WorldWideScience

Sample records for mev neutron reactions

  1. Table of nuclear reactions and subsequent radioactive dacays induced by 14-MeV neutrons

    International Nuclear Information System (INIS)

    Tsukada, Kineo

    1977-09-01

    Compilation of the data on nuclear reactions and subsequent radioactive decays induced by 14-MeV neutrons is presented in tabular form for most of the isotopes available in nature and for some of the artificially-produced isotopes, including the following items: Nuclide (isotopic abundance), type of nuclear reaction, reaction Q-value, reaction product, type of decay, decay Q-value, half-life of reaction product, decay product, maximum reaction cross section, neutron energy for maximum cross section, reaction cross section for 14 MeV neutrons, saturated radioactivity induced by irradiation of a neutron flux of 1 n/cm 2 sec for a mol of atoms, and reference for the cross section. The mass number dependence of (n, γ), (n, 2n), (n, p), (n, d), (n, t), (n, 3 He) and (n, α) reaction cross sections for 14-MeV neutrons is given in figures to show general trends of the cross sections

  2. Cross-section calculations for neutron-induced reactions up to 50 MeV

    International Nuclear Information System (INIS)

    Yamamuro, Nobuhiro.

    1996-01-01

    In the field of accelerator development, medium-energy reaction cross-section data for structural materials of accelerator and shielding components are required, especially for radiation protection purposes. For a d + Li stripping reaction neutron source used in materials research, neutron reaction cross sections up to 50 MeV are necessary for the design study of neutron irradiation facilities. The current version of SINCROS-II is able to calculate neutron and proton-induced reaction cross sections up to ∼ 50 MeV with some modifications and extensions of the cross-section calculation code. The production of isotopes when structural materials and other materials are bombarded with neutrons or protons is calculated using a revised code in the SINCROS-II system. The parameters used in the cross-section calculations are mainly examined with proton-induced reactions because the experimental data for neutrons above 20 MeV are rare. The status of medium mass nuclide evaluations for aluminum, silicon, chromium, manganese, and copper is presented. These data are useful to estimate the radiation and transmutation of nuclei in the materials

  3. Cross section measurement for (n,n{alpha}) reactions by 14 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kasugai, Y.; Ikeda, Y.; Uno, Y. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Yamamoto, H.; Kawade, K.

    1997-03-01

    Nine (n,n{alpha}) cross sections for (n,n{alpha}) reactions induced by 13.5-14.9 MeV neutrons were measured for {sup 51}V, {sup 65}Cu, {sup 71}Ga, {sup 76}Ge, {sup 87}Rb, {sup 91}Zr, {sup 93}Nb, {sup 96}Zr and {sup 109}Ag isotopes by using Fusion Neutronics Source (FNS) at JAERI. The reactions for 91Zr and 96Zr were measured for the first time. The evaluated data of JENDL-3 and ENDF/B-VI were compared with the present data. Some of the evaluated values are much different from our data by a factor more than ten. (author)

  4. Exclusive data-based modeling of neutron-nuclear reactions below 20 MeV

    Science.gov (United States)

    Savin, Dmitry; Kosov, Mikhail

    2017-09-01

    We are developing CHIPS-TPT physics library for exclusive simulation of neutron-nuclear reactions below 20 MeV. Exclusive modeling reproduces each separate scattering and thus requires conservation of energy, momentum and quantum numbers in each reaction. Inclusive modeling reproduces only selected values while averaging over the others and imposes no such constraints. Therefore the exclusive modeling allows to simulate additional quantities like secondary particle correlations and gamma-lines broadening and avoid artificial fluctuations. CHIPS-TPT is based on the formerly included in Geant4 CHIPS library, which follows the exclusive approach, and extends it to incident neutrons with the energy below 20 MeV. The NeutronHP model for neutrons below 20 MeV included in Geant4 follows the inclusive approach like the well known MCNP code. Unfortunately, the available data in this energy region is mostly presented in ENDF-6 format and semi-inclusive. Imposing additional constraints on secondary particles complicates modeling but also allows to detect inconsistencies in the input data and to avoid errors that may remain unnoticed in inclusive modeling.

  5. 208Pb(n,pxnγ) reactions for neutron energies up to 200 MeV

    International Nuclear Information System (INIS)

    Pavlik, A.; Vonach, H.

    1995-01-01

    The prompt gamma-radiation from the interaction of fast neutrons with enriched samples of 208 Pb was measured using the white neutron beam of the WNR facility at Los Alamos National Laboratory. The samples were positioned at about 40 m distance from the neutron production target. The spectra of the emitted gamma-rays were measured with a high-resolution HPGe detector. The incident neutron energy was determined by the time-of-flight method and the neutron fluence was measured with a 238 U fission chamber. In addition to the primary purpose of this experiment, the study of (n,xnγ) reactions leading to various lead isotopes, gamma transitions in the residual nuclei 207,205,203,201 Tl were analyzed. From these data gamma-production cross sections in the neutron energy range from the effective thresholds to 200 MeV were derived. The lines for the analysis had to be chosen carefully as the (n,pnxγ) cross sections are rather small and the interference with unresolved lead lines (even weak ones) would cause significant errors. The effect due to isomers with half-lives exceeding a few nanoseconds was taken into account and corrected for, if necessary. The measured cross sections were compared with the results of nuclear model calculations based on the exciton model for preequilibrium particle emission and the Hauser-Feshbach theory for compound nucleus decay. Unlike in the case of (n,xnγ) reactions the calculated results in general did not give a good description of the measured cross sections

  6. Neutron-deuteron elastic scattering and breakup reactions below 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Howell, C.R.; Tornow, W.; Pfuetzner, H.G.; Roberts, M.L.; Murphy, K.; Felsher, P.D.; Weisel, G.J.; Mertens, G.; Walter, R.L. (Duke Univ. and Triangle Universities Nuclear Lab., Durham, NC (USA)); Lambert, J.M.; Treado, P.A. (Physics Dept., Georgetown Univ., Washington, DC (USA)); Slaus, I. (Rudjer Boskovic Inst., Zagreb (Yugoslavia))

    1991-05-01

    In this paper we review the results of a series of high-accuracy measurements on the neutron-deuteron (n-d) scattering system at incident neutron energies below 20 MeV. These measurements were designed to: 1) provide data of sufficient accuracy to be used to refine the parametrization of the nucleon-nucleon force, 2) to test the reaction dynamics in the ''rigorous'' calculations of three-nucleon (3N) breakup reactions, and 3) identify 3N scattering observables that are specifically sensitive to three-nucleus forces and/or off-shell effects. At TUNL we have measured vector analyzing powers A{sub y}({theta}) for n-d elastic scattering and the breakup reaction to an accuracy better than {+-}0.005 and {+-}0.020, respectively. Recent results on items 1) and 2) will be presented. Also, results of cross-section measurements for n-d and p-d breakup will be compared to a ''rigorous'' 3N calculation. (orig.).

  7. Neutron-deuteron elastic scattering and breakup reactions below 20 MeV

    International Nuclear Information System (INIS)

    Howell, C.R.; Tornow, W.; Pfuetzner, H.G.; Roberts, M.L.; Murphy, K.; Felsher, P.D.; Weisel, G.J.; Mertens, G.; Walter, R.L.; Lambert, J.M.; Treado, P.A.; Slaus, I.

    1991-01-01

    In this paper we review the results of a series of high-accuracy measurements on the neutron-deuteron (n-d) scattering system at incident neutron energies below 20 MeV. These measurements were designed to: 1) provide data of sufficient accuracy to be used to refine the parametrization of the nucleon-nucleon force, 2) to test the reaction dynamics in the ''rigorous'' calculations of three-nucleon (3N) breakup reactions, and 3) identify 3N scattering observables that are specifically sensitive to three-nucleus forces and/or off-shell effects. At TUNL we have measured vector analyzing powers A y (θ) for n-d elastic scattering and the breakup reaction to an accuracy better than ±0.005 and ±0.020, respectively. Recent results on items 1) and 2) will be presented. Also, results of cross-section measurements for n-d and p-d breakup will be compared to a ''rigorous'' 3N calculation. (orig.)

  8. Calculation of neutron monitor reaction cross sections of {sup 90}Zr in energy region up to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Qingbiao, Shen; Baosheng, Yu; Dunjiu, Cai [Chinese Nuclear Data Center, Beijing, BJ (China)

    1996-06-01

    Many nuclear data for n + {sup 90}Zr reaction were calculated by using optical model evaporation model and exciton model. The program SPEC, including the first to the sixth particle emission processes, was used in our calculations. The calculated results show that the activation products {sup 89,88}Zr and {sup 88,87}Y are important neutron monitor reaction products for n + {sup 90}Zr reaction in energy range up to 100 MeV. (4 figs.).

  9. Radioprotection shielding for neutrons induced by the reaction (2H (40 MeV, 12C

    Directory of Open Access Journals (Sweden)

    Fadil M.

    2017-01-01

    Full Text Available In the framework of design studies for SPIRAL2, the simulation of the neutron flux generated by 40 MeV deuterons on a thick 12C target was performed and compared to experimental data. The calculation of the dose rate of these neutrons allowed to compare four materials being considered for radioprotection shielding: barites, gypsum, ordinary concrete and heavy concrete. The simulated map of the neutron dose rate in the production building shows a very high dose rate around the neutron source and in the environment of some of the accelerator equipment.

  10. Application of multi-step direct reaction theory to 14 MeV neutron reaction, 3 (n,. cap alpha. )

    Energy Technology Data Exchange (ETDEWEB)

    Kumabe, I.; Matoba, M.; Fukuda, K. [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Ikegami, H.; Muraoka, M [eds.

    1980-01-01

    Multi-step direct-reaction theory proposed by Tamura et al. has been applied to continuous spectra of the 14 MeV (n, ..cap alpha..) reaction with some modifications. Calculated results reproduce well the experimental energy and angular distributions of the 14 MeV (n, ..cap alpha..) reactions.

  11. Cross section measurements of the (n,2n) reaction with 14 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, Harumi; Shiokawa, Takanobu [Tohoku Univ., Sendai (Japan). Faculty of Science; Suehiro, Teruo; Yagi, Masuo

    1975-07-01

    Cross sections are measured for the reactions /sup 64/Zn(n, 2n)/sup 63/Zn, /sup 75/As(n, 2n)/sup 74/As, /sup 79/Br(n, 2n)/sup 78/Br, /sup 90/Zr(n, 2n)/sup 89/Zr, /sup 141/Pr(n, 2n)/sup 140/Pr and /sup 144/Sm(n, 2n)/sup 143/Sm by activation method in the energy range 13.5-14.8 MeV. The cross sections are determined relatively to the cross section for the /sup 63/Cu(n, 2n)/sup 62/Cu and /sup 19/F(n, 2n)/sup 18/F reactions. Before the cross section measurement, incident-neutron energies are measured by recoil proton method. The results of the cross sections are compared with data existing in the literatures and are discussed with reference to the theory of Weisskopf and Ewing.

  12. Measurement of the neutron-induced deuteron breakup reaction cross-section between 5 and 25 MeV

    International Nuclear Information System (INIS)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G.

    2012-01-01

    This article presents a full program devoted to the calculation and the measurement of the neutron-induced deuteron break-up reaction cross-section between 5 and 10 MeV, and between 20 and 25 MeV. Measurements are compared with theoretical calculations based on the solution of the Faddeev equations for a realistic nuclear Hamiltonian. The experiments were performed at the Tandem 7 MV accelerator at CEA, DAM, DIF, France. The measurements were carried out with a C 6 D 6 detector as active deuterium target located at the center of a 4π neutron counter (see C. Varignon et al., Nucl. Instrum. Methods B 248, 329 (2006)) which allows to count the two neutrons emitted in the 2 H(n, 2n)p reaction. Comparisons of the new data and calculations are made with the existing data as well as the CENDL2, JENDL3.3 and ENDF/B-VII evaluations. (orig.)

  13. Measurement of cross sections for the scattering of neutrons in the energy range from 2 MeV to 4 MeV with the 15N(p,n) reaction as neutron source

    International Nuclear Information System (INIS)

    Poenitz, Erik

    2010-01-01

    In future nuclear facilities, the materials lead and bismuth can play a more important role than in today's nuclear reactors. Reliable cross section data are required for the design of those facilities. In particular the neutron transport in the lead spallation target of an Accelerator-Driven Subcritical Reactor strongly depends on the inelastic neutron scattering cross sections in the energy region from 0.5 MeV to 6 MeV. In the recent 20 years, elastic and inelastic neutron scattering cross sections were measured with high precision for a variety of elements at the PTB time-of-flight spectrometer. The D(d,n) reaction was primarily used for the production of neutrons. Because of the Q value of the reaction and the available deuteron energies, neutrons in the energy range from 6 MeV to 16 MeV can be produced. For the cross section measurement at lower energies, however, another neutron producing reaction is required. The 15 N(p,n) 15 O reaction was chosen, as it allows the production of monoenergetic neutrons with up to 5.7MeV energy. In this work, the 15 N(p,n) reaction was studied with focus on the suitability as a source for monoenergetic neutrons in scattering experiments. This includes the measurement of differential cross sections for the neutron producing reaction and the choice of optimum target conditions. Differential elastic and inelastic neutron scattering cross sections were measured for lead at four energies in the region from 2 MeV to 4 MeV incident neutron energy using the time-of-flight technique. A lead sample with natural isotopic composition was used. NE213 liquid scintillation detectors with well-known detection efficiencies were used for the detection of the scattered neutrons. Angle-integrated cross sections were determined by a Legendre polynomial expansion using least-squares methods. Additionally, measurements were carried out for isotopically pure 209 Bi and 181 Ta samples at 4 MeV incident neutron energy. Results are compared with other

  14. 207,208Pb(n,xnγ) reactions for neutron energies from 3 to 200 MeV

    International Nuclear Information System (INIS)

    Vonach, H.; Pavlik, A.; Chadwick, M.B.; Haight, R.C.; Nelson, R.O.; Wender, S.A.; Young, P.G.

    1994-01-01

    High-resolution γ-ray spectra from the interaction of neutrons in the energy range from 3 to 200 MeV with 207,208 Pb were measured with the white neutron source at the weapons neutron research (WNR) facility at Los Alamos National Laboratory. From these data, excitation functions for prominent γ transitions in 200,202,204,206,207,208 Pb were derived from threshold to 200 MeV incident neutron energy. These γ-production cross sections reflect the excitation cross sections for the respective residual nuclei. The results are compared with the predictions of nuclear reaction calculations based on the exciton model for precompound emission, the Hauser-Feshbach theory for compound nucleus decay, and coupled channels calculations to account for direct excitation of collective levels. Good agreement was obtained over the entire energy range covered in the experiment with reasonable model parameters. The results of this work clearly demonstrate that multiple preequilibrium emission has to be taken into account above about 40 MeV, and that the level density model of Ignatyuk, which accounts for the gradual disappearance of shell effects with increasing excitation energy, should be used instead of the Gilbert-Cameron and backshifted Fermi-gas models if excitation energies exceed about 30 MeV. No indication for a reduction of the nuclear moment of inertia below the rigid body value was found

  15. Measurements of hydrogen and helium isotopes emission spectra from neutrons induced reaction at ten's of MeV

    International Nuclear Information System (INIS)

    Nauchi, Yasushi; Baba, Mamoru; Hirasawa, Yoshitaka

    1999-01-01

    We have developed a wide dynamic range spectrometer for the measurements of (n, xZ) double differential cross sections (DDXs) for ten's of MeV neutrons at TIARA. The spectrometer consists of a 40-cm diameter vacuum reaction chamber and three counter telescopes. Each telescope consists of a gas proportional counter, an SSD and a BaF 2 scintillator. By using the spectrometer, we achieved simultaneous measurements from ∼MeV α particles to 75 MeV protons with an acceptable counting rate. (author)

  16. Kinetic energy spectrum and polarization of neutrons from the reaction 12C(p,n)X at 590 MeV

    International Nuclear Information System (INIS)

    Arnold, J.

    1998-01-01

    The kinetic energy spectrum and the polarization of the PSI neutron beam produced in the reaction 12 C(p,n)X at 0 with 590 MeV polarized protons were investigated. A strong energy dependence of the neutron beam polarization is observed which was not expected at the time the neutron beam was built. (orig.)

  17. Angular distribution and cross section measurements of 64Zn(n,α)61Ni reaction for neutron energy 5 MeV

    International Nuclear Information System (INIS)

    Chen Yingtang; Chen Zemin; Qi Huiquan; Li Mingtao

    1995-01-01

    A twin gridded ionization chamber with dual parameter data acquisition system is used to study neutron induced charged particle emission reaction. The angular distribution and cross section of α-particles from the 64 Zn(n,α) 61 Ni reaction are measured at neutron energy 5 MeV

  18. Identification and spectrometry of charged particles produced in reactions induced by 14 MeV neutrons. II

    International Nuclear Information System (INIS)

    Sellem, C.; Perroud, J.P.; Loude, J.F.

    1975-01-01

    A counter telescope consisting of gas proportional counters, a thin semiconductor detector and a thick one has been built and used for the study of the angular differential cross sections of (n, charged particles) reactions induced by 14 MeV neutrons. Detection of the α-particles emitted in the neutron production reaction 3 H(d,n) 4 He gives a time reference for the measurement of the time of flight of the charged particles and allows a precise monitoring of the intensity of the neutron beam. High energy protons, deuterons and tritons are identified by their energy losses in the thin semiconductor detector and in the thick one and by their time of flight. Low energy protons, deuterons, tritons and all α-particles stop in the thin semiconductor detector and are identified by their energy losses in this detector and in one gas proportional counter as well as by their time of flight. It is possible to identify and to measure the energy of all charged particles in the energy range of 2 to 15 MeV: a very low background results from the use of the time of flight. (Auth.)

  19. Measurement of the neutron-induced deuteron breakup reaction cross-section between 5 and 25 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G. [CEA, DAM, DIF, Arpajon (France)

    2012-06-15

    This article presents a full program devoted to the calculation and the measurement of the neutron-induced deuteron break-up reaction cross-section between 5 and 10 MeV, and between 20 and 25 MeV. Measurements are compared with theoretical calculations based on the solution of the Faddeev equations for a realistic nuclear Hamiltonian. The experiments were performed at the Tandem 7 MV accelerator at CEA, DAM, DIF, France. The measurements were carried out with a C{sub 6}D{sub 6} detector as active deuterium target located at the center of a 4{pi} neutron counter (see C. Varignon et al., Nucl. Instrum. Methods B 248, 329 (2006)) which allows to count the two neutrons emitted in the {sup 2}H(n, 2n)p reaction. Comparisons of the new data and calculations are made with the existing data as well as the CENDL2, JENDL3.3 and ENDF/B-VII evaluations. (orig.)

  20. Neutron induced reaction cross-sections on 115In at around 14 MeV

    International Nuclear Information System (INIS)

    Csikai, J.; Lantos, Z.; Buczko, C.M.; Sudar, S.

    1990-01-01

    A systematic investigation was carried out on 115 In isotope to determine the contribution of different reactions to the total non-elastic cross-section in the 13.43 and 14.84 MeV range. All the major component cross-sections of σ NE were measured with exception of the σ g (n,n'). In the knowledge of σ NE , the energy dependence of σ g (n,n') could be deduced. The isomeric cross section ratios both for (n,2n) and (n,n') processes were also determined in the given energy range. The present experiment proves the dependence of σ m /(σ g +σ m ) ratio on the spin value (I m ) of the isomeric state in (n,2n) reaction. Excitation functions of (n,2n), (n,n') and (n,ch) reactions were compared with results calculated by STAPRE code. (author). 37 refs, 5 figs, 4 tabs

  1. A new empirical formula for 14-15 MeV neutron-induced (n, p) reaction cross sections

    International Nuclear Information System (INIS)

    Tel, E; Sarer, B; Okuducu, S; Aydin, A; Tanir, G

    2003-01-01

    In this study, we have suggested a new empirical formula to reproduce the cross sections of the (n, p) reactions at 14-15 MeV for the neutron incident energy. This formula obtained using the asymmetry parameters represents a modification to the original formula of Levkovskii. The resulting modified formulae yielded cross sections, representing smaller χ 2 deviations from experimental values, and values much closer to unity as compared with those calculated using Levkovskii's original formula. The results obtained have been discussed and compared with the existing formulae, and found to be well in agreement, when used to correlate the available experimental σ(n, p) data of different nuclei

  2. Study on the 21 MeV neutron flux characteristics obtained in the 3H(d,n)4He reaction using of gas target

    International Nuclear Information System (INIS)

    Lovchikova, G.N.; Polyakov, A.V.; Sal'nikov, O.A.; Simakov, S.P.; Sukhikh, S.Eh.; Trufanov, A.M.

    1983-01-01

    The possibility to use gas tritium target as neutron source with the energy 2 MeV for nuclear-physical studies has been considered. Characteristics of neutron flux crested in the reaction 3 H(d, n) 4 He to obtain neutrons are investigated. The study of inelastic scattering processes at the energies permits to expand the experiments conducted up to the present day on the study of spectra of inelastically scattered neutrons in a lower energy region and it is of interest for the clarification of appearance mechanism of high-energy neutrons in the spectra. Characteristics of neutron flux as a result of the reaction 3 (α, n) 4 He at the energy of falling deuterons Esub(d)=5.54 MeV are investigated. Measurements of spectra of scattered neutrons on carbon-12 at the angles 30, 45, 60, 90, 120, 150 degrees are made. Differential cross sections of elastic scattering are obtained

  3. The 1H(t,n)3He reaction as monoenergetic neutron source in the (10/20) MeV energy interval

    International Nuclear Information System (INIS)

    Zago, G.

    1981-01-01

    The 1 H(t,n) 3 He reaction, considered as a neutron source in the (10/20) MeV energy interval, is a ''white'' neutron source having intensity, mean energy, and directionality which may prove advantageous in technological and biomedical researches. (author)

  4. /sup 1/H(t,n)/sup 3/He reaction as monoenergetic neutron source in the (10/20) MeV energy interval

    Energy Technology Data Exchange (ETDEWEB)

    Zago, G. (Padua Univ. (Italy). Ist. di Fisica)

    1981-11-14

    The /sup 1/H(t,n)/sup 3/He reaction, considered as a neutron source in the (10/20) MeV energy interval, is a ''white'' neutron source having intensity, mean energy, and directionality which may prove advantageous in technological and biomedical researches.

  5. Measurement method of activation cross-sections of reactions producing short-lived nuclei with 14 MeV neutrons

    CERN Document Server

    Kawade, K; Kasugai, Y; Shibata, M; Iida, T; Takahashi, A; Fukahori, T

    2003-01-01

    We describe a method for obtaining reliable activation cross-sections in the neutron energy range between 13.4 and 14.9 MeV for the reactions producing short-lived nuclei with half-lives between 0.5 and 30 min. We noted neutron irradiation fields and measured induced activities, including (1) the contribution of scattered low-energy neutrons, (2) the fluctuation of the neutron fluence rate during the irradiation, (3) the true coincidence sum effect, (4) the random coincidence sum effect, (5) the deviation in the measuring position due to finite sample thickness, (6) the self-absorption of the gamma-ray in the sample material and (7) the interference reactions producing the same radionuclides or the ones emitting the gamma-ray with the same energy of interest. The cross-sections can be obtained within a total error of 3.6%, when good counting statistics are achieved, including an error of 3.0% for the standard cross-section of sup 2 sup 7 Al (n, alpha) sup 2 sup 4 Na. We propose here simple methods for measuri...

  6. Measurements of the Fe-54 (n,p) Mn-54 Reaction Cross Section in the Neutron Energy Range 2.3-3.8 MeV

    International Nuclear Information System (INIS)

    Lauber, A.; Malmskog, S.

    1964-10-01

    We have measured the 54 Fe (n, p) 54 Mn reaction cross section using a surface barrier detector to record the number of protons released in the reaction. The neutron flux was determined by means of a hydrogenous radiator, detecting the scattered protons with the solid state detector, and calculating the number of impinging neutrons from the well known n-p scattering cross section. The 54 Fe (n, p) 54 Mn reaction cross section is found to increase from 25 mb at 2.3 MeV to 208 mb at 3.5 MeV

  7. Measurements of the Fe-54 (n,p) Mn-54 Reaction Cross Section in the Neutron Energy Range 2.3-3.8 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lauber, A; Malmskog, S

    1964-10-15

    We have measured the {sup 54}Fe (n, p) {sup 54}Mn reaction cross section using a surface barrier detector to record the number of protons released in the reaction. The neutron flux was determined by means of a hydrogenous radiator, detecting the scattered protons with the solid state detector, and calculating the number of impinging neutrons from the well known n-p scattering cross section. The {sup 54}Fe (n, p) {sup 54}Mn reaction cross section is found to increase from 25 mb at 2.3 MeV to 208 mb at 3.5 MeV.

  8. Neutron spectrum at 900 from 800 MeV (p,n) reactions on a Ta target

    International Nuclear Information System (INIS)

    Howe, S.D.; Lisowski, P.W.; King, N.S.P.; Russell, G.J.; Donnert, H.J.

    1979-01-01

    The neutron time-of-flight spectrum produced by a thick tantalum target bombarded by 800-MeV protons was measured at an angle of 90 0 . The data were taken at the Weapons Neutron Research facility by use of a cylindrical Ta target with a radius of 1.27 cm and a length of 15 cm. An NE-213 liquid scintillator was used to detect the neutrons over an energy range of 0.5 to 350 MeV. The neutron yield is presented and compared to a intranuclear-cascade/evaporation model prediction. 3 figures

  9. Calculations of nuclear data for the reactions of neutrons and protons with heavy nuclei at energy from 1 MeV up to 2 GeV

    International Nuclear Information System (INIS)

    Konshin, V.A.

    1995-01-01

    Several nuclear model codes were applied to calculations of nuclear data in the energy region from 1 MeV to 2 GeV. At energies from 1 to 20 MeV the statistical model code STAPRE was used for calculations of the neutron cross-sections for fission, (n,2n) and (n,3n) reaction cross-sections for 71 actinide isotopes. In the energy region from 10 to 100 MeV the nuclear theory code GNASH was used to calculate the neutron fission and (n,xn) cross-sections for 238 U, 235 U, 239 Pu, 232 Th, 237 Np, 238 Pu, 241 Am, 243 Am, 245 Cm and 246 Cm. At energies from 100 MeV to 2 GeV the intranuclear cascade-exciton model including the fission process was applied to calculations of the interactions of protons and neutrons with actinides and the calculated results are compared with experimental data. (author)

  10. Measurements and Monte Carlo calculations of neutron production cross-sections at 180o for the 140 MeV proton incident reactions on carbon, iron, and gold

    International Nuclear Information System (INIS)

    Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki; Yashima, Hiroshi; Nakane, Yoshihiro; Tamii, Atsushi; Iwase, Hiroshi; Endo, Akira; Nakashima, Hiroshi; Sakamoto, Yukio; Hatanaka, Kichiji; Niita, Koji

    2010-01-01

    The neutron production cross-sections of carbon, iron, and gold targets with 140 MeV protons at 180 o were measured at the RCNP cyclotron facility. The time-of-flight technique was used to obtain the neutron energy spectra in the energy range above 1 MeV. The carbon and iron target results were compared with the experimental data from 113 MeV (p,xn) reactions at 150 o reported by Meier et al. Our data agreed well with them in spite of different incident energies and angles. Calculations were then performed using different intra-nuclear cascade models (Bertini, ISOBAR, and JQMD) implemented with PHITS code. The results calculated using the ISOBAR and JQMD models roughly agreed with the experimental iron and gold target data, but the Bertini could not reproduce the high-energy neutrons above 10 MeV.

  11. Quasi-monoenergetic neutron energy spectra for 246 and 389 MeV (7)Li(p,n) reactions at angles from 0 degrees to 300 degrees

    CERN Document Server

    Iwamoto, Y; Nakamura, T; Nakashima, H; Mares, V; Itoga, T; Matsumoto, T; Nakane, Y; Feldbaumer, E; Jaegerhofer, L; Pioch, C; Tamii, A; Satoh, D; Masuda, A; Sato, T; Iwase, H; Yashima, H; Nishiyama, J; Hagiwara, M; Hatanaka, K; Sakamoto, Y

    2011-01-01

    The authors measured the neutron energy spectra of a quasi-monoenergetic (7)Li(p,n) neutron source with 246 and 389 MeV protons set at seven angles (0 degrees, 2.5 degrees, 5 degrees, 10 degrees, 15 degrees, 20 degrees and 30 degrees), using a time-of-flight (TOF) method employing organic scintillators NE213 at the Research Center for Nuclear Physics (RCNP) of Osaka University. The energy spectra of the source neutrons were precisely deduced down to 2 MeV at 0 degrees and 10 MeV at other angles. The cross-sections of the peak neutron production reaction at 0 degrees were on the 35-40 mb line of other experimental data, and the peak neutron angular distribution agreed well with the Taddeucci formula. Neutron energy spectra below 100 MeV at all angles were comparable, but the shapes of the continuum above 150 MeV changed considerably with the angle. In order to consider the correction required to derive the response in the peak region from the measured total response for high-energy neutron monitors such as DAR...

  12. Verification of dosimetry cross sections above 10 MeV based on measurement of activation reaction rates in fission neutron field

    International Nuclear Information System (INIS)

    Odano, Naoteru; Miura, Toshimasa; Yamaji, Akio.

    1996-01-01

    To validate the dosimetry cross sections in fast neutron energy range, activation reaction rates were measured for 5 types of dosimetry cross sections which have sensitivity in the energy rage above 10 MeV utilizing JRR-4 reactor of JAERI. The measured reaction rates were compared with the calculations reaction rates by a continuous energy monte carlo code MVP. The calculated reaction rates were based on two dosimetry files, JENDL Dosimetry File and IRDF-90.2. (author)

  13. Cross section of the {sup 11}B(n,p) {sup 11}Be reaction for 14.7-16.9 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Stepancinc, B Z; Stanojevic, D M; Popic, V R; Aleksic, M R [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1966-07-15

    The cross section of the {sup 11}B(n,p){sup 11}Be reaction was determined for neutron energy range from 14.7 to 16.9 MeV using the activation method. Activity measurements were done by using a coincidence spectrometer essentially consisting of two plastic scintillators. Energy dependent cross section values are presented together with the previously measured values for the energy range 14.5 - 16.9 MeV.

  14. Production of 14 MeV neutrons from D-D neutron generators

    International Nuclear Information System (INIS)

    Cecil, F.E.; Nieschmidt, E.B.

    1986-01-01

    The production of 14 MeV neutrons from a D-D neutron generator resulting from tritium buildup from the d(d,p)t reaction in the target is discussed. The effect of the 14 MeV neutrons on fast neutron activation analysis with D-D neutron generators is evaluated. (orig.)

  15. Small-angle neutron polarization for the 2H(d vector,n vector)3He reaction near Esub(d) = 8MeV

    International Nuclear Information System (INIS)

    Tornow, W.; Woye, W.; Mack, G.

    1981-01-01

    Considerable improvement in the quality of analyzing power experiments performed with polarized fast neutrons has been achieved during the last few years by using neutrons from the polarization transfer reaction 2 H(d vector,n vector) 3 He at a reaction angle of theta = 0 0 . To compromise in these experiments between intensity problems and finite geometry corrections, it is desirable in some instances to subtend a full-width angle Δtheta of 20 0 (lab) centered about theta = 0 0 . In order to investigate the suitability of this reaction as a source of polarized neutrons for cases where the scatterer is close to the neutron source, the neutron polarization of the reaction 2 H(d vector,n vector) 3 He has been studied with Δtheta of about 3 0 in 3 0 steps out to theta = 20 0 (lab). An incident deuteron energy near 8 MeV was chosen to yield outgoing neutrons at 11.0 MeV, a typical energy for neutron analyzing power experiments. It is found that the effective neutron polarization, a combination of the two polarizations measured when the direction of the deuteron polarization is inverted or flipped at the polarized ion source, is large and nearly constant for angles between theta = 0 0 and theta = 10 0 (lab). (orig.)

  16. Violence of heavy-ion reactions from neutron multiplicity: 11 to 20A MeV /sup 20/Ne+ /sup 238/U

    International Nuclear Information System (INIS)

    Jahnke, U.; Ingold, G.; Hilscher, D.; Lehmann, M.; Schwinn, E.; Zank, P.

    1986-01-01

    The suitability of the neutron multiplicity as a gauge for the violence of medium-energy heavy-ion reactions is investigated for the first time. For this purpose the number of neutrons emitted from fission reactions induced by 220-, 290-, and 400-MeV /sup 20/Ne on /sup 238/U is registered event-by-event with a large 4π scintillator tank. It is shown that the neutron multiplicity is indeed closely related to the two quantities characterizing the violence: the induced total intrinsic excitation and the linear momentum transfer

  17. Measurement of fission cross-section for the {sup 232}Th(n,f){sup 141}Ba reaction induced by neutrons around 14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Chang-Lin; Fang, Kai-Hong [Lanzhou University, School of Nuclear Science and Technology, Lanzhou, Gansu Province (China); Lanzhou University, Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou, Gansu Province (China); Liu, Shuang-Tong; Lv, Tao; Wang, Qiang; Zhang, Zheng-Wei [Lanzhou University, School of Nuclear Science and Technology, Lanzhou, Gansu Province (China); Lai, Cai-Feng [Chinese Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang, Sichuan Province (China)

    2016-11-15

    The fission cross-section of the {sup 232}Th(n,f){sup 141}Ba reaction induced by neutrons around 14 MeV was measured precisely with the neutron activation and off-line gamma-ray spectrometric technique. Neutron fluence was monitored on-line using the accompanying α-particles from the {sup 3}H({sup 2}H,n){sup 4}He reaction, whereas the neutron energies were measured by the method of cross-section ratios of {sup 90}Zr(n,2n){sup 89}Zr to {sup 93}Nb(n,2n){sup 92m}Nb reactions. The experimentally determined {sup 232}Th(n,f){sup 141}Ba reaction cross-sections were 12.2 ± 0.4 mb at E{sub n} = 14.1 ± 0.3 MeV, 13.0 ± 0.5 mb at E{sub n} = 14.5 ± 0.3 MeV and 13.3 ± 0.5 mb at E{sub n} = 14.7 ± 0.3 MeV, respectively. (orig.)

  18. Measurements of neutron emission spectra and 7Be production in Li(d, n) and Be(d, n) reactions for 25 and 40 MeV deuterons

    International Nuclear Information System (INIS)

    Hagiwara, Masayuki; Baba, Mamoru; Aoki, Takao; Kawata, Naoki; Hirabayashi, Naoya; Itoga, Toshiro

    2003-01-01

    The neutron spectra in Li(d, n) and Be(d, n) reactions for Ed = 25, 40 MeV were measured from ∼1 MeV to highest energy of secondary neutrons at ten laboratory angles between 0- and 110-deg with the time-of-flight (TOF) method. In addition, the number of 7 Be accumulated in the targets was also measured by counting the γ-rays from 7 Be using a pure Ge detector to obtain 7 Be production cross-section and yields. (author)

  19. Measurement of prompt neutron spectra from the "2"3"9Pu(n, f ) fission reaction for incident neutron energies from 1 to 200 MeV

    International Nuclear Information System (INIS)

    Chatillon, A.; Belier, G.; Granier, T.; Laurent, B.; Morillon, B.; Taieb, J.; Haight, R.C.; Devlin, M.; Nelson, R.O.; Noda, R.S.; O'Donnell, J.M.

    2014-01-01

    Prompt fission neutron spectra in the neutron-induced fission of "2"3"9Pu have been measured for incident neutron energies from 1 to 200 MeV at the Los Alamos Neutron Science Center. Mean energies deduced from the prompt fission neutron spectra (PFNS) lead to the observation of the opening of the second chance fission at 7 MeV and to indications for the openings of fission channels of third and fourth chances. Moreover, the general trend of the measured PFNS is well reproduced by the different models. The comparison between data and models presents, however, two discrepancies. First, the prompt neutron mean energy seems constant for neutron energy, at least up to 7 MeV, whereas in the theoretical calculations it is continuously increasing. Second, data disagree with models on the shape of the high energy part of the PFNS, where our data suggest a softer spectrum than the predictions. (authors)

  20. Investigation of (n, 2n) reaction and fission rates in iron-shielded uranium samples bombarded by 14.9 MeV neutrons

    International Nuclear Information System (INIS)

    Shani, G.

    1976-01-01

    The effect of the thickness of iron shielding on the (n, 2n) reaction rate in a fusion reactor (hybrid) blanket is investigated. The results are compared with the fission rate-dependence. Samples of natural uranium are irradiated with 14 MeV neutrons, with iron slabs of various thickness between the neutron generator target and the samples. Both reactions are threshold reactions but the fact that the 238 U (n, 2n) reaction threshold is at 6 MeV and that of fission is at 2 MeV makes the ratio between the two very much geometry-dependent. Two geometrical effects take place, the 1/r 2 and the build-up. While the build-up affects the (n, 2n) reaction rate, the fission rate is affected more by the 1/r 2 effect. The reason is that both elastic and inelastic scattering end up with neutrons with energy above fission threshold, while only elastic scattering brings high energy neutrons to the sample and causes (n, 2n) reaction. A comparison is made with calculated results where the geometrical effects do not exist. (author)

  1. Measurement of cross sections for the scattering of neutrons in the energy range from 2 MeV to 4 MeV with the {sup 15}N(p,n) reaction as neutron source; Messung von Wirkungsquerschnitten fuer die Streuung von Neutronen im Energiebereich von 2 MeV bis 4 MeV mit der {sup 15}N(p,n)-Reaktion als Neutronenquelle

    Energy Technology Data Exchange (ETDEWEB)

    Poenitz, Erik

    2010-04-26

    In future nuclear facilities, the materials lead and bismuth can play a more important role than in today's nuclear reactors. Reliable cross section data are required for the design of those facilities. In particular the neutron transport in the lead spallation target of an Accelerator-Driven Subcritical Reactor strongly depends on the inelastic neutron scattering cross sections in the energy region from 0.5 MeV to 6 MeV. In the recent 20 years, elastic and inelastic neutron scattering cross sections were measured with high precision for a variety of elements at the PTB time-of-flight spectrometer. The D(d,n) reaction was primarily used for the production of neutrons. Because of the Q value of the reaction and the available deuteron energies, neutrons in the energy range from 6 MeV to 16 MeV can be produced. For the cross section measurement at lower energies, however, another neutron producing reaction is required. The {sup 15}N(p,n){sup 15}O reaction was chosen, as it allows the production of monoenergetic neutrons with up to 5.7MeV energy. In this work, the {sup 15}N(p,n) reaction was studied with focus on the suitability as a source for monoenergetic neutrons in scattering experiments. This includes the measurement of differential cross sections for the neutron producing reaction and the choice of optimum target conditions. Differential elastic and inelastic neutron scattering cross sections were measured for lead at four energies in the region from 2 MeV to 4 MeV incident neutron energy using the time-of-flight technique. A lead sample with natural isotopic composition was used. NE213 liquid scintillation detectors with well-known detection efficiencies were used for the detection of the scattered neutrons. Angle-integrated cross sections were determined by a Legendre polynomial expansion using least-squares methods. Additionally, measurements were carried out for isotopically pure {sup 209}Bi and {sup 181}Ta samples at 4 MeV incident neutron energy

  2. Production of neutron-rich isotopes by cold fragmentation in the reaction 197Au + Be at 950 A MeV

    International Nuclear Information System (INIS)

    Benlliure, J.; Pereira, J.; Schmidt, K.H.; Cortina-Gil, D.; Enqvist, T.; Heinz, A.; Junghans, A.R.; Farget, F.; Taieb, J.

    1999-09-01

    The production cross sections and longitudinal-momentum distributions of very neutron-rich isotopes have been investigated in the fragmentation of a 950 A MeV 179 Au beam in a beryllium target. Seven new isotopes ( 193 Re, 194 Re, 191 W, 192 W, 189 Ta, 187 Hf and 188 Hf) and the five-proton-removal channel were observed for the first time. The reaction mechanism leading to the formation of these very neutron-rich isotopes is explained in terms of the cold-fragmentation process. An analytical model describing this reaction mechanism is presented. (orig.)

  3. Fragmentation of neutron-hole strengths in 59Ni observed in the 60Ni(p, d) 59Ni reaction at 65 MeV

    International Nuclear Information System (INIS)

    Matoba, M.; Ohgaki, H.; Kugimiya, H.; Ijiri, H.; Maki, T.; Nakano, M.

    1995-01-01

    The 60 Ni(p, d) 59 Ni reaction has been studied with 65 MeV polarized protons. Angular distributions of the differential cross section and analyzing power have been measured for neutron hole states in 59 Ni up to the excitation energies of 7 MeV. The data analysis with a standard distorted-wave Born approximation theory provides transferred angular momenta l, j and spectroscopic factors for thirty-nine transitions. The nuclear damping mechanism of the single hole states is discussed. ((orig.))

  4. Analysis of the neutron energy spectra from the sup(208)Pb (p,n) sup(208)Bi reaction at Esub(p)=200 MeV

    International Nuclear Information System (INIS)

    Ershov, S.N.; Fayans, S.A.; Gareev, F.A.; Pyatov, N.I.

    1986-01-01

    Microscopic calculation of the small-angle neutron energy spectra from the 208 Pb (p, n) 208 Bi reaction at Esub(p)=200 MeV are presented. It is shown that the distorted-wave impulse approximation and the microscopic theory of finite Fermi systems can be employed for describing the low-energy excitation region 0 <= Q <= 30 MeV with small momentum transfers. A quantitative estimate is obtained for the local charge of quasiparticles esub(q)[σtau]=0.8 that characterizes the quenching of the integral strength of spin-flip low-energy transitions and the relevant effects are discussed

  5. Measurement and theoretical analysis of neutron-induced neutron-emission reactions of {sup 6}Li at 10 to 20 MeV region

    Energy Technology Data Exchange (ETDEWEB)

    Ibaraki, Masanobu; Baba, Mamoru; Matsuyama, Shigeo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1998-06-01

    We have measured the neutron elastic and inelastic scattering double-differential cross sections of {sup 6}Li at incident neutron energies of 11.5, 14.1 and 18.0 MeV. Based on this data, together with information from other works, a phenomenological neutron optical model potential (OMP) of {sup 6}Li was constructed to describe the total and elastic scattering cross sections from 5 MeV to several tens MeV. This potential also describes well the inelastic scattering to the 1st excited state (E{sub x} = 2.186 MeV) via the DWBA calculation with the macroscopic vibrational model. The continuum neutron energy spectra and angular distributions were then analyzed by the theory of final-state interaction extended to the DWBA form, with the assumption that the d-{alpha} interaction is dominant in the 3-body final state consisting of n, d and {alpha} particles. Such a calculation was found to be successful in explaining the major part of the low-excitation neutron spectra and angular distribution down to the Q-value region of -9 MeV, except for the Q-value range where the n-{alpha} quasi-free scattering will give a non-negligible contribution at forward angles. (author). 60 refs.

  6. Measurement and theoretical analysis of neutron-induced neutron-emission reactions of 6Li at 10 to 20 MeV region

    International Nuclear Information System (INIS)

    Ibaraki, Masanobu; Baba, Mamoru; Matsuyama, Shigeo

    1998-06-01

    We have measured the neutron elastic and inelastic scattering double-differential cross sections of 6 Li at incident neutron energies of 11.5, 14.1 and 18.0 MeV. Based on this data, together with information from other works, a phenomenological neutron optical model potential (OMP) of 6 Li was constructed to describe the total and elastic scattering cross sections from 5 MeV to several tens MeV. This potential also describes well the inelastic scattering to the 1st excited state (E x = 2.186 MeV) via the DWBA calculation with the macroscopic vibrational model. The continuum neutron energy spectra and angular distributions were then analyzed by the theory of final-state interaction extended to the DWBA form, with the assumption that the d-α interaction is dominant in the 3-body final state consisting of n, d and α particles. Such a calculation was found to be successful in explaining the major part of the low-excitation neutron spectra and angular distribution down to the Q-value region of -9 MeV, except for the Q-value range where the n-α quasi-free scattering will give a non-negligible contribution at forward angles. (author). 60 refs

  7. Measurements of activation cross-sections for the 101Ru(n,p)101Tc reaction for neutrons with energies between 13 and 15 MeV

    International Nuclear Information System (INIS)

    Junhua Luo; Peking University, Beijing; Jiuning Han; Suhong Ge; Zhenlai Liu; Guihua Sun; Rong Liu; Li Jiang

    2013-01-01

    In this study, activation cross-sections were measured for the 101 Ru(n,p) 101 Tc reaction at three different neutron energies from 13.5 to 14.8 MeV. The fast neutrons were produced via the 3 H(d,n) 4 He reaction on K-400 neutron generator. Induced gamma activities were measured by a high-resolution gamma-ray spectrometer with high-purity germanium detector. Measurements were corrected for gamma-ray attenuations, random coincidence (pile-up), dead time and fluctuation of neutron flux. The data for 101 Ru(n,p) 101 Tc reaction cross-sections are reported to be 15.7 ± 2.0, 18.4 ± 2.7 and 22.0 ± 2.4 mb at 13.5 ± 0.2, 14.1 ± 0.2, and 14.8 ± 0.2 MeV incident neutron energies, respectively. Results were compared with the previous works. (author)

  8. 14 MeV neutron reactions producing gamma-ray emitting nuclides with half-lives below 3 seconds

    International Nuclear Information System (INIS)

    Pepelnik, R.; Fanger, H.U.

    1981-01-01

    Fast neutron activation analysis (FNAA) experiments were performed using a Cockroft-Walton neutron generator and a fast pneumatic rabbit system with a sample transport time of 120 ms. With this facility cyclic activations of 18 O, Zr, Pb leading to the short-lived reaction products 15 C, 90 sup(m)Zr, 136 sup(m)Ba and 207 Pb were investigated. Derived from these measurements the analytical sensitivities of the involved reactions will be discussed. (orig.)

  9. Production of neutron-rich nuclei in fission induced by neutrons generated by the p+ sup 1 sup 3 C reaction at 55 MeV

    CERN Document Server

    Stroe, L; Andrighetto, A; Tecchio, L B; Dendooven, P; Huikari, J; Pentillä, H; Peraejaervi, K; Wang, Y

    2003-01-01

    Cross-sections for the production of neutron-rich nuclei obtained by neutron-induced fission of natural uranium have been measured. The neutrons were generated by bombarding a sup 1 sup 3 C target with 55 MeV protons. The results, position of the maximum in the (Z, A)-plane, width and magnitude, are very comparable with those where the neutrons are generated by bombardment of natural sup 1 sup 2 C graphite with 50 MeV deuterons. Depending on the geometry of the converter/target assembly the isotope yields, however, are a factor of 2-3 lower due to less efficient production of neutrons per primary projectile, especially at small forward angles. (orig.)

  10. Frequency of occurrence of various nuclear reactions when fast neutrons (greater than or equal to 50 MeV) pass through tissue-equivalent material

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.

    1975-07-01

    Calculated results are presented for the frequency with which various partial nuclear-reaction cross sections are utilized when fast neutrons (less than or equal to 50 MeV) are transported through a tissue-equivalent phantom to obtain an indication of which cross sections are of most importance for radiotherapy applications and are therefore in need of experimental verification. (6 tables) (U.S.)

  11. Cross sections and differential spectra for reactions of 2-20 MeV neutrons on /sup nat/Cr

    International Nuclear Information System (INIS)

    Blann, M.; Komoto, T.T.

    1988-01-01

    This report summarizes product yields, secondary n,p and α spectra, and γ-ray spectra calculated for incident neutrons of 2 to 20 MeV on /sup nat/Cr targets. Results are all from the code ALICE, using the version ALISO which does weighting of results for targets which are a mix of isotopes. Where natural isotopic targets are involved, yields and n,p,α spectra will be reported weighted over isotopic yields. Gamma-ray spectra, however, will be reported for the most abundant isotope. We present product yields versus incident neutron energy, n,p,α spectra versus incident neutron energy, and calculated γ-ray spectra

  12. Proton and deuteron production in neutron-induced reactions on carbon at En=42.5, 62.7, and 72.8 MeV

    International Nuclear Information System (INIS)

    Slypen, I.; Corcalciuc, V.; Meulders, J.P.

    1995-01-01

    Double-differential cross sections for proton and deuteron production in fast neutron induced reactions on carbon are reported for three incident neutron energies: 42.5, 62.7, and 72.8 MeV. Angular distributions were measured at laboratory angles between 20 degree and 160 degree. Procedures for data taking and data reduction are presented. Energy-differential cross sections and total cross sections are also reported. Experimental cross sections are compared with existing data and with theoretical calculations in the frame of the intranuclear cascade model

  13. Photo-neutron reaction cross-section for 93Nb in the end-point bremsstrahlung energies of 12–16 and 45–70 MeV

    International Nuclear Information System (INIS)

    Naik, H.; Kim, G.N.; Schwengner, R.; Kim, K.; Zaman, M.; Tatari, M.; Sahid, M.; Yang, S.C.; John, R.; Massarczyk, R.; Junghans, A.; Shin, S.G.; Key, Y.; Wagner, A.; Lee, M.W.; Goswami, A.; Cho, M.-H.

    2013-01-01

    The photo-neutron cross-sections of 93 Nb at the end-point bremsstrahlung energies of 12, 14 and 16 MeV as well as 45, 50, 55, 60 and 70 MeV have been determined by the activation and the off-line γ-ray spectrometric techniques using the 20 MeV electron linac (ELBE) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, and 100 MeV electron linac at Pohang Accelerator Laboratory (PAL), Pohang, Korea. The 93 Nb(γ, xn, x=1–4) reaction cross-sections as a function of photon energy were also calculated using computer code TALYS 1.4. The flux-weighted average values were obtained from the experimental and the theoretical (TALYS) values based on mono-energetic photons. The experimental values of present work are in good agreement with the flux-weighted theoretical values of TALYS 1.4 but are slightly higher than the flux-weighted experimental data of mono-energetic photons. It was also found that the theoretical and the experimental values of present work and literature data for the 93 Nb(γ, xn) reaction cross-sections increase from the threshold values to a certain energy, where other reaction channels opens. However, the increase of 93 Nb(γ, n) and 93 Nb(γ, 2n) reaction cross-sections are sharper compared to 93 Nb(γ, 3n) and 93 Nb(γ, 4n) reaction cross-sections. The sharp increase of 93 Nb(γ, n) and 93 Nb(γ, 2n) reaction cross-sections from the threshold value up to 17–22 MeV is due to the Giant Dipole Resonance (GDR) effect besides the role of excitation energy. After a certain values, the individual 93 Nb(γ, xn) reaction cross-sections decrease with increase of bremsstrahlung energy due to opening of other reaction channels

  14. Investigation of the neutron emission spectra of some deformed nuclei for (n, xn) reactions up to 26 MeV energy

    International Nuclear Information System (INIS)

    Kaplan, A.; Bueyuekuslu, H.; Tel, E.; Aydin, A.; Boeluekdemir, M.H.

    2011-01-01

    In this study, neutron-emission spectra produced by (n, xn) reactions up to 26 MeV for some deformed target nuclei as 165 Ho, 181 Ta, 184 W, 232 Th and 238 U have been investigated. Also, the mean free path parameter's effect for 9n, xn) neutron-emission spectra has been examined. In the calculations, pre-equilibrium neutron-emission spectra have been calculated by using new evaluated hybrid model and geometry dependent hybrid model, full exciton model and cascade exciton model. The reaction equilibrium component has been calculated by Weisskopf-Ewing model. The obtained results have been discussed and compared with the available experimental data and found agreement with each other. (author)

  15. Measurement of neutron-production double-differential cross sections for continuous neutron-incidence reaction up to 100 MeV

    International Nuclear Information System (INIS)

    Kunieda, Satoshi; Watanabe, Takehito; Shigyo, Nobuhiro; Ishibashi, Kenji; Satoh, Daiki; Nakamura, Takashi; Haight, Robert C.

    2004-01-01

    The inclusive measurements of neutron-incident neutron-production double-differential cross sections in intermediate energy range is now being carried out. Spallation neutrons are used as incident particles. As a part of this, the experiment was performed by using of NE213 liquid organic scintillators to detect outgoing-neutrons. Incident-neutron energy was determined by time-of-flight technique, and outgoing-neutron energy spectrum was derived by unfolding light-output spectrum of NE213 with response functions calculated by SCINFUL-R. Preliminary cross sections were obtained up to about 100 MeV, and were compared with calculations by the GNASH code. It is hoped to get pure measurements by using measured response functions for our detectors used in this study. (author)

  16. Preliminary study on 2-dimensional distributions of 10B reaction rate in a water phantom with boron-doped CR-39 for 7Li(p, n)7Be neutrons by 1.95 MeV protons

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Tanaka, K.; Tsuruta, T.

    2000-01-01

    In an Accelerator-based neutron irradiation field using 7 Li(p, n) 7 Be neutrons by 1.95 MeV protons, the distributions of 10 B reaction rates and thermal neutron fluence in a water phantom were measured using Boron-doped CR-39 and Au activation analysis, respectively. Comparing the results of the measurements, we discussed the validity of the evaluation method of 10 B reaction rate using thermal neutron fluence. (author)

  17. Evaluation of the neutron induced reactions on 235U from 2.25 keV up to 30 MeV

    Science.gov (United States)

    Trkov, Andrej; Capote, Roberto; Pigni, Marco T.; Pronyaev, Vladimir G.; Sin, Mihaela; Soukhovitskii, Efrem S.

    2017-09-01

    An evaluation of fast neutron induced reactions on 235U is performed in the 2.25 keV-30 MeV incident energy range with the code EMPIRE-3.2 Malta, combined with selected experimental data. The reaction model includes a dispersive optical model potential (RIPL 2408) that couples seven levels of the ground-state rotational band and a triple-humped fission barrier with absorption in the wells described within the optical model for fission. EGSM nuclear level densities are used in Hauser-Feshbach calculations of the compound-nuclear decay. The starting values for the model parameters are retrieved from the RIPL-3 data-base. Excellent agreement is achieved with available experimental data for neutron emission, neutron capture and fission, which gives confidence that the quantities for which there is no experimental information are also predicted accurately. In the fast neutron region of the evaluated file, the fission cross section is taken from Neutron Standards, and neutron capture includes fluctuations observed in recent experiments. Other channels are taken directly from model calculations. New evaluation is validated against ICSBEP criticality benchmarks with fast neutron spectra with excellent results.

  18. Experimental Measurement of the Ratio of the Reaction Cross Section (n,2n) for the Natural Mixtures of Lead and Iron Isotopes with 14 MeV Neutrons by the Method of Moderated Neutron-Neutron Coincidences

    International Nuclear Information System (INIS)

    Panteleev, Ts.Ts.; Penchev, O.I.; Trifonov, A.I.; Troshev, T.M.; Christov, V.I.

    1986-01-01

    Neutron data are widely applied in nuclei physics and into practice as well. Data obtained by means of different measurement methods are of interest for increasing the accuracy and reliability of the recommended values for the cross sections of neutron interactions, with substance. The activation analysis method gives a possibility to obtain data about cross section interactions of 14 MeV neutrons with the nuclei σ (n,2n), σ( n,p), σ (n,pn), σ (n,α), etc. A serious shortcoming of this measuring method is the necessity of applying express methods of analysis of induced activities - restrictions connected with the life-times of the reaction products. It is also necessary to comply with the requirements for high accuracy in the data about the decay schemes and the absolute intensities of the γ-transitions in the investigated nuclei. The investigations directly measuring the output of the reaction, products from the targets, placed into the neutron beam, do not possess the shortcomings of the activation method but require serious demands toward the detecting apparatuses (ionization chambers, semiconducting and scintillation detectors, proportional counters, etc.). These demands are connected with the heavy background conditions of work at the beams for measurements of whatever partial cross sections. During the experimental measurements of the reactions by neutron emission for registration, it is necessary to slow them down to thermal energies, since only in this energy interval there exist sufficiently effective without threshold detectors. We have elaborated the experimental set-up allowing to measure the neutron multiplicity in an interaction. In the present work we have also used it for a relative measurement the the reaction cross section σ (n,2n) for Pe and Pb nuclei in their natural isotope mixtures. As it is known, this reaction has an important application for the blanket materials of thermonuclear reactors and for tritium fuel regeneration problem. The

  19. Calculations of neutron and proton induced reaction cross sections for actinides in the energy region from 10 MeV to 1 GeV

    International Nuclear Information System (INIS)

    Konshin, V.A.

    1995-01-01

    Several nuclear model codes were applied to calculations of nuclear data in the energy region from 10 MeV to 1 GeV. At energies up to 100 MeV the nuclear theory code GNASH was used for nuclear data calculation for incident neutrons for 238 U, 233-236 U, 238-242 Pu, 237 Np, 232 Th, 241-243 Am and 242-247 Cm. At energies from 100 MeV to 1 GeV the intranuclear cascade exciton model including the fission process was applied to calculations of protons and neutrons with 233 U, 235 U, 238 U, 232 Th, 232 Pa, 237 Np, 238 Np, 239 Pu, 241 Am, 242 Am and 242-248 Cm. Determination of parameter systematics was a major effort in the present work that was aimed at improving the predictive capability of the models used. An emphasis was made on a simultaneous analysis of data for a variety of reaction channels for the nucleus considered, as well as of data that are available for nearby nuclei or other incident particles. Comparison with experimental data available on multiple reaction cross sections, isotope yields, fission cross sections, particle multiplicities, secondary particle spectra, and double differential cross sections indicates that the calculations reproduce the trends, and often the details, of the experimental data. (author)

  20. Calculations of neutron and proton induced reaction cross sections for actinides in the energy region from 10MeV to 1GeV

    International Nuclear Information System (INIS)

    Konshin, V.A.

    1995-06-01

    Several nuclear model codes were applied to calculations of nuclear data in the energy region from 10MeV to 1GeV. At energies up to 100MeV the nuclear theory code GNASH was used for nuclear data calculation for neutrons incident for on 238 U, 233-236 U, 238-242 Pu, 237 Np, 232 Th, 241-243 Am and 242-247 Cm. At energies from 100MeV to 1GeV the intranuclear cascade exciton model including the fission process was applied to calculations of protons and neutrons with 233 U, 235 U, 238 U, 232 Th, 232 Pa, 237 Np, 238 Np, 239 Pu, 241 Am, 242 Am and 242-248 Cm. Determination of parameter systematics was a major effort in the present work that was aimed at improving the predictive capability of the models used. An emphasis was placed upon a simultaneous analysis of data for a variety of reaction channels for the nuclei considered, as well as of data that are available for nearby nuclei or for other incident particles. Comparisons with experimental data available on multiple reaction cross sections, isotope yields, fission cross sections, particle multiplicities, secondary particle spectra, and double differential cross sections indicate that the calculations reproduce the trends, and often the details, of the measurements data. (author) 82 refs

  1. Neutron activation of 21 elements by means of the Mg+d reaction (Esub(d) 22 Mev)

    International Nuclear Information System (INIS)

    Zatolokin, B.V.; Krasnov, N.N.; Konstantinov, I.O.; Bolotskikh, V.I.

    1981-01-01

    For the first time the activation of 21 elements (Mn, Al, Ti, V, Cr, Mg, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ag, Cd, Sn, Sb, Ta, W and Pb) by neutrons produced as a result of magnesium target irradiation by deuterons at 22 MeV energy is investigated. The reduced exposure dose rates of point samples of 1 g mass at 1 cm distance from a source are presented. The data on variation in time of exposure dose rates of 1 g mass samples irradiated during 100 hours are indicated. In the framework of a two-group approximation the neutron spectrum is estimated by the results of measurement of two threshold detector activity. It is shown that for the first hours after irradiation Mn, Mg, Al, W, Cu and Ta have the highest exposure dose rates, Cr, Pb, Cd and Sn - the lowest. In four days after irradiation Sb, Ta, Co, Ag and Ti have the highest dose rates, Pb, Fe, Cu and Cr - the lowest. The data obtained can be used in constructing separate accelerator units and in fast neutron activation analysis [ru

  2. Cross-sections for the formation of isomeric pair {sup 75}Ge{sup m,g} through (n, 2n), (n, p) and (n, {alpha}) reactions measured over 13.73 MeV to 14.77 MeV and calculated from near threshold to 20 MeV neutron energies

    Energy Technology Data Exchange (ETDEWEB)

    Attar, F.M.D.; Dhole, S.D. [Department of Physics, University of Pune, Pune-411007 (India); Kailas, S. [Nuclear Physics Division, BARC, Mumbai-400085 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune-411007 (India)], E-mail: vnb@physics.unipune.ernet.in

    2009-09-15

    The cross-sections for formation of isomeric pair, {sup 75}Ge{sup m}({sigma}{sub m}) and {sup 75}Ge{sup g}({sigma}{sub g}), through {sup 76}Ge(n, 2n), {sup 75}As(n, p) and {sup 78}Se(n, {alpha}) reactions were measured at 13.73 MeV, 14.42 MeV and 14.77 MeV neutrons and also estimated using EMPIRE-II and TALYS codes over neutron energies from near threshold to 20 MeV. For each (n, 2n), (n, p) and (n, {alpha}) reaction, the cross-section initially increases with neutron energy, but starts decreasing as the neutron energy exceeds the respective threshold of (n, 3n), (n, pn) and (n, {alpha}n) reactions. The higher values of {sigma}{sub m} relative to {sigma}{sub g} reveal that the transitions of the excited {sup 75}Ge from higher energy levels to metastable state (7{sup +}/2) are favored as compared to unstable ground state (1{sup -}/2). The present values of cross sections for formation of {sup 75}Ge{sup m,g} through (n, 2n) and (n, {alpha}) reactions are lower, and that of (n, p) reaction are higher compared to most of the corresponding literature cross-sections.

  3. Cross-sections for formation of {sup 89}Zr{sup m} through {sup 90}Zr(n,2n){sup 89}Zr{sup m} reaction over neutron energy range 13.73 MeV to 14.77 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Attar, F.M.D. [Department of Physics, University of Pune, Pune-411007 (India); Mandal, R. [Department of Physics, University of Pune, Pune-411007 (India); Indian Institute of Technology, Kharagpur (India); Dhole, S.D. [Department of Physics, University of Pune, Pune-411007 (India); Saxena, A. [Nuclear Physics Division, BARC, Mumbai (India); Ashokkumar,; Ganesan, S. [Reactor Physics Design Division, BARC, Mumbai (India); Kailas, S. [Nuclear Physics Division, BARC, Mumbai (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune-411007 (India)], E-mail: vnb@physics.unipune.ernet.in

    2008-04-01

    The cross-sections for formation of metastable state of {sup 89}Zr ({sup 89}Zr{sup m}, 0.588 MeV, 4.16 m) through {sup 90}Zr(n,2n){sup 89}Zr{sup m} reaction induced by 13.73 MeV to 14.77 MeV neutrons were measured for the first time and also theoretically estimated using Empire-II and Talys programs. At 13.73 MeV neutron energy, the {sup 89}Zr nuclei can be excited to metastable state, {sup 89}Zr{sup m}, when the first and the second emitted neutrons have energies lower than the most probable energy {approx}0.64 MeV. The probability of exciting {sup 89}Zr nuclei to energy levels higher than 0.588 MeV and therefore of populating the metastable state through decay process increases with increasing neutron energy. The measured cross-sections vary from 41{+-}3mb to 221{+-}15mb over neutron energies 13.73 MeV to 14.77 MeV, and are in agreement with the cross-sections estimated using Empire-II code. The formation of {sup 89}Zr{sup m} is favoured when the first and the second reaction neutrons are emitted with the most probable energies rather than lower energy, except for 13.73 MeV neutrons.

  4. Construction of a time-of-flight neutron spectrometer for reaction angles 000 and study of the reaction 65Cu(p,xn) 65Zn for Esub(p)=26.7 MeV

    International Nuclear Information System (INIS)

    Holler, Y.

    1984-01-01

    At the Hamburg Isochronous Cyclotron a novel time-of-flight neutron spectrometer was designed, constructed, and tested by means of a for the planned application typical nuclear reaction. The apparature was optimized for the measurement of continuous, structure-deficient neutron spectra in a wide angular range at a reproducible, as low as possible scattering neutron background. Such a facility is fitted to the strengths of the Hamburg cyclotron and allows to study questions on the precompound emission and on the inelastic projectile ( 3 He) breakup. The final test was performed with the reaction 65 Cu(p,xn) 65 Zn at Esub(p)=26.7 MeV for which already comparable data over a smaller angular range were present. In the analysis of the measurement results performed regarding the precompound effects the hybrid-exciton model calculations let recognize essential deviations at high neutron energies in the range of the extreme reaction angles. (orig./HSI) [de

  5. Study of neutron hole states in 207206205Pb with the (3He,α) reaction at 110MeV. First tests in (d,t) reaction of the Orsay synchrocyclotron spectrometric line

    International Nuclear Information System (INIS)

    Guillot, J.

    1979-01-01

    Neutron hole states in the 207 Pb, 206 Pb, 205 Pb isotopes were studied up to 25 MeV excitation energy using the ( 3 He,α) reaction at 100MeV incident energy, with 100 keV energy resolution. Angular distributions for the low-lying levels and inner hole states have been analyzed with DWBA and spectroscopic factors extracted for 1 > 3 levels. Missing strengths for the first levels from 1i13/2 and 1h9/2 orbits are found in the bump located around 5MeV excitation energy. The fragmented bump observed around 8MeV excitation energy is attributed to 1h11/2 pick-up with 45% of the sum-rule limit. Finally, the structure extending up to 21 MeV excitation energy is attributed to 1g7/2+1g9/2 pick-up with 80% of the total strength. In 207 Pb, the four first isobaric analog states Tsub(>) = 45/2 are identifierd around 20MeV excitation energy. The second part of this work presents the first tests in (d,t) reaction at 108 MeV on 90 Zr and 208 Pb using the achromatic line of the Orsay synchrocyclotron [fr

  6. Double differential cross-sections of (n,{alpha}) reactions in aluminium and nickel at 14.77 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Lalremruata, B.; Dhole, S.D. [Department of Physics, University of Pune, Pune-411007 (India); Ganesan, S. [Reactor Physics Design Division, BARC, Mumbai-400085 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune-411007 (India)], E-mail: vnb@physics.unipune.ernet.in

    2009-04-15

    The double differential cross-sections (DDX) for the emission of alpha particles from {sup 27}Al(n,{alpha}){sup 24}Na and Ni(n,{alpha}) reactions induced by 14.77 MeV neutrons were estimated from the alpha particle spectra recorded at 30 deg., 50 deg., 90 deg., 110 deg. angles for aluminium, and at 20 deg., 45 deg., 90 deg., 110 deg. for natural nickel. The results indicate that the alpha particles below and around the most probable energies ({approx}6.3 MeV from aluminium and {approx}8 MeV from natural nickel) are emitted predominantly through the compound nucleus formation process, and the higher energy alpha particles are emitted through the pre-equilibrium or the direct reaction. In general, the measured double-differential cross-sections are in agreement with the theoretical cross-sections estimated using Talys-1.0 and Preco2007 computer programs. The present value of the level density parameter for {sup 24}Na is close to the literature value and, therefore, these results reveal consistency in the alpha particle spectra recorded with a single silicon surface barrier detector at different scattering angles.

  7. Model calculation of neutron reaction data for 31P in the energy range from 0.1 to 20 MeV

    International Nuclear Information System (INIS)

    Li Jiangting; Ge Zhigang; Sun Xiuquan

    2006-01-01

    The neutron data calculation of 31 P in the energy range from 0.1 to 20 MeV was carried out. The neutron optical potential parameters for 31 P in energy range from O.1 to 20 MeV were obtained, based on the fitting of the available neutron experimental data with the code APOM94. The DWUCK4 code was used to investigate the cross section for neutron direct inelastic scattering. The re-evaluated neutron data is based on the available measured data by using the UNF code. The theoretical results reproduce the experimental data well, and the results were given in ENDF/B-6 format. (authors)

  8. Proposal for the Simultaneous Measurement of the Neutron-Neutron and Neutron-Proton Quasi-Free Scattering Cross Section via the Neutron-Deuteron Breakup Reaction at E n = 19 MeV

    Science.gov (United States)

    Tornow, W.; Howell, C. R.; Crowell, A. S.

    2013-12-01

    In order to confirm or refute the present discrepancy between data and calculation for the neutron-neutron quasi-free scattering cross section in the neutron-deuteron breakup reaction, we describe a new experimental approach currently being pursued at TUNL.

  9. Measurement of thick target neutron yield from the reaction (p+181 Ta) with projectiles in the range of 6-20 MeV

    Science.gov (United States)

    Paul, Sabyasachi; Sahoo, G. S.; Tripathy, S. P.; Sharma, S. C.; Joshi, D. S.; Bandyopadhyay, T.

    2018-02-01

    181Ta is a commonly used backing material for many targets in nuclear reaction studies. When the target thickness is less than the range of bombarded projectiles, the interaction via Ta(p,n) reactions in the backing can be a significant source of background. In this study, the neutron spectral yields from the reaction of protons of different energies (between 6 to 20 MeV) with a thick Ta target were determined using CR-39 detectors. The results from this study can be used as a correction factor in such situations. The parameters of registered tracks in CR-39 were analysed using an in-house image analysing program autoTRAK_n and then to derive the associated dose values. The spectral yields obtained experimentally were compared with those obtained from the theoretical calculations. The neutron yield was found to increase with increase in projectile energy mainly due to the opening of reaction channels from (p, n) to (p, 3n).

  10. Measurement of gamma-ray production cross sections in 27Al(n,xnγ) and 208Pb(n,pxnγ) reactions for neutron energies up to 400 MeV

    International Nuclear Information System (INIS)

    Pavlik, A.; Vonach, H.; Hitzenberger-Schauer, H.; Chadwick, M.B.; Nelson, R.O.; Haight, R.C.; Wender, S.A.; Young, P.G.

    1999-01-01

    The prompt γ-radiation from the interaction of fast neutrons with samples of Al and enriched 208 Pb was measured using the white neutron beam of the LANSCE/WNR facility at the Los Alamos National Laboratory. From the aluminum γ-ray spectra excitation functions for prominent γ-ray transitions in various residual nuclei (in the range from F to Al) were determined for neutron energies up to 400 MeV. In addition to the primary purpose of the 208 Pb experiment, the study of (n,xnγ) reactions leading to various lead isotopes. γ-ray transitions in residual Tl nuclei were analyzed and cross sections were derived in the neutron energy range from the effective threshold to 200 MeV. In the neutron energy range up to 200 MeV all experimental results were compared with nuclear model calculations using the code GNASH. (author)

  11. Measurement of {sup 197}Au(n,γ){sup 198g}Au reaction cross-section at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Vansola, Vibha [M.S. Univ., Baroda (India). Dept. of Physics; Ghosh, Reetuparna; Badwar, Sylvia [North Eastern Hill Univ., Meghalaya (India). Dept. of Physics; and others

    2015-07-01

    The {sup 197}Au(n,γ){sup 198}Au reaction cross-sections at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV were determined by using activation and off-line γ-ray spectrometric technique. The mono-energetic neutron energies of 1.12-4.12 MeV were generated from the {sup 7}Li(p,n) reaction by using the proton energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at BARC as well as 5 and 6 MeV from the Pelletron facility at TIFR, Mumbai. The {sup 115}In(n,γ){sup 116m}In reaction cross-section was used as the neutron flux monitor. The {sup 197}Au(n,γ){sup 198}Au reaction cross-section at the neutron energies of 3.12 and 4.12 MeV are reported for the first time. The {sup 197}Au(n,γ){sup 198}Au reaction cross-sections at 1.12 and 2.12 MeV are close to the literature data of in between neutron energies. The {sup 197}Au(n,γ){sup 198}Au cross-section was also calculated theoretically by using the computer code TALYS 1.6 and found to be higher than the experimental data of present work and literature data within the neutron energies of 0.8 to 4 MeV.

  12. /sup 1/H(t,n)/sup 3/He reaction as monoenergetic neutron source in the (10/20) MeV energy interval

    Energy Technology Data Exchange (ETDEWEB)

    Zago, G. (Padua Univ. (Italy). Ist. di Fisica; Istituto Nazionale di Fisica Nucleare, Padua (Italy))

    1981-11-14

    This article examines the problem of finding a neutron source in the (10/20) MeV energy interval, having convenient properties for controlled thermonuclear-fusion researches and biomedical applications.

  13. Measurements and Monte Carlo calculations of neutron production cross-sections at 180{sup o} for the 140 MeV proton incident reactions on carbon, iron, and gold

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Yosuke, E-mail: iwamoto.yosuke@jaea.go.j [Japan Atomic Energy Agency, 2-4, Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Satoh, Daiki [Japan Atomic Energy Agency, 2-4, Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Hagiwara, Masayuki [KEK (Japan); Yashima, Hiroshi [Kyoto University (Japan); Nakane, Yoshihiro [Japan Atomic Energy Agency, 2-4, Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Tamii, Atsushi [Research Center for Nuclear Physics, Osaka University (Japan); Iwase, Hiroshi [KEK (Japan); Endo, Akira; Nakashima, Hiroshi; Sakamoto, Yukio [Japan Atomic Energy Agency, 2-4, Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Hatanaka, Kichiji [Research Center for Nuclear Physics, Osaka University (Japan); Niita, Koji [Research Organization for Information Science and Technology (Japan)

    2010-08-21

    The neutron production cross-sections of carbon, iron, and gold targets with 140 MeV protons at 180{sup o} were measured at the RCNP cyclotron facility. The time-of-flight technique was used to obtain the neutron energy spectra in the energy range above 1 MeV. The carbon and iron target results were compared with the experimental data from 113 MeV (p,xn) reactions at 150{sup o} reported by Meier et al. Our data agreed well with them in spite of different incident energies and angles. Calculations were then performed using different intra-nuclear cascade models (Bertini, ISOBAR, and JQMD) implemented with PHITS code. The results calculated using the ISOBAR and JQMD models roughly agreed with the experimental iron and gold target data, but the Bertini could not reproduce the high-energy neutrons above 10 MeV.

  14. Determination of {sup 55}Mn(n,γ){sup 56}Mn reaction cross-section at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Vansola, Vibha; Mukherjee, Surjit [M.S. University of Baroda, Vadodara (India). Dept. of Physics; Naik, Haladhara [Bhabha Atomic Research Center, Mumbai (India). Radiochemistry Div.; Suryanarayana, Saraswatula Venkata [Bhabha Atomic Research Center, Mumbai (India). Nuclear Physics Div.; Ghosh, Reetuparna; Badwar, Sylvia; Lawriniang, Bioletty Mary [North Eastern Hill Univ., Meghalaya (India). Dept. of Physics; Sheela, Yerraguntla Santhi [Manipal Univ. (India). Dept. of Statistics

    2016-07-01

    The {sup 55}Mn(n,γ){sup 56}Mn reaction cross-sections at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV were determined by using activation and off-line γ-ray spectrometric technique. The neutron energies of 1.12 and 2.12 MeV were generated from the {sup 7}Li(p,n) reaction by using the proton energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at BARC. For the neutron energies of 3.12 and 4.12 MeV, the proton energies used were 5 and 6 MeV from the Pelletron facility at TIFR, Mumbai. The {sup 115}In(n,γ){sup 116m}In reaction cross-section was used as the neutron flux monitor. The {sup 55}Mn(n,γ){sup 56}Mn reaction cross-section at the neutron energies of 4.12 MeV are reported for the first time, whereas at 1.12, 2.12 and 3.12 MeV, they are in between the literature data. The {sup 55}Mn(n,γ){sup 56}Mn reaction cross-section was also calculated theoretically by using the computer code TALYS 1.6 and EMPIRE 3.2.2. The experimental data of present work are found to be in between the theoretical values of TALYS and EMPIRE.

  15. The energy spectrum of neutrons from 7Li(d,n)8Be reaction at deuteron energy 2.9 MeV

    Science.gov (United States)

    Mitrofanov, Konstantin V.; Piksaikin, Vladimir M.; Zolotarev, Konstantin I.; Egorov, Andrey S.; Gremyachkin, Dmitrii E.

    2017-09-01

    The neutron beams generated at the electrostatic accelerators using nuclear reactions T(p,n)3He, D(d,n)3He, 7Li(p,n)7Be, T(d,n)4He, 7Li(d,n)8Be, 9Be(d,n)10B are widely used in neutron physics and in many practical applications. Among these reactions the least studied reactions are 7Li(d,n)8Be and 9Be(d,n)10B. The present work is devoted to the measurement of the neutron spectrum from 7Li(d,n)8Be reaction at 0∘ angle to the deuteron beam axis on the electrostatic accelerator Tandetron (JSC "SSC RF - IPPE") using activation method and a stilbene crystal scintillation detector. The first time ever 7Li(d,n)8Be reaction was measured by activation method. The target was a thick lithium layer on metallic backing. The energy of the incident deuteron was 2.9 MeV. As activation detectors a wide range of nuclear reactions were used: 27Al(n,p)27Mg, 27Al(n,α)24Na, 113In(n,n')113mIn, 115In(n,n')115mIn, 115In(n,γ)116mIn, 58Ni(n,p)58mCo, 58Ni(n,2n)57Ni, 197Au(n,γ)198Au, 197Au(n,2n)196Au, 59Co(n,p)59Fe, 59Co(n,2n)58m+gCo, 59Co (n,g)60Co. Measurement of the induced gamma-activity was carried out using HPGe detector Canberra GX5019 [1]. The up-to-date evaluations of the cross sections for these reactions were used in processing of the data. The program STAYSL was used to unfold the energy spectra. The neutron spectra obtained by activation detectors is consistent with the corresponding data measured by a stilbene crystal scintillation detector within their uncertainties.

  16. Cross sections measurement of isomeric states formation in nuclear reactions induced by neutrons of 14 Mev and comparison with statistical theories

    International Nuclear Information System (INIS)

    El Bardouni, T.

    1989-01-01

    Excitation functions of some (n,2n), (n,p) and (n,alpha) reactions on isotopes taken in different mass regions have been measured around 14 Mev. We give more interest to reactions leading to residual nucleus in isomeric states. Quasi-monoenergetic neutrons are produced via the T(d,n)alpha reaction and activation technique is combined to high resolution gamma-ray spectrometry. In the measurement of samples activities, we have scanned carefully the different origins of uncertainties and taken into account all necessary corrections. We have also carried out a detailed study about the nuclear reactions theory (compound nucleus and Geometry Dependent Hybrid Models) in order to compare our measurements results and theoretical calculations. The EMPIRE code (based on compound nucleus and Geometry Dependent Hybrid Models), that we have adapted on IBM Personal Computer, allows us to reproduce with great satisfaction the measured excitation functions without adjusting the models parameters. So we can rely on the EMPIRE code, as it is done in its work, in the prediction of some nuclear reactions excitation functions that cannot be determined by means of activation technique and gamma-ray spectrometry. 88 refs., 43 figs., 16 tabs., 1 chart. (author)

  17. Investigation of the fission fragment properties of the reaction 238U(N,F) at incident neutron energies up to 5.8 MeV

    International Nuclear Information System (INIS)

    Vives, F.

    1998-01-01

    The 238 U(n,f) reaction has been studied at various incident neutrons energies from 1,2 at 5,8 MeV. The author shows that the vibrational resonances presence in the cross section threshold area and the protons parity effect, lead to variations in the fission fragments properties. The mass, the total kinetic energy (TKE) and the fragments angular distribution have been obtained thanks a ionisation double chamber use. Mass function changes in the mass and kinetic energy distributions and their respectively contributions to the TKE variations, have also been studied. The two-dimension distributions adjustments mass-TKE have been compared to the theoretical calculus, compiled with the multi-modal random neck-rupture model: two solutions are possible. Meanwhile, only one leads to significant physical interpretation in terms of layers effects. (A.L.B.)

  18. Measurements and systematics studies of the (n,p), (n,α) and (n,2n) reactions cross-sections at 14.5 MeV neutrons

    International Nuclear Information System (INIS)

    Osman, Khalda

    2000-01-01

    Accurate knowledge of the cross-sections for fast neutron-induced reactions utilizing the D-T reaction is important not only because of the wide spread of data observed in the literature, but also because of the world wide demand and requests for such data, in view of the increasing interest in the fusion reactor technology, which is based on the same reactions. Cross-sections are needed also for various practical purposes, including neutron activation analysis and dosimetry. In this work the (n.p), (n,2n) and (n,α) reactions cross-sections were measured at 14.5 MeV for isotopes of the elements: Cr, Ti, Ni, Co, Zr, and Mo using the activation method. The measured cross-sections were compared with recently published data. Good agreement was observed for most of the measurements. The discrepancies observed were attributed to difficulties related to the long half-life of the product nuclei and small abundances of the target isotopes. Attempts were also made to study the dependence of the (n,p), (n,2n) and (n,α) reactions cross-sections on the on the asymmetry parameter (N-Z)/A. The results confirmed the trend theoretically suggested by Levkovskii and experimentally realized by Qaim and co-workers. The isotopic dependence of (n,p) reaction cross-sections and the variation of the ration σ n ,p/σ n ,α with Z-number of the target isotopes were also studied in this work and the results obtained were found to be in agreement with theoretical predictions. In this work studies carried out for the systematics of the (n,p), (n,2n) and (n,α) reactions cross-sections at 14 MeV neutrons and formula based on the statistical model presented, with the aim of improving the systematics of these cross-sections. Comparison of present proposed systematics were for the (n,p), (n,2n) and (n,α) reactions cross-sections with the cross-section values measured in this work was made. Good agreement was generally noted, but some discrepancies were also observed. These discrepancies were

  19. Small-angle neutron polarization for the /sup 2/H(d vector,n vector)/sup 3/He reaction near Esub(d) = 8MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W.; Woye, W.; Mack, G. (Tuebingen Univ. (Germany, F.R.). Physikalisches Inst.); Walter, R.L.; Floyd, C.E.; Guss, P.P.; Byrd, R.C. (Duke Univ., Durham, NC (USA). Dept. of Physics; Triangle Universities Nuclear Lab., Durham, NC (USA))

    1981-12-15

    Considerable improvement in the quality of analyzing power experiments performed with polarized fast neutrons has been achieved during the last few years by using neutrons from the polarization transfer reaction /sup 2/H(d vector,n vector)/sup 3/He at a reaction angle of theta = 0/sup 0/. To compromise in these experiments between intensity problems and finite geometry corrections, it is desirable in some instances to subtend a full-width angle ..delta..theta of 20/sup 0/ (lab) centered about theta = 0/sup 0/. In order to investigate the suitability of this reaction as a source of polarized neutrons for cases where the scatterer is close to the neutron source, the neutron polarization of the reaction /sup 2/H(d vector,n vector)/sup 3/He has been studied with ..delta..theta of about 3/sup 0/ in 3/sup 0/ steps out to theta = 20/sup 0/ (lab). An incident deuteron energy near 8 MeV was chosen to yield outgoing neutrons at 11.0 MeV, a typical energy for neutron analyzing power experiments. It is found that the effective neutron polarization, a combination of the two polarizations measured when the direction of the deuteron polarization is inverted or flipped at the polarized ion source, is large and nearly constant for angles between theta = 0/sup 0/ and theta = 10/sup 0/ (lab).

  20. Model calculation of neutron reaction data for {sup 31}P in the energy range from 0.1 to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Jiangting, Li [Physics Department, Northwest Univ., Xi' an (China); Zhigang, Ge [China Nuclear Data Center, China Inst. of Atomic Energy, Beijing (China); Xiuquan, Sun [Engineering and Technology Department, Shenzhen University, Shenzhen (China)

    2006-07-15

    The neutron data calculation of {sup 31}P in the energy range from 0.1 to 20 MeV was carried out. The neutron optical potential parameters for {sup 31}P in energy range from O.1 to 20 MeV were obtained, based on the fitting of the available neutron experimental data with the code APOM94. The DWUCK4 code was used to investigate the cross section for neutron direct inelastic scattering. The re-evaluated neutron data is based on the available measured data by using the UNF code. The theoretical results reproduce the experimental data well, and the results were given in ENDF/B-6 format. (authors)

  1. Neutron data library for transactinides at energies up to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Korovin, Y.A.; Artisyuk, V.V.; Konobeyev, A.Y. [Obninsk Institute of Nuclear Power Engineering (Russian Federation)

    1995-10-01

    New neutron data library for transactinides is briefly described. The library includes evaluated cross-sections for fission and threshold neutron induced reactions for isotopes of U, Np and Pu at energies 0-100 MeV.

  2. Measurements of neutron emission spectra and {sup 7}Be production in Li(d, n) and Be(d, n) reactions for 25 and 40 MeV deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Masayuki; Baba, Mamoru; Aoki, Takao; Kawata, Naoki; Hirabayashi, Naoya; Itoga, Toshiro [Tohoku Univ., Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan)

    2003-06-01

    The neutron spectra in Li(d, n) and Be(d, n) reactions for Ed = 25, 40 MeV were measured from {approx}1 MeV to highest energy of secondary neutrons at ten laboratory angles between 0- and 110-deg with the time-of-flight (TOF) method. In addition, the number of {sup 7}Be accumulated in the targets was also measured by counting the {gamma}-rays from {sup 7}Be using a pure Ge detector to obtain {sup 7}Be production cross-section and yields. (author)

  3. Neutron-neutron quasifree scattering in nd breakup at 10 MeV

    Directory of Open Access Journals (Sweden)

    Malone R.C.

    2016-01-01

    We are conducting new measurements of the cross section for nn QFS in nd breakup. The measurements are performed at incident neutron beam energies below 20 MeV. The neutron beam is produced via the 2H(d, n3He reaction. The target is a deuterated plastic cylinder. Our measurements utilize time-of-flight techniques with a pulsed neutron beam and detection of the two emitted neutrons in coincidence. A description of our initial measurements at 10 MeV for a single scattering angle will be presented along with preliminary results. Also, plans for measurements at other energies with broad angular coverage will be discussed.

  4. Light charged particle production in fast neutron-induced reactions on carbon (En=40 to 75 MeV) (II). Tritons and alpha particles

    International Nuclear Information System (INIS)

    Dufauquez, C.; Slypen, I.; Benck, S.; Meulders, J.P.; Corcalciuc, V.

    2000-01-01

    Double-differential cross sections for fast neutron-induced triton and alpha-particle production on carbon are reported at six incident neutron energies between 40 and 75 MeV. Angular distributions were measured at laboratory angles between 20 deg. and 160 deg. . Energy-differential, angle-differential and total cross sections are also reported. Experimental cross sections are compared to existing experimental data and to theoretical model calculations

  5. Measurement of the 115In(n,γ)116 m In reaction cross-section at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV

    Science.gov (United States)

    Lawriniang, Bioletty Mary; Badwar, Sylvia; Ghosh, Reetuparna; Jyrwa, Betylda; Vansola, Vibha; Naik, Haladhara; Goswami, Ashok; Naik, Yeshwant; Datrik, Chandra Shekhar; Gupta, Amit Kumar; Singh, Vijay Pal; Pol, Sudir Shibaji; Subramanyam, Nagaraju Balabenkata; Agarwal, Arun; Singh, Pitambar

    2015-08-01

    The 115In(n,γ)116 m In reaction cross section at neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV was determined by using an activation and off-line γ-ray spectrometric technique. The monoenergetic neutron energies of 1.12 - 4.12 MeV were generated from the 7Li(p,n) reaction by using proton beam with energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at Bhabha Atomic Research Centre (BARC) and with energies of 5 and 6 MeV from the Pelletron facility at Tata Institute of Fundamental Research (TIFR), Mumbai. The 197Au(n,γ)198Au reaction cross-section was used as the neutron flux monitor.The 115In(n,γ)116 m In reaction cross section at neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV was determined by using an activation and off-line γ-ray spectrometric technique. The monoenergetic neutron energies of 1.12 - 4.12 MeV were generated from the 7Li(p,n) reaction by using proton beam with energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at Bhabha Atomic Research Centre (BARC) and with energies of 5 and 6 MeV from the Pelletron facility at Tata Institute of Fundamental Research (TIFR), Mumbai. The 197Au(n,γ)198 Au reaction cross-section was used as the neutron flux monitor. The 115In(n,γ)116 m In reaction cross-sections at neutron energies of 1.12 - 4.12 MeV were compared with the literature data and were found to be in good agreement with one set of data, but not with others. The 115In(n,γ)116 m In cross-section was also calculated theoretically by using the computer code TALYS 1.6 and was found to be slightly lower than the experimental data from the present work and the literature.)198Au reaction cross-section was used as the neutron flux monitor. The 115In(n,γ)116 m In reaction cross-sections at neutron energies of 1.12 - 4.12 MeV were compared with the literature data and were found to be in good agreement with one set of data, but not with others. The 115In(n,γ)116 m In cross-section was also calculated

  6. An attempt of application of short lived 44K activity induced in the 44Ca(n,p)44K reaction using 14 MeV neutrons for total body calcium assessment in human subject

    International Nuclear Information System (INIS)

    Haratym, Z.; Kempisty, T.; Mikolajewski, S.; Rurarz, E.

    1999-01-01

    The status of in vivo neutron activation analysis techniques for the measurement of total body calcium in human subject is reviewed. Relevant data on the nuclear characteristics of calcium isotopes during interaction with neutrons ranging from slow up to 14 MeV neutrons are presented. Physical aspects of the measurement of in vivo total body calcium (TBCa) using 44 K activity induced in the 44 Ca(n,p) 44 K(T 1/2 =22.3 min) reaction by 14 MeV neutrons are discussed. The measurement of delayed γ-ray emitted during decay of activities induced in enriched 44 Ca, nat Ca, phantom filled with water solution of natural calcium and skeletal arm are considered. Results of measurements on the phantom and skeletal arm indicate a possibility to measure the TBCa using the 44 K activity. (author)

  7. Measurement of double differential cross sections for light charged particles production in neutron induced reaction at 62.7 MeV on lead target; Mesures des sections efficaces doublement differentielles de production de particules chargees legeres lors de reactions induites par neutrons de 62.7 MeV sur cible de plomb

    Energy Technology Data Exchange (ETDEWEB)

    Kerveno, M

    2000-09-27

    In order to develop new options for nuclear waste management, studies are carrying out on the perfecting of hybrid systems (sub-critical reactor driven by accelerator). This thesis work takes place more precisely in the framework of nuclear data linked to hybrid systems development. Increasing the upper limit energy value (from 20 to 150 MeV) of data bases supposes that theoretical codes could have sufficient predictive power in this energy range. Thus it's necessary to measure new cross sections to constrain these codes. The experiment, performed at Louvain-la-Neuve Cyclotron, aims to determine the double differential cross sections for light charged particles production in neutron induced reactions at 62.7 MeV on natural lead target. The detection device consists of 6 NE102-CsI telescopes. Time of flight measurements are used to reconstruct the neutron energy spectra. The general framework (hybrid systems and associated nuclear data problematic) in which this work takes place is presented in a first part. The experimental set up used for our measurements is described in a second part. The three following parts are dedicated to the data analysis and double differential cross sections extraction. The particle discrimination, the energy calibration of detectors as the different corrections applied to the experimental spectra are related in details. And finally a comparative study between our experimental results and some theoretical predictions is presented. (author)

  8. Measurement of double differential cross sections for light charged particles production in neutron induced reaction at 62.7 MeV on lead target; Mesures des sections efficaces doublement differentielles de production de particules chargees legeres lors de reactions induites par neutrons de 62.7 MeV sur cible de plomb

    Energy Technology Data Exchange (ETDEWEB)

    Kerveno, M

    2000-09-27

    In order to develop new options for nuclear waste management, studies are carrying out on the perfecting of hybrid systems (sub-critical reactor driven by accelerator). This thesis work takes place more precisely in the framework of nuclear data linked to hybrid systems development. Increasing the upper limit energy value (from 20 to 150 MeV) of data bases supposes that theoretical codes could have sufficient predictive power in this energy range. Thus it's necessary to measure new cross sections to constrain these codes. The experiment, performed at Louvain-la-Neuve Cyclotron, aims to determine the double differential cross sections for light charged particles production in neutron induced reactions at 62.7 MeV on natural lead target. The detection device consists of 6 NE102-CsI telescopes. Time of flight measurements are used to reconstruct the neutron energy spectra. The general framework (hybrid systems and associated nuclear data problematic) in which this work takes place is presented in a first part. The experimental set up used for our measurements is described in a second part. The three following parts are dedicated to the data analysis and double differential cross sections extraction. The particle discrimination, the energy calibration of detectors as the different corrections applied to the experimental spectra are related in details. And finally a comparative study between our experimental results and some theoretical predictions is presented. (author)

  9. Evaluation of cross sections for neutron monitor reactions {sup 90}Zr(n,x){sup 89,88}Zr, {sup 88,87,86}Y from threshold to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Baosheng, Yu; Qingbiao, Shen; Dunjiu, Cai [Chinese Nuclear Data Center, Beijing, BJ (China)

    1996-06-01

    The cross sections for {sup 90}Zr(n,x){sup 89,88}Zr and {sup 90}Zr(n,x){sup 88,87,86}Y reactions in intermediate energy region are useful in neutron field monitor, safety and material damage research. Below 20 MeV, the evaluated cross sections for {sup 90}Zr(n,2n){sup 89}Zr reaction are recommended based on the recent experimental data, including the new measured results in CIAE (Above 20 MeV). The measured cross sections are still insufficient to do evaluation. So the evaluation for {sup 90}Zr(n,x){sup 89,88}Zr and {sup 90}Zr(n,x){sup 88,87,86}Y reactions from threshold to 100 MeV are based on experimental and calculated data. (2 figs.).

  10. Measurement of neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photon induced reaction on natC using laser electron photon beam at NewSUBARU

    Science.gov (United States)

    Itoga, Toshiro; Nakashima, Hiroshi; Sanami, Toshiya; Namito, Yoshihito; Kirihara, Yoichi; Miyamoto, Shuji; Takemoto, Akinori; Yamaguchi, Masashi; Asano, Yoshihiro

    2017-09-01

    Photo-neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photons on natC were measured using laser Compton scattering facility at NewSUBARU BL01. The photon energy spectra were evaluated through measurements and simulations with collimator sizes and arrangements for the laser electron photon. The neutron energy spectra for the natC(g,xn) reaction were measured at 60 degrees in horizontal and 90 degrees in horizontal and vertical with respect to incident photon. The spectra show almost isotropic angular distribution and flat energy distribution from detection threshold to upper limit defined by reaction Q-value.

  11. Cross-sections for formation of 99mTc through natRu(n,x) 99mTc reaction induced by neutrons at 13.5 and 14.8 MeV

    International Nuclear Information System (INIS)

    Luo Junhua; Han Jiuning; Tuo Fei; Kong Xiangzhong; Liu Rong; Jiang Li

    2012-01-01

    The cross-sections for formation of metastable state of 99 Tc ( 99m Tc, 140.511 keV, 6.01 h) through nat Ru(n,x) 99m Tc reaction induced by 13.5 MeV and 14.8 MeV neutrons were measured. Fast neutrons were produced via the 3 H(d,n) 4 He reaction on the K-400 neutron generator. Induced gamma activities were measured by a high-resolution gamma-ray spectrometer with a high-purity germanium (HpGe) detector. Measurements were corrected for gamma-ray attenuations, dead time and fluctuation of neutron flux. Data for nat Ru(n,x) 99m Tc reaction cross sections are reported to be 9.6±1.5 and 9.2±1.1 mb at 13.5±0.2 and 14.8±0.2 MeV incident neutron energies, respectively. Results were compared with the data by other authors. - Highlights: ► D–T neutron source was used to measure cross sections using activation method. ► 27 Al(n,α) 24 Na was used as the monitor for the measurement. ► Cross-sections for formation of 99m Tc through nat Ru(n,x) 99m Tc were measured. ► Data for nat Ru(n,x) 99m Tc reaction cross sections are reported. ► The results were discussed and compared with experimental data in the literature.

  12. Experiments on iron shield transmission of quasi-monoenergetic neutrons generated by 43- and 68-MeV protons via the 7Li(p,n) reaction

    International Nuclear Information System (INIS)

    Nakashima, Hiroshi; Tanaka, Shun-ichi; Nakao, Noriaki

    1996-03-01

    In order to provide benchmark data of neutrons transmitted through iron shields in the intermediate-energy region, spatial distributions of neutron energy spectra and reaction rates behind and inside the iron shields of thickness up to 130 cm were measured for 43- and 68-MeVp- 7 Li neutrons using a quasi-monoenergetic neutron beam source at the 90-MV AVF cyclotron facility of the TLARA facility in JAERI. The measured data by five kinds of detectors: the BC501A detector, the Bonner ball counter, 238 U and 232 Th fission counters, 7 LiF and nat LiF TLDs and solid state nuclear track detector, are numerically provided in this report in the energy region between 10 -4 eV and the energy of peak neutrons generated by the 7 Li(p,n) reaction. (author)

  13. Experiments on iron shield transmission of quasi-monoenergetic neutrons generated by 43- and 68-MeV protons via the {sup 7}Li(p,n) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tanaka, Shun-ichi; Nakao, Noriaki [and others

    1996-03-01

    In order to provide benchmark data of neutrons transmitted through iron shields in the intermediate-energy region, spatial distributions of neutron energy spectra and reaction rates behind and inside the iron shields of thickness up to 130 cm were measured for 43- and 68-MeVp-{sup 7}Li neutrons using a quasi-monoenergetic neutron beam source at the 90-MV AVF cyclotron facility of the TLARA facility in JAERI. The measured data by five kinds of detectors: the BC501A detector, the Bonner ball counter, {sup 238}U and {sup 232}Th fission counters, {sup 7}LiF and {sup nat}LiF TLDs and solid state nuclear track detector, are numerically provided in this report in the energy region between 10{sup -4} eV and the energy of peak neutrons generated by the {sup 7}Li(p,n) reaction. (author).

  14. 14 MeV neutrons physics and applications

    CERN Document Server

    Valkovic, Vladivoj

    2015-01-01

    Despite the often difficult and time-consuming effort of performing experiments with fast (14 MeV) neutrons, these neutrons can offer special insight into nucleus and other materials because of the absence of charge. 14 MeV Neutrons: Physics and Applications explores fast neutrons in basic science and applications to problems in medicine, the environment, and security.Drawing on his more than 50 years of experience working with 14 MeV neutrons, the author focuses on:Sources of 14 MeV neutrons, including laboratory size accelerators, small and sealed tube generators, well logging sealed tube ac

  15. Calculation of proton and neutron emission spectra from proton reactions with 90Zr and 208Pb to 160 MeV with the GNASH code

    International Nuclear Information System (INIS)

    Young, P.G.; Chadwick, M.B.

    1994-01-01

    A number of modifications have been made to the reaction theory code GNASH in order the accuracy of calculations at incident particle energies up to 200 MeV. Direct reaction a level density models appropriate for higher energy calculations are now used in the code, and most importantly, improved preequilibrium models have been incorporated into the code system. The code has been used to calculate proton-induced reactions on 90 Zr and 208 Pb for the International Code and Model Intercomparison for Intermediate Energy Reactions organized by the NEA. Calculations were performed with GNASH at incident proton energies of 25, 45, 80, and 160 mev using both the exciton model and Feshbach-Kerman-Koonin theory for the preequilibrium component. The models and procedures used in the GNASH calculations with the exciton model are described here. The results are compared to experimental data and to results from the GNASH calculations with Feshbach-Kerman-Koonin preequilibrium theory

  16. Radiochemical study of 45Sc(n,p)45Ca and 89Y(n,p)89Sr reactions in the neutron energy range of 13.9 to 14.7 MeV

    International Nuclear Information System (INIS)

    Molla, N.I.; Basunia, S.; Miah, M.R.; Hossain, S.M.; Rahman, M.M.; Spellerberg, S.; Qaim, S.M.

    1998-01-01

    Cross sections for 45 Sc(n,p) 45 Ca and 89 Y(n,p) 89 Sr reactions were measured using the activation technique. Monoenergetic neutrons in the energy range of 13.9 to 14.7 MeV were produced using a D-T neutron generator. The purely β - emitting products 45 Ca and 89 Sr were separated radiochemically; their radioactivity was assayed via low-level β - counting. The measured data complement the available published experimental information, and agree with the results of statistical model calculations. (orig.)

  17. Determination of the neutron detection efficiency of an NE213 scintillator for En=2.5 to 16 MeV using the 2H(d,n)3He reaction

    International Nuclear Information System (INIS)

    Al-Ohali, M.A.; Aksoy, A.; Coban, A.

    1997-01-01

    The absolute efficiency of an NE213 liquid scintillator of 12.7 cm diameter and 5.08 cm thickness was measured in the neutron energy range 2.5-16 MeV using the 2 H(d,n) 3 He reaction as a source of monoenergetic neutrons. The efficiencies were measured at the time-of-flight facility of Triangle Universities Nuclear Laboratory TUNL. The experimental data are compared to calculations from the Monte Carlo code NEFF of Physikalisch-Technische Bundesanstalt, Braunschweig, Germany PTB. (orig.)

  18. Determination of the neutron detection efficiency of an NE213 scintillator for E{sub n}=2.5 to 16 MeV using the {sup 2}H(d,n){sup 3}He reaction

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ohali, M.A.; Aksoy, A.; Coban, A. [King Fahd Univ. of Pet. and Miner., Dhahran (Saudi Arabia). Energy Res. Lab.; Hanly, J.M.; Felsher, P.D.; Howell, C.R.; Tornow, W.; Salinas, F.; Walter, R.L. [Duke University and Triangle Universities Nuclear Laboratories, Durham, NC 27708 (United States)

    1997-09-11

    The absolute efficiency of an NE213 liquid scintillator of 12.7 cm diameter and 5.08 cm thickness was measured in the neutron energy range 2.5-16 MeV using the {sup 2}H(d,n){sup 3}He reaction as a source of monoenergetic neutrons. The efficiencies were measured at the time-of-flight facility of Triangle Universities Nuclear Laboratory TUNL. The experimental data are compared to calculations from the Monte Carlo code NEFF of Physikalisch-Technische Bundesanstalt, Braunschweig, Germany PTB. (orig.). 7 refs.

  19. Measurement of neutron captured cross-sections in 1-2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gi Dong; Kim, Young Sek; Kim, Jun Kon; Yang, Tae Keun [Korea Institutes of Geoscience and Mineral Resources, Taejeon (Korea)

    2001-04-01

    The measurement of neutron captured reaction cross sections was performed to build the infra system for the production of nuclear data. MeV neutrons were produced with TiT target and {sup 3}T(p,n){sup 3}He reaction. The characteristics of TiT thin film was analyzed with ERD-TOF and RBS. The results was published at Journal of the Korea Physical Society (SCI registration). The energy, the energy spread and the flux of the produced neutron were measured. The neutron excitation functions of {sup 12}C and {sup 16}O were obtained to confirm the neutron energy and neutron energy spread. The neutron energy spread found to be 1.3 % at the neutron energy of 2.077 MeV. The {sup 197}Au(n,{gamma}) reaction was performed to obtain the nerutron flux. The maximum neutron flux found to be 1 x 10{sup 8} neutrons/sec at the neutron energy of 2 MeV. The absolute efficiency of liquid scintillation detector was obtained in the neutron energy of 1 - 2 MeV. The fast neutron total reaction cross sections of Cu, Fe, and Au were measured with sample in-out method. Also the neutron captured reaction cross sections of {sup 63}Cu were measured with fast neutron activation method. The measurement of neutron total reaction cross sections and the neutron captured reaction cross sections with fast neutrons were first tried in Korea. The beam pulsing system was investigated and the code of calculating the deposition spectrums for primary gamma rays was made to have little errors at nuclear data. 25 refs., 28 figs., 14 tabs. (Author)

  20. SIMULATED 8 MeV NEUTRON RESPONSE FUNCTIONS OF A THIN SILICON NEUTRON SENSOR.

    Science.gov (United States)

    Takada, Masashi; Matsumoto, Tetsuro; Masuda, Akihiko; Nunomiya, Tomoya; Aoyama, Kei; Nakamura, Takashi

    2017-12-22

    Neutron response functions of a thin silicon neutron sensor are simulated using PHITS2 and MCNP6 codes for an 8 MeV neutron beam at angles of incidence of 0°, 30° and 60°. The contributions of alpha particles created from the 28Si(n,α)25Mg reaction and the silicon nuclei scattered elastically by neutrons in the silicon sensor have not been well reproduced using the MCNP6 code. The 8 MeV neutron response functions simulated using the PHITS2 code with an accurate event generator mode are in good agreement with experimental results and include the contributions of the alpha particles and silicon nuclei. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Measurements and Monte Carlo calculations of forward-angle secondary-neutron-production cross-sections for 137 and 200 MeV proton-induced reactions in carbon

    Science.gov (United States)

    Iwamoto, Yosuke; Hagiwara, Masayuki; Matsumoto, Tetsuro; Masuda, Akihiko; Iwase, Hiroshi; Yashima, Hiroshi; Shima, Tatsushi; Tamii, Atsushi; Nakamura, Takashi

    2012-10-01

    Secondary neutron-production double-differential cross-sections (DDXs) have been measured from interactions of 137 MeV and 200 MeV protons in a natural carbon target. The data were measured between 0° and 25° in the laboratory. DDXs were obtained with high energy resolution in the energy region from 3 MeV up to the maximum energy. The experimental data of 137 MeV protons at 10° and 25° were in good agreement with that of 113 MeV protons at 7.5° and 30° at LANSCE/WNR in the energy region below 80 MeV. Benchmark calculations were carried out with the PHITS code using the evaluated nuclear data files of JENDL/HE-2007 and ENDF/B-VII, and the theoretical models of Bertini-GEM and ISOBAR-GEM. For the 137 MeV proton incidence, calculations using JENDL/HE-2007 generally reproduced the shape and the intensity of experimental spectra well including the ground state of the 12N state produced by the 12C(p,n)12N reaction. For the 200 MeV proton incidence, all calculated results underestimated the experimental data by the factor of two except for the calculated result using ISOBAR model. ISOBAR predicts the nucleon emission to the forward angles qualitatively better than the Bertini model. These experimental data will be useful to evaluate the carbon data and as benchmark data for investigating the validity of the Monte Carlo simulation for the shielding design of accelerator facilities.

  2. High energy (42-66 MeV reactions) fast neutron dose optimization studies in the head and neck, thorax, upper abdomen, pelvis and extremities

    International Nuclear Information System (INIS)

    Griffin, T.W.; Laramore, G.E.; Maor, M.H.; Hendrickson, F.R.; Parker, R.G.; Davis, L.W.

    1990-01-01

    550 Patients were entered into a set of dose-searching studies designed to determine normal tissue tolerances to high energy (42-66 MeV reactions) fast neutrons delivered in 12 equal fractions over 4 weeks. Patients were stratified by treatment facility and then randomized to receive 16, 18 or 20 Gy for tumors located in the upper abdomen or pelvis, and 18, 20 or 22 Gy for tumors located in the head and neck, thorax or extremities. Following completion of the randomized protocols, additional patients were studied at the 20.4 Gy level in the head and neck, thorax and pelvis. Normal tissue effect scoring was accomplished using the RTOG-EORTC acute and late normal tissue effect scales. Acute Grade 3+ toxicity rates in the head and neck were 19 per cent for 20/20.4 Gy and 20 per cent for 22 Gy. Time adjusted late toxicity rates in the head and neck at 12 months were 15 per cent for 20/20.4 Gy and 0 per cent for 22 Gy. The 18 Gy treatment arm of the head and neck protocol was dropped early in the study after only two patients were accrued. For cases treated in the thorax, acute Grade 3+ toxicity rates were 6 per cent for 18 Gy, 15 per cent for 20/20.4 Gy and 7 per cent for 22 Gy. Late toxicity rates at 12 months were 0 per cent for 18 Gy, 11 per cent for 20/20.4 Gy and 18 per cent for 22 Gy. Acute Grade 3+ toxicity rates in the upper abdomen were 0 per cent for 16 Gy, 18 per cent for 18 Gy and 12 per cent for 20 Gy. There were no Grade 3+ late toxicities in the upper abdomen. In the pelvis acute Grade 3+ toxicity rates were 0 per cent for 16 Gy, 3 per cent for 18 Gy and 3 per cent for 20/20.4 Gy. Late Grade 3+ toxicities at 24 months were 20 per cent for 16 Gy, 5 per cent for 18 Gy and 24 per cent for 20/20.4 Gy. In the extremities, acute Grade 3+ toxicity rates were 7 per cent for 20 Gy and 21 per cent for 22 Gy, while at 12 months, late Grade 3+ toxicity rates were 14 and 35 per cent respectively. The 18 Gy treatment arm of the extremities protocol was dropped early

  3. Measurement of neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photon induced reaction on natC using laser electron photon beam at NewSUBARU

    Directory of Open Access Journals (Sweden)

    Itoga Toshiro

    2017-01-01

    Full Text Available Photo-neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photons on natC were measured using laser Compton scattering facility at NewSUBARU BL01. The photon energy spectra were evaluated through measurements and simulations with collimator sizes and arrangements for the laser electron photon. The neutron energy spectra for the natC(g,xn reaction were measured at 60 degrees in horizontal and 90 degrees in horizontal and vertical with respect to incident photon. The spectra show almost isotropic angular distribution and flat energy distribution from detection threshold to upper limit defined by reaction Q-value.

  4. Neutron scattering differential cross sections of carbon and bismuth at 37 MeV

    International Nuclear Information System (INIS)

    Zhou Zuying; Tang Hongqing; Qi Bujia; Zhou Chenwei; Du Yanfeng; Xia Haihong; Walter, R.L.; Tornow, W.; Howell, C.; Braun, R.; Roper, C.; Chen Zemin; Chen Zhengpeng; Chen Yingtang

    1997-01-01

    Elastic differential cross sections of 37 MeV neutrons scattered from carbon and bismuth were measured in the angular range 11 to 160 degrees by means of the multi-detector TOF facility. The 37 MeV neutrons were produced via the T(d,n) 4 He reaction in a tritium gas target. The pulsed 20 MeV deuteron beam was provided by the HI-13 tandem accelerator. The angular distribution of scattered neutrons from carbon and bismuth were measured in the angular range 11 degree to 145 degree and 11 degree to 160 degree respectively in steps of about 3 degree

  5. Neutron-neutron quasifree scattering in nd breakup at 10 MeV

    Science.gov (United States)

    Malone, R. C.; Crowe, B.; Crowell, A. S.; Cumberbatch, L. C.; Esterline, J. H.; Fallin, B. A.; Friesen, F. Q. L.; Han, Z.; Howell, C. R.; Markoff, D.; Ticehurst, D.; Tornow, W.; Witała, H.

    2016-03-01

    The neutron-deuteron (nd) breakup reaction provides a rich environment for testing theoretical models of the neutron-neutron (nn) interaction. Current theoretical predictions based on rigorous ab-initio calculations agree well with most experimental data for this system, but there remain a few notable discrepancies. The cross section for nn quasifree (QFS) scattering is one such anomaly. Two recent experiments reported cross sections for this particular nd breakup configuration that exceed theoretical calculations by almost 20% at incident neutron energies of 26 and 25 MeV [1, 2]. The theoretical values can be brought into agreement with these results by increasing the strength of the 1S0 nn potential matrix element by roughly 10%. However, this modification of the nn effective range parameter and/or the 1S0 scattering length causes substantial charge-symmetry breaking in the nucleon-nucleon force and suggests the possibility of a weakly bound di-neutron state [3]. We are conducting new measurements of the cross section for nn QFS in nd breakup. The measurements are performed at incident neutron beam energies below 20 MeV. The neutron beam is produced via the 2H(d, n)3He reaction. The target is a deuterated plastic cylinder. Our measurements utilize time-of-flight techniques with a pulsed neutron beam and detection of the two emitted neutrons in coincidence. A description of our initial measurements at 10 MeV for a single scattering angle will be presented along with preliminary results. Also, plans for measurements at other energies with broad angular coverage will be discussed.

  6. Fission coincident neutrons from the reactions p + sup(235,236,238)U with protons between 12,7 and 25.5 MeV

    International Nuclear Information System (INIS)

    Plischke, P.

    1981-01-01

    With the proton beam of the Hamburg isochronous cyclotron (HAIZY) thin uranium targets with the mass numbers 235, 236, and 238 were bombarded. Both fragments from the fission of the Np reaction systems and the neutrons coincident with the fragments were detected in the plane perpendicular to the beam direction. Measured and stored event by event were for all particles the times of flight. The detection of the neutron succeeded in conventional time-of-flight technique with NE213 liquid scintillators. A fission detector system with plastic scintillator foils was developed. It permits high event rates over long measuring times and allows the choice of so long neutron flight paths that a neutron energy resolution between 2% and 4% could be reached. The determination of the fragment masses is in spite of the short flight paths of 15 respectively 21 cm possible to +-2 amu. The isotropic component das discussed under the assumption that it is composed of prefission and scission neutrons which were emitted befor fission respectively during the fragmentation. From the post fission results the distribution of the excitation energy to both fragments was determined in dependence of Esup(*) and the fragment mass. (orig./HSI) [de

  7. Partial Cross Sections of Neutron-Induced Reactions on nCu at En = 6, 8, 10, 12, 14, and 16 MeV for 0νββ Background Studies

    Science.gov (United States)

    Gooden, M. E.; Fallin, B. A.; Finch, S. W.; Kelley, J. H.; Howell, C. R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Stanislav, V.

    2014-05-01

    Partial cross-section measurements of (n,n'γ) reactions on natCu were carried out at TUNL using monoenergetic neutrons at six energies of En = 6, 8, 10, 12, 14, 16 MeV. These studies were performed to provide accurate cross-section data on materials abundant in experimental setups involving HPGe detectors used to search for rare events, like the neutrino-less double-beta decay of 76Ge. Spallation and (α,n) neutrons are expected to cause the largest source of external background in the energy region of interest. At TUNL pulsed neutron beams were produced via the 2H(d,n)3He reaction and the deexcitation γ rays from the reaction natCu(n,xγ) were detected with clover HPGe detectors. Cross-section results for the strongest transtions in 63Cu and 65Cu will be reported, and will compared to model calculations and to data recently obtained at LANL with a white neutron beam.

  8. Review of neutron data: 10 to 40 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Haight, R.C.

    1977-04-01

    Neutron data are reviewed for incident neutron energies between 10 and 40 MeV. A census of the data shows that there are many gaps in this range and that the existing data are primarily for neutron energies around 14 MeV. Aside from total cross sections, there are few data between 10 and 13 MeV and between 15 and 40 MeV. Examples are presented to show the quality of selected data for total, elastic, inelastic, activation, and charged-particle and gamma-ray production cross sections. The spectra of emitted particles are also discussed.

  9. Review of neutron data: 10 to 40 MeV

    International Nuclear Information System (INIS)

    Haight, R.C.

    1977-04-01

    Neutron data are reviewed for incident neutron energies between 10 and 40 MeV. A census of the data shows that there are many gaps in this range and that the existing data are primarily for neutron energies around 14 MeV. Aside from total cross sections, there are few data between 10 and 13 MeV and between 15 and 40 MeV. Examples are presented to show the quality of selected data for total, elastic, inelastic, activation, and charged-particle and gamma-ray production cross sections. The spectra of emitted particles are also discussed

  10. The energy spectrum of neutrons from 7Li(d,n8Be reaction at deuteron energy 2.9 MeV

    Directory of Open Access Journals (Sweden)

    Mitrofanov Konstantin V.

    2017-01-01

    Full Text Available The neutron beams generated at the electrostatic accelerators using nuclear reactions T(p,n3He, D(d,n3He, 7Li(p,n7Be, T(d,n4He, 7Li(d,n8Be, 9Be(d,n10B are widely used in neutron physics and in many practical applications. Among these reactions the least studied reactions are 7Li(d,n8Be and 9Be(d,n10B. The present work is devoted to the measurement of the neutron spectrum from 7Li(d,n8Be reaction at 0∘ angle to the deuteron beam axis on the electrostatic accelerator Tandetron (JSC “SSC RF – IPPE” using activation method and a stilbene crystal scintillation detector. The first time ever 7Li(d,n8Be reaction was measured by activation method. The target was a thick lithium layer on metallic backing. The energy of the incident deuteron was 2.9 MeV. As activation detectors a wide range of nuclear reactions were used: 27Al(n,p27Mg, 27Al(n,α24Na, 113In(n,n'113mIn, 115In(n,n'115mIn, 115In(n,γ116mIn, 58Ni(n,p58mCo, 58Ni(n,2n57Ni, 197Au(n,γ198Au, 197Au(n,2n196Au, 59Co(n,p59Fe, 59Co(n,2n58m+gCo, 59Co (n,g60Co. Measurement of the induced gamma-activity was carried out using HPGe detector Canberra GX5019 [1]. The up-to-date evaluations of the cross sections for these reactions were used in processing of the data. The program STAYSL was used to unfold the energy spectra. The neutron spectra obtained by activation detectors is consistent with the corresponding data measured by a stilbene crystal scintillation detector within their uncertainties.

  11. Neutron-induced fission cross sections of uraniums up to 40 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V.M. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus); Hasegawa, A.

    1998-11-01

    Statistical theory of nuclear reactions, well-proved below 20 MeV, is applied for {sup 235}U and {sup 238}U fission data analysis up to {approx}40 MeV. It is shown that measured data could be reproduced. Chance structure of measured fission cross section is provided, it`s validity is supported by description of data for competing (n,xn)-reactions. Role of fissility of target nucleus is addressed. It seems that gap in incident neutron energy interval of 20 MeV - 50 MeV, below which evaluation approaches are well-developed, and above which simplified statistical approaches are valid, could be covered. (author)

  12. EXPERIMENTAL ANALYSES OF SPALLATION NEUTRONS GENERATED BY 100 MEV PROTONS AT THE KYOTO UNIVERSITY CRITICAL ASSEMBLY

    Directory of Open Access Journals (Sweden)

    CHEOL HO PYEON

    2013-02-01

    Full Text Available Neutron spectrum analyses of spallation neutrons are conducted in the accelerator-driven system (ADS facility at the Kyoto University Critical Assembly (KUCA. High-energy protons (100 MeV obtained from the fixed field alternating gradient accelerator are injected onto a tungsten target, whereby the spallation neutrons are generated. For neutronic characteristics of spallation neutrons, the reaction rates and the continuous energy distribution of spallation neutrons are measured by the foil activation method and by an organic liquid scintillator, respectively. Numerical calculations are executed by MCNPX with JENDL/HE-2007 and ENDF/B-VI libraries to evaluate the reaction rates of activation foils (bismuth and indium set at the target and the continuous energy distribution of spallation neutrons set in front of the target. For the reaction rates by the foil activation method, the C/E values between the experiments and the calculations are found around a relative difference of 10%, except for some reactions. For continuous energy distribution by the organic liquid scintillator, the spallation neutrons are observed up to 45 MeV. From these results, the neutron spectrum information on the spallation neutrons generated at the target are attained successfully in injecting 100 MeV protons onto the tungsten target.

  13. Measurement of fission cross section for {sup 232}Th(n,f){sup 131}{sub Z}X (Z = 50, 51, 52, 53) reaction induced by neutrons around 14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Chang-lin; Qiu, Yi-jia; Wang, Qiang; Zhang, Zheng-wei; Zhang, Qian; Tan, Jun-cai; Fang, Kai-hong [Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China); Lai, Cai-feng [China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang (China)

    2017-06-15

    The fission cross sections of {sup 232}Th(n,f){sup 131m,g}Sn, {sup 232}Th(n,f){sup 131}Sb, {sup 232}Th(n,f){sup 131m,g}Te, {sup 232}Th(n,f){sup 131}I fission reactions induced by 14 MeV neutrons were measured precisely with the neutron activation technique. The neutron flux was monitored by accompanying α particle in the irradiation and the neutron energies were determined by the cross section ratio of {sup 90}Zr(n,2n){sup 89}Zr to {sup 93}Nb(n,2n){sup 92m}Nb reaction. The values of the cross sections of {sup 232}Th(n,f){sup 131m,g}Sn were analyzed, and the cross sections of {sup 232}Th(n,f){sup 131}Sb were deduced to be 6.5±0.7, 6.3±0.6, 6.1±0.6 mb at 14.1±0.3, 14.5±0.3 and 14.8±0.3 MeV, respectively. The values of the cross sections of {sup 232}Th(n,f){sup 131g}Te were deduced to be 1.8 ± 0.1, 1.5 ± 0.1 and 1.4±0.1 mb at 14.1±0.3, 14.5±0.3 and 14.8±0.3 MeV, respectively. The values of the cross sections of {sup 232}Th(n,f){sup 131}I were given as 1.8±0.2, 1.6±0.2, 1.5±0.1 mb at 14.1±0.3, 14.5±0.3 and 14.8±0.3 MeV, respectively. (orig.)

  14. Theoretical calculation of n + {sup 59}Co reaction in energy region up to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Qingbiao, Shen; Baosheng, Yu; Dunjiu, Cai [Chinese Nuclear Data Center, Beijing, BJ (China)

    1996-06-01

    A set of neutron optical potential parameters for {sup 59}Co in energy region of 2{approx}100 MeV was obtained based on concerned experimental data. Various cross sections of n + {sup 59}Co reactions were calculated and predicted. The calculated results show that the activation products {sup 58,57}Co, {sup 59}Fe and {sup 56}Mn are main neutron monitor reaction products for n + {sup 59}Co reaction in energy range up to 100 MeV. {sup 54}Mn production reaction can be a promising neutron monitor reaction in the energy region from 30 to 100 MeV. (6 figs.).

  15. Neutron emission from projectile-like and target-like fragments in the 18O+48Ti reaction at E(18O)=116 MeV

    International Nuclear Information System (INIS)

    Chambon, B.; Drain, D.; Pastor, C.; Dauchy, A.; Giorni, A.; Morand, C.

    1982-07-01

    Angular correlations between neutrons and projectile-like fragments detected near the grazing angle were analysed by assuming two incoherent neutrons sources. One source describes slower neutrons evaporated by target-like fragments in equilibrium. The faster, forward-peaked neutrons originate from a second source strongly correlated with the projectile-like fragments with regards to velocity and direction. In some cases neutron emission may even be attributed to known neutron emitter levels in excited ejectiles

  16. Calibration Of A 14 MeV Neutron Generator With Reference To NBS-1

    International Nuclear Information System (INIS)

    Heimbach, Craig R.

    2011-01-01

    NBS-1 is the US national neutron reference source. It has a neutron emission rate (June 1961) of 1.257x10 6 n/s 1,2,3 with an uncertainty of 0.85%(k = 1). Neutron emission-rate calibrations performed at the National Institute of Standards and Technology (NIST) are made in comparison to this source, either directly or indirectly. To calibrate a commercial 14 MeV neutron generator, NIST performed a set of comparison measurements to evaluate the neutron output relative to NBS-1. The neutron output of the generator was determined with an uncertainty of about 7%(k = 1). The 15-hour half-life of one of the reactions used also makes possible off-site measurements. Consideration is given to similar calibrations for a 2.5 MeV neutron generator.

  17. Measurement of double differential cross sections of secondary neutrons in the incident energy range 9-13 MeV

    International Nuclear Information System (INIS)

    Tang Hongqing; Qi Bujia; Zhou Zuying; Sa Jun; Ke Zunjian; Sui Qingchang; Xia Haihong; Shen Guanren

    1992-01-01

    The status and technique of double differential cross section measurement of secondary neutrons in the incident neutron energy range 9 to 13 MeV is reviewed with emphasis on the work done at CIAE. There are scarce measurements of secondary neutron double differential cross sections in this energy region up to now. A main difficulty for this is lack of an applicable monoenergetic neutron source. When monoenergetic neutron energy reaches 8 Me/v, the break-up neutrons from the d + D or p + T reaction starts to become significant. It is difficult to get a pure secondary neutron spectrum induced only by monoenergetic neutrons. To solve this problem an abnormal fast neutron TOF facility was designed and tested. Double differential neutron emission cross sections of 238 U and 209 Bi at 10 MeV were obtained by combining the data measured by both normal and abnormal TOF spectrometers and a good agreement between measurement and calculation was achieved

  18. Measurement of the 209Bi(n ,4 n )206Bi and 169Tm(n ,3 n )167Tm cross sections between 23.5 and 30.5 MeV relevant to reaction-in-flight neutron studies at the National Ignition Facility

    Science.gov (United States)

    Gooden, M. E.; Bredeweg, T. A.; Champine, B.; Combs, D. C.; Finch, S.; Hayes-Sterbenz, A.; Henry, E.; Krishichayan, Rundberg, R.; Tornow, W.; Wilhelmy, J.; Yeamans, C.

    2017-08-01

    At the National Ignition Facility, experiments are being performed to measure charged-particle stopping powers in the previously unexplored warm dense plasma regime. These measurements are done using reaction-in-flight (RIF) neutrons from an inertial confinement fusion system. RIF neutrons are produced with a continuum of energies up to 30 MeV. By making activation measurements utilizing threshold reactions for neutrons in the energy range of 15 MeV , the number of RIF neutrons can be determined and from this the stopping power of the deuterium and tritium ions that produced the RIF neutrons can be inferred. Currently, the 169Tm(n ,3 n )167Tm reaction has been used. However, in an effort to provide a secondary complimentary measurement, efforts are underway to make use of the 209Bi(n ,4 n )206Bi reaction, with a threshold of 22.5 MeV. The cross sections were measured at the 10 MV tandem Van De Graaff accelerator at the Triangle Universities Nuclear Laboratory with quasimonoenergetic neutrons between 23.5 and 30.5 MeV, where few previous measurements have been made. Cross-section data are compared to calculations and other available measurements.

  19. The development of a spectrometer for 14 MeV neutrons from fusion

    International Nuclear Information System (INIS)

    Aronsson, D.

    1991-01-01

    A spectrometer for 14 MeV neutrons, to be used for fusion plasma diagnostics at JET, was developed. The spectrometer utilizes neutron scattering in a polyethylene foil with the detection of the scattered neutron and its associated recoil proton. For the detection of 12 MeV protons we have tested silicon surface barrier detectors, lithium-drifted silicon detectors and high purity germanium detectors. The lithium-drifted detectors were finally selected for use in the spectrometer. The lithium-drifted silicon diodes have also been used for direct spectrometry, utilizing the neutron induced charged particle reactions in silicon. The methods used for the energy calibration and the timing calibration of the diodes, both during the installation of the spectrometer and during operation, are described. The detection of 2 MeV neutrons is done by fast plastic scintillators. Since the neutron generator which was used to test the detectors supplies 14 MeV or 2.5 MeV neutrons only, a neutron energy converter has to be constructed to study the detectors at other neutron energies. In the actual spectrometer an array of scintillation neutron detectors is used. A method of calibrating such an array of detectors with a gamma source was elaborated and is also described here. The result of the calibration is a set of parameters than can be used to determine the high voltage settings and the discriminator levels that are needed to achieve homogeneous sensitivity for all the detectors of the array. The energy scale itself was then calibrated by using gamma sources of various energies. To test the spectrometer as a whole at a neutron generator, a test bed was constructed. A lithium-drifted silicon diode was used to measure the neutron flux and the neutron energy resolution in the test bed. (au)

  20. Neutron emission in fission of highly excited californium nuclei (E*=76 MeV)

    International Nuclear Information System (INIS)

    Blinov, M.V.; Bordyug, V.M.; Kozulin, Eh.M.; Mozhaev, A.N.; Levitovich, M.; Muzychka, Yu.A.; Penionzhkevich, Yu.Eh.; Pustyl'nik, B.I.

    1990-01-01

    The differential cross sections for neutron production in the fission of highly excited californium nuclei formed in the 238 U+ 12 C (105 MeV) reaction have been measured. From the analysis of the experimental data is follows that the number of pre-fission neutrons substantially exceeds the value obtained in the framework of the standard statistical model. The saddle-to-scission time of the excited nucleus is estimated on the basis of the neutron multiplicity. The dependences of the neutron number and neutron average energies upon the fragment mass are determined

  1. The polarization of MeV neutrons elastically scattered from 4He

    International Nuclear Information System (INIS)

    Bond, J.E.; Firk, F.W.K.

    1976-01-01

    The analyzing power of 4 He for neutron elastic scattering has been measured at four angles between 20 0 and 80 0 (lab) throughout the energy range 1.5-6.0 MeV using a double-scattering method. The intense flux of polarized neutrons was generated via the reactions Pb(γ, n)→ 12 C(n, n(pol.) 12 C, and the magnitude of the polarization of the neutron beam measured absolutely in a separate double-scattering experiment. Neutron energies were determined with a nanosecond time-of-flight spectrometer, and the generalized neutron spin-precession method was used to minimize systematic uncertainties. (Auth.)

  2. Production of radionuclides by 14 MeV neutron generator

    International Nuclear Information System (INIS)

    Alfassi, Z.B.

    1983-01-01

    Due to the short half-lives of these nuclides they have to be produced in situ or at least not far from the place of use. The cost of 14 MeV neutron generators have been compared with the typical middle-sized cyclotrons and it was found that the capital costs are much lower in the case of neutron generators. This is the main reason for the availability of 14 MeV neutron generators in many scientific institutes compared to the scarcity of cyclotrons. Lately, the use of 14 MeV neutrons for cancer therapy was studied in several medical centers. A number of hospitals and cancer research centers have high intensity 14 MeV neutron generators for this purpose. The advantages of using short-lived in-house produced radionuclides suggest the use of the available 14 MeV neutron generators for biological studies and in medical diagnosis. 14 MeV neutron generators can be used to produce some of the medically useful radionuclides, such as /sup 18/F, /sup 80/Br, /sup 199m/Hg, and others. However, the amount required for medicine can only be prepared by the new high intensity neutron generators, used for neutron therapy and not by the smaller ones, commonly used in university laboratories (--10/sup 11/ n/sec). On the other hand, these relatively small neutron generators can be used for the preparation of radionuclides for biological studies. They facilitate the study of metabolism of elements for which radionuclides cannot be usually purchased due to short half-lives or the high price of the long-lived ones, such as /sup 34m/Cl, /sup 18/F, /sup 28,29/Al, /sup 27/Mg, and others. An example is the work done on the fate of Al and Mg in rats using /sup 28/Al and /sup 27/Mg./sup 13/

  3. Calculation of cross sections of discrete γ rays production in the (n,n'γ) reaction on chromium and nickel with neutron energy up to 10MeV

    International Nuclear Information System (INIS)

    Duchemin, B.

    1975-01-01

    Cross-sections for the production of de-excitation γ rays following inelastic neutron scattering have been calculated, using the statistical model, and are given for natural chromium and nickel for neutron incident energy up to 10MeV [fr

  4. Neutrons leaked from a 45 MeV linac facility

    Energy Technology Data Exchange (ETDEWEB)

    Kitaichi, Masatoshi; Sawamura, Sadashi; Yamada, Takuma; Sawamura, Teruko; Kaneko, Junnichi H. [Hokkaido Univ., Sapporo (Japan); Nojiri, Itiro [Japan Nuclear Cycle Development Institute, Ibaraki (Japan)

    2002-07-01

    Dose evaluation for skyshine from nuclear facilities is an issue in environmental evaluations. Therefore, benchmark data for skyshine and well-investigated codes for skyshine would be useful in the rational evaluations of nuclear facilities. The purpose of this study is to obtain benchmark data of skyshine and to investigate the effect of source spectra and angular distribution on the skyshine process. In this study spatial and time distributions of neutrons leaked from the Hokkaido University 45 MeV electron linac facility were measured and compared with calculations. Neutrons were emitted from the ( ,n) reaction produced by bremsstrahlung radiation in a lead target irradiated with electrons from the linac. The skyshine process of neutrons transported through the facility building to the outside was investigated. The source spectrum of the skyshine process was evaluated using a cylindrical multi-moderator spectrometer and unfolding code, the SAND-II, and the results were compared. Measurements were carried out to a distance of 330 m from the facility. The measured spatial dose distribution was found not to coincide with the calculations. The discrepancy is discussed based on an analysis of the spatial and time distributions, and the energy spectrum which suggests that the source spectrum and the angular distribution assumed in the calculation was not sufficiently similar to simulate the experimental situation. The time distribution introduced in this study appears to be useful in discussions of the skyshine process and its sources.

  5. Neutron-induced 2.2 MeV background in gamma ray telescopes

    International Nuclear Information System (INIS)

    Zanrosso, E.M.; Long, J.L.; Zych, A.D.; White, R.S.; Hughes Aircraft Co., Los Angeles, CA)

    1985-01-01

    Neutron-induced gamma ray production is an important source of background in Compton scatter gamma ray telescopes where organic scintillator material is used. Most important is deuteron formation when atmospheric albedo and locally produced neutrons are thermalized and subsequently absorbed in the hydrogenous material. The resulting 2.2 MeV gamma line essentially represents a continuous isotropic source within the scintillator itself. Interestingly, using a scintillator material with a high hydrogen-to-carbon ratio to minimize the neutron-induced 4.4 MeV carbon line favors the np reaction. The full problem of neutron-induced background in Compton scatter telescopes has been previously discussed. Results are presented of observations with the University of California balloon-borne Compton scatter telescope where the 2.2 MeV induced line emission is prominently seen

  6. Single event upsets calculated from new ENDF/B-VI proton and neutron data up to 150 MeV

    International Nuclear Information System (INIS)

    Chadwick, M.B.

    1999-01-01

    Single-event upsets (SEU) in microelectronics are calculated from newly-developed silicon nuclear reaction recoil data that extend up to 150 MeV, for incident protons and neutrons. Calculated SEU cross sections are compared with measured data

  7. Advances in 14 MeV neutron activation analysis by means of a new intense neutron source

    International Nuclear Information System (INIS)

    Pepelnik, R.; Fanger, H.-U.; Michaelis, W.; Anders, B.

    1982-01-01

    A new intense 14 MeV neutron generator with cylindrical acceleration structure has been put in operation at the GKSS Research Center Geesthacht. The sealed neutron tube is combined with a fast pneumatic rabbit system with particular capabilities for neutron activation analysis involving short-lived reaction products. The sample transfer time is less than 140 ms. The maximum neutron flux available for activation is 5.2x10 10 n/cm 2 s. Theoretical sensitivity predictions made in a previous study have been verified for some important trace elements. As a first application, samples of freeze-dried suspended matter and fishes of the Elbe river were analyzed. (author)

  8. Analysis of a neutron scattering integral experiment on iron for neutron energies from 1 to 15 MeV

    International Nuclear Information System (INIS)

    Cramer, S.N.; Oblow, E.M.

    1976-11-01

    Monte Carlo calculations were made to analyze the results of an integral experiment with an iron sample to determine the adequacy of neutron scattering cross section data for iron. The experimental results analyzed included energy-dependent NE-213 detector count rates at a scattering angle of 90 deg and pulse-height spectra for scattered neutrons produced in an iron ring pulsed with a 1- to 20-MeV neutron source. The pulse-height data were unfolded to generate secondary neutron spectra at 90 deg as a function of incident neutron energy. Multigroup Monte Carlo calculations using the MORSE code and ENDF/B-IV cross sections were made to analyze all reported results. Discrepancies between calculated and measured responses were found for inelastic scattering reactions in the range from 1 to 4 MeV. These results were related to deficiencies in ENDF/B-IV iron cross section data

  9. Neutron emission in fission of highly excited californium nuclei (E* = 76 MeV)

    International Nuclear Information System (INIS)

    Blinov, M.V.; Bordyug, V.M.; Kozulin, E.M.; Levitovich, M.; Mozhaev, A.N.; Muzychka, Yu.A.; Penionzhkevich, Yu.E.; Pustyl'nik, B.I.

    1990-01-01

    Differential cross sections for neutron production have been measured in fission of excited californium nuclei produced in the reaction 238 U + 12 C (105 MeV). It follows from analysis of the experimental results that the number of neutrons emitted before fission considerably exceeds the number obtained in the framework of the standard statistical model. On the basis of the multiplicity of neutrons they authors have estimated the time of fission of the excited nucleus. The dependence of the number of neutrons and their average energies on the mass of the fragments is determined

  10. SCANDAL -- A facility for elastic neutron scattering studies in the 50--130 MeV range

    International Nuclear Information System (INIS)

    Klug, J.; Blomgren, J.; Atac, A.; Bergenwall, B.; Dangtip, S.; Elmgren, K.; Johansson, C.; Olsson, N.; Prokofiev, A.V.; Rahm, J.; Oberstedt, A.; Tovesson, F.; Eudes, Ph.; Haddad, F.; Kerveno, M.; Kirchner, T.; Lebrun, C.; Stuttge, L.; Slypen, I.; Michel, R.; Neumann, S.; Herpers, U.

    2001-01-01

    A facility for detection of scattered neutrons in the energy interval 50--130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), has recently been installed at the 20--180 MeV neutron beam facility of the The Svedberg Laboratory, Uppsala. It is primarily intended for studies of elastic neutron scattering, but can be used for the (n,p) and (n,d) reaction experiments as well. The performance of the spectrometer is illustrated in measurements of the (n,p) and (n,n) reactions on 1 H and 12 C. In addition, the neutron beam facility is described in some detail

  11. SCANDAL--a facility for elastic neutron scattering studies in the 50-130 MeV range

    CERN Document Server

    Klug, J; Atac, A; Bergenwall, B; Dangtip, S; Elmgren, K; Johansson, C; Olsson, N; Pomp, S; Prokofiev, A V; Rahm, J; Tippawan, U; Jonsson, O; Nilsson, L; Renberg, P U; Nadel-Turonski, P; Ringbom, A; Oberstedt, A; Tovesson, F; Blideanu, V; Le Brun, C; Lecolley, J F; Lecolley, F R; Louvel, M; Marie, N; Schweitzer, C; Varignon, C; Eudes, P; Haddad, F; Kerveno, M; Kirchner, T; Lebrun, C; Stuttgé, L; Slypen, I; Smirnov, A N; Michel, R; Neumann, S; Herpers, U

    2002-01-01

    A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCAttered Nucleon Detection AssembLy (SCANDAL), has recently been installed at the 20-180 MeV neutron beam facility of The Svedberg Laboratory, Uppsala. It is primarily intended for studies of elastic neutron scattering, but can be used for (n,p) and (n,d) reaction experiments as well. The performance of the spectrometer is illustrated in measurements of the (n,p) and (n,n) reactions on sup 1 H and sup 1 sup 2 C. In addition, the neutron beam facility is described in some detail.

  12. Neutron total and scattering cross sections of 6Li in the few MeV region

    International Nuclear Information System (INIS)

    Smith, A.; Guenther, P.; Whalen, J.

    1980-02-01

    Neutron total cross sections of 6 Li are measured from approx. 0.5 to approx. 4.8 MeV at intervals of approx. 10 scattering angles and at incident-neutron intervals of approx.< 100 keV. Neutron differential inelastic-scattering cross sections are measured in the incident-energy range 3.5 to 4.0 MeV. The experimental results are extended to lower energies using measured neutron total cross sections recently reported elsewhere by the authors. The composite experimental data (total cross sections from 0.1 to 4.8 MeV and scattering cross sections from 0.22 to 4.0 MeV) are interpreted in terms of a simple two-level R-matrix model which describes the observed cross sections and implies the reaction cross section in unobserved channels; notably the (n;α)t reaction (Q = 4.783 MeV). The experimental and calculational results are compared with previously reported results as summarized in the ENDF/B-V evaluated nuclear data file

  13. 14 MeV calibration of JET neutron detectors—phase 1: calibration and characterization of the neutron source

    Science.gov (United States)

    Batistoni, P.; Popovichev, S.; Cufar, A.; Ghani, Z.; Giacomelli, L.; Jednorog, S.; Klix, A.; Lilley, S.; Laszynska, E.; Loreti, S.; Packer, L.; Peacock, A.; Pillon, M.; Price, R.; Rebai, M.; Rigamonti, D.; Roberts, N.; Tardocchi, M.; Thomas, D.; Contributors, JET

    2018-02-01

    In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is  ±10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e. the neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within  ±5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in

  14. Integral activation experiment of fusion reactor materials with d-Li neutrons up to 55 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Moellendorff, Ulrich von [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Wada, Masayuki [Business Automation Co., Ltd., Tokyo (Japan)

    2000-03-01

    An integral activation experiment of fusion reactor materials with a deuteron-lithium neutron source was performed. Since the maximum energy of neutrons produced was 55 MeV, the experiment with associated analysis was one of the first attempts for extending the energy range beyond 20 MeV. The following keywords represent the present study: d-Li neutrons, 55 MeV, dosimetry, SAND-II, spectrum adjustment, LA-150, MCNP, McDeLi, IFMIF, fusion reactor materials, integral activation experiment, low-activation, F82H, vanadium-alloy, IEAF, ALARA, and sequential charged particle reaction. (author)

  15. Measured neutron carbon kerma factors from 14.1 MeV to 18 MeV

    International Nuclear Information System (INIS)

    Deluca, P.M.; Barschall, H.H.; McDonald, J.C.

    1985-01-01

    For A-150 tissue-equivalent plastic, the total neutron kerma is dominated by the hydrogen kerma. Tissue kerma is inferred with reasonable accuracy by normalization to the kerma factor ratio between tissue and A-150 plastic. Because of the close match in the hydrogen abundance in these materials, the principal uncertainty is due to the kerma factors of carbon and oxygen. We have measured carbon kerma factor values of 0.183+-0.015 10 -8 cGy cm 2 and 0.210+-0.016 10 -8 cGy cm 2 at 14.1-MeV and 15-MeV neutron energy, respectively. A preliminary value of 0.297+-0.03 10 -8 cGy cm 2 has been determined at 17.9 MeV. A recent microscopic cross section measurement of the (n,n'3α) reaction in carbon at 14.1-MeV energy gives a kerma factor of 0.184+-0.019 10 -8 cGy cm 2 in agreement with the present result

  16. Measured neutron carbon kerma factors from 14.1 MeV to 18 MeV

    International Nuclear Information System (INIS)

    Deluca, P.M. Jr.; Barschall, H.H.; Haight, R.C.; McDonald, J.C.

    1984-01-01

    For A-150 tissue-equivalent plastic, the total neutron kerma is dominated by the hydrogen kerma. Tissue kerma is inferred with reasonable accuracy by normalization to the kerma factor ratio between tissue and A-150 plastic. Because of the close match in the hydrogen abundance in these materials, the principal uncertainty is due to the kerma factors of carbon and oxygen. We have measured carbon kerma factor values of 0.183 +- 0.015 10 -8 cGy cm 2 and 0.210 +- 0.16 10 -8 cGy cm 2 at 14.1-MeV and 15-MeV neutron energy, respectively. A preliminary value of 0.297 +- 0.03 10 -8 cGy cm 2 has been determined at 17.9 MeV. A recent microscopic cross section measurement of the (n,n'3α) reaction in carbon at 14.1-MeV energy gives a kerma factor of 0.184 +- 0.019 10 8 cGy cm 2 in agreement with the present result. 9 refs., 4 figs., 2 tabs

  17. Au, Bi, Co and Nb cross-section measured by quasimonoenergetic neutrons from p + Li-7 reaction in the energy range of 18-36 MeV

    Czech Academy of Sciences Publication Activity Database

    Majerle, Mitja; Bém, Pavel; Novák, Jan; Šimečková, Eva; Štefánik, Milan

    2016-01-01

    Roč. 953, SEP (2016), s. 139-157 ISSN 0375-9474 R&D Projects: GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 Keywords : Quasi-monoenergetic neutron * cross-section Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 1.916, year: 2016

  18. Comments on (n, charged particle) reactions at E/sub n/ = 14 MeV

    International Nuclear Information System (INIS)

    Haight, R.C.

    1984-01-01

    The study of charged particles produced by bombarding materials with 14 MeV neutrons is important for the development of fusion reactors and for biomedical applications as well as for the basic understanding of nuclear reactions. Several experimental techniques for investigating these reactions are discussed here. The interpretation of the data requires the consideration of several possible reaction mechanisms including equilibrium and preequilibrium particle emission and, for light nuclei, sequential particle emission, final state interactions, and the effect of resonances. 17 references

  19. Evaluation of neutron cross sections to 40 MeV for 5456Fe

    International Nuclear Information System (INIS)

    Arthur, E.D.; Young, P.G.

    1980-01-01

    Cross sections for neutron-induced reactions on 54 56 Fe were calculated by employing several nuclear models: optical, Hauser-Feshbach, preequilibrium and DWBA - in the energy range between 3 and 40 MeV. As a prelude to the calculations, the necessary input parameters were determined or verified through analysis of a large body of experimental data for both neutron- and proton-induced reactions in this mass and energy region. This technique also led to cross sections in which the simultaneous influence of available data types added to their consistency and reliability. Calculated cross sections as well as neutron and gamma-ray emission spectra were incorporated into an ENDF evaluation suitable for use to 40 MeV. 12 figures, 1 table

  20. Evaluation of the excitation function of the 238U(n,2n)237U reaction for neutron energies from threshold to 19 MeV

    International Nuclear Information System (INIS)

    Kornilov, N.V.; Vinogradov, V.N.; Gay, E.V.; Rabotnov, N.S.; Salnikov, O.A.; Raics, P.; Daroczy, S.; Nagy, S.; Csikai, J.

    1983-01-01

    Experimental results for the 238 U(n,2n) reaction were collected from the literature and evaluated. The normalisation of the measured cross sections was carried out using recent values for the cross sections of standard monitor reactions as well as new nuclear decay data. The evaluated excitation function was then obtained by the Pade-approximation. (Auth.)

  1. Reaction cross section measurements for the production of /sup 6/He(805 ms) and /sup 6/Li(175 ms) with 14. 7 Mev neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Garg, K C; Khurana, C S [Punjabi Univ., Patiala (India). Dept. of Physics

    1979-01-01

    The automatic electronic programmer developed to handle the millisecond isomers has been utilized to measure the reaction cross-sections for the production of /sup 6/He from sup(7,6)Li((n,d)+(n,p))/sup 6/He and /sup 9/Be(n,..cap alpha..)/sup 6/He reactions and /sup 9/Li from /sup 9/Be(n,p)/sup 9/Li reaction. An on-line gated G.M. counter has been used to follow the decay curves of beta-activities of /sup 6/He(805 ms.) and /sup 9/Li(175 ms.) produced in the reactions. Values of measured cross sections are 10.4 +- 1.0 mb., 10.6 +- 1.1 mb. and 40.3 +- 4.0 mb respectively for the above the three reactions.

  2. Evaluation of cross-section data from threshold to 40-60 MeV for specific neutron reactions important for neutron dosimetry applications. Part 1: Evaluation of the excitation functions for the 27Al(n,α)24Na, 55Mn(n,2n)54Mn, 59Co(n,p)59Fe, 59Co(n,2n)58m+gCo and 90Zr(n,2n)89m+gZr reactions

    International Nuclear Information System (INIS)

    Zolotarev, K.I.

    2009-04-01

    Evaluations of cross sections and their associated covariance matrices have been carried out for five dosimetry reactions: - excitation functions were re-evaluated for the 27 Al(n,α) 24 Na, 55 Mn(n,2n) 54 Mn and 90 Zr(n,2n) 89m+g Zr reactions over the neutron energy range from threshold to 40 MeV; - excitation functions were re-evaluated for the 59 Co(n,p) 59 Fe and 59 Co(n,2n) 58m+g Co reactions over the neutron energy range from threshold to 60 MeV. Uncertainties in the cross sections for all of those reactions were also derived in the form of relative covariance matrices. Benchmark calculations performed for 235 U thermal fission and 252 Cf spontaneous fission neutron spectra show that the integral cross sections calculated from the newly evaluated excitation functions exhibit improved agreement with related experimental data when compared with the equivalent data from the IRDF-2002 library. (author)

  3. Calculation of neutron cross sections on iron up to 40 MeV

    International Nuclear Information System (INIS)

    Arthur, E.D.; Young, P.G.

    1980-01-01

    The development of high energy d + Li neutron sources for fusion materials radiation damage studies will require neutron cross sections up to 40 MeV. Experimental data above 15 MeV are generally sparse or nonexistent, and reliance must be placed upon nuclear-model calculations to produce the needed cross sections. To satisfy such requirements for the Fusion Materials Irradiation Test Facility (FMIT), neutron cross sections have been calculated for 54 56 Fe between 3 and 40 MeV. These results were joined to the existing ENDF/B-V evaluation below 3 MeV. In this energy range, most neutron reactions can be described using the Hauser-Feshbach statistical model with corrections for preequilibrium and direct-reaction effects. To properly use these models to obtain realistic cross sections, emphasis must be placed upon the determination of suitable input parameters (optical model sets, gamma-ray strength functions, level densities) valid over the energy range of the calculation. To do this, several types of independent data were used to arrive at consistent parameter sets as described

  4. Kerma factors and reaction cross sections for n + 12C between 15 and 18 MeV

    International Nuclear Information System (INIS)

    Tornow, W.; Chen, Z.M.; Baird, K.; Walter, R.L.

    1988-01-01

    Differential elastic and inelastic (4.44 MeV) neutron scattering cross sections from 12 C are presented at 15.6, 16.8 and 17.3 MeV. The existing 18.2 MeV differential cross-section data were combined with newly measured analysing power data to parametrise neutron scattering at this energy. The 12 C recoil kerma factors were calculated and reaction cross sections were obtained from a phase-shift analysis and coupled channel analyses in the 15.6-18.2 MeV energy range. (author)

  5. Kerma factors and reaction cross sections for n + /sup 12/C between 15 and 18 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W.; Chen, Z.M.; Baird, K.; Walter, R.L.

    1988-07-01

    Differential elastic and inelastic (4.44 MeV) neutron scattering cross sections from /sup 12/C are presented at 15.6, 16.8 and 17.3 MeV. The existing 18.2 MeV differential cross-section data were combined with newly measured analysing power data to parametrise neutron scattering at this energy. The /sup 12/C recoil kerma factors were calculated and reaction cross sections were obtained from a phase-shift analysis and coupled channel analyses in the 15.6-18.2 MeV energy range.

  6. Interaction of 14 MeV neutrons with hydrogenated target proton emission calculation

    International Nuclear Information System (INIS)

    Martin, G.; Perez, N.; Desdin.

    1996-01-01

    Using neutron emission data of a 14 MeV neutron generator, a paraffin target, and based on the n + H 1 → n '+ p reaction, have been obtained the characteristics of the proton emission in a proton-neutron mixed field. It was used Monte Carlo simulation and it was obtained the proton output as function of the converter width and the energy spectrum of protons corresponding to different converter thickness. Among 0.07 and 0.2 cm there is a maximum zone for the proton emission. The energy spectrum agrees with obtained on previous papers. Figures showing these results are provided

  7. Neutron cross section standards for the energy region above 20 MeV

    International Nuclear Information System (INIS)

    1991-01-01

    These proceedings of a specialists' meeting on Neutron cross section standards for the energy region above 20 MeV are divided into 6 sessions bearing on: - session 1: status of the date base for (n-p) scattering (2 conferences) - session 2: status of nucleon-nucleon phase shift calculations (1 conference) - session 3: recent and planned experimental work on n-p cross section measurements and facilities (7 conferences) - session 4: Instruments for utilizing the H (n.n) standard for neutron fluence measurement (4 conferences) - session 5: proposal for other neutron cross-section standards (4 conferences) - session 6: monitor reactions for radiation dosimetry (3 conferences)

  8. Integral cross-section measurements for investigating the emission of complex particles in 14 MeV neutron-induced nuclear reactions

    International Nuclear Information System (INIS)

    Qaim, S.M.

    1981-01-01

    Some of the off-line techniques used for the determination of integral cross-section data are reviewed and, as a critical check, some typical data sets are compared. The systematic trends reported in the cross-section data for (n,d), (n,t), (n, 3 He) and (n,α) reactions are discussed. A brief discussion of the possible reaction mechanisms is given. Some of the applications of the data are outlined. (author)

  9. Measurement of the fission cross-section ratio for 237Np/235U around 14 MeV neutron energies

    International Nuclear Information System (INIS)

    Desdin, L.; Szegedy, S.; Csikai, J.

    1989-01-01

    Fission cross-section ratio was determined for 237 Np/ 235 U around 14 MeV neutron energies with a back-to-back ionization chamber. Neutrons were produced by a 180 KV accelerator using T(d,n) 4 He reaction. No significant energy dependence was found in the cross section ratio

  10. Lithium Blanket Module dosimetry measurements at the LOTUS 14-MeV neutron source facility

    International Nuclear Information System (INIS)

    Tsang, F.Y.; Leo, W.R.; Sahraoui, C.; Wuthrich, S.; Harker, Y.D.

    1986-01-01

    This paper describes the measurements and results of the dosimeter material reaction rates inside the Lithium Blanket Module (LBM) after irradiation by the LOTUS 14-MeV neutron source at the Ecole Polytechnique Federale de Lausanne. The measurement program has been designed to utilize sets of passive dosimeter materials in the form of foils and wires. The dosimetry materials reaction thresholds and interaction response ranges chosen for this series of measurements encompass the entire neutron spectra along the full length of the LBM fuel rods

  11. Zone plate imaging of 14-MeV neutrons

    International Nuclear Information System (INIS)

    Lerche, R.A.; Lane, S.M.; Hawryluk, A.M.; Ceglio, N.M.

    1986-01-01

    At Livermore we are interested in imaging the thermonuclear burn region of fusion targets irradiated at our Nova laser facility. We expect compressed core diameters to be 10's of microns, and would like images with better than 10-μm resolution. Alpha particle images provided the first direct information about the thermonuclear burn geometry in thin walled exploding pusher targets. In future high density target experiments, only highly penetrating radiations like the 14-MeV neutrons will escape the target core to provide information about the burn region. To make the measurement with a neutron ''pinhole'' camera requires a 10μm pinhole through about 10 cm of material and 10 14 to 10 15 source neutrons. Penumbral imaging offers some improvement over a pinhole. Zone plate coded imaging (ZPCI) techniques are particularly well suited for imaging small objects like the compressed core of a laser fusion target. We have been using ZPCI techniques to image nonpenetrating radiations like x rays and alpha particles for about 10 years. The techniques are well developed. Imaging penetrating radiations like 14-MeV neutrons using ZPCI techniques has several possible advantages. The large solid angle subtended by the Zone plate might substantially reduce the required target neutron yield needed to produce a useful image, and a neutron zone plate system with 10-μm resolution might be easier to fabricate and characterize than a pinhole system. This paper explores the use of ZPCI techniques with penetrating radiation

  12. Measurement of (n,Xn) reaction cross sections at 96 MeV

    International Nuclear Information System (INIS)

    Sagrado Garcia, Melle Inmaculada C.

    2006-10-01

    Nucleon induced reactions in the 20-200 MeV energy range are intensively studied since a long time. The evaporation and the pre-equilibrium processes correspond to an important contribution of the production cross section in these reactions. Several theoretical approaches have been proposed and their predictions must be tested. The experimental results shown in this work are the only complete set of data for the (n,Xn) reactions in this energy range. Neutron double differential cross section measurements using lead and iron targets for an incident neutron beam at 96 MeV were carried out at TSL Laboratory in Uppsala, Sweden. The measurements have been performed for the first time with an energy threshold of 2 MeV and for a wide angular range (15 angle - 98 angle). Neutrons have been detected using two independent setups, DECOI and DEMON and CLODIA and SCANDAL, in order to cover the whole energy range (2-100) MeV. The angular distributions, the differential cross sections and the total inelastic production cross sections have been calculated using the double differential cross sections. The comparison between the experimental data and the predictions given by two of the most popular simulation codes, GEANT3 and MCNPX, have been performed, as well as the comparison with the predictions of the microscopic simulation model DYWAN, selected for its treatment of nucleon-nucleon reactions. (author)

  13. Scattering of 14.2 MeV polarized neutrons from 12C

    International Nuclear Information System (INIS)

    Casparis, R.; Leemann, B.Th.; Preiswerk, M.; Rudin, H.; Wagner, R.; Zupranski, P.

    1976-01-01

    Polarized 14.2 MeV neutrons with a polarization of approximately 50% were produced in the 3 H(d(pol),n(pol)) 4 He reaction using vector polarized deuterons from an 'atomic beam' source of polarized ions. The angular distributions of the analyzing power in the elastic and inelastic (Q = -4.43 MeV) scattering of neutrons from carbon have been measured at ten angles in the range from 22 0 to 152 0 c.m. A time-of-flight technique was used to separate elastically and inelastically scattered neutrons. The results have been compared with theoretical calculations obtained with the DWBA and the coupled channels method. (Auth.)

  14. Low-temperature irradiation of niobium with 15-MeV neutrons

    International Nuclear Information System (INIS)

    Kerchner, H.R.; Coltman, R.R. Jr.; Klabunde, C.E.; Sekula, S.T.

    1978-01-01

    Niobium was irradiated at 4.2 K with high energy d-Be neutrons to a fluence of 3.7x10 15 n/cm 2 . The neutrons were generated at the Oak Ridge Isochronous Cyclotron by the breakup reaction of 40-MeV deuterons in a thick Be target. The resulting neutron energy spectrum was broadly peaked near 15 MeV. The 0.012-cm-diameter wire sample (RRR=200) was situated in a uniform transverse magnetic field. The critical current, flux flow resistance, and normal state resistance were measured by using a standard four-terminal technique. The critical current density and the flux flow resistivity were observed to increase with irradiation and to decrease toward the preirradiation values with subsequent isochronal annealing between 4.2 K and 360 K. Using recent theories of flux line lattice deformation, the elementary pinning force is deduced and the result is compared to theoretical calculations. (Auth.)

  15. The SCANDAL facility - How to measure elastic neutron scattering in the 50-130 MeV range

    International Nuclear Information System (INIS)

    Klug, Joakim

    2001-01-01

    The interest in neutrons of energies above 20 MeV is growing rapidly, since new applications are being developed or have been identified. Transmutation of nuclear waste and cancer therapy with neutron beams are two research fields that would benefit from new neutron scattering data at these energies. A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), has been developed and installed at the neutron beam facility of the The Svedberg Laboratory in Uppsala. It can be used to study the (n,n), (n,p) and (n,d) reactions. This thesis describes the layout of the setup, the experimental procedure, and data analysis principles. The performance of the spectrometer is illustrated with measurements of the (n,p) and (n,n) reactions on 1 H and 12 C. In addition, the neutron beam facility is described in some detail

  16. Ion tail formation and its effect on 14-MeV neutron generation in D-3He plasmas

    International Nuclear Information System (INIS)

    Matsuura, H.; Nakao, Y.; Kudo, K.

    1992-01-01

    This paper reports on the triton distribution function in D- 3 He plasmas which is distorted from a Maxwellian owing to the presence of a 1.01-MeV birth component. The deuteron-triton reaction rate (i.e., 14-MeV neutron generation rate) in the plasma should be smaller than the values evaluated by assuming a Maxwellian triton distribution. A local Fokker-Planck calculation shows that although the degree of the decrease in 14-MeV neutron generation strongly depends on the plasma conditions and also on the energy loss mechanism, it becomes appreciable in actual burning plasmas

  17. The shielding of a 14 MeV neutron generator

    International Nuclear Information System (INIS)

    Brighton, D.R.

    1976-10-01

    The concrete masonry shield for a 14 MeV neutron generator was designed using data supplied by the manufacturer. Subsequent radiation surveys outside the shield showed doses higher than expected. Calculations indicated the sensitivity of dose transmission factors to concrete composition. The observed dose transmission factor agreed with that of Broerse but not with that of Hacke and Prudhomme. Measurements and calculations delineated the contribution that neutrons, scattered from the upper wall that supports the laboratory roof, made to the dose in adjoining areas. In redesigning the shield a compromise was made between additional cost and restrictions on the generator's duty cycle, which is automatically controlled to ensure personnel safety. (Author)

  18. The 56Fe(n,x α) reaction from threshold to 30 MeV

    International Nuclear Information System (INIS)

    Sterbenz, S.M.; Young, P.G.; Bateman, F.B.

    1994-01-01

    Alpha-particle emission in neutron reactions with 56 Fe has been studied from threshold to over 30 MeV using the spallation neutron source at WNR/LAMPF. Alpha-particle production cross sections, spectra, and angular distributions were measured at scattering angles of 30, 60, 90, and 135 degrees using detector telescopes consisting of a low-pressure gas proportional counter and a large area silicon detector. Time-of-flight techniques with a 10-meter flight path were used to deduce the incident neutron energies. Our results are compared with literature values and with several theoretical calculations

  19. High resolution 14 MeV neutron spectrometer

    International Nuclear Information System (INIS)

    Pillon, M.

    1986-01-01

    A neutron spectrometer, based both on the track position identification and the energy measurement of recoiling protons from a hydrogenous radiator is proposed. The expected performance limits of this spectrometer with regard to energy resolution (deltaE/E), efficiency (epsilon) and counting rate are evaluated in five different configurations. The results show the possibility of deriving an optimized spectrometer design for applications on large fusion devices such as JET and NET with an energy resolution up 1% at 14 MeV

  20. The method to set up file-6 in neutron data library of light nuclei below 20 MeV

    International Nuclear Information System (INIS)

    Zhang Jingshang; Han Yinlu

    2001-01-01

    So far there is no file-6 (double differential cross section data, DDX) of the light nuclei in the main evaluated neutron nuclear data libraries in the world. Therefore, locating a proper description on the double differential cross section of all kinds of outgoing particles from neutron induced light nucleus reaction below 20 MeV is necessary. The motivation for this work is to introduce a way to set up file-6 in the neutron data library

  1. 1g(9/2), 1f(5/2), and 1f(7/2) neutron inner hole responses in Sn-115 and Sn-119 via the ((d)over-right-arrow,t) reaction at E-d=200 MeV

    NARCIS (Netherlands)

    Langevin-Joliot, H; Van de Wiele, J; Guillot, J; Gerlic, E; Rosier, LH; Willis, A; Djalali, C; Morlet, M; Tomasi-Gustafsson, E; Blasi, N; Micheletti, S; van der Werf, SY

    Neutron inner hole responses in Sn-115 and Sn-119 nuclei have been studied via the ((d) over right arrow ,t) reaction at E-d=200 MeV using a polarized beam with both vector and tensor components. One-step pickup observables corresponding to the overlapping 1g(9/2), 1f(5/2), and 1f(7/2) responses

  2. Photospallation reactions of 133Cs and 139La by 100 MeV- and 200 MeV bremsstrahlungs

    International Nuclear Information System (INIS)

    Sakamoto, K.; Toramoto, H.; Hamajima, Y.; Okada, K.; Dohniwa, M.

    1984-01-01

    Spallation yields relative to the 196 Au yield from 197 Au(γ,n) of 26 to 46 nuclides of Sb, Te, I, Xe, Cs and/or Ba and La from 133 Cs and 139 La targets irradiated with bremsstrahlungs of end energies of 100 MeV and 200 MeV were radiochemically determined. The isomeric yield ratios for 132 La and 131 Ba from the ( 139 La + 100 MeV-γ), 132 La, 131 Ba, 121 Te and 119 Te from the ( 139 La + 200 MeV-γ, and 120 I, 121 Te and 119 Te from the ( 133 Cs +- 200 MeV-γ) were also determined. The isotopic yields from the (γ,yn) reactions decrease exponentially with increase of y up to 5, and show no dependence on energy and targets studied, indicating that the reactions of a few neutron emissions occur at energies lower than 100 MeV. When the product yields from the (γ,xpyn) reactions were plotted against (x + y) for each x (isotopic distribution), a regular variation of the Gaussian distributions, typical of nuclear spallation, was observed. Isobaric mass distributions and charge dispersions were deduced to extract characteristic features of these reactions. The isobaric distributions due only to photons of 100 MeV to 200 MeV, which were obtained by subtracting the 100 MeV-yields from the 200 MeV-yields, are very close to a symmetric one peaking at about 8 amu from the target masses. Nuclear charges are also dispersed symmetrically, with most probable N/Zsub(p) of about 1.3 replaced by about 1 amu to the neutron-deficient side from the beta stability valley in all the cases studied. Parameters included in Rudstam's semi-empirical formula were examined by comparing with the observed yield curves. The P values of 0.45 and 0.65, chosen for a better fit to the 200 MeV data on 133 Cs and 139 La, respectively, were larger than the predictions reported in the literature. The magic number effects of 139 La may explain the target-differences in mass distributions. (orig.)

  3. A 14-MeV beam-plasma neutron source for materials testing

    International Nuclear Information System (INIS)

    Futch, A.H.; Coensgen, F.H.; Damm, C.C.; Molvik, A.W.

    1989-01-01

    The design and performance of 14-MeV beam-plasma neutron sources for accelerated testing of fusion reactor materials are described. Continuous production of 14-MeV neutron fluxes in the range of 5 to 10 MW/m 2 at the plasma surface are produced by D-T reactions in a two-component plasma. In the present designs, 14-MeV neutrons result from collisions of energetic deuterium ions created by transverse injection of 150-keV deuterium atoms on a fully ionized tritium target plasma. The beam energy, which deposited at the center of the tritium column, is transferred to the warm plasma by electron drag, which flows axially to the end regions. Neutral gas at high pressure absorbs the energy in the tritium plasma and transfers the heat to the walls of the vacuum vessel. The plasma parameters of the neutron source, in dimensionless units, have been achieved in the 2XIIB high-β plasma. The larger magnetic field of the present design permits scaling to the higher energy and density of the neutron source design. In the extrapolation, care has been taken to preserve the scaling and plasma attributes that contributed to equilibrium, magnetohydrodynamic (MHD) stability, and microstability in 2XIIB. The performance and scaling characteristics are described for several designs chosen to enhance the thermal isolation of the two-component plasmas. 11 refs., 3 figs., 3 tabs

  4. Study of associated gamma from niobium under 14. 9 MeV neutron bombardments

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Hongyu; Yan Yiming; Fan Guoying; Lan Liqiac; Sun Suxu; Wang Qi; Hua Ming; Han Chongzhen; Liu Shuzhenn; Rong Yaning; and others

    1989-02-01

    The gamma ray spectra from niobium under 14.9 MeV neutron bombardments were measured by means of a pulsed /ital T/(/ital d/, /ital n/)/sup 4/He neutron source, associated particle method, Ge(Li) detector and time-of-flight technique at 7 angles between 30/degree/ and 140/degree/. 79 gamma lines were determined by a high resolution gamma spectrum analysis program, and reaction types and transition levels of 62 lines were roughly assigned. There were 40 ones of 79 lines, which were first found in reactions induced by neutrons. The differential cross sections of every gamma line at 7 angles were determined. It is shown that associated gamma ray emissions from this reaction are basically isotropic.

  5. The (p→,t) reaction on 58Ni and 56Fe at 24.6 MeV

    International Nuclear Information System (INIS)

    Polane, J.H.; Feix, W.F.; Hall, P.J. van; Klein, S.S.; Nijgh, G.J.; Poppema, O.J.; Wassenaar, S.D.

    1989-01-01

    The (p, t) reactions on 56 Fe and 58 Ni initiated by 24.6 MeV polarised protons has been investigated. The reaction process is described in terms of simultaneous and sequential neutron transfer. For all five final states studied the sequential process competes strongly with simultaneous transfer of a neutron pair. Theoretical values for the spectroscopic amplitudes were derived from shell-model wavefunctions; these seem to give a reliable description of the reaction process. (author)

  6. Neutron induced alpha production from carbon between 18 and 22 MeV

    International Nuclear Information System (INIS)

    Stevens, A.P.

    1976-10-01

    Cross sections for neutron induced alpha production in carbon were measured at seventeen energies between 18 and 22 MeV, using a deuterated anthracene crystal as both target and detector. Pulse shape discrimination was employed to separate the alphas and elastically scattered deuterons from the other reaction products. Published (n,d) elastic scattering data were used as a standard to obtain the alpha production cross sections. Comparison with available measurements shows good agreement

  7. High resolution inelastic gamma-ray measurements with a white neutron source from 1 to 200 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.O.; Laymon, C.M.; Wender, S.A.

    1990-01-01

    Measurements of prompt gamma rays following neutron-induced reactions have recently been made at the spallation neutron source at the WNR target area of LAMPF using germanium detectors. These experiments provide extensive excitation function data for inelastic neutron scattering as well as for other reactions such as (n,{alpha}), (n,n{alpha}), (n,p), (n,np), (n,nnp) and (n,xn) for 1 {le} {times} {le} 11. The continuous energy coverage available from 1 MeV to over 200 MeV is ideal for excitation function measurements and greatly extends the energy range for such data. The results of these measurements will provide a database for interpretation of gamma-ray spectra from the planned Mars Observer mission, aid in radiation transport calculations, allow verification of nuclear reaction models, and improve the evaluated neutron reaction data base.

  8. High resolution inelastic gamma-ray measurements with a white neutron source from 1 to 200 MeV

    International Nuclear Information System (INIS)

    Nelson, R.O.; Laymon, C.M.; Wender, S.A.

    1990-01-01

    Measurements of prompt gamma rays following neutron-induced reactions have recently been made at the spallation neutron source at the WNR target area of LAMPF using germanium detectors. These experiments provide extensive excitation function data for inelastic neutron scattering as well as for other reactions such as (n,α), (n,nα), (n,p), (n,np), (n,nnp) and (n,xn) for 1 ≤ x ≤ 11. The continuous energy coverage available from 1 MeV to over 200 MeV is ideal for excitation function measurements and greatly extends the energy range for such data. The results of these measurements will provide a database for interpretation of gamma-ray spectra from the planned Mars Observer mission, aid in radiation transport calculations, allow verification of nuclear reaction models, and improve the evaluated neutron reaction data base

  9. Little Boy neutron spectrum below 3 MeV

    International Nuclear Information System (INIS)

    Evans, A.E.; Bennett, E.F.; Yule, T.J.

    1984-01-01

    The leakage neutron spectrum from the Little Boy replica has been measured from 12 keV to 3 MeV using a high-resolution 3 He ionization chamber, and from 1 keV to 3 MeV using proton-recoil proportional counters. The 3 He-spectrometer measurements were made at distances of 0.75 and 2.0 m from the active center and at angles of 0 0 , 45 0 , and 90 0 with respect to the axis of the assembly. Proton-recoil measurments were made at 90 0 to the assembly axis at distances of 0.75 and 2.0 m, with a shielded measurement made at 2.0 m to estimate background due to scattering. The 3 He spectrometer was calibrated at Los Alamos using monoenergetic 7 Li(p,n) 7 Be neutrons to generate a family of response functions. The proton-recoil counters were calibrated at Argonne by studying the capture of thermal neutrons by nitrogen in the counters, by observation of the 24-keV neutron resonance in iron, and by relating to the known hydrogen content of the counters. The neutron spectrum from Little Boy was found to be highly structured, with peaks corresponding to minima in the iron total neutron cross section. In particular, influence of the 24-keV iron window was evident in both sets of spectra. The measurements provide information for dosimetry calculations and also a valuable intercomparison of neutron spectrometry using the two different detector types. Spectra measured with both detectors are in essential agreement. 8 references, 7 figures, 2 tables

  10. Neutron-Neutron effective range from a comparison of n-n and n-p quasi-free scattering at 24 MeV

    International Nuclear Information System (INIS)

    Witsch, W. von; Gomez Moreno, B.; Rosenstock, W.; Franke, R.; Steinheuer, B.

    1980-01-01

    Neutron-neutron and neutron-proton quasi-free scattering have been measured at Esub(n) = 24 MeV the d + n reaction to deduce the n-n effective range from a comparison of relative cross sections, reducing considerably experimental as well as theoretical uncertainties. A Monte Carlo analysis with exact three-body calculations yields rsub(nn) = 2.65 +- 0.18 fm. (orig.)

  11. In vitro activation of bone with 14 MeV neutrons

    International Nuclear Information System (INIS)

    Holmberg, P.; Hyvoenen, M.; Tarvainen, M.

    1978-01-01

    Samples of compact bone, bone marrow and spongiosa of cow femur have been irradiated in vitro with 14 MeV neutrons. The Ca/P ratio for compact bone was found to be 2.16+-0.24. The suitability of using 14 MeV neutrons and the 31 P(n, α) 28 Al reaction for studying the bone mineral composition in vitro is discussed. It was demonstrated that 14 MeV neutrons can be used for the determination of calcium and phosphorus in bone with the aid of the 44 Ca(n, p) 44 K and 31 P(n, α) 28 Al reactions, respectively. As the Ca/P ratio for compact bone is known, the calcium content can be deduced indirectly from a determination of the phosphorus. This method has the advantage of not requiring moderator materials, as in the case when the 48 Ca(n, γ) 49 Ca reaction is employed. The half-life of the 28 Al activity is short (T=2.243 m) so that only short irradiation times are necessary. (T.G.)

  12. Use of 13.5-MeV neutrons for protein determination in grain crops

    International Nuclear Information System (INIS)

    Barit, I.A.; Kuz'min, L.E.; Makarov, S.A.; Vozhzhov, V.F.; Pronman, I.M.

    1989-01-01

    One of the main objectives of the Food Supply Program, i.e., that of improving the quality of crop production, is bound up intimately with the intensification of work on the selection and genetics of high-protein grain and legume crops. High-protein stains cannot be isolated without the proper analytical service for mass testing of the nitrogen content in the grain, which is one of the main elements of protein. The neutron-activation method of nitrogen determination is based on the use of the 14 N(n, 2n) 13 N nuclear reaction (E th = 11.3 MeV) with an average neutron energy of ∼14.5 MeV. In this work the authors consider a new variant of the neutron-activation method of determining nitrogen in grain and legume crops. The method is based on the use of monoenergetic neutrons with an energy of ∼13.5 MeV, generated in relatively thin titanium-tritium targets by a mass-separated deuteron beam from neutron generators operating at 150-300 kV, in order to eliminate the interference of the reaction 39 K(n, 2n) 38 K (E thr = 13.4 MeV). The present method has been used to determine the protein content (mass %) in different grains and legumes at the All-Union Selection-Genetic Institute of the Lenin Academy of Agricultural Sciences. The correctness of the analysis was checked by comparison with the data of chemical analysis. The discrepancy between the results of the two methods does not exceed 3%, which is within the limits of the error of measurement of Δ and K s.r

  13. High energy proton simulation of 14-MeV neutron damage in Al2O3

    International Nuclear Information System (INIS)

    Muir, D.W.; Bunch, J.M.

    1975-01-01

    High-energy protons are a potentially useful tool for simulating the radiation damage produced by 14-MeV neutrons in CTR materials. A comparison is given of calculations and measurements of the relative damage effectiveness of these two types of radiation in single-crystal Al 2 O 3 . The experiments make use of the prominent absorption band at 206 nm as an index to lattice damage, on the assumption that peak absorption is proportional to the concentration of lattice vacancies. The induced absorption is measured for incident proton energies ranging from 5 to 15 MeV and for 14-MeV neutrons. Recoil-energy spectra are calculated for elastic and inelastic scattering using published angular distributions. Recoil-energy spectra also are calculated for the secondary alpha particles and 12 C nuclei produced by (p,p'α) reactions on 16 O. The recoil spectra are converted to damage-energy spectra and then integrated to yield the damage-energy cross section at each proton energy and for 14 MeV neutrons. A comparison of the calculations with experimental results suggests that damage energy, at least at high energies, is a reasonable criterion for estimating this type of radiation damage. (auth)

  14. Experimental techniques and theoretical models for the study of integral 14 MeV neutron cross sections

    International Nuclear Information System (INIS)

    Csikai, J.

    1981-01-01

    Owing to technical reasons, most of the data for fast neutron-induced reactions were measured at 14 MeV and the free parameters in nuclear reaction models have been determined at this energy. The discrepancies between experiment and theory are often due to the unmeasured or unreliable experimental data; therefore, it is important to survey the present techniques used for the measurement of total, elastic, nonelastic and partial nonelastic [(n,xn); (n,x charged); (n,f); (n,γ)] cross sections for 14 MeV neutrons. Systematics in the data as well as theoretical and semi-empirical models are also outlined. (author)

  15. Measurement of angular distribution of neutron flux for the 6 MeV race-track microtron based pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B.J., E-mail: bjp@physics.unipune.ernet.i [Department of Physics, University of Pune, Pune 411 007 (India); Chavan, S.T.; Pethe, S.N.; Krishnan, R. [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ernet.i [Department of Physics, University of Pune, Pune 411 007 (India)

    2010-09-15

    The 6 MeV race track microtron based pulsed neutron source has been designed specifically for the elemental analysis of short lived activation products, where the low neutron flux requirement is desirable. Electrons impinges on a e-{gamma} target to generate bremsstrahlung radiations, which further produces neutrons by photonuclear reaction in {gamma}-n target. The optimisation of these targets along with their spectra were estimated using FLUKA code. The measurement of neutron flux was carried out by activation of vanadium at different scattering angles. Angular distribution of neutron flux indicates that the flux decreases with increase in the angle and are in good agreement with the FLUKA simulation.

  16. The new JET 2.5-MeV neutron time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Elevant, T.; Belle, P.v.; Grosshoeg, G.; Hoek, M.; Jarvis, O.N.; Olsson, M.; Sadler, G.

    1992-01-01

    A major upgrade of the JET 2.5-MeV neutron time-of-flight spectrometer has been completed. The improvement has permitted ion temperature measurements for Maxwellian deuterium plasmas with T i >4 keV to be obtained in 0.5-s intervals. By combining observations of neutron and x-ray energy spectra with studies of γ-ray emission from reactions between fast deuterons and impurities, the effects of ICRF heating on the deuterium energy distribution have been studied. The time evolution of neutron energy spectra from deuterium-beam heated deuterium plasmas is illustrated and a method for evaluating the ion temperature from such sequences is indicated. Furthermore, the spectrometer has shown stable performance during high neutron fluxes

  17. Helium production by 10 MeV neutrons in iron, nickel and copper

    International Nuclear Information System (INIS)

    Haight, R.C.; Kneff, D.W.; Oliver, B.M.; Greenwood, L.R.; Vonach, H.

    1994-01-01

    Helium production cross sections for the elements Fe, Ni, and Cu and for the isotopes 56 Fe, 58 Ni and 60 Ni have been measured for 10-MeV neutrons. Samples were irradiated with an intense neutron source from the 1 H(t,n) reaction using a rotating gas cell. The generated helium was determined by isotope dilution gas mass spectrometry. Induced radioactivities and known cross sections were used together with calculations based on the source reaction to deduce the neutron fluence at each sample position. The results are in fair agreement with literature values for (n,α) cross sections measured by α-particle detection and integrated over the α-particle energies and angular distributions

  18. Tooth enamel dosimetric response to 2.8 MeV neutrons

    Science.gov (United States)

    Fattibene, P.; Angelone, M.; Pillon, M.; De Coste, V.

    2003-03-01

    Tooth enamel dosimetry, based on electron paramagnetic resonance (EPR) spectroscopy, is recognized as a powerful method for individual retrospective dose assessment. The method is mainly used for individual dose reconstruction in the epidemiological studies aimed at the radiation risk analysis. The study of the sensitivity of tooth enamel as a function of radiation quality is one of the main goals of the research in this field. In the present work, tooth enamel dose response in a monoenergetic neutron flux of 2.8 MeV, generated by the D-D reaction, was studied for in air and in phantom irradiations of enamel samples and of whole teeth. EPR measurements were complemented by Monte Carlo calculation and by gamma dose discrimination obtained with thermoluminescent and Geiger-Muller tube measurements. The 2.8 MeV neutrons to 60Co relative sensitivity was 0.33±0.08.

  19. Tooth enamel dosimetric response to 2.8 MeV neutrons

    International Nuclear Information System (INIS)

    Fattibene, P.; Angelone, M.; Pillon, M.; De Coste, V.

    2003-01-01

    Tooth enamel dosimetry, based on electron paramagnetic resonance (EPR) spectroscopy, is recognized as a powerful method for individual retrospective dose assessment. The method is mainly used for individual dose reconstruction in the epidemiological studies aimed at the radiation risk analysis. The study of the sensitivity of tooth enamel as a function of radiation quality is one of the main goals of the research in this field. In the present work, tooth enamel dose response in a monoenergetic neutron flux of 2.8 MeV, generated by the D-D reaction, was studied for in air and in phantom irradiations of enamel samples and of whole teeth. EPR measurements were complemented by Monte Carlo calculation and by gamma dose discrimination obtained with thermoluminescent and Geiger-Muller tube measurements. The 2.8 MeV neutrons to 60 Co relative sensitivity was 0.33±0.08

  20. Modification of EXIFON code and analysis of O16+n reactions in En=20-50 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Toru [Nippon Nuclear Fuel Development Co. Ltd., Oarai, Ibaraki (Japan)

    1997-03-01

    To evaluate the nuclear data concerning neutron induced reactions of O-16 and N-14 in the incident energy range of 20-50 MeV, the statistical multistep reaction code EXIFON was modified to include the outgoing channels of deuteron, triton and He-3. The calculated double differential cross sections (DDXs) with the modified code are compared with experimental DDXs. (author)

  1. Neutron spectrum determination of d(20)+Be source reaction by the dosimetry foils method

    Science.gov (United States)

    Stefanik, Milan; Bem, Pavel; Majerle, Mitja; Novak, Jan; Simeckova, Eva

    2017-11-01

    The cyclotron-based fast neutron generator with the thick beryllium target operated at the NPI Rez Fast Neutron Facility is primarily designed for the fast neutron production in the p+Be source reaction at 35 MeV. Besides the proton beam, the isochronous cyclotron U-120M at the NPI provides the deuterons in the energy range of 10-20 MeV. The experiments for neutron field investigation from the deuteron bombardment of thick beryllium target at 20 MeV were performed just recently. For the neutron spectrum measurement of the d(20)+Be source reaction, the dosimetry foils activation method was utilized. Neutron spectrum reconstruction from resulting reaction rates was performed using the SAND-II unfolding code and neutron cross-sections from the EAF-2010 nuclear data library. Obtained high-flux white neutron field from the d(20)+Be source is useful for the intensive irradiation experiments and cross-section data validation.

  2. Measurement of (n,Xn) reaction cross sections at 96 MeV; Measure des sections efficaces (n,Xn) a 96 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sagrado Garcia, Melle Inmaculada C. [Ecole Doctorale: SINEM, U.F.R. de Sciences, Universite de Caen/Basse-Normandie, Esplanade Paix14000 Caen (France)

    2006-10-15

    Nucleon induced reactions in the 20-200 MeV energy range are intensively studied since a long time. The evaporation and the pre-equilibrium processes correspond to an important contribution of the production cross section in these reactions. Several theoretical approaches have been proposed and their predictions must be tested. The experimental results shown in this work are the only complete set of data for the (n,Xn) reactions in this energy range. Neutron double differential cross section measurements using lead and iron targets for an incident neutron beam at 96 MeV were carried out at TSL Laboratory in Uppsala, Sweden. The measurements have been performed for the first time with an energy threshold of 2 MeV and for a wide angular range (15 angle - 98 angle). Neutrons have been detected using two independent setups, DECOI and DEMON and CLODIA and SCANDAL, in order to cover the whole energy range (2-100) MeV. The angular distributions, the differential cross sections and the total inelastic production cross sections have been calculated using the double differential cross sections. The comparison between the experimental data and the predictions given by two of the most popular simulation codes, GEANT3 and MCNPX, have been performed, as well as the comparison with the predictions of the microscopic simulation model DYWAN, selected for its treatment of nucleon-nucleon reactions. (author)

  3. The Karlsruhe Neutron Transmission Experiment (KANT): Spherical shell transmission measurements with 14 MeV neutrons on beryllium

    International Nuclear Information System (INIS)

    Moellendorff, U. von; Fischer, U.; Giese, H.; Kappler, F.; Tayama, R.; Wiegner, E.; Klein, H.; Alevra, A.

    1996-01-01

    This is a set of viewgraphs (no additional text) of a presentation on spherical shell transmission measurements with 14 MeV neutrons on beryllium; the cross for 9 Be(n,2n)2α for the energy range between threshold (1.85 MeV) and 20 MeV neutron energy is measured and the measurement is compared with the literature. Also, neutron leakage multiplication in spherical Be shells with various thicknesses are presented. Figs, tabs

  4. Determination of the emission rate for the 14 MeV neutron generator with the use of radio-yttrium

    Directory of Open Access Journals (Sweden)

    Laszynska Ewa

    2015-06-01

    Full Text Available The neutron emission rate is a crucial parameter for most of the radiation sources that emit neutrons. In the case of large fusion devices the determination of this parameter is necessary for a proper assessment of the power release and the prediction for the neutron budget. The 14 MeV neutron generator will be used for calibration of neutron diagnostics at JET and ITER facilities. The stability of the neutron generator working parameters like emission and angular homogeneity affects the accuracy of calibration other neutron diagnostics. The aim of our experiment was to confirm the usefulness of yttrium activation method for monitoring of the neutron generator SODERN Model: GENIE 16. The reaction rate induced by neutrons inside the yttrium sample was indirectly measured by activation of the yttrium sample, and then by means of the γ-spectrometry method. The pre-calibrated HPGe detector was used to determine the yttrium radioactivity. The emissivity of neutron generator calculated on the basis of the measured radioactivity was compared with the value resulting from its electrical settings, and both of these values were found to be consistent. This allowed for a positive verification of the reaction cross section that was used to determine the reaction rate (6.45 × 10−21 reactions per second and the neutron emission rate (1.04 × 108 n·s−1. Our study confirms usefulness of the yttrium activation method for monitoring of the neutron generator.

  5. Elastic neutron-proton differential cross section at 647 MeV

    International Nuclear Information System (INIS)

    Evans, M.L.

    1979-04-01

    The differential cross section for n-p elastic scattering in the angular range 51 0 was measured with high statistical accuracy using the 647 MeV monoenergetic neutron beam of the Los Alamos Meson Physics Facility. A proton recoil magnetic spectrometer was used for momentum analysis of the charge exchange protons from the reaction n+p→p+n. Absolute normalization of the cross section was established to within 7% using existing cross section data for the reaction p+p→π + +d. The results differ significantly from previous Dubna and PPA cross sections but agree well with recent Saclay data except at extreme backward angles. 41 references

  6. Evaluated neutron-induced cross sections for 40Ca from 20 to 40 MeV

    International Nuclear Information System (INIS)

    Hetrick, D.M.; Fu, C.Y.; Larson, D.C.

    1982-09-01

    Nuclear model codes were used to compute cross sections for neutron-induced reactions on 40 Ca for incident energies from 20 to 40 MeV. The input parameters for the model codes were determined through analysis of experimental data in this energy region. Computed cross sections along with emission spectra for each product were combined into an Evaluated Nuclear Data File (ENDF) using the proposed format for charged-particle reactions. Discussion of the models used, the resulting calculations, and the final evaluated data file are presented

  7. The production of high energy neutrons by secondary reactions

    International Nuclear Information System (INIS)

    Nieschmidt, E.B.; Roney, T.J.; Staples, D.R.; Harmon, J.F.; Burkhart, J.H.

    1994-01-01

    The potential of using binary reactions in targets containing Be is discussed. Data are presented from the use of Be and BeF 2 targets bombarded with 1.5, 1.7, 1.8 and 1.9 MeV protons. Neutron production is enhanced by the presence of the F by factors of ∼4

  8. Status of experimental data for neutron induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Mamoru [Tohoku Univ., Sendai (Japan)

    1998-11-01

    A short review is presented on the status of experimental data for neutron induced reactions above 20 MeV based on the EXFOR data base and journals. Experimental data which were obtained in a systematic manner and/or by plural authors are surveyed and tabulated for the nuclear data evaluation and the benchmark test of the evaluated data. (author). 61 refs.

  9. Neutron-deuteron analyzing power data at 19.0 MeV

    International Nuclear Information System (INIS)

    Weisel, G. J.; Tornow, W.; Crowe, B. J. III; Crowell, A. S.; Esterline, J. H.; Howell, C. R.; Kelley, J. H.; Macri, R. A.; Pedroni, R. S.; Walter, R. L.; Witala, H.

    2010-01-01

    Measurements of neutron-deuteron (n-d) analyzing power A y (θ) at E n =19.0 MeV are reported at 16 angles from θ c.m. =46.7 to 152.0 deg. The objective of the experiment is to better characterize the discrepancies between n-d data and the predictions of three-nucleon calculations for neutron energies above 16.0 MeV. The experiment used a shielded neutron source, which produced polarized neutrons via the 2 H(d-vector,n-vector) 3 He reaction, a deuterated liquid scintillator center detector (CD) and liquid-scintillator neutron side detectors. A coincidence between the CD and the side detectors isolated the elastic-scattering events. The CD pulse height spectrum associated with each side detector was sorted by using pulse-shape discrimination, time-of-flight techniques, and by removing accidental coincidences. A Monte Carlo computer simulation of the experiment accounted for effects due to finite geometry, multiple scattering, and CD edge effects. The resulting high-precision data (with absolute uncertainties ranging from 0.0022 to 0.0132) have a somewhat lower discrepancy with the predictions of three-body calculations, as compared to those found at lower energies.

  10. Differential cross section measurements for the 6Li(n,t)alpha reaction in the few MeV region

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, Matthew J [Los Alamos National Laboratory; Taddeucci, Terence N [Los Alamos National Laboratory; Hale, Gerald M [Los Alamos National Laboratory; Haight, Robert C [Los Alamos National Laboratory; O' Donnell, Johhn M [Los Alamos National Laboratory

    2008-01-01

    New measured differential cross sections of tritons and alpha particles following the {sup 6}Li(n,t){alpha} reaction are reported for incident neutron energies between 0.2 and approximately 20 MeV. The neutrons were produced by spallation at the WNR facility at the Los Alamos Neutron Science CEnter (LANSCE), with the incident neutron energy determined by the time-of-flight method. Four E-{Delta}E telescopes were used at eight laboratory angles. These data have been incorporated into a prior R-matrix fit for the compound {sup 7}Li system, and result in an (n,t) reaction cross section that is 4% to 10% higher than previous evaluations in the 1-3 MeV incident neutron energy region.

  11. Multi-element analysis of crude-oil samples by 14.6 MeV neutron activation

    International Nuclear Information System (INIS)

    Cam, N.F.; Cigeroglu, F.; Erduran, M.N.

    1997-01-01

    The instrumental neutron activation technique, using the SAMEST T-400 neutron generator with 14.6 MeV neutrons produced from 3 H(d,n) 4 He reaction, is demonstrated for multi-element analysis of Saudi-Arabian crude-oil samples. The system parameters for the absolute method (e.g., the counting solid-angle, intrinsic efficiency of the γ-ray detector, effective neutron flux, activation cross sections, etc.)were determined and the results of elemental concentrations were presented with the corrections for all possible interferences having been carefully considered. (author)

  12. Proposal for the Simultaneous Measurement of the Neutron–Neutron and Neutron–Proton Quasi-Free Scattering Cross Section via the Neutron–Deuteron Breakup Reaction at En = 19 MeV

    International Nuclear Information System (INIS)

    Tornow, W.; Howell, C. R.; Crowell, A. S.

    2013-01-01

    In order to confirm or refute the present discrepancy between data and calculation for the neutron–neutron quasi-free scattering cross section in the neutron–deuteron breakup reaction, we describe a new experimental approach currently being pursued at TUNL. (author)

  13. Hydrogen isotope double differential production cross sections induced by 62.7 MeV neutrons on a lead target

    International Nuclear Information System (INIS)

    Kerveno, M.; Haddad, F.; Eudes, Ph.; Kirchner, T.; Lebrun, C.; Slypen, I.; Meulders, J.P.; Le Brun, C.; Lecolley, F.R.; Lecolley, J.F.; Louvel, M.; Lefebvres, F.; Hilaire, S.; Koning, A.J.

    2002-01-01

    Double differential hydrogen isotope production cross sections have been extracted in 62.7 MeV neutron induced reactions on a lead target. The angular distribution was measured at eight angles from 20 deg. to 160 deg. allowing the extraction of angle-differential, energy differential, and total production cross sections. A first set of comparisons with several theoretical calculations is also presented

  14. Measurements of 14-MeV neutron cross-sections for the production of isomeric states in hafnium isotopes

    International Nuclear Information System (INIS)

    Patrick, B.H.; Sowerby, M.G.; Wilkins, C.G.; Russen, L.C.

    1990-01-01

    The cross sections for the production of isomeric states in the reactions 179 Hf(n,2n) 178m2 Hf, 180 Hf(n,2n) 179m2 Hf, 179 Hf(n,n') 179m2 Hf with 14 MeV neutrons have been measured and compared with the theoretical ones. 4 refs, 3 figs, 4 tabs

  15. Light charged particle production induced by fast neutrons (En=25-65 MeV) on 209Bi

    International Nuclear Information System (INIS)

    Raeymackers, Erwin; Slypen, Isabelle; Benck, Sylvie; Meulders, Jean-Pierre; Nica, Ninel; Corcalciuc, Valentin

    2002-01-01

    This paper presents the experimental set-up and data reduction procedures regarding the measurement of double-differential cross sections for light charged particle production in fast neutron induced reactions (n, px), (n, dx), (n, tx) and (n, αx) on bismuth in the incident neutron energy range 25-65 MeV and at laboratory angles from 20deg to 160deg. preliminary double-differential and energy-differential cross sections for hydrogen isotopes are presented. (author)

  16. Measurement of photo-neutron cross sections and isomeric yield ratios in the {sup 89}Y(γ,xn){sup 89-x}Y reactions at the bremsstrahlung end-point energies of 65, 70 and 75 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tatari, Mansoureh [Yazd Univ. (Iran, Islamic Republic of). Physics Dept.; Naik, Haladhara [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Kim, Guinyun; Kim, Kwangsoo [Kyungpook National Univ., Daegu (Korea, Republic of). Dept. of Physics; Shin, Sung-Gyun; Cho, Moo-Hyun [Pohang Univ. of Science and Technology (Korea, Republic of). Div. of Advanced Nuclear Engineering

    2017-07-01

    The flux-weighted average cross sections of the {sup 89}Y(γ,xn; x=1-4){sup 89-x}Y reactions and the isomeric yield ratios of the {sup 87m,g}Y, {sup 86m,g}Y, and {sup 85m,g}Y radionuclides produced in these reactions with the bremsstrahlung end-point energies of 65, 70 and 75 MeV have been determined by an activation and off-line γ-ray spectrometric technique using the 100 MeV electron linac in Pohang Accelerator Laboratory, Korea. The theoretical {sup 89}Y(γ,xn; x=1-4){sup 89-x}Y reaction cross sections for mono-energetic photons have been calculated using the computer code TALYS 1.6. Then the flux-weighted theoretical values were obtained to compare with the present data. The flux-weighted experimental and theoretical {sup 89}Y(γ,xn; x=1-4){sup 89-x}Y reaction cross sections increase very fast from the threshold values to a certain bremsstrahlung energy, where the other reaction channels open up. Thereafter it remains constant a while and then slowly decreases with the increase of cross sections for other reactions. Similarly, the isomeric yield ratios of {sup 87m,g}Y, {sup 86m,g}Y and {sup 85m,g}Y in the {sup 89}Y(γ,xn; x=2-4){sup 89-x}Y reactions from the present work and literature data show an increasing trend from their respective threshold values to a certain bremsstrahlung energy. After a certain point of energy, the isomeric yield ratios increase slowly with the bremsstrahlung energy. These observations indicate the role of excitation energy and its partitioning in different reaction channels.

  17. Use of the SPIRAL 2 facility for material irradiations with 14 MeV energy neutrons

    International Nuclear Information System (INIS)

    Mosnier, A.; Ridikas, D.; Ledoux, X.; Pellemoine, F.; Anne, R.; Huguet, Y.; Lipa, M.; Magaud, P.; Marbach, G.; Saint-Laurent, M.G.; Villari, A.C.C.

    2005-01-01

    The primary goal of an irradiation facility for fusion applications will be to generate a material irradiation database for the design, construction, licensing and safe operation of a fusion demonstration power station (e.g., DEMO). This will be achieved through testing and qualifying material performance under neutron irradiation that simulates service up to the full lifetime anticipated in the power plant. Preliminary investigations of 14 MeV neutron effects on different kinds of fusion material could be assessed by the SPIRAL 2 Project at GANIL (Caen, France), aiming at rare isotope beams production for nuclear physics research with first beams expected by 2009. In SPIRAL 2, a deuteron beam of 5 mA and 40 MeV interacts with a rotating carbon disk producing high-energy neutrons (in the range between 1 and 40 MeV) via C (d, xn) reactions. Then, the facility could be used for 3-4 months y -1 for material irradiation purposes. This would correspond to damage rates in the order of 1-2 dpa y -1 (in Fe) in a volume of ∼10 cm 3 . Therefore, the use of miniaturized specimens will be essential in order to effectively utilize the available irradiation volume in SPIRAL 2. Sample package irradiation temperature would be in the range of 250-1000 deg. C. The irradiation level of 1-2 dpa y -1 with 14 MeV neutrons (average energy) may be interesting for micro-structural and metallurgical investigations (e.g., mini-traction, small punch tests, etc.) and possibly for the understanding of specimen size/geometric effects of critical material properties. Due to the small test cell volume, sample in situ experiments are not foreseen. However, sample packages would be, if required, available each month after transfer in a special hot cell on-site

  18. Design status of an intense 14 MeV neutron source for cancer therapy

    CERN Document Server

    Yao, Z E; Cheng, S W; Jia, W B

    2002-01-01

    Design and development of an intense 14 MeV neutron source for cancer therapy is in progress at the Institute of Nuclear Research of Lanzhou University. The neutrons from the T(d,n) sup 4 He reaction are produced by bombarding a rotating titanium tritide target with a 40 mA deuteron beam at 600 keV. The designed neutron yield is 8x10 sup 1 sup 2 n/s and the maximum dose rate at a 100 cm source-to-skin distance is 25 cGy/min. The HV terminal, accelerating column and HV power supply are enclosed inside a stainless steel pressure vessel containing 6 atm SF sub 6 gas to provide the electrical insulation.

  19. Secondary standards (non-activation) for neutron data measurements above 20 MeV

    International Nuclear Information System (INIS)

    Haight, R.C.

    1991-01-01

    In addition to H(n,p) scattering and 235,238 U(n,f) reactions, secondary standards for neutron flux determination may be useful for neutron energies above 20 MeV. For experiments where gamma rays are detected, reference gamma-ray production cross sections are relevant. For neutron-induced charged particle production, standard (n,p) and (n,alpha) cross sections would be helpful. Total cross section standards would serve to check the accuracy of these measurements. These secondary standards are desirable because they can be used with the same detector systems employed in measuring the quantities of interest. Uncertainties due to detector efficiency, geometrical effects, timing and length of flight paths can therefore be significantly reduced. Several secondary standards that do not depend on activation techniques are proposed. 14 refs

  20. Evaluation of Cross-Section Data from Threshold to 40 MeV for some Neutron Reactions Important for Fusion Dosimetry Applications. Part 2 Evaluation of the Excitation Functions for the 59Co(n,3n)57Co, 89Y(n,2n)88Y, 93Nb(n,2n)92mNb, 169Tm(n,2n)168Tm and 209Bi(n,3n)207Bi Reactions

    International Nuclear Information System (INIS)

    Zolotarev, K.I.

    2010-11-01

    Evaluations of cross sections and their associated covariance matrices have been carried out for five dosimetry reactions: excitation functions were re-evaluated for the 89 Y(n,2n) 88 Y, 93 Nb(n,2n) 92 mNb and 169 Tm(n,2n) 168 Tm reactions over the neutron energy range from threshold up to 40 MeV; excitation functions were re-evaluated for the 59 Co(n,3n) 57 Co and 209 Bi(n,3n) 207 Bi reactions over the neutron energy range from threshold to 85 and 45 MeV, respectively. Uncertainties in the cross sections for all of those reactions were also derived in the form of relative covariance matrices. Benchmark calculations performed for 235 U thermal fission and 252 Cf spontaneous fission neutron spectra show that the integral cross sections calculated from the newly evaluated excitation functions exhibit improved agreement with related experimental data when compared with the equivalent data from the IRDF-2002 library. (author)

  1. Analysis of oxygen content in steel by means of 14 MeV neutrons

    International Nuclear Information System (INIS)

    Chuang, L.S.; Wong, K.C.; Chiu, W.Y.

    1975-01-01

    A sealed-tube type 14 MeV neutron generator with maximum neutron output of 10 11 n/sec, incorporating a pneumatic sample transfer system of single-tube type and with a single rotation of the sample during neutron irradiation, is used to develop a method suitable for routine work in industrial applications. A pulse shape analyser system incorporating an organic scintillation detector is used for monitoring neutron flux level during the neutron irradiation of the sample. Polyethylene, of oxygen content 163 ppm determined by comparison with lucite, is used as the steel sample carrier. A 3 x 3 in. NaI(Tl) crystal is used with a single channel analyser to count the 6.1 and 7.1 MeV gamma rays emitted from 16 N as a result of the reaction 16 O(n,p) 16 N. As the present activation analysis makes use of the comparison method, a steel-mylar standard made of layered steel and mylar discs is prepared and a calibration curve constructed. A method of correcting the oxygen contribution in the polyethylene sample carrier is devised and the content of oxygen in the steel standard is determined. A survey of neutron flux distribution is also attempted and it is found that nearly symmetrical distribution of the flux, about the centre of the sample carrier which is placed with its axis in parallel to the plane of the disc-shaped target of the neutron-generating tube, is far from being flat. (Auth.)

  2. Neutron-deuteron analyzing power data at En=22.5 MeV

    Science.gov (United States)

    Weisel, G. J.; Tornow, W.; Crowell, A. S.; Esterline, J. H.; Hale, G. M.; Howell, C. R.; O'Malley, P. D.; Tompkins, J. R.; Witała, H.

    2014-05-01

    We present measurements of n-d analyzing power, Ay(θ), at En=22.5 MeV. The experiment uses a shielded neutron source which produced polarized neutrons via the 2H(d⃗,n⃗)3He reaction. It also uses a deuterated liquid-scintillator center detector and six pairs of liquid-scintillator neutron side detectors. Elastic neutron scattering events are identified by using time-of-flight techniques and by setting a window in the center detector pulse-height spectrum. The beam polarization is monitored by using a high-pressure helium gas cell and an additional pair of liquid-scintillator side detectors. The n-d Ay(θ) data were corrected for finite-geometry and multiple-scattering effects using a Monte Carlo simulation of the experiment. The 22.5-MeV data demonstrate that the three-nucleon analyzing power puzzle also exists at this energy. They show a significant discrepancy with predictions of high-precision nucleon-nucleon potentials alone or combined with Tucscon-Melbourne or Urbana IX three-nucleon forces, as well as currently available effective-field theory based potentials of next-to-next-to-next-to-leading order.

  3. Container Inspection Utilizing 14 MeV Neutrons

    Science.gov (United States)

    Valkovic, Vladivoj; Sudac, Davorin; Nad, Karlo; Obhodas, Jasmina

    2016-06-01

    A proposal for an autonomous and flexible ship container inspection system is presented. This could be accomplished by the incorporation of an inspection system on various container transportation devices (straddle carriers, yard gentry cranes, automated guided vehicles, trailers). The configuration is terminal specific and it should be defined by the container terminal operator. This enables that no part of the port operational area is used for inspection. The inspection scenario includes container transfer from ship to transportation device with the inspection unit mounted on it. The inspection is performed during actual container movement to the container location. A neutron generator without associated alpha particle detection is used. This allows the use of higher neutron intensities (5 × 109 - 1010 n/s in 4π). The inspected container is stationary in the “inspection position” on the transportation device while the “inspection unit” moves along its side. The following analytical methods will be used simultaneously: neutron radiography, X-ray radiography, neutron activation analysis, (n, γ) and (n,n'γ) reactions, neutron absorption. and scattering, X-ray backscattering. The neutron techniques will utilize “smart collimators” for neutrons and gamma rays, both emitted and detected. The inspected voxel is defined by the intersection of the neutron generator and the detectors solid angles. The container inspection protocol is based on identification of discrepancies between the cargo manifest, elemental “fingerprint” and radiography profiles. In addition, the information on container weight is obtained during the container transport and screening by measuring of density of material in the container.

  4. A semiconductor counter telescope for neutron reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Lalovic, B I; Ajdacic, V S [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1963-12-15

    A counter telescope consisting of two or three semiconductor counters for {delta}E/{delta}x vs. E analysis was made for studying nuclear reactions induced by 14.4 MeV neutrons. Various factors important for the telescope performance are discussed in details and some solutions for getting an optimum resolution and a low background are given. Protons, deuterons and alpha particles resulting from scattering and reactions of 14.4 MeV neutrons on deuterium, tritium, praseodymium and niobium were detected, and pulses from the counters recorded on a two-dimensional analyzer. These experiments have shown that the telescope compares favorably with other types of telescopes with regards to the upper limit of neutron flux which can be used, (DELTADELTA)x and E resolution, versatility and compactness (author)

  5. Development of neutron-monitor detectors applicable for energies up to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tatsuhiko; Endo, Akira; Yamaguchi, Yasuhiro; Kim, Eunjoo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakamura, Takashi [Tohoku Univ., Sendai, Miyagi (Japan)

    2003-03-01

    For the purpose of monitoring of neutron doses in high energy accelerator facilities, we have been developing neutron detectors which are applicable for neutron energies up to 100 MeV. The present paper reports characteristics of a phoswitch-type neutron detector which is composed of a liquid organic scintillator and {sup 6}Li+ZnS(Ag) sheets. (author)

  6. Neutron radiative capture by the 241Am nucleus in the energy range 1 keV-20 MeV

    International Nuclear Information System (INIS)

    Zolotarev, K.I.; Ignatyuk, A.V.; Tolstikov, V.A.; Tertychnyj, G.Ya.

    1998-01-01

    Production of high actinides leads to many technological problems in the nuclear power. The 241 Am(n,γ) 242 Am reaction is one of the sources of high actinide buildup. So a knowledge of the radiative capture cross-section of 241 Am for neutron energies up to 20 MeV is of considerable important for present day fission reactors and future advanced reactors. The main goal of this paper is the evaluation of the excitation function for the reaction 241 Am(n,γ) 242 Am in the energy range 1 keV-20 MeV. The evaluation was done on the basis of analysed experimental data, data from theoretical model calculations and systematic predictions for 14.5 MeV and 20 MeV. Data from the present evaluation are compared with the cross-section values given in the evaluations carried out earlier. (author)

  7. European Collaboration for High-Resolution Measurements of Neutron Cross Sections between 1 MeV and 250 MeV

    CERN Multimedia

    Leal, L C; Kitis, G; Guber, K H; Yuasa nakagawa, K; Koehler, P E; Quaranta, A

    2002-01-01

    The experimental determination of neutron cross section data has always been of primary importance in Nuclear Physics. Many of the salient features of nuclear levels and densities can be determined from the resonant structure of such cross sections and of their decay scheme. An associated importance of precise neutron induced reaction cross sections has resulted from the worldwide interest in Accelerator Driven Systems (ADS) that has emerged at CERN and elsewhere. Many applications, such as accelerator-based transmutation of nuclear waste, energy amplification medical research, astrophysical applications and also fusion research require nuclear data that quantitatively and qualitatively go beyond the presently available traditional evaluation.\\\\ \\\\We consider a spallation driven TOF facility at the CERN-PS with an unprecedented neutron flux (1000 times the existing ones) in the broad energy range between 1 eV and 250 MeV and with very high energy resolution. The present concept for an intense neutron source m...

  8. Proposed 14-MeV neutron spectrometer system for jet

    International Nuclear Information System (INIS)

    Elevant, T.

    1983-09-01

    In order to cover a broad range of neutron spectra and fluxes during D-T operation in JET we propose the use of two different detector techniques neutron induced reactions in a silicon surface barrier detector and neutron-proton elastic scattering in a liquid scintillator. Experimental investigations of 28 Si(n,α) 25 Mg reactions have resulted in resolutions of ΔE(FWHM)/E=0.02 with intrinsic efficiency equal to 10 -4 and a maximum useful countrate equal to 1600 c.p.s. However, due to overlap of adjacent peaks, caused by excited states of 25 Mg, this spectrometer has an operation range limited to FWHM/E=0.04. For broader neutron distributions we propose the use of a conventional liquid scintillator system with a light guide, photomultiplier tube and modified conventional electronics. Experiments have demonstrated a resolution equal to 0.05 and a n/γ separation better than 90percent at total countrates equal to 2times10 5 c.p.s. (author)

  9. Radiography studies with gamma rays produced by 14-MeV fusion neutrons

    International Nuclear Information System (INIS)

    Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-01-01

    Oxygen contained in pure water has been activated via the 16 O(n, p) 16 N reaction using 14-MeV neutrons produced at a neutron generator with the 3 H(d,n) 4 He source. Photons of 6.129 and 7.115 MeV, generated by the decay of 7.13-second 16 N, were then used to demonstrate the feasibility of employing highly penetrating, nearly monoenergetic gamma rays for radiography studies of thick, dense objects composed of elements with medium to relatively high atomic numbers. A simple radiography apparatus was constructed by circulating water continuously between a position near the target of the neutron generator and a remote location where photon transmission measurements were conducted. A sodium iodide scintillator was employed to detect the photons. Pulses equivalent to photon energies smaller than 2.506 MeV (corresponding to the cascade sum of 1.333- and 1.173-MeV gamma rays from the decay of 5.271-year 60 Co) were rejected by the electronics settings in order to reduce background and improve the signal-to-noise (S/N) ratio. Respectable S/N ratios on the order of 20-to-1 were achieved with this setup. Most of the background (N) could be attributed to ambient environmental radiation and cosmic-ray interactions with the lead shielding and detector. Four representative objects were examined by photon radiography in this study. This demonstrated how such - interesting features as hidden holes and discontinuities in atomic number could be easily identified from observed variations in the intensity of transmitted photons. Some advantages of this technique are described, and potential applications are suggested for a future scenario where fusion reactors are used to generate electric power and very intense sources of high-energy photons from 16 N decay are continuously available as a byproduct of the reactor cooling process

  10. Calculation of 14 MeV neutron transmission

    International Nuclear Information System (INIS)

    Vyrskij, M.Yu.; Dubinin, A.A.; Zhuravlev, V.I.; Isaev, N.V.; Klintsov, A.A.; Krivtsov, A.S.; Linge, I.I.; Panfilov, E.I.; Prit'mov, A.P.

    1979-01-01

    The possibility of using the 28 group constant system (28-GCS) for calculating the transport of neutrons with initial energy of 14 MeV in thermonuclear reactor blankets is studied. A blanket project suggested by the Oak Ridge National Laboratory is used as a test version to estimate applicability of the 28-GCS. Niobium is used in a blanket as a structural material. A mixture of lithium nuclides is used for tritium production. The results of blanket test calculation and the calculational results obtained using the 28-GCS from the UKNDL library are compared. The numerical 28-group calculation of blonket is carried out by means of the ROZ-6 and ROZ-9 codes but not by the Monte-Carlo method as compared with the test calculation. Time of the blanket calculation on the BESM-6 computer by means of the ROZ-9 code in 2P 5 approximation using the 28-GCS amounts to 10 min. It is noted that to create effective codes for the numerical blanket calculation different calculational grids are necessary for different energy grups. The calculations carried out have shown the possibility of using the 28-group library of cross sections for the numerical solution of the neutron transport equation in estimating analysis of blankets

  11. Neutron spectrum measurement in D + Be reaction

    CERN Document Server

    Abbasi-Davani, F; Aslani, G R; Etaati, G R; Koohi-Fayegh, R

    2002-01-01

    In this project the neutron spectra from the reaction of deuteron on beryllium nuclei is measured. The energies of deuterons were 7, 10, 13 and 15 MeV, and these measurements are performed at 10,30 and 50 degrees relative to the beam of deuterons. The detector used is 76 by 76 mm right circular cylinder of N E-213 liquid scintillator. The zero crossing technique is used for gamma discrimination. For the elimination of the background radiation, a Polyethylene block, 40 cm in thickness, with inserted cadmium sheets, and a lead block, 5 cm in thickness, were used. In order to obtain the background radiation spectrum, the latter blocks were placed between the target and the detector to eliminate neutron and gamma radiations reaching the detector directly. sup F ORIST sup c ode is used to unfold the neutron spectra from the measured pulse high t spectra and sup O 5S sup a nd sup R ESPMG sup c odes are used to obtain the detector response matrix.

  12. Charged-particle magnetic-quadrupole spectrometer for neutron induced reactions

    International Nuclear Information System (INIS)

    Haight, R.C.; Grimes, S.M.; Tuckey, B.J.; Anderson, J.D.

    1975-01-01

    A spectrometer has been developed for measuring the charged particle production cross sections and spectra in neutron-induced reactions. The spectrometer consists of a magnetic quadrupole doublet which focuses the charged particles onto a silicon surface barrier detector telescope which is 2 meters or more from the irradiated sample. Collimators, shielding, and the large source-to-detector distance reduce the background enough to use the spectrometer with a 14-MeV neutron source producing 4 . 10 12 n/s. The spectrometer has been used in investigations of proton, deuteron, and alpha particle production by 14-MeV neutrons incident on various materials. Protons with energies as low as 1.1 MeV have been measured. The good resolution of the detectors has also made possible an improved measurement of the neutron- neutron scattering length from the 0 0 proton spectrum from deuteron breakup by 14-MeV neutrons

  13. Secondary standard neutron detector for measuring total reaction cross sections

    International Nuclear Information System (INIS)

    Sekharan, K.K.; Laumer, H.; Gabbard, F.

    1975-01-01

    A neutron detector has been constructed and calibrated for the accurate measurement of total neutron-production cross sections. The detector consists of a polyethylene sphere of 24'' diameter in which 8- 10 BF 3 counters have been installed radially. The relative efficiency of this detector has been determined for average neutron energies, from 30 keV to 1.5 MeV by counting neutrons from 7 Li(p,n) 7 Be. By adjusting the radial positions of the BF 3 counters in the polyethylene sphere the efficiency for neutron detection was made nearly constant for this energy range. Measurement of absolute efficiency for the same neutron energy range has been done by counting the neutrons from 51 V(p,n) 51 Cr and 57 Fe(p,n) 57 Co reactions and determining the absolute number of residual nuclei produced during the measurement of neutron yield. Details of absolute efficiency measurements and the use of the detector for measurement of total neutron yields from neutron producing reactions such as 23 Na(p,n) 23 Mg are given

  14. Simulation study of neutron production in thick beryllium targets by 35 MeV and 50.5 MeV proton beams

    Science.gov (United States)

    Shin, Jae Won; Park, Tae-Sun

    2017-09-01

    A data-driven nuclear model dedicated to an accurate description of neutron productions in beryllium targets bombarded by proton beams is developed as a custom development that can be used as an add-on to GEANT4 code. The developed model, G4Data(Endf7.1), takes as inputs the total and differential cross section data of ENDF/B-VII.1 for not only the charge-exchange 9Be(p,n)9B reaction which produces discrete neutrons but also the nuclear reactions relevant for the production of continuum neutrons such as 9Be(p,pn)8Be and 9Be(p,n α) 5Li . In our benchmarking simulations for two experiments with 35 MeV and 50.5 MeV proton beams impinged on 1.16 and 1.05 cm thick beryllium targets, respectively, we find that the G4Data(Endf7.1) model can reproduce both the total amounts and the spectral shapes of the measured neutron yield data in a satisfactory manner, while all the considered hadronic models of GEANT4 cannot.

  15. Light-Ion Production in the Interaction of 96 MeV Neutrons with Silicon

    International Nuclear Information System (INIS)

    Tippawan, U.; Dangtip, S.; Pomp, S.; Atac, A.; Bergenwall, B.; Blomgren, J.; Hildebrand, A.; Johansson, C.; Klug, J.; Mermod, P.; Oesterlund, M.; Nilsson, L.; Elmgren, K.; Olsson, N.; Jonsson, O.; Prokofiev, A.V.; Renberg, P.-U.; Nadel-Turonski, P.; Corcalciuc, V.; Watanabe, Y.

    2005-01-01

    Radiation effects induced by terrestrial cosmic rays in microelectronics, on board aircrafts as well as at sea level, have recently attracted much attention. The most important particle radiation is due to spallation neutrons, created in the atmosphere by cosmic-ray protons. When, e.g., an electronic memory circuit is exposed to neutron radiation, charged particles can be produced in a nuclear reaction. The charge released by ionization can cause a flip of the memory content in a bit, which is called a single-event upset (SEU). This induces no hardware damage to the circuit, but unwanted re-programming of memories, CPUs, etc., can have consequences for the reliability, and ultimately also for the safety of the system.Data on energy and angular distributions of the secondary particles produced by neutrons in silicon nuclei are essential input for analyses and calculation of SEU rate. In this work, double-differential cross sections of inclusive light-ion (p, d, t, 3He and α) production in silicon, induced by 96 MeV neutrons, are presented. Energy distributions are measured at eight laboratory angles from 20 deg. to 160 deg. in steps of 20 deg. Deduced energy-differential and production cross sections are reported as well. Experimental cross sections are compared to theoretical reaction model calculations and existing experimental data in the literature

  16. Determination of oxygen in coals by activation analysis with 14 MeV neutrons

    International Nuclear Information System (INIS)

    Arbildo, A.; Espinosa, R; Poma, C.; Eyzaguirre, J.; Hinostroza, H.

    1989-01-01

    A method for non-destructive oxygen determination in coals was developed. It is based on O-16(n,p)N-16 nuclear reaction with 14 MeV neutrons produced in an AID-J 25 neutron generator. This analysis was possible because of the interface development to control the whole irradiation process and subsequent measures of N-16 produced activity from a microcomputer this method was additionally automated by the software development to treat the recorded spectrum in a multiscalimeter analyser. It is described our computer programs and it is shown the results for coal samples from different origins. It is estimated the organic carbon coal in samples from the oxygen analysis. And it is suggested a correlatian between such content and volatile material. Irradiating, decreasing and counting time added up 45 seconds, giving a fast analysis and obtaining accuracy between 1 and 3

  17. Measurement of neutron production by 500 MeV proton beam

    International Nuclear Information System (INIS)

    Hirayama, Hideo; Ban, Shuichi

    1981-01-01

    Measurement of high energy neutrons is difficult, because the cross section data are scarce, the cross section at high energy is usually small, and the monoenergetic neutrons are hardly obtained. At the National Laboratory for High Energy Physics (KEK), various threshold detectors have been used for high energy neutron measurement. A carbon detector is a standard detector for high energy neutrons, since the cross section of the C 12 (n, 2n) C 11 reaction is almost constant at higher energy than 20 MeV, and the data have been well known. The half-life of the product (C 11 ) is about 20 min, and other activities with longer half-life than 1 min are restricted to Be 7 and C 11 . As a carbon detector, a plastic scintillator is used, and the neutron spectra observed at the Booster Beam Dump Room of KEK are presented. The results of measurements were compared with the calculated results using a Monte Carlo code made at KEK. Agreement between both results was good. (Kato, T.)

  18. Cross-sections of {sup 45}Sc(n,2n){sup 44m,g}Sc reaction from the reaction threshold to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Luo, J. [Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering; Peking Univ., Beijing (China). State Key Laboratory of Nuclear Physics and Technology; Liu, R.; Jiang, L. [Chinese Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry; Liu, Z.; Sun, G.; Ge, S. [Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering

    2013-07-01

    Cross sections of {sup 45}Sc(n,2n){sup 44m,g}Sc reactions and their isomeric cross section ratios {sigma}{sub m}/{sigma}{sub g} have been measured at three neutron energies between 13.5 and 14.8 MeV using the activation technique. The pure cross section of the groundstate was then obtained by utilizing the absolute cross section of the metastable state and analysis methods of residual nuclear decay. The monoenergetic neutron beam was produced via the {sup 3}H(d, n){sup 4}He reaction. The cross sections were also estimated with the TALYS-1.2 nuclear model code using different level density options, at neutron energies varying from the reaction threshold to 20 MeV. Results are also discussed and compared with some corresponding values found in the literature. (orig.)

  19. Cross-sections of 45Sc(n,2n)44m,gSc reaction from the reaction threshold to 20 MeV

    International Nuclear Information System (INIS)

    Luo, J.; Peking Univ., Beijing; Liu, R.; Jiang, L.; Liu, Z.; Sun, G.; Ge, S.

    2013-01-01

    Cross sections of 45 Sc(n,2n) 44m,g Sc reactions and their isomeric cross section ratios σ m /σ g have been measured at three neutron energies between 13.5 and 14.8 MeV using the activation technique. The pure cross section of the groundstate was then obtained by utilizing the absolute cross section of the metastable state and analysis methods of residual nuclear decay. The monoenergetic neutron beam was produced via the 3 H(d, n) 4 He reaction. The cross sections were also estimated with the TALYS-1.2 nuclear model code using different level density options, at neutron energies varying from the reaction threshold to 20 MeV. Results are also discussed and compared with some corresponding values found in the literature. (orig.)

  20. Proton pickup from /sup 27/Al via the (n,d) reaction at 56. 3 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Brady, F P; Shepard, J R; King, N S.P.; McNaughton, M W; Wang, J C [California Univ., Davis (USA)

    1977-09-26

    Energy spectra of deuterons from the /sup 27/Al(n,d)/sup 26/Mg reaction due to 56.3 MeV neutrons incident have been measured for 10/sup 0/ <= thetasub(c.m.) <= 55 /sup 0/. The angular distributions for the excitations observed at 0.0, 1.81, and 4.33 MeV are quite well described by DWBA calculations and yield spectroscopic factors in agreement with shell model calculations; but with calculations based on the rotational model, the agreement is less satisfactory particularly for the 4.33 MeV level. For the states at 7.86 and 9.16 MeV the fits, assuming p-shell pick-up, are only fair. Comparison with /sup 27/Al(d,/sup 3/He)/sup 26/Mg measurements shows that the deduced spectroscopic factors for the two reactions agree quite well.

  1. Review of RBE values of 15 MeV neutrons for effects on normal tissues

    NARCIS (Netherlands)

    Broerse, J.J.

    1974-01-01

    Values of the relative biological effectiveness (RBE) of fast neutrons for effect on normal tissue depend not only on the neutron energy and the dose, but also on the type of tissue irradiated. Values of the RBE of 15 MeV neutrons are reviewed for rapidly proliferating rodent tissue, such as mouse

  2. The neutron-deuteron elastic scattering angular distribution at 95 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Mermod, Philippe

    2004-04-01

    The neutron-deuteron elastic scattering differential cross section has been measured at 95 MeV incident neutron energy, with the Medley setup at TSL in Uppsala. The neutron-proton differential cross section has also been measured for normalization purposes. The data are compared with theoretical calculations to investigate the role of three-nucleon force effects.

  3. Measurement of the D(n,2n)p reaction cross section up to 30 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G.; Arnal, N. [CEA Bruyeres-le-Chatel (DPTA/SPN), 91 (France). Dept. de Physique Theorique et Appliquee; Dore, D. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee (DAPNIA/SPhN), 91- Gif sur Yvette (France)

    2008-07-01

    This article presents a running experimental program to measure the neutron-induced deuteron break-up reaction between 5 and 10 MeV, and between 20 and 30 MeV. The measurements are performed with a C{sub 6}D{sub 6} detector as deuteron target placed in a beam line of the Tandem 7 MV accelerator in Cea facilities, dedicated to the use of a 4{pi} neutron detector which allows us to measure the two emitted neutrons. The total uncertainty is evaluated from 8.5 to 11 per cent. This experimental work is done in parallel with an ab-initio calculation of the reaction which is sum up in the text. Comparisons to the measured cross section are done together with CENDL2 and Endf/B-VII evaluations. (authors)

  4. Measurement of the D(n,2n)p reaction cross section up to 30 MeV

    International Nuclear Information System (INIS)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G.; Arnal, N.

    2008-01-01

    This article presents a running experimental program to measure the neutron-induced deuteron break-up reaction between 5 and 10 MeV, and between 20 and 30 MeV. The measurements are performed with a C 6 D 6 detector as deuteron target placed in a beam line of the Tandem 7 MV accelerator in Cea facilities, dedicated to the use of a 4π neutron detector which allows us to measure the two emitted neutrons. The total uncertainty is evaluated from 8.5 to 11 per cent. This experimental work is done in parallel with an ab-initio calculation of the reaction which is sum up in the text. Comparisons to the measured cross section are done together with CENDL2 and Endf/B-VII evaluations. (authors)

  5. Energy dependence of V/sub tau/ in the (p,n) reaction 10 to 30 MeV

    International Nuclear Information System (INIS)

    Poppe, C.H.

    1979-03-01

    Because of the relative insensitivity of the (p,n) analog reaction to details of the nuclear wave functions, a simple description is given for the studied reaction 92 Mo(p,n) at 26 MeV in which a proton is created and a neutron destroyed in the 1/sub g9/2/ orbit. The differential and angle-integrated analog cross sections and the effective potential for IF range are plotted. 27 references

  6. Neutron total, scattering and inelastic gamma-ray cross sections of yttrium at few MeV energies

    International Nuclear Information System (INIS)

    Budtz-Joergensen, C.; Guenther, P.; Smith, A.; Whalen, J.; McMurray, W.R.; Renan, M.J.; Heerden, I.J. van

    1984-01-01

    Neutron total, scattering and (n; n', γ) cross sections of elemental yttrium ( 89 Y) were measured in the few-MeV region. The neutron total-cross-section measurements were made with broad resolutions from approx.=0.5 to 4.2 MeV in steps of < or approx.0.1 MeV. Neutron elastic- and inelastic-scattering cross sections were measured from approx.=1.5 to 4.0 MeV, at incident-neutron energy intervals of approx.=50 keV and at ten or more scattering angles distributed between 20 and 160 degrees using neutron detection. Inelastic-scattering cross sections were also determined using the (n; n', γ) reaction at incident energies from 1.6 to 3.8 MeV at intervals of 0.1 MeV. Gamma-rays and/or inelastically-scattered neutrons were observed corresponding to the excitation of levels at: 909.0+-0.5, 1,507.4+-0.3, 1,744.5+-0.3, 2,222.6+-0.5, 2,530+-0.8, 2,566.4+-1.0, 2,622.5+-1.0, 2,871.9+-1.5, 2,880.6+-2.0, 3,067.0+-2.0, 3,107.0+-2.0, 3,140.0+-2.0, 3,410.0+-2.0, 3,450.0+-2.0, 3,504.0+-1.5, 3,514.0+-2.0, 3,556.0+-2.0, 3,619.0+-3.0, 3,629.0+-3.0 and 3,715.0+-3.0 keV. The experimental results are discussed in terms of the spherical-optical-statistical, coupled-channels, and core-coupling models, and in the context of previously reported excited-level structure. (orig.)

  7. SPIN DETERMINATION OF VALENCE AND INNER HOLE STATES VIA THE PB-208((D)OVER-RIGHT-ARROW,T)PB-207 REACTION AT ED=200 MEV

    NARCIS (Netherlands)

    LANGEVINJOLIOT, H; VANDEWIELE, J; GUILLOT, J; GERLIC, E; ROSIER, LH; WILLIS, A; MORLET, M; DUHAMELCHRETIEN, G; TOMASIGUSTAFSSON, E; BLASI, N; MICHELETTI, S; VANDERWERF, SY

    Highly excited neutron hole states in Pb-207 have been studied via the (d, over arrow pointing right, t) reaction at E(d) = 200 MeV using for the first time a polarized beam, with both vector and tensor components. The determination of overlapping neutron hole response functions takes advantage of

  8. Measurement of neutron spectra for photonuclear reaction with linearly polarized photons

    Directory of Open Access Journals (Sweden)

    Kirihara Yoichi

    2017-01-01

    Full Text Available Spectra of neutrons produced by a photonuclear reaction from a 197Au target were measured using 16.95 MeV linearly and circularly polarized photon beams at NewSUBARU-BL01 using a time-of-flight method. The difference in the neutron spectra between the cases of a linearly and circularly polarized photon was measured. The difference in the neutron yield increased with the neutron energy and was approximately threefold at the maximum neutron energy. In a direction perpendicular to that of the linear polarization, the neutron yields decreased as the neutron energy increased.

  9. Segmented detector for recoil neutrons in the p(γ, n)π+ reaction

    International Nuclear Information System (INIS)

    Korkmaz, E.; O'Rielly, G.V.; Hutcheon, D.A.; Feldman, G.; Jordan, D.; Kolb, N.R.; Pywell, R.E.; Retzlaff, G.A.; Sawatzky, B.D.; Skopik, D.M.; Vogt, J.M.; Cairns, E.; Giesen, U.; Holm, L.; Opper, A.K.; Rozon, F.M.; Soukup, J.

    1999-01-01

    A segmented neutron detector has been constructed and used for recoil neutron (6-13 MeV) measurements of the reaction γp→nπ + very close to threshold. BC-505 liquid scintillator was used to allow pulse shape discrimination between neutrons and photons. A measurement of the absolute efficiency of the detector was performed using stopped pions in the reaction π - p→nγ. Results of the efficiency calibration are compared to a Monte Carlo simulation. (author)

  10. Neutron-photon multigroup cross sections for neutron energies less than or equal to400 MeV. Revision 1

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Barnes, J.M.; Drischler, J.D.

    1986-01-01

    For a variety of applications, e.g., accelerator shielding design, neutrons in radiotherapy, radiation damage studies, etc., it is necessary to carry out transport calculations involving medium-energy (greater than or equal to20 MeV) neutrons. A previous paper described neutron-photon multigroup cross sections in the ANISN format for neutrons from thermal to 400 MeV. In the present paper the cross-section data presented previously have been revised to make them agree with available experimental data. 7 refs., 1 fig

  11. Measurement of leakage neutron spectra from a spherical pile of zirconium irradiated with 14MeV neutrons and validation of its nuclear data

    CERN Document Server

    Ichihara, C; Hayashi, S A; Yamamoto, J; Takahashi, A

    2003-01-01

    In order to make a benchmark validation of the nuclear data for Zr, the leakage neutron spectrum from a Zr sphere of a 61-cm diameter was measured between 0.1 and 16MeV using a time-of-flight technique with a 14MeV neutron source facility, OKTAVIAN. The result was compared with the calculation using the Monte Carlo code MCNP-4A. To investigate the spectrum dependence on the individual neutron reactions, test calculations were carried out with the MCNP-4A code using the JENDL-3.2-based libraries, in which partial cross section values were reduced from the original values. From the comparison between the measured and the calculated spectra, it was found that each of the results could predict well the experiment in general. However, in detail, both ENDF/B-VI and EFF-2.4 gave considerable overestimation above 1 MeV. The JENDL-3.2 predicts the spectrum almost satisfactorily except below 0.8 MeV and around 10 MeV. The discrepancy found in JENDL-3.2 calculation is considered due to the cross section values of the (n...

  12. Production cross section measurement of discrete gammas-ray at 90 degree for interactions of 14. 9 MeV neutrons with carbon and niobium

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Hongyu; Yan Yiming; Tang lin; Wen Chenlin; Zhang Shenji; Hua Ming; Han Chongzhan; Ding Xiaoji; Lan Liqiao; Fan Guoying; Yan Hua; Wang Xingfu; Wang Qi; Sun Suxu; Rong Yaning; Liu Shuzhen (Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing (CN))

    1989-05-01

    The cross sections of discrete gamma-ray produced by interactions of 14.9 MeV neutrons with carbon and niobium were investigated. A pulsed {ital T}({ital d},{ital n}){sup 4} He neutron source was used in the measurement. Neutron flux incident upon the sample was determined with the associated particle method. Technique of time-of-flight was used for reducing the background. A new method to calculate neutron flux attenuation in large cylindrical sample was proposed. The split of 4.439 MeV gamma-ray line from {sup 12}C({ital n},{ital n}{prime}{gamma}){sup 12}C reactions was confirmed. 79 discrete gamma-ray lines and their production cross sections for the interactions of 14.9 MeV neutrons with niobium were obtained for the first time.

  13. The analyzing power Asub(y)(theta) for the elastic scattering of 12 MeV neutrons from deuterons

    International Nuclear Information System (INIS)

    Tornow, W.; Lisowski, P.W.; Byrd, R.C.; Walter, R.L.

    1978-01-01

    The analyzing power Asub(y)(theta) was obtained at 10 0 intervals between 30 0 (lab) to 120 0 (lab) for 2 H(n, n) 2 H at 12.0 MeV. The polarized neutron beam employed in the measurement was obtained by using neutrons emitted at 0 0 from the polarization transfer reaction 2 H(d(pol), n(pol)) 3 He. The accuracy in the Asub(y)(theta) values that was achieved ranged from +- 0.006 to +- 0.013. Comparison of the data to Asub(y)(theta) results obtained at 12 MeV for the charge symmetric reaction 2 H(p, p) 2 H shows that the two Asub(y)(theta) distributions are equal to within the above accuracy. (Auth.)

  14. Reactor physics experiments in PURNIMA sub critical facility coupled with 14 MeV neutron source

    International Nuclear Information System (INIS)

    Kumar, Rajeev; Degweker, S.B.; Patel, Tarun; Bishnoi, Saroj; Adhikari, P.S.

    2011-01-01

    developed at BARC. Hence it is important to experimentally study the statistical properties of the neutron source for noise experiments. To characterize the statistical properties of the 14 MeV neutron source, neutron counts were collected from DD as well as DT reaction using a time stamping data acquisition card. Data were analyzed to obtain the v/m, auto correlation function and power spectral density (PSD). The study indicates that the source is different from a purely Poisson source. (author)

  15. Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target

    Energy Technology Data Exchange (ETDEWEB)

    Osipenko, M., E-mail: osipenko@ge.infn.it [INFN, sezione di Genova, 16146 Genova (Italy); Ripani, M. [INFN, sezione di Genova, 16146 Genova (Italy); Alba, R. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Ricco, G. [INFN, sezione di Genova, 16146 Genova (Italy); Schillaci, M. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Barbagallo, M. [INFN, sezione di Bari, 70126 Bari (Italy); Boccaccio, P. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Celentano, A. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy); Colonna, N. [INFN, sezione di Bari, 70126 Bari (Italy); Cosentino, L.; Del Zoppo, A.; Di Pietro, A. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Esposito, J. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Figuera, P.; Finocchiaro, P. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Kostyukov, A. [Moscow State University, Moscow 119992 (Russian Federation); Maiolino, C.; Santonocito, D.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Viberti, C.M. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy)

    2013-09-21

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0° to 150° and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their time of flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a {sup 3}He detector was used. The obtained data are in good agreement with previous measurements at 0° using 66 MeV proton beam, covering neutron energies >10MeV, as well as with measurements at few selected angles using protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60–70 MeV beam energy range. A comparison of measured yields to MCNP, FLUKA and Geant4 Monte Carlo simulations was performed.

  16. Workshop on the next plan for the study of 'physics of fast neutron reactions and measurements'

    International Nuclear Information System (INIS)

    1985-03-01

    A work shop titled ''Physics of fast neutron reaction and measurements'' was held on 25 December 1984, where discussions were made on the new approach and techniques for neutron measurements. The possibilities of experimental tests with AVF cyclotron was also discussed. The followings are the list of papers presented at the work shop (all papers are written in Japanese except for the abstracts). (1) Monoenergetic neutron beam in Tohoku Cyclotron. (2) Spin-dependent response probed in (p,n) and (n,p) reactions. (3) Measurement of D(n,p) 2n reaction and instrumentation for (n,x) reactions in the 40 - 80 MeV region. (4) Two comments related to the neutron reaction. (5) High energy neutron production facilities in the world and a possibility of neutron induced reaction experiments at RCNP. (6) A neutron counter by detection of recoil protons with solid state detectors and development of neutron source by heavy ions. (7) The measurement of neutrons with the recoil detector. (8) Polarization transfer measurements (Py, Dss, Ds 1 , · · ·) with fast neutron beams. (9) Neutron elastic scattering. (10) Neutron capture gamma reaction and effective charge. (11) Comparison between neutron and charged particle induced reactions. (12) Study of giant resonances by fast neutrons. (Aoki, K.)

  17. Analysing power for neutron-proton scattering at 14.1 MeV

    International Nuclear Information System (INIS)

    Brock, J.E.; Chisholm, A.; Duder, J.C.; Garrett, R.; Poletti, J.L.

    1981-01-01

    The analysing power Asub(y)(theta) for neutron-proton scattering has been measured at 14.1 MeV for c.m. angles between 50 0 and 157 0 . A polarized neutron beam was produced by the reaction 3 H(d,n) 4 He at 110 keV, using polarized deuterons from an atomic beam polarized ion source. Liquid and plastic scintillators were used for proton targets and the scattered particles were detected in an array of platic scintillators. Use of the associated alpha technique, multi-parameter recording of events and off-line computer treatment led to very low backgrounds. The results differ significantly from the predictions of the phase-shift analyses of Yale IV, Livermore X and Arndt et al. We find, however, excellent agreement with the predictions of the Paris potential of Lacombe et al. Existing n-p analysing power results up to 30 MeV are surveyed and found to be consistent. An attempt was made to look for an isospin splitting of the triplet P-wave phase shifts. (orig.)

  18. Activation of 45-MeV proton irradiation and proton-induced neutron irradiation in polymers

    International Nuclear Information System (INIS)

    Ra, Se-Jin; Kim, Kye-Ryung; Jung, Myung-Hwan; Yang, Tae-Keon

    2010-01-01

    During beam irradiation experiments with more than a few MeV energetic protons, the sample activation problem can be very severe because it causes many kinds of additional problems for the post-processing of the samples, such as time loss, inconvenience of sample handling, personal radiation safety, etc. The most serious problem is that immediate treatment of the sample is impossible in some experiments, such as nano-particle synthesizing. To solve these problems, we studied why the samples are activated and how the level of the activation can be reduced. It is known that the main reasons of activation are nuclear reactions with elements of the target material by primary protons and secondary produced neutrons. Even though the irradiation conditions are same, the level of the activation can be different depending on the target materials. For the nanoparticle synthesizing experiments, the target materials can be defined as the container and the sample itself. The reduction of the activation from the container is easier than the reduction from the sample. Therefore, we tried to reduce the activation level by changing the container materials. In this paper, the results are displayed for some candidate container materials, such as polymethyl methacrylate, polystyrene, Glass, etc., with 45-MeV and 10-nA proton beams. As a result, PS is the most suitable material for the container because of its relatively low level of the activation by protons. Also the contribution of secondary produced neutrons to the activation is negligible.

  19. Transport calculations for a 14.8 MeV neutron beam in a water phantom

    International Nuclear Information System (INIS)

    Goetsch, S.J.

    1981-01-01

    A coupled neutron/photon Monte Carlo radiation transport code (MORSE-CG) has been used to calculate neutron and photon doses in a water phantom irradiated by 14.8 MeV neutrons from the Gas Target Neutron Source. The source-collimator-phantom geometry was carefully simulated. Results of calculations utilizing two different statistical estimators (next-collision and track-length) are presented

  20. Neutron-induced charged-particle emission studies below 100 MeV at WNR

    Energy Technology Data Exchange (ETDEWEB)

    Haight, R.C.; Lee, T.M.; Sterbenz, S.M. [and others

    1994-07-01

    Charged-particles produced by neutron bombardment of selected targets with Z=5 through 53 have been studied for neutron energies from 1 MeV to about 100 MeV using the spallation neutron source at WNR/LAMPF. Particle detection with energy measurement and particle identification is accomplished by two-element {Delta}E-E counters, three-element {Delta}E{sub l}-{Delta}E{sub 2}-E counters or with pulse-shape discrimination using scintillators directly in the neutron beam. The experimental techniques for these measurements are described and comparisons made among the different approaches. This presentation introduces five papers contributed to this conference.

  1. Neutron-induced charged-particle emission studies below 100 MeV at WNR

    International Nuclear Information System (INIS)

    Haight, R.C.; Lee, T.M.; Sterbenz, S.M.

    1994-01-01

    Charged-particles produced by neutron bombardment of selected targets with Z=5 through 53 have been studied for neutron energies from 1 MeV to about 100 MeV using the spallation neutron source at WNR/LAMPF. Particle detection with energy measurement and particle identification is accomplished by two-element ΔE-E counters, three-element ΔE l -ΔE 2 -E counters or with pulse-shape discrimination using scintillators directly in the neutron beam. The experimental techniques for these measurements are described and comparisons made among the different approaches. This presentation introduces five papers contributed to this conference

  2. The 2H(p,2p)n reaction at 508 MeV. Part I

    International Nuclear Information System (INIS)

    Punjabi, V.; Perdrisat, C.F.; Aniol, K.A.; Epstein, M.B.; Huber, J.P.; Margaziotis, D.J.; Bracco, A.; Davis, C.A.; Gubler, H.P.; Lee, W.P.; Poffenberger, P.R.; van Oers, W.T.H.; Postma, H.; Sebel, H.J.; Stetz, A.W.

    1988-09-01

    Differential cross sections for the reaction 2 H(p,2p)n at T p = 507 and 508 MeV are presented. The proton angle pairs chosen were 41.5 degrees with 41.4 and 50.0, 30.1 degrees with 44.0, 53,75, 61.0, and 68.0, 38.1 degrees -38.0 degrees, 44.1 degrees - 44.0 degrees, 47.1 degrees - 47.0 degrees and 50.0 degrees - 50.0 degrees. The data range over an energy window 100 MeV wide on one of the proton energies, the second energy being defined by the kinematic condition of a single neutron recoiling. The data are compared with the impulse approximation (IA) prediction and with the results of a nonrelativistic calculation of the six lowest-order Feynman diagrams describing the reaction. A previously known missing strength for the reaction in the small neutron recoil region is confirmed with much smaller experimental uncertainty; the missing strength persists up to 150 MeV/c neutron recoil. The onset of a systematic section excess relative to the IA near neutron recoil momentum 200 MeV is explored in detail. (Author) (37 refs., 17 figs.)

  3. Secondary neutron double differential cross sections from 209Bi at 14.2 MeV

    International Nuclear Information System (INIS)

    Shen Guanren; Xia Haihong; Tang Hongqing

    1992-01-01

    The secondary neutron double differential cross sections from 209 Bi at 14.2 MeV have been measured at 6 angles between 25 degree-150 degree using an associated particle TOF spectrometer. Flight path was 2.7 m. The neutron detector was biased at 1.3 MeV. The time resolution was about 1.2 ns. The data were compared with existing data and theoretical calculated results. Good agreement is achieved

  4. High energy resolution characteristics on 14MeV neutron spectrometer for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Takada, Eiji; Nakazawa, Masaharu

    1996-10-01

    A 14MeV neutron spectrometer suitable for an ITER-like fusion experimental reactor is now under development on the basis of a recoil proton counter telescope principle in oblique scattering geometry. To verify its high energy resolution characteristics, preliminary experiments are made for a prototypical detector system. The comparison results show reasonably good agreement and demonstrate the possibility of energy resolution of 2.5% in full width at half maximum for 14MeV neutron spectrometry. (author)

  5. Charged particles produced in neutron reactions on nuclei from beryllium to gold

    International Nuclear Information System (INIS)

    Haight, R.C.

    1997-01-01

    Charged-particle production in reactions of neutrons with nuclei has been studied over the past several years with the spallation source of neutrons from 1 to 50 MeV at the Los Alamos Neutron Science Center (LANSCE). Target nuclides include 9Be, C, 27Al, Si, 56Fe, 59Co, 58,60Ni, 93Nb and 197Au. Proton, deuteron, triton, 3He and 4He emission spectra, angular distributions and production cross sections have been measured. Transitions from the compound nuclear reaction mechanism to precompound reactions are clearly seen in the data. The data are compared with data from the literature where available, with evaluated nuclear data libraries, and with calculations where the selection of the nuclear level density prescription is of great importance. Calculations normalized at En = 14 MeV can differ from the present data by a factor of 2 for neutron energies between 5 and 10 MeV

  6. A study of Venus surface elemental composition from 14 MeV neutron induced gamma ray spectroscopy: Activation analysis

    International Nuclear Information System (INIS)

    Jun, I.; Kim, W.; Smith, M.; Mitrofanov, I.; Litvak, M.

    2011-01-01

    The surface elemental composition of Venus can be determined using an artificially pulsed 14 MeV neutron generator (PNG) combined with a gamma ray spectrometer (GRS). The 14 MeV neutrons will interact with the surface materials and generate gamma rays, characteristic of specific elements, whose energy spectrum will be measured by GRS. These characteristic gamma rays are produced mainly through 3 different neutron interaction mechanisms: capture, inelastic, and activation reactions. Each reaction type has a different neutron energy dependency and different time scale for gamma ray production and transport. Certain elements are more easily identified through one reaction type over the others. Thus, careful analysis of the gamma ray spectra during and after the neutron pulse provides a comprehensive understanding of the surface elemental composition. In this paper, we use a well-tested neutron/gamma transport code, called Monte Carlo N-Particles (MCNP), to investigate the measurement capability of a PNG-GRS detection system through the neutron activation reactions. An activation analysis was performed for a representative soil composition of Venus with a notional operational scenario of PNG and GRS. The analysis shows that the proposed instrument concept can identify most of the modeled surface elements at Venus with sufficient accuracy through the activation mode. Specifically, U, Th, K, Si can be measured to within 1%, Fe within 2%, Al within 10%, Ca within 5%, Mg with 15%, Mn with 20%, and Cl within 6%. Although modeled in the analysis, it is shown that the activation mode alone cannot distinguish the S and Ti peaks.

  7. A possible approach to 14MeV neutron moderation: A preliminary study case.

    Science.gov (United States)

    Flammini, D; Pilotti, R; Pietropaolo, A

    2017-07-01

    Deuterium-Tritium (D-T) interactions produce almost monochromatic neutrons with about 14MeV energy. These neutrons are used in benchmark experiments as well as for neutron cross sections assessment in fusion reactors technology. The possibility to moderate 14MeV neutrons for purposes beyond fusion is worth to be studied in relation to projects of intense D-T sources. In this preliminary study, carried out using the MCNP Monte Carlo code, the moderation of 14MeV neutrons is approached foreseeing the use of combination of metallic materials as pre-moderator and reflectors coupled to standard water moderators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Actinide neutron-induced fission up to 20 MeV

    International Nuclear Information System (INIS)

    Maslov, V.M.

    2001-01-01

    Fission and total level densities modelling along with double-humped fission barrier parameters allow to describe available actinide neutron-induced fission cross section data in the incident neutron energy range of ∼ 10 keV - 20 MeV. Saddle asymmetries relevant to shell correction model calculations influence fission barriers, extracted by cross section data analysis. The inner barrier was assumed axially symmetric in case of U, Np and Pu neutron-deficient nuclei. It is shown that observed irregularities in neutron-induced fission cross section data in the energy range of 0.5-3 MeV could be attributed to the interplay of few-quasiparticle excitations in the level density of fissioning and residual nuclei. Estimates of first-chance fission cross section and secondary neutron spectrum model were validated by 238 U fission, (n,2n) and (n,3n) data description up to 20 MeV. (author)

  9. Actinide neutron-induced fission up to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V M [Radiation Physics and Chemistry Problems Institute, Minsk-Sosny (Belarus)

    2001-12-15

    Fission and total level densities modelling along with double-humped fission barrier parameters allow to describe available actinide neutron-induced fission cross section data in the incident neutron energy range of {approx} 10 keV - 20 MeV. Saddle asymmetries relevant to shell correction model calculations influence fission barriers, extracted by cross section data analysis. The inner barrier was assumed axially symmetric in case of U, Np and Pu neutron-deficient nuclei. It is shown that observed irregularities in neutron-induced fission cross section data in the energy range of 0.5-3 MeV could be attributed to the interplay of few-quasiparticle excitations in the level density of fissioning and residual nuclei. Estimates of first-chance fission cross section and secondary neutron spectrum model were validated by {sup 238}U fission, (n,2n) and (n,3n) data description up to 20 MeV. (author)

  10. Cross sections of neutron production with energies of 7,5-190 MeV in the p+A → n+X reaction at 1-9 GeV/c, π++A → n+X reaction at 1-6 GeV/c, π-+A → n+X reaction at 1,4 and 5 GeV/c

    International Nuclear Information System (INIS)

    Bayukov, Yu.D.; Gavrilov, V.B.; Goryainov, N.A.

    1983-01-01

    The tables of cross sections of neutron production with energies 7.5-190 MeV for reactions p+A→n+X at 1-9 GeV/c, π + +A→n+X at 1-6 GeV/c and π - +A→n+X at 1.4 and 5 GeV/c are presented. A-dependence (for Be, C, Al, Ti, Fe, Cu, Nb, Cd, Sn, Ta, Pb and U targets) for incident 7.5 GeV/c protons and dependence on incident particle momentum (for protons at 1, 1.4, 2, 3, 5, 6, 6.25, 6.5, 7, 7.5, 8.25, 8.5 and 9 GeV/c, for π + -mesons at 1, 1.4, 2, 3, 4, 5 and 6 GeV/c, π - -mesons at 1,4 and 5 GeV/c) for C, Cu, Pb, U targets are measured in detail, for secondary neutrons at 119 deg. Detailed angular dependences in the range from 10 deg to 160 deg are presented for C, Cu, Pb, U targets for incident 7.5 GeV/c protons and 5 GeV/c π - -mesons. Some of typical dependences are illustrated by diagrams

  11. Neutron-photon multigroup cross sections for neutron energies up to 400 MeV: HILO86R

    International Nuclear Information System (INIS)

    Kotegawa, Hiroshi; Nakane, Yoshihiro; Hasegawa, Akira; Tanaka, Shun-ichi

    1993-02-01

    A macroscopic multigroup cross section library of 66 neutron and 22 photon groups for neutron energies up to 400 MeV: HILO86R is prepared for 10 typical shielding materials; water, concrete, iron, air, graphite, polyethylene, heavy concrete, lead, aluminum and soil. The library is a revision of the DLC-119/HILO86, in which only the cross sections below 19.6 MeV have been exchanged with a group cross section processed from the JENDL-3 microscopic cross section library. In the HILO86R library, self shielding factors are used to produce effective cross sections for neutrons less than 19.6 MeV considering rather coarse energy meshes. Energy spectra and dose attenuation in water, concrete and iron have been compared among the HILO, HILO86 and HILO86R libraries for different energy neutron sources. Significant discrepancy has been observed in the energy spectra less than a couple of MeV energy in iron among the libraries, resulting large difference in the dose attenuation. The difference was attributed to the effect of self-shielding factor, namely to the difference between infinite dilution and effective cross sections. Even for 400 MeV neutron source the influence of the self-shielding factor is significant, nevertheless only the cross sections below 19.6 MeV are exchanged. (author)

  12. Spectroscopy of 17C via one-neutron knockout reaction

    Directory of Open Access Journals (Sweden)

    Kim Sunji

    2016-01-01

    Full Text Available A spectroscopic study of 17C was performed via the one-neutron knockout reaction of 18C on a carbon target at RIKEN-RIBF. Three unbound states at excitation energies of 2.66(2, 3.16(5, and 3.97(3 MeV (preliminary were observed. The energies are compared with shell-model calculations and existing measurements to deduce their spin-parities. From the comparison, the states at 2.66(2 and 3.97(3 MeV are suggested to be 1/2− and 3/2−, respectively. From its decay property, the state at 3.16(5 MeV is indicated to be 9/2+.

  13. Contribution to the study of the inelastic scattering of neutrons from a to 5 MeV (1961); Contribution a l'etude de la diffusion inelastique des neutrons de 1 a 5 MeV (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Abramson - Szteinsznaider, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    - The aim of this work is to see if this reaction occurs only by compound nucleus formation or involves some contribution of direct interaction. In the first case, the angular distribution of inelastic neutrons is symmetric about 90 degree. In the second case, this distribution must be asymmetric and must change slowly with energy of incident neutrons. The neutrons corresponding at the excitation of a given level of the residual nucleus are selected by their coincidence with the {gamma} rays of deexcitation of this level. From the results of our measurements on iron, iodine and bismuth and of other laboratories on different elements, we can conclude that generally, the inelastic scattering of neutrons of some MeV occurs only by compound nucleus. (author) [French] - Le but de ce travail est de determiner si cette reaction s'effectue uniquement par passage par un noyau compose ou fait intervenir un processus d'interaction directe. Dans le premier cas, la distribution angulaire des neutrons inelastiques est symetrique par rapport a 90 degree. Dans le deuxieme cas, cette distribution doit etre asymetrique et doit varier lentement avec l'energie des neutrons incidents. Les neutrons correspondant a l'excitation d'un niveau determine du residuel sont selectionnes par leur cofncidence avec les rayonnements {gamma} de desexcitation de ce niveau. D'apres les resultats de nos mesures sur le fer, l'iode et le bismuth et de celles des autres laboratoires sur differents elements, nous pouvons conclure que, en general, la diffusion inelastique des neutrons de quelques MeV s'effectue uniquement par noyau compose. (auteur)

  14. Double-differential beryllium neutron cross sections at incident neutron energies of 5. 9, 10. 1, and 14. 2 MeV. [5. 9 to 14. 2 MeV, differential cross sections, ENDF/B-IV

    Energy Technology Data Exchange (ETDEWEB)

    Drake, D.M.; Auchampaugh, G.F.; Arthur, E.D.; Ragan, C.E.; Young, P.G.

    1976-08-01

    Beryllium neutron-production cross sections were measured using the time-of-flight technique at incident neutron energies of 5.9, 10.1, and 14.2 MeV, and at laboratory angles of 25, 27.5, 30, 35, 45, 60, 80, 100, 110, 125, and 145/sup 0/. The differential elastic and inelastic cross sections are presented. Inelastic is defined here as those reactions that proceed through the states at 1.69-, 2.43-, 2.8-, and 3.06-MeV excitation energy in /sup 9/Be. Comparison of emission energy spectra with calculations using the ENDF/B-IV beryllium cross sections shows that the ENDF/B cross sections strongly overemphasize the low lying states in /sup 9/Be.

  15. Fission Product Yields of 233U, 235U, 238U and 239Pu in Fields of Thermal Neutrons, Fission Neutrons and 14.7-MeV Neutrons

    Science.gov (United States)

    Laurec, J.; Adam, A.; de Bruyne, T.; Bauge, E.; Granier, T.; Aupiais, J.; Bersillon, O.; Le Petit, G.; Authier, N.; Casoli, P.

    2010-12-01

    The yields of more than fifteen fission products have been carefully measured using radiochemical techniques, for 235U(n,f), 239Pu(n,f) in a thermal spectrum, for 233U(n,f), 235U(n,f), and 239Pu(n,f) reactions in a fission neutron spectrum, and for 233U(n,f), 235U(n,f), 238U(n,f), and 239Pu(n,f) for 14.7 MeV monoenergetic neutrons. Irradiations were performed at the EL3 reactor, at the Caliban and Prospero critical assemblies, and at the Lancelot electrostatic accelerator in CEA-Valduc. Fissions were counted in thin deposits using fission ionization chambers. The number of fission products of each species were measured by gamma spectrometry of co-located thick deposits.

  16. Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, D. P. [Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California 92093 (United States); Lawrence Livermore National Laboratory, Livermore, California 94440 (United States); McNaney, J. M.; Swift, D. C.; Mackinnon, A. J.; Patel, P. K. [Lawrence Livermore National Laboratory, Livermore, California 94440 (United States); Petrov, G. M.; Davis, J. [Naval Research Laboratory, Plasma Physics Division, Washington, DC 20375 (United States); Frenje, J. A. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Jarrott, L. C.; Tynan, G.; Beg, F. N. [Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California 92093 (United States); Kodama, R.; Nakamura, H. [Institute of Laser Engineering, Osaka University, 2-5 Yamada-oka, Suita, Osaka 454-0871 (Japan); Lancaster, K. L. [STFC Rutherford Appleton Laboratory, Chilton, Oxon OX11OQX (United Kingdom)

    2011-10-15

    The generation of high-energy neutrons using laser-accelerated ions is demonstrated experimentally using the Titan laser with 360 J of laser energy in a 9 ps pulse. In this technique, a short-pulse, high-energy laser accelerates deuterons from a CD{sub 2} foil. These are incident on a LiF foil and subsequently create high energy neutrons through the {sup 7}Li(d,xn) nuclear reaction (Q = 15 MeV). Radiochromic film and a Thomson parabola ion-spectrometer were used to diagnose the laser accelerated deuterons and protons. Conversion efficiency into protons was 0.5%, an order of magnitude greater than into deuterons. Maximum neutron energy was shown to be angularly dependent with up to 18 MeV neutrons observed in the forward direction using neutron time-of-flight spectrometry. Absolutely calibrated CR-39 detected spectrally integrated neutron fluence of up to 8 x 10{sup 8} n sr{sup -1} in the forward direction.

  17. Measurements of the (n,2n) Reaction Cross Section of 181Ta from 8 to 15 MeV

    Science.gov (United States)

    Bhatia, C.; Gooden, M. E.; Tornow, W.; Tonchev, A. P.

    2014-05-01

    The cross section for the reaction 181Ta(n,2n)180Tag was measured from 8 to 15 MeV in small energy steps to resolve inconsistencies in the existing databases. The activation technique was used, and the 93.4 keV γ-ray from the decay of the 180Tag ground state was recorded with a HPGe detector. In addition, the γ-rays from the monitor reactions 27Al(n,α)24Na and 197Au(n,2n)196Au were measured for neutron fluence determination. As a cross check, a calibrated neutron detector was also used. The ENDF/B-VII.1 and TENDL-2011 evaluations are in considerable disagreement with the present data, which in turn agree very well with the majority of the existing data in the 14 MeV energy region.

  18. Kerma factors for neutrons of 14 MeV to 60 MeV in elemental H, C, N and O

    Energy Technology Data Exchange (ETDEWEB)

    Behrooz, M.A.; Watt, D.E. (Dundee Univ. (UK). Dept. of Medical Biophysics)

    1981-01-01

    Total kerma factors, and partial kerma factors for production of specified charged H and He particles and heavier recoils, have been computed using basic theoretical and experimental nuclear data for neutrons at energies between 14 MeV and 60 MeV in the main tissue elements and in ICRU muscle tissue. All the more recent computations of total kerma factors, along with those determined from direct experimental measurements of partial kerma factors, now form a reasonably consistent set of data enabling average total kerma factors with coefficients of better than 3% for hydrogen, 16% for carbon, 23% for nitrogen and 9% for oxygen to be recommended for application to medical dosimetry and radiation protection. Total kerma factors for ICRU muscle tissue have a precision of better than 2.5% over the neutron energy range considered. Although there is adequate precision for total kerma factors for soft tissue, nevertheless analysis of the partial kerma factors indicates that caution must be exercised in use of the information for quality specification, e.g. in microdose spectra, and that more detailed basic reaction data is required for fast neutrons.

  19. The reaction np→ pp π- from threshold up to 570 MeV

    International Nuclear Information System (INIS)

    Daum, M.; Finger, M.; Slunecka, M.; Finger, M. Jr.; Janata, A.; Franz, J.; Heinsius, F.H.; Koenigsmann, K.; Lacker, H.; Schmitt, H.; Schweiger, W.; Sereni, P.

    2002-01-01

    The reaction np→ppπ - has been studied in a kinematically complete measurement with a large acceptance time-of-flight spectrometer for incident neutron energies between threshold and 570 MeV. The proton-proton invariant mass distributions show a strong enhancement due to the pp( 1 S 0 ) final state interaction. A large anisotropy was found in the pion angular distributions in contrast to the reaction pp→ppπ 0 . At small energies, a large forward/backward asymmetry has been observed. From the measured integrated cross section σ(np→ppπ - ), the isoscalar cross section σ 01 has been extracted. Its energy dependence indicates that mainly partial waves with Sp final states contribute. (orig.)

  20. Response of a carbon-walled proportional counter to 14 MeV neutrons

    International Nuclear Information System (INIS)

    Lewis, K.D.

    1982-01-01

    The response of a carbon-walled spherical proportional counter filled with a methane-based tissue-equivalent gas mixture at low pressure and irradiated with 14 MeV neutrons is first measured experimentally and is then calculated theoretically by using an analytical model. The model, called the CISS model, is derived from a consideration of four basic modes of interaction of charged particles generated in neutron-nucleus reactions with the spherical cavity of the detector. Since several quantities which have application in neutron dosimetry, radiation protection, and radiation biology make direct use of such spectra, it is desirable to have the ability to theoretically predict what is expected experimentally. Thus, a comparison between the two response curves is made. The discrepancy between them is investigated by considering several physical phenomena occurring within the detector wall which tend to distort the experimental response curve. In particular, the C(n,n',3α) reaction occurring in the detector wall gives rise to multiple events, originating from a single neutron interaction in the wall simultaneously strike the detector cavity, and are recorded as a single larger event in an experimental spectra. In the analytic model, the simultaneous entry of two charged particles into the cavity is scored as two separate smaller events, uncorrelated in their production. In this work, an effort is made to modify the analytic model prediction of the response curve by correcting for the multiple events which occur. Finally, the CISS model is used to compute mass stopping power corrections for this inhomogeneous detector

  1. Measurements of the {sup 235}U(n,f) cross section in the 3 to 30 MeV neutron energy region

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, A.D.; Wasson, O.A. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Lisowski, P.W. [Los Alamos National Lab., NM (United States)] [and others

    1991-12-31

    To improve the accuracy of the {sup 235}U(n,f) cross section, measurements have been made of this standard cross section at the target 4 facility at Los Alamos National Laboratory (LANL). The data were obtained at the 20-meter flight path of that facility. The fission reaction rate was determined with a fast parallel plate ionization chamber and the neutron fluence was measured with an annular proton recoil telescope. The measurements provide the shape of the {sup 235}U(n,f) cross section relative to the hydrogen scattering cross section for neutron energies from about 3 to 30 MeV neutron energy. The data have been normalized to the very accurately known value near 14 MeV. The results are in good agreement with the ENDF/B-VI evaluation up to about 15 MeV neutron energy. Above this energy differences as large as 5% are observed.

  2. Neutron leakage spectra from Be, Pb and U spheres at 14 MeV energy

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Devkin, B.V.

    1989-01-01

    Experimental data on neutron leakage spectra from beryllium, lead and uranium spheres with a central 14 MeV neutron source using a time-of-flight spectrometer have been measured. The data were compared with those calculated with the BLANK code using different nuclear data files. 15 refs, 1 fig., 2 tabs

  3. The reaction p12C→ηX from Tp=800 MeV to Tp=1500 MeV

    International Nuclear Information System (INIS)

    Chiavassa, E.; Dellacasa, G.; De Marco, N.; De Oliveira Martins, O.; Gallio, M.; Guaita, P.; Musso, A.; Piccotti, A.; Scomparin, E.; Vercellin, E.

    1998-01-01

    The reaction p 12 C→nX has been studied, at several proton kinetic energies ranging from 800 MeV to 1500 MeV, at the proton synchrotron Saturne at Saclay. The measured doubly differential cross-sections are presented and discussed in the framework of a simple theoretical model. The model fails in describing the deepest subthreshold data while the above-threshold data are fairly well reproduced. (orig.)

  4. Nuclear data for production of the therapeutic radionuclides {sup 32}P, {sup 64}Cu, {sup 67}Cu, {sup 89}Sr, {sup 9}Y and {sup 153}Sm via the (n,p) reaction: Evaluation of excitation function and its validation via integral cross-section measurement using a 14 MeV d(Be) neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abyad, M. [Institut fuer Nuklearchemie, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany); Cyclotron Facility, Nuclear Research Center, Atomic Energy Authority, Cairo 13759 (Egypt); Spahn, I. [Institut fuer Nuklearchemie, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany); Institute of Experimental Physics, University of Debrecen, H-4010 Debrecen (Hungary); Sudar, S. [Institut fuer Nuklearchemie, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany); Institute of Experimental Physics, University of Debrecen, H-4010 Debrecen (Hungary); Morsy, M. [Cyclotron Facility, Nuclear Research Center, Atomic Energy Authority, Cairo 13759 (Egypt); Comsan, M.N.H. [Cyclotron Facility, Nuclear Research Center, Atomic Energy Authority, Cairo 13759 (Egypt); Csikai, J. [Institute of Experimental Physics, University of Debrecen, H-4010 Debrecen (Hungary); Qaim, S.M. [Institut fuer Nuklearchemie, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)]. E-mail: s.m.qaim@fz-juelich.de; Coenen, H.H. [Institut fuer Nuklearchemie, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)

    2006-06-15

    Nuclear data for production of the therapeutic radionuclides {sup 32}P, {sup 64}Cu, {sup 67}Cu, {sup 89}Sr, {sup 9}Y and {sup 153}Sm via (n,p) reactions on the target nuclei {sup 32}S, {sup 64}Zn, {sup 67}Zn, {sup 89}Y, {sup 9}Zr and {sup 153}Eu, respectively, are discussed. The available information on each excitation function was analysed. From the recommended data set for each reaction the average integrated cross section for a standard 14 MeV d(Be) neutron field was deduced. The spectrum-averaged cross section was also measured experimentally. A comparison of the integrated value with the integral measurement served to validate the excitation function within about 15%. A fast neutron source appears to be much more effective than a fission reactor for production of the above-mentioned radionuclides in a no-carrier-added form via the (n,p) process. In particular, the possibility of production of high specific activity {sup 153}Sm is discussed.

  5. Determination of neutron spectra formed by 40-MeV deuteron bombardment of a lithium target with multi-foil activation technique

    CERN Document Server

    Maekawa, F; Wada, M; Wilson, P P H; Ikeda, Y

    2000-01-01

    Neutron flux spectra at an irradiation field produced by a 40-MeV deuteron bombardment on a thick lithium-target at Forschungszentrum Karlsruhe, Germany, have been determined by the multi-foil activation technique. Twenty-seven dosimetry reactions having a wide energy range of threshold energies up to 38 MeV were employed as detectors for the neutron flux spectra extending to 55 MeV. The spectra were adjusted with the SAND-II code with the experimental reaction rates based on an iterative method. The adjusted spectra validated quantitatively the Monte Carlo deuteron-lithium (d-Li) neutron source model code (M sup C DeLi) which was used to calculate initial guess spectra and also has been used for IFMIF nuclear designs. Accuracy of the adjusted spectra was approx 10% that was suitable for successive integral tests of activation cross section data.

  6. Estimation of the {alpha} particles and neutron distribution generated during a fusion reaction; Evaluation de la distribution des particules {alpha} et des neutrons issus de la reaction de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dellacherie, S.

    1997-12-01

    The respective distributions (or density probabilities) of {alpha} particles and neutrons have been modeled using a Monte-Carlo method for the thermonuclear fusion reaction D + T {yields} {alpha} + n + 17.6 MeV. (N.T.).

  7. Neutron-induced reactions relevant for Inertial-Cofinement Fusion Experiments

    Science.gov (United States)

    Boswell, Melissa; Devlin, Mathew; Fotiadis, Nikolaos; Merrill, Frank; Nelson, Ronald; Tonchev, Anton

    2014-09-01

    The typical ignition experiment at the National Ignition Facility ablatively implodes a plastic capsule filled with DT fuel, generating a high flux of 14-MeV neutrons from the d(t,n) α reaction. There is some spread in the energy of these primary 14-MeV neutrons, which is mainly attributable to Doppler shifting from the relative thermal motion of the burning DT fuel. Neutrons created during this reaction have 5--10% chance of scattering before escaping the fuel assembly, losing some fraction of their energy in the scattering process. Neutrons emerging with an energy greater than the reaction energy are generated by a two-step process where neutrons first transfer momentum to a deuteron or tritium ion, these enhanced energy ions then fuse in flight to produce higher energy neutrons; some of these neutrons have energies in excess of 30 MeV. Measuring the fluencies of both the low- and high-energy neutrons is a powerful mechanism for studying the properties of the fuel assembly, and the various parameters important to inertial confinement fusion. We have developed a number of tools to measure the spectral characteristics of the NIF neutron spectrum. Most of these methods rely on exploiting the energy dependence of (n, γ), (n,2n), (n,3n) and (n,p) reactions on a variety o.

  8. Elastic Neutron Scattering at 96 MeV from {sup 12}C and {sup 208}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Klug, J.; Blomgren, J.; Atac, A. [and others

    2003-04-01

    A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), has recently been installed at the 20-180 MeV neutron beam line of the The Svedberg Laboratory, Uppsala. Elastic neutron scattering from {sup 12}C and {sup 208}Pb has been studied at 96 MeV in the 10-70 deg interval. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. The present experiment represents the highest neutron energy where the ground state has been resolved from the first excited state in neutron scattering. A novel method for normalization of the absolute scale of the cross section has been used. The estimated uncertainty, 3 %, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. The results are compared with modern optical model predictions, based on phenomenology or microscopic nuclear theory.

  9. Neutron response matrix for unfolding NE-213 measurements to 21 MeV

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Wehring, B.W.; Johnson, R.H.

    1976-01-01

    A neutron response matrix from measured neutron responses of NE-213 in the energy range of 0.2 to 22 MeV is presented. An interpolation scheme was used to construct an 81-column matrix from the data of Verbinski, Burrus, Love, Zobel, and Hill. As a test of the new response matrix, the Cf-252 neutron spectrum was measured and unfolded using the new response matrix and the FORIST unfolding code. The spectrum agrees well with previous measurements at lower energies, while providing new information above 8 MeV

  10. Survival of parenchymal hepatocytes exposed to 14.3-MeV neutrons

    International Nuclear Information System (INIS)

    Jirtle, R.L.; Gould, M.N.; DeLuca, P.M. Jr.; Pearson, D.W.

    1982-01-01

    This report presents the results of the measurement of a dose survival curve and RBE values for rat hepatic cells irradiated in vivo with 14.3 MeV neutrons. The purpose was to determine the RBE for neutrons as a function of dose, and whether hepatocytes exposed to neutrons are as efficient at repairing potentially lethal damage as they are after exposure to low LET radiation

  11. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    International Nuclear Information System (INIS)

    Alba, R; Cosentino, G; Zoppo, A Del; Pietro, A Di; Figuera, P; Finocchiaro, P; Maiolino, C; Santonocito, D; Schillaci, M; Barbagallo, M; Colonna, N; Boccaccio, P; Esposito, J; Celentano, A; Osipenko, M; Ricco, G; Ripani, M; Viberti, C M; Kostyukov, A

    2013-01-01

    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  12. Preliminary design of GDT-based 14 MeV neutron source

    International Nuclear Information System (INIS)

    Du Hongfei; Chen Dehong; Wang Hui; Wang Fuqiong; Jiang Jieqiong; Wu Yican; Chen Yiping

    2012-01-01

    To meet the need of D-T fusion neutron source for fusion material testing, design goals were presented in this paper according to the international requirements of neutron source for fusion material testing. A preliminary design scheme of GDT-based 14 MeV neutron source was proposed, and a physics model of the neutron source was built based on progress of GDT experiments. Two preliminary design schemes (i. e. FDS-GDT1, FDS-GDT2) were designed; among which FDS-GDT2 can be used for fusion material testing with neutron first wall loading of 2 MW/m 2 . (authors)

  13. Spallation Neutron Emission Spectra in Some Amphoter Target Nuclei by Proton Beam Up to 140 MeV Energy

    International Nuclear Information System (INIS)

    Yildirim, G.

    2008-01-01

    In the present study, the (p,xn) reaction neutron-emission spectra for some amphoter target nuclei as 27 A l, 64 Z n, 120 S n, and 208 P b were investigated up to 140 MeV incident proton energy. The pre-equilibrium calculations were calculated by using the hybrid model, the geometry dependent hybrid model, the full exciton model and the cascade exciton model. The reaction equilibrium component was calculated with a traditional compound nucleus model developed by Weisskopf Ewing. Calculation results have been discussed and compared with the available experimental data in literature

  14. Quantitative comparison between experimental and simulated gamma-ray spectra induced by 14 MeV tagged neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Perot, B., E-mail: bertrand.perot@cea.fr [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); El Kanawati, W.; Carasco, C.; Eleon, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Valkovic, V. [A.C.T.d.o.o., Prilesje 4, 10000 Zagreb (Croatia); Sudac, D.; Obhodas, J. [Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb (Croatia); Sannie, G. [CEA, LIST, Saclay, F-91191 Gif-sur-Yvette (France)

    2012-07-15

    Fast neutron interrogation with the associated particle technique can be used to identify explosives in cargo containers (EURITRACK FP6 project) and unexploded ordnance on the seabed (UNCOSS FP7 project), by detecting gamma radiations induced by 14 MeV neutrons produced in the {sup 2}H({sup 3}H,{alpha})n reaction. The origin of the gamma rays can be determined in 3D by the detection of the alpha particle, which provides the direction of the opposite neutron and its time-of-flight. Gamma spectroscopy provides the relative counts of carbon, nitrogen, and oxygen, which are converted to chemical fractions to differentiate explosives from other organic substances. To this aim, Monte Carlo calculations are used to take into account neutron moderation and gamma attenuation in cargo materials or seawater. This paper presents an experimental verification that C, N, and O counts are correctly reproduced by numerical simulation. A quantitative comparison is also reported for silicon, iron, lead, and aluminium. - Highlights: Black-Right-Pointing-Pointer Gamma-ray spectra produced by 14 MeV neutrons in C, N, O, Si, Al, Fe, and Pb elements. Black-Right-Pointing-Pointer Quantitative comparison with MCNPX simulations using the ENDF/B-VII.0 library. Black-Right-Pointing-Pointer C, N, and O counts correctly reproduced and chemical proportions recovered using calculation. Black-Right-Pointing-Pointer Application to the detection of explosives or illicit drugs in cargo containers.

  15. Measurement of the neutron-capture cross section on 63,65Cu between 0.4 and 7.5 MeV

    Science.gov (United States)

    Bray, Isabel; Bhike, Megha; Krishichayan, (None); Tornow, W.

    2015-10-01

    Copper is currently being used as a cooling and shielding material in most experimental searches for 0 ν β β decay. In order to accurately interpret background events in these experiments, the cross section of neutron-induced reactions on copper must be known. The purpose of this work was to measure the cross section of the 63,65Cu(n, γ)64,66Cu reactions. Data were collected through the activation method at a range of energies from approximately 0.4 MeV to 7.5 MeV, employing the neutron production reactions 3H(p,n)3Heand2H(d,n)3He. Previous data were limited to energies below approximately 3 MeV. The results are compared to predictions from the nuclear data libraries ENDF/B-VII.1 and TENDL-2014.

  16. Comprehensive Measurement of Neutron Yield Produced by 62 MeV Protons on Beryllium Target

    International Nuclear Information System (INIS)

    Osipenko, M.; Ripani, M.; Ricco, G.; Alba, R.; Schillaci, M.; Cosentino, L.; Del Zoppo, A.; Di Pietro, A.; Figuera, P.; Finocchiaro, P.; Maiolino, C.; Santonocito, D.; Scuderi, V.; Barbagallo, M.; Colonna, N.; Boccaccio, P.; Esposito, J.; Celentano, A.; Viberti, C.M.; Kostyukov, A.

    2013-06-01

    A low-power prototype of neutron amplifier, based on a 70 MeV, high current proton cyclotron being installed at LNL for the SPES RIB facility, was recently proposed within INFN-E project. This prototype uses a thick Beryllium converter to produce a fast neutron spectrum feeding a sub-critical reactor core. To complete the design of such facility the new measurement of neutron yield from a thick Beryllium target was performed at LNS. This measurement used liquid scintillator detectors to identify produced neutrons by Pulse Shape Discrimination and Time of Flight technique to measure neutron energy in the range 0.5-62 MeV. To extend the covered neutron energy range 3 He detector was used to measure neutrons below 0.5 MeV. The obtained yields were normalized to the charge deposited by the proton beam on the metallic Beryllium target. These techniques allowed to achieve a wide angular coverage from 0 to 150 degrees and to explore almost complete neutron energy interval. (authors)

  17. Extension of the calibration of an NE-213 liquid scintillator based pulse height response spectrometer up to 18 MeV neutron energy and leakage spectrum measurements on bismuth at 8 MeV and 18 MeV neutron energies

    International Nuclear Information System (INIS)

    Fenyvesi, A.; Valastyan, I.; Olah, L.; Csikai, J.; Plompen, A.; Jaime, R.; Loevestam, G.; Semkova, V.

    2011-01-01

    Monoenergetic neutrons were produced at the Van de Graaff accelerator of the EC-JRC-Institute for Reference Materials and Measurements (IRMM, Geel, Belgium). An air-jet cooled D_2-gas target (1.2 bar, ΔE_d = 448 keV) was bombarded with E_d =4976 keV deuterons to produce neutrons up to E_n = 8 MeV energy via the D(d,n)"3He reaction. Higher energy neutrons up to E_n = 18 MeV were produced via the T(d,n)"4He reaction by bombarding a TiT target with E_d =1968 keV deuterons. Pulse height spectra were measured at different neutron energies from E_n = 8 MeV up to E_n = 18 MeV with the NE-213 liquid scintillator based Pulse Height Response Spectrometer (PHRS) of UD-IEP. The energy calibration of the PHRS system has been extended up to E_n = 18 MeV. Pulse height spectra induced by gamma photons have been simulated by the GRESP7 code. Neutron induced pulse height spectra have been simulated by the NRESP7 and MCNP-POLIMI codes. Comparison of the results of measurements and simulations enables the improvement of the parameter set of the function used by us to describe the light output dependence of the resolution of the PHRS system at light outputs of L > 2 light units. Also, it has been shown that the derivation method for unfolding neutron spectra from measured pulse height spectra performs well when relative measurements are done up to E_n = 18 MeV neutron energy. For matrix unfolding purposes, the NRESP7 code has to be preferred to calculate the pulse height response matrix of the PHRS system. Leakage spectra of neutrons behind bismuth slabs of different thicknesses have been measured with the PHRS system by using monoenergetic neutrons. The maximum slab thickness was d = 14 cm. Simulations of the measurements have been carried out with the MCNP-4c code. The necessary nuclear cross-sections were taken from the from the ENDF/B-VII and JEFF.3.1 data libraries. For both libraries, the agreement of measured and simulated neutron spectra is good for the 5 MeV ≤ En ≤ 18 MeV

  18. Determination of the cross section for (n,p) and (n,α) reactions on 165Ho at 13.5 and 14.8 MeV

    International Nuclear Information System (INIS)

    Luo, Junhua; An, Li; Jiang, Li; He, Long

    2015-01-01

    Activation cross-sections for the 165 Ho(n,p) 165 Dy and 165 Ho(n,α) 162 Tb reactions were measured by means of the activation method at 13.5 and 14.8 MeV, to resolve inconsistencies in existing data. A neutron beam produced via the 3 H(d,n) 4 He reaction was used. Statistical model calculations were performed using the nuclear-reaction codes EMPIRE-3.2 Malta and TALYS-1.6 with default parameters, at neutron energies varying from the reaction threshold to 20 MeV. Results are also discussed and compared with some corresponding values found in the literature. The calculational results on the 165 Ho(n,α) 162 Tb reaction agreed fairly well with experimental data, but there were large discrepancies in the results for the 165 Ho(n,p) 165 Dy reaction. - Highlights: • 27 Al(n,α) 24 Na was used as a monitor for neutron fleunce. • The cross sections for the 165 Ho(n,p) 165 Dy and 165 Ho(n,α) 162 Tb reactions were measured at 13.5 and 14.8 MeV neutron energies. • Nuclear reaction codes TALYS-1.6 and EMPIRE-3.2 Malta were used to model the reactions. • Inconsistency with previous data and with model calculations are noted

  19. Neutron Energy Spectra from Neutron Induced Fission of 235U at 0.95 MeV and of 238U at 1.35 and 2.02 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Almen, E; Holmqvist, B; Wiedling, T

    1971-09-15

    The shapes of fission neutron spectra are of interest for power reactor calculations. Recently it has been suggested that the neutron induced fission spectrum of 235U may be harder than was earlier assumed. For this reason measurements of the neutron spectra of some fissile isotopes are in progress at our laboratory. This report will present results from studies of the energy spectra of the neutrons emitted in the neutron induced fission of 235U and 238U. The measurements were performed at an incident neutron energy of 0.95 MeV for 235U and at energies of 1.35 and 2.02 MeV for 238U using time-of-flight techniques. The time-of-flight spectra were only analysed at energies higher than those of the incident neutrons and up to about 10 MeV. Corrections for neutron attenuation in the uranium samples were calculated using a Monte Carlo program. The corrected fission neutron spectra were fitted to Maxwellian temperature distributions. For 235U a temperature of 1.27 +- 0.01 MeV gives the best fit to the experimental data and for 238U the corresponding values are 1.29 +- 0.03 MeV at 1.35 MeV and 1.29 +- 0.02 MeV at 2.02 MeV

  20. Conceptual design of 30 MeV magnet system used for BNCT epithermal neutron source

    International Nuclear Information System (INIS)

    Slamet Santosa; Taufik

    2015-01-01

    Conceptual design of 30 MeV Magnet System Used for BNCT Epithermal Neutron Source has been done based on methods of empirical model of basic equation, experiences of 13 MeV cyclotron magnet design and personal communications. In the field of health, cyclotron can be used as an epithermal neutron source for Boron Neutron Capture Therapy (BNCT). The development of cyclotron producing epithermal neutrons for BNCT has been performed at Kyoto University, of which it produces a proton beam current of 1.1 mA with energy of 30 MeV. With some experiences on 13 MeV cyclotron magnet design, to support BNCT research and development we performed the design studies of 30 MeV cyclotron magnet system, which is one of the main components of the cyclotron for deflecting proton beam into circular trajectory and serves as beam focusing. Results of this study are expected to define the parameters of particular cyclotron magnet. The scope of this study includes the study of the parameters component of the 30 MeV cyclotron and magnet initial parameters. The empirical method of basic equation model is then corroborated by a simulation using Superfish software. Based on the results, a 30 MeV cyclotron magnet for BNCT neutron source enables to be realized with the parameters of B 0 = 1.06 T, frequency RF = 64.733938 ≈ 65 MHz, the external radius of 0.73 m, the radius of the polar = 0.85 m, BH = 1.95 T and a gap hill of 4 cm. Because proton beam current that be needed for BNCT application is very large, then in the calculation it is chosen a great focusing axial νz = 0.630361 which can generate B V = 0.44 T. (author)

  1. Neutron producing reactions in PuBe neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Bagi, János [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU) (Germany); Lakosi, László; Nguyen, Cong Tam [Centre for Energy Research, Hungarian Academy of Sciences, Budapest (Hungary)

    2016-01-01

    There are a plenty of out-of-use plutonium–beryllium neutron sources in Eastern Europe presenting both nuclear safeguards and security issues. Typically, their actual Pu content is not known. In the last couple of years different non-destructive methods were developed for their characterization. For such methods detailed knowledge of the nuclear reactions taking place within the source is necessary. In this paper we investigate the role of the neutron producing reactions, their contribution to the neutron yield and their dependence on the properties of the source.

  2. Preparation of 3-7 MeV neutron source and preliminary results of activation cross section measurement

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, T.; Masuda, T.; Tsurita, Y.; Hashimoto, A.; Miyajima, N. [Department of Nuclear Engineering, Nagoya University, Nagoya, Aichi (Japan); Sakane, H.; Shibata, M.; Yamamoto, H.; Kawade, K.

    1999-03-01

    A d-D gas target producing monoenergetic neutrons has been constructed for measurement of activation cross sections in the energy region of 3 to 7 MeV at Van de Graaff accelerator of Nagoya University. Neutron spectra and neutron fluxes were measured as a function of the incident deuteron energy. Preliminary results of activation cross sections were obtained for reactions {sup 27}Al(n, p){sup 27}Mg, {sup 27}Al(n, {alpha}){sup 24}Na, {sup 47}Ti(n, p){sup 47}Sc, {sup 56}Fe(n, p){sup 56}Mn, {sup 58}Ni(n, p){sup 58}Co and {sup 64}Zn(n, p){sup 64}Cu. The results are compared with the evaluated values of JENDL-3.2. A well-type HPGe detector was used for highly efficient detection. (author)

  3. Study of the flux attenuation and energy degradation of 14.8 MeV neutrons in different materials

    International Nuclear Information System (INIS)

    Boufraqech, A.

    1981-01-01

    The attenuation of 14.8 MeV neutrons has been determined using the 63-Cu(n,2n)62-Cu threshold reaction for the detection of the primary neutrons. The attenuation of primary flux in different materials can be well described by a simple exponential relation based on the removal cross section. The microscopic removal cross sections determined for graphite, aluminium, iron and lead are as follows 0.73 +- 0.04, 1.04 +-0.04, 1.41 +- 0.02 and 2.63 +- 0.12 barn respectively. The dependance of secondary neutron spectrum on the thickness of slabs has also been investigated by threshold detectors. 15 refs., 38 figs., 23 tabs. (author)

  4. Gamma-ray production cross sections for MeV neutrons

    International Nuclear Information System (INIS)

    Kitazawa, Hideo; Harima, Yoshiko; Yamakoshi, Hisao; Sano, Yuji; Kobayashi, Tsuguyuki.

    1979-01-01

    Gamma-ray production cross section and spectra for 1- to 20-MeV neutrons were theoretically obtained, which were requested for heating calculations, for shielding design calculations, and for material damage estimates. Calculations were carried out for Al, Si, Ca, Fe, Ni, Cu, Nb, Ta, Au, and Pb, using a spin-dependent evaporation model without the parity conservation and including the dipole and quardupole gamma-ray transitions. The results were compared with the experimental data measured in ORNL to confirm the availability of this model in applications. In addition, the effects on the gamma-ray production cross section of the optical potential, level density, yrast level, and radiation width were investigated in detail. The conclusions are: 1) the use of the optical potential which gives the correct total reaction cross section is essential to gamma-ray production calculations, 2) the gamma-ray production cross section is not so sensitive to the choice of level density parameters, 3) the inclusion of yrast levels is necessary in dealing with the competition of the neutron and gamma-ray emissions from highly excited states, and 4) the Brink-Axel type's radiation width is unsuitable to be applied to radiative capture processes. (author)

  5. Reduction in 14 MeV neutron generation rate by ICRF injection in D-3He burning plasmas

    International Nuclear Information System (INIS)

    Matsuura, Hideaki; Nakao, Yasuyuki

    2004-01-01

    The triton distribution function during ion cyclotron range of frequency (ICRF) waves injection in D- 3 He plasmas is examined by solving the 2-dimensional Fokker-Planck equation. Triton distribution function originally has a non-Maxwellian (tail) component around 1.01 MeV birth energy range due to D(d,p)T fusion reaction. Owing to the extension of the original tail by ICRF injection, the high-energy resonance tritons further increase, and the velocity-averaged T(d,n) 4 He fusion reaction rate coefficient, i.e. 14 MeV neutron generation rate, decreases from the values when triton is assumed to be Maxwellian. It is shown that when tritons absorb ∼1/200 of the fusion power from the waves in typical D- 3 He plasma, i.e. T=80 keV, n D =2x10 20 m -3 , τ E0 =3 sec and B=6T, the 14 MeV neutron generation rate is reduced by about ∼20% from the values for Maxwellian plasmas. (author)

  6. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R.E.

    1981-10-12

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed.

  7. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    International Nuclear Information System (INIS)

    Williams, R.E.

    1981-01-01

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed

  8. Technical preparations for the in-vessel 14 MeV neutron calibration at JET

    International Nuclear Information System (INIS)

    Batistoni, P.; Popovichev, S.; Crowe, R.; Cufar, A.; Ghani, Z.; Keogh, K.; Peacock, A.; Price, R.; Baranov, A.; Korotkov, S.; Lykin, P.; Samoshin, A.

    2017-01-01

    Highlights: • The JET 14 MeV neutron calibration requires a neutron generator to be deployed inside the vacuum vessel by means of the remote handling system. • A neutron generator of suitable intensity and compliant with physics, remote handling and safety requirements has been identified and procured.The scientific programme of the preparatory phase devoted to fully characterizing the selected 14 MeV neutron generator is discussed. • The aim is to measure the absolute neutron emission rate within (± 5%) and the energy spectrum of emitted neutron as a function of angles. • The physics preparations, source issues, safety and engineering aspects required to calibrate directly the JET neutron detectors are discussed. - Abstract: The power output of fusion devices is measured from their neutron yields which relate directly to the fusion yield. In this paper we describe the devices and methods that have been prepared to perform a new in situ 14 MeV neutron calibration at JET in view of the new DT campaign planned at JET in the next years. The target accuracy of this calibration is ±10% as required for ITER, where a precise neutron yield measurement is important, e.g., for tritium accountancy. In this paper, the constraints and early decisions which defined the main calibration approach are discussed, e.g., the choice of 14 MeV neutron source and the deployment method. The physics preparations, source issues, safety and engineering aspects required to calibrate directly the JET neutron detectors are also discussed. The existing JET remote-handling system will be used to deploy the neutron source inside the JET vessel. For this purpose, compatible tooling and systems necessary to ensure safe and efficient deployment have been developed. The scientific programme of the preparatory phase is devoted to fully characterizing the selected 14 MeV neutron generator to be used as the calibrating source, obtain a better understanding of the limitations of the

  9. Technical preparations for the in-vessel 14 MeV neutron calibration at JET

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, P., E-mail: paola.batistoni@enea.it [ENEA, Department of Fusion and Nuclear Safety Technology, I-00044, Frascati, Rome (Italy); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Popovichev, S. [CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Crowe, R. [Remote Applications in Challenging Environments (RACE), Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Cufar, A. [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana (Slovenia); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Ghani, Z. [CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Keogh, K. [Remote Applications in Challenging Environments (RACE), Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Peacock, A. [JET Exploitation Unit, Abingdon, Oxon, OX14 3DB (United Kingdom); Price, R. [Remote Applications in Challenging Environments (RACE), Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Baranov, A.; Korotkov, S.; Lykin, P.; Samoshin, A. [All-Russia Research Institute of Automatics (VNIIA), 22, Sushchevskaya str., 127055, Moscow (Russian Federation)

    2017-04-15

    Highlights: • The JET 14 MeV neutron calibration requires a neutron generator to be deployed inside the vacuum vessel by means of the remote handling system. • A neutron generator of suitable intensity and compliant with physics, remote handling and safety requirements has been identified and procured.The scientific programme of the preparatory phase devoted to fully characterizing the selected 14 MeV neutron generator is discussed. • The aim is to measure the absolute neutron emission rate within (± 5%) and the energy spectrum of emitted neutron as a function of angles. • The physics preparations, source issues, safety and engineering aspects required to calibrate directly the JET neutron detectors are discussed. - Abstract: The power output of fusion devices is measured from their neutron yields which relate directly to the fusion yield. In this paper we describe the devices and methods that have been prepared to perform a new in situ 14 MeV neutron calibration at JET in view of the new DT campaign planned at JET in the next years. The target accuracy of this calibration is ±10% as required for ITER, where a precise neutron yield measurement is important, e.g., for tritium accountancy. In this paper, the constraints and early decisions which defined the main calibration approach are discussed, e.g., the choice of 14 MeV neutron source and the deployment method. The physics preparations, source issues, safety and engineering aspects required to calibrate directly the JET neutron detectors are also discussed. The existing JET remote-handling system will be used to deploy the neutron source inside the JET vessel. For this purpose, compatible tooling and systems necessary to ensure safe and efficient deployment have been developed. The scientific programme of the preparatory phase is devoted to fully characterizing the selected 14 MeV neutron generator to be used as the calibrating source, obtain a better understanding of the limitations of the

  10. Neutron-induced fission of uranium isotopes up to 100 MeV

    International Nuclear Information System (INIS)

    Lestone, J.P.; Gavron, A.

    1994-01-01

    The statistical-model description of the neutron-induced fission of U isotopes has been developed using densities of intrinsic states and spin cutoff parameters obtained directly from appropriate Nilsson model single-particle levels. The first-chance fission cross sections are reproduced well when the rotational contributions to the nuclear level densities are taken into account. In order to fit the U(n,f) cross sections above the threshold of second-chance fission, we must: (1) assume that the triaxial level-density enhancement is washed out at an excitation energy of approximately 7 MeV above the triaxial barriers with a width of approximately 1 MeV, implying a γ deformation for the first barriers where 10<γ<20 degree, and (2) include preequilibrium particle emission in the calculations. Above an incoming-neutron kinetic energy of approximately 17 MeV, our statistical model U(n,f) of cross sections increasingly overestimates the experimental data. This is not surprising since, at these high energies, little data exist on the scattering of neutrons to help guide the choice of optical-model parameters. A satisfactory reproduction of all of the available U(n,f) cross sections above 17 MeV is obtained by scaling our calculated compound-nucleus formation cross sections. This scaling factor falls from 1.0 at 17 MeV to 0.82 at 100 MeV

  11. Measurements of double-differential neutron emission cross sections of Nb and Bi for 11.5 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ibaraki, Masanobu; Matsuyama, Shigeo; Soda, Daisuke; Baba, Mamoru; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    Double-differential neutron emission cross sections (DDXs) of Nb and Bi have been measured for 11.5MeV neutrons using the {sup 15N}(d,n){sup 16}O quasi-monoenergetic neutron source at Tohoku University 4.5MV Dynamitron facility. For En`>6MeV, DDXs were measured by the conventional TOF method (single-TOF:S-TOF). For En`<6MeV, where the S-TOF spectra were distorted by the background neutrons, we adopted a double-TOF method (D-TOF). By applying D-TOF method, we obtained DDXs down to 1MeV. (author)

  12. Measure of uranium enrichment by 14 MeV neutron irradiation

    International Nuclear Information System (INIS)

    Rezende, H.R.

    1987-01-01

    A non-destructive technique for the determination of uranium in UO 2 samples was developed, marking use of the change in the fission cross of a nuclide with the neutron energy. The active interrogation method was used by irradiating the samples with pulsed 14 MeV neutrons and furtherdetection of delayed fission neutrons. In order to descriminated U-238 from U-235 the neutron energy was tailored by means of two concentric cylinders of lead and paraffin/poliethylene, 11 and 4 cm thick. Between neutron pulses, delayed neutrons from fission were detected by a long counter built with five BF 3 proportional counters. Calibration curves for enrichment and total mass versus delayed neutron response were obtained using available UO 2 pellets of Known enrichment. Enrichment detection limit, obtained with 95% confidence level by the the Student distribution was estimated to be 0.33%. The minimal detectable mass was estimated to be 4.4 g. (Author) [pt

  13. Measurement of uranium enrichment by 14 MeV neutron irradiation

    International Nuclear Information System (INIS)

    Rezende, H.R.

    1987-01-01

    a non-destructive technique for the determination of uranium in UO 2 samples was developed, making use of the change in the fission cross section of a nuclide with the neutron energy. The active interrogation method was used by irradiating the samples with pulsed 14 MeV neutrons and further detection of delayed fission neutrons. In order to discriminate U-238 from U-235 the neutron energy was tailored by means of two concentric cylinders of lead and paraffin/poliethylene, 11 and 4 cm thick. Between neutron pulses, delayed neutrons from fission were detected by a long counter built with five BF 3 proportional counters. Calibration curves for enrichment and total mass versus delayed neutron response were obtained using available UO 2 pellets of known enrichment. Enrichment detection limit, obtained with 95% confidence level by the Student distribution was estimated to be 0.33%. The minimal detectable mass was estimated to be 4.4 g. (author) [pt

  14. Removal cross section for 14 mev neutrons in constructional materials

    International Nuclear Information System (INIS)

    Vasvary, L.; Divos, F.; Peto, G.; Csikai, J.; Mumba, N.K.

    1985-01-01

    Using flight time difference the direct and scattered neutrons and gammas produced in the target head and samples were separated. With this method the attenuation of primary neutrons and gammas originating from the target head has been studied. Thickness dependence of the secondary gamma yield from extended samples of Al, Fe, Pb, paraffin and reinforced concrete was also measured. Results indicate a geometry dependence of the removal cross sections

  15. Excitation functions and isotopic effects in (n, p) reactions for stable nickel isotopes from reaction threshold to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lalremruata, B. [Department of Physics, University of Pune, Ganeshkhind, Pune-411007, Maharashtra (India)], E-mail: marema@physics.unipune.ernet.in; Ganesan, S. [Reactor Physics Design Division, BARC, Mumbai 58 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Ganeshkhind, Pune-411007, Maharashtra (India)], E-mail: vnb@physics.unipune.ernet; Dhole, S.D. [Department of Physics, University of Pune, Ganeshkhind, Pune-411007, Maharashtra (India)], E-mail: sanjay@physics.unipune.ernet.in

    2009-05-01

    The excitation function for (n, p) reactions from reaction threshold to 20 MeV on five nickel isotopes viz; {sup 58}Ni, {sup 60}Ni, {sup 61}Ni, {sup 62}Ni and {sup 64}Ni were calculated using Talys-1.0 nuclear model code involving the fixed set of global parameters. A good agreement between the calculated and measured data is obtained with minimum effort on parameter fitting and only one free parameter called 'Shell damping factor'. This is of importance to the validation of nuclear model approaches with increased predictive power. The systematic decrease in (n, p) cross-sections with increasing neutron number in reactions induced by neutrons on isotopes of nickel is explained in terms of the proton separation energy and the pre-equilibrium model. The compound nucleus and pre-equilibrium reaction mechanism as well as the isotopic effects were also studied.

  16. Program DDCS for nucleon and composite particle DDX of nucleon induced reactions up to tens of MeV

    International Nuclear Information System (INIS)

    Shen Qingbiao

    1994-01-01

    DDCS is a program for calculating the neutron or proton induced reactions of medium-heavy nuclei in the incident energy range up to 50 MeV including 5 emission processes. This program is written in FORTAN-77 on microscopic computer 486. DDCS is constructed within the framework of optical model, generalized master equation of the exciton model, and the evaporation model. The effect of recoil nucleus is considered in this program. DDCS has been used to calculate reactions of n + 56 Fe, n + 93 Nb, P + 120 Sn, P + 197 Au, and P + 209 Bi. Pretty good results in agreement with the experimental data were obtained

  17. Measurements of fission product yield in the neutron-induced fission of {sup 238}U with average energies of 9.35 MeV and 12.52 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Mukerji, Sadhana; Krishnani, Pritam Das; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok [Bhabha Atomic Research Centre, Mumbai (India); Shivashankar, Byrapura Siddaramaiah [Manipal University, Manipal (India); Mulik, Vikas Kaluram [University of Pune, Pune (India)

    2014-07-15

    The yields of various fission products in the neutron-induced fission of {sup 238}U with the flux-weighted averaged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gamma ray spectroscopic technique. The neutrons were generated using the {sup 7}Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.

  18. Measurements of fission product yield in the neutron-induced fission of 238U with average energies of 9.35 MeV and 12.52 MeV

    Science.gov (United States)

    Mukerji, Sadhana; Krishnani, Pritam Das; Shivashankar, Byrapura Siddaramaiah; Mulik, Vikas Kaluram; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok

    2014-07-01

    The yields of various fission products in the neutron-induced fission of 238U with the flux-weightedaveraged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gammaray spectroscopic technique. The neutrons were generated using the 7Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.

  19. Statistical Model Analysis of (n, α Cross Sections for 4.0-6.5 MeV Neutrons

    Directory of Open Access Journals (Sweden)

    Khuukhenkhuu G.

    2016-01-01

    Full Text Available The statistical model based on the Weisskopf-Ewing theory and constant nuclear temperature approximation is used for systematical analysis of the 4.0-6.5 MeV neutron induced (n, α reaction cross sections. The α-clusterization effect was considered in the (n, α cross sections. A certain dependence of the (n, α cross sections on the relative neutron excess parameter of the target nuclei was observed. The systematic regularity of the (n, α cross sections behaviour is useful to estimate the same reaction cross sections for unstable isotopes. The results of our analysis can be used for nuclear astrophysical calculations such as helium burning and possible branching in the s-process.

  20. Thick-target neutron, gamma-ray, and radionuclide production for protons below 12 MeV on nickel and carbon beam-stops

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.; Wilson, W.B.

    1998-03-01

    Nuclear model calculations using the GNASH code are described for protons below 12 MeV incident on nickel and carbon isotopes, for beam stop design in the Los Alamos Accelerator Production of Tritium Low Energy Demonstration Accelerator (LEDA) project. The GNASH calculations apply Hauser-Feshbach and preequilibrium reaction theories and can make use of pre-calculated direct reaction cross sections to low-lying residual nucleus states. From calculated thin target cross sections, thick target 6.7 MeV and 12 MeV proton-induced production of neutrons, gamma rays, and radionuclides are determined. Emission spectra of the secondary neutrons and gamma rays are also determined. The model calculations are validated through comparisons with experimental thin- and thick-target measurements. The results of this work are being utilized as source terms in MCNP analyses for LEDA

  1. Systematics of (n,t) reactions in medium and heavy mass nuclei at 14.6 MeV

    International Nuclear Information System (INIS)

    Woo, T.T.

    1979-01-01

    The production cross sections for (n,t) reactions of 14.6-MeV neutrons with isotopes of the natural elements Ca, Ti, Cr, Fe, Ni, Y, Mo, Pd, Cd, Sn, Pb, La, and with the enriched isotopes 86 Sr, 114 Cd, 130 Te, 205 Tl were measured by the activation technique using high-energy resolution gamma-ray spectrometry. The systematics for the (n,t) reactions were investigated as a function of the relative neutron excess. The experimentally determined values of the cross sections are in good agreement with values calculated by an empirical equation. The cross section ratios (n,t) and (n,p) reactions were calculated on the basis of the statistical model

  2. Transmission test of the polyethylene shield against 40 and 65 MeV quasi monochrome neutron

    International Nuclear Information System (INIS)

    Nakao, Makoto; Nakamura, Takashi; Sakuya, Yoshimasa; Nauchi, Yasushi; Nakao, Noriaki; Tanaka, Susumu; Sakamoto, Yukio; Nakajima, Hiroshi; Nakane, Yoshihiro.

    1996-01-01

    Using 40 and 65 MeV quasi monochrome neutron of the AVF cyclotron installed at Takasaki Laboratory, Japan Atomic Energy Research Institute, the neutron energy spectra were measured after transmitting the polyethylene shield. Results of the shielding experiments using concrete and iron recognized as main shielding material were proposed previously. As data obtained in the experiments were useful for a bench-mark experiment to investigate for shielding calculation and sectional data set, a shielding calculation simulated with new experiment to compare with and investigate for the previous experimental data. As a result, it was found that calculation result of neutron flux transmitting through the polyethylene shield showed difference with increase of the shield thickness. And, reducing distance of the peak neutron was also found to be over-estimated in its calculation value, such as three and five times on 43 MeV at 120 and 180 cm thick, respectively. (G.K.)

  3. Measurements of 14 MeV neutron multiplication in spherical beryllium shells

    International Nuclear Information System (INIS)

    Moellendorff, U. von; Alevra, A.V.; Giese, H.; Kappler, F.; Klein, H.; Klein, H.; Tayama, R.

    1995-01-01

    New results of spherical-shell transmission measurements with 14MeV neutrons on pure beryllium shells up to 17cm thick are reported. The total leakage neutron multiplications were measured using a Bonner sphere system. Independently, the leakage neutron spectra were measured over the entire energy range, 15MeV to thermal energies, by proton-recoil and time-of-flight methods. The total leakage multiplications are in excellent agreement with three-dimensional Monte Carlo calculations using beryllium nuclear data based on the Young and Stewart evaluation. The leakage in the evaporation energy window confirms the Be(n,2n) cross-section of the Young and Stewart evaluation rather than that used in the ENDF/B-VI library. At energies below 1keV, a surplus of leakage neutrons over the calculation is found for smaller beryllium thicknesses. (orig.)

  4. Calculations and Evaluations of Cross Sections for n + 204,206,207,208,natPb Reactions in the En ≤ 250 MeV Energy Range

    International Nuclear Information System (INIS)

    Han Yinlu; Shen Qingbiao; Zhang Zhengjun; Cai Chonghai

    2005-01-01

    The quality and reliability of the computational simulation of a macroscopic nuclear device are directly related to the quality of the underlying basic nuclear data. To meet these needs, according to advanced nuclear models that account for details of nuclear structure and the quantum nature of nuclear reaction and the experimental data of total, nonelastic, and elastic scattering cross sections, and elastic scattering angular distributions of Pb and its isotopes, all cross sections of neutron-induced reaction, angular distributions, energy spectra, especially the double-differential cross sections for neutron, proton, deuteron, triton, helium, and alpha emissions are calculated and analyzed for n + 204,206,207,208,nat Pb at incident neutron energies below 20 MeV by using the UNF nuclear model code. At neutron incident energies 20 n ≤ 250 MeV, MEND codes are used. Theoretical calculations are compared with existing experimental data and other evaluated data from ENDF/B-VI and JENDL-3

  5. Neutron-induced reactions on U and Th - A new approach via AMS

    International Nuclear Information System (INIS)

    Wallner, A.; Capote, R.; Christl, M.; Fifield, L.K.; Srncik, M.; Tims, S.; Hotchkis, M.; Krasa, A.; Lachner, J.; Lippold, J.; Plompen, A.; Semkova, V.; Steier, P.; Winkler, S.

    2014-01-01

    Recent studies exhibit discrepancies at keV and MeV energies between major nuclear data libraries for 238 U(n,γ), 232 Th(n,γ) and also for (n,xn) reactions. We have extended our initial (n,γ) measurements on 235,238 U to higher neutron energies and to additional reaction channels. Neutron-induced reactions on 232 Th and 238 U were measured by a combination of the activation technique and atom counting of the reaction products using accelerator mass spectrometry (AMS). Natural thorium and uranium samples were activated with quasi-monoenergetic neutrons at IRMM. Neutron capture data were produced for neutron energies between 0.5 and 5 MeV. Fast neutron-induced reactions were studied in the energy range from 17 to 22 MeV. Preliminary data indicate a fair agreement with data libraries; however at the lower band of existing data. This approach represents a complementary method to on-line particle detection techniques and also to conventional decay counting. (authors)

  6. Determination of oxygen content in steel using activation analysis with 14 MeV neutron

    International Nuclear Information System (INIS)

    Calado, C.E.

    1978-01-01

    In the quantitative analysis of oxygen in steel by fast neutron activation analysis the oxygen content is evaluated from the measured activity of 16 N produced. Steel s mples are irradiated in 14 MeV neutron flux. After irradiation the samples are pneumatically transfered to the counting terminal where activity is measured. Oxygen concentrations, are obtained by comparison with standards of specified oxygen content [pt

  7. Investigation of thick-target neutron emission from Be-9(d,n)B-10 at E/sub d/ = 7 MeV for angles other than zero degrees

    International Nuclear Information System (INIS)

    Smith, D.L.; Meadows, J.W.; Guenther, P.T.

    1985-01-01

    Double-differential measurements of neutron emission from a thick beryllium target bombarded with 7-MeV deuterons are made for neutrons above 800 keV, over the angular range of 0 to 155 0 . The angular dependence of the neutron yield is found to be quite anisotropic. The importance of this anisotropy in integral neutron-induced reaction cross-section investigations is illustrated. 7 refs.,

  8. Determination of the emission rate for the 14 MeV neutron generator with the use of radio-yttrium

    OpenAIRE

    Laszynska Ewa; Jednorog Slawomir; Ziolkowski Adam; Gierlik Michal; Rzadkiewicz Jacek

    2015-01-01

    The neutron emission rate is a crucial parameter for most of the radiation sources that emit neutrons. In the case of large fusion devices the determination of this parameter is necessary for a proper assessment of the power release and the prediction for the neutron budget. The 14 MeV neutron generator will be used for calibration of neutron diagnostics at JET and ITER facilities. The stability of the neutron generator working parameters like emission and angular homogeneity affects the accu...

  9. Forward absolute cross-section of the reaction 2H(d,n)3He for Esub(d) = (3/6)MeV

    International Nuclear Information System (INIS)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.; Galeazzi, G.

    1981-01-01

    The zero-degree differential cross-section of the reaction 2 H(d,n) 3 He was measured, by means of a recoil-proton neutron counter telescope, with an accuracy of 2%, in the incident-deuteron energy interval from 3 to 6 MeV. (author)

  10. Forward absolute cross-section of the reaction /sup 2/H(d,n)/sup 3/He for Esub(d) = (3/6)MeV

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R. (Padua Univ. (Italy). Ist. di Fisica); Galeazzi, G.

    1981-12-01

    The zero-degree differential cross-section of the reaction /sup 2/H(d,n)/sup 3/He was measured, by means of a recoil-proton neutron counter telescope, with an accuracy of 2%, in the incident-deuteron energy interval from 3 to 6 MeV.

  11. Forward absolute cross section of the reaction /sup 2/H(d,n)/sup 3/He from E/sub d/ = 3 to 6 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.

    1981-01-15

    The zero degree differential cross section of the reaction /sup 2/H(d,n)/sup 3/He was measured, by means of a proton recoil neutron counter telescope, with an accuracy of 2%, in the incident deuteron energy interval from 3 to 6 MeV. Results are presented.

  12. Forward absolute cross-section of the reaction /sup 2/H(d,n)/sup 3/He for Esub(d)=(3/6)MeV

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R. (Padua Univ. (Italy). Ist. di Fisica; Istituto Nazionale di Fisica Nucleare, Padua (Italy)); Galeazzi, G. (Istituto Nazionale di Fisica Nucleare, Padua (Italy). Lab. di Legnaro)

    1981-12-01

    The zero-degree differential cross-section of the reaction /sup 2/H(d,n)/sup 3/He was measured, by means of a recoil-proton neutron counter telescope, with an accuracy of 2%, in the incident deuteron energy interval form 3 to 6 MeV.

  13. Evaluation of n+Mn-55 cross section data up to 150 MeV neutron energy

    International Nuclear Information System (INIS)

    Pereslavtsev, P.; Fischer, U.

    2008-01-01

    A new evaluation was performed for the reaction system n + 55 Mn in the neutron energy range from 0.001 to 150 MeV. The evaluation is based on the use of the ECIS96 and GNASH codes. A good description of available experimental data was achieved. A very limited set of existing evaluated data from the available international nuclear data libraries was used for the evaluation. The final general purpose data file was prepared in standard ENDF-6 format and was verified with standard format checking utilities. The data file will undergo benchmark testing and will be finally integrated into the JEFF-3.2 data library. (authors)

  14. Nucleon-induced reactions at intermediate energies: new data at 96 MeV and theoretical status

    Energy Technology Data Exchange (ETDEWEB)

    Blideanu, V.; Lecolley, F.R.; Lecolley, J.F.; Lefort, T.; Marie, N.; Ban, G.; Louvel, M. [Caen Univ., Lab. de Physique Corpusculaire, ENSICAEN, IN2P3-CNRS ISMRA, 14 (France); Atac, A.; Bergenwall, B.; Blomgren, J.; Dangtip, S.; Hildebrand, A.; Hohansson, C.; Klug, J.; Nilsson, L.; Ollson, N.; Pomp, S.; Tippawan, U.; Osterlund, M. [Uppsala Univ., Nykoeping (Sweden). Dept. of Neutron Research; Tippawan, U. [Chiang Mai University, Fast Neutron Research Facility (Thailand); Elmgren, K.; Olsson, N. [Swedish Defense Research Agency, Stokholm (Sweden); Eudes, Ph.; Guertin, A.; Haddad, F.; Kirchner, T.; Lebrun, C.; Riviere, G. [Nantes Univ., Subatech, 44 (France); Foucher, Y. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Jonsson, O.; Prokofiev, A.V.; Renberg, P.U. [Uppsala Univ., Svedberg Laboratory (Sweden); Kerveno, M.; Stuttge, L. [IReS, Strasbourg (France); Le Brun, Ch. [Laboratoire de Physique Subatomique et de Cosmologie, 38 - Grenoble (France); Nadel-Turonski, P. [Uppsala Univ. (Sweden). Dept. of Radiation Sciences; Slypen, I. [Universite Catholique de Louvain (UCL), Institut de Physique Nucleaire, Louvain-la-Neuve (Belgium)

    2004-04-01

    Double-differential cross sections for light charged particle production (up to A = 4) were measured in 96 MeV neutron-induced reactions, at TSL laboratory cyclotron in Uppsala (Sweden). Measurements for three targets, Fe, Pb, and U, were performed using two independent devices, SCANDAL and MEDLEY. The data were recorded with low energy thresholds and for a wide annular range (20 - 160 degrees). The normalization procedure used to extract the cross sections is based on the np elastic scattering reaction that we measured and for which we present experimental results. A good control of the systematic uncertainties affecting the results is achieved. Calculations using the exciton model are reported. Two different theoretical approaches proposed to improve its predictive power regarding the complex particle emission are tested. The capabilities of each approach is illustrated by comparison with the 96 MeV data that we measured, and with other experimental results available in the literature. (authors)

  15. Construction of 144, 565 keV and 5.0 MeV monoenergetic neutron calibration fields at JAERI.

    Science.gov (United States)

    Tanimura, Y; Yoshizawa, M; Saegusa, J; Fujii, K; Shimizu, S; Yoshida, M; Shibata, Y; Uritani, A; Kudo, K

    2004-01-01

    Monoenergetic neutron calibration fields of 144, 565 keV and 5.0 MeV have been developed at the Facility of Radiation Standards of JAERI using a 4 MV Pelletron accelerator. The 7Li(p,n)7Be and 2H(d,n)3He reactions are employed for neutron production. The neutron energy was measured by the time-of-flight method with a liquid scintillation detector and calculated with the MCNP-ANT code. A long counter is employed as a neutron monitor because of the flat response. The monitor is set up where the influence of inscattered neutrons from devices and their supporting materials at a calibration point is as small as possible. The calibration coefficients from the monitor counts to the neutron fluence at a calibration point were obtained from the reference fluence measured with the transfer instrument of the primary standard laboratory (AIST), a 24.13 cm phi Bonner sphere counter. The traceability of the fields to AIST was established through the calibration.

  16. Measurements of attenuation lengths through concrete and iron for neutrons produced by 800-MeV proton on tantalum target at ISIS

    CERN Document Server

    Nunomiya, T; Wright, P; Nakamura, T; Kim, E; Kurosawa, T; Taniguchi, S; Sasaki, M; Iwase, H; Uwamino, Y; Shibata, T; Ito, S; Perry, D R

    2002-01-01

    A deep penetration experiment through a thick bulk shield was performed at an intense spallation neutron source facility, ISIS, of the Rutherford Appleton Laboratory (RAL), United Kingdom. ISIS is a 800 MeV-200 mu A proton accelerator facility. Neutrons are produced from a tantalum target, and are shielded with approximately 3-m thick steel and 1-m thick ordinary concrete. On top of the shield, we measured the neutron flux attenuation through concrete and iron shields, which were additionally placed up to 120-cm and 60-cm thickness, respectively, using activation detectors of graphite and bismuth. The attenuation lengths of concrete and iron for high-energy neutrons above 20 MeV were obtained from the sup 1 sup 2 C(n, 2n) sup 1 sup 1 C reaction of graphite.

  17. Neutron-induced fission cross-section of 233U, 241Am and 243Am in the energy range 0.5 MeV ≤ En ≤ 20 MeV

    International Nuclear Information System (INIS)

    Belloni, F.; Milazzo, P.M.; Calviani, M.

    2011-01-01

    Neutron-induced fission cross-sections of 233 U, 241 Am and 243 Am relative to 235 U have been measured in a wide energy range at the neutron time of flight facility n-TOF in Geneva to address the present discrepancies in evaluated and experimental databases for reactions and isotopes relevant for transmutation and new generation fast reactors. A dedicated fast ionization chamber was used. Each isotope was mounted in a different cell of the modular detector. The measurements took advantage of the characteristics of the n-TOF installation. Its intrinsically low background, coupled to its high instantaneous neutron flux, results in high accuracy data. Its wide energy neutron spectrum helps to reduce systematic uncertainties due to energy-domain matching problems while the 185 m flight path and a 6 ns pulse width assure an excellent energy resolution. This paper presents results obtained between 500 keV and 20 MeV neutron energy. (authors)

  18. Transmission of 14 MeV neutrons through concrete, soil, sugar, wood and coal samples - a Monte Carlo Study

    International Nuclear Information System (INIS)

    Abdelmonem, M.S.; Naqvi, A.A.

    2006-01-01

    Full text: Fast neutrons transmission measurements are ideal for the elemental analysis of bulk samples. In particular, they can be used to determine the hydrogen concentration in bulk samples. In the present study, Monte Carlo simulations have been carried to calculate the intensity of 14 MeV neutrons transmitted through concrete, soil, sugar, wood and coal samples. The simulated set-up consists of a cylindrical sample, placed at a distance of 9 cm from the neutron source. Fast neutrons transmitted through the sample are collimated through a double truncated neutron collimator to a fast neutron detector. The collimator contains a mixture of paraffin and lithium carbonate. In this study, transmitted intensity of fast neutron through each sample was calculated as a function of moisture contents of the sample for 14 MeV neutrons. The moisture contents of the samples were varied over 0-7 wt. %. The calculated intensity of 14 MeV neutrons transmitted through the samples, shows effects related to fast neutron thermalization in hydrogen of moisture and energy dependence of neutron transmission through the sample materials. This is clearly shown by different gradients of neutron yield vs moisture content curves of these samples. The gradient of the neutron yield curves for the 14 MeV neutrons has a lower value than those reported for a 241 Am-Be neutron source

  19. Energy measurement of prompt fission neutrons in 239Pu(n,f) for incident neutron energies from 1 to 200 MeV

    CERN Document Server

    Chatillon, A; Granier, Th; Laurent, B; Taïeb, J; Noda, S; Haight, R C; Devlin, M; Nelson, R O; O’Donnell, J M

    2010-01-01

    Prompt fission neutron spectra in the neutron-induced fission of 239Pu have been measured for incident neutron energies from 1 to 200 MeV at the Los Alamos Neutron Science Center. Preliminary results are discussed and compared to theoretical model calculation.

  20. Neutron-proton elastic scattering between 200 and 500 MeV

    International Nuclear Information System (INIS)

    Clough, A.S.; Gibson, D.R.; Axen, D.

    1979-01-01

    Measurements over an extensive angular range of the Dsub(t) and P parameters in free neutron-proton elastic scattering at laboratory energies of 220, 325, 425 and 495 MeV are reported. Experimental and analytical details are given. (author)

  1. Neutron cross-sections above 20 MeV for design and modeling of ...

    Indian Academy of Sciences (India)

    bination of a high-power, high-energy accelerator, a spallation target for neutron ... The development of the commercial critical reactors of today motivated a large effort on nuclear data up to about 20 MeV, and presently ..... facility in the world.

  2. 14.2 MeV neutron induced U-235 fission cross section measurement

    International Nuclear Information System (INIS)

    Li Jingwen; Shen Guanren; Ye Zongyuan; Li Anli; Zhou Shuhua; Sun Zhongfan; Wu Jingxia; Huang Tanzi

    1986-01-01

    The cross section of U-235 fission induced by 14.2 MeV neutrons was measured by the time correlated associated particle method. The result obtained is (2.078+-0.040) barn. Comparison with other author's is also given. (author)

  3. Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Niobium

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method describes procedures for measuring reaction rates by the activation reaction 93Nb(n,n′)93mNb. 1.2 This activation reaction is useful for monitoring neutrons with energies above approximately 0.5 MeV and for irradiation times up to about 30 years. 1.3 With suitable techniques, fast-neutron reaction rates for neutrons with energy distribution similar to fission neutrons can be determined in fast-neutron fluences above about 1016cm−2. In the presence of high thermal-neutron fluence rates (>1012cm−2·s−1), the transmutation of 93mNb due to neutron capture should be investigated. In the presence of high-energy neutron spectra such as are associated with fusion and spallation sources, the transmutation of 93mNb by reactions such as (n,2n) may occur and should be investigated. 1.4 Procedures for other fast-neutron monitors are referenced in Practice E 261. 1.5 Fast-neutron fluence rates can be determined from the reaction rates provided that the appropriate cross section information ...

  4. Scattering of 14.6 MeV neutrons from Fe and evidence for structure in the emitted neutron spectra

    International Nuclear Information System (INIS)

    Gul, K.; Anwar, M.; Ahmad, M.; Saleem, S.M.; Khan, N.A.

    1984-06-01

    Structure in the spectra of neutrons emitted from iron on bombardment with 14.6 MeV neutrons has been investigated and explained in terms of excitation of levels in iron 56. The energies of scattered neutrons have been measured by the time-of-flight technique based on the associated particle method. The observed excitations have been correlated with the reported levels in a satisfactory manner. Evidence for new excitations at 8.8 +- 0.02, 9.8 +- 0.1, 10.2 +- 0.1, 12.44 +- 0.03 and 12.52 +- 0.03 MeV has been obtained. The excitation of possible components of Ml giant resonance in iron 56 is discussed. (author)

  5. Statistical theory of neutron nuclear reactions

    International Nuclear Information System (INIS)

    Moldauer, P.A.

    1980-01-01

    The statistical theory of average neutron nucleus reaction cross sections is reviewed with emphasis on the justification of the Hauser Feshbach formula and its modifications for situations including isolated compound nucleus resonances, overlapping and interfering resonances, the competition of compound and direct reactions, and continuous treatment of residual nuclear states. (author)

  6. Statistical theory of neutron nuclear reactions

    International Nuclear Information System (INIS)

    Moldauer, P.A.

    1978-02-01

    The statistical theory of average neutron nucleus reaction cross sections is reviewed with emphasis on the justification of the Hauser Feshbach formula and its modifications for situations including isolated compound nucleus resonances, overlapping and interfering resonances, the competition of compound and direct reactions, and continuous treatment of residual nuclear states

  7. Statistical theory of neutron nuclear reactions

    International Nuclear Information System (INIS)

    Moldauer, P.A.

    1975-01-01

    The statistical theory of average neutron nucleus reaction cross sections is reviewed with emphasis on the justification of the Hauser Feshbach formula and its modifications for situations including isolated compound nucleus resonances, overlapping and interfering resonances, the competition of compound and direct reactions, and continuous treatment of residual nuclear states. 3 figures

  8. Parity violation in neutron induced reactions

    International Nuclear Information System (INIS)

    Gudkov, V.P.

    1991-06-01

    The theory of parity violation in neutron induced reactions is discussed. Special attention is paid to the energy dependence and enhancement factors for the various types of nuclear reactions and the information which might be obtained from P-violating effects in nuclei. (author)

  9. Nuclear and activation characteristics of materials in 14.1-MeV and 2.5-MeV neutron field

    International Nuclear Information System (INIS)

    Seki, Yasushi; Takeyasu, Yuuichi.

    1988-11-01

    The nuclear and activation characteristics of various materials and elements of interest in terms of fusion reactor design are calculated and the results are graphically shown. The elements and materials are placed in a simple geometry modelling a blanket and shield of a fusion reactor. The neutrons with 14.1-MeV and 2.5-MeV energy are generated from the region represented as D-T and D-D plasma, respectively. The following activation characteristics after neutron irradiation are shown for each material and element; 1. Time evolution of induced activity, 2. Time evolution of decay heat, 3. Delayed gamma-ray dose distribution, 4. Decay heat distribution. In addition to the above activation characteristics, nuclear characteristics during the neutron irradiation, e.g. neutron energy spectra, neutron and gamma-ray flux distribution, nuclear heating distributions, and neutron and gamma-ray dose rate are also shown. (author)

  10. A 14 MeV neutron irradiation facility with an automated fast cyclic pneumatic

    International Nuclear Information System (INIS)

    Montgomery, M.T.; Yoho, M.D.; Biegalski, S.R.; Landsberger, S.; Welch, L.

    2016-01-01

    This work details the design criteria, construction, controls, and optimization of the 14 MeV neutron irradiation facility at the University of Texas, built with the motivation of performing neutron activation analysis on samples with short half-lives. The facility couples a D-T neutron generator with a pneumatic transfer system capable of transit of approximately one second between source and detector, while the cyclic automated nature allows for many irradiation/count trials with any number of samples, translating to significantly improved counting statistics. (author)

  11. Optimization calculations for slow neutron production with the 136 MeV Harwell electron linac

    International Nuclear Information System (INIS)

    Needham, J.; Sinclair, R.N.

    1978-10-01

    The new 136 MeV Harwell electron linac is to be used to produce pulsed beams of slow neutrons for condensed matter research. Design details and performance of the two types of moderator which will be available have been optimised using a Monte Carlo neutronics code (TIMOC). The choice of reflector, the necessary decoupling energy to prevent pulse broadening and the influence of γ shields and moderator shape have been investigated. The predicted yield of leakage neutrons of energy 1 eV is compared to published values for comparable facilities. (author)

  12. Measurement of the angular distribution of neutron-proton scattering at 10 MeV

    International Nuclear Information System (INIS)

    Haight, R.C.; Bateman, F.B.; Grimes, S.M.; Brient, C.E.; Massey, T.N.; Wasson, O.A.; Carlson, A.D.; Zhou, H.

    1995-01-01

    The relative angular distribution of neutrons scattered from protons was measured at an incident neutron energy of 10 MeV at the Ohio University Accelerator Laboratory. An array of 11 detector telescopes at laboratory angles of 0 to 60 degrees was used to detect recoil protons from neutron interactions with a CH 2 (polypropylene) target. Data for 7 of these telescopes were obtained with one set of electronics and are presented here. These data, from 108 to 180 degrees for the center-of-mass scattering angles, have a small slope which agrees better with angular distributions predicted by the Arndt phase shifts than with the ENDF/B-VI angular distribution

  13. Neutron quality parameters versus energy below 4 MeV from microdosimetric calculations

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Borak, T.B.

    1983-01-01

    Charged-particle production by neutrons and the resulting energy-deposition spectra in micron-sized spheres of tissue of varying diameters were calculated from thermal energies to 4 MeV. These data were used to obtain dose-average values of several quality-indicating parameters as functions of neutron energy and of tissue sphere diameter. The contrast among the parameters is shown and discussed. Applications are made to two neutron spectra, one a fission spectrum in air and the other a moderated spectrum at the center of an irradiated cube of water

  14. Neutron shielding verification measurements and simulations for a 235-MeV proton therapy center

    International Nuclear Information System (INIS)

    Newhauser, W.D.; Titt, U.; Dexheimer, D.; Yan, X.; Nill, S.

    2002-01-01

    The neutron shielding at the Massachusetts General Hospital's 235-MeV proton therapy facility was investigated with measurements, analytical calculations, and realistic three-dimensional Monte Carlo simulations. In 37 of 40 cases studied, the analytical calculations predicted higher neutron dose equivalent rates outside the shielding than the measured, typically by more than a factor of 10, and in some cases more than 100. Monte Carlo predictions of dose equivalent at three locations are, on average, 1.1 times the measured values. Except at one location, all of the analytical model predictions and Monte Carlo simulations overestimate neutron dose equivalent

  15. Chemical reactions induced by fast neutron irradiation

    International Nuclear Information System (INIS)

    Katsumura, Y.

    1989-01-01

    Here, several studies on fast neutron irradiation effects carried out at the reactor 'YAYOI' are presented. Some indicate a significant difference in the effect from those by γ-ray irradiation but others do not, and the difference changes from subject to subject which we observed. In general, chemical reactions induced by fast neutron irradiation expand in space and time, and there are many aspects. In the time region just after the deposition of neutron energy in the system, intermediates are formed densely and locally reflecting high LET of fast neutrons and, with time, successive reactions proceed parallel to dissipation of localized energy and to diffusion of the intermediates. Finally the reactions are completed in longer time region. If we pick up the effects which reserve the locality of the initial processes, a significant different effect between in fast neutron radiolysis and in γ-ray radiolysis would be derived. If we observe the products generated after dissipation and diffusion in longer time region, a clear difference would not be observed. Therefore, in order to understand the fast neutron irradiation effects, it is necessary to know the fundamental processes of the reactions induced by radiations. (author)

  16. Cross sections for the 14N(n,p0), (n,α0), and (n,α1) reactions from 0.5 to 15 MeV

    International Nuclear Information System (INIS)

    Morgan, G.L.

    1978-09-01

    Cross sections were measured for the 14 N(n,p 0 ) reaction from 0.5 to 7.0 MeV and for the (n,α 0 ) and (n,α 1 ) reactions from 1 to 15 MeV and 4 to 15 MeV, respectively. The data were obtained using a gaseous scintillator containing N 2 and Xe mixtures. A linac was used as a pulsed, white neutron source with a 29-m fight path. The results of the measurement are compared to the current evaluated file for nitrogen; agreement is good for neutron energies below 8 MeV, but the measurement is substantially higher than the evaluation for neutron energies near 10 MeV

  17. Tritium production in neutron induced reactions

    International Nuclear Information System (INIS)

    Krasa, A.; Andreotti, E.; Hult, M.; Marissens, G.; Plompen, A.; Angelone, M.; Pillon, M.

    2011-01-01

    We present an overview of the present knowledge of (n,t) reaction excitation functions in the 14-21 MeV energy range for Cd, Cr, Fe, Mg, Mo, Ni, Pb, Pd, Ru, Sn, Ti, Zr. Experimental data are compared with evaluated data libraries, cross-section systematics, and TALYS calculations. The new values for the "5"0Cr(n,t)"4"8V cross-section measured using γ-spectrometry at 15, 16, 17.3 MeV are presented. The trend of the results confirms that while early experimental data at 14.6 MeV are strongly overestimated, the calculations performed with the default version of TALYS strongly underestimate the excitation curve in the measured energy region

  18. Simulation code for the interaction of 14 MeV neutrons on cells

    Energy Technology Data Exchange (ETDEWEB)

    Nenot, M.L.; Alard, J.P.; Dionet, C.; Arnold, J.; Tchirkov, A.; Meunier, H.; Bodez, V.; Rapp, M.; Verrelle, P

    2002-07-01

    The structure of the survival curve of melanoma cells irradiated by 14 MeV neutrons displays unusual features at very low dose rate where a marked increase in cell killings at 0.05 Gy is followed by a plateau for survival from 0.1 to 0.32 Gy. In parallel a simulation code was constructed for the interaction of 14 MeV neutrons with cellular cultures. The code describes the interaction of the neutrons with the atomic nuclei of the cellular medium and of the external medium (flask culture and culture medium), and is used to compute the deposited energy into the cell volume. It was found that the large energy transfer events associated with heavy charged recoil can occur and that a large part of the energy deposition events are due to recoil protons emitted from the external medium. It is suggested that such events could partially explain the experimental results. (author)

  19. A neutron survey meter with sensitivity extended up to 400 MeV

    International Nuclear Information System (INIS)

    Birattari, C.; Silari, M.

    1992-01-01

    The well-known Andersson-Braun rem counter is widely employed for radiation protection purposes, but its efficiency shows a marked decrease for neutron energies above about 10 MeV. Since the availability of a survey meter with a good sensitivity to higher energies can be very useful, for instance, at many particle accelerator facilities, a neutron monitor with a response function extended up to 400 MeV has been achieved by modifying the structure of the moderator-attenuator of a commercial instrument. The first experimental tests carried out to verify the response of the new monitor both to low and high energy neutrons are reported. A comparison with the response function of three conventional commercial rem counters is presented. (author)

  20. The design of a proton recoil telescope for 14 MeV neutron spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, N.P.; Bond, D.S.; Croft, S.; Jarvis, O.N. E-mail: onj@jet.uk; Sherwood, A.C

    2002-01-01

    As part of the design effort for a 14 MeV neutron spectrometer for the Joint European Torus (JET), computer codes were developed to calculate the response of a proton recoil telescope comprising a proton radiator film mounted in front of a proton detector. The codes were used to optimise the geometrical configuration in terms of efficiency and resolution, bearing in mind the constraints imposed by the proposed application as a JET neutron diagnostic for the Deuterium-Tritium phase. A prototype instrument was built according to the optimised design, and tested with monoenergetic 14 MeV neutrons from the Harwell 500 keV Van de Graaff accelerator. The measured energy resolution and absolute efficiency were found to be in acceptable agreement with the calculations. Based on this work, a multi-radiator production version of the spectrometer has now been constructed and successfully deployed at JET.

  1. The design of a proton recoil telescope for 14 MeV neutron spectrometry

    International Nuclear Information System (INIS)

    Hawkes, N.P.; Bond, D.S.; Croft, S.; Jarvis, O.N.; Sherwood, A.C.

    2002-01-01

    As part of the design effort for a 14 MeV neutron spectrometer for the Joint European Torus (JET), computer codes were developed to calculate the response of a proton recoil telescope comprising a proton radiator film mounted in front of a proton detector. The codes were used to optimise the geometrical configuration in terms of efficiency and resolution, bearing in mind the constraints imposed by the proposed application as a JET neutron diagnostic for the Deuterium-Tritium phase. A prototype instrument was built according to the optimised design, and tested with monoenergetic 14 MeV neutrons from the Harwell 500 keV Van de Graaff accelerator. The measured energy resolution and absolute efficiency were found to be in acceptable agreement with the calculations. Based on this work, a multi-radiator production version of the spectrometer has now been constructed and successfully deployed at JET

  2. Directed Neutron Beams From Inverse Kinematic Reactions

    Science.gov (United States)

    Vanhoy, J. R.; Guardala, N. A.; Glass, G. A.

    2011-06-01

    Kinematic focusing of an emitted fairly mono-energetic neutron beam by the use of inverse-kinematic reactions, i.e. where the projectile mass is greater than the target atom's mass, can provide for the utilization of a significant fraction of the fast neutron yield and also provide for a safer radiation environment. We examine the merit of various neutron production reactions and consider the practicalities of producing the primary beam using the suitable accelerator technologies. Preliminary progress at the NSWC-Carderock Positive Ion Accelerator Facility is described. Possible important applications for this type of neutron-based system can be both advanced medical imaging techniques and active "stand-off" interrogation of contraband items.

  3. Comparison of 14 MeV neutron activation analysis and competitive methods for determination of oxygen, nitrogen, silicon, fluorine and other elements

    International Nuclear Information System (INIS)

    Bild, R.W.

    1986-01-01

    14 MeV neutron activation analysis (14 MeV NAA) makes use of small particle accelerators to produce 14 MeV neutrons from the D-T reaction. The neutrons produce radioactive isotopes in samples by the reactions (n,p), (n,2n) and (n,α). Gamma rays emitted are counted to determine the amount of the target element present. Major applications have been determination of total O, N or Si in solid and liquid matrices, but the technique can also be applied to determine concentrations of about 30 other elements including F, Cl, Al, P and Mg. Detection limits are a few micrograms in the best cases and milligrams for most others. The method has advantages of being nondestructive, fast and insensitive to sample inhomogeneities. It lends itself especially well to sequential analysis of the same sample by several techniques and to samples that are difficult to dissolve. Portable generators have been applied to industrial situations and to well logging. Major disadvantages are the necessity to house a radiation producing instrument, the cost of the equipment and the lack of useful neutron reactions for some important elements. Accuracy (typically +-7 to 10% relative) and precision (+-1 to 5% relative) are comparable to competing techniques. For determination of low levels of O and N in most metals inert gas fusion is more rapid and sensitive; elemental analyzer is more sensitive for O and N in organics. Wet chemical methods rarely have any advantage over 14 MeV NAA for solid samples when concentrations are in the detection limit range of the 14 MeV NAA methods. Future developments in the field will come in the areas of simpler, more portable and higher neutron output generator designs. 66 refs

  4. Global phenomenological optical model potential for nucleon-actinide reactions at energies up to 300 MeV

    International Nuclear Information System (INIS)

    Han Yinlu; Liang Haiying; Guo Hairui; Shen Qingbiao; Xu Yongli

    2010-01-01

    A set of new global phenomenological optical model potential parameters for the actinide region with incident nucleon energies from 1 keV up to 300 MeV is obtained. They are based on a smooth, unique functional form for the energy dependence of the potential depths and on physically constrained geometry parameters. The available experimental data including the neutron total cross sections, nonelastic cross sections, elastic scattering cross sections, elastic scattering angular distributions, and proton reaction cross sections and elastic scattering angular distributions of 232 Th and 238 U are used. The new nucleon global optical model potential parameters obtained are analyzed and used to analyze the experimental data of nucleon-actinide reactions. It is found that the present form of the global optical model potential could reproduce both the neutron and the proton experimental data.

  5. Calibration of a large multi-element neutron counter in the energy range 85-430 MeV

    CERN Document Server

    Strong, J A; Esterling, R J; Garvey, J; Green, M G; Harnew, N; Jane, M R; Jobes, M; Mawson, J; McMahon, T; Robertson, A W; Thomas, D H

    1978-01-01

    Describes the calibration of a large 60 element neutron counter with a threshold of 2.7 MeV equivalent electron energy. The performance of the counter has been measured in the neutron kinetic energy range 8.5-430 MeV using a neutron beam at the CERN Synchrocyclotron. The results obtained for the efficiency as a function of energy are in reasonable agreement with a Monte Carlo calculation. (7 refs).

  6. Experiment and analysis of neutron spectra in a concrete assembly bombarded by 14 MeV neutrons

    International Nuclear Information System (INIS)

    Oishi, Koji; Tomioka, Kazuyuki; Ikeda, Yujiro; Nakamura, Tomoo.

    1988-01-01

    Neutron spectrum in concrete bombarded by 14 MeV neutrons was measured using a miniature NE213 spectrometer and multi-foil activation method. A good agreement between those two experimental methods was obtained within experimental errors. The measured spectrum was compared with calculated ones using two-dimensional transport code DOT3.5 with 125 group structure cross section libraries based on ENDF/B-IV, JENDL-2, and JENDL-3T (the testing version of JENDL-3.) In the D-T neutron peak region, measured and calculated neutron spectra agreed well with each other for those libraries. However, disagreements of about -10 % to +50 % and -30 % to +40 % were obtained in the MeV region and still lower neutron energy range, respectively. As a result, it was concluded that those discrepancies were caused by the overestimation of secondary neutrons emitted by inelastic scattering from O, Si, and/or Ca which were the main components of concrete. (author)

  7. Inelastic neutron scattering reactions in fluid saturated rock as exploited in oil well logging

    International Nuclear Information System (INIS)

    Underwood, M.C.; Dyos, C.J.

    1986-01-01

    Oil saturated sandstone and limestone targets have been irradiated with 14 MeV neutrons. Gamma-ray spectra were accumulated and the γ-ray intensities arising from inelastic neutron scattering reactions upon carbon and oxygen measured. The results are compared with the predictions of a simple model. They enable some features of the response of (n,γ) tools used in oil well logging to be established and current uncertainties in understanding to be highlighted. (author)

  8. Neutron multiplicities as a measure for scission time scales and reaction violences

    International Nuclear Information System (INIS)

    Knoche, K.; Scobel, W.; Sprute, L.

    1991-01-01

    We discuss the temporal evolution of the fusion-fission reactions 32 S + 197 Au, 232 Th measured for 838 MeV projectiles by means of the neutron clock method. The results confirm existent precision lifetime versus fissility data. The total neutron multiplicity as a measure of the initial excitation energy E * is compared with the folding angle method. (author). 13 refs, 8 figs

  9. Calculation of Multisphere Neutron Spectrometer Response Functions in Energy Range up to 20 MeV

    CERN Document Server

    Martinkovic, J

    2005-01-01

    Multisphere neutron spectrometer is a basic instrument of neutron measurements in the scattered radiation field at charged-particles accelerators for radiation protection and dosimetry purposes. The precise calculation of the spectrometer response functions is a necessary condition of the propriety of neutron spectra unfolding. The results of the response functions calculation for the JINR spectrometer with LiI(Eu) detector (a set of 6 homogeneous and 1 heterogeneous moderators, "bare" detector within cadmium cover and without it) at two geometries of the spectrometer irradiation - in uniform monodirectional and uniform isotropic neutron fields - are given. The calculation was carried out by the code MCNP in the neutron energy range 10$^{-8}$-20 MeV.

  10. The sensitivity of RTL, RPL and photographic detectors to 14.7MeV neutrons

    International Nuclear Information System (INIS)

    Spurny, Frantisek; Medioni, Roger; Portal, Guy.

    1975-08-01

    The sensitivity of various types of γ detectors to neutrons should be known for a better dosimetry of electromagnetic radiations in neutron fields. The sensitivity of various types of detectors to 14.7MeV neutrons was studied using RTL (LiF, 7 LiF, Ca SO 4 : Dy Al 2 O) RPL (C.E.C. glasses) and photographic detectors (Kodak-Pathe dosemeters). The methods used for the determination of the neutron and photon mixed field are described and the effect of containers and packing on the accuracy of results was investigated. For each detector studied the specific sensitivity to neutrons (sensitivity of the product alone) and the apparent sensitivity in usual operating conditions (action of surrounding materials) is given [fr

  11. Track-etch dosemeter response to neutrons up to 300 MeV

    International Nuclear Information System (INIS)

    Devine, R.T.; Walker, S.; Staples, P.; Duran, M.; Mundis, R.; Miller, J.

    1996-01-01

    Electro-chemical and chemical track-etch dosemeters were obtained from commercial suppliers and exposed to neutrons produced at the LANTF WNR white neutron source at 15 degree with no shielding and filtered by polyethylene blocks of 2.5, 5.1, 10.2, 20.3 and 40.6 cin thickness. The neutron spectrum was determined using calculations. Mean energies from 28 to 300 MeV were produced. Dose was calculated from the NCRP-38 flux-to-dose conversion. The results are compared with NTA film which was exposed in the same configuration. The response of track etch dosimeters was found to reach a minimum and then rise as the average neutron energy increased. The response of the NTA film increased as the neutron energy increased

  12. Neutron doses to personnel from a 24 MeV betatron

    International Nuclear Information System (INIS)

    Beckham, W.A; Entwistle, R.F.

    1987-01-01

    Neutrons are produced by bombardment of most materials by high-energy photons. Because the x-ray shielding around high-energy x-ray generators may not have been designed with neutrons in mind there may be unexpected contributions to the radiation doses of staff working in the immediate vicinity. Neutron fluxes in the working area close to an Allis-Chalmers 24 MeV betatron have been measured using a lithium-6-loaded scintillator and the dose rates calculated. Hazard of staff has been found to be low; typical dose-equivalent rates in occupied areas range from 0.0042 to 0.012 mrem/hour. The flux of fast neutrons in the treatment room was found to be essentially zero. Measurements of neutron flux may be routinely performed using the scintillation detector (NE 912) described, and could usefully form part of the acceptance protocol for any new accelerator

  13. Neutron multiplicity in deep inelastic collisions: 400 MeV Cu + Au system

    International Nuclear Information System (INIS)

    Tamain, B.; Chechik, R.; Ruchs, H.; Hanappe, F.; Morjean, M.; Ngo, C.; Peter, J.; Dakowski, M.; Lucas, B.; Mazur, C.; Ribrag, M.; Signarbieux, C.

    1979-01-01

    The authors have detected in nine different positions of space the neutrons associated with the collision of 63 Cu on 197 Au at 400 MeV bombarding energy. The deep inelastic products were detected at two different angles: close to the gazing angle and 30 0 forwards of it. Their measses were measured using a time-of-flight technique. The neutrons were detected in coincidence with the fragments - the efficiency of the neutron detectors was measured relatively to a 252 Cf source during beam time. The neutron threshold was set at 300 keV. Within an accuracy of 10% all the emitted neutrons are evaporated by the fully accelerated deep inelastic fragments. It is shown that the excitation energy is shared between the fragments in proportion to their masses and that the relaxation time for internal equilibration of the composite system is very short (approximately 10 -22 s). (Auth.)

  14. Monte Carlo calculation of the cross-section of single event upset induced by 14MeV neutrons

    International Nuclear Information System (INIS)

    Li, H.; Deng, J.Y.; Chang, D.M.

    2005-01-01

    High-density static random access memory may experience single event upsets (SEU) in neutron environments. We present a new method to calculate the SEU cross-section. Our method is based on explicit generation and transport of the secondary reaction products and detailed accounting for energy loss by ionization. Instead of simulating the behavior of the circuit, we use the Monte Carlo method to simulate the process of energy deposition in sensitive volumes. Thus, we do not need to know details about the circuit. We only need a reasonable guess for the size of the sensitive volumes. In the Monte Carlo simulation, the cross-section of SEU induced by 14MeV neutrons is calculated. We can see that the Monte Carlo simulation not only can provide a new method to calculate SEU cross-section, but also can give a detailed description about random process of the SEU

  15. 99mTc by 99Mo produced at the ENEA-FNG facility of 14MeV neutrons.

    Science.gov (United States)

    Capogni, M; Pietropaolo, A; Quintieri, L; Fazio, A; De Felice, P; Pillon, M; Pizzuto, A

    2018-04-01

    A severe supply crisis of 99 Mo, precursor of 99m Tc a diagnostic radionuclide largely used in Nuclear Medicine, occurred in 2008-2009 due to repeated shut-down of the two main (aged) fission reactors. An alternative route for producing 99 Mo by 100 Mo(n,2n) 99 Mo reaction was investigated at ENEA. The experiment, designed according to Monte Carlo simulations performed with the Fluka code, produced 99 Mo by irradiating a natural Molybdenum powdered target with 14MeV neutrons produced at the Frascati Neutron Generator. The 99 Mo specific activity was measured at metrological level by γ-ray spectrometry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A comparison of the free vacancy production in α brass by fission reactor neutrons and 14.8-MeV neutrons

    International Nuclear Information System (INIS)

    Damask, A.C.; Van Konynenburg, R.; Borg, R.J.; Dienes, G.J.

    1976-01-01

    Enhancement of substitutional diffusion is observed in α brass (30 wt% Zn) by following the decrease in electrical resistivity with neutron irradiation of a thermally equilibrated alloy; the decrease arises from the increase in short-range order. It was determined by previous research that this diffusion enhancement is largely caused by the annealling of radiation-produced vacancies in excess of the thermal equilibrium concentration. Therefore, the results reported here are based upon a well-established technique. The rate of resistivity change per neutron of different energies will give the relative number of free vacancies produced per neutron. This experiment compares the effect of 14.8 MeV neutrons with neutrons from a fission reactor. The results indicate that 14.8 MeV neutrons produce 10 +- 2 times as many free vacancies as reactor neutrons when the latter are expressed in terms of those neutrons with energies greater than 0.1 MeV. (author)

  17. Charged pion production from neutron--proton collisions at 790 MeV

    International Nuclear Information System (INIS)

    Thomas, W.R.

    1977-09-01

    The two reactions np → nnπ + and np → ppπ - were studied at 790 MeV (incident neutron energy). Pion spectra were measured at 10 different angles with a multiwire proportional chamber spectrometer. Approximately 100,000 events were analyzed. The angular distribution of pions in the np center of momentum system (d sigma/dΩ*) was given by [(123.1 +- 2.7) + (88.3 +- 4.9)cos 2 (theta*)](μb/sr). The cross section sigma(np → NNπ/sup +-/) was determined to be 1.92 +- .20 mb by integrating (d sigma/dΩ*) over all angles. The partial cross section for pion production from T = 0 np interactions (sigma 01 ) was found to be .1/sub -.1//sup +.5/ mb by using the relation sigma 01 = 2sigma(np → NNπ/sup +-)--sigma(pp → ppπ 0 ). Stronger indications of nonresonant pion production were given by the presence of asymmetries between the positive and negative pion spectra and a comparison of the data with an isobar model calculation

  18. Precise measurements of the thick target neutron yields of the 7Li(p,n) reaction

    International Nuclear Information System (INIS)

    Matysiak, W.; Prestwich, W.V.; Byun, S.H.

    2011-01-01

    Thick target neutron yield of the 7 Li(p,n) 7 Be reaction was measured in the proton energy range from 1.95 to 2.3 MeV by determining induced activity of the 7 Be. A HPGe detector was used to detect the 478 keV gamma-rays emitted through 7 Be decay. A series of irradiations with nominal proton energies of 1.95, 2.0, 2.1, 2.2, and 2.3 MeV were carried out. In an independent experiment, raw neutron spectra were collected by a 3 He ion chamber for the same series of proton energies. From the raw neutron spectra, it was noted, that the effective proton energies were lower than the nominal by 50-58 keV. After corrections for the proton energy offsets were applied, the measured neutron yields matched the analytically calculated yields within 20%. Long term stability of neutron yield was tested at two nominal proton energies, 2.1 and 1.95 MeV over an experimental period of one year. The results show that the yield at 2.1 MeV was stable within rmse variation coefficient of 4.7% and remained consistent even when the lithium target was replaced, whereas at 1.95 MeV, the maximum fluctuations reached a factor of 10.

  19. Optical model analysis of quasielastic (p, n) reactions at 22.8 MeV

    International Nuclear Information System (INIS)

    Carlson, J.D.; Zafiratos, C.D.; Lind, D.A.

    1975-01-01

    Quasielastic (p, n) differential cross sections have been measured for 29 nuclei ranging from 9 Be to 208 Pb at an energy of 22.8 MeV in approximately 7.5 0 steps from 10 0 to 152 0 . The results have been analysed with a distorted-wave Born approximation in terms of the generalized optical model due to Lane. Starting with a complex isospin interaction form factor, U 1 , deduced from the Becchetti-Greenlees global set of proton optical parameters, the shape of the surface-peaked, imaginary part of U 1 was varied until good fits to the data were obtained. The shape of the real part of U 1 and the ratio of the real to imaginary well depths were kept fixed at the Becchetti-Greenlees values. The resulting best-fit form factors had overall strengths 20-30% less than the Becchetti-Greenlees value. Further, the resulting imaginary part of U 1 was found to peak at a decreasing radius relative to the real part of U 1 with an increasing width as A increased. A smoothed parametrization of the best-fit U 1 is given for all nuclei with A > 40. The individual best-fit U 1 is used to generate self-consistent neutron optical potentials from the Becchetti-Greenlees proton optical potentials as prescribed by the Lane model. Neutron elastic scattering angular distributions and reaction cross sections predicted by these self-consistent potentials are in good agreement with observed neutron scattering data. (Auth.)

  20. Neutron induced fission of U isotopes up to 100 MeV

    International Nuclear Information System (INIS)

    Lestone, J.P.; Gavron, A.

    1993-01-01

    We have developed a statistical model description of the neutron induced fission of U isotopes using densities of intrinsic states and spin cut off parameters obtained directly from appropriate Nilsson model single particle levels. The first chance fission cross sections are well reproduced when the rotational contributions to the nuclear level densities are taken into account. In order to fit the U(n,f) cross sections above the threshold of second chance fission, we need to: (1) assume that the triaxial level density enhancement is washed out at an excitation energy of ∼7 MeV above the triaxial barriers with a width of ∼1 MeV, implying a γ deformation for the first barriers of 10 degree < γ < 20 degree; and (2) include pre-equilibrium particle emission in the calculations. Above an incoming neutron kinetic energy of ∼17 MeV our statistical model U(n,f) cross sections increasingly overestimate the experimental data when so called ''good'' optical model potentials are used to calculate the compound nucleus formation cross sections. This is not surprising since at these high energies little data exists on the scattering of neutrons to help guide the choice of optical model parameters. A satisfactory reproduction of all the available U(n,f) cross sections above 17 MeV is obtained by a simple scaling of our calculated compound nucleus formation cross sections. This scaling factor falls from 1.0 at 17 MeV to 0.82 at 100 MeV

  1. Scintillating-fiber imaging detector for 14-MeV neutrons

    International Nuclear Information System (INIS)

    Ress, D.; Lerche, R.A.; Ellis, R.J.; Heaton, G.W.; Nelson, M.B.; Mant, G.; Lehr, D.E.

    1994-01-01

    The authors have created a detector to image the neutrons emitted by imploded inertial-confinement fusion targets. The 14-MeV neutrons, which are produced by deuterium-tritium fusion events in the target, pass through an aperture to create an image on the detector. The neutron radiation is converted to blue light (430 nm) with a 20-cm-square array of plastic scintillating fibers. Each fiber is 10-cm long with a 1-mm-square cross section; approximately 35-thousand fibers make up the array. The resulting blue-light image is reduced and amplified by a sequence of fiber-optic tapers and image intensifiers, then acquired by a CCD camera. The fiber-optic readout system was tested optically for overall throughput the resolution. The authors plan to characterize the scintillator array reusing an ion-beam neutron source as well as DT-fusion neutrons emitted by inertial confinement targets. Characterization experiments will measure the light-production efficiency, spatial resolution, and neutron scattering within the detector. Several neutron images of laser-fusion targets have been obtained with the detector. Several neutron images of laser-fusion targets have been obtained with the detector. They describe the detector and their characterization methods, present characterization results, and give examples of the neutron images

  2. Observations on late effects in mice exposed to 400 MeV neutrons

    CERN Document Server

    Covelli, V; Bassani, B; Baarli, Johan; Bianchi, M; Metalli, P; Covelli, V; Di Paola, M; Bassani, B; Baarli, J no 2; Bianchi, M no 2; Metalli, P

    1976-01-01

    Life-long observations on mortality and pathology at death were carried out on groups of mice irradiated with 250 kV X-rays or exposed to a 400 MeV neutron beam, both directly and after attenuation corresponding to the maximum dose build-up region, at comparable dose-rates. Doses up to 84 rad of 400 MeV neutrons and up to 200 rad of X-rays showed no effect on the longevity of the animals, which suggests an upper limit to the r.b.e. for life-shortening of approximately 2·5. Similar conclusions were drawn from the data on all types of leukemias. For all other neoplasms, the age-specific death-rate showed a similar shortening of the latency times for groups of mice irradiated with 0–84 rad of 400 MeV direct neutrons and 0–400 rad of X-rays, also suggesting an upper limit to the r.b.e. slightly higher than that previously indicated for life-shortening. No definite effect was observed after exposure to the attenuated neutron beam at the doses used in these experiments.

  3. Evaluating the 239Pu Prompt Fission Neutron Spectrum Induced by Thermal to 30 MeV Neutrons

    Directory of Open Access Journals (Sweden)

    Neudecker D.

    2016-01-01

    Full Text Available We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. Selected evaluation results and first benchmark calculations using this evaluation are briefly discussed.

  4. Production of residual nuclides by proton-induced reactions on target W at the energy of 72 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Moazzem Hossain [Univ. of Chittagong, Dept. of Physics, Chittagong (Bangladesh); Kuhnhenn, Jochen; Herpers, Ulrich [Univ. of Cologne, Dept. of Nuclear Chemistry, Cologne (Germany); Michel, Rolf [University of Hannover, Centre for Radiation Protection and Radioecology (Germany); Kubik, Peter [Paul Scherrer Inst., c/o Institute for Particle Physics, ETH Hoenggerberg, Zuerich (Switzerland)

    2002-08-01

    Investigations of cross-sections for residual nuclide production on the target element W by proton-induced reactions were performed by irradiating the target with 72 MeV protons using the cyclotron facilities at Paul-Scherrer Institute, Zurich, Switzerland. Residual nuclides were measured by gamma-spectrometry of HpGe detectors calibrated with standard gamma sources. The measured data contains 104 individual cross-sections for 20 identified nuclides in the proton energies between 52.5 - 68.9 MeV. These nuclear data is important in the study of spallation neutron source and in accelerator driven technologies such as waste transmutation and energy amplification. The present data are compared with the shape of the excitation functions of earlier only one measurement at higher energies and they are in good agreement to each other. (author)

  5. Structures in 20O from the 14C(7Li, p) reaction at 44 MeV

    International Nuclear Information System (INIS)

    Bohlen, H.G.; Oertzen, W. von; Kokalova, T.; Wheldon, C.; Milin, M.; Dorsch, T.; Kruecken, R.; Faestermann, T.; Mahgoub, M.; Hertenberger, R.; Wirth, H.F.

    2011-01-01

    We have studied the multi-nucleon transfer reaction 14 C( 7 Li, p) at E Lab ( 7 Li) = 44 MeV populating states of the neutron-rich oxygen isotope 20 O. The experiments have been performed at the Munich Tandem accelerator using the high-resolution Q3D magnetic spectrometer, with an overall energy resolution of 45keV. States were populated up to 20MeV excitation energy -65 states have been identified in the analysis, among which 42 are new. Rotational bands are proposed in terms of underlying intrinsic reflection-asymmetric cluster and prolate molecular structures (namely 14 C x 2n x α) as parity doublet bands. A rectangular oblate structure is suggested for some very narrow states at high excitation energies. (orig.)

  6. Monte Carlo calculations of energy and angular distributions of transmitted and backscattered neutrons of 15 MeV incident energy

    International Nuclear Information System (INIS)

    Gaber, M.; Faied, A.

    1994-01-01

    The Monte Carlo technique was used to generate both energy and angular distributions of transmitted and backscattered neutrons incident on infinite graphite slabs of thicknesses ranging from 1-90 cm. Point isotropic and parallel beams of 15 MeV neutrons were used. A computer program was developed to simulate collisions by fast neutrons. (author)

  7. Theoretical model application to the evaluation of fission neutron data up to 20 MeV incidence energy

    International Nuclear Information System (INIS)

    Ruben, A.; Maerten, H.; Seeliger, D.

    1990-01-01

    A complex statistical theory of fission neutron emission combined with a phenomenological fission model has been used to calculate fission neutron data for 238 U. Obtained neutron multiplicities and energy spectra as well as average fragment energies for incidence energies from threshold to 20 MeV (including multiple-chance fission) are compared with traditional data representations. (author). 19 refs, 6 figs

  8. Development of a “Fission-proxy” Method for the Measurement of 14-MeV Neutron Fission Yields at CAMS

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, Narek [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-25

    Relative fission yield measurements were made for 50 fission products from 25.6±0.5 MeV alpha-induced fission of Th-232. Quantitative comparison of these experimentally measured fission yields with the evaluated fission yields from 14-MeV neutron-induced fission of U-235 demonstrates the feasibility of the proposed fission-proxy method. This new technique, based on the Bohr-independence hypothesis, permits the measurement of fission yields from an alternate reaction pathway (Th-232 + 25.6 MeV α → U-236* vs. U-235 + 14-MeV n → U-236*) given that the fission process associated with the same compound nucleus is independent of its formation. Other suitable systems that can potentially be investigated in this manner include (but are not limited to) Pu-239 and U-237.

  9. Quasielastic scattering using the (p,n) reaction at 795 MeV

    International Nuclear Information System (INIS)

    Prout, D.L.

    1992-08-01

    A survey in nuclear mass and in momentum transfer of cross sections and analyzing powers in the quasielastic region has been made using the (p,n) reaction. The measurements were performed at an energy of 795 MeV at the Neutron Time of Flight Facility and the Weapons Neutron Research line at LAMPF. The (p,n) reaction isolates the isovector (rvec τ 1 · rvec τ 2 ) part of the nucleon nucleus interaction. Standard models of quasielastic scattering were able to describe the magnitude and shape of the double differential cross sections very well if account was taken of a significant background from double scattering. In contrast, the quasielastic response was shifted to much higher excitation energy than what was expected. This was true for all nuclei at moderate to large momenta transfers. Neither the Coulomb energy shift nor RPA calculations with the standard particle hole (p-h) interactions could account for this large shift. The data argue for a repulsive interaction in both the transverse and longitudinal channels of the p-h interaction. A suppression of the quasielastic analyzing power compared to the free nucleon nucleon analyzing power was found in nat C at all the angles measured. The same region in nat Pb showed little or no suppression. Part of the suppression in the nat C data may be accounted for by relativistic models of the nucleus employing large vector and scalar potentials with an effective mass of .85 times the free nucleon mass. The relatively larger contribution of double scattering nat Pb(rvec p, n) than to nat C(rvec p, n) may account for the difference in analyzing power for these two targets in the quasielastic region

  10. Measurement of activation reaction rate distributions in a lead assembly bombarded with 500-MeV protons

    CERN Document Server

    Takada, H; Sasa, T; Tsujimoto, K; Yasuda, H

    2000-01-01

    Reaction rate distributions of various activation detectors such as the /sup nat/Ni(n, x)/sup 58/Co, /sup 197/Au(n,2n)/sup 196/Au, and /sup 197/Au(n,4n)/sup 194/Au reactions were measured to study the production and the transport of spallation neutrons in a lead assembly bombarded with protons of 500 MeV. The measured data were analyzed with the nucleon-meson transport code NMTC/JAERI combined with the MCNP4A code using the nuclide production cross sections based on the JENDL Dosimetry File and those calculated with the ALICE-F code. It was found that the NMTC/JAERI-MCNP4A calculations agreed well with the experiments for the low-energy-threshold reaction of /sup nat/Ni(n, x)/sup 58/Co. With the increase of threshold energy, however, the calculation underestimated the experiments, especially above 20 MeV. The reason for the disagreement can be attributed to the underestimation of the neutron yield in the tens of mega-electron-volt regions by the NMTC/JAERI code. (32 refs).

  11. Neutron-photon multigroup cross sections for neutron energies less than or equal to400 MeV. Revision 1

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Barnes, J.M.; Drischler, J.D.

    1986-02-01

    Multigroup cross sections (66 neutron groups and 22 photon groups) are described for neutron energies from thermal to 400 MeV. The elements considered are hydrogen, 10 B, 11 B, carbon, nitrogen, oxygen, sodium, magnesium, aluminum, silicon, sulfur, potassium, calcium, chromium, iron, nickel, tungsten, and lead. The cross section data presented are a revision of similar data presented previously. In the case of iron, transport calculations using the earlier and the revised cross sections are presented and compared, and significant differences are found. The revised cross sections are available from the Radiation Shielding information Center of the Oak Ridge National Laboratory. 32 refs., 5 figs., 3 tabs

  12. Evaluation of excitation functions for isomeric levels in neutron reactions

    International Nuclear Information System (INIS)

    Grudzevich, O.T.; Zelenetskij, A.V.; Zolotarev, K.I.; Kornilov, N.V.; Pashchenko, A.B.

    1993-07-01

    The authors consider the use of theoretical models to describe experimental excitation functions for isomeric levels in neutron reactions and to predict the cross-sections when no experimental data are available. It is shown that, in many cases, experimental data can be described quite satisfactorily by calculations without adjustment of parameters. For threshold reactions at a neutron energy of ∼ 14 MeV the agreement between calculated and experimental isomeric ratios is ∼ 20%, and is determined mainly by errors in the experimental ratios. However, for some reactions there are considerable differences between experimental and calculated data, which are due, in the authors' opinion, to uncertainties in the schemes of the low-lying levels and of gamma transitions between levels and to the spin dependence of level density. The small isomeric ratio values R<0.1 are described with the lowest accuracy. A formula is suggested for the energy dependence of the isomeric ratio in the (n,γ) reaction. (author)

  13. A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT

    International Nuclear Information System (INIS)

    Koivunoro, H.; Lou, T.P.; Leung, K. N.; Reijonen, J.

    2003-01-01

    Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the 10 B(n,α) 7 Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based on D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented

  14. Non-destructive analysis of major components in plant materials by mean of 14-MeV neutrons; Analyse ''non destructrice'' des principaux constituants de la matiere vegetale apres irradiation aux neutrons de 14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Garrec, J P [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    Although reactors are an important source of neutrons for activation analysis, it is sometimes convenient to have recourse to other, less expensive neutron sources. The Centre d'Etudes Nucleaires at Grenoble has small electrostatic accelerators which generate fast neutrons of 14 MeV energy. These SAMES-type generators are used for directing a deuton beam at 150 kV onto a tritiated target, the resulting flux of monoenergetic neutrons attaining 5 x 10{sup 11} ns{sup -1} in 4 {pi} geometry by the {sup 3}H(d,n){sup 4}He reaction. Numerous elements found in plant material can be activated in this flux, mainly by (n,p), (n,{alpha}) and (n,2n) reactions. Current research is directed towards making use of the entire gamma spectrum of activated plant matter. A computer is used to break down the spectrum into seven main spectral regions by the least-squares method. As a first approximation, these regions are those obtained from aluminium, calcium, potassium, magnesium, phosphorus, silicon and chlorine standards in standard activation and radioactive decay conditions. The wanted advantage of this way of analysis is not acute sensibility, but great fastness. Therefore radioactivation with 14 MeV neutrons is particularly well adapted to quick and simultaneous dosages of useful elements in agronomy. (author) [French] Bien que les reacteurs constituent une source de neutrons importante en analyse par activation, il est parfois commode de recourir a d'autres sources neutronigenes exigeant un investissement moindre. Le Centre d'Etudes Nucleaires de Grenoble dispose de petits accelerateurs electrostatiques generateurs de neutrons rapides de 14 MeV. Ces generateurs, de type SAMES, accelerent un faisceau de deutons sous 150 kV vers une cible tritiee. Celle-ci fournit un flux de neutrons mono-energetiques atteignant 5 x 10{sup 11} n/s/4 {pi} par la reaction {sup 3}H(d,n){sup 4}He. De nombreux elements composant les matieres vegetales s'activent dans ce flux principalement par reactions

  15. Fast neutron (14.5 MeV) radiography: a comparative study

    International Nuclear Information System (INIS)

    Klann, R.T.

    1996-01-01

    Fast neutron (14.5 MeV) radiography is a type of non-destructive analysis tool that offers its own benefits and drawbacks. Because cross-sections vary with energy, a different range of materials can be examined with fast neutrons than can be studied with thermal neutrons, epithermal neutrons, or x-rays. This paper details these differences through a comparative study of fast neutron radiography to the other types of radiography available. The most obvious difference among the different types of radiography is in the penetrability of the sources. Fast neutrons can probe much deeper and can therefore obtain details of the internals of thick objects. Good images have been obtained through as much as 15 cm of steel, 10 cm of water, and 15 cm of borated polyethylene. In addition, some objects were identifiable through as much as 25 cm of water or 30 cm of borated polyethylene. The most notable benefit of fast neutron radiography is in the types of materials that can be tested. Fast neutron radiography can view through materials that simply cannot be viewed by X rays, thermal neutrons, or epithermal neutrons due to the high cross-sections or linear attenuation coefficients involved. Cadmium was totally transparent to the fast neutron source. Fast neutron radiography is not without drawbacks. The most pronounced drawback has been in the quality of radiograph produced. The image resolution is only about 0.8 mm for a 1.25 cm thick object, whereas, other forms of radiography have much better resolution

  16. Neutron integral test of graphite cross sections in MeV energy region for the JENDL-3T through an analysis of WINFRITH shielding experiment

    International Nuclear Information System (INIS)

    Ueki, Kohtaro; Sakurai, Kiyoshi.

    1988-01-01

    The neutron integral tests of graphite cross sections in MeV neutron energy region for the ENDF/B-IV, JENDL-2, JENDL-3PR1 and -3T were performed through the Monte Carlo analysis of the graphite shielding experiment at the WINFRITH. The measured values were on the reaction rates of 115 In(n,n') 115m In, 27 Al(n,α) 24 Na, 32 S(n,p) 32 P, and 103 Rh(n,n') 103m Rh threshold detectors located in the graphite slabs, so that the experiment on the graphite was good at the integral test of neutron cross sections in MeV energy resion. (author)

  17. Neutron-deuteron analyzing power data at En = 21 MeV and the energy dependence of the three-nucleon analyzing power puzzle

    Science.gov (United States)

    Weisel, G. J.; Tornow, W.; Esterline, J. H.

    2015-08-01

    We present measurements of n-d analyzing power, {A}y(θ ), at En = 21.0 MeV. The experiment produces neutrons via the 2H(d, n)3He reaction and uses a deuterated liquid-scintillator center detector and six pairs of liquid-scintillator neutron side detectors. Elastic neutron scattering events are identified by using time-of-flight techniques and by setting a gate in the center-detector pulse-height spectrum. Beam polarization is monitored by using a high-pressure helium gas scintillator. The n-d {A}y(θ ) data at 21.0 MeV show a significant discrepancy with the results of rigorous three-body calculations and are consistent with data taken previously by us at 19.0 and 22.5 MeV. We review the overall energy dependence of the three-nucleon analyzing power puzzle in neutron-deuteron elastic scattering, using the best data available. We find that the relative difference between calculations and data is nearly constant at 25% up to En = 22.5 MeV.

  18. Beam plasma 14 MeV neutron source for fusion materials development

    International Nuclear Information System (INIS)

    Ravenscroft, D.; Bulmer, D.; Coensgen, F.; Doggett, J.; Molvik, A.; Souza, P.; Summers, L.; Williamson, V.

    1991-09-01

    The conceptual engineering design and expected performance for a 14 MeV DT neutron source is detailed. The source would provide an intense neutron flux for accelerated testing of fusion reactor materials. The 150-keV neutral beams inject energetic deuterium atoms, that ionize, are trapped, then react with a warm (200 eV), dense tritium target plasma. This produces a neutron source strength of 3.6 x 10 17 n/sec for a neutron power density at the plasma edge of 5--10 MW/m 2 . This is several times the ∼2 MW/m 2 anticipated at the first wall of fusion reactors. This high flux provides accelerated end-of-life tests of 1- to 2-year duration, thus making materials development possible. The modular design of the source and the facilities are described

  19. Elastic neutron scattering studies at 96 MeV for transmutation.

    Science.gov (United States)

    Osterlund, M; Blomgren, J; Hayashi, M; Mermod, P; Nilsson, L; Pomp, S; Ohrn, A; Prokofiev, A V; Tippawan, U

    2007-01-01

    Elastic neutron scattering from (12)C, (14)N, (16)O, (28)Si, (40)Ca, (56)Fe, (89)Y and (208)Pb has been studied at 96 MeV in the10-70 degrees interval, using the SCANDAL (SCAttered Nucleon Detection AssembLy) facility. The results for (12)C and (208)Pb have recently been published, while the data on the other nuclei are under analysis. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. A novel method for normalisation of the absolute scale of the cross section has been used. The estimated normalisation uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. Elastic neutron scattering is of utmost importance for a vast number of applications. Besides its fundamental importance as a laboratory for tests of isospin dependence in the nucleon-nucleon, and nucleon-nucleus, interaction, knowledge of the optical potentials derived from elastic scattering come into play in virtually every application where a detailed understanding of nuclear processes is important. Applications for these measurements are dose effects due to fast neutrons, including fast neutron therapy, as well as nuclear waste incineration and single event upsets in electronics. The results at light nuclei of medical relevance ((12)C, (14)N and (16)O) are presented separately. In the present contribution, results on the heavier nuclei are presented, among which several are of relevance to shielding of fast neutrons.

  20. The prediction of Neutron Elastic Scattering from Tritium for E(n) = 6-14 MeV

    International Nuclear Information System (INIS)

    Anderson, J.D.; Dietrich, F.S.; Luu, T.; McNabb, D.P.; Navratil, P.; Quaglioni, S.

    2010-01-01

    In a recent report Navratil et al. evaluated the angle-integrated cross section and the angular distribution for 14-MeV n+T elastic scattering by inferring these cross sections from accurately measured p+3He angular distributions. This evaluation used a combination of two theoretical treatments, based on the no-core shell model and resonating-group method (NCSM/RGM) and on the R-matrix formalism, to connect the two charge-symmetric reactions n+T and p+ 3 He. In this report we extend this treatment to cover the neutron incident energy range 6-14 MeV. To do this, we evaluate angle-dependent correction factors for the NCSM/RGM calculations so that they agree with the p+ 3 He data near 6 MeV, and using the results found earlier near 14 MeV we interpolate these correction factors to obtain correction factors throughout the 6-14 MeV energy range. The agreement between the corrected NCSM/RGM and R-Matrix values for the integral elastic cross sections is excellent (±1%), and these are in very good agreement with total cross section experiments. This result can be attributed to the nearly constant correction factors at forward angles, and to the evidently satisfactory physics content of the two calculations. The difference in angular shape, obtained by comparing values of the scattering probability distribution P(μ) vs. μ(the cosine of the c.m. scattering angle), is about ±4% and appears to be related to differences in the two theoretical calculations. Averaging the calculations yields P(μ) values with errors of ±2 1/2 % or less. These averaged values, along with the corresponding quantities for the differential cross sections, will form the basis of a new evaluation of n+T elastic scattering. Computer files of the results discussed in this report will be supplied upon request.

  1. The prediction of Neutron Elastic Scattering from Tritium for E(n) = 6-14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J D; Dietrich, F S; Luu, T; McNabb, D P; Navratil, P; Quaglioni, S

    2010-06-14

    In a recent report Navratil et al. evaluated the angle-integrated cross section and the angular distribution for 14-MeV n+T elastic scattering by inferring these cross sections from accurately measured p+3He angular distributions. This evaluation used a combination of two theoretical treatments, based on the no-core shell model and resonating-group method (NCSM/RGM) and on the R-matrix formalism, to connect the two charge-symmetric reactions n+T and p+{sup 3}He. In this report we extend this treatment to cover the neutron incident energy range 6-14 MeV. To do this, we evaluate angle-dependent correction factors for the NCSM/RGM calculations so that they agree with the p+{sup 3}He data near 6 MeV, and using the results found earlier near 14 MeV we interpolate these correction factors to obtain correction factors throughout the 6-14 MeV energy range. The agreement between the corrected NCSM/RGM and R-Matrix values for the integral elastic cross sections is excellent ({+-}1%), and these are in very good agreement with total cross section experiments. This result can be attributed to the nearly constant correction factors at forward angles, and to the evidently satisfactory physics content of the two calculations. The difference in angular shape, obtained by comparing values of the scattering probability distribution P({mu}) vs. {mu}(the cosine of the c.m. scattering angle), is about {+-}4% and appears to be related to differences in the two theoretical calculations. Averaging the calculations yields P({mu}) values with errors of {+-}2 1/2 % or less. These averaged values, along with the corresponding quantities for the differential cross sections, will form the basis of a new evaluation of n+T elastic scattering. Computer files of the results discussed in this report will be supplied upon request.

  2. Measurement of formation cross sections producing short-lived nuclei by 14 MeV neutrons. Pr, Ba, Ce, Sm, W, Sn, Hf

    International Nuclear Information System (INIS)

    Murahira, S.; Satoh, Y.; Honda, N.; Shibata, M.; Yamamoto, H.; Kawade, K.; Takahashi, A.; Iida, T.

    1996-01-01

    Thirteen neutron activation cross sections for (n,2n), (n,p), (n,np) and (n,α) reactions producing short-lived nuclei with half-lives between 56 s and 24 min were measured in the energy range from 13.4 MeV to 14.9 MeV for Pr, Ba, Ce, Sm, W, Sn and Hf. The cross sections of 179 Hf(n,np) 178m Lu and 180 Hf(n,p) 180 Lu were measured for the first time. (author)

  3. Measurement of 14 MeV neutron cross section of {sup 129}I with foil activation method

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Isao; Nakano, Daisuke; Takahashi, Akito [Osaka Univ., Suita (Japan). Faculty of Engineering

    1997-03-01

    The {sup 129}I, which is one of the most famous fission products (FPs), is of very important concern from the standpoint of waste transmutation due to its extremely long half life. The accurate reaction cross section data of {sup 129}I induced by 14 MeV neutrons are indispensable when evaluating the performance to transmute it in a fusion reactor. However, there was no available experimental data reported until now. We measured 14 MeV neutron induced reaction cross sections of {sup 129}I to give the reference cross section data for evaluation of transmutation performance and nuclear data, using OKTAVIAN facility of Osaka university, Japan. Since the available amount of {sup 129}I as a sample is quite small, probably less than 1 mg, the foil activation method was adopted in the measurement. The sample was a sealed source of {sup 129}I and the {gamma}-rays from the irradiated sample were measured with a Hp-Ge detector. Several {gamma}-rays peaks which could be expected to be caused by two nuclear reactions of {sup 129}I(n,2n) and {sup 129}I(n,{gamma}) were observed. We confirmed that these peaks corresponded to those of {sup 128}I and {sup 130}I through ascertaining each energy and half life. From the measurement, the cross section of {sup 129}I(n,2n) and the effective production cross section of {sup 130}I produced by the {sup 129}I(n,{gamma}){sup 130}I reaction including the contribution of {sup 129}I(n,{gamma}){sup 130m}I reaction, that were estimated to be 1.1{+-}0.1 b and 0.032{+-}0.003 b, respectively at 14.8 MeV, were obtained with an acceptable accuracy of about 10 %, though the errors caused by the uncertainty of {gamma} decay scheme data still existed. The measured cross sections were compared with the evaluated nuclear data of JENDL-3.2 and ENDF/B-VI. For the {sup 129}I(n,2n) reaction, the evaluations overestimate the cross section by 30-40 %, while for the {sup 129}I(n,{gamma}) reaction, the evaluations underestimate by at least one order of magnitude

  4. Utilization of new 150-MeV neutron and proton evaluations in MCNP

    International Nuclear Information System (INIS)

    Little, R.C.; Frankle, S.C.; Hughes, H.G. III; Prael, R.E.

    1997-01-01

    MCNP trademark and LAHET trademark are two of the codes included in the LARAMIE (Los Alamos Radiation Modeling Interactive Environment) code system. Both MCNP and LAHET are three-dimensional continuous-energy Monte Carlo radiation transport codes. The capabilities of MCNP and LAHET are currently being merged into one code for the Accelerator Production of Tritium (APT) program at Los Alamos National Laboratory. Concurrently, a significant effort is underway to improve the accuracy of the physics in the merged code. In particular, full nuclear-data evaluations (in ENDF6 format) for many materials of importance to APT are being produced for incident neutrons and protons up to an energy of 150-MeV. After processing, cross-section tables based on these new evaluations will be available for use fin the merged code. In order to utilize these new cross-section tables, significant enhancements are required for the merged code. Neutron cross-section tables for MCNP currently specify emission data for neutrons and photons only; the new evaluations also include complete neutron-induced data for protons, deuterons, tritons, and alphas. In addition, no provision in either MCNP or LAHET currently exists for the use of incident charged-particle tables other than for electrons. To accommodate the new neutron-induced data, it was first necessary to expand the format definition of an MCNP neutron cross-section table. The authors have prepared a 150-MeV neutron cross-section library in this expanded format for 15 nuclides. Modifications to MCNP have been implemented so that this expanded neutron library can be utilized

  5. Investigation of the neutron-proton-interaction in the energy range from 20 to 50 MEV

    International Nuclear Information System (INIS)

    Wilczynski, J.

    1984-07-01

    In the framework of the investigation of the isospin singlet part of the nucleon-nucleon-interaction in the energy range below 100 MeV two experiments were conducted, which were selected by sensitivity calculations. At the Karlsruhe polarized neutron facility POLKA the analyzing powers Asub(y) and Asub(yy) of the elastic n vector-p- and n vector-p vector-scattering were measured in the energy range from 20 to 50 MeV. The results of this epxeriment are compared to older data. In the energy range from 20 to 50 MeV the new data were analyzed together with other selected data of the nucleon-nucleon-system in phase shift analyses. The knowledge of the isospin singlet phase shifts 1 P 1 and 3 D 3 was improved by the new data. (orig./HSI) [de

  6. The construction of a facility for 14 Mev neutron activation analysis of oxygen in aluminium

    International Nuclear Information System (INIS)

    Bjoernstad, T.; Alstad, J.

    1984-02-01

    The article describes the construction and performance of a facility for 14 MeV neutron activation analysis, mainly for oxygen in aluminium, at the University of Oslo. It consists of a sealed tube neutron generator, a biaxial rotation system for samples in irradiation position, a mechanism for automatic separation of sample and container, and appropriate detectors and counting electronics. Especially considered are the procedures for sample preparation and packing, standardization, optimization of the energy range for integration and optimization of the irradiation, decay and counting times. The applicability of the facility is exemplified by analytical results from comparative investigations in different laboratories using different methods. (Auth.)

  7. Quality factor calculations for neutron spectra below 4 MeV

    International Nuclear Information System (INIS)

    Borak, T.B.; Stinchcomb, T.G.

    1979-01-01

    A method is described for computing the distribution of absorbed dose, D(L), as a function of linear energy transfer, L, for any neutron spectrum with energies below 4 MeV. The results are used to determine the average quality factor for two distinctly different neutron spectra using the ICRP recommended values of the quality factor, Q(L). A comparison is made between the calculations and measurements of D(L) using a spherical tissue equivalent proportional counter. Heavy ion recoil contributions to the average quality factor are examined in detail. (author)

  8. Gamma-ray emission spectra from spheres with 14 MeV neutron source

    International Nuclear Information System (INIS)

    Yamamoto, Junji; Kanaoka, Takeshi; Murata, Isao; Takahashi, Akito; Sumita, Kenji

    1989-01-01

    Energy spectra of neutron-induced gamma-rays emitted from spherical samples were measured using a 14 MeV neutron source. The samples in use were LiF, Teflon:(CF 2 ) n , Si, Cr, Mn, Co, Cu, Nb, Mo, W and Pb. A diameter of the sphere was either 40 or 60 cm. The gamma-ray energy in the emission spectra covered the range from 500 keV to 10 MeV. Measured spectra were compared with transport calculations using the nuclear data files of JENDL-3T and ENDF/B-IV. The agreements between the measurements and the JENDL-3T calculations were good in the emission spectra for the low energy gamma-rays from inelastic scattering. (author)

  9. Sputtering of vanadium and niobium under 14.1 MeV neutron impact

    International Nuclear Information System (INIS)

    Kaminsky, M.; Das, S.K.

    1976-01-01

    The recent studies of particle emission from cold-rolled and annealed niobium under 14.1-MeV neutron impact were extended to a heavily etched, polycrystalline niobium surface and to cold worked vanadium surfaces with different degrees of microstructure. The type and amount of material released and deposited on collector surfaces facing the irradiated targets were determined by three analytical techniques. Two types of deposits were found for certain types of surfaces--one in the form of chunks; the other as a fractional atom layer covering the surface. The chunks vary significantly in size. The small number of chunks observed suggests that the ejection of chunks is a relatively rare event in comparison to the total number of primary knock-on events produced by 14-MeV neutrons in near surface regions. Estimates of the total sputtering yield based on the chunk deposits and on the fractional atom layer deposit will be given

  10. Tests of the GIC and Measurements of Angular Distributions and Energy Spectra for 58Ni(n,p)58Co Reaction at 4.1 MeV

    Institute of Scientific and Technical Information of China (English)

    Yu.M.Gledenov; M.Sedysheva; G.Khuukhenkhuu

    1997-01-01

    <正>On the basis of measurements of double differential cross sections for (n,α) reactions in 5-7 MeV neutron energy region using gridded ionization chamber (GIC), we constructed a new GIC which, compared with the old ones, can bear higher pressure and makes it possible to measure (n,p) reactions up to 6 MeV and (n,xα) reactions up to 20 MeV. To test the new chamber, the saturation property for argon and krypton mixed with a few percent CO2 was studied using 241Am and compound Pu α source and tritium from 6Li(nth,t)4He, and the two dimensional spectra for 241Am and Pu α source, 6Li(nth,t)4He and H(n,p) reactions were measured. The measured energy spectra and angular distributions for α and tritium are reasonable, and the derived data for α, proton and tritium in argon and krypton from the measured spectra data were compared with the calculated ones. They are in good agreement. The angular distributions and energy spectra for 58Ni(n,p)58Co reaction at 4.1 MeV neutron energy were m

  11. Calculated neutron-activation cross sections for E/sub n/ /le/ 100 MeV for a range of accelerator materials

    International Nuclear Information System (INIS)

    Bozoian, M.; Arthur, E.D.; Perry, R.T.; Wilson, W.B.; Young, P.G.

    1988-01-01

    Activation problems associated with particle accelerators are commonly dominated by reactions of secondary neutrons produced in reactions of beam particles with accelerator or beam stop materials. Measured values of neutron-activation cross sections above a few MeV are sparse. Calculations with the GNASH code have been made for neutrons incident on all stable nuclides of a range of elements common to accelerator materials. These elements include B, C, N, O, Ne, Mg, Al, Si, P, S, Ar, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Nd, and Sm. Calculations were made for a grid of incident neutron energies extending to 100 MeV. Cross sections leading to the direct production of as many as 87 activation products for each of 84 target nuclide were tabulated on this grid of neutron energies, each beginning with the threshold for the product nuclide's formation. Multigrouped values of these cross sections have been calculated and are being integrated into the cross-section library of the REAC-2 neutron activation code. Illustrative cross sections are presented. 20 refs., 6 figs., 1 tab

  12. Simultaneous determination of nitrogen and phosphorus in cereals using 14 MeV Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Bejarano, R.

    1992-01-01

    A method using 14 MeV neutron activation analysis was developed form non-destructive simultaneous determination of N and P in cereals. The samples were irradiated 5 min. after 0,5 min. decay time. The induced activities were measured using gamma spectrometry with Nal(Tl) well type detector. The accuracy, precision and detection limits obtained are discussed as well as the analytical results for different types of cereals. (Author) 10 refs., 8 tab., 1 fig

  13. Calculated neutron spectrum from 800-MeV protons incident on a copper beam stop

    International Nuclear Information System (INIS)

    Perry, D.G.

    1975-10-01

    A Monte Carlo calculation was performed to obtain the neutron spectrum generated by 800-MeV protons incident on the LAMPF main copper beam stop. The total flux is calculated to be of the order of 10 13 n/cm 2 -sec-mA at full-beam intensity of 1 mA, with flux spectra calculated for angles of 20 0 , 30 0 , 60 0 , 90 0 , 120 0 , and 150 0 . (auth)

  14. Determination of phosphorus and potassium in sugar cane leaves by 14 MeV neutrons

    International Nuclear Information System (INIS)

    Diaz, R.A.; Nagy, A.Z.; Bakos, L.; Soria, J.C.

    1979-04-01

    The possibilities of N, P, K evaluation in samples of sugar cane leaves were discussed. A method for determining P and K content in this samples by 14 MeV neutron activation analysis is described. Corrections for K and Si were taken into account. The limit of detection for P was 0.1 mg and for K it was 4 mg. The precision for P and K was 10% in agreement with the values given by other authors. (author)

  15. Activation analysis course experiments with a 14-MeV neutron generator

    International Nuclear Information System (INIS)

    Miller, D.A.; Miller, G.E.

    1976-01-01

    The use of a 14 MeV neutron generator system in the radiochemistry teaching program of the Chemistry Department of the University of California at Irvine is described. Several different types of experiment are outlined to indicate the broad applicability of such a system to an instructional program in Chemistry. The program has encompassed instruction of undergraduates, graduate students and a Summer Institute Workshop for College Professors

  16. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.

    Science.gov (United States)

    Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun

    2016-01-01

    This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators

    International Nuclear Information System (INIS)

    Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun

    2016-01-01

    This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed. (authors)

  18. Decay patterns of target-like and projectile-like nuclei in 84Kr+197Au, natU reactions at E/A=150 MeV

    International Nuclear Information System (INIS)

    Quednau, B.M.; Galin, J.; Ledoux, X.; Crema, E.; Gebauer, B.; Hilscher, D.; Jahnke, U.; Jacquet, D.; Leray, S.; and others.

    1996-01-01

    The reactions 84 Kr+ 197 Au and 84 Kr+ nat U were studied at E/A=150 MeV employing the large-volume neutron multiplicity filter ORION at SATURNE. The observed correlations between the atomic number of projectile-like nuclei and neutron multiplicity indicate large excitation energies in the primary projectile- and target-like fragments. Angular correlations between the fission fragments of the U-like nucleus and the projectile-like fragments show a memory of the reaction plane, however no indications of spin effects are found. (author)

  19. Neutron spectrum adjustment using reaction rate data acquired with a liquid dosimetry system

    International Nuclear Information System (INIS)

    Smith, D.L.; Ikeda, Y.; Uno, Y.; Maekawa, F.

    1997-01-01

    A dosimetry technique based on neutron activation of circulating water with dissolved salts is discussed. The neutron source was the FNS accelerator at JAERI, Tokai, Japan. Yttrium chloride hexahydrate (YCl 3· 6H 2 O) was the salt (264.9 grams dissolved in 16.094 liters of water). Gamma-ray yields were measured with an intrinsic Ge detector. The following reactions were examined: (1) 16 O(n,p) 16 N (E thresh = 10.245 MeV, t 1/2 = 7.13 sec, E γ = 6.129 MeV); (2) 37 Cl(n,p) 37 S (E thresh = 4.194 MeV, t 1/2 = 5.05 min, E γ = 3.104 MeV); (3) 89 Y(n,n') 89m Y (E thresh = 0.919 MeV, t 1/2 = 16.06 sec, E γ = 0.909 MeV). This paper describes use of the generalized least-squares (GLS) method to adjust the neutron spectrum

  20. An update on measurements of helium-production reactions with a spallation neutron source

    International Nuclear Information System (INIS)

    Haight, R.C.; Bateman, F.B.; Chadwick, M.B.

    1995-01-01

    This report gives the status, updated since the last Research Coordination Meeting, of alpha-particle production cross sections, emission spectra and angular distributions which we are measuring at the spallation source of fast neutrons at the Los Alamos Meson Physics Facility (LAMPF). Detectors at angles of 30, 60, 90 and 135 degrees are used to identify alpha particles, measure their energy spectra, and indicate the time-of-flight, and hence the energy, of the neutrons inducing the reaction. The useful neutron energy ranges from less than 1 MeV to approximately 50 MeV for the present experimental setup. Targets under study at present include C, N, 0, 27 Al, Si, 51 V, 56 Fe, 59 CO, 58,60 Ni, 89 Y and 93 Nb. Data for 59 Co have been re-analyzed. The results illustrate the capabilities of the approach, agreement with literature values, and comparisons with nuclear reaction model calculations

  1. Scatterings and reactions by means of polarized neutron beam

    International Nuclear Information System (INIS)

    Koori, N.

    1989-01-01

    A high resolution polarized neutron beam should be prepared for nuclear physics, which will be planned with the new ring cyclotron at RCNP. Studies on scatterings and reactions by means of polarized neutron beams are reviewed briefly. Beam lines for polarized neutrons are summarized. An example of high resolution measurements of neutron induced reactions is described. (author)

  2. Nuclear spectroscopy using the neutron capture reaction

    International Nuclear Information System (INIS)

    Egidy, T.

    1982-01-01

    Experimental methods using neutron spectroscopy as a means to study the nucleus structure are described. Since reactions of neutron capture (n, γ) are non-selective, they permit to study the nature of excitation (monoparticle and collective) of nuclear levels, the nature of vibrational excitations, to check the connection between shell model and liquid drop model etc. In many cases (n, γ) reactions are the only way to check the forecast of nuclear models. Advantages of (n, γ) spectroscopy, possessing a high precision of measurement and high sensitivity, are underlined. Using neutron spectroscopy on facilities with a high density of neutron flux the structures of energy levels of a large group of nuclei are studied. In different laboratories complete schemes of energy levels of nuclei are obtained, a great number of new levels are found, the evergy level densities are determined, multipolarities of γ-transitions, spins, level parities are considered. StrUctures of rotational bands of heavy deformed nuclei are studied. The study of the structure of high-spin states is possible only using the methods of (n, γ) spectroscopy Investigation results of the nuclei 24 Na, 114 Cd, 154 Eu, 155 Cd, 155 Sm, 233 Th are considered as examples. The most interesting aspects of the investigations using neutron spectroscopy are discUssed

  3. Spectrum of neutrons leaking from an iron sphere with a central 14 MeV neutron source

    International Nuclear Information System (INIS)

    Borisov, A.A.; Zagryadskij, V.A.; Chuvilin, D.Yu.; Kralik, M.; Pulpan, J.; Tichy, M.

    1991-01-01

    Following a review of the present state of nuclear data requisite for the calculation of the transport of 14 MeV neutrons through iron of natural isotopic composition, the results are given of the calculation of the energy spectrum of such neutrons after their passage through an iron sphere 240 mm o.d. and 90 mm i.d., the neutron source being accommodated in the centre of the sphere. The calculations were made using the one-dimensional code BLANK working with the nuclear data libraries ENDL-75, ENDL-83, ENDL/B-IV, JENDL-2 and BROND, and using the three-dimensional code BRAND with the library ENDL-78. The calculated spectra were compared with the experimental spectrum measured at a distance of 3 m from the sphere by means of an NE-213 scintillator, which records reflected protons. The reflected proton spectrum was processed by the matrix method (program FORIST), and the result was normalized to one neutron emitted by the source, as were the calculated spectra. The comparison demonstrates that the experiment is best fitted by the spectrum calculated by using the library JENDL-2, where the integrals of the observed and calculated spectra over the 1-15 MeV range differ as little as approximately 10%. (author). 3 figs., 5 tabs., 16 refs

  4. Neutron leakage from Pb and Bc spherical shells with 14 MeV central neutron source

    International Nuclear Information System (INIS)

    Antonov, S.; Daskalov, G.; Ilieva, K.; Jordanova, J.; Prodanova, R.; Zagryadskij, V.A.; Novikov, V.M.; Chuvilin, D.Yu.

    1988-01-01

    Results of measuring neutron leakage from spherical shells of different thickness, made of Pb and Be with a point neutron source in the sphere centrum are presented. The experiment results are compared to calculations according to different programs using data of various nuclear data libraies. The comparison has shown that all the calculations understate the neutron leakage from Pb assmebly. 9 refs.; 2 tabs

  5. Differential cross section for neutron scattering from 209Bi at 37 MeV and the weak particle-core coupling

    International Nuclear Information System (INIS)

    Zhou Zuying; Ruan Xichao; Du Yanfeng; Qi Bujia; Tang Hongqing; Xia Haihong; Walter, R. L.; Braun, R. T.; Howell, C. R.; Tornow, W.; Weisel, G. J.; Dupuis, M.; Delaroche, J. P.; Chen Zemin; Chen Zhenpeng; Chen Yingtang

    2010-01-01

    Differential scattering cross-section data have been measured at 43 angles from 11 deg. to 160 deg. for 37-MeV neutrons incident on 209 Bi. The primary motivation for the measurements is to address the scarcity of neutron scattering data above 30 MeV and to improve the accuracy of optical-model predictions at medium neutron energies. The high-statistics measurements were conducted at the China Institute of Atomic Energy using the 3 H(d,n) 4 He reaction as the neutron source, a pulsed deuteron beam, and time-of-flight (TOF) techniques. Within the resolution of the TOF spectrometer, the measurements included inelastic scattering components. The sum of elastic and inelastic scattering cross sections was computed in joint optical-model and distorted-wave Born approximation calculations under the assumption of the weak particle-core coupling. The results challenge predictions from well-established spherical optical potentials. Good agreement between data and calculations is achieved at 37 MeV provided that the balance between surface and volume absorption in a recent successful model [A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003)] is modified, thus suggesting the need for global optical-model improvements at medium neutron energies.

  6. Design of 6 Mev linear accelerator based pulsed thermal neutron source: FLUKA simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B.J., E-mail: bjp@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India); Chavan, S.T.; Pethe, S.N.; Krishnan, R. [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India)

    2012-01-15

    The 6 MeV LINAC based pulsed thermal neutron source has been designed for bulk materials analysis. The design was optimized by varying different parameters of the target and materials for each region using FLUKA code. The optimized design of thermal neutron source gives flux of 3 Multiplication-Sign 10{sup 6}ncm{sup -2}s{sup -1} with more than 80% of thermal neutrons and neutron to gamma ratio was 1 Multiplication-Sign 10{sup 4}ncm{sup -2}mR{sup -1}. The results of prototype experiment and simulation are found to be in good agreement with each other. - Highlights: Black-Right-Pointing-Pointer The optimized 6 eV linear accelerator based thermal neutron source using FLUKA simulation. Black-Right-Pointing-Pointer Beryllium as a photonuclear target and reflector, polyethylene as a filter and shield, graphite as a moderator. Black-Right-Pointing-Pointer Optimized pulsed thermal neutron source gives neutron flux of 3 Multiplication-Sign 10{sup 6} n cm{sup -2} s{sup -1}. Black-Right-Pointing-Pointer Results of the prototype experiment were compared with simulations and are found to be in good agreement. Black-Right-Pointing-Pointer This source can effectively be used for the study of bulk material analysis and activation products.

  7. Measurement of neutron production double-differential cross-sections on carbon bombared with 430 MeV/ Nucleon carbon irons

    Energy Technology Data Exchange (ETDEWEB)

    Itashiki, Yutaro; Imahayashi, Youichi; Shigyo, Nobuhiro; Uozumi, Yusuke [Kyushu University, Fukuoka (Japan); Satoh, Daiki [Japan Atomic Energy Agency, Ibaraki (Japan); Kajimoto, Tsuyoshi [Hiroshima University, Hiroshima (Japan); Sanami, Toshiya [High Energy Accelerator Research Organization, Ibaraki (Japan); Koba, Yusuke; Matufuji, Naruhiro [Institutes for Quantum and Radiological Science and Technology, Chiba (Japan)

    2016-12-15

    Carbon ion therapy has achieved satisfactory results. However, patients have a risk to get a secondary cancer. In order to estimate the risk, it is essential to understand particle transportation and nuclear reactions in the patient's body. The particle transport Monte Carlo simulation code is a useful tool to understand them. Since the code validation for heavy ion incident reactions is not enough, the experimental data of the elementary reaction processes are needed. We measured neutron production double-differential cross-sections (DDXs) on a carbon bombarded with 430 MeV/nucleon carbon beam at PH2 beam line of HIMAC facility in NIRS. Neutrons produced in the target were measured with NE213 liquid organic scintillators located at six angles of 15, 30, 45, 60, 75, and 90°. Neutron production double-differential cross-sections for carbon bombarded with 430 MeV/nucleon carbon ions were measured by the time-of-flight method with NE213 liquid organic scintillators at six angles of 15, 30, 45, 60, 75, and 90°. The cross sections were obtained from 1 MeV to several hundred MeV. The experimental data were compared with calculated results obtained by Monte Carlo simulation codes PHITS, Geant4, and FLUKA. PHITS was able to reproduce neutron production for elementary processes of carbon-carbon reaction precisely the best of three codes.

  8. Measurement of cross-sections for the reaction 103Rh (n,n')103mRh in the energy range 5.69 - 12 MeV and its evaluation from the threshold up to 20 MeV

    International Nuclear Information System (INIS)

    Hossain, M.M.M.

    1995-05-01

    The cross-sections for the reaction 103 R(n,n') 103m Rh were measured by the method of activation in the neutron energy range 5.69-12.00 MeV produced by the D(d,n) 3 He reaction. The irradiation of Rh foils was performed at zero degree to the incident beam direction and the activities of KX-rays from the decay of 103m Rh were measured by means of a calibrated Si(Li) detector. During irradiation, the neutron fluence was measured with a fission chamber in which a thin deposit of 238 U was located immediately behind the Rh foil. The measured cross-section with the corresponding uncertainty in the stated energy range is more accurate than all previous measurements in spite of rather large corrections due to break-up neutrons. The update of the evaluation for the same reaction in the energy range from threshold up to 20 MeV was carried out by using the weighted average of cross-sections based on both the experimental data including the present one and theoretical model calculations. The experimental data were renormalized with respect to the recent precision KX-ray emission probability (7.66 + 0.14) % where necessary. To perform the evaluation, the whole excitation function was divided into 33 energy groups of 0.2-1.0 MeV widths. The uncertainties of the evaluated cross-sections especially 6-12 MeV have been improved due to the inclusion of the new measurement. Overall, the results of the updated evaluation are a considerable improvement compared to the previous evaluation of this reaction and also to the recommended cross-section data of IRDF (International Reactor Dosimetry File). (author)

  9. Production of a pulseable fission-like neutron flux using a monoenergetic 14 MeV neutron generator and a depleted uranium reflector

    Science.gov (United States)

    Koltick, D.; McConchie, S.; Sword, E.

    2008-04-01

    The design and performance of a pulseable neutron source utilizing a D-T neutron generator and a depleted uranium reflector are presented. Approximately half the generator's 14 MeV neutron flux is used to produce a fission-like neutron spectrum similar to 252Cf. For every 14 MeV neutron entering the reflector, more than one fission-like neutron is reflected back across the surface of the reflector. Because delayed neutron production is more than two orders of magnitude below the prompt neutron production, the source takes full advantage of the generator's pulsed mode capability. Applications include all elemental characterization systems using neutron-induced gamma-ray spectroscopy. The source simultaneously emits 14 MeV neutrons optimal to excite fast neutron-induced gamma-ray signals, such as from carbon and oxygen, and fission-like neutrons optimal to induce neutron capture gamma-ray signals, such as from hydrogen, nitrogen, and chlorine. Experiments were performed, which compare well to Monte Carlo simulations, showing that the uranium reflector enhances capture signals by up to a factor of 15 compared to the absence of a reflector.

  10. Neutron cross-sections of deuterium in the energy range 0.0001eV-15MeV

    International Nuclear Information System (INIS)

    Bazazyants, N.O.; Zabrodskaya, A.S.; Larina, A.F.; Nikolaev, M.N.

    1978-08-01

    The paper describes the evaluation of deuterium neutron cross-sections, the spectra of neutrons from the reaction D(n,2n)P and the angular distributions of neutrons from this reaction and of neutrons elastically scattered on deuterium. The evaluation results are presented in the SOCRATOR format. The 26-group system of constants for deuterium is also presented. (author)

  11. Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Copper

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers procedures for measuring reaction rates by the activation reaction 63Cu(n,α)60Co. The cross section for 60Co produced in this reaction increases rapidly with neutrons having energies greater than about 5 MeV. 60Co decays with a half-life of 1925.27 days (±0.29 days)(1) and emits two gamma rays having energies of 1.1732278 and 1.332492 MeV (1). The isotopic content of natural copper is 69.17 % 63Cu and 30.83 % 65Cu (2). The neutron reaction, 63Cu(n,γ)64Cu, produces a radioactive product that emits gamma rays which might interfere with the counting of the 60Co gamma rays. 1.2 With suitable techniques, fission-neutron fluence rates above 109 cm−2·s−1 can be determined. The 63Cu(n,α)60Co reaction can be used to determine fast-neutron fluences for irradiation times up to about 15 years (for longer irradiations, see Practice E261). 1.3 Detailed procedures for other fast-neutron detectors are referenced in Practice E261. 1.4 This standard does not purport to address all of the...

  12. The study of 90 deg. gamma ray production cross sections for interactions of 14.9 Mev neutrons with C, Al, V, Fe, Co, Nb samples

    International Nuclear Information System (INIS)

    Tang Lin; Yan Yiming; Zhou Hongyu; Wen Shenlin; Wang Qi; Sun Shuxu; Ding Xiaoji; Wang Wanhong

    1987-04-01

    The (n,xr) reactions have been studied for incident neutron energy 14.9 Mev and for the samples C, Al, V, Fe, Co and Nb. The pulsed beam Time-of-Flight technique was adopted to discriminate neutrons and de-excitation r-rays and to improve the background conditions of the experiment. 90 deg. differential gamma production cross sections as the results of experiments are presented. Due to very low background many new r-rays peaks have been obtained. (author). 14 refs, 12 figs, 1 tab

  13. Critical study of some soft-tissue equivalent material. Sensitivity to neutrons of 1 keV to 14 MeV

    International Nuclear Information System (INIS)

    Kerviler, H. de; Pages, L.; Tardy-Joubert, Ph.

    1965-01-01

    Authors have studied the elastic and inelastic reactions on various elements contribution to kerma in standard soft tissue and as a function of neutron energy from 1 keV to 14 MeV the ratio of kerma in tissue equivalent material to kerma in soft tissue. The results of calculations are made for materials without hydrogen in view to state exactly their neutron sensitivity and for the following hydrogenous materials: Rossi and Failla plastic, MixD, pure polyethylene and a new CEA tissue equivalent (a magnesium fluoride and polyethylene compound). Results for γ-rays are given. (authors) [fr

  14. Spallation and 14-MeV neutron irradiation of stabilized NbTi superconductors

    International Nuclear Information System (INIS)

    Hahn, P.; Brown, B.S.; Weber, H.W.; Guinan, M.W.

    1983-08-01

    The results on 5 K irradiation available so far may be summarized as follows. (1) Increases of j/sub c/ following neutron irradiation occur only in conductors which are far from the optimal metallurgical treatments. (2) The changes of j/sub c/ following neutron irradiation and a thermal cycle to room temperature are small and in most cases comparable to the results obtained after 77 K irradiation. (3) The data available so far indicate that the degradation of j/sub c/ at 8 T is larger by about 5 to 10% than the corresponding changes at 5 T at a neutron fluence of 1.3 x 10 22 m -2 (E > 0.1 MeV). (4) The increase of Cu-resistivity is significant even after a thermal cycle to room temperature and requires design changes for a stable magnet operation

  15. Vessel wall damage by X-rays and 15 MeV neutrons

    International Nuclear Information System (INIS)

    Aarnoudse, M.W.

    1979-01-01

    In two simple mucopolysaccharide systems, synovial fluid and subcutaneous connective tissue membranes, the degrading effects of 200 kVp X-rays and 15 MeV neutrons is compared. Due to the depolymerization of the mucopolysaccharides the viscosity of synovial fluid decreases and the permeability of the connective tissue membranes for saline increases after irradiation. In both systems a RBE of 0.6 has been found for fast neutrons. The atheromatous changes in the wall of elastic arteries (lipid penetration into the vessel wall and the formation of plaques consisting of large, lipid-filled foam cells) are studied in the carotid arteries of hypercholesterolemic rabbits, two months after irradiating the arteries with different doses of X-rays or neutrons. (Auth.)

  16. Measurements of double-differential neutron emission cross sections of {sup 6}Li and {sup 7}Li for 18 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ibaraki, Masanobu; Baba, Mamoru; Matsuyama, Shigeo; Sanami, Toshiya; Win, T.; Miura, Takako; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    Double-differential neutron emission cross sections of {sup 6}Li and {sup 7}Li were measured for 18 MeV neutrons at Tohoku University 4.5 MV Dynamitron facility. Neutron emission spectra were obtained down to 1 MeV at 13 angles with energy resolution good enough to separate discrete levels. A care was taken to eliminate the sample-dependent background due to parasitic neutrons. Experimental results were in fair agreement with the JENDL-3.2 data and a simple model considering a three-body breakup process and discrete level excitations. (author)

  17. Evaluated cross-section libraries and kerma factors for neutrons up to 100 MeV on 12C

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Blann, M.; Cox, L.; Young, P.G.; Meigooni, A.

    1995-01-01

    A program is being carried out at Lawrence Livermore National Laboratory to develop high-energy evaluated nuclear data libraries for use in Monte Carlo simulations of cancer radiation therapy. In this report we describe evaluated cross sections and kerma factors for neutrons with incident energies up to 100 MeV on 12 C. The aim of this effort is to incorporate advanced nuclear physics modeling methods, with new experimental measurements, to generate cross section libraries needed for an accurate simulation of dose deposition in fast neutron therapy. The evaluated libraries are based mainly on nuclear model calculations, benchmarked to experimental measurements where they exist. We use the GNASH code system, which includes Hauser-Feshbach, preequilibrium, and direct reaction mechanisms. The libraries tabulate elastic and nonelastic cross sections, angle-energy correlated production spectra for light ejectiles with A≤and kinetic energies given to light ejectiles and heavy recoil fragments. The major steps involved in this effort are: (1) development and validation of nuclear models for incident energies up to 100 MeV; (2) collation of experimental measurements, including new results from Louvain-la-Nueve and Los Alamos; (3) extension of the Livermore ENDL formats for representing high-energy data; (4) calculation and evaluation of nuclear data; and (5) validation of the libraries. We describe the evaluations in detail, with particular emphasis on our new high-energy modeling developments. Our evaluations agree well with experimental measurements of integrated and differential cross sections. We compare our results with the recent ENDF/B-VI evaluation which extends up to 32 MeV

  18. Inelastic scattering of 1-2.5 MeV neutrons by 235U and 238U nuclei

    International Nuclear Information System (INIS)

    Kornilov, N.V.; Kagalenko, A.B.; Baryba, V.Ya.; Balitskij, A.V.; Androsenko, A.A.; Androsenko, P.A.

    1993-07-01

    The inelastic scattering cross-sections of 1-2.5 MeV neutrons for 235 U and 238 0 nuclei were measured. A detailed description is given of the data processing procedures used, and the methods for determining the neutron flux in the sample. The Monte Carlo method was used to calculate the corrections for multiple neutron scattering and neutron flux attenuation in the sample. Pursuant to an analysis of the fission neutron spectra, we concluded that the systematic error level of the results is ± 3.27%. The results of these cross-section and spectrum measurements for inelastically scattered neutrons are compared with results from other sources and existing evaluations, the possible causes of the divergences for neutrons with an energy level of less than 1 MeV are analysed, and suggestions are put forward for future research work. (author)

  19. Conceptual Design of a 14-MeV D-T Neutron Source for Material Inspection

    International Nuclear Information System (INIS)

    Kim, Jin-Choon; Oh, Byung-Hoon

    2007-01-01

    There is a worldwide need for the efficient inspection of cargo containers at airports, seaports and border crossings. And there is also a growing need for nondestructive inspection of metal objects such as airplane parts. The limitations of X-ray systems for the detection of explosives, drugs, and thick metal structures have stimulated interest in neutron radiograph or tomography. The weak link in such applications is the neutron source. The ideal neutron source should provide a high intensity, high-energy for sufficient penetration and activation, a reliable long-term operation, and a monoenergetic neutron beam. In this paper, we describe a conceptual design of a DT fusion neutron source (monoenergetic 14 MeV neutron generator) which satisfies the fore-mentioned requirements. The current design is based upon the actually proven system using the drive-in target principle. The design is versatile enough to accommodate various applications, ranging from material inspection and explosive interrogation to medical probing and cancer treatment

  20. Model calculations of excitation functions of neutron-induced reactions on Rh

    International Nuclear Information System (INIS)

    Strohmaier, Brigitte

    1995-01-01

    Cross sections of neutron-induced reactions on 103 Rh have been calculated by means of the statistical model and the coupled-channels optical model for incident-neutron energies up to 30 MeV. The incentive for this study was a new measurement of the 103 Rh(n, n') 103m Rh cross section which will - together with the present calculations -enter into a dosimetry-reaction evaluation. The validation of the model parameters relied on nuclear-structure data as far as possible. (author)

  1. Study of the response of a silicon detector irradiated with 1 MeV neutrons; Etude de la reponse d`un detecteur Si irradie par des neutrons de 1 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Roy, P [Montreal Univ., PQ (Canada). Lab. de Physique Nucleaire

    1994-12-31

    The author studied the response of an n-type silicon detector irradiated with 1 MeV neutrons at fluences ranging from 0.26x10{sup 13} to 11.19x10{sup 13} neutrons/cm{sup 2}. The response of the irradiated detector to {sup 241}Am alpha particles was measured. 13 refs., 7 figs.

  2. Measurement of cross sections producing short-lived nuclei by 14 MeV neutron. Br, Te, Dy, Ho, Yb

    Energy Technology Data Exchange (ETDEWEB)

    Sakane, H.; Matsumoto, T.; Yamamoto, H.; Kawade, K. [Nagoya Univ. (Japan); Iida, T.; Takahashi, A.

    1997-03-01

    Nine neutron activation cross sections producing the nuclei with half-lives between 2 min and 57 min have been measured at energy range between 13.4 and 14.9 MeV for Br, Te, Dy, Ho, Yb. The cross sections of {sup 81}Br(n,p){sup 81m}Se, {sup 128}Te(n,p){sup 128m}Sb, {sup 128}Te(n,{alpha}){sup 125m}Sn, {sup 164}Dy(n,p){sup 164}Tb, {sup 165}Ho(n,{alpha}){sup 162}Tb, {sup 176}Yb(n,p){sup 176}Tm were newly obtained at the six energy points between 13.4-14.9 MeV, although the previous results have been obtained at one energy point. {sup 79}Br(n,2n){sup 78}Br, {sup 164}Dy(n,p){sup 164}Tb are compared with evaluated data of JENDL-3.2. The evaluations for these reactions agree reasonably well with experimental results. The cross sections of (n,p) reaction are compared with systematics by Kasugai et. al. The systematics agrees with experimental results. (author)

  3. Combined proton-recoil and neutron time-of-flight spectrometer for 14 MeV neutrons

    International Nuclear Information System (INIS)

    Grosshoeg, G.; Aronsson, D.; Arvidsson, E.; Beimer, K.-H.; Pekkari, L.-O.; Rydz, R.; Sjoestrand, N.G.

    1983-05-01

    The main effort put into this work is the foundation of a reliable physical basis for a 12-16 MeV neutron-spectrometer at JET. The essential problem is the amount of scatterer that can be incorporated without losing resolution. We have found two possible methods, the use of a pure hydrogen scatterer and the use of a polyethylene foil scatterer. The pure hydrogen solution gives a very complicated spectrometer with large detectors. The polyethylene solution is limited by the thickness and the width of the foil. We judge the solution with the polyethylene foil to be the most promising one for a reliable spectrometer. However, a large foil area is needed. This gives a spectrometer design with an annular foil, an annular neutron detection system, and a central proton-detector. An efficiency of 10 - 6 counts/s per n/cm 2 ,s at the foil can be obtained with a resolution in the order of 100 keV for 14 MeV neutrons. Following the General Requirements given in the contract of this work, we concluded that an instrument with the desired properties can be made. The instruments is able to give useful information about the plasma from plasma temperatures of about 5 keV. (Authors)

  4. Singlet-to-triplet ratio in the deuteron breakup reaction pd → pnp at 585 MeV

    International Nuclear Information System (INIS)

    Uzikov, Yu.N.; Komarov, V.I.; Rathmann, F.; Seyfarth, H.

    2001-01-01

    Available experimental data on the exclusive pd → pnp reaction at 585 MeV show a narrow peak in the proton-neutron final-state interaction region. It was supposed previously, on the basis of a phenomenological analysis of the shape of this peak, that the final spin-singlet pn state provided about one third of the observed cross section. By comparing the absolute value of the measured cross section with that of pd elastic scattering using the Faeldt-Wilkin extrapolation theorem, it is shown here that the pd → pnp data can be explained mainly by the spin-triplet final state with a singlet admixture of a few percent. The smallness of the singlet contribution is compatible with existing pN → pNπ data and the one-pion exchange mechanism of the pd → pnp reaction

  5. Systematic study of (d,n) reactions at Ed = 16 MeV using a deuterated scintillator array

    International Nuclear Information System (INIS)

    Febbraro, M.; Becchetti, F.D.; Torres-Isea, R.O.; Riggins, A.; Lawrence, C.; Howard, A.M.; Kolata, J.J.

    2014-01-01

    We have developed a multi-element deuterated liquid scintillator array for the study of reactions involving neutrons utilizing high-speed digital signal processing. The liquid organic scintillators exhibit good digital pulse shape discrimination (DPSD). Typical configuration involves the detectors fixed to adjustable aluminium mounts, secured to an 80/20 aluminium frame. This allows for quick and adaptable configurations to be made for varying experimental conditions including measurements over a large angular range. A systematic study of (d,n) reactions at E d = 16 MeV on 9 Be, 11 B, 13 C, 14 N, 15 N, and 19 F has been conducted from 10 to 160 degrees (lab). In addition to previously unmeasured back-angle cross sections, this data can complement existing and future ( 3 He,d) measurements as an analog to (p,γ) for astrophysics applications

  6. Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Titanium

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers procedures for measuring reaction rates by the activation reactions 46Ti(n,p) 46Sc + 47Ti(n, np)46Sc. Note 1—Since the cross section for the (n,np) reaction is relatively small for energies less than 12 MeV and is not easily distinguished from that of the (n,p) reaction, this test method will refer to the (n,p) reaction only. 1.2 The reaction is useful for measuring neutrons with energies above approximately 4.4 MeV and for irradiation times up to about 250 days (for longer irradiations, see Practice E 261). 1.3 With suitable techniques, fission-neutron fluence rates above 109 cm–2·s–1 can be determined. However, in the presence of a high thermal-neutron fluence rate, 46Sc depletion should be investigated. 1.4 Detailed procedures for other fast-neutron detectors are referenced in Practice E 261. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all...

  7. Design Concept of a Seal-off Type 14 MeV Neutron Generator of 10''1''1n/s Range

    Energy Technology Data Exchange (ETDEWEB)

    In, S. R.; Oh, B. H. [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The total neutron fluence during the life time is expected to be around 10MW·yr/m''2 which may cause a damage of -100 dpa in materials. To estimate the adaptability of candidate materials in a few years, a 14MeV neutron source with a flux level of 3 - 5 x 10''1''8 n/s·m''2, which is the goal of the IFMIF facility costing more than ¤1000M, is necessitated. The problem in making an intense neutron generator of beam target type is really not on the neutron production rate, but on the huge heat generated in the target, because the fusion power is only one of thousands of beam power exerted on the target. We have a plan to develop neutron generators step by step from a 10''8 n/s level. The final goal is establishing a 14MeV neutron irradiation facility at 10''1''4 intensity level.. Up to the 10''1''0 n/s level, there occurs basically no critical thermal problem, because beam power density is in the range of tens W/cm''2. The neutron generator designed in a sealed-off type because of tritium safety is mainly composed of an ion source, target, reaction chamber, and getter pump.. The major design concepts for the neutron generator with the neutron production rate of 10''1''1 n/s range were presented. The specifications of the ion source, target and getter have been determined for attaining the goal of the neutron generation rate.

  8. In vivo skin leptin modulation after 14 MeV neutron irradiation: a molecular and FT-IR spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Cestelli Guidi, M.; Mirri, C.; Marcelli, A. [Laboratori Nazionali di Frascati - INFN, Frascati, Rome (Italy); Fratini, E.; Amendola, R. [ENEA, UT BIORAD-RAB, Rome (Italy); Licursi, V.; Negri, R. [Universita La Sapienza, Dip. Biologia e Biotecnologie ' ' Charles Darwin' ' , Rome (Italy)

    2012-09-15

    This paper discusses gene expression changes in the skin of mice treated by monoenergetic 14 MeV neutron irradiation and the possibility of monitoring the resultant lipid depletion (cross-validated by functional genomic analysis) as a marker of radiation exposure by high-resolution FT-IR (Fourier transform infrared) imaging spectroscopy. The irradiation was performed at the ENEA Frascati Neutron Generator (FNG), which is specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 x 10{sup 11} 14-MeV neutrons per second via the D-T nuclear reaction. The functional genomic approach was applied to four animals for each experimental condition (unirradiated, 0.2 Gy irradiation, or 1 Gy irradiation) 6 hours or 24 hours after exposure. Coregulation of a subclass of keratin and keratin-associated protein genes that are physically clustered in the mouse genome and functionally related to skin and hair follicle proliferation and differentiation was observed. Most of these genes are transiently upregulated at 6 h after the delivery of the lower dose delivered, and drastically downregulated at 24 h after the delivery of the dose of 1 Gy. In contrast, the gene coding for the leptin protein was consistently upregulated upon irradiation with both doses. Leptin is a key protein that regulates lipid accumulation in tissues, and its absence provokes obesity. The tissue analysis was performed by monitoring the accumulation and the distribution of skin lipids using FT-IR imaging spectroscopy. The overall picture indicates the differential modulation of key genes during epidermis homeostasis that leads to the activation of a self-renewal process at low doses of irradiation. (orig.)

  9. In vivo skin leptin modulation after 14 MeV neutron irradiation: a molecular and FT-IR spectroscopic study.

    Science.gov (United States)

    Cestelli Guidi, M; Mirri, C; Fratini, E; Licursi, V; Negri, R; Marcelli, A; Amendola, R

    2012-09-01

    This paper discusses gene expression changes in the skin of mice treated by monoenergetic 14 MeV neutron irradiation and the possibility of monitoring the resultant lipid depletion (cross-validated by functional genomic analysis) as a marker of radiation exposure by high-resolution FT-IR (Fourier transform infrared) imaging spectroscopy. The irradiation was performed at the ENEA Frascati Neutron Generator (FNG), which is specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 × 10(11) 14-MeV neutrons per second via the D-T nuclear reaction. The functional genomic approach was applied to four animals for each experimental condition (unirradiated, 0.2 Gy irradiation, or 1 Gy irradiation) 6 hours or 24 hours after exposure. Coregulation of a subclass of keratin and keratin-associated protein genes that are physically clustered in the mouse genome and functionally related to skin and hair follicle proliferation and differentiation was observed. Most of these genes are transiently upregulated at 6 h after the delivery of the lower dose delivered, and drastically downregulated at 24 h after the delivery of the dose of 1 Gy. In contrast, the gene coding for the leptin protein was consistently upregulated upon irradiation with both doses. Leptin is a key protein that regulates lipid accumulation in tissues, and its absence provokes obesity. The tissue analysis was performed by monitoring the accumulation and the distribution of skin lipids using FT-IR imaging spectroscopy. The overall picture indicates the differential modulation of key genes during epidermis homeostasis that leads to the activation of a self-renewal process at low doses of irradiation.

  10. Evaluation of 242Pu data for the incident neutron energy range 0.1 - 6 MeV

    International Nuclear Information System (INIS)

    Vladuca, G.; Sin, M.; Tudora, A.

    1996-11-01

    This report presents the models and the procedures used for the calculation of the quantities required by Files 3, 4 and 5 of ENDF-6 for 242 Pu. These quantities are the integrated cross sections for the total, fission, scattering and gamma-capture reactions and the angular and energy distributions of the scattered neutrons for the incident neutron energies 0.01/6 MeV. The direct mechanism was treated with the coupled-channel method using a deformed optical potential defined by a set of actinide region parameters established by the authors. For the compound nucleus calculations, a new HRTW version of the statistical model extended to describe the fission at subbarrier energies was used. To describe the continuous part of the transition states spectrum, analytical expressions have been established. The energy distributions of the scattered neutrons have been calculated with an author's version of the Los Alamos model. The agreement of the calculations with the existing experimental data is good. (author)

  11. Analysis of the experimental data on carbon-neutron interactions for energy below 20MeV

    International Nuclear Information System (INIS)

    Haouat, G.; Lachkar, J.; Patin, Y.; Sigaud, J.; Cocu, F.

    1975-01-01

    An evaluation of the neutron-induced cross sections of carbon has been completed for the energy region 10 -4 eV to 20MeV. The recommended data are based on experiments, some of them being done in this laboratory. Energy and angular distributions of secondary neutrons and photons are included. The adopted values are discussed [fr

  12. Absolute measurement and international intercomparison of 0.1-0.8 MeV monoenergetic neutron fluence rate

    International Nuclear Information System (INIS)

    Ma Hongchang; Lu Hanlin; Rong Chaofan

    1988-01-01

    The methods for absolute measurement of 0.1-18MeV monoenergetic neutron fluence rate are described. Which include proton recoil telescope, semicoducetor telescope, hydrogen filled proportional counter and associated particale method. A long counter used as secondary recent international intercomparison of neutron fluence rate organized by BIPM, and the results were given

  13. Study of the 6Li(p,π+)7Li reaction at 600 MeV

    International Nuclear Information System (INIS)

    Bauer, T.; Beurtey, R.; Boudard, A.; Bruge, G.; Chaumeaux, A.; Couvert, P.; Duhm, H.H.; Garreta, D.; Matoba, M.; Terrein, Y.; Aslanides, E.; Bertini, R.; Brochard, F.; Gorodetzky, Ph.; Hibou, F.; Bimbot, L.; Le Bornec, Y.; Tatischeff, B.; Dillig, M.

    1977-01-01

    The positive pion production through the 6 Li(p,π + ) reaction at 600 MeV has been studied using the high-resolution magnetic spectrometer SPES I. Differential cross sections have been measured from 5 0 to 35 0 sub(lab). The 6 Li(p,π + ) reaction feeds preferentially the 4.63 MeV 7/2 - level of 7 Li. The results of a calculation based on two- and three-nucleon diagrams with π and rho exchange between the projectile and a bound nucleon are also presented. (Auth.)

  14. Double-step processes in the 12C(p,d)11C reaction at 45 MeV

    International Nuclear Information System (INIS)

    Couvert, Pierre.

    1974-01-01

    12 C(p,d) 11 C pick-up reaction was performed with a 45 MeV proton beam. A 130keV energy resolution was obtained and angular distributions of nine of the ten first levels of 11 C have been extracted within a large angular range. Assuming only neutron direct transfert, the strong relative excitation of high spin levels cannot be reproduced by a DWBA analysis. The double-step process assumption seems to be verified by a systematical analysis of the (p,d) reaction mechanisms. This analysis is done in the coupled-channel formalism for the five first negative parity states of 11 C. The 3/2 - ground state is essentially populated by the direct transfer of a Psub(3/2) neutron. The contribution of a double-step process, via the 2 + inelastic excitation of 12 C, is important for the four other states. A mechanism which assumes a deuteron inelastic scattering on the 11 C final nucleus after the neutron transfer cannot be neglected and improves the fits when it is taken into account [fr

  15. Neutron fluence in a 18 MeV Electron Accelerator for Therapy; Fluencia de neutrones en un Acelerador de Electrones de 18 MeV para terapia

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L C [Instituto Nacional de Investigaciones Nucleares, Direccion de Innovacion Tecnologica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2001-07-01

    An investigation was made on the theoretical fundamentals for the determination of the neutron fluence in a linear electron accelerator for radiotherapy applications and the limit values of leakage neutron radiation established by guidelines and standards in radiation protection for these type of accelerators. This investigation includes the following parts: a) Exhaustive bibliographical review on the topics mentioned above, in order to combine and to update the necessary basic information to facilitate the understanding of this subject; b) Analysis of the accelerator operation and identification of its main components, specially in the accelerator head; c) Study of different types of targets and its materials for the Bremsstrahlung production which is based on the electron initial energy, the thickness of the target, and its angular distribution and energy, which influences in the neutron generation by means of the photonuclear and electro disintegration reactions; d) Analysis of the neutron yield based on the target type and its thickness, the energy of electrons and photons; e) Analysis of the neutron energy spectra generated in the accelerator head, inside and outside the treatment room; f) Study of the dosimetry fundamentals for neutron and photon mixed fields, the dosimeter selection criteria and standards applied for these applications, specially the Panasonic U D-809 thermoluminescent dosemeter and C R-39 nuclear track dosimeter; g) Theoretical calculation of the neutron yield using a simplified geometric model for the accelerator head with spherical cell, which considers the target, primary collimator, flattener filter, movable collimators and the head shielding as the main components for radiation production. The cases with W and Pb shielding for closed movable collimators and an irradiation field of 20 x 20 cm{sup 2} were analyzed and, h) Experimental evaluation of the leakage neutron radiation from the patient and head planes, observing that the

  16. Analysis of the proton-induced reactions at 150 MeV - 24 GeV by high energy nuclear reaction code JAM

    International Nuclear Information System (INIS)

    Niita, Koji; Nara, Yasushi; Takada, Hiroshi; Nakashima, Hiroshi; Chiba, Satoshi; Ikeda, Yujiro

    1999-09-01

    We are developing a nucleon-meson transport code NMTC/JAM, which is an upgraded version of NMTC/JAERI. NMTC/JAM implements the high energy nuclear reaction code JAM for the infra-nuclear cascade part. By using JAM, the upper limits of the incident energies in NMTC/JAERI, 3.5 GeV for nucleons and 2.5 GeV for mesons, are increased drastically up to several hundreds GeV. We have modified the original JAM code in order to estimate the residual nucleus and its excitation energy for nucleon or pion induced reactions by assuming a simple model for target nucleus. As a result, we have succeeded in lowering the applicable energies of JAM down to about 150 MeV. In this report, we describe the main components of JAM code, which should be implemented in NMTC/JAM, and compare the results calculated by JAM code with the experimental data and with those by LAHET2.7 code for proton induced reactions from 150 MeV to several 10 GeV. It has been found that the results of JAM can reproduce quite well the experimental double differential cross sections of neutrons and pions emitted from the proton induced reactions from 150 MeV to several 10 GeV. On the other hand, the results of LAHET2.7 show the strange behavior of the angular distribution of nucleons and pions from the reactions above 4 GeV. (author)

  17. Response of Inorganic Scintillators to Neutrons of 3 and 15 MeV Energy

    CERN Document Server

    Lucchini, M; Pizzichemi, M; Chipaux, R; Jacquot, F; Mazue, H; Wolff, H; Lecoq, P; Auffray, E

    2014-01-01

    In the perspective of the development of future high energy physics experiments, homogeneous calorimeters based on inorganic scintillators can be considered for the detection of hadrons (e.g., calorimeter based on dual-readout technique). Although of high importance in the high energy physics framework as well as for homeland security applications, the response of these inorganic scintillators to neutrons has been only scarcely investigated. This paper presents results obtained using five common scintillating crystals (of size around 2x2x2 cm 3), namely lead tungstate (PbWO4), bismuth germanate (BGO), cerium fluoride (CeF3), Ce-doped lutetium-yttrium orthosilicate (LYSO:Ce) and lutetium aluminum garnet (LuAG:Ce) in a pulsed flux of almost mono-energetic (similar to 3 MeV and similar to 15 MeV) neutrons provided by the Van de Graff accelerator SAMES of CEA Valduc. Energy spectra have been recorded, calibrated and compared with Geant4 simulations computed with different physics models. The neutron detection eff...

  18. Beam dynamics studies of a 30 MeV RF linac for neutron production

    Science.gov (United States)

    Nayak, B.; Krishnagopal, S.; Acharya, S.

    2018-02-01

    Design of a 30 MeV, 10 Amp RF linac as neutron source has been carried out by means of ASTRA simulation code. Here we discuss details of design simulations for three different cases i.e Thermionic , DC and RF photocathode guns and compare them as injectors to a 30 MeV RF linac for n-ToF production. A detailed study on choice of input parameters of the beam from point of view of transmission efficiency and beam quality at the output have been described. We found that thermionic gun isn't suitable for this application. Both DC and RF photocathode gun can be used. RF photocathode gun would be of better performance.

  19. Neutron scattering from 12C between 15.6 and 17.3 MeV

    International Nuclear Information System (INIS)

    Chen, Z.M.; Baird, K.; Howell, C.R.; Roberts, M.L.; Tornow, W.; Walter, R.L.

    1993-01-01

    The differential cross section σ(θ) for neutron elastic scattering from 12 C and for inelastic scattering from the 4.44 MeV state was measured at 15.57, 16.75 and 17.29 MeV. The σ(θ) data, together with published analysing power A y (θ) data, were analysed in the framework of the spherical optical model and in the coupled-channels formalism. It was concluded that the present 12 C(n,n) 12 C data and published data at higher energies appear to be well suited for determining properties of valence single-particle excitations in 11 C via an iterative-moment approach or a dispersive optical-model analysis. (author)

  20. Neutron scattering from [sup 12]C between 15. 6 and 17. 3 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.M.; Baird, K.; Howell, C.R.; Roberts, M.L.; Tornow, W.; Walter, R.L. (Duke Univ., Durham, NC (United States). Dept. of Physics Triangle Universities Nuclear Lab., Durham, NC (United States))

    1993-06-01

    The differential cross section [sigma]([theta]) for neutron elastic scattering from [sup 12]C and for inelastic scattering from the 4.44 MeV state was measured at 15.57, 16.75 and 17.29 MeV. The [sigma]([theta]) data, together with published analysing power A[sub y]([theta]) data, were analysed in the framework of the spherical optical model and in the coupled-channels formalism. It was concluded that the present [sup 12]C(n,n)[sup 12]C data and published data at higher energies appear to be well suited for determining properties of valence single-particle excitations in [sup 11]C via an iterative-moment approach or a dispersive optical-model analysis. (author).

  1. Status of helium-production reaction studies with a spallation neutron source

    International Nuclear Information System (INIS)

    Haight, R.C.; Bateman, F.B.; Chadwick, M.B.

    1994-01-01

    Alpha--particle production cross sections and spectra are being measured at the spallation source of fast neutrons at the Los Alamos Meson Physics Facility (LAMPF). Detectors at angles of 30, 60, 90 and 135 degree are used to identify alpha particles, measure their energy spectra, and indicate the time-of-flight, and hence the energy, of the neutrons inducing the reaction. The useful neutron energy ranges from less than 1 MeV to approximately 50 MeV for the present experimental setup. Targets under study at present include C, N, O, 27 Al, Si, 51 V, 56 Fe, 59 Co, 58,60 Ni, 89 Y and 93 Nb. Results for 59 Co illustrate the capabilities of the approach

  2. Experimental study of the interaction of 14-MeV neutrons with 238U

    International Nuclear Information System (INIS)

    Voignier, J.

    1968-01-01

    A study has been made of the interaction of fast neutrons with natural uranium from the experimental point of view over a wide energy range. The scattering energy spectra have been obtained by the time-of-flight method developed during previous work. The cross-section σ t , the elastic cross-section σ e , and the inelastic neutron emission cross-section σ ne have been measured at 14 MeV. The average number, η, of neutrons produced by interaction is deduced from this last measurement. The experimental results are analyzed in the second part of the report. The fission spectrum and the evaporation spectrum have been deduced from the energy spectrum of the secondary neutrons. The energy spectrum of the inelastic neutrons is represented by a relationship of the type:N (E) = A E exp (-E/T e ) + B √ E exp (-E/T f )/. The parameter A, B, T e and T f have been evaluated. Finally the values obtained for the various cross sections are compared with previous results. (author) [fr

  3. Neutron Inelastic Scattering on 134Xe at En = 5 - 8 MeV

    Science.gov (United States)

    Kidd, Mary; Tornow, Werner; Finch, Sean; Krishichayan, Fnu; Bhike, Megha

    2017-09-01

    Neutrinoless double-beta decay (0 νββ) studies are both the best way to determine the Majorana nature of the neutrino and determine its effective mass. The two main experiments searching for 0 νββ -decay of 136Xe (Q value = 2457.8 keV) are Kamland-Zen and EXO-200. Though both experiments have enriched 136Xe targets, these targets still contain significant quantities of 134Xe. Recently, a new nuclear level was discovered in 134Xe that decays to the ground state emitting a 2485.7 keV gamma ray. The γ-ray production cross section for this branch was found to be on the order of 10 mb for incident neutron energies of 2.5-4.5 MeV. Here, we have extended the investigation of this level to higher incident neutron energies, and further explore the potential neutron-induced backgrounds on both 134Xe and 136Xe for extended neutron energies. We will report our preliminary results for neutron inelastic scattering on 134Xe in applications to 0 νββ decay searches. NSF PHY-1614348, DE-FG02-97ER41033.

  4. Angular Distributions of Neutrons from (p,n)-Reactions in some Mirror Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Stroemberg, L G; Wiedling, T; Holmqvist, B

    1964-04-15

    The angular distributions of neutrons from the reactions {sup 13}C (p,n) {sup 13}N and {sup 19}F (p, n) {sup 19}Ne have been measured for some energies close to the reactions threshold. For the reaction {sup 9}B (p, n) {sup 9}C angular distributions have been measured at several proton energies below the reaction threshold of the neutrons to the first excited state in {sup 11}C . A 5.5 MeV Van de Graaff has been used for the experiments. The neutrons were detected with a long counter. The measurements were carried out for 16 energies for the B (p,n) reaction, 3 energies for the C (p, n) reaction, and for 7 energies for the F 19(p, n) reaction. One of the main reasons for investigating these (p, n) reactions was to check whether the direct reaction process is important at low proton energies as well as close to reaction thresholds in nuclei consisting of closed shells of neutrons and protons either with an extra nucleon outside the closed shell or a nucleon hole. Comparisons with a theory proposed by Bloom, Glendenning, and Moszkowski have been performed.

  5. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    International Nuclear Information System (INIS)

    Xufei, X.; Fan, T.; Nocente, M.; Gorini, G.; Bonomo, F.; Franzen, P.; Fröschle, M.; Grosso, G.; Tardocchi, M.; Grünauer, F.; Pasqualotto, R.

    2014-01-01

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes

  6. Increase of the electrical resistance of thin aluminium film due to 14 MeV neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, S K; Kumar, U; Singh, S P; Bhattacharya, S; Nigam, A K [Banaras Hindu Univ. (India). Dept. of Physics

    1978-01-01

    The effect of 14 MeV neutron bombardment on the electrical resistance of 500 A thick vacuum-coated Al film is investigated. In the beginning, a slow, then sharp and finally again slow increase is observed in the electrical resistance of the film. Transmission electron micrographs of the film after the same dose of neutron irradiation show a large number of defects produced in the film due to neutron irradiation, which seems to be the cause of this increase.

  7. Multipolarity analysis for 14C high-energy resonance populated by (18O,16O) two-neutron transfer reaction

    International Nuclear Information System (INIS)

    Carbone, D.; Cavallaro, M.; Bondì, M.; Agodi, C.; Cunsolo, A.; Cappuzzello, F.; Azaiez, F.; Franchoo, S.; Khan, E.; Bonaccorso, A.; Fortunato, L.; Foti, A.; Linares, R.; Lubian, J.; Scarpaci, J. A.; Vitturi, A.

    2015-01-01

    The 12 C( 18 O, 16 O) 14 C reaction at 84 MeV incident energy has been explored up to high excitation energy of the residual nucleus thanks to the use of the MAGNEX spectrometer to detect the ejectiles. In the region above the two-neutron separation energy, a resonance has been observed at 16.9 MeV. A multipolarity analysis of the cross section angular distribution indicates an L = 0 character for such a transition

  8. Evaluation of Neutron Induced Reactions for 32 Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Il

    2007-02-15

    Neutron cross sections for 32 fission products were evaluated in the neutron-incident energy range from 10{sup -5} eV to 20 MeV. The list of fission products consists of the priority materials for several applications, extended to cover complete isotopic chains for three elements. The full list includes 8 individual isotopes, {sup 95}Mo, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, and 24 isotopes in complete isotopic chains for Nd (8), Sm (9) and Dy (7). Our evaluation methodology covers both the low energy region and the fast neutron region.In the low energy region, our evaluations are based on the latest data published in the Atlas of Neutron Resonances. This resource was used to infer both the thermal values and the resolved resonance parameters that were validated against the capture resonance integrals. In the unresolved resonance region we performed the additional evaluation by using the averages of the resolved resonances and adjusting them to the experimental data.In the fast neutron region our evaluations are based on the nuclear reaction model code EMPIRE-2.19 validated against the experimental data. EMPIRE is the modular system of codes consisting of many nuclear reaction models, including the spherical and deformed Optical Model, Hauser-Feshbach theory with the width fluctuation correction and complete gamma-ray emission cascade, DWBA, Multi-step Direct and Multi-step Compound models, and several versions of the phenomenological preequilibrium models. The code is equipped with a power full GUI, allowing an easy access to support libraries such as RIPL and CSISRS, the graphical package, as well the utility codes for formatting and checking. In general, in our calculations we used the Reference Input Parameter Library, RIPL, for the initial set model parameters. These parameters were properly adjusted to reproduce the available experimental data taken from the CSISRS library. Our evaluations cover cross

  9. Evaluation of Neutron Induced Reactions for 32 Fission Products

    International Nuclear Information System (INIS)

    Kim, Hyeong Il

    2007-02-01

    Neutron cross sections for 32 fission products were evaluated in the neutron-incident energy range from 10 -5 eV to 20 MeV. The list of fission products consists of the priority materials for several applications, extended to cover complete isotopic chains for three elements. The full list includes 8 individual isotopes, 95 Mo, 101 Ru, 103 Rh, 105 Pd, 109 Ag, 131 Xe, 133 Cs, 141 Pr, and 24 isotopes in complete isotopic chains for Nd (8), Sm (9) and Dy (7). Our evaluation methodology covers both the low energy region and the fast neutron region.In the low energy region, our evaluations are based on the latest data published in the Atlas of Neutron Resonances. This resource was used to infer both the thermal values and the resolved resonance parameters that were validated against the capture resonance integrals. In the unresolved resonance region we performed the additional evaluation by using the averages of the resolved resonances and adjusting them to the experimental data.In the fast neutron region our evaluations are based on the nuclear reaction model code EMPIRE-2.19 validated against the experimental data. EMPIRE is the modular system of codes consisting of many nuclear reaction models, including the spherical and deformed Optical Model, Hauser-Feshbach theory with the width fluctuation correction and complete gamma-ray emission cascade, DWBA, Multi-step Direct and Multi-step Compound models, and several versions of the phenomenological preequilibrium models. The code is equipped with a power full GUI, allowing an easy access to support libraries such as RIPL and CSISRS, the graphical package, as well the utility codes for formatting and checking. In general, in our calculations we used the Reference Input Parameter Library, RIPL, for the initial set model parameters. These parameters were properly adjusted to reproduce the available experimental data taken from the CSISRS library. Our evaluations cover cross sections for almost all reaction channels

  10. Blank evaluation in nitrogen determination in seed grains by 14 MeV neutron activation analysis

    International Nuclear Information System (INIS)

    Wasek, M.; Sterlinski, S.

    1987-01-01

    In this work the term 'blank' signifies total radiation of the sample analyzed except that the element to be determined (analyte) is absent. On the basis of the evaluation of the blank components (nuclear and spectral interferences, air-nitrogen between grains, etc.), a semiempirical formula for calculating the nitrogen content in plant grain samples is proposed. The reliability of the results obtained with the use of this formula was demonstrated for five sorts of seeds (rye, wheat, barley, broad bean and soybean) which were analyzed by the Kjeldahl method and 14 MeV neutron activation analysis, respectively. (author)

  11. Measurements of neutron-deuteron breakup cross sections at 13.0 MeV

    International Nuclear Information System (INIS)

    Setze, H.R.; Howell, C.R.; Tornow, W.

    1993-01-01

    The discrepancy between low-energy nucleon-deuteron breakup cross-section data and calculations, which do not include three-nucleon forces, has been cited as a possible signature of the influence of three-nucleon forces section. The comparison between data and calculations is difficult to interpret because there are significant disagreements between the data. To help clarify the situation we have made kinematically complete cross-section measurements for n-d breakup at an incident neutron energy of 13.0 MeV. The experimental techniques and data analysis method will be described. Preliminary results will be presented in comparison to calculations and previous data

  12. Study of the most violent collisions in Kr + Au and Pb + Au reactions close to 30 MeV per nucleon

    International Nuclear Information System (INIS)

    Galin, J.

    1991-01-01

    Within the past two years, the use of the high efficiency, sectorized 4π neutron detector, ORION, enabled a new approach in the investigation of nuclear collisions between very heavy nuclei. This talk discusses recent developments of this technique applied to Kr + Au and Pb + Au reactions induced at 32 and 29 MeV per nucleon respectively. The effectiveness of the neutron multiplicity meter as a filter on the violence of the collision is presented and the characteristics of the most violent collisions examined in some detail by considering associated charged particles

  13. Measurement and analysis of 14 MeV neutron-induced double-differential neutron emission cross sections needed for fission and fusion reactor technology

    International Nuclear Information System (INIS)

    Wang Dahai.

    1990-10-01

    The main objectives of this IAEA Co-ordinated Research Programme are to improve the data on 14 MeV neutron-induced double-differential neutron emission cross sections for materials needed for fission and fusion reactor technology. This report summarizes the conclusions and recommendations which were agreed by all participants during the Second Research Co-ordination Meeting

  14. Optimization of the Efficiency of a Neutron Detector to Measure (α, n) Reaction Cross-Section

    Science.gov (United States)

    Perello, Jesus; Montes, Fernando; Ahn, Tony; Meisel, Zach; Joint InstituteNuclear Astrophysics Team

    2015-04-01

    Nucleosynthesis, the origin of elements, is one of the greatest mysteries in physics. A recent particular nucleosynthesis process of interest is the charge-particle process (cpp). In the cpp, elements form by nuclear fusion reactions during supernovae. This process of nuclear fusion, (α,n), will be studied by colliding beam elements produced and accelerated at the National Superconducting Cyclotron Laboratory (NSCL) to a helium-filled cell target. The elements will fuse with α (helium nuclei) and emit neutrons during the reaction. The neutrons will be detected for a count of fused-elements, thus providing us the probability of such reactions. The neutrons will be detected using the Neutron Emission Ratio Observer (NERO). Currently, NERO's efficiency varies for neutrons at the expected energy range (0-12 MeV). To study (α,n), NERO's efficiency must be near-constant at these energies. Monte-Carlo N-Particle Transport Code (MCNP6), a software package that simulates nuclear processes, was used to optimize NERO configuration for the experiment. MCNP6 was used to simulate neutron interaction with different NERO configurations at the expected neutron energies. By adding additional 3He detectors and polyethylene, a near-constant efficiency at these energies was obtained in the simulations. With the new NERO configuration, study of the (α,n) reactions can begin, which may explain how elements are formed in the cpp. SROP MSU, NSF, JINA, McNair Society.

  15. First Measurement of Reaction-in-Flight Neutrons at the National Ignition Facility

    Science.gov (United States)

    Tonchev, A.; Becker, J.; Bleuel, D.; Bionta, R.; Fortner, D.; Henry, E.; Khater, H.; Shaughnessy, D.; Schnider, D.; Stoeffl, W.; Yeamans, C.; Boswell, M.; Bredeweg, T.; Grim, G.; Jungman, G.; Fowler, M.; Hayes, A.; Obst, A.; Rundberg, R.; Schulz, A.; Wilhelmy, J.; Tornow, W.; Bhike, M.; Howell, C.; Gooden, M.; LLNL/LANL/TUNL Collaboration

    2013-10-01

    The first measurement of reaction-in-flight (RIF) neutrons, also known as tertiary neutrons, has been performed at the National Ignition Facility (NIF) using an activation technique. Thulium foils positioned at 50 cm from the burning deuterium-tritium (DT) capsule have been exposed to the characteristic DT neutron spectrum. The high-energy part of these neutrons with energies above 15.0 MeV can produce 167Tm via the 169Tm(n,3n) reaction. The 208-keV γ-ray, emitted from the decay of 167Tm with a half-life of 9.2 days, has been measured using two clover detectors. The first preliminary result implies that the ratio of RIF neutrons (En > 15.0 MeV) versus the total neutrons is 1 × 10 -4 +/- 3 × 10 -5. The important implication of these measurements on our knowledge of the charged-particle stopping power in strongly coupled quantum-degenerate plasma will be presented. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  16. A new method for the determination of unknown neutron fluence for 14.0 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Fariha [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan)]. E-mail: fariha@pinstech.org.pk; Khan, Ehsan U. [Department of Physics, CIIT, Islamabad (Pakistan); Qureshi, Imtinan [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Husaini, Syed N. [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Ahmad, Waqar [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Rajput, Usman [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Raza, Qaiser [Applied Physics Division, PINSTECH, Nilore, Islamabad (Pakistan)

    2006-11-15

    Measuring the correct neutron fluence in various energy intervals in and around the neutron sources is important for the purpose of personnel and environmental neutron dosimetry. In this paper, we present a new method for the measurement of the fluence of mono-energetic neutrons having the energy of 14.0 MeV. The samples exposed to neutrons from the 14.0 MeV neutron generator at PINSTECH with various fluence values ranging from 10{sup 7} to 10{sup 10} n cm{sup -2} were etched for 10 min in 6 N NaOH at 70.0{+-}1.0 {sup o}C and the transmittance of UV radiation was measured using a spectrophotometer. This procedure was repeated 20 times after etching the same sample each time for increasing time intervals till the stage when transmittance reached the constant minimum value. An exponential decay of the transmittance has been observed with respect to the increasing etching time interval in each of the samples exposed to various neutron fluence. Further, it has also been observed that there is a linear relationship between the transmittance decay constant and neutron fluence. Hence, the linear graph can be used as a calibration for measuring the unknown fluence of 14.0 MeV neutrons.

  17. Total reaction cross sections and neutron-removal cross sections of neutron-rich light nuclei measured by the COMBAS fragment-separator

    Science.gov (United States)

    Hue, B. M.; Isataev, T.; Erdemchimeg, B.; Artukh, A. G.; Aznabaev, D.; Davaa, S.; Klygin, S. A.; Kononenko, G. A.; Khuukhenkhuu, G.; Kuterbekov, K.; Lukyanov, S. M.; Mikhailova, T. I.; Maslov, V. A.; Mendibaev, K.; Sereda, Yu M.; Penionzhkevich, Yu E.; Vorontsov, A. N.

    2017-12-01

    Preliminary results of measurements of the total reaction cross sections σR and neutron removal cross section σ-xn for weakly bound 6He, 8Li, 9Be and 10Be nuclei at energy range (20-35) A MeV with 28Si target is presented. The secondary beams of light nuclei were produced by bombardment of the 22Ne (35 A MeV) primary beam on Be target and separated by COMBAS fragment-separator. In dispersive focal plane a horizontal slit defined the momentum acceptance as 1% and a wedge degrader of 200 μm Al was installed. The Bρ of the second section of the fragment-separator was adjusted for measurements in energy range (20-35) A MeV. Two-neutron removal cross sections for 6He and 10Be and one -neutron removal cross sections 8Li and 9Be were measured.

  18. Pulsed-neutron production at the Brookhaven 200-MeV linac

    International Nuclear Information System (INIS)

    Ward, T.E.; Alessi, J.; Brennan, J.; Grand, P.; Lankshear, R.; Montemurro, P.; Snead, C.L. Jr.; Tsoupas, N.

    1988-01-01

    The new 750-kV RFQ preinjector and double chopper system capable of selecting single nanosecond micropulses with repetition rates of 0.1--20 MHz has been installed at the Brookhaven 200-MeV proton linac. The micropulse intensity is approximately 1 x 10 9 p/μpulse. Neutron time-of-flight path lengths of 30--100 meter at 0/degree/, 12/degree/, 30/degree/, 45/degree/, 90/degree/ and 135/degree/ are available, as well as a zero degree swinger capable of an angular range of 0--25/degree/. Pulsed neutron beams of monoenergetic (p 7 Li → n 7 Be) and spallation (p 238 U → nx) sources will be discussed in the present paper, as well as detailing the chopped-beam capabilities. 11 refs., 5 figs., 1 tab

  19. Pulsed-neutron production at the Brookhaven 200-MeV linac

    International Nuclear Information System (INIS)

    Ward, T.E.; Alessi, J.; Brennan, J.; Grand, P.; Lankshear, R.; Montemurro, P.; Snead, C.L. Jr.; Tsoupas, N.

    1989-01-01

    The new 750-kV RFQ preinjector and double chopper system capable of selecting single nanosecond micropulses with repetition rates of 0.1 to 20 MHz has been installed at the Brookhaven 200-MeV proton linac. The micropulse intensity is approximately 1 x 10 9 p/μpulse. Neutron time-of-flight path lengths of 30 to 100 meters at 0 degree, 12 degree, 30 degree, 45 degree, 90 degree and 135 degree are available as well as a zero-degree beam swinger capable of an angular range of 0 degree to 25 degree. Pulsed neutron beams of monoenergetic (p 7 Li → n 7 Be) and spallation (p 238 U → nx) sources will be discussed in the present paper as well as detailing the chopped-beam capabilities. 11 refs., 5 figs., 1 tab

  20. Integral benchmark for the attenuation of 14 MeV neutrons passing through lead layers

    International Nuclear Information System (INIS)

    Antonov, S.; Vojkov, G.; Ilieva, K.; Jordanova, J.

    1987-01-01

    The attenuation has been studied of the total 14 MeV neutron flux passing through an iron collimator and directly located behind lead slabs with thicknesses 2.5, 5.0, 7.5, 10.0 and 12.5 cm. A comparison is made between the calculated data and results from a benchmark experiment. The experiment is analysed with an one-dimensional model based on ANISN-code and a tree-dimentional model based on MORSE-code (Monte Carlo method). The energy dependences of the cross-sections and neutron fluxes are represented by a 25-group approximation based on the SUPERTOG program and the files ENDL and ENDF/B-4. The mean deviation of MORSE calculated data from experimental ones is 6.4% for ENDL-data and 8.5% for EDDF-data. ANISN-calculated data show practically full coincidence with experimental ones both for ENDL and ENDF

  1. Absolute determination of copper and silver in ancient coins using 14 MeV neutrons

    Science.gov (United States)

    Chalouhi, Ch.; Hourani, E.; Loos, R.; Melki, S.

    1982-09-01

    A method for absolute determination of copper and silver in ancient coins is described. Activation analysis by 14 MeV neutrons is performed. In the experimental procedure emphasis is placed on corrections for neutrons and gamma attenuation. In the analytical procedure, a multi linear-regression calculation is used to separate different contributions to the 511 keV gamma peak. The precision in the absolute determination of Cu and Ag is better than 2% in recent coins of definite shapes, whereas it is a somewhat lower in ancient coins of irregular shapes. The method was applied to ancient coins provided by the Museum of the American University of Beirut. Overall consistency and suitability of the method were obtained.

  2. Absolute determination of copper and silver in ancient coins using 14 MeV neutrons

    International Nuclear Information System (INIS)

    Chalouhi, C.; Hourani, E.; Loos, R.; Melki, S.

    1982-01-01

    A method for absolute determination of copper and silver in ancient coins is described. Activation analysis by 14 MeV neutrons is performed. In the experimental procedure emphasis is placed on corrections for neutrons and gamma attenuation. In the analytical procedure, a multi linear-regression calculation is used to separate different contributions to the 511 keV gamma peak. The precision in the absolute determination of Cu and Ag is better than 2% in recent coins of definite shapes, whereas it is a somewhat lower in ancient coins of irregular shapes. The method was applied to ancient coins provided by the Museum of the American University of Beirut. Overall consistency and suitability of the method were obtained. (orig.)

  3. Absolute determination of copper and silver in ancient coins using 14 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Chalouhi, C.; Hourani, E.; Loos, R.; Melki, S. (Faculty of Science, Beirut (Lebanon))

    1982-09-15

    A method for absolute determination of copper and silver in ancient coins is described. Activation analysis by 14 MeV neutrons is performed. In the experimental procedure emphasis is placed on corrections for neutrons and gamma attenuation. In the analytical procedure, a multi linear-regression calculation is used to separate different contributions to the 511 keV gamma peak. The precision in the absolute determination of Cu and Ag is better than 2% in recent coins of definite shapes, whereas it is a somewhat lower in ancient coins of irregular shapes. The method was applied to ancient coins provided by the Museum of the American University of Beirut. Overall consistency and suitability of the method were obtained.

  4. Resonance analysis of the {sup 12}C,{sup 13}C({alpha},n) reactions and evaluation of neutron yield data of the reaction

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Toru [AITEL Corp., Tokyo (Japan)

    1998-03-01

    The {sup 12}C({alpha},n){sup 15}O reaction and the {sup 13}C({alpha},n){sup 16}O reaction were analyzed with a resonance formula in the incident {alpha}-particle energy range of 1.0 to 16.0 MeV. With the obtained resonance parameters, branching ratios of the emitted neutrons to the several levels of the residual nucleus and their angular distributions were calculated to obtain the energy spectrum of emitted neutrons. Thick target neutron yield of carbon were also calculated and compared with the experimental data. (author)

  5. Measurement of the neutron and gamma-ray spectra originating from a 14-MeV neutron source in liquid nitrogen and liquid air

    International Nuclear Information System (INIS)

    Broecker, B.; Clausen, K.; Schneider-Kuehnle, P.; Weinert, M.

    1975-01-01

    An experiment to measure the radiation transport originating from a 14-MeV neutron source in liquid nitrogen and liquid air is presented. Neutron and gamma-ray spectra were measured with a proton-recoil NE 213 scintillator and with four spherical proportional counters in a tank filled with liquid nitrogen or liquid air. The neutron spectra cover the energy range of 20 keV to 18 MeV. The source-detector separation varies in the liquid medium between 60 and 240 cm. The experimental setup is briefly described and the errors are estimated. (2 tables, 9 figures) (auth)

  6. INCLUSIVE SYSTEMATICS FOR SI-28+SI-28 REACTIONS BETWEEN 20 AND 35 MEV PER NUCLEON

    NARCIS (Netherlands)

    BOX, PF; GRIFFIOEN, KA; DECOWSKI, P; BOOTSMA, T; GIERLIK, E; VANNIEUWENHUIZEN, GJ; TWENHOFEL, C; KAMERMANS, R; WILSCHUT, HW; GIORNI, A; MORAND, C; DEMEYER, A; GUINET, D

    Inclusive velocity spectra of heavy ions produced in the Si-28 + Si-28 reaction at 22, 26, 30, and 35 MeV per nucleon were measured and decomposed into peripheral and central components using an analytical moving-source parametrization. The persistence of incomplete fusion followed by evaporation

  7. Estimation of exposure quantity of gamma and neutron in 13 MeV proton cyclotron for radioisotope production of 18F

    International Nuclear Information System (INIS)

    Sunardi; Silakhuddin

    2015-01-01

    Quantitative estimation of gamma and neutron exposure in 13 MeV proton cyclotron for radioisotope of 18 F has been done. The aim of this study is to know the exposure of gamma and neutron that will be generated by 13 MeV proton cyclotron The method that was used is the determine of gamma and neutron quantity exposure that produced by proton beam collision with matter in the cyclotron chamber and cyclotron target. The analysis result showed that the reactions occur at chamber are 63 Cu(p,n) 63 Zn, 65 Cu(p,n) 65 Zn and 56 Fe(p,n) 56 Co,, while at the target is 18 O(p,n) 18 F. The calculation result of neutron flux at the chamber and the target facility are 7,34×10 7 n/cm 2 dt and 1.10×10 9 n/cm 2 dt, respectively. The gamma activity at the chamber for reaction 63 Cu(p,n) 63 Zn, 65 Cu(p,n) 65 Zn and 56 Fe(p,n) 56 Co are 3,0×10 8 Bq, 4,54×10 5 Bq and 1,13×10 9 Bq respectively, while the gamma activity at the cyclotron target is 1,84×10 8 Bq. The data can be used as a basis for designing the cyclotron radiation shielding. (author)

  8. Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Aluminum

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers procedures measuring reaction rates by the activation reaction 27Al(n,α)24Na. 1.2 This activation reaction is useful for measuring neutrons with energies above approximately 6.5 MeV and for irradiation times up to about 2 days (for longer irradiations, see Practice E261). 1.3 With suitable techniques, fission-neutron fluence rates above 106 cm−2·s−1 can be determined. 1.4 Detailed procedures for other fast neutron detectors are referenced in Practice E261. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  9. Fast neutron distributions from Be and C thick targets bombarded with 80 and 160 MeV deuterons

    International Nuclear Information System (INIS)

    Pauwels, N.; Laurent, H.; Clapier, F.; Brandenburg, S.; Beijers, J. P .M.; Zegers, R. G. T.; Lebreton, H.; Saint-Laurent, M.G.; Mirea, M.

    2001-01-01

    Production of fast neutron studies have come to the fore in the past few years because of the great interest for the possible applications of induced fission to produce neutron rich ion beams. In this context, the main objective of the SPIRAL II (Systeme de Production d'Ions Radioactifs Acceleres en Ligne) and PARRNe (Production d'Atomes Radioactifs Riches en Neutrons) R and D projects is the investigation of the feasibility and of the optimum parameters for a neutron rich isotope source. Special attention is dedicated to the energy and angular distributions of the neutrons obtained through deuteron break--up in different types of converters and different incident energies. Analysis and modelling of such behaviors, together with the study of the yields of neutron induced fission, can be used to optimize the productivity of the fissioning target its geometry and designing it accordingly. The present report continues our previous studies realised for 17, 20, 28 and 200 MeV deuteron energies and it is focused on deuteron incident energies of 80 and 160 MeV. In the experiment, the double differential cross section for neutron production induced by 80 and 160 MeV deuterons impinging on thick C and Be targets, in which the incident deuterons were complete stopped, have been measured. The energy of the neutrons was determined from the time--of--flight (TOF) measurement. To obtain an energy resolution of about 4% for the fastest, forward--emitted neutrons, which have approximately beam velocity, the length of the flightpath for the detectors at angles up to 30 angle was chosen to be 6 m. At backward angles, where the neutron energies are lower, a shorter flightpath was chosen. A schematic drawing of the setup is shown. A 100 mm thick Be target and a 70 mm thick C target were used. Results are exemplified with the angular and energy distributions of neutron obtained for Be target at 80 MeV. (authors)

  10. Use of the n,p scattering reaction for neutron flux measurements

    International Nuclear Information System (INIS)

    Czirr, J.B.

    1977-01-01

    Several contemporary proton-recoil detectors are described and compared. These detectors have been used for neutron-spectrum measurements over various portions of the 10-keV-to-20-MeV energy range. Several factors which limit the accuracy of the results are compared quantitatively. General suggestions are given for setting and using standard cross sections and for future developments using the n,p scattering reaction

  11. Differential cross sections for gamma-ray production by 14 MeV neutrons with several elements in structural materials

    International Nuclear Information System (INIS)

    Murata, Isao; Yamamoto, Junji; Takahashi, Akito

    1988-01-01

    Energy differential cross sections for the gamma-rays produced from the (n,xγ) reactions by 14 MeV neutrons were measured in the gamma-ray energy range from 700 keV to 10 MeV using an NaI spectrometer. Results were obtained for the 8 natural elements; C, Al, Si, Cr, Fe, Ni, Cu and Mo. For prominent discrete gamma-rays in the differential cross sections, the production cross sections were determined by measuring angular distributions with a Ge detector. The gamma-ray energy covered the range between 500 and 3000 keV. The energy distributions have been compared with the differential cross sections evaluated in the nuclear data files of JENDL-3T, ENDL and ENDF/B-IV. The evaluations in JENDL-3T agreed fairly well with the measurements concerning the continuum energy spectra for secondary photons. Discrepancies appeared, however, for Si, Cr and Ni at the energies where the discrete gamma-rays were dominant. The ENDL evaluations were largely deviated from the experimental data. The production cross sections for the discrete gamma-rays in ENDL and ENDF/B-IV were available for the comparison with some of the measured cross sections. Results are presented for C, Al and Si. (author)

  12. Review of the fundamentals of the neutron-capture reaction

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1982-01-01

    Fifty years of research into the nature of the radiative capture reaction mechanisms is briefly summarized. A variety of such mechanisms is exploited to explain neutron capture over nine decades of neutron energy

  13. Calculation of neutron and gamma-ray energy spectra in liquid air and liquid nitrogen due to 14-MeV neutron and californium-252 sources

    International Nuclear Information System (INIS)

    Straker, E.A.; Gritzner, M.L.; Harris, L. Jr.

    1978-01-01

    Calculations of neutron and gamma-ray fluences from 14-MeV neutron and 252 Cf sources in liquid air and liquid nitrogen have been performed. These calculations were made specifically for comparison with experimental data measured at Stohl, Federal Republic of Germany. The discrete-ordinates method was utilized with neutron and gamma-ray cross sections from ENDF/B-IV. One-dimensional calculational models were developed for the sources and tank. Limited comparisons are made with experimental data

  14. Cross section for the 103Rh(n,n')103Rhm reaction in the energy range 5.7 endash 12 MeV

    International Nuclear Information System (INIS)

    Miah, M.M.; Strohmaier, B.; Vonach, H.; Mannhart, W.; Schmidt, D.

    1996-01-01

    The 103 Rh(n,n ' ) 103 Rh m cross section was measured by the activation method in the neutron energy range 5.7 endash 12 MeV with an uncertainty of ≅5%. Monoenergetic neutrons produced by the D(d,n) 3 He reaction were used to irradiate metallic Rh samples at 0 degree relative to the deuteron beam. The K x rays from 103 Rh m were measured with a calibrated Si detector, and the neutron fluence was determined by means of a 238 U fission chamber. The measured cross sections resolve the discrepancies in previous data and agree with the results of recent statistical model calculations of the fast-neutron cross sections of rhodium. copyright 1996 The American Physical Society

  15. Calculations of long-lived isomer production in neutron reactions

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.

    1992-01-01

    We present theoretical calculations for the production of the long-lived isomers 93m Nb (1/2-, 16 yr), 121m Sn (11/2-, 55 yr), 166m Ho (7-, 1200 yr), 184m Re (8+, 165 d), 186m Re (8+, 2x10 5 yr), 178 Hf (16+, 31 yr), 179m Hf (25/2-, 25 d), and 192m Ir (9+, 241 yr), all of which pose potential radiation activation problems in nuclear fusion reactors if produced in 14-MeV neutron-induced reactions. We consider (n,2n), (n,n'), and (n,γ) production modes and compare our results both with experimental data (where available) and systematics. We also investigate the dependence of the isomeric cross section ratio on incident neutron energy for the isomers under consideration. The statistical Hauser-Feshbach plus preequilibrium code GNASH was used for the calculations. Where discrete state experimental information was lacking, rotational band members above the isomeric state, which can be justified theoretically but have not been experimentally resolved, were reconstructed. (author). 16 refs, 10 figs, 4 tabs

  16. Calculations of Excitation Functions of Some Structural Fusion Materials for ( n, t) Reactions up to 50 MeV Energy

    Science.gov (United States)

    Tel, E.; Durgu, C.; Aktı, N. N.; Okuducu, Ş.

    2010-06-01

    Fusion serves an inexhaustible energy for humankind. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So, the working out the systematics of ( n, t) reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. In this study, ( n, t) reactions for some structural fusion materials such as 27Al, 51V, 52Cr, 55Mn, and 56Fe have been investigated. The new calculations on the excitation functions of 27Al( n, t)25Mg, 51V( n, t)49Ti, 52Cr( n, t)50V, 55Mn( n, t)53Cr and 56Fe( n, t)54Mn reactions have been carried out up to 50 MeV incident neutron energy. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. Equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, we have calculated ( n, t) reaction cross-sections by using new evaluated semi-empirical formulas developed by Tel et al. at 14-15 MeV energy. The calculated results are discussed and compared with the experimental data taken from the literature.

  17. Compilation and evaluation of 14-MeV neutron-activation cross sections for nuclear technology applications. Set I

    International Nuclear Information System (INIS)

    Evain, B.P.; Smith, D.L.; Lucchese, P.

    1985-04-01

    Available 14-MeV experimental neutron activation cross sections are compiled and evaluated for the following reactions of interest for nuclear-energy technology applications: 27 Al(n,p) 27 Mg, Si(n,X) 28 Al, Ti(n,X) 46 Sc, Ti(n,X) 47 Sc, Ti(n,X) 48 Sc, 51 V(n,p) 51 Ti, 51 V(n,α) 48 Sc, Cr(n,X) 52 V, 55 Mn(n,α) 52 V, 55 Mn(n,2n) 54 Mn, Fe(n,X) 54 Mn, 54 Fe(n,α) 51 Cr, 59 Co(n,p) 59 Fe, 59 Co(n,α) 56 Mn, 59 Co(n,2n) 58 Co, 65 Cu(n,p) 65 Ni, Zn(n,X) 64 Cu, 64 Zn(n,2n) 63 Zn, 113 In(n,n')/sup 113m/In, 115 In(n,n') /sup 115m/In. The compiled values are listed and plotted for reference without adjustments. From these collected results those values for which adequate supplementary information on nuclear constants, standards and experimental errors is provided are selected for use in reaction-by-reaction evaluations. These data are adjusted as needed to account for recent revisions in the nuclear constants and cross section standards. The adjusted results are subsequently transformed to equivalent cross sections at 14.7 MeV for the evaluation process. The evaluations are performed utilizing a least-squares method which considers correlations between the experimental data. 440 refs., 41 figs., 46 tabs

  18. Compilation and evaluation of 14-MeV neutron-activation cross sections for nuclear technology applications. Set I

    Energy Technology Data Exchange (ETDEWEB)

    Evain, B.P.; Smith, D.L.; Lucchese, P.

    1985-04-01

    Available 14-MeV experimental neutron activation cross sections are compiled and evaluated for the following reactions of interest for nuclear-energy technology applications: /sup 27/Al(n,p)/sup 27/Mg, Si(n,X)/sup 28/Al, Ti(n,X)/sup 46/Sc, Ti(n,X)/sup 47/Sc, Ti(n,X)/sup 48/Sc, /sup 51/V(n,p)/sup 51/Ti, /sup 51/V(n,..cap alpha..)/sup 48/Sc, Cr(n,X)/sup 52/V, /sup 55/Mn(n,..cap alpha..)/sup 52/V, /sup 55/Mn(n,2n)/sup 54/Mn, Fe(n,X)/sup 54/Mn, /sup 54/Fe(n,..cap alpha..)/sup 51/Cr, /sup 59/Co(n,p)/sup 59/Fe, /sup 59/Co(n,..cap alpha..)/sup 56/Mn, /sup 59/Co(n,2n)/sup 58/Co, /sup 65/Cu(n,p)/sup 65/Ni, Zn(n,X)/sup 64/Cu, /sup 64/Zn(n,2n)/sup 63/Zn, /sup 113/In(n,n')/sup 113m/In, /sup 115/In(n,n') /sup 115m/In. The compiled values are listed and plotted for reference without adjustments. From these collected results those values for which adequate supplementary information on nuclear constants, standards and experimental errors is provided are selected for use in reaction-by-reaction evaluations. These data are adjusted as needed to account for recent revisions in the nuclear constants and cross section standards. The adjusted results are subsequently transformed to equivalent cross sections at 14.7 MeV for the evaluation process. The evaluations are performed utilizing a least-squares method which considers correlations between the experimental data. 440 refs., 41 figs., 46 tabs.

  19. Activation cross section measurement at neutron energy from 13.3 to 14.9 MeV using FNS facility

    Energy Technology Data Exchange (ETDEWEB)

    Kasugai, Yoshimi; Ikeda, Yujiro; Uno, Yoshitomo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yamamoto, Hiroshi; Kawade, Kiyoshi [Nagoya Univ. (Japan)

    2001-03-01

    Sixty activation cross sections have been measured in the neutron energy between 13.4 and 14.9 MeV using intense D-T neutrons source (Fusion Neutronics Source, FNS) at JAERI. The following reactions are included in this work: (1) 32 reactions mainly for lanthanide isotopes, (2) 19 reactions for short-lived products (the half-lives are from 1 s to 20 min) and (3) 9 (n, n{alpha}) reactions. The experimental results were compared with the data reported previously and the evaluated data of ENDF/B-VI Rev. 4, JENDL-3.2 and FENDL/A-2.0. The present data for the (n, p) and (n, {alpha}) reactions were compared with the values estimated by using the empirical formulae proposed by our group in order to validate the systematics for the reactions for the lanthanide isotopes. Systematic trend of (n, n{alpha}) reactions were discussed based on the present data. (author)

  20. Monte Carlo simulations and experimental results on neutron production in the spallation target QUINTA irradiated with 660 MeV protons

    International Nuclear Information System (INIS)

    Khushvaktov, J.H.; Yuldashev, B.S.; Adam, J.; Vrzalova, J.; Baldin, A.A.; Furman, W.I.; Gustov, S.A.; Kish, Yu.V.; Solnyshkin, A.A.; Stegailov, V.I.; Tichy, P.; Tsoupko-Sitnikov, V.M.; Tyutyunnikov, S.I.; Zavorka, L.; Svoboda, J.; Zeman, M.; Vespalec, R.; Wagner, V.

    2017-01-01

    The activation experiment was performed using the accelerated beam of the Phasotron accelerator at the Joint Institute for Nuclear Research (JINR). The natural uranium spallation target QUINTA was irradiated with protons of energy 660 MeV. Monte Carlo simulations were performed using the FLUKA and Geant4 codes. The number of leakage neutrons from the sections of the uranium target surrounded by the lead shielding and the number of leakage neutrons from the lead shield were determined. The total number of fissions in the setup QUINTA were determined. Experimental values of reaction rates for the produced nuclei in the "1"2"7I sample were obtained, and several values of the reaction rates were compared with the results of simulations by the FLUKA and Geant4 codes. The experimentally determined fluence of neutrons in the energy range of 10-200 MeV using the (n, xn) reactions in the "1"2"7I(NaI) sample was compared with the results of simulations. Possibility of transmutation of the long-lived radionuclide "1"2"9I in the QUINTA setup was estimated. [ru

  1. Digital neutron/gamma discrimination with an organic scintillator at energies between 1 MeV and 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Comrie, A.C. [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Buffler, A., E-mail: andy.buffler@uct.ac.za [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Smit, F.D. [iThemba LABS, Somerset West 7129 (South Africa); Wörtche, H.J. [INCAS" 3, Dr. Nassaulaan 9. 9400 AT Assen (Netherlands)

    2015-02-01

    Three different digital implementations of pulse shape discrimination for pulses from an EJ301 liquid scintillator detector are presented, and illustrated with neutrons and gamma-rays produced by an Am–Be radioisotopic source, a D–T generator and beams produced by cyclotron-accelerated protons of energies 42, 62 and 100 MeV on a Li target. A critical comparison between the three methods is provided.

  2. /sup 9/Be(p,n)/sup 9/B reaction with polarized protons from 2. 4 to 2. 9 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, U [Basel Univ. (Switzerland); Brown, L [Carnegie Institution of Washington, D.C. (USA). Dept. of Terrestrial Magnetism

    1976-04-19

    A polarized beam was used to measure angular distributions of the proton analyzing power of the /sup 9/Be(p,n)/sup 9/B reaction at six energies from 2.4 to 2.9 MeV. The data were measured typically to an accuracy of 0.02 with a target 23 keV thick at 2.5 MeV bombarding energy. The analyzing power can be fitted with three associated Legendre polynomials, the coefficients of which show considerable variation in the vicinity of the pair of degenerate states at 2.56 MeV. The coefficients of the odd polynomials are not zero over the energy range of these states, indicating that they are of opposite parity. Comparison of these analyzing power measurements with previous data for the neutron polarization induced with unpolarized protons shows near equality at all energies, as expected from Conzett's theorem.

  3. Inner hole excitations in 89Zr and 91Mo via the (3He,α) reaction at 97 MeV

    International Nuclear Information System (INIS)

    Duhamel, G.; Perrin, G.; Didelez, J.P.; Gerlic, E.; Langevin-Joliot, H.; Guillot, J.; Van de Wiele, J.

    1981-01-01

    The 89 Zr and 91 Mo nuclei have been investigated up to approximately 25 MeV excitation energy using the ( 3 He,α) reaction at 97.3 MeV incident energy. In addition to the well known low-lying levels and analog states, strongly excited groups of level centered around 4.4 MeV are confirmed to belong to 1fsub(7/2) neutron inner shell in 89 Zr, with at most approximately 50% of the sum rule strength. A corresponding group, with comparable strength, is found for the first time in 91 Mo at nearly the same excitation energy. In addition, and for both nuclei two much smoother structures are observed lying under and beyond the analog states. We discuss their possible attribution respectively to the 1fsub(7/2)T components. Contributions from 1d inner shells are also considered. In both nuclei, new I.A.S. fragments have been identified

  4. Development of quasi-monochromatic p-7Li neutron generating system for 80-210 MeV

    International Nuclear Information System (INIS)

    Nakao, Noriaki; Shibata, Tokushi; Nakamura, Takashi; Uwamino, Yoshitomo; Nakanishi, Noriyoshi; Kurosawa, Tadahiro; Kim, Unju.

    1996-01-01

    Recently the requirements for the experimental data on the response characteristics of neutron detector and the cross section for neutron generation by charged particles have been increasing for shield designing. Here, a system for quasi-monochromatic neutron generation was developed in the facility of ring-cyclotron in Institute of Physical and Chemical Sciences. In this study, H 2 + accelerated to an energy range of 80-135 MeV/n and P + to 150-210 MeV was irradiated to E4 beam course and NE102A plastic scintillator was used for monitoring the neutron flux. The amount of neutrons generated was estimated from the radioactivity of 7 Be produced in 7 Li-target. The neutron spectres thus estimated as an energy range of 80-210 MeV were presented and the lower limit of these spectres was about 20 MeV. The peaks in the range of 150 and 210 MeV were comparatively wide because of the inferiority of energy resolving power at a higher energy level. (M.N.)

  5. Neutron total cross section measurements in the energy region from 47 keV to 20 MeV

    International Nuclear Information System (INIS)

    Poenitz, W.P.; Whalen, J.F.

    1983-05-01

    Neutron total cross sections were measured for 26 elements. Data were obtained in the energy range from 47 keV to 20 MeV for 11 elements in the range of light-mass fission products. Previously reported measurements for eight heavy and actinide isotopes were extended to 20 MeV. Data were also obtained for Cu (47 keV to 1.4 MeV) and for Sc, Zn, Nd, Hf, and Pt (1.8 to 20 MeV). The present work is part of a continuing effort to provide accurate neutron total cross sections for evaluations and for optical-model parameteriztions. The latter are required for the derivation of other nuclear-data information of importance to applied programs. 37 references

  6. Equilibration in the reaction of 175 and 252 MeV 20Ne with 197Au

    International Nuclear Information System (INIS)

    Moulton, J.B.

    1978-06-01

    The highly inelastic nuclear reaction of 197 Au with 20 Ne at 175 and 252 MeV laboratory energies is studied. Energy-, elemental-, and angular- distributions for atomic numbers 5 to 30 (175 MeV) or 34 (252 MeV) are presented. The means and widths of the kinetic energy spectra for detected elements are compared with a theoretical calculation. The calculation postulates thermalization of the incident projectile kinetic energy, and includes one sha(e-vibrational degree of freedom and rigid rotation of the reaction complex. The effect of particle evaporation is considered. Good agreement of the expurimental mean energies with the theory is obtained. Poorer agreement of the kinetic energy widths with the theory may be due to a low-temperature quantal effect. The relative elemental yields are analyzed for their degree of equilibration, based on a model of diffusive nucleon exchange as described by the master equation. A similar degree of equilibration is observed for both reaction energies. The absolute elemental yields are reproduced qualitatively by employing an advanced diffusion code, coupled with calculation of the subsequent fission of heavy reaction products, including the compound nucleus. The angular distributions are analyzed with a simple model, to estimate the reaction lifetime of selected elements

  7. Exposure times and ratio of readings produced by irradiation of thermoluminescence dosemeters in PTB neutron standard fields between 0.1 MeV and 19 MeV

    International Nuclear Information System (INIS)

    Jahr, R.; Guldbakke, S.; Cosack, M.

    1979-06-01

    6 LiF and 7 LiF thermoluminescence dosimeters (TLD) irradiated in a standard field of monoenergetic neutrons (Esub(n) = 0.1 MeV to 19 MeV), respond as well to the photon as to the neutron component of this radiation field. The ratio of the two TLD readings as well as the duration of irradiation required to obtain a preset TLD reading are calculated as a function of the neutron energy. (orig.) [de

  8. RBE of 0,85 MeV neutrons in guinea pigs with intestinal form of radiation sickness

    International Nuclear Information System (INIS)

    Shaporov, V.N.; Sokolova, T.I.; Nasonova, T.A.; Aleshin, S.N.

    1989-01-01

    Relative biological effectiveness (RBE) coefficient of 0.85 MeV neutrons was 1.87 in comparison with 0.66 MeV γ-radiation ( 137 Cs) when estimated by the death rate of guinea pigs with intestinal form of radiation sickness. LD 50/5 was 5.9 and 11.06 respectively. Features of the mortality rate dynamics, clinical picture and pathoanatomical changes are discussed

  9. RBE of 0.85 MeV neutrons in Guinea pigs with a cerebral form of radiation sickness

    International Nuclear Information System (INIS)

    Shaporov, V.N.; Sokolova, T.I.; Nasonova, T.A.; Aleshin, S.I.

    1989-01-01

    The RBE coefficient of neutrons (0.85 MeV) was 1.87 in comparison with that of electron radiation (8 MeV) as determined by the death rate of guinea pigs with the cerebral form of radiation sickness. LD 50/1.5 amounted to 43.2 and 80.7 Gy. The dynamics of clinical symptoms at the height of the disease is discussed

  10. The 9Be(d,n)10B reaction as a source of polarized neutrons from a low energy accelerator

    International Nuclear Information System (INIS)

    Bains, B.S.; Galloway, R.B.

    1977-01-01

    The 9 Be(d,n) 10 B reaction leading to the ground state of 10 B is found to provide a neutron beam with a polarization of 0.35 +- 0.06 at a reaction angle of 45 0 to a 400 keV deuteron beam. The suitability of such a polarized 4.5 MeV neutron beam for elastic scattering experiments is discussed. The polarization of the neutrons leading to the first excited state of 10 B is found to be - 0.08 +- 0.07 under the same conditions. (Auth.)

  11. Cross sections for production of 70 discrete-energy gamma rays created by neutron interactions with 56Fe for En to 40 MeV: Tabulated data

    International Nuclear Information System (INIS)

    Dickens, J.K.; Todd, J.H.; Larson, D.C.

    1990-09-01

    Inelastic and nonelastic neutron interactions with 56 Fe have been studied for incident neutron energies between 0.8 and 41 MeV. An iron sample isotopically enriched in the mass 56 isotope was used. Gamma rays representing 70 transitions among levels in residual nuclei were identified, and production cross sections were deduced. The reactions studied were 56 Fe(n,n') 56 Fe, 56 Fe(n,p) 56 Mn, 56 Fe(n,2n) 55 Fe, 56 Fe(n,d + n,np) 55 Mn, 56 Fe(n,t + n,nd + n,2np) 54 Mn, 56 Fe(n,α) 53 Cr, 56 Fe(n,nα) 52 Cr, and 56 Fe(n,3n) 54 Fe. Values obtained for production cross sections as functions of incident neutron energy are presented in tabular form. 38 refs., 7 figs., 12 tabs

  12. Neutron-proton scattering experiments and phase analyses for the n-p system in the energy range from 17 to 50 MeV

    International Nuclear Information System (INIS)

    Krupp, H.

    1986-01-01

    In the framework of the study of the nucleon-nucleon interaction neutron-proton scattering experiments were performed at the neutron collimator POLKA of the Karlsruhe cyclotron. Neutrons were produced by the source reaction D(d,n)X in the energy range between 17 and 50 MeV. Measured were the differential cross section, the analyzing power, and the spin correlation coefficient of the elastic n-p scattering. By means of the new data the knowledge of the isospin T=0 scattering phases could be improved. It is for the first time possible to determine the scattering phases for T=1 independently from n-p and p-p data with comparable accuracy. (orig./HSI) [de

  13. Neutron scattering from 208Pb at 30.4 and 40.0 MeV and isospin dependence of the nucleon optical potential

    Science.gov (United States)

    Devito, R. P.; Khoa, Dao T.; Austin, Sam M.; Berg, U. E. P.; Loc, Bui Minh

    2012-02-01

    Background: Analysis of data involving nuclei far from stability often requires the optical potential (OP) for neutron scattering. Because neutron data are seldom available, whereas proton scattering data are more abundant, it is useful to have estimates of the difference of the neutron and proton optical potentials. This information is contained in the isospin dependence of the nucleon OP. Here we attempt to provide it for the nucleon-208Pb system.Purpose: The goal of this paper is to obtain accurate n+208Pb scattering data and use it, together with existing p+208Pb and 208Pb(p,n)208BiIAS* data, to obtain an accurate estimate of the isospin dependence of the nucleon OP at energies in the 30-60-MeV range.Method: Cross sections for n+208Pb scattering were measured at 30.4 and 40.0 MeV, with a typical relative (normalization) accuracy of 2-4% (3%). An angular range of 15∘ to 130∘ was covered using the beam-swinger time-of-flight system at Michigan State University. These data were analyzed by a consistent optical-model study of the neutron data and of elastic p+208Pb scattering at 45 and 54 MeV. These results were combined with a coupled-channel analysis of the 208Pb(p,n) reaction at 45 MeV, exciting the 0+ isobaric analog state (IAS) in 208Bi.Results: The new data and analysis give an accurate estimate of the isospin impurity of the nucleon-208Pb OP at 30.4 MeV caused by the Coulomb correction to the proton OP. The corrections to the real proton OP given by the CH89 global systematics were found to be only a few percent, whereas for the imaginary potential it was greater than 20% at the nuclear surface. On the basis of the analysis of the measured elastic n+208Pb data at 40 MeV, a Coulomb correction of similar strength and shape was also predicted for the p+208Pb OP at energies around 54 MeV.Conclusions: Accurate neutron scattering data can be used in combination with proton scattering data and (p,n) charge exchange data leading to the IAS to obtain reliable

  14. Measurement of the detection efficiency of the KLOE calorimeter for neutrons between 22 and 174 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Battistoni, G. [Sezione INFN di Milano (Italy); Bertolucci, S. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Bini, C. [Sapienza Universita di Roma (Italy); Sezione INFN di Roma (Italy); Branchini, P. [Sezione INFN di Roma Tre (Italy); Curceanu, C. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Zorzi, G.; Di Domenico, A. [Sapienza Universita di Roma (Italy); Sezione INFN di Roma (Italy); Di Micco, B. [Universita degli di Studi ' Roma Tre' (Italy); Sezione INFN di Roma Tre (Italy); Ferrari, A. [Fondazione CNAO, Milano (Italy); Fiore, S. [Sapienza Universita di Roma (Italy); Sezione INFN di Roma (Italy)], E-mail: salvatore.fiore@roma1.infn.it; Gauzzi, P. [Sapienza Universita di Roma (Italy); Sezione INFN di Roma (Italy); Giovannella, S.; Happacher, F. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Iliescu, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); IFIN-HH, Bucharest (Romania); Martini, M.; Miscetti, S. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Nguyen, F. [Universita degli di Studi ' Roma Tre' (Italy); Sezione INFN di Roma Tre (Italy); Passeri, A. [Sezione INFN di Roma Tre (Italy); Prokofiev, A. [Svedberg Laboratory, Uppsala University (Sweden)] (and others)

    2009-01-01

    A prototype of the high-sampling lead-scintillating fiber KLOE calorimeter has been exposed to neutron beams of 21, 46 and 174 MeV, provided by the The Svedberg Laboratory, Uppsala, to test its neutron detection efficiency. The measurement of the neutron detection efficiency of an NE110 scintillator provided a reference calibration. The measured efficiency is larger than what expected considering the scintillator thickness of the KLOE prototype only. This result proves the existence of a contribution from the passive material to neutron detection efficiency, in a high-sampling calorimeter configuration.

  15. Detecting neutrons by forward recoil protons at the Energy & Transmutation facility: Detector development and calibration with 14.1-MeV neutrons

    Science.gov (United States)

    Afanasev, S.; Vishnevskiy, A.; Vishnevskiy, D.; Rogachev, A.; Tyutyunnikov, S.

    2017-05-01

    As part of the Energy & Transmutation project, we are developing a detector for neutrons with energies in the 10-100 MeV range emitted from the target irradiated by a charged-particle beam. The neutron is detected by measuring the time-of-flight and total kinetic energy of the forward-going recoil proton [1] knocked out at a small angle from a thin layer of plastic scintillator, which has to be selected against an intense background created by γ quanta, scattered neutrons, and charged particles. On the other hand, neutron energy has to be measured over the full range with no extra tuning of the detector operation regime. Initial measurements with a source of 14.1-MeV neutrons are reported.

  16. The secondary neutrons spectra of 235U, 238U for incident energy range 1-2.5 MeV

    International Nuclear Information System (INIS)

    Kornilov, N.V.; Kagalenko, A.B.; Balitsky, A.V.; Baryba, V.Ja.; Androsenko, P.A.; Androsenko, A.A.

    1993-01-01

    Spectra of inelastic scattered neutrons and fission neutrons were measured with neutron time of flight spectrometer. The solid tritium target was used as a neutron source. The energy distribution of neutrons on the sample was calculated with Monte-Carlo code, taking into account interaction income protons inside target and reaction kinematics. The detector efficiency was determined with 252 Cf source. The multiple scattering and absorption corrections were calculated with codes packet BRAND. Our results confirm ENDF/B-6 data library. (author)

  17. Multipurpose intense 14 MeV neutron source at Bratislava: Design study

    International Nuclear Information System (INIS)

    Pivarc, J.; Hlavac, S.; Kral, J.; Oblozinsky, P.; Ribansky, I.; Turzo, I.

    1980-05-01

    The present state of design of the multipurpose intense 14 MeV neutron source based on a D + ion beam and a metal tritide target is reported. It is essentially a 300 keV electrostatic air insulated accelerator capable to accelerate a deuterium ion beam up to 10 mA. With such a beam and a beam spot of 1 cm 2 , a neutron yield typically 10 12 n/s and a useful target lifetime of around 10 h are expected. Various users requirements are met by means of three beam lines: an intense, low current dc and a low current fast pulsed. The key components of the intense source section are the rotating target and the ion source. The rotating target is proposed, with respect of the heat dissipation and the removal of 3 kW/cm 2 , in continuous operation. A rotation speed up to 1100 rpm is considered. The ion source should deliver about 0.5 kW of extracted D + ion beam power. A duoplasmatron source with an electrostatic beam focusing system has been selected. Low current sections of the neutron source may operate with a high frequency ion source as well. The dc section for maximum yields around 10 10 n/s is designed with special regard to beam monitoring. The fast pulsed section should produce up to 1 ns compressible pulsed D + ion beam on a target spot with 5 MHz repetition rate. The report includes information about other components of the neutron source as a high voltage power supply, a vacuum system, beam transport, a diagnostic and control system and basic information about neutron source cells and radiation protection. (author)

  18. V79 survival following simultaneous or sequential irradiation by 15-MeV neutrons and 60Co photons

    International Nuclear Information System (INIS)

    Higgins, P.D.; DeLuca, P.M. Jr.; Pearson, D.W.; Gould, M.N.

    1983-01-01

    A unique tandem source irradiation facility, composed of an intense d-T neutron source and a 60 Co teletherapy unit, was used to investigate biological responses for different neutron/photon configurations. V79 Chinese hamster cells, attached as monolayers in log-phase growth, were irradiated at 37 degrees C by either 14.8-MeV neutrons, 60 Co, or a mixture of 40% neutrons and 60% photons in simultaneous or sequential application. Measurements of cell survival indicate an increased effectiveness in cell killing for simultaneously administered neutrons and photons compared to that measured or predicted for sequentially applied beam modalities. An understanding of the magnitude of these interactive effects is important both for calculating accurate effective doses for neutron radiotherapy of deep-seated tumors, for which the photon component is appreciable, and for determination of environmental hazards to people occupationally exposed to mixtures of photons and neutrons

  19. V79 survival following simultaneous or sequential irradiation by 15-MeV neutrons and 60Co photons

    International Nuclear Information System (INIS)

    Higgins, P.D.; DeLuca, P.M. Jr.; Pearson, D.W.; Gould, M.N.

    1983-01-01

    A unique tandem source irradiation facility, composed of an intense d-T neutron source and a 60 Co teletherapy unit, was used to investigate biological responses for different neutron/photon configurations. V79 Chinese hamster cells, attached as monolayers in log-phase growth, were irradiated at 37 0 C by either 14.8-MeV neutrons, 60 Co, or a mixture of 40% neutrons and 60% photons in simultaneous or sequential application. Measurements of cell survival indicate an increased effectiveness in cell killing for simultaneously administered neutrons and photons compared to that measured or predicted for sequentially applied beam modalities. An understanding of the magnitude of these interactive effects is important both for calculating accurate effective doses for neutron radiotherapy of deep-seated tumors, for which the photon component is appreciable, and for determination of environmental hazards to people occupationally exposed to mixtures of photons and neutrons

  20. V79 survival following simultaneous or sequential irradiation by 14.8-MeV neutrons and 60Co photons

    International Nuclear Information System (INIS)

    Higgins, P.D.; DeLuca, P.M. Jr.; Pearson, D.W.; Gould, M.N.

    1981-01-01

    A unique tandem source irradiation facility, comprised of an intense d-T neutron source and a 60 Co teletherapy unit, has been used to investigate biological response for different neutron/photon configurations. V79 Chinese hamster cells, attached as monolayers in log phase growth, were irradiated at 37 0 C by either 14.8 MeV neutrons, 60 Co or by a mixture of 40% neutrons - 60% photons in simultaneous or sequential application. Measurements of cell survival indicate an increased effectiveness in cell killing for simultaneously administered neutrons and photons than was measured or predicted for sequentially applied beam modalities. An understanding of the magnitude of these interactive effects is important both for calculating accurate effective doses for neutron radiotherapy of deep-seated tumors, for which the photon component is appreciable and for determination of environmental hazards to people occupationally exposed to low levels of photons and neutrons