WorldWideScience

Sample records for mev proton cyclotron

  1. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Science.gov (United States)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  2. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: emmazhang103@gmail.com [China Institute of Atomic Energy (China); Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming [China Institute of Atomic Energy (China); Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir [BEST Cyclotron Inc (Canada)

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN–LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  3. Variable-Energy Cyclotron for Proton Therapy Application

    CERN Document Server

    Alenitsky, Yu G; Vorozhtsov, A S; Glazov, A A; Mytsyn, G V; Molokanov, A G; Onishchenko, L M

    2004-01-01

    The requirements to characteristics of the beams used for proton therapy are considered. The operation and proposed cyclotrons for proton therapy are briefly described. The technical decisions of creation of the cyclotron with energy variation in the range 70-230 MeV and with current up to 100 nA are estimated. Taking into account the fact, that the size and cost of the cyclotron are approximately determined by the maximum proton energy, it is realistically offered to limit the maximum proton energy to 190 MeV and to elaborate a cyclotron project with a warm winding of the magnet for acceleration of H^{-} ions. The energy of the extracted protons for each run is determined by a stripped target radius in the vacuum chamber of the accelerator, and the radiation dose field for the patient is created by the external devices using the developed techniques.

  4. Design of the proposed 250 MeV superconducting cyclotron magnet for proton therapy

    International Nuclear Information System (INIS)

    Dey, M.K.; Ahmed, M.; Murali, S.; Duttagupta, A.; Chaudhuri, J.; Mallik, C.; Bhandari, R.K.

    2006-01-01

    Here we describe the design calculations for the superconducting magnet of a 250 MeV proton cyclotron to be used for therapeutic purpose. Hard-edge approximation method has been adopted for finding the poletip geometry to meet the basic focusing requirements of the beam. Then the uniform-magnetization method has been applied to calculate the 3D magnetic field distribution due to saturated iron poletips, to verify the beam dynamical issues. (author)

  5. Estimation of exposure quantity of gamma and neutron in 13 MeV proton cyclotron for radioisotope production of 18F

    International Nuclear Information System (INIS)

    Sunardi; Silakhuddin

    2015-01-01

    Quantitative estimation of gamma and neutron exposure in 13 MeV proton cyclotron for radioisotope of 18 F has been done. The aim of this study is to know the exposure of gamma and neutron that will be generated by 13 MeV proton cyclotron The method that was used is the determine of gamma and neutron quantity exposure that produced by proton beam collision with matter in the cyclotron chamber and cyclotron target. The analysis result showed that the reactions occur at chamber are 63 Cu(p,n) 63 Zn, 65 Cu(p,n) 65 Zn and 56 Fe(p,n) 56 Co,, while at the target is 18 O(p,n) 18 F. The calculation result of neutron flux at the chamber and the target facility are 7,34×10 7 n/cm 2 dt and 1.10×10 9 n/cm 2 dt, respectively. The gamma activity at the chamber for reaction 63 Cu(p,n) 63 Zn, 65 Cu(p,n) 65 Zn and 56 Fe(p,n) 56 Co are 3,0×10 8 Bq, 4,54×10 5 Bq and 1,13×10 9 Bq respectively, while the gamma activity at the cyclotron target is 1,84×10 8 Bq. The data can be used as a basis for designing the cyclotron radiation shielding. (author)

  6. Human machine interface based on labview for vacuum system operation of cyclotron proton DECY-13 MeV

    International Nuclear Information System (INIS)

    Fajar Sidik Permana; Saminto; Kurnia Wibowo; Vika Arwida Fanita Sari

    2016-01-01

    Center of Accelerator Science and Technology (CAST), BATAN is designing DECY-13 MeV Proton Cyclotron. So far, this operation system has been conducted conventionally. In this research, an Human Machine Interface system has been successfully built for simplifying operation and monitoring pressure inside vacuum chamber of cyclotron DECY-13 MeV. HMI system is built with LabVIEW software and integrated with Programmable Logic Controller FX-2424 series and NI cRIO (NI-9025 and NI-9870) module. HMI system consist of turning on/of pumps (rotary and diffusion), opening/ closing valve automatically, and retrieving of data from sensor in real time. (author)

  7. Mechanical design of beam extractor system for cyclotron proton 13 MeV

    International Nuclear Information System (INIS)

    Ihwanul Aziz; Widdi Usada

    2012-01-01

    Mechanical design of beam extractor system for 13 MeV proton cyclotron has been carried out. In cyclotron there are two extractor systems, the first is electrostatic deflector system, and the second is stripper system. This stripper serves to change negative charged of hydrogen ions to become positive charged hydrogen ions (protons). In proton cyclotron, the carbon foil is used as a stripper. Mechanical extractor system consists of a carbon foil holder and a driver system to control the position of foil holder and to change the foil. The driver system consists of a stepper motor extractor, a feed-through, a gear, a shaft, and a buffer. After some calculation the obtained component data as the foil follow holder is made of aluminum has total length of 12.25 mm, total width of 10 mm and the total thickness of 2.5 mm, while the length of each extractor arm is made of aluminum 90 mm, width is 30 mm, its height is 10 mm , the total volume is 7,392 x 10-5 and a mass of 0.1995 kg. Extractor drive system includes a stepper motor having a maximum of 4 lb-ft of torque, feed through, gear, shaft, and a buffer. Required torque is 0.16 Nm or 0.12 lb-ft diameter shaft to support the extractor arm is 29 mm. Bolt fastener for the buffer is a type of metric M6 bolt, so that the used seals viton O-ring with seal diameter of 6 mm and DN 40 CF flange. (author)

  8. New superconducting cyclotron driven scanning proton therapy systems

    International Nuclear Information System (INIS)

    Klein, Hans-Udo; Baumgarten, Christian; Geisler, Andreas; Heese, Juergen; Hobl, Achim; Krischel, Detlef; Schillo, Michael; Schmidt, Stefan; Timmer, Jan

    2005-01-01

    Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC

  9. A 30 MeV H- cyclotron for isotope production

    International Nuclear Information System (INIS)

    Milton, B.F.; Dawson, R.; Erdman, K.L.

    1989-05-01

    Because of an expanding market for radioisotopes there is a need for a new generation of cyclotrons designed specifically for this purpose. TRIUMF is cooperating with a local industrial company in designing and constructing such a cyclotron. It will be a four sector H - cyclotron, exploiting the newly developed high brightness multicusp ion source. This source with H - current capability in excess of 5 mA makes feasible accelerated H - beam intensities of up to 500 μA. Beam extraction is by stripping to H + in a thin graphite foil. Extraction of two high-intensity beams, with energy variable from 15 to 30 MeV is planned. The use of an external ion source, provision of a good vacuum in the acceleration region, and the careful choice of materials for components in the median plane leads to a cyclotron that will have low activation and can be easily serviced in spite of the very high operating beam intensities. A design extension to 70 MeV using many of the design features of the 30 MeV cyclotron can be easily made. Such a machine with a good quality variable energy beam is a highly desirable source of protons for isotope production, injection into higher energy high intensity acceleration, injection into higher energy high intensity accelerators, and as an irradiation facility for ocular melanomas. Design of the 30 MeV cyclotron is well advanced and construction is in progress

  10. Physics design of a 70 MeV high intensity cyclotron, CYCIAE-70

    International Nuclear Information System (INIS)

    Zhang Tianjue; An Shizhong; Wang Chuan; Yin Zhiguo; Wei Sumin; Li Ming; Yang Jianjun; Ji Bin; Jia Xianlu; Zhong Junqing; Yang Fang

    2011-01-01

    This paper introduces the physics design of a 70 MeV high intensity cyclotron at China Institute of Atomic Energy (CIAE), which is aimed for multiple uses including radioactive ion-beam (RIB) production. The machine adopts a compact structure of four straight sectors, capable of accelerating two kinds of beams, i.e. H − and D − . The proton and deuteron beam will be extracted in dual opposite directions by charge exchange stripping devices. The energy of the extracted proton beam is in the range 35–70 MeV with an intensity up to 700 μA. The corresponding values for the deuteron beam are 18–33 MeV and 40 μA. This paper will present the main characteristics and parameters in the design of the 70 MeV cyclotron, the results of the basic beam dynamics study, as well as the physics in the design of the different systems, including the main magnet, RF, injection and extraction systems, etc.

  11. A 600 MeV cyclotron for radioactive beam production

    International Nuclear Information System (INIS)

    Clark, D.J.

    1993-01-01

    The magnetic field design for a 600 MeV proton cyclotron is described. The cyclotron has a single stage, a normal conducting magnet coil and a 9.8 m outside yoke diameter. It has 8 sectors, with a transition to 4 sectors in the center region. The magnetic field design was done using 1958 Harwell rectangular ridge system measurements and was compared with recent 3-dimensional field calculations with the program TOSCA at NSCL. The center region 4--8 sector transition focussing was also checked with TOSCA

  12. Fabrication of miniature magnetic magnet pole for validate simulation of magnetic cyclotron proton 13 MeV

    International Nuclear Information System (INIS)

    Subroto; Sukiya; Tony R

    2013-01-01

    A fabrication of miniature magnetic pole field has been made to validate the simulation system 13 MeV magnet of proton cyclotron using mild steel material. This electromagnet of magnetic pole at the end of the magnetic pole is divided into 8 parts of the valley and the hill interval to produce different magnetic field. Pole magnetic field fabrication is meet to match the design of the system simulation results 13 MeV cyclotron magnet. This requires strong cyclotron magnetic field average at 1.275 T magnetic field strength of each piece was different. So that the ion beam passing through a magnetic field. Will be focused before mashing target. The surface of magnetic pole is circular with a diameter of 100 mm and 32 mm pole spacing. Miniature of electrical pole diameter is only one-tenth the diameter of 960 mm designed this requires current 10 A with voltage 30 V to produce field strength of 0.3 T. To measure the magnetic field strength tesla meter is used and to measure the relationship curve in pole position with a magnetic field strength magnets cylinder directions X and Y the used mini lathe. Field strength measurement results with a straight, oblique and circular position show nearly equal to curve simulation results using a 3D module TOSCA opera program. (author)

  13. A simple and powerful XY-Type current monitor for 30 MeV IPEN/CNEN-SP cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos, Henrique; Matsuda, Hylton; Sumyia, Luiz Carlos do A.; Junqueira, Fernando de C.; Costa, Osvaldo L. da, E-mail: hbolivei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    A water-cooled XY-type current monitor was designed and built in the Cyclotrons Laboratory of the Nuclear and Energy Research Institute (IPEN). It is a very simple design and easily adaptable to the cyclotron beam lines. Tests were done demonstrating to be an instrument of great assistance in proton beam position along beam transport line and target port. Nowadays the XY-type current monitor has been widely used in {sup 18}F-FDG routine productions, employing irradiation system which were originally designed for productions on 18 MeV cyclotron accelerator only, however, applying the XY-type current monitor the target port may be exchanged between the 30 MeV and 18 MeV cyclotrons and the observed results are in perfect agreement with expected. (author)

  14. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  15. Compact superconducting 250 MeV proton cyclotron for the PSI PROSCAN proton therapy project

    International Nuclear Information System (INIS)

    Schillo, M.; Geisler, A.; Hobl, A.; Klein, H.U.; Krischel, D.; Meyer-Reumers, M.; Piel, C.; Blosser, H.; Kim, J.-W.; Marti, F.; Vincent, J.; Brandenburg, S.; Beijers, J.P.M.

    2001-01-01

    A cyclotron for proton therapy has to fulfill many requirements set by the specific operational and safety needs of a medical facility and the medical environment. These are for instance high extraction efficiency, high availability and reliability, simple and robust operation. ACCEL Instruments GmbH has refined the design concept of a medical cyclotron for the PSI PROSCAN project with the objective to use this cyclotron as the standard accelerator in complete proton therapy facilities, which ACCEL intends to market. Starting from the design, we have carried out further detail clarifications, optimizations and adaptations to the needs of PSI. The work was performed in a collaboration between ACCEL, NSCL and KVI in view of the requirements from the PSI PROSCAN project. An overview on the design will be given touching on subjects such as the 3D structural analysis of the coil, detailed magnetic modeling for optimization of the inner region and the spiral, optimization of the RF power, optimization of the cryogenic design based on available cryocoolers instead of a liquefaction plant and Monte Carlo simulations to estimate the heat balance produced by neutrons at 4K components

  16. Vancouver Cyclotron Conference

    International Nuclear Information System (INIS)

    Clark, David J.

    1993-01-01

    Although no longer on the high energy frontier, the cyclotron field is still a major scientific growth area. Its progress is highlighted at the international conference on cyclotron design, development and utilization held at intervals of about three years, under the auspices of the International Union of Pure and Applied Physics (IUPAP). Vancouver, surrounded by mountains, water and some cyclotrons, provided a pleasant setting for the 13th Conference, held last summer. With over 200 cyclotrons in operation around the world, the attendance, 241 delegates and 26 industrial exhibitors, was a near record, reflecting the flourishing state of the field. The early sessions covered the initial operation of new or upgraded cyclotron facilities. Major facilities completed since the previous Conference in Berlin in May 1989 included the 400 MeV ring cyclotron at Osaka, the U400M cyclotron at Dubna which will be coupled to the U400 to give 20 MeV nucléon uranium beams, the 130 MeV cyclotron at Jyvaskyla (in Finland, the furthest north!), the 110 MeV JAERI machine in Japan, and the 65 MeV proton therapy cyclotron in Nice. Among the facility upgrades were the KFA cyclotron at Julich which will inject the 2.5 GeV storage ring COSY, and the addition of an FM mode to the K=200 CW mode at Uppsala to give protons up to 180 MeV. The impressive current of 1.5 mA at 72 MeV obtained from the PSI Injector II will soon be injected into the 590 MeV ring

  17. Beam tracking simulation in the central region of a 13 MeV PET cyclotron

    Science.gov (United States)

    Anggraita, Pramudita; Santosa, Budi; Taufik, Mulyani, Emy; Diah, Frida Iswinning

    2012-06-01

    This paper reports the trajectories simulation of proton beam in the central region of a 13 MeV PET cyclotron, operating with negative proton beam (for easier beam extraction using a stripper foil), 40 kV peak accelerating dee voltage at fourth harmonic frequency of 77.88 MHz, and average magnetic field of 1.275 T. The central region covers fields of 240mm × 240mm × 30mm size at 1mm resolution. The calculation was also done at finer 0.25mm resolution covering fields of 30mm × 30mm × 4mm size to see the effects of 0.55mm horizontal width of the ion source window and the halted trajectories of positive proton beam. The simulations show up to 7 turns of orbital trajectories, reaching about 1 MeV of beam energy. The distribution of accelerating electric fields and magnetic fields inside the cyclotron were calculated in 3 dimension using Opera3D code and Tosca modules for static magnetic and electric fields. The trajectory simulation was carried out using Scilab 5.3.3 code.

  18. Radiation safety aspects of a 30 MeV proton cyclotron

    International Nuclear Information System (INIS)

    Nandy, Maitreyee; Bandyopadhyay, Tapas; Sarkar, P.K.; Maiti, Moumita

    2005-01-01

    High current accelerators are increasingly used in nuclear medicine, power industry, material properties, material damage and astrophysical studies, etc. In the present work we have assessed the direct and transmitted neutron dose, build up and decay of air activity in the vault and soil activity for a 30 MeV 350 μA proton cyclotron. The transmitted dose equivalent H through ordinary concrete shield of different thickness has been estimated using the two different sets of values of the attenuation coefficient T eff . It is observed that while the two sets of H values differ by 25-26%, the required shield thickness is around 2.1 m. in both the cases to bring down the dose to the ICRP specified limit of 1 μSv/hr. Activity induced in the air due to 13 N and 15 O has been estimated. It has been found that for a target vault of 4m.x4m.x4m. dimension the activity concentration goes above the DAC value within a few seconds of commencement of operation even with 12 air changes per hour. A theoretical study of the radioactivity that may be induced in the soil indicates formation of 40 K, 24 Na, 56 Mn, 59 Fe, 27 Mg, 60 Co, 59,63,65 Ni, 64,66 Cu, 65,69 Zn radioisotopes. (author)

  19. Startup work on Inshas cyclotron

    International Nuclear Information System (INIS)

    Vorogushin, M.F.; Strokach, A.P.; Shikhov, V.Ya.; Galchuk, A.V.; Soliman, A.N.; El-Abyad, M.; Comsan, M.N.H.; Saleh, Z.A.; Azzam, A.N.

    2001-01-01

    Startup works on the MGC-20 variable energy cyclotron in the Inshas Nuclear Research Center (Egypt) are described. The cyclotron is intended for acceleration of hydrogen and helium ions in a wide energy range (for protons - from 5 to 20 MeV). Main units of the cyclotron and results of computer experimental acceleration of protons to 18 MeV are described. The prospects of furthers investigations are presented [ru

  20. The 200 MeV cyclotron facility

    International Nuclear Information System (INIS)

    1987-01-01

    Beams of protons with several different energies have now been successfully transported between the injector cyclotron SPC1 and the SSC. Some small modifications to the placement of steering magnets and diagnostic equipment have been made in the light of our operational experience, which should improve the ease of tuning this beamline. Proton beams up to 200 MeV in energy have been transported to the experimental areas, where experiments in nuclear physics have been successful conducted. Three of the experimental beamlines are now in operation. Beams of 66 MeV protons have also been transported to targets in the isotope production vault, without difficulty. Field mapping of the remaining quadrupoles on site has been completed. Installation of and alignment of magnets up to the beam swinger is also complete, although the beam tube itself, plus vacuum and diagnostic equipment must still be tackled. The beam swinger has been designed and detailed in the drawing office, and is now being manufactured locally. The beamline elements for the sepctrometer beamline remain to be purchased. A personal computer has been purchased for controlling the field-mapping equipment for the spectrometer magnets, which are being manufactured in this country. A number of computer programs have been written for conversion of calibrated quadrupole and dipole magnet field data to absolute current values for the control system. Other programs permit diagnostic measurements of beam profiles to be used to calculated the beam emittance, or to set steering magnets so that the beam is correctly aligned

  1. Measurement of omega, the energy required to create an ion pair, for 150-MeV protons in nitrogen and argon

    International Nuclear Information System (INIS)

    Petti, P.L.

    1985-01-01

    The purpose of this thesis is to provide a 1% measurement of omega, the energy required to produce an ion pair, for 150 MeV protons in various gases. Such a measurement should improve the accuracy of proton ionization chamber dosimetry at the Harvard Cyclotron Laboratory. Currently, no measurements of omega exist in the energy range of 30 to 150 MeV, and present ionization chamber dosimetry at the Cyclotron relies on average values of measurements at lower and higher energies (i.e. for E < 3 MeV and E = 340 MeV). Contrary to theoretical expectations, these low and high energy data differ by as much as 9% in some gases. The results of this investigation demonstrate that the existing high energy data is probably in error, and current proton ionization chamber dosimetry underestimates omega, and hence the proton dose, by 5%

  2. Theoretical detection limit of PIXE analysis using 20 MeV proton beams

    Science.gov (United States)

    Ishii, Keizo; Hitomi, Keitaro

    2018-02-01

    Particle-induced X-ray emission (PIXE) analysis is usually performed using proton beams with energies in the range 2∼3 MeV because at these energies, the detection limit is low. The detection limit of PIXE analysis depends on the X-ray production cross-section, the continuous background of the PIXE spectrum and the experimental parameters such as the beam currents and the solid angle and detector efficiency of X-ray detector. Though the continuous background increases as the projectile energy increases, the cross-section of the X-ray increases as well. Therefore, the detection limit of high energy proton PIXE is not expected to increase significantly. We calculated the cross sections of continuous X-rays produced in several bremsstrahlung processes and estimated the detection limit of a 20 MeV proton PIXE analysis by modelling the Compton tail of the γ-rays produced in the nuclear reactions, and the escape effect on the secondary electron bremsstrahlung. We found that the Compton tail does not affect the detection limit when a thin X-ray detector is used, but the secondary electron bremsstrahlung escape effect does have an impact. We also confirmed that the detection limit of the PIXE analysis, when used with 4 μm polyethylene backing film and an integrated beam current of 1 μC, is 0.4∼2.0 ppm for proton energies in the range 10∼30 MeV and elements with Z = 16-90. This result demonstrates the usefulness of several 10 MeV cyclotrons for performing PIXE analysis. Cyclotrons with these properties are currently installed in positron emission tomography (PET) centers.

  3. The Midwest Proton Radiation Institute project at the Indiana University Cyclotron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Anferov, V; Broderick, B; Collins, J C; Friesel, D L; Jenner, D; Jones, W P; Katuin, J; Klein, S B; Starks, W; Self, J; Schreuder, N [IUCF, Bloomington, Indiana 47408 (United States)

    2001-12-12

    The IUCF cyclotrons ceased delivering particle beams for physics research and became dedicated medical proton beam accelerators in 1999. Removal of the beam lines and nuclear research facilities associated with the cyclotrons to make room for the new medical beam delivery systems was completed in October, 2000. A new achromatic beam line was completed, extending from the main stage cyclotron and ending at a temporary research platform. This beam line is being commissioned during ongoing applied research. The achromatic line will deliver 0.5 {mu}A of 205 MeV protons from which the treatment room technician may draw current at any time via fast switching, laminated magnets located at the entrances to the energy selection systems upstream of each of the treatment rooms. Three treatment rooms are planned, one containing two fixed horizontal lines and two gantry rooms. The cyclotrons will also support full time research in radiation effects, single event upset, radiation biology and pre-clinical research. This contribution describes the status of the medical construction project.

  4. Tritium production in thorium by 135 MeV protons

    International Nuclear Information System (INIS)

    Lefort, M.; Simonoff, G.; Tarrago, X.; Bibron, R.

    1960-01-01

    We have measured the cross-section of tritium production by bombardment of thorium by 135 MeV protons in the Orsay synchro-cyclotron. The tritium was separated from the targets by heating in a graphite crucible with a high-frequency generator, under hydrogen gas pressure. Tritiated water was synthesised and the tritium was measured with liquid scintillator. A value of 19.5 ± 0.05 mbarns was obtained for the tritium-cross section and ten percent of tritons have energies higher than 35 MeV. This large cross-section is attributed to a double pick-up process. Reprint of a paper published in Le Journal de Physique et le Radium, t. 20, p. 959, dec 1959 [fr

  5. <600> MeV synchro-cyclotron

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    One of the 14 pancakes of the new magnet coils for the 600 MeV synchro-cyclotron which were wound and coated with epoxy resin on the CERN site. These new coils will replace the present ones which have been in use for more than 14 years but are now showing signs of deteriorations.

  6. A 30 MeV H- cyclotron for isotope production

    International Nuclear Information System (INIS)

    Baartman, R.; Kleevan, W.J.; Laxdal, R.E.; Milton, B.F.; Otter, A.J.; Pearson, J.B.; Poirier, R.L.; Schmor, P.W.; Schneider, H.R.; Erdman, K.L.; Walker, Q.

    1989-01-01

    Because of an expanding market for radioisotopes there is a need for a new generation of cyclotrons designed specifically for this purpose. We describe such a cyclotron currently under construction. It is a 30 MeV H - design that exploits a newly developed high brightness multicusp ion source which is capable of H - currents of up to 5 mA. This together with careful beam matching then makes feasible accelerated H - beam intensities of 500 μA. The cyclotron being built is a four sector radial ridge design with two 45 degree dees in opposite valleys. Beam extraction is by stripping to H + in a thin graphite foil. Two extraction probes will allow simultaneous extraction of two beams, each with an intensity of up to 200 μA. Energy variation from 15 MeV to 30 MeV is achieved by varying the radial position of the extraction foil. 7 refs., 4 figs., 1 tab

  7. The booster linac of the Sparkle Company 18 MeV Cyclotron: main design elements

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.

    2009-01-01

    The Sparkle Company (Casarano, Le) that is setting up a centre for production and research on radioisotopes for medical use, has requested to the ENEA Accelerator Laboratory a specific design of a linear accelerator for boosting the energy of its commercial cyclotron from 18 to 24 MeV, with the aim of implementing a small proton irradiation facility for radiobiology studies. This is the first case of coupling a cyclotron beam to a linac, that, if successful, can give rise to a new class of accelerators for proton therapy. The linac can accelerate only a very small portion of the cyclotron beam, due to the intrinsic mismatching of the two kind of accelerators both in the vertical and in the longitudinal phase planes. A beam transport line has been studied that besides matching at best the beam to the linac in the transverse plane, is equipped with a chopping system to lower drastically the primary beam power in order to protect the linac structure. The linac is SCDTL type, and operates at 3 GHz. In the following the results of the design are presented. [it

  8. Study on strontium isotope abundance-ratio measurements by using a 13-MeV proton beam

    Science.gov (United States)

    Jeong, Cheol-Ki; Jang, Han; Lee, Goung-Jin

    2016-09-01

    The Rb-Sr dating method is used in dating Paleozoic and Precambrian rocks. This method measures the 87Rb and the 87Sr concentrations by using thermal ionization mass spectrometry (TIMS) [J. Hefne et al., Inter. J. Phys. Sci. 3(1), 28 (2008)]. In addition, it calculates the initial 87Sr/86Sr ratio to increase the reliability of Rb-Sr dating. In this study, the 87Sr/86Sr ratio was measured by using a 13-MeV proton accelerator. Proton kinetic energies are in the range of tens of megaelectronvolts, and protons have large absorption cross-sections for ( p, n) reactions with most substances. After absorbing a proton with such a high kinetic energy, an element is converted into a nuclide with its atomic number increased by one via nuclear transmutation. These nuclides usually have short half-lives and return to the original state through radioactive decay. When a strontium sample is irradiated with protons, nuclear transmutation occurs; thus, the strontium isotope present in the sample changes to a yttrium isotope, which is an activated radioisotope. Based on this, the 87Sr/86Sr ratio was calculated by analyzing the gamma-rays emitted by each yttrium isotope. The KIRAMS-13 cyclotron at the Cyclotron Center of Chosun University, where 13-MeV protons can be extracted, was utilized in our experiment. The 87Sr/86Sr isotope ratio was computed for samples irradiated with these protons, and the result was similar to the isotope ratio for the Standard Reference Material, i.e., 98.2 ± 3.4%. As part of the analysis, proton activation analyses were performed using 13-MeV protons, and the experimental results of this research suggest a possible approach for measuring the strontium-isotope abundance ratio of samples.

  9. The TRIUMF 520 MeV cyclotron: recent and future developments

    International Nuclear Information System (INIS)

    Dutto, Gerado.

    1992-08-01

    The TRIUMF cyclotron is now routinely producing 150 μA protons at 500 MeV for meson production with a maximum available current of 200 μA and beam availability of 90%. A successful resonator upgrade program, the recent commissioning of a new 92 MHz rf booster cavity and a new compact CUSP ion source will allow the current to be increased to 225 μA routinely and 300 μA maximum, once an upgrade of the high radiation target areas is completed. Furthermore, the 300 μA maximum H - internal current will allow, in parallel with 100-200 μA for meson production, the simultaneous extraction of 50-100 μA for a radioactive beam facility and of 50-100 μA for isotope production at 70-100 MeV. A proton therapy facility is also proposed. A new optically pumped H - polarized source will allow a highly stable and reproducible 5 μA beam at ∼ 75% polarization to be extracted. The feasibility of the extraction of an H - beam with electrostatic and magnetic channels has also been demonstrated. Problems and plans for the extraction of 150 μA H - for KAON will be discussed. 13 refs., 6 figs

  10. Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target

    Energy Technology Data Exchange (ETDEWEB)

    Osipenko, M., E-mail: osipenko@ge.infn.it [INFN, sezione di Genova, 16146 Genova (Italy); Ripani, M. [INFN, sezione di Genova, 16146 Genova (Italy); Alba, R. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Ricco, G. [INFN, sezione di Genova, 16146 Genova (Italy); Schillaci, M. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Barbagallo, M. [INFN, sezione di Bari, 70126 Bari (Italy); Boccaccio, P. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Celentano, A. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy); Colonna, N. [INFN, sezione di Bari, 70126 Bari (Italy); Cosentino, L.; Del Zoppo, A.; Di Pietro, A. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Esposito, J. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Figuera, P.; Finocchiaro, P. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Kostyukov, A. [Moscow State University, Moscow 119992 (Russian Federation); Maiolino, C.; Santonocito, D.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Viberti, C.M. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy)

    2013-09-21

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0° to 150° and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their time of flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a {sup 3}He detector was used. The obtained data are in good agreement with previous measurements at 0° using 66 MeV proton beam, covering neutron energies >10MeV, as well as with measurements at few selected angles using protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60–70 MeV beam energy range. A comparison of measured yields to MCNP, FLUKA and Geant4 Monte Carlo simulations was performed.

  11. The beam commissioning of BRIF and future cyclotron development at CIAE

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianjue, E-mail: tjzhang@ciae.ac.cn; Yang, Jianjun, E-mail: yangjianjun2000@tsinghua.org.cn

    2016-06-01

    As an upgrade project of the existing HI-13 tandem accelerator facility, the Beijing Radioactive Ion-beam Facility (BRIF) is being constructed in China Institute of Atomic Energy (CIAE). This project consists of an 100 MeV proton compact cyclotron, a two-stage ISOL system, a superconducting linac booster and various experimental terminals. The beam commissioning of the cyclotron was launched by the end of 2013 and on July 4, 2014 the first 100 MeV proton beam was received on a temporary target which was positioned at the outlet of the cyclotron. The beam current was stably maintained at above 25 μA for about 9 h on July 25, 2014 and the cyclotron is now ready for providing CW proton beam on target-source for RIB production. The beam current is expected to be increased to 200–500 μA in the coming years. The installation of the ISOL system is finished and the stable ion beam test shows it can reach a mass resolution better than 10,000. It is expected to generate dozens of RIB by 100 MeV proton beam. In addition, this paper also introduces the recent progress of the pre-study of an 800 MeV, 3–4 MW separate-sector proton cyclotron, which is aimed to provide high power proton beam for various applications, such as neutron and neutrino physics, proton radiography and nuclear data measurement and ADS system.

  12. Risk assessment of 30 MeV cyclotron facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gyo Seong; Lee, Jin Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kim, Chong Yeal [Dept. of Radiation Science and Technology, Chonbuk National University, Jeonju (Korea, Republic of)

    2017-03-15

    A cyclotron is a kind of particle accelerator that produces a beam of charged particles for the production of medical, industrial, and research radioisotopes. More than 30 cyclotrons are operated in Korea to produce 18F, an FDG synthesis at hospitals. A 30-MeV cyclotron was installed at ARTI (Advanced Radiation Technology Institute, KAERI) mainly for research regarding isotope production. In this study, we analyze and estimate the items of risk such as the problems in the main components of the cyclotron, the loss of radioactive materials, the leakage of coolant, and the malfunction of utilities, fres and earthquakes. To estimate the occurrence frequency in an accident risk assessment, five levels, i.e., Almost certain, Likely, Possible, Unlikely, and Rare, are applied. The accident consequence level is classified under four grades based on the annual permissible dose for radiation workers and the public in the nuclear safety law. The analysis of the accident effect is focused on the radioactive contamination caused by radioisotope leakage and radioactive material leakage of a ventilation filter due to a free. To analyze the risks, Occupation Safety and Health Acts is applied. In addition, action plans against an accident were prepared after a deep discussion among relevant researchers. In this acts, we will search for hazard and introduce the risk assessment for the research 30-MeV cyclotron facilities of ARTI.

  13. Risk assessment of 30 MeV cyclotron facilities

    International Nuclear Information System (INIS)

    Jeong, Gyo Seong; Lee, Jin Woo; Kim, Chong Yeal

    2017-01-01

    A cyclotron is a kind of particle accelerator that produces a beam of charged particles for the production of medical, industrial, and research radioisotopes. More than 30 cyclotrons are operated in Korea to produce 18F, an FDG synthesis at hospitals. A 30-MeV cyclotron was installed at ARTI (Advanced Radiation Technology Institute, KAERI) mainly for research regarding isotope production. In this study, we analyze and estimate the items of risk such as the problems in the main components of the cyclotron, the loss of radioactive materials, the leakage of coolant, and the malfunction of utilities, fres and earthquakes. To estimate the occurrence frequency in an accident risk assessment, five levels, i.e., Almost certain, Likely, Possible, Unlikely, and Rare, are applied. The accident consequence level is classified under four grades based on the annual permissible dose for radiation workers and the public in the nuclear safety law. The analysis of the accident effect is focused on the radioactive contamination caused by radioisotope leakage and radioactive material leakage of a ventilation filter due to a free. To analyze the risks, Occupation Safety and Health Acts is applied. In addition, action plans against an accident were prepared after a deep discussion among relevant researchers. In this acts, we will search for hazard and introduce the risk assessment for the research 30-MeV cyclotron facilities of ARTI

  14. Commercial cyclotrons. Part I: Commercial cyclotrons in the energy range 10 30 MeV for isotope production

    Science.gov (United States)

    Papash, A. I.; Alenitsky, Yu. G.

    2008-07-01

    A survey of commercial cyclotrons for production of medical and industrial isotopes is presented. Compact isochronous cyclotrons which accelerate negative hydrogen ions in the energy range 10 30 MeV have been widely used over the last 25 years for production of medical isotopes and other applications. Different cyclotron models for the energy range 10 12 MeV with moderate beam intensity are used for production of 11C, 13N, 15O, and 18F isotopes widely applied in positron emission tomography. Commercial cyclotrons with high beam intensity are available on the market for production of most medical and industrial isotopes. In this work, the physical and technical parameters of different models are compared. Possibilities of improving performance and increasing intensity of H- beams up to 2 3 mA are discussed.

  15. A study on the proton beam energy(50 MeV) measurement and diagnosis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jong Suh; Lee, Dong Hoon; Kim, Yoo Suk; Park, Chan Won; Lee, Yong Min; Hong, Sung Suk; Lee, Min Yong; Lee, Ji Sub; Hah, Hang Hoh [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Seoul (Korea, Republic of)

    1995-02-01

    The main purpose of this project is the precise ion measurement of proton beam energy extracted at RF 25.89 MHz from the MC-50 cyclotron of SF type. There are several method for particle energy measurement. We measured the 50 MeV proton energy by using the E-{Delta}E method in 1993. And also in our experiment used range, reapproval of energy of extracted proton beam at RF 25.89 MHz was performed, which attained the same energy with the result used elastic scattering within the error range. 10 figs, 2 pix, 3 tabs, 3 refs. (Author).

  16. Cyclotron to Oslo University

    International Nuclear Information System (INIS)

    Sandstad, J.

    1978-01-01

    The new cyclotron was delivered to Oslo University on September 21st 1978, and was mannfactured by A/B Scandtronix of Uppsala, Sweden. The contract price was 6,8 million Norwegian kroner and installation will cost a further 4 million. The main specifications are given. The energy will be 36 MeV for protons and alpha particles, 18 MeV deuterons and 48 MeV for helium 3. The principle of a cyclotron is briefly described. While the primary purpose of the machine is nuclear research it is also planned to produce short-lived radioisotopes, primarily iodine 123. (JIW)

  17. Comparison of short-lived medical isotopes activation by laser thin target induced protons and conventional cyclotron proton beams

    Science.gov (United States)

    Murray, Joseph; Dudnikova, Galina; Liu, Tung-Chang; Papadopoulos, Dennis; Sagdeev, Roald; Su, J. J.; UMD MicroPET Team

    2014-10-01

    Production diagnostic or therapeutic nuclear medicines are either by nuclear reactors or by ion accelerators. In general, diagnostic nuclear radioisotopes have a very short half-life varying from tens of minutes for PET tracers and few hours for SPECT tracers. Thus supplies of PET and SPECT radiotracers are limited by regional production facilities. For example 18F-fluorodeoxyglucose (FDG) is the most desired tracer for positron emission tomography because its 110 minutes half-life is sufficient long for transport from production facilities to nearby users. From nuclear activation to completing image taking must be done within 4 hours. Decentralized production of diagnostic radioisotopes will be idea to make high specific activity radiotracers available to researches and clinicians. 11 C, 13 N, 15 O and 18 F can be produced in the energy range from 10-20 MeV by protons. Protons of energies up to tens of MeV generated by intense laser interacting with hydrogen containing targets have been demonstrated by many groups in the past decade. We use 2D PIC code for proton acceleration, Geant4 Monte Carlo code for nuclei activation to compare the yields and specific activities of short-lived isotopes produced by cyclotron proton beams and laser driven protons.

  18. Comprehensive Measurement of Neutron Yield Produced by 62 MeV Protons on Beryllium Target

    International Nuclear Information System (INIS)

    Osipenko, M.; Ripani, M.; Ricco, G.; Alba, R.; Schillaci, M.; Cosentino, L.; Del Zoppo, A.; Di Pietro, A.; Figuera, P.; Finocchiaro, P.; Maiolino, C.; Santonocito, D.; Scuderi, V.; Barbagallo, M.; Colonna, N.; Boccaccio, P.; Esposito, J.; Celentano, A.; Viberti, C.M.; Kostyukov, A.

    2013-06-01

    A low-power prototype of neutron amplifier, based on a 70 MeV, high current proton cyclotron being installed at LNL for the SPES RIB facility, was recently proposed within INFN-E project. This prototype uses a thick Beryllium converter to produce a fast neutron spectrum feeding a sub-critical reactor core. To complete the design of such facility the new measurement of neutron yield from a thick Beryllium target was performed at LNS. This measurement used liquid scintillator detectors to identify produced neutrons by Pulse Shape Discrimination and Time of Flight technique to measure neutron energy in the range 0.5-62 MeV. To extend the covered neutron energy range 3 He detector was used to measure neutrons below 0.5 MeV. The obtained yields were normalized to the charge deposited by the proton beam on the metallic Beryllium target. These techniques allowed to achieve a wide angular coverage from 0 to 150 degrees and to explore almost complete neutron energy interval. (authors)

  19. Isochronous variable energy cyclotron of IPEN-CNEN/SP (Brazil)

    International Nuclear Information System (INIS)

    Lucki, G.; Zanchetta, A.A.; Gouveia, S.; Klein, H.

    1984-01-01

    The cyclotron CV-28 installed at the Radiation Damage Division of IPEN-CNEN/SP is a multi-particle radiation source where protons, deuterons, 3 He ions and alpha particles can be accelerated with variable energy up to 24, 14, 36 and 28 MeV, respectively. The cyclotron is a versatile machine that can be applied in research and development of : radioisotope production - materials science - nuclear physics - activation analysis and others. First internal beam with 24 MeV protons has been obtained in April 23, 1981. First irradiation of Cu sample, at the external beam (beam current 1.5 μA), with 28 MeV alpha particles was performed in December 29, 1983. Main characteristics of the cyclotron are given together with a description of peripheral systems and experimental capability. Presently the accelerator is being optimized for cpontinuous running. (Author) [pt

  20. Conceptual design of 30 MeV magnet system used for BNCT epithermal neutron source

    International Nuclear Information System (INIS)

    Slamet Santosa; Taufik

    2015-01-01

    Conceptual design of 30 MeV Magnet System Used for BNCT Epithermal Neutron Source has been done based on methods of empirical model of basic equation, experiences of 13 MeV cyclotron magnet design and personal communications. In the field of health, cyclotron can be used as an epithermal neutron source for Boron Neutron Capture Therapy (BNCT). The development of cyclotron producing epithermal neutrons for BNCT has been performed at Kyoto University, of which it produces a proton beam current of 1.1 mA with energy of 30 MeV. With some experiences on 13 MeV cyclotron magnet design, to support BNCT research and development we performed the design studies of 30 MeV cyclotron magnet system, which is one of the main components of the cyclotron for deflecting proton beam into circular trajectory and serves as beam focusing. Results of this study are expected to define the parameters of particular cyclotron magnet. The scope of this study includes the study of the parameters component of the 30 MeV cyclotron and magnet initial parameters. The empirical method of basic equation model is then corroborated by a simulation using Superfish software. Based on the results, a 30 MeV cyclotron magnet for BNCT neutron source enables to be realized with the parameters of B 0 = 1.06 T, frequency RF = 64.733938 ≈ 65 MHz, the external radius of 0.73 m, the radius of the polar = 0.85 m, BH = 1.95 T and a gap hill of 4 cm. Because proton beam current that be needed for BNCT application is very large, then in the calculation it is chosen a great focusing axial νz = 0.630361 which can generate B V = 0.44 T. (author)

  1. Rf structure of superconducting cyclotron for therapy application

    International Nuclear Information System (INIS)

    Takekoshi, Hidekuni; Matsuki, Seishi; Mashiko, Katuo; Shikazono, Naomoto.

    1981-01-01

    Advantages of fast neutrons in therapeutical application are now widely recognized. Fast neutrons are generated by bombarding a thick beryllium target with high energy protons and deuterons. The AVF cyclotrons which deliver 50 MeV protons and 25 MeV deuterons are commonly used and are commercially available now. At the treatment usually rotational irradiation is taken to prevent an injury to normal tissue from the high LET effect of fast neutrons. The construction cost of both cyclotrons and isocentric irradiation installation are relatively high, so that the spread of neutron therapy is obstructed. A superconducting cyclotron for neutron therapy application was proposed by a Chalk River group. This low cost design allows the installation to be a dedicated facility located in a hospital, and small size allows installations of the complete cyclotron in a rotatable gantry. The design studies of the superconducting cyclotron based on this idea are going on at Kyoto University. The full scale model experiments for a rf structure of the cyclotron were carried out. (author)

  2. Fission properties of actinide nuclei from proton-induced fission at 26.5 and 62.9 MeV incident proton energies

    International Nuclear Information System (INIS)

    Demetriou, P.; Keutgen, Th.; Prieels, R.; El Masri, Y.

    2010-01-01

    Fission properties of proton-induced fission on 232 Th, 237 Np, 238 U, 239 Pu, and 241 Am targets, measured at the Louvain-la-Neuve cyclotron facility at proton energies of 26.5 and 62.9 MeV, are compared with the predictions of the state-of-the-art nuclear reaction code talys. The code couples the multimodal random neck-rupture model with the pre-equilibrium exciton and statistical models to predict fission fragment mass yields, pre- and post-scission neutron multiplicities, and total fission cross sections in a consistent approach. The sensitivity of the calculations to the input parameters of the code and possible improvements are discussed in detail.

  3. Neutronigen target study and realization for medical cyclotron using proton reactions on lithium deuteride

    International Nuclear Information System (INIS)

    Filhol, J.M.

    1984-02-01

    The new idea, used for this source realization, consists of replacing the classical beryllium targets (usuals in neutronotherapy cyclotrons) by a half-thick lithium deuteride target. The target is bombarded by high energy 150 MeV) protons which are beyond the target, deviated out of the neutron beam by a permanent magnet, before to be stopped in a graphite block. Target cooling conditions study and optimisation is presented, followed by the proton deflection block study and realization. The permanent magnet used (SmCo 5 ) is adapted to this target use conditions. Many series of neutronic and dosimetric characteristics measurements allow to verify the theoretical predictions concerning the neutron flux obtained [fr

  4. Production of residual nuclides by proton-induced reactions on target W at the energy of 72 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Moazzem Hossain [Univ. of Chittagong, Dept. of Physics, Chittagong (Bangladesh); Kuhnhenn, Jochen; Herpers, Ulrich [Univ. of Cologne, Dept. of Nuclear Chemistry, Cologne (Germany); Michel, Rolf [University of Hannover, Centre for Radiation Protection and Radioecology (Germany); Kubik, Peter [Paul Scherrer Inst., c/o Institute for Particle Physics, ETH Hoenggerberg, Zuerich (Switzerland)

    2002-08-01

    Investigations of cross-sections for residual nuclide production on the target element W by proton-induced reactions were performed by irradiating the target with 72 MeV protons using the cyclotron facilities at Paul-Scherrer Institute, Zurich, Switzerland. Residual nuclides were measured by gamma-spectrometry of HpGe detectors calibrated with standard gamma sources. The measured data contains 104 individual cross-sections for 20 identified nuclides in the proton energies between 52.5 - 68.9 MeV. These nuclear data is important in the study of spallation neutron source and in accelerator driven technologies such as waste transmutation and energy amplification. The present data are compared with the shape of the excitation functions of earlier only one measurement at higher energies and they are in good agreement to each other. (author)

  5. Theoretical estimation of "6"4Cu production with neutrons emitted during "1"8F production with a 30 MeV medical cyclotron

    International Nuclear Information System (INIS)

    Auditore, Lucrezia; Amato, Ernesto; Baldari, Sergio

    2017-01-01

    Purpose: This work presents the theoretical estimation of a combined production of "1"8F and "6"4Cu isotopes for PET applications. "6"4Cu production is induced in a secondary target by neutrons emitted during a routine "1"8F production with a 30 MeV cyclotron: protons are used to produce "1"8F by means of the "1"8O(p,n)"1"8F reaction on a ["1"8O]-H_2O target (primary target) and the emitted neutrons are used to produce "6"4Cu by means of the "6"4Zn(n,p)"6"4Cu reaction on enriched zinc target (secondary target). Methods: Monte Carlo simulations were carried out using Monte Carlo N Particle eXtended (MCNPX) code to evaluate flux and energy spectra of neutrons produced in the primary (Be+["1"8O]-H_2O) target by protons and the attenuation of neutron flux in the secondary target. "6"4Cu yield was estimated using an analytical approach based on both TENDL-2015 data library and experimental data selected from EXFOR database. Results: Theoretical evaluations indicate that about 3.8 MBq/μA of "6"4Cu can be obtained as a secondary, ‘side’ production with a 30 MeV cyclotron, for 2 h of irradiation of a proper designed zinc target. Irradiating for 2 h with a proton current of 120 μA, a yield of about 457 MBq is expected. Moreover, the most relevant contaminants result to be "6"3","6"5Zn, which can be chemically separated from "6"4Cu contrarily to what happens with proton irradiation of an enriched "6"4Ni target, which provides "6"4Cu mixed to other copper isotopes as contaminants. Conclusions: The theoretical study discussed in this paper evaluates the potential of the combined production of "1"8F and "6"4Cu for medical purposes, irradiating a properly designed target with 30 MeV protons. Interesting yields of "6"4Cu are obtainable and the estimation of contaminants in the irradiated zinc target is discussed. - Highlights: • "6"4Cu production with secondary neutrons from "1"8F production with protons was investigated. • Neutron reactions induced in enriched "6"4Zn

  6. Fission of {sup 209}Bi and {sup 197}Au nuclei induced by 30 MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Noshad, Houshyar; Soheyli, Saeed [Amir-Kabir University of Technology, Physics and Nuclear Science Department, Tehran (Iran); Lamehi-Rachti, Mohammad [Atomic Energy Organization of Iran (AEOI), Nuclear Research Center, Van de Graaff Laboratory, Tehran (Iran)

    2001-10-01

    Thin targets of {sup 209}Bi and {sup 197}Au were bombarded with 30 MeV protons at the Cyclotron Department of Nuclear Research Center for Agriculture and Medicine (NRCAM). Correlated measurements of kinetic energies of fission fragment pairs, and their time-of-flights were made using pair spectrometry. The fission cross sections, fragment mass distributions, and total kinetic energy distributions of the fragments were measured in our experiment. The accurate values of cross sections for fission of {sup 209}Bi and {sup 197}Au nuclei with 30 MeV protons were obtained to be 1,100{+-}100 and 62{+-}5.6 {mu}b, respectively. The cross section of {sup 209}Bi fission with its associated error, through using this method, has not been reported previously. The interpretation in terms of liquid-drop model of fissioning nucleus {sup 210}Po at the excitation energy of 35 MeV was confirmed by the dispersion of the distribution in fragment mass for bismuth fission. (author)

  7. Extraction of carrier-free 103Pd from thin rhodium wire irradiated with a proton beam in U-150 cyclotron

    International Nuclear Information System (INIS)

    Yuldashev, B.S.; Khudajbergenov, U.; Gulamov, I.R.; Mirzarva, M.A.; Rylov, A.A.

    2003-01-01

    A procedure for preparation of 103 Pd isotope of 99.9 % purity from a thin rhodium wire irradiated by 21 MeV proton beam in a cyclotron was developed. The desired product was prepared by electrolytic dissolution of the irradiated target in 6 M HCl with subsequent extraction of 103 Pd isotope without carrier by dimethylglyoxime in chloroform [ru

  8. MC-50 AVF cyclotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jong Seo; Lee, Dong Hoon; Kim, You Seok; Park, Chan Won; Lee, Yong Min; Hong, Sung Seok; Lee, Min Yong

    1995-12-01

    The first cyclotron in Korea, MC-59 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-70 .mu.A. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed. (author). 8 tabs., 17 figs., 10 refs.

  9. MC-50 AVF cyclotron operation

    International Nuclear Information System (INIS)

    Kim, Yu Seok; Chai, Jong Seo; Bak, Seong Ki; Park, Chan Won; Jo, Young Ho; Hong, Seong Seok; Lee, Min Yong; Jang Ho Ha

    2000-01-01

    The first cyclotron in Korea, MC-50 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-60μA. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23 days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed

  10. MC-50 AVF cyclotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seok; Chai, Jong Seo; Bak, Seong Ki; Park, Chan Won; Jo, Young Ho; Hong, Seong Seok; Lee, Min Yong; Jang Ho Ha

    2000-01-01

    The first cyclotron in Korea, MC-50 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-60{mu}A. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23 days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed.

  11. MC-50 AVF cyclotron operation

    International Nuclear Information System (INIS)

    Chae, Jong Seo; Lee, Dong Hoon; Kim, You Seok; Park, Chan Won; Lee, Yong Min; Hong, Sung Seok; Lee, Min Yong.

    1995-12-01

    The first cyclotron in Korea, MC-59 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-70 .mu.A. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed. (author). 8 tabs., 17 figs., 10 refs

  12. 44gSc production using a water target on a 13 MeV cyclotron

    International Nuclear Information System (INIS)

    Hoehr, Cornelia; Oehlke, Elisabeth; Benard, Francois; Lee, Chris Jaeil; Hou, Xinchi; Badesso, Brian; Ferguson, Simon; Miao, Qing; Yang, Hua; Buckley, Ken; Hanemaayer, Victoire; Zeisler, Stefan; Ruth, Thomas; Celler, Anna; Schaffer, Paul

    2014-01-01

    Introduction: Access to promising radiometals as isotopes for novel molecular imaging agents requires that they are routinely available and inexpensive to obtain. Proximity to a cyclotron center outfitted with solid target hardware, or to an isotope generator for the metal of interest is necessary, both of which can introduce significant hurdles in development of less common isotopes. Herein, we describe the production of 44 Sc (t 1/2 = 3.97 h, E avg,β + = 1.47 MeV, branching ratio = 94.27%) in a solution target and an automated loading system which allows a quick turn-around between different radiometallic isotopes and therefore greatly improves their availability for tracer development. Experimental yields are compared to theoretical calculations. Methods: Solutions containing a high concentration (1.44–1.55 g/mL) of natural-abundance calcium nitrate tetrahydrate (Ca(NO 3 ) 2 · 4 H 2 O) were irradiated on a 13 MeV proton-beam cyclotron using a standard liquid target. 44g Sc was produced via the 44 Ca(p,n) 44g Sc reaction. Results: 44g Sc was produced for the first time in a solution target with yields sufficient for early radiochemical studies. Saturation yields of up to 4.6 ± 0.3 MBq/μA were achieved using 7.6 ± 0.3 μA proton beams for 60.0 ± 0.2 minutes (number of runs n = 3). Experimental data and calculation results are in fair agreement. Scandium was isolated from the target mixture via solid-phase extraction with 88 ± 6% (n = 5) efficiency and successfully used for radiolabelling experiments. The demonstration of the production of 44 Sc in a liquid target greatly improves its availability for tracer development

  13. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    International Nuclear Information System (INIS)

    Alba, R; Cosentino, G; Zoppo, A Del; Pietro, A Di; Figuera, P; Finocchiaro, P; Maiolino, C; Santonocito, D; Schillaci, M; Barbagallo, M; Colonna, N; Boccaccio, P; Esposito, J; Celentano, A; Osipenko, M; Ricco, G; Ripani, M; Viberti, C M; Kostyukov, A

    2013-01-01

    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  14. Simulations of Beam Quality in a 13 MeV PET Cyclotron

    Directory of Open Access Journals (Sweden)

    A. Pramudita

    2015-12-01

    Full Text Available Simulation of the trajectories of negative hydrogen ion (H− beam in a 13 MeV PET cyclotron (DECY-13 were carried out by using the Runge-Kutta (RK4 approximation method and Scilab 5.4.1. The magnetic and electric fields were calculated using Opera-3d/TOSCA softwares at 1 mm resolution. The cyclotron is of a fourth-harmonics type, meaning that the acceleration occurs four times per cycle, with a radiofrequency (RF field of 77.66 MHz frequency and 40 kV amplitude. The calculations and simulations show that the maximum distance between the ion source and the puller is about 6 mm, while the maximum width of the beam at 13 MeV is about 10 mm, and the initial phase between the RF field and the beam ranges from -10° to 10°, with a yield of about 10% of the beam from the ion source getting accelerated to 13 MeV.

  15. Cyclotron-based neutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  16. A study on the proton irradiation effect of reactor materials using cyclotron

    International Nuclear Information System (INIS)

    Chi, Se Hwan; Park, Jong Man; Park, Deuk Keun; Lee, Bong Sang; Oh, Jong Myung

    1993-02-01

    Understanding on radiation damage of important structural materials is important for safe operation and radiation damage evaluation of new reactor structural materials. This study was performed to simulate and evaluate 14 MeV neutron irradiation effects on mechanical properties of candidate structural materials (HT-9/SS316) of next generation reactors (FBR, Fusion) irradiated by Cyclotron(MC-50) using SP test technique. After qualification of SP test techniques from J IC and ε qf correlation, SP tests were performed to evaluate 16MeV proton irradiation effects on mechanical properties of irradiated and unirradiated HT-9/SS316 steels. Test results were evaluated for ε qf , energy and displacement up to failure and J IC change. In addition, damaged zone and dpa upon depth after irradiation were calculated using TRIM code and Doppler broadening line shapes were measured to evaluate defects for 15% cold worked HT-9 steel using PAS. (Author)

  17. First results of beam generation test for JAERI AVF cyclotron

    International Nuclear Information System (INIS)

    Tachikawa, T.; Hayashi, Y.; Ishii, K.

    1992-01-01

    The performance of JAERI AVF cyclotron was investigated with several kinds of ions in the wide energy range. The 90 MeV protons of 10 μA intensity was successfully extracted for the first time by the model 930 cyclotron. The feature of beam chopping system is also presented. (author)

  18. New irradiation facilities at the Australian national medical cyclotron

    International Nuclear Information System (INIS)

    Parcell, S.K.; Arnott, D.W.; Conard, E.M.

    1999-01-01

    Two new irradiation facilities have been developed at the National Medical Cyclotron for radionuclide production. The first relocates PET irradiations from the cyclotron vault to a dedicated PET beam room, to improve accessibility and reduce radiation exposures associated with target maintenance. This new facility consists of a beam line to transport 16-30 MeV proton beams from the cyclotron to 1 of 8 PET targets mounted on a target rack. The target rack has increased the number of targets available for production and experimentation. The second is a completely independent solid target irradiation facility for SPECT. This facility consists of a beam line to transport 26-30 MeV proton beams from the cyclotron to a dedicated beam room containing one solid target station. A new pneumatic target transfer system was also developed to transport the solid target to and from the existing chemistry hot cells. The beam line and target components are operated under the control of a dedicated PLC with a PC based user interface. The development and some technical aspects of these new irradiation facilities are discussed here. (author)

  19. Development of 68Ge/68Ga Generator using 30 MeV Cyclotron

    International Nuclear Information System (INIS)

    Goo, Hur Min; Dae, Yang Seung; Hoon, Park Jeong; Dae, Park Yong; Je, Lee Eun; Bae, Kong Young; Kim, In Jong; Lee, Jin Woo; Hyun, Yu Kook

    2012-05-01

    The purpose of this research is to develop the 68 Ge/ 68 Ga generator where daughter nuclide 68 Ga can be eluted according to the designated periods from the resin which holds mother nuclide 68 Ge absorbed and to develop the 68 Ga utilization technology. 1. Target development for 68 Ge target and production of 68 Ge - Target designed for 68 Ge production with 30 MeV cyclotron - Target body material evaluation and proton beam irradiation 2. Separation of 68 Ge and development of column material and extraction system for 68 Ge/ 68 Ga separation - Development of 68 Ge separation method from nat Ga target - Development of absorbents for generator using stable isotope 3. Development of 68 Ga labelled radiopharmaceutical - Development of 68 Ga labelled benzamide derivative for diagnosis of melanoma - Development of 68 Ga dendrimer complex using nano-technology 4. Development of shield case for 68 Ge/ 68 Ga generator

  20. Study of axial injection of polarized protons into the grenoble cyclotron; Contribution a l'etude de l'injection axiale pour protons polarises sur le cyclotron de Grenoble

    Energy Technology Data Exchange (ETDEWEB)

    Pabot, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    By injecting ions axially into a cyclotron, it is possible to accelerate particles (polarized particles, heavy ions, etc...) obtainable only with difficulty when an internal ion source is used. In this work, after justifying the choice of an axial injection device equipped with a 'pseudo-cylindrical' deflector for the Grenoble cyclotron, we study theoretically the principle of such a detector, the choice of its parameters, and the effect of this choice on the conditions of acceleration of the beam by the cyclotron. From the experimental point of view, this report describes two operations which made it possible to check that the chosen injection device operated satisfactorily, qualitatively initially (electron model), then quantitatively (proton model). In conclusion, we believe that the Grenoble cyclotron thus equipped will be able to provide a relatively dense beam of polarized protons. (author) [French] L'injection axiale d'ions dans un cyclotron permet d'accelerer des particules (particules polarisees, ions lourds... ) difficiles a obtenir avec une source interne d'ions. Dans ce travail, apres avoir justifie le choix d'un dispositif d'injection axiale equipe d'un deflecteur 'pseudo-cylindrique' pour le cyclotron de Grenoble, nous avons etudie, du point de vue theorique, le principe d'un tel deflecteur, le choix de ses parametres, et l'incidence de ce choix sur les conditions d'acceleration du faisceau par le cyclotron. Du point de vue experimental, ce rapport decrit deux manipulations qui ont permis de verifier le bon fonctionnement du dispositif d'injection retenu, qualitativement d'abord (modele a electrons), quantitativement ensuite (maquette a protons). En conclusion, nous estimons que le cyclotron de Grenoble ainsi equipe, peut fournir un faisceau relativement intense de protons polarises. (auteur)

  1. Emittance Measurement for Beamline Extension at the PET Cyclotron

    Directory of Open Access Journals (Sweden)

    Sae-Hoon Park

    2016-01-01

    Full Text Available Particle-induced X-ray emission is used for determining the elemental composition of materials. This method uses low-energy protons (of several MeV, which can be obtained from high-energy (of tens MeV accelerators. Instead of manufacturing an accelerator for generating the MeV protons, the use of a PET cyclotron has been suggested for designing the beamline for multipurpose applications, especially for the PIXE experiment, which has a dedicated high-energy (of tens MeV accelerator. The beam properties of the cyclotron were determined at this experimental facility by using an external beamline before transferring the ion beam to the experimental chamber. We measured the beam profile and calculated the emittance using the pepper-pot method. The beam profile was measured as the beam current using a wire scanner, and the emittance was measured as the beam distribution at the beam dump using a radiochromic film. We analyzed the measurement results and are planning to use the results obtained in the simulations of external beamline and aligned beamline components. We will consider energy degradation after computing the beamline simulation. The experimental study focused on measuring the emittance from the cyclotron, and the results of this study are presented in this paper.

  2. Recoil proton polarization of neutral pion photoproduction from proton in the energy range between 400 MeV and 1142 MeV

    International Nuclear Information System (INIS)

    Kato, S.; Miyachi, T.; Sugano, K.; Toshioka, K.; Ukai, K.

    1979-08-01

    The recoil proton polarization of the reaction γp → π 0 p were measured at a C.M. angle of 100 0 for incident photon energies between 451 and 1106 MeV, and at an angle of 130 0 for energies from 400 MeV to 1142 MeV. One photon decayed from a π 0 -meson and a recoil proton were detected in coincidence. Two kinds of polarization scatterers were employed. In the range of proton kinetic energy less than 420 MeV and higher than 346 MeV, carbon plates and liquid hydrogen were used for determining the polarization. Results are compared with recent phenomenological analyses. From the Comparison between the present data and the asymmetry data given by the polarized target, the contribution of the invariant amplitudes A 3 can be estimated to be small at 100 0 . (author)

  3. Radiation protection problems by the operation of the cyclotron facility

    International Nuclear Information System (INIS)

    Durcik, M.; Nikodemova, D.

    1998-01-01

    The Cyclotron Center in Bratislava will consist of two cyclotrons. First - cyclotron DC-72 with maximal energy of 72 MV for protons for making experiments, for teaching process, for radioisotope production as 123 I and for neutron and proton therapy. Second - compact cyclotron with maximal proton energy of 18 MeV will be used for radioisotopes production for medical diagnosis as 1 *F (fluorodeoxyglucose), 81 Rb/ 81 Kr generator. This paper deals with the radiation protection problems by the operation of tis cyclotron facility as radiation protection of workers, monitoring plan, ventilation, safety lock and limitation and radiation monitoring. For proposed and continuing practices at the accelerator facility, the following general principles have to be fulfilled: (1) practices should produce sufficient benefit to offset the radiation detriment they case (justification); (2) the magnitude of the individual doses should be kept as low as achievable (optimization of protection); (3) individual exposures are subject to dose limits and some control of risk from potential exposures (dose and risk limits)

  4. Study of {sup 24}Na activity in concrete using 20-MeV proton beam on Cu

    Energy Technology Data Exchange (ETDEWEB)

    Oranj, Leila Mokhtanri; Jung, Nam Suk; Lee, Arim; Heo, Tae Min; Bakhtian, Mahdi; Lee, Hee Seock [POSTECH, Pohang (Korea, Republic of)

    2017-04-15

    The number of medical cyclotrons capable of accelerating protons to about 20 MeV is increasing in Korea. In such facilities, various radionuclides could be induced in shielding materials like concrete from secondary neutrons which Causes problems from the view point of radiation safety. Among these radionuclides, gamma-ray from {sup 24}Na (Tz1/2 = 15 h) is the most important origin of radiation exposure. {sup 24}Na could be produced from secondary neutrons on Na, Al and Mg component which exist in the concrete. {sup 24} Na Could be produced from thermal neutrons on Na and fast neutron with energy lower than 20 MeV on Al and Mg. Due to interaction of 20 MeV protons on Cu target, secondary neutrons with the energy of less than 20 MeV were produced. therefore, among the concrete components, Na, Al and Mg are only corespondent to produce {sup 24}Na. In this work, {sup 24}Na activity induced in concrete and chemical reagents of concrete (NaHCO{sub 3}, Al{sub 2}O{sub 3} and MgO) were measured. To produce neutrons, Cu target was irradiated by 20 MeV protons. Measured data were compared with results of simulations by FLUKA and MARS as well as earlier works and theocratical data. In the case of Mg and Al chemical reagents, FLUKA code overestimates our measurements by approximately four times, while, for Na sample, FLUKA underestimates the experimental data by almost 0.5. Data from FLUKA and measurement for the concrete are consistent. Calculation from TALYS for Mg overestimates the measured data by a factor of 2.5.

  5. Basic Research and Feasibility Study of Radioisotope Production using 100 MeV Proton Beam

    International Nuclear Information System (INIS)

    Yoo, K. H.; Yoon, K. S.; Cho, W. J.; Park, S. I.; Han, H. S.; Yang, S. D.; Jeon, K. S.; Kim, J. H.; Yang, T. K.

    2010-04-01

    Results of the project are various nuclei, such as 82 Rb, 68 Ga, 67 Cu, 22 Na and so on, can be produced by irradiating 100 MeV proton beam, by irradiating proton beam to the nat Ga target, the 68 Ge, mother nucleus of positron emitting 68 Ga, is produced based on the nat Ga(p,x) 68 Ge reaction, the target system for the high-energy of proton beam can produce more than 2 species of radioisotope at the same time by employing tandem targets, 68 Ge/ 68 Ga generator, 82 Sr(25.34d)/ 82 Rb generator - 67 Cu production method, 70 Zn electroplating technology based on the electrochemistry, the container, whose weight is about 3 ton, is made by depleted uranium and because of the unstable situation for the supply and demand of reactor produced radioisotope, the need for the cyclotron produced radioisotopes is dramatically increased all over the world.

  6. Present situation of 'baby cyclotron'

    International Nuclear Information System (INIS)

    Yamada, Teruo

    1981-01-01

    A ''baby cyclotron'' has been developed by the Japan Steel Works, Ltd. Its No. 1 model (proton 9.4 MeV) was delivered to the Nakano Hospital of National Sanatorium in March, 1979. It is being used successfully for the production of 11 C, 13 N and 15 O and labeled compounds. The proton or deuteron particles accelerated in the cyclotron collide on target materials. The target box, which is automatically changeable, is directly installed to the accelerating box, thereby taking the safety measures for any leaking radiation. The following matters are described: the production of short-lived radioisotopes (RI yields and treatment); the processes of production in the Nakano Hospital, with No. 1 baby cyclotron, including the photosynthesis of labeled compounds such as 11 C-labeled glucose; the research on the automation in the synthesis of organic labeled compounds like 11 C-palmitic acid. (J.P.N.)

  7. A P + DEUTERON PROTON POLARIMETER AT 200 MEV.

    Energy Technology Data Exchange (ETDEWEB)

    HUANG,H.; ROSER,T.; ZELENSKI,A.; KURITA,K.; STEPHENSON,E.; TOOLE,R.

    2002-06-02

    There has been concern about the analyzing power of the p-Carbon polarimeter at the end of 200 MeV LINAC of BNL. A new polarimeter based on proton-deuteron scattering was installed and we have repeated the calibration of proton-Carbon scattering at 12 degrees and 200 MeV against proton-deuteron scattering. The result is consistent with the value of A=0.62 now used to measure the beam polarization at the end of the LINAC.

  8. The polarized proton and deuteron beam at the Bonn isochronous cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, K G; Enders, R; Hammon, W; Krause, K D; Lesemann, D; Scholzen, A [Bonn Univ. (F.R. Germany). Inst. fuer Angewandte Physik; Euler, K; Schueller, B [Bonn Univ. (F.R. Germany). Inst. fuer Strahlen- und Kernphysik

    1976-02-15

    The present state of the polarized proton and deuteron source at the Bonn cyclotron is described. The source, which is of the atomic beam type, gives typical ion beam intensities of 2 ..mu..A for protons and 3 ..mu..A for deuterons. The overall transmission from the source to the first stopper after extraction from the cyclotron is 3%. Target currents with an energy resolution E/..delta..E=500 are 20 nA for deuterons and 10 nA for protons. For the proton beam, a polarization P=-0.71 was measured. For the deuteron beam, a pure vector polarization Psub(z)=-0.47 or various mixtures of vector and tensor polarization are obtained.

  9. Neutron radiography by using JSW baby cyclotron

    International Nuclear Information System (INIS)

    Toda, Yojiro

    1995-01-01

    At present, JSW baby cyclotrons are mostly used for the production of the radioisotopes for medical use. The attempt to use this baby cyclotron for neutron radiography began already in 1981. The feasibility of the neutron radiography for the explosives in metallic cases which are used for H1 rockets was investigated. In 1983, it was shown that the neutron radiography by using the baby cyclotron in Muroran Works, Japan Steel Works, Ltd. was able to be carried out as a routine work. Since then, the nondestructive inspection by neutron radiography has been performed for rocket pyrotechnic articles, and contributed to heighten their reliability. Further, the radiography by using fast neutrons was developed and put to practical use for recent large H2 rockets. The JSW baby cyclotron BC 168 which has been used for neutron radiography can accelerate 16 MeV protons or 8 MeV deuterons up to 50 μA. The principle of thermal neutron radiography is the generation of fast neutrons by irradiating a Be target with the proton beam accelerated by a baby cyclotron, the moderation of the fast neutrons, the formation of the thermal neutron flux of uniform distribution with a collimator, the thermal neutron flux hitting the Gd plate in a film cassette through an object, and the exposure of an X-ray film to electrons from the Gd plate. Fast neutron radiography apparatus, and commercial neutron radiography are described. (K.I.)

  10. Calculation of proton beam initial orbit at cyclotron central region

    International Nuclear Information System (INIS)

    Pramudita Anggraita

    2012-01-01

    A calculation of proton beam initial orbits at cyclotron central region was carried out using Scilab 5.2.0. The calculation was done in 2 dimensions in a homogeneous magnetic field of 1.66 tesla at frequency of fourth harmonics. The positions of ion source, dees, and dummy dees follow those of GE Minitrace cyclotron, peak dee voltage 30 kV. The calculation yields result comparable to those simulated at KIRAMS-13 cyclotron. (author)

  11. Study of axial injection of polarized protons into the grenoble cyclotron

    International Nuclear Information System (INIS)

    Pabot, J.

    1969-01-01

    By injecting ions axially into a cyclotron, it is possible to accelerate particles (polarized particles, heavy ions, etc...) obtainable only with difficulty when an internal ion source is used. In this work, after justifying the choice of an axial injection device equipped with a 'pseudo-cylindrical' deflector for the Grenoble cyclotron, we study theoretically the principle of such a detector, the choice of its parameters, and the effect of this choice on the conditions of acceleration of the beam by the cyclotron. From the experimental point of view, this report describes two operations which made it possible to check that the chosen injection device operated satisfactorily, qualitatively initially (electron model), then quantitatively (proton model). In conclusion, we believe that the Grenoble cyclotron thus equipped will be able to provide a relatively dense beam of polarized protons. (author) [fr

  12. A 62-MeV Proton Beam for the Treatment of Ocular Melanoma at Laboratori Nazionali del Sud-INFN

    Science.gov (United States)

    Cirrone, G. A. P.; Cuttone, G.; Lojacono, P. A.; Lo Nigro, S.; Mongelli, V.; Patti, I. V.; Privitera, G.; Raffaele, L.; Rifuggiato, D.; Sabini, M. G.; Salamone, V.; Spatola, C.; Valastro, L. M.

    2004-06-01

    At the Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) in Catania, Italy, the first Italian protontherapy facility, named Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) has been built in collaboration with the University of Catania. It is based on the use of the 62-MeV proton beam delivered by the K=800 Superconducting Cyclotron installed and working at INFN-LNS since 1995. The facility is mainly devoted to the treatment of ocular diseases like uveal melanoma. A beam treatment line in air has been assembled together with a dedicated positioning patient system. The facility has been in operation since the beginning of 2002 and 66 patients have been successfully treated up to now. The main features of CATANA together with the clinical and dosimetric features will be extensively described; particularly, the proton beam line, that has been entirely built at LNS, with all its elements, the experimental transversal and depth dose distributions of the 62-MeV proton beam obtained for a final collimator of 25-mm diameter and the experimental depth dose distributions of a modulated proton beam obtained for the same final collimator. Finally, the clinical results over 1 yr of treatments, describing the features of the treated diseases will be reported.

  13. Manufacture and analysis of exciter RF generator for proton cyclotron Decy-13

    International Nuclear Information System (INIS)

    Prajitno

    2011-01-01

    Exciter of the RF generator for 13 MeV proton cyclotron have been analyzed and manufactured. RF generator will be used as a source of alternating voltage accelerating of the Decy-13 cyclotron which designed by PTAPB-BATAN. Based on the basic design documents that have been made, the Decy-13 cyclotron will use 1.275 Tesla magnetic field so that the RF generator frequency when using the fourth harmonic is 77.667 MHz. One of the radio frequency signal generation technique where the output frequency is very stable and easy to set up and is currently being developed is the technique of Direct Digital Synthesizer (DDS). DDS technology is an innovative circuit architecture that allows fast and precise frequency manipulation of its output, under full digital control. Prototype of the RF generator exciter that was created using DDS type AD9851 manufactured by Analog Devices with a fundamental frequency of 30 MHz and controlled by the ATmega16 micro controller. To avoid unexpected frequency of its output, the output signal of the DDS is passed to the passive band pass filter circuit. The test results showed that the exciter output frequency range is 2 MHz with center frequency of 77.667 MHz. and stop band -3 dB. While RF power output 10 Watt require 12 V power supply with current 1,6 A. Although the exciter prototype still needs improvement but the results are as expected. (author)

  14. The PET / cyclotron facility at Putrajaya Hospital - an update

    International Nuclear Information System (INIS)

    Siti Najila Mohd Janib; Suzilawati Muhd Sarowi; Munira Shaikh Nasir; Zulkifli Mohamed Hashim

    2006-01-01

    Malaysia desire to have a cyclotron for nuclear medical use came into realisation recently with the establishment of a PET/Cyclotron Facility at Putrajaya Hospital. The testing and commissioning of the cyclotron, hot cells, QC equipment and PET/CT started on March 27, culminating in the first patient to be injected on May 10 2006. Three other patients were to be followed on May 15. The patients from both the Kuala Lumpur and Putrajaya Hospital were pre-selected by physicians from these hospitals. The 18 MeV cyclotron is capable of generating 16.4 MeV protons and 8.4 MeV deuterons. The cyclotron at Putrajaya has three targets (2 liquid and 1 gas) and is capable of producing 18 F-FDG and 18 F-DOPA. To complement this, the facility has 2 modules for FDG synthesis, 1 for F-DOPA and 1 for nucleophilic synthesis. The facility will be GMP compliant. For the first production for human use, the water-18 target was irradiated for 50 minutes at 20 mA to produce 1.3 Ci of F-18. At the end of synthesis, the activity of the FDG obtained was 600 mCi. The product was then injected to a 26-year-old female, with a suspected adenocarcinoma. (Author)

  15. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    International Nuclear Information System (INIS)

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen; Vander Stappen, François; Janssens, Guillaume; Prieels, Damien; Bawiec, Christopher R.; Lewin, Peter A.; Sehgal, Chandra M.

    2015-01-01

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring

  16. Contribution of giant resonances in elastic and inelastic scattering of polarized protons on 12C between 19 and 23MeV

    International Nuclear Information System (INIS)

    Gaillard, Y.R.

    1975-01-01

    Angular distributions of analyzing power and differential cross section have been measured for the elastic and inelastic scattering of polarized protons on 12 C, up to 12.7MeV excitation energy. Incident energy varied from 19 to 23MeV by steps of about 200keV, the cyclotron beam energy, varying by steps of about 1MeV, was measured using crossover techniques. Fine steps of energy were obtained by use of carbon absorbers. Elastic scattering data were analyzed using a linear energy-dependent optical model. Data for the level at 4.4MeV excitation energy were analyzed using coupled channel calculations. Preliminary results for the level (1 - , Esub(x)=12.7MeV) were analyzed including giant resonances as doorways states in inelastic scattering, according to Geramb-Amos formalism. This analysis shows that it should be possible to study high-lying giant resonances through their contribution to low-lying state excitation [fr

  17. Proton-nucleus interactions at 640 MeV accompanied by backward emission of energetic protons

    International Nuclear Information System (INIS)

    Komarov, V.I.; Kosarev, E.G.; Mueller, H.; Netzband, D.; Toneev, V.D.; Stiehler, T.; Tesch, S.; Gudima, K.K.; Mashnik, S.G.

    1979-03-01

    Spectra of protons of energies between 50 and 145 MeV emitted from carbon have been measured at angles from 105 0 to 160 0 with respect to the 640 MeV proton beam. The measurements have been carried out both inclusively and in coincidence with protons emitted at forward angles up to +- 40 0 with energies from 255 to 330 MeV. This energy interval has been chosen in accordance with the kinematics of quasifree scattering on two-nucleon groups. Inclusive differential cross sections at 140 0 and coincidence cross sections at the angle pair (-12 0 , 122 0 ) have also been measured with Be, Al, Cu and Pb targets. The data have been compared with the predictions of several models. (author)

  18. Radiation safety aspects of the AGOR superconducting cyclotron facility

    NARCIS (Netherlands)

    Beijers, JPM; de Meijer, RJ

    1996-01-01

    This paper describes shielding calculations and skyshine estimates for the new AGOR K=600 superconducting cyclotron facility. Both simple, semi-empirical models and Monte-Carlo simulations were used. The calculations are based on a 200 MeV proton beam incident on a trick aluminum target. Also the

  19. Important radiation protection aspects of the operation of a commercial medical cyclotron

    International Nuclear Information System (INIS)

    Mukherjee, B.

    1997-01-01

    Since July 1991 the Radiopharmaceutical Division of the Australian Nuclear Science and Technology Organisation (ANSTO) operates a 30 MeV H'- ion Medical Cyclotron (Model; CYCLONE 30, Manufacturer: Ion Beam Applications, Louvain La Neuve, Belgium). During routine isotope production operations at the cyclotron a thick copper substrate plate electroplated with thin layer of selected enriched target material are bombarded with 30 MeV proton beam current up to 450 μA. The nuclear reaction of protons with the copper atoms result in the reduction of prompt evaporation neutrons with a peak energy of ∼ 1.8 MeV. These evaporation neutrons slow down via multiple collisions with the concrete shielding walls of the target cave, bounce back to the,interior space of the cave activating the cyclotron parts, beam tube components and other utilities installed in the irradiation cave. After the completion of 60 hour isotope production run, gamma dose equivalent rates of ∼10 5 μSvh -1 were measured at contact with the target irradiation stations and beam collimators. Evidently, these gamma rays emitted from the activated cyclotron components impose crucial radiation exposure hazard problems for the cyclotron maintenance technicians. Experiments had been carried out in order to identify the specific pathways of cyclotron component activation and to assess the probable personnel radiation exposure during handling of the activated cyclotron parts. The cool-down (radioactive decay) of the activated cyclotron components was estimated experimentally at different target bombardment conditions using the wall mounted gamma area monitors interfaced to the Health Physics Data Acquisition System. The gamma dose equivalent rates at contact with various locations of interest at the target irradiation station and at the typical work areas of the maintenance personnel were carefully recorded with a radiation (gamma) survey instrument during the three years operation period of the cyclotron. A

  20. Proton-counting radiography for proton therapy: a proof of principle using CMOS APS technology

    International Nuclear Information System (INIS)

    Poludniowski, G; Esposito, M; Evans, P M; Allinson, N M; Anaxagoras, T; Green, S; Parker, D J; Price, T; Manolopoulos, S; Nieto-Camero, J

    2014-01-01

    Despite the early recognition of the potential of proton imaging to assist proton therapy (Cormack 1963 J. Appl. Phys. 34 2722), the modality is still removed from clinical practice, with various approaches in development. For proton-counting radiography applications such as computed tomography (CT), the water-equivalent-path-length that each proton has travelled through an imaged object must be inferred. Typically, scintillator-based technology has been used in various energy/range telescope designs. Here we propose a very different alternative of using radiation-hard CMOS active pixel sensor technology. The ability of such a sensor to resolve the passage of individual protons in a therapy beam has not been previously shown. Here, such capability is demonstrated using a 36 MeV cyclotron beam (University of Birmingham Cyclotron, Birmingham, UK) and a 200 MeV clinical radiotherapy beam (iThemba LABS, Cape Town, SA). The feasibility of tracking individual protons through multiple CMOS layers is also demonstrated using a two-layer stack of sensors. The chief advantages of this solution are the spatial discrimination of events intrinsic to pixelated sensors, combined with the potential provision of information on both the range and residual energy of a proton. The challenges in developing a practical system are discussed. (paper)

  1. Proton-counting radiography for proton therapy: a proof of principle using CMOS APS technology.

    Science.gov (United States)

    Poludniowski, G; Allinson, N M; Anaxagoras, T; Esposito, M; Green, S; Manolopoulos, S; Nieto-Camero, J; Parker, D J; Price, T; Evans, P M

    2014-06-07

    Despite the early recognition of the potential of proton imaging to assist proton therapy (Cormack 1963 J. Appl. Phys. 34 2722), the modality is still removed from clinical practice, with various approaches in development. For proton-counting radiography applications such as computed tomography (CT), the water-equivalent-path-length that each proton has travelled through an imaged object must be inferred. Typically, scintillator-based technology has been used in various energy/range telescope designs. Here we propose a very different alternative of using radiation-hard CMOS active pixel sensor technology. The ability of such a sensor to resolve the passage of individual protons in a therapy beam has not been previously shown. Here, such capability is demonstrated using a 36 MeV cyclotron beam (University of Birmingham Cyclotron, Birmingham, UK) and a 200 MeV clinical radiotherapy beam (iThemba LABS, Cape Town, SA). The feasibility of tracking individual protons through multiple CMOS layers is also demonstrated using a two-layer stack of sensors. The chief advantages of this solution are the spatial discrimination of events intrinsic to pixelated sensors, combined with the potential provision of information on both the range and residual energy of a proton. The challenges in developing a practical system are discussed.

  2. Observation of correlation between two fast protons in proton-nucleus interactions at 640 MeV

    International Nuclear Information System (INIS)

    Komarov, V.I.; Kosarev, G.E.

    1978-01-01

    The measurements have been performed to observe correlations between backward emitted protons (BEP) and forward outgoing protons from quasi-free scattering of the incident proton of 640 MeV on a nucleons pair [pN] within Be, C, Al, Cu and Pb nucleus at the angles 12 deg and 122 deg: p 0 + pN → p 1 + N + p 3 . Here p 1 is a proton detected in coincidence with BEP p 3 and N is a nucleon unobserved under the conditions of this experiment. The differential cross sections for the BEP of energies from 50 to 145 MeV have been measured in coincidence with forward outgoing protons (255 to 330 MeV) by scintillation counter method. The inclusive BEP spectra have been explained by the quasi-elastic backscattering on clusters which do not break up during the interaction. The calculated distribution are remarkably narrower than the experimental anes. The measurements point out that the discussed production of two fast protons is observable with all the targets and the cross section per target nucleon decreases with increasing the target mass number

  3. Use of cyclotrons in medical research: Past, present, future

    Science.gov (United States)

    Smathers, James B.; Myers, Lee T.

    1985-05-01

    The use of cyclotrons in medical research started in the late 1930s with the most prominent use being neutron irradiation in cancer therapy. Due to a lack of understanding of the biological effect of neutrons, the results were less than encouraging. In the 1940s and 1950s, small cyclotrons were used for isotope production and in the mid 60s, the biological effect of neutrons was more thoroughly studied, with the result that a second trial of neutron therapy was initiated at Hammersmith Hospital, England. Concurrent with this, work on the use of high energy charged particles, initially protons and alphas, was initiated in Sweden and Russia and at Harvard and Berkeley. The English success in neutron therapy led to some pilot studies in the USA using physics cyclotrons of various energies and targets. These results in turn lead to the present series of machines presently being installed at M.D. Anderson Hospital (42 MeV), Seattle (50 MeV) and UCLA (46 MeV). The future probably bodes well for cyclotrons at the two extremes of the energy range. For nuclear medicine the shift is away from the use of multiple isotopes, which requires a large range of particles and energies to 11C, 13N, 15O, and 18F, which can be incorporated in metabolic specific compounds and be made with small 8-10 MeV p+ "table top" cyclotrons. For tumor therapy machines of 60 MeV or so will probably be the choice for the future, as they allow the treatment of deep seated tumors with neutrons and the charged particles have sufficient range to allow the treatment of ocular tumors.

  4. Neutron field characterization and dosimetry at the TRIUMF proton therapy facility

    International Nuclear Information System (INIS)

    Mukherjee, B.

    2002-01-01

    Full text: In 1972 the 500 MeV H' Cyclotron of the TRIUMF (Tri University Meson Factory) located in Vancouver, Canada became operational. Beside Meson Physics, high-energy protons of various energy and beam current levels from the TRIUMF Cyclotron are used for scientific research and biomedical applications. Recently, a 500 MeV proton beam from the cyclotron was used as the booster beam for the radioactive ion beam facility, ISAC (Isotope Separator Accelerator) and a second beam as primary irradiation source for the Proton Irradiation Facility (PIF). The major commercial applications of the PIF are the provision of high-energy proton beams for radiation hardness testing of electronic components used in space applications (NASA) and proton therapy of ocular tumors (British Columbia Proton Therapy Facility). The PIF vault was constructed within the main accelerator hall of the TRIUMF using stacks of large concrete blocks. An intense field of fast neutrons is produced during the interaction of high-energy proton beam with target materials, such as, beam stops, collimators and beam energy degraders. The leakage of such neutrons due to insufficient radiological shielding or through the shielding discontinuities may constitute a major share of the personnel radiation exposure of the radiation workers. The neutron energy distribution and dose equivalent near a lead beam stopper bombarded with 116 MeV and 65 MeV collimated proton beams at the Ocular Tumor irradiation facility were evaluated using a Bonner-Sphere Spectrometer and a REM counter respectively. The results were utilized to investigate efficacy of the existing radiological shielding of the PIF. This paper highlights experimental methods to analyze the high-energy accelerator produced neutron beam and basic guideline for the radiological shielding designs of irradiation vault of Proton Therapy facilities

  5. Neutron field inside a PET Cyclotron vault room

    International Nuclear Information System (INIS)

    Vega C, H.R.; Mendez, R.; Iniguez, M.P.; Climent, J.M.; Penuelas, I.; Barquero, R.

    2006-01-01

    The neutron field around a Positron Emission Tomography cyclotron was investigated during 18 F radioisotope production with an 18 MeV proton beam. In this study the Ion Beam Application cyclotron, model Cyclone 18/9, was utilized. Measurements were carried out with a Bonner sphere neutron spectrometer with pairs of thermoluminescent dosemeters (TLD600 and TLD700) as thermal neutron detector. The TLDs readouts were utilized to unfold the neutron spectra at three different positions inside the cyclotron's vault room. With the spectra the Ambient dose equivalent was calculated. Neutron spectra unfolding were performed with the BUNKIUT code and the UTA4 response matrix. Neutron spectra were also determined by Monte Carlo calculations using a detailed model of cyclotron and vault room. (Author)

  6. Proton beam dosimetry for radiosurgery: implementation of the ICRU Report 59 at the Harvard Cyclotron Laboratory

    International Nuclear Information System (INIS)

    Newhauser, Wayne D.; Myers, Karla D.; Rosenthal, Stanley J.; Smith, Alfred R.

    2002-01-01

    Recent proton dosimetry intercomparisons have demonstrated that the adoption of a common protocol, e.g. ICRU Report 59, can lead to improved consistency in absorbed dose determinations. We compared absorbed dose values, measured in the 160 MeV proton radiosurgery beamline at the Harvard Cyclotron Laboratory, based on ionization chamber methods with those from a Faraday cup technique. The Faraday cup method is based on a proton fluence determination that allows the estimation of absorbed dose with the CEMA approximation, under which the dose is equal to the fluence times the mean mass stopping power. The ionization chamber technique employs an air-kerma calibration coefficient for 60 Co radiation and a calculated correction in order to take into account the differences in response to 60 Co and proton beam radiations. The absorbed dose to water, based on a diode measurement calibrated with a Faraday cup technique, is approximately 2% higher than was obtained from an ionization chamber measurement. At the Bragg peak depth, the techniques agree to within their respective uncertainties, which are both approximately 4% (1 standard deviation). The ionization chamber technique exhibited superior reproducibility and was adopted in our standard clinical practice for radiosurgery. (author)

  7. Klystron High Power Operation for KOMAC 100-MeV Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Kyung-Tae; Kim, Seong-Gu; Kwon, Hyeok-Jung; Kim, Han-Sung; Cho, Yong-Sub [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The Korea multi-purpose accelerator complex (KOMAC) accelerator facility has a 100-MeV proton linac, five beam lines for 20-MeV beam utilization, and another five beam lines for 100-MeV beam utilization. The 100-MeV linac consists of a 50-keV proton injector based on a microwave ion source, a 3-MeV RFQ with a four-vane structure, and a 100-MeV DTL. Nine sets of 1MW klystrons have been operated for the 100-MeV proton linac. The klystron filament heating time was approximately 5700 hours in 2014, and RF operation time was 2863.4 hours. During the high power operation of the klystron, unstable RF waveforms appeared at the klystron output, and we have checked and performed cavity frequency adjustments, magnet and heater current, reflection from a circulator, klystron test without a circulator, and the frequency spectrum measurement. Nine sets of the klystrons have been operated for the KOMAC 100-MeV proton linac. The klystron filament heating time was 5700 hours and RF operation time was 2863.4 hours during the operation in 2014. Some klystrons have unstable RF waveforms at specific power level. We have checked and tested the cavity frequency adjustment, reflection from a circulator, high power test without a circulator, and frequency spectrum at the unstable RF.

  8. Cyclotron laboratory in the Institute of Nuclear Studies of the Hungarian Academy of Sciences

    International Nuclear Information System (INIS)

    Gal'chuk, A.V.; Korolev, L.E.; Stepanov, A.V.

    1985-01-01

    The status of the development of cyclotron laboratory in the Institute for Nuclear Research of the Hungarian Academy of Sciences is discussed. The MGTS-20Eh isochronous cyclotron is to be mounted in the laboratory. Obtaining of accelerated proton beams is planned (energy of 5-18 MeV, internal beam current - 200 μA, external beam current - 50 μA), deuterons (3-10 MeV, 300 μA, 50 μA), H 3 +2 ions (7-27 MeV, 50 μA, 25 μA) and He 4 +2 (6-20 MeV, 50 μA, 25 μA). Fundamental researches in the field of atomic and nuclear physics applied investigations in the field of analysis of high purity materials, radiobiological investigations in the field of medicine and agriculture are to be performed in the laboratory. The cyclotron is to be used for production and application of short-lived radioisotopes and radiation testing machine parts

  9. Proton therapy

    International Nuclear Information System (INIS)

    Jongen, Y.

    1995-01-01

    Ideal radiotherapy deposits a large amount of energy in the tumour volume, and none in the surrounding healthy tissues. Proton therapy comes closer to this goal because of a greater concentration of dose, well defined proton ranges and points of energy release which are precisely known - the Bragg peak1. In the past, the development of clinical proton therapy has been hampered by complexity, size, and cost. To be clinically effective, energies of several hundred MeV are required; these were previously unavailable for hospital installations, and pioneering institutions had to work with complex, inadequate equipment originally intended for nuclear physics research. Recently a number of specialist organizations and commercial companies have been working on dedicated systems for proton therapy. One, IBA of Belgium, has equipment for inhouse hospital operation which encompasses a complete therapy centre, delivered as a turnkey package and incorporating a compact, automated, higher energy cyclotron with isocentric gantries. Their system will be installed at Massachusetts General Hospital, Boston. The proton therapy system comprises: - a 235 MeV isochronous cyclotron to deliver beams of up to 1.5 microamps, but with a hardware limitation to restrict the maximum possible dose; - variable energy beam (235 to 70 MeV ) with energy spread and emittance verification; - a beam transport and switching system to connect the exit of the energy selection system to the entrances of a number of gantries and fixed beamlines. Along the beam transport system, the beam characteristics are monitored with non-interceptive multiwire ionization chambers for automatic tuning; - gantries fitted with nozzles and beamline elements for beam control; both beam scattering and beam wobbling techniques are available for shaping the beam;

  10. The first private-hospital based proton therapy center in Korea; Status of the proton therapy center at Samsung Medical Center

    International Nuclear Information System (INIS)

    Chung, Kwang Zoo; Han, Young Yih; Kim, Jin Sung

    2015-01-01

    The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015

  11. The first private-hospital based proton therapy center in Korea; status of the Proton Therapy Center at Samsung Medical Center.

    Science.gov (United States)

    Chung, Kwangzoo; Han, Youngyih; Kim, Jinsung; Ahn, Sung Hwan; Ju, Sang Gyu; Jung, Sang Hoon; Chung, Yoonsun; Cho, Sungkoo; Jo, Kwanghyun; Shin, Eun Hyuk; Hong, Chae-Seon; Shin, Jung Suk; Park, Seyjoon; Kim, Dae-Hyun; Kim, Hye Young; Lee, Boram; Shibagaki, Gantaro; Nonaka, Hideki; Sasai, Kenzo; Koyabu, Yukio; Choi, Changhoon; Huh, Seung Jae; Ahn, Yong Chan; Pyo, Hong Ryull; Lim, Do Hoon; Park, Hee Chul; Park, Won; Oh, Dong Ryul; Noh, Jae Myung; Yu, Jeong Il; Song, Sanghyuk; Lee, Ji Eun; Lee, Bomi; Choi, Doo Ho

    2015-12-01

    The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015.

  12. Design features and operating characteristics of the MC-50 cyclotron

    International Nuclear Information System (INIS)

    Bak, Hae Ill; Bak, Joo Shik

    1989-01-01

    The MC-50 cyclotron at Korean Cancer Center Hospital is now operational for neutron therapy and medical radioisotope production. Design features, mechanical structures and operating characteristics of the MC-50 are described in this paper. Optimum operating condition for this cyclotron has been determined by the repetitive running, and the performances of the internal beam have been investigated through the measurements of intensity and spatial distribution of the internal beam as a function of the radius of the cyclotron. Routinely, the 40 μA of 50 MeV protons have been obtained at first Faraday cup with a extraction efficiency of 61%. (Author)

  13. 14 MeV proton activation analysis

    International Nuclear Information System (INIS)

    Constantinescu, B.; Ivanov, E.; Plostinaru, D.; Popa-Nemoiu, A.; Pascovichi, G.

    1985-01-01

    A fast nuclear nondestructive method for protein analysis using the 14 MeV proton activation has been developed. The total nitrogen content was measured through the reaction: 14 N (p,n) 14 O, (Tsub(1/2)=71 s). The 14 O activity was detected by means of its characteristic 2.312 MeV gamma-ray line with a NaI(Tl) detector. For a fast determination of a large number of samples a mechanized sistem reacting a rate of one sample per minute has been developed. The laboratory electronics comprises a multichannel analyser, a PDP computer and an electronic module comtroller. Comparison of the results obtained by the method described and the classical Kjeldal technique for samples of various cereal grains (soya bean seads, wheat, barley and corn) showed good correlation. A problem of the analysis of the whole protein region on corn and soya-bean seads, where this region is thicker (0,2 - 2 mm), is mentioned. In this case flour was proposed to be used to obtain a protein homogeneous sample and the irradiaton dose for a sample was about 33,000 Gy, mainly (99%) from protons (27 s x 100 nA x 14 MeV)

  14. An 8 MeV H- cyclotron to charge the electron cooling system for HESR

    International Nuclear Information System (INIS)

    Pakhomchuk, V.; Papash, A.

    2006-01-01

    A compact cyclotron to accelerate negative hydrogen ions up to 8 MeV is considered as optimal solution to the problem of charging the high-voltage terminal of the electron cooling system for High Energy Storage Ring at GSI (HESR Project, Darmstadt). Physical as well as technical parameters of the accelerator are estimated. Different types of commercially available cyclotrons are compared as a possible source of a 1 mA H - beam for the HESR. An original design based on the application of well-established technical solutions for commercial accelerators is proposed

  15. A Physical Model of the Proton Radiation Belts of Jupiter inside Europa's Orbit

    Science.gov (United States)

    Nénon, Q.; Sicard, A.; Kollmann, P.; Garrett, H. B.; Sauer, S. P. A.; Paranicas, C.

    2018-05-01

    A physical model of the Jovian trapped protons with kinetic energies higher than 1 MeV inward of the orbit of the icy moon Europa is presented. The model, named Salammbô, takes into account the radial diffusion process, the absorption effect of the Jovian moons, and the Coulomb collisions and charge exchanges with the cold plasma and neutral populations of the inner Jovian magnetosphere. Preliminary modeling of the wave-particle interaction with electromagnetic ion cyclotron waves near the moon Io is also performed. Salammbô is validated against in situ proton measurements of Pioneer 10, Pioneer 11, Voyager 1, Galileo Probe, and Galileo Orbiter. A prominent feature of the MeV proton intensity distribution in the modeled area is the 2 orders of magnitude flux depletion observed in MeV measurements near the orbit of Io. Our simulations reveal that this is not due to direct interactions with the moon or its neutral environment but results from scattering of the protons by electromagnetic ion cyclotron waves.

  16. Design features of isotope production facility at Inshas cyclotron complex. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Comsan, M N [Nuclear Research Center, Atomic Energy Aurhority, Cairo, (Egypt)

    1996-03-01

    The nuclear research center, AEA, Egypt is erecting at its Inshas campus cyclotron complex for multidisciplinary use for research and application. The complex is to utilize a russian made AVF cyclotron accelerator of the type MGC-20 with MeV protons. Among its applications, the accelerator will be used for the production of short lived cyclotron isotopes. This article presents a concise description of the design features of isotope production facility to be annexed to the complex layout, schemes for radio waste, ventilation, and air conditioning systems. 2 figs., 2 tabs.

  17. Studies on the preparation of thallium-201 by irradiating mercury with protons using extraction chromatography technique to separate thallium from mercury

    International Nuclear Information System (INIS)

    Fernandes, L.

    1990-01-01

    Radionuclide sup(201)Tl is used in Nuclear Medicine to identify myocardial ischemia or myocardial infarct. It is a cyclotron-produced radioisotope, obtained indirectly from the decay of sup(202)Pb or directly by irradiating mercury with deuterons or protons. The usual technique to prepare sup(201)Tl makes use of the nuclear reaction: sup(203)(p,3n) → sup(201)Tl, which requires proton energy of around 28 MeV. Due to the limited proton energy of IPEN'S CV-28 cyclotron, studies on the irradiating conditions of natural mercury oxide pellets and drops of natural mercury metal were made in the range of 19 - 24 MeV. At the end of the bombardment of a 6 MeV thickness target of natural mercury metal with 19 MeV protons around 10 MBq sup(201)Tl/μ A h was obtained. (author)

  18. Magnifying lens for 800 MeV proton radiography

    International Nuclear Information System (INIS)

    Merrill, F. E.; Campos, E.; Espinoza, C.; Hogan, G.; Hollander, B.; Lopez, J.; Mariam, F. G.; Morley, D.; Morris, C. L.; Murray, M.; Saunders, A.; Schwartz, C.; Thompson, T. N.

    2011-01-01

    This article describes the design and performance of a magnifying magnetic-lens system designed, built, and commissioned at the Los Alamos National Laboratory (LANL) for 800 MeV flash proton radiography. The technique of flash proton radiography has been developed at LANL to study material properties under dynamic loading conditions through the analysis of time sequences of proton radiographs. The requirements of this growing experimental program have resulted in the need for improvements in spatial radiographic resolution. To meet these needs, a new magnetic lens system, consisting of four permanent magnet quadrupoles, has been developed. This new lens system was designed to reduce the second order chromatic aberrations, the dominant source of image blur in 800 MeV proton radiography, as well as magnifying the image to reduce the blur contribution from the detector and camera systems. The recently commissioned lens system performed as designed, providing nearly a factor of three improvement in radiographic resolution.

  19. A critical evaluation of the role of the cyclotron in radiation therapy

    International Nuclear Information System (INIS)

    Wolber, G.

    1984-01-01

    The present situation in heavy particle radiotherapy is reviewed. The potential of the cyclotron and competing devices is evaluated with respect to dose distribution, dose rate, versatility, size, and cost. Some related non-physical problems characterizing radiation therapy in general are briefly considered. It turns out that compact cyclotrons for 30 to 60 MeV protons hold their leading position in fast neutron therapy at least, as they do in radioisotope production

  20. Forecasting E > 50-MeV Proton Events with the Proton Prediction System (PPS)

    Science.gov (United States)

    Kahler, S. W.; White, S. M.; Ling, A. G.

    2017-12-01

    Forecasting solar energetic (E > 10 MeV) particle (SEP) events is an important element of space weather. While several models have been developed for use in forecasting such events, satellite operations are particularly vulnerable to higher-energy (> 50 MeV) SEP events. Here we validate one model, the proton prediction system (PPS), which extends to that energy range. We first develop a data base of E > 50-MeV proton events > 1.0 proton flux units (pfu) events observed on the GOES satellite over the period 1986 to 2016. We modify the PPS to forecast proton events at the reduced level of 1 pfu and run PPS for four different solar input parameters: (1) all > M5 solar X-ray flares; (2) all > 200 sfu 8800-MHz bursts with associated > M5 flares; (3) all > 500 sfu 8800-MHz bursts; and (4) all > 5000 sfu 8800-MHz bursts. For X-ray flare inputs the forecasted event peak intensities and fluences are compared with observed values. The validation contingency tables and skill scores are calculated for all groups and used as a guide to use of the PPS. We plot the false alarms and missed events as functions of solar source longitude.

  1. RF control hardware design for CYCIAE-100 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Fu, Xiaoliang; Ji, Bin; Zhao, Zhenlu; Zhang, Tianjue; Li, Pengzhan; Wei, Junyi; Xing, Jiansheng; Wang, Chuan

    2015-11-21

    The Beijing Radioactive Ion-beam Facility project is being constructed by BRIF division of China Institute of Atomic Energy. In this project, a 100 MeV high intensity compact proton cyclotron is built for multiple applications. The first successful beam extraction of CYCIAE-100 cyclotron was done in the middle of 2014. The extracted proton beam energy is 100 MeV and the beam current is more than 20 μA. The RF system of the CYCIAE-100 cyclotron includes two half-wavelength cavities, two 100 kW tetrode amplifiers and power transmission line systems (all above are independent from each other) and two sets of Low Level RF control crates. Each set of LLRF control includes an amplitude control unit, a tuning control unit, a phase control unit, a local Digital Signal Process control unit and an Advanced RISC Machines based EPICS IOC unit. These two identical LLRF control crates share one common reference clock and take advantages of modern digital technologies (e.g. DSP and Direct Digital Synthesizer) to achieve closed loop voltage and phase regulations of the dee-voltage. In the beam commission, the measured dee-voltage stability of RF system is better than 0.1% and phase stability is better than 0.03°. The hardware design of the LLRF system will be reviewed in this paper.

  2. Radiation protection of cyclotron vault with maze in PET Cyclotron Center

    International Nuclear Information System (INIS)

    Fueloep, Marko

    2003-01-01

    The PET Cyclotron center (PCC) is a complex for production, research and application of positron radiopharmaceuticals for PET (Positron Emission Tomography), which was commissioned this year (2004) in Bratislava, Slovak Republic. Positron radionuclides are produced by 18/9 MeV proton/deuteron cyclotron CYCLONE 18/9. Radiation protection of personnel and inhabitants against ionizing radiation in the PCC is solved with regard to the ICRP recommendations and Slovak regulatory system, protection rules and criteria and optimization of radiation protection. In the article comparisons of calculated and measured neutron and gamma dose equivalent rates around the CYCLONE 18/9 and at various points behind the shielding of cyclotron vault with maze are presented. Description of the CYCLONE 18/9 as a source of angular distribution of neutron energy spectra (production of 18 F was considered) was simulated by Monte Carlo code MCNPX. Code MCNP4B was used for shielding calculation of cyclotron vault with maze. Neutron energy spectra behind the shielding were measured by Bonner spectrometer. The values of neutron dose equivalent, which were calculated and measured around the CYCLONE 18/9 and at various points behind the shielding of cyclotron vault with maze, are within the range of factor 2. (authors)

  3. Determination of the optimal conditions for simultaneous production of 73SE and 75SE radioisotopes in a 30 MeV cyclotron

    International Nuclear Information System (INIS)

    Pejman Rowshanfazad; Amirreza Jalilian; Mahsheed Sabet

    2004-01-01

    enrichment process, due to the presence of arsenic as 75 As(100%) in nature. On the other hand, chemical separation could be carried out in simple, inexpensive methods in a short time, due to the difference between target materials and the products. So the above reactions were taken to be the best choices according to the present conditions and facilities. 2 Cross Section Calculations for 75 As Reactions with Protons. Characterization of excitation function is a very important step for the determination of the projectile beam energy range. Excitation function can be determined by using computer codes such as ALICE (21) or experimental methods. In the present research, performed in the cyclotron department of Atomic Energy Organization of Iran (IBA, Cyclone-30), 75 As reaction cross-sections with protons were calculated for beam energy range of 3-30 MeV (this cyclotron can accelerate protons to 30 MeV energy) using ALICE code and the results were compared with previous experimental data given in the literature (19, 22, 23). The results of this comparison are shown in figure 1. Figure 1 shows a good agreement between the results of ALICE code and the experimental data. The three main reactions were 75 As(p, n) 75 Se, 75 As(p, pn) 74 Se and 75 As(p, 3n) 73 Se. Production of 75 Se began at about 2 MeV and reached its maximum around 12 MeV, where the reaction cross section was about 840 mb. Production of 74 As began around 13 MeV and reached its maximum at about 26 MeV, where the reaction cross section was about 170 mb. 74 As (which was considered as impurity) has a half life of 17.8 days, so it could be easily separated from the product by efficient chemical methods and it was not taken into account while energy selection. Production of 73 Se began at around 22 MeV proton energy and continued to increase while beam energy increased to 30 MeV, where the reaction cross section was about 550 mb. Thus, if the target thickness would be enough to reduce the proton energy from 22 MeV

  4. Project of the JAERI superconducting AVF cyclotron for applications in biotechnology and materials science

    International Nuclear Information System (INIS)

    Miyawaki, Nobumasa; Kurashima, Satoshi; Okumura, Susumu; Chiba, Atsuya; Agematsu, Takashi; Kamiya, Tomihiro; Kaneko, Hirohisa; Nara, Takayuki; Saito, Yuichi; Ishii, Yasuyuki; Sakai, Takuro; Mizuhashi, Kiyoshi; Fukuda, Mitsuhiro; Yokota, Watalu; Arakawa, Kazuo

    2005-01-01

    A project for expanding TIARA (Takasaki Ion accelerators for Advanced Radiation Application) facilities of JAERI has been proposed to broaden application region of biotechnology and materials science. As a result of the investigation of TIARA facility user's request, energy increase up to more than 100 MeV/n for heavy ions and up to 300 MeV for proton are strongly required. The magnet of a superconducting AVF cyclotron with a K number of 900 has been designed to cope with acceleration of both 150 MeV/n heavy ions and 300 MeV protons. The lower limit of energies has been investigated to overlap the energy region covered by the JAERI AVF cyclotron, required to increase beam time for present users. We have designed a beam transport system to satisfy various requirements of the applications. (author)

  5. YAP(Ce) crystal characterization with proton beam up to 60 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Randazzo, N. [Istituto Nazionale di Fisica Nucleare, Sezione di Catania (I), Via S. Sofia, 64-I-95123 Catania (Italy)], E-mail: nunzio.randazzo@ct.infn.it; Sipala, V.; Aiello, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Catania (I), Via S. Sofia, 64-I-95123 Catania (Italy); Lo Presti, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Catania (I), Via S. Sofia, 64-I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); Cirrone, G.A.P.; Cuttone, G.; Di Rosa, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud (Italy)

    2008-02-21

    A YAP(Ce) crystal was characterized with a proton beam up to 60 MeV. Tests were performed to investigate the possibility of using this detector as a proton calorimeter. The size of the crystal was chosen so that the proton energy is totally lost inside the medium. The authors propose to use the YAP(Ce) crystal in medical applications for proton therapy. In particular, in proton computed tomography (pCT) project it is necessary as a calorimeter in order to measure the proton residual energy after the phantom. Energy resolution, linearity, and light yield were measured in the Laboratori Nazionali del Sud with the CATANA proton beam [ (http://www.lns.infn.it/CATANA/CATANA)] and the results are shown in this paper. The crystal shows a good resolution (3% at 60 MeV proton beam) and it shows good linearity for different proton beam energies (1% at 30-60 MeV energy range). The crystal performances confirm that the YAP(Ce) crystal represents a good solution for these kinds of application.

  6. YAP(Ce) crystal characterization with proton beam up to 60 MeV

    International Nuclear Information System (INIS)

    Randazzo, N.; Sipala, V.; Aiello, S.; Lo Presti, D.; Cirrone, G.A.P.; Cuttone, G.; Di Rosa, F.

    2008-01-01

    A YAP(Ce) crystal was characterized with a proton beam up to 60 MeV. Tests were performed to investigate the possibility of using this detector as a proton calorimeter. The size of the crystal was chosen so that the proton energy is totally lost inside the medium. The authors propose to use the YAP(Ce) crystal in medical applications for proton therapy. In particular, in proton computed tomography (pCT) project it is necessary as a calorimeter in order to measure the proton residual energy after the phantom. Energy resolution, linearity, and light yield were measured in the Laboratori Nazionali del Sud with the CATANA proton beam [ (http://www.lns.infn.it/CATANA/CATANA)] and the results are shown in this paper. The crystal shows a good resolution (3% at 60 MeV proton beam) and it shows good linearity for different proton beam energies (1% at 30-60 MeV energy range). The crystal performances confirm that the YAP(Ce) crystal represents a good solution for these kinds of application

  7. YAP(Ce) crystal characterization with proton beam up to 60 MeV

    Science.gov (United States)

    Randazzo, N.; Sipala, V.; Aiello, S.; Lo Presti, D.; Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.

    2008-02-01

    A YAP(Ce) crystal was characterized with a proton beam up to 60 MeV. Tests were performed to investigate the possibility of using this detector as a proton calorimeter. The size of the crystal was chosen so that the proton energy is totally lost inside the medium. The authors propose to use the YAP(Ce) crystal in medical applications for proton therapy. In particular, in proton computed tomography (pCT) project it is necessary as a calorimeter in order to measure the proton residual energy after the phantom. Energy resolution, linearity, and light yield were measured in the Laboratori Nazionali del Sud with the CATANA proton beam [ http://www.lns.infn.it/CATANA/CATANA] and the results are shown in this paper. The crystal shows a good resolution (3% at 60 MeV proton beam) and it shows good linearity for different proton beam energies (1% at 30-60 MeV energy range). The crystal performances confirm that the YAP(Ce) crystal represents a good solution for these kinds of application.

  8. Proton induced fission of {sup 232}Th at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Gikal, K. B., E-mail: kgikal@mail.ru; Kozulin, E. M.; Bogachev, A. A. [JINR, Flerov Laboratory of Nuclear Reactions (Russian Federation); Burtebaev, N. T.; Edomskiy, A. V. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Itkis, I. M.; Itkis, M. G.; Knyazhev, G. N. [JINR, Flerov Laboratory of Nuclear Reactions (Russian Federation); Kovalchuk, K. V.; Kvochkina, T. N. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Piasecki, E. [Heavy Ion Laboratory of Warsaw University (Poland); Rubchenya, V. A. [University of Jyväskylä, Department of Physics (Finland); Sahiev, S. K. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Trzaska, W. H. [University of Jyväskylä, Department of Physics (Finland); Vardaci, E. [INFN Napoli, Dipartimento di Scienze Fisiche dell’Università di Napoli (Italy)

    2016-12-15

    The mass-energy distributions and cross sections of proton-induced fission of {sup 232}Th have been measured at the proton energies of 7, 10, 13, 20, 40, and 55 MeV. Experiments were carried out at the proton beam of the K-130 cyclotron of the JYFL Accelerator Laboratory of the University of Jyväskylä and U-150m cyclotron of the Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan. The yields of fission fragments in the mass range A = 60–170 a.m.u. have been measured up to the level of 10−4%. The three humped shape of the mass distribution up has been observed at higher proton energies. The contribution of the symmetric component grows up with increasing proton incident energy; although even at 55 MeV of proton energy the shoulders in the mass energy distribution clearly indicate the asymmetric fission peaks. Evolution of shell structure was observed in the fission fragment mass distributions even at high excitation energy.

  9. Digital neutron/gamma discrimination with an organic scintillator at energies between 1 MeV and 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Comrie, A.C. [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Buffler, A., E-mail: andy.buffler@uct.ac.za [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Smit, F.D. [iThemba LABS, Somerset West 7129 (South Africa); Wörtche, H.J. [INCAS" 3, Dr. Nassaulaan 9. 9400 AT Assen (Netherlands)

    2015-02-01

    Three different digital implementations of pulse shape discrimination for pulses from an EJ301 liquid scintillator detector are presented, and illustrated with neutrons and gamma-rays produced by an Am–Be radioisotopic source, a D–T generator and beams produced by cyclotron-accelerated protons of energies 42, 62 and 100 MeV on a Li target. A critical comparison between the three methods is provided.

  10. Sustained >100 MeV Gamma-Ray Emission: A Monitor for >300 MeV SEP Protons at the Sun

    Science.gov (United States)

    Share, G. H.; Murphy, R. J.

    2017-12-01

    Solar γ radiation is the product of proton and ion interactions in the solar atmosphere. The spectrum and temporal characteristics of the emission provides fundamental information on the ions at the Sun. Until the launch of the Fermi satellite, with its Large Area Telescope (LAT) sensitive to radiation above 100 MeV, most of the γ-ray observations were made in the nuclear energy range with radiation arising from interaction of one to tens of MeV ions produced in solar flares. Since 2008 the LAT has detected 30 high-energy γ-ray events with temporal and spectral characteristics that are distinct from the associated solar flare. We call this radiation Sustained Gamma-Ray Emission (SGRE) and briefly summarize its characteristics reported in a recent paper. The γ-ray spectra are consistent with pion decay radiation produced by protons above 300 MeV. The onset of the radiation most often occurs after the impulsive flare and the emission can last several hours. We find that the number of protons responsible for the SGRE is typically more than 10 times the number of flare-accelerated protons. These characteristics require that there be an additional source of energy to accelerate the protons to hundreds of MeV to produce the SGRE. As 28 of the 30 SGRE events are accompanied by fast CMEs, it is likely that these protons are accelerated by the same shock that produces gradual SEPs. We find that the number of protons >500 MeV in the accompanying SEPs is typically about 50-100 times the number of protons that return to the Sun to produce the SGRE. There also appear to be correlations between the numbers of SEP and SGRE protons and durations of >100 MeV SEP proton and SGRE events. We find that for all SGRE events where there were flare observations, the accompanying impulsive X-radiation reached energies >100 keV. In a limited study of 18 solar events with CME speeds >800 km/s we also find that the median SEP proton flux is 25 times higher when flare hard X-rays exceed 100

  11. Measurements and Monte Carlo calculations of neutron production cross-sections at 180o for the 140 MeV proton incident reactions on carbon, iron, and gold

    International Nuclear Information System (INIS)

    Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki; Yashima, Hiroshi; Nakane, Yoshihiro; Tamii, Atsushi; Iwase, Hiroshi; Endo, Akira; Nakashima, Hiroshi; Sakamoto, Yukio; Hatanaka, Kichiji; Niita, Koji

    2010-01-01

    The neutron production cross-sections of carbon, iron, and gold targets with 140 MeV protons at 180 o were measured at the RCNP cyclotron facility. The time-of-flight technique was used to obtain the neutron energy spectra in the energy range above 1 MeV. The carbon and iron target results were compared with the experimental data from 113 MeV (p,xn) reactions at 150 o reported by Meier et al. Our data agreed well with them in spite of different incident energies and angles. Calculations were then performed using different intra-nuclear cascade models (Bertini, ISOBAR, and JQMD) implemented with PHITS code. The results calculated using the ISOBAR and JQMD models roughly agreed with the experimental iron and gold target data, but the Bertini could not reproduce the high-energy neutrons above 10 MeV.

  12. Non-Rutherford backscattering microscopy using 25 MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Peeper, Katrin, E-mail: katrin.peeper@unibw.de [Universitaet der Bundeswehr, Angewandte Physik und Messtechnik, Werner-Heisenberg-Weg 39, 85577 Neubiberg (Germany); Moser, Marcus; Reichart, Patrick; Dollinger, Guenther [Universitaet der Bundeswehr, Angewandte Physik und Messtechnik, Werner-Heisenberg-Weg 39, 85577 Neubiberg (Germany)

    2012-02-15

    Protons at energies between 10 and 25 MeV are a very sensitive probe for hydrogen using coincident proton-proton scattering with the possibility for depth profiling samples up to several 100 {mu}m thickness. At the Munich microprobe SNAKE we have developed this method for sensitive 3D hydrogen microscopy . In parallel to sensitive 3D hydrogen microscopy by proton-proton scattering we introduce a non-Rutherford backscattering analysis utilizing 25 MeV protons in order to obtain 3D depth profiles of all major elements. We present energy spectra of backscattered protons at various thin and thick film samples of pure elements which we use as fingerprints to analyse more complex materials like minerals or metals. It is due to the low stopping power of the high energy protons that the depth profiles of several elements do not or do only partially overlap when analysing freestanding samples with thicknesses in the 100 {mu}m range. The merit of our method is that signals of the light elements may not be affected by heavier matrix elements. Analysing thin films smaller than 5 {mu}m we have achieved a mass resolution of {Delta}A/A{<=}1/28 for non-overlapping mass signals utilizing a 5 mm thick Si(Li)-detector.

  13. Proton irradiation effects on organic polymers

    International Nuclear Information System (INIS)

    Seguchi, T.; Sasuga, T.; Kawakami, W.; Hagiwara, M.; Kohno, I.; Kamitsubo, H.

    1987-01-01

    Organic polymer films(100 μm thickness) of polyethylene, polypropylene, polyethyleneterephtalate, and polyethersulfone were irradiated by protons of 8 MeV using a cyclotron, and their radiation effects were investigated by the changes of mechanical properties. In order to irradiate protons uniformly over wide area of polymer films, specimens were scanned during proton irradiation using a special apparatus. The absorbed dose was measured by CTA and RCD film dosimeters, and can be determined that 1 μC/cm 2 of 8 MeV proton fluence is equivalent to 54 kGy. For polyethylene and polypropylene, there was no significant difference between proton and electron irradiation for same doses. However, for polyethersulfone the decay of mechanical property was observed to be less than that of irradiation by electron. (author)

  14. The cyclotron laboratory and the RFQ accelerator in Bern

    International Nuclear Information System (INIS)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Weber, M.; Scampoli, P.; Bremen, K. von

    2013-01-01

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study

  15. The cyclotron laboratory and the RFQ accelerator in Bern

    Energy Technology Data Exchange (ETDEWEB)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Weber, M. [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Scampoli, P. [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland and Department of Physical Sciences, University Federico II, Via Cintia, I-60126 Napoli (Italy); Bremen, K. von [SWAN Isotopen AG, Inselspital, CH-3010 Bern (Switzerland)

    2013-07-18

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  16. Considerations, measurements and logistics associated with low-energy cyclotron decommissioning

    International Nuclear Information System (INIS)

    Sunderland, J. J.; Erdahl, C. E.; Bender, B. R.; Sensoy, L.; Watkins, G. L.

    2012-01-01

    The University of Iowa’s 20-year-old 17 MeV Scanditronix cyclotron underwent decommissioning in the summer of 2011. To satisfy local, state and federal regulations defining removal, transportation and long-term safe and environmentally secure disposal of the 22 ton activated cyclotron, a series of nuclear spectroscopic measurements were performed to characterize the nature and extent of proton and neutron activation of the 22-ton cyclotron, its associated targets, and the concrete wall that was demolished to remove the old cyclotron. Neutron activation of the concrete wall was minimal and below exempt concentrations resulting in standard landfill disposal. The cyclotron assessment revealed the expected array of short and medium-lived radionuclides. Subsequent calculations suggest that meaningful levels residual activity will have decayed virtually to background after 15 years, with the total residual activity of the entire cyclotron dropping below 37 MBq (1 mCi).

  17. Energy dissipation process for 100-MeV protons and the nucleon-nucleon interactions in nuclei

    International Nuclear Information System (INIS)

    Cowley, A.A.; Chang, C.C.; Holmgren, H.D.; Silk, J.D.; Hendrie, D.L.; Koontz, R.W.; Roos, P.G.; Samanta, C.; Wu, J.R.

    1980-01-01

    Coincidence studies of two protons emitted from p+ 58 Ni at 100 MeV have been carried out. The proton spectra in coincidence with scattered protons suffering an average energy loss of 60 MeV are similar to those resulting from 60-MeV incident protons. This suggests that the initial interaction of the incident proton is with a bound nucleon and that one or both of these nucleons are emitted or initiates a cascade leading to more complex states

  18. Recircular accelerator to proton ocular therapy

    International Nuclear Information System (INIS)

    Rabelo, Luisa A.; Campos, Tarcisio P.R.

    2013-01-01

    Proton therapy has been used for the treatment of Ocular Tumors, showing control in most cases as well as conservation of the eyeball, avoiding the enucleation. The protons provide higher energetic deposition in depth with reduced lateral spread, compared to the beam of photons and electrons, with characteristic dose deposition peak (Bragg peak). This technique requires large particle accelerators hampering the deployment a Proton Therapy Center in some countries due to the need for an investment of millions of dollars. This study is related to a new project of an electromagnetic unit of proton circular accelerator to be coupled to the national radiopharmaceutical production cyclotrons, to attend ocular therapy. This project evaluated physical parameters of proton beam circulating through classical and relativistic mechanical formulations and simulations based on an ion transport code in electromagnetic fields namely CST (Computer Simulation Technology). The structure is differentiated from other circular accelerations (patent CTIT/UFMG NRI research group/UFMG). The results show the feasibility of developing compact proton therapy equipment that works like pre-accelerator or post-accelerator to cyclotrons, satisfying the interval energy of 15 MeV to 64 MeV. Methods of reducing costs of manufacture, installation and operation of this equipment will facilitate the dissemination of the proton treatment in Brazil and consequently advances in fighting cancer. (author)

  19. Recircular accelerator to proton ocular therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo, Luisa A.; Campos, Tarcisio P.R., E-mail: luisarabelo88@gmail.com, E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2013-07-01

    Proton therapy has been used for the treatment of Ocular Tumors, showing control in most cases as well as conservation of the eyeball, avoiding the enucleation. The protons provide higher energetic deposition in depth with reduced lateral spread, compared to the beam of photons and electrons, with characteristic dose deposition peak (Bragg peak). This technique requires large particle accelerators hampering the deployment a Proton Therapy Center in some countries due to the need for an investment of millions of dollars. This study is related to a new project of an electromagnetic unit of proton circular accelerator to be coupled to the national radiopharmaceutical production cyclotrons, to attend ocular therapy. This project evaluated physical parameters of proton beam circulating through classical and relativistic mechanical formulations and simulations based on an ion transport code in electromagnetic fields namely CST (Computer Simulation Technology). The structure is differentiated from other circular accelerations (patent CTIT/UFMG NRI research group/UFMG). The results show the feasibility of developing compact proton therapy equipment that works like pre-accelerator or post-accelerator to cyclotrons, satisfying the interval energy of 15 MeV to 64 MeV. Methods of reducing costs of manufacture, installation and operation of this equipment will facilitate the dissemination of the proton treatment in Brazil and consequently advances in fighting cancer. (author)

  20. Cyclotron for industrial production of radioisotopes: relevants characteristics

    International Nuclear Information System (INIS)

    Lima, Wanderley de

    1997-01-01

    The industrial production of radioisotopes requests cyclotrons with easy maintenance services, high productivity and low operation costs. To obtain this performance the experts on the have achieved excellent results, taking advantage of modern resources in calculation and modeling. Only by the maximum exploitation of the azimutal variation of the magnetic field, a physical concept introduced in 1967 with the isocronous cyclotrons, it was possible to construct cyclotrons with only 30% of the electrical consumption required by the former cyclotrons. On the other hand, the acceleration of negative ions enable the 100% accelerated beam utilization, without internal energy dissipation, obtaining beam intensities up to 1mA in continuous running which represents an increased factor of 15. Other construction parameters were optimized aiming at reliability and reduction in the components activation. Concerning energy consumption and the beam intensity supplied, a present cyclotron with 30 MeV and 300μA of protons current is 15 times more efficient than its precedent. (author). 6 refs., 1 fig., 2 tabs

  1. Automated cyclotron tuning using beam phase measurements

    International Nuclear Information System (INIS)

    Timmer, J.H.; Roecken, H.; Stephani, T.; Baumgarten, C.; Geisler, A.

    2006-01-01

    The ACCEL K250 superconducting cyclotron is specifically designed for the use in proton therapy systems. The compact medical 250 MeV proton accelerator fulfils all present and future beam requirements for fast scanning treatment systems and is delivered as a turn key system; no operator is routinely required. During operation of the cyclotron heat dissipation of the RF system induces a small drift in iron temperature. This temperature drift slightly detunes the magnetic field and small corrections must be made. A non-destructive beam phase detector has been developed to measure and quantify the effect of a magnetic field drift. Signal calculations were made and the design of the capacitive pickup probe was optimised to cover the desired beam current range. Measurements showed a very good agreement with the calculated signals and beam phase can be measured with currents down to 3 nA. The measured phase values are used as input for a feedback loop controlling the current in the superconducting coil. The magnetic field of the cyclotron is tuned automatically and online to maintain a fixed beam phase. Extraction efficiency is thereby optimised continuously and activation of the cyclotron is minimised. The energy and position stability of the extracted beam are well within specification

  2. Medical cyclotron basic concepts and its applications

    International Nuclear Information System (INIS)

    Kumar, Rajeev; Sonkawade, R.G.

    2012-01-01

    More than 3000 nuclides are known, of which approximately 2700 are radioactive, and rest are stable. The majority of radionuclides are artificially produced in the reactor and cyclotron. In a cyclotron, Charge particle such as proton, Deuteron, á (Alpha) particle, 3 He particles and so forth are accelerated in circular paths within the Dees under vacuum by means of an electromagnetic field. These accelerated particles can possess few KeV to several BeV of kinetic energy depending on the design of the cyclotron. At our setup we have an 11 MeV dual beam multi target cyclotron which is capable producing 11 C, 13 N, 15 O, 18 F and 2 F radioisotopes and all have been successfully produced and tested in our lab. Earlier cyclotrons were the best source of high-energy beams for nuclear physics experiments; several cyclotrons are still in use for this type of research. Cyclotrons can be used to treat cancer. Ion beams from cyclotrons can be used, as in proton therapy. The positron emitting isotopes are suitable for PET imaging. As discussed we are producing mainly Carbon-11, Nitrogen-13, Oxygen-15, and Fluorine-18: These are positron emitters used in PET for studying brain physiology and pathology, in particular for localizing epileptic focus, and in dementia, psychiatry and neuropharmacology studies. So these are having significant role in diagnosis of Oncological, Neurological and Cardiological disorder. More than ninety percent we are producing 18 F in FDG. 18 F in FDG (Flouro-Deoxy-glucose) has become very important in detection of cancers and the monitoring of progress in their treatment, using PET. Medical cyclotron is complex equipment requiring delicate handling by highly trained personnel. The aim of this article is to highlight few finer aspects of Medical cyclotron operation, including precautions for safety and smooth functioning of this sophisticated equipment. (author)

  3. η-meson production in proton-proton collisions at excess energies of 40 and 72 MeV

    Science.gov (United States)

    Petrén, H.; Bargholtz, Chr.; Bashkanov, M.; Bogoslavsky, D.; Calén, H.; Clement, H.; Demirörs, L.; Ekström, C.; Fransson, K.; Fäldt, G.; Gerén, L.; Höistad, B.; Ivanov, G.; Jacewicz, M.; Jiganov, E.; Johansson, T.; Keleta, S.; Khakimova, O.; Koch, I.; Kren, F.; Kullander, S.; Kupść, A.; Lindberg, K.; Marciniewski, P.; Morosov, B.; Pauly, C.; Petukhov, Y.; Povtorejko, A.; Schönning, K.; Scobel, W.; Skorodko, T.; Stepaniak, J.; Tegnér, P.-E.; Thörngren Engblom, P.; Tikhomirov, V.; Wilkin, C.; Wolke, M.; Zabierowski, J.; Zartova, I.; Złomańczuk, J.

    2010-11-01

    The production of η mesons in proton-proton collisions has been studied using the WASA detector at the CELSIUS storage ring at excess energies of Q=40 MeV and Q=72 MeV. The η was detected through its 2γ decay in a near-4π electromagnetic calorimeter, whereas the protons were measured by a combination of straw chambers and plastic scintillator planes in the forward hemisphere. About 6.9×104 and 9.3×104 events were found at Q=40 MeV and Q=72 MeV, respectively, with background contributions of less than 5%. A simple parametrization of the production cross section in terms of low partial waves was used to evaluate the acceptance corrections. Strong evidence was found for the influence of higher partial waves. The Dalitz plots show the presence of p waves in both the pp and the η{pp} systems and the angular distributions of the η in the center-of-mass frame suggest the influence of d-wave η mesons.

  4. Focusing and bunching of ion beam in axial injection channel of IPHC cyclotron TR24

    Science.gov (United States)

    Adam, T.; Ivanenko, I.; Kazarinov, N.; Osswald, F.; Traykov, E.

    2017-07-01

    The CYRCe cyclotron (CYclotron pour la ReCherche et l’Enseignement) is used at IPHC (Institut Pluridisciplinaire Hubert Curien) for the production of radio-isotopes for diagnostics, medical treatments and fundamental research in radiobiology. The TR24 cyclotron produced and commercialized by ACSI (Canada) delivers a 16-25 MeV proton beam with intensity from few nA up to 500 μA. The solenoidal focusing instead of existing quadrupole one is proposed in this report. The changing of the focusing elements will give the better beam matching with the acceptance of the spiral inflector of the cyclotron. The parameters of the focusing solenoid are found. Additionally, the main parameters of the bunching system are evaluated in the presence of the beam space charge. This system consists of the buncher installed in the axial injection beam line of the cyclotron. The using of the grid-less multi harmonic buncher may increase the accelerated beam current and will give the opportunity to new proton beam applications.

  5. Building on TR-24 success. Advanced Cyclotron Systems Inc. launches a new cyclotron model

    International Nuclear Information System (INIS)

    Russell Watt; William Gyles; Alexander Zyuzin

    2015-01-01

    ACSI is designing a new 30 MeV cyclotron based on the TR-24. While minimizing changes from the proven TR-24, including maintaining the same outer dimensions, the energy of the cyclotron will be increased to 30 MeV, which will make it the most compact, non-superconducting, 30 MeV cyclotron design to date. Maximum beam current will match the TR-24 at 1 mA. With the size and footprint of a typical low energy PET cyclotron, this system will offer users a cost effective solution for a diversified facility capable of producing a wide spectrum of PET and SPECT radioisotopes for research and commercial distribution. (author)

  6. Measurements and Monte Carlo calculations of neutron production cross-sections at 180{sup o} for the 140 MeV proton incident reactions on carbon, iron, and gold

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Yosuke, E-mail: iwamoto.yosuke@jaea.go.j [Japan Atomic Energy Agency, 2-4, Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Satoh, Daiki [Japan Atomic Energy Agency, 2-4, Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Hagiwara, Masayuki [KEK (Japan); Yashima, Hiroshi [Kyoto University (Japan); Nakane, Yoshihiro [Japan Atomic Energy Agency, 2-4, Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Tamii, Atsushi [Research Center for Nuclear Physics, Osaka University (Japan); Iwase, Hiroshi [KEK (Japan); Endo, Akira; Nakashima, Hiroshi; Sakamoto, Yukio [Japan Atomic Energy Agency, 2-4, Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Hatanaka, Kichiji [Research Center for Nuclear Physics, Osaka University (Japan); Niita, Koji [Research Organization for Information Science and Technology (Japan)

    2010-08-21

    The neutron production cross-sections of carbon, iron, and gold targets with 140 MeV protons at 180{sup o} were measured at the RCNP cyclotron facility. The time-of-flight technique was used to obtain the neutron energy spectra in the energy range above 1 MeV. The carbon and iron target results were compared with the experimental data from 113 MeV (p,xn) reactions at 150{sup o} reported by Meier et al. Our data agreed well with them in spite of different incident energies and angles. Calculations were then performed using different intra-nuclear cascade models (Bertini, ISOBAR, and JQMD) implemented with PHITS code. The results calculated using the ISOBAR and JQMD models roughly agreed with the experimental iron and gold target data, but the Bertini could not reproduce the high-energy neutrons above 10 MeV.

  7. Forecasting E > 50-MeV proton events with the proton prediction system (PPS)

    Science.gov (United States)

    Kahler, Stephen W.; White, Stephen M.; Ling, Alan G.

    2017-11-01

    Forecasting solar energetic (E > 10-MeV) particle (SEP) events is an important element of space weather. While several models have been developed for use in forecasting such events, satellite operations are particularly vulnerable to higher-energy (≥50-MeV) SEP events. Here we validate one model, the proton prediction system (PPS), which extends to that energy range. We first develop a data base of E ≥ 50-MeV proton events >1.0 proton flux units (pfu) events observed on the GOES satellite over the period 1986-2016. We modify the PPS to forecast proton events at the reduced level of 1 pfu and run PPS for four different solar input parameters: (1) all ≥M5 solar X-ray flares; (2) all ≥200 sfu 8800-MHz bursts with associated ≥M5 flares; (3) all ≥500 sfu 8800-MHz bursts; and (4) all ≥5000 sfu 8800-MHz bursts. The validation contingency tables and skill scores are calculated for all groups and used as a guide to use of the PPS. We plot the false alarms and missed events as functions of solar source longitude, and argue that the longitude-dependence employed by PPS does not match modern observations. Use of the radio fluxes as the PPS driver tends to result in too many false alarms at the 500 sfu threshold, and misses more events than the soft X-ray predictor at the 5000 sfu threshold.

  8. Feasibility Study for a Two-Energy Compact Medical Cyclotron Controlled by Two Pairs of Main Coils

    International Nuclear Information System (INIS)

    Blum, D.; Breckow, J.; Zink, K.

    2013-01-01

    At Paul Scherrer Institute, Villigen, Switzerland, protons are accelerated for the proton therapy by a 250 MeV isochronous cyclotron. As for radiotherapy less energy is required (about 70 MeV) a carbon degrader reduces the extracted beam energy. This involves the increase of emittance, decrease of transmission, more activated components and a higher dose for the staff. By extracting a lower energy beam from the cyclotron, less degrade would be necessary and the above mentioned side-effects could be minimized. A possible solution could be to extract two energies from the cyclotron, 250 MeV for very deep located tumours and 230-235 MeV for others. A technically easy and affordable solution for this problem might be a two-energy cyclotron controlled by just two pairs of main coils. The feasibility of this solution has been analysed in this study. The compounded magnetic flux density B is the sum of the coil's and the iron's flux density. The amount caused by a coil is mainly responsible for the shape of the compounded flux density. Therefore a split of the coil pair was simulated to obtain more possibilities in the adjustment of a lower-energy beam to its ideal isochronous shape. The result is a simulated isochronous 240 MeV beam which was found with an tangential split of the coil pair, their repositioning and the increasing of current in the first coil pair and decreasing in the other one. The tangential split seemed to reduce the problem of the irons linear share of B. This feasibility study is seen as a first step before using 3D-capable software which considers a higher spatial resolution and the influence of temperature.(author)

  9. Synthesis and quality control of 2-Fluoro-2-Deoxy-D-Glucose radiopharmaceuticals at Center of 30 MeV Cyclotron

    International Nuclear Information System (INIS)

    Vu Thanh Quang

    2011-01-01

    Positron Pharmaceuticals of 2-Fluoro-2-Deoxy-D-Glucose ( 18 F-FDG) is being produced routinely on Centre of 30 MeV cyclotron. Daily productions including the main stages are: Target of oxygen-18 rich water is irradiated by accelerated proton beam to create fluorine-18; Synthesis of 18 F-FDG use precursor manotriflate and quality control of the final product of 18 F-FDG is carried out as requirements of British Pharmacopoeia. Accounting until 11 Nov., 2010 the centre was in operation for 1 year. With capacity production of 3.5-4 Ci of 18 F-FDG/day, the centre has supplied 18 F-FDG for 150 patients imagined PET in the military central hospital and delivered 2035 mCi of 18 F-FDG for cancer centres of Bach Mai and Viet Duc hospitals. (author)

  10. Measurement of the analysing power of elastic proton-proton scattering at 582 MeV

    International Nuclear Information System (INIS)

    Berdoz, A.; Favier, B.; Foroughi, F.; Weddigen, C.

    1984-01-01

    The authors have measured the analysing power of elastic proton-proton scattering at 582 MeV for 14 angles from 20 to 80 0 CM. The angular range was limited to >20 0 by the energy loss of the recoil protons. The experiment was performed at the PM1 beam line at SIN. A beam intensity of about 10 8 particles s -1 was used. (Auth.)

  11. Simulations of beam trajectory for position target optimization of extraction system output beams cyclotron proton Decy-13

    International Nuclear Information System (INIS)

    Idrus Abdul Kudus; Taufik

    2015-01-01

    Positioning and track simulation beam the cyclotron Decy-13 for laying optimization the target system have been done using lorentz force function and scilab 5.4.1 simulation. Magnetic field and electric field is calculated using Opera3D/Tosca as a simulation input. Used radio frequency is 77.66 MHz with the amplitude voltage is 40 kV is obtained energy 13 MeV. The result showed that the coordinates of the laying of the target system in a vacuum chamber is located at x = -389 mm and y = 445 mm with the width of the output beam is 10 mm. The laying stripper position for the output in center target is located at x = -76 mm and y =416 mm from the center coordinate on the center of dee with the energy of proton is 13 MeV at the point of beam extraction carbon foil. The changes position laying is carried out on range x = -70; y = 424 mm until x = - 118; y = 374 mm result for shifting area stripper which is still capable of deflection the electron beam. (author)

  12. Development of an MeV ion beam lithography system in Jyvaeskylae

    Energy Technology Data Exchange (ETDEWEB)

    Gorelick, Sergey [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland)]. E-mail: Sergey.Gorelick@phys.jyu.fi; Ylimaeki, Tommi [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Sajavaara, Timo [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Laitinen, Mikko [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Sagari, A.R.A. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Whitlow, Harry J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland)

    2007-07-15

    A lithographic facility for writing patterns with ion beams from cyclotron beams is under development for the Jyvaeskylae cyclotron. Instead of focusing and deflecting the beam with electrostatic and magnetic fields a different approach is used. Here a small rectangular beam spot is defined by the shadow of a computer-controlled variable aperture in close proximity to the sample. This allows parallel exposure of rectangular pattern elements of 5-500 {mu}m side with protons up to 6 MeV and heavy ions ({sup 20}Ne, {sup 85}Kr) up to few 100 MeV. Here we present a short overview of the system under construction and development of the aperture design, which is a critical aspect for all ion beam lithography systems.

  13. Production of [11C]CO2 with gas target at low proton energies

    International Nuclear Information System (INIS)

    Sansaloni, Francesc; Lagares, Juan Ignacio; Llop, Jordi; Arce, Pedro; Díaz, Carlos; Pérez-Morales, José Manuel

    2013-01-01

    Nowadays the demand and the installation of self-shielded low-energy cyclotrons is growing, allowing the use of 11 C in many more centers. The aim of this study was the design of a new target and the evaluation of the production of 11 C as [ 11 C]CO 2 at low proton energies. The target was coupled to an IBA Cyclone-18/9 and the energy was decreased to 4–16 MeV. The newly designed target allowed the production of [ 11 C]CO 2 at different proton energies, and the results suggest that the cyclotron energy of Cyclone-18/9 is slightly higher than the nominal 18 MeV

  14. Medical isotope production experience at the V.G. Khlopin Radium Institute cyclotron

    International Nuclear Information System (INIS)

    Solin, L.M.

    2000-01-01

    Radium Institute cyclotron MGC-20 is used since 1990. There are four cyclotrons of such type in Russia and four abroad: in Finland, in Hungary, in North Korea and in Egypt. The Radium institute cyclotron was used in different fields, such as radioisotope production, nuclear physics, physics and engineering. For ten years some improvements of the Radium Institute cyclotron operation have been made. Those are: creation of the automatic control system based on IBM PC, development of a new power supply for the ion source, creation of the deflector electronic protection from discharges, change of the main elements of the cyclotron with high induced radioactivity. Moreover we investigated the possibility of the negative ions acceleration at the MGC-20 cyclotron without ion source exchange. The maximum value of the proton beam current reached was about 30 μA for 10 MeV H - beam energy. To extract the proton beam from the cyclotron after the stripping foil we made an additional output beam line. It was used for determination of the horizontal and vertical emittance. A special device was constructed and used for measurements of emittance. The latter amounted 30 π mm mrad for horizontal direction and 16 π mm mrad for vertical direction

  15. Production of Cobalt-57 from irradiation of proton beams on nickel at CV-28 cyclotron of IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Santos, Liliane Landini Mota; Osso Junior, Joao Alberto

    1996-01-01

    The 57 Co is produced at the Cyclotron of IPEN-CNEN/SP through the irradiation of natural Nickel with a protons beam of 24 MeV energy. The aim of this work was to measure the thick target production yield of 57 Co and of its principal radionuclide impurities and the determination of the excitation functions of the nuclear reactions on Ni, to evaluate the best conditions for the 57 Co production. The technique used was of the stacked-foil, of Ni, Cu and Al, being the two latter utilized as current and energy monitors of the protons beam, respectively. The thick target production yield of 57 Co, through the somatory of indirect and direct reaction, 11,31 days after E.O.B., was 905,76 kBq/μA.h (24,48 μCi/μA.h) and only by indirect reaction was 174,64 kBq/μA.h (4,72 μCi/μA.h). (author)

  16. Medical radioisotopes production at the isochronous cyclotron in Alma-Ata

    International Nuclear Information System (INIS)

    Arzumanov, A.A.; Batischev, V.N.; Gladun, V.K.; Kochetkov, V.L.

    1988-01-01

    High efficiency cyclotron operations (up to 5200 hours of beam time a year) considerably increased the possibility to perform both fundamental and applied scientific work. There appeared possibility to accelerate protons in a wide energy range from 6 to 30 MeV and realize correspondingly the nuclear reactions up to (A, 3n). This paper reports that among different applied tasks performed at the cyclotron the special program of cyclotron production of short-lived medical radioisotopes iodine-123, thallium-201, cadmium-109 in the first place and some others to satisfy clinic needs of Alma-Ata and its region has special importance. In accordance with this program the preparation to produce iodine-123 is being held and regular production of Thallium chloride, thallium-201 pharmaceptical is started

  17. Technical Note: Defining cyclotron-based clinical scanning proton machines in a FLUKA Monte Carlo system.

    Science.gov (United States)

    Fiorini, Francesca; Schreuder, Niek; Van den Heuvel, Frank

    2018-02-01

    Cyclotron-based pencil beam scanning (PBS) proton machines represent nowadays the majority and most affordable choice for proton therapy facilities, however, their representation in Monte Carlo (MC) codes is more complex than passively scattered proton system- or synchrotron-based PBS machines. This is because degraders are used to decrease the energy from the cyclotron maximum energy to the desired energy, resulting in a unique spot size, divergence, and energy spread depending on the amount of degradation. This manuscript outlines a generalized methodology to characterize a cyclotron-based PBS machine in a general-purpose MC code. The code can then be used to generate clinically relevant plans starting from commercial TPS plans. The described beam is produced at the Provision Proton Therapy Center (Knoxville, TN, USA) using a cyclotron-based IBA Proteus Plus equipment. We characterized the Provision beam in the MC FLUKA using the experimental commissioning data. The code was then validated using experimental data in water phantoms for single pencil beams and larger irregular fields. Comparisons with RayStation TPS plans are also presented. Comparisons of experimental, simulated, and planned dose depositions in water plans show that same doses are calculated by both programs inside the target areas, while penumbrae differences are found at the field edges. These differences are lower for the MC, with a γ(3%-3 mm) index never below 95%. Extensive explanations on how MC codes can be adapted to simulate cyclotron-based scanning proton machines are given with the aim of using the MC as a TPS verification tool to check and improve clinical plans. For all the tested cases, we showed that dose differences with experimental data are lower for the MC than TPS, implying that the created FLUKA beam model is better able to describe the experimental beam. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists

  18. Emission of light charged particles from fragments produced on fission of uranium nuclei by 153 MeV protons and 1700 MeV negative pions

    International Nuclear Information System (INIS)

    Belovitzky, G.E.; Shteingrad, O.M.

    2000-01-01

    The mechanism underlying the emission of light charged particles (LCP) with Z = 1, 2 from fragments produced in fission of uranium nuclei by 153 MeV protons and 1700 MeV negative pions was studied. It was found that LCP accompanying the fission by pions are emitted from non-accelerated fragments immediately after the fission, whereas in the case of 153 MeV protons, the LCP are emitted from the accelerated heavy fragments. The number of LCP emitted in the course of pion-induced fission is 0.7 per fission event, which exceeds by a factor of 30 the corresponding number for 153 MeV protons [ru

  19. Variations in the Processing of DNA Double-Strand Breaks Along 60-MeV Therapeutic Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Pankaj; Marshall, Thomas I. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast (United Kingdom); Currell, Frederick J. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast (United Kingdom); Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University Belfast, Belfast (United Kingdom); Kacperek, Andrzej [Douglas Cyclotron, Clatterbridge Cancer Centre, Bebbington, Wirral (United Kingdom); Schettino, Giuseppe, E-mail: giuseppe.schettino@npl.co.uk [National Physical Laboratory, Teddington (United Kingdom); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast (United Kingdom)

    2016-05-01

    Purpose: To investigate the variations in induction and repair of DNA damage along the proton path, after a previous report on the increasing biological effectiveness along clinically modulated 60-MeV proton beams. Methods and Materials: Human skin fibroblast (AG01522) cells were irradiated along a monoenergetic and a modulated spread-out Bragg peak (SOBP) proton beam used for treating ocular melanoma at the Douglas Cyclotron, Clatterbridge Centre for Oncology, Wirral, Liverpool, United Kingdom. The DNA damage response was studied using the 53BP1 foci formation assay. The linear energy transfer (LET) dependence was studied by irradiating the cells at depths corresponding to entrance, proximal, middle, and distal positions of SOBP and the entrance and peak position for the pristine beam. Results: A significant amount of persistent foci was observed at the distal end of the SOBP, suggesting complex residual DNA double-strand break damage induction corresponding to the highest LET values achievable by modulated proton beams. Unlike the directly irradiated, medium-sharing bystander cells did not show any significant increase in residual foci. Conclusions: The DNA damage response along the proton beam path was similar to the response of X rays, confirming the low-LET quality of the proton exposure. However, at the distal end of SOBP our data indicate an increased complexity of DNA lesions and slower repair kinetics. A lack of significant induction of 53BP1 foci in the bystander cells suggests a minor role of cell signaling for DNA damage under these conditions.

  20. Positron annihilation studies on proton irradiated nitrile rubber

    International Nuclear Information System (INIS)

    Ravi Chandran, T.S.G.; Lobo, Blaise; Ranganath, M.R.; Gopal, S.; Sreeramalu, V.

    1996-01-01

    NBR (Nitrile Butadiene Rubber) was irradiated with 4 MeV proton beam from a variable energy cyclotron (VEC) at VEC Centre, Calcutta, to a flux of 10 16 ions/cm 2 , in a vacuum of 10 -9 Torr and was studied through positron lifetime measurements

  1. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators

    International Nuclear Information System (INIS)

    Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun

    2016-01-01

    This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed. (authors)

  2. Elastic and inelastic scattering of 2 to 10 MeV protons by lithium isotopes; Diffusion elastique et inelastique des protons de 2 a 10 MeV par les isotopes du lithium

    Energy Technology Data Exchange (ETDEWEB)

    Laurat, M [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    A description is given of the experimental set-up which has been devised for carrying out spectrometric and absolute cross-section measurements on the reactions induced by protons accelerated in a 12 MeV Van de Graaff Tandem. The particles are detected by silicon junctions; the weight of the targets (about ten {mu}g/cm{sup 2}) is determined by the quartz method. The experimental equipment has been controlled by a study of proton scattering by lithium-6, and has made it possible to evaluate the elastic and inelastic scattering (1. level excitation) by lithium 7 of 2 to 9 MeV protons. The most probable spin and parity values for the six levels of {sup 8}Be between 19 and 25 MeV excitation energy have been determined from a knowledge of the observed structure. (author) [French] Nous decrivons le dispositif experimental mis au point pour effectuer les mesures de spectrometrie et de section efficace absolue pour les reactions induites par des protons acceleres par un Van de Graaff Tandem 12 MeV. Les particules sont detectees par des jonctions au silicium, le poids des cibles (de l'ordre d'une dizaine de {mu}g/cm{sup 2}), mesure par la methode du quartz. L'ensemble de l'appareillage a ete controle par l'etude de la diffusion des protons par le lithium 6, et nous a permis de preciser les diffusions elastiques et inelastiques (excitation du 1er niveau) des protons de 2 a 9 MeV par le lithium 7. La structure observee a permis de determiner les spin et parite les plus probables de six niveaux du {sup 8}Be entre 19 et 25 MeV d'energie d'excitation. (auteur)

  3. Elastic and inelastic scattering of 2 to 10 MeV protons by lithium isotopes; Diffusion elastique et inelastique des protons de 2 a 10 MeV par les isotopes du lithium

    Energy Technology Data Exchange (ETDEWEB)

    Laurat, M. [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    A description is given of the experimental set-up which has been devised for carrying out spectrometric and absolute cross-section measurements on the reactions induced by protons accelerated in a 12 MeV Van de Graaff Tandem. The particles are detected by silicon junctions; the weight of the targets (about ten {mu}g/cm{sup 2}) is determined by the quartz method. The experimental equipment has been controlled by a study of proton scattering by lithium-6, and has made it possible to evaluate the elastic and inelastic scattering (1. level excitation) by lithium 7 of 2 to 9 MeV protons. The most probable spin and parity values for the six levels of {sup 8}Be between 19 and 25 MeV excitation energy have been determined from a knowledge of the observed structure. (author) [French] Nous decrivons le dispositif experimental mis au point pour effectuer les mesures de spectrometrie et de section efficace absolue pour les reactions induites par des protons acceleres par un Van de Graaff Tandem 12 MeV. Les particules sont detectees par des jonctions au silicium, le poids des cibles (de l'ordre d'une dizaine de {mu}g/cm{sup 2}), mesure par la methode du quartz. L'ensemble de l'appareillage a ete controle par l'etude de la diffusion des protons par le lithium 6, et nous a permis de preciser les diffusions elastiques et inelastiques (excitation du 1er niveau) des protons de 2 a 9 MeV par le lithium 7. La structure observee a permis de determiner les spin et parite les plus probables de six niveaux du {sup 8}Be entre 19 et 25 MeV d'energie d'excitation. (auteur)

  4. JSW's baby cyclotron

    International Nuclear Information System (INIS)

    Toda, Y.; Kaneda, Y.; Satoh, Y.; Suzukawa, I.; Yamada, T.

    1983-01-01

    Designed by The Japan Steel Works, Ltd., specially for installation in a hospital's medical department and nuclear research laboratory, '' JSW BABY CYCLOTRON '' has been developed to produce short-lived radioisotopes such as 11C, 13N, 15O and 18F. JSW's Baby Cyclotron has some design features. 1) Fixed energy and four sector azimuthally varying field. 2) Compact figure desired for hospital's nuclear medical department 3) A bitter type magnet yoke shielding activity 4) Simple control and operation 5) Easy maintenance without skilled personnel. Type BC105 (P:10MeV, d:5MeV), BC107 (P:10MeV, d:7MeV), BC168 (P:16MeV, d:8MeV) and BC1710 (P:17MeV, d:10MeV) are available according to required amount of radioisotopes. In our radioisotope production test, yield and purity of 11C, 13N, 15O and 18F are usable to clinical diagnosis

  5. CHARACTERIZATION OF 27 MEV PROTON BEAM GENERATED BY TOP-IMPLART LINEAR ACCELERATOR.

    Science.gov (United States)

    De Angelis, C; Ampollini, A; Basile, E; Cisbani, E; Della Monaca, S; Ghio, F; Montereali, R M; Picardi, L; Piccinini, M; Placido, C; Ronsivalle, C; Soriani, A; Strigari, L; Trinca, E; Vadrucci, M

    2018-01-29

    The first proton linear accelerator for tumor therapy based on an actively scanned beam up to the energy of 150 MeV, is under development and construction by ENEA-Frascati, ISS and IFO, under the Italian TOP-IMPLART project. Protons up to the energy of 7 MeV are generated by a customized commercial injector operating at 425 MHz; currently three accelerating modules allow proton delivery with energy up to 27 MeV. Beam homogeneity and reproducibility were studied using a 2D ionizing chamber, EBT3 films, a silicon diode, MOSFETs, LiF crystals and alanine dosimetry systems. Measurements were taken in air with the detectors at ~1 m from the beam line exit window. The maximum energy impinging on the detectors surface was 24.1 MeV, an energy suitable for radiobiological studies. Results showed beam reproducibility within 5% and homogeneity within 4%, on a circular surface of 16 mm in diameter. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Quasifree knockout of proton pairs from carbon with 640 MeV protons

    International Nuclear Information System (INIS)

    Komarov, V.I.; Kosarev, G.I.; Netzband, D.; Mueller, H.; Stiehler, T.; Tesch, S.

    1980-10-01

    The direct nuclear reaction C(p,3p) at 640 MeV has been investigated in an exclusive type of experiment using scintillation counter technique. The measuring conditions have been selected according to the kinematics of quasi-free two-nucleon knockout at large momentum transfer. A phenomenological model is discussed, which is capable of describing qualitatively the dependence of the differential cross section on the opening angle of the forward emitted proton pair as well as on the energy of backward going protons. (author)

  7. Low temperature irradiation of iron, zirconium and copper by 10 to 16 MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Omar, A M

    1978-01-01

    A theoretical analysis of scattering and radiation damage parameters is carried out for 14 MeV neutrons and 10-17 MeV protons on Fe, Ni, Cu, Zr, Nb, and Au. Damage energies are computed for the interactions using both elastic and non-elastic data. The results show that proton encounters deposit a greater damage energy than 14 MeV neutrons. To examine the theoretical results, electrical resistivity measurements are undertaken for Fe, Zr and Cu irradiated at 12 to 17.5K with 10 to 16 MeV protons. Post-irradiation annealing is carried out in situ using a closed-cycle helium-cooled cryostat. Values of the resistivity damage rate are compared with values estimated from the theoretical damage-energy results. Also, the observed stage I recovery is analysed in terms of the corresponding recovery reported for electron and fast-neutron irradiations. The relation between the 16 MeV proton data and published data estimated from a fusion reactor spectrum is discussed. It is also shown that protons create a damage structure similar to a superposition of the damage structures generated by electrons and fast neutrons. The sample state of imperfection is shown to influence the induced damage state in proton irradiation.

  8. Design study of an ultra-compact superconducting cyclotron for isotope production

    Science.gov (United States)

    Smirnov, V.; Vorozhtsov, S.; Vincent, J.

    2014-11-01

    A 12.5 MeV, 25 μA, proton compact superconducting cyclotron for medical isotope production has been designed and is currently in fabrication. The machine is initially aimed at producing 13N ammonia for Positron Emission Tomography (PET) cardiology applications. With an ultra-compact size and cost-effective price point, this system will offer clinicians unprecedented access to the preferred radiopharmaceutical isotope for cardiac PET imaging. A systems approach that carefully balanced the subsystem requirements coupled to precise beam dynamics calculations was followed. The system is designed to irradiate a liquid target internal to the cyclotron and to minimize the need for radiation shielding. The main parameters of the cyclotron, its design, and principal steps of the development work are presented here.

  9. ULTRA-LOW INTENSITY PROTON BEAMS FOR RADIATION RESPONSE RELATED EXPERIMENTS AT THE U-120M CYCLOTRON

    Directory of Open Access Journals (Sweden)

    Tomas Matlocha

    2018-05-01

    Full Text Available The U-120M cyclotron at the Nuclear Physics Institute (NPI of the Czech Academy of Sciences in Rez is used for radiation hardness tests of electronics for high-energy physics experiments. These tests are usually carried out with proton fluxes of the order of 105–109 proton·cm−2·s−1. Some tests done for the upgrade of the Inner Tracking System of the ALICE experiment at CERN, however, required proton beam intensities several orders of magnitude lower. This paper presents a method which has been developed to achieve the proton beam flux of the order of 1 proton · cm−2·s−1. The method is mainly based on reduction of the discharge current in the cyclotron internal Penning type ion source. Influence of this new operation mode on the lifetime of ion source cathodes is discussed.

  10. SPES: A new cyclotron-based facility for research and applications with high-intensity beams

    Science.gov (United States)

    Maggiore, M.; Campo, D.; Antonini, P.; Lombardi, A.; Manzolaro, M.; Andrighetto, A.; Monetti, A.; Scarpa, D.; Esposito, J.; Silvestrin, L.

    2017-06-01

    In 2016, Laboratori Nazionali di Legnaro (Italy) started the commissioning of a new accelerator facility based on a high-power cyclotron able to deliver proton beams up to 70 MeV of energy and 700 μA current. Such a machine is the core of the Selective Production of Exotic Species (SPES) project whose main goal is to provide exotics beam for nuclear and astrophysics research and to deliver high-intensity proton beams for medical applications and neutrons generator.

  11. Software of the System Protection for the PEFP 20MeV Proton Linac

    International Nuclear Information System (INIS)

    Song, Young-Gi; Hong, In-Seok; Cho, Yong-Sub

    2007-01-01

    A 20 MeV proton linear accelerator (linac) has been developed at Proton Engineering Frontier Project (PEFP). A 20 MeV linac consists of 50 keV proton injector, 3 MeV radio frequency quadrupole (RFQ), and 20 MeV drift tube linac (DTL). PEFP control system is developed with several sub-systems (e.g. machine control, diagnostic control, timing control, and interlock systems). These systems have each EPICS based control system which provides a network-based real time distributed control. For stable and harmonic operation, we had developed sequential logic by using state notation language (SNL) and database records with alarm fields for warning signal. The various control system can drop a transmission rate of the control network traffic. We need to manage control signals by a control network gateway and protect values of control servers by security management. In this paper, the stabilization methods of the control signals are described and the results of the stabilized signals are presented

  12. Excitation of electromagnetic proton cyclotron instability by parallel electric field in the equatorial magnetosphere

    International Nuclear Information System (INIS)

    Dixit, S.K.; Azif, Z.A.; Gwal, A.K.

    1994-01-01

    The characteristics of the growth rate of electromagnetic ion cyclotron (EMIC) instability is investigated in a mixture of cold species of ions and warm proton in the presence of weak parallel static electric field. An attempt has been made to explain the excitation of EMIC waves through linear wave-particle (W-P) interaction in the equatorial magnetospheric region. The proton cyclotron instability is modified in presence of weak parallel electric field and the growth rate is computed for equatorial magnetospheric plasma parameters. The results of theoretical investigations of the growth rate are used to explain the excitation mechanism of extremely low frequency/very low frequency (ELF/VLF) waves as observed by satellites. (author). 29 refs., 4 figs

  13. Recommendation for a injector-cyclotron and ion sources for the acceleration of heavy ions and polarized protons and deuterons

    International Nuclear Information System (INIS)

    Botha, A.H.; Cronje, P.M.; Du Toit, Z.B.; Nel, W.A.G.; Celliers, P.J.

    1984-01-01

    It was decided to accelerate both heavy and light ions with the open-sector cyclotron. The injector SPS1, was used for light ions and SPS2 for heavy ions. Provision was also made for the acceleration of polarized neutrons. To enable this, the injector must have an axial injection system. The working of a source of polarized ions and inflectors for an axial injection system is discussed. The limitations of the open-sector cyclotron on the acceleration of heavy ions are also dealt with. The following acceleration/ion source combinations are discussed: i) The open-sector cyclotron and a k=40 injector cyclotron with a Penning ion source, and a stripper between the injector and the open-sector cyclotron and also a source of polarized protons and deuterons; ii) The acceleration/ion source combination with the addition of electron beam ion sources; iii) The open-sector cyclotron and a k=11 injector cyclotron with a electron beam ion source and a source of polarized protons and deuterons

  14. Proton spectra from 800 MeV protons on selected nuclei. Progress report, January 1, 1979-December 31, 1979

    International Nuclear Information System (INIS)

    Stearns, R.L.

    1979-09-01

    The emission of protons from targets of 6 Li, Li, 12 C, 27 Al, 40 Ca, 51 V, 90 Zr, and Pb under bombardment from 800 MeV protons was studied using the high resolution proton spectrometer at the Los Alamos Meson Physics Facility. Laboratory scattering angles of 5, 7, 9, 11, 13, 15, 20, 25, and 30 0 were measured, with special emphasis on the quasi-free region. Outgoing momenta corresponding to the region of pion production were examined at 11 and 15 0 . Absolute cross sections derived by reference to known (p,p) scattering data at 800 MeV. The quasi-free scattering has been fit with a DWIA analysis by summing over the unobserved (struck) nucleon. The systematics of proton production and the applicability of the DWIA analyses are discussed. 26 references

  15. An in-beam PET system for monitoring ion-beam therapy: test on phantoms using clinical 62 MeV protons

    Science.gov (United States)

    Camarlinghi, N.; Sportelli, G.; Battistoni, G.; Belcari, N.; Cecchetti, M.; Cirrone, G. A. P.; Cuttone, G.; Ferretti, S.; Kraan, A.; Retico, A.; Romano, F.; Sala, P.; Straub, K.; Tramontana, A.; Del Guerra, A.; Rosso, V.

    2014-04-01

    Ion therapy allows the delivery of highly conformal dose taking advantage of the sharp depth-dose distribution at the Bragg-peak. However, patient positioning errors and anatomical uncertainties can cause dose distortions. To exploit the full potential of ion therapy, an accurate monitoring system of the ion range is needed. Among the proposed methods to monitor the ion range, Positron Emission Tomography (PET) has proven to be the most mature technique, allowing to reconstruct the β+ activity generated in the patient by the nuclear interaction of the ions, that can be acquired during or after the treatment. Taking advantages of the spatial correlation between positron emitters created along the ions path and the dose distribution, it is possible to reconstruct the ion range. Due to the high single rates generated during the beam extraction, the acquisition of the β+ activity is typically performed after the irradiation (cyclotron) or in between the synchrotron spills. Indeed the single photon rate can be one or more orders of magnitude higher than normal for cyclotron. Therefore, acquiring the activity during the beam irradiation requires a detector with a very short dead time. In this work, the DoPET detector, capable of sustaining the high event rate generated during the cyclotron irradiation, is presented. The capability of the system to acquire data during and after the irradiation will be demonstrated by showing the reconstructed activity for different PMMA irradiations performed using clinical dose rates and the 62 MeV proton beam at the CATANA-LNS-INFN. The reconstructed activity widths will be compared with the results obtained by simulating the proton beam interaction with the FLUKA Monte Carlo. The presented data are in good agreement with the FLUKA Monte Carlo.

  16. An in-beam PET system for monitoring ion-beam therapy: test on phantoms using clinical 62 MeV protons

    International Nuclear Information System (INIS)

    Camarlinghi, N; Sportelli, G; Belcari, N; Cecchetti, M; Ferretti, S; Kraan, A; Retico, A; Straub, K; Guerra, A Del; Rosso, V; Battistoni, G; Sala, P; Cirrone, G A P; Cuttone, G; Romano, F; Tramontana, A

    2014-01-01

    Ion therapy allows the delivery of highly conformal dose taking advantage of the sharp depth-dose distribution at the Bragg-peak. However, patient positioning errors and anatomical uncertainties can cause dose distortions. To exploit the full potential of ion therapy, an accurate monitoring system of the ion range is needed. Among the proposed methods to monitor the ion range, Positron Emission Tomography (PET) has proven to be the most mature technique, allowing to reconstruct the β + activity generated in the patient by the nuclear interaction of the ions, that can be acquired during or after the treatment. Taking advantages of the spatial correlation between positron emitters created along the ions path and the dose distribution, it is possible to reconstruct the ion range. Due to the high single rates generated during the beam extraction, the acquisition of the β + activity is typically performed after the irradiation (cyclotron) or in between the synchrotron spills. Indeed the single photon rate can be one or more orders of magnitude higher than normal for cyclotron. Therefore, acquiring the activity during the beam irradiation requires a detector with a very short dead time. In this work, the DoPET detector, capable of sustaining the high event rate generated during the cyclotron irradiation, is presented. The capability of the system to acquire data during and after the irradiation will be demonstrated by showing the reconstructed activity for different PMMA irradiations performed using clinical dose rates and the 62 MeV proton beam at the CATANA-LNS-INFN. The reconstructed activity widths will be compared with the results obtained by simulating the proton beam interaction with the FLUKA Monte Carlo. The presented data are in good agreement with the FLUKA Monte Carlo

  17. New design for a medical cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M

    1985-12-01

    The Oxford Instruments Group PLC, have designed a 30 MeV energy proton cyclotron incorporating a super-conducting magnet and a novel RF accelerating cavity. The energy range is suitable for the production of isotopes such as /sup 67/Ga, /sup 111/In, /sup 123/I and /sup 201/Tl, and the short lived isotopes of carbon, nitrogen, oxygen and fluorine for use in Positron Emmission Tomography (PET). A new magnet and RF cavity design permit a considerable power and weight reduction and a compact size (1.5m dia x 1.9m high), allowing the cyclotron to be transported to a shielded site as an assembly after factory testing. A method of beam extraction has been adopted which minimises activation of the accelerator components and so allows hands on maintenance to be carried out when required.

  18. Proton beam radiotherapy of choroidal melanoma: The Liverpool-Clatterbridge experience

    International Nuclear Information System (INIS)

    Damato, Bertil; Kacperek, Andrzej; Chopra, Mona; Campbell, Ian R.; Errington, R. Douglas

    2005-01-01

    Purpose To report on outcomes after proton beam radiotherapy of choroidal melanoma using a 62-MeV cyclotron in patients considered unsuitable for other forms of conservative therapy. Methods and Materials A total of 349 patients with choroidal melanoma referred to the Liverpool Ocular Oncology Centre underwent proton beam radiotherapy at Clatterbridge Centre for Oncology (CCO) between January 1993 and December 2003. Four daily fractions of proton beam radiotherapy were delivered, with a total dose of 53.1 proton Gy, and with lateral and distal safety margins of 2.5 mm. Outcomes measured were local tumor recurrence; ocular conservation; vision; and metastatic death according to age, gender, eye, visual acuity, location of anterior and posterior tumor margins, quadrant, longest basal tumor dimension, tumor height, extraocular extension, and retinal invasion. Results The 5-year actuarial rates were 3.5% for local tumor recurrence, 9.4% for enucleation, 79.1% for conservation of vision of counting fingers or better, 61.1% for conservation of vision of 20/200 or better, 44.8% for conservation of vision of 20/40 or better, and 10.0% for death from metastasis. Conclusion Proton beam radiotherapy with a 62 MeV cyclotron achieves high rates of local tumor control and ocular conservation, with visual outcome depending on tumor size and location

  19. Tokamak ion temperature and poloidal field diagnostics using 3 MeV protons

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Strachan, J.D.

    1984-10-01

    The 3 MeV protons created by d(d,p)t fusion reactions in a moderately sized tokamak leave the plasma on trajectories determined by the position of their birth and by the poloidal magnetic field. Pitch-angle resolution of the escaping 3 MeV protons can separately resolve the spatial distribution of the d(d,p)t fusion reactions and the poloidal field distribution inside the tokamak. These diagnostic techniques have been demonstrated on PLT with an array of collimated surface barrier detectors

  20. Superconducting cyclotrons

    International Nuclear Information System (INIS)

    Blosser, H.G.; Johnson, D.A.; Burleigh, R.J.

    1976-01-01

    Superconducting cyclotrons are particularly appropriate for acceleration of heavy ions. A review is given of design features of a superconducting cyclotron with energy 440 (Q 2 /A) MeV. A strong magnetic field (4.6 tesla average) leads to small physical size (extraction radius 65 cm) and low construction costs. Operating costs are also low. The design is based on established technology (from present cyclotrons and from large bubble chambers). Two laboratories (in Chalk River, Canada and in East Lansing, Michigan) are proceeding with construction of full-scale prototype components for such cyclotrons

  1. Proton beam therapy: reliability of the synchrocyclotron at the Harvard Cyclotron Laboratory

    International Nuclear Information System (INIS)

    Sisterson, J.M.; Cascio, E.; Koehler, A.M.; Johnson, K.N.

    1991-01-01

    The reliability of the synchrocyclotron at Harvard Cyclotron Laboratory has been studied over the period 1980-1989 to see if proton beam therapy can compare in reliability to linear accelerators used in radiation therapy departments. Breakdowns in relation to patient load are reviewed in outline. (U.K.)

  2. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.

    Science.gov (United States)

    Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun

    2016-01-01

    This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Formation of Cavities at and Away from Grain Boundaries during 600 MeV Proton Irradiation

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Leffers, Torben; Green, W. V.

    1982-01-01

    High-purity aluminium (99.9999%) was irradiated with 600 MeV protons at the Swiss Institute for Nuclear Research (SIN) with a damage rate of 3,5 x 10^-6 dpa/s. Irradiation with 600 MeV protons produces helium, hydrogen, and other impurities through mutational reactions. The irradiation experiment...

  4. Cyclotron-produced radioisotopes and their clinical use at the Austin PET Centre

    International Nuclear Information System (INIS)

    Tochon-Danguy, H.J.

    1997-01-01

    A Centre for Positron Emission Tomography (PET) has been established within the Department of Nuclear Medicine at the Austin and Repatriation Medical Centre in Melbourne. PET is a non-invasive technique based on the use of biologically relevant compounds labelled with short-lived positron-emitting radionuclides such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18. The basic equipment consists of a medical cyclotron (10 MeV proton and 5 MeV deuteron), six lead-shielded hot cells with associated radiochemistry facilities and a whole body PET scanner. During its first five years of operation, the Melbourne PET Centre, has pursued a strong radiolabelling development program, leading to an ambitious clinical program in neurology, oncology and cardiology. This presentation will describe the basic principles of the PET technique and review the cyclotron-produced radioisotopes and radiopharmaceuticals. Radiolabelling development programs and clinical applications are also addressed

  5. Evaluation of the production capabilities of 18F, 11C, 13N and 15O PET isotopes at the PET-cyclotron-radiochemistry site of Messina University

    OpenAIRE

    Auditore, Lucrezia; Amato, Ernesto; Italiano, Antonio; Pagano, Benedetta; Baldari, Sergio

    2017-01-01

    The production of 18F, 11C, 13N, and 15O positron emitting radionuclides for PET imaging is usually accomplished in Nuclear Medicine Departments through direct nuclear reactions induced by protons accelerated by compact medical cyclotrons on liquid or gaseous targets. Messina University has funded the construction of a PET-cyclotron-radio-chemistry plant at the Messina University Hospital, equipped with a 11 MeV self-shielded cyclotron. We estimated the expected production yields of these nuc...

  6. Neutron-proton scattering experiments and phase analyses for the n-p system in the energy range from 17 to 50 MeV

    International Nuclear Information System (INIS)

    Krupp, H.

    1986-01-01

    In the framework of the study of the nucleon-nucleon interaction neutron-proton scattering experiments were performed at the neutron collimator POLKA of the Karlsruhe cyclotron. Neutrons were produced by the source reaction D(d,n)X in the energy range between 17 and 50 MeV. Measured were the differential cross section, the analyzing power, and the spin correlation coefficient of the elastic n-p scattering. By means of the new data the knowledge of the isospin T=0 scattering phases could be improved. It is for the first time possible to determine the scattering phases for T=1 independently from n-p and p-p data with comparable accuracy. (orig./HSI) [de

  7. C235-V3 cyclotron for a proton therapy center to be installed in the hospital complex of radiation medicine (Dimitrovgrad)

    Science.gov (United States)

    Galkin, R. V.; Gurskii, S. V.; Jongen, Y.; Karamysheva, G. A.; Kazarinov, M. Yu.; Korovkin, S. A.; Kostromin, S. A.; Calderan, J.-M.; Cahay, P.; Mokrenko, S. P.; Morozov, N. A.; Nkongolo, H.; Ol'shevskii, A. G.; Paradis, Y.; Petrov, D. S.; Romanov, V. M.; Samsonov, E. V.; Syresin, E. M.; Shakun, A. N.; Shakun, N. G.; Shirkov, G. D.; Shirkov, S. G.

    2014-06-01

    Proton therapy is an effective method of treating oncologic diseases. In Russia, construction of several centers for proton and ion therapy is slated for the years to come. A proton therapy center in Dimitrovgrad will be the first. The Joint Institute for Nuclear Research (Russia) in collaboration with Ion Beam Application (IBA) (Belgium) has designed an C235-V3 medical proton cyclotron for this center. It outperforms previous versions of commercial IBA cyclotrons, which have already been installed in 11 oncologic hospital centers in different countries. Experimental and calculation data for the beam dynamics in the C235-V3 medical cyclotron are presented. Reasons for beam losses during acceleration are considered, the influence of the magnetic field radial component in the midplane of the accelerator and main resonances is studied, and a beam extraction system is designed. In 2011-2012 in Dubna, the cyclotron was mounted, its magnetic field was properly configured, acceleration conditions were optimized, and beam extraction tests were carried out after which it was supplied to Dimitrovgrad. In the C235-V3 cyclotron, an acceleration efficiency of 72% and an extraction efficiency of 62% have been achieved without diaphragming to form a vertical profile of the beam.

  8. Improvement in beam quality of the JAEA AVF cyclotron for focusing heavy-ion beams with energies of hundreds of MeV

    International Nuclear Information System (INIS)

    Kurashima, Satoshi; Miyawaki, Nobumasa; Okumura, Susumu; Oikawa, Masakazu; Yoshida, Ken-ichi; Kamiya, Tomihiro; Fukuda, Mitsuhiro; Satoh, Takahiro; Nara, Takayuki; Agematsu, Takashi; Ishibori, Ikuo; Yokota, Watalu; Nakamura, Yoshiteru

    2007-01-01

    In order to achieve a heavy-ion microbeam with an energy of hundreds of MeV applied to the research fields of biotechnology and materials science, the JAEA AVF cyclotron (K = 110) has been upgraded to provide a high quality beam with a smaller energy spread and a higher current stability. A flat-top (FT) acceleration system of the cyclotron, designed to produce ion beams with an energy spread of ΔE/E ≤ 0.02%, has been developed to reduce chromatic aberrations in the lenses of the focusing microbeam system. The FT acceleration system provides uniform energy gain of the beam by superimposing a fifth-harmonic voltage on the fundamental one. In addition, stabilization of the acceleration rf voltage and the phase were achieved to accelerate the high quality beam and to provide it stably to the microbeam system connected to a cyclotron beam line. In the latest experiment, we have succeeded to accelerate 260 MeV 20 Ne 7+ with an energy spread of 0.05% in FWHM using the FT acceleration system

  9. Radiation shielding design for DECY-13 cyclotron using Monte Carlo method

    International Nuclear Information System (INIS)

    Rasito T; Bunawas; Taufik; Sunardi; Hari Suryanto

    2016-01-01

    DECY-13 is a 13 MeV proton cyclotron with target H_2"1"8O. The bombarding of 13 MeV protons on target H_2"1"8O produce large amounts of neutrons and gamma radiation. It needs the efficient radiation shielding to reduce the level of neutrons and gamma rays to ensure safety for workers and public. Modeling and calculations have been carried out using Monte Carlo method with MCNPX code to optimize the thickness for the radiation shielding. The calculations were done for radiation shielding of rectangular space room type with the size of 5.5 m x 5 m x 3 m and thickness of 170 cm made from lightweight concrete types of portland. It was shown that with this shielding the dose rate outside the wall was reduced to 1 μSv/h. (author)

  10. 200 MeV proton scattering on nuclei. Energetic proton analysis at large angle

    International Nuclear Information System (INIS)

    Chaigne, G.

    1983-01-01

    By means of a magnetic spectrometer for which has been realized an acceptance's programme, cross-sections for backward emission have been measured (100 MeV till the cinematic limit) (102 0 to 106 0 ) in the interaction proton-nucleus at 200 MeV from light, medium and heavy target. Our experimental set-up used from a polyethylene target (CH2) allowed to obtain, for the elastic cross-section (p,p), values in agreement with those ones determined by an analyse in phase-shift at 200 MeV. A comparison of our experimental spectra with the theory based on the Q.T.B.S. model (Quasi Two Body Scaling) and on a more conventional one of intranuclear cascades showed that the knock out mechanisms inside the nucleus are always unknown [fr

  11. Irradiation effects of 11 MeV protons on ferritic steels

    International Nuclear Information System (INIS)

    Hamaguchi, Yoshikazu; Kuwano, Hisashi; Misawa, Toshihei

    1985-01-01

    It is considered that ferritic/martensitic steels are the candidate of the first wall materials for future fusion reactors. The most serious problem in the candidate materials is the loss of ductility due to the elevation of ductile-brittle transition temperature by the high dpa irradiation of neutrons. 14 MeV neutrons produced by D-T reaction cause high dpa damage and also produce large quantity of helium and hydrogen atoms in first wall materials. Those gas atoms also play an important role in the embrittlement of steels. The main purpose of this work was to simulate the behavior of hydrogen produced by the transmutation in the mechanical properties of ferritic steels when they were irradiated with 11 MeV protons. The experimental procedure and the results of hardness, the broadening of x-ray diffraction lines, Moessbauer spectroscopy and small punch test are reported. High energy protons of 10 - 20 MeV are suitable to the simulation experiment of 14 MeV neutron radiation damage. But the production of the active nuclei emitting high energy gamma ray and having long life, Co-56, is the most serious problem. Another difficulty is the control of irradiation temperature. A small irradiation chamber must be developed. (Kako, I.)

  12. A new cyclotron for biomedical research

    International Nuclear Information System (INIS)

    Wolber, G.

    1988-01-01

    This paper presents the rationale for replacing the old AEG Compact Cyclotron (built in 1969/71) of the Institute for Radiology and Pathophysiology at the German Cancer Research Center by a 30 MeV H - /15 MeV D - cyclotron. A status report is followed by the scientific and technical reasoning as well as budgetary and organizational considerations. In the appendix we tried to explain the function of a cyclotron in a simple and comprehensive manner. (orig.) [de

  13. Short-lived radionuclides produced on the ORNL 86-inch cyclotron and High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Lamb, E.

    1985-01-01

    The production of short-lived radionuclides at ORNL includes the preparation of target materials, irradiation on the 86-in. cyclotron and in the High Flux Isotope Reactor (HFIR), and chemical processing to recover and purify the product radionuclides. In some cases the target materials are highly enriched stable isotopes separated on the ORNL calutrons. High-purity 123 I has been produced on the 86-in. cyclotron by irradiating an enriched target of 123 Te in a proton beam. Research on calutron separations has led to a 123 Te product with lower concentrations of 124 Te and 126 Te and, consequently to lower concentrations of the unwanted radionuclides, 124 I and 126 I, in the 123 I product. The 86-in. cyclotron accelerates a beam of protons only but is unique in providing the highest available beam current of 1500 μA at 21 MeV. This beam current produces relatively large quantities of radionuclides such as 123 I and 67 Ga

  14. MeV proton flux predictions near Saturn's D ring.

    Science.gov (United States)

    Kollmann, P; Roussos, E; Kotova, A; Cooper, J F; Mitchell, D G; Krupp, N; Paranicas, C

    2015-10-01

    Radiation belts of MeV protons have been observed just outward of Saturn's main rings. During the final stages of the mission, the Cassini spacecraft will pass through the gap between the main rings and the planet. Based on how the known radiation belts of Saturn are formed, it is expected that MeV protons will be present in this gap and also bounce through the tenuous D ring right outside the gap. At least one model has suggested that the intensity of MeV protons near the planet could be much larger than in the known belts. We model this inner radiation belt using a technique developed earlier to understand Saturn's known radiation belts. We find that the inner belt is very different from the outer belts in the sense that its intensity is limited by the densities of the D ring and Saturn's upper atmosphere, not by radial diffusion and satellite absorption. The atmospheric density is relatively well constrained by EUV occultations. Based on that we predict an intensity in the gap region that is well below that of the known belts. It is more difficult to do the same for the region magnetically connected to the D ring since its density is poorly constrained. We find that the intensity in this region can be comparable to the known belts. Such intensities pose no hazard to the mission since Cassini would only experience these fluxes on timescales of minutes but might affect scientific measurements by decreasing the signal-to-contamination ratio of instruments.

  15. Structure modification and medical application of the natural products by proton beam irradiation

    International Nuclear Information System (INIS)

    Lee, D. W.; Park, J. K.; Kang, J. E.; Shin, S. C.; Ahn, J. H.; Lee, E. S.

    2008-04-01

    This study was performed for the investigation of changes of constituent contents of Korean ginseng (Panax genseng C.A. Meyer) after proton beam irradiation (Beam energy from MC-50 cyclotron : 36.5MeV) with beam range of 500 - 10000Gy

  16. Structure modification and medical application of the natural products by proton beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D. W.; Park, J. K.; Kang, J. E.; Shin, S. C.; Ahn, J. H.; Lee, E. S. [Dongguk University, Gyeongju (Korea, Republic of)

    2008-04-15

    This study was performed for the investigation of changes of constituent contents of Korean ginseng (Panax genseng C.A. Meyer) after proton beam irradiation (Beam energy from MC-50 cyclotron : 36.5MeV) with beam range of 500 - 10000Gy

  17. Influence of non-bi-maxwellian distribution function of solar wind protons on the ion cyclotron instability

    International Nuclear Information System (INIS)

    Leubner, M.P.

    1978-01-01

    Satellite measurements of the thermal anisotropy of solar wind protons have shown that the particle velocity distributions at 1 AU are not adequately described by a bi-Maxwellian distribution function. On the other hand, the stability criteria derived from a bi-Maxwellian distribution require T/sub perpendicular/>T/sub parallel/, which is, however, hardly ever observed. A modified axisymmetric distribution function for solar wind protons is used here to calculate the stability and growth rate of the iom cyclotron instability in a warm slow speed solar plasma at 1 AU. Cyclotron wave growth is found also in the case t/sub parallel/>T/sub perpendicular/

  18. Beam dynamics study in the C235 cyclotron for proton therapy

    International Nuclear Information System (INIS)

    Karamysheva, G.A.; Kostromin, S.A.

    2008-01-01

    Study of the beam dynamics in the C235 cyclotron dedicated to the proton therapy is presented. Results of the computer simulations of the particle motion in the measured magnetic field are given. Study of the resonance influence on the acceleration process was carried out. The corresponding tolerances on the magnetic field imperfections and transverse beam parameters were defined using these simulations

  19. Study of the neutron field in the vicinity of an unshielded PET cyclotron

    International Nuclear Information System (INIS)

    Mendez, R; Iniguez, M P; MartI-Climent, J M; Penuelas, I; Vega-Carrillo, H R; Barquero, R

    2005-01-01

    The neutron field in the proximity of an unshielded PET cyclotron was investigated during 18 F radioisotope production with an 18 MeV proton beam. Thermoluminescent detector (TLD) models TLD600 and TLD700 as well as Bonner moderating spheres were irradiated at different positions inside the vault room where the cyclotron is located to determine the thermal neutron flux, neutron spectrum and dose equivalent. Furthermore, from a combination of measurements and Monte Carlo simulations the neutron source intensity at the target was estimated. The resulting intensity is in good agreement with the IAEA recommendations. Neutron doses derived from the measured spectra were found to vary between 7 and 320 mSv per 1 μA h of proton-integrated current. Finally, gamma doses were determined from TLD700 readings and amounted to around 10% of the neutron doses

  20. Study of the neutron field in the vicinity of an unshielded PET cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, R [Dpto. Fisica Teorica, Atomica y Optica, Universidad de Valladolid (Spain); Iniguez, M P [Dpto. Fisica Teorica, Atomica y Optica, Universidad de Valladolid (Spain); MartI-Climent, J M [Servicio de Medicina Nuclear, ClInica Universitaria de Navarra (Spain); Penuelas, I [Servicio de Medicina Nuclear, ClInica Universitaria de Navarra (Spain); Vega-Carrillo, H R [Dpto. Estudios Nucleares, IngenierIa Electrica, Matematicas, Universidad Autonoma de Zacatecas (Mexico); Barquero, R [Hospital Universitario RIo Hortega, Valladolid (Spain)

    2005-11-07

    The neutron field in the proximity of an unshielded PET cyclotron was investigated during {sup 18}F radioisotope production with an 18 MeV proton beam. Thermoluminescent detector (TLD) models TLD600 and TLD700 as well as Bonner moderating spheres were irradiated at different positions inside the vault room where the cyclotron is located to determine the thermal neutron flux, neutron spectrum and dose equivalent. Furthermore, from a combination of measurements and Monte Carlo simulations the neutron source intensity at the target was estimated. The resulting intensity is in good agreement with the IAEA recommendations. Neutron doses derived from the measured spectra were found to vary between 7 and 320 mSv per 1 {mu}A h of proton-integrated current. Finally, gamma doses were determined from TLD700 readings and amounted to around 10% of the neutron doses.

  1. Development of Cyclotron Beam Technology for Applications in Materials Science and Biotechnology at JAERI-TIARA

    International Nuclear Information System (INIS)

    Ohara, Y.; Arakawa, K.; Fukuda, M.; Kamiya, T.; Kurashima, S.; Nakamura, Y.; Okumura, S.; Saidoh, M.; Tajima, S.

    2003-01-01

    Recent progress of cyclotron ion beam development for applications in materials science and biotechnology at the ion-irradiation research facility TIARA of the Japan Atomic Energy Research Institute(JAERI) is overviewed. The AVF cyclotron in TIARA can accelerate protons and heavy ions up to 90 MeV and 27.5 MeV/n, respectively. In order to conform to the requirement of a reliable tuning of microbeam formation, the cyclotron beam current has been stabilized by controlling the temperature of the magnet yoke and pole within +/-0.5 deg. and hence by decreasing the variation of the magnetic field ΔB/B below 10-5. A heavy ion microbeam with energy of hundreds MeV is a significantly useful probe for researches on biofunctional elucidation in biotechnology. Production of the microbeam with spot size as small as 1μm by quadrupole lenses requires the energy spread of the beam ΔE/E < 2 x 10-4. In order to minimize the energy spread of the cyclotron beam, the fifth-harmonic voltage waveform has been successfully superposed on the fundamental one to make energy gain uniform

  2. The analysis of air particulate deposits using 2 MeV protons

    International Nuclear Information System (INIS)

    Barfoot, K.M.; Mitchell, I.V.; Eschbach, H.L.; Mason, P.I.; Gilboy, W.B.

    1979-01-01

    Particle-induced X-ray emission (PIXE) analysis of the lighter elements in time-resolved air particulate deposits has been carried out. Minimum detection limits have been determined for 1.0, 2.0 and 3.5 MeV protons. Quantitative PIXE analysis results, obtained with 2 MeV protons, are given for temporal variations in the elemental concentrations of Na, Al, Si, S, Cl, K, Ca and Fe. Rutherford backscattering (RBS) spectra were taken simultaneously with the PIXE spectra to provide information on lead concentrations and deposit thicknesses. The experimental problems associated with the quantitative analysis of light elements on cellulose acetate filters are described. The relationship between these results and meteorological data is discussed. (author)

  3. Status of Simulations for the Cyclotron Laboratory at the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Asova, G.; Goutev, N.; Tonev, D.; Artinyan, A.

    2018-05-01

    The Institute for Nuclear Research and Nuclear Energy is preparing to operate a high-power cyclotron for production of radioisotopes for nuclear medicine, research in radiochemistry, radiobiology, nuclear physics, solid state physics. The cyclotron is a TR24 produced by ASCI, Canada, capable to deliver proton beams in the energy range of 15 to 24 MeV with current as high as 400 µA. Multiple extraction lines can be fed. The primary goal of the project is the production of PET and SPECT isotopes as 18F, 67,68Ga, 99mTc, etc. This contribution reports the status of the project. Design considerations for the cyclotron vault will be discussed for some of the target radioisotopes.

  4. Elastic and inelastic scattering of 2 to 10 MeV protons by lithium isotopes

    International Nuclear Information System (INIS)

    Laurat, M.

    1969-01-01

    A description is given of the experimental set-up which has been devised for carrying out spectrometric and absolute cross-section measurements on the reactions induced by protons accelerated in a 12 MeV Van de Graaff Tandem. The particles are detected by silicon junctions; the weight of the targets (about ten μg/cm 2 ) is determined by the quartz method. The experimental equipment has been controlled by a study of proton scattering by lithium-6, and has made it possible to evaluate the elastic and inelastic scattering (1. level excitation) by lithium 7 of 2 to 9 MeV protons. The most probable spin and parity values for the six levels of 8 Be between 19 and 25 MeV excitation energy have been determined from a knowledge of the observed structure. (author) [fr

  5. Cyclotron-produced radioisotopes and their clinical use at the Austin PET Centre

    Energy Technology Data Exchange (ETDEWEB)

    Tochon-Danguy, H.J. [Centre for PET, Melbourne, VIC (Australia). Austin and Repatriation Medical Centre

    1997-12-31

    A Centre for Positron Emission Tomography (PET) has been established within the Department of Nuclear Medicine at the Austin and Repatriation Medical Centre in Melbourne. PET is a non-invasive technique based on the use of biologically relevant compounds labelled with short-lived positron-emitting radionuclides such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18. The basic equipment consists of a medical cyclotron (10 MeV proton and 5 MeV deuteron), six lead-shielded hot cells with associated radiochemistry facilities and a whole body PET scanner. During its first five years of operation, the Melbourne PET Centre, has pursued a strong radiolabelling development program, leading to an ambitious clinical program in neurology, oncology and cardiology. This presentation will describe the basic principles of the PET technique and review the cyclotron-produced radioisotopes and radiopharmaceuticals. Radiolabelling development programs and clinical applications are also addressed. 30 refs., 1 tab., 1 fig.

  6. Review of Cyclotrons for the Production of Radioactive Isotopes for Medical and Industrial Applications

    Science.gov (United States)

    Schmor, Paul

    2011-02-01

    Radioactive isotopes are used in a wide range of medical, biological, environmental and industrial applications. Cyclotrons are the primary tool for producing the shorter-lived, proton-rich radioisotopes currently used in a variety of medical applications. Although the primary use of the cyclotron-produced short-lived radioisotopes is in PET/CT (positron emission tomography/computed tomography) and SPECT (single photon emission computed tomography) diagnostic medical procedures, cyclotrons are also producing longer-lived isotopes for therapeutic procedures as well as for other industrial and applied science applications. Commercial suppliers of cyclotrons are responding by providing a range of cyclotrons in the energy range of 3-70MeV for the differing needs of the various applications. These cyclotrons generally have multiple beams servicing multiple targets. This review article presents some of the applications of the radioisotopes and provides a comparison of some of the capabilities of the various current cyclotrons. The use of nuclear medicine and the number of cyclotrons supplying the needed isotopes are increasing. It is expected that there will soon be a new generation of small "tabletop" cyclotrons providing patient doses on demand.

  7. New excitation functions for proton induced reactions on natural titanium, nickel and copper up to 70 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, E. [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France); Duchemin, C., E-mail: Charlotte.Duchemin@subatech.in2p3.fr [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France); Guertin, A. [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France); Haddad, F.; Michel, N. [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France); GIP Arronax, 1 rue Aronnax, 44817 Saint-Herblain (France); Métivier, V. [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France)

    2016-09-15

    Highlights: • Natural titanium, nickel and copper targets. • 70 MeV ARRONAX cyclotron proton beam. • Stacked-foil technique and monitor reactions. • Experimental cross section values. • TALYS code version 1.6. - Abstract: New excitation functions for proton induced nuclear reactions on natural titanium, nickel and copper were measured, using the stacked-foil technique and gamma spectrometry, up to 70 MeV. The experimental cross sections were measured using the Ti-nat(p,x) V-48, Ni-nat(p,x) Ni-57 and Cu-nat(p,x) Zn-62,Co-56 monitor reactions recommended by the International Atomic Energy Agency (IAEA), depending on the investigated energy range. Data have been extracted for the Ti-nat(p,x) Sc-43,44m,46,47,48, V-48, K-42,43, Ni-nat(p,x) Ni-56,57, Co-55,56,57,58, Mn-52,54, Cu-nat(p,x) Cu-61,64, Ni-57, Co-56,57,58,60, Zn-62,65, Mn-54 reactions. Our results are discussed and compared to the existing ones as well as with the TALYS code version 1.6 calculations using default models. Our experimental data are in overall good agreement with the literature. TALYS is able to reproduce, in most cases, the experimental trend. Our new experimental results allow to expand our knowledge on these excitation functions, to confirm the existing trends and to give additional values on a large energy range. This work is in line with the new Coordinated Research Project (CRP) launched by the IAEA to expand the database of monitor reactions.

  8. Activation of 45-MeV proton irradiation and proton-induced neutron irradiation in polymers

    International Nuclear Information System (INIS)

    Ra, Se-Jin; Kim, Kye-Ryung; Jung, Myung-Hwan; Yang, Tae-Keon

    2010-01-01

    During beam irradiation experiments with more than a few MeV energetic protons, the sample activation problem can be very severe because it causes many kinds of additional problems for the post-processing of the samples, such as time loss, inconvenience of sample handling, personal radiation safety, etc. The most serious problem is that immediate treatment of the sample is impossible in some experiments, such as nano-particle synthesizing. To solve these problems, we studied why the samples are activated and how the level of the activation can be reduced. It is known that the main reasons of activation are nuclear reactions with elements of the target material by primary protons and secondary produced neutrons. Even though the irradiation conditions are same, the level of the activation can be different depending on the target materials. For the nanoparticle synthesizing experiments, the target materials can be defined as the container and the sample itself. The reduction of the activation from the container is easier than the reduction from the sample. Therefore, we tried to reduce the activation level by changing the container materials. In this paper, the results are displayed for some candidate container materials, such as polymethyl methacrylate, polystyrene, Glass, etc., with 45-MeV and 10-nA proton beams. As a result, PS is the most suitable material for the container because of its relatively low level of the activation by protons. Also the contribution of secondary produced neutrons to the activation is negligible.

  9. Neutron-proton elastic scattering between 200 and 500 MeV

    International Nuclear Information System (INIS)

    Clough, A.S.; Gibson, D.R.; Axen, D.

    1979-01-01

    Measurements over an extensive angular range of the Dsub(t) and P parameters in free neutron-proton elastic scattering at laboratory energies of 220, 325, 425 and 495 MeV are reported. Experimental and analytical details are given. (author)

  10. High-current proton accelerators-meson factories

    International Nuclear Information System (INIS)

    Dmitrievskij, V.P.

    1979-01-01

    A possibility of usage of accelerators of neutron as well as meson factories is considered. Parameters of linear and cyclic accelerators are given, which are employed as meson factories and as base for developing intense neutron generators. It is emphasized that the principal aim of developing neutron generators on the base of high current proton accelerators is production of intense neutron fluxes with a present energy spectrum. Production of tens-and-hundreds milliampere currents at the energy of 800-1000 MeV is considered at present for two types of accelerating facilities viz. linear accelerators under continuous operating conditions and cyclotrons with strong focusing. Quantitative evaluations of developing high-efficiency linear and cyclic accelerators are considered. The basic parameters of an ccelerating complex are given, viz. linear accelerator-injector and 800 MeV isochronous cyclotron. The main problems associated with their realization are listed [ru

  11. Neutron radiography using a transportable superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.A. (School of Physics and Space Research, University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Hawkesworth, M.R. (School of Physics and Space Research, University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Beynon, T.D. (School of Physics and Space Research, University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Green, S. (School of Physics and Space Research, University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Rogers, J.D. (Rolls-Royce, Derby (United Kingdom)); Allen, M.J. (Rolls-Royce, Derby (United Kingdom)); Plummer, H.C. (Rolls-Royce, MatEval, Derby (United Kingdom)); Boulding, N.J. (Oxford Instruments (United Kingdom)); Cox, M. (Oxford Instruments (United Kingdom)); McDougall, I. (Oxford Instruments (United Kingdom))

    1994-12-30

    A thermal neutron radiography system based on a compact 12 MeV superconducting proton cyclotron is described. Neutrons are generated using a thick beryllium target and moderated in high density polyethylene. Monte Carlo computer simulations have been used to model the neutron and photon transport in order to optimise the performance of the system. With proton beam currents in excess of 100 [mu]A, it can provide high thermal neutron fluxes with L/D ratios of between 50 and 300 for various applications. Both film and electronic imaging are used to produce radiographs. The electronic imaging system consists of a [sup 6]Li-loaded ZnS intensifier screen, and a low light CCD or SIT camera. High resolution images can be recorded and computer-controlled data processing, analysis and display are possible. ((orig.))

  12. A Proton-Cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind

    Science.gov (United States)

    Wicks, R. T.; Alexander, R. L.; Stevens, M.; Wilson, L. B., III; Moya, P. S.; Vinas, A.; Jian, L. K.; Roberts, D. A.; O’Modhrain, S.; Gilbert, J. A.; hide

    2016-01-01

    We use audification of 0.092 seconds cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes greater than 0.1 nanoteslas near the ion gyrofrequency (approximately 0.1 hertz) with duration longer than 1 hour during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona.

  13. 123 I production using CV-28 cyclotron from IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Mestnik, S.A.C.; Mengatti, J.; Nieto, W.; Yanagawa, S.I.; Sumiya, L.C.A.; Silva, C.P.G.; Osso Junior, J.A.

    1992-01-01

    The main conditions for iodine 123 production by 124 Te (p,2 n) 123 I reaction were presented, using the cyclotron CV-28 at IPEN-CNEN/SP, with protons of E max = 24 MeV. Two types of targets (Te O 2 and Te O 2 + 2% Al 2 O 3 ) and the influence of Al 2 O 3 in iodine release were studied. After the selection, the 124 Te O 2 (96,2%) target, was melted in platinum support and irradiated with proton current until 12 mu A. The separation of 123 I was made by dry distillation, using induction furnace and O 2 atmosphere. (C.G.C.)

  14. The JHP 200-MeV proton linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takao [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-11-01

    A 200-MeV proton linear accelerator for the Japanese Hadron Project (JHP) has been designed. It consists of a 3-MeV radio-frequency quadrupole linac (RFQ), a 50-MeV drift tube linac (DTL) and a 200-MeV separated-type drift tube linac (SDTL). A frequency of 324 MHz has been chosen for all of the rf structures. A peak current of 30 mA (H{sup -} ions) of 400 {mu}sec pulse duration will be accelerated at a repetition rate of 25 Hz. A future upgrade plan up to 400 MeV is also presented, in which annular-coupled structures (ACS) of 972 MHz are used in an energy range of above 150 or 200 MeV. One of the design features is its high performance for a beam-loss problem during acceleration. It can be achieved by separating the transition point in the transverse motion from that of the longitudinal motion. The transverse transition at a rather low-energy range decreases the effects of space-charge, while the longitudinal transition at a rather high-energy range decreases the effects of nonlinear problems related to acceleration in the ACS. Coupled envelope equations and equipartitioning theory are used for the focusing design. The adoption of the SDTL structure improves both the effective shunt impedance and difficulties in fabricating drift tubes with focusing magnets. An accurate beam-simulation code on a parallel supercomputer was used for confirming any beam-loss problem during acceleration. (author)

  15. Interaction of 14 MeV neutrons with hydrogenated target proton emission calculation

    International Nuclear Information System (INIS)

    Martin, G.; Perez, N.; Desdin.

    1996-01-01

    Using neutron emission data of a 14 MeV neutron generator, a paraffin target, and based on the n + H 1 → n '+ p reaction, have been obtained the characteristics of the proton emission in a proton-neutron mixed field. It was used Monte Carlo simulation and it was obtained the proton output as function of the converter width and the energy spectrum of protons corresponding to different converter thickness. Among 0.07 and 0.2 cm there is a maximum zone for the proton emission. The energy spectrum agrees with obtained on previous papers. Figures showing these results are provided

  16. Shielding measurements for a 230 MeV proton beam

    International Nuclear Information System (INIS)

    Siebers, J.V.

    1990-01-01

    Energetic secondary neutrons produced as protons interact with accelerator components and patients dominate the radiation shielding environment for proton radiotherapy facilities. Due to the scarcity of data describing neutron production, attenuation, absorbed dose, and dose equivalent values, these parameters were measured for 230 MeV proton bombardment of stopping length Al, Fe, and Pb targets at emission angles of 0 degree, 22 degree, 45 degree, and 90 degree in a thick concrete shield. Low pressure tissue-equivalent proportional counters with volumes ranging from 1 cm 3 to 1000 cm 3 were used to obtain microdosimetric spectra from which absorbed dose and radiation quality are deduced. Does equivalent values and attenuation lengths determined at depth in the shield were found to vary sharply with angle, but were found to be independent of target material. Neutron dose and radiation length values are compared with Monte Carlo neutron transport calculations performed using the Los Alamos High Energy Transport Code (LAHET). Calculations used 230 MeV protons incident upon an Fe target in a shielding geometry similar to that used in the experiment. LAHET calculations overestimated measured attenuation values at 0 degree, 22 degree, and 45 degree, yet correctly predicted the attenuation length at 90 degree. Comparison of the mean radiation quality estimated with the Monte Carlo calculations with measurements suggest that neutron quality factors should be increased by a factor of 1.4. These results are useful for the shielding design of new facilities as well as for testing neutron production and transport calculations

  17. The local distribution of radiation quality of a collimated fast neutron beam from 15 MeV deuterons on beryllium

    International Nuclear Information System (INIS)

    Fidorra, J.; Booz, J.

    1978-01-01

    The local distribution of radiation quality (ysub(F), ysub(D)) of a collimated fast neutron beam from 14 MeV deuterons on Beryllium was studied with a spherical 1/2 inch EG and G proportional counter simulating a diameter of 2μm. The deuterons were accelerated by the compact cyclotron CV-28 of the Kernforschungsanlage Juelich. The collimator was constructed by the Cyclotron Corporation. The mean neutron energy was 6 MeV. The measurements were performed in air and in a water phantom at a target skin distance of 125 cm. The energy deposition spectra of fast neutrons obtained at various positions were separated into three components of different radiation quality: the gamma component, the recoil proton component, and the heavy ion component

  18. Development of baby cyclotron for PET in Korea

    International Nuclear Information System (INIS)

    Chai, J.S.; Kim, Y.S.; Hu, J.Y.; Shin, Y.C.; Yoon, M.H.

    2001-01-01

    Development of a 13 MeV cyclotron for Positron Emission Tomography (PET) has been in progress since April 1999 at the Korea Cancer Center Hospital (KCCH). The study has been carried out in a joint collaboration between KCCH and the Pohang University of Science and Technology (POSTECH). Increasing desire for an uninterrupted, reliable and timely supply of the isotopes to customers has prompted obtaining a dedicated 5-13 MeV cyclotron for PET applications and pursuing the purchase of another 30MeV medical cyclotron in the very near future. A decision has been made to design the PET cyclotron in Korea. This will not only ease the problems associated with maintenance during operation but also keep the door open for continuous upgrading of the machine in the future

  19. Beam tests on a proton linac booster for hadron therapy

    CERN Document Server

    De Martinis, C; Berra, P; Birattari, C; Calabretta, L; Crandall, K; Giove, D; Masullo, M R; Mauri, M; Rosso, E; Rovelli, A; Serafini, L; Szeless, Balázs; Toet, D Z; Vaccaro, Vittorio G; Weiss, M; Zennaro, R

    2002-01-01

    LIBO is a 3 GHz modular side-coupled proton linac booster designed to deliver beam energies up to 200 MeV, as required for the therapy of deep seated tumours. The injected beam of 50 to 70 MeV is produced by a cyclotron like those in several hospitals and research institutes. A full-scale prototype of the first module with an input/output energy of 62/74 MeV, respectively, was designed and built in 1999 and 2000. Full power RF tests were carried out successfully at CERN using a test facility at LIL at the end of the year 2000. In order to prove the feasibility of the acceleration process, an experimental setup with this module was installed at the INFN Laboratorio Nazionale del Sud (LNS) in Catania during 2001. The superconducting cyclotron provided the 62 MeV test beam. A compact solid-state RF modulator with a 4 MW klystron, made available by IBA-Scanditronix, was put into operation to power the linac. In this paper the main features of the accelerator are reviewed and the experimental results obtained duri...

  20. Microscopic analysis of proton elastic scattering in the range 80-200 MeV

    International Nuclear Information System (INIS)

    Dietrich, F.S.; Petrovich, F.

    1983-01-01

    A systematic comparison is made of differential cross-section and analyzing-power data on 12 C, 28 Si, 40 Ca, 90 Zr, and 208 Pb at 80-200 MeV with calculations based on the single-step folding-model approach to the optical potential. In these calculations, proton densities have been inferred from electron scattering results, with neutron densities either the same as for protons ( 12 C, 28 Si, 40 Ca) or with a small neutron skin consistent with 800-MeV proton scattering results ( 80 Zr, 208 Pb). The effective two-body interactions that have been used are the Love-Franey t-matrix, a density-dependent interaction based on the Paris potential (calculated by von Geramb), and finally the Brieva-Rook density-dependent central interaction used with the spin-orbit part of the Love-Franey interaction

  1. The proton therapy system for MGH's NPTC: equipment description and progress report

    International Nuclear Information System (INIS)

    Jongen, Y.; Beeckman, W.; Cohilis, P.

    1996-01-01

    At the beginning of 1994, the Massachusetts General Hospital (MGH) of the Harvard Medical School in Boston (MA, USA) a pioneer in proton therapy since 1959, selected a team led by Ion Beam Applications SA (IBA) to supply the proton therapy equipment of its new Northeast Proton Therapy Centre (NPTC),. The IBA integrated system includes a compact 235 MeV isochronous cyclotron, a short energy selection transforming the fixed energy beam extracted form the cyclotron into a variable energy beam, one or more isocentric gantries fitted with a nozzle, a system consisting of one or more horizontal beam lines, a global control system including an accelerator control unit and several independent but networked therapy control stations, a global safety management system, and a robotic patient positioning system. The present paper presents the equipment being built for the NPTC. (author)

  2. A new, simple and precise method for measuring cyclotron proton beam energies using the activity vs. depth profile of zinc-65 in a thick target of stacked copper foils

    International Nuclear Information System (INIS)

    Asad, A.H.; Chan, S.; Cryer, D.; Burrage, J.W.; Siddiqui, S.A.; Price, R.I.

    2015-01-01

    The proton beam energy of an isochronous 18 MeV cyclotron was determined using a novel version of the stacked copper-foils technique. This simple method used stacked foils of natural copper forming ‘thick’ targets to produce Zn radioisotopes by the well-documented (p,x) monitor-reactions. Primary beam energy was calculated using the "6"5Zn activity vs. depth profile in the target, with the results obtained using "6"2Zn and "6"3Zn (as comparators) in close agreement. Results from separate measurements using foil thicknesses of 100, 75, 50 or 25 µm to form the stacks also concurred closely. Energy was determined by iterative least-squares comparison of the normalized measured activity profile in a target-stack with the equivalent calculated normalized profile, using ‘energy’ as the regression variable. The technique exploits the uniqueness of the shape of the activity vs. depth profile of the monitor isotope in the target stack for a specified incident energy. The energy using "6"5Zn activity profiles and 50-μm foils alone was 18.03±0.02 [SD] MeV (95%CI=17.98–18.08), and 18.06±0.12 MeV (95%CI=18.02–18.10; NS) when combining results from all isotopes and foil thicknesses. When the beam energy was re-measured using "6"5Zn and 50-μm foils only, following a major upgrade of the ion sources and nonmagnetic beam controls the results were 18.11±0.05 MeV (95%CI=18.00–18.23; NS compared with ‘before’). Since measurement of only one Zn monitor isotope is required to determine the normalized activity profile this indirect yet precise technique does not require a direct beam-current measurement or a gamma-spectroscopy efficiency calibrated with standard sources, though a characteristic photopeak must be identified. It has some advantages over published methods using the ratio of cross sections of monitor reactions, including the ability to determine energies across a broader range and without need for customized beam degraders. - Highlights: • Simple

  3. Suitability of some common polymer films for MeV proton beam dosimetry

    International Nuclear Information System (INIS)

    Makkonen-Craig, S.; Paronen, M.; Arstila, K.; Helariutta, K.; Rauhala, E.; Tikkanen, P.

    2005-01-01

    We have been evaluating the efficacy of polymer films for proton beam dosimetry. PE, PS, PVF, PVDF, PFA and FEP films were irradiated with 4.1 and 9.4 MeV protons at a flux of 2.5 x 10 11 cm -2 s -1 and a fluence of 2.5 x 10 13 cm -2 . The perfluorinated films were relatively insensitive to the proton irradiation. The UV absorption of PS displayed significant radiation-induced red shift, but no quantifiable absorption peaks. The strongly absorbing chromophore at 225 nm of irradiated PVDF is too unstable for practical dosimetry. PE has a stable and moderately absorbing radiolytic chromophore at 235 nm, but is transparent in the visible wavelength region. Irradiated PVF absorbs strongly in both UV and visible regions, and its UV absorbance is linearly proportional to the dose over the range of 10-1000 kGy when irradiated with 4.1 MeV protons at a dose rate of 840 Gy s -1 . PVF shows the most potential as multipurpose dosimeter for high resolution profiling of ion beams. Pertinent applications include irradiations that require verification of lateral beam homogeneity

  4. Improvements of High Current/ Low Pressure Liquid And Gas Targets For Cyclotron Produced Radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Hur, M. G. [Korea Atomic Energy Research Institute, Jeongup (Korea, Republic of); Hong, B. H. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Chai, J. S. [SungKyunKwan University, Seoul (Korea, Republic of)

    2009-07-01

    The development of the C-11 cylindrical target with cooling fin for 13 MeV and 30 MeV proton beams and the development of pleated double-foil O-18 water target were carried out. For the test of new target system it was done at 2 pilots of cyclotron centres in Korea. The development of pleated double-foil O-18 water target was also executed. The pleated foil has the more advantages than flat foil. With the same beam bombarding the pleated foil with cooling had more yield of F-18production. CFD and FEM study were considered to design of the pleated foil and flat foil structure. (author)

  5. Experimental determination of proton induced reaction cross sections on {sup nat}Ni near threshold energy

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Md. Shuza [Atomic Energy Research Establishment, Dhaka (Bangladesh). Tandem Accelerator Facilities; Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neurowissenschaften und Medizin, INM-5: Nuklearchemie; Chakraborty, Animesh Kumer [Atomic Energy Research Establishment, Dhaka (Bangladesh). Tandem Accelerator Facilities; Chittagong University of Engineering and Technology (Bangladesh). Dept. of Physics; Spellerberg, Stefan; Spahn, Ingo; Qaim, Syed M. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neurowissenschaften und Medizin, INM-5: Nuklearchemie; Shariff, Md. Asad; Das, Sopan [Atomic Energy Research Establishment, Dhaka (Bangladesh). Tandem Accelerator Facilities; Rashid, Md. Abdur [Chittagong University of Engineering and Technology (Bangladesh). Dept. of Physics

    2016-08-01

    A newly developed facility at the 3 MV Tandem Accelerator at Dhaka for measurement of proton induced reaction cross sections in the energy region below 5 MeV is outlined and tests for the beam characterization are described. The results were validated by comparison with the well-known excitation function of the {sup 64}Ni(p, n){sup 64}Cu reaction. Excitation functions of the reactions {sup nat}Ni(p, x){sup 60,61}Cu, {sup nat}Ni(p, x){sup 55,57,58m+g}Co and {sup nat}Ni(p, x){sup 57}Ni were also measured from threshold to 16 MeV using the stacked-foil technique, whereby irradiations were performed with 5 MeV protons available at the Tandem Accelerator and 16.7 MeV protons at the BC 1710 cyclotron at Juelich, Germany. The radioactivity was measured using HPGe γ-ray detectors. A few results are new, the others strengthen the database. In particular, the results of the reaction {sup nat}Ni(p, x){sup 61}Cu below 3 MeV could serve as beam monitor.

  6. High energy proton simulation of 14-MeV neutron damage in Al2O3

    International Nuclear Information System (INIS)

    Muir, D.W.; Bunch, J.M.

    1975-01-01

    High-energy protons are a potentially useful tool for simulating the radiation damage produced by 14-MeV neutrons in CTR materials. A comparison is given of calculations and measurements of the relative damage effectiveness of these two types of radiation in single-crystal Al 2 O 3 . The experiments make use of the prominent absorption band at 206 nm as an index to lattice damage, on the assumption that peak absorption is proportional to the concentration of lattice vacancies. The induced absorption is measured for incident proton energies ranging from 5 to 15 MeV and for 14-MeV neutrons. Recoil-energy spectra are calculated for elastic and inelastic scattering using published angular distributions. Recoil-energy spectra also are calculated for the secondary alpha particles and 12 C nuclei produced by (p,p'α) reactions on 16 O. The recoil spectra are converted to damage-energy spectra and then integrated to yield the damage-energy cross section at each proton energy and for 14 MeV neutrons. A comparison of the calculations with experimental results suggests that damage energy, at least at high energies, is a reasonable criterion for estimating this type of radiation damage. (auth)

  7. Identification of minority ion cyclotron emission during radio frequency heating in the JET tokamak

    International Nuclear Information System (INIS)

    Cottrell, G.A.

    1999-11-01

    First measurements and identification of Minority Ion Cyclotron Emission (MICE) during ICRF (H)D minority heating in the JET tokamak are presented. An inner wall radiofrequency (rf) probe shows the new single MICE spectral line, downshifted from the heating, frequency and appearing ∼ 400 ms after the ICRH switch-on. The line is narrow (Δω / ω) ∼ 0.04), characterised by the ion cyclotron frequency of minority protons in the outer edge mid-plane plasma and is observed irrespective of whether single or multi-frequency ICRH is applied. Threshold conditions for MICE are: coupled RF power to the plasma P rf ≥ 4.5 MW; total fast ion energy content W fast ≥ 0.6 MJ. At the time of the rapid switch-on of MICE, the measured power loss from the energetic minority ions is ∼ 0.1 ± 0.1 MW, constituting rf . The observations are consistent with the classical evolution and population of the plasma edge with ∼ 3 MeV ICRH protons on orbits near the outboard limiters. Particle loss and energy filtering contribute to a local non-Maxwellian energetic ion distribution which is susceptible to ion cyclotron instability

  8. Energetic proton analysis at large angle by 200 MeV proton scattering on nuclei: inclusive spectra; proton-gamma coincidence spectra

    International Nuclear Information System (INIS)

    Al-Zoubidi, M.

    1984-01-01

    With a large acceptance magnet, both in momentum (300-700 MeV/c) and angle (10 0 ), backward energetic proton inclusive cross sections were measured for 200 MeV protons hitting 6 Li, 27 Al, 28 Si, 58 Ni and 197 Au targets. The data are analysed using the ''Quasi Two Body Scaling'' (QTBS) picture and also compared with the predictions at a standard cascade code. This QTBS approch assumes the dominance of the single scattering mechanism. It is shown that a scaling regime is reached for several data taken at incident energies at about 200 MeV/A. These data are remarkably well reproduced using a universal one nucleon momentum density distribution for A > approximately 20. A (p-γ) coincidence experiment was performed on 28 Si target, at 80 0 . Preliminary results indicates also single nucleon-nucleon collision, but the other low energy nucleon interacts with the residuel nucleus. Excitation energy transferred to the system is about 50 MeV [fr

  9. Electromagnetic waves near the proton cyclotron frequency: Stereo observations

    Energy Technology Data Exchange (ETDEWEB)

    Jian, L. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Wei, H. Y.; Russell, C. T. [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 (United States); Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Klecker, B. [Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching (Germany); Omidi, N. [Solana Scientific Inc., Solana Beach, CA 92075 (United States); Isenberg, P. A. [Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Goldstein, M. L.; Figueroa-Viñas, A. [Heliophysics Science Division, NASA Goddard Space Flight Center, MD 20771 (United States); Blanco-Cano, X., E-mail: lan.jian@nasa.gov [Instituto de Geofisica, Universidad Nacional Autónoma de México, Coyoacán D.F. (Mexico)

    2014-05-10

    Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.

  10. Facility for the measurement of proton polarization in the range 50-70 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Sakaguchi, H; Sakamoto, H; Ogawa, H; Cynshi, O; Kobayashi, S [Kyoto Univ. (Japan). Dept. of Physics; Kato, S [Osaka Univ., Toyonaka (Japan). Lab. of Nuclear Studies; Matsuoka, N; Hatanaka, K; Noro, T [Osaka Univ., Toyonaka (Japan). Research Center for Nuclear Physics

    1983-07-01

    A proton polarimetry facility based on silicon analyzers combined with high-purity germanium detectors is described. The scattering efficiency is 1.5 x 10/sup -5/ at 60 MeV with an effective analyzing power of 0.71 and the energy resolution is about 300 keV fwhm. The facility has succeeded in measuring the depolarization in p-/sup 13/C elastic scattering separated clearly from inelastic events. In order to use a silicon detector as an analyzer target, measurements of cross sections and analyzing powers have been performed at proton energies of 65, 60, 55, 50 and 45 MeV.

  11. The design of a proton recoil telescope for 14 MeV neutron spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, N.P.; Bond, D.S.; Croft, S.; Jarvis, O.N. E-mail: onj@jet.uk; Sherwood, A.C

    2002-01-01

    As part of the design effort for a 14 MeV neutron spectrometer for the Joint European Torus (JET), computer codes were developed to calculate the response of a proton recoil telescope comprising a proton radiator film mounted in front of a proton detector. The codes were used to optimise the geometrical configuration in terms of efficiency and resolution, bearing in mind the constraints imposed by the proposed application as a JET neutron diagnostic for the Deuterium-Tritium phase. A prototype instrument was built according to the optimised design, and tested with monoenergetic 14 MeV neutrons from the Harwell 500 keV Van de Graaff accelerator. The measured energy resolution and absolute efficiency were found to be in acceptable agreement with the calculations. Based on this work, a multi-radiator production version of the spectrometer has now been constructed and successfully deployed at JET.

  12. The design of a proton recoil telescope for 14 MeV neutron spectrometry

    International Nuclear Information System (INIS)

    Hawkes, N.P.; Bond, D.S.; Croft, S.; Jarvis, O.N.; Sherwood, A.C.

    2002-01-01

    As part of the design effort for a 14 MeV neutron spectrometer for the Joint European Torus (JET), computer codes were developed to calculate the response of a proton recoil telescope comprising a proton radiator film mounted in front of a proton detector. The codes were used to optimise the geometrical configuration in terms of efficiency and resolution, bearing in mind the constraints imposed by the proposed application as a JET neutron diagnostic for the Deuterium-Tritium phase. A prototype instrument was built according to the optimised design, and tested with monoenergetic 14 MeV neutrons from the Harwell 500 keV Van de Graaff accelerator. The measured energy resolution and absolute efficiency were found to be in acceptable agreement with the calculations. Based on this work, a multi-radiator production version of the spectrometer has now been constructed and successfully deployed at JET

  13. 40. anniversary of cyclotron of Institute of Nuclear Physics, Tashkent

    International Nuclear Information System (INIS)

    Umerov, R.A.; Uzakov, J.M.; Gulamov, I.R.

    2004-01-01

    Full text: The Cyclotron U-150-II of Institute of Nuclear Physics was projected in middle of the last century for nuclear-physical researches in a scientific research institute of electro physical equipment in Leningrad. The Cyclotron can accelerate positive ions with beam energy of the protons 18 MeV, deuterons 20 MeV, alpha particles 40 MeV. Intensity of a beam a little some microampere. The building of a Cyclotron represents an impressive three-floor construction in volume of 2000 m 3 . The capital equipment, the high-frequency generator, sources of power supplies, vacuum pumps and other technological units are placed on the first and socle floors of a building. The second and third floors served for accommodation of scientific laboratories. A building of a Cyclotron has three experimental halls, where it was possible to carry out physical researches. They have divided from each other, and the main thing from the accelerator, concrete walls with the purpose of reduction of the big radiating background at the working accelerator, preventing realization of experiments. It provided also biological protection of the on duty personnel. The first some years of operation of the Cyclotron have revealed a line of lacks of this machine. For example, for change of energy of a beam of a Cyclotron it took 2-3 weeks. Also, for transition of acceleration of one particles to others it take same time. Time parameters of a beam were unstable. In 1968 reconstruction of the Cyclotron has been started that has allowed to bring in basic changes to parameters U-150-II. The time took on change of an operating mode of a Cyclotron was sharply reduced, and it was possible to reduce it till 10-20 hours, to improve the energy and time resolution of a beam many times over, to reduce angular straggling of particles in a beam. And, all this enormous amount of works was spent by forces of institute. In 70 th years the big development was received with works on radiating stability of materials

  14. The response of CR-39 nuclear track detector to 1-9 MeV protons

    International Nuclear Information System (INIS)

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; McDuffee, S. C.; Casey, D. T.; Zylstra, A. B.; Rinderknecht, H. G.; Gatu Johnson, M.; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2011-01-01

    The response of CR-39 nuclear track detector (TasTrak) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. Effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather than the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.

  15. Conceptual design of the superconducting magnet for the 250 MeV proton cyclotron.

    Science.gov (United States)

    Ren, Yong; Liu, Xiaogang; Gao, Xiang

    2016-01-01

    The superconducting cyclotron is of great importance to treat cancer parts of the body. To reduce the operation costs, a superconducting magnet system for the 250 MeV proton cyclotron was designed to confirm the feasibility of the superconducting cyclotron. The superconducting magnet system consists of a pair of split coils, the cryostat and a pair of binary high temperature superconductor current leads. The superconducting magnet can reach a central magnetic field of about 1.155 T at 160 A. The three GM cryocooler with cooling capacities of 1.5 W at 4.5 K and 35 W at 50 K and one GM cryocooler of 100 W at 50 K were adopted to cool the superconducting magnet system through the thermosiphon technology. The four GM cryocoolers were used to cool the superconducting magnet to realize zero evaporation of the liquid helium.

  16. The gas bubbles distribution in 600 MeV protons irradiated aluminium

    International Nuclear Information System (INIS)

    Gavillet, D.; Martin, J.L.; Victoria, M.; Green, W.

    1984-01-01

    In order to simulate the damage produced by 14 MeV fusion neutrons, thin foils of high purity Al have been irradiated by a proton beam of 580 MeV (120μA). After irradiation at temperatures higher than 0.5 Tm transmission electron microscope observations of gas bubbles distribution were performed. At 200 0 C a uniform distribution of bubbles has been observed inside the grain. The average distance between bubbles and their density have been determined. The gas pressure inside the bubbles has been estimated [fr

  17. Radiation protection studies for a high-power 160 MeV proton linac

    CERN Document Server

    Mauro, Egidio

    2009-01-01

    CERN is presently designing a new chain of accelerators to replace the present Proton Synchrotron (PS) complex: a 160 MeV room-temperature H− linac (Linac4) to replace the present 50 MeV proton linac injector, a 3.5 GeV Superconducting Proton Linac (SPL) to replace the 1.4 GeV PS Booster (PSB) and a 50 GeV synchrotron (named PS2) to replace the 26 GeV PS. Linac4 has been funded and the civil engineering work started in October 2008, whilst the SPL is in an advanced stage of design. Beyond injecting into the future 50 GeV PS, the ultimate goal of the SPL is to generate a 4 MW beam for the production of intense neutrino beams. The radiation protection design is driven by the latter requirement. This work summarizes the radiation protection studies conducted for Linac4. FLUKA Monte Carlo simulations, complemented by analytical estimates, were performed to evaluate the propagation of neutrons through the waveguide, ventilation and cable ducts placed along the accelerator, to estimate the radiological impact of ...

  18. A beam optics study of the biomedical beam line at a proton therapy facility

    International Nuclear Information System (INIS)

    Yun, Chong Cheoul; Kim, Jong-Won

    2007-01-01

    A biomedical beam line has been designed for the experimental area of a proton therapy facility to deliver mm to sub-mm size beams in the energy range of 20-50 MeV using the TRANSPORT/TURTLE beam optics codes and a newly-written program. The proton therapy facility is equipped with a 230 MeV fixed-energy cyclotron and an energy selection system based on a degrader and slits, so that beam currents available for therapy decrease at lower energies in the therapeutic beam energy range of 70-230 MeV. The new beam line system is composed of an energy-degrader, two slits, and three quadrupole magnets. The minimum beam sizes achievable at the focal point are estimated for the two energies of 50 and 20 MeV. The focused FWHM beam size is approximately 0.3 mm with an expected beam current of 20 pA when the beam energy is reduced to 50 MeV from 100 MeV, and roughly 0.8 mm with a current of 10 pA for a 20 MeV beam

  19. Proton-induced fission of actinides at energies 26.5 and 62.9 MeV--Theoretical interpretation

    International Nuclear Information System (INIS)

    Demetriou, P.; Keutgen, Th.; Prieels, R.; El Masri, Y.

    2011-01-01

    Fission properties of proton-induced fission on 232 Th, 237 Np, 238 U, 239 Pu and 241 Am targets, measured at the Louvain-la-Neuve cyclotron facility at proton energies of 26.5 and 62.9 MeV, are compared with the predictions of the state-of-the-art nuclear reaction code TALYS. The sensitivity of the calculations to the input parameters of the code and possible improvements are discussed.

  20. The Single Event Upset (SEU) response to 590 MeV protons

    Science.gov (United States)

    Nichols, D. K.; Price, W. E.; Smith, L. S.; Soli, G. A.

    1984-01-01

    The presence of high-energy protons in cosmic rays, solar flares, and trapped radiation belts around Jupiter poses a threat to the Galileo project. Results of a test of 10 device types (including 1K RAM, 4-bit microP sequencer, 4-bit slice, 9-bit data register, 4-bit shift register, octal flip-flop, and 4-bit counter) exposed to 590 MeV protons at the Swiss Institute of Nuclear Research are presented to clarify the picture of SEU response to the high-energy proton environment of Jupiter. It is concluded that the data obtained should remove the concern that nuclear reaction products generated by protons external to the device can cause significant alteration in the device SEU response. The data also show only modest increases in SEU cross section as proton energies are increased up to the upper limits of energy for both the terrestrial and Jovian trapped proton belts.

  1. Secondary electron emission from 0.5--2.5-MeV protons and deuterons

    International Nuclear Information System (INIS)

    Thornton, T.A.; Anno, J.N.

    1977-01-01

    Measurement of the secondary electron currents leaving Al, V, Fe, 316 stainless steel, Nb, and Mo foils undergoing 0.5--2.5-MeV proton and deuteron bombardment were made to determine the secondary electron emission ratios for these ions. The measured secondary electron yields were of the order of 1.0, with the deuterons producing generally higher yields than the protons

  2. Beam Phase Detection for Proton Therapy Accelerators

    CERN Document Server

    Aminov, Bachtior; Getta, Markus; Kolesov, Sergej; Pupeter, Nico; Stephani, Thomas; Timmer, J

    2005-01-01

    The industrial application of proton cyclotrons for medical applications has become one of the important contributions of accelerator physics during the last years. This paper describes an advanced vector demodulating technique used for non-destructive measurements of beam intensity and beam phase over 360°. A computer controlled I/Q-based phase detector with a very large dynamic range of 70 dB permits the monitoring of beam intensity, phase and eventually energy for wide range of beam currents down to -130 dBm. In order to avoid interference from the fundamental cyclotron frequency the phase detection is performed at the second harmonic frequency. A digital low pass filter with adjustable bandwidth and steepness is implemented to improve accuracy. With a sensitivity of the capacitive pickup in the beam line of 30 nV per nA of proton beam current at 250 MeV, accurate phase and intensity measurements can be performed with beam currents down to 3.3 nA.

  3. Proton-proton correlations at small relative momentum in neon-nucleus collisions at E/A=400 and 800 MeV

    International Nuclear Information System (INIS)

    Dupieux, P.; Alard, J.P.; Augerat, J.; Bastid, N.; Charmensat, P.; Fraysse, L.; Marroncle, J.; Montarou, G.; Parizet, M.J.; Qassoud, D.; Rahmani, A.; Fodor, Z.

    1988-01-01

    Proton-proton small angle correlations have been measured in neon-nucleus collisions, using the 4π detector Diogene, at 400 and 800 MeV per nucleon incident energies. Values of the size of the emitting region are obtained by comparison with the Koonin formula, taking into account the biases of the apparatus. The dependence of the density of target mass and incident energy is also analysed. (orig.)

  4. Radiation hardness of a single crystal CVD diamond detector for MeV energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuki, E-mail: y.sato@riken.jp [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shimaoka, Takehiro; Kaneko, Junichi H. [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Murakami, Hiroyuki [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Isobe, Mitsutaka; Osakabe, Masaki [National Institute for Fusion Science, 322-6, Oroshi-cho Toki-city, Gifu 509-5292 (Japan); Tsubota, Masakatsu [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Ochiai, Kentaro [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2015-06-01

    We have fabricated a particle detector using single crystal diamond grown by chemical vapor deposition. The irradiation dose dependence of the output pulse height from the diamond detector was measured using 3 MeV protons. The pulse height of the output signals from the diamond detector decreases as the amount of irradiation increases at count rates of 1.6–8.9 kcps because of polarization effects inside the diamond crystal. The polarization effect can be cancelled by applying a reverse bias voltage, which restores the pulse heights. Additionally, the radiation hardness performance for MeV energy protons was compared with that of a silicon surface barrier detector.

  5. Isochronization calculations for the Indiana University cyclotron

    International Nuclear Information System (INIS)

    Jones, W.P.

    1975-01-01

    A series of calculations using measured magnetic fields was performed to determine the optimal gradient coil currents for the wide range of operating conditions to be experienced by the Indiana University main stage cyclotron. Depending on the particle type to be accelerated and final energy desired, the required radial field increase varies from 0.5 percent to 22 percent. An iterative least squares fitting technique is used to minimize orbit time variations. For the acceleration of 200 MeV protons (330 revolutions, fourth harmonic), the maximum phase excursion is predicted to be less than two rf degrees. The technique used can be adapted to using measured phase histories to predict corrections to gradient coil currents. (auth)

  6. Final report to US Department of Energy: Cyclotron autoresonance accelerator for electron beam dry scrubbing of flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, J.L.

    2001-05-25

    Several designs have been built and operated of microwave cyclotron autoresonance accelerators (CARA's) with electron beam parameters suitable for remediation of pollutants in flue gas emissions from coal-burning power plants. CARA designs have also been developed with a TW-level 10.6 micron laser driver for electron acceleration from 50 to 100 MeV, and with UHF drivers for proton acceleration to over 500 MeV. Dose requirements for reducing SO2, NOx, and particulates in flue gas emissions to acceptable levels have been surveyed, and used to optimize the design of an electron beam source to deliver this dose.

  7. Mapping of the flux and estimate of the radiation source term of neutron fields generated by the GE PETtrace-8 cyclotron

    International Nuclear Information System (INIS)

    Benavente Castillo, Jhonny Antonio

    2017-01-01

    The use of spectrometric techniques in a cyclotron facility is strongly advised for the complete characterization of the neutron radiation field. In recent years, several studies of neutron spectrometry have been carried out at the Cyclotron of the Development Center of Nuclear Technology (CDTN). The main objective of this work is to propose a methodology for mapping of the flux and estimate of the radiation source term of neutron fields generated by the GE PETtrace-8 cyclotron. The method of neutron activation analysis with gold, indium and nickel activation foils was used to measure the activities induced at specific points in the cyclotron bunker. The irradiations of the activation foils were performed using the intermittent irradiation method to optimize the radiation field during 18 F production. The study of the neutron spectrum was performed using three radiation source terms. The first source term was constructed based on data provided by the cyclotron manufacturer using the neutron cross sections of the ENDF/B-VII library. The other two were proposed considering the irradiation process used in the routine of 18 F production. Both radiation source terms used the LA150H proton cross sections and for the 18 O, the cross sections of the physical model CEM03 (Cascade-exciton model) and TENDL (TALYS-based Evaluated Nuclear Data Library) were used. The results of the source terms in relation to the experimental results, in terms of neutron fluence rates, reaction rates and dose equivalent rates, showed that are in the same order of magnitude as those obtained by Ogata et al, Fujibuchi et al, and Gallerani et al., for the same cyclotron; and by Mendez et al. for a different manufacturing cyclotron. The models of the proposed radiation source terms were validated to obtain the spectra generated during the 18 F production when water enriched at 18 O is bombarded with a proton beam of 16.5 MeV. Finally, the model of the LA150H - TENDL - 2015 radiation source term is

  8. Differential production cross sections for charged particles produced by 590 MeV proton bombardment of thin metal targets

    International Nuclear Information System (INIS)

    Howe, S.D.; Cierjacks, S.; Hino, Y.; Raupp, F.; Rainbow, M.T.; Swinhoe, M.T.; Buth, L.

    1981-01-01

    Differential production cross sections have been measured for the reactions (p,p), (p,d), (p,t) and (p,π+-) using the 590 MeV proton beam at SIN. Here we report measurements made on thin targets of aluminium, niobium, lead, and uranium at laboratory angles of 90 0 and 157 0 . The data were taken over a proton energy range of about 50 MeV to 590 MeV. Differential cross sections are reported along with predictions by the intranuclear-cascade/evaporation model as computed by HETC. (orig.)

  9. Elastic neutron-proton differential cross section at 647 MeV

    International Nuclear Information System (INIS)

    Evans, M.L.

    1979-04-01

    The differential cross section for n-p elastic scattering in the angular range 51 0 was measured with high statistical accuracy using the 647 MeV monoenergetic neutron beam of the Los Alamos Meson Physics Facility. A proton recoil magnetic spectrometer was used for momentum analysis of the charge exchange protons from the reaction n+p→p+n. Absolute normalization of the cross section was established to within 7% using existing cross section data for the reaction p+p→π + +d. The results differ significantly from previous Dubna and PPA cross sections but agree well with recent Saclay data except at extreme backward angles. 41 references

  10. Parity violation in proton-proton scattering at 221 MeV

    International Nuclear Information System (INIS)

    Berdoz, A.R.; Birchall, J.; Bland, J.B.; Campbell, J.R.; Green, A.A.; Hamian, A.A.; Lee, L.; Page, S.A.; Ramsay, W.D.; Reitzner, S.D.; Sekulovich, A.M.; Sum, V.; Oers, W.T.H. van; Woo, R.J.; Bowman, J.D.; Mischke, R.E.; Coombes, G.H.; Helmer, R.; Kadantsev, S.; Levy, C.D.P.

    2003-01-01

    TRIUMF experiment 497 has measured the parity-violating longitudinal analyzing power A z in p(vector sign)p elastic scattering at 221.3 MeV incident proton energy. This comprehensive paper includes details of the corrections, some of magnitude comparable to A z itself, required to arrive at the final result. The largest correction was for the effects of first moments of transverse polarization. The addition of the result, A z =[0.84±0.29 (stat.)±0.17 (syst.)]x10 -7 , to the p(vector sign)p parity-violation experimental data base greatly improves the experimental constraints on the weak meson-nucleon coupling constants h ρ pp and h ω pp , and also has implications for the interpretation of electron parity-violation experiments

  11. Routine production of copper-64 using 11.7MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, C. M.; Smith, S. V.; Asad, A. H.; Chan, S.; Price, R. I. [Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, 6009 (Australia); Centre for Forensic Science, University of Western Australia, Nedlands, Western Australia, 6009 (Australia) and ARC Centre of Excellence in A (Australia); ARC Centre of Excellence in Antimatter-Matter Studies, Australian National University, Canberra, ACT 0200 (Australia) and Collider-Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, 6009 (Australia); ARC Centre of Excellence in Antimatter-Matter Studies, Australian National University, Canberra, ACT 0200 (Australia) and Imaging and Applied (Australia); Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, 6009 (Australia); Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, 6009 (Australia) and School of Physics, University of Western Australia, Nedlands, Western Australia, 6009 (Australia)

    2012-12-19

    Reliable production of copper-64 ({sup 64}Cu) was achieved by irradiating enriched nickel-64 ({sup 64}Ni, >94.8%) in an IBA 18/9 cyclotron. Nickel-64 (19.1 {+-} 3.0 mg) was electroplated onto an Au disc (125{mu}m Multiplication-Sign 15mm). Targets were irradiated with 11.7 MeV protons for 2 hours at 40{mu}A. Copper isotopes ({sup 60,61,62,64}Cu) were separated from target nickel and cobalt isotopes ({sup 55,57,61}Co) using a single ion exchange column, eluted with varying concentration of low HCl alcohol solutions. The {sup 64}Ni target material was recovered and reused. The {sup 64}Cu production rate was 1.46{+-}0.3MBq/{mu}A.hr/mg{sup 64}Ni(n = 10) (with a maximum of 2.6GBq of {sup 64}Cu isolated after 2hr irradiation at 40uA. Radionuclidic purity of the {sup 64}Cu was 98.7 {+-} 1.6 % at end of separation. Cu content was < 6mg/L (n = 21). The specific activity of {sup 64}Cu was determined by ICP-MS and by titration with Diamsar to be 28.9{+-}13.0GBq/{mu}mol[0.70{+-}0.35Ci/{mu}mol]/({mu}A.hr/mg{sup 64}Ni)(n = 10) and 13.1{+-}12.0GBq/{mu}mol[0.35{+-}0.32Ci/{mu}mol]/({mu}A.hr/mg{sup 64}Ni)(n 9), respectively; which are in agreement, however, further work is required.

  12. Medical applications of cyclotrons

    International Nuclear Information System (INIS)

    Jean, R.; Fauchet, M.

    1978-01-01

    Isochronous cyclotrons used to accelerate different charged particles (protons, deuterons, alphas...) at variable energies, have important medical applications, for neutron teletherapy, in vivo or in vitro activation analysis or production of short-lived radioisotopes for nuclear medicine. The characteristics of the cyclotron presently available are described for these three applications (low energy 'compact' cyclotrons, cyclotrons of intermediate and high energies), and their advantages are discussed from the points of view of the medical requirements, the financial investments and the results obtained. (orig.) [de

  13. Analysis of Residual Nuclide in a ACM and ACCT of 100-MeV proton beamline By measurement X-ray Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong-Min; Yun, Sang-Pil; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2015-10-15

    The proton beam is provides to users as various energy range from 20 MeV to 100 MeV. After protons generated from the ion source are accelerated to 100 MeV and irradiated to target through bending magnet and AC magnet. At this time, relatively high dose X-ray is emitted due to collision of proton and components of beamline. The generated X-ray is remaining after the accelerator is turned off and analyzing residual nuclides through the measurement of X-ray spectrum. Then identify the components that are the primary cause of residual nuclides are detected form the AC magnet(ACM) and associated components (ACCT). Analysis of the X-ray spectrum generated form the AC magnet(ACM) and AC current transformer(ACCT) of 100 MeV beamline according to the proton beam irradiation, most of the residual nuclides are identified it can be seen that emission in the stainless steel by beam loss.

  14. Positronium formation in helium bubbles in 600 MeV proton-irradiated aluminium

    DEFF Research Database (Denmark)

    Jensen, K. O.; Eldrup, Morten Mostgaard; Singh, Bachu Narain

    1985-01-01

    Aluminium samples containing helium bubbles produced by 600 MeV proton irradiation at 430°C were investigated by positron annihilation; both lifetime and angular correlation measurements were made. The angular correlation curves contain an unusually narrow component. This component is associated...

  15. Ernest Orlando Lawrence (1901-1958), Cyclotron and Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Chu, William T.

    2005-09-01

    , constructed a 13-cm diameter model that had all the features of early cyclotrons, accelerating protons to 80,000 volts using less than 1,000 volts on a semi-circular accelerating electrode, now called the ''dee''. Following the discovery by J. D. Cockcroft and E. T. S. Walton of how to produce larger currents at higher voltages, Lawrence constructed the first two-dee 27-Inch (69-cm) Cyclotron, which produced protons and deuterons of 4.8 MeV. The 27-Inch Cyclotron was used extensively in early investigations of nuclear reactions involving neutrons and artificial radioactivity. In 1939, working with William Brobeck, Lawrence constructed the 60-Inch (150-cm) Cyclotron, which accelerated deuterons to 19 MeV. It was housed in the Crocker Laboratory, where scientists first made transmutations of some elements, discovered several transuranic elements, and created hundreds of radioisotopes of known elements. At the Crocker Laboratory the new medical modality called nuclear medicine was born, which used radioisotopes for diagnosis and treatment of human diseases. In 1939 Lawrence was awarded the Nobel Prize in Physics, and later element 103 was named ''Lawrencium'' in his honor.

  16. Impurity induced neutralization of MeV energy protons in JET plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gondhalekar, A [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Korotkov, A A [AF Ioffe Institute, Saint Petersburg (Russian Federation)

    1994-07-01

    A model elucidating the role of carbon and beryllium, the main impurities in JET plasmas, in neutralizing MeV energy protons, which arise during ICRF heating of deuterium plasmas in the hydrogen minority heating mode D(H), and from D-D fusion reactions, is presented. The model establishes charge transfer from hydrogen-like impurity ions to protons as the main process for neutralization. Calculations for deducing the proton energy distribution function from measured hydrogen flux are described. The validity of the model is tested by using it to described the measured flux in different conditions of plasma heating and fueling. Further, it is used to deduce the background thermal deuterium atom density at the plasma center. 9 refs., 6 figs.

  17. Measurement of the free neutron-proton analyzing power and spin transfer parameters in the charge exchange region at 790 MeV

    International Nuclear Information System (INIS)

    Ransome, R.D.

    1981-07-01

    The free neutron-proton analyzing power and the spin transfer parameters (K/sub NN/, K/sub SS/, K/sub SL/, and K/sub LL/) were measured at the Los Alamos Meson Physics Facility at 790 MeV between 165 0 and 180 0 center of mass. A 40% polarized neutron beam incident on a liquid hydrogen target was used. The recoil protons were momentum analyzed with a magnetic spectrometer to isolate elastic scatters. A large solid angle carbon polarimeter was used to measure the proton polarization. The measurements are the first at this energy and are in basic agreement with pre-existing phase shift solutions. The proton-carbon analyzing power was measured between 500 and 750 MeV. An empirical fit to the proton-carbon analyzing power between 100 and 750 MeV was done

  18. Status of proton treatment facility at National Cancer Center, Kashiwa

    International Nuclear Information System (INIS)

    Tachikawa, T.; Kohmura, I.; Kataoka, S.; Nonaka, H.; Kimura, T.; Sato, T.; Nishio, T.; Shimbo, M.; Ogino, T.; Ikeda, H.

    2001-01-01

    Proton treatment facility at National Cancer Center Hospital East (Kashiwa) has two rotating gantry ports and one horizontal fixed port. In order to provide the same dose distribution at different gantry angles, the beam optics from the accelerator (235 MeV cyclotron) to the entrance of nozzle is specially tuned. Recently developed automatic tuning method of beam alignment can realize a sequential treatment at three irradiation ports. (author)

  19. Excitation function for the population of the 4.51 MeV state of 27Al inelastic proton scattering. Evidence for 6- strength?

    International Nuclear Information System (INIS)

    Spicer, B.M.; Koutsoliotas, S.

    1995-01-01

    The excitation function for emission of 2.30 MeV gamma rays from the 4.51 MeV state of 27 Al formed in inelastic proton scattering has been measured for proton energies from 5.6 to 7.3 MeV. A resonance previously seen in both inelastic electron and proton scattering from 28 Si at 17.35 MeV has been observed as a resonance in the excitation function, as well as seven other resonances, all of which are narrow (i.e., less than 100 keV wide). It is suggested that these may represent fragments of 6 - strength in 28 Si. 6 refs., 1 tab., 2 figs

  20. Intensity maps of MeV electrons and protons below the radiation belt

    International Nuclear Information System (INIS)

    Kohno, T.; Munakata, K.; Murakami, H.; Nakamoto, A.; Hasebe, N.; Kikuchi, J.; Doke, T.

    1988-01-01

    The global distributions of energetic electrons (0.19 - 3.2 MeV) and protons (0.64 - 35 MeV) are shown in the form of contour maps. The data were obtained by two sets of energetic particle telescopes on board the satellite OHZORA. The observed altitude range is 350 - 850 Km. Ten degress meshes in longitude and latitude were used to obtain the intensity contours. A pitch angle distribution of J(α) = J(90). sin n α with n = 5 A is assumed to get the average intensity in each mesh. (author) [pt

  1. Analysing power for neutron-proton scattering at 14.1 MeV

    International Nuclear Information System (INIS)

    Brock, J.E.; Chisholm, A.; Duder, J.C.; Garrett, R.; Poletti, J.L.

    1981-01-01

    The analysing power Asub(y)(theta) for neutron-proton scattering has been measured at 14.1 MeV for c.m. angles between 50 0 and 157 0 . A polarized neutron beam was produced by the reaction 3 H(d,n) 4 He at 110 keV, using polarized deuterons from an atomic beam polarized ion source. Liquid and plastic scintillators were used for proton targets and the scattered particles were detected in an array of platic scintillators. Use of the associated alpha technique, multi-parameter recording of events and off-line computer treatment led to very low backgrounds. The results differ significantly from the predictions of the phase-shift analyses of Yale IV, Livermore X and Arndt et al. We find, however, excellent agreement with the predictions of the Paris potential of Lacombe et al. Existing n-p analysing power results up to 30 MeV are surveyed and found to be consistent. An attempt was made to look for an isospin splitting of the triplet P-wave phase shifts. (orig.)

  2. The production of cyclotron radioisotopes and radiopharmaceuticals at the national accelerator centre in South Africa

    International Nuclear Information System (INIS)

    Walt, T.N. van der

    1998-01-01

    Accelerator radioisotopes have been manufactured in South Africa since 1965 with the 30 MeV cyclotron at the Council for Scientific and Industrial Research (CSIR) in Pretoria. After its closure in 1988, the radioisotope production programme was continued at the National Accelerator Centre (NAC) with the 200 MeV separated sector cyclotron (SCC) utilizing the 66 MeV proton beam, which is shared with the neutron therapy programme during part of the week. A variety of radiopharmaceuticals, such as 18 F-FDG, 67 Ga-citrate, a 67 Ga-labelled resin. 111 In-chloride, 111 In-oxine and 111 In-labelled resin. 123 I-sodium iodide and 123 I-labelled compounds, 201 Tl-chloride, as well as the 81 Rb/ 81m Kr gas generator, are prepared for use in the nuclear medicine departments of 12 State hospitals and about 28 private nuclear medicine clinics in South Africa. A few longer-lived radioisotopes, such as 22 Na, 55 Fe and 139 Ce, are also produced for research or industrial use. A research and development programme is running to develop new production procedures to produce radioisotopes and radiopharmaceuticals, or to improve existing production procedures. As part of a programme to utilize the beam time optimally, the production of some other radioisotopes is investigated. (author)

  3. National cyclotron centre at the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Tonev, D.; Goutev, N.; Asova, G.; Artinyan, A.; Demerdjiev, A.; Georgiev, L. S.; Yavahchova, M.; Bashev, V.; Genchev, S. G.; Geleva, E.; Mincheva, M.; Nikolov, A.; Dimitrov, D. T.

    2018-05-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that can be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99mTc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, materials sciences, applied research, new materials and for education in all these fields including nuclear energy. Presently we perform investigations in the fields of target design for production of radioisotopes, shielding and radioprotection, new ion sources etc.

  4. Mass-yield distributions of fission products from 20, 32, and 45 MeV proton-induced fission of 232Th

    Science.gov (United States)

    Naik, H.; Goswami, A.; Kim, G. N.; Kim, K.; Suryanarayana, S. V.

    2013-10-01

    The yields of various fission products in the 19.6, 32.2, and 44.8 MeV proton-induced fission of 232Th have been determined by recoil catcher and an off-line γ-ray spectrometric technique using the BARC-TIFR Pelletron in India and MC-50 cyclotron in Korea. The mass-yield distributions were obtained from the fission product yield using the charge distribution corrections. The peak-to-valley (P/V) ratio of the present work and that of literature data for 232Th(p,f) and 238U(p,f) were obtained from the mass yield distribution. The present and the existing literature data for 232Th(p,f), 232Th(n,f), and 232Th( γ,f) at various energies were compared with those for 238U(p,f), 238U(n,f), and 238U( γ,f) to examine the probable nuclear structure effect. The role of Th-anomaly on the peak-to-valley ratio in proton-, neutron-, and photon-induced fission of 232Th was discussed with the similar data in 238U. On the other hand, the fine structure in the mass yield distributions of the fissioning systems at various excitation energies has been explained from the point of standard I and II asymmetric mode of fission besides the probable role of even-odd effect, A/ Z ratio, and fissility parameter.

  5. Elastic scattering of polarized protons from 3He at intermediate energies

    International Nuclear Information System (INIS)

    Hasell, D.K.; Bracco, A.; Gubler, H.P.

    1982-09-01

    Using the polarized proton beam facility of the TRIUMF cyclotron, differential cross sections and analyzing powers have been measured in the angular range 20 0 - 150 0 c.m. for proton elastic scattering from 3 He at incident proton energies of 200, 300, 415 and 515 MeV. The differential cross sections exhibit a minimum at t = -0.33 (GeV/c) 2 which becomes more pronounced with increasing energy. There is evidence for the onset of a second minimum corresponding to the interference between double and triple scattering amplitudes. Large analyzing powers are observed at the lower energies. The data from the present analysis, together with data obtained from the literature in the energy range 100-1000 MeV, have been analyzed within the framework of the Glauber multiple scattering formalism. Nucleon-nucleon scattering parameters were taken from a global phase shift analysis of nucleon-nucleon elastic scattering data. Reasonable agreement with the data is obtained

  6. Measurement of parity nonconservation in the proton-proton total cross section at 800 MeV

    International Nuclear Information System (INIS)

    Bowman, J.D.

    1986-01-01

    A report is made of a measurement of parity nonconservation in the transmission of 800-MeV longitudinally polarized protons through an unpolarized, 1-m liquid-hydrogen target. The dependence of transmission on beam properties was studied to measure and to correct for systematic errors. The measured longitudinal asymmetry in the total cross section is A/sub L/ = [+2.4 +- 1.1 (statistical) +- 0.1 (systematic)] x 10 -7 . 25 refs., 2 figs

  7. Determination of intensity and energy spectrum of neutrons by bombardment of thallium-203 thick target and its copper substrate with 28.5 MeV protons

    International Nuclear Information System (INIS)

    Hajiloo, N.; Raisali, Gh.; Hamidi, S.; Aslani, Gh.

    2007-01-01

    In this research we have determined neutrons spectrum and the intensity that produced from thallium target bombardment. We have applied SRIM and ALICE computer codes to thallium target and its copper substrate for 145 μA of 28.5 MeV incident proton beam from cyclotron Cyclone30. Because of the energy degradation of protons while passing through the thallium target and its copper substrate, the average energy of protons in different depths has been calculated by using SRIM computer code. Then, by applying ALICE computer code for each sub-layer, the neutron production cross sections and their energy spectrum have been calculated to determine the total neutron intensity and spectrum. Using the calculated neutron intensity of 1.22x10 13 n/s as the source, the equivalent dose rate at the distance 6 meters from the target has been calculated by MCNP computer code and the result has been compared with the measured value. The Pb 201 activity has also been calculated as 13.5 Curies. The measured Pb 201 activity by Curie meter CAPINTEC CRC-712 is 13.1 Ci which is in reasonable agreement with the calculated value, bearing in mind the uncertainties in the proposed models and the measurements

  8. Proposal on ''standardized high current solid targets for cyclotron production of diagnostic and therapeutic radionuclides''

    International Nuclear Information System (INIS)

    Suparman, Ibon

    2000-01-01

    The Center for the Development of Radioisotopes and Radiopharmaceuticals - National Nuclear Energy Agency (P2RR-BATAN) has one Cyclotron type CS-30 with maximum 30 MeV proton energy. It is used since 1990 for 201 Tl production. The main use of 201 Tl in Indonesia is for diagnosis and assessment of myocardial ischaemia, especially diagnosis of coronary artery disease, viability of the heart muscle and forecasting the outcome for patients with coronary disease. The Cyclotron facility is supported with a solid target station, two hot cells and the chemical equipment for electroplating. The yield of 201 Tl production currently achieved around 40-50%. The irradiation technique and chemical separation should be improved. We are also very interested in the development of the production of 103 Pd via 103 Rh (p,n) 103 Pd reaction. The objective of this proposal will support the main program of the National Nuclear Energy Agency (BATAN) in enhancement of health care and in providing Cyclotron produced radiopharmaceuticals for hospitals

  9. Cyclotron operating mode determination based on intelligent methods

    International Nuclear Information System (INIS)

    Ouda, M.M.E.M.

    2011-01-01

    Particle accelerators are generators that produce beams of charged particles with energies depending on the accelerator type. The MGC-20 cyclotron is a cyclic particle accelerator used for accelerating protons, deuterons, alpha particles, and helium-3 to different energies. Main applications are isotopes production, nuclear reactions studies, and mass spectroscopy studies and other industrial applications. The cyclotron is a complicated machine depends on using a strong magnetic field and high frequency-high voltage electric field together to accelerate and bend charged particles inside the accelerating chamber. It consists of the following main parts, the radio frequency system, the main magnet with the auxiliary concentric and harmonic coils, the electrostatic deflector, and the ion source, the beam transport system, and high precision and high stability DC power supplies.To accelerate a particle to certain energy, one has to adjust the cyclotron operating parameters to be suitable to accelerate this particle to that energy. If the cyclotron operating parameters together are adjusted to accelerate a charged particle to certain energy, then these parameters together are named the operating mode to accelerate this particle to that energy. For example the operating mode to accelerate protons to 18 MeV is named the (18 MeV protons operating mode). The operating mode includes many parameters that must be adjusted together to be successful to accelerate, extract, focus, steer a particle from the ion source to the experiment. Due to the big number of parameters in the operating modes, 19 parameters have been selected in this thesis to be used in an intelligent system based on feed forward back propagation neural network to determine the parameters for new operating modes. The new intelligent system depends on the available information about the currently used operating modes.The classic way to determine a new operating mode was depending on trial and error method to

  10. Proton and deuteron activation measurements at the NPI and future plans in SPIRAL2/NFS

    Science.gov (United States)

    Šimečková, Eva; Bém, Pavel; Mrázek, Jaromír; Štefánik, Milan; Běhal, Radomír; Gladolev, Vadim

    2017-09-01

    The proton- and deuteron-induced reactions are of a great interest for the assessment of induced radioactivity of accelerator components, target and beam stoppers as well as isotope production for medicine. In the present work, the deuteron-induced reaction cross sections on zinc were investigated by stacked-foil activation technique with deuteron beam of 20 MeV energy from the cyclotron U-120M of NPI CAS Řež. Also the proton activation cross section measurement of iron is presented. The comparison of present results to data of other authors and to predictions of evaluated data libraries is discussed. The investigation shall continue for higher proton and deuteron energy interval 20-35 MeV at SPIRAL2/NFS facility using a charged particle irradiation chamber with pneumatic transport system to measure isotopes and isomers with half-lives in minutes-regions.

  11. Cyclotrons for isotope production

    International Nuclear Information System (INIS)

    Milton, B.F.; Stevenson, N.R.

    1995-06-01

    Cyclotrons continue to be efficient accelerators for radioisotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology, and isotope production, as they relate to the new generation of commercial cyclotrons. We will also discuss the possibility of systems capable of extracted energies up to 100 MeV and extracted beam currents of up to 2.0 mA. (author). 6 refs., 2 tabs., 3 figs

  12. The Indiana University proton radiation therapy project

    International Nuclear Information System (INIS)

    Bloch, C.; Derenchuk, V.; Cameron, J.; Fasano, M.; Gilmore, J.; Hashemian, R.; Hornback, N.; Low, D.A.; Morphis, J.; Peterson, C.; Rosselot, D.; Sandison, G.; Shen, R.N.; Shidnia, H.

    1993-01-01

    A fixed horizontal beam line at the Indiana University cyclotron facility (IUCF) has been equipped for proton radiation therapy treatment of head, neck, and brain tumors. The complete system will be commissioned and ready to treat patients early in 1993. IUCF can produce external proton beams from 45 to 200 MeV in energy, which corresponds to a maximum range in water of 26 cm. Beam currents over 100 nA are easily attained, allowing dose rates in excess of 200 cGy/min, even for large fields. Beam spreading systems have been tested which provide uniform fields up to 20 cm in diameter. Range modulation is accomplished with a rotating acrylic device, which provides uniform depth dose distributions from 3 to 18 cm in extent. Tests have been conducted on detectors which monitor the beam position and current, and the dose symmetry. This report discusses those devices, as well as the cyclotron characteristics, measured beam properties, safety interlocks, computerized dose delivery/monitoring system, and future plans. (orig.)

  13. Preparation of carrier-free radioactive thallium for medical use

    International Nuclear Information System (INIS)

    Comar, D.; Crouzel, C.

    1975-01-01

    Radioactive thallium for medical use have been prepared by proton or deuteron bombardment of HgO or metallic Hg. The carrier free thallium is separated from mercury by ether extraction of the chloride. The yield of production for the isotopes 198m to 202 is given for different energies of protons and deuterons. The irradiated substances consisted of red mercury oxide containing less than 1 ppm iron, and high-purity (99.999%) metallic mercury. The red mercury oxide targets were irradiated with 15 MeV deuterons (M.R.C. cyclotron, Hammersmith Hospital-London and Saclay Van de Graff tandem) or 50 and 14 MeV protons (Grenoble Nuclear Physics Institute cyclotron and S.H.F.J. compact cyclotrons). The metallic mercury target was irradiated with 14, 16 and 20 MeV protons (S.H.F.J. compact cyclotron and Saclay variable-energy cyclotron). The particle current never exceeded 10 μA for irradiation times between 15 minutes and a few hours. (F.Gy.)

  14. Dosimetric and clinical experience in eye proton treatment at INFN-LNS

    International Nuclear Information System (INIS)

    Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Lojacono, P.; Mongelli, V.; Patti, I. V.; Pittera, S.; Russo, G.; Valastro, L. M.; Lo Nigro, S.; Ott, J.; Reibaldi, A.; Privitera, G.; Raffaele, L.; Salamone, V.; Spatola, C.; Sabini, M. G.

    2009-01-01

    After six years of activity 155 patients have been treated inside the CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) facility. CATANA is the first and unique proton therapy facility in which the 62 MeV proton beams, accelerated by a Superconducting Cyclotron, are used for the radio-therapeutic treatments of choroidal and iris melanomas. Inside CATANA new absolute and relative dosimetric techniques have been developed in order to achieve the best results in terms of treatment precision and dose release accuracy. The follow-up results for 42 patients demonstrated the efficacy of high energy protons in the radiotherapeutic field and encouraged us in our activity in the battle against cancer

  15. Dosimetric and clinical experience in eye proton treatment at INFN-LNS

    Science.gov (United States)

    Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Lojacono, P.; Mongelli, V.; Lo Nigro, S.; Ott, J.; Patti, I. V.; Pittera, S.; Privitera, G.; Raffaele, L.; Reibaldi, A.; Russo, G.; Salamone, V.; Sabini, M. G.; Spatola, C.; Valastro, L. M.

    2009-05-01

    After six years of activity 155 patients have been treated inside the CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) facility. CATANA is the first and unique proton therapy facility in which the 62 MeV proton beams, accelerated by a Superconducting Cyclotron, are used for the radio-therapeutic treatments of choroidal and iris melanomas. Inside CATANA new absolute and relative dosimetric techniques have been developed in order to achieve the best results in terms of treatment precision and dose release accuracy. The follow-up results for 42 patients demonstrated the efficacy of high energy protons in the radiotherapeutic field and encouraged us in our activity in the battle against cancer

  16. Production of exotic beams at the LBL 88-Inch Cyclotron by the ISOL method

    International Nuclear Information System (INIS)

    1990-04-01

    The Users of the LBL 88-Inch Cyclotron are preparing a proposal to produce exotic, i.e., radioactive beams. The facility will consist of a high-current 30 MeV cyclotron to generate the radioactive nuclei, an ECR source that can be coupled to different production targets, and the 88-Inch Cyclotron to accelerate the radioactive ions. Thus, the basic concept is that of the double cyclotron system pioneered at Louvain-la-Neuve, although the initial emphasis will be on producing a variety of light proton-rich beams at energies up to 10 MeV/A. At this workshop we wish to outline what is being planned, to invite comments and suggestions, and, especially, to encourage participation. We believe that this facility will be an important step toward establishing the scientific and technical basis for a National High Intensity Facility. This can be achieved through active participation by members of the radioactive beam (RB) community in (1) experiments with high quality radioactive beams of moderate intensity and, (2) R ampersand D on high beam-power targets and highly efficient ion sources. 5 refs., 4 figs

  17. Study of inclusive proton spectra from 20 MeV deuteron breakup by bismuth

    International Nuclear Information System (INIS)

    Badiger, N.M.; Hallur, B.R.; Madhusoodhanan, T.; Sathyavathiamma, M.P.; Puttaswamy, N.G.; Darshan, V.P.; Sharma, H.; Chintalapudi, S.N.

    1997-01-01

    The breakup of deuteron into proton and neutron has been studied earlier to understand the breakup mechanism. Inclusive measurements show the expected broad bumps near the beam velocity. In the present experiment, the breakup of 20 MeV deuterons by bismuth target has been investigated

  18. Efficient production and diagnostics of MeV proton beams from a cryogenic hydrogen ribbon

    International Nuclear Information System (INIS)

    Velyhan, A.; Giuffrida, L.; Scuderi, V.; Lastovicka, T.; Margarone, D.; Perin, J.P.; Chatain, D.; Garcia, S.; Bonnay, P.; Dostal, J.; Ullschmied, J.; Dudzak, R.; Krousky, E.; Cykhardt, J.; Prokupek, J.; Pfeifer, M.; Rosinski, M.; Krasa, J.; Brabcova, K.; Napoli, M. De

    2017-01-01

    A solid hydrogen thin ribbon, produced by the cryogenic system ELISE (Experiments on Laser Interaction with Solid hydrogEn) target delivery system, was experimentally used at the PALS kJ-laser facility to generate intense proton beams with energies in the MeV range. This sophisticated target system operating at cryogenic temperature (∼ 10 K) continuously producing a 62 μm thick target was combined with a 600 J sub-nanosecond laser pulse to generate a collimated proton stream. The accelerated proton beams were fully characterized by a number of diagnostics. High conversion efficiency of laser to energetic protons is of great interest for future potential applications in non-conventional proton therapy and fast ignition for inertial confinement fusion.

  19. Synchro-cyclotron

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    The electromagnetic coil which forms the first section of the proton extraction channel in the improved synchro-cyclotron. The photograph shows the positioning gear and the current septum. An extraction efficiency above 50% is expected.

  20. Ion-cyclotron-resonance- and Fourier-transform-ion-cyclotron-resonance spectroscopy: technology and application

    International Nuclear Information System (INIS)

    Luederwald, I.

    1977-01-01

    Instrumentation and technology of Ion-Cyclotron-Resonance and Fourier-Transform-Ion-Cyclotron-Resonance Spectroscopy are described. The method can be applied to studies of ion/molecule reactions in gas phase, to obtain thermodynamic data as gas phase acidity or basicity, proton and electron affinity, and to establish reaction mechanisms and ion structures. (orig.) [de

  1. Simulation study of neutron production in thick beryllium targets by 35 MeV and 50.5 MeV proton beams

    Science.gov (United States)

    Shin, Jae Won; Park, Tae-Sun

    2017-09-01

    A data-driven nuclear model dedicated to an accurate description of neutron productions in beryllium targets bombarded by proton beams is developed as a custom development that can be used as an add-on to GEANT4 code. The developed model, G4Data(Endf7.1), takes as inputs the total and differential cross section data of ENDF/B-VII.1 for not only the charge-exchange 9Be(p,n)9B reaction which produces discrete neutrons but also the nuclear reactions relevant for the production of continuum neutrons such as 9Be(p,pn)8Be and 9Be(p,n α) 5Li . In our benchmarking simulations for two experiments with 35 MeV and 50.5 MeV proton beams impinged on 1.16 and 1.05 cm thick beryllium targets, respectively, we find that the G4Data(Endf7.1) model can reproduce both the total amounts and the spectral shapes of the measured neutron yield data in a satisfactory manner, while all the considered hadronic models of GEANT4 cannot.

  2. Contribution to the study of the diffusion {alpha}-proton for {alpha} particles of 3,1 and 5,3 MeV; Contribution a l'etude de la diffusion {alpha}-proton pour des particules {alpha} d'energie comprise entre 3,1 et 5,3 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Ruhla, C [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    The diffusion of the particles has by the light cores that present a weak gate of potential, must permit the survey of the nuclear strengths. Some authors, studying the distribution in energy of the protons given out by a hydrogenated target submitted to a bombardment has variable energy, signal that this distribution has a structure of groups. We tried to reproduce experiences of diffusion {alpha}-proton, in order to verify the existence of the groups of signaled protons in the previous works. However in spite of finer experimental conditions, we had recovered any group structures in the distribution of the protons. This work permits to conclude that there is not a resonance in the {alpha}-proton diffusion for included energies between 3,1 and 5,3 MeV. The absence of resonances confirms the existence of the fundamental level of {sup 5}Li above in the neighborhood of 1,8 MeV {sup 4}He + {sup 1}H. (M.B.) [French] La diffusion des particules a par les noyaux legers qui presentent une faible barriere de potentiel, doit permettre l'etude des forces nucleaires. certains auteurs, etudiant la distribution en energie des protons emis par une cible hydrogenee soumise a un bombardement a d'energie variable, signalent que cette distribution a une structure de groupes. Nous avons essaye de reproduire les experiences du type diffusion {alpha}-proton, afin de verifier l'existence des groupes de protons signales dans les travaux anterieurs. Cependant malgre des conditions experimentales plus fines, nous n'avons retrouve aucunce structure de groupe dans la distribution des protons. Ce travail permet de conclure qu'il n'y a pas de resonance dans la diffusion {alpha}-proton pour des energies comprises entre 3,1 et 5,3 MeV. L'absence de resonances confirme l'existence du niveau fondamental de {sup 5}Li au voisinage de 1,8 MeV au-dessus de {sup 4}He + {sup 1}H. (M.B.)

  3. Beam stability of cyclotron accelerator for therapy at National Cancer Center Hospital East

    International Nuclear Information System (INIS)

    Nishio, T.; Ogino, T.; Shinbo, M.; Ikeda, H.; Tachikawa, T.; Kumata, Y.

    2000-01-01

    In 1997, the proton-treatment facility that has the therapeutic AVF cyclotron accelerator (C235), is constructed at National Cancer Center Hospital East. The facility has 3-irradiation ports (rooms) that are 2-rotationg gantry ports and 1-horizontal fixed port. The C235 can accelerate proton to 235 MeV with the beam intensity of 300 nA. The external diameter is a very compact with about 4 m. The radio frequency is 106 MHz, the accelerating voltage is about 60 kV, and the harmonic number is 4. A beam stability of the C235 has an important relation with the uniformity of an irradiation field and is a very difficulty. The measured result indicated that the incident beam position must be into the 0.5-mmφ circle. (author)

  4. Acoustic loss and frequency stability studies of gamma- and proton-irradiated alpha-quartz crystal resonators

    International Nuclear Information System (INIS)

    Suter, J.J.

    1988-01-01

    This work examines the radiation-induced effects in alpha-quartz crystal resonators and distinguishes the various acoustic losses responsible for the frequency susceptibility over these dose ranges. Simulation of low-earth-orbit proton radiation was accomplished with protons from the Harvard University Cyclotron using a novel proton-beam modulator, which was designed to emulate a 10-120 MeV proton spectrum for the radiation susceptibility and acoustic-loss studies on AT quartz resonators. Quartz resonators having aluminum defect center concentrations between 0.01 and 19 ppm experienced proton-induced frequency shifts not correlated to their aluminum impurity content. It was also found that AT quartz resonators of the electrode-less BVA design experienced the smallest frequency shifts. Experiments conducted with 1.25-MeV gamma rays from a cobalt 60 source demonstrated identical frequency shifts in quartz, indicating that the energy losses of gamma rays and protons in quartz over the examined dose and energy ranges were similar. Acoustic-loss measurements conducted over the 0.3-70 K range revealed that the phonon-phonon and two-level energy excitation peaks near 20 and 5 K, respectively, were not affected by proton or cobalt 60 radiation

  5. Si exfoliation by MeV proton implantation

    International Nuclear Information System (INIS)

    Braley, Carole; Mazen, Frédéric; Tauzin, Aurélie; Rieutord, François; Deguet, Chrystel; Ntsoenzok, Esidor

    2012-01-01

    Proton implantation in silicon and subsequent annealing are widely used in the Smart Cut™ technology to transfer thin layers from a substrate to another. The low implantation energy range involved in this process is usually from a few ten to a few hundred of keV, which enables the separation of up to 2 μm thick layers. New applications in the fields of 3D integration and photovoltaic wafer manufacturing raise the demand for extending this technology to higher energy in order to separate thicker layer from a substrate. In this work, we propose to investigate the effect of proton implantation in single crystalline silicon in the 1–3 MeV range which corresponds to a 15–100 μm range for the hydrogen maximum concentration depth. We show that despites a considerably lower hydrogen concentration at R p , the layer separation is obtained with fluence close to the minimum fluence required for low energy implantation. It appears that the fracture propagation in Si and the resulting surface morphology is affected by the substrate orientation. Defects evolution is investigated with Fourier Transform Infrared Spectroscopy. The two orientations reveal similar type of defects but their evolution under annealing appears to be different.

  6. Status and perspectives for the Pd-103 radioactive seeds production at the cyclotron IFIN-HH from Bucharest

    International Nuclear Information System (INIS)

    Dudu, D.; Popa, V.; Racolta, P.M.; Tetcu, N.; Voiculescu, Dana

    2001-01-01

    Historically, 103 Pb, a short-lived isotope for permanent implant treatment of early stage prostate cancer, was generated via the 102 Pd(n,γ) 103 Pd reaction which relied on the availability of 1% naturally abundant 102 Pd in an enriched form and its moderately high neutron capture cross section. For the last 12 years, the accelerator production method for 103 Pd has been based on the irradiation of the rhodium metal with rather low energy protons via the reaction 103 Rh(p,n) 103 Pd. Big corporations from USA operate more than 10 dedicated accelerators to produce this nuclide. The prostate cancer market with 180,000 new cases reported annually justifies the effort for this radionuclide production. Recently, a manufacture in Europe also brought the USA patented type of 103 Pd seed implants on the world market. Our interest for this radioisotope production was started in 2000, as a result of the demand of two big hospitals from Bucharest and the opportunity to participate in a research programme (333-F2-RC 832) co-ordinated by the IAEA in Vienna. The U-120 Cyclotron, made in 1956 and brought from Russia, was quite a reliable machine. The accelerator is a classical cyclotron with adjustable energy. Now at the level of our technology, we can maintain it by ourselves and operate it quite independently. The experiments for the first year were focused on obtaining homemade data on cross-section, thick target yields and possible contaminants for the nuclear reaction 103 Rh (p,n) 103 Pb in the proton energy region 5-14 MeV. The experiments were performed at our Van de Graaff HV Tandem FN 15 accelerator (8 MV on terminal) by using proton beams up to 14 MeV with a current intensity of 100 nA. Design and adaptation of a dedicated beam line at IFIN-HH Cyclotron for the 103 production was a priority in our work planning for the first year

  7. Proton induced nuclear reactions on cadmium up 17 MeV

    International Nuclear Information System (INIS)

    Al-Abyad, M.

    2012-01-01

    The cross-sections of proton induced reactions on nat Cd targets was studied in the energy range from threshold up to 17 MeV, using a stacked-foil irradiation technique and classical gamma-spectroscopy. We measured the formation cross-sections of the radioisotopes 109g,110m,110,111g,113m,114m,115m,116m In The obtained excitation functions were compared with the earlier published data and the theoretical model calculations by the codes ALICE-IPPE, EMPIRE and TALYS .

  8. Parity Nonconservation in Proton-water Scattering at 800 MeV

    Science.gov (United States)

    Nagle, D. E.; Bowman, J. D.; Carlini, R.; Mischke, R. E.; Frauenfelder, H.; Harper, R. W.; Yuan, V.; McDonald, A. B.; Talaga, R.

    1982-01-01

    A search has been made for parity nonconservation in the scattering of 800 MeV polarized protons from an unpolarized water target. The result is for the longitudinal asymmetry, A{sub L} = +(6.6 +- 3.2) x 10{sup -7}. Control runs with Pb, using a thickness which gave equivalent beam broadening from Coulomb multiple scattering, but a factor of ten less nuclear interactions than the water target, gave A{sub L} = -(0.5 +- 6.0) x 10{sup -7}.

  9. Measurements and Monte Carlo calculations of forward-angle secondary-neutron-production cross-sections for 137 and 200 MeV proton-induced reactions in carbon

    Science.gov (United States)

    Iwamoto, Yosuke; Hagiwara, Masayuki; Matsumoto, Tetsuro; Masuda, Akihiko; Iwase, Hiroshi; Yashima, Hiroshi; Shima, Tatsushi; Tamii, Atsushi; Nakamura, Takashi

    2012-10-01

    Secondary neutron-production double-differential cross-sections (DDXs) have been measured from interactions of 137 MeV and 200 MeV protons in a natural carbon target. The data were measured between 0° and 25° in the laboratory. DDXs were obtained with high energy resolution in the energy region from 3 MeV up to the maximum energy. The experimental data of 137 MeV protons at 10° and 25° were in good agreement with that of 113 MeV protons at 7.5° and 30° at LANSCE/WNR in the energy region below 80 MeV. Benchmark calculations were carried out with the PHITS code using the evaluated nuclear data files of JENDL/HE-2007 and ENDF/B-VII, and the theoretical models of Bertini-GEM and ISOBAR-GEM. For the 137 MeV proton incidence, calculations using JENDL/HE-2007 generally reproduced the shape and the intensity of experimental spectra well including the ground state of the 12N state produced by the 12C(p,n)12N reaction. For the 200 MeV proton incidence, all calculated results underestimated the experimental data by the factor of two except for the calculated result using ISOBAR model. ISOBAR predicts the nucleon emission to the forward angles qualitatively better than the Bertini model. These experimental data will be useful to evaluate the carbon data and as benchmark data for investigating the validity of the Monte Carlo simulation for the shielding design of accelerator facilities.

  10. Pion production from deuterium by the bombardment with polarized protons of 277 and 500 MeV

    International Nuclear Information System (INIS)

    Lolos, G.J.; Auld, E.G.; Giles, G.; Jones, G.; McParland, B.; Ottewell, D.; Walden, P.L.; Zeigler, W.

    1982-11-01

    Analyzing power measurements of the (anti) pd → tπ + reaction are reported at incident proton energies of 277 and 500 MeV. The 277 MeV results span the angular range from 70 0 to 130 0 in the centre of mass while the two 500 MeV measurements at large angles were taken as a check of published results. With the angular distribution of the analyzing power at 277 MeV being now available, an examination of the energy dependence of the analyzing power shows that it exhibits characteristics closely resembling the shape and magnitude of the distribution observed for nuclei in the 9-12 mass range

  11. Dose determination of 600 MeV proton irradiated specimens

    International Nuclear Information System (INIS)

    Gavillet, D.

    1991-01-01

    The calculation method for the experimental determination of the atomic production cross section from the γ activity measurements are presented. This method is used for the determination of some isotope production cross sections for 600 MeV proton irradition in MANET steel, copper, tungsten, gold and titanium. The results are compared with some calculation. These values are used to determine the dose of specimens irradiated in the PIREX II facility. The results are discussed in terms of the irradiation parameters. A guide for the use of the production cross section determined in the dosimetry experiment are given. (author) tabs., refs

  12. Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis

    Science.gov (United States)

    Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.

    2016-01-01

    Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.

  13. Probability of spin flipping of proton with energy 6.9 MeV at inelastic scattering with sup(54,56)Fe nuclei

    International Nuclear Information System (INIS)

    Prokopenko, V.S.; Sklyarenko, V.; Chernievskij, V.K.; Shustov, A.V.

    1980-01-01

    Spin-orbital effects of inelastic scattering of protons by nuclei with mean atomic weight are investigated along with the mechanisms of the reaction course by measuring proton spin flip. The experiment consists in measuring proton-gamma coincidences in mutually perpendicular planes by the technique of quick-slow coincidences. The excitation function of the 56 Fe(P,P 1 ) reaction is measured in the 3.5-6.2 MeV energy range. Angular dependences of probability of proton spin flip (a level of 2 + , 0.847 MeV) are measured at energies of incident protons of 4.96; 5.58 and 5.88 MeV. Measurements of probabilities of proton spin flipping at inelastic scattering by sup(54,56)Fe nuclei are performed in the process of studying spin-orbital effects and mechanisms of the reaction course. A conclusion is made that the inelastic scattering process in the energy range under investigation is mainly realized by two equivalent mechanisms: direct interaction and formation of a compound nucleus. Angular dependences for 54 Fe and 56 Fe noticeably differ in the values of probability of spin flip in the angular range of 50-150 deg

  14. Design calculation for the central region of the NSCL 500 MeV superconducting cyclotron

    International Nuclear Information System (INIS)

    Marti, F.; Gordon, M.M.; Chen, M.B.; Salgado, C.; Antaya, T.; Liukkonen, E.

    1982-01-01

    The 500 MeV superconducting cyclotron has three 60 0 dees within the magnet valleys, and the design of the central region is complicated because it must accommodate the inner tips of these dees, the tips of the three intervening dummy dees, and the ion source, all within a very small space. In addition, this cyclotron is designed to operate on harmonics from h=1 to 7, with dee voltages up to 100 kV, and must accelerate a wide variety of heavy ions with turn numbers from n=100 to 600. To satisfy these diverse requirement, the overall plan for the central region calls for the construction and use of many different, but readily interchangeable sets of electrode structures with each set designed for a different range of operating conditions. The procedure for determining the optimum geometry for a set of electrodes involves a converging sequence of tentative designs each of which is tested and improved through a combination of electrolytic tank measurements and orbit computations. For this purpose, the speed and accuracy of the tank measurements have been improved, and the resultant potentials are used in our computer programs to determine whether the ion orbits clear the obstacles successfully, gain energy efficiently, receive adequate vertical focusing, and finally emerge from the central region properly centered. The vertical motion computations are by far the most difficult, and a special effort has been made to obtain satisfactory results

  15. Backward emission mechanism of energetic protons studied from two-particle correlations in 800 MeV proton-nucleus collisions

    International Nuclear Information System (INIS)

    Miake, Yasuo

    1982-07-01

    The production mechanism of backward energetic protons was studied in 800 MeV proton-nucleus collision from the measurement of two-particle correlation over a wide range of kinematic regions. The backward energetic protons at 118 deg were measured in coincidence with the particles emitted in the angular range from 15 deg to 100 deg. Both in-plane and out-of-plane coincidences were measured. The backward energetic protons were detected with a delta E-E counter in a momentum region from 350 to 750 MeV/c, whereas the coincident particles were detected with a magnetic spectrometer in the momentum region from 450 to 2000 MeV/c. The reaction process of the backward protons were decomposed into six categories by the measurement of the associated particles, p or d. The momentum spectra, angular distribution and the target mass dependence of these components were studied. The component of p-p QES was well reproduced by the PW1A model, but the backward energetic protons were not from this process. The momenta of two nucleons inside the quasi-deuteron are highly correlated. The components of p-p non-QES and p-p out-of-plane are the main components of the backward energetic proton production. (Kako, I.)

  16. Large-amplitude, circularly polarized, compressive, obliquely propagating electromagnetic proton cyclotron waves throughout the Earth's magnetosheath: low plasma β conditions

    Energy Technology Data Exchange (ETDEWEB)

    Remya, B.; Reddy, R. V.; Lakhina, G. S. [Indian Institute of Geomagnetism, Kalamboli Highway, New Panvel, Navi Mumbai, Maharashtra (India); Tsurutani, B. T.; Falkowski, B. J. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Echer, E. [Instituto Nacional de Pesquisas Espaciais (INPE), Avenida Astronautas, 1758, P.O. Box 515, Sao Jose dos Campos, SP (Brazil); Glassmeier, K.-H., E-mail: remyaphysics@gmail.com [Institute for Geophysics and Extraterrestrial Physics (IGEP), Mendelssohnstr.3, D-38106, Braunschweig (Germany)

    2014-09-20

    During 1999 August 18, both Cassini and WIND were in the Earth's magnetosheath and detected transverse electromagnetic waves instead of the more typical mirror-mode emissions. The Cassini wave amplitudes were as large as ∼14 nT (peak to peak) in a ∼55 nT ambient magnetic field B {sub 0}. A new method of analysis is applied to study these waves. The general wave characteristics found were as follows. They were left-hand polarized and had frequencies in the spacecraft frame (f {sub scf}) below the proton cyclotron frequency (f{sub p} ). Waves that were either right-hand polarized or had f {sub scf} > f{sub p} are shown to be consistent with Doppler-shifted left-hand waves with frequencies in the plasma frame f{sub pf} < f{sub p} . Thus, almost all waves studied are consistent with their being electromagnetic proton cyclotron waves. Most of the waves (∼55%) were found to be propagating along B {sub 0} (θ{sub kB{sub 0}}<30{sup ∘}), as expected from theory. However, a significant fraction of the waves were found to be propagating oblique to B {sub 0}. These waves were also circularly polarized. This feature and the compressive ([B {sub max} – B {sub min}]/B {sub max}, where B {sub max} and B {sub min} are the maximum and minimum field magnitudes) nature (ranging from 0.27 to 1.0) of the waves are noted but not well understood at this time. The proton cyclotron waves were shown to be quasi-coherent, theoretically allowing for rapid pitch-angle transport of resonant protons. Because Cassini traversed the entire subsolar magnetosheath and WIND was in the dusk-side flank of the magnetosheath, it is surmised that the entire region was filled with these waves. In agreement with past theory, it was the exceptionally low plasma β (0.35) that led to the dominance of the proton cyclotron wave generation during this interval. A high-speed solar wind stream ((V{sub sw} ) = 598 km s{sup –1}) was the source of this low-β plasma.

  17. Proposal for an irradiation facility at the TAEK SANAEM Proton Accelerator Facility

    Science.gov (United States)

    Demirköz, B.; Gencer, A.; Kiziloren, D.; Apsimon, R.

    2013-12-01

    Turkish Atomic Energy Authority's (TAEK's) Proton Accelerator Facility in Ankara, Turkey, has been inaugurated in May 2012 and is under the process of being certified for commercial radio-isotope production. Three of the four arms of the 30 MeV cyclotron are being used for radio-isotope production, while the fourth is foreseen for research and development of novel ideas and methods. The cyclotron can vary the beam current between 12 μA and 1.2 mA, sufficient for irradiation tests for semiconductor materials, detectors and devices. We propose to build an irradiation facility in the R&D room of this complex, open for use to the international detector development community.

  18. Cyclotron production, radiochemical separation and quality control of platinum radiotracers for toxicological studies

    International Nuclear Information System (INIS)

    Bonardi, M.; Birattari, C.; Groppi, F.; Arginelli, D.; Gini, L.; Gallorini, M.

    1998-01-01

    The increasing concentration of Pt, Pd and Rh in the environment is mainly due to the release of these elements from the catalytic converters of the motorvehicles. This situation makes it necessary to carry out metallotoxicological experiments on both cell cultures and laboratory animals, in order to assess their impact on living organisms after a Long Term and Low Level Exposure (LLE). Both nuclear reactions nat Ir(p,xn) and nat Os(α,xn) were investigated in the energy range up to 45 MeV for protons and 38 MeV for alpha-particles, in order to optimize the irradiation parameters for the production of 188,189,191 Pt. Several sets of thin- and thick-target excitation functions were determined experimentally by cyclotron irradiation at both Milano and Ispra cyclotrons. This paper reports the irradiation parameters studied and adopted and two radiochemical procedures for the separation of radio-Pt from an Os target, as well as from ruthenium, iridium and gold impurities. These procedures were used to obtain very high specific activity Pt radionuclides in No Carrier Added (NCA) form. Radionuclidic, radiochemical and chemical purity measurements were carried out by the use of several techniques like γ-spectrometry, ion-exchange radio-chromatography, atomic absorption spectrometry and neutron activation analysis. (author)

  19. Proton therapy with spot scanning: the Rinecker Proton Therapy Center in Munich. Part 2: Technical and physical aspects

    International Nuclear Information System (INIS)

    Borchert, H. J.; Mayr, M.; Schneider, R. A.; Arnold, M. R.; Geismar, D. E.; Wilms, M.; Wisser, L.; Herbst, M.

    2008-01-01

    The Rinecker Proton Therapy Center (RPTC) in Munich is about to introduce into clinical radiation therapy, a 2D scanning technique (spot scanning) of a single proton pencil beam. It will be available at four gantries and a fifth treatment room allocates a fixed beam unit for a scattering technique. A superconducting cyclotron extracts protons with a constant energy of 250 MeV. Far upstream of the patient follows modulation of the energy with a degrader according to the prescription of the patients treatment planning. A 10 mm pencil beam at full width of half maximum (FWHM) will enable scanning of individual tumour volumes at any depth i.e. 1 minute for a target volume of 1 litre and a dose of 2 Gy. Innovative solutions will be established for other important issues such as dosimetric monitoring, safety concepts and positioning of the patient. The physical characteristics of proton beam spot scanning offer exceptional possibilities in conformal radiation therapy. Together with intensity modulated proton therapy (IMPT) it significantly improves the sparing of organs at risk and of healthy tissues. (author)

  20. Nuclear elemental analyses with a cyclotron on biomedical samples

    International Nuclear Information System (INIS)

    Quaedackers, J.A.; Voigt, M.J.A. de; Mutsaers, P.H.A.; Goeij, J.J.M. de; Vusse, G.J. van der

    1999-01-01

    The Eindhoven scanning proton microprobe enables the determination of the ion content of heart tissue on a sub-cellular scale. It is shown that intra-cellular elemental concentrations can be determined. Measurements are carried out for physiological and patho-physiological rat heart muscle tissue. Important alterations in Na and K concentrations are reported as measured with PIXE, RBS and NFS techniques employing a variable energy cyclotron (3-30 MeV). However, quantitative intra-cellular determinations are hampered by the presence of extra-cellular space (ECS). For this purpose, cobaltic ethylene-diamine-tetra-acetic-acid (Co(III)EDTA) was used as an exogenic ECS marker. The intra-cellular ion concentrations of normoxic tissue after correction for the ECS agree well with the literature values

  1. Splash albedo protons between 4 and 315 MeV at high and low geomagnetic latitudes

    International Nuclear Information System (INIS)

    Wenzel, K.; Stone, E.C.; Vogt, R.E.

    1975-01-01

    The differential energy spectrum of splash albedo protons has been measured at high geomagnetic latitude near Fort Churchill, Manitoba, at three periods of the solar cycle in 1966, and 1969 and at low latitude near Palestine, Texas, in 1967 by using a balloon-borne solid state detector telescope. We observed splash albedo proton fluxes between 4 and 315 MeV of 81plus-or-minus11, 70plus-or-minus11, and 48plus-or-minus8 protons/(m 2 s sr) at high latitude in 1966, 1967, and 1969 and of 37plus-or-minus9 protons/(m 2 s sr) at low latitude in 1967. The decreases from 1966 to 1969 are due to solar modulation of the cosmic ray parent nuclei. The albedo spectrum shows a similar shape for both latitudes. The difference in intensity can be explained by different local geomagnetic cutoffs; i.e., a significant contribution to the splash albedo flux arises from primary particles with rigidity below 4.5 GV. The splash albedo flux near Fort Churchill is consistent with corresponding fluxes previously reported near 53degree--55degreeN. The flux below 100 MeV near Palestine is significantly lower than that reported by Verma (1967)

  2. Color centers of a borosilicate glass induced by 10 MeV proton, 1.85 MeV electron and 60Co-γ ray

    Science.gov (United States)

    Du, Jishi; Wu, Jiehua; Zhao, Lili; Song, Lixin

    2013-05-01

    Optical absorption spectra, electron paramagnetic resonance (EPR) spectra, Raman spectra of a borosilicate glass after irradiation by 10 MeV proton, 1.85 MeV electron and 60Co-γ ray were studied. The process of irradiation inducing color centers in the glass was discussed. The band gap of the glass before and after 60Co-γ ray irradiation was studied using Mott and Davis's theory, and it was found that calculated change of the band gap introduced a paradox, because Mott and Davis's theory on the band gap cannot be adopted in the study on the irradiated glass.

  3. Proton radiotherapy facility for ocular tumours at IFJ PAN in Krakow, Poland

    International Nuclear Information System (INIS)

    Michalec, Barbara; Swakon, Jan; Sowa, Urszula; Olko, Pawe

    2008-01-01

    Full text: Uveal melanoma is the most common human intraocular tumor in adult patient. Overall annual incidence is 5-7 cases per million/year and it is higher amongst fair skinned pale eyed individuals. There is about 100 cases of new diagnosed uveal melanoma per year in Poland. Presently, the clinically recommended therapy of intraocular melanoma is radiotherapy with a proton beam of initial energy 55-80 MeV. The unique properties of the Bragg curve enable a precise delivery of a high dose of radiation to the tumor region and the simultaneous spare of critical organs and healthy tissues. In most patients treated with proton radiotherapy, 5-year patient survivals of 95% as well as vision in the treated eye were achieved. The Institute of Nuclear Physics (IFJ) in Cracow, in cooperation with the Clinic of Ophthalmology and Ocular Oncology of the Collegium Medicum, Jagiellonian University and the Krakow Branch of the Maria Sklodowska-Curie Memorial Centre of Oncology, is carrying out a project of designing and operating a proton ocular radiotherapy facility in which the 55-60 MeV proton beam accelerated in the AIC-144 isochronous cyclotron of IFJ is applied. The proton beam from the cyclotron is delivered to the therapeutic room where it is formed and monitored. The facility has been equipped with beam forming and beam monitoring elements (a range shifter, a range modulator, set of collimators for beam forming and a Spread Out Bragg Peak measuring system, an X direction scanner, an XYZ scanner for beam monitoring) as well as with some detectors dedicated for beam dosimetry. A patient positioning system i.e. the eye therapeutic chair made by Schaer Engineering which enables the patient's positioning and immobilizing with precision of tenth of millimetre has been installed. The patient's eye positioning system is ready too. The X ray system, used for eye positioning and irradiation area localization has been installed. The dosimetric system, which monitors neutron and

  4. Gold nanoparticles production using reactor and cyclotron based methods in assessment of {sup 196,198}Au production yields by {sup 197}Au neutron absorption for therapeutic purposes

    Energy Technology Data Exchange (ETDEWEB)

    Khorshidi, Abdollah, E-mail: abkhorshidi@yahoo.com

    2016-11-01

    Medical nano-gold radioisotopes is produced regularly using high-flux nuclear reactors, and an accelerator-driven neutron activator can turn out higher yield of {sup 197}Au(n,γ){sup 196,198}Au reactions. Here, nano-gold production via radiative/neutron capture was investigated using irradiated Tehran Research Reactor flux and also simulated proton beam of Karaj cyclotron in Iran. {sup 197}Au nano-solution, including 20 nm shaped spherical gold and water, was irradiated under Tehran reactor flux at 2.5E + 13 n/cm{sup 2}/s for {sup 196,198}Au activity and production yield estimations. Meanwhile, the yield was examined using 30 MeV proton beam of Karaj cyclotron via simulated new neutron activator containing beryllium target, bismuth moderator around the target, and also PbF{sub 2} reflector enclosed the moderator region. Transmutation in {sup 197}Au nano-solution samples were explored at 15 and 25 cm distances from the target. The neutron flux behavior inside the water and bismuth moderators was investigated for nano-gold particles transmutation. The transport of fast neutrons inside bismuth material as heavy nuclei with a lesser lethargy can be contributed in enhanced nano-gold transmutation with long duration time than the water moderator in reactor-based method. Cyclotron-driven production of βeta-emitting radioisotopes for brachytherapy applications can complete the nano-gold production technology as a safer approach as compared to the reactor-based method. - Graphical abstract: This figure describes gold nanoparticles production via cyclotron based method. The aim of investigating is to estimate activity and saturation yield of {sup 197}Au(n,γ){sup 198}Au and {sup 197}Au(n,2n){sup 196}Au reactions using Karaj cyclotron available in Iran. The feasibility of a cyclotron-driven production of βeta-emitting radioisotopes was investigated for therapeutic applications via a new neutron activator design. - Highlights: • Nano-gold radioisotope production

  5. Measurement and microscopic analysis of the 11B(p,p') reaction at Ep = 150 MeV. Part I: Inelastic scattering

    International Nuclear Information System (INIS)

    Hannen, V.M.; Van den Berg, A.M.; Bieber, R.K.; Harakeh, M.N.; De Huu, M.A.; Kruesemann, B.A.M.; Van der Werf, S.Y.; Woertche, H.J.; Amos, K.; Deb, P.K.; Ellinghaus, F.; Frekers, D.; Rakers, S.; Schmidt, R.; Hagemann, M.

    2001-01-01

    Cross sections and analyzing powers for the 11 B(p.p') reaction have been measured using a 150 MeV polarized proton beam from the AGOR cyclotron at KVI. For the stronger inelastic transitions, also spin-flip probabilities have been extracted. A fully microscopic distorted-wave analysis of the elastic and inelastic data has been made, using density-dependent effective interactions and input from shell-model calculations in a complete (0+2) ℎω model space for normal parity transitions and in a 1 ℎω model space for non-normal parity transitions. With the help of these model calculations spin-isovector M1 strengths for the negative-parity states at excitation energies of 2.125 MeV (J π = 1/2 - ), 4.445 MeV (J π 5/2 - ), 5.020 MeV (J π = 3/2 - ) and 8.920 MeV (J π 5/2 - ) have been extracted and compared to known Gamow-Teller strengths for the analog transitions to 11 C

  6. Calculation of particle dynamics in CI-10 cyclotron

    International Nuclear Information System (INIS)

    Samsonov, E.V.; Karamysheva, G.A.; Vorozhtsov, S.B.

    1999-01-01

    The calculations of beam dynamic characteristics of High-Intensity Cyclotron-Injector CI-10 for deuteron beam of 15 MeV energy are presented. Analytical estimations of space charge effects are given. In order to increase the intensity of the accelerator beam some ideas about the cyclotron design modification are given too. (author)

  7. Cross sections from 800 MeV proton irradiation of terbium

    Energy Technology Data Exchange (ETDEWEB)

    Engle, J.W., E-mail: jwengle@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mashnik, S.G.; Bach, H.; Couture, A.; Jackman, K.; Gritzo, R.; Ballard, B.D.; Fassbender, M.; Smith, D.M.; Bitteker, L.J.; Ullmann, J.L.; Gulley, M.S.; Pillai, C.; John, K.D.; Birnbaum, E.R. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Nortier, F.M., E-mail: meiring@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2012-11-02

    Terbium foils were irradiated with 800 MeV protons to ascertain the potential for production of lanthanide isotopes of interest in medical, astrophysical, and basic science research and to contribute to nuclear data repositories. Isotopes produced in the foil were quantified by gamma spectroscopy. Cross sections for 35 isotopes produced in the irradiation are reported and compared with predictions by the MCNP6 transport code using the CEM03.03, Bertini and INCL + ABLA event generators. Our results indicate the need to accurately consider fission and fragmentation of relatively light target nuclei like terbium in the modeling of nuclear reactions at 800 MeV. The predictive power of the code was found to be different for each event generator tested but was satisfactory for most of the product yields in the mass region where spallation reactions dominate. However, none of the event generators' results are in complete agreement with measured data.

  8. Mass-yield distributions of fission products from 20, 32, and 45 MeV proton-induced fission of {sup 232}Th

    Energy Technology Data Exchange (ETDEWEB)

    Naik, H.; Goswami, A. [Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Kim, G.N.; Kim, K. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Suryanarayana, S.V. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India)

    2013-10-15

    The yields of various fission products in the 19.6, 32.2, and 44.8 MeV proton-induced fission of {sup 232}Th have been determined by recoil catcher and an off-line {gamma}-ray spectrometric technique using the BARC-TIFR Pelletron in India and MC-50 cyclotron in Korea. The mass-yield distributions were obtained from the fission product yield using the charge distribution corrections. The peak-to-valley (P/V) ratio of the present work and that of literature data for {sup 232}Th(p,f) and {sup 238}U(p,f) were obtained from the mass yield distribution. The present and the existing literature data for {sup 232}Th(p,f), {sup 232}Th(n,f), and {sup 232}Th({gamma},f) at various energies were compared with those for {sup 238}U(p,f), {sup 238}U(n,f), and {sup 238}U({gamma},f) to examine the probable nuclear structure effect. The role of Th-anomaly on the peak-to-valley ratio in proton-, neutron-, and photon-induced fission of {sup 232}Th was discussed with the similar data in {sup 238}U. On the other hand, the fine structure in the mass yield distributions of the fissioning systems at various excitation energies has been explained from the point of standard I and II asymmetric mode of fission besides the probable role of even-odd effect, A/Z ratio, and fissility parameter. (orig.)

  9. Proton continuum spectra from deuteron break-up at 56 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, N.; Kondo, M.; Shimizu, A.; Saito, T.; Nagamachi, S. [Osaka Univ., Suita (Japan). Research Center for Nuclear Physics; Sakaguchi, H.; Ohtani, F.; Goto, A.; Ikegami, H.; Muraoka, M [eds.

    1980-01-01

    Proton continuum spectra from deuteron break-up have been measured for 14 elements at 56 MeV. Each spectrum shows a prominent bump at forward angles. Projectile break-up calculations reproduce well the spectral shapes and the angular dependence of the bump spectra. The break-up cross section is nearly proportional to (A sup(1/3) + 0.8)/sup 2/. The total break-up cross section amounts to 24 - 35% of the deuteron total reaction cross section.

  10. Electromagnetic Ion Cyclotron Waves in the Helium Branch Induced by Multiple Electromagnetic Ion Cyclotron Triggered Emissions

    Science.gov (United States)

    Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.

    2011-12-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  11. Specific features of the desion of a cyclotron for radioisotope production

    International Nuclear Information System (INIS)

    Akulova, N.V.; Bogdanov, P.V.; Ivanov, V.V.

    1979-01-01

    Results of development of an isochronous cyclotron for commercial production of Co 57 and Ga 67 isotopes are described. The accelerator is intended for proton acceleration up to 25 MeV at 1000-1500 mA intensity of inner beam and 200 mA intensity of external beam. An axial ion source with a hot cathode will be used in the cyclotron. Outer diameter of armour type electromagnet is 3130 mm, mass - 75 t, diameter of poles-150 cm and mean induction of magnetic field in a working gap amounts to 12 kgs. Accelerating chamber vessel is made of steel in the form of thick-wall hollow cylinder having 3130 mm outer diameter, 330 mm thickness and 380 mm height. Resonance system represents a quarter-wave line operating on 16.6 MHZ-frequency. Vacuum system is designed to produce and maintain residual pressure of 6.7x10 -4 Pa and 2.7x10 -3 Pa in the accelerating chamber which can be provided with two NDM-2 ion-getter pumps with an arc evaporator. The suggested constructive solution for electromagnet, accelerating chamber of the cyclotron and pumping system permitted to arrange the accelerator on the whole and to considerably decrease the level of ionizing radiations inside the chamber [ru

  12. Ultrafast laser driven micro-lens to focus and energy select MeV protons

    International Nuclear Information System (INIS)

    Toncian, Toma

    2008-05-01

    A technique for simultaneous focusing and energy selection of high-current, MeV proton beams using radial, transient electric fields (10 7 -10 10 V/m) triggered on the inner wall of a hollow micro-cylinder by an intense, sub-picosecond laser-pulse is presented. Due to the transient nature of the radial focusing field, the proposed method allows selection of a desired range out of the spectrum of the poly-energetic proton beam. This technique addresses current drawbacks of laser-accelerated proton beams, i.e. their broad spectrum and divergence at the source. This thesis presents both experimental and computational studies that led to the understanding of the physical processes driving the micro-lens. After an one side irradiation of a hollow metallic cylinder a radial electric field develops inside the cylinder. Hot electrons generated by the interaction between laser pulse and cylinder wall spread inside the cylinder generating a plasma at the wall. This plasma expands into vacuum and sustains an electric field that acts as a collecting lens on a proton beam propagating axially through the cylinder. Both focusing and the reduction of the intrinsic beam divergence from 20 deg to.3 deg for a narrow spectral range was demonstrated. By sub-aperturing the beam a narrow spectral range (δε/ε < 3%) was selected from the poly-energetic beam. The micro-lens properties are tunable allowing for optimization towards applications. Optical probing techniques and proton imaging were employed to study the spacial and temporal evolution of the field and revealed a complex physical scenario of the rise and decay of the radial electric field. Each aspect studied experimentally is interpreted using 2D PIC and ray tracing simulations. A very good agreement between the experimental and computational data is found. The PIC simulations are used to upscale the demonstrated micro-lens capabilities to the focusing of a 270 MeV proton beam, an energy relevant for medical applications such

  13. Tensile properties of several 800 MeV proton-irradiated bcc metals and alloys

    International Nuclear Information System (INIS)

    Brown, R.D.; Wechsler, M.S.; Tschalar, C.

    1987-01-01

    A spallation neutron source for the 600-MeV proton accelerator facility at the Swiss Institute for Nuclear Research (SIN) consists of a vertical cylinder filled with molten Pb-Bi. The proton beam enters the cylinder, passing upward through a window in contact with the Pb-Bi eutectic liquid that must retain reasonable strength and ductility upon irradiation at about 673 K to fluence of about 1 x 10/sup 25/ protons/m/sup 2/. Investigations are underway at the 800-MeV proton accelerator at the Los Alamos Meson Physics Facility (LAMPF) to test the performance of candidate SIN window materials under appropriate conditions of temperature, irradiation, and environment. Based on considerations of chemical compatibility with molten Pb-Bi, as well as interest in identifying fundamental radiation damage mechanisms, Fe, Ta, Fe-2.25Cr-1Mo, and Fe-12Cr-1Mo(HT-9) were chosen as candidate materials. Sheet tensile samples, 0.5-mm thick, of the four materials were fabricated and heat treated. The samples were sealed inside capsules containing Pb-Bi and were proton-irradiated at LAMPF to two fluences, 4.8 and 54 x 10/sup 23/ p/m/sup 2/. The beam current was approximately equal to the 1 mA anticipated for the upgraded SIN accelerator. The power deposited by the proton beam in the capsules was sufficient to maintain sample temperatures of about 673 K. Post-irradiation tensile tests were conducted at room temperature at a strain rate of 9 x 10/sup -4/s/sup -1/. The yield and ultimate strengths increased upon irradiation in all materials, while the ductility decreased, as indicated by the uniform strain. The pure metals, Ta and Fe, exhibited the greatest radiation hardening and embrittlement. The HT-9 alloy showed the smallest changes in strength and ductility. The increase in strength following irradiation is discussed in terms of a dispersed-barrier hardening model, for which the barrier sizes and formation cross sections are calculated

  14. Ultrafast laser driven micro-lens to focus and energy select MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Toncian, Toma

    2008-05-15

    A technique for simultaneous focusing and energy selection of high-current, MeV proton beams using radial, transient electric fields (10{sup 7}-10{sup 10} V/m) triggered on the inner wall of a hollow micro-cylinder by an intense, sub-picosecond laser-pulse is presented. Due to the transient nature of the radial focusing field, the proposed method allows selection of a desired range out of the spectrum of the poly-energetic proton beam. This technique addresses current drawbacks of laser-accelerated proton beams, i.e. their broad spectrum and divergence at the source. This thesis presents both experimental and computational studies that led to the understanding of the physical processes driving the micro-lens. After an one side irradiation of a hollow metallic cylinder a radial electric field develops inside the cylinder. Hot electrons generated by the interaction between laser pulse and cylinder wall spread inside the cylinder generating a plasma at the wall. This plasma expands into vacuum and sustains an electric field that acts as a collecting lens on a proton beam propagating axially through the cylinder. Both focusing and the reduction of the intrinsic beam divergence from 20 deg to.3 deg for a narrow spectral range was demonstrated. By sub-aperturing the beam a narrow spectral range ({delta}{epsilon}/{epsilon} < 3%) was selected from the poly-energetic beam. The micro-lens properties are tunable allowing for optimization towards applications. Optical probing techniques and proton imaging were employed to study the spacial and temporal evolution of the field and revealed a complex physical scenario of the rise and decay of the radial electric field. Each aspect studied experimentally is interpreted using 2D PIC and ray tracing simulations. A very good agreement between the experimental and computational data is found. The PIC simulations are used to upscale the demonstrated micro-lens capabilities to the focusing of a 270 MeV proton beam, an energy relevant

  15. Anomalous effects in silicon solar cell irradiated by 1-MeV protons

    Science.gov (United States)

    Kachare, R.; Anspaugh, B. E.

    1989-01-01

    Several silicon solar cells having thicknesses of approximately 63 microns, with and without back-surface fields (BSF), were irradiated with 1-MeV protons having fluences between 10 to the 10th and 10 to the 12th sq cm. The irradiations were performed using both normal and isotropic incidence on the rear surfaces of the cells. It was observed that after irradiation with fluences greater than 10 to the 11th protons/sq cm, all BSF cells degraded at a faster rate than cells without BSF. The irradiation results are analyzed using a model in which irradiation-induced defects in the BSF region are taken into account. Tentatively, it is concluded that an increase in defect density due to the formation of aluminum and proton complexes in BSF cells is responsible for the higher-power loss in the BSF cells compared to the non-BSF cells.

  16. Ion source and injection line for high intensity medical cyclotron

    Science.gov (United States)

    Jia, XianLu; Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-01

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H- ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H- ion source (CIAE-CH-I type) and a short injection line, which the H- ion source of 3 mA/25 keV H- beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  17. Cross sections for pion, proton, and heavy-ion production from 800 MeV protons incident upon aluminum and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dicello, J.F. (Clarkson Univ., Potsdam, NY (USA)); Schillaci, M.E.; Liu Lonchang (Los Alamos National Lab., NM (USA))

    1990-01-01

    When high-energy cosmic rays interact with electronics or other materials in a spacecraft, including the occupants themselves, pions are produced as secondary particles. These secondary pions interact further in the materials producing nuclear secondaries, including nuclear recoils and heavy-ion tertiaries. The secondary pions and the the tertiary particles are capable of producing single-event upsets and other damage in integrated circuits and damage in biological systems. Negative pions stopping in materials are particularly effective because of their unique ability to produce short-range heavy particles from pion stars. With the Los Alamos National Laboratory's version of the intranuclear cascade evaporation code, VEGAS, we have calculated the number of pions produced per energy interval per incident proton from 800 MeV protons on aluminum-27 and silicon-28 along with corresponding results for neutrons, protons, and heavier ions. (orig.).

  18. Inclusive proton spectra and total reaction cross sections for proton-nucleus scattering at 800 MeV

    International Nuclear Information System (INIS)

    McGill, J.A.

    1981-08-01

    Current applications of multiple scattering theory to describe the elastic scattering of medium energy protons from nuclei have been shown to be quite successful in reproducing the experimental cross sections. These calculations use the impulse approximation, wherein the scattering from individual nucleons in the nucleus is described by the scattering amplitude for a free nucleon. Such an approximation restricts the inelastic channels to those initiated by nucleon-nucleon scattering. As a first step in determining the nature of p + nucleus scattering at 800 MeV, both total reaction cross sections and (p,p') inclusive cross sections were measured and compared to the free p + p cross sections for hydrogen, deuterium, calcium 40, carbon 12, and lead 208. It is concluded that as much as 85% of all reactions in a nucleus proceed from interactions with a single nucleon in the nucleus, and that the impulse approximation is a good starting point for a microscopic description of p + nucleus interactions at 800 MeV

  19. Measurement of the angular distribution of neutron-proton scattering at 10 MeV

    International Nuclear Information System (INIS)

    Haight, R.C.; Bateman, F.B.; Grimes, S.M.; Brient, C.E.; Massey, T.N.; Wasson, O.A.; Carlson, A.D.; Zhou, H.

    1995-01-01

    The relative angular distribution of neutrons scattered from protons was measured at an incident neutron energy of 10 MeV at the Ohio University Accelerator Laboratory. An array of 11 detector telescopes at laboratory angles of 0 to 60 degrees was used to detect recoil protons from neutron interactions with a CH 2 (polypropylene) target. Data for 7 of these telescopes were obtained with one set of electronics and are presented here. These data, from 108 to 180 degrees for the center-of-mass scattering angles, have a small slope which agrees better with angular distributions predicted by the Arndt phase shifts than with the ENDF/B-VI angular distribution

  20. Light response of YAP:Ce and LaBr{sub 3}:Ce scintillators to 4–30 MeV protons for applications to Telescope Proton Recoil neutron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Cazzaniga, C., E-mail: carlo.cazzaniga@stfc.ac.uk [ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Istituto di Fisica del Plasma “P. Caldirola”, Associazione EURATOM-ENEA/CNR, Via Cozzi 53, Milano (Italy); Cremona, A. [Istituto di Fisica del Plasma “P. Caldirola”, Associazione EURATOM-ENEA/CNR, Via Cozzi 53, Milano (Italy); Nocente, M.; Rebai, M.; Rigamonti, D. [Istituto di Fisica del Plasma “P. Caldirola”, Associazione EURATOM-ENEA/CNR, Via Cozzi 53, Milano (Italy); Università degli Studi di Milano-Bicocca, Dipartimento di Fisica, Piazza della Scienza 3, Milano (Italy); Tardocchi, M. [Istituto di Fisica del Plasma “P. Caldirola”, Associazione EURATOM-ENEA/CNR, Via Cozzi 53, Milano (Italy); Croci, G. [Istituto di Fisica del Plasma “P. Caldirola”, Associazione EURATOM-ENEA/CNR, Via Cozzi 53, Milano (Italy); Università degli Studi di Milano-Bicocca, Dipartimento di Fisica, Piazza della Scienza 3, Milano (Italy); Ericsson, G. [Department of Physics and Astronomy, EURATOM-VR Association, Uppsala University, Uppsala (Sweden); Fazzi, A. [Department of Energy of the Politecnico di Milano, via Lambruschini 4, I-20156 Milano (Italy); Hjalmarsson, A. [Department of Physics and Astronomy, EURATOM-VR Association, Uppsala University, Uppsala (Sweden); Mazzocco, M.; Strano, E. [Dipartimento di Fisica e Astronomia, Universitá di Padova, and INFN, Sez. di Padova, I-35131 Padova (Italy); and others

    2016-06-01

    The light response of two thin inorganic scintillators based on YAP:Ce and LaBr{sub 3}:Ce crystals has been measured with protons in the 4–8 MeV energy range at the Uppsala tandem accelerator and in the 8–26 MeV energy range at the Legnaro tandem accelerator. The crystals have been calibrated in situ with {sup 137}Cs and {sup 60}Co γ-ray sources. The relative light yields of protons with respect to gammas have been measured and are here reported to be (96±2)% and (80±2)% for YAP:Ce and LaBr{sub 3}:Ce, respectively. The results open up to the development of a Telescope Proton Recoil spectrometer based on either of the two crystals as alternative to a silicon based spectrometer for applications to high neutron fluxes.

  1. H-superconducting cyclotron for PET isotope production

    International Nuclear Information System (INIS)

    Smirnov, V.L.; Vorozhtsov, S.B.; Vincent, J.

    2014-01-01

    The scientific design of a 14-MeV H - compact superconducting cyclotron for producing of the 18 F and 13 N isotopes has been developed. Main requirements to the facility as a medical accelerator are met in the design. In particular, the main requirement for the cyclotron was the smallest possible size due to the superconducting magnet. The calculations show that the proposed cyclotron allows extracted beam intensity over 500 μA. To increase system reliability and production rates, an external H - ion source is applied. The choice of the cyclotron concept, design of the structure elements, calculation of the electromagnetic fields and beam dynamics from the ion source to the extraction system were performed.

  2. Isochronous cyclotron for thermonuclear reactors driving

    International Nuclear Information System (INIS)

    Alenitskij, Yu.G.

    1998-01-01

    The main requirements to an accelerator as a part of an electronuclear power plant are considered. The range of the parameters of the accelerated proton and deuteron beams, for which the isochronous cyclotron is the most profitable, is proposed. An opportunity of using the cyclotron to drive the research reactors of various types is considered

  3. Measurement of {sup 232}Th(n, 5nγ) cross sections from 29 MeV to 42 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Kerveno, M.; Baumann, P.; Dessagne, P.; Rudolf, G. [Universite de Strasbourg, IPHC, Strasbourg (France); CNRS, UMR7178, Strasbourg (France); Nolte, R.; Reginatto, M. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Jericha, E. [Technische Universitaet Wien, Atominstitut, Wien (Austria); Jokic, S.; Lukic, S. [Vinca Institute of Nuclear Sciences, Belgrade (Serbia); Koning, A.J. [Nuclear Research and Consultancy Group, Petten (Netherlands); Meulders, J.P. [Institut de Physique Nucleaire, Louvain-la-Neuve (Belgium); Nachab, A. [Universite Cadi Ayyad, Departement de physique, Faculte Poly-disciplinaire de Safi, Safi (Morocco); Pavlik, A. [Faculty of Physics, University of Vienna, Wien (Austria)

    2014-10-15

    The excitation function of the reaction {sup 232} Th(n, 5nγ){sup 228} Th from 29 to 42 MeV has been measured for the first time at the quasi-monoenergetic neutron beam of the UCL cyclotron CYCLONE employing the {sup 7}Li(p,n) source reaction. Taking advantage of the good energy resolution of the planar High-Purity Germanium (HPGe) detectors, prompt γ-ray spectroscopy was used to detect the γ-rays resulting from the decay of excited states of nuclei created by the (n,xn) reactions. The neutron beam was characterized by a combination of time of flight measurements carried out using a liquid scintillation detector and a {sup 238}U fission ionization chamber. Fluence measurements were performed using a proton recoil telescope. The results are compared with TALYS-1.4 code calculations. (orig.)

  4. IBA's state of art Proton Therapy System

    International Nuclear Information System (INIS)

    Ternier, Sonja

    2001-01-01

    Full text: In recent years, IBA has developed a state-of-the-art Proton Therapy System that is currently being implemented at the Northeast Proton Therapy Center in Boston. First patient treatment is predicted for the fourth quarter of 2001. The IBA Proton Therapy System consists of a 230 MeV accelerator (a fixed energy isochronous cyclotron), an Energy Selection System that can decrease the energy down to 70 MeV and up to five treatment rooms. There are two types of treatment rooms. A gantry treatment room in which a patient can be treated from virtually any angle or a fixed horizontal beam line aimed at treatments of the of the head and neck. The system is equipped with a Therapy Control System and a Global Safety Management System. The Integrated Therapy Control System is an integrated system ensuring the control of the treatment sessions through independent but networked therapy control units and, therefore, the control of each equipment subsystem. The integrated safety management system, independent of the Therapy Control System, includes a set of hard-wired safety devices, ensuring the safety of the patient and personnel. The system will be capable of delivering proton treatments in four-treatment modes: Double Scattering, Single Scattering, Wobbling and Pencil Beam Scanning. The presentation will show the most important subsystems and treatment modes capabilities as well as the most recent advances in the technology. (author)

  5. Alanine EPR dosimeter response in proton therapy beams

    International Nuclear Information System (INIS)

    Gall, K.; Serago, C.; Desrosiers, M.; Bensen, D.

    1997-01-01

    We report a series of measurements directed to assess the suitability of alanine as a mailable dosimeter for dosimetry quality assurance of proton radiation therapy beams. These measurements include dose-response of alanine at 140 MeV, and comparison of response vs energy with a parallel plate ionization chamber. All irradiations were made at the Harvard Cyclotron Laboratory, and the dosimeters were read at NIST. The results encourage us that alanine could be expected to serve as a mailable dosimeter with systematic error due to differential energy response no greater than 3% when doses of 25 Gy are used. (Author)

  6. Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field

    Science.gov (United States)

    Infantino, Angelo; Marengo, Mario; Baschetti, Serafina; Cicoria, Gianfranco; Longo Vaschetto, Vittorio; Lucconi, Giulia; Massucci, Piera; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano

    2015-11-01

    Biomedical cyclotrons for production of Positron Emission Tomography (PET) radionuclides and radiotherapy with hadrons or ions are widely diffused and established in hospitals as well as in industrial facilities and research sites. Guidelines for site planning and installation, as well as for radiation protection assessment, are given in a number of international documents; however, these well-established guides typically offer analytic methods of calculation of both shielding and materials activation, in approximate or idealized geometry set up. The availability of Monte Carlo codes with accurate and up-to-date libraries for transport and interactions of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of nowadays computers, makes systematic use of simulations with realistic geometries possible, yielding equipment and site specific evaluation of the source terms, shielding requirements and all quantities relevant to radiation protection. In this work, the well-known Monte Carlo code FLUKA was used to simulate two representative models of cyclotron for PET radionuclides production, including their targetry; and one type of proton therapy cyclotron including the energy selection system. Simulations yield estimates of various quantities of radiological interest, including the effective dose distribution around the equipment, the effective number of neutron produced per incident proton and the activation of target materials, the structure of the cyclotron, the energy degrader, the vault walls and the soil. The model was validated against experimental measurements and comparison with well-established reference data. Neutron ambient dose equivalent H*(10) was measured around a GE PETtrace cyclotron: an average ratio between experimental measurement and simulations of 0.99±0.07 was found. Saturation yield of 18F, produced by the well-known 18O(p,n)18F reaction, was calculated and compared with the IAEA recommended

  7. Quasi elastic scattering of 600 MeV protons by alpha clusters in light and medium nuclei

    International Nuclear Information System (INIS)

    Landaud, G.; Devaux, A.; Delpierre, P.; Kahane, J.; Sene, R.; Yonnet, J.; Anne, R.

    1977-06-01

    Knockout of α-clusters from light and medium weight nuclei by 600 MeV protons has been investigated. The outgoing protons and α-particles were detected in coincidence; their momenta were measured with two large magnetic spectrometers with proportional wire chambers. Experimental methods used to work with a high beam rate and an efficient proton rejection in the α-arm are described. Separation energy spectra are given for 6 Li, 7 Li, 12 C, 24 Mg, 27 Al and 40 Ca nuclei. A peak is observed at an excited energy equal to zero, except for the 27 Al target

  8. Target irradiation facility and targetry development at 160 MeV proton beam of Moscow linac

    CERN Document Server

    Zhuikov, B L; Konyakhin, N A; Vincent, J

    1999-01-01

    A facility has been built and successfully operated with the 160 MeV proton beam of Moscow Meson factory LINAC, Institute for Nuclear Research (INR) of Russian Academy of Science, Troitsk. The facility was created for various isotope production goals as well as for fundamental nuclear investigations at high intensity beam (100 mu A and more). An important part of the facility targetry system is a high-intensity beam monitoring collimator device. Measurements of the temperature distribution between collimator sectors, cooling water flow and temperature, and the beam current, provide an opportunity to compute beam losses and beam position. The target holder design allows easy insertion by manipulator and simultaneous bombardment of several different targets of various types and forms, and variation of proton energy on each target over a wide range below 160 MeV. The main target utilized for commercial sup 8 sup 2 Sr isotope production is metallic rubidium in a stainless-steel container. A regular wet chemistry ...

  9. A comparison of 4 MeV Proton and Co-60 gamma irradiation induced degradation in the electrical characteristics of N-channel MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Arshiya; Vinayakprasanna, N.H.; Pradeep, T.M. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006 (India); Pushpa, N. [Department of PG Studies in Physics, JSS College, Ooty Road, Mysore 570025 (India); Krishna, J.B.M. [IUC-DAE CSR, Kolkota 700098 (India); Gnana Prakash, A.P., E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006 (India)

    2016-07-15

    N-channel depletion MOSFETs were irradiated with 4 MeV Proton and Co-60 gamma radiation in the dose range of 100 krad(Si) to 100 Mrad(Si). The electrical characteristics of MOSFET such as threshold voltage (V{sub th}), density of interface trapped charges (ΔN{sub it}), density of oxide trapped charges (ΔN{sub ot}), transconductance (g{sub m}), mobility (μ), leakage current (I{sub L}) and drain saturation current (I{sub D} {sub Sat}) were studied as a function of dose. A considerable increase in ΔN{sub it} and ΔN{sub ot} and decrease in V{sub th,}g{sub m}, μ, and I{sub D} {sub Sat} was observed after irradiation. The results of 4 MeV Proton irradiation were compared with that of Co-60 gamma radiation and it is found that the degradation is more for the devices irradiated with 4 MeV Protons when compared with the Co-60 gamma radiation. This indicates that Protons induce more trapped charges in the field oxide region when compared to the gamma radiation.

  10. Elastic scattering of polarized protons by 20Ne between 4.5 Mev and 5.5 Mev

    International Nuclear Information System (INIS)

    Avila A, O.L.

    1979-01-01

    Starting with the study of 20 Ne(p,p) 20 nuclear reaction, we obtained information about the nuclear structure of 21 Na. The experiment was made at Notre Dame University; a target of 20 Ne was bombarded with polarized protons, changing the incident energy of them between 4.5 Mev and 5.5 Mev at intervals of 10 keV. Fourteen detectors were set covering angles from 35 degrees until 165 degrees, with intervals of 10 degrees each. In this form measurements for computing polarization and differential sections were obtained, with them an analysis of runnings of phase was made, and the parameters associated with two of the excited levels of the composed formed nucleous 21 Na, that are viewed as resonances in the section were settled; those resonances correspond to a level Psub(3/2) of energy excitation 6.877, a total width of 36 keV, and a level Fsub(7/2) of energy excitation 6.992 and total width of 48 keV. I hope that these results will be part of a set of values that will be utilized in order to confront them with the existent nuclear models. (author)

  11. Operation of the Karlsruhe Isochronous Cyclotron in 1976

    International Nuclear Information System (INIS)

    Schulz, F.; Schweickert, H.

    1977-08-01

    The operation of the Karlsruhe Isochronous Cyclotron in 1976 is briefly surveyed. The status and the results of the following technical developments are briefly described: 1) Computer aided cyclotron operation; 2) New correction coils for the cyclotron; 3) Non-intercepting measurement of the extraction rate; 4) Lambshift source for polarized deuterons; 5) Improvements of the 6 Li 3+ -Penning ion source; 6) New beam line to an irradiation room for machine parts; 7) Nova 2 computer system for nuclear physics experiments; 8) Routine production of Iodine-123 for nuclear medicine. - In the annual report 1975 we have included a section consisting of a series of brief reports on applied research in progress. This year we give a compilation of the current basic nuclear physics work at our cyclotron. The short papers prepared by the experimental groups are arranged according to the following topics: 1) Experiments using the 156 MeV 6 Li 3+ -beam; 2) Experiments using the 52 MeV polarized deuteron beam; 3) Further nuclear reactions; 4) Nuclear spectroscopy; 5) Measurements of nuclear magnetic moments; 6) Measurements with the neutron time-of-flight spectrometer. (orig.) [de

  12. Tensor analyzing powers in deuteron--proton elastic scattering and the breakup reaction at 45.4 MeV

    International Nuclear Information System (INIS)

    Conzett, H.E.

    1978-08-01

    Recently the tensor analyzing powers in vector d + p elastic scattering and in the breakup reaction at E/sub d/ = 45.4 MeV were measured. The elastic results now establish a rather complete set of polarization data in nucleon--deuteron scattering at E/sub N/ = 22.7 MeV, which consists of the proton analyzing power, the deuteron vector and tensor analyzing powers, and vector polarization transfer measurements, as well. 8 references

  13. Thick-target neutron, gamma-ray, and radionuclide production for protons below 12 MeV on nickel and carbon beam-stops

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.; Wilson, W.B.

    1998-03-01

    Nuclear model calculations using the GNASH code are described for protons below 12 MeV incident on nickel and carbon isotopes, for beam stop design in the Los Alamos Accelerator Production of Tritium Low Energy Demonstration Accelerator (LEDA) project. The GNASH calculations apply Hauser-Feshbach and preequilibrium reaction theories and can make use of pre-calculated direct reaction cross sections to low-lying residual nucleus states. From calculated thin target cross sections, thick target 6.7 MeV and 12 MeV proton-induced production of neutrons, gamma rays, and radionuclides are determined. Emission spectra of the secondary neutrons and gamma rays are also determined. The model calculations are validated through comparisons with experimental thin- and thick-target measurements. The results of this work are being utilized as source terms in MCNP analyses for LEDA

  14. Study of the source term of radiation of the CDTN GE-PET trace 8 cyclotron with the MCNPX code

    Energy Technology Data Exchange (ETDEWEB)

    Benavente C, J. A.; Lacerda, M. A. S.; Fonseca, T. C. F.; Da Silva, T. A. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Vega C, H. R., E-mail: jhonnybenavente@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-10-15

    Full text: The knowledge of the neutron spectra in a PET cyclotron is important for the optimization of radiation protection of the workers and individuals of the public. The main objective of this work is to study the source term of radiation of the GE-PET trace 8 cyclotron of the Development Center of Nuclear Technology (CDTN/CNEN) using computer simulation by the Monte Carlo method. The MCNPX version 2.7 code was used to calculate the flux of neutrons produced from the interaction of the primary proton beam with the target body and other cyclotron components, during 18F production. The estimate of the source term and the corresponding radiation field was performed from the bombardment of a H{sub 2}{sup 18}O target with protons of 75 μA current and 16.5 MeV of energy. The values of the simulated fluxes were compared with those reported by the accelerator manufacturer (GE Health care Company). Results showed that the fluxes estimated with the MCNPX codes were about 70% lower than the reported by the manufacturer. The mean energies of the neutrons were also different of that reported by GE Health Care. It is recommended to investigate other cross sections data and the use of physical models of the code itself for a complete characterization of the source term of radiation. (Author)

  15. Residual Nuclides Induced in Cu Target by a 250 MeV Proton Beam

    International Nuclear Information System (INIS)

    Zhang Hong-Bin; Zhang Xue-Ying; Ma Fei; Ju Yong-Qin; Ge Hong-Lin; Chen Liang; Zhang Yan-Bin; Li Yan-Yan; Luo Peng; Wang Jian-Guo; Wan Bo; Xu Xiao-Wei; Wei Ji-Fang; Zhou Bin

    2015-01-01

    Residual nuclide production is studied experimentally by bombarding a Cu target with a 250 MeV proton beam. The data are measured by the off-line γ-spectroscopy method. Six nuclides are identified and their cross sections are determined. The corresponding calculated results by the MCNPX and GEANT4 codes are compared with the experimental data to check the validity of the codes. A comparison shows that the MCNPX simulation has a better agreement with the experiment. The energy dependence of residual nuclide production is studied with the aid of MCNPX simulation, and it is found that the mass yields for the nuclides in the light mass region increase significantly with the proton energy. (paper)

  16. Test of GEANT3 and GEANT4 nuclear models for 160 MeV protons stopping in CH2

    International Nuclear Information System (INIS)

    Paganetti, H.; Gottschalk, B.

    2003-01-01

    Monte Carlo simulations are used for many problems in proton radiation therapy, some of which are sensitive to the nuclear interaction model. The available models have been little tested in the regime of interest, namely in their ability to predict the secondary particle yield, including their angle and energy, when 70-250 MeV protons stop in various materials. The present study provides one such test in carbon, complementing a previous one in copper. Using a multilayer Faraday cup we have measured the projected range distribution of charged nuclear secondaries from 160 MeV protons stopping in polyethylene (CH 2 ). To test the popular GEANT Monte Carlo we have simulated the experiment with GEANT3 using the 'Gheisha' (default) and 'Fluka' models and with GEANT4.5 using the 'low-energy' and 'precompound' models. The GEANT3/Fluka and GEANT4/precompound simulations agree moderately well with the observed range distribution. The data are given in a convenient form for testing other Monte Carlo programs

  17. Hydrogen Release From 800-MeV Proton-Irradiated Tungsten

    International Nuclear Information System (INIS)

    Oliver, Brian M.; Venhaus, Thomas J.; Causey, Rion A.; Garner, Francis A.; Maloy, Stuart A.

    2002-01-01

    Tungsten irradiated in spallation neutron sources such as those proposed for the Accelerator Production of Tritium (APT) project, or in proposed fusion reactors, will contain large quantities of generated helium and hydrogen gas. In the APT, spallation neutrons would be generated by the interaction of high energy (∼1 GeV) protons with solid tungsten rods or cylinders. In fusion reactors, tungsten used in a tokamak diverter will contain hydrogen, as well as deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and afterheat-induced rises in temperature is of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten was measured using a dedicated mass spectrometer system by subjecting the specimens to an essentially linear temperature ramp from ∼323 K to ∼1473 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). Input parameters for the modeling, consisting of diffusivity, recombination rate coefficient, and trapping, are discussed. The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show reasonable agreement at high proton dose using a trap value of 1.4 eV and a trap density of 3%. There is also a small release fraction occurring at ∼600 K which predominates at lower proton doses, and which is relatively independent of dose. This lower-temperature release is predicted by TMAP if no traps are assumed, suggesting that this release may represent an adsorbed surface component

  18. Solid targets for 99mTc production on medical cyclotrons

    International Nuclear Information System (INIS)

    Hanemaayer, V.; Buckley, K.R.; Klug, J.; Ruth, T.J.; Schaffer, P.; Zeisler, S.K.; Benard, F.; Kovacs, M.; Leon, C.

    2014-01-01

    Recent disruptions in the molybdenum-technetium generator supply chain prompted a review of non-reactor based production methods for both 99 Mo and 99m Tc. Small medical cyclotrons (E p ∼ 16-24 MeV) are capable of producing Curie quantities of 99m Tc from isotopically enriched 100 Mo using the 100 Mo(p,2n) 99m Tc reaction. Unlike most other metallic target materials for routine production of medical radioisotopes, molybdenum cannot be deposited by reductive electroplating from aqueous salt solutions. To overcome this issue, we developed a new process for solid molybdenum targets based on the electrophoretic deposition of fine 100 Mo powder onto a tantalum plate, followed by high temperature sintering. The targets obtained were mechanically robust and thermally stable when irradiated with protons at high power density. (author)

  19. Fission cross sections of {sup 235,238}U and {sup 209}Bi at incident proton energies above 70 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Obukhov, A I; Rimskij-Korsakov, A A; Eismont, V P [V.G. Khlopin Radium Inst., St. Petersburg (Russian Federation)

    1997-06-01

    The proton fission cross-section data of {sup 235,238}U and Bi were measured in the V.G. Khlopin Radium Institute over a wide proton energy range. The experimental and calculated data were also compared with experimental neutron values. The proton cross-section of {sup 235,238}U increased up to 60-70 MeV and then decreased. The bismuth proton fission cross-section increased in line with the rise in proton energy up to 1 GeV. (author). 21 refs, 6 figs.

  20. Analysis of industrial coke samples by activation with cyclotron protons

    International Nuclear Information System (INIS)

    Chaudhri, M.A.; Lee, M.M.; Spicer, B.M.

    1982-01-01

    A Melbourne Petrochemical Company was experiencing excessive coke formation in its ''cracking furnaces'', which was causing unnecessary stoppage of production and wastage of energy due to additional insulation. In order to investigate the possible causes of this excessive coke formation, we analyzed various coke samples and other coke-like materials obtained from these furnaces by activation with cyclotron-protons. Our results showed that, out of the two suspected coke promoters As and Sb whose small concentration in feed would produce greatly accelerated coke formation, As could not be detected in any of the eight samples investigated, while Sb was present in only one sample. However, we did observe Ca, Cr and Fe in all the samples, with surprisingly high concentrations in some of them. It has, therefore, been suggested that Ca, and perhaps Cr and Fe, but not As or Sb, could have been responsible for the excessive coke formation in the ''cracking furnaces''

  1. Comparison between calculation and measurement of energy deposited by 800 MeV protons

    International Nuclear Information System (INIS)

    Loewe, W.E.

    1980-01-01

    The High Energy Transport Code, HETC, was obtained from the Radiation Shielding Information Center (RSIC) at Oak Ridge National Laboratory and altered as necessary to run on a CDC 7600 using the LTSS software in use at LLNL. HETC was then used to obtain calculated estimates of energy deposited, for comparison with a series of benchmark experiments done by LLNL. These experiments used proton beams of various energies incident on well-defined composite targets in good geometry. In this report, two aspects of the comparison between calculated and experimental energy depositions from an 800 MeV proton beam are discussed. Both aspects involve the fact that workers at SAI had previously used their version of HETC to calculate this experiment and reported their comparison with the measured data. The first aspect addressed is that their calculated data and LLNL calculations do not agree, suggesting an error in the conversion process from the RSIC code. The second aspect is not independent of the first, but is of sufficient importance to merit separate emphasis. It is that the SAI calculations agree well with experiments at the detector plate located some distance from the shower plate, whereas the LLNL calculations show a clearcut discrepancy there in comparison with the experiment. A contract was let in January 1980 by LLNL with SAI in order to obtain full details on the two cited aspects of the comparison between calculated and experimental energy depositions from an 800 MeV proton beam. The ensuing discussion is based on the final report of that contracted work

  2. Goodbye Synchro-Cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-12-15

    On 17 December, after having seen many other physics machines come and go during its 33-year career, CERN's 600 MeV SynchroCyclotron (SC) is being shut down. Judged simply by its length (to say nothing of its quality), the research career of this machine testifies to the wisdom and imagination of the CERN pioneers who proposed it in the early 1950s.

  3. Goodbye Synchro-Cyclotron

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    On 17 December, after having seen many other physics machines come and go during its 33-year career, CERN's 600 MeV SynchroCyclotron (SC) is being shut down. Judged simply by its length (to say nothing of its quality), the research career of this machine testifies to the wisdom and imagination of the CERN pioneers who proposed it in the early 1950s

  4. Microscopic model analyses of proton elastic scattering from diverse targets in the energy range 65 to 400 MeV

    International Nuclear Information System (INIS)

    Dortmans, P.J.; Amos, K.

    1997-01-01

    Two nucleon (NN) effective interactions based upon two-nucleon g matrices have been used in fully microscopic calculations of nonlocal proton-nucleus optical potentials for protons with energies between 65 and 400 MeV. Excellent predictions of the differential cross sections, analysing powers and spin rotations for scattering angles to 60 deg result. (authors)

  5. Microscopic description of isobaric-analog-state transitions induced by 25-, 35-, and 45-MeV protons

    International Nuclear Information System (INIS)

    Doering, R.R.; Patterson, D.M.; Galonsky, A.

    1975-01-01

    Differential cross sections have been measured for (p, n) reactions to the isobaric analogs of the targets 48 Ca, 90 Zr, 120 Sn, and 208 Pb at proton bombarding energies of 25, 35, and 45 MeV. The isospin-flip strength of a phenomenological nucleon-nucleon force has been determined with microscopic distorted-wave calculations including the ''knockon'' exchange amplitude. A realistic G-matrix effective interaction also provides a reasonable account of the observed cross sections, particularly at the higher proton energies

  6. Postirradiation tensile properties of Mo and Mo alloys irradiated with 600 MeV protons

    International Nuclear Information System (INIS)

    Mueller, G.V.; Gavillet, D.; Victoria, M.; Martin, J.L.

    1994-01-01

    Tensile specimens of pure Mo and Mo-5 Re, Mo-41 Re and TZM alloys have been irradiated with 600 MeV protons in the PIREX facility at 300 and 660 K to 0.5 dpa. Results of the postirradiation tensile testing show a strong radiation hardening and a severe loss of ductility for all the materials tested at room temperature. ((orig.))

  7. EXPERIMENTAL ANALYSES OF SPALLATION NEUTRONS GENERATED BY 100 MEV PROTONS AT THE KYOTO UNIVERSITY CRITICAL ASSEMBLY

    Directory of Open Access Journals (Sweden)

    CHEOL HO PYEON

    2013-02-01

    Full Text Available Neutron spectrum analyses of spallation neutrons are conducted in the accelerator-driven system (ADS facility at the Kyoto University Critical Assembly (KUCA. High-energy protons (100 MeV obtained from the fixed field alternating gradient accelerator are injected onto a tungsten target, whereby the spallation neutrons are generated. For neutronic characteristics of spallation neutrons, the reaction rates and the continuous energy distribution of spallation neutrons are measured by the foil activation method and by an organic liquid scintillator, respectively. Numerical calculations are executed by MCNPX with JENDL/HE-2007 and ENDF/B-VI libraries to evaluate the reaction rates of activation foils (bismuth and indium set at the target and the continuous energy distribution of spallation neutrons set in front of the target. For the reaction rates by the foil activation method, the C/E values between the experiments and the calculations are found around a relative difference of 10%, except for some reactions. For continuous energy distribution by the organic liquid scintillator, the spallation neutrons are observed up to 45 MeV. From these results, the neutron spectrum information on the spallation neutrons generated at the target are attained successfully in injecting 100 MeV protons onto the tungsten target.

  8. Correlation of near-Earth proton enhancements >100 MeV with parameters of solar microwave bursts

    Science.gov (United States)

    Grechnev, Victor; Kiselev, Valentin; Meshalkina, Nataliya; Chertok, Ilya

    2017-09-01

    We analyze the relations between various combinations of peak fluxes and fluences of solar microwave bursts at 35 GHz recorded with the Nobeyama Radio Polarimeters during 1990–2015, and corresponding parameters of proton enhancements with E>100 MeV exceeding 0.1 pfu registered by GOES monitors in near-Earth environment. The highest correlation has been found between the microwave and proton fluences. This fact reflects a dependence of the total number of protons on the total duration of the acceleration process. In the events with strong flares, the correlation coefficients of proton fluences with microwave and soft X-ray fluences are higher than those with speeds of coronal mass ejections. The results indicate a statistically larger contribution of flare processes to acceleration of high-energy protons. Acceleration by shock waves seems to be less important at high energies in events associated with strong flares, although its contribution probably prevails in weaker events. The probability of a detectable proton enhancement was found to directly depend on the peak flux and duration of a microwave burst. This can be used for diagnostics of proton enhancements based on microwave observations.

  9. Combined proton and photon irradiation for craniopharyngioma: Long-term results of the early cohort of patients treated at Harvard Cyclotron Laboratory and Massachusetts General Hospital

    International Nuclear Information System (INIS)

    Fitzek, Markus M.; Linggood, Rita M.; Adams, Judy; Munzenrider, John E.

    2006-01-01

    Purpose: We report the results of the early cohort of patients treated for craniopharyngioma with combined proton-photon irradiation at the Massachusetts General Hospital and the Harvard Cyclotron Laboratory. Methods and Materials: Between 1981 and 1988, 15 patients with craniopharyngioma were treated in part or entirely with fractionated 160 MeV proton beam therapy. The group consisted of 5 children (median age, 15.9 years) and 10 adults (median age, 36.2 years). Median dose prescribed to the tumor was 56.9 cobalt Gray equivalent (CGE; 1 proton Gray = 1.1 CGE). The median proton component was 26.9 CGE. Patients were treated after documented recurrence after initial surgery (n = 6) or after subtotal resection or biopsy (n = 9). None had had prior radiation therapy. Results: Median observation period of surviving patients (n = 11) was 13.1 years from radiotherapy. One patient was lost to follow-up with tumor control after 5.2 years. Actuarial 10-year survival rate was 72%. Four patients have died 5-9.1 years after treatment, two from local failure. Actuarial 5- and 10-year local control rates were 93% and 85%, respectively. The functional status of the living adult patients is unaltered from their preradiotherapy status; all of them continued leading normal or near normal working lives. None of the patients treated as a child had experienced recurrence of tumor. One child shows learning difficulties and slight retardation, comparable to his preradiotherapy status. The others have professional achievements within the normal range. Conclusion: Results in terms of survival and local control are comparable with other contemporary series. Although no formal neuropsychological testing was performed, the surrogate measures of lifestyle and professional accomplishments appear to be satisfactory

  10. Defect microstructure in copper alloys irradiated with 750 MeV protons

    DEFF Research Database (Denmark)

    Zinkle, S.J.; Horsewell, A.; Singh, B.N.

    1994-01-01

    Transmission electron microscopy (TEM) disks of pure copper and solid solution copper alloys containing 5 at% of Al, Mn, or Ni were irradiated with 750 MeV protons to damage levels between 0.4 and 2 displacements per atom (dpa) at irradiation temperatures between 60 and 200 degrees C. The defect...... significant effect on the total density of small defect clusters, but they did cause a significant decrease in the fraction of defect clusters resolvable as SFT to similar to 20 to 25%. In addition, the dislocation loop density (> 5 nm diameter) was more than an order of magnitude higher in the alloys...

  11. Optical model analysis for 30MeV polarized proton elastic scattering

    International Nuclear Information System (INIS)

    Pham, D.-L.; Swiniarski, R. de.

    1977-05-01

    The proton elastic scattering cross sections and analyzing powers at 30MeV have been used to derive optical model parameters for ten elements from 10 B to 32 S. A set of average geometrical parameters (rsub(o)=1.10fm, rsub(LS)=1.0fm and asub(I)=0.60fm) is found to give good fits to the entire data, the other geometrical parameters being rsub(I)=(1.35+-0.15)fm, asub(o)=(0.75+-0.10)fm and asub(LS)=(0.35+-0.07)fm. The dynamical parameters with fixed geometry are presented

  12. Feasibility study of the implementation of a neutron beam from the cyclotron accelerator of the CRCN-NE/CNEN-PE; Estudo da viabilidade da implementação de um feixe neutrônico a partir do acelerador Cíclotron do CRCN-NE/CNEN-PE

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, W.G., E-mail: wellington.gandrade@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Vilela, E.C.; Lima, F.R.A., E-mail: ecvilela@cnen.gov.br, E-mail: falima@cnen.gov.br [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife-PE (Brazil)

    2017-07-01

    A cyclotron accelerator operating at the National Nuclear Energy Commission's facility is capable of accelerating protons up to 18 MeV and deuterons up to 9 MeV. This accelerator is equipped with channels used for the production of radiopharmaceuticals and an experimental research channel. This work studies the feasibility of implementing the neutron beam from this experimental channel, since other neutron generating sources are not able to provide a continuous and uniform flow of neutrons. Soon, a computational simulation with the code GEANT4 version 10.0.1.p03 was carried out using as data characteristics of this accelerator; primary beam of protons, energy in MeV and adopted as target Beryllium-9, which has a thickness of 2.5 mm. The generated neutrons were measured at a distance of 50 cm and under the angles of 0°, 15°, 30°, 45°, °, 70°, and 90°, with respect to the incident beam. The example was based on experimental studies and validated through the paired statistical method t as described in the literature. Thus, this work resulted in the assertion that it is possible to implement a monoenergetic neutron beam from an experimental channel of the cyclotron accelerator.

  13. Shielding calculations for a 30 MeV proton accelerator

    International Nuclear Information System (INIS)

    Nandy, Maitreyee; Sarkar, P.K.

    2003-01-01

    Full text: The thickness of the shield, made of ordinary concrete, required to reduce the equivalent dose rate below the maximum permissible limit and to ensure safe operation of a 30 MeV proton accelerator has been estimated using the Moyer model. Required double differential neutron yield from thick stopping targets has been calculated for several reactions to be used for production of 67 Ga, 111 In, 123 I and 201 Tl radioisotopes. The neutron emission at 0 deg and 90 deg angles with respect to the incident beam direction is estimated using the hybrid model code ALICE91 which considers preequilibrium and equilibrium emissions from the target+projectile composite system. From this neutron yield the equivalent neutron dose rate at unit distance is determined using the ICRP recommended flux-to-dose conversion factors

  14. Simulation of operation modes of isochronous cyclotron by a new interactive method

    International Nuclear Information System (INIS)

    Taraszkiewicz, R.; Talach, M.; Sulikowski, J.; Doruch, H.; Norys, T.; Sroka, A.; Kiyan, I.N.; )

    2007-01-01

    Operation mode simulation methods are based on selection of trim coil currents in the isochronous cyclotron for formation of the required magnetic field at a certain level of the main coil current. The traditional current selection method is based on finding a solution for all trim coils simultaneously. After setting the calculated operation mode, it is usually necessary to perform a control measurement of the magnetic field map and to repeat the calculation for a more accurate solution. The new current selection method is based on successively finding solutions for each particular trim coil. The trim coils are taken one by one in reverse order from the edge to the center of the isochronous cyclotron. The new operation mode simulation method is based on the new current selection method. The new method, as against the traditional one, includes iterative calculation of the kinetic energy at the extraction radius. A series of experiments on proton beam formation within the range of working acceleration radii at extraction energies from 32 to 59 MeV, which were carried out at the AIC144 multipurpose isochronous cyclotron (designed mainly for the eye melanoma treatment and production of radioisotopes) at the INP PAS (Cracow), showed that the new method makes unnecessary any control measurements of magnetic fields for getting the desired operation mode, which indicates a high accuracy of the calculation. (authors)

  15. Developing a clinical proton accelerator facility: Consortium-assisted technology transfer

    International Nuclear Information System (INIS)

    Slater, J.M.; Miller, D.W.; Slater, J.W.

    1991-01-01

    A hospital-based proton accelerator facility has emerged from the efforts of a consortium of physicists, engineers and physicians from several high-energy physics laboratories, industries and universities, working together to develop the requirements and conceptual design for a clinical program. A variable-energy medical synchrotron for accelerating protons to a prescribed energy, intensity and beam quality, has been placed in a hospital setting at Loma Linda University Medical Center for treating patients with localized cancer. Treatments began in October 1990. Scientists from Fermi National Accelerator Laboratory; Harvard Cyclotron Laboratory; Lawrence Berkeley Laboratories; the Paul Scherrer Institute; Uppsala, Sweden; Argonne, Brookhaven and Los Alamos National Laboratories; and Loma Linda University, all cooperated to produce the conceptual design. Loma Linda University contracted with Fermi National Accelerator Laboratory to design and build a 250 MeV synchrotron and beam transport system, the latter to guide protons into four treatment rooms. Lawrence Berkeley Laboratories consulted with Loma Linda University on the design of the beam delivery system (nozzle). A gantry concept devised by scientists at Harvard Cyclotron Laboratory, was adapted and fabricated by Science Applications International Corporation. The control and safety systems were designed and developed by Loma Linda University Radiation Research Laboratory. Presently, the synchrotron, beam transport system and treatment room hardware have been installed and tested and are operating satisfactorily

  16. Microscopic model analyses of the elastic scattering of 25, 30, and 40 MeV protons from targets of diverse mass

    International Nuclear Information System (INIS)

    Deb, P.K.; Amos, K.; Karataglidis, S.

    2000-01-01

    An extensive survey and analysis of cross section and analysing power data from proton elastic scattering at energies 25 to 40 MeV is presented. The data are compared with predictions obtained from a full folding specification of the proton-nucleus optical potentials. Isotope and energy variation of the data is explained

  17. /sup 9/Be(p,n)/sup 9/B reaction with polarized protons from 2. 4 to 2. 9 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, U [Basel Univ. (Switzerland); Brown, L [Carnegie Institution of Washington, D.C. (USA). Dept. of Terrestrial Magnetism

    1976-04-19

    A polarized beam was used to measure angular distributions of the proton analyzing power of the /sup 9/Be(p,n)/sup 9/B reaction at six energies from 2.4 to 2.9 MeV. The data were measured typically to an accuracy of 0.02 with a target 23 keV thick at 2.5 MeV bombarding energy. The analyzing power can be fitted with three associated Legendre polynomials, the coefficients of which show considerable variation in the vicinity of the pair of degenerate states at 2.56 MeV. The coefficients of the odd polynomials are not zero over the energy range of these states, indicating that they are of opposite parity. Comparison of these analyzing power measurements with previous data for the neutron polarization induced with unpolarized protons shows near equality at all energies, as expected from Conzett's theorem.

  18. Development of cyclotron solid targetry

    International Nuclear Information System (INIS)

    D'Souza, J.; Deans, T.; Cryer, D.; Price, R.

    2004-01-01

    Full text: Western Australia's first medical cyclotron was recently installed in the Department of Medical Technology and Physics at Sir Charles Gairdner Hospital. The cyclotron is routinely used for 18 F production using a liquid target, and now research is being undertaken into solid target bombardment for production of novel isotopes such as 124 I, 64 Cu and 96 Tc. The IBA Cyclone 18/9 has a maximum proton beam energy of 18MeV and maximum beam current of 80μA. A proton beam is generated by the acceleration of H- ions in the evacuated cyclotron (10 -6 bar) which are then stripped of 2 electrons just prior to exiting a target port. Each port has two strippers which are made of 10μm thick carbon with dimensions 12mmxl3mm. Due to their thinness, the strippers are easily ruptured. The Cyclone 18/9 has 8 target ports. In order to fit a target onto the cyclotron when the cyclotron is already evacuated the target is first evacuated to 10 -3 bar by a roughing pump before an isolation valve at the port is opened. This stops any damage that may occur by the flow of air from the target reservoir to the cyclotron eg to the strippers. The first step in the project to develop solid targetry is to build a beam line in order to measure the beam profile. If successful, this design will be improved in order to have a beam line and target holder that are suitable for use in solid target bombardment. A 40cm beam line with an internal diameter of 3.6cm was built to fit onto the IBA Cyclone 18/9. The beam line, made out of aluminium, incorporates a step 5cm from the end at which a target material can be fitted. A cover fits onto the beam line, behind the target in order to maintain vacuum. The cover is held in place by the vacuum within the beam line. At the end of bombardment, the beam line can be isolated from the vacuum of the target and normal air pressure restored. In doing so the cover plate falls open and the target falls into a lead pot, ready for removal from the cyclotron

  19. Calculation of proton and neutron emission spectra from proton reactions with 90Zr and 208Pb to 160 MeV with the GNASH code

    International Nuclear Information System (INIS)

    Young, P.G.; Chadwick, M.B.

    1994-01-01

    A number of modifications have been made to the reaction theory code GNASH in order the accuracy of calculations at incident particle energies up to 200 MeV. Direct reaction a level density models appropriate for higher energy calculations are now used in the code, and most importantly, improved preequilibrium models have been incorporated into the code system. The code has been used to calculate proton-induced reactions on 90 Zr and 208 Pb for the International Code and Model Intercomparison for Intermediate Energy Reactions organized by the NEA. Calculations were performed with GNASH at incident proton energies of 25, 45, 80, and 160 mev using both the exciton model and Feshbach-Kerman-Koonin theory for the preequilibrium component. The models and procedures used in the GNASH calculations with the exciton model are described here. The results are compared to experimental data and to results from the GNASH calculations with Feshbach-Kerman-Koonin preequilibrium theory

  20. Development of the integrated control system for the microwave ion source of the PEFP 100-MeV proton accelerator

    Science.gov (United States)

    Song, Young-Gi; Seol, Kyung-Tae; Jang, Ji-Ho; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2012-07-01

    The Proton Engineering Frontier Project (PEFP) 20-MeV proton linear accelerator is currently operating at the Korea Atomic Energy Research Institute (KAERI). The ion source of the 100-MeV proton linac needs at least a 100-hour operation time. To meet the goal, we have developed a microwave ion source that uses no filament. For the ion source, a remote control system has been developed by using experimental physics and the industrial control system (EPICS) software framework. The control system consists of a versa module europa (VME) and EPICS-based embedded applications running on a VxWorks real-time operating system. The main purpose of the control system is to control and monitor the operational variables of the components remotely and to protect operators from radiation exposure and the components from critical problems during beam extraction. We successfully performed the operation test of the control system to confirm the degree of safety during the hardware performance.

  1. Recoil properties of antimony isotopes produced by the reaction of 570 MeV and 18.2 GeV protons with uranium

    CERN Document Server

    Hagebø, E

    1969-01-01

    Using the method of thick target and thick catchers, the ranges and other recoil properties of 13 (12) antimony isotopes between A = 115 and A = 131 (130) have been measured for the reaction of 570 MeV (18·2 GeV) protons with uranium. The kinetic energies T are almost independent of product mass number at 570 MeV but show a strong dependence at 18·2 GeV, the lightest isotopes having only about half the kinetic energy of the heavy ones. \\\\ \\\\The cascade deposition energies for production of antimony isotopes are almost equal at 570 MeV and 18·2 GeV and fit well to straight lines of the form E$^{∗}$ (A, Z) = E$^{∗}$ (A$_{0}$, Z) + b(A − A$_{0}$). Exceptions are the cascade deposition energies for $^{115}$Sb and $^{116}$Sb which seem to be somewhat too high at 18·2 GeV. By comparison with other work it seems that the slope $b$ of these lines is independent of product element, target and of proton irradiation energy above 450 MeV. \\\\ \\\\If we assume at 570 MeV, that the fissioning nucleus is a uranium ...

  2. Depletion voltage studies on n-in-n MCz silicon diodes after irradiation with 70 MeV protons

    CERN Document Server

    Holmkvist, William

    2014-01-01

    Silicon detectors is the main component in the pixel detectors in the ATLAS experiment at CERN in order to detect the particles and recreate their tracks after a proton-proton collision. One criteria on these detectors is to be able to operate in the high radiation field close to the particle collision. The usual behavior of the silicon detectors is that they get type inverted and an increase in the depletion voltage can be seen after exposed to significant amounts of radiation. In contrast n-type Magnetic Czochralski (MCz) silicon doesn’t follow FZ silicons pattern of getting type inverted when it comes to high energy particle irradiation, in the range of GeV. However it was observed that MCz silicon diodes that had been irradiated with 23 MeV protons followed the FZ silicon behavior and did type invert. The aim of the project is to find out how the depletion voltage of MCz silicon changes after being irradiated by 70 MeV at fluencies of 1E13, 1E14 and 5E14 neq/cm2, to give a further insight of at what en...

  3. Acoustic time-of-flight for proton range verification in water

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin C.; Avery, Stephen, E-mail: Stephen.Avery@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Vander Stappen, François [Ion Beam Applications SA, Louvain-la-Neuve 1348 (Belgium); Sehgal, Chandra M. [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2016-09-15

    Purpose: Measurement of the arrival times of thermoacoustic waves induced by pulsed proton dose depositions (protoacoustics) may provide a proton range verification method. The goal of this study is to characterize the required dose and protoacoustic proton range (distance) verification accuracy in a homogeneous water medium at a hospital-based clinical cyclotron. Methods: Gaussian-like proton pulses with 17 μs widths and instantaneous currents of 480 nA (5.6 × 10{sup 7} protons/pulse, 3.4 cGy/pulse at the Bragg peak) were generated by modulating the cyclotron proton source with a function generator. After energy degradation, the 190 MeV proton pulses irradiated a water phantom, and the generated protoacoustic emissions were measured by a hydrophone. The detector position and proton pulse characteristics were varied. The experimental results were compared to simulations. Different arrival time metrics derived from acoustic waveforms were compared, and the accuracy of protoacoustic time-of-flight distance calculations was assessed. Results: A 27 mPa noise level was observed in the treatment room during irradiation. At 5 cm from the proton beam, an average maximum pressure of 5.2 mPa/1 × 10{sup 7} protons (6.1 mGy at the Bragg peak) was measured after irradiation with a proton pulse with 10%–90% rise time of 11 μs. Simulation and experiment arrival times agreed well, and the observed 2.4 μs delay between simulation and experiment is attributed to the difference between the hydrophone’s acoustic and geometric centers. Based on protoacoustic arrival times, the beam axis position was measured to within (x, y) = (−2.0,  0.5) ± 1 mm. After deconvolution of the exciting proton pulse, the protoacoustic compression peak provided the most consistent measure of the distance to the Bragg peak, with an error distribution with mean = − 4.5 mm and standard deviation = 2.0 mm. Conclusions: Based on water tank measurements at a clinical hospital-based cyclotron

  4. Proton-90Zr interaction at sub-coulomb proton energies

    International Nuclear Information System (INIS)

    Laird, C.E.; Flynn, D.; Hershberger, R.L.; Gabbard, F.

    1985-01-01

    Measurements have been made of proton elastic scattering differential cross sections for proton scattering at 135 0 and 165 0 from 2 to 7 MeV, of inelastic scattering cross sections for proton scattering from 3.9 to 5.7 MeV, and of the radiative capture cross sections from 1.9 to 5.7 MeV detecting primary and cascade gamma rays. Optical potentials with Hauser-Feshbach and coupled-channel models have been used to analyze the data. This analysis yields an energy dependent absorptive potential of W = 2.63+.73 whose mean value of 5 MeV at E/sub p/ = 4 MeV is consistent with previously reported, but anomalously small values. The diffuseness of the real potential is .54 fm, which is consistent with values found for 92 Zr and 94 Zr. The adopted model values are used to deduce a total proton strength function which displays the features of both the 3s and the 3p single particle resonances

  5. Design and research of RF system for 10 MeV compact cyclotron

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A 10 MeV compact cyclotron (CYCHU-10) has been developing in Huazhong University of Science and Technology (HUST). The RF system includes a 10 kW RF power generator and a resonance cavity. There is no automatic frequency tuning equipment in the cavity due to space limitations, so the generator must search and track the cavity resonant frequency. AD9850 synthesizer is used to generate RF signal in the experimental prototype, and a fine sinusoidal waveform around 99 MHz is obtained with the method of picking up a special aliased signal from the synthesizer’s output, and the output power level can be set by regulating the resistor connected to the Pin ’Rset’. The final stage amplifier based on tetrode operates in the grounded cathode configuration, and the schematic of the tetrode circuit is illustrated. The method of searching the resonant frequency is discussed in detail. For the sake of a compact and robust structure, the resonance cavity will adopt non-uniform characteristic impedance coaxial structure, and the magnet surface electroplated with copper will be used as dummy Dees. The precise shapes and dimensions of the cavity are designed and simulation results are carried out in this paper. The distributions of electromagnetic field are illustrated by means of numerical calculation analysis, and the wooden model test is preformed as well.

  6. Cyclotrons for the production of radioactive beams

    International Nuclear Information System (INIS)

    Clark, D.J.

    1990-01-01

    This paper describes the characteristics and design choices for modern cyclotrons. Cyclotrons can be used in 3 areas in the radioactive beam field: the production of high energy heavy ion beams for use in fragmentation, the spallation of targets with high energy protons, and the acceleration of radioactive beams from low energy to the MeV/u range. 16 refs., 6 figs

  7. The Digital Feedback RF Control System of the RFQ and DTL1 for 100 MeV Proton Linac of PEFP

    CERN Document Server

    Yu In Ha; Cho, Yong-Sub; Han, Yeung-Jin; Kang Heung Sik; Kim, Sung-Chul; Kwon, Hyeok-Jung; Park, In-Soo; Tae Kim, Do; Tae Seol, Kyung

    2005-01-01

    The 100 MeV Proton linear accelerator (Linac) for the PEFP (Proton Engineering Frontier Project) will include 1 RFQ and 1 DTL1 at 350 MHz as well as 7 DTL2 cavities at 700 MHz. The low level RF system with the digital feedback RF control provides the field control to accelerate a 20mA proton beam from 50 keV to 20 MeV with a RFQ and a DTL1 at 350M Hz. The FPGA-based digital feedback RF control system has been built and is used to control cavity field amplitude within ± 1% and relative phase within ± 1°. The fast digital processing is networked to the EPICS-based control system with an embedded processor (Blackfin). In this paper, the detailed description of the digital feedback RF control system will be described with the performance test results.

  8. Single event upsets calculated from new ENDF/B-VI proton and neutron data up to 150 MeV

    International Nuclear Information System (INIS)

    Chadwick, M.B.

    1999-01-01

    Single-event upsets (SEU) in microelectronics are calculated from newly-developed silicon nuclear reaction recoil data that extend up to 150 MeV, for incident protons and neutrons. Calculated SEU cross sections are compared with measured data

  9. Excitation functions of proton induced reactions on {sup nat}Fe in the energy region up to 45 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwangsoo [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Khandaker, Mayeen Uddin [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Naik, Haladhara [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Radiochemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Kim, Guinyun, E-mail: gnkim@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2014-03-01

    The excitation functions of various reaction products such as {sup 55,56,57}Co, {sup 52}Fe, {sup 52,54}Mn, and {sup 51}Cr in the {sup nat}Fe(p, x) reactions were measured by the stacked-foil activation technique in the energy range between their respective reaction threshold and 45 MeV at the MC-50 cyclotron of the Korean Institute of Radiological and Medical Sciences, Korea. The present experimental data were compared with the existing literature data. It was found that excitation function of {sup 56,57}Co and {sup 51}Cr from the {sup nat}Fe(p, x) reaction are in agreement with the literature data. However, the cross-sections for {sup nat}Fe(p, x){sup 52}Fe reactions are lower and those for {sup nat}Fe(p, x){sup 52}Mn and {sup nat}Fe(p, x){sup 54}Mn reactions are higher than the literature data. The reaction cross-sections of the above mentioned reaction products were also compared with those from the TENDL-2012 library based on the TALYS-1.4 program as a function of proton energy, which was reproduced the trend of the excitation functions of the experimental {sup nat}Fe(p, x) reaction cross-section. The integral yields for thick target of the investigated radionuclides were calculated from the excitation function.

  10. The problems of high efficient extraction from the isochronous cyclotron

    International Nuclear Information System (INIS)

    Schwabe, J.

    1994-06-01

    The problem of high efficient extraction (η ≥ 50%) from isochronous cyclotrons (with the exception of the stripping method) is not completely solved up to this day. This problem is specifically important, because these cyclotrons are being also applied in the production of medical radioisotopes, labeled pharmaceuticals as well as in neutron therapy (oncology), machine industry, agriculture (plant mutagenesis), etc. The aim of the proposed topic is to solve this problem on the AIC-144 isochronous cyclotron in the INP (Institute of Nuclear Physics). Lately, a beam of 20 MeV deuterons with an efficiency of ca. 15% was extracted from this cyclotron. (author). 25 refs, 14 figs

  11. A proton irradiation test facility for space research in Ankara, Turkey

    Science.gov (United States)

    Gencer, Ayşenur; Yiǧitoǧlu, Merve; Bilge Demirköz, Melahat; Efthymiopoulos, Ilias

    2016-07-01

    Space radiation often affects the electronic components' performance during the mission duration. In order to ensure reliable performance, the components must be tested to at least the expected dose that will be received in space, before the mission. Accelerator facilities are widely used for such irradiation tests around the world. Turkish Atomic Energy Authority (TAEA) has a 15MeV to 30MeV variable proton cyclotron in Ankara and the facility's main purpose is to produce radioisotopes in three different rooms for different target systems. There is also an R&D room which can be used for research purposes. This paper will detail the design and current state of the construction of a beamline to perform Single Event Effect (SEE) tests in Ankara for the first time. ESA ESCC No.25100 Standard Single Event Effect Test Method and Guidelines is being considered for these SEE tests. The proton beam kinetic energy must be between 20MeV and 200MeV according to the standard. While the proton energy is suitable for SEE tests, the beam size must be 15.40cm x 21.55cm and the flux must be between 10 ^{5} p/cm ^{2}/s to at least 10 ^{8} p/cm ^{2}/s according to the standard. The beam size at the entrance of the R&D room is mm-sized and the current is variable between 10μA and 1.2mA. Therefore, a defocusing beam line has been designed to enlarge the beam size and reduce the flux value. The beam line has quadrupole magnets to enlarge the beam size and the collimators and scattering foils are used for flux reduction. This facility will provide proton fluxes between 10 ^{7} p/cm ^{2}/s and 10 ^{10} p/cm ^{2}/s for the area defined in the standard when completed. Also for testing solar cells developed for space, the proton beam energy will be lowered below 10MeV. This project has been funded by Ministry of Development in Turkey and the beam line construction will finish in two years and SEE tests will be performed for the first time in Turkey.

  12. Health physics considerations at a neutron therapy facility cyclotron

    International Nuclear Information System (INIS)

    Kleck, J.H.; Krueger, D.J.; Mc Laughlin, J.E.; Smathers, J.B.

    1987-01-01

    The U.C.L.A. Neutron Therapy Facility (NTF) is one of four such facilities in the United States currently involved in NCI sponsored trials of neutron therapy and reflects the present interest in the use of high energy neutron beams for treating certain types of human cancers. The NTF houses a CP-45 negative ion cyclotron which accelerates a 46 MeV proton beam for production of neutrons from a beryllium target. In addition to patient treatment, the NTF is involved in the production of positron emitting radioisotopes for diagnostic use in Positron Emission Tomography (PET). The activation of therapy treatment collimators, positron and neutron target systems, and a high and rapidly varying external radiation environment in a clinical setting have contributed to the need for a comprehensive radiation control program in which patient care is balanced with the maintenance of occupational exposures to ALARA levels

  13. A new generation of medical cyclotrons for the 90's

    International Nuclear Information System (INIS)

    Milton, B.F.

    1995-08-01

    Cyclotrons continue to be efficient accelerators for use in radio-isotope production. In recent years, developments in accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology as they relate to the new generation of commercial cyclotrons. Existing and potential markets for these cyclotrons will be presented. They will also discuss the possibility of systems capable of extracted energies up to 150 MeV and extracted beam currents of up to 2.0 mA

  14. A new generation of medical cyclotrons for the 90's

    International Nuclear Information System (INIS)

    Milton, B.F.

    1995-08-01

    Cyclotrons continue to be efficient accelerators for use in radio-isotope production. In recent years, developments in accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology as they relate to the new generation of commercial cyclotrons. Existing and potential markets for these cyclotrons will be presented. We will also discuss the possibility of systems capable of extracted energies up to 150 MeV and extracted beam currents of up to 2.0 mA. (author)

  15. Preliminary physical design of 7 MeV proton RFQ for the accelerator driven-energy system

    International Nuclear Information System (INIS)

    Luo Zihua

    2000-01-01

    The preliminary physical design of 7 MeV proton RFQ for the ADS (Accelerator Driven-energy System) is briefly described. The design features and the basic parameters and the design version of the RFQ are discussed. The matches between IS and RFQ and between RFQ and CCDTL/DTL are also discussed. The ideas of research for the RFQ are presented

  16. Parity Non-Conservation in Proton-Proton Elastic Scattering

    International Nuclear Information System (INIS)

    Brown, V.R.; B.F. Gibson; J.A. Carlson; R. Schiavilla

    2002-01-01

    The parity non-conserving longitudinal asymmetry in proton-proton (pp) elastic scattering is calculated in the lab-energy range 0-350 MeV using contemporary, realistic strong-interaction potentials combined with a weak-interaction potential comprised of rho- and omega-meson exchanges as exemplified by the DDH model. Values for the rho- and omega-meson coupling constants, h rho rho rho and h rho rho omega , are determined from comparison with the measured asymmetries at 13.6 MeV, 45 MeV, and 221 MeV

  17. Production and Extraction of [10C]-CO2 From Proton Bombardment of Molten 10B2O3

    International Nuclear Information System (INIS)

    Schueller, M.J.; Nickles, R.J.; Roberts, A.D.; Jensen, M.

    2003-01-01

    This work describes the production of 10C (t (1/2) = 19 s) from an enriched 10B2O3 target using a CTI RDS-112 11 MeV proton cyclotron. Proton beam heating is used to raise the target to a molten state (∼ 1300 deg. C), enabling the activity to diffuse to the surface of the melt. An infrared thermocouple monitors the melt temperature. Helium sweep gas then transports the activity to flow-through chemistry processing for human inhalation of 10CO2 for blood flow imaging with Positron Emission Tomography. The temperature-related diffusion of activity out of the white-hot molten glass target is discussed

  18. Automation in irradiating target systems for cyclotrons

    International Nuclear Information System (INIS)

    Araujo, Sumair G.; Sciani, Valdir; Almeida, Rosemeire S.

    2000-01-01

    Nowadays, two cyclotron are being operated at IPEN-CNEN/SP: one model CV-28, capable of accelerating p, d, 3 He 4 and α, with energies of 24, 14, 36 and 28 MeV, respectively, and beam currents up to 30 μA; the other one, model cyclone 30, accelerates protons with energy of 30 MeV and currents up to 350 μ A. Both have the objective of irradiating targets both for radioisotope production for use in Nuclear Medicine, such as 67 Ga, 201 Tl, 111 In, 123 I, 18 F, and general research. The development of irradiating systems completely automatized was the objective of this work, always aiming to reduce the radiation exposition dose to the workers and to increasing the reliability of use of these systems, because very high activities are expected in these processes. In the automation, a Programmable Logical Controller (PLC) was used connected to a feedback net, to manage all the variables involved in the irradiation processes. The program of the PLC was developed using Simatic Step Seven (S7), Software from Siemens, where all the steps are supervised in screens at a microcomputer. The assembling and sequence of leading were developed using the software from Unisoft, that keeps the operator informed about the work being carried out, at any time. (author)

  19. Evaluation of the production capabilities of 18F, 11C, 13N and 15O PET isotopes at the PET-cyclotron-radiochemistry site of Messina University

    Directory of Open Access Journals (Sweden)

    Lucrezia Auditore

    2017-02-01

    Full Text Available The production of 18F, 11C, 13N, and 15O positron emitting radionuclides for PET imaging is usually accomplished in Nuclear Medicine Departments through direct nuclear reactions induced by protons accelerated by compact medical cyclotrons on liquid or gaseous targets. Messina University has funded the construction of a PET-cyclotron-radio-chemistry plant at the Messina University Hospital, equipped with a 11 MeV self-shielded cyclotron. We estimated the expected production yields of these nuclides, accounting for target thickness, production of other radioactive nuclides, and time effects on the irradiated target purity. To this aim, both TALYS code (v. 1.8 and an analytical approach based on EXFOR experimental data were used. The general agreement between the two approaches, and with the available literature data, allows to assess the expected yields at the End of Bombardment, and relative target purities, to be used for further radiopharmaceutical preparation steps.

  20. Color centers of a borosilicate glass induced by 10 MeV proton, 1.85 MeV electron and 60Co-γ ray

    International Nuclear Information System (INIS)

    Du, Jishi; Wu, Jiehua; Zhao, Lili; Song, Lixin

    2013-01-01

    Optical absorption spectra, electron paramagnetic resonance (EPR) spectra, Raman spectra of a borosilicate glass after irradiation by 10 MeV proton, 1.85 MeV electron and 60 Co-γ ray were studied. The process of irradiation inducing color centers in the glass was discussed. The band gap of the glass before and after 60 Co-γ ray irradiation was studied using Mott and Davis's theory, and it was found that calculated change of the band gap introduced a paradox, because Mott and Davis's theory on the band gap cannot be adopted in the study on the irradiated glass. - Highlights: ► All the three types of irradiation induce the same types of color centers. ► Calculated change of the band gap introduced a paradox. ► Mott and Davis's theory on band gap cannot be adopted in the irradiated glass

  1. R and D using the heavy charged particle beam accelerators of the university in Louvain-la-Neuve

    International Nuclear Information System (INIS)

    Ryckewaert, G.H.

    1998-01-01

    The Cyclotron Research Centre (CRC) in Louvain-la-Neuve runs three cyclotrons: the first one (CYCLONE acronym for 'CYClotron de LOuvain la NEuve') is a multiparticle (protons-> Xenon), variable energy (80 MeV for protons, 110 * Q 2 /A MeV for heavy ions and down to 0.56 MeV/nucleon for light radioactive ions) isochronous cyclotron. The second one (CYCLONE30) is a fixed field, fixed frequency H - cyclotron capable of beam currents up to 500 μAat energies ranging from 15 to 30 MeV. It is the prototype of an industrial cyclotron for commercial isotope production developed at CRC. The third one is a home built isochronous, multiparticle, variable energy cyclotron (CYCLONE44) for the acceleration of intense, low energy RIB's for cross-section measurements of interest for Nuclear Astrophysics. After a brief description of the cyclotrons, the production of RIB's and neutron beams (both monoenergetic and high intensity), are presented. Some uses of the beams are illustrated: RIB's for Nuclear Astrophysics; neutron beams for cross-section measurements of interest for the energy amplifier/nuclear waste transmutation projects or for the production of neutron rich RIB's; heavy ions for Single Event Effects (SEE) testing in space components and for the production of track etched microporous membranes; proton and neutron beams for Medical Applications. Finally, the interaction between industrial development and fundamental research experienced in our laboratory are commented and future plans are sketched. (J.P.N.)

  2. A novel source of MeV positron bunches driven by energetic protons for PAS application

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zongquan, E-mail: tqq1123@mail.ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xu, Wenzhen; Liu, Yanfen; Xiao, Ran; Kong, Wei [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ye, Bangjiao, E-mail: bjye@ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-11-01

    This paper proposes a novel methodology of MeV positrons generation for PAS application. Feasibility of this proposal analyzed by G4Beamline and Transport have shown reasonable success. Using 2 Hz, 1.6 GeV, 100 ns and 1.5 μC/bunch proton bunches for bombarding a graphite target, about 100 ns e{sup +} bunches are generated. Quasi-monochromatic positrons in the range of 1–10 MeV included in these bunches have a flux of >10{sup 7}/s, peak brightness of 10{sup 14}/s. A magnetic-confinement beamline is utilized to transport the positrons and a “Fast Beam Chopper” is unprecedentedly extended to chop those relativistic bunches. The positron beam can be finally characterized by the energy range of 1–10 MeV and bunch width from one hundred ps up to 1 ns. Such ultrashort bunches can be useful in tomography-type positron annihilation spectroscopy (PAS) as well as other applications.

  3. A novel source of MeV positron bunches driven by energetic protons for PAS application

    Science.gov (United States)

    Tan, Zongquan; Xu, Wenzhen; Liu, Yanfen; Xiao, Ran; Kong, Wei; Ye, Bangjiao

    2014-11-01

    This paper proposes a novel methodology of MeV positrons generation for PAS application. Feasibility of this proposal analyzed by G4Beamline and Transport have shown reasonable success. Using 2 Hz, 1.6 GeV, 100 ns and 1.5 μC/bunch proton bunches for bombarding a graphite target, about 100 ns e+ bunches are generated. Quasi-monochromatic positrons in the range of 1-10 MeV included in these bunches have a flux of >107/s, peak brightness of 1014/s. A magnetic-confinement beamline is utilized to transport the positrons and a "Fast Beam Chopper" is unprecedentedly extended to chop those relativistic bunches. The positron beam can be finally characterized by the energy range of 1-10 MeV and bunch width from one hundred ps up to 1 ns. Such ultrashort bunches can be useful in tomography-type positron annihilation spectroscopy (PAS) as well as other applications.

  4. High-intensity cyclotrons for radioisotope production and accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Y.; Vandeplassche, D.; Kleeven, W.; Beeckman, W.; Zaremba, S.; Lannoye, G.; Stichelbaut, F

    2002-04-22

    IBA recently proposed a new method to extract high-intensity positive ion beams from a cyclotron based on the concept of auto-extraction. We review the design of a 14 MeV, multi-milliampere cyclotron using this new technology. IBA is also involved in the design of the accelerator system foreseen to drive the MYRRHA facility, a multipurpose neutron source developed jointly by SCK-CEN and IBA.

  5. Current heavy particle medical accelerator programs in Japan

    International Nuclear Information System (INIS)

    Kawachi, K.

    1987-01-01

    The first clinical trial of proton radiotherapy in Japan started at National Institute of Radiological Sciences (NIRS) in 1979. The proton which is provided from the NIRS medical cyclotron, has an energy of 70 MeV, and has been used for only superficial or short range tumor therapy. Recently, the cyclotron has been raised the energy up to 90 MeV and a vertical treatment line of protons has been completed in the basement of the cyclotron building. In 1983, Particle Radiation Medical Science Center (PARMS) of the University of Tsukuba started to treat patients with 250 MeV proton beam. The Institute of Physical and Chemical Research (IPCR) has a plan to construct a heavy ion biomedical irradiation facility in the Ring (Separate Sector) Cyclotron building. The facility will be completed in 1989 and will be used for proton and helium ion therapy. Recently, several hospitals have proposed to construct the dedicated proton therapy facilities. The National Cancer Center of Japan, and the PARMS of the University of Tsukuba have taken active parts in such projects. At present time, there is a step to make a decision of the type of accelerators. Another program is a construction of the NIRS Heavy Particle Medical Accelerator which is possible to provide Helium to Argon ions for therapy. The paper describes the accelerators for proton therapy and for heavy ion therapy in some detail

  6. Calculated neutron spectrum from 800-MeV protons incident on a copper beam stop

    International Nuclear Information System (INIS)

    Perry, D.G.

    1975-10-01

    A Monte Carlo calculation was performed to obtain the neutron spectrum generated by 800-MeV protons incident on the LAMPF main copper beam stop. The total flux is calculated to be of the order of 10 13 n/cm 2 -sec-mA at full-beam intensity of 1 mA, with flux spectra calculated for angles of 20 0 , 30 0 , 60 0 , 90 0 , 120 0 , and 150 0 . (auth)

  7. Utilization of new 150-MeV neutron and proton evaluations in MCNP

    International Nuclear Information System (INIS)

    Little, R.C.; Frankle, S.C.; Hughes, H.G. III; Prael, R.E.

    1997-01-01

    MCNP trademark and LAHET trademark are two of the codes included in the LARAMIE (Los Alamos Radiation Modeling Interactive Environment) code system. Both MCNP and LAHET are three-dimensional continuous-energy Monte Carlo radiation transport codes. The capabilities of MCNP and LAHET are currently being merged into one code for the Accelerator Production of Tritium (APT) program at Los Alamos National Laboratory. Concurrently, a significant effort is underway to improve the accuracy of the physics in the merged code. In particular, full nuclear-data evaluations (in ENDF6 format) for many materials of importance to APT are being produced for incident neutrons and protons up to an energy of 150-MeV. After processing, cross-section tables based on these new evaluations will be available for use fin the merged code. In order to utilize these new cross-section tables, significant enhancements are required for the merged code. Neutron cross-section tables for MCNP currently specify emission data for neutrons and photons only; the new evaluations also include complete neutron-induced data for protons, deuterons, tritons, and alphas. In addition, no provision in either MCNP or LAHET currently exists for the use of incident charged-particle tables other than for electrons. To accommodate the new neutron-induced data, it was first necessary to expand the format definition of an MCNP neutron cross-section table. The authors have prepared a 150-MeV neutron cross-section library in this expanded format for 15 nuclides. Modifications to MCNP have been implemented so that this expanded neutron library can be utilized

  8. Magnet design and test of positron emission tomography cyclotron

    International Nuclear Information System (INIS)

    Wei Tao; Yang Guojun; He Xiaozhong; Pang Jian; Zhao Liangchao; Zhang Kaizhi

    2012-01-01

    An 11 MeV H - compact cyclotron used for medical radioactive isotope production is under construction in Institute of Fluid Physics, CAEP. The cyclotron magnet adopts the design of small valley gaps and coulee structure which can provide high average magnetic field and strong focus ability. To achieve 5 × 10 -4 measuring accuracy, a magnetic field mapping system has been developed. After iterative correction using field measurement data, the total phase excursion of the cyclotron is within ± 9° and the first harmonic is less than 10 -3 T, which are all acceptable. Furthermore, the beam testing declares the successful construction of the cyclotron magnet. Besides, some magnetic field influence factors were discussed, including the magnetic field distortion and measurement error. (authors)

  9. {pi}{sup -}-p proton scattering at 516, 616, 710, 887 and 1085 MeV (1961); Diffusion de protons {pi}{sup -}-p aux energies de 516, 616, 710, 887 et 1085 MeV (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Barloutaud, R; Choquet, C; Gaillard, J M; Heughebaert, J; Leveque, A; Lehmann, P; Meyer, J; Revel, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Grard, F; Heughebaert, J [I.I.S.N., Lab. des Hautes Energies, Bruxelles (Belgium); Grard, F; Macleod, G; Montanet, L [Conseil Europeen pour la recherche nucleaire, Lab. europeen pour la physique des particules, Geneve (Switzerland)

    1961-07-01

    {pi}{sup -}-p collisions at energies of 516, 616, 710, 887 and 1085 MeV were observed by means of the 20 cm Saclay bubble chamber. Angular distributions for elastic scattering were obtained and analyzed. Total cross sections for elastic and inelastic scattering for {pi}{sup -}-p collisions and for the T = 1/2 state were determined. (authors) [French] Nous avons etudie des collisions entre pions negatifs et protons aux energies de 516, 616, 710, 887 et 1085 MeV, au moyen de la chambre A bulles de 20 cm de Saclay. Les distributions angulaires de diffusion elastique ont ete obtenues et analysees. Nous avons determine les sections efficaces totales pour les diffusions elastiques et inelastiques {pi}{sup -}-p et pour ces processus dans l'etat T = 1/2. (auteurs)

  10. Recent performance of the TRIUMF cyclotron and status of the facility

    International Nuclear Information System (INIS)

    Dutto, G.; Blackmore, E.W.; Carey, J.

    1995-09-01

    In December 1994, TRIUMF celebrated 20 years of operation. The peak intensity has been increased over the years to the present level of approximately 200 μA on beam line 1A. Polarized beam currents in excess of 20 μA are available although most users prefer lower intensity, higher quality slit-tailored polarized beams. The cyclotron simultaneously extracts three beams: one at 500 MeV for meson production, a lower intensity beam on beam line 4 for nuclear physics, nuclear chemistry, or astrophysics experiments, and a low energy beam (65-120 MeV, from a few nA up to 100 μA) on beam line 2C for isotope production or proton therapy. The yearly total integrated extracted beam current is now in the order of 600 mAh per year. Beam delivery is in excess of 5000 hours per year with beam availability consistently around 90%, serving as many as 8 experimental stations simultaneously. An additional simultaneous extraction line is planned for the new ISAC facility. With the present polarized beam current capability, the operation of polarized beams for the beam line 4 experiments will be possible simultaneously with the operation of the ISAC facility up to levels of 20 μA, 500 MeV, on target. Recent facility developments will also be reported. (author)

  11. Fission neutron irradiation of copper containing implanted and transmutation produced helium

    DEFF Research Database (Denmark)

    Singh, B.N.; Horsewell, A.; Eldrup, Morten Mostgaard

    1992-01-01

    High purity copper containing approximately 100 appm helium was produced in two ways. In the first, helium was implanted by cyclotron at Harwell at 323 K. In the second method, helium was produced as a transmutation product in 800 MeV proton irradiation at Los Alamos, also at 323 K. The distribut......High purity copper containing approximately 100 appm helium was produced in two ways. In the first, helium was implanted by cyclotron at Harwell at 323 K. In the second method, helium was produced as a transmutation product in 800 MeV proton irradiation at Los Alamos, also at 323 K...... as well as the effect of the presence of other transmutation produced impurity atoms in the 800 MeV proton irradiated copper will be discussed....

  12. A high-energy (35-500 MeV) proton monitor for the Gravity Probe-B Mission

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S. E-mail: stil@may.ie; Rusznyak, Peter; Buchman, Sasha; Shestople, Paul; Thatcher, John

    2003-02-11

    An innovative fault tolerant, high-energy particle monitor designed to record protons in the range 35-500 MeV when in polar orbit aboard NASA's Gravity Probe B spacecraft, is described. This device, which is configured to provide continuous, reliable operation in the hostile particle environment traversed by the spacecraft, can potentially be used either as an onboard monitor or as a scientific experiment.

  13. Composition and B-H curve analysis of low carbon steel from Krakatau Steel company using VSM And EDX for magnet design of 13 MeV cyclotron

    International Nuclear Information System (INIS)

    Taufik; Emy Mulyani; Kusminarto; Slamet Santosa

    2012-01-01

    Cyclotron is one type of particle accelerator that accelerate particle in circular trajectory, in order to obtain high kinetic energy. One of the main components is the cyclotron magnet system that serves to form a cyclic particle trajectories and made of forged low carbon steel. In the magnet design, the selection of magnetic materials is very important in determining whether cyclotron magnet can operate properly or not and even can be optimal. That is why we need to test samples of magnetic materials from local production in this case two samples of material produced by PT Krakatau Steel (KS). Tests performed include testing of BH curve using VSM (Vibrating Sample Magnetometer) and material composition using EDX (Energy-dispersive X-ray spectroscopy). Obtained BH curve is used as material data in three-dimensional simulation using the Opera 3D with referee to magnetic model of Kirams 13. From this study it can be concluded that the position of the test object to the direction of the magnetic field induction gives different BH curve and the samples obtained from KS has a carbon content which is still high. The lower the carbon content in the iron will produce a better magnetic properties. Material samples analyzed will produce a field that is not optimal when it is used in a 13 MeV cyclotron magnet. (author)

  14. First measurement of the VESUVIO neutron spectrum in the 30-80 MeV energy range using a Proton Recoil Telescope technique

    Science.gov (United States)

    Cazzaniga, C.; Tardocchi, M.; Croci, G.; Frost, C.; Giacomelli, L.; Grosso, G.; Hjalmarsson, A.; Rebai, M.; Rhodes, N. J.; Schooneveld, E. M.; Gorini, G.

    2013-11-01

    Measurements of the fast neutron energy spectrum at the ISIS spallation source are reported. The measurements were performed with a Proton Recoil Telescope consisting of a thin plastic foil placed in the neutron beam and two scintillator detectors. Results in the neutron energy range 30 MeV < En < 80 MeV are in good agreement with Monte Carlo simulations of the neutron spectrum.

  15. Comparison Between In-Beam and Offline Positron Emission Tomography Imaging of Proton and Carbon Ion Therapeutic Irradiation at Synchrotron- and Cyclotron-Based Facilities

    International Nuclear Information System (INIS)

    Parodi, Katia; Bortfeld, Thomas; Haberer, Thomas

    2008-01-01

    Purpose: The benefit of using dedicated in-beam positron emission tomography (PET) detectors in the treatment room instead of commercial tomographs nearby is an open question. This work quantitatively compares the measurable signal for in-beam and offline PET imaging, taking into account realistic acquisition strategies at different ion beam facilities. Both scenarios of pulsed and continuous irradiation from synchrotron and cyclotron accelerators are considered, because of their widespread use in most carbon ion and proton therapy centers. Methods and Materials: A mathematical framework is introduced to compare the time-dependent amount and spatial distribution of decays from irradiation-induced isotope production. The latter is calculated with Monte Carlo techniques for real proton treatments of head-and-neck and paraspinal tumors. Extrapolation to carbon ion irradiation is based on results of previous phantom experiments. Biologic clearance is modeled taking into account available data from previous animal and clinical studies. Results: Ratios between the amount of physical decays available for in-beam and offline detection range from 40% to 60% for cyclotron-based facilities, to 65% to 110% (carbon ions) and 94% to 166% (protons) at synchrotron-based facilities, and increase when including biologic clearance. Spatial distributions of decays during irradiation exhibit better correlation with the dose delivery and reduced influence of biologic processes. Conclusions: In-beam imaging can be advantageous for synchrotron-based facilities, provided that efficient PET systems enabling detection of isotope decays during beam extraction are implemented. For very short (<2 min) irradiation times at cyclotron-based facilities, a few minutes of acquisition time after the end of irradiation are needed for counting statistics, thus affecting patient throughput

  16. The production of iodine-123 on the Harwell variable energy cyclotron

    International Nuclear Information System (INIS)

    Cuninghame, J.G.; Hill, J.I.S.; Nichols, A.L.; Taylor, N.K.

    1978-01-01

    123 I has often been called the isotope of choice for dynamic body function studies in nuclear medicine. There has therefore, been a keen interest in the possibility of regular supply of high purity 123 I produced by the Harwell Variable Energy Cyclotron (VEC) and Synchrocyclotron (SC). This report describes a three year research and development programme on the VEC which has resulted in a method for the safe and reliable large scale production of 123 I by irradiation of di-iodomethane with 58 MeV protons. The quality of the product, and the medical trials which have been carried out with it, are also discussed. The processing and handling of the hundreds of millicuries produced during a run presents serious handling problems. These have been solved and the methods and equipment developed are described. (author)

  17. 57 Co produced in cyclotron

    International Nuclear Information System (INIS)

    Landini, Liliane; Osso Junior, Joao Alberto

    2000-01-01

    The Cyclotron CV-28 of IPEN-CNEN/SP is a particle accelerator, used mainly in the radioisotope production, applied in 'in vivo' diagnosis in nuclear medicine. Some of them are employed in the calibration of Diagnosis equipment, such as gamma and X-rays detectors. Co-57 is an example of this application. A natural nickel foil was used as target and irradiated with proton beams of 24 MeV energy. The radioactivity analysis of the irradiated target was performed by Gamma Spectroscopy with a HPGe detector. A 259,74MBq (7,02 mCi) Co-57 source was prepared, 67 days after the last bombardment, with impurity levels of 1.13% for Co-56 and 1.29% for Co-58. The thick target yields for Co-57 and for the main radionuclidic impurities were measured, after the chemical separation of the irradiated target, extrapolated to the last EOB: 1.076 MBq (29.09 mCi)/mA.h, 0.012 MBq (0.33 mCi)/mA.h and 0.014 MBq (0.37 mCi)/mA.h, for Co-57, Co-56 and Co-58, respectively. (author)

  18. Measured and calculated neutron yields for 100 MeV protons on thick targets of Pb and Li

    International Nuclear Information System (INIS)

    Jones, R.T.; Lone, M.A.; Okazaki, A.

    1983-01-01

    The neutron yield per proton from thick targets of lead and lithium irradiated with 100 MeV protons has been measured and calculated. The water bath method was used to measure the neutron production, and a Faraday cup for the beam current determination. Measured yields are 0.343 +- 0.021 for lead and 0.123 +- 0.007 for lithium. Corresponding yields calculated with the nucleon-meson transport code NMTC are 0.363 +- 0.002 and 0.160 +- 0.001. Measured and calculated thermal neutron distributions in the water bath are also compared

  19. Present status of device controls and hardware interfaces for the RCNP ring cyclotron

    International Nuclear Information System (INIS)

    Yamazaki, T.; Tamura, K.; Hosono, K.

    1994-01-01

    Since the first proton beam from the injector AVF cyclotron was injected to the ring cyclotron in 1991, the computer control system has been used for the beam acceleration of the ring cyclotron. Some device control modules have been updated, and computer configuration has been changed in 1992. Total control system performs basic facilities almost satisfactory under actual cyclotron operation. (author)

  20. Mapping of the flux and estimate of the radiation source term of neutron fields generated by the GE PETtrace-8 cyclotron; Mapeamento do fluxo e estimativa do termo fonte de radiação de campos neutrônicos gerados pelo cíclotron GE PETtrace-8

    Energy Technology Data Exchange (ETDEWEB)

    Benavente Castillo, Jhonny Antonio

    2017-07-01

    The use of spectrometric techniques in a cyclotron facility is strongly advised for the complete characterization of the neutron radiation field. In recent years, several studies of neutron spectrometry have been carried out at the Cyclotron of the Development Center of Nuclear Technology (CDTN). The main objective of this work is to propose a methodology for mapping of the flux and estimate of the radiation source term of neutron fields generated by the GE PETtrace-8 cyclotron. The method of neutron activation analysis with gold, indium and nickel activation foils was used to measure the activities induced at specific points in the cyclotron bunker. The irradiations of the activation foils were performed using the intermittent irradiation method to optimize the radiation field during {sup 18}F production. The study of the neutron spectrum was performed using three radiation source terms. The first source term was constructed based on data provided by the cyclotron manufacturer using the neutron cross sections of the ENDF/B-VII library. The other two were proposed considering the irradiation process used in the routine of {sup 18}F production. Both radiation source terms used the LA150H proton cross sections and for the {sup 18}O, the cross sections of the physical model CEM03 (Cascade-exciton model) and TENDL (TALYS-based Evaluated Nuclear Data Library) were used. The results of the source terms in relation to the experimental results, in terms of neutron fluence rates, reaction rates and dose equivalent rates, showed that are in the same order of magnitude as those obtained by Ogata et al, Fujibuchi et al, and Gallerani et al., for the same cyclotron; and by Mendez et al. for a different manufacturing cyclotron. The models of the proposed radiation source terms were validated to obtain the spectra generated during the {sup 18}F production when water enriched at {sup 18}O is bombarded with a proton beam of 16.5 MeV. Finally, the model of the LA150H - TENDL - 2015

  1. Conception, construction et essai d'un accélérateur linéaire à protons impulsé à 3 GHz (LIBO) pour la thérapie du cancer

    CERN Document Server

    Berra, Paolo; De Conto, J M; Demeyer, A; Gerard, J P; Hoffmann, H F; Remillieux, J; Bajard, M; Rosso, E; Szeless, Balázs; Weiss, M

    2005-01-01

    In the last ten years the use of proton beams in radiation therapy has become a clinical tool for treatment of deep-seated tumours. LIBO is a RF compact and low cost proton linear accelerator (SCL type) for hadrontherapy. It is conceived by TERA Foundation as a 3 GHz Linac Booster, to be mounted downstream of an existing cyclotron in order to boost the energy of the proton beam up to 200 MeV, needed for deep treatment (~25 cm) in the human body. With this solution it is possible to transform a low energy commercial cyclotron, normally used for eye melanoma therapy, isotope production and nuclear physics research, into an accelerator for deep-seated tumours. A prototype module of LIBO has been built and successfully tested with full RF power at CERN and with proton beam at INFN Laboratori Nazionali del Sud (LNS) in Catania, within an international collaboration between TERA Foundation, CERN, the Universities and INFN groups of Milan and Naples. The mid-term aim of the project is the technology transfer of the ...

  2. Proton polarization in the photodisintegration of the deuteron by linearly polarized 400- and 500-MeV γ rays

    International Nuclear Information System (INIS)

    Bratashevskii, A.S.; Gorbenko, V.G.; Gushchin, V.A.

    1982-01-01

    The polarization of the recoil protons at the angle theta(/sub p/ = 90 0 has been measured in the photodisintegration of the deuteron by linearly polarized 400- and 500-MeV γ rays. For the first time, all of the following observables have been determined under identical experimental conditions: Σ, the asymmetry of the cross sections; P/sub y/, the polarization of the recoil proton; and T 1 , the asymmetry of the nucleon polarization for the case of linearly polarized γ rays

  3. Relative biological effectiveness of 160 MeV protons. II. Biological data and their interpretation in terms of microdosimetry

    International Nuclear Information System (INIS)

    Hall, E.J.; Kellerer, A.M.; Rossi, H.H.; Lam, Y.M.P.

    1978-01-01

    The radiobiological effectiveness of 160 MeV protons was measured relative to 60 Co γ rays using Chinese hamster cells cultured in vitro. Separate experiments were performed with cells irradiated in suspension, or attached to plastic tissue culture flasks. Proton irradiations were performed in the incident plateau of the depth dose profile and with the Bragg peak spread out to cover 10 cm. In all cases the relative biological effectiveness (RBE) for protons relative to gamma rays was 1.2 for doses in excess of about 200 rad. The attached cell experiments indicate an increasing RBE at low doses, which is consistent with the microdosimetric measurements

  4. HETC-3STEP calculations of proton induced nuclide production cross sections at incident energies between 20 MeV and 5 GeV

    International Nuclear Information System (INIS)

    Takada, Hiroshi; Yoshizawa, Nobuaki; Ishibashi, Kenji.

    1996-08-01

    For the OECD/NEA code intercomparison, nuclide production cross sections of 16 O, 27 Al, nat Fe, 59 Co, nat Zr and 197 Au for the proton incidence with energies of 20 MeV to 5 GeV are calculated with the HETC-3STEP code based on the intranuclear cascade evaporation model including the preequilibrium and high energy fission processes. In the code, the level density parameter derived by Ignatyuk, the atomic mass table of Audi and Wapstra and the mass formula derived by Tachibana et al. are newly employed in the evaporation calculation part. The calculated results are compared with the experimental ones. It is confirmed that HETC-3STEP reproduces the production of the nuclides having the mass number close to that of the target nucleus with an accuracy of a factor of two to three at incident proton energies above 100 MeV for nat Zr and 197 Au. However, the HETC-3STEP code has poor accuracy on the nuclide production at low incident energies and the light nuclide production through the fragmentation process induced by protons with energies above hundreds of MeV. Therefore, further improvement is required. (author)

  5. Estimation of induced activity in super conducting cyclotron at VECC: Monte Carlo calculations

    International Nuclear Information System (INIS)

    Chatterjee, S.; Bandyopadhyay, T.

    2011-01-01

    Super Conducting Cyclotron (K500) at Variable Energy Cyclotron Centre, Kolkata (VECC) is at an advanced stage of commissioning and has successfully delivered many internal beams (light to heavy particles) up to the extraction radius. One of the external beam lines has already been completed and commissioned. The SCC along with the other subsystems is getting ready to deliver beam for experiments. Beam loss of during beam tuning and also during a steady beam delivery to the different experimental facilities due to many operational factors and requirements. Extraction of beam from the machine to the beam line is also a major player for the loss of beam. The interaction of the lost beam of accelerated charge particles with the machine parts will undergo different nuclear reaction and induced activity will be produced at the different parts of the machine. Moreover secondary neutrons produced having energy maximum limiting to the beam energy will also produce radioactivity in the different parts of the machine as well it will also induce radioactivity on the radiation shield constructed around the accelerator. Radio-activation of different parts of an accelerator, radiation shield walls around the machine and materials available in the room poses a radiation hazard inside the machine vault and experimental caves especially during maintenance of the machine. During the shutdown and maintenance period of the machine occupational workers will be exposed to these induced activity produced during operation of the machine. An effort was made to estimate these residual activity and dose for 80 MeV proton bombarded on Stainless Steel thereon activity produced on different materials like Cu, Al, Concrete and SS of different thickness. Cu, Al, SS are among many other materials which are widely used for fabrication of any accelerator. A simulation of the scenario was created using a Monte Carlo approach using FLUKA 2006.3b-general purpose multi particle transport code. Estimation

  6. SU-C-207A-04: Accuracy of Acoustic-Based Proton Range Verification in Water

    International Nuclear Information System (INIS)

    Jones, KC; Sehgal, CM; Avery, S; Vander Stappen, F

    2016-01-01

    Purpose: To determine the accuracy and dose required for acoustic-based proton range verification (protoacoustics) in water. Methods: Proton pulses with 17 µs FWHM and instantaneous currents of 480 nA (5.6 × 10 7 protons/pulse, 8.9 cGy/pulse) were generated by a clinical, hospital-based cyclotron at the University of Pennsylvania. The protoacoustic signal generated in a water phantom by the 190 MeV proton pulses was measured with a hydrophone placed at multiple known positions surrounding the dose deposition. The background random noise was measured. The protoacoustic signal was simulated to compare to the experiments. Results: The maximum protoacoustic signal amplitude at 5 cm distance was 5.2 mPa per 1 × 10 7 protons (1.6 cGy at the Bragg peak). The background random noise of the measurement was 27 mPa. Comparison between simulation and experiment indicates that the hydrophone introduced a delay of 2.4 µs. For acoustic data collected with a signal-to-noise ratio (SNR) of 21, deconvolution of the protoacoustic signal with the proton pulse provided the most precise time-of-flight range measurement (standard deviation of 2.0 mm), but a systematic error (−4.5 mm) was observed. Conclusion: Based on water phantom measurements at a clinical hospital-based cyclotron, protoacoustics is a potential technique for measuring the proton Bragg peak range with 2.0 mm standard deviation. Simultaneous use of multiple detectors is expected to reduce the standard deviation, but calibration is required to remove systematic error. Based on the measured background noise and protoacoustic amplitude, a SNR of 5.3 is projected for a deposited dose of 2 Gy.

  7. Dispersion equations for field-aligned cyclotron waves in axisymmetric magnetospheric plasmas

    Directory of Open Access Journals (Sweden)

    N. I. Grishanov

    2006-03-01

    Full Text Available In this paper, we derive the dispersion equations for field-aligned cyclotron waves in two-dimensional (2-D magnetospheric plasmas with anisotropic temperature. Two magnetic field configurations are considered with dipole and circular magnetic field lines. The main contribution of the trapped particles to the transverse dielectric permittivity is estimated by solving the linearized Vlasov equation for their perturbed distribution functions, accounting for the cyclotron and bounce resonances, neglecting the drift effects, and assuming the weak connection of the left-hand and right-hand polarized waves. Both the bi-Maxwellian and bi-Lorentzian distribution functions are considered to model the ring current ions and electrons in the dipole magnetosphere. A numerical code has been developed to analyze the dispersion characteristics of electromagnetic ion-cyclotron waves in an electron-proton magnetospheric plasma with circular magnetic field lines, assuming that the steady-state distribution function of the energetic protons is bi-Maxwellian. As in the uniform magnetic field case, the growth rate of the proton-cyclotron instability (PCI in the 2-D magnetospheric plasmas is defined by the contribution of the energetic ions/protons to the imaginary part of the transverse permittivity elements. We demonstrate that the PCI growth rate in the 2-D axisymmetric plasmasphere can be significantly smaller than that for the straight magnetic field case with the same macroscopic bulk parameters.

  8. Proton nucleus elastic scattering at 800 MeV: the role of intermediate isobars

    International Nuclear Information System (INIS)

    Auger, J.P.; Maillet, J.P.; Lazard, C.; Lombard, R.J.

    1984-10-01

    Proton nucleus elastic scattering at 800 MeV has been calculated in the Glauber model for 16 O, 40 Ca, 48 Ca and 208 Pb. Nuclear densities are taken from Hartree-Fock-BCS calculations. For the nucleon-nucleon amplitudes, use is made of two recent phase shift analysis. The effects of intermediate isobars are included by means of a simple model. The results show that the experimental data are qualitatively understood. The polarization turns out to be quite sensitive to the intermediate isobar effects, which consequently need to be calculated more carefully

  9. Cyclotron production of {sup 44}Sc for clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, S.; Bilewicz, A. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Cydzik, I. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); European Commission Joint Research Center, Ispra (Italy). Inst. for Health and Consumer Protection; Warsaw Univ. (Poland). Heavy Ion Lab.; Abbas, K. [European Commission Joint Research Center, Ispra (Italy). Institute for Transuranium Elements; Bulgheroni, A.; Simonelli, F.; Holzwarth, U. [European Commission Joint Research Center, Ispra (Italy). Inst. for Health and Consumer Protection

    2013-08-01

    {sup 44} is a promising {beta}{sup +}-emitter for molecular imaging with intermediate half-life of 4 h. Due to the chemical similarity of Sc{sup 3+} to the Lu{sup 3+} and Y{sup 3+} cations, {sup 44}Sc-DOTA bioconjugates are expected to demonstrate similar properties in vivo as the {sup 177}Lu- and {sup 90}Y-bioconjugates, what is important in planning the radionuclide therapy. {sup 44}Sc can be obtained from the {sup 44}Ti/{sup 44}Sc generator. An alternative method for {sup 44}Sc production can be the irradiation of {sup 44}Ca target at small cyclotrons. The aim of our work was to optimize the parameters of {sup 44}CaCO{sub 3} irradiation and to develop a simple procedure for {sup 44}Sc separation from the calcium target. For optimization study, {sup 44}CaCO{sub 3} targets were irradiated by protons in the energy range of 5.6-17.5 MeV with 9 MeV being found to be the best energy for {sup 44}Ca irradiations. A simple and fast separation procedure of {sup 44}Sc from calcium target was developed using chelating resin Chelex 100. DOTATATE conjugate was successfully radiolabelled with high yield at elevated temperature using the produced {sup 44}Sc. While {sup 44}CaCO{sub 3} is relatively expensive, the cost of {sup 44}Sc-DOTATATE production can be reduced by target recovery. Due to low proton energy required to produce GBq activity level of {sup 44}Sc, the availability of {sup 44}Sc radioisotope could be enhanced to open new opportunities for applications in medical imaging. (orig.)

  10. Possibilities of 140Nd production by the VINCY cyclotron

    International Nuclear Information System (INIS)

    Comor, J.J.; Dakovic, M.

    2000-01-01

    Application of positron emission tomography (PET) in modern medical diagnosis relies on the application of short lived radionuclides 11 C, 13 N, 15 O and 18 F, presuming their production in the close vicinity of the PET camera. Application of long-lived positron emitters would enable the regional distribution of PET radiopharmaceuticals, which would significantly lower the price of PET diagnosis, as well as enable its application in fields currently inhibited by the short half-life of available positron emitters. One of the candidates for application in PET is the generator system 140 Nd/ 140 Pr, due to the long half-life of 140 Nd (3,37 days). Theoretical calculations confirm that this radionuclide can be produced with high yields by protons accelerated to energies bellow 30 MeV. Due to its optimal operating parameters, the VINCY Cyclotron could produce enough 140 Nd for its regional distribution to a number of PET centers (author)

  11. Production of *sp67*Ga at the Oslo Cyclotron

    International Nuclear Information System (INIS)

    Bjoernstad, T.; Holtebekk, T.

    1983-01-01

    A method for production of *sp67*Ga at the Oslo Cyclotron is described. The method is based on the nuclear reaction *sp68*Zn (p,2n)*sp67*Ga. The target is natural zinc metal of thickness 1.3 mm fixed by a thin alloy layer to a copper disc for efficient cooling during irradiation. By applying a beam of 29 MeV protons, a maximum production yield of approx. 1.8 mCi/*my*Ah was obtained. By demanding a contamination level of *sp66*Ga <=1%, the ''useful'' yield after a decaytime of 88 h is approx. 0.8 mCi/*my*Ah. Gallium has been separated carrierfree from the zinc matrix by cation exchange from 7.5M hydrocloric acid solutions and prepared as citrate complex at pH 5.5. After sterile filtering, autoclavation, pyrogene testing and analysis for iron and zinc, the *sp67*Ga-radiopharmaceutical has been applied in human investigations at the Ullevaal hospital in Oslo. (Auth.)

  12. Double excitation of helium by 3 MeV proton impact: experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A.; Gleizes, A.; Moretto-Capelle, P.; Benoit-Cattin, P. (Toulouse-3 Univ., 31 (France). Centre de Physique Atomique); Andriamonje, S. (Bordeaux-1 Univ., 33 -Gradignan (France)); Martin, F. (Universidad Autonoma de Madrid (Spain). Dept. de Quimica); Salin, A. (Bordeaux-1 Univ., 33 - Talence (France))

    1992-08-14

    Doubly differential cross sections for the double excitation of helium by high velocity protons are measured and compared with the predictions of the first-order Born approximation. Preliminary experimental data for the shapes and intensities of the resonances 2s[sup 2] [sup 1]S, 2p[sup 2] [sup 1]D and 2s2p [sup 1]P have been obtained from high resolution electron spectra at 20[sup o], 90[sup o] and 150[sup o] for a proton energy of 3 MeV. Both experiment and theory show that the excitation of the [sup 1]P resonance largely exceeds the [sup 1]D and [sup 1]S ones at this collision velocity. The shape and emission yield of the [sup 1]P line is well described by theory over the whole angular range. The agreement for the other two resonances is not always satisfactory. (author).

  13. Dosimetry for ocular proton beam therapy at the Harvard Cyclotron Laboratory based on the ICRU Report 59

    International Nuclear Information System (INIS)

    Newhauser, W.D.; Burns, J.; Smith, A.R.

    2002-01-01

    The Massachusetts General Hospital, the Harvard Cyclotron Laboratory (HCL), and the Massachusetts Eye and Ear Infirmary have treated almost 3000 patients with ocular disease using high-energy external-beam proton radiation therapy since 1975. The absorbed dose standard for ocular proton therapy beams at HCL was based on a fluence measurement with a Faraday cup (FC). A majority of proton therapy centers worldwide, however, use an absorbed dose standard that is based on an ionization chamber (IC) technique. The ion chamber calibration is deduced from a measurement in a reference 60 Co photon field together with a calculated correction factor that takes into account differences in a chamber's response in 60 Co and proton fields. In this work, we implemented an ionization chamber-based absolute dosimetry system for the HCL ocular beamline based on the recommendations given in Report 59 by the International Commission on Radiation Units and Measurements. Comparative measurements revealed that the FC system yields an absorbed dose to water value that is 1.1% higher than was obtained with the IC system. That difference is small compared with the experimental uncertainties and is clinically insignificant. In June of 1998, we adopted the IC-based method as our standard practice for the ocular beam

  14. Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick 9Be target and estimation of neutron yields

    International Nuclear Information System (INIS)

    Paul, Sabyasachi; Sahoo, G. S.; Tripathy, S. P.; Sunil, C.; Bandyopadhyay, T.; Sharma, S. C.; Ramjilal,; Ninawe, N. G.; Gupta, A. K.

    2014-01-01

    A systematic study on the measurement of neutron spectra emitted from the interaction of protons of various energies with a thick beryllium target has been carried out. The measurements were carried out in the forward direction (at 0° with respect to the direction of protons) using CR-39 detectors. The doses were estimated using the in-house image analyzing program autoTRAK-n, which works on the principle of luminosity variation in and around the track boundaries. A total of six different proton energies starting from 4 MeV to 24 MeV with an energy gap of 4 MeV were chosen for the study of the neutron yields and the estimation of doses. Nearly, 92% of the recoil tracks developed after chemical etching were circular in nature, but the size distributions of the recoil tracks were not found to be linearly dependent on the projectile energy. The neutron yield and dose values were found to be increasing linearly with increasing projectile energies. The response of CR-39 detector was also investigated at different beam currents at two different proton energies. A linear increase of neutron yield with beam current was observed

  15. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    Science.gov (United States)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  16. Potential of cyclotron based accelerators for energy production and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Stammbach, T.; Adam, S.; Fitze, H.R. [Paul Scherrer Institute, Villigen (Switzerland)] [and others

    1995-10-01

    PSI operates a 590 MeV-cyclotron facility for high intensity proton beams for the production of intense beams of pions and muons. The facility, commissioned in 1974, has been partially upgraded and is now operated routinely at a beam current of 1 mA, which corresponds to a beam power of 0.6 MW. At this current, the beam losses in the cyclotron are about 0.02%. By the end of 1995 the authors expect to have 1.5 mA of protons. Extensive theoretical investigations on beam current limitations in isochronous cyclotrons were undertaken. They show that the longitudinal space charge effects dominate. Based on their experience the authors present a preliminary design of a cyclotron scheme that could produce a 10 MW beam as a driver for an {open_quotes}energy amplifier{close_quotes} as proposed by C. Rubbia and his collaborators. The expected efficiency for the conversion of AC into beam power would be about 50% (for the RF-systems only). The beam losses in the cyclotron are expected to be a few {mu}A, leading to a tolerable activation level.

  17. Characterization of the energy distribution of neutrons generated by 5 MeV protons on a thick beryllium target at different emission angles

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P., E-mail: paolo.colautti@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), Via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Esposito, J., E-mail: juan.esposito@tin.it [INFN, Laboratori Nazionali di Legnaro (LNL), Via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Fazzi, A.; Introini, M.V.; Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Neutron energy spectra at different emission angles, between 0 Degree-Sign and 120 Degree-Sign from the Be(p,xn) reaction generated by a beryllium thick-target bombarded with 5 MeV protons, have been measured at the Legnaro Laboratories (LNL) of the Italian National Institute for Nuclear Physics research (INFN). A new and quite compact recoil-proton spectrometer, based on a monolithic silicon telescope, coupled to a polyethylene converter, was efficiently used with respect to the traditional Time-of-Flight (TOF) technique. The measured distributions of recoil-protons were processed through an iterative unfolding algorithm in order to determine the neutron energy spectra at all the angles accounted for. The neutron energy spectrum measured at 0 Degree-Sign resulted to be in good agreement with the only one so far available at the requested energy and measured years ago with TOF technique. Moreover, the results obtained at different emission angles resulted to be consistent with detailed past measurements performed at 4 MeV protons at the same angles by TOF techniques.

  18. First measurement of the VESUVIO neutron spectrum in the 30–80 MeV energy range using a Proton Recoil Telescope technique

    International Nuclear Information System (INIS)

    Cazzaniga, C; Tardocchi, M; Croci, G; Grosso, G; Rebai, M; Gorini, G; Frost, C; Rhodes, N J; Schooneveld, E M; Giacomelli, L; Hjalmarsson, A

    2013-01-01

    Measurements of the fast neutron energy spectrum at the ISIS spallation source are reported. The measurements were performed with a Proton Recoil Telescope consisting of a thin plastic foil placed in the neutron beam and two scintillator detectors. Results in the neutron energy range 30 MeV n < 80 MeV are in good agreement with Monte Carlo simulations of the neutron spectrum

  19. The reaction p12C→ηX from Tp=800 MeV to Tp=1500 MeV

    International Nuclear Information System (INIS)

    Chiavassa, E.; Dellacasa, G.; De Marco, N.; De Oliveira Martins, O.; Gallio, M.; Guaita, P.; Musso, A.; Piccotti, A.; Scomparin, E.; Vercellin, E.

    1998-01-01

    The reaction p 12 C→nX has been studied, at several proton kinetic energies ranging from 800 MeV to 1500 MeV, at the proton synchrotron Saturne at Saclay. The measured doubly differential cross-sections are presented and discussed in the framework of a simple theoretical model. The model fails in describing the deepest subthreshold data while the above-threshold data are fairly well reproduced. (orig.)

  20. Spectroscopic study of {sup 206,207,208}Pb isotopes by high resolution analysis of 24.5 MeV proton scattering; Etude spectroscopique des isotopes 206, 207 et 208 du plomb par analyse a haute resolution de la diffusion de protons de 24,5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Vallois, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-03-01

    {sup 206,207,208}pb have been studied by 24.5 MeV proton inelastic scattering with a resolution of 20 keV. The angular distributions of the differential cross-sections corresponding to the different excited levels have been measured in a large angular region and analysed with the DWBA.This work shows that it exists between 4 and 5 MeV of excitation energy some strongly excited levels corresponding to transfer momenta l = 2, 4, 6 and 8. The single particle-hole models do not explain these states; so it will probably be necessary to introduce some several particle - hole configurations. (author) [French] Les isotopes 206, 207 et 208 du plomb ont ete etudies par diffusion inelastique de protons de 24,5 MeV avec une resolution de 20 keV. Les distributions angulaires des sections efficaces differentielles correspondant aux differents niveaux excites ont ete mesurees sur un large domaine angulaire et analysees a l'aide de la DWBA. Ce travail met en evidence l'existence, entre 4 et 5 MeV d'excitation, de niveaux fortement excites correspondant a des moments de transfert de 2, 4, 6 et 8. Les modeles a simple particule-trou ne rendant pas compte de ces niveaux, il faudra sans doute recourir a des configurations a plusieurs particules-trous pour les expliquer. (auteur)

  1. Search for characteristics of preequilibrium protons emitted in Ar + Ag collisions at E/A = 27 MeV

    International Nuclear Information System (INIS)

    Jouan, D.; Rivet, M.F.; Borderie, B.; Gauvin, H.; Cabot, C.; Fuchs, H.; Gardes, D.; Jacquet, D.; Monnet, F.; Montoya, M.

    1987-12-01

    Protons emitted in coincidence with heavy residues have been measured, for the reaction 27 MeV per nucleon 40 Ar + nat Ag. From the proton velocity spectra, an anisotropic component was extracted, which shows a broad angular distribution, and a mean velocity larger than the beam velocity. Multiplicities for this component are low, about 0.8, independent of the violence of the collision. For central collisions, selected via the higher heavy residue velocities, the velocity characteristics of the anisotropic component, seen in this case as a pure preequilibrium component, were compared to semi-classical calculations (Landau-Vlasov)

  2. Spin decomposition of the responses of 44Ca and 48Ca to 300 MeV protons

    International Nuclear Information System (INIS)

    Baker, F.T.; Bimbot, L.; Fergerson, R.W.; Glashausser, C.; Green, A.; Haeusser, O.; Hicks, K.; Jones, K.; Miller, C.A.; Vetterli, M.; Abegg, R.; Beatty, D.; Bonin, B.; Castel, B.; Chen, X.Y.; Cupps, V.; Djalali, C.; Henderson, R.; Jackson, K.P.; Jeppesen, R.; Nakayama, K.; Nanda, S.K.; Sawafta, R.; Yen, S.; Institut de Physique Nucleaire, F-91406 Orsay, France; Rutgers University, Piscataway, New Jersey 08854; Simon Fraser University, Burnaby, Canada V5A1S6; TRIUMF, 4004 Westbrook Mall, Vancouver, Canada V6T2A3; Los Alamos National Laboratory, Los Alamos, New Mexico 87544; Centre d'Etudes Nucleaires de Saclay, 91191 Gif sur Yvette, CEDEX, France; Queen's University, Kingston, Canada K7L3N6; University of Colorado, Boulder, Colorado 80309; University of South Carolina, Columbia, South Carolina 29208; Continuous Electron Beam Accelerator Facility, 12000 Jefferson Ave., Newport News, Virginia 23606; University of Alberta, Edmonton, Canada T6G2J1)

    1991-01-01

    Angular distributions of the double-differential cross section d 2 σ/dΩ dE(σ) and the spin-flip probability S nn have been measured for inclusive proton inelastic scattering from 44 Ca at 290 MeV and from 48 Ca at 318 MeV. Excitation energies up to about 50 MeV for 44 Ca and 40 MeV for 48 Ca have been investigated over the laboratory angular ranges of 3 degree to 12 degree for 44 Ca and 3 degree to 9 degree for 48 Ca. Multipole decompositions of angular distributions of both the spin-flip cross section σS nn and the estimated cross section for ΔS=0 transitions have been performed. Distributions of strengths were deduced for ΔL=1, ΔS=0 (the giant dipole), ΔL=2, ΔS=0 (the giant quadrupole), ΔL=0, ΔS=1 (the magnetic dipole), ΔL=1, ΔS=1 (the spin dipole), and ΔL=2, ΔS=1 (the spin quadrupole). The ΔS=0 summed strengths for 44 Ca are lower than for 40 Ca and 48 Ca. The spin-dipole summed strengths are found to be approximately independent of A. For 48 Ca, essentially all M1 strength observed was in the 10.23 MeV 1 + state; for 44 Ca, M1 strength was observed to be fragmented over a range of 7 to 18 Mev

  3. Design study of the ESS-Bilbao 50 MeV proton beam line for radiobiological studies

    Energy Technology Data Exchange (ETDEWEB)

    Huerta-Parajon, M., E-mail: mhuerta@essbilbao.org; Martinez-Ballarin, R., E-mail: rmartinez@essbilbao.org; Abad, E., E-mail: eabad@essbilbao.org

    2015-02-01

    The ESS-Bilbao proton accelerator facility has been designed fulfilling the European Spallation Source (ESS) specifications to serve as the Spanish contribution to the ESS construction. Furthermore, several applications of the ESS-Bilbao proton beam are being considered in order to contribute to the knowledge in the field of radiobiology, materials and aerospace components. Understanding of the interaction of radiation with biological systems is of vital importance as it affects important applications such as cancer treatment with ion beam therapy among others. ESS-Bilbao plans to house a facility exclusively dedicated to radiobiological experiments with protons up to 50 MeV. Beam line design, optimisation and initial calculations of flux densities and absorbed doses were undertaken using the Monte Carlo simulation package FLUKA. A proton beam with a flux density of about 10{sup 6} protons/cm{sup 2} s reaches the water sample with a flat lateral distribution of the dose. The absorbed dose at the pristine Bragg peak calculated with FLUKA is 2.4 ± 0.1 Gy in 1 min of irradiation time. This value agrees with the clinically meaningful dose rates, i.e. around 2 Gy/min, used in hadrontherapy. Optimisation and validation studies in the ESS-Bilbao line for radiobiological experiments are detailed in this article.

  4. Update of neutron dose yields as a function of energy for protons and deuterons incident on beryllium targets

    International Nuclear Information System (INIS)

    Ten Haken, R.K.; Awschalom, M.; Rosenberg, I.

    1982-11-01

    Neutron absorbed dose yields (absorbed dose rates per unit incident current on targets at a given SAD or SSD) increase with incident charged particle energy for both protons and deuterons. Analyses of neutron dose yield versus incident particle energy have been performed for both deuterons and protons. It is the purpose of this report to update those analyses by pooling all of the more recent published results and to reanalyze the trend of yield, Y, versus incident energy, E, which in the past has been described by an expression of the form Y = aE/sup b/, where a and b are empirical constants. From the reanalyzed trend it is concluded that for a given size cyclotron (E/sub p/ = 2E/sub d/), the dose yields using protons are higher than those using deuterons up to a proton energy E/sub p/ of 64 MeV

  5. Reaction cross sections for protons on 12C, 40Ca, 90Zr and 208Pb at energies between 80 and 180 MeV

    International Nuclear Information System (INIS)

    Auce, A.; Ingemarsson, A.; Johansson, R.

    2005-04-01

    Results of reaction cross section measurements on 12 C, 40 Ca, 90 Zr and 208 Pb at incident proton energies between 80 and 180 MeV and for 58 Ni at 81 MeV are presented. The experimental procedure is described and the results are compared with earlier measurements and predictions using macroscopic and microscopic models

  6. HETC-3STEP calculations of proton induced nuclide production cross sections at incident energies between 20 MeV and 5 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yoshizawa, Nobuaki; Ishibashi, Kenji

    1996-08-01

    For the OECD/NEA code intercomparison, nuclide production cross sections of {sup 16}O, {sup 27}Al, {sup nat}Fe, {sup 59}Co, {sup nat}Zr and {sup 197}Au for the proton incidence with energies of 20 MeV to 5 GeV are calculated with the HETC-3STEP code based on the intranuclear cascade evaporation model including the preequilibrium and high energy fission processes. In the code, the level density parameter derived by Ignatyuk, the atomic mass table of Audi and Wapstra and the mass formula derived by Tachibana et al. are newly employed in the evaporation calculation part. The calculated results are compared with the experimental ones. It is confirmed that HETC-3STEP reproduces the production of the nuclides having the mass number close to that of the target nucleus with an accuracy of a factor of two to three at incident proton energies above 100 MeV for {sup nat}Zr and {sup 197}Au. However, the HETC-3STEP code has poor accuracy on the nuclide production at low incident energies and the light nuclide production through the fragmentation process induced by protons with energies above hundreds of MeV. Therefore, further improvement is required. (author)

  7. Alignment of mapping system for magnet cyclotron DECY-13

    International Nuclear Information System (INIS)

    Idrus Abdul Kudus; Taufik; Kurnia Wibowo

    2016-01-01

    A cyclotron is composed of some main and specific components, such as magnet system, ion source, RF system and extractor. A magnet is one of important component in a cyclotron that serves as ion beam bending so the ion beam trajectory is circular. Magnet design should with the requirement of cyclotron that proton energy is 13 MeV. In the construction of the cyclotron magnet, a mapping tool of the magnetic field is required for analysis in shimming process in order to optimize the magnetic field. The magnetic field mapping process is carried out in the median plane of the magnet poles. The magnetic field mapping is carried out repeatedly during the shimming process. During this process, the mapping tool is possible to experience a shift or change in position, for that it is necessary to alignment in order to make sure that the probe is in the median plane of magnet poles and to ensure their positions are always the same on each repetition mapping. During this process, it is possible to experience a shift mapping tool or change the position, for this it is needed to process alignment to ensure the position of the probe is in the median plane magnetic poles and ensure their positions are always the same on each repetition mapping. Alignment on the mapping tool are the height position, zeroing tesla meter and two hall probe mapping. The parameters form the basis for magnetic field measurements based on the three elements: an alignment system on the engine mapping, mapping tool reference point and stage movement of x-y coordinates. Shifts occur due to change in elevation mapping tool table and center coordinates x and y in the mapping process. Changes made to shift mapping coordinates can be shifted as far as 1 to 2 mm for each hall probe in the x and y coordinates with altitude changes 0.05° mapping table and measurement of tesla meter changes in 0.002 T. (author)

  8. Multiple ionization of noble gases by 2.0 MeV proton impact: comparison with equi-velocity electron impact ionization

    International Nuclear Information System (INIS)

    Melo, W.S.; Santos, A.C.F.; Sant'Anna, M.M.; Sigaud, G.M.; Montenegro, E.C.

    2002-01-01

    Absolute single- and multiple-ionization cross sections of rare gases (He, Ne, Ar, Kr and Xe) have been measured for collisions with 2.0 MeV p + . A comparison is made with equi-velocity electron impact ionization cross sections as well as with the available proton impact data. For the light rare gases the single-ionization cross sections are essentially the same for both proton and electron impacts, but increasing differences appear for the heavier targets. (author). Letter-to-the-editor

  9. Measurement and calculation of cross section for (p,x) reactions on natural Fe for 650 MeV protons

    International Nuclear Information System (INIS)

    Janczyszyn, J.; Pohorecki, W.; Domanska, G.; Loska, L.; Taczanowski, S.; Shvetsov, V.

    2006-01-01

    Cross sections for production of radionuclides in (p,x) reactions on natural iron were measured for protons of 650 ± 4 MeV with the use of HPGe gamma spectrometry and calculated with the MCNPX code. The determined cross section values were compared with the computed and other experimental ones

  10. Comments on Moessbauer-effect studies on 2-MeV proton-irradiated Nb3Sn

    International Nuclear Information System (INIS)

    Cox, D.E.; Sweedler, A.R.

    1979-01-01

    In a recent paper, Herber and Kalish have presented 119 Sn Moessbauer data for Nb 3 Sn irradiated by 2-MeV protons which they interpret in terms of a statistical distribution of site defects rather than interchange of Nb and Sn atoms. Further analysis of these data leads to the conclusion that they are in fact quite consistent with the presence of a substantial amount of radiation-induced site-exchange disorder. This is in agreement with the findings of a number of recent diffraction studies

  11. Studying the destruction of various fluoropolymers caused by gamma - irradiation and MeV protons

    International Nuclear Information System (INIS)

    Allayarov, S.R.; Ol'khov, Yu.A.; Gordon, D.A.; Muntele, C.I.; Muntele, I.C.; Ila, D.; Dixon, D.A.; Kispert, L.D.; Nikolskij, V.G.

    2007-01-01

    While fluoropolymers are normally used as anti-adherent coating, they are intensely investigated for potential use in various radiation dosimeter applications as well as space technology. In order to understand the discrepancy between high chemical and thermal stability and low radiation stability of various fluoropolymers, we are bombarding them with 1 MeV protons to fluences up to 2·10 15 protons/cm 2 as well as subjected some of them to gamma-irradiation by dose of 10 kGy. During bombardment we are monitoring the emission of chemical species with a residual gas analyzer. Gamma-irradiated samples were tested by radio thermoluminescence method. The results we present here are a good indicator that material damage happens much earlier than 2·10 15 protons/cm 2 and that further work should be addressed at much smaller exposures. Radio thermoluminescence also can be used at small doses of irradiation (10-30 kGy). The thermomechanical curve of radiation-free polyvinyledenefluoride (PVDF) is characteristic for topologically di-block amorphous polymer of quasi-crossing structure. In the temperature range of from 173 K up to 228 K polymer is vitrified. The vitrification temperature of PVDF is 228 K. All molecular-relaxation and quantitative characteristics of PVDF were determined before and after its irradiation by protons. Protons caused significant changes in PVDF. From di-block amorphous it transformed in to amorphous-crystalline structure. An appreciable influence of dose at proton irradiation of polymer was revealed both on topological level and on molecular-relaxation one. (authors)

  12. Activation cross-section measurements of some proton induced reactions on Ni, Co and Mo for proton activation analysis (PAA) purposes

    International Nuclear Information System (INIS)

    Alharbi, A.A.; Alzahrani, J.; Azzam, A.; Nuclear Research Center, Cairo

    2011-01-01

    The experimental proton induced reaction cross sections on some elements of the Havar alloy were measured using the activation method and the well established stacked-foil technique combined with high resolution gamma-ray spectroscopy. They included the reactions nat Ni(p,x) 57 Ni, nat Co(p,x) 58(m+g) Co and nat Mo(p,x) 94g,95g,96(m+g) Tc, the aim being to obtain reliable data in the proton energy range up to 26 MeV for some important reactions to be used in the proton activation analysis of steel or other alloys. Irradiations were performed using the CS-30 Cyclotron at KFSH and RC, Riyadh, Saudi Arabia. The activity measurements were carried out in PNU laboratories, Riyadh, Saudi Arabia. The experimental excitation functions for the investigated reactions were constructed and compared with the performed computed theoretical nuclear model calculations using two different codes: ALICE-IPPE and TALYS. A comparison between our measured cross-section values and the available published data is also presented, with a view to checking the consistency of the reported experimental work from various laboratories.

  13. Calculation of proton total reaction cross sections for some target nuclei in incident energy range of 10-600 MeV

    International Nuclear Information System (INIS)

    Bueyuekuslu, H.; Kaplan, A.; Aydin, A.; Tel, E.; Yildirim, G.

    2010-01-01

    In this study, proton total reaction cross sections have been investigated for some isotopes such as 12 C, 27 Al, 9 Be, 16 O, 181 Ta, 197 Au, 6 Li, and 14 N by a proton beam up to 600 MeV. Calculation of the proton total cross sections has been carried out by the analytic expression formulated by M.A. Alvi by using Coulomb-modified Glauber theory with the Helm model nuclear form factor. The obtained results have been discussed and compared with the available experimental data and found to be in agreement with each other.

  14. Two-dimensional Nonlinear Simulations of Temperature-anisotropy Instabilities with a Proton-alpha Drift

    Science.gov (United States)

    Markovskii, S. A.; Chandran, Benjamin D. G.; Vasquez, Bernard J.

    2018-04-01

    We present two-dimensional hybrid simulations of proton-cyclotron and mirror instabilities in a proton-alpha plasma with particle-in-cell ions and a neutralizing electron fluid. The instabilities are driven by the protons with temperature perpendicular to the background magnetic field larger than the parallel temperature. The alpha particles with initially isotropic temperature have a nonzero drift speed with respect to the protons. The minor ions are known to influence the relative effect of the proton-cyclotron and mirror instabilities. In this paper, we show that the mirror mode can dominate the power spectrum at the nonlinear stage even if its linear growth rate is significantly lower than that of the proton-cyclotron mode. The proton-cyclotron instability combined with the alpha-proton drift is a possible cause of the nonzero magnetic helicity observed in the solar wind for fluctuations propagating nearly parallel to the magnetic field. Our simulations generally confirm this concept but reveal a complex helicity spectrum that is not anticipated from the linear theory of the instability.

  15. External proton and Li beams; Haces externos de protones y litios

    Energy Technology Data Exchange (ETDEWEB)

    Schuff, Juan A; Burlon, Alejandro A; Debray, Mario E; Kesque, Jose M; Kreiner, Andres J; Stoliar, Pablo A; Naab, Fabian; Ozafran, Mabel J; Vazquez, Monica E [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Fisica; Policastro, Lucia L; Duran, Hebe; Molinari, Beatriz L; O' Connor, Silvia E; Saint-Martin, Maria L.G.; Palmieri, Monica; Bernaola, Omar A; Opezzo, Oscar J [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Radiobiologia; Mazal, A; Favaudon, F; Henry, Y [Institut Curie, 75 - Paris (France); Perez de la Hoz, A.; Somacal, Hector; Valda, Alejandro; Canevas, S; Ruffolo, M; Tasat, D R [Universidad Nacional de General San Martin, Villa Ballester (Argentina). Escuela de Ciencia y Tecnologia; Davidson, Miguel; Davidson, Jorge [Buenos Aires Univ. (Argentina). Dept. de Fisica; Delacroix, S; Nauraye, C; Brune, E; Gautier, C; Habrand, J L [Centre de Protontherapie, 91 - Orsay (France); Muhlmann, M C [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina)

    2000-07-01

    In the frame of a feasibility study to introduce proton therapy in Argentina in a collaborative agreement between the Physics and Radiobiology Departments of the National Atomic Energy Commission or Argentina and the Centre de Protontherapie de Orsay, France, external proton and Li beams were produced at the TANDAR accelerator in Buenos Aires. The specific aim of this work was to start radiobiology studies on cell cultures and small laboratory animals. In particular we seek to determine here the relative biological effectiveness, RBE, for proton and Li beams as a function of energy for different tumor and normal cell lines. The 24 MeV proton beam was diffused using a 25 {mu}m gold foil and extracted through a Kapton window to obtain a homogeneous field (constant to 95%) of about 7 cm in diameter. Measurements were carried out with quasi-monoenergetic beams (of 20.2 {+-} 0.07 MeV, 2.9 {+-} 0.10 MeV y 1.5 {+-} 0.1 MeV for protons and 21.4 {+-} 0.4 MeV for Lithium). Proton fluence and Bragg peaks were measured. The dose delivered in each case was monitored on-line with a calibrated transmission ionization chamber. Three cell lines PDV, PDVC 57 and V 79 (as a reference) were irradiated with {gamma}-rays, proton and lithium beams with linear energy transfer (LET) from 2 to 100 keV/{mu}m. RBE values in the range of 1.2-5.9 were obtained. In addition preliminary studies on chromosomal aberrations and viability of alveolar macrophages were carried out. (author)

  16. Prompt radiation, shielding and induced radioactivity in a high-power 160 MeV proton linac

    Energy Technology Data Exchange (ETDEWEB)

    Magistris, Matteo [CERN, CH-1211 Geneva 23 (Switzerland)]. E-mail: matteo.magistris@cern.ch; Silari, Marco [CERN, CH-1211 Geneva 23 (Switzerland)

    2006-06-23

    CERN is designing a 160 MeV proton linear accelerator, both for a future intensity upgrade of the LHC and as a possible first stage of a 2.2 GeV superconducting proton linac. A first estimate of the required shielding was obtained by means of a simple analytical model. The source terms and the attenuation lengths used in the present study were calculated with the Monte Carlo cascade code FLUKA. Detailed FLUKA simulations were performed to investigate the contribution of neutron skyshine and backscattering to the expected dose rate in the areas around the linac tunnel. An estimate of the induced radioactivity in the magnets, vacuum chamber, the cooling system and the concrete shield was performed. A preliminary thermal study of the beam dump is also discussed.

  17. Theoretical study of intermediate-mass fragments in proton-nucleus reactions at 200 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sabra, Mohammad S. [NASA Marshall Space Flight Center, USRA Space Science Department, Huntsville, AL (United States)

    2017-03-15

    We have analyzed energy spectra, angular distributions, and mass and charge distributions of intermediate-mass fragments (IMFs) from the interaction of {sup 27}Al, {sup 59}Co, and {sup 197}Au with 200 MeV protons. Calculations within the modified statistical model with final-state interaction were performed using SAPTON code. Within the experimental uncertainty and constraint, SAPTON shows good agreement with the data, and suggests that the IMFs are produced after the intra-nuclear cascade stage, and during the surface coalescence, as well as the evaporation/fission stages. (orig.)

  18. Remeasurement and compilation of excitation function of proton induced reactions on iron for activation techniques

    International Nuclear Information System (INIS)

    Takacs, S.; Vasvary, L.; Tarkanyi, F.

    1994-01-01

    Excitation functions of proton induced reactions on nat Fe(p, xn) 56 Co have been remeasured in the energy region up to 18 MeV using stacked foil technique and standard high resolution gamma-ray spectrometry at the Debrecen MGC-20E cyclotron. Compilation of the available data measured between 1959 and 1993 has been made. The corresponding excitation functions have been reviewed, critical comparison of all the available data was done to obtain the most accurate data set. The feasibility of the evaluated data set was checked by reproducing experimental calibration curves for TLA by calculation. (orig.)

  19. Determination of absorbed dose in a proton beam for purposes of charged-particle radiation therapy

    International Nuclear Information System (INIS)

    Verhey, L.J.; Koehler, A.M.; McDonald, J.C.; Goitein, M.; Ma, I.C.; Schneider, R.J.; Wagner, M.

    1979-01-01

    Four methods are described by which absorbed dose has been measured in a proton beam extracted from the 160-MeV Harvard cyclotron. The standard dosimetry, used to determine doses for patient treatments, is based upon an absolute measurement of particle flux using a Faraday cup. Measurements have also been made using a parallel-plate ionization chamber; a thimble ionization chamber carying a 60 Co calibration traceable to NBS; and a tissue-equivalent calorimeter. The calorimeter, which provides an independent check of the dosimetry, agreed with the standard dosimetry at five widely different depths within a range from 0.8 to 2.6%

  20. NIRS report concerning the cyclotron usages. FY 2000

    International Nuclear Information System (INIS)

    2001-07-01

    This report describes the National Institute of Radiological Sciences (NIRS) cyclotron usages concerning of: Operation and improvement-development of the cyclotrons in 2000 (total 1,302 hr operation, development of the insulating septum, renewal of the magnetic channel and radiofrequency (RF) pre-amplifier, and improvement of the magnetic interference); Development of neutron detectors in the cosmic environment (the phoswich detector, low-pressure proportional counter, bubble dosimeter and new type phoswich detector); Development of detectors of charged particle components in the cosmic radiation (Liulin-4J and position sensitive silicon detector); Measurement of the energy and angular distribution of secondary electrons from water vapor with heavy-ion impact; Phase II clinical trials of proton beam therapy for ophthalmological tumors (34 patients in 1996-2000 and survival rate 100% within 3 years); Application of cyclotrons for RI production (mainly, 11 C, 13 N, 15 O and 18 F for basic and clinical PET); Studies on the spread-out peak of proton beam (for radiotherapy); and Related materials to above (details). (N.I.)

  1. Mutation effect of MeV protons on bioflocculant bacteria Bacillus cereus

    International Nuclear Information System (INIS)

    Yang, Y.N.; Ren, N.; Xue, J.M.; Yang, J.; Rong, B.L.

    2007-01-01

    A 3.2 MeV proton beam was used to irradiate bioflocculant bacteria (Bacillus cereus) to achieve mutation. The ion fluence ranged from 10 11 to 10 14 /cm 2 . Most of the bacteria were killed when the ion fluence reached 10 12 ions/cm 2 . The survival ratio drops in an exponential way on further increasing the ion fluence. The flocculating activity of 7 samples out of 51 showed a positive change, and a perfect mutant C7-23 with a stable high capacity of bioflocculant production was found. RAPD measurements showed that a new lane appears in this sample. The flocculating activity of the C7-23 bacteria increased by factors of 22%, 54% and 217% under pH values of 4, 7 or 10, respectively

  2. Systematics of proton absorption deduced from ( p,p) and ( p,n) cross sectionsfor 2.0- to 6.7-MeV protons on /sup 107,109/Ag and 115In

    International Nuclear Information System (INIS)

    Hershberger, R.L.; Flynn, D.S.; Gabbard, F.; Johnson, C.H.

    1980-01-01

    The ( p,p) and ( p,n) cross sections were measured to accuracies of +- 2% and +- 3%, respectively, for 2.0- to 6.7-MeV protons on /sup 107,109/Ag and 115 In. Hauser-Feshbach calculations, which included γ-ray emission channels, were used to convert the ( p,n) cross sections to proton absorption cross sections. Analysis of the ( p,p) and deduced proton absorption cross sections were made simultaneously using a conventional optical-model potential. The measured cross sections can be described using parameters extrapolated from the Sn region in a systematic way, except for a large increase required for the depth of the absorptive potential

  3. Investigation of selenium compounds as targets for {sup 76,77}Br production using protons of energies up to 34 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, H. Ebrahim [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Centre; Forschungszentrum Juelich (Germany). Inst. fuer Neurowissenschaften und Medizin, INM-5: Nuklearchemie; El-Azony, Khaled M. [Atomic Energy Authority, Cairo (Egypt). Hot Labs. Centre; Azzam, Ahmed [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Centre; Qaim, Syed M. [Forschungszentrum Juelich (Germany). Inst. fuer Neurowissenschaften und Medizin, INM-5: Nuklearchemie

    2017-07-01

    Selenium compounds of Zn, Sn and Cu were prepared using a conventional sintering method and the phase composition of each compound was investigated using X-ray diffraction. The compounds prepared were tested under variable irradiation and separation conditions for {sup 76,77}Br production. The activity of {sup 77}Br was measured as a function of proton beam current within the range 2-15 μA and the thermal stability of the irradiated compound was investigated. The results showed that the compounds ZnSe and Cu{sub 2}Se are thermally more stable in comparison to the SnSe. The effects of several factors, such as temperature, gas flow rate and separation time, were studied to obtain the maximum separation yield of radiobromine by the dry distillation method. The data showed that the compound Cu{sub 2}Se is the most suitable target for proton irradiation to produce {sup 76,77}Br at energies up to 20 MeV. A simplified method was used to prepare also CuSe, which was tested in irradiations with intermediate energy protons of beam currents up to 10 μA. The data of a typical production run using 17 MeV protons and the Cu{sub 2}Se target are reported.

  4. Study of properties of the plastic scintillator EJ-260 under irradiation with 150 MeV protons and 1.2MeV gamma-rays

    Science.gov (United States)

    Dormenev, V.; Brinkmann, K.-T.; Korjik, M.; Novotny, R. W.

    2017-11-01

    One of the most critical aspects for the application of a scintillation material in high energy physics is the degradation of properties of the material in an environment of highly ionizing particles in particular due to hadrons. There are presently several detector concepts in consideration being based on organic scintillator material for fast timing of charged particles or sampling calorimeters. We have tested different samples of the organic plastic scintillator EJ-260 produced by the company Eljen Technology (Sweetwater, TX, USA). The ongoing activity has characterized the relevant parameters such as light output, kinetics and temperature dependence. The study has focused on the change of performance after irradiation with 150 MeV protons up to an integral fluence of 5·1013 protons/cm2 as well as with a strong 60Co γ-source accumulating an integral dose of 100 Gy. The paper will report on the obtained results.

  5. High precision absolute differential cross-section measurements for proton-proton elastic scattering at 491.9, 575.5, 641.6, 728.2, and 793.0 MeV

    International Nuclear Information System (INIS)

    Simon, A.J.

    1993-07-01

    The proton-proton absolute elastic differential cross section, σ pp (θ), has been measured at incident proton beam energies of 491.9, 575.5, 641.6, 728.2, and 793.0 MeV at laboratory scattering angles of ∼15 degree to ∼42 degree with a total uncertainty on the order of 1%. The measurements were made at the Clinton P. Anderson Los Alamos Meson Physics Facility (LAMPF) and employed a new beam counting technique which provided a better overall beam normalization compared to previous experiments of this type. The cross section was measured with CH 2 targets and a primary liquid, LH 2 , target to determine the uncertainties in some systematic corrections. Extreme care was taken to reduce individual systematic errors to less than 0.5%

  6. Spin excitations in 48Ca and 90Zr with 319 MeV protons

    International Nuclear Information System (INIS)

    Nanda, S.K.

    1985-05-01

    Cross sections, analyzing powers, and spin-flip probabilities have been measured in the low momentum transfer region in the 90 Zr(p vector, p' vector) 90 Zr* reaction at 319 MeV. A rich fine structure is observed for the first time in inelastic proton scattering in the previously proposed M1 giant resonance region. Angular distribution of most of these states are consistent with M1 excitation. The excitation energies of the fine structure states are in good agreement with similar structure seen in electron scattering; however, discrepancies in spin assignments remain. The measured cross section for the entire bump is about 37 +- 10% of the Distorted Wave Impulse Approximation (DWIA) prediction for the M1 strength in 90 Zr with simple wave functions. However, an analysis of the fine structure states reveals about 15% of the strength in the M1 region to be due to narrow El states; another 8% is attributed to M2 strength. The spin-flip measurements for 90 Zr reveal a large spin-flip probability value for the M1 region; good agreement is obtained with DWIA calculations. However, a large cross section for spin excitations distributed uniformly over the excitation energy region from about 7 to 25 MeV is observed for the first time. The spin excitation strength in this giant resonance continuum is found to about 0.80 mb/sr/MeV. Angular distributions for the spin-flip cross sections from 7 to 18 MeV in steps of 2 MeV have been analyzed with low multipole spin excitation calculations in the DWIA framework; the observed spin-flip strength in this region is found to be consistent with spin excitation involving angular momentum transfer of up to two. Finally, cross section, analyzing power, and spin-flip probability data have also been obtained for the 10.23 MeV M1 transition in the 48 Ca(p vector, p' vector) 48 Ca* reaction at 319 MeV. The quenching of M1 strength in 48 Ca relative to theoretical predictions is found to be consistent with previous work

  7. Production of positive pions from polarized protons by linearly polarized photons in the energy region 300--420 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Get' man, V.A.; Gorbenko, V.G.; Grushin, V.F.; Derkach, A.Y.; Zhebrovskii, Y.V.; Karnaukhov, I.M.; Kolesnikov, L.Y.; Luchanin, A.A.; Rubashkin, A.L.; Sanin, V.M.; Sorokin, P.V.; Sporov, E.A.; Telegin, Y.N.; Shalatskii, S.V.

    1980-10-01

    A technique for measurement of the polarization observables ..sigma.., P, and T for the reaction ..gamma..p..-->..n..pi../sup +/ in a doubly polarized experiment (polarized proton target + linearly polarized photon beam) is described. Measurements of the angular distributions of these observables in the range of pion emission angles 30--150/sup 0/ are presented for four photon energies from 300 to 420 MeV. Inclusion of the new experimental data in an energy-independent multipole analysis of photoproduction from protons permits a more reliable selection of solutions to be made.

  8. Prototype Digital Beam Position and Phase Monitor for the 100-MeV Proton Linac of PEFP

    CERN Document Server

    Yu In Ha; Kim, Sung-Chul; Park, In-Soo; Park, Sung-Ju; Tae Kim, Do

    2005-01-01

    The PEFP (Proton Engineering Frontier Project) at the KAERI (Korea Atomic Energy Research Institute) is building a high-power proton linear accelerator aiming to generate 100-MeV proton beams with 20-mA peak current (pulse width and max. repetition rate of 1 ms and 120 Hz respectively). We are developing a prototype digital BPPM (Beam Position and Phase Monitor) for the PEFP linac utilizing the digital technology with field programmable gate array (FPGA). The RF input signals are down converted to 10 MHz and sampled at 40 MHz with 14-bit ADC to produce I and Q data streams. The system is designed to provide a position and phase resolution of 0.1% and 0.1? RMS respectively. The fast digital processing is networked to the EPICS-based control system with an embedded processor (Blackfin). In this paper, the detailed description of the prototype digital beam position and phase monitor will be described with the performance test results.

  9. Intelligent low-level RF system by non-destructive beam monitoring device for cyclotrons

    Science.gov (United States)

    Sharifi Asadi Malafeh, M. S.; Ghergherehchi, M.; Afarideh, H.; Chai, J. S.; Yoon, Sang Kim

    2016-04-01

    The project of a 10 MeV PET cyclotron accelerator for medical diagnosis and treatment was started at Amirkabir University of Technology in 2012. The low-level RF system of the cyclotron accelerator is designed to stabilize acceleration voltage and control the resonance frequency of the cavity. In this work an Intelligent Low Level Radio Frequency Circuit or ILLRF, suitable for most AVF cyclotron accelerators, is designed using a beam monitoring device and narrow band tunable band-pass filter. In this design, the RF phase detection does not need signal processing by a microcontroller.

  10. Spectroscopic study of 206,207,208Pb isotopes by high resolution analysis of 24.5 MeV proton scattering

    International Nuclear Information System (INIS)

    Vallois, G.

    1968-03-01

    206,207,208 pb have been studied by 24.5 MeV proton inelastic scattering with a resolution of 20 keV. The angular distributions of the differential cross-sections corresponding to the different excited levels have been measured in a large angular region and analysed with the DWBA.This work shows that it exists between 4 and 5 MeV of excitation energy some strongly excited levels corresponding to transfer momenta l = 2, 4, 6 and 8. The single particle-hole models do not explain these states; so it will probably be necessary to introduce some several particle - hole configurations. (author) [fr

  11. Quantal inversion of cross-section for the elastic scattering of 200 MeV protons from 12C

    International Nuclear Information System (INIS)

    Allen, L.J.; Amos, K.; Dortmans, P.J.

    1994-01-01

    Fixed energy quantal inverse scattering theory has been used to analyse the differential cross-section from the elastic scattering of 200 MeV protons from 12 C. Ambiguities in obtaining the scattering function from the differential cross-section are discussed and by means of example it is illustrated that not all scattering functions lead to physically reasonable potentials. 8 refs., 2 tabs., 4 figs

  12. High-energy proton irradiation of C57Bl6 mice under hindlimb unloading

    Science.gov (United States)

    Mendonca, Marc; Todd, Paul; Orschell, Christie; Chin-Sinex, Helen; Farr, Jonathan; Klein, Susan; Sokol, Paul

    2012-07-01

    Solar proton events (SPEs) pose substantial risk for crewmembers on deep space missions. It has been shown that low gravity and ionizing radiation both produce transient anemia and immunodeficiencies. We utilized the C57Bl/6 based hindlimb suspension model to investigate the consequences of hindlimb-unloading induced immune suppression on the sensitivity to whole body irradiation with modulated 208 MeV protons. Eight-week old C57Bl/6 female mice were conditioned by hindlimb-unloading. Serial CBC and hematocrit assays by HEMAVET were accumulated for the hindlimb-unloaded mice and parallel control animals subjected to identical conditions without unloading. One week of hindlimb-unloading resulted in a persistent, statistically significant 10% reduction in RBC count and a persistent, statistically significant 35% drop in lymphocyte count. This inhibition is consistent with published observations of low Earth orbit flown mice and with crewmember blood analyses. In our experiments the cell count suppression was sustained for the entire six-week period of observation and persisted for at least 7 days beyond the period of active hindlimb-unloading. C57Bl/6 mice were also irradiated with 208 MeV Spread Out Bragg Peak (SOBP) protons at the Midwest Proton Radiotherapy Institute at the Indiana University Cyclotron Facility. We found that at 8.5 Gy hindlimb-unloaded mice were significantly more radiation sensitive with 35 lethalities out of 51 mice versus 15 out of 45 control (non-suspended) mice within 30 days of receiving 8.5 Gy of SOBP protons (p =0.001). Both control and hindlimb-unloaded stocktickerCBC analyses of 8.5 Gy proton irradiated and control mice by HEMAVET demonstrated severe reductions in WBC counts (Lymphocytes and PMNs) by day 2 post-irradiation, followed a week to ten days later by reductions in platelets, and then reductions in RBCs about 2 weeks post-irradiation. Recovery of all blood components commenced by three weeks post-irradiation. CBC analyses of 8

  13. Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and 60Co γ-rays

    International Nuclear Information System (INIS)

    Vadrucci, M.; Ronsivalle, C.; Marracino, F.; Montereali, R. M.; Picardi, L.; Piccinini, M.; Vincenti, M. A.; Esposito, G.; De Angelis, C.; Cherubini, R.; Pimpinella, M.

    2015-01-01

    Purpose: To study EBT3 GafChromic film in low-energy protons, and for comparison purposes, in a reference 60 Co beam in order to use it as a calibrated dosimetry system in the proton irradiation facility under construction within the framework of the Oncological Therapy with Protons (TOP)-Intensity Modulated Proton Linear Accelerator for RadioTherapy (IMPLART) Project at ENEA-Frascati, Italy. Methods: EBT3 film samples were irradiated at the Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Legnaro, Italy, with a 5 MeV proton beam generated by a 7 MV Van de Graaff CN accelerator. The nominal dose rates used were 2.1 Gy/min and 40 Gy/min. The delivered dose was determined by measuring the particle fluence and the energy spectrum in air with silicon surface barrier detector monitors. A preliminary study of the EBT3 film beam quality dependence in low-energy protons was conducted by passively degrading the beam energy. EBT3 films were also irradiated at ENEA-National Institute of Ionizing Radiation Metrology with gamma radiation produced by a 60 Co source characterized by an absorbed dose to water rate of 0.26 Gy/min as measured by a calibrated Farmer type ionization chamber. EBT3 film calibration curves were determined by means of a set of 40 film pieces irradiated to various doses ranging from 0.5 Gy to 30 Gy absorbed dose to water. An EPSON Expression 11000XL color scanner in transmission mode was used for film analysis. Scanner response stability, intrafilm uniformity, and interfilm reproducibility were verified. Optical absorption spectra measurements were performed on unirradiated and irradiated EBT3 films to choose the most sensitive color channel to the dose range used. Results: EBT3 GafChromic films show an under response up to about 33% for low-energy protons with respect to 60 Co gamma radiation, which is consistent with the linear energy transfer dependence already observed with higher energy protons, and a negligible dose-rate dependence in

  14. Compact superconducting cyclotron C400 for hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Y.; Abs, M.; Blondin, A.; Kleeven, W.; Zaremba, S.; Vandeplassche, D. [IBA, Chemin du Cyclotron 3, B-1348 Louvain-la-Neuve (Belgium); Aleksandrov, V.; Gursky, S.; Karamyshev, O. [JINR, Joliot-Curie 6, 141980 Dubna, Moscow region (Russian Federation); Karamysheva, G., E-mail: gkaram@nu.jinr.r [JINR, Joliot-Curie 6, 141980 Dubna, Moscow region (Russian Federation); Kazarinov, N.; Kostromin, S.; Morozov, N.; Samsonov, E.; Shirkov, G.; Shevtsov, V.; Syresin, E.; Tuzikov, A. [JINR, Joliot-Curie 6, 141980 Dubna, Moscow region (Russian Federation)

    2010-12-01

    The compact superconducting isochronous cyclotron C400 has been designed by the IBA-JINR collaboration. It will be the first cyclotron in the world capable of delivering protons, carbon and helium ions for cancer treatment. The cyclotron construction is started this year within the framework of the Archade project (Caen, France). {sup 12}C{sup 6+} and {sup 4}He{sup 2+} ions will be accelerated to 400 MeV/uu energy and extracted by the electrostatic deflector, H{sub 2}{sup +} ions will be accelerated to the energy of 265 MeV/uu and extracted by stripping. The magnet yoke has a diameter of 6.6 m, the total weight of the magnet is about 700 t. The designed magnetic field corresponds to 4.5 T in the hills and 2.45 T in the valleys. Superconducting coils will be enclosed in a cryostat; all other parts of the cyclotron will be warm. Three external ion sources will be mounted on the switching magnet on the injection line located below the cyclotron. The main parameters of the cyclotron, its design, the current status of the development work on the cyclotron systems are presented.

  15. Intranuclear cascade evaporation model predictions of double differential A(p,xn) neutron cross sections and comparison with experiments at 318 MeV and 800 MeV proton energy

    International Nuclear Information System (INIS)

    Cloth, P.; Dragovitsch, P.; Filges, D.; Reul, C.

    1989-08-01

    The intranuclear-cascade evaporation model as implemented in the high energy radiation transport code HETC, subsystem of HERMES is used in the calculation of double differential cross sections of proton induced neutron production. The investigations were done on target elements C, Al, Ta, Ni, W, Pb, and U at 318 MeV incident proton energy and on C, Al, Pb, and U at 800 MeV, respectively. The predictions of the INCE model were compared with experimental data for double differential cross sections taken at 7.5 and 30 degrees scattering angles at the Los Alamos WNR facility utilizing the Time of Flight technique at LANL. The calculations performed here are part of a experimental-theoretical program within the LANL-KFA collaboration concerning medium energy cross section measurements mainly neutrons and state of the art computer code validations of these measurements. In general, the model predictions reproduce the correct neutron production for evaporation neutrons and are also in good agreement with the experimental data at high neutron energies. In the energy range dominated by preequilibrium processes an underestimation of experimental yields has to be remarked. (orig.)

  16. Measurements of pp→π+d between 398 MeV and 572 MeV

    International Nuclear Information System (INIS)

    Aebischer, D.; Favier, B.; Greeniaus, L.G.; Hess, R.; Junod, A.; Lechanoine, C.; Nikles, J.-C.; Rapin, D.; Werren, D.W.

    1976-01-01

    The reaction pp→π + d was studied at incident proton energies of 398, 455, 497, 530 and 572 MeV. Measurements of dsigma/dΩ at 455 and 572 MeV show the presence of pion d-waves in the pion-deuteron system. Asymmetry measurements yield similar conclusions. Total cross-section measurements agree with recent fits to earlier data. (Auth.)

  17. Neutron-proton analyzing power data between 7.6 and 18.5 MeV

    International Nuclear Information System (INIS)

    Weisel, G.J.; Tornow, W.; Howell, C.R.; Felsher, P.D.; AlOhali, M.; Chen, Z.P.; Walter, R.L.; Lambert, J.M.; Treado, P.A.; Slaus, I.

    1992-01-01

    Measurements of the analyzing power A y (θ) for neutron-proton scattering have been performed at 7.6, 12.0, 14.1, 16.0, and 18.5 MeV. The experimental setup is described as are the finite-geometry corrections applied to the data. One of these corrections, due to the presence of carbon in the scintillators used for neutron detection, is discussed in detail. The A y (θ) data are compared to the predictions of the Paris and Bonn nucleon-nucleon potentials and the predictions of two phase-shift analyses, one of which incorporates charge-independence breaking effects in the 3 P waves

  18. Research Programme for the 660 Mev Proton Accelerator Driven MOX-Plutonium Subcritical Assembly

    CERN Document Server

    Barashenkov, V S; Buttseva, G L; Dudarev, S Yu; Polanski, A; Puzynin, I V; Sissakian, A N

    2000-01-01

    The paper presents a research programme of the Experimental Acclerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton acceletator operating at the Laboratory of Nuclear Problems of the JINR, Dubna. MOX fuel (25% PuO_2 + 75% UO_2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core of a nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient k_eff = 0.945, energetic gain G = 30 and the accelerator beam power 0.5 kW.

  19. Technical Note: Building a combined cyclotron and MRI facility: Implications for interference

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, Mark B. M.; Kuijer, Joost P. A.; Ridder, Jan Willem de; Perk, Lars R.; Verdaasdonk, Rudolf M. [Physics and Medical Technology, VU University Medical Center, Amsterdam 1007 MB (Netherlands) and BV Cyclotron VU, Amsterdam 1081HV (Netherlands)

    2013-01-15

    Purpose: With the introduction of hybrid PET/MRI systems, it has become more likely that the cyclotron and MRI systems will be located close to each other. This study considered the interference between a cyclotron and a superconducting MRI system. Methods: Interactions between cyclotrons and MRIs are theoretically considered. The main interference is expected to be the perturbation of the magnetic field in the MRI due to switching on or off the magnetic field of the cyclotron. MR imaging is distorted by a dynamic spatial gradient of an external inplane magnetic field larger than 0.5-0.04 {mu}T/m, depending on the specific MR application. From the design of a cyclotron, it is expected that the magnetic fringe field at large distances behaves as a magnetic dipolar field. This allows estimation of the full dipolar field and its spatial gradients from a single measurement. Around an 18 MeV cyclotron (Cyclone, IBA), magnetic field measurements were performed on 5 locations and compared with calculations based upon a dipolar field model. Results: At the measurement locations the estimated and measured values of the magnetic field component and its spatial gradients of the inplane component were compared, and found to agree within a factor 1.1 for the magnetic field and within a factor of 1.5 for the spatial gradients of the field. In the specific case of the 18 MeV cyclotron with a vertical magnetic field and a 3T superconducting whole body MR system, a minimum distance of 20 m has to be considered to prevent interference. Conclusions: This study showed that a dipole model is sufficiently accurate to predict the interference of a cyclotron on a MRI scanner, for site planning purposes. The cyclotron and a whole body MRI system considered in this study need to be placed more than 20 m apart, or magnetic shielding should be utilized.

  20. Computing the cross sections of nuclear reactions with nuclear clusters emission for proton energies between 30 MeV and 2.6 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Korovin, Yu. A.; Maksimushkina, A. V., E-mail: AVMaksimushkina@mephi.ru; Frolova, T. A. [Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    The cross sections of nuclear reactions involving emission of clusters of light nuclei in proton collisions with a heavy-metal target are computed for incident-proton energies between 30 MeV and 2.6 GeV. The calculation relies on the ALICE/ASH and CASCADE/INPE computer codes. The parameters determining the pre-equilibrium cluster emission are varied in the computation.

  1. Modern compact cyclotrons for nuclear medicine designed and manufactured in NIIEFA

    International Nuclear Information System (INIS)

    Bogdanov, P.V.; Vasilchenko, I.N.; Gavrish, Yu.N.; Galchuk, A.V.; Grigorenko, S.V.; Kuzhlev, A.N.; Menshov, Yu.D.; Mudroyubov, V.G.; Ponomarenko, V.I.; Strokach, A.P.

    2012-01-01

    A series of compact cyclotrons, the CC-12, CC-18/9 and MCC-30/15, intended for the production of radionuclides for diagnostics and therapy directly in medical institutions has been designed and manufactured in NIIEFA. These cyclotrons provide the acceleration of negative hydrogen and deuterium ions injected from external sources. Beams of accelerated particles are extracted by stripping negative ions to protons and deuterons by carbon foils. Shielding-type electromagnets with the vertically located median plane are applied in these cyclotrons.

  2. Technical Note: Spot characteristic stability for proton pencil beam scanning.

    Science.gov (United States)

    Chen, Chin-Cheng; Chang, Chang; Moyers, Michael F; Gao, Mingcheng; Mah, Dennis

    2016-02-01

    The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0-226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter.

  3. An integral test of FLUKA nuclear models with 160 MeV proton beams in multi-layer Faraday cups

    CERN Document Server

    Rinaldi, I; Parodi, K; Ferrari, A; Sala, P; Mairani, A

    2011-01-01

    Monte Carlo (MC) codes are useful tools to simulate the complex processes of proton beam interactions with matter. In proton therapy, nuclear reactions influence the dose distribution. Therefore, the validation of nuclear models adopted in MC codes is a critical requisite for their use in this field. A simple integral test can be performed using a multi-layer Faraday cup (MLFC). This method allows separation of the nuclear and atomic interaction processes, which are responsible for secondary particle emission and the finite primary proton range, respectively. In this work, the propagation of 160 MeV protons stopping in two MLFCs made of polyethylene and copper has been simulated by the FLUKA MC code. The calculations have been performed with and without secondary electron emission and transport, as well as charge sharing in the dielectric layers. Previous results with other codes neglected those two effects. The impact of this approximation has been investigated and found to be relevant only in the proximity ...

  4. The investigation of deuteron production double differential cross section induced by 392 MeV protons

    International Nuclear Information System (INIS)

    Kin, Tadahiro; Nakano, Masahiro; Imamura, Minoru

    2006-01-01

    We have investigated the deuteron productions from 392 MeV proton induced reaction for target nuclei of 12 C, 27 Al, 93 Nb. Deuteron production double differential cross sections were determined over a broad energy range and scattered angles from 20 to 105 degrees in laboratory system. Those spectra were compared with two theoretical models; Quantum Molecular Dynamics model and Intranuclear Cascade model. We developed the code of Intra Nuclear Cascade model and we've got good results to reproduce the experimental data. (author)

  5. Radiation monitoring in a self-shielded cyclotron installation

    International Nuclear Information System (INIS)

    Capaccioli, L.; Gori, C.; Mazzocchi, S.; Spano, G.

    2002-01-01

    As nuclear medicine is approaching a new era with the spectacular growth of PET diagnosis, the number of medical cyclotrons installed within the major hospitals is increasing accordingly. Therefore modern medical cyclotron are highly engineered and highly reliable apparatus, characterised with reduced accelerating energies (as the major goal is the production of fluorine 18) and often self-shielded. However specific dedicated monitors are still necessary in order to assure the proper radioprotection. At the Careggi University Hospital in Florence a Mini trace 10 MeV self-shielded cyclotron produced by General Electric has been installed in 2000. In a contiguous radiochemistry laboratory, the preparation and quality control of 1 8F DG and other radiopharmaceuticals takes place. Aim of this work is the characterisation and the proper calibration of the above mentioned monitors and control devices

  6. Some characteristics of the CR-39 solid state nuclear-track detector for protons and low energy alpha particles

    International Nuclear Information System (INIS)

    Fonseca, E.S. da.

    1983-01-01

    Experimental results related to certain registration properties of the CR-39 solid state nuclear-track detector for charged particles are presented and discussed. The determination of the CR-39 chemical etching in NaOH and KOH solutions, comprising concentration (2-10N) and temperature effects (50-90 0 C), showed the existence of an inverse proportion between the induction time and the temperature as well as the normal concentration of the solutions. The critical energy and the critical energy-loss rate of CR-39 track detectors for registration of protons were experimentally determined. A number of samples was exposed to 24MeV proton beams in the IEN-CNEN Cyclotron (CV-28), using a scattering chamber with a tantalum thin target and aluminium absorbers in contact with the samples in order to provide the required fluctuation in the scattered beam energy. From the mean track-diameter plotted against incident proton energy for 16h and 24h chemical etching (6.25 NaOH, 70 0 C), and considering 1.5 μm as the minimum observable track-diameter, the values (21.0 + - 1.5) MeV and (22.5 + - 1.5) MeV were deduced, respectively, for the critical energy. From the calculated energy-loss rate versus energy curve, the critical energy-loss rate was evaluated as 24 + - 2 MeV.cm 2 /g. Finally, the CR-39 response for low energy alpha particles (E [pt

  7. Hydrogen release from 800 MeV proton-irradiated tungsten

    Science.gov (United States)

    Oliver, B. M.; Venhaus, T. J.; Causey, R. A.; Garner, F. A.; Maloy, S. A.

    2002-12-01

    Tungsten irradiated in spallation neutron sources, such as those proposed for the accelerator production of tritium (APT) project, will contain large quantities of generated helium and hydrogen gas. Tungsten used in proposed fusion reactors will also be exposed to neutrons, and the generated protium will be accompanied by deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and after heat-induced rises in temperature are of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANSCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten has been measured using a dedicated mass-spectrometer system by subjecting the specimens to an essentially linear temperature ramp from ˜300 to ˜1500 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show quite reasonable agreement using a trap energy of 1.4 eV and a trap density of ˜7%. There is a small additional release fraction occurring at ˜550 K, which is believed to be associated with low-energy trapping at or near the surface, and, therefore, was not included in the bulk TMAP model.

  8. Hydrogen release from 800 MeV proton-irradiated tungsten

    International Nuclear Information System (INIS)

    Oliver, B.M.; Venhaus, T.J.; Causey, R.A.; Garner, F.A.; Maloy, S.A.

    2002-01-01

    Tungsten irradiated in spallation neutron sources, such as those proposed for the accelerator production of tritium (APT) project, will contain large quantities of generated helium and hydrogen gas. Tungsten used in proposed fusion reactors will also be exposed to neutrons, and the generated protium will be accompanied by deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and after heat-induced rises in temperature are of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANSCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten has been measured using a dedicated mass-spectrometer system by subjecting the specimens to an essentially linear temperature ramp from ∼300 to ∼1500 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show quite reasonable agreement using a trap energy of 1.4 eV and a trap density of ∼7%. There is a small additional release fraction occurring at ∼550 K, which is believed to be associated with low-energy trapping at or near the surface, and, therefore, was not included in the bulk TMAP model

  9. Hydrogen release from 800 MeV proton-irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, B.M. E-mail: brian.oliver@pnl.gov; Venhaus, T.J.; Causey, R.A.; Garner, F.A.; Maloy, S.A

    2002-12-01

    Tungsten irradiated in spallation neutron sources, such as those proposed for the accelerator production of tritium (APT) project, will contain large quantities of generated helium and hydrogen gas. Tungsten used in proposed fusion reactors will also be exposed to neutrons, and the generated protium will be accompanied by deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and after heat-induced rises in temperature are of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANSCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten has been measured using a dedicated mass-spectrometer system by subjecting the specimens to an essentially linear temperature ramp from {approx}300 to {approx}1500 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show quite reasonable agreement using a trap energy of 1.4 eV and a trap density of {approx}7%. There is a small additional release fraction occurring at {approx}550 K, which is believed to be associated with low-energy trapping at or near the surface, and, therefore, was not included in the bulk TMAP model.

  10. Dynamic Pressure of Liquid Mercury Target During 800-MeV Proton Thermal Shock Tests

    International Nuclear Information System (INIS)

    Allison, S.W.; Andriulli, J.B.; Cates, M.R.; Earl, D.D.; Haines, J.R.; Morrissey, F.X.; Tsai, C.C.; Wender, S.

    2000-01-01

    Described here are efforts to diagnose transient pressures generated by a short-pulse (about 0.5 microseconds) high intensity proton (∼ 2 * 10 14 per pulse) beam. Proton energy is 800-MeV. The tests were performed at the Los Alamos Neutron Science Center - Weapons Neutron Research (LANSCE-WNR). Such capability is required for understanding target interaction for the Spallation Neutron Source project as described previously at this conference.1-4 The main approach to effect the pressure measurements utilized the deflection of a diaphragm in intimate contact with the mercury. There are a wide variety of diaphragm-deflection methods used in scientific and industrial applications. Many deflection-sensing approaches are typically used, including, for instance, capacitive and optical fiber techniques. It was found, however, that conventional pressure measurement using commercial pressure gages with electrical leads was not possible due to the intense nuclear radiation environment. Earlier work with a fiber optic strain gauge demonstrated the viability of using fiber optics for this environment

  11. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C. L.; Bourke, M.; Byler, D. D.; Chen, C. F.; Hogan, G.; Hunter, J. F.; Kwiatkowski, K.; Mariam, F. G.; McClellan, K. J.; Merrill, F.; Morley, D. J.; Saunders, A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2013-02-15

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 {mu}m has been demonstrate, 20 {mu}m seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 {mu}m resolution but further development of sources, collimation, and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  12. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    International Nuclear Information System (INIS)

    Morris, C. L.; Bourke, M.; Byler, D. D.; Chen, C. F.; Hogan, G.; Hunter, J. F.; Kwiatkowski, K.; Mariam, F. G.; McClellan, K. J.; Merrill, F.; Morley, D. J.; Saunders, A.

    2013-01-01

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation, and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  13. Five years of proton therapy of tumours of the eye at Hahn-Meitner Institute, Berlin

    International Nuclear Information System (INIS)

    Heufelder, J.; Cordini, D.; Heese, J.; Homeyer, H.; Kluge, H.; Morgenstern, H.; Fuchs, H.; Hoecht, S.; Nausner, M.; Hinkelbein, W.; Bechrakis, N.E.; Foerster, M.H.

    2004-01-01

    Eye tumors (choroidal melanomas, iris melanomas, and choroidal hemangiomas) are being treated with 68 MeV protons since 1998 at the Ion Beam Laboratory of the Hahn-Meitner Institute of Berlin (Germany's first proton therapy center), in cooperation with the Charite University Hospital in Berlin, Campus Benjamin Franklin. The proton beam, generated via a combination of Van de Graaff accelerator and cyclotron, is prepared by passive shaping for conformal tumor irradiation. A digital X-ray verification of the tumor location with the patient in sitting position limits the position uncertainties to a maximum of 0,3 mm. The treatment planning is performed using the program EYEPLAN. OCTOPUS, a CT-based planning program developed in cooperation with the German Cancer Research Center of Heidelberg, is under pre-clinical testing. Thus far, more than 400 patients have been irradiated. The first results are comparable to those obtained in other proton therapy centers. At the end of 2002, the University Hospital of Essen has also become a cooperation partner of the Hahn-Meitner Institute. (orig.) [de

  14. Determination of Proton dose distal fall-off location by detecting right-angled prompt gamma rays

    International Nuclear Information System (INIS)

    Seo, Kyu Seok

    2006-02-01

    The proton beam has a unique advantage over the electron and photon beams in that it can give very high radiation dose to the tumor volume while effectively sparing the neighboring healthy tissue and organs. The number of proton therapy facility is very rapidly increasing in the world. And now the 230 MeV cyclotron facility for proton therapy is constructing at National Cancer Center, this facility until 2006. The distal fall-off location of proton beam is simply calculated by analytical method, but this method has many uncertain when anatomical structure is very complicated. It is very important to know the exact position of the proton beam distal fall-off, or beam range, in the patient's body for both the safety of the patient and the effectiveness of the treatment itself. In 2003, Stichelbaut and Jongen reported the possibility of using the right-angled prompt gamma rays, which are emitted at 90 .deg. from the incident proton beam direction, to determine the position of the proton beam distal fall-off. They studied the interactions of the protons and other secondary particles in a water phantom and concluded that there is a correlation between the position of the distal fall-off and the distribution of the right-angled prompt gamma rays. We have recently designed a prompt gamma scanning system to measure the proton range in situ by using Monte Carlo technique employing MCNPX, FLUKA, and Sabrina TM . The prompt gamma scanning system was designed to measure only the right-angled prompt gamma rays passing through a narrow collimation hole in order to correlate the position with the dose distribution. The collimation part of the scanning system, which has been constructed to measure the gamma rays at 70 MeV of proton energy, is made of a set of paraffin, boron carbide, and lead layers to shield the high-energy neutrons and secondary photons. After the different proton energies and SOBP beam widths are irradiated at the water phantom. we detected prompt gamma at 5 cm

  15. Neutron shielding verification measurements and simulations for a 235-MeV proton therapy center

    International Nuclear Information System (INIS)

    Newhauser, W.D.; Titt, U.; Dexheimer, D.; Yan, X.; Nill, S.

    2002-01-01

    The neutron shielding at the Massachusetts General Hospital's 235-MeV proton therapy facility was investigated with measurements, analytical calculations, and realistic three-dimensional Monte Carlo simulations. In 37 of 40 cases studied, the analytical calculations predicted higher neutron dose equivalent rates outside the shielding than the measured, typically by more than a factor of 10, and in some cases more than 100. Monte Carlo predictions of dose equivalent at three locations are, on average, 1.1 times the measured values. Except at one location, all of the analytical model predictions and Monte Carlo simulations overestimate neutron dose equivalent

  16. Analysis and verification of a prediction model of solar energetic proton events

    Science.gov (United States)

    Wang, J.; Zhong, Q.

    2017-12-01

    The solar energetic particle event can cause severe radiation damages near Earth. The alerts and summary products of the solar energetic proton events were provided by the Space Environment Prediction Center (SEPC) according to the flux of the greater than 10 MeV protons taken by GOES satellite in geosynchronous orbit. The start of a solar energetic proton event is defined as the time when the flux of the greater than 10 MeV protons equals or exceeds 10 proton flux units (pfu). In this study, a model was developed to predict the solar energetic proton events, provide the warning for the solar energetic proton events at least minutes in advance, based on both the soft X-ray flux and integral proton flux taken by GOES. The quality of the forecast model was measured against verifications of accuracy, reliability, discrimination capability, and forecast skills. The peak flux and rise time of the solar energetic proton events in the six channels, >1MeV, >5 MeV, >10 MeV, >30 MeV, >50 MeV, >100 MeV, were also simulated and analyzed.

  17. Development of the RF cavity for the SKKUCY-9 compact cyclotron

    International Nuclear Information System (INIS)

    Shin, Seungwook; Lee, Jongchul; LEE, Byeong-No; Ha, Donghyup; Namgoong, Ho; Chai, Jongseo

    2015-01-01

    A 9 MeV compact cyclotron, named SKKUCY-9, for a radiopharmaceutical compound especially fludeoxyglucose (FDG) production for a positron emission tomography (PET) machine was developed at Sungkyunkwan University. H − ions which are produced from a Penning Ionization Gauge(PIG) ion source, travel through a normal conducting radio frequency (RF) cavity which operates at 83.2 MHz for an acceleration and electro-magnet for a beam focusing until the ions acquire energy of about 9 MeV. For installation at a small local hospital, our SKKUCY-9 cyclotron is developed to be compact and light-weight, comparable to conventional medical purpose cyclotrons. For compactness, we adapted a deep valley and large angle hill type for the electro-magnet design. Normally a RF cavity is installed inside of the empty space of the magnet valley region, which is extremely small in our case. We faced problems such as difficulties of installing the RF cavity, low Q-value. Despite of those difficulties, a compact RF cavity and its system including a RF power coupler to feed amplified RF power to the RF cavity and a fine tuner to compensate RF frequency variations was successfully developed and tested

  18. Development of the RF cavity for the SKKUCY-9 compact cyclotron

    Science.gov (United States)

    Shin, Seungwook; Lee, Jongchul; LEE, Byeong-No; Ha, Donghyup; Namgoong, Ho; Chai, Jongseo

    2015-09-01

    A 9 MeV compact cyclotron, named SKKUCY-9, for a radiopharmaceutical compound especially fludeoxyglucose (FDG) production for a positron emission tomography (PET) machine was developed at Sungkyunkwan University. H- ions which are produced from a Penning Ionization Gauge(PIG) ion source, travel through a normal conducting radio frequency (RF) cavity which operates at 83.2 MHz for an acceleration and electro-magnet for a beam focusing until the ions acquire energy of about 9 MeV. For installation at a small local hospital, our SKKUCY-9 cyclotron is developed to be compact and light-weight, comparable to conventional medical purpose cyclotrons. For compactness, we adapted a deep valley and large angle hill type for the electro-magnet design. Normally a RF cavity is installed inside of the empty space of the magnet valley region, which is extremely small in our case. We faced problems such as difficulties of installing the RF cavity, low Q-value. Despite of those difficulties, a compact RF cavity and its system including a RF power coupler to feed amplified RF power to the RF cavity and a fine tuner to compensate RF frequency variations was successfully developed and tested.

  19. In situ variations of the scintillation characteristics in GaN and CdS layers under irradiation by 1.6 MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Gaubas, E., E-mail: eugenijus.gaubas@ff.vu.lt; Ceponis, T.; Pavlov, J.; Tekorius, A.

    2015-12-15

    Evolution of the non-radiative and radiative recombination in GaN and CdS 2.5–20 μm thick layers has been examined by the in situ measurements of the 1.6 MeV proton induced luminescence and laser excited photoconductivity characteristics. The introduction rate of radiation defects has been evaluated by the comparative analysis of the laser and proton beam induced luminescence for the examined GaN and CdS layers.

  20. Small-sized cyclotron for studies of physical processes in accelerators

    International Nuclear Information System (INIS)

    Arzumanov, A.A.; Voronin, A.M.; Gerasimov, V.I.; Gor'kovets, M.S.; Gromov, D.D.; Zavezionov, V.P.; Kruglov, V.G.

    1979-01-01

    A description is given of a cyclotron intended for studying physical processes taking place in the accelerator central part, for investigating various ion sources and also for optimizing the elements and systems of the U-150M isochronous cyclotron. The accelerator uses a hot-cathode slit ion source. The resonance system constitutes a quarter-wave nonaxial resonator excited at a frequency of 11.2 MHz. Investigations of beam time characteristics showed that the beam axial size constituted 11 mm, its radial size 5 mm. Displacement of the beam with respect to the median plane does not exceed 2 mm. In the cyclotron H + ions have been accelerated to an energy of 1 MeV. The integrated beam current constituted 250 μA

  1. Parity violation in proton-proton scattering at 230 MEV

    International Nuclear Information System (INIS)

    Birchall, J.; Bowman, J.D.; Davis, C.A.

    1988-01-01

    Below /similar to/300 MeV six meson-nucleon coupling strengths are required to describe the weak interaction of nucleons. Many experiments have found parity-violating effects in nuclear systems, but only four significant, independent constraints exist. A new measurement is proposed where measurable effects are predicted with minimal dependence on nuclear interaction models, yielding information complementary to previous results. This is a measurement of the parity-violating analyzing power. A/sub z/ in p-p scattering at 230 MeV, which is shown to be sensitive to the weak rho-nucleon coupling. This measurement, at a precision of +- 2 x 10/sup -8/, together with a proposed measurement by the University of Washington group at I.L.L. of the parity-violating neutron spin rotation, will provide the fifth and sixth independent constraints needed to determine the weak meson-nucleon coupling constants

  2. X-ray diffraction studies of 145MeV proton-irradiated AlBeMet 162

    Directory of Open Access Journals (Sweden)

    Mohamed Elbakhshwan

    2016-08-01

    Full Text Available AlBeMet 162 (Materion Co., formerly Brush Wellman has been irradiated with 145MeV protons up to 1.2×1020cm−2 fluence, with irradiation temperatures in the range of 100–220°C. Macroscopic post-irradiation evaluation on the evolution of mechanical and thermal properties was integrated with a comprehensive X-ray- diffraction study using high-energy monochromatic and polychromatic X-ray beams, which offered a microscopic view of the irradiation damage effects on AlBeMet. The study confirmed the stability of the metal–matrix composite, its resistance to proton damage, and the continuing separation of the two distinct phases, fcc aluminum and hcp beryllium, following irradiation. Furthermore, based on the absence of inter-planar distance change during proton irradiation, it was confirmed that the stacking faults and clusters on the Al (111 planes are stable, and thus can migrate from the cascade region and be absorbed at various sinks. XRD analysis of the unirradiated AlBeMet 162 showed clear change in the texture of the fcc phase with orientation especially in the Al (111 reflection which exhibits a “non-perfect” six-fold symmetry, implying lack of isotropy in the composite.

  3. Measurement of recoil proton polarization in the process of. pi. /sup -/ photoproduction from neutrons in the energy range between 700 and 1200 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, H; Arai, I; Fujii, T; Ikeda, H; Iwasaki, H; Kajiura, N; Kamae, T; Kawabata, S; Ogawa, K; Sumiyoshi, T [Tokyo Univ. (Japan). Dept. of Physics

    1980-05-01

    The recoil proton polarization for ..gamma..n ..-->.. ..pi../sup -/p was measured around the third resonance region. Both momentum vectors of the proton and the pion were determined by the magnetic spectrometers. The proton polarization was measured by means of proton-carbon scattering in the polarization analyzer located behind the proton spectrometer. Below 900 MeV incident photon energy, our data are consistent with the other existing experimental data (THETA*sub..pi.. = 90/sup 0/) and the predictions of partial-wave analyses. Above 1000 MeV, however, a large discrepancy was observed between our data and the predictions of the partial-wave analyses. This discrepancy stands out as the pion c.m. angle increases. A new partial-wave analysis was made for ..gamma..n ..-->.. ..pi../sup -/p including our polarization data, and the accuracy of the experimentally determined electromagnetic coupling constants of the third resonances were greatly improved. In particular, a finite amount of the helicity 3/2 amplitude for the ..gamma..n ..-->.. F/sub 15/(1688) resonance was obtained against the predictions of the quark models, by Copley, Karl and Obryk and by Feynman, Kislinger and Ravendal but in agreement with the relativistic quark models of Sugimoto and Toya, and Kubota and Ohta.

  4. Cross-sections for sup 3 sup 6 Cl from Ti at E sub p =35-150 MeV Applications to in-situ exposure dating

    CERN Document Server

    Fink, D; Hotchkis, M

    2000-01-01

    We have measured the low-energy yield of sup 3 sup 6 Cl from Ti for proton energies from 35 to 150 MeV. Thin Ti foil irradiations were performed at the Harvard University Cyclotron Laboratory and sup 3 sup 6 Cl concentrations were determined using the ANTARES AMS facility at ANSTO. Cross-sections ranged smoothly with energy from 0.32+-0.05 mb at 35 MeV to 5.3+-0.4 mb at 150 MeV. Results for E<110 MeV are new, while the upper region from 110 to 150 MeV agrees well with overlapping data from other studies. The in-situ production rate for sup 3 sup 6 Cl from Ti at the earth's surface and high latitude based on this excitation function and calculations of Masarik and Reedy (normalised to the mean measured yield of sup 3 sup 6 Cl from Ca) is estimated at approx(13+-3) atoms sup 3 sup 6 Cl (g Ti yr) sup - sup 1. We thus conclude that in Ti-rich, Ca-poor rocks or in typical basalts, sup 3 sup 6 Cl yield from Ti can amount to approx 5-10% of total. This is similar to the contribution from slow muon capture on sup ...

  5. Remote machining and robotic welding in a proton cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, W; Mark, C

    1984-09-01

    Increasing residual radiation in the TRIUMF meson research facility cyclotron at the University of British Columbia has required development of a remotely operable industrial robot cutting and vacuum tight welding capabili

  6. The mechanical design of a proton microscope for radiography at 800 MeV

    International Nuclear Information System (INIS)

    Valdiviez, R.; Sigler, F.E.; Barlow, D.B.; Blind, B.; Jason, A.J.; Mottershead, C.T.; Gomez, J.J.; Espinoza, C.J.

    2003-01-01

    A proton microscope has been developed for radiography applications using the 800-MeV linear accelerator at the Los Alamos Neutron Science Center (LANSCE). The microscope provides a magnified image of a static device, or of a dynamic event such as a high-speed projectile impacting a target. The microscope assembly consists primarily of four Permanent Magnet Quadrupoles (PMQ's) that are supported on movable platforms. The platform supports, along with the rest of the support structure, are designed to withstand the residual dynamic loads that are expected from the dynamic tests. This paper covers the mechanical design of the microscope assembly, including the remote positioning system that allows for fine-tuning the focus of an object being imaged.

  7. Annual report of the Institute for Nuclear Study, University of Tokyo, 1984

    International Nuclear Information System (INIS)

    1985-01-01

    In this annual report, the works carried out at the INS during the calendar year 1984 are described. The INS is the research institute for interuniversity use, and the research facilities are open to all qualified scientists in Japan. The major facilities are a FM cyclotron of 55 MeV for protons, a SF cyclotron of up to 45 MeV for protons, an electron synchrotron of 1.3 GeV and the TARN of 8.56 MeV/nucleon. The SF cyclotron was successfully operated with emphasis on heavy ion research program, and the nuclear physics program became an important part in the utilization of the electron synchrotron. The research and development of accelerator technology was continued, and the stochastic cooling of low energy (7 MeV) proton beam was successfully achieved by using the TARN. The INS team was busy for constructing its shared parts of the TOPAZ detector of KEK. The INS-LBL collaboration at Bevalac was extended to this year. Two international symposia were organized in addition to symposia, workshops and schools. The reorganization of research divisions was planned. The activities of respective divisions are reported. (Kako, I.)

  8. Invariant-mass distributions for the pp{yields}pp{eta} reaction at Q=10 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Moskal, P.; Czerwinski, E.; Klaja, J.; Klaja, P.; Krzemien, W. [Jagellonian University, Institute of Physics, Cracow (Poland); Research Center Juelich, Nuclear Physics Institute, Juelich (Germany); Czyzykiewicz, R. [Jagellonian University, Institute of Physics, Cracow (Poland); University of Silesia, Institute of Physics, Katowice (Poland); Gil, D.; Jarczyk, L.; Kamys, B.; Silarski, M.; Smyrski, J.; Zdebik, J.; Zielinski, M.J. [Jagellonian University, Institute of Physics, Cracow (Poland); Grzonka, D.; Oelert, W.; Ritman, J.; Sefzick, T.; Wuestner, P. [Research Center Juelich, Nuclear Physics Institute, Juelich (Germany); Khoukaz, A.; Taeschner, A.; Zipper, W. [Westfaelische Wilhelms-Universitaet, IKP, Muenster (Germany); Siemaszko, M. [University of Silesia, Institute of Physics, Katowice (Poland); Wolke, M. [SE-751 05 Uppsala University, Department of Physics and Astronomy, Uppsala (Sweden)

    2010-02-15

    Proton-proton and proton-{eta} invariant-mass distributions and the total cross-section for the pp{yields}pp{eta} reaction have been determined near the threshold at an excess energy of Q=10 MeV. The experiment has been conducted using the COSY-11 detector setup and the cooler synchrotron COSY. The determined invariant-mass spectra reveal significant enhancements in the region of low proton-proton relative momenta, similarly as observed previously at higher excess energies of Q=15.5 MeV and Q=40 MeV. (orig.)

  9. Depth profiles of production yields of natPb(p, xn206,205,204,203,202 Bi reactions using 100-MeV proton beam

    Directory of Open Access Journals (Sweden)

    Oranj Leila Mokhtari

    2017-01-01

    Full Text Available In this study, results of the experimental study on the depth profiles of production yields of 206,205,204,203,202Bi radio-nuclei in the natural Pb target irradiated by a 100-MeV proton beam are presented. Irradiation was performed at proton linac facility (KOMAC in Korea. The target, irradiated by 100-MeV protons, was arranged in a stack consisting of natural Pb, Al, Au foils and Pb plates. The proton beam intensity was determined by activation analysis method using 27Al(p, 3p1n24Na, 197Au(p, p1n196Au, and 197Au(p, p3n194Au monitor reactions and also using dosimetry method by a Gafchromic film. The production yields of produced Bi radio-nuclei in the natural Pb foils and monitor reactions were measured by gamma-ray spectroscopy. Monte Carlo simulations were performed by FLUKA, PHITS, and MCNPX codes and compared with the measurements in order to verify validity of physical models and nuclear data libraries in the Monte Carlo codes. A fairly good agreement was observed between the present experimental data and the simulations by FLUKA, PHITS, and MCNPX. However, physical models and the nuclear data relevant to the end of range of protons in the codes need to be improved.

  10. Proton irradiation effects in oxide-confined vertical cavity surface emitting laser (VCSEL) diodes

    International Nuclear Information System (INIS)

    Barnes, C.E.; Swift, G.M.; Guertin, S.; Schwank, J.R.; Armendariz, M.G.; Hash, G.L.; Choquette, K.D.

    1999-01-01

    Vertical cavity surface emitting laser (VCSEL) diodes are employed as the emitter portion of opto-couplers that are used in space applications. Proton irradiation studies on VCSELs were performed at the Indiana University cyclotron facility. The beam energy was set at 192 MeV, the beam current was 200 nA that is equivalent to a flux of approximately 1*10 11 protons/cm 2 .s. We conclude that the oxide confined VCSELs examined in this study show more than sufficient radiation hardness for nearly all space applications. The observed proton-induced decreases in light output and the corresponding increases in laser threshold current can be explained in terms of proton-induced displacement damage which introduces non-radiative recombination centers in the active region of the lasers and causes a decrease in laser efficiency. These radiation effects accentuate the detrimental thermal effects observed at high currents. We also note that forward bias annealing is effective in these devices in producing at least partial recovery of the light output, and that this may be a viable hardness assurance technique during a flight mission. (A.C.)

  11. Mutant breeding of ornamental trees for creating variations with high value using proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Jae Hong; Woo, Seong Min; Hwang, Mun Joo; Pyo, Sun Hui [Phygen, Daejeon (Korea, Republic of); Kwon, Hye Jin [Environmental-Friendly Agriculture Research Institute, Seoul (Korea, Republic of); Woo, Jong Suk [Cheonan Yonam College, Cheonan (Korea, Republic of)

    2010-04-15

    This research was conducted to investigate the proton-beam radiation sensitivity and seed germination rate of 18 ornamental plants and to survey the quantitative characteristics of proton beam induced strains. To induce the variants of ornamental plants, seeds were irradiated at the dose of 0{approx} 2kGy of proton beam at room temperature by 45 MeV MC-50 Cyclotron. After irradiation, to assess the effects of proton beam on radiation sensitivity and morphological changes of the plants and the seed germination rate were analysed. The effects of mutation induction by proton beam irradiation on seeds in Lagerstroemia indica and Ligustrum obtusifolium were investigated. Irradiation with proton beam at the dose of 750Gy induced mutants in leaf length, leaf width, internode length, plant height, leaf color, autumn leaves and plant width in each strains. According to a principal component analysis, the induced strains were divided into three groups. Promising strain(strain 25) for commercial varieties was selected Lagerstroemia indica. It was analysed that strain 25 showed the highest genetic dissimility from original species. The strain 25 had red leaf edge and maintained autumnal tints till late fall. So, we try to promote a patent registration of the strain 25 as a new caltivar 'Bulkkot'

  12. Mutant breeding of ornamental trees for creating variations with high value using proton beam

    International Nuclear Information System (INIS)

    Yim, Jae Hong; Woo, Seong Min; Hwang, Mun Joo; Pyo, Sun Hui; Kwon, Hye Jin; Woo, Jong Suk

    2010-04-01

    This research was conducted to investigate the proton-beam radiation sensitivity and seed germination rate of 18 ornamental plants and to survey the quantitative characteristics of proton beam induced strains. To induce the variants of ornamental plants, seeds were irradiated at the dose of 0∼ 2kGy of proton beam at room temperature by 45 MeV MC-50 Cyclotron. After irradiation, to assess the effects of proton beam on radiation sensitivity and morphological changes of the plants and the seed germination rate were analysed. The effects of mutation induction by proton beam irradiation on seeds in Lagerstroemia indica and Ligustrum obtusifolium were investigated. Irradiation with proton beam at the dose of 750Gy induced mutants in leaf length, leaf width, internode length, plant height, leaf color, autumn leaves and plant width in each strains. According to a principal component analysis, the induced strains were divided into three groups. Promising strain(strain 25) for commercial varieties was selected Lagerstroemia indica. It was analysed that strain 25 showed the highest genetic dissimility from original species. The strain 25 had red leaf edge and maintained autumnal tints till late fall. So, we try to promote a patent registration of the strain 25 as a new caltivar 'Bulkkot'

  13. Applied research with cyclotrons

    International Nuclear Information System (INIS)

    Apel, P.; Dmitriev, S.; Gulbekian, G.; Gikal, B.; Ivanov, O.; Reutov, V.; Skuratov, V.

    2005-01-01

    During the past three decades the Flerov laboratory carried out research and development of a number of applications that have found or may find use in modern technologies. One of the applications is the so-called ion track technology enabling us to create micro- and nano-structured materials. Accelerated heavy ion beams are the unique tools for structuring insulating solids in a controllable manner. At FLNR JINR the U-400 cyclotron and the IC-100 cyclotron are employed for irradiation of materials to be modified by the track-etch technique. For practical applications, U-400 delivers the 86 Kr ion beams with total energies of 250, 350, 430 and 750 MeV, and the 136 Xe ion beams with the energy of 430 MeV. The cyclotron is equipped with a specialized channel for irradiation of polymer foils. IC-100 is a compact accelerator specially designed for the technological uses. High-intensity krypton ion beams with the energy of ∼ 1 MeV/u are available now at IC-100. Production of track-etch membranes is an example of mature technology based on irradiation with accelerated ions. The track-etch membranes offer distinct advantages over other types of membranes due to their precisely determined structure. One-pore, oligo-pore and multi-pore samples can serve as models for studying the transport of liquids, gases, particles, solutes, and electrolytes in narrow channels. Track-etch pores are also used as templates for making nano wires, nano tubes or array of nano rods. The microstructures obtained this way may find use in miniaturized devices such as sensors for biologically important molecules. Bulk and surface modification for the production of new composites and materials with special optical properties can be performed with ion beams. Flexible printed circuits, high-performance heat transfer modules, X-ray filters, and protective signs are examples of products developed in collaboration with research and industrial partners. Some recent achievements and promising ideas that

  14. Design of radiation shielding for the proton therapy facility at the National Cancer Center in Korea

    International Nuclear Information System (INIS)

    Kim, J. W.; Kwon, J. W.; Lee, J.

    2005-01-01

    The design of radiation shielding was evaluated for a proton therapy facility being established at the National Cancer Center in Korea. The proton beam energy from a 230 MeV cyclotron is varied for therapy using a graphite target. This energy variation process produces high radiation and thus thick shielding walls surround the region. The evaluation was first carried out using analytical expressions at selected locations. Further detailed evaluations have been performed using the Monte Carlo method. Dose equivalent values were calculated to be compared with analytical results. The analytical method generally yielded more conservative values. With consideration of adequate occupancy factors annual dose equivalent rates are kept -1 in all areas. Construction of the building is expected to be completed near the end of 2004 and the installation of therapy equipments will begin a few months later. (authors)

  15. Damage by the Great East Japan Earthquake and current status of the Sendai cyclotron

    International Nuclear Information System (INIS)

    Wakui, Takashi; Itoh, Masatoshi; Shimada, Kenzi; Yoshida, Hidetomo; Shinozuka, Tsutomu; Sakemi, Yasuhiro

    2012-01-01

    The Great East Japan Earthquake has inflicted damages on the accelerator facility of the Cyclotron and Radioisotope Center (CYRIC), Tohoku University. The K=110 MeV cyclotron was slanted due to the damage of props supporting the cyclotron. The cyclotron building has also been slightly inclined. This situation requires the re-alignment of all the beam transport line and the cyclotron. Some of the shield doors at experimental rooms were broken and blocked the entrance. The earthquake caused also a lot of damages to some components of the cyclotron as well as the beam transport lines, such as beam ducts, magnets, vacuum pumps and power supplies. Fortunately, no one was injured at CYRIC. The restoration work was started on July 2011 and will be completed by July 2012. This report describes the situation of damages and the current status of the restoration work. (author)

  16. Research programme for the 660 MeV proton accelerator driven MOX-plutonium subcritical assembly

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Buttsev, V.S.; Buttseva, G.L.; Dudarev, S.Yu.; Polanski, A.; Puzynin, I.V.; Sissakyan, A.N.

    2000-01-01

    The paper presents a research programme of the Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating at the Laboratory of Nuclear Problems of the JINR, Dubna. MOX fuel (25% PuO 2 + 75% UO 2 ) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core of a nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient k eff = 0.945, energetic gain G=30 and the accelerator beam power 0.5 kW

  17. The proton therapy system for Massachusetts General Hospital's Northeast Proton Therapy Center

    International Nuclear Information System (INIS)

    Jongen, Y.

    1996-01-01

    In 1989, two companies, Ion Beam Applications in Belgium (IBA) and Sumitomo Heavy Industries in Japan (SHI) started to design proton therapy equipments based on cyclotrons. In 1991, SHI and IBA decided to join their development efforts in this field. In 1993, the Massachusetts General Hospital (MGH), pioneer in the field of proton therapy, launched an international request for proposals for the procurement of an in-hospital proton therapy facility. The 18 may 1994, the contract was signed with a team of industries led by IBA, including also SHI and General Atomics (GA) of California. The proposed system is based on a fixed energy, isochronous cyclotron, followed by an energy degrader and an energy selection system. The variable energy beam can be rapidly switched in any one of three treatment rooms. Two rooms are equipped with large isocentric gantries and robotic patient positioners allowing to direct the proton beam within the patient from any direction. The third room is equipped with fixed horizontal beam. The complete system is computer controlled by a distributed network of computers, programmable logic controllers and workstations. This computer control allows to change the energy in one treatment room is less than two second, a performance matching or exceeding the flexibility offered by synchrotrons. The system is now built and undergoing factory tests. The beam has been accelerated to full energy in the cyclotron, and beam extraction tests are underway. Installation in the hospital building will take place in 1997. (author)

  18. On Start to End Simulation and Modeling Issues of the Megawatt Proton Beam Facility at PSI

    CERN Document Server

    Adelmann, Andreas; Fitze, Hansruedi; Geus, Roman; Humbel, Martin; Stingelin, Lukas

    2005-01-01

    At the Paul Scherrer Institut (PSI) we routinely extract a one megawatt (CW) proton beam out of our 590 MeV Ring Cyclotron. In the frame of the ongoing upgrade program, large scale simulations have been undertaken in order to provide a sound basis to assess the behaviour of very intense beams in cyclotrons. The challenges and attempts towards massive parallel three dimensional start-to- end simulations will be discussed. The used state of the art numerical tools (mapping techniques, time integration, parallel FFT and finite element based multigrid Poisson solver) and their parallel implementation will be discussed. Results will be presented in the area of: space charge dominated beam transport including neighbouring turns, eigenmode analysis to obtain accurate electromagnetic fields in large the rf cavities and higher order mode interaction between the electromagnetic fields and the particle beam. For the problems investigated so far a good agreement between theory i.e. calculations and measurements is obtain...

  19. Stopping powers of Zr, Pd, Cd, In and Pb for 6.5 MeV protons and mean excitation energies

    International Nuclear Information System (INIS)

    Ishiwari, R.; Shiomi, N.; Sakamoto, N.

    1983-01-01

    Stopping powers of Zr, Pd, Cd, In and Pb have been measured for 6.5 MeV protons. Mean excitation energies have been extracted from the stopping power data by taking into account Bloch correction and Z 1 3 correction. For the shell correction the Bonderup shell correction has been used. The results agree fairly well with those of other authors

  20. Neutron-proton analyzing power at 12 MeV and inconsistencies in parametrizations of nucleon-nucleon data

    OpenAIRE

    Braun, R. T.; Tornow, W.; Howell, C. R.; Trotter, D. E. Gonzalez; Roper, C. D.; Salinas, F.; Setze, H. R.; Walter, R. L.; Weisel, G. J.

    2008-01-01

    We present the most accurate and complete data set for the analyzing power Ay(theta) in neutron-proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at En = 12.0 MeV deviate considerably from the predictions of nucleon-nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion-nucleon coupling constant is discussed in a model s...

  1. Neutron-proton analyzing power at 12 MeV and inconsistencies in parametrizations of nucleon-nucleon data

    International Nuclear Information System (INIS)

    Braun, R.T.; Tornow, W.; Howell, C.R.; Gonzalez Trotter, D.E.; Roper, C.D.; Salinas, F.; Setze, H.R.; Walter, R.L.; Weisel, G.J.

    2008-01-01

    We present the most accurate and complete data set for the analyzing power A y (θ) in neutron-proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at E n =12.0 MeV deviate considerably from the predictions of nucleon-nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion-nucleon coupling constant is discussed in a model study

  2. SU-C-207A-03: Development of Proton CT Imaging System Using Thick Scintillator and CCD Camera

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S; Uesaka, M [The University of Tokyo, Tokyo (Japan); Nishio, T; Tsuneda, M [Hiroshima University, Hiroshima (Japan); Matsushita, K [Rikkyo University, Tokyo (Japan); Kabuki, S [Tokai University, Isehara (Japan)

    2016-06-15

    Purpose: In the treatment planning of proton therapy, Water Equivalent Length (WEL), which is the parameter for the calculation of dose and the range of proton, is derived by X-ray CT (xCT) image and xCT-WEL conversion. However, about a few percent error in the accuracy of proton range calculation through this conversion has been reported. The purpose of this study is to construct a proton CT (pCT) imaging system for an evaluation of the error. Methods: The pCT imaging system was constructed with a thick scintillator and a cooled CCD camera, which acquires the two-dimensional image of integrated value of the scintillation light toward the beam direction. The pCT image is reconstructed by FBP method using a correction between the light intensity and residual range of proton beam. An experiment for the demonstration of this system was performed with 70-MeV proton beam provided by NIRS cyclotron. The pCT image of several objects reconstructed from the experimental data was evaluated quantitatively. Results: Three-dimensional pCT images of several objects were reconstructed experimentally. A finestructure of approximately 1 mm was clearly observed. The position resolution of pCT image was almost the same as that of xCT image. And the error of proton CT pixel value was up to 4%. The deterioration of image quality was caused mainly by the effect of multiple Coulomb scattering. Conclusion: We designed and constructed the pCT imaging system using a thick scintillator and a CCD camera. And the system was evaluated with the experiment by use of 70-MeV proton beam. Three-dimensional pCT images of several objects were acquired by the system. This work was supported by JST SENTAN Grant Number 13A1101 and JSPS KAKENHI Grant Number 15H04912.

  3. Solid targets for production of radioisotopes with cyclotron

    International Nuclear Information System (INIS)

    Paredes G, L.; Balcazar G, M.

    1999-01-01

    The design of targets for production of radioisotopes and radiopharmaceuticals of cyclotron to medical applications requires a detailed analysis of several variables such as: cyclotron operation conditions, choice of used materials as target and their physicochemical characteristics, activity calculation, the yielding of each radioisotope by irradiation, the competition of nuclear reactions in function of the projectiles energy and the collision processes amongst others. The objective of this work is to determine the equations for the calculation for yielding of solid targets at the end of the proton irradiation. (Author)

  4. Operational health and physics service during the maintenance of the Australian National Medical Cyclotron

    International Nuclear Information System (INIS)

    Mukherjee, B.

    1994-01-01

    Modern Medical Cyclotrons use intense beams of high energy protons or deuterons to produce large activities of short and medium lived radionuclides. After continuous operation for prolonged periods the Cyclotron components become activated through various nuclear interactions therefore, the risk of personal radiation hazard while handling such activated cyclotron components is high. This paper describes all operational aspects of the Health Physics service evolved during the first preventative maintenance program of the Australian National Medical Cyclotron, which took place in June 1993. 5 refs., 3 tabs., 2 figs

  5. Production of radionuclides by 14 MeV neutron generator

    International Nuclear Information System (INIS)

    Alfassi, Z.B.

    1983-01-01

    Due to the short half-lives of these nuclides they have to be produced in situ or at least not far from the place of use. The cost of 14 MeV neutron generators have been compared with the typical middle-sized cyclotrons and it was found that the capital costs are much lower in the case of neutron generators. This is the main reason for the availability of 14 MeV neutron generators in many scientific institutes compared to the scarcity of cyclotrons. Lately, the use of 14 MeV neutrons for cancer therapy was studied in several medical centers. A number of hospitals and cancer research centers have high intensity 14 MeV neutron generators for this purpose. The advantages of using short-lived in-house produced radionuclides suggest the use of the available 14 MeV neutron generators for biological studies and in medical diagnosis. 14 MeV neutron generators can be used to produce some of the medically useful radionuclides, such as /sup 18/F, /sup 80/Br, /sup 199m/Hg, and others. However, the amount required for medicine can only be prepared by the new high intensity neutron generators, used for neutron therapy and not by the smaller ones, commonly used in university laboratories (--10/sup 11/ n/sec). On the other hand, these relatively small neutron generators can be used for the preparation of radionuclides for biological studies. They facilitate the study of metabolism of elements for which radionuclides cannot be usually purchased due to short half-lives or the high price of the long-lived ones, such as /sup 34m/Cl, /sup 18/F, /sup 28,29/Al, /sup 27/Mg, and others. An example is the work done on the fate of Al and Mg in rats using /sup 28/Al and /sup 27/Mg./sup 13/

  6. Installation and testing of a hospital-based cyclotron for radiation therapy and isotope production

    International Nuclear Information System (INIS)

    Almond, P.R.; Marbach, J.R.; Otte, V.A.

    1983-01-01

    A hospital based cyclotron is under installation at The University of Texas M.D. Anderson Hospital in Houston. This machine will be used for the production of radioactive isotopes and for the generation of neutrons for the radiotherapy treatment of cancer. It is a Cyclotron Corporation CP-42 negative proton accelerator. For neutron production the protons are transported through an isocentrically mounted beam transport system that can be rotated around the patient. The shielding requirements of this facility will be described as will the initial measurements on the characteristics of the neutron beam

  7. A fully microscopic model of 200 MeV proton-12C elastic and inelastic scattering

    International Nuclear Information System (INIS)

    Karataglidis, S.; Dortmans, P.J.; Amos, K.; de Swiniarski, R.

    1996-01-01

    An effective two nucleon (NN) interaction in the nuclear medium is defined from an accurate mapping of the NN g matrices obtained by solving the Brueckner-Bethe-Goldstone equations for infinite nuclear matter. That effective interaction is used in a fully microscopic calculation of the nonlocal effective proton- 12 C interaction from which are obtained predictions of the differential cross section and analysing power for 200 MeV elastic scattering. The relative motion wave functions so found are used as the distorted waves in a distorted wave approximation (DWA) study of select inelastic scattering events. The effective NN interaction is used as the transition operator in those calculations. The relevant nuclear spectroscopy for the elastic and DWA (p, p') calculations is found from a full (0 + 2) ℎω shell model evaluation of the positive parity states while a restricted (1 + 3)ℎω has been used to give the negative parity states. Results are compared with those of the 0p-shell model of Cohen and Kurath or with those based upon axially symmetric, projected Hartree-Fock calculations. The diverse structure model wave functions are assessed by using them in calculations to compare with measured longitudinal, transverse electric and transverse magnetic form factors from electron scattering to many of the excited states of 12 C. Using those models of the structure of 12 C in the completely microscopic model of the elastic and inelastic scattering of 200 MeV protons, good fits have been found to the cross section and analysing power data. 50 refs., 3 tabs., 20 figs

  8. External proton and Li beams

    International Nuclear Information System (INIS)

    Schuff, Juan A.; Burlon, Alejandro A.; Debray, Mario E.; Kesque, Jose M.; Kreiner, Andres J.; Stoliar, Pablo A.; Naab, Fabian; Ozafran, Mabel J.; Vazquez, Monica E.; Perez de la Hoz, A.; Somacal, Hector; Valda, Alejandro; Canevas, S.; Ruffolo, M.; Tasat, D.R.; Muhlmann, M. C.

    2000-01-01

    In the frame of a feasibility study to introduce proton therapy in Argentina in a collaborative agreement between the Physics and Radiobiology Departments of the National Atomic Energy Commission or Argentina and the Centre de Protontherapie de Orsay, France, external proton and Li beams were produced at the TANDAR accelerator in Buenos Aires. The specific aim of this work was to start radiobiology studies on cell cultures and small laboratory animals. In particular we seek to determine here the relative biological effectiveness, RBE, for proton and Li beams as a function of energy for different tumor and normal cell lines. The 24 MeV proton beam was diffused using a 25 μm gold foil and extracted through a Kapton window to obtain a homogeneous field (constant to 95%) of about 7 cm in diameter. Measurements were carried out with quasi-monoenergetic beams (of 20.2 ± 0.07 MeV, 2.9 ± 0.10 MeV y 1.5 ± 0.1 MeV for protons and 21.4 ± 0.4 MeV for Lithium). Proton fluence and Bragg peaks were measured. The dose delivered in each case was monitored on-line with a calibrated transmission ionization chamber. Three cell lines PDV, PDVC 57 and V 79 (as a reference) were irradiated with γ-rays, proton and lithium beams with linear energy transfer (LET) from 2 to 100 keV/μm. RBE values in the range of 1.2-5.9 were obtained. In addition preliminary studies on chromosomal aberrations and viability of alveolar macrophages were carried out. (author)

  9. Geant4 Monte Carlo simulation of absorbed dose and radiolysis yields enhancement from a gold nanoparticle under MeV proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tran, H.N., E-mail: tranngochoang@tdt.edu.vn [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Karamitros, M. [Notre Dame Radiation Laboratory, University of Notre-Dame, IN 46556 (United States); Ivanchenko, V.N. [Geant4 Associates International Ltd, Hebden Bridge (United Kingdom); Guatelli, S.; McKinnon, S. [Centre For Medical Radiation Physics, University of Wollongong (Australia); Illawarra Health and Medical Research, University of Wollongong, NSW (Australia); Murakami, K.; Sasaki, T.; Okada, S. [Computing Research Center, High Energy Accelerator Organization, KEK, Tsukuba City (Japan); Bordage, M.C. [INSERM, UMR 1037, CRCT, F-31000 Toulouse (France); Univ. Toulouse III-Paul Sabatier, UMR 1037, CRCT, F-31000 Toulouse (France); Francis, Z. [Saint Joseph University, Faculty of Sciences, Department of Physics, Beirut (Lebanon); El Bitar, Z. [Institut Pluridisciplinaire Hubert Curien/IN2P3/CNRS, Strasbourg (France); Bernal, M.A. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, SP (Brazil); Shin, J.I. [Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Science, 75, Nowon-ro, Nowon-gu, Seoul (Korea, Republic of); Lee, S.B. [Proton Therapy Center, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do (Korea, Republic of); Barberet, Ph. [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Tran, T.T. [VNUHCM-University of Science (Viet Nam); Brown, J.M.C. [School of Mathematics and Physics, Queen’s University Belfast, Belfast, Northern Ireland (United Kingdom); and others

    2016-04-15

    Gold nanoparticles have been reported as a possible radio-sensitizer agent in radiation therapy due to their ability to increase energy deposition and subsequent direct damage to cells and DNA within their local vicinity. Moreover, this increase in energy deposition also results in an increase of the radiochemical yields. In this work we present, for the first time, an in silico investigation, based on the general purpose Monte Carlo simulation toolkit Geant4, into energy deposition and radical species production around a spherical gold nanoparticle 50 nm in diameter via proton irradiation. Simulations were preformed for incident proton energies ranging from 2 to 170 MeV, which are of interest for clinical proton therapy.

  10. Radiation exposure to workers at cyclotron facilities

    International Nuclear Information System (INIS)

    Ribeiro, M.S.; Sanches, M.P.; Sanchez, A.S.; Rodrigues, D.L.

    2001-01-01

    Radiopharmaceuticals quickly furnish the information doctors need to establish a precise diagnosis of the patient's condition, and therefore to prescribe the most effective therapy. In cancerology, F18-FDG, the most widely used PET imaging tracer, excels in the early detection of cancer tumors, even very tiny ones, which it locates and clearly distinguishes from healthy surrounding tissues. IPEN-CNEN/SP has two cyclotron accelerators used mainly for radioisotope production to be utilized in nuclear medicine for diagnosis and therapy. The first is a CV-28 cyclotron, variable energy that came into operation in 1982, which was used to produce F18-FDG and Iodine 123 up to 1998. The second, a Cyclone 30 cyclotron, 30 MeV, commenced operation in 1998 for certification purpose, and due to increase demand for radiopharmaceuticals in Brazil, started F18-FDG production in 1999. Cyclotron Laboratory will be a reference Research and Developing Center in our country and will help the Brazilian and Latin-American community. It is necessary to have an adequate database to allow regular follow up and analysis of the individual dose distributions for each group involved in the cyclotron activities. These databases are also important means to assess the effectiveness of efforts in order to maintain doses ALARA and reduce inequalities. The official individual occupational dosimetry is provided by certified Laboratory of Thermoluminescent Dosimetry at IPEN-CNEN/SP. This paper describes the occupational doses distribution in Laboratory of Cyclotrons at IPEN-CNEN/SP from January, 1998 to July, 2000 and propose improvements for the future. (author)

  11. NEUTRON-PROTON ANALYZING POWER DATA AT 7.6, 12.0, 14.1, 16.0, 18.5 MeV

    OpenAIRE

    Weisel , G.; Tornow , W.; Howell , C.; Felsher , P.; Alohali , M.; Chen , Z.; Walter , R.; Lambert , J.; Treado , P.

    1990-01-01

    Neutron-Proton Ay(θ) measurements have been made at 7.6, 12.0, 14.1, 16.0, and 18.5 MeV. A sensitivity study establishes the importance of Ay(θ) in determining the 3P0, 1, 2 phase shifts in n-p scattering. The data are compared to the predictions of two phase-shift studies (one of which incorporates CIB effects), and the Paris and Bonn NN potenials.

  12. AGOR: A superconducting cyclotron for light and heavy ions plans for experimental facilities and physics program

    International Nuclear Information System (INIS)

    Gales, S.

    1991-01-01

    The construction of the K600 superconducting cyclotron AGOR, a joint undertaking of the KVI Groningen and the Institut de Physique Nucleaire at Orsay, has reached the stage where the assembly of major subsystems is underway. Field measurements are scheduled to start in the fall of this year, beam tests should start at Orsay by the end of 1992 before AGOR final installation at Groningen. The beam guiding system, the location and equipments of the main experimental areas are currently being designed. Taking advantage of the broad range of ions and energies that AGOR will made available (from 200 MeV protons to 100 MeV/A α down to 6 MeV/A Pb ions), the first ideas about the physics research to be done will be presented. (author) 28 refs., 15 figs., 2 tabs

  13. The thin-foil magnetic proton recoil neutron spectrometer MPRu at JET

    International Nuclear Information System (INIS)

    Andersson Sunden, E.; Sjoestrand, H.; Conroy, S.; Ericsson, G.; Gatu Johnson, M.; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Weiszflog, M.; Kaellne, J.; Gorini, G.; Tardocchi, M.; Combo, A.; Cruz, N.; Batista, A.; Pereira, R.; Fortuna, R.; Sousa, J.; Popovichev, S.

    2009-01-01

    Neutrons are produced in fusion energy experiments with both deuterium (D) and deuterium-tritium (DT) plasmas. Neutron spectroscopy is a valuable tool in the study of the underlying fuel ion populations. The magnetic proton recoil neutron spectrometer, originally installed at JET in 1996 for 14-MeV neutron measurements, has been upgraded, with the main aim of improving its signal-to-background ratio (S/B), making measurements of the 2.5-MeV neutron emission in D plasmas possible. The upgrade includes a new focal-plane detector, based on the phoswich technique and consequently less sensitive to background, and a new custom-designed digital data acquisition system based on transient recorder cards. Results from JET show that the upgraded MPRu can measure 2.5-MeV neutrons with S/B=5, an improvement by a factor of 50 compared with the original MPR. S/B of 2.8x10 4 in future DT experiments is estimated. The performance of the MPRu is exemplified with results from recent D plasma operations at JET, concerning both measurements with Ohmic, ion cyclotron resonance (ICRH) and neutral beam injection (NBI) plasma heating, as well as measurements of tritium burn-up neutrons. The upgraded instrument allows for 2.5-MeV neutron emission and deuterium ion temperature measurements in plasmas with low levels of tritium, a feature necessary for the ITER experiment.

  14. 600 MeV Simulation of the Production of Cosmogenic Nuclides in Meteorites by Galactic Protons

    CERN Multimedia

    2002-01-01

    A large variety of stable and radioactive nuclides is produced by the interaction of solar and galactic cosmic rays with extraterrestrial matter. Measurements of such cosmogenic nuclides provide information about the constancy of cosmic ray fluxes in space and time and about the irradiation history of individual extraterrestrial objects provided that there exist reliable models describing the production process. For the calculation of the depth dependent production of cosmogenic nuclides in meteorites no satisfactory Therefore, the irradiation of small stony meteorites (radii~$<$~40~cm) by galactic protons is simulated in a series of thick target irradiation experiments at the 600~MeV proton beam of the SC. \\\\ \\\\ The thick targets are spheres (R = 5, 15, 25 cm) and are made out of diorite because of its low water content, its high density (3.0~g/cm|3) and because it provides a good approximation of the chemical composition of some common meteorite clas These spheres will also contain a wide variety of pure...

  15. Seminar | Development of a PET Cyclotron Based Irradiation Setup for Proton Radiobiology | 25 June

    CERN Multimedia

    2015-01-01

    Sharif Hasan Mahmoud Ghithan, a Palestinian postdoctoral researcher at the Laboratory of Instrumentation and Experimental Particle Physics (Portugal), will discuss the development of an out-of-yoke irradiation setup using the proton beam from a cyclotron that ordinarily produces radioisotopes for Positron Emission Tomography (PET). The speaker will also discuss possible future use of the results of this research for CERN’s new LEIR biomedical facility. The seminar will be proposed in the framework of a meeting of the CERN Medical Applications Study Group.   25 June, 2 p.m. to 3 p.m. Room 13-2-005 ABSTRACT: In this new irradiation setup, the current from a 20 mm thick aluminum transmission foil is read out by homemade transimpedance electronics, providing online dose information. The main monitoring variables, delivered in real-time, include beam current, integrated charge and dose rate. Hence the dose and integrated current delivered at a given instant to an experimental setu...

  16. Neutron-proton analyzing power at 12 MeV and charged πNN coupling constant

    International Nuclear Information System (INIS)

    Braun, R.T.; Tornow, W.; Gonzalez Trotter, D.E.; Howell, C.R.; Machleidt, R.; Roper, C.D.; Salinas, F.; Setze, H.R.; Walter, R.L.

    1995-01-01

    Recent reanalysis of scattering data by the Nijmegen group has led to new values for the πNN coupling constants, g 2 πdegree /4π and g 2 π± /4π, about 6% smaller than the previously accepted values. The impact of this finding is far reaching. Since the neutron-proton A y (θ) is dominated at low energies by the one-pion-exchange mechanism, accurate np data should provide unique information as to the magnitude of g 2 π± /4π. Using a new experimental setup consisting of a shielded neutron source, a five-pair neutron detector array, a n- 4 He polarimeter, and an intense polarized source with fast spin-flipping capability, we have measured a 15 point angular distribution of the neutron-proton A y (θ) at and incident neutron energy of 12 MeV to a statistical accuracy of 5x10 -4 . We will discuss the data taking procedures, the analysis, and the corrections applied to the data. Preliminary results will be presented

  17. Water calorimetry and ionization chamber dosimetry in an 85-MeV clinical proton beam.

    Science.gov (United States)

    Palmans, H; Seuntjens, J; Verhaegen, F; Denis, J M; Vynckier, S; Thierens, H

    1996-05-01

    In recent years, the increased use of proton beams for clinical purposes has enhanced the demand for accurate absolute dosimetry for protons. As calorimetry is the most direct way to establish the absorbed dose and because water has recently been accepted as standard material for this type of beam, the importance of water calorimetry is obvious. In this work we report water calorimeter operation in an 85-MeV proton beam and a comparison of the absorbed dose to water measured by ionometry with the dose resulting from water calorimetric measurements. To ensure a proper understanding of the heat defect for defined impurities in water for this type of radiation, a relative response study was first done in comparison with theoretical calculations of the heat defect. The results showed that pure hypoxic water and hydrogen-saturated water yielded the same response with practically zero heat defect, in agreement with the model calculations. The absorbed dose inferred from these measurements was then compared with the dose derived from ionometry by applying the European Charged Heavy Particle Dosimetry (ECHED) protocol. Restricting the comparison to chambers recommended in the protocol, the calorimeter dose was found to be 2.6% +/- 0.9% lower than the average ionometry dose. In order to estimate the significance of chamber-dependent effects in this deviation, measurements were performed using a set of ten ionization chambers of five different types. The maximum internal deviation in the ionometry results amounted to 1.1%. We detected no systematic chamber volume dependence, but observed a small but systematic effect of the chamber wall thickness. The observed deviation between calorimetry and ionometry can be attributed to a combination of the value of (Wair/e)p for protons, adopted in the ECHED protocol, the mass stopping power ratios of water to air for protons, and possibly small ionization chamber wall effects.

  18. Radiation control during the dismantling of a 22 Mev cyclotron

    International Nuclear Information System (INIS)

    Dumas, D.; Killian, C.; Labenski, T.; Brantley, D.

    1976-01-01

    The problem with the cyclotron became apparent when the operators found great difficulty in obtaining an adequate, operational vacuum. After all possible causes were investigated, the replacement of the inner 0-rings was decided to be the only solution. This paper covers the pre-planning and training thought to be necessary to complete the procedure as quickly and safely as possible. The main objective is to show that exposure can be kept to a minimum with proper forethought and supervision

  19. Study of two photon production process in proton-proton collisions at 216 MeV

    International Nuclear Information System (INIS)

    Khrykin, A.S.

    2002-01-01

    The energy spectrum for high energy γ-rays (Eγ ≥ 10 MeV) from the process pp → γγX emitted at 90 deg. in the laboratory frame has been measured at 216 MeV. The resulting photon energy spectrum extracted from γ - γ coincidence events consists of a narrow peak (5.3σ) at a photon energy of about 24 MeV and a relatively broad peak (3.5σ) in the energy range of (50 - 70) MeV. This behavior of the photon energy spectrum is interpreted as a signature of the exotic dibaryon resonance d 1 * with a mass of about 1956 MeV which is assumed to be formed in the radiative process pp → γd 1 * followed by its electromagnetic decay via the d 1 * → ppγ mode. The experimental spectrum is compared with those obtained by means of Monte Carlo simulations

  20. Parity nonconservation in the proton-deuteron total cross section at 800 MeV

    International Nuclear Information System (INIS)

    Mischke, R.E.

    1988-01-01

    A measurement of parity nonconservation in the transmission of 800-MeV longitudinally-polarized protons through an unpolarized, one- meter liquid-deuterium target is discussed. The apparatus was essentially that same as for a previous measurement of the effect in p-p scattering. The longitudinal asymmetry is measured from the change in transmission of the beam through the target as the helicity of the beam is reversed. The preliminary result is A/sub L/ = (1.7 +- 0.8(stat) +- 1.0(sys)) /times/ 10/sup /minus/7/. Further study of the dependence of transmission on beam properties should allow the estimate of systematic errors to be reduced and may alter the central value of the result. 11 refs., 2 figs., 1 tab