have been performed using the software CST-MWS to explicitly demonstrate this feature. (author)

  20. Auto-tuning systems for J-PARC LINAC RF cavities

    International Nuclear Information System (INIS)

    Fang, Z.; Kobayashi, T.; Fukui, Y.; Futatsukawa, K.; Michizono, S.; Yamaguchi, S.; Anami, S.; Suzuki, H.; Sato, F.; Shinozaki, S.; Chishiro, E.

    2014-01-01

    The 400-MeV proton linear accelerator (LINAC) at the Japan Proton Accelerator Research Complex (J-PARC) consists of 324-MHz low-β and 972-MHz high-β accelerator sections. From October 2006 to May 2013, only the 324-MHz low-β accelerator section was in operation. From the summer of 2013 the J-PARC LINAC was upgraded by installing the 972-MHz high-β accelerator section, and the proton beam was successfully accelerated to 400 MeV in January 2014. Auto-tuning systems for the J-PARC LINAC RF cavities have been successfully developed. A first generation design, an auto-tuning system using a mechanical tuner controller, was developed and operated for the first 3 years. Then the second-generation auto-tuning system was developed using a new approach to the RF cavity warm-up process, and this was applied to the accelerator operation for the subsequent 4 years. During the RF cavity warm-up process in this system, the mechanical tuner is constantly fixed and the input RF frequency is automatically tuned to the cavity resonance frequency using the FPGA (Field-Programmable Gate Array) of the digital feedback RF control system. After the input power level reaches the required value, input RF frequency tuning is stopped and it is switched to the operation frequency. Then, the mechanical tuner control begins operation. This second-generation auto-tuning system was extremely effective for the 324-MHz cavity operation. However, if we apply this approach to the 972-MHz RF cavities, an interlock due to the RF cavity reflection amplitude occasionally occurs at the end of the warm-up process. In order to solve this problem a third generation novel auto-tuning system was successfully developed in December 2013 and applied to the operation of the J-PARC LINAC, including the 972-MHz ACS RF cavities. During the warm-up process both the mechanical tuner controller and the input RF frequency tuning are in operation, and good matching between the input RF frequency and the RF cavity is

  1. Auto-tuning systems for J-PARC LINAC RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z., E-mail: fang@post.kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Kobayashi, T.; Fukui, Y.; Futatsukawa, K.; Michizono, S.; Yamaguchi, S.; Anami, S. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Suzuki, H.; Sato, F.; Shinozaki, S.; Chishiro, E. [Japan Atomic Energy Agency (JAEA), 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2014-12-11

    The 400-MeV proton linear accelerator (LINAC) at the Japan Proton Accelerator Research Complex (J-PARC) consists of 324-MHz low-β and 972-MHz high-β accelerator sections. From October 2006 to May 2013, only the 324-MHz low-β accelerator section was in operation. From the summer of 2013 the J-PARC LINAC was upgraded by installing the 972-MHz high-β accelerator section, and the proton beam was successfully accelerated to 400 MeV in January 2014. Auto-tuning systems for the J-PARC LINAC RF cavities have been successfully developed. A first generation design, an auto-tuning system using a mechanical tuner controller, was developed and operated for the first 3 years. Then the second-generation auto-tuning system was developed using a new approach to the RF cavity warm-up process, and this was applied to the accelerator operation for the subsequent 4 years. During the RF cavity warm-up process in this system, the mechanical tuner is constantly fixed and the input RF frequency is automatically tuned to the cavity resonance frequency using the FPGA (Field-Programmable Gate Array) of the digital feedback RF control system. After the input power level reaches the required value, input RF frequency tuning is stopped and it is switched to the operation frequency. Then, the mechanical tuner control begins operation. This second-generation auto-tuning system was extremely effective for the 324-MHz cavity operation. However, if we apply this approach to the 972-MHz RF cavities, an interlock due to the RF cavity reflection amplitude occasionally occurs at the end of the warm-up process. In order to solve this problem a third generation novel auto-tuning system was successfully developed in December 2013 and applied to the operation of the J-PARC LINAC, including the 972-MHz ACS RF cavities. During the warm-up process both the mechanical tuner controller and the input RF frequency tuning are in operation, and good matching between the input RF frequency and the RF cavity is

  2. A new two-step tuning procedure for a photocathode gun

    International Nuclear Information System (INIS)

    Lal, Shankar; Pant, K.K.; Krishnagopal, S.

    2008-01-01

    An important aspect of the development of multi-cell RF accelerating structures is tuning the resonant frequency f of the operating mode, field balance e b , and waveguide to cavity coupling coefficient β to the desired values. Earlier theoretical analyses have not been able to predict all three parameters simultaneously for a coupled-cavity system. We have developed a generalized circuit analysis to predict f, e b , and β of a coupled structure, based on the RF properties of the individual, uncoupled, cells. This has been used to develop a simplified two-step tuning procedure to tune a BNL/SLAC/UCLA type 1.6 cell S-band photocathode gun by varying RF properties of individual half and full cells, which are easily measurable. This procedure has been validated by tuning two true-to-scale prototypes made of aluminum and ETP copper to the desired values of the RF parameters

  3. Photocathode guns for single pass X-ray FELs

    International Nuclear Information System (INIS)

    Palmer, D.T.

    1997-10-01

    The present state of the art in photoinjector designs will be presented in this review. The authors discuss both proposed and operational photoinjectors with operating frequencies from L-band (1.424 GHz) to X-band (11.424 GHz). Also a novel pulsed DC gun will be presented. All the RF photoinjector discussed here use an emittance compensation scheme to align the different slices of the electron beam to decrease the beams normalized rms emittance

  4. The KAERI 10 MeV Electron Linac - Description and Operational Manual

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Park, Seong Hee; Jung, Young Uk; Han, Young Hwan; Kang, Hee Young

    2005-06-15

    The objective of this technical report is to guide the right operation and maintenance of the KAERI electron linac system. The KAERI electron linac system consists of 2 MeV injector based on 176 MHz Normal conducting RF (Radio Frequency)cavity and 10 MeV main accelerator based on 352 MHz Superconducting RF cavity, electron beamlines (injection and extraction). Since a electron accelerator generates hazard radiation, this system is located at the shielded room in basement and we can operate the system using the remote control system. It includes the description and the operational manual as well as the detailed technical direction for trouble shooting.

  5. The KAERI 10 MeV Electron Linac - Description and Operational Manual

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Park, Seong Hee; Jung, Young Uk; Han, Young Hwan; Kang, Hee Young

    2005-06-01

    The objective of this technical report is to guide the right operation and maintenance of the KAERI electron linac system. The KAERI electron linac system consists of 2 MeV injector based on 176 MHz Normal conducting RF (Radio Frequency)cavity and 10 MeV main accelerator based on 352 MHz Superconducting RF cavity, electron beamlines (injection and extraction). Since a electron accelerator generates hazard radiation, this system is located at the shielded room in basement and we can operate the system using the remote control system. It includes the description and the operational manual as well as the detailed technical direction for trouble shooting

  6. rf streak camera based ultrafast relativistic electron diffraction.

    Science.gov (United States)

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Tran, T

    2009-01-01

    We theoretically and experimentally investigate the possibility of using a rf streak camera to time resolve in a single shot structural changes at the sub-100 fs time scale via relativistic electron diffraction. We experimentally tested this novel concept at the UCLA Pegasus rf photoinjector. Time-resolved diffraction patterns from thin Al foil are recorded. Averaging over 50 shots is required in order to get statistics sufficient to uncover a variation in time of the diffraction patterns. In the absence of an external pump laser, this is explained as due to the energy chirp on the beam out of the electron gun. With further improvements to the electron source, rf streak camera based ultrafast electron diffraction has the potential to yield truly single shot measurements of ultrafast processes.

  7. Optical techniques for electron-beam characterizations on the APS SASE FEL project

    International Nuclear Information System (INIS)

    Lumpkin, A.H.; Yang, B.X.; Berg, W.J.; White, M.; Lewellen, J.W.; Milton, S.V.

    1998-01-01

    At the Advanced Photon Source (APS) the injector linac's DC thermionic gun is being supplemented by a low-emittance rf thermionic gun that will support the SASE FEL project. To address the anticipated smaller beam sizes, the standard Chromox beam-profiling screens are being complemented by optical transition radiation (OTR) and Ce-doped YAG single-crystal converters. Direct comparisons of the effective conversion efficiency, spatial resolution, and time response of the three converter screen types have been performed using the DC thermionic gun's beam accelerated to 400 to 650 MeV. An apparent blurring of observed beam size with increasing incident charge areal density in the YAG crystal was observed for the first time. Only the OTR was prompt enough for the few-ps domain micropulse bunch length measurements performed with a stream camera. Initial beam images of the rf-thermionic gun beam have also been obtained

  8. THz and Sub-THz Capabilities of a Table-Top Radiation Source Driven by an RF Thermionic Electron Gun

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Alexei V.; Agustsson, R.; Boucher, S.; Campese, Tara; Chen, Y.C.; Hartzell, Josiah J.; Jocobson, B.T.; Murokh, A.; O' Shea, F.H.; Spranza, E.; Berg, W.; Borland, M.; Dooling, J. C.; Erwin, L.; Lindberg, R. R.; Pasky, S.J.; Sereno, N.; Sun, Y.; Zholents, A.

    2017-06-01

    Design features and experimental results are presented for a sub-mm wave source [1] based on APS RF thermionic electron gun. The setup includes compact alpha-magnet, quadrupoles, sub-mm-wave radiators, and THz optics. The sub-THz radiator is a planar, oversized structure with gratings. Source upgrade for generation frequencies above 1 THz is discussed. The THz radiator will use a short-period undulator having 1 T field amplitude, ~20 cm length, and integrated with a low-loss oversized waveguide. Both radiators are integrated with a miniature horn antenna and a small ~90°-degree in-vacuum bending magnet. The electron beamline is designed to operate different modes including conversion to a flat beam interacting efficiently with the radiator. The source can be used for cancer diagnostics, surface defectoscopy, and non-destructive testing. Sub-THz experiment demonstrated a good potential of a robust, table-top system for generation of a narrow bandwidth THz radiation. This setup can be considered as a prototype of a compact, laser-free, flexible source capable of generation of long trains of Sub-THz and THz pulses with repetition rates not available with laser-driven sources.

  9. Photoinjector optimization using a derivative-free, model-based trust-region algorithm for the Argonne Wakefield Accelerator

    Science.gov (United States)

    Neveu, N.; Larson, J.; Power, J. G.; Spentzouris, L.

    2017-07-01

    Model-based, derivative-free, trust-region algorithms are increasingly popular for optimizing computationally expensive numerical simulations. A strength of such methods is their efficient use of function evaluations. In this paper, we use one such algorithm to optimize the beam dynamics in two cases of interest at the Argonne Wakefield Accelerator (AWA) facility. First, we minimize the emittance of a 1 nC electron bunch produced by the AWA rf photocathode gun by adjusting three parameters: rf gun phase, solenoid strength, and laser radius. The algorithm converges to a set of parameters that yield an emittance of 1.08 μm. Second, we expand the number of optimization parameters to model the complete AWA rf photoinjector (the gun and six accelerating cavities) at 40 nC. The optimization algorithm is used in a Pareto study that compares the trade-off between emittance and bunch length for the AWA 70MeV photoinjector.

  10. Gun Control, Gun Ownership, and Suicide Prevention.

    Science.gov (United States)

    Lester, David

    1988-01-01

    Explored relationship between the extent of gun ownership and the strictness of gun control laws to suicide and homicide rates in the nine major geographic regions of the United States. Found gun ownership, rather than the strictness of gun control laws, was the strongest correlate of the rates of suicide and homicide by guns. (Author)

  11. Pembuatan Dan Analisis Exciter Generator Rf Untuk Siklotron Proton Decy-13

    OpenAIRE

    Prajitno, Prajitno

    2011-01-01

    PEMBUATAN DAN ANALISIS EXCITER GENERATOR RF UNTUK SIKLOTRON PROTON DECY-13.Telah dilakukan analisis dan pembuatan exciter generator RF untuk siklotron proton 13MeV. Generator RFakan digunakan sebagai sumber tegangan pemercepat bolak-Balik siklotron DECY-13 rancangan PTAPBBATAN.Berdasarkan dokumen rancangan dasar yang telah dibuat siklotron Decy-13 akan menggunakanmedan magnet 1,275 Tesla, sehingga frekuensi generator RF bila menggunakan harmonik keempat adalah77,667 MHz. Salah satu teknik pem...

  12. A beamline design and data acquisition with the 20-MeV, 20-ps electron beam for the higher-order mode studies of the APS SR-rf cavities

    International Nuclear Information System (INIS)

    Song, J.; Nassiri, A.; Daly, R.

    1993-01-01

    A beamline has been designed and assembled to use the ANL Chemistry Division 20-MeV electron linac for the testing of higher-order mode excitation and damping in rf cavities. The beamline consists of two sections (a beam collimating section with a 1.5 inches-OD vacuum line, and a cavity test section with a 3 inches-OD vacuum line), separated by two double aluminum foil windows. The beam diagnostics consist of a stripline beam position monitor, integrating current transformers, fluorescent screens, and a Faraday cup. EPICS (Experimental Physics and Industrial Control System) is used for beamline control, monitoring, and data acquisition. Also described is the diagnostic system used for beam image capture and analysis using EPICS-controlled hardware and PV-WAVE software. The rf cavity measurement will be described in a separate paper

  13. Design and manufacture of the RF power supply and RF transmission line for SANAEM project Prometheus

    Science.gov (United States)

    Turemen, G.; Ogur, S.; Ahiska, F.; Yasatekin, B.; Cicek, E.; Ozbey, A.; Kilic, I.; Unel, G.; Alacakir, A.

    2017-08-01

    A 1-5 MeV proton beamline is being built by the Turkish Atomic Energy Authority in collaboration with a number of graduate students from different universities. The primary goal of the project, is to acquire the design ability and manufacturing capability of all the components locally. SPP will be an accelerator and beam diagnostics test facility and it will also serve the detector development community with its low beam current. This paper discusses the design and construction of the RF power supply and the RF transmission line components such as its waveguide converters and its circulator. Additionally low and high power RF test results are presented to compare the performances of the locally produced components to the commercially available ones.

  14. A 300-nm compact mm-wave linac FEL design

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, A.; Kustom, R.L.; Kang, Y.W. [Argonne National Lab., IL (United States)

    1995-12-31

    Microfabrication technology offers an alternative method for fabricating precision, miniature-size components suitable for use in accelerator physics and commercial applications. The original R&D work at Argonne, in collaboration with the University of Illinois at Chicago, has produced encouraging results in the area of rf accelerating structure design, optical and x-ray masks production, deep x-ray lithography (LIGA exposures), and precision structural alignments. In this paper we will present a design study for a compact single pass mm-linac FEL to produce short wavelength radiation. This system will consists of a photocathode rf gun operated at 30 GHz, a 50-MeV superconducting constant gradient structure operated at 60 GHz, and a microundulator with 1-mm period. Initial experimental results on a scale model rf gun and microundulator will be presented.

  15. Whose guns are stolen? The epidemiology of Gun theft victims.

    Science.gov (United States)

    Hemenway, David; Azrael, Deborah; Miller, Matthew

    2017-12-01

    Gun theft is an important source of guns used by criminals. Yet no empirical work has focused on the characteristics of gun owners that distinguish those who have had their guns stolen from those who have not. In this study, we examine the demographics and behavioral characteristics of gun owners who report having had a gun stolen. Data come from a nationally representative probability-based online survey conducted in April 2015, with a linked follow-up survey in November 2015 that asked gun owners about any theft of their guns in the past 5 years. Of 1,604 gun-owning respondents, 2.4% (95% CI 1.6,3.6) reported that one or more guns had been stolen, with a mean number of guns stolen per theft of 1.5 (95% CI 1.0,2.0]. Risk factors for having a gun stolen were owning 6 or more guns, owning guns for protection, carrying a gun in the past month, storing guns unsafely, and living in the South region of the United States. The South accounts for 37% of US households, 43% of gun owners, and two-thirds of all gun thefts. We estimate that there are approximately 250,000 gun theft incidents per year, with about 380,000 guns stolen. We find that certain types of gun owners-who own many guns, who carry guns, and who do not store guns safely-are at higher risk to have their guns stolen. Tracing data show that states in the South are exporters of crime guns used in other states. Our survey results find that the majority of guns stolen in the US come from the South.

  16. Simulations of Beam Quality in a 13 MeV PET Cyclotron

    Directory of Open Access Journals (Sweden)

    A. Pramudita

    2015-12-01

    Full Text Available Simulation of the trajectories of negative hydrogen ion (H− beam in a 13 MeV PET cyclotron (DECY-13 were carried out by using the Runge-Kutta (RK4 approximation method and Scilab 5.4.1. The magnetic and electric fields were calculated using Opera-3d/TOSCA softwares at 1 mm resolution. The cyclotron is of a fourth-harmonics type, meaning that the acceleration occurs four times per cycle, with a radiofrequency (RF field of 77.66 MHz frequency and 40 kV amplitude. The calculations and simulations show that the maximum distance between the ion source and the puller is about 6 mm, while the maximum width of the beam at 13 MeV is about 10 mm, and the initial phase between the RF field and the beam ranges from -10° to 10°, with a yield of about 10% of the beam from the ion source getting accelerated to 13 MeV.

  17. Heat load of a GaAs photocathode in an SRF electron gun

    International Nuclear Information System (INIS)

    Wang Erdong; Zhao Kui; Jorg Kewisch; Ilan Ben-Zvi; Andrew Burrill; Trivini Rao; Wu Qiong; Animesh Jain; Ramesh Gupta; Doug Holmes

    2011-01-01

    A great deal of effort has been made over the last decades to develop a better polarized electron source for high energy physics. Several laboratories operate DC guns with a gallium arsenide photocathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved by using a superconducting radio frequency (SRF) electron gun, which delivers beams of a higher brightness than that from DC guns because the field gradient at the cathode is higher. SRF guns with metal and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since a bulk gallium arsenide (GaAs) photocathode is normal conducting, a problem arises from the heat load stemming from the cathode. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and verification by measuring the quality factor of the gun with and without the cathode at 2 K. We simulate heat generation and flow from the GaAs cathode using the ANSYS program. By following the findings with the heat load model, we designed and fabricated a new cathode holder (plug) to decrease the heat load from GaAs. (authors)

  18. Lake Wobegon’s Guns: Overestimating Our Gun-Related Competences

    Directory of Open Access Journals (Sweden)

    Emily Stark

    2016-02-01

    Full Text Available The Lake Wobegon Effect is a general tendency for people to overestimate their own abilities. In this study, the authors conducted a large, nationally-representative survey of U.S. citizens to test whether Americans overestimate their own gun-relevant personality traits, gun safety knowledge, and ability to use a gun in an emergency. The authors also tested how gun control attitudes, political identification, gender, and gun experience affect self-perceptions. Consistent with prior research on the Lake Wobegon Effect, participants overestimated their gun-related competencies. Conservatives, males, and pro-gun advocates self-enhanced somewhat more than their counterparts but this effect was primarily due to increased gun experience among these participants. These findings are important to policymakers in the area of gun use, because overconfidence in one’s gun-related abilities may lead to a reduced perceived need for gun training.

  19. Commissioning of the 112 MHz SRF Gun and 500 MHz bunching cavities for the CeC PoP Linac

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); McIntosh, P. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Moss, A. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Narayan, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Orfin, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pinayev, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rao, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wheelhouse, A. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xin, T. [Stony Brook Univ., NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment at BNL includes a short electron linac. During Phase 1, a 112 MHz superconducting RF photo-emission gun and two 500 MHz normal conducting bunching cavities were installed and are under commissioning. The paper describes the Phase1 linac layout and presents commissioning results for the cavities and associated RF, cryogenic and other sub-systems

  20. Construction and characterization of the fringe field monochromator for a field emission gun

    Science.gov (United States)

    Mook; Kruit

    2000-04-01

    Although some microscopes have shown stabilities sufficient to attain below 0.1 eV spectral resolution in high-resolution electron energy loss spectroscopy, the intrinsic energy width of the high brightness source (0.3-0.6 eV) has been limiting the resolution. To lower the energy width of the source to 50 meV without unnecessary loss of brightness, a monochromator has been designed consisting of a short (4 mm) fringe field Wien filter and a 150 nm energy selection slit (nanoslit) both to be incorporated in the gun area of the microscope. A prototype has been built and tested in an ultra-high-vacuum setup (10(-9) mbar). The monochromator, operating on a Schottky field emission gun, showed stable and reproducible operation. The nanoslits did not contaminate and the structure remained stable. By measuring the current through the slit structure a direct image of the beam in the monochromator could be attained and the monochromator could be aligned without the use of a microscope. Good dispersed imaging conditions were found indicating an ultimate resolution of 55 meV. A Mark II fringe field monochromator (FFM) was designed and constructed compatible with the cold tungsten field emitter of the VG scanning transmission microscope. The monochromator was incorporated in the gun area of the microscope at IBM T.J. Watson research center, New York. The monochromator was aligned on 100 kV and the energy distribution measured using the monochromator displayed a below 50 meV filtering capability. The retarding Wien filter spectrometer was used to show a 61 meV EELS system resolution. The FFM is shown to be a monochromator which can be aligned without the use of the electron microscope. This makes it directly applicable for scanning transmission microscopy and low-voltage scanning electron microscopy, where it can lower the resolution loss which is caused by chromatic blur of the spot.

  1. Construction of a 1 MeV Electron Accelerator for High Precision Beta Decay Studies

    Science.gov (United States)

    Longfellow, Brenden

    2014-09-01

    Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles. Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles

  2. Linear beam dynamics and ampere class superconducting RF cavities at RHIC

    Science.gov (United States)

    Calaga, Rama R.

    The Relativistic Heavy Ion Collider (RHIC) is a hadron collider designed to collide a range of ions from protons to gold. RHIC operations began in 2000 and has successfully completed five physics runs with several species including gold, deuteron, copper, and polarized protons. Linear optics and coupling are fundamental issues affecting the collider performance. Measurement and correction of optics and coupling are important to maximize the luminosity and sustain stable operation. A numerical approach, first developed at SLAC, was implemented to measure linear optics from coherent betatron oscillations generated by ac dipoles and recorded at multiple beam position monitors (BPMs) distributed around the collider. The approach is extended to a fully coupled 2D case and equivalence relationships between Hamiltonian and matrix formalisms are derived. Detailed measurements of the transverse coupling terms are carried out at RHIC and correction strategies are applied to compensate coupling both locally and globally. A statistical approach to determine BPM reliability and performance over the past three runs and future improvements also discussed. Aiming at a ten-fold increase in the average heavy-ion luminosity, electron cooling is the enabling technology for the next luminosity upgrade (RHIC II). Cooling gold ion beams at 100 GeV/nucleon requires an electron beam of approximately 54 MeV and a high average current in the range of 50-200 mA. All existing e-Coolers are based on low energy DC accelerators. The only viable option to generate high current, high energy, low emittance CW electron beam is through a superconducting energy-recovery linac (SC-ERL). In this option, an electron beam from a superconducting injector gun is accelerated using a high gradient (˜ 20 MV/m) superconducting RF (SRF) cavity. The electrons are returned back to the cavity with a 180° phase shift to recover the energy back into the cavity before being dumped. A design and development of a half

  3. The RF system for the Accelerator Production of Tritium (APT) Low Energy Demonstration Accelerator (LEDA) at Los Alamos

    International Nuclear Information System (INIS)

    Lynch, M.T.; Rees, D.; Tallerico, P.; Regan, A.

    1996-01-01

    To develop and demonstrate the crucial front end of the APT accelerator and some of the critical components for APT, Los Alamos is building a CW proton accelerator (LEDA) to provide 100 mA at up to 40 MeV. LEDA will be installed where the SDI-sponsored Ground Test Accelerator was located. The first accelerating structure for LEDA is a 7-MeV RFQ operating at 350 MHz, followed by several stages of a coupled-cavity Drift Tube Linac (CCDTL) operating at 700 MHz. The first stage of LEDA will go to 12 MeV. Higher energies, up to 40 MeV, come later in the program. Three 1.2-MW CW RF systems will be used to power the RFQ. This paper describes the RF systems being assembled for LEDA, including the 350 and 700-MHz klystrons, the High Voltage Power Supplies, transmitters, RF transport, window/coupler assemblies, and controls. Some of the limitations imposed by the schedule and the building itself are addressed

  4. Los Alamos free-electron laser (FEL) rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Lynch, M.T.

    1985-01-01

    The FEL rf system was designed for 3.6-MW rf pulses from two klystrons to drive two linacs and one deflection cavity at 1300 MHz. Two 108.33-MHz subharmonic buncher cavities and one fundamental buncher were also built, each powered by a 5-kW amplifier. A single phase-coherent source drives the various amplifiers as well as the grid of the electron gun, which is pulsed at 21.67 MHz. The initial buncher system did not work as well as expected, and the first linac tank required more rf power than anticipated. The light output was extremely sensitive to amplitude and phase errors. More powerful klystrons were developed and installed, and a method was discovered for operating a single subharmonic buncher and allowing the first linac to complete the bunching process. This paper shows the actual configuration used to operate the laser and discusses future improvements

  5. Frequency control of RF booster cavity in TRIUMF

    International Nuclear Information System (INIS)

    Fong, K.; Laverty, M.

    1993-01-01

    A booster is used in the TRIUMF cyclotron to increase the energy gain per turn for beam orbits corresponding to energies greater than 370 MeV. It operates at 92.24 MHz, the 4 th harmonic of the cyclotron main rf, and at a nominal voltage of 150 kV. Excitation is provided by a 90 kW rf system that is phase locked to the main rf. When the main rf is interrupted due to sparking or other causes, a controller built into the low frequency source of the booster rf system disables the phase-locked loop, and reconfigures the source as a temperature stabilized oscillator operating at the last locked frequency. When the cyclotron rf is restored it usually will be at different frequency. The oscillator tunes automatically to this new frequency. The acquisition time is extended by the controller to match the response time of the mechanical tuner in the cavity

  6. The Los Alamos high-brightness photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, P.G.

    1991-01-01

    For a number of years Los Alamos National Laboratory has been developing photocathode RF guns for high-brightness electron beam applications such as free-electron lasers (FELs). Previously thermionic high-voltage guns have been the source of choice for the electron accelerators used to drive FELs. The performance of such FELs is severely limited by the emittance growth produced by the subharmonic bunching process and also by the low peak current of the source. In a photoinjector, a laser driven photocathode is placed directly in a high-gradient RF accelerating cavity. A photocathode allows unsurpassed control over the current, and the spatial and temporal profile of the beam. In addition the electrodeless emission'' avoids many of the difficulties associated with multi-electrode guns, i.e. the electrons are accelerated very rapidly to relativistic energies, and there are no electrodes to distort the accelerating fields. For the past two years we have been integrating a photocathode into our existing FEL facility by replacing our thermionic gun and subharmonic bunchers with a high-gradient 1.3 GHz photoinjector. The photoinjector, which is approximately 0.6 m in length, produces 6 MeV, 300 A, 15 ps linac, and accelerated to a final energy of 40 MeV. We have recently begun lasing at wavelengths near 3 {mu}m. 16 refs., 2 figs., 5 tabs.

  7. Shunt impedance measurement of the APS BBC injector

    International Nuclear Information System (INIS)

    Sun, Y.E.; Lewellen, J.W.

    2006-01-01

    The injector test stand (ITS) at Advanced Photon Source (APS) presently incorporates a ballistic bunch compression (BBC) gun, and it is used as a beam source for a number of experiments, including THz generation, beam position monitor testing for the Linac Coherent Light Source (LCLS), novel cathode testing, and radiation therapy source development. The BBC gun uses three independently powered and phased rf cavities, one cathode cell, and two full cells to provide beam energies from 2 to 10 MeV with variable energy spread, energy chirp, and, to an extent, bunch duration. The shunt impedance of an rf accelerator determines how effectively the accelerator can convert supplied rf power to accelerating gradient. The calculation of the shunt impedance can be complicated if the beam energy changes substantially during its transit through a cavity, such as in a cathode cell. We present the results of direct measurements of the shunt impedance of the APS BBC gun on an individual cavity basis, including the cathode cell, and report on achieved gradients. We also present a comparison of the measured shunt impedance with theoretical values calculated from the rf models of the cavities.

  8. Gun Play

    Science.gov (United States)

    Mechling, Jay

    2008-01-01

    Biology and the particular gun culture of the United States come together to explain the persistent and powerful attraction of American boys to both real guns and toy guns. The 1990s saw adults begin to conflate "the gun problem" with "the boy problem," sparking attempts (largely failed) to banish toy guns from homes and…

  9. Design of W-Band photoinjector

    International Nuclear Information System (INIS)

    Zhu, Xiongwei; Nakajima, Kazuhisa

    2000-01-01

    We present a design study on W-Band photocathode RF gun which is capable of generating and accelerating 300 pC electron bunch. The design system is made up of 91.392 GHz photocathode RF gun and 91.392 GHz travelling wave linac cells. Based on the numerical simulation using SUPERFISH and PARMELA and the conventional RF linac scaling law, the design will produce 300 pC at 1.74 MeV with bunch length 0.72 ps and normalized tranverse emittance 0.5 mm mrad. We study the beam dynamics in high frequency and high gradient; due to the high gradient, the pondermotive effect plays an important role in beam dynamics; we found the pondermotive effect still exist with only the fundamental space harmonics (synchrotron mode) due to the coupling of the transverse and longitudinal motion. (author)

  10. 7.5 MeV High Average Power Linear Accelerator System for Food Irradiation Applications

    International Nuclear Information System (INIS)

    Eichenberger, Carl; Palmer, Dennis; Wong, Sik-Lam; Robison, Greg; Miller, Bruce; Shimer, Daniel

    2005-09-01

    In December 2004 the US Food and Drug Administration (FDA) approved the use of 7.5 MeV X-rays for irradiation of food products. The increased efficiency for treatment at 7.5 MeV (versus the previous maximum allowable X-ray energy of 5 MeV) will have a significant impact on processing rates and, therefore, reduce the per-package cost of irradiation using X-rays. Titan Pulse Sciences Division is developing a new food irradiation system based on this ruling. The irradiation system incorporates a 7.5 MeV electron linear accelerator (linac) that is capable of 100 kW average power. A tantalum converter is positioned close to the exit window of the scan horn. The linac is an RF standing waveguide structure based on a 5 MeV accelerator that is used for X-ray processing of food products. The linac is powered by a 1300 MHz (L-Band) klystron tube. The electrical drive for the klystron is a solid state modulator that uses inductive energy store and solid-state opening switches. The system is designed to operate 7000 hours per year. Keywords: Rf Accelerator, Solid state modulator, X-ray processing

  11. X-band Linac for a 6 MeV dual-head radiation therapy gantry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hyun; Shin, Seung-Wook; Lee, Jongchul; Kim, Hui-Su [WCU Department of Energy Science, Suwon 440-746 (Korea, Republic of); Lee, Byeong-No; Lee, Byung-Chul [Radiation Instrumentation Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212 (Korea, Republic of); Park, Hyung-dal; Song, Ki-back [Radiation Technology eXcellence (RTX), Daejeon 305-500 (Korea, Republic of); Song, Ho-seung; Mun, Sangchul; Ha, Donghyup [School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Chai, Jong-Seo, E-mail: jschai@skku.edu [School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2017-04-21

    We developed a design for a 6 MeV X-band linear accelerator for radiation therapy in a dual-head gantry layout. The dual-head gantry has two linacs that can be operated independently. Each X-band linac accelerates electron bunches using high-power RF and generates X-rays for radiation therapy. It requires a versatile RF system and pulse sequence to accomplish various radiation therapy procedures. The RF system consists of 9.3 GHz, 2 MW X-band magnetron and associated RF transmission components. A test linac was assembled and operated to characterize its RF performance without beam. This paper presents these results along with a description of the gantry linacs and their operational requirements.

  12. AREAL low energy electron beam applications in life and materials sciences

    Energy Technology Data Exchange (ETDEWEB)

    Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Yerevan State University, 0025 Yerevan (Armenia); Aroutiounian, R.M. [Yerevan State University, 0025 Yerevan (Armenia); Amatuni, G.A. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Aloyan, L.R.; Aslanyan, L.G. [Yerevan State University, 0025 Yerevan (Armenia); Avagyan, V.Sh. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Babayan, N.S. [Yerevan State University, 0025 Yerevan (Armenia); Institute of Molecular Biology NAS, 0014 Yerevan (Armenia); Buniatyan, V.V. [State Engineering University of Armenia, 0009 Yerevan (Armenia); Dalyan, Y.B.; Davtyan, H.D. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Derdzyan, M.V. [Institute for Physical Research NAS, 0203 Ashtarak (Armenia); Grigoryan, B.A. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Grigoryan, N.E. [A.I. Alikhanyan National Science Laboratory (YerPhi), 0036 Yerevan (Armenia); Hakobyan, L.S. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Haroutyunian, S.G. [Yerevan State University, 0025 Yerevan (Armenia); Harutiunyan, V.V. [A.I. Alikhanyan National Science Laboratory (YerPhi), 0036 Yerevan (Armenia); Hovhannesyan, K.L. [Institute for Physical Research NAS, 0203 Ashtarak (Armenia); Khachatryan, V.G. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Martirosyan, N.W. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); State Engineering University of Armenia, 0009 Yerevan (Armenia); Melikyan, G.S. [State Engineering University of Armenia, 0009 Yerevan (Armenia); and others

    2016-09-01

    The AREAL laser-driven RF gun provides 2–5 MeV energy ultrashort electron pulses for experimental study in life and materials sciences. We report the first experimental results of the AREAL beam application in the study of molecular-genetic effects, silicon-dielectric structures, ferroelectric nanofilms, and single crystals for scintillators.

  13. Gun Shows and Gun Violence: Fatally Flawed Study Yields Misleading Results

    Science.gov (United States)

    Hemenway, David; Webster, Daniel; Pierce, Glenn; Braga, Anthony A.

    2010-01-01

    A widely publicized but unpublished study of the relationship between gun shows and gun violence is being cited in debates about the regulation of gun shows and gun commerce. We believe the study is fatally flawed. A working paper entitled “The Effect of Gun Shows on Gun-Related Deaths: Evidence from California and Texas” outlined this study, which found no association between gun shows and gun-related deaths. We believe the study reflects a limited understanding of gun shows and gun markets and is not statistically powered to detect even an implausibly large effect of gun shows on gun violence. In addition, the research contains serious ascertainment and classification errors, produces results that are sensitive to minor specification changes in key variables and in some cases have no face validity, and is contradicted by 1 of its own authors’ prior research. The study should not be used as evidence in formulating gun policy. PMID:20724672

  14. Encyclopedia of Gun Control and Gun Rights.

    Science.gov (United States)

    Utter, Glenn H.

    This reference volume provides information on gun control and gun rights, including resources on the debate surrounding the Second Amendment and individuals and organizations focused on gun issues, along with statutes, court cases, events, and publications surrounding this current topic. Highlighted are the important organizations and their…

  15. 6D Phase Space Measurements at the SLAC Gun Test Facility

    CERN Document Server

    Schmerge, J

    2003-01-01

    Proposed fourth generation light sources using SASE FELs to generate short pulse, coherent X-rays require demonstration of high brightness electron sources. The Gun Test Facility (GTF) at SLAC was built to test high brightness sources for the proposed Linac Coherent Light Source at SLAC. The GTF is composed of an Sband photocathode rf gun with a Cu cathode, emittance compensating solenoid, single 3 m SLAC linac section and e-beam diagnostic section with a UV drive laser system. The longitudinal emittance exiting the gun has been determined by measuring the energy spectrum downstream of the linac as a function of the linac phase. The e-beam pulse width, correlated and uncorrelated energy spread at the linac entrance have been fit to the measured energy spectra using a least square error fitting routine. The fit yields a pulse width of 2.9 ps FWHM for a 4.3 ps FWHM laser pulse width and 2% rms correlated energy spread with 0.07% rms uncorrelated energy spread. The correlated energy spread is enhanced in the lin...

  16. RF phase focusing in portable x-band, linear accelerators

    International Nuclear Information System (INIS)

    Miller, R.H.; Deruyter, H.; Fowkes, W.R.; Potter, J.M.; Schonberg, R.G.; Weaver, J.N.

    1985-01-01

    In order to minimize the size and weight of the x-ray or neutron source for a series of portable radiographic linear accelerators, the x-ray head was packaged separately from the rest of the system and consists of only the linac accelerating structure, electron gun, built-in target, collimator, ion pump and an RF window. All the driving electronics and cooling are connected to the x-ray head through flexible waveguide, cables, and waterlines. The x-ray head has been kept small and light weight by using the RF fields for radial focusing, as well as for longitudinal bunching and accelerating the beam. Thus, no external, bulky magnetic focusing devices are required. The RF focusing is accomplished by alternating the sign of the phase difference between the RF and the beam and by tapering from cavity to cavity the magnitude of the buncher field levels. The former requires choosing the right phase velocity taper (mix of less than vp = c cavities) and the latter requires the right sizing of the cavity to cavity coupling smiles (irises)

  17. RF phase focusing in portable X-band, linear accelerators

    International Nuclear Information System (INIS)

    Miller, R.H.; Deruyter, H.; Fowkes, W.R.; Potter, J.W.; Schonberg, R.G.; Weaver, J.W.

    1985-01-01

    In order to minimize the size and weight of the x-ray or neutron source for a series of portable radiographic linear accelerators, the x-ray head was packaged separately from the rest of the system and consists of only the linac accelerating structure, electron gun, built-in target, collimator, ion pump and an RF window. All the driving electronics and cooling are connected to the x-ray head through flexible waveguide, cables, and waterlines. The x-ray head has been kept small and light weight by using the RF fields for radial focusing, as well as for longitudinal bunching and accelerating the beam. Thus, no external, bulky magnetic focusing devices are required. The RF focusing is accomplished by alternating the sign of the phase difference between the RF and the beam and by tapering from cavity to cavity the magnitude of the buncher field levels. The former requires choosing the right phase velocity taper (mix of less than vp=c cavities) and the latter requires the right sizing of the cavity to cavity coupling smiles (irises)

  18. RF cavities of CESAR (2 MeV electron storage ring).

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1968-01-01

    RF cavity. There were 2 identical ones: one for stacking (accumulation) procedures; the other for scanning with "empty buckets" (measurement of beam density distribution). Both were operated at h=2 (2nd harmonic of the revolution frequency), i.e. at around 24.4 MHz. Voltage, frequency and phase were programmed with analogue circuits.

  19. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Gulliford, Colwyn, E-mail: cg248@cornell.edu; Bartnik, Adam, E-mail: acb20@cornell.edu; Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca [CLASSE, Cornell University, 161 Synchrotron Drive Ithaca, New York 14853-8001 (United States)

    2015-03-02

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9–9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers.

  20. State Gun Law Environment and Youth Gun Carrying in the United States.

    Science.gov (United States)

    Xuan, Ziming; Hemenway, David

    2015-11-01

    Gun violence and injuries pose a substantial threat to children and youth in the United States. Existing evidence points to the need for interventions and policies for keeping guns out of the hands of children and youth. (1) To examine the association between state gun law environment and youth gun carrying in the United States, and (2) to determine whether adult gun ownership mediates this association. This was a repeated cross-sectional observational study design with 3 years of data on youth gun carrying from US states. The Youth Risk Behavior Survey comprises data of representative samples of students in grades 9 to 12 from biennial years of 2007, 2009, and 2011. We hypothesized that states with more restrictive gun laws have lower rates of youth gun carrying, and this association is mediated by adult gun ownership. State gun law environment as measured by state gun law score. Youth gun carrying was defined as having carried a gun on at least 1 day during the 30 days before the survey. In the fully adjusted model, a 10-point increase in the state gun law score, which represented a more restrictive gun law environment, was associated with a 9% decrease in the odds of youth gun carrying (adjusted odds ratio [AOR], 0.91 [95% CI, 0.86-0.96]). Adult gun ownership mediated the association between state gun law score and youth gun carrying (AOR, 0.94 [ 95% CI, 0.86-1.01], with 29% attenuation of the regression coefficient from -0.09 to -0.07 based on bootstrap resampling). More restrictive overall gun control policies are associated with a reduced likelihood of youth gun carrying. These findings are relevant to gun policy debates about the critical importance of strengthening overall gun law environment to prevent youth gun carrying.

  1. Design of a 120 MeV $H^{-}$ Linac for CERN High-Intensity Applications

    CERN Document Server

    Gerigk, F

    2002-01-01

    The SPL (Superconducting Proton Linac) study at CERN foresees the construction of a 2.2 GeV linac as a high beam-power driver for applications such as a second-generation radioactive ion beam facility or a neutrino superbeam. At the same time such a high-performance injector would both modernize and improve the LHC injection chain. The 120 MeV normal-conducting section of the SPL could be used directly in a preliminary stage for H- charge-exchange injection into the PS Booster. This would increase the proton flux to the CERN experiments while also improving the quality and reliability of the beams for the LHC. The 120 MeV linac consists of a front-end, a conventional Drift Tube Linac (DTL) to 40 MeV and a Cell Coupled Drift Tube Linac (CCDTL) to the full energy. All the RF structures will operate at 352 MHz, using klystrons and RF equipment recovered from the LEP collider. This paper concentrates on the design of the 3 to 120 MeV section. It introduces the design criteria for high-stability beam optics and th...

  2. 125 MeV Si 9+ ion irradiation of calcium phosphate thin film coated by rf-magnetron sputtering technique

    Science.gov (United States)

    Elayaraja, K.; Joshy, M. I. Ahymah; Suganthi, R. V.; Kalkura, S. Narayana; Palanichamy, M.; Ashok, M.; Sivakumar, V. V.; Kulriya, P. K.; Sulania, I.; Kanjilal, D.; Asokan, K.

    2011-01-01

    Titanium substrate was coated with hydroxyapatite by radiofrequency magnetron sputtering (rf-magnetron sputtering) technique and subjected to swift heavy ion (SHI) irradiation of 125 MeV with Si 9+ at fluences of 1 × 10 10, 1 × 10 11 and 1 × 10 12 ions/cm 2. The glancing incidence X-ray diffraction (GIXRD) analysis confirmed the HAp phase of the irradiated film. There was a considerable decrease in crystallinity and particle size after irradiation. In addition, DRS-UV reflectance spectra revealed a decrease in optical band gap ( Eg) from 5.2 to 4.6 eV. Wettability of biocompatible materials plays an important role in biological cells proliferation for tissue engineering, drug delivery, gene transfer and bone growth. HAp thin films irradiated with 1 × 10 11 ions/cm 2 fluence showed significant increase in wettability. While the SHI irradiated samples exhibited enhanced bioactivity, there was no significant variation in cell viability. Surface roughness, pores and average particle size were analyzed by atomic force microscopy (AFM).

  3. The RF system for FELI linac

    International Nuclear Information System (INIS)

    Morii, Y.; Abe, S.; Keishi, T.; Tomimasu, T.

    1995-01-01

    FELI (Free Electron Laser Research Institute, Inc.) is constructing a Free Electron Laser facility covering from 20μm (infra red region) to 0.35μm (ultra violet region), using as S-band linac. The linac consists of a thermoionic 0.5ns-pulse triggered gun, a 714-MHz SHB (subharmonic buncher), a 2856-MHz standing wave type buncher, and seven ETL (Electro-technical Laboratory) type accelerating sections. An RF system of the linac for FELs is required of long pulse duration and high stability. Two S-band klystrons (TOSHIBA E3729) are operated in three pulse operation modes (pulse width and peak RF power): 24μs-24MW, 12.5μs-34MW, 0.5μs-70MW. Each klystron modulator has a PFN consisting of 4 parallel networks of 24 capacitors and 24 variable inductors, and it has a line switch of an optical thyristor stack. An S-band klystron and its modulator were combined to test their performance at the works of NISSIN ELECTRIC Co. in December 1993. These equipments were installed at FELI in January 1994. The design and experimental results of the RF system are summarized in this paper. (author)

  4. Beam dynamics simulation of W-band photo injector

    International Nuclear Information System (INIS)

    Zhu Xiongwei

    2002-01-01

    The authors present a beam dynamics simulation study on 1.6 cell, high gradient W-Band photocathode RF gun which is capable of generating and accelerating 300 pC electron bunch. The design system is made up of 91.392 GHz photocathode RF gun and 91.392 GHz travelling wave linac cells. Based on the numerical simulation using SUPERFISH and PARMELA and the conventional RF linac scaling law, the design will produce 300 pC at 1.74 MeV with bunch length 0.72 ps and normalized transverse emittance 0.55 mm mrad. The authors study the beam dynamics in high frequency and high gradient; due to the high gradient, the ponderomotive effect plays an important role in beam dynamics; the authors found the ponderomotive effect still exist with only the fundamental space harmonics (synchrotron mode) due to the coupling of the transverse and longitudinal motion

  5. W-band accelerator study in KEK

    International Nuclear Information System (INIS)

    Zhu Xiongwei; Nakajima, Kazuhisa

    2001-01-01

    In this paper, we summarize the W-band accelerator study in KEK. We present a design study on W-Band photocathode RF gun which is capable of generating and accelerating 300 pC electron bunch. The design system is made up of 91.392 GHz photocathode RF gun and 91.392 GHz traveling wave linac cells. Based on the numerical simulation using SUPERFISH and PARMELA and the conventional RF linac scaling law, the design will produce 300 pC at 1.74 MeV with bunch length 0.72 ps and normalized transverse emittance 0.55 mm mrad. We study the beam dynamics in high frequency and high gradient; due to the high gradient, the pondermotive effect plays an important role in beam dynamics; we found the pondermotive effect still exist with only the fundamental space harmonics (synchrotron mode) due to the coupling of the transverse and longitudinal motion

  6. Beam Dynamics Studies for a Laser Acceleration Experiment

    CERN Document Server

    Spencer, James; Noble, Robert; Palmer, Dennis T; Siemann, Robert

    2005-01-01

    The NLC Test Accelerator at SLAC was built to address various beam dynamics issues for the Next Linear Collider. An S-Band RF gun, originally proposed for the NLCTA, is being installed together with a large-angle extraction line at 60 MeV. This is followed by a matching section, final focus and buncher for the laser acceleration experiment, E163. The laser-electron interaction area is followed by a broad range, high resolution spectrometer (HES) for electron bunch analysis. The RF gun is discussed in another paper. We discuss only the beam dynamics and high resolution analysis system at 6 MeV based on using Parmela and high-order Transport for bunch charges from 50 pC to 1 nC. Beyond the diagnostics, this system uses the emittance compensating solenoids and a low energy, high resolution spectrometer (LES) to help tune for best operating point and match to the linac. Optical symmetries in the design of the 25.5° extraction line provide 1:1 phase space transfer without linear dispersion or use of sextu...

  7. Operation of the APEX photoinjector accelerator at 40 MeV

    International Nuclear Information System (INIS)

    Feldman, D.W.; Bender, S.C.; Byrd, D.A.; Carlsten, B.E.; Early, J.W.; Feldman, R.B.; Goldstein, J.C.; Martineau, R.L.; O'Shea, P.G.; Pitcher, E.J.; Schmitt, M.J.; Stein, W.E.; Wilke, M.D.; Zaugg, T.J.

    1992-01-01

    We have successfully operated the photoinjector and rf linear accelerator for the Los Alamos APEX free electron laser (FEL) at design energy, average macropulse current, and emittance. The accelerator, which operates at 1.3 GHz, consists of a 6 MeV photoinjector and three standing-wave structures with a total beam energy of 40 MeV. This paper presents performance characteristics of the APEX system. The results show that this technology is capable of providing reliable, high-peak current, ultra-high brightness electron beams

  8. Accelerator and RF system development for NLC

    International Nuclear Information System (INIS)

    Vlieks, A.E.; Callin, R.; Deruyter, H.; Early, R.; Fant, K.S.; Farkas, Z.D.; Fowkes, W.R.; Galloway, C.; Hoag, H.A.; Koontz, R.

    1993-01-01

    An experimental station for an X-band Next Linear Collider has been constructed at SLAC. This station consists of a klystron and modulator, a low-loss waveguide system for rf power distribution, a SLED II pulse-compression and peak-power multiplication system, acceleration sections and beam-line components (gun, pre-buncher, pre-accelerator, focussing elements, and spectrometer). An extensive program of experiments to evaluate the performance of all components is underway. The station is described in detail in this paper, and results to date are presented

  9. A technique for determining electron losses for a 20 MeV microtron

    International Nuclear Information System (INIS)

    Harisha, P.; Nayak, A.R.; Mehta, S.K.; Soni, H.C.; Siddappa, K.

    1999-01-01

    A 22 orbit, 20 MeV electron microtron is used as a preaccelerator for the 700 MeV booster synchrotron at INDUS-1, CAT, Indore. Estimation of electron losses at the RF cavity from each orbit is important in obtaining the radiation doses from the body of the microtron. Radiation mapping of the microtron can be used to estimate these loss terms as an alternate to actual measurement by using a measuring probe. (author)

  10. Electromagnetic Guns versus Conventional Guns - a performance comparison

    NARCIS (Netherlands)

    Reus, N.M. de; Weijden, J. van der

    1993-01-01

    Performance improvement is one of the key issues of Electromagnetic gun systems compared to conventional gun systems. Due to higher muzzle velocities, the gun's fire control computer will be able to predict the target's future position more accurately because prediction time will be smaller. In this

  11. Dynamics of RF captured cooled proton beams

    International Nuclear Information System (INIS)

    Kells, W.; Mills, F.

    1983-01-01

    In the course of electron cooling experiments at the Electron Cooling Ring (ECR) at Fermilab, several peculiar features of the longitudinal phase space of cold protons (200 MeV) captured in RF buckets were observed. Here we present the experimental facts, present a simple theory, and summarize computer simulation results which support the theory and facts

  12. Optimization of Beam Transmission of PAL-PNF Electron Linac

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. G.; Kim, S. K.; Kim, E. A. [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2012-05-15

    The PNF (Pohang Neutron Facility) electron Linac is providing converted neutrons and photons from electron beams to users for nuclear physics experiments and high energy gamma-ray exposures. This linac is capable of producing 100 MeV electron beams with a beam current of pulsed 100 mA. The pulse length is 2 {mu}s and the pulse repetition rate is typically 30 Hz. This linac consists of two SLAC-type S-band accelerating columns and the thermionic RF gun. They are powered by one klystron and the matching pulse modulator. The electron beams emitted from the RF gun are bunched as they pass through the alpha magnet and are injected into the accelerating column thereafter. In this paper, we discuss procedures and results of the beam transmission optimization with technical details of the accelerator system. We also briefly discuss the future upgrade plan to obtain short-pulse or electron beams for neutron TOF experiments by adopting a triode type thermionic DC electron gun

  13. SISAK liquid-liquid extraction experiments with preseparated 257Rf

    International Nuclear Information System (INIS)

    Omtvedt, Jon Petter; Alstad, J.; Breivik, H.; Dyve, J.E.; Eberhardt, K.; Folden III, C.M.; Ginter, T.; Gregorich, K.E.; Hult, E.A.; Johansson, M.; Kirbach, U.W.; Lee, D.M.; Mendel, M.; Nahler, A.; Ninov, V.; Omtvedt, L.A.; Patin, J.B.; Skarnemark, G.; Stavsetra, L.; Sudowe, R.; Wiehl, N.; Wierczinski, B.; Wilk, P.A.; Zielinski, P.M.; Kratz, J.V.; Trautmann, N.; Nitsche, H.; Hoffman, D.C.

    2002-01-01

    The SISAK liquid-liquid extraction system was used to extract 4.0-s 257Rf. The 257Rf was produced in the reaction 208Pb(50Ti, 1n)257Rf with 237-MeV beam energy on target, separated in the Berkeley Gas-filled Separator (BGS) and transferred to a gas jet using the Recoil Transfer Chamber (RTC). The activity delivered by the gas jet was dissolved in 6-M HNO3 and Rf was extracted into 0.25-M dibutyl-phosphoric acid in toluene. This was the first time a transactinide, i.e., an element with Z >= 104, was extracted and unequivocally identified by the SISAK system. Thus, this pilot experiment demonstrates that the fast liquid-liquid extraction system SISAK, in combination with liquidscintillation detectors, can be used for investigating the chemical properties of the transactinides. The extraction result is in accordance with the behaviour shown by the Rf group IV homologues Zr and Hf

  14. The Effects of Gun Ownership Rates and Gun Control Laws on Suicide Rates

    OpenAIRE

    Mark Gius

    2011-01-01

    The purpose of the present study is to determine the effects of gun control laws and gun ownership rates on state-level suicide rates. Using the most recent data on suicide rates, gun control measures, and gun ownership rates, the results of the present study suggest that states that require handgun permits have lower gun-related suicide rates, and states that have higher gun ownership rates have higher gun-related suicide rates. Regarding non-gun suicides, results suggest that stricter gun c...

  15. Synchronization of RF fields of Indus 2 RF cavities for proper injection and acceleration of beam

    International Nuclear Information System (INIS)

    Tiwari, Nitesh; Bagduwal, Pritam S.; Lad, M.; Hannurkar, P.R.

    2009-01-01

    Indus-2 is a synchrotron light source with designed parameters of 2.5 GeV, 300 mA beam current. Four RF cavities fed from four RF power stations have been used for beam acceleration from 550 MeV to 2.5 GeV and synchrotron loss compensation. Particle should reach the RF cavity at the proper phase for proper acceptance of the beam in ring. At injection if the phase is not proper the acceptance efficiency reduces and the maximum stored current in the ring also gets limited. Equal contribution from four cavities at every value of current and energy level is very important. Improper phase will cause the imbalance of the power among different station hence will limit maximum stored current and reduce life time of the stored beam. Phase optimization was done in two-step, first at injection to have better injection rate and the stations were operated at the sufficient power for control loops to operate. Then at 2 GeV and 2.5 GeV energy so that beam extracts equal power from all four RF stations. Phase synchronization of all four cavities from injection to 2.5 GeV has already been done at 50 mA stored beam current. If phases of RF fields inside four RF cavities is not proper then beam will not see the total RF voltage as summation of all four cavity gap voltages, hence it is a very important parameter to be optimized and maintained during operation. (author)

  16. Characterization of an SRF gun: a 3D full wave simulation

    International Nuclear Information System (INIS)

    Wang, E.; Ben-Zvi, I.; Wang, J.

    2011-01-01

    We characterized a BNL 1.3GHz half-cell SRF gun is tested for GaAs photocathode. The gun already was simulated several years ago via two-dimensional (2D) numerical codes (i.e., Superfish and Parmela) with and without the beam. In this paper, we discuss our investigation of its characteristics using a three dimensional (3D) full-wave code (CST STUDIO SUITE(trademark)).The input/pickup couplers are sited symmetrically on the same side of the gun at an angle of 180 o . In particular, the inner conductor of the pickup coupler is considerably shorter than that of the input coupler. We evaluated the cross-talk between the beam (trajectory) and the signal on the input coupler compared our findings with published results based on analytical models. The CST STUDIO SUITE(trademark) also was used to predict the field within the cavity; particularly, a combination of transient/eigenmode solvers was employed to accurately construct the RF field for the particles, which also includes the effects of the couplers. Finally, we explored the beam's dynamics with a particle in cell (PIC) simulation, validated the results and compare them with 2D code result.

  17. Gun Safety

    Science.gov (United States)

    Many U.S. households have guns, but they can cause harm if not handled properly. Here are some things you can do to keep yourself and ... safe: Teach children that they shouldn't touch guns and that if they see a gun, to ...

  18. Low power rf system for the ALS Linac

    International Nuclear Information System (INIS)

    Lo, C.C.; Taylor, B.; Lancaster, H.

    1991-05-01

    The Linear Accelerator (Linac) in the Advanced Light Source (ALS) is designed to provide either single or multiple bunchers of 50 MeV electrons for the booster synchrotron. Three cavities are used in the Linac for electron bunching. The two subharmonic bunching cavities operate at 124.914 MHz and 499.654 MHz respectively. The S Band buncher operates at 2.997924 GHz. The low level RF system includes a master signal source, RF burst generators, signal phase control, timing trigger generators and a water temperature control system. The design and performance of the system will be described. 7 refs., 3 figs

  19. A high current, short pulse electron source for wakefield accelerators

    International Nuclear Information System (INIS)

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed

  20. Meqalac Results - Multichannel Rf Acceleration of Nitrogen-Ions to 1 Mev

    NARCIS (Netherlands)

    Wojke, R. G. C.; Bannenberg, J. G.; Vijftigschild, A. J. M.; Giskes, F. G.; Ficke, H. G.; Klein, H.; Thomae, R. W.; Schempp, A.; Weis, T.; van Amersfoort, P. W.; Urbanus, W. H.

    1991-01-01

    In the MEQALAC (Multiple Electrostatic Quadrupole Linear Accelerator) multiple N+ ion beams are accelerated in 32 rf gaps, which are part of a modified interdigital-H-resonator operating at 25 MHz. The transverse focusing of the intense ion beams is achieved by means of sets of miniaturized

  1. Gun and optics calculations for the Fermilab recirculation experiment

    International Nuclear Information System (INIS)

    Kroc, T.

    1997-10-01

    Fermilab is investigating electron cooling to recycle 8 Gev antiprotons recovered from the Tevatron. To do so, it is developing an experiment to recirculate 2 Mev electrons generated by a Pelletron at National Electrostatics Corporation. This paper reports on the optics calculations done in support of that work. We have used the computer codes EGN2 and MacTrace to represent the gun area and acceleration columns respectively. In addition to the results of our simulations, we discuss some of the problems encountered in interfacing the two codes

  2. RF-Based Accelerators for HEDP Research

    CERN Document Server

    Staples, John W; Keller, Roderich; Ostroumov, Peter; Sessler, Andrew M

    2005-01-01

    Accelerator-driven High-Energy Density Physics experiments require typically 1 nanosecond, 1 microcoulomb pulses of mass 20 ions accelerated to several MeV to produce eV-level excitations in thin targets, the "warm dense matter" regime. Traditionally the province of induction linacs, RF-based acceleration may be a viable alternative with recent breakthroughs in accelerating structures and high-field superconducting solenoids. A reference design for an RF-based accelerator for HEDP research is presented using 15 T solenoids and multiple-gap RF structures configured with either multiple parallel beams (combined at the target) or a single beam and a small stacking ring that accumulates 1 microcoulomb of charge. In either case, the beam is ballistically compressed with an induction linac core providing the necessary energy sweep and injected into a plasma-neutralized drift compression channel resulting in a 1 mm radius beam spot 1 nanosecond long at a thin foil or low-density target.

  3. Design of RF chopper system for improving beam quality in FEL injector with thermionic gun

    International Nuclear Information System (INIS)

    Chen, Q.; Qin, B.; Tan, P.; Hu, T.; Pei, Y.; Zhang, F.

    2014-01-01

    For a linac-based Free Electron Laser (FEL), good beam quality largely contributes to the success of the final radiation. An imperfection confronted with the HUST THz-FEL facility is the long beam tail that emerges in the electron gun and exists through the whole beam line. This paper proposes to deploy a chopper system after the electron gun to truncate the beam tails before they enter into the linac. Physical dimensions of the chopper cavity are discussed in detail and we have developed and derived new analytical expressions applying to all frequencies for the optimal design. Also, technical issues of the cavity are considered. Beam dynamic simulation is performed to examine the truncation effect and the results show that more than 78% of the beam tail can be removed effectively, while preserving the emittance and energy spread in acceptable level

  4. Status of the SPARC Project

    CERN Document Server

    Serafini, Luca; Alessandria, Franco; Bacci, Alberto; Bellaveglia, Marco; Bertolucci, Sergio; Biagini, Maria; Boni, Roberto; Boscolo, Ilario; Boscolo, Manuela; Broggi, Francesco; Castellano, Michele; Catani, Luciano; Chiadroni, Enrica; Cialdi, Simone; Cianchi, Alessandro; Ciocci, Franco; Clozza, Alberto; Dattoli, Giuseppe; De Martinis, Carlo; Di Pirro, Giampiero; Dipace, Antonio; Doria, Andrea; Dowell, David; Drago, Alessandro; Emma, Paul; Esposito, Adolfo; Ferrario, Massimo; Ficcadenti, L; Filippetto, Daniele; Flora, F; Fusco, Valeria; Gabrielli, E; Gallerano, Gian P; Gallo, Alessandro; Gatti, Giancarlo; Ghigo, Andrea; Giannessi, Luca; Giove, Dario; Giovenale, Emilio; Guiducci, Susanna; Incurvati, Maurizio; Levi, Decio; Ligi, Carlo; Limborg-Deprey, Cecile; Marcellini, Fabio; Maroli, Cesare; Mattioli, Mario; Mauri, Marco; Medici, G; Messina, Giovanni; Migliorati, Mauro; Mostacci, Andrea; Musumeci, Pietro; Nisoli, Mauro; Ottaviani, P L; Pagnutti, Simonetta; Palumbo, Luigi; Parisi, Giovanni; Pellegrino, Luigi; Pelliccia, Daniele; Petrarca, Massimo; Petrillo, Vittoria; Picardi, Luigi; Preger, Miro; Quattromini, Marcello; Renieri, Alberto; Ricci, Ruggero; Rome, Massimiliano; Ronci, G; Ronsivalle, Concetta; Rosenzweig, James E; Rosetti, Maurizio; Sabia, Elio; Sanelli, Claudio; Sassi, Mauro; Serio, Mario; Sgamma, Francesco; Spataro, Bruno; Stagira, Salvatore; Stecchi, Alessandro; Stella, Angelo; Tazzari, Sergio; Tazzioli, Franco; Thomas Palmer, Dennis; Torre, A; Vaccarezza, Cristina; Vescovi, Mario; Vicario, Carlo; Zucchini, Alberto; de Silvestri, Sandro

    2005-01-01

    The SPARC project has entered its installation phase at INFN-LNF: its main goal is the promotion of an R&D activity oriented to the development of a high brightness photoinjector to drive SASE-FEL experiments. The design of the 150 MeV photoinjector has been completed and the construction of its main components is in progress, as well as the design of the 12 m undulator. In this paper we will report on the installation and test of some major components, like the Ti:Sa laser system to drive the photo-cathode, the RF gun, the RF power system, as well as some test results on the RF deflector and 4th harmonic X-band cavity prototypes. Advancements in the control and beam diagnostics systems will also be reported, in particular on the emittance-meter device for beam emittance measurements in the drift space downstream the RF gun. Recent results on laser pulse shaping, obtained with two alternative techniques (DAZZLER and Liquid Crystal Mask), show the feasibility of producing 10 ps flat-top laser pulses in the...

  5. Magnetized gun experiments

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Henins, I.; Hoida, H.W.; Marshall, J.; Sherwood, A.R.

    1981-01-01

    In the Los Alamos Magnetized Gun Experiment we are attempting to produce a compact torus in a manner similar to an earlier experiment of Alfven. In our experiment a solenoidal coil is placed inside the inner electrode of a coaxial plasma gun. This coil produces an axial magnetic field inside the inner electrode which diverges and becomes a largely radial field in front of the gun muzzle. The idea is that when the gun is fired, the plasma escaping from the gun stretches these radial fields along the axial direction away from the gun, and these field lines can reconnect behind the plasma forming the poloidal field of the compact torus. The magnetic field generated by the gun current becomes the toroidal field and the major axis of the compact torus will be the same as the axis of the coaxial gun. Recent interest in this possible method of compact torus generation was stimulated by C. Hartman, and the approach is also being pursued in the field-reversed plasma gun experiment at LLL

  6. RF control hardware design for CYCIAE-100 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Fu, Xiaoliang; Ji, Bin; Zhao, Zhenlu; Zhang, Tianjue; Li, Pengzhan; Wei, Junyi; Xing, Jiansheng; Wang, Chuan

    2015-11-21

    The Beijing Radioactive Ion-beam Facility project is being constructed by BRIF division of China Institute of Atomic Energy. In this project, a 100 MeV high intensity compact proton cyclotron is built for multiple applications. The first successful beam extraction of CYCIAE-100 cyclotron was done in the middle of 2014. The extracted proton beam energy is 100 MeV and the beam current is more than 20 μA. The RF system of the CYCIAE-100 cyclotron includes two half-wavelength cavities, two 100 kW tetrode amplifiers and power transmission line systems (all above are independent from each other) and two sets of Low Level RF control crates. Each set of LLRF control includes an amplitude control unit, a tuning control unit, a phase control unit, a local Digital Signal Process control unit and an Advanced RISC Machines based EPICS IOC unit. These two identical LLRF control crates share one common reference clock and take advantages of modern digital technologies (e.g. DSP and Direct Digital Synthesizer) to achieve closed loop voltage and phase regulations of the dee-voltage. In the beam commission, the measured dee-voltage stability of RF system is better than 0.1% and phase stability is better than 0.03°. The hardware design of the LLRF system will be reviewed in this paper.

  7. Gun Safety (For Kids)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Gun Safety KidsHealth / For Kids / Gun Safety What's in ... from guns outside the home. If You Have Guns in Your Home If your parents keep guns ...

  8. CESAR, 2 MeV electron storage ring; construction period; RF cavity.

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1962-01-01

    RF cavity. There were 2 identical ones: one for stacking (accumulation) procedures; the other for scanning with "empty buckets" (measurement of beam density distribution). Both were operated at h=2 (2nd harmonic of the revolution frequency), i.e. at around 24.4 MHz. Voltage, frequency and phase were programmed with analogue circuits.

  9. SISAK liquid-liquid extraction experiments with preseparated {sup 257}Rf

    Energy Technology Data Exchange (ETDEWEB)

    Omtvedt, Jon Petter; Alstad, J.; Breivik, H. [University of Oslo, Department of Chemistry, Oslo (NO)] (and others)

    2002-06-01

    The SISAK liquid-liquid extraction system was used to extract 4.0-s {sup 257}Rf. The {sup 257}Rf was produced in the reaction {sup 208}Pb({sup 50}Ti, 1n){sup 257}Rf with 237-MeV beam energy on target, separated in the Berkeley Gas-filled Separator (BGS) and transferred to a gas jet using the Recoil Transfer Chamber (RTC). The activity delivered by the gas jet was dissolved in 6-M HNO{sub 3} and Rf was extracted into 0.25-M dibutyl-phosphoric acid in toluene. This was the first time a transactinide, i.e., an element with Z{>=}104, was extracted and unequivocally identified by the SISAK system. Thus, this pilot experiment demonstrates that the fast liquid-liquid extraction system SISAK, in combination with liquid-scintillation detectors, can be used for investigating the chemical properties of the transactinides. The extraction result is in accordance with the behaviour shown by the Rf group IV homologues Zr and Hf. (author)

  10. State Gun Policy and Cross-State Externalities: Evidence from Crime Gun Tracing

    OpenAIRE

    Brian Knight

    2013-01-01

    This paper provides a theoretical and empirical analysis of cross-state externalities associated with gun regulations in the context of the gun trafficking market. Using gun tracing data, which identify the source state for crime guns recovered in destination states, we find that firearms in this market tend to flow from states with weak gun laws to states with strict gun laws, satisfying a necessary condition for the existence of cross-state externalities in the theoretical model. We also fi...

  11. Advanced laser technologies for high-brightness photocathode electron gun

    International Nuclear Information System (INIS)

    Tomizawa, Hiromitsu

    2012-01-01

    A laser-excited photocathode RF gun is one of the most reliable high-brightness electron beam sources for XFELs. Several 3D laser shaping methods have been developed as ideal photocathode illumination sources at SPring-8 since 2001. To suppress the emittance growth caused by nonlinear space-charge forces, the 3D cylindrical UV-pulse was optimized spatially as a flattop and temporally as squarely stacked chirped pulses. This shaping system is a serial combination of a deformable mirror that adaptively shapes the spatial profile with a genetic algorithm and a UV-pulse stacker that consists of four birefringent α-BBO crystal rods for temporal shaping. Using this 3D-shaped pulse, a normalized emittance of 1.4 πmm mrad was obtained in 2006. Utilizing laser's Z-polarization, Schottky-effect-gated photocathode gun was proposed in 2006. The cathode work functions are reduced by a laser-induced Schottky effect. As a result of focusing a radially polarized laser pulse with a hollow lens in vacuum, the Z-field (Z-polarization) is generated at the cathode. (author)

  12. Advanced Laser Technologies for High-brightness Photocathode Electron Gun

    Science.gov (United States)

    Tomizawa, Hiromitsu

    A laser-excited photocathode RF gun is one of the most reliable high-brightness electron beam sources for XFELs. Several 3D laser shaping methods have been developed as ideal photocathode illumination sources at SPring-8 since 2001. To suppress the emittance growth caused by nonlinear space-charge forces, the 3D cylindrical UV-pulse was optimized spatially as a flattop and temporally as squarely stacked chirped pulses. This shaping system is a serial combination of a deformable mirror that adaptively shapes the spatial profile with a genetic algorithm and a UV-pulse stacker that consists of four birefringent α-BBO crystal rods for temporal shaping. Using this 3D-shaped pulse, a normalized emittance of 1.4 π mm mrad was obtained in 2006. Utilizing laser's Z-polarization, Schottky-effect-gated photocathode gun was proposed in 2006. The cathode work functions are reduced by a laser-induced Schottky effect. As a result of focusing a radially polarized laser pulse with a hollow lens in vacuum, the Z-field (Z-polarization) is generated at the cathode.

  13. Assembly and RF Tuning of the Linac4 RFQ at CERN

    CERN Document Server

    Rossi, C; Hansen, J; Lallement, JB; Lombardi, AM; Pugnat, D; Vandoni, G; Timmins, M; Vretenar, M; Mathot, S; Piquet, O; Novo, J; Le Noa, Y; France, A; Desmons, M

    2013-01-01

    The fabrication of Linac4 is progressing at CERN with the goal of making a 160 MeV H- beam available to the LHC injection chain as from 2015. In the Linac4 the first stage of beam acceleration, after its extraction from the ion source, is provided by a Radiofrequency Quadrupole accelerator (RFQ), operating at the RF frequency of 352.2 MHz and which accelerates the ion beam to the energy of 3 MeV. The RFQ, made of three modules, one meter each, is of the four-vane kind, has been designed in the frame of a collaboration between CERN and CEA and has been completely machined and assembled at CERN. The paper describes the assembly of the RFQ structure and reports the results of RF low power measurements, in order to achieve the required accelerating field flatness within 1% of the nominal field profile.

  14. Optimization of RF Compressor in the SPARX Injector

    CERN Document Server

    Ronsivalle, Concetta; Ferrario, Massimo; Serafini, Luca; Spataro, Bruno

    2005-01-01

    The SPARX photoinjector consists in a rf gun injecting into three SLAC accelerating sections, the first one operating in the RF compressor configuration in order to achieve higher peak current. A systematic study based on PARMELA simulations has been done in order to optimize the parameters that influence the compression also in view of the application of this system as injector of the so called SPARXINO 3-5 nm FEL test facility. The results of computations show that peak currents at the injector exit up to kA level are achievable with a good control of the transverse and longitudinal emittance by means of a short SW section operating at 11424 MHz placed before the first accelerating section. Some working points in different compression regimes suitable for FEL experiments have been selected. The stability of these points and the sensitivity to various types of random errors are discussed.

  15. Modeling and design of an X-band rf photoinjector

    Directory of Open Access Journals (Sweden)

    R. A. Marsh

    2012-10-01

    Full Text Available A design for an X-band rf photoinjector that was developed jointly by SLAC National Accelerator Laboratory (SLAC and Lawrence Livermore National Laboratory (LLNL is presented. The photoinjector is based around a 5.59 cell rf gun that has state-of-the-art features including: elliptical contoured irises; improved mode separation; an optimized initial half cell length; a racetrack input coupler; and coupling that balances pulsed heating with cavity fill time. Radio-frequency and beam dynamics modeling have been done using a combination of codes including PARMELA, HFSS, IMPACT-T, ASTRA, and the ACE3P suite of codes developed at SLAC. The impact of lower gradient operation, magnet misalignment, solenoid multipole errors, beam offset, mode beating, wakefields, and beam line symmetry have been analyzed and are described. Fabrication and testing plans at both LLNL and SLAC are discussed.

  16. Proposed rf system for the fusion materials irradiation test facility

    International Nuclear Information System (INIS)

    Fazio, M.V.; Johnson, H.P.; Hoffert, W.J.; Boyd, T.J.

    1979-01-01

    Preliminary rf system design for the accelerator portion of the Fusion Materials Irradiation Test (FMIT) Facility is in progress. The 35-MeV, 100-mA, cw deuteron beam will require 6.3 MW rf power at 80 MHz. Initial testing indicates the EIMAC 8973 tetrode is the most suitable final amplifier tube for each of a series of 15 amplifier chains operating at 0.5-MW output. To satisfy the beam dynamics requirements for particle acceleration and to minimize beam spill, each amplifier output must be controlled to +-1 0 in phase and the field amplitude in the tanks must be held within a 1% tolerance. These tolerances put stringent demands on the rf phase and amplitude control system

  17. RF Photoelectric injectors using needle cathodes

    International Nuclear Information System (INIS)

    Lewellen, J.W.; Brau, C.A.

    2003-01-01

    Photocathode RF guns, in various configurations, are the injectors of choice for both current and future applications requiring high-brightness electron beams. Many of these applications, such as single-pass free-electron lasers, require beams with high brilliance but not necessarily high charge per bunch. Field-enhanced photoelectric emission has demonstrated electron-beam current density as high as 10 10 A/m 2 , with a quantum efficiency in the UV that approaches 10% at fields on the order of 10 10 V/m. Thus, the use of even a blunt needle holds promise for increasing cathode quantum efficiency without sacrificing robustness. We present an initial study on the use of needle cathodes in photoinjectors to enhance beam brightness while reducing beam charge. Benefits include lower drive-laser power requirements, easier multibunch operation, lower emittance, and lower beam degradation due to charge-dependent effects in the postinjector accelerator. These benefits result from a combination of a smaller cathode emission area, greatly enhanced RF field strength at the cathode, and the charge scaling of detrimental postinjector linac effects, e.g., transverse wakefields and CSR

  18. RF Photoelectric injectors using needle cathodes

    Science.gov (United States)

    Lewellen, J. W.; Brau, C. A.

    2003-07-01

    Photocathode RF guns, in various configurations, are the injectors of choice for both current and future applications requiring high-brightness electron beams. Many of these applications, such as single-pass free-electron lasers, require beams with high brilliance but not necessarily high charge per bunch. Field-enhanced photoelectric emission has demonstrated electron-beam current density as high as 10 10 A/m 2, with a quantum efficiency in the UV that approaches 10% at fields on the order of 10 10 V/m. Thus, the use of even a blunt needle holds promise for increasing cathode quantum efficiency without sacrificing robustness. We present an initial study on the use of needle cathodes in photoinjectors to enhance beam brightness while reducing beam charge. Benefits include lower drive-laser power requirements, easier multibunch operation, lower emittance, and lower beam degradation due to charge-dependent effects in the postinjector accelerator. These benefits result from a combination of a smaller cathode emission area, greatly enhanced RF field strength at the cathode, and the charge scaling of detrimental postinjector linac effects, e.g., transverse wakefields and CSR.

  19. Temporal association between federal gun laws and the diversion of guns to criminals in Milwaukee.

    Science.gov (United States)

    Webster, Daniel W; Vernick, Jon S; Bulzacchelli, Maria T; Vittes, Katherine A

    2012-02-01

    The practices of licensed gun dealers can threaten the safety of urban residents by facilitating the diversion of guns to criminals. In 2003, changes to federal law shielded gun dealers from the release of gun trace data and provided other protections to gun dealers. The 14-month period during which the dealer did not sell junk guns was associated with a 68% reduction in the diversion of guns to criminals within a year of sale by the dealer and a 43% increase in guns diverted to criminals following sales by other dealers. The laws were associated with a 203% increase in the number of guns diverted to criminals within a year of sale by the gun store, which was the focus of this study. Policies which affect gun dealer accountability appeared to influence the diversion of guns to criminals.

  20. The RF system of FELI

    International Nuclear Information System (INIS)

    Morii, Y.; Miyauchi, Y.; Koga, A.; Abe, H.; Keishi, T.; Bessho, I.; Tomimasu, T.

    1994-01-01

    FELI (Free Electron Laser Research Institute, Inc.) is constructing a Free Electron Laser facility covering from 20 μm (infra red region) to 0.35 μm (ultra violet region), using an S-band linac. The building will be completed in November 1993 and installation of the linac will start in December 1993. The linac consists of a thermoionic 0.5ns-pulse triggered gun, a 714 MHz SHB (subharmonic buncher), a 2856 MHz standing wave type buncher, and 7 ETL (Electrotechnical Laboratory) type accelerating sections. An RF system of the linac for FELs is required of long pulse duration and high stability. S-band klystrons (TOSHIBA E3729) are operated in three pulse operation modes (pulse width and peak RF power); 24 μs - 24 MW, 12.5 μs - 34 MW, 0.5 μs - 70 MW. Each klystron modulator has the PFN consisting of 4 parallel networks of 24 capacitors and 24 inductors, and it has a line switch of an optical thyristor stack. These equipments are manufactured now, and an S-band klystron and modulator will be combined to test their performance at the works of NISSIN ELECTRIC Co. in October 1993. (author)

  1. Spin Flipping and Polarization Lifetimes of a 270 MeV Deuteron Beam

    International Nuclear Information System (INIS)

    Morozov, V.S.; Crawford, M.Q.; Etienne, Z.B.; Kandes, M.C.; Krisch, A.D.; Leonova, M.A.; Sivers, D.W.; Wong, V.K.; Yonehara, K.; Anferov, V.A.; Meyer, H.O.; Schwandt, P.; Stephenson, E.J.; Przewoski, B. von

    2003-01-01

    We recently studied the spin flipping of a 270 MeV vertically polarized deuteron beam stored in the IUCF Cooler Ring. We swept an rf solenoid's frequency through an rf-induced spin resonance and observed the effect on the beam's vector and tensor polarizations. After optimizing the resonance crossing rate and setting the solenoid's voltage to its maximum value, we obtained a spin-flip efficiency of about 94 ± 1% for the vector polarization; we also observed a partial spin-flip of the tensor polarization. We then used the rf-induced resonance to measure the vector and tensor polarizations' lifetimes at different distances from the resonance; the polarization lifetime ratio τvector/τtensor was about 1.9 ± 0.4

  2. Spin-flipping a stored polarized proton beam with an rf dipole

    International Nuclear Information System (INIS)

    Blinov, B.B.; Derbenev, Ya.S.; Kageya, T.; Kantsyrev, D.Yu.; Krisch, A.D.; Morozov, V.S.; Sivers, D.W.; Wong, V.K.; Anferov, V.A.; Schwandt, P.; Przewoski, B. von

    2000-01-01

    Frequent polarization reversals, or spin-flips, of a stored polarized high-energy beam may greatly reduce systematic errors of spin asymmetry measurements in a scattering asymmetry experiment. We studied the spin-flipping of a 120 MeV horizontally-polarized proton beam stored in the IUCF Cooler Ring by ramping an rf-dipole magnet's frequency through an rf-induced depolarizing resonance in the presence of a nearly-full Siberian snake. After optimizing the frequency ramp parameters, we used multiple spin-flips to measure a spin-flip efficiency of 86.5±0.5%. The spin-flip efficiency was apparently limited by the rf-dipole's field strength. This result indicates that an efficient spin-flipping a stored polarized beam should be possible in high energy rings such as RHIC and HERA where Siberian snakes are certainly needed and only dipole rf-flipper-magnets are practical

  3. The JHP 200-MeV proton linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takao [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-11-01

    A 200-MeV proton linear accelerator for the Japanese Hadron Project (JHP) has been designed. It consists of a 3-MeV radio-frequency quadrupole linac (RFQ), a 50-MeV drift tube linac (DTL) and a 200-MeV separated-type drift tube linac (SDTL). A frequency of 324 MHz has been chosen for all of the rf structures. A peak current of 30 mA (H{sup -} ions) of 400 {mu}sec pulse duration will be accelerated at a repetition rate of 25 Hz. A future upgrade plan up to 400 MeV is also presented, in which annular-coupled structures (ACS) of 972 MHz are used in an energy range of above 150 or 200 MeV. One of the design features is its high performance for a beam-loss problem during acceleration. It can be achieved by separating the transition point in the transverse motion from that of the longitudinal motion. The transverse transition at a rather low-energy range decreases the effects of space-charge, while the longitudinal transition at a rather high-energy range decreases the effects of nonlinear problems related to acceleration in the ACS. Coupled envelope equations and equipartitioning theory are used for the focusing design. The adoption of the SDTL structure improves both the effective shunt impedance and difficulties in fabricating drift tubes with focusing magnets. An accurate beam-simulation code on a parallel supercomputer was used for confirming any beam-loss problem during acceleration. (author)

  4. Effects of Exposure to Gun Violence in Movies on Children's Interest in Real Guns.

    Science.gov (United States)

    Dillon, Kelly P; Bushman, Brad J

    2017-11-01

    More US children die by accidental gun use than children in other developed countries. One factor that can influence children's interest in guns is exposure to media containing guns. To test whether children who see a movie containing guns will handle a real gun longer and will pull the trigger more times than children who see the same movie not containing guns. One hundred four children aged 8 to 12 years recruited through advertisements were randomly assigned in pairs to watch a 20-minute PG-rated movie containing or not containing guns in a university laboratory. Children then played with toys and games in a room for 20 minutes while being video recorded. A cabinet in the room contained a real (disabled) gun with a sensor counting trigger pulls. Recordings were coded for the time spent holding the gun and in aggressive play. Data were collected from July 15, 2015, through January 1, 2016, and analyzed using generalized estimating equations (Tweedie log-link for time spent holding the gun; Poisson log-link for pulling the trigger). The 2 main outcomes were time spent holding the gun and the number of trigger pulls. Control variables included sex, age, trait aggressiveness, exposure to violent media, interest in guns, and number of guns at home. Among the 104 study participants (62 boys [59.6%] and 42 girls [40.4%]; mean (SD) age, 9.9 [1.5] years), the adjusted median number of trigger pulls among children who saw the movie containing guns was 2.8 (interquartile range [IQR], 0.2-2.8) compared with 0.01 (IQR, 0.01-0.2) among children who saw the movie not containing guns (adjusted odds ratio, 22.3; 95% CI, 6.0-83.4; P gun among children who saw a movie containing guns was 53.1 (IQR, 35.5-53.1) compared with 11.1 (IQR, 10.7-16.7) among children who saw the movie not containing guns (adjusted odds ratio, 3.0; 95% CI, 0.9-9.9; P = .07). Qualitative analyses on 4 pairs from each condition found that children who saw the movie containing guns also played more

  5. Design study of a far-infrared free electron laser with a 20 MeV RF linear accelerator

    International Nuclear Information System (INIS)

    Nakata, S.; Tsukishima, C.; Hifumi, T.; Okuda, S.; Sato, S.; Yosojima, Y.

    1991-01-01

    A FEL in the far-infrared region has been designed using a low energy RF linear accelerator. First we estimate a small signal gain from spontaneous emission using the Madey's theorem. In the calculation following effects are included: an actual field distribution (using a measured magnetic field), beam envelope in the phase space through the undulator, energy spread, and electron beam mis-alignment to the undulator axis. We have developed a code which can simulate three dimensional processes of the electron interaction with multi-mode laser fields in the undulator. From this code we could obtain the time dependent bunching process of electrons and amplification of the laser field. During the calculation we assume an electron beam of 20 MeV, 100 mA with a pulse length of 3 μs, and an undulator of 28 periods, 6 cm periodic length and 2.5 kG peak field. The results from these calculations show that the small-signal gain over 40 % can be obtained, but mis-alignment of the beam severely degrades the gain. The results also show that the output power of several MW can be obtained under the above conditions. Considering the simulation results, a FEL beam line was constructed and the beam size at the undulator was measured. And electrons were focused enough for the FEL experiment. (author)

  6. God and Guns: Examining Religious Influences on Gun Control Attitudes in the United States

    Directory of Open Access Journals (Sweden)

    Stephen M. Merino

    2018-06-01

    Full Text Available Mass shootings in the United States have generated significant media coverage and public concern, invigorating debates over gun control. Media coverage and academic research on gun control attitudes and reactions to mass shootings have paid little attention to the role of religion. Recent research sheds light on the complex relationship between religion and guns, including higher rates of gun ownership and stronger opposition to gun control among white evangelical Protestants. Using nationally representative survey data, this study examines the relationship between religious identity, gun ownership, and support for a range of gun control policies, including proposed remedies for preventing mass shootings. Compared with individuals from other religious traditions, evangelical Protestants are most opposed to stricter gun control laws and enforcement, even with statistical controls for gun ownership and demographic characteristics. Rather, they favor individualistic solutions and putting more emphasis on religious values in their social surroundings. I discuss how these findings reflect the cultural tools evangelical Protestants use to construct their understandings of social problems, including gun violence, and the broader implications for gun policy in the United States.

  7. SRF and RF systems for LEReC Linac

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Polizzo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Veshcherevich, V. [Cornell Univ., Ithaca, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Low Energy RHIC electron Cooling (LEReC) is under development at BNL to improve RHIC luminosity at low energies. It will consist of a short electron linac and two cooling sections, one for blue and one for yellow rings. For the first stage of the project, LEReC-I, we will install a 704 MHz superconducting RF cavity and three normal conducting cavities operating at 9 MHz, 704 MHz and 2.1 GHz. The SRF cavity will boost the electron beam energy up to 2 MeV. The warm cavities will be used to correct the energy spread introduced in the SRF cavity. The paper describes layouts of the SRF and RF systems, their parameters and status.

  8. STREAK CAMERA MEASUREMENTS OF THE APS PC GUN DRIVE LASER

    Energy Technology Data Exchange (ETDEWEB)

    Dooling, J. C.; Lumpkin, A. H.

    2017-06-25

    We report recent pulse-duration measurements of the APS PC Gun drive laser at both second harmonic and fourth harmonic wavelengths. The drive laser is a Nd:Glass-based chirped pulsed amplifier (CPA) operating at an IR wavelength of 1053 nm, twice frequency-doubled to obtain UV output for the gun. A Hamamatsu C5680 streak camera and an M5675 synchroscan unit are used for these measurements; the synchroscan unit is tuned to 119 MHz, the 24th subharmonic of the linac s-band operating frequency. Calibration is accomplished both electronically and optically. Electronic calibration utilizes a programmable delay line in the 119 MHz rf path. The optical delay uses an etalon with known spacing between reflecting surfaces and is coated for the visible, SH wavelength. IR pulse duration is monitored with an autocorrelator. Fitting the streak camera image projected profiles with Gaussians, UV rms pulse durations are found to vary from 2.1 ps to 3.5 ps as the IR varies from 2.2 ps to 5.2 ps.

  9. Gun Theft and Crime.

    Science.gov (United States)

    Cook, Philip J

    2018-06-01

    Some law enforcement officials and other observers have asserted that theft is the primary source of guns to crime. In fact, the role of theft in supplying the guns used in robbery, assault, and murder is unknown, and current evidence provides little guidance about whether an effective program to reduce gun theft would reduce gun violence. The current article analyzes publicly available national data on gun theft together with a unique data set for Chicago. The results tend to support a conclusion that stolen guns play only a minor role in crime. First, publicly available data are used to calculate that thefts are only about 1% of all gun transactions nationwide. Second, an analysis of original data from Chicago demonstrates that less than 3% of crime guns recovered by the police have been reported stolen to the Chicago Police Department (CPD). If a gun is reported stolen, there is a 20% chance that it will be recovered, usually in conjunction with an arrest for illegal carrying. Less than half of those picked up with a stolen gun have a criminal record that includes violent offenses. Third, results from surveys of convicted criminals, both nationally and in Chicago, suggest that it is rare for respondents to have stolen the gun used in their most recent crime. The data on which these results are based have various shortcomings. A research agenda is proposed that would provide more certainty about the role of theft.

  10. Guns and Violence. Current Controversies.

    Science.gov (United States)

    Kim, Henny H., Ed.

    This book focuses on gun violence and gun control, presenting both sides of arguments about firearms ownership and gun control. Each of five chapters poses a question about gun control and provides answers for both sides of the question. The following essays are included: (1) "Gun Violence Is Becoming an Epidemic" (Bob Herbert); (2) "Gun Violence…

  11. Overview and status of RF systems for the SSC Linac

    International Nuclear Information System (INIS)

    Mynk, J.; Grippe, J.; Cutler, R.I.; Rodriguez, R.

    1993-05-01

    The Superconducting Super Collider (SSC) Linear Accelerator (Linac) produces a 600-MeV, 35-μs, H-beam at a 10-Hz repetition rate. The beam is accelerated by a series of RF cavities. These consist of a Radio Frequency Quadrupole (RFQ), two bunchers, and four Drift Tube Linac (DTL) tanks at 427.617 MHz, and two bunchers, nine side-coupled Linac modules, and an energy compressor at 1282.851 MHz. The RFQ amplifier and the low-frequency buncher cavity amplifiers use gridded tubes, while the other cavities use klystron amplifier systems. The RF control system consists of a reference line and cavity feedback and feedforward loops for each amplifier. The RF amplifier system for each of these accelerator cavities is described, and the current status of each system is presented

  12. Development of an automatic frequency control system for an X-band (=9300 MHz) RF electron linear accelerator

    Science.gov (United States)

    Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad

    2017-05-01

    KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per

  13. Development of an automatic frequency control system for an X-band (=9300 MHz) RF electron linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sungsu, E-mail: sscha@kaeri.re.kr [Nuclear Data Center, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057 (Korea, Republic of); Kim, Yujong; Lee, Byung Cheol [Nuclear Data Center, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057 (Korea, Republic of); Park, Hyung Dal [Radiation Technology eXcellence(RTX), Daejeon 34025 (Korea, Republic of); Lee, Seung Hyun [Department of Energy Science, Sungkyunkwan University(SKKU), Suwon 16419 (Korea, Republic of); Buaphad, Pikad [Nuclear Data Center, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057 (Korea, Republic of); Radiation Technology eXcellence(RTX), Daejeon 34025 (Korea, Republic of); Accelerator and Nuclear Fusion Physical Engineering, University of Science and Technology(UST), Daejeon 34113 (Korea, Republic of)

    2017-05-21

    KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per

  14. Development of an automatic frequency control system for an X-band (=9300 MHz) RF electron linear accelerator

    International Nuclear Information System (INIS)

    Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad

    2017-01-01

    KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per

  15. Electron Source based on Superconducting RF

    Science.gov (United States)

    Xin, Tianmu

    High-bunch-charge photoemission electron-sources operating in a Continuous Wave (CW) mode can provide high peak current as well as the high average current which are required for many advanced applications of accelerators facilities, for example, electron coolers for hadron beams, electron-ion colliders, and Free-Electron Lasers (FELs). Superconducting Radio Frequency (SRF) has many advantages over other electron-injector technologies, especially when it is working in CW mode as it offers higher repetition rate. An 112 MHz SRF electron photo-injector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for electron cooling experiments. The gun utilizes a Quarter-Wave Resonator (QWR) geometry for a compact structure and improved electron beam dynamics. The detailed RF design of the cavity, fundamental coupler and cathode stalk are presented in this work. A GPU accelerated code was written to improve the speed of simulation of multipacting, an important hurdle the SRF structure has to overcome in various locations. The injector utilizes high Quantum Efficiency (QE) multi-alkali photocathodes (K2CsSb) for generating electrons. The cathode fabrication system and procedure are also included in the thesis. Beam dynamic simulation of the injector was done with the code ASTRA. To find the optimized parameters of the cavities and beam optics, the author wrote a genetic algorithm Python script to search for the best solution in this high-dimensional parameter space. The gun was successfully commissioned and produced world record bunch charge and average current in an SRF photo-injector.

  16. Study of silicon tip photocathodes in DC and RF photo-injectors

    International Nuclear Information System (INIS)

    Jaber, Zakaria

    1999-01-01

    Nowadays the electron beams with a high intensity are particularly interesting in research and the applied physics. Producing such beams for which high intensity and low emittance are synonyms with efficiency, means developing new high luminosity electron sources, i.e. the photocathodes. This thesis, essentially experimental, is oriented in this way. After an introduction of Clermont-Ferrand and the LAL of Orsay experimental apparatus where the experiments took place, the chapter one presents the field emission and the photo-field emission. Then, we prove that the quantum efficiency of the photocathodes with silicon tips is higher for wavelengths near 800 nm. This fact is essential because it allows the use of lasers in the fundamental wavelength - Titan-Saphir for instance. In the chapter 2, we remind how the silicon tips are realized and how to improve surface conditions. Procedures and the surface analysis with the SEM and XPS are described. With a Nd-Yag laser, pumped with laser diode setting up with the participation of IRCOM Opticians of Limoges, the photocathode supplied 1 Ampere per pulse at a quantum efficiency of 0.25%. The description of this experiment and the results are the object of the chapter 3. The space charge outside the photocathode space prevents the electrons to go through. The Child-Langmuir formula limits the current with the DC gun at about 30 Ampere. To improve this result we have to use a photo-injector. In chapter 4 we prove that the silicon tip photocathode are compatible with RF gun requirements by PRIAM modeling and low level measure in a cold model of CANDELA RF gun. Technical department of CERN helped us to prepare this very sensitive experiment. (author)

  17. Gun control saves lives

    African Journals Online (AJOL)

    gun control legislation. One study estimated that more than 4 500 lives were saved across five SA cities from 2001 to 2005.[5] Pro-gun interest groups seeking to promote gun ownership and diffusion have attacked these findings, suggesting that stricter gun control was only enacted in 2004 following the publication of ...

  18. Operation of the Brookhaven 200 MeV Linac

    International Nuclear Information System (INIS)

    Fewell, N.M.; LoDestro, V.

    1979-01-01

    During the past three years the 200 MeV linear accelerator has continued to operate at a high level of performance and reliability. The linac output beam current has been limited to 60 mA in order to obtain the maximum rf power tube life without compromising the output performance of the AGS. Despite a reduction in pulse repetition rate, total beam current to the BLIP facility has increased to an average of 300 mA hours/year

  19. Gun Sales. Firearm Facts.

    Science.gov (United States)

    Duker, Laurie, Ed.

    Minimal federal regulations on firearm sales have facilitated the proliferation of guns, gun owners, and gun dealers in the United States. This fact sheet offers data on the growing number of firearm dealers, the relative ease of obtaining and keeping a license to sell guns from the Federal Bureau of Alcohol, Tobacco, and Firearms, the lack of…

  20. High-current Rhodotron for X-ray facility

    International Nuclear Information System (INIS)

    Umezu, Toru; Tsujiura, Yuichiro; Bol, Jean Louis

    2009-01-01

    The Rhodotron is a widely employed high-power industrial accelerator developed and exclusively distributed by IBA. Most early examples of the accelerator were optimized to operate at 10 MeV. A new Rhodotron configuration recently advanced produces a lower-energy higher-current beam dedicated with x-ray to sterilize and enhancement materials. Core elements of this system's evolution include a higher performance RF electron gun (operating range, response control, and cathode lifetime). This operational machine is now producing 100 mA at 7 MeV (700 kW of beam) and treat medical devices, thick cable and pipes with a high efficiency. (author)

  1. Beam dynamics simulations of the injector for a compact THz source

    Science.gov (United States)

    Li, Ji; Pei, Yuan-Ji; Shang, Lei; Feng, Guang-Yao; Hu, Tong-Ning; Chen, Qu-Shan; Li, Cheng-Long

    2014-08-01

    Terahertz radiation has broad application prospects due to its ability to penetrate deep into many organic materials without the damage caused by ionizing radiations. A free electron laser (FEL)-based THz source is the best choice to produce high-power radiation. In this paper, a 14 MeV injector is introduced for generating high-quality beam for FEL, is composed of an EC-ITC RF gun, compensating coils and a travelling-wave structure. Beam dynamics simulations have been done with ASTRA code to verify the design and to optimize parameters. Simulations of the operating mode at 6 MeV have also been executed.

  2. A novel electron gun for inline MRI-linac configurations

    International Nuclear Information System (INIS)

    Constantin, Dragoş E.; Fahrig, Rebecca; Holloway, Lois; Keall, Paul J.

    2014-01-01

    Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered and solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T

  3. Racism, gun ownership and gun control: biased attitudes in US whites may influence policy decisions.

    Science.gov (United States)

    O'Brien, Kerry; Forrest, Walter; Lynott, Dermot; Daly, Michael

    2013-01-01

    Racism is related to policies preferences and behaviors that adversely affect blacks and appear related to a fear of blacks (e.g., increased policing, death penalty). This study examined whether racism is also related to gun ownership and opposition to gun controls in US whites. The most recent data from the American National Election Study, a large representative US sample, was used to test relationships between racism, gun ownership, and opposition to gun control in US whites. Explanatory variables known to be related to gun ownership and gun control opposition (i.e., age, gender, education, income, conservatism, anti-government sentiment, southern vs. other states, political identification) were entered in logistic regression models, along with measures of racism, and the stereotype of blacks as violent. Outcome variables included; having a gun in the home, opposition to bans on handguns in the home, support for permits to carry concealed handguns. After accounting for all explanatory variables, logistic regressions found that for each 1 point increase in symbolic racism there was a 50% increase in the odds of having a gun at home. After also accounting for having a gun in the home, there was still a 28% increase in support for permits to carry concealed handguns, for each one point increase in symbolic racism. The relationship between symbolic racism and opposition to banning handguns in the home (OR1.27 CI 1.03,1.58) was reduced to non-significant after accounting for having a gun in the home (OR1.17 CI.94,1.46), which likely represents self-interest in retaining property (guns). Symbolic racism was related to having a gun in the home and opposition to gun control policies in US whites. The findings help explain US whites' paradoxical attitudes towards gun ownership and gun control. Such attitudes may adversely influence US gun control policy debates and decisions.

  4. RF power source for the compact linear collider test facility (CTF3)

    CERN Document Server

    McMonagle, G; Brown, Peter; Carron, G; Hanni, R; Mourier, J; Rossat, G; Syratchev, I V; Tanner, L; Thorndahl, L

    2004-01-01

    The CERN CTF3 facility will test and demonstrate many vital components of CLIC (Compact Linear Collider). This paper describes the pulsed RF power source at 2998.55 MHz for the drive-beam accelerator (DBA), which produces a beam with an energy of 150 MeV and a current of 3.5 Amps. Where possible, existing equipment from the LEP preinjector, especially the modulators and klystrons, is being used and upgraded to achieve this goal. A high power RF pulse compression system is used at the output of each klystron, which requires sophisticated RF phase programming on the low level side to achieve the required RF pulse. In addition to the 3 GHz system two pulsed RF sources operating at 1.5 GHz are being built. The first is a wide-band, low power, travelling wave tube (TWT) for the subharmonic buncher (SHB) system that produces a train of "phase coded" subpulses as part of the injector scheme. The second is a high power narrow band system to produce 20 MW RF power to the 1.5 GHz RF deflectors in the delay loop situate...

  5. Important requirements for RF generators for Accelerator-Driven Transmutation Technologies (ADTT)

    International Nuclear Information System (INIS)

    Lynch, M.T.; Tallerico, P.J.; Lawrence, G.P.

    1994-01-01

    All Accelerator-Driven Transmutation applications require very large amounts of RF Power. For example, one version of a Plutonium burning system requires an 800-MeV, 80-mA, proton accelerator running at 100% duty factor. This accelerator requires approximately 110-MW of continuous RF power if one assumes only 10% reserve power for control of the accelerator fields. In fact, to minimize beam spill, the RF controls may need as much as 15 to 20% of reserve power. In addition, unlike an electron accelerator in which the beam is relativistic, a failed RF station can disturb the synchronism of the beam, possibly shutting down the entire accelerator. These issues and more lead to a set of requirements for the RF generators which are stringent, and in some cases, conflicting. In this paper, we will describe the issues and requirements, and outline a plan for RF generator development to meet the needs of the Accelerator-Driven Transmutation Technologies. The key issues which will be discussed include: operating efficiency, operating linearity, effect on the input power grid, bandwidth, gain, reliability, operating voltage, and operating current

  6. Physics design of a 70 MeV high intensity cyclotron, CYCIAE-70

    International Nuclear Information System (INIS)

    Zhang Tianjue; An Shizhong; Wang Chuan; Yin Zhiguo; Wei Sumin; Li Ming; Yang Jianjun; Ji Bin; Jia Xianlu; Zhong Junqing; Yang Fang

    2011-01-01

    This paper introduces the physics design of a 70 MeV high intensity cyclotron at China Institute of Atomic Energy (CIAE), which is aimed for multiple uses including radioactive ion-beam (RIB) production. The machine adopts a compact structure of four straight sectors, capable of accelerating two kinds of beams, i.e. H − and D − . The proton and deuteron beam will be extracted in dual opposite directions by charge exchange stripping devices. The energy of the extracted proton beam is in the range 35–70 MeV with an intensity up to 700 μA. The corresponding values for the deuteron beam are 18–33 MeV and 40 μA. This paper will present the main characteristics and parameters in the design of the 70 MeV cyclotron, the results of the basic beam dynamics study, as well as the physics in the design of the different systems, including the main magnet, RF, injection and extraction systems, etc.

  7. Calculation of wake field and couple impedance of upgraded and old RF cavity in Hefei electron storage ring

    International Nuclear Information System (INIS)

    Xu Hongliang; Wang Lin; Sun Baogen; Li Weimin; Liu Jinying; He Duohui

    2003-01-01

    The phase II upgrading project of Hefei 800 MeV electron storage ring is being done, and the important component of the project, the RF cavity, will be finished soon. The old RF cavity with many disadvantages will be replaced by the new one. To estimate the effect of RF cavity coupling impedance to storing bunch intensity fully, the wake potential and the broad band couple impedance of RF cavity were calculated with MAFIA program. And the calculation results were compared between new and old cavity, it is found that the impedance of the new is bigger than that of the old

  8. Racism, gun ownership and gun control: biased attitudes in US whites may influence policy decisions.

    Directory of Open Access Journals (Sweden)

    Kerry O'Brien

    Full Text Available OBJECTIVE: Racism is related to policies preferences and behaviors that adversely affect blacks and appear related to a fear of blacks (e.g., increased policing, death penalty. This study examined whether racism is also related to gun ownership and opposition to gun controls in US whites. METHOD: The most recent data from the American National Election Study, a large representative US sample, was used to test relationships between racism, gun ownership, and opposition to gun control in US whites. Explanatory variables known to be related to gun ownership and gun control opposition (i.e., age, gender, education, income, conservatism, anti-government sentiment, southern vs. other states, political identification were entered in logistic regression models, along with measures of racism, and the stereotype of blacks as violent. Outcome variables included; having a gun in the home, opposition to bans on handguns in the home, support for permits to carry concealed handguns. RESULTS: After accounting for all explanatory variables, logistic regressions found that for each 1 point increase in symbolic racism there was a 50% increase in the odds of having a gun at home. After also accounting for having a gun in the home, there was still a 28% increase in support for permits to carry concealed handguns, for each one point increase in symbolic racism. The relationship between symbolic racism and opposition to banning handguns in the home (OR1.27 CI 1.03,1.58 was reduced to non-significant after accounting for having a gun in the home (OR1.17 CI.94,1.46, which likely represents self-interest in retaining property (guns. CONCLUSIONS: Symbolic racism was related to having a gun in the home and opposition to gun control policies in US whites. The findings help explain US whites' paradoxical attitudes towards gun ownership and gun control. Such attitudes may adversely influence US gun control policy debates and decisions.

  9. Racism, Gun Ownership and Gun Control: Biased Attitudes in US Whites May Influence Policy Decisions

    Science.gov (United States)

    O’Brien, Kerry; Forrest, Walter; Lynott, Dermot; Daly, Michael

    2013-01-01

    Objective Racism is related to policies preferences and behaviors that adversely affect blacks and appear related to a fear of blacks (e.g., increased policing, death penalty). This study examined whether racism is also related to gun ownership and opposition to gun controls in US whites. Method The most recent data from the American National Election Study, a large representative US sample, was used to test relationships between racism, gun ownership, and opposition to gun control in US whites. Explanatory variables known to be related to gun ownership and gun control opposition (i.e., age, gender, education, income, conservatism, anti-government sentiment, southern vs. other states, political identification) were entered in logistic regression models, along with measures of racism, and the stereotype of blacks as violent. Outcome variables included; having a gun in the home, opposition to bans on handguns in the home, support for permits to carry concealed handguns. Results After accounting for all explanatory variables, logistic regressions found that for each 1 point increase in symbolic racism there was a 50% increase in the odds of having a gun at home. After also accounting for having a gun in the home, there was still a 28% increase in support for permits to carry concealed handguns, for each one point increase in symbolic racism. The relationship between symbolic racism and opposition to banning handguns in the home (OR1.27 CI 1.03,1.58) was reduced to non-significant after accounting for having a gun in the home (OR1.17 CI.94,1.46), which likely represents self-interest in retaining property (guns). Conclusions Symbolic racism was related to having a gun in the home and opposition to gun control policies in US whites. The findings help explain US whites’ paradoxical attitudes towards gun ownership and gun control. Such attitudes may adversely influence US gun control policy debates and decisions. PMID:24204867

  10. Cancellation of RF Coupler-Induced Emittance Due to Astigmatism

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, David H.; /SLAC

    2016-12-11

    It is well-known that the electron beam quality required for applications such as FEL’s and ultra-fast electron diffraction can be degraded by the asymmetric fields introduced by the RF couplers of superconducting linacs. This effect is especially troublesome in the injector where the low energy beam from the gun is captured into the first high gradient accelerator section. Unfortunately modifying the established cavity design is expensive and time consuming, especially considering that only one or two sections are needed for an injector. Instead, it is important to analyze the coupler fields to understand their characteristics and help find less costly solutions for their cancellation and mitigation. This paper finds the RF coupler-induced emittance for short bunches is mostly due to the transverse spatial sloping or tilt of the field, rather than the field’s time-dependence. It is shown that the distorting effects of the coupler can be canceled with a static (DC) quadrupole lens rotated about the z-axis.

  11. Optics and design of the fringe field monochromator for a Schottky field emission gun

    International Nuclear Information System (INIS)

    Mook, H.W.; Kruit, P.

    1999-01-01

    For the improvement of high-resolution electron energy loss spectroscopy a new electron source monochromator, based on the Wien filter principle, is presented. In the fringe field monochromator the electric and magnetic filter fields are tightly enclosed by field clamps to satisfy the Wien condition, E=vB. The whole monochromator including the 150 nm energy selection slits (Nanoslits) is positioned in the gun area. Its total length is only 42 mm. Using electron trajectory simulation through the filter fields the dispersion and aberrations are determined. The parasitic astigmatism of the gun lens needs to be corrected using an electrostatic quadrupole field incorporated in the filter. Estimations of the influence of filter electrode misalignment show that at least six filter electrodes must be used to loosen the alignment demands sufficiently. Using theoretical estimations of the Coulomb interaction the final energy resolution, beam brightness and current are predicted. For a Schottky field emission electron gun with typical brightness of 10 8 A/sr m 2 V the monochromator is expected to produce a 50 meV 1 nA beam with a brightness of 10 7

  12. 120 MeV Ag ion induced effects in Au/HfO2/Si MOSCAPs

    Science.gov (United States)

    Manikanthababu, N.; Prajna, K.; Pathak, A. P.; Rao, S. V. S. Nageswara

    2018-05-01

    HfO2/Si thinfilms were deposited by RF sputtering technique. 120 MeV Ag ion irradiation has been used to study the electrical properties of Au/HfO2/Si MOSCAPs. SHI (120 MeV Ag) induced annealing, defects creation and intermixing effects on the electrical properties of these systems have been studied. Here, we have observed that the high electronic excitation can cause a significant reduction of leakage currents in these MOSCAP devices. Various quantum mechanical tunneling phenomenon has been observed from the I-V characteristics.

  13. Electron guns for accelerators

    International Nuclear Information System (INIS)

    Rangarajan, L.M.; Mahadevan, S.; Ramamurthi, S.S.

    1995-01-01

    The high voltage, high current electron guns developed elsewhere for Linacs are based on cathode pulsing with direct emitting cathodes. Our grid pulsed triode gun employs indirect emitting cathode pellet under electron bombardment or a direct cathode emitter. Electron beam from the gun is injected to the accelerator guide at 40 kV and pulse duration is 2.8μsec. The gun is limited to axially symmetric geometry and electron optical design is optimized by computer programming. The gun with a water cooled Faraday cup is connected to a vacuum system comprising of a sputter ion pump and sorption pump. Working pressure is 1x10 -6 Pa. Gun is designed to be baked as an assembly at temperatures of 400 degC while vacuum processing. Materials are therefore restricted to refractory metals, SS, OFHC copper and all the electrodes are housed inside a ceramic tube. Lower Z graphite is used as a base material of Faraday cup. Grid is non-intercepting modulator anode, a new feature introduced, as compared to meshed grid system by others. CAT gun delivers 160 mA current pulses at 40 kV and its working characteristics such as perveance, emittance and beam radius compare well with SLAC and Hermosa guns. The above guns can be used for electron beam machines such as medical Linacs, industrial accelerators and EB welding equipment. (author). 2 refs., 2 figs

  14. The CLIC Test Facility (CTF3) which allowed the first electron beam recombination in order to multiply the RF frequency from 3 GHz up to 15 GHz.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 0210005_11: The CTF3 linac accelerates an electron beam up to 350 MeV. Photo 0210005_1: At the front, the yellow dipole is used for the spectrometer line. At the back, a doublet of blue quadrupole for the matching. Photo 0210005_03: The CTF3 transfer line between the electron linac and the isochronous ring. Photo 0210005_04: One arc of the EPA isochronous ring. Photo 0210005_06: The CTF3 bunching system. The first RF wave guide feeds the Pre-Buncher while the second RF wave guide feeds the Buncher. They provide a bunched electron beam at 4 MeV. The blue magnet is a solenoid around the Buncher. Photo 0210005_07: A LIL accelerating structure used for CTF3. It is 4.5 meters long and provides an energy gain of 45 MeV. One can see 3 quadrupoles around the RF structure.

  15. Carbon plasma gun

    International Nuclear Information System (INIS)

    Mendel, C.W. Jr.; Zagar, D.M.; Mills, G.S.; Humphries, S. Jr.; Goldstein, S.A.

    1980-01-01

    A family of plasma guns supplying highly ionized carbon plasma is described. The guns are simple and inexpensive to construct and are pulsed by small capacitor banks of a few hundred joules. The output consists of 10 17 --10 18 multiply ionized carbon ions traveling at about 10 7 cm/s. Neutral output is very low and arrives well after the ionized carbon. The guns and pulsers are very reliable

  16. Carbon Nanotube Electron Gun

    Science.gov (United States)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  17. Simulation and characterization of the RF system and global stability analysis at the REGAE linear electron accelerator

    International Nuclear Information System (INIS)

    Mayet, Frank

    2012-12-01

    LAOLA (LAboratory for Laser- and beam-driven plasma Acceleration), is a collaboration between groups from DESY and the University of Hamburg. Its mission is to complement basic research in the relatively new field of plasma wakefield acceleration (PWA) by an explicit combination with DESY's conventional, modern accelerators. The linear electron accelerator REGAE is designed to produce sub 10 fs low charge electron bunches with ultra-low emittance at a repetition rate of 50 Hz. The planned experiments include femtosecond electron diffraction (R.J. Dwayne Miller), as well as the probing of laser induced plasma wakefields with well characterized bunches (LAOLA). They all require high bunch time of flight stability down to 10 fs. The REGAE machine consists of two RF cavities, both fed by a single klystron. While the first one - the gun cavity - is used for acceleration of the electrons, the second one - the buncher cavity - can be used to reduce the electron bunch length. This scheme only works for a specific RF phase relation between the two cavities. This thesis is split into two parts. In the first one the implications of the unique two cavity design on day-to-day machine operation are analyzed. To this end an analytical model of the RF system is developed, which is necessary for understanding how to individually adjust the cavity phases. In the second part the influence of the setup on time of flight stability is discussed with an emphasis on phase jitter compensation. RF phase stability measurements reveal that the current machine setup allows for a time of flight stability down to 50 fs right after the gun.

  18. Simulation and characterization of the RF system and global stability analysis at the REGAE linear electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mayet, Frank

    2012-12-15

    LAOLA (LAboratory for Laser- and beam-driven plasma Acceleration), is a collaboration between groups from DESY and the University of Hamburg. Its mission is to complement basic research in the relatively new field of plasma wakefield acceleration (PWA) by an explicit combination with DESY's conventional, modern accelerators. The linear electron accelerator REGAE is designed to produce sub 10 fs low charge electron bunches with ultra-low emittance at a repetition rate of 50 Hz. The planned experiments include femtosecond electron diffraction (R.J. Dwayne Miller), as well as the probing of laser induced plasma wakefields with well characterized bunches (LAOLA). They all require high bunch time of flight stability down to 10 fs. The REGAE machine consists of two RF cavities, both fed by a single klystron. While the first one - the gun cavity - is used for acceleration of the electrons, the second one - the buncher cavity - can be used to reduce the electron bunch length. This scheme only works for a specific RF phase relation between the two cavities. This thesis is split into two parts. In the first one the implications of the unique two cavity design on day-to-day machine operation are analyzed. To this end an analytical model of the RF system is developed, which is necessary for understanding how to individually adjust the cavity phases. In the second part the influence of the setup on time of flight stability is discussed with an emphasis on phase jitter compensation. RF phase stability measurements reveal that the current machine setup allows for a time of flight stability down to 50 fs right after the gun.

  19. Intelligent low-level RF system by non-destructive beam monitoring device for cyclotrons

    Science.gov (United States)

    Sharifi Asadi Malafeh, M. S.; Ghergherehchi, M.; Afarideh, H.; Chai, J. S.; Yoon, Sang Kim

    2016-04-01

    The project of a 10 MeV PET cyclotron accelerator for medical diagnosis and treatment was started at Amirkabir University of Technology in 2012. The low-level RF system of the cyclotron accelerator is designed to stabilize acceleration voltage and control the resonance frequency of the cavity. In this work an Intelligent Low Level Radio Frequency Circuit or ILLRF, suitable for most AVF cyclotron accelerators, is designed using a beam monitoring device and narrow band tunable band-pass filter. In this design, the RF phase detection does not need signal processing by a microcontroller.

  20. Gun Violence, Mental Illness, And Laws That Prohibit Gun Possession: Evidence From Two Florida Counties.

    Science.gov (United States)

    Swanson, Jeffrey W; Easter, Michele M; Robertson, Allison G; Swartz, Marvin S; Alanis-Hirsch, Kelly; Moseley, Daniel; Dion, Charles; Petrila, John

    2016-06-01

    Gun violence kills about ninety people every day in the United States, a toll measured in wasted and ruined lives and with an annual economic price tag exceeding $200 billion. Some policy makers suggest that reforming mental health care systems and improving point-of-purchase background checks to keep guns from mentally disturbed people will address the problem. Epidemiological research shows that serious mental illness contributes little to the risk of interpersonal violence but is a strong factor in suicide, which accounts for most firearm fatalities. Meanwhile, the effectiveness of gun restrictions focused on mental illness remains poorly understood. This article examines gun-related suicide and violent crime in people with serious mental illnesses, and whether legal restrictions on firearm sales to people with a history of mental health adjudication are effective in preventing gun violence. Among the study population in two large Florida counties, we found that 62 percent of violent gun crime arrests and 28 percent of gun suicides involved individuals not legally permitted to have a gun at the time. Suggested policy reforms include enacting risk-based gun removal laws and prohibiting guns from people involuntarily detained in short-term psychiatric hospitalizations. Project HOPE—The People-to-People Health Foundation, Inc.

  1. Sanoli Gun

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences. Sanoli Gun. Articles written in Proceedings – Mathematical Sciences. Volume 119 Issue 3 June 2009 pp 275-281. Remarks on some Zero-Sum Theorems · S D Adhikari Sanoli Gun Purusottam Rath · More Details Abstract Fulltext PDF. In the present paper, we give a ...

  2. Dark current studies on a normal-conducting high-brightness very-high-frequency electron gun operating in continuous wave mode

    Directory of Open Access Journals (Sweden)

    R. Huang

    2015-01-01

    Full Text Available We report on measurements and analysis of a field-emitted electron current in the very-high-frequency (VHF gun, a room temperature rf gun operating at high field and continuous wave (CW mode at the Lawrence Berkeley National Laboratory (LBNL. The VHF gun is the core of the Advanced Photo-injector Experiment (APEX at LBNL, geared toward the development of an injector for driving the next generation of high average power x-ray free electron lasers. High accelerating fields at the cathode are necessary for the high-brightness performance of an electron gun. When coupled with CW operation, such fields can generate a significant amount of field-emitted electrons that can be transported downstream the accelerator forming the so-called “dark current.” Elevated levels of a dark current can cause radiation damage, increase the heat load in the downstream cryogenic systems, and ultimately limit the overall performance and reliability of the facility. We performed systematic measurements that allowed us to characterize the field emission from the VHF gun, determine the location of the main emitters, and define an effective strategy to reduce and control the level of dark current at APEX. Furthermore, the energy spectra of isolated sources have been measured. A simple model for energy data analysis was developed that allows one to extract information on the emitter from a single energy distribution measurement.

  3. Large Bore Powder Gun Qualification (U)

    Energy Technology Data Exchange (ETDEWEB)

    Rabern, Donald A. [Los Alamos National Laboratory; Valdiviez, Robert [Los Alamos National Laboratory

    2012-04-02

    A Large Bore Powder Gun (LBPG) is being designed to enable experimentalists to characterize material behavior outside the capabilities of the NNSS JASPER and LANL TA-55 PF-4 guns. The combination of these three guns will create a capability to conduct impact experiments over a wide range of pressures and shock profiles. The Large Bore Powder Gun will be fielded at the Nevada National Security Site (NNSS) U1a Complex. The Complex is nearly 1000 ft below ground with dedicated drifts for testing, instrumentation, and post-shot entombment. To ensure the reliability, safety, and performance of the LBPG, a qualification plan has been established and documented here. Requirements for the LBPG have been established and documented in WE-14-TR-0065 U A, Large Bore Powder Gun Customer Requirements. The document includes the requirements for the physics experiments, the gun and confinement systems, and operations at NNSS. A detailed description of the requirements is established in that document and is referred to and quoted throughout this document. Two Gun and Confinement Systems will be fielded. The Prototype Gun will be used primarily to characterize the gun and confinement performance and be the primary platform for qualification actions. This gun will also be used to investigate and qualify target and diagnostic modifications through the life of the program (U1a.104 Drift). An identical gun, the Physics Gun, will be fielded for confirmatory and Pu experiments (U1a.102D Drift). Both guns will be qualified for operation. The Gun and Confinement System design will be qualified through analysis, inspection, and testing using the Prototype Gun for the majority of process. The Physics Gun will be qualified through inspection and a limited number of qualification tests to ensure performance and behavior equivalent to the Prototype gun. Figure 1.1 shows the partial configuration of U1a and the locations of the Prototype and Physics Gun/Confinement Systems.

  4. Goods for Guns--the use of a gun buyback as an injury prevention/community education tool.

    Science.gov (United States)

    McGuire, Margaret; Manno, Mariann; Rook, Allison; Maranda, Louise; Renaud, Elizabeth; DeRoss, Anthony; Hirsh, Michael

    2011-11-01

    US children aged between 5 years and 14 years have a rate of gun-related homicide 17 times higher and a rate of gun-related suicide and unintentional firearm injury 10 times higher than other developed countries. Gun buyback programs have been criticized as ineffective interventions in decreasing violence. The Injury Free Coalition for Kids-Worcester (IFCK-W) Goods for Guns buyback is a multipronged approach to address these concerns and to reduce the number of firearms in the community. The IFCK-W buyback program is funded by corporate sponsors, grants, and individual donations. Citizens are instructed to transport guns, ammunition, and weapons safely to police headquarters on two Saturdays in December. Participants are guaranteed anonymity by the District Attorney's office and receive gift certificates for operable guns. Trained volunteers administer an anonymous survey to willing participants. Individuals who disclose having unsafely stored guns remaining at home receive educational counseling and trigger locks. Guns and ammunition are destroyed at a later time in a gun crushing ceremony. Since 2002, 1,861 guns (444 rifle/shotgun, 738 pistol/revolver, and 679 automatic/semiautomatic) have been collected at a cost of $99,250 (average, $53/gun). Seven hundred ten people have surrendered firearms, 534 surveys have been administered, and ≈ 75 trigger locks have been distributed per year. IFCK-W Goods for Guns is a relatively inexpensive injury prevention model program that removes unwanted firearms from homes, raises community awareness about gun safety, and provides high-risk individuals with trigger locks and educational counseling.

  5. Spin flipping a stored polarized proton beam with an rf magnetic field

    International Nuclear Information System (INIS)

    Hu, S.Q.; Blinov, B.B.; Caussyn, D.D.

    1995-01-01

    The authors studied the spin flipping of a vertically polarized, stored 139 MeV proton beam with an rf solenoid magnetic field. By sweeping the rf frequency through an rf depolarizing resonance, they made the spin flip. The spin flipping was more efficient for slower ramp times, and the spin flip efficiency peaked at some optimum ramp time that is not yet fully understood. Since frequent spin flipping could significantly reduce the systematic errors in scattering experiments using a stored polarized beam, it is very important to minimize the depolarization after each spin flip. In this experiment, with multiple spin flips, the authors found a polarization loss of 0.0000 ± 0.0005 per spin flip under the best conditions; this loss increased significantly for small changes in the conditions

  6. Status of the R and D Towards Electron Cooling of RHIC

    International Nuclear Information System (INIS)

    A. Favale; D. Holmes; J.J. Sredniawski; Hans Bluem; M.D. Cole; J. Rathke; T. Schultheiss; A.M.M. Todd; V.V. Parkhomchuk; V.B. Reva; J. Alduino; D.S. Barton; Dana Richard Beavis; I. Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; Andrew Burrill; Rama Calaga; P. Cameron; X. Chang; K.A. Drees; A.V. Fedotov; W. Fischer; G. Ganetis; D.M. Gassner; J.G. Grimes; Hartmut Hahn; L.R. Hammons; A. Hershcovitch; H.C. Hseuh; D. Kayran; J. Kewisch; R.F. Lambiase; D.L. Lederle; Vladimir Litvinenko; C. Longo; W.W. MacKay; G.J. Mahler; G.T. McIntyre; W. Meng; B. Oerter; C. Pai; George Parzen; D. Pate; D. Phillips; S.R. Plate; Eduard Pozdeyev; Triveni Rao; J. Reich; Thomas Roser; A.G. Ruggiero; T. Russo; C. Schultheiss; Z. Segalov; J. Smedley; K. Smith; T. Tallerico; S. Tepikian; R. Than; R.J. Todd; Dejan Trbojevic; J.E. Tuozzolo; P. Wanderer; G. WANG; D. Weiss; Q. Wu; Kin Yip; A. Zaltsman; A. Burov; S. Nagaitsev; L.R. Prost; A.O. Sidorin; A.V. Smirnov; Yaroslav Derbenev; Peter Kneisel; John Mammosser; H. Phillips; Joseph Preble; Charles Reece; Robert Rimmer; Jeffrey Saunders; Mircea Stirbet; Haipeng Wang; A.V. Aleksandrov; D.L. Douglas; Y.W. Kang; D.T. Abell; G.I. Bell; David L. Bruhwiler; R. Busby; John R. Cary; D.A. Dimitrov; P. Messmer; Vahid Houston Ranjbar; D.S. Smithe; A.V. Sobol; P. Stoltz

    2007-01-01

    The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed cooling calculations have been made to determine the efficacy of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. Electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode. An intensive experimental R and D program engages the various elements of the accelerator: Photocathodes of novel design, superconducting RF electron gun of a particularly high current and low emittance, a very high-current ERL cavity and a demonstration ERL using these components

  7. A study on the proton beam energy(50 MeV) measurement and diagnosis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jong Suh; Lee, Dong Hoon; Kim, Yoo Suk; Park, Chan Won; Lee, Yong Min; Hong, Sung Suk; Lee, Min Yong; Lee, Ji Sub; Hah, Hang Hoh [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Seoul (Korea, Republic of)

    1995-02-01

    The main purpose of this project is the precise ion measurement of proton beam energy extracted at RF 25.89 MHz from the MC-50 cyclotron of SF type. There are several method for particle energy measurement. We measured the 50 MeV proton energy by using the E-{Delta}E method in 1993. And also in our experiment used range, reapproval of energy of extracted proton beam at RF 25.89 MHz was performed, which attained the same energy with the result used elastic scattering within the error range. 10 figs, 2 pix, 3 tabs, 3 refs. (Author).

  8. The Effects of Cueing and Framing on Youth Attitudes towards Gun Control and Gun Rights

    Directory of Open Access Journals (Sweden)

    Stephen Wu

    2018-02-01

    Full Text Available I analyze attitudes towards gun control from a recent survey of American high school students. For students who most closely identify as Republicans, cueing them to think about prior school shootings increases their agreement that armed staff in schools will improve safety and arming citizens will reduce risk of mass shootings. For those identifying as Democrats and Independents, providing them with selective information that certain states have loose gun control laws and low rates of gun violence makes them more supportive of gun rights. For Republicans, providing selective information that certain states have loose gun control laws and high rates of gun violence makes them less supportive of gun rights. These results suggest that emotional cues may exacerbate a priori biases, while informational cues may be more likely to change people’s minds about firearm policies.

  9. Simplified pipe gun

    International Nuclear Information System (INIS)

    Sorensen, H.; Nordskov, A.; Sass, B.; Visler, T.

    1987-01-01

    A simplified version of a deuterium pellet gun based on the pipe gun principle is described. The pipe gun is made from a continuous tube of stainless steel and gas is fed in from the muzzle end only. It is indicated that the pellet length is determined by the temperature gradient along the barrel right outside the freezing cell. Velocities of around 1000 m/s with a scatter of +- 2% are obtained with a propellant gas pressure of 40 bar

  10. 5 MeV 300 kW electron accelerator project

    International Nuclear Information System (INIS)

    Auslender, V.L.; Cheskidov, V.G.; Gornakov, I.V.

    2004-01-01

    The paper presents a project of a high power linear accelerator for industrial applications. The accelerator has a modular structure and consists of the chain of accelerating cavities connected by the axis-located coupling cavities with coupling slots in the common walls. Main parameters of the accelerator are: operating frequency of 176 MHz, electron energy of up to 5 MeV, average beam power of 300 kW. The required RF pulse power can be supplied by the TH628 diacrode

  11. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  12. Development of high current electron beam generator

    International Nuclear Information System (INIS)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs

  13. Development of an Automatic Frequency Control (AFC) System for RF Electron Linear Accelerators

    International Nuclear Information System (INIS)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Joo, Youngwoo; Lee, Soo Min; Lee, Byung Cheol; Cha, Hyungki; Park, Hyung Dal; Lee, Seung Hyun

    2015-01-01

    In this paper, the design, fabrication, and RF power test of the AFC system for the X-band linac are presented. The main function of the AFC system is automatically matching of the resonance frequency of the accelerating structure and the RF frequency of the magnetron. For the frequency tuning, a fine tuning of 10 kHz is possible by rotating the tuning shaft with a rotation of 0.72 degree per pulse. Therefore, the frequency deviation is about 0.01%, and almost full RF power (2.1 MW) transmission was obtained because the reflected power is minimized. The Radiation Equipment Research Division of the Korea Atomic Energy Research Institute has been developing and upgrading a medical/industrial X-band RF electron linear accelerators. The medical compact RF electron linear accelerator consists of an electron gun, an acceleration tube (accelerating structure), two solenoid magnets, two steering magnets, a magnetron, modulator, an automatic frequency control (AFC) system, and an X-ray generating target. The accelerating structure of the component is composed of oxygen-free high-conductivity copper (OFHC). Therefore, the volume of the structure, hence, its resonance frequency can easily be changeable if the ambient temperature and pressure are changed. If the RF frequency of the 9300 MHz magnetron and the resonance frequency of accelerating structure are not matched, performance of the structure can be degraded. An AFC system is automatically matched with the RF frequency of the magnetron and resonance frequency of the accelerating structure, which obtained a high output power and reliable accelerator operation

  14. Development of an Automatic Frequency Control (AFC) System for RF Electron Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Joo, Youngwoo; Lee, Soo Min; Lee, Byung Cheol; Cha, Hyungki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Hyung Dal [Radiation Technology eXcellence, Daejeon (Korea, Republic of); Lee, Seung Hyun [Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-10-15

    In this paper, the design, fabrication, and RF power test of the AFC system for the X-band linac are presented. The main function of the AFC system is automatically matching of the resonance frequency of the accelerating structure and the RF frequency of the magnetron. For the frequency tuning, a fine tuning of 10 kHz is possible by rotating the tuning shaft with a rotation of 0.72 degree per pulse. Therefore, the frequency deviation is about 0.01%, and almost full RF power (2.1 MW) transmission was obtained because the reflected power is minimized. The Radiation Equipment Research Division of the Korea Atomic Energy Research Institute has been developing and upgrading a medical/industrial X-band RF electron linear accelerators. The medical compact RF electron linear accelerator consists of an electron gun, an acceleration tube (accelerating structure), two solenoid magnets, two steering magnets, a magnetron, modulator, an automatic frequency control (AFC) system, and an X-ray generating target. The accelerating structure of the component is composed of oxygen-free high-conductivity copper (OFHC). Therefore, the volume of the structure, hence, its resonance frequency can easily be changeable if the ambient temperature and pressure are changed. If the RF frequency of the 9300 MHz magnetron and the resonance frequency of accelerating structure are not matched, performance of the structure can be degraded. An AFC system is automatically matched with the RF frequency of the magnetron and resonance frequency of the accelerating structure, which obtained a high output power and reliable accelerator operation.

  15. The case for moderate gun control.

    Science.gov (United States)

    DeGrazia, David

    2014-03-01

    In addressing the shape of appropriate gun policy, this essay assumes for the sake of discussion that there is a legal and moral right to private gun ownership. My thesis is that, against the background of this right, the most defensible policy approach in the United States would feature moderate gun control. The first section summarizes the American gun control status quo and characterizes what I call "moderate gun control." The next section states and rebuts six leading arguments against this general approach to gun policy. The section that follows presents a positive case for moderate gun control that emphasizes safety in the home and society as well as rights whose enforcement entails some limits or qualifications on the right to bear arms. A final section shows how the recommended gun regulations address legitimate purposes, rather than imposing arbitrary restrictions on gun rights, and offers concluding reflections.

  16. Design of 6 MeV X-band electron linac for dual-head gantry radiotherapy system

    Science.gov (United States)

    Shin, Seung-wook; Lee, Seung-Hyun; Lee, Jong-Chul; Kim, Huisu; Ha, Donghyup; Ghergherehchi, Mitra; Chai, Jongseo; Lee, Byung-no; Chae, Moonsik

    2017-12-01

    A compact 6 MeV electron linac is being developed at Sungkyunkwan University, in collaboration with the Korea atomic energy research institute (KAERI). The linac will be used as an X-ray source for a dual-head gantry radiotherapy system. X-band technology has been employed to satisfy the size requirement of the dual-head gantry radiotherapy machine. Among the several options available, we selected a pi/2-mode, standing-wave, side-coupled cavity. This choice of radiofrequency (RF) cavity design is intended to enhance the shunt impedance of each cavity in the linac. An optimum structure of the RF cavity with a high-performance design was determined by applying a genetic algorithm during the optimization procedure. This paper describes the detailed design process for a single normal RF cavity and the entire structure, including the RF power coupler and coupling cavity, as well as the beam dynamics results.

  17. Beam dynamics simulations of the injector for a compact THz source

    International Nuclear Information System (INIS)

    Li Ji; Pei Yuanji; Shang Lei; Li Chenglong; Feng Guangyao; Hu Tongning; Chen Qushan

    2014-01-01

    Terahertz radiation has broad application prospects due to its ability to penetrate deep into many organic materials without the damage caused by ionizing radiations. A free electron laser (FEL)-based THz source is the best choice to produce high-power radiation. In this paper, a 14 MeV injector is introduced for generating high-quality beam for FEL, is composed of an EC-ITC RF gun, compensating coils and a travelling-wave structure. Beam dynamics simulations have been done with ASTRA code to verify the design and to optimize parameters. Simulations of the operating mode at 6 MeV have also been executed. (authors)

  18. Finite-Element 2D and 3D PIC Modeling of RF Devices with Applications to Multipacting

    CERN Document Server

    De Ford, John F; Petillo, John

    2005-01-01

    Multipacting currently limits the performance of many high power radio-frequency (RF) devices, particularly couplers and windows. Models have helped researchers understand and mitigate this problem in 2D structures, but useful multipacting models for complicated 3D structures are still a challenge. A combination of three recent technologies that have been developed in the Analyst and MICHELLE codes begin to address this challenge: high-order adaptive finite-element RF field calculations, advanced particle tracking on unstructured grids, and comprehensive secondary emission models. Analyst employs high-order adaptive finite-element methods to accurately compute driven RF fields and eigenmodes in complex geometries, particularly near edges, corners, and curved surfaces. To perform a multipacting analysis, we use the mesh and fields from Analyst in a modified version of the self-consistent, finite-element gun code MICHELLE. MICHELLE has both a fast, accurate, and reliable particle tracker for unstructured grids ...

  19. ORELA electron guns

    International Nuclear Information System (INIS)

    Christian, O.W.; Lewis, T.A.

    1981-09-01

    The most recent information concerning the production and performance of ORELA electron guns is presented. Included are descriptions of procedures for gun fabrication, cathode conditioning and high voltage processing. Highlights of the performance characteristics are also included

  20. Present status and future directions of the JAERI superconducting RF linac-based FEL

    International Nuclear Information System (INIS)

    Minehara, EJ.; Yamauchi, T.; Sugimori, M.; Sawamura, M.; Hajima, R.; Nagai, R.; Kikuzawa, N.; Nishimori, N.; Shizuma, T.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 2.34kW FEL light and l00kW electron beam output in quasi continuous wave operation in February 2000. Twice larger output than the present program goal of 1kW was achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 2 years program goal is the 100kW class FEL light and a few MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual and engineering design options needed for such a very high power operation will be discussed to improve and to upgrade the existing facility. Finally, several applications, table-top superconducting rf linac based FELs, and an X-ray FEL R and D will be discussed as a next-five years program at JAERI-FEL laboratory. (author)

  1. RF-cavity for the X-ray generator NESTOR

    International Nuclear Information System (INIS)

    Androsov, V.P.; Gvozd, A.M.; Karnaukhov, I.M.; Telegin, Yu.N.; Chernov, K.N.; Ostreyko, G.N.; Sedlyarov, I.K.

    2007-01-01

    In the Kharkov Institute of Physics and Technology 225 MeV electron storage ring NESTOR is under development. The paper describes the design and parameters of a 700 MHz cavity that has been fabricated at BINP for the NESTOR RF-system. Now the low-power and vacuum tests of the cavity are under way at BINP. We present here the results of 3D simulations of the cavity with ANSYS code. The problem of multibunch instabilities in NESTOR is also discussed

  2. Gun Violence Following Inpatient Psychiatric Treatment: Offense Characteristics, Sources of Guns, and Number of Victims.

    Science.gov (United States)

    Kivisto, Aaron J

    2017-10-01

    This study presents data on the relative contribution to gun violence by people with a history of inpatient psychiatric treatment and on federal efforts to deter presumptively dangerous persons from obtaining firearms, information useful for analyzing the potential public health benefits of gun policies targeting people with serious mental illness. The study also estimates the reduction in gun violence victims that would be expected if individuals with a previous psychiatric hospitalization were prohibited from purchasing firearms. Data from 838 violent gun offenders from a nationally representative sample of state prison inmates were analyzed. Those with and without a history of psychiatric hospitalization were compared on a range of offense characteristics, including relationship to the victim, number of victims, location of the offense, and source of firearms. Inmates with a history of hospitalization constituted 12% of all violent gun offenders and accounted for 13% of the sample's victims. They were less likely than those without a previous hospitalization to victimize strangers (odds ratio=.52) and were no more likely to commit gun violence in public or to have multiple victims. Among those with previous hospitalizations, 78% obtained guns from sources not subject to federal background checks. Of the total 1,041 victims of gun violence, only 3% were victimized by participants with a history of hospitalization who obtained guns from currently regulated sources. Prohibiting all individuals with a history of psychiatric hospitalization from purchasing firearms, absent expanded background checks, was estimated to reduce the number of gun violence victims by only 3%.

  3. Measurement of the distributions of internuclear separations in 3.0-MeV H2+ and 3.63-MeV HeH+ beams

    International Nuclear Information System (INIS)

    Kanter, E.P.; Cooney, P.J.; Gemmell, D.S.; Vager, Z.; Pietsch, W.J.; Zabransky, B.J.

    1979-01-01

    Angular distributions of charged dissociation fragments are measured for 3.0-MeV H 2 + and 3.63-MeV HeH + ions incident on approx. 160 A carbon targets. By using the reflection method for a pure Coulomb potential, there are unfolded from these data the distributions of internuclear separations for each molecular-ion species prior to dissociation. These results are insensitive to ion-source conditions. For H 2 + this distribution, while approx. 2 times wider than a pure ground vibrational state population, is markedly different from the Franck-Condon distribution that has been previously assumed by other authors with similar rf and duo-plasmatron ion sources. For HeH + the distribution is slightly broader (approx. 1.5 times) than that expected for a pure ground state population. From the data, the initial vibrational state population in the incident beam can be extracted. 11 references

  4. From gun politics to self-defense politics: a feminist critique of the great gun debate.

    Science.gov (United States)

    Carlson, Jennifer D

    2014-03-01

    This article calls attention to a problematic binary produced by public debates surrounding gun rights and gun control-namely, that women must choose armed self-protection or no self-protection at all. I argue that both anti- and pro-gun discourses, drawing on and reproducing race and class privileges, use assumptions about women's physical inferiority to further their agendas. I highlight how both sides have used guns as the proxy for self-defense and conclude by calling for a shift in public discourse to focus on the broader question of the right to self-defense rather than the narrower question of gun rights.

  5. Hard-driven rail-gun tests

    International Nuclear Information System (INIS)

    Peterson, D.R.; Adams, D.F.; Cummings, C.E.; Fowler, C.M.; Kerrisk, J.F.; Marsh, S.P.; Parker, J.V.

    1983-01-01

    A number of prototype rail-gun designs have been tested, powered by explosive magnetic flux compression generators. Peak currents as high as 1.3 MA were delivered. Rail guns with 50-mm-thick Kevlar fiberwound structural shells were able to survive these high currents with minimum mechanical damage and were refired after enlarging the bores 0.2 to 0.4 mm to remove arc damage. In some tests, mechanical damage occurred that was apparently caused by the rebound of the gun after firing. Although the Kevlar shells had more than adequate strength, they appeared to lack sufficient stiffness, allowing excessive deflections. The use of a steel structural shell with a Kevlar sleeve was an improvement. Intrusion into the seams of the rail guns and condensation of material from the plasma armature were observed. Improved sealing of seams is indicated. In some cases, we suspect maldistribution of current within the gun; that is, not all the current delivered to the breech of the gun seemed to reach the plasma armature. Experiments are being designed to quantify the effects discussed. Rail guns of advanced design are being fabricated. An 18-g titanium projectile was accelerated to 2.4 km/s in a 16-mm-round-bore, 0.6-m-long gun, 4-6 g polycarbonate projectiles were accelerated to 3.5 km/s in 13-mm-square-bore, 1.2-m-long rail guns. All tests were conducted at atmospheric pressure

  6. RF system developments for CW and/or long pulse linacs

    International Nuclear Information System (INIS)

    Lynch, M.

    1998-01-01

    High Power Proton Linacs are under development or proposed for development at Los Alamos and elsewhere. By current standards these linacs all require very large amounts of RF power. The Accelerator for Production of Tritium (APT) is a CW accelerator with an output current and energy of 100 mA and 1,700 MeV, respectively. The Spallation Neutron Source (SNS), in its ultimate configuration, is a pulsed accelerator with an average output power of 4 MW of beam. Other accelerators such as those that address transmutation and upgrades to LANSCE have similar requirements. For these high average power applications, the RF systems represent approximately half of the total cost of the linac and are thus key elements in the design and configuration of the accelerator. Los Alamos is fortunate to be actively working on both APT and SNS. For these programs the author is pursuing a number of component developments which are aimed at one or more of the key issues for large RF systems: technical performance, capital cost, reliability, and operating efficiency. This paper briefly describes some of the linac applications and then provides updates on the key RF developments being pursued

  7. Relativistic Klystron Two-Beam Accelerator studies at the RTA test facility

    International Nuclear Information System (INIS)

    Westenskow, G.A.; Houck, T.L.; Anderson, D.

    1996-01-01

    A prototype rf power source based on the Relativistic Klystron Two- Beam Accelerator (RK-TBA) concept is being constructed at LBNL to study physics, engineering, and costing issues. The prototype, called RTA, is described and compared to a full scale design appropriate for driving the Next Linear Collider. Specific details of the induction core test and pulsed power system are presented. Details of the 1-MeV, 1.2-kA induction gun currently under construction are described

  8. Design and development of 3 MeV, 30 kW DC industrial electron accelerator at Electron Beam Centre, Kharghar

    International Nuclear Information System (INIS)

    Mittal, K.C.; Nanu, K.; Jain, A.

    2006-01-01

    High power electron beam accelerators are becoming an important tool for industrial radiation process applications. Keeping this in mind, a 3 MeV, 10 mA, 30 kW DC industrial electron accelerator has been designed and is in advanced stage of development at Electron Beam Center, Kharghar, Navi Mumbai. The operating range of this accelerator is 1 MeV to 3 MeV with maximum beam current of 10 mA. Electron beam at 5 keV is generated in electron gun with LaB 6 cathode and is injected into accelerating column at a vacuum of 10 -7 torr. After acceleration the beam is scanned and taken out in air through a 100 cm X 7 cm titanium window for radiation processing applications. The high voltage accelerating power supply is based on a capacitive coupled parallel fed voltage multiplier scheme operating at 120 kHz. A 50 kW oscillator feeds power to high voltage multiplier column. The electron gun, accelerating column and high voltage multiplier column are housed in accelerator tank filled with SF 6 gas insulation at 6 kg/cm 2 . The accelerator is located in a RCC building with product conveyor for handling products. A central computerized control system is adopted for operation of the accelerator. Accelerator is in the advance stage of commissioning. Many of the subsystems have been commissioned and tested. This paper describes the design details and current status of the accelerator and various subsystems. (author)

  9. Low Level RF Including a Sophisticated Phase Control System for CTF3

    CERN Document Server

    Mourier, J; Nonglaton, J M; Syratchev, I V; Tanner, L

    2004-01-01

    CTF3 (CLIC Test Facility 3), currently under construction at CERN, is a test facility designed to demonstrate the key feasibility issues of the CLIC (Compact LInear Collider) two-beam scheme. When completed, this facility will consist of a 150 MeV linac followed by two rings for bunch-interleaving, and a test stand where 30 GHz power will be generated. In this paper, the work that has been carried out on the linac's low power RF system is described. This includes, in particular, a sophisticated phase control system for the RF pulse compressor to produce a flat-top rectangular pulse over 1.4 µs.

  10. LCLS-II high power RF system overview and progress

    Energy Technology Data Exchange (ETDEWEB)

    Yeremian, Anahid Dian

    2015-10-07

    A second X-ray free electron laser facility, LCLS-II, will be constructed at SLAC. LCLS-II is based on a 1.3 GHz, 4 GeV, continuous-wave (CW) superconducting linear accelerator, to be installed in the first kilometer of the SLAC tunnel. Multiple types of high power RF (HPRF) sources will be used to power different systems on LCLS-II. The main 1.3 GHz linac will be powered by 280 1.3 GHz, 3.8 kW solid state amplifier (SSA) sources. The normal conducting buncher in the injector will use four more SSAs identical to the linac SSAs but run at 2 kW. Two 185.7 MHz, 60 kW sources will power the photocathode dual-feed RF gun. A third harmonic linac section, included for linearizing the bunch energy spread before the first bunch compressor, will require sixteen 3.9 GHz sources at about 1 kW CW. A description and an update on all the HPRF sources of LCLS-II and their implementation is the subject of this paper.

  11. On scaling and optimization of high-intensity, low-beam-loss RF linacs for neutron source drivers

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1992-01-01

    RF linacs providing cw proton beams of 30--250 mA at 800--1600 MeV, and cw deuteron beams of 100--250 mA at 35--40 MeV, are needed as drivers for factory neutron sources applied to radioactive waste transmutation, advanced energy production, materials testing facilities, and spallation neutron sources. The maintenance goals require very low beam loss along the linac. Optimization of such systems is complex; status of beam dynamics aspects presently being investigated is outlined

  12. High-power CO laser with RF discharge for isotope separation employing condensation repression

    Science.gov (United States)

    Baranov, I. Ya.; Koptev, A. V.

    2008-10-01

    High-power CO laser can be the effective tool in such applications as isotope separation using the free-jet CRISLA method. The way of transfer from CO small-scale experimental installation to industrial high-power CO lasers is proposed through the use of a low-current radio-frequency (RF) electric discharge in a supersonic stream without an electron gun. The calculation model of scaling CO laser with RF discharge in supersonic stream was developed. The developed model allows to calculate parameters of laser installation and optimize them with the purpose of reception of high efficiency and low cost of installation as a whole. The technical decision of industrial CO laser for isotope separation employing condensation repression is considered. The estimated cost of laser is some hundred thousand dollars USA and small sizes of laser head give possibility to install it in any place.

  13. Design, development and operational experience of radio frequency (RF) power systems/technologies for LEHIPA and 400 keV RFQ

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shrotriya, Sandip; Patel, Niranjan

    2015-01-01

    The important technology development for ion accelerators of 'accelerator driven sub critical reactor system (ADS) is being done under the program of Department of Atomic Energy (DAE). In BARC (BARC) of DAE, technology development of 400 keV radio frequency quadrupole (RFQ) accelerator is done and a 20 MeV - low energy high intensity proton accelerator (LEHIPA) is under development. A 400 KeV deuteron RFQ accelerator is already developed at BARC and its 60 kW radio frequency (RF) power system required for beam acceleration has been designed, developed and tested both in CW mode and in pulse mode for full power of 60 leW. It has been successfully integrated with RFQ via 6-1/8'', 50 ohm RF transmission line, to accelerate proton beam up to 200 KeV energy and deuteron beam to 400 KeV energy. LEHIPA requires about 3 MW of RF power for its operation. So, three 1 MW, 352 MHz RF systems based on klystron will be developed for RFQ and two DTLs. The klystron based RF system for 3 MeV RFQ is under commissioning. Its various subsystems like energy less and insulated gate bipolar transistor (IGBT) based high voltage and low voltage bias supplies, a critical and fast protection and control system - handling various types of field signals, fast acting hard wired instrumentation circuits for critical signals, 100 kV crowbar with its circuits, pulsing circuits and RF circuits have been successfully designed, developed and integrated with klystron. Latest technology development of solid state RF amplifiers at 325 MHz and 350 MHz for normal and super conducting accelerators has attained a certain power level. This paper will discuss all these high power RF systems in detail. (author)

  14. Rf systems for high-energy e/sup /minus//e/sup /plus// storage rings

    International Nuclear Information System (INIS)

    Allen, M.A.; Wilson, P.B.

    1974-01-01

    Electron or positron beams in a storage ring radiate electromagnetic energy at a rate proportional to the fourth power of the recirculating energy, and this loss must be supplied by an rf system. Furthermore, a substantial overvoltage is required to contain the stored beam against losses due to quantum fluctuations in the emitted photons. As an example, an improvement program, SPEAR II, is now underway to increase the energy of the SPEAR ring to 4.5 GeV. At this energy, the radiation loss per turn is 2.8 MeV, and to maintain a reasonable lifetime against quantum fluctuations, a peak voltage of 7.5 MeV is required. Thus, the SPEAR II rf system is similar to a continuously-operating 7.5 MeV linear accelerator. Furthermore, the available straight-section space in the ring which is suitable for containing the accelerating structures is limited, and this means that a cavity design must be sought with a high shunt impedance per losses will be held to a reasonable level. In the case of SPEAR, about 9 meters of straight section space is available for accelerating cavities, requiring a gradient of close to 1 MV per meter. The PEP 15-GeV ring would require peak accelerating voltages of around 50 MV, with about 60 meters of straight-section space available for accelerating structures. 8 refs

  15. Research on cw electron accelerators using room-temperature rf structures. Annual report

    International Nuclear Information System (INIS)

    1985-01-01

    Highlights reported include: measurement of the 100 keV chopped beam emittance, completion of installation of the entire 5 MeV injector linac system with all rf power and drive, extensive field mapping of one end magnet, completion of construction of the 12 MeV linac for the racetrack microtron (RTM), installation of most of the control system, and first acceleration of beam to 5 MeV. Plans for completion of the project are discussed. When the RTM is operating, it is expected to have many unique performance characteristics, including the cw nature of the beam, high current, easily variable energy over a wide range, excellent emittance, and small energy spread. Plans for future uses in the areas of nuclear physics, dosimetry research and standards, accelerator development, and free electron laser research are discussed. 19 refs

  16. Racism, Gun Ownership and Gun Control: Biased Attitudes in US Whites May Influence Policy Decisions

    OpenAIRE

    O?Brien, Kerry; Forrest, Walter; Lynott, Dermot; Daly, Michael

    2013-01-01

    OBJECTIVE: Racism is related to policies preferences and behaviors that adversely affect blacks and appear related to a fear of blacks (e.g., increased policing, death penalty). This study examined whether racism is also related to gun ownership and opposition to gun controls in US whites. METHOD: The most recent data from the American National Election Study, a large representative US sample, was used to test relationships between racism, gun ownership, and opposition to gun control in US wh...

  17. CID thermionic gun system

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1981-10-01

    A new high-current thermionic gun has been installed on the CID injector at SLAC and brought into operation. The gun and pulser system generate three nanosecond pulses of about six amps peak which, when bunched in the subharmonic buncher system, produce in excess of 10 11 electrons in a single S-band accelerated bunch. Preliminary operation of the gun is described, and details of the avalanche cathode drive pulser are presented

  18. CID thermionic gun system

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1982-01-01

    A new high-current thermionic gun has been installed on the CID injector at SLAC and brought into operation. The gun and pulser system generate three nanosecond pulses of about six amps peak which, when bunched in the subharmonic buncher system, produce in excess of 10 11 electrons in a single S-band accelerated bunch. Preliminary operation of the gun is described, and details of the avalanche cathode drive pulser are presented

  19. High-brightness electron guns for linac-based light sources

    International Nuclear Information System (INIS)

    Lewellen, J.W.

    2004-01-01

    Most proposed linac-based light sources, such as single-pass free-electron lasers and energy-recovery-linacs, require very high-brightness electron beams in order to achieve their design performance. These beam requirements must be achieved not on an occasional basis, but rather must be met by every bunch produced by the source over extended periods of time. It is widely assumed that the beam source will be a photocathode electron gun; the selection of accelerator technique (e.g., dc or rf) for the gun is more dependent on the application.The current state of the art of electron beam production is adequate but not ideal for the first generation of linac-based light sources, such as the Linac Coherent Light Source (LCLS) x-ray free-electron laser (X-FEL). For the next generation of linac-based light sources, an order of magnitude reduction in the transverse electron beam emittance is required to significantly reduce the cost of the facility. This is beyond the present state of the art, given the other beam properties that must be maintained. The requirements for current and future linac-based light source beam sources are presented here, along with a review of the present state of the art. A discussion of potential paths towards meeting future needs is presented at the conclusion.

  20. Preventing gun injuries in children.

    Science.gov (United States)

    Crossen, Eric J; Lewis, Brenna; Hoffman, Benjamin D

    2015-02-01

    Firearms are involved in the injury and death of a large number of children each year from both intentional and unintentional causes. Gun ownership in homes with children is common, and pediatricians should incorporate evidence-based means to discuss firearms and protect children from gun-related injuries and violence. Safe storage of guns, including unloaded guns locked and stored separately from ammunition, can decrease risks to children, and effective tools are available that pediatricians can use in clinical settings to help decrease children's access to firearms. Furthermore, several community-based interventions led by pediatricians have effectively reduced firearm-related injury risks to children. Educational programs that focus on children's behavior around guns have not proven effective. © American Academy of Pediatrics, 2015. All rights reserved.

  1. Gun violence trends in movies.

    Science.gov (United States)

    Bushman, Brad J; Jamieson, Patrick E; Weitz, Ilana; Romer, Daniel

    2013-12-01

    Many scientific studies have shown that the mere presence of guns can increase aggression, an effect dubbed the "weapons effect." The current research examines a potential source of the weapons effect: guns depicted in top-selling films. Trained coders identified the presence of violence in each 5-minute film segment for one-half of the top 30 films since 1950 and the presence of guns in violent segments since 1985, the first full year the PG-13 rating (age 13+) was used. PG-13-rated films are among the top-selling films and are especially attractive to youth. Results found that violence in films has more than doubled since 1950, and gun violence in PG-13-rated films has more than tripled since 1985. When the PG-13 rating was introduced, these films contained about as much gun violence as G (general audiences) and PG (parental guidance suggested for young children) films. Since 2009, PG-13-rated films have contained as much or more violence as R-rated films (age 17+) films. Even if youth do not use guns, these findings suggest that they are exposed to increasing gun violence in top-selling films. By including guns in violent scenes, film producers may be strengthening the weapons effect and providing youth with scripts for using guns. These findings are concerning because many scientific studies have shown that violent films can increase aggression. Violent films are also now easily accessible to youth (e.g., on the Internet and cable). This research suggests that the presence of weapons in films might amplify the effects of violent films on aggression.

  2. Elements of the system for RF power input into linear accelerator-injector for booster

    International Nuclear Information System (INIS)

    Mazurov, E.V.; Mal'tsev, I.G.; Shalashov, I.M.

    1981-01-01

    The elements of the original system for RF power input into 30 MeV linear accelerator-injector for the IHEP proton synchrotron booster are considered. A 3 dB coaxial directional coupler (T-bridge) is describedd. The characteristics of the bridge containing elements and the parameters of ballast matched load are given [ru

  3. Etude Experimentale du Photo-Injecteur de Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Jean-Paul [Orsay

    2001-01-01

    TESLA (TeV Superconducting Linear Accelerator) is an international collaboration which is studying the feasibility of an $e^+e^-$ collider of energy 0.8 TeV in the center of mass. One of the first goals of this collaboration was to construct a prototype linear accelerator at the DESY Laboratory in Hamburg, the TESLA Test Facility (TTF), in order to establish the technical basis for the collider. Two injectors were developed for TTF: a thermionic injector (developed by LAL-Orsay, IPN-Orsay, and CEA-Saclay) and a photo-injector (developed by Fermilab). The thermionic injector was used from February 1997 to October 1998, and then it was replaced by the photo-injector, which was first operated in December 1998. Another photo-injector, identical to the one delivered to TTF, was installed at Fermilab in the $A{\\emptyset}$ Building. The first beam from the latter was produced on 3 March 1999. The photo-injector consists of an RF gun, followed by a superconducting cavity. The RF gun is a 1.625-cell copper cavity with a resonant frequency of 1.3 GHz. The gun contains a cesium telluride ($C_{s_2}$Te) photo-cathode, which is illuminated by UV pulses from a Nd:YLF laser. The system can produce trains of 800 bunches of photo-electrons of charge 8 nC per bunch with spacing between bunches of 1$\\mu$s and 10 Hz repetition rate. Upon emerging from the RF gun, the beam energy is 4 to 5 MeV; the beam is then rapidly accelerated by the superconducting cavity to an energy of 17 to 20 MeV. Finally, a magnetic chicane, consisting of 4 dipoles, produces longitudinal compression of the electron bunches. This thesis describes the installation of the photo-injector at Fermilab and presents the experimentally-measured characteristics of the injector. The principal measurements were quantum eciency, dark current, transverse emittance, and bunch length. The conclusion from these studies is that the quality of the photo-injector beam fullls the design goals. The photo-injector at Fermilab is

  4. Low emittance thermionic electron guns

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1989-01-01

    The author discusses self-field effects and external field effects for electron guns. He also discusses designs of electron guns and their uses in electron cooling systems and as an injector for electrostatic free electron lasers. He closes by looking at electron guns for linear accelerators. 20 references, 3 figures

  5. Physics design of a 10 MeV, 6 kW travelling wave electron linac for ...

    Indian Academy of Sciences (India)

    2016-10-11

    Oct 11, 2016 ... We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear ... linac (in contrast with standing wave linac) is that it accepts the RF power over a band of frequencies. Three- ... structures are preferred for relatively higher energy ... klystron in a TW linac, which results in cost reduction.

  6. Guns at College.

    Science.gov (United States)

    Miller, Matthew; Hemenway, David; Wechsler, Henry

    1999-01-01

    Surveyed undergraduate students nationwide concerning firearm possession. About 3.5% possessed working firearms. Students with guns were more likely to be male, White, or Native American; binge drink; live off-campus; and live with a spouse or significant other. Students with guns were more likely to engage in activities that put themselves and…

  7. Thermal Emittance Measurement of the Cs2Te Photocathode in FZD Superconducting RF

    CERN Document Server

    Xiang, R; Michel, P; Murcek, P; Teichert, J

    2010-01-01

    The thermal emittance of the photocathode is an interesting physical property for the photoinjector, because it decides the minimum emittance the photoinjector can finally achieve. In this paper we will report the latest results of the thermal emittance of the Cs2Te photocathode in FZD Superconducting RF gun. The measurement is performed with solenoid scan method with very low bunch charge and relative large laser spot on cathode, in order to reduce the space charge effect as much as possible, and meanwhile to eliminate the wake fields and the effect from beam halos.

  8. Gridded thermionic gun and integral superconducting ballistic bunch compression cavity

    Energy Technology Data Exchange (ETDEWEB)

    Schultheiss, Thomas [Advanced Energy Systems, Inc., Medford, NY (United States)

    2015-11-16

    Electron-Ion colliders such as the Medium energy Electron Ion Collider (MEIC) being developed by JLAB require high current electrons with low energy spread for electron cooling of the collider ring. Accelerator techniques for improving bunch charge, average current, emittance, and energy spread are required for Energy Recovery Linacs (ERLs) and Circulator Rings (CR) for next generation colliders for nuclear physics experiments. Example candidates include thermionic-cathode electron guns with RF accelerating structures. Thermionic cathodes are known to produce high currents and have excellent lifetime. The success of the IR and THz Free-Electron Laser (FEL) designed and installed by Advanced Energy Systems at the Fritz Haber Institute (FHI) of the Max Planck Society in Berlin [1,2] demonstrates that gridded thermionic cathodes and rf systems be considered for next generation collider technology. In Phase 1 Advanced Energy Systems (AES) developed and analyzed a design concept using a superconducting cavity pair and gridded thermionic cathode. Analysis included Beam Dynamics and thermal analysis to show that a design of this type is feasible. The latest design goals for the MEIC electron cooler were for electron bunches of 420 pC at a frequency of 952.6 MHz with a magnetic field on the cathode of 2kG. This field magnetizes the beam imparting angular momentum that provides for helical motion of the electrons in the cooling solenoid. The helical motion increases the interaction time and improves the cooling efficiency. A coil positioned around the cathode providing 2kG field was developed. Beam dynamics simulations were run to develop the particle dynamics near the cathode and grid. Lloyd Young added capability to Tstep to include space charge effects between two plates and include image charge effects from the grid. He also added new pepper-pot geometry capability to account for honeycomb grids. These additions were used to develop the beam dynamics for this gun. The

  9. RF emittance in a low energy electron linear accelerator

    Science.gov (United States)

    Sanaye Hajari, Sh.; Haghtalab, S.; Shaker, H.; Kelisani, M. Dayyani

    2018-04-01

    Transverse beam dynamics of an 8 MeV low current (10 mA) S-band traveling wave electron linear accelerator has been studied and optimized. The main issue is to limit the beam emittance, mainly induced by the transverse RF forces. The linac is being constructed at Institute for Research in Fundamental Science (IPM), Tehran Iran Labeled as Iran's First Linac, nearly all components of this accelerator are designed and constructed within the country. This paper discusses the RF coupler induced field asymmetry and the corresponding emittance at different focusing levels, introduces a detailed beam dynamics design of a solenoid focusing channel aiming to reduce the emittance growth and studies the solenoid misalignment tolerances. In addition it has been demonstrated that a prebuncher cavity with appropriate parameters can help improving the beam quality in the transverse plane.

  10. Relationship between licensing, registration, and other gun sales laws and the source state of crime guns.

    Science.gov (United States)

    Webster, D W; Vernick, J S; Hepburn, L M

    2001-09-01

    To determine the association between licensing and registration of firearm sales and an indicator of gun availability to criminals. Tracing data on all crime guns recovered in 25 cities in the United States were used to estimate the relationship between state gun law categories and the proportion of crime guns first sold by in-state gun dealers. In cities located in states with both mandatory registration and licensing systems (five cities), a mean of 33.7% of crime guns were first sold by in-state gun dealers, compared with 72.7% in cities that had either registration or licensing but not both (seven cities), and 84.2% in cities without registration or licensing (13 cites). Little of the difference between cities with both licensing and registration and cities with neither licensing nor registration was explained by potential confounders. The share of the population near a city that resides in a neighboring state without licensing or registration laws was negatively associated with the outcome. States with registration and licensing systems appear to do a better job than other states of keeping guns initially sold within the state from being recovered in crimes. Proximity to states without these laws, however, may limit their impact.

  11. Results of the AFWL deflagration gun experiments

    International Nuclear Information System (INIS)

    Hackett, K.E.; Baker, W.L.; Beason, J.D.

    1987-01-01

    The snowplow and deflagration modes of coaxial plasma gun operation have been experimentally investigated and computationally simulated at the Air Force Weapons Laboratory. The snowplow mode occurs when the gun is prefilled to a uniform gas density. The initial breakdown forms near the insulator at the gun breech. It heats the gas and creates a shock wave that travels down the gun, ionizing gas and producing a thin current sheath that travels just behind the shock front. The shock front piles up the gas in front of itself as it moves down the gun - hence the name ''snowplow''. Deflagration occurs when gas is injected into an evacuated gun so that the initial breakdown forms as the gas fills the gun. The ionized gas is accelerated into the vacuum region carrying current and magnetic field with it. A quasi-stationary diffuse discharge develops. Gas still entering the gun is processed through the deflagrating discharge and accelerated out the gun muzzle

  12. THE IMPROVEMENT AND APPLICATION OF EI-GUN (ELECTRICAL INSEMINATION GUN FOR ARTIFICIAL INSEMINATION (AI USING GOAT FRESH SEMEN

    Directory of Open Access Journals (Sweden)

    Mirsa Ita Dewi

    2017-03-01

    Full Text Available Electrical Insemination Gun (EI-GUN was a tool for Artificial Insemination (AI using fresh semen with an electric control system. The research objective was to produced EI-GUN for AI using fresh semen on small ruminants (goat. The research was conducted from March to June 2015. The process of EI-GUN creation implemented in Design and Prototype Laboratory and Aero Modeling Research Laboratory at Engineering Faculty, University of Brawijaya (UB. Testing tools EI-GUN on goat was conducted in the Sumber Sekar Laboratory, Animal Husbandry Faculty, UB.  The methods of research were literature study, tool specification determination, designing EI-GUN, running test, semen evaluation passed EI-GUN and application on Goat. EI-GUN has seven important parts, which supports each other in this operating system. Those parts consist of stylet, servo, system controlled, insemination pump, connecting rod, battery, and holder. EI-GUN work system sucked the semen into insemination pump as much as 5 ml, and release the semen 0.25 ml appropriate standard of AI. It was applicable for 20 times AI. The results showed that the cell motility of spermatozoa ≥ 70% were still in ranging of Indonesian National Standard (SNI.   Keywords: artificial insemination, EI-GUN, fresh semen.

  13. Emittance Measurements from a Laser Driven Electron Injector

    Energy Technology Data Exchange (ETDEWEB)

    Reis, David A

    2003-07-28

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 {angstrom}, the LCLS requires an electron injector that can produce an electron beam with approximately 1 {pi} mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the laser and electron beam at the GTF. A convolved measurement of the relative timing between the laser and the rf phase in the gun shows that the jitter is less than 2.5 ps rms. Emittance measurements of the electron beam at 35 MeV are reported as a function of the (Gaussian) pulse length and transverse profile of the laser as well as the charge of the electron beam at constant phase and gradient in both the gun and linac. At 1 nC the emittance was found to be {approx} 13 {pi} mm-mrad for 5 ps and 8 ps long laser pulses. At 0.5 nC the measured emittance decreased approximately 20% in the 5 ps case and 40% in the 8 ps case. These measurements are between 40-80% higher than simulations for similar experimental conditions. In addition, the thermal emittance of the electron beam was measured to be 0.5 {pi} mm-mrad.

  14. Understanding and Predicting Gun Barrel Erosion

    National Research Council Canada - National Science Library

    Johnston, Ian A

    2005-01-01

    The Australian Defence Force will soon have to contend with gun barrel erosion issues arising from the use of new low-vulnerability gun propellants, the acquisition of new ammunition and gun systems...

  15. Present and next steps of the JAERI superconducting rf linac based FEL program

    International Nuclear Information System (INIS)

    Minehara, E.J.; Yamauchi, T.; Sugimoto, M.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 0.3 kW FEL light and 100 kW or larger electron beam output in quasi continuous wave operation in 1999. The 1 kW class output as our present program goal will be achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 5 year program goal is the 100 kW class FEL light and a few tens MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual design options needed for such a very high power operation and shorter wavelength light sources will be discussed to improve and to upgrade the exciting facility. (author)

  16. Electron gun for SSRF

    International Nuclear Information System (INIS)

    Sheng Shugang; Lin Guoqiang; Gu Qiang; Li Deming

    2003-01-01

    A 100 kV triode-electron-gun has been designed and manufactured for the Linac of Shanghai Synchrotron Radiation Facility (SSRF). In this paper the performance of the gun and some key components are described

  17. Automatic targeting of plasma spray gun

    Science.gov (United States)

    Abbatiello, Leonard A.; Neal, Richard E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is provided. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun.

  18. Automatic targeting of plasma spray gun

    International Nuclear Information System (INIS)

    Abbatiello, L.A.; Neal, R.E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is described. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun

  19. Modulator considerations for the SNS RF system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Reass, W.A.

    1998-01-01

    The Spallation Neutron Source (SNS) is an intense neutron source for neutron scattering experiments. The project is in the research stage, with construction funding beginning next year. The SNS is comprised of an ion source, a 1,000 MeV, H - linear accelerator, an accumulator ring, a neutron producing target, and experimental area to utilize the scattering of the neutrons. The linear accelerator is RF driven, and the peak beam current is 27 mA and the beam duty factor is 5.84%. The peak RF power required is 104 MW, and the H - beam pulse length is 0.97 ms at a 60 Hz repetition rate. The RF pulses must be about 0.1 ms longer than the beam pulses, due to the Q of the accelerating cavities, and the time required to establish control of the cavity fields. The modulators for the klystrons in this accelerator are discussed in this paper. The SNS is designed to be expandable, so the beam power can be doubled or even quadrupled in the future. One of the double-power options is to double the beam pulse length and duty factor. The authors are specifying the klystrons to operate in this twice-duty-factor mode, and the modulator also should be expandable to 2 ms pulses at 60 Hz. Due to the long pulse length and low RF frequency of 805 MHz, the klystron power is specified at 2.5 MW peak, and the RF system will have 56 klystrons at 805 MHz, and three 1.25 MW peak power klystrons at 402.5 MHz for the low energy portion of the accelerator. The low frequency modulators are conventional floating-deck modulation anode control systems

  20. High total dose proton irradiation effects on silicon NPN rf power transistors

    International Nuclear Information System (INIS)

    Bharathi, M. N.; Praveen, K. C.; Prakash, A. P. Gnana; Pushpa, N.

    2014-01-01

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods

  1. High total dose proton irradiation effects on silicon NPN rf power transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bharathi, M. N.; Praveen, K. C.; Prakash, A. P. Gnana, E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore-570006, Karnataka (India); Pushpa, N. [Department of PG Studies in Physics, JSS College, Ooty Road, Mysore-570025, Karnataka (India)

    2014-04-24

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods.

  2. Electron gun for technological linear accelerator

    International Nuclear Information System (INIS)

    Khodak, I.V.; Kushnir, V.A.; Mirochenko, V.V.; Stepin, D.L.; Zavada, L.M.

    2000-01-01

    The work is purposed to the design of diode electron gun for powerful technologic electron linac and to experimental investigations of the beam parameters at the gun exit.The gun feature is the quick cathode replacement.This is very impotent for operating of the accelerator.The gun optics and beam parameters were calculated using the EGUN code.Beam parameters were investigated as at the special test stand so as component of the linac injector.The gun produces the beam current of 2 A at the anode voltage 25 kV.Measured beam parameters correspond to calculated results

  3. Are "goods for guns" good for the community? An update of a community gun buyback program.

    Science.gov (United States)

    Green, Jonathan; Damle, Rachelle N; Kasper, Rebecca E; Violano, Pina; Manno, Mariann; Nazarey, Pradeep P; Aidlen, Jeremy T; Hirsh, Michael P

    2017-08-01

    Gun violence remains a leading cause of death in the United States. Community gun buyback programs provide an opportunity to dispose of extraneous firearms. The purpose of this study was to understand the demographics, motivation, child access to firearms, and household mental illness of buyback participants in hopes of improving the program's effectiveness. A 2015 Injury Free Coalition for Kids gun buyback program which collaborated with local police departments was studied. We administered a 23-item questionnaire survey to gun buyback participants assessing demographic characteristics, motivation for relinquishing firearms, child firearm accessibility, and mental illness/domestic violence history. A total of 186 individuals from Central/Western Massachusetts turned in 339 weapons. Participants received between US $25 and US $75 in gift cards dependent on what type of gun was turned in, with an average cost of $41/gun. A total of 109 (59%) participants completed the survey. Respondents were mostly white (99%), men (90%) and first-time participants in the program (85.2%). Among survey respondents, 54% turned in firearms "for safety reasons." Respondents reported no longer needing/wanting their weapons (47%) and approximately one in eight participants were concerned the firearm(s) were accessible to children. Most respondents (87%) felt the program encouraged neighborhood awareness of firearm safety. Three of every five participants reported that guns still remained in their homes; additionally, 21% where children could potentially access them and 14% with a history of mental illness/suicide/domestic violence in the home. Gun buybacks can provide a low-cost means of removing unwanted firearms from the community. Most participants felt their homes were safer after turning in the firearm(s). In homes still possessing guns, emphasis on secure gun storage should continue, increasing the safety of children and families. The results of this survey also provided new

  4. Simulation and analysis of secondary emission microwave electron gun

    International Nuclear Information System (INIS)

    He Wencan; Pei Yuanji; Jin Kai; Wu Congfeng

    2001-01-01

    The development of high-current, short-duration pulses of electrons has been a challenging problem for many year. Micro-pulse-gun (MPG) is a novel concept that employs the resonant amplification of an electron current by secondary electron emission in a RE cavity. Using the computation code URMEL-T, several kinds of RF cavities under the frequency of 2856 MHz were calculated and optimized, the magnetic and electric field distribution in them were got. Through particle-in-cell (PIC) simulation, the self-bunching process in a MPG was proved, the relationship between the cavity length and selected phase and the relationship between the peak electric field and selected phase were got. With cathode material of high secondary emission coefficient, the MPG can produce high current densities (1132-5303 A/cm 2 ) and short pulses (3.15-10 ps)

  5. Development of a Polarized Electron Gun Based on an S-Band PWT Photoinjector

    CERN Document Server

    Clendenin, J E; Yu, D; Newsham, D; Luo, Y; Smirnov, A

    2003-01-01

    An RF polarized electron gun utilizing the unique features of an integrated, plane-wave-transformer (PWT) photoelectron injector [1] is being developed by DULY Research Inc. in collaboration with SLAC. Modifications to a DULY S-band device [2] include: a re-design of the photocathode/RF backplane interface to accommodate a GaAs cathode; change in the design of the vacuum ports to provide 10-11 Torr operation; the inclusion of a load-lock photocathode replacement system to allow for reactivation and cessation of the GaAs photocathode in a vacuum; and alteration of the magnet field coils to make room for the load-lock. The use of a stainless steel outer tank and cooling rods without copper plating may also provide better vacuum performance at the expense of diminished Q factor. The effectiveness of both the standard cooling rods and synthetic diamond heat sinks for disk cooling is investigated for future linear collider applications operating at a rep rate of 180 Hz and a bunch charge of 2 nC.

  6. Glue Guns: Aiming for Safety

    Science.gov (United States)

    Roy, Ken

    2010-01-01

    While glue guns are very useful, there are safety issues. Regardless of the temperature setting, glue guns can burn skin. The teacher should demonstrate and supervise the use of glue guns and have a plan should a student get burned. There should be an initial first aid protocol in place, followed by a visit to the school nurse. An accident report…

  7. RFSYS: an inventory code for RF system parameters

    International Nuclear Information System (INIS)

    Treadwell, E.A.

    1983-03-01

    RFSYS is a program which maintains an inventory of rf system parameters associated with the 200 MeV Linear Accelerator at Fermi National Accelerator Laboratory. The program, written by Elliott Treadwell, of the Linac group, offers five modes of operation: (1) Allocates memory space for additional rf systems (data arrays). (2) Prints a total or partial list of old tube parameters on an ADM-3 terminal. (3) Changes tube data stored in the master array. If the number of systems increases, this mode permits the user to enter new data. (4) Computes the average time of operation for a given tube and system. (5) Stops program execution. There is an exit option, (a) create one output data file or (b) create three output files, one of which contains column headers and coded comments. All output files are stored on the CYBER-175 disc, and eventually on high density (6250 B.P.I.) magnetic tapes. This arrangement eliminates the necessity for online data buffers

  8. "Is there a gun in the home?" Assessing the risks of gun ownership in older adults.

    Science.gov (United States)

    Pinholt, Ellen M; Mitchell, Joshua D; Butler, Jane H; Kumar, Harjinder

    2014-06-01

    An important ethical and safety concern that geriatricians, primary care providers, and home health professionals need to address is gun ownership by elderly adults. Those aged 65 and older now have the highest rate of gun ownership in America, and they also have a high prevalence of depression and suicide. Dementia can add additional layers of risk. Even older gun owners who are otherwise intellectually intact may benefit from information about gun safety with the increasing numbers of children being cared for by grandparents. Health professionals should ask patients, "Is there a gun in the home?" in the clinic and during home visits. Healthcare professionals must have knowledge and skills to address safe gun ownership in elderly adults. The 5 L's (Locked, Loaded, Little children, feeling Low, Learned owner) will assist professionals in addressing all aspects of safe ownership. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.

  9. Gun buyback programs: a venue to eliminate unwanted guns in the community.

    Science.gov (United States)

    Violano, Pina; Driscoll, Cassandra; Chaudhary, Neil K; Schuster, Kevin M; Davis, Kimberly A; Borer, Esther; Winters, Jane K; Hirsh, Michael P

    2014-09-01

    The United States has a high rate of death due to firearms, and gun buyback programs may mitigate these high death rates. Understanding the demographics, motivation, and geographic region of participants may improve program efficacy. Three Injury Free Coalition for Kids gun buyback programs, in collaboration with the local police, were studied: Phoenix, Arizona; Worcester, Massachusetts; and New Haven, Connecticut. Participants were defined as those who relinquished a firearm. A self-administered, anonymous, paper survey elicited information from participants regarding demographic data, formal training on the use of the firearm, how the firearm was acquired, potential child access, knowledge of others injured by a firearm, whether the firearm was stored unlocked, factors motivating the surrender of the firearm, and other factors. Survey results were entered into a composite database and analyzed for differences in location, race, sex, and other factors. Participants (n = 301) were predominantly male (73.5%), white (80.9%), and older than 55 years (59.0%). They lived an average of 19.0 miles from the event by zip codes and had an average median household income of $65,731. More than half (54.5%) did not purchase the firearm, acquiring it through inheritance, gift, or random find. Most (74.8%) had previous firearms training and were relinquishing for safety reasons (68.3%). Those relinquishing firearms for safety reasons were less likely to have purchased the firearm (odds ratio [OR], 2.46, p gun lock (OR, 0.15; p gun-wielding criminal acts were burglarized from the home of legal gun owners that had failed to secure them properly. The gun buyback program is solely one prong of a multipronged approach in reducing firearm-based interpersonal violence. Additional research is necessary to determine effective methods to target individuals who would have the greatest impact on gun violence if they relinquished their weapons. Through the forging of relationships and

  10. Design of RF structures for a superconducting proton linac

    International Nuclear Information System (INIS)

    Pande, Rajni; Roy, Shweta; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-01-01

    One of the main components of the Accelerator Driven System (ADS) programme in India is a 1 GeV, high intensity CW proton accelerator that will be superconducting after the radio-frequency quadrupole (RFQ), i.e. after 3 MeV. The superconducting linac will consist of various superconducting structures like Half Wave Resonators, Spoke Resonators and elliptical cavities, operating at RF frequencies of 162.5 MHz, 325 MHz and 650 MHz. The paper will discuss the optimization of the electromagnetic design of the various superconducting structures. (author)

  11. Initial Measurements of CSR from a Bunch-Compressed Beam at APS

    CERN Document Server

    Lumpkin, Alex H; Borland, M; Sereno, N S

    2005-01-01

    The interest in bunch compression to generate higher peak current electron beams with low emittance continues in the free-electron laser (FEL) community. At the Advanced Photon source (APS) we have both an rf thermionic gun and an rf photocathode (PC) gun on the S-band linac. At the 150-MeV point in the linac, we have a flexible chicane bunch compressor whose four dipoles bend the beam in the horizontal plane. There is also a vertical bend dipole after the chicane that allows measurement of energy and horizontal beam size at the imaging screen station to study possible effects on emittance due to coherent synchrotron radiation (CSR) in the chicane. A far-infrared (FIR) coherent radiation monitor is located downstream of the chicane as well. We have begun recommissioning of this device with coherent transition radiation (CTR), but we also have directly observed CSR from the bunch-compressed beam as it transits the vertical dipole and goes into the down leg. The unique geometry allows simultaneous tracking of b...

  12. Extraction of High Charge Electron Bunch from the ELSA RF Injector Comparison Between Simulation and Experiment

    CERN Document Server

    Lemaire, J; Binet, A; Lagniel, J M; Le Flanchec, V; Pichoff, N

    2004-01-01

    A new scheme based on a photoinjector and a RF linear accelerator operating at 352 MHz has been recently proposed as a versatile radiographic facility. Beam pulses of 60 ns duration contain 20 succesive electron bunches which will be extracted at 2.5 MeV from a photoinjector then accelerated through the next structure to the final energy of 51 MeV. Bunches carrying 100 nC are required for this purpose. As a first demonstrating step, 50 nC electron bunches have been produced and accelerated to 2.5 MeV with the 144 MHz ELSA photoinjector at Bruyères le Chatel. For this experiment, we compare the results and the numerical simulations made with PARMELA, MAGIC and MAFIA codes.

  13. State-Of High Brightness RF Photo-Injector Design

    Science.gov (United States)

    Ferrario, Massimo; Clendenin, Jym; Palmer, Dennis; Rosenzweig, James; Serafini, Luca

    2000-04-01

    The art of designing optimized high brightness electron RF Photo-Injectors has moved in the last decade from a cut and try procedure, guided by experimental experience and time consuming particle tracking simulations, up to a fast parameter space scanning, guided by recent analytical results and a fast running semi-analytical code, so to reach the optimum operating point which corresponds to maximum beam brightness. Scaling laws and the theory of invariant envelope provide to the designers excellent tools for a first parameters choice and the code HOMDYN, based on a multi-slice envelope description of the beam dynamics, is tailored to describe the space charge dominated dynamics of laminar beams in presence of time dependent space charge forces, giving rise to a very fast modeling capability for photo-injectors design. We report in this talk the results of a recent beam dynamics study, motivated by the need to redesign the LCLS photoinjector. During this work a new effective working point for a split RF photoinjector has been discovered by means of the previous mentioned approach. By a proper choice of rf gun and solenoid parameters, the emittance evolution shows a double minimum behavior in the drifting region. If the booster is located where the relative emittance maximum and the envelope waist occur, the second emittance minimum can be shifted at the booster exit and frozen at a very low level (0.3 mm-mrad for a 1 nC flat top bunch), to the extent that the invariant envelope matching conditions are satisfied.

  14. The LANSCE 805 MHZ RF System History and Status

    CERN Document Server

    Lynch, Michael; Tallerico, Paul J

    2005-01-01

    The Los Alamos Neutron Science Center (LANSCE) linear accelerator runs at 201.25 MHz for acceleration to 100 MeV. The remainder of the acceleration to 800 MeV is at 805 MHz. This is done with 44 accelerator cavity stages driven by 805 MHz klystrons. Each klystron has a peak power capability of 1.25 MeV. Originally, 97 klystrons were purchased, which was 70 from Varian/CPI and 27 from Litton. The 44 RF systems are laid out in sectors with either 6 or 7 klystrons per sector. The klystrons in each sector are powered from a common HV sytem. The current arrangement uses the Varian/CPI klystrons in 6 of the 7 sectors and Litton klystrons in the remaining sector. With that arrangement there are 38 CPI klystrons installed and 1 spare klystron per sector and 6 Litton klystrons installed in the final sector with 2 spares. The current average life of all of the operating and spare klystrons (52 total) is >112,000 filament hours and >93,000 HV hours. That is three times the typical klystron lifetime today f...

  15. Instantaneous current and field structure of a gun-driven spheromak for two gun polarities

    International Nuclear Information System (INIS)

    Woodruff, S; Nagata, M

    2002-01-01

    The instantaneous plasma structure of the SPHEX spheromak is determined here by numerically processing data from insertable Rogowski and magnetic field probes. Data is presented and compared for two modes of gun operation: with the central electrode biased positively and negatively. It is found that while the mean-, or even instantaneous-, field structure would give the impression of a roughly axisymmetric spheromak, the instantaneous current structure does not. Hundred per cent variations in J measured at the magnetic axis can be explained by the rotation of a current filament that has a width equal to half of the radius of the flux-conserving first wall. In positive gun operation, current leaves the filament in the confinement region leading to high wall current there. In negative gun operation, wall current remains low as all injected current returns to the gun through the plasma. The plasma, in either instance, is strongly asymmetric. We discuss evidence for the existence of the current filament in other gun-driven spheromaks and coaxial plasma thrusters

  16. Heavy duty plasma spray gun

    International Nuclear Information System (INIS)

    Irons, G.C.; Klein, J.F.; Lander, R.D.; Thompson, H.C.; Trapani, R.D.

    1984-01-01

    A heavy duty plasma spray gun for extended industrial service is disclosed. The gun includes a gas distribution member made of a material having a coefficient of expansion different from that of the parts surrounding it. The gas distribution member is forcibly urged by a resilient member such as a coiled spring against a seal so as to assure the plasma gas is introduced into the gun arc in a manner only defined by the gas distribution member. The gun has liquid cooling for the nozzle (anode) and the cathode. Double seals are provided between the coolant and the arc region and a vent is provided between the seals which provides an indication when a seal has failed. Some parts of the gun are electrically isolated from others by an intermediate member which is formed as a sandwich of two rigid metal face pieces and an insulator disposed between them. The metal face pieces provide a rigid body to attach the remaining parts in proper alignment therewith

  17. 77 FR 37834 - Revocation of Certain Requirements Pertaining to Caps Intended for Use With Toy Guns and Toy Guns...

    Science.gov (United States)

    2012-06-25

    ... Certain Requirements Pertaining to Caps Intended for Use With Toy Guns and Toy Guns Not Intended for Use With Caps AGENCY: Consumer Product Safety Commission. ACTION: Notice of proposed rulemaking. SUMMARY... compliance than our existing regulations pertaining to caps intended for use with toy guns and toy guns not...

  18. Start-to-end simulation of the injector for a compact THz source

    OpenAIRE

    Li, J.; Pei, Y. J.; Shang, L.; Feng, G.; Hu, T.; Chen, Q.; Li, C.

    2013-01-01

    Terahertz radiation has broad application prospect due to its ability to penetrate deep into many organic materials without damage caused by ionizing radiations. A FEL-based THz source is the best choice to produce high-power radiation. In this paper, a 14 MeV injector is introduced for generating high-quality beam for FEL, which is composed of an EC-ITC RF gun, compensating coils and a travelling-wave structure. Start-to-end simulation has been done with ASTRA code to verify the design and t...

  19. Electron gun for the Fel Clio

    International Nuclear Information System (INIS)

    Chaput, R.

    1990-01-01

    A triode electron gun has been developed and manufactured at LURE (Laboratoire pour l'Utilisation du Rayonnement Electromagnetique) and LAL (Laboratoire de l'Accelerateur Lineaire) for the free electron laser CLIO 1 (Collaboration pour un laser a electrons libres dans l'infrarouge a Orsay) now under construction: this gun involves a grid-cathode assembly manufactured by EIMAC, currently used in the SLAC gun family. For the FEL requirements, the gun must be able to yield a train of short pulses at accuracy frequency or a continuous pulse. Driving together the cathode and the grid the gun produces a continous beam of 12 μs or a pulsed beam of very short pulse of 1 ns at 250 MHz, 125 MHz, 62.5 MHz or 31.25 MHz. The performances of the gun has been tested on a testing bench. A peak current of 1 Amp. for 1 ns width at any frequencies was achieved at an injection voltage of 90 kV

  20. High power rf amplifiers for accelerator applications: The large orbit gyrotron and the high current, space charge enhanced relativistic klystron

    International Nuclear Information System (INIS)

    Stringfield, R.M.; Fazio, M.V.; Rickel, D.G.; Kwan, T.J.T.; Peratt, A.L.; Kinross-Wright, J.; Van Haaften, F.W.; Hoeberling, R.F.; Faehl, R.; Carlsten, B.; Destler, W.W.; Warner, L.B.

    1991-01-01

    Los Alamos is investigating a number of high power microwave (HPM) sources for their potential to power advanced accelerators. Included in this investigation are the large orbit gyrotron amplifier and oscillator (LOG) and the relativistic klystron amplifier (RKA). LOG amplifier development is newly underway. Electron beam power levels of 3 GW, 70 ns duration, are planned, with anticipated conversion efficiencies into RF on the order of 20 percent. Ongoing investigations on this device include experimental improvement of the electron beam optics (to allow injection of a suitable fraction of the electron beam born in the gun into the amplifier structure), and computational studies of resonator design and RF extraction. Recent RKA studies have operated at electron beam powers into the device of 1.35 GW in microsecond duration pulses. The device has yielded modulated electron beam power approaching 300 MW using 3-5 kW of RF input drive. RF powers extracted into waveguide have been up to 70 MW, suggesting that more power is available from the device than has been converted to-date in the extractor

  1. Gas gun dynamics

    International Nuclear Information System (INIS)

    Denny, Mark

    2013-01-01

    The mechanics and thermodynamics of one- and two-stage gas guns are developed. Very high projectile muzzle speed can be obtained by the two-stage version. The physics of simple gas guns, such as air rifles, is accessible to undergraduates and the same level of presentation is used here to understand more complex designs. Numerical solutions to the equations of motion are shown, along with insightful analytic approximations. (paper)

  2. Alignment Fixtures For Vacuum-Plasma-Spray Gun

    Science.gov (United States)

    Woodford, William H.; Mckechnie, Timothy N.; Power, Christopher A.; Daniel, Ronald L., Jr.

    1993-01-01

    Fixtures for alignment of vacuum-plasma-spray guns built. Each fixture designed to fit specific gun and holds small, battery-powered laser on centerline of gun. Laser beam projects small red dot where centerline intersects surface of workpiece to be sprayed. After laser beam positioned on surface of workpiece, fixture removed from gun and spraying proceeds.

  3. Generation of multi-branch beam with thermionic gun for the Japan linear collider

    International Nuclear Information System (INIS)

    Naito, T.; Akemoto, M.; Matsumonto, H.; Urakawa, J.; Yoshioka, M.; Akiyama, H.

    1992-01-01

    We report on the development of a thermionic gun that is capable of producing multi-bunch beam to be used at the KEK Accelerator Test Facility for the Japan Linear Collider project. Two types of grid pulse generators have been developed. One is an avalanche pulse generator. A Y-646E cathode was successfully operated to generate double-bunch beam with a pulse width shorter than 700 ps, bunch spacing 1.4 ns, and a peak current 4.3 A. The other grid pulse generator is a fast ECL circuit with an RF power amplifier. Generation of 20-pulse trains with 2.1 ns time spacing has been demonstrated. (Author) 4 refs., 6 figs

  4. Electron gun

    International Nuclear Information System (INIS)

    Chen, H.-Y.; Hughes, R.H.

    1979-01-01

    The invention described relates to cathode ray tubes, and particularly to color picture tubes of the type useful in home television receivers and therefore to electron guns. The invention is especially applicable to self-converging tube-yoke combinations with shadow mask tubes of the type having plural-beam in-line guns disposed in a horizontal plane, an apertured mask with vertically oriented slit-shaped apertures, and a screen with vertically oriented phosphor stripes. The invention is not, however, limited to use in such tubes and may in fact be used, e.g., in dot-type shadow mask tubes and index-type tubes. (Auth.)

  5. Middle Ground on Gun Control

    Science.gov (United States)

    2016-12-01

    34 Australian Institute of Criminology, July 7, 2015, http://www.aic.gov.au/ statistics /homicide/weapon.html. 0 100 200 300 400 500 600 700 Total Gun...firearms is not the business of a single Australian , so it is immeasurably easier for politicians to categorically ban types of guns because there is...not an Australian version of Smith and Wesson that is going to be put out of business . Additionally, because all of the guns in Australia are

  6. Camouflaged Collectives: Managing Stigma and Identity at Gun Events

    Directory of Open Access Journals (Sweden)

    Sarah Jane Blithe

    2017-02-01

    Full Text Available Gun violence persists in the United States, claiming lives and escalating healthcare costs. This article seeks to contribute to social justice work on the “gun problem” by studying gun collectives. To understand gun culture and to identify gun violence reduction strategies, we study places where gun owners organize – legal (and sometimes illegal settings that facilitate dialogue about gun issues. Based on participant observation and collaborative event ethnography at gun shows and a private shooting party, this analysis presents findings about the practices gun collective members use to manage stigma. We conclude that when participants in gun events attempt to subvert core stigma through everyday stigma management practices, they effectively facilitate the unfettered exchange of potentially dangerous goods, promote the invisibility of oppressive structures, and normalize violence.

  7. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    International Nuclear Information System (INIS)

    Yildiz, H. Duran; Cakir, R.; Porsuk, D.

    2015-01-01

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; E c =19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles

  8. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, H. Duran, E-mail: hdyildiz@ankara.edu.tr [Institute of Accelerator Technologies, Ankara University, Ankara (Turkey); Cakir, R. [Nanotechnology Engineering Department, Recep Tayyip Erdogan University, Rize (Turkey); Porsuk, D. [Physics Department, Dumlupinar University, Kutahya (Turkey)

    2015-06-11

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; E{sub c}=19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles.

  9. Interpreting the empirical evidence on illegal gun market dynamics.

    Science.gov (United States)

    Braga, Anthony A; Wintemute, Garen J; Pierce, Glenn L; Cook, Philip J; Ridgeway, Greg

    2012-10-01

    Thousands of Americans are killed by gunfire each year, and hundreds of thousands more are injured or threatened with guns in robberies and assaults. The burden of gun violence in urban areas is particularly high. Critics suggest that the results of firearm trace data and gun trafficking investigation studies cannot be used to understand the illegal supply of guns to criminals and, therefore, that regulatory and enforcement efforts designed to disrupt illegal firearms markets are futile in addressing criminal access to firearms. In this paper, we present new data to address three key arguments used by skeptics to undermine research on illegal gun market dynamics. We find that criminals rely upon a diverse set of illegal diversion pathways to acquire guns, gun traffickers usually divert small numbers of guns, newer guns are diverted through close-to-retail diversions from legal firearms commerce, and that a diverse set of gun trafficking indicators are needed to identify and shut down gun trafficking pathways.

  10. Experimental studies of coaxial plasma gun current

    International Nuclear Information System (INIS)

    Price, D.W.

    1988-01-01

    In this investigation of a coaxial plasma gun, plasma sheath currents and related behavior are examined. Plasma behavior in the gun affects gun characteristics. Plasma gun applications are determined by the plasma behavior. The AFWL PUFF capacitor bank (72 μF, 29 nH, 120 kV) drives the plasma gun using a deuterium fill gas. The gas breakdown site is isolated from the dielectric/vacuum interface in the AFWL system. Two gas values deliver gas in the system. The first delivers gas from the gun breech and the second optional valve delivers gas to the gun muzzle. Currents and voltages are measured by Rogowski coils, B probes and capacitive voltage probes. A O-D slug model is used to predict the current, inductance, gun voltage and plasma sheath velocity. The slug model assumes the sheath transits the gun with all mass in the sheath. In the snowplow mode, the plasma sheath is thin with a sharp current rise and drop. Our system operated in a transition mode between the snowplow and deflagration modes with early snowplow behavior and late deflagration behavior. Neutrons are produced in a plasma pinch at the gun muzzle, indicating snowplow behavior. The slug theory models overall gun behavior to experimental accuracy. Experimental results are compared to four theories for plasma sheath velocities: the Alfven collisionally limited model, the Rosenbluth model, the Fishbine saturated model and a single particle drift model. Experimental velocities vary from 10 5 to 10 6 m/s. Only the single particle drift and the slug model calculations are of the right magnitude (8 x 10 5 m/s). The Fishbine and the Rosenbluth models predict slower velocities (2 x 10 5 m/s). The Alfven model is not applicable to this system

  11. Gun Safety (For Parents)

    Science.gov (United States)

    ... from the home of a relative or friend. Teens should never be able to get to a gun and bullets without an adult being there. People of any age who are depressed are at increased risk of suicide. If someone in the family has depression, or has had thoughts of suicide, all guns ...

  12. Remotely controlled spray gun

    Science.gov (United States)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  13. Design of an electron-accelerator-driven compact neutron source for non-destructive assay

    Science.gov (United States)

    Murata, A.; Ikeda, S.; Hayashizaki, N.

    2017-09-01

    The threat of nuclear and radiological terrorism remains one of the greatest challenges to international security, and the threat is constantly evolving. In order to prevent nuclear terrorism, it is important to avoid unlawful import of nuclear materials, such as uranium and plutonium. Development of technologies for non-destructive measurement, detection and recognition of nuclear materials is essential for control at national borders. At Tokyo Institute of Technology, a compact neutron source system driven by an electron-accelerator has been designed for non-destructive assay (NDA). This system is composed of a combination of an S-band (2.856 GHz) RF-gun, a tungsten target to produce photons by bremsstrahlung, a beryllium target, which is suitable for use in generating neutrons because of the low threshold energy of photonuclear reactions, and a moderator to thermalize the fast neutrons. The advantage of this system can accelerate a short pulse beam with a pulse width less than 1 μs which is difficult to produce by neutron generators. The amounts of photons and neutron produced by electron beams were simulated using the Monte Carlo simulation code PHITS 2.82. When the RF-gun is operated with an average electron beam current of 0.1 mA, it is expected that the neutron intensities are 1.19 × 109 n/s and 9.94 × 109 n/s for incident electron beam energies of 5 MeV and 10 MeV, respectively.

  14. Multiphoton photoemission from a copper cathode illuminated by ultrashort laser pulses in an RF photoinjector.

    Science.gov (United States)

    Musumeci, P; Cultrera, L; Ferrario, M; Filippetto, D; Gatti, G; Gutierrez, M S; Moody, J T; Moore, N; Rosenzweig, J B; Scoby, C M; Travish, G; Vicario, C

    2010-02-26

    In this Letter we report on the use of ultrashort infrared laser pulses to generate a copious amount of electrons by a copper cathode in an rf photoinjector. The charge yield verifies the generalized Fowler-Dubridge theory for multiphoton photoemission. The emission is verified to be prompt using a two pulse autocorrelation technique. The thermal emittance associated with the excess kinetic energy from the emission process is comparable with the one measured using frequency tripled uv laser pulses. In the high field of the rf gun, up to 50 pC of charge can be extracted from the cathode using a 80 fs long, 2 microJ, 800 nm pulse focused to a 140 mum rms spot size. Taking into account the efficiency of harmonic conversion, illuminating a cathode directly with ir laser pulses can be the most efficient way to employ the available laser power.

  15. Multiphoton Photoemission from a Copper Cathode Illuminated by Ultrashort Laser Pulses in an rf Photoinjector

    International Nuclear Information System (INIS)

    Musumeci, P.; Gutierrez, M. S.; Moody, J. T.; Moore, N.; Rosenzweig, J. B.; Scoby, C. M.; Travish, G.; Cultrera, L.; Ferrario, M.; Filippetto, D.; Gatti, G.; Vicario, C.

    2010-01-01

    In this Letter we report on the use of ultrashort infrared laser pulses to generate a copious amount of electrons by a copper cathode in an rf photoinjector. The charge yield verifies the generalized Fowler-Dubridge theory for multiphoton photoemission. The emission is verified to be prompt using a two pulse autocorrelation technique. The thermal emittance associated with the excess kinetic energy from the emission process is comparable with the one measured using frequency tripled uv laser pulses. In the high field of the rf gun, up to 50 pC of charge can be extracted from the cathode using a 80 fs long, 2 μJ, 800 nm pulse focused to a 140 μm rms spot size. Taking into account the efficiency of harmonic conversion, illuminating a cathode directly with ir laser pulses can be the most efficient way to employ the available laser power.

  16. Developments on the RF system for the Fusion Materials Irradiation Test Facility accelerator

    International Nuclear Information System (INIS)

    Fazio, M.V.; Johnson, H.P.; Riggin, D.M.

    1979-01-01

    The rf system for the Fusion Materials Irradiation Test (FMIT) accelerator is currently in the design phase at the Los Alamos Scientific Laboratory (LASL). The 35-MeV, 100-mA deuteron beam will require approximately 6 MW of rf power at 80 MHz. The EIMAC 8973 power tetrode, capable of a 600-kW cw output, has been chosen as the final amplifier tube for each of 15 amplifier chains. The final power stage of each chain is designed to perform as a linear Class B amplifier. Each low-power rf system (less than or equal to 100W) is to be phase, amplitude, and frequency controlled to provide a drive signal for each high-power amplifier. Beam dynamics for particle acceleration and for minimal beam spill require each rf amplifier output to be phase controlled to +-1 0 . The amplitude of the accelerating field must be held to +-1%. A varactor-tuned electronic phase shifter and a linear phase detector are under development for use in this system. To complement hardware development, analog computer simulations are being performed to optimize the closed-loop control characteristics of the system

  17. Conceptual Design for CLIC Gun Pulser

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Tao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-01-08

    The Compact Linear Collider (CLIC) is a proposed future electron-positron collider, designed to perform collisions at energies from 0.5 to 5 TeV, with a nominal design optimized for 3 TeV (Dannheim, 2012). The Drive Beam Accelerator consists of a thermionic DC gun, bunching section and an accelerating section. The thermionic gun needs deliver a long (~143us) pulse of current into the buncher. A pulser is needed to drive grid of the gun to generate a stable current output. This report explores the requirements of the gun pulser and potential solutions to regulate grid current.

  18. Development of small C-band standing-wave accelerator structure

    International Nuclear Information System (INIS)

    Miura, S.; Takahashi, A.; Hisanaga, N.; Sekido, H.; Yoshizumi, A.

    2000-01-01

    We have newly developed a compact C-band (5712 MHz) standing-wave accelerator for the medical product/waste sterilization applications. The accelerator consists of an electron gun operating at 25 kV DC followed by a single-cell pre-buncher and 3-cell buncher section, and 11-cell of the side-coupled standing-wave accelerating structure. The total length including the electron gun is about 600 mm. The first high-power test was performed in March 2000, where the accelerator successively generated the electron beam of 9 MeV energy and 160 mA peak-current at 3.8 MW RF input power. Mitsubishi Heavy Industry starts to serve the sterilization systems using C-band accelerator reported here, and also supplies the accelerator components for the medical oncology applications. (author)

  19. Particle-In-Cell/Monte Carlo Simulation of Ion Back Bombardment in Photoinjectors

    International Nuclear Information System (INIS)

    Qiang, Ji; Corlett, John; Staples, John

    2009-01-01

    In this paper, we report on studies of ion back bombardment in high average current dc and rf photoinjectors using a particle-in-cell/Monte Carlo method. Using H 2 ion as an example, we observed that the ion density and energy deposition on the photocathode in rf guns are order of magnitude lower than that in a dc gun. A higher rf frequency helps mitigate the ion back bombardment of the cathode in rf guns

  20. Fueling by coaxial plasma guns

    International Nuclear Information System (INIS)

    Marshall, J.

    1978-01-01

    The operating principles of pulsed coaxial guns are reviewed. Some problems involved with the injection of plasma beams from these guns into containment fields are described. The injection during reactor operating conditions is then discussed

  1. New Electron Gun System for BEPCII

    CERN Document Server

    Liu, Bo; Long Chi, Yun; Zhang, Chuang

    2005-01-01

    The new electron gun system for BEPCII has been put into operation since Nov. 2004. The article describes the design, experiment and operation of this new system. The design current of the gun is 10 A for the pulse lengths of 1 ns, 2.5 ns and 1 μs with repetition rate of 50 Hz. The gun is operated with a pulsed high voltage power supply which can provide up to 200 kV high voltage. Computer simulations have been carried out in the design stage, including simulation of the gun geometry and beam transportation. Some important relation curves are obtained during the experiment. Two-bunch operation is available and some elementary tests have been performed. New scheme of the gun control system based on EPICS is also presented. The real operation shows that the design and manufacturing is basically successful.

  2. Microwave and RF vacuum electronic power sources

    CERN Document Server

    Carter, Richard G

    2018-01-01

    Do you design and build vacuum electron devices, or work with the systems that use them? Quickly develop a solid understanding of how these devices work with this authoritative guide, written by an author with over fifty years of experience in the field. Rigorous in its approach, it focuses on the theory and design of commercially significant types of gridded, linear-beam, crossed-field and fast-wave tubes. Essential components such as waveguides, resonators, slow-wave structures, electron guns, beams, magnets and collectors are also covered, as well as the integration and reliable operation of devices in microwave and RF systems. Complex mathematical analysis is kept to a minimum, and Mathcad worksheets supporting the book online aid understanding of key concepts and connect the theory with practice. Including coverage of primary sources and current research trends, this is essential reading for researchers, practitioners and graduate students working on vacuum electron devices.

  3. Gun Violence, mental health, and Connecticut physicians.

    Science.gov (United States)

    Dodds, Peter R; Anderson, Caitlyn O; Dodds, Jon H

    2014-01-01

    While there is a public perception that gun violence is associated with mental illness we present evidence that it is a complex public health problem which defies simple characterizations and solutions. Only a small percentage of individuals with mental illness are at risk for extreme violence and they account for only a small percentage of gun-related homicides. Individuals who are at risk for gun violence are difficult to identify and successfully treat. The incidence, and perhaps the demographics, of gun violence vary substantially from state to state. We make a case for Connecticut physicians to study gun violence at the state level. We recommend that Connecticut physicians promote and expand upon the American Academy of Pediatrics' recommendation for creating a "safe home environment. "We suggest that guns be secured in all homes in which there are children. In addition we suggest that guns be voluntarily removed from homes in which there are individuals with a history of violence, threats of violence, depression, drug and/or alcohol abuse, and individuals with major mental illnesses who are not cooperating with therapy.

  4. Electric rail gun application to space propulsion

    International Nuclear Information System (INIS)

    Barber, J.P.

    1979-01-01

    The paper examines the possibility of using the DC electric gun principles as a space vehicle propulsion system, capable of producing intermediate thrust levels. The application of an electromagnetic launch technique, called the DC electric rail gun, to the space propulsion concept of O'Neill, is examined. It is determined that the DC electric rail gun offers very high projectile accelerations and a very significant potential for reducing the size and mass of a reaction motor for space application. A detailed description of rail gun principles is given and some simple expressions for the accelerating force, gun impedance, power supply requirements, and system performance are discussed

  5. Association Between Substance Use and Gun-Related Behaviors.

    Science.gov (United States)

    Chen, Danhong; Wu, Li-Tzy

    2016-01-01

    Gun-related violence is a public health concern. This study synthesizes findings on associations between substance use and gun-related behaviors. Searches through PubMed, Embase, and PsycINFO located 66 studies published in English between 1992 and 2014. Most studies found a significant bivariate association between substance use and increased odds of gun-related behaviors. However, their association after adjustment was mixed, which could be attributed to a number of factors such as variations in definitions of substance use and gun activity, study design, sample demographics, and the specific covariates considered. Fewer studies identified a significant association between substance use and gun access/possession than other gun activities. The significant association between nonsubstance covariates (e.g., demographic covariates and other behavioral risk factors) and gun-related behaviors might have moderated the association between substance use and gun activities. Particularly, the strength of association between substance use and gun activities tended to reduce appreciably or to become nonsignificant after adjustment for mental disorders. Some studies indicated a positive association between the frequency of substance use and the odds of engaging in gun-related behaviors. Overall, the results suggest a need to consider substance use in research and prevention programs for gun-related violence. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    Energy Technology Data Exchange (ETDEWEB)

    Teng, J.; Gu, Y.Q., E-mail: tengjian@mail.ustc.edu.cn; Zhu, B.; Hong, W.; Zhao, Z.Q.; Zhou, W.M.; Cao, L.F.

    2013-11-21

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  7. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    Science.gov (United States)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  8. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    International Nuclear Information System (INIS)

    Teng, J.; Gu, Y.Q.; Zhu, B.; Hong, W.; Zhao, Z.Q.; Zhou, W.M.; Cao, L.F.

    2013-01-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator

  9. Brief use of a specific gun in a violent game does not affect attitudes towards that gun.

    Science.gov (United States)

    Hilgard, Joseph; Engelhardt, Christopher R; Bartholow, Bruce D

    2016-11-01

    Although much attention has been paid to the question of whether violent video games increase aggressive behaviour, little attention has been paid to how such games might encourage antecedents of gun violence. In this study, we examined how product placement, the attractive in-game presentation of certain real-world firearm brands, might encourage gun ownership, a necessary antecedent of gun violence. We sought to study how the virtual portrayal of a real-world firearm (the Bushmaster AR-15) could influence players' attitudes towards the AR-15 specifically and gun ownership in general. College undergraduates ( N  = 176) played one of four modified video games in a 2 (gun: AR-15 or science-fiction control) × 2 (gun power: strong or weak) between-subjects design. Despite collecting many outcomes and examining many potential covariates and moderators, experimental assignment did little to influence outcomes of product evaluations or purchasing intentions with regard to the AR-15. Attitudes towards public policy and estimation of gun safety were also not influenced by experimental condition, although these might have been better tested by comparison against a no-violence control condition. By contrast, gender and political party had dramatic associations with all outcomes. We conclude that, if product placement shapes attitudes towards firearms, such effects will need to be studied with stronger manipulations or more sensitive measures.

  10. Brief use of a specific gun in a violent game does not affect attitudes towards that gun

    Science.gov (United States)

    Engelhardt, Christopher R.; Bartholow, Bruce D.

    2016-01-01

    Although much attention has been paid to the question of whether violent video games increase aggressive behaviour, little attention has been paid to how such games might encourage antecedents of gun violence. In this study, we examined how product placement, the attractive in-game presentation of certain real-world firearm brands, might encourage gun ownership, a necessary antecedent of gun violence. We sought to study how the virtual portrayal of a real-world firearm (the Bushmaster AR-15) could influence players' attitudes towards the AR-15 specifically and gun ownership in general. College undergraduates (N = 176) played one of four modified video games in a 2 (gun: AR-15 or science-fiction control) × 2 (gun power: strong or weak) between-subjects design. Despite collecting many outcomes and examining many potential covariates and moderators, experimental assignment did little to influence outcomes of product evaluations or purchasing intentions with regard to the AR-15. Attitudes towards public policy and estimation of gun safety were also not influenced by experimental condition, although these might have been better tested by comparison against a no-violence control condition. By contrast, gender and political party had dramatic associations with all outcomes. We conclude that, if product placement shapes attitudes towards firearms, such effects will need to be studied with stronger manipulations or more sensitive measures. PMID:28018611

  11. Nail gun injuries among construction workers.

    Science.gov (United States)

    Dement, John M; Lipscomb, Hester; Li, Leiming; Epling, Carol; Desai, Tejas

    2003-05-01

    Pneumatic nail guns greatly increase worker productivity and are extensively used in wood frame building construction, with especially high use in residential construction. One surveillance report of nail gun injuries in Washington State has been published; however, other literature consists largely of case reports and case series in trauma journals. The major objective of the current study was to investigate the occurrence of nail gun-associated injuries among construction workers and to identify preventable work-related factors associated with these injuries. Nail gun-related injuries occurring among a cohort of 13,347 carpenters in Ohio who worked union hours during the time period January 1, 1994, until September 30, 1997, were identified by matching the cohort with workers' compensation claims made to the Ohio Bureau of Workers' Compensation. We also analyzed workers' compensation claims for North Carolina Home Builders Association members for the period July 1996-November 1999 to identify nail gun-related injuries. Analyses included stratified analyses of claims by nature and body part injured, calculation of nail gun injury rates, and analyses of free text descriptions of injuries. Overall, nail gun injuries were responsible for 3.9 percent of workers' compensation claims with 8.3 percent to 25.5 percent of claims involving paid lost work time. The overall rate of nail gun injuries (cases per 200,000 work hours) was 0.33 in North Carolina and 0.26 in Ohio, reflecting the greater concentration of wood frame construction workers in the North Carolina population studied. Higher rates of injury were observed for carpenters in North Carolina and among residential carpenters in Ohio. The predominant body part injured was the hands/fingers, with 80 to 89 percent of injuries being nail punctures. Analyses of free text information for puncture injuries found approximately 70 percent of injuries to occur during the framing/sheathing stage of construction. Our data

  12. Operational Performance and Improvements to the RF Power Sources for the Compact Linear Collider Test Facility (CTF3) at CERN

    OpenAIRE

    McMonagle, Gerard

    2006-01-01

    The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses ...

  13. Rail gun powered by an integral explosive generator

    International Nuclear Information System (INIS)

    Peterson, D.R.; Fowler, C.M.

    1979-01-01

    We propose the use of a rail gun powered by an explosive magnetic flux compression generator built into the rail gun itself in which the rails of the gun are driven together behind the projectile by explosives. The magnetic field established between the rails by an initial current supplied by an external source at the breech of the gun is trapped and compressed by the collapsing rails to accelerate the projectile down the bore of the gun

  14. GUN4-Porphyrin Complexes Bind the ChlH/GUN5 Subunit of Mg-Chelatase and Promote Chlorophyll Biosynthesis in Arabidopsis[W

    Science.gov (United States)

    Adhikari, Neil D.; Froehlich, John E.; Strand, Deserah D.; Buck, Stephanie M.; Kramer, David M.; Larkin, Robert M.

    2011-01-01

    The GENOMES UNCOUPLED4 (GUN4) protein stimulates chlorophyll biosynthesis by activating Mg-chelatase, the enzyme that commits protoporphyrin IX to chlorophyll biosynthesis. This stimulation depends on GUN4 binding the ChlH subunit of Mg-chelatase and the porphyrin substrate and product of Mg-chelatase. After binding porphyrins, GUN4 associates more stably with chloroplast membranes and was proposed to promote interactions between ChlH and chloroplast membranes—the site of Mg-chelatase activity. GUN4 was also proposed to attenuate the production of reactive oxygen species (ROS) by binding and shielding light-exposed porphyrins from collisions with O2. To test these proposals, we first engineered Arabidopsis thaliana plants that express only porphyrin binding–deficient forms of GUN4. Using these transgenic plants and particular mutants, we found that the porphyrin binding activity of GUN4 and Mg-chelatase contribute to the accumulation of chlorophyll, GUN4, and Mg-chelatase subunits. Also, we found that the porphyrin binding activity of GUN4 and Mg-chelatase affect the associations of GUN4 and ChlH with chloroplast membranes and have various effects on the expression of ROS-inducible genes. Based on our findings, we conclude that ChlH and GUN4 use distinct mechanisms to associate with chloroplast membranes and that mutant alleles of GUN4 and Mg-chelatase genes cause sensitivity to intense light by a mechanism that is potentially complex. PMID:21467578

  15. Rate control for electron gun evaporation

    International Nuclear Information System (INIS)

    Schellingerhout, A.J.G.; Janocko, M.A.; Klapwijk, T.M.; Mooij, J.E.

    1989-01-01

    Principles for obtaining high-quality rate control for electron gun evaporation are discussed. The design criteria for rate controllers are derived from this analysis. Results are presented which have been obtained with e-guns whose evaporation rate is controlled by a Wehnelt electrode or by sweeping of the electron beam. Further improvements of rate stability can be obtained by improved design of e-guns and power supplies

  16. Background Checks for all Gun Buyers and Gun Violence Restraining Orders: State Efforts to Keep Guns from High-Risk Persons.

    Science.gov (United States)

    Vernick, Jon S; Alcorn, Ted; Horwitz, Joshua

    2017-03-01

    There were more than 36,000 firearm-related deaths in the U.S. in 2015. Under federal law, a background check is required only for gun purchases from licensed dealers. Research suggests that some persons prohibited from owning a gun turn to private sellers, including those identified online, to attempt to obtain a firearm. State-level approaches to make it more difficult for high-risk persons to purchase or possess firearms include universal background check (UBC) and gun violence restraining order (GVRO) laws. UBC laws, on the books in 18 states as of the end of 2016, can reduce both homicide and suicide rates. After Colorado adopted a UBC law in 2013, the number of background checks conducted by private sellers for sales occurring at places other than gun shows steadily increased. GVRO laws give law enforcement and families the authority to petition a court to temporarily remove firearms from an individual who presents a danger to himself or others during times of crisis, regardless of whether that person has been diagnosed with a mental illness. California enacted a GVRO law in 2014. Data are emerging to suggest the effectiveness of GVRO-type laws at averting suicides and providing an entryway to services.

  17. Development of a low-level RF control system for PET cyclotron CYCIAE-14

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengzhan, E-mail: lipengzhan@ciae.ac.cn; Yin, Zhiguo; Ji, Bin; Zhang, Tianjue; Zhao, Zhenlu

    2014-01-21

    The project of a 14 MeV PET cyclotron aiming at medical diagnosis and treatment was proposed and started at CIAE in 2010. The low-level RF system is designed to stabilize acceleration voltage and control the resonance of the cavity. Based on the experience of the existing CRM Cyclotron in CIAE, a new start-up sequence is developed and tested. The frequency sweeping is used to activate the RF system. Before the tuner is put into use, a new state called “DDS tuning” is applied to trace the resonance frequency to the designed value. This new option state helps to cover the tuning range, if a large frequency variation occurs because of a thermal cavity deformation. The logic control unit detects the spark, reflection, Pulse/CW state and the frequency of the RF source to perform all kinds of protection and state operations. The test bench and on-line test are carried out to verify the initial design. -- Highlights: • The low-level RF system is designed and verified for PET cyclotron CYCIAE-14. • The frequency sweeping is used to activate the RF system. • A new state called “DDS tuning” is applied to trace the resonance frequency. • This new option state helps to cover the tuning range. • Protection module allows a quick restart after an alarm and improves cyclotron's efficiency.

  18. Rf structure of superconducting cyclotron for therapy application

    International Nuclear Information System (INIS)

    Takekoshi, Hidekuni; Matsuki, Seishi; Mashiko, Katuo; Shikazono, Naomoto.

    1981-01-01

    Advantages of fast neutrons in therapeutical application are now widely recognized. Fast neutrons are generated by bombarding a thick beryllium target with high energy protons and deuterons. The AVF cyclotrons which deliver 50 MeV protons and 25 MeV deuterons are commonly used and are commercially available now. At the treatment usually rotational irradiation is taken to prevent an injury to normal tissue from the high LET effect of fast neutrons. The construction cost of both cyclotrons and isocentric irradiation installation are relatively high, so that the spread of neutron therapy is obstructed. A superconducting cyclotron for neutron therapy application was proposed by a Chalk River group. This low cost design allows the installation to be a dedicated facility located in a hospital, and small size allows installations of the complete cyclotron in a rotatable gantry. The design studies of the superconducting cyclotron based on this idea are going on at Kyoto University. The full scale model experiments for a rf structure of the cyclotron were carried out. (author)

  19. Extended suicide using an atypical stud gun.

    Science.gov (United States)

    Hagemeier, L; Schyma, C; Madea, B

    2009-08-10

    Suicides with stud guns are uncommon, but are well documented in the literature. On rare occasions, stud guns are also used as a homicide weapon. This case report describes an extended suicide in which a husband killed his wife and their two dogs, which lived on the property. The husband then committed suicide with a shot from the stud gun into his skull. He was a 70-year-old pensioner, a retired butcher, who was found by his son. He was lying in a supine position on a carpet in the living room, with the stud gun stuck in his skull. During autopsy, high concentrations of an antihistamine were found in the blood of each corpse; this drug is used as a soporific. In contrast to the literature, which mainly describes powder deposits due to the use of conventional stud guns, in this case a stud gun was used in which the expanding gases and powder escaped together with the central bolt at the front of the device; powder drains were not involved. Detailed findings of the autopsy are given with reference to this type of stud gun.

  20. Study on the Effects of the Modulator Output Ripple on the RF System of the KOMAC 100-MeV Proton Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok Jung; Kim, Han Sung; Seol, Kyung Tae; Jeong, Hae Sung; Kim, Sung Gu; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The high power system of the proton linear accelerator consists of accelerating cavities such as Radio Frequency Quadrupole (RFQ) and Drift Tube Linac (DTL), high power radio frequency (RF) systems such as klystrons, RF transmission lines and modulators as a klystron power supply. The modulator used at KOMAC adopted a high frequency switching technology using a 3-phase full bridge converter topology to produce 5.8 MW peak power at -105 kV with 9 % duty and produces a current ripple corresponding to the harmonics of the switching frequency. In this paper, the output ripple from the modulator is analyzed and its effects on the high power RF system are presented. The ripple current of the modulator was measured and analyzed. The higher harmonics of the switching frequency were measured and the dominant one was the third harmonic. And this ripple had an effect on the RF signal which was amplified through the klystron and delivered to the DTL. The dominant ripple component of the RF signal was also the third harmonics of the IGBT switching frequency of the modulator.